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The only place success comes before work is in the dictionary.
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Acknowledgment

First of all, I thank God for being my main guide throughout this journey. Then,

I thank the family members who were present, giving me their support in every way.

Thank you for your understanding during the times I was absent from family activities to

continue the work here. I also express my thanks to my advisors for their wise counsel.

Additionally, the I thank the founding institution that provide resources to support my

research: The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

supported me at the whole Ph.D (both in Brazil and in the United States sandwich period

mission); Transmissora Aliança de Energia Elétrica (TAESA) and Agência Nacional de

Energia Elétrica (ANEEL) supported me in part-time under the project identified as

Projeto 0053: Teleproteção em IEC-61850. Finally, I would like to thank the colleagues

who in some way contributed to my journey.



Resumo

As subestações elétricas digitais são um elemento chave para fornecer uma base confiável

para as redes elétricas inteligentes do futuro, conhecidas como Smart Grids. As funções

automatizadas dentro de tais subestações pressupõem conectividade crescente entre Dis-

positivos Eletrônicos Inteligentes, do inglês, Intelligent Electronic Devices (IEDs). O

padrão IEC–61850 propõe um conjunto de protocolos de comunicação para definir como

os IEDs se comunicam. Nossos estudos mostram que existem vulnerabilidades que podem

comprometer tais protocolos, causando mau funcionamento dos equipamentos elétricos.

Portanto, os Sistemas de Detecção de Intrusões (IDSs) se tornaram um componente essen-

cial para proteger as subestações de atividades maliciosas. Embora as técnicas de detecção

de intrusão sejam comumente estudadas em redes e sistemas convencionais, apenas alguns

estudos abordam esse problema, considerando os requisitos, limitações e protocolos de co-

municação específicos das subestações IEC–61850. Nossos estudos revelam que a falta

de dados realistas para treinamento, teste e avaliação de IDSs em cenários industriais

realistas é considerada um grande desafio. Como consequência, o desenvolvimento de

IDSs atualmente é limitado pelos conjuntos de dados disponíveis. Esta tese visa a uma

proposta de um framework para apoiar uma solução robusta para detecção e prevenção

de intrusões em subestações IEC–61850. Nossa principal contribuição está no desenvolvi-

mento do Efficacious Reproducer Engine for Network Operations (ERENO). ERENO é

um framework de código aberto para gerar conjuntos de dados IEC–61850 com features

(atributos) representativas — extraídas de protocolos de comunicação de subestação em

nível de rede e do domínio elétrico — para detectar diferentes tipos de intrusões. Como

uma contribuição adicional e como uma prova de conceito, apresentamos um conjunto de

8 conjuntos de dados IEC–61850 realistas, que modelam 7 casos de uso de ataques e 1

para tráfego de rede normal. Ainda, apresentamos uma nova taxonomia dos aspectos de

IDSs baseados em IEC–61850. Demonstramos que o ERENO é capaz de gerar atribu-

tos representativos para o serem processados por algoritmos de aprendizado de máquina.

Combinando-se extração e seleção de atributos, ganhos significativos foram observados,

incluindo-se a detecção de ataques não detectados adequadamente na literatura. No mel-

hor caso, melhorou-se a F1-Score do algoritmo J48 de 52,24% para 99,46%.
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Abstract

Digital electric grid substations are a key element to create reliable future smart grids.

The IEC–61850 standards proposes a set of communication protocols to define how In-

telligent Electronic Devices (IEDs) can communicate. Our studies show that there is a

range of vulnerabilities that may compromise the IEC–61850 communication protocols

and cause improper functioning of the physical power system. Therefore, detecting and

preventing cyber intrusions play a vital role, and Intrusion Detection Systems (IDSs)

have become an essential component of safeguarding substations from malicious activi-

ties. Even though intrusion detection techniques are commonly studied in conventional

networks and systems, only a few studies address this issue considering the IEC–61850

substations requirements, limitations, and specific communication protocols. Further-

more, our studies reveal that the lack of realistic data for training, testing, and evaluating

IDSs in realistic industrial scenarios is considered a major challenge. As consequence, the

development of IDSs is currently limited by the datasets available. This thesis aims at

building a framework to support a robust solution for detecting and preventing intrusions

on IEC–61850 substations. Our main contribution is in the development of the Effica-

cious Reproducer Engine for Network Operations (ERENO). ERENO is an open-source

framework for generating IEC–61850 datasets with representative features — extracted

both from substation communication protocols and the electric domain — for detecting

different types of intrusions. As an additional contribution and as a proof-of-concept,

we present a suite of realistic IEC-61850 datasets that model 8 use cases, namely traffic

for 7 common attacks and 1 for normal network traffic. Finally, we also present a novel

taxonomy for the IEC–61850-based IDSs aspects. Our results show that our traffic gen-

eration solution with attack signatures is able to generate representative features to be

processed by machine learning algorithms. With the combination of feature extraction

and feature selection, significant gains were observed, including the detection of attacks

that are not properly detected by the existing techniques in the literature. For more chal-

lenging attacks, we present F1-Score gains for the J48 classifier that took its performance

from 52.24% to 99.46%.
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1 Introduction

Smart Grids are intended to integrate communication technologies with the traditional

power grid system (RADOGLOU GRAMMATIKIS; SARIGIANNIDIS, 2019a). The inte-

gration of the power grid infrastructure with communication networks has brought many

possibilities for digital substations. It was responsible for enabling the development of

novel applications such as automated data acquisition, remote control and monitoring

of electrical infrastructure, services, and components (QUINCOZES; ALBUQUERQUE,

et al., 2021; FAISAL et al., 2014; HONG; LIU, 2019).

As a result of the growing number of devices connected to Smart Grids, new communi-

cation protocols have emerged in recent years. In particular, in the context of automated

substation communication, the IEC−61850 (COMMISSION, 2019) standard defines im-

portant globally established standards for substation automation, revolutionizing the

way substations are configured and maintained (HONG; LIU, C.-C.; GOVINDARASU,

2014). Thus, communication between devices from different manufacturers is standard-

ized through protocols with a well-defined structure. Some of the benefits include the

potential to reduce errors and misconfigurations.

Digital substations based on IEC–61850 play a critical role in the electrical power grid,

since they are responsible for splitting, transforming, and combining energy flows. How-

ever, our studies show that there is a range of vulnerabilities that can compromise IEC-

61850 communication protocols and cause substation physical elements to malfunction.

Therefore, despite the IEC–61850 advantages, the integration poses numerous security

challenges for industrial systems. From the perspective of information security, it exposes

digital substation networks to various threats, such as the injection of improper messages

(replay of previously sent messages or new fabricated messages) into the network. Such

malicious practices are real threats that can lead to catastrophic damage (POPOVIC

et al., 2016; ELGARGOURI; ELMUSRATI, 2017; HONG; LIU, 2019). Recently, hun-

dreds of attacks have caused power outages, affecting hundreds of thousands of people

in countries like the United States of America (USA) and Ukraine (HONG; LIU, C.;
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GOVINDARASU, 2014).

Besides the communication improvements resulting from the adoption of well-defined

protocols, there are particular factors that favor the execution of attacks and make their

detection process difficult. One of these factors is the resource limitations that Intelligent

Electronic Device (IED) typically have − they limit the implementation of traditional

security mechanisms, such as complex encryption algorithms (YANG; MCLAUGHLIN,

et al., 2016; RASHID et al., 2014; HOYOS; DEHUS; BROWN, 2012).

Therefore, studies to understand the threat vector of these scenarios and the imple-

mentation of adequate means for intrusion detection are fundamental. The adoption of

Intrusion Detection Systems (IDSs) is crucial to protect any device deployed in automated

substations. Such systems must be able to detect traditional threats, inherited from in-

formation technology and network protocols, and specific attacks directed at intelligent

substations, resulting from the exploitation of new protocols and adopted devices.

However, research on IDSs for automated substations, such as those based on IEC–

61850, is still at a preliminary stage. Although intrusion detection techniques are com-

monly studied in conventional networks and systems, only a few studies address this

problem, considering the requirements, limitations, and specific communication protocols

of IEC-61850 substations. Our studies reveal that the lack of realistic data for training,

testing, and evaluating IDSs in realistic industrial settings is considered a major challenge.

The scarce realistic data available for assessing novel IDS proposals, as well as the lack of

enriched features for enabling an accurate intrusion detection are key issues on this field.

As a consequence, the development of IDSs is currently limited by the available datasets.

1.1 Motivation

Cyberattacks on communication systems in digital substations are not only considered

one of the main threats by researchers in the field (HONG; LIU, 2019) but also present

real threats that have already been witnessed by people from many countries around

the world (KANG; MCLAUGHLIN; SEZER, 2016; PATEL, 2017; RADOGLOU GRAM-

MATIKIS; SARIGIANNIDIS, 2019a).

Until the beginning of 2000, Supervisory Control and Data Acquisition (SCADA)

system networks were assumed to be electronically isolated from the rest of the networks

and, therefore, the industry’s focus was on the physical security of the network (PATEL,

2017). In 2010, malware Stuxnet attacked Iran’s nuclear program (KANG; MCLAUGH-
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LIN; SEZER, 2016; PATEL, 2017; RADOGLOU GRAMMATIKIS; SARIGIANNIDIS,

2019a). Stuxnet specifically targeted Iranian Programmable Logic Controller (PLC) and

caused fast-spinning centrifuges to separate. According to Patel et al. (PATEL, 2017),

this was one of the main incidents caused by cyber attacks that prompted a perception

of the urgent need to provide security in the communication network of SCADA systems,

including digital electrical substations.

In addition, USA’s computer systems were compromised by more than 150 cyber

attacks between 2010 and 2014. Between 2011 and 2014, utilities reported 362 instances

of attacks that caused blackouts or other power outages − among of these attacks, 14 were

cybernetic and the rest were physical (HONG; LIU, 2019; RADOGLOU GRAMMATIKIS;

SARIGIANNIDIS, 2019a). In 2016, an alert was issued about coordinated cyber attacks

on 35 Ukrainian substations. As a result, more than 225,000 people were left without

electricity (HONG; LIU, 2019).

Information security vulnerabilities are continually growing. The US National Vul-

nerabilities Database (NVD) (NIST, 2021) registered a growth from 6,447 vulnerabilities

in 2016 to 20,138 vulnerabilities in 2021.

Both industry and academia are concerned about information security in electrical

substations. In fact, this is one of the main concerns about smart grids. The provision

of security and robustness in this domain is limited due to the computing capacity of the

equipment, which does not support the mechanisms used to protect traditional networks.

Therefore, the employment of detecting measures to enable responding to attacks is crucial

to leverage the potential of the secure integration of computing and communications

protocols and devices.

Finally, the use of IDSs will play a vital role in ensuring the correct functioning of

electrical substations. Such systems must be capable of blocking improper actions, as

well as alerting network operators about possible attacks in progress, in order to enable

decision-making and strengthening of security policies and mechanisms. Such systems

can be based either on the implementation of new software applications, or on the use of

modern hardware platforms that can extend the processing capabilities with a low impact

on the infrastructure cost.
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1.2 Research Problem

Deploying IDSs serves to identify malicious activities and mitigate the attacker actions. In

fact, IDSs are already widely deployed in traditional Information Technology (IT) systems

for this purpose. However, since IEC–61850 introduced new protocols, such as Generic

Generic Oriented Object Substation Events (GOOSE) and Sampled Values (SV), special-

ized attacks targeting them imply different traffic and attack patterns. The specialized

attacks are typically based on traditional attacks but they explore particularities from

the IEC–61850 communication protocols. Attacks may include replay attacks (HONG;

LIU, C.; GOVINDARASU, 2014), message injection (YOO; SHON, 2015), masquer-

ade attacks (USTUN; FAROOQ; HUSSAIN, 2019), and DoS attacks (HOYOS; DEHUS;

BROWN, 2012).

As consequence, IEC–61850-based IDSs require attack signatures from multiple attack

classes to enable a robust detection based on the knowledge extracted from the traffic

patterns (e.g., the machine learning-based IDSs need data to perform training, testing, and

assessment of their performance; the rule-based IDSs need data for extracting detection

rules; and, the anomaly-based IDSs need data to assess their ability to identify anomalies).

The investigated research problem in this thesis focuses on the lack of available

datasets for intrusion detection in communication systems and networks in the context of

electrical substations. This is because, to enable a robust classification model for machine

learning attack classifiers in digital substations, signatures should be built by consider-

ing realistic data, including electrical samples from SV and proper response of GOOSE

protocols.

Furthermore, it is clear that, to represent the realistic traffic behavior inside of a sub-

station or of a transmission line between two or more substations, both normal operation

and transmission line faulty scenarios must be considered. In both situations, a variety

of updated attack classes, as well as legitimate activities, must be considered.

Building a robust IDS requires not only the availability of data that includes realistic

attack scenarios but also the identification of which features are more representative for

detecting each attack class. Therefore, extraction, enrichment, and selection of features

are also necessary to robust intrusion detection.
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1.3 Goals

Aiming at robustness and resilience in smart power grids, specifically in IEC–61850 digital

substations, our key goals are to support the training, evaluation, and testing of IDSs. In

the following, the general objective and the specific objectives are elucidated.

1.3.1 General Goal

Our main goal is to create an extensible tool for generating realistic and representative

IEC–61850 datasets with different types of intrusions for training, testing, and evaluating

IDSs. Furthermore, we aim at proposing a novel feature selection method based on

metaheuristics to perform feature selection on the generated dataset.

1.3.2 Specific Goals

Our specific goals are the following:

• The study of the current attack scenarios targeting IEC–61850 systems and the

state-of-art IDSs solutions;

• The proposal of a novel taxonomy for the IEC–61850-based IDSs aspects;

• The reproduction of normal and faulty scenarios through the simulation based on

the modeling of a real transmission line between two substations to generate and

log realistic electrical samples;

• An extensible tool for generating realistic GOOSE and SV traffic features, based on

realistic electrical signals, with support to state-of-art attacks targeting the GOOSE

protocol (SV and Manufacturing Message Specification (MMS) attacks are beyond

the scope of this work);

• A set of 8 public IEC–61850 datasets to support the training, testing, and evaluating

of IDSs;

• Algorithms and methods to extract, enrich and select representative features from

electrical domain and computer networks to maximize the results of IDSs.
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1.4 Organization

The remainder of this document is organized as follows. In Chapter 2, we present the theo-

retical fundamentals for the IEC–61850 Standard and Feature Selection for IDS. In Chap-

ter 3, we present related works that address Intrusion Detection methods and datasets

for substations and feature selection methods – both filter and wrapping. In Chapter 4,

we investigate the research problem, covering attacks to IEC–61850 protocols and the

state-of-art IDSs aspects. Then, in Chapter 5, we present our hypothesis and the pro-

posed solution that includes feature generation and selection. In Chapter 6, we present

our experiments, results, and discussion. Finally, in Chapter 7 we present our conclusions,

pointing our contributions, resulting publications, and future work.



2 Background

2.1 The IEC–61850 Standard

Legacy substation protocols defined communication conventions between hard-wired elec-

trical devices and monitoring/control components (MACKIEWICZ, 2006). In contrast,

the IEC–61850 standard (COMMISSION, 2019) was defined with the following goals: (i)

interoperability; (ii) long term stability; and (iii) simplified configuration. Besides the

structure of transmitted data and interoperability aspects, the IEC–61850 standard spec-

ifies the physical topology (e.g., ring topology, redundant LANs), network protocols, and

object modeling (COMMISSION, 2019; O’RAW; LAVERTY; MORROW, 2017).

2.1.1 Physical Topology

A typical substation infrastructure is composed of three levels: station, bay, and process

(or field). Each of those levels is illustrated in Figure 2 and contains devices with dif-

ferent capabilities. Two communication channels are used in these levels, allowing both

horizontal (i.e., between devices of the same level) and vertical (i.e., between devices of

different levels) communication (AHMED et al., 2019; KABIR-QUERREC et al., 2015;

EL HARIRI et al., 2017).

The station level provides the interface for humans managing the substation, and

includes monitoring systems, engineering workstations, SCADA systems, and the Remote

Terminal Unit (RTU). The RTU includes remote access, opening an entry point for remote

attackers. Thus, it is imperative to employ security mechanisms to deal with potential

threats (AHMED et al., 2019).

The bay level consists of an intermediate level where automatic functions with real-

time requirements are performed without the need for human intervention. It includes

IEDs for control and metering, protection, and time synchronization (HAHN; SUN; LIU,

2016). These devices are connected to both the substation and process busses that link,
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respectively, the station and bay levels and the bay and field levels, enabling station level

devices to perform operations, such as reading and writing from bay level IEDs (AHMED

et al., 2019).

The lowest level, the process level, includes both conventional and non-conventional

switchyard equipment1 from the electrical domain. Because conventional equipment sup-

ports only dedicated wired data, additional elements may be employed to act as an inter-

face between the cyber and physical domains, such as Merging Units (MU) and Actuators

(e.g., Intelligent Terminals).

In particular, MUs play a significant role in digital substations. They provide syn-

chronized phase, voltage, and current measurements collected from primary conventional

equipment. These devices use the process bus to communicate, thus increasing the data

availability and reducing wiring, as Ethernet replaces hard-wired connections. Note that

this level carries extremely sensitive and time-critical applications (IEC, 2004) and thus

cybersecurity is one of the most crucial challenges, especially considering the limited

processing power of MUs that turn simple security measures, such as data encryption,

impracticable (EL HARIRI et al., 2017). Future power grid systems are expected to have

non-conventional equipment (e.g., modern switchgear) capable of supporting communica-

tion protocols without depending on intermediate sensors and actuators (COMMISSION,

2019). A typical infrastructure topology involving both conventional and non-conventional

devices is illustrated in Figure 2.

2.1.2 Network Communication Protocols

2.1.2.1 SV Protocol

The SV (Sampled Values) protocol is defined by the IEC–61850–9–2 (IEC, 2004) standard

to enable digitized current and voltage samples to be transmitted to IED using the Eth-

ernet protocol through the Publish/Subscribe paradigm, where publisher devices send

multi-cast messages to subscriber devices (i.e., control and/or protection IEDs). Note

that unicast messages are also supported. Such measurements are collected through ana-

log signals from electrical equipment and converted to digital signals by Merging Units

(MUs) and transmitted to subscriber devices.

SV messages are consumed for different applications, such as the protection applica-
1Switchyard refers to an enclosed area of a power system containing the switching equipment used in

the transmission of electricity.



2.1 The IEC–61850 Standard 20

Figure 2: IEC–61850 Typical Architecture.

tions. These applications process the SV payload to detect faults based on their protec-

tion schemes (HONG; LIU, 2019). Therefore, to ensure a fast response-time, SV messages

should be periodically sent at a high transmission rate both for protection and measure-

ment purposes. Specifically, for protection applications, the standard defines the rate of

80 samples per cycle2, while measurement applications, which require more accurate data,

the rate is 256 samples per cycle (HONG; LIU, 2019; KARIYAWASAM; RAJAPAKSE;

PERERA, 2017). The voltage and current measurements are put into the Application

Service Data Units (ASDU) field. Thus, the number of samples per cycle is propor-

tional to the number of ASDUs transmitted in each SV message: eight ASDUs are sent

in measurement messages and one ASDU is sent into protection messages (SOLOMIN;

TOPOLSKY; TOPOLSKY, 2015).
2A cycle represents 16.6ms for substations operating at 60Hz or 20ms for substations operating at

50Hz.
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Figure 3: Ethernet frames of SV messages.

In Figure 3, the Ethernet frame structure and the internal structure of the Application

Protocol Data Unit (APDU), from an SV message are illustrated. All shaded items are

part of the SV message, the remaining are generic ethernet fields. Except for protection

applications, in which there is a single ASDU, each transmitted message may contain

multiple ASDUs within the Sequence of ASDU field – each with the same structure as

illustrated in ASDU 1.

As shown in Figure 3, each ASDU carries four current measures (i.e., top rows

Ia, Ib, Ic, In) and four voltage measurements (i.e., bottom rows Va, Vb, Vc, Vn) in the Se-

quence of Data (seqData) ASDU field, refering to the four electrical phases (A, B, C, and

Neutral). Each of them may be a potential target for attackers (e.g., fake measurement

injection or data manipulation).

2.1.2.2 GOOSE Protocol

The GOOSE protocol enables the IEDs to exchange messages to report substation events,

status changes notification, alarms, and control commands. Events of different compo-

nents are exchanged by GOOSE messages, including temperature alarms, circuit-breaker

status, disconnector switch interlocking, etc. These data are put into a field named

GOOSE datSet, inside the GOOSE PDU, and transmitted by the publish/subscribe

paradigm to a set of subscriber IEDs. Each IED may subscribe to specific topics, re-

lated to its domain, such as control, protection, or measurement. Figure 4 shows the

GOOSE Ethernet frame structure.

In stable situations, in which no events occur (i.e., no changes are detected in the
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Figure 4: Ethernet frame of GOOSE messages.

GOOSE dataset values), a GOOSE message is transmitted at a fixed T0 period, with

an increased sequence number (sqNum); this ensures that the component is alive and it

does not have different values to transmit. Once an event occurs, the sqNum field is set

to zero and the status number (stNum) is increased and a new GOOSE message is sent

immediately. This message is retransmitted at increasingly larger intervals, each with an

increased (sqNum), starting with the shorter transmission interval (T1), which is used as

interval between the two first messages, and increasing at every retransmission (T2, T3,

etc.), until reaching the original interval (T0), as illustrated in Figure 5. Although this in-

creasing method is not standardized, exponential backoffs are typically adopted (HOYOS;

DEHUS; BROWN, 2012).

Therefore, by considering these standardized behaviors, there are different features

that may be analyzed by an IDS to distinguish legitimate and malicious activities. The

GOOSE timestamp may reveal a DoS attack, since in normal conditions it is expected

that the interval between two received messages should not exceed T0. The sqNum and

stNum are relevant features because they are examples of potential indicators of fake

message injection or message replay attacks (HOYOS; DEHUS; BROWN, 2012; HONG;

LIU, C.; GOVINDARASU, 2014; USTUN; FAROOQ; HUSSAIN, 2019) – although other

fields may also be important, according to each attack type.
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Figure 5: GOOSE messages transmission. Extracted from (HOYOS; DEHUS; BROWN,
2012).

2.2 Feature Selection for IDSs

A feature is an individual measurable property of the process being observed (CHAN-

DRASHEKAR; SAHIN, 2014). In intrusion detection, features usually represent data

collected from the physical level (e.g., measurements of current and voltage electrical

signals, for example), the network level (e.g., values contained in the fields of network

communication protocols) or even from the application level (e.g., user activity logs or

process metrics on a device).

Given the vast amount of features that can exist in each of the different domains

of computer systems, many of them are not representative to describe specific attack

patterns. Therefore, it is important to assess and extract only the representative features

for each situation to allow accurate predictions. In digital electrical substation networks,

there may be different processes that represent potential targets for intrusions. One of the

main attackers’ targets is the substations’ protection (or teleprotection) system, which is

responsible for protecting expensive equipment from damage caused by overloads in case

of electrical faults. The protection system is also responsible for isolating segments, in

case of natural faults, caused by weather conditions, for example. Thus, as it is a critical

process, attackers can strategically target attacks on the protection system. In IEC–61850

networks, GOOSE and SV protocols can provide rich information for machine learning

algorithms. Thus, these algorithms can process their representative features to detect

suspicious activities targeting such applications.

Using a set of features, machine learning algorithms developed to perform data classi-
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fication can be trained to distinguish between malicious and benign behaviors. In recent

years, in machine learning or pattern recognition applications, the domain of features

has expanded from tens to hundreds of features. In particular, the intrusion detection

procedure consists of analyzing data relevant to identifying threats and detect malicious

activities. Therefore, one of the fundamental steps of any IDS is to define which features

will be analyzed (KALEEM; FERENS, 2017). This process is called Feature Selection.

According to G. Chandrashekar and F. Sahin (CHANDRASHEKAR; SAHIN, 2014), the

focus of feature selection is to improve the prediction results as it selects a subset of input

variables that can efficiently describe the input data while reducing the effects of noise or

irrelevant variables.

We can also define Feature Selection as the process that defines the input data for an

entire intrusion detection analysis workflow. Thus, for an IDS to achieve good results, the

proper selection of the most relevant features is crucial. The Feature Selection process

must not only select the representative information but also discard redundant features.

In particular, the data collected from an electrical substation may contain hundreds of

features – many of which can be highly correlated with other features. When two or more

features are perfectly correlated, only one of them is sufficient to describe the desired pat-

tern. The highly correlated features do not provide extra information about the classes

and therefore serve as noise for the predictor. This means that the total information

content can be obtained from fewer unique features that contain maximum discrimina-

tion information about classes. Therefore, by eliminating the dependent features, more

information may be given with less data being processed. Consequently, it can lead to

an improvement in intrusion detection performance — both in terms of time and other

detection metrics.

Furthermore, there are features that may not be correlated with the classes of the

analyzed data. These features serve as pure noise and can introduce predictor bias and

reduce classification performance. This can happen when there is a lack of information

about the process under study. By applying feature selection techniques, we can gain some

insights into the process and improve the calculation requirement and forecast accuracy.

To perform feature selection, it is necessary to use some criteria for measuring the

relevance of each feature. Once a feature selection criterion is selected, a procedure must

be developed to find the useful and efficient subset of features. Directly evaluating all

subsets of features for a given data is NP-hard, and becomes unwieldy as the number of

features increases. Therefore, a suboptimal procedure must be used, which can remove
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redundant data in an efficient way.

Besides improving the performance of the detector algorithms, the selection of at-

tributes reduces the consumption of computational resources, thus contributing to the

completion of analyses in a timely manner for the application of countermeasures (GANA-

PATHY et al., 2013).

There are three main approaches to perform feature selection:

• Embedded Feature Selection: Some data mining algorithms (e.g., REP Tree and J48)

discard irrelevant attributes implicitly. This implicit discarding is characterized as

embedded feature selection, as it is embedded in the implementation of the classifier

method. The main approach used by these algorithms is to incorporate the feature

selection as part of their training process (QUINCOZES; KAZIENKO; COPETTI,

2018).

• Filtering Feature Selection: There are, however, many algorithms that do not per-

form any technique with the purpose of eliminating noise or redundancy in the

analyzed attributes. Thus, a lightweight way to perform a feature selection is the

use of Filter methods, which are independent of machine learning algorithms and

determine the importance of each attribute uniquely based on statistical methods

such as the entropy (LI et al., 2017). However, as this method does not interact

with the detection algorithm itself, the detection performance may be affected.

• Wrapping Feature Selection: To overcome the lower detection performance pre-

sented by the Filter -based methods, the same machine learning algorithm that will

be used to process the features to make decisions can be used to assess the candi-

date features, during the feature selection process, and give insights about which of

them can improve its detection performance. This way, those features that better

improve the chosen intrusion metric will compose the output feature subset (QUIN-

COZES; KAZIENKO; COPETTI, 2018). The main drawback of wrapping-based

methods is the longer time needed to process multiple subsets with different feature

combinations.

In summary, large data sets make it difficult to perform feature selection. Thus, even

for those algorithms that already include feature selection in their implementation, a pre-

selection of the input information to give a reduced set of features whenever possible may

reduce the machine learning processing complexity. There are multiple techniques that
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can be applied to feature selection (AGRAWAL et al., 2021; COSTA; LIMA; BARBOSA,

2021).

As each method has its advantages and drawbacks, in the next Chapter, in Section 3.2,

we present the state-of-art methods for feature selection, both for Filter (Section 3.2.1)

and Wrapper (Section 3.2.2) methods. In this thesis, filter and wrapping algorithms are

combined, as discussed in Section 5.4.



3 Related Work

3.1 Intrusion Detection and Datasets

The most popular datasets for intrusion detection are designed considering the tradi-

tional computer networks traffic. They include the KDDCup99 (STOLFO et al., 1999),

NSL-KDD (TAVALLAEE et al., 2009), UNSW-NB15 (MOUSTAFA; SLAY, 2015), and

CICIDS2017 (SHARAFALDIN; LASHKARI; GHORBANI, 2018). Substation networks

and systems use industrial protocols, such as GOOSE and SV. In this regard, a work-

flow for creating a synthesized intrusion dataset containing GOOSE traffic is defined

in (BISWAS et al., 2019). However, the authors of (BISWAS et al., 2019) explore a few

signatures of simple injection attack by modifying the GOOSE StNum, SqNum, and a

boolean value in the GOOSE dataset. Therefore, the current works in the literature are

often based on generic traditional datasets or self-generated traffic. Below, we discuss

how the current IDS proposals are assessed in IEC–61850 scenarios.

3.1.1 Generic Traffic

In (PREMARATNE et al., 2010) authors deploy an IDS to detect anomalous behavior

into an IEC–61850 network. Nevertheless, although they argue the network is IEC–

61850-based, the attacks experimented are generated through tools that target traditional

protocols such as HTTP, FTP, and telnet.

Other works (YANG; HAO, et al., 2019) use the KDD Cup 99’ dataset to assess an

IDS for IEC-61850, which not only contains just attacks targeting a traditional network,

but is also outdated.

Geek Lounge (LOUNGE, 2019) and EPIC (ADEPU; KANDASAMY; MATHUR,

2018) labs built testbeds for assessing industrial networks, however they did not consider

the scenario of automated protection and control in modernized substations. Conse-

quently, GOOSE and SV protocols are not used and no data is available about them.
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3.1.2 Self-generated Traffic

In (HONG; LIU, C.; GOVINDARASU, 2014), the authors use the well known IEEE

39-bus system (CUPELLI; CARDET; MONTI, 2012) to simulate attacks for assessing a

rule-based IDS. These rules aim to detect inconsistent messages according to predefined

parameters. This work is extended in (HONG; LIU, C.-C.; GOVINDARASU, 2014) to

enable the detection of application-level attacks, considering IED logs as input data to

detect malicious activities such as wrong password attempts and file system modifications.

The authors cover a large range of attacks, but, unfortunately, the data used by them is

not made publicly available. Thus, as mentioned above, the results are not reproducible

and impossible to compare with.

In (KWON et al., 2015), the authors propose a behavior-based IDS. To evaluate

it, they prepared one week of network traffic of a digital substation as dump file and

replicated cyber attacks against a substation LAN, simulated through a testbed. In

fact, the authors claim that the lack of openly available intrusion detection datasets is a

significant challenge. Nevertheless, they do not make their data publicly available.

In (YOO; SHON, 2015), a study suggests a method of anomaly detection for Manu-

facturing Message Specification (MMS) and GOOSE protocols. However, the authors did

not consider any attack traffic. The one-class Support Vector Machine (SVM) algorithm

is used to detect normal behavior, but the authors argue that, to evaluate the ability to

detect attacker behavior, a simulation should be developed.

In (YANG; MCLAUGHLIN, et al., 2016), the authors simulate a smart substation to

assess their proposed IDS. A number of rules were proposed to detect inconsistent behavior

of SV, GOOSE, and MMS attacks in the generated traffic. However, their assessment is

not reproducible since the data used is not publicly available.

In (KANG; MCLAUGHLIN; SEZER, 2016), a photovoltaic inverter is used to com-

pose a testbed for the evaluation of IDSs. Injection attacks are simulated through the

injection of manipulated messages, containing false measurements. Despite the analysis

being based on a open-source IDS named Sucirata, the resulting dataset generated from

their testbed is not made available.

In (YANG; KECKALO, et al., 2017), the authors present novel testing concepts

and methods to assess MUs accordance with protection application requirements. These

devices are responsible for converting analogical data into digital SV messages. Thus, one

goal of the authors is to check the SV messages integrity. However, data are not made
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available.

In (YANG; MCLAUGHLIN, et al., 2016), an IEC–61850-based IDS is implemented

to analyse GOOSE, MMS, and SV traffic. The authors use the ITACA network analyzer

tool and specification rules to detect intrusions. That work is further extended (YANG;

XU, et al., 2016), but in both versions no traffic or application logs is made available.

In (HONG; LIU, 2019), a collaborative IDS is proposed to detect intrusions that may

target multiple IEDs. The authors simulated a three-phase fault by using the Real-Time

Digital Simulator (RTDS), which simulates MUs and circuit-breakers. Besides RTDS,

other elements are put together into a testbed to generate realistic traffic. Then, injection

attacks were simulated by modifying and retransmitting fabricated GOOSE packets to

the network. Unfortunately, the data used for evaluating the proposed IDS is not made

publicly available.

Besides the aforementioned literature, there also commercial tools such as Dragon

IDS (SANS, 2002) and Continuous Threat Detection (CTD) that can be used for per-

forming intrusion detection. Dragon IDS has three components: (i) Dragon Sensor, that

is a network IDS that monitors network packets. (ii) Dragon Squire, that is a host-based

IDS that monitors key system files – it can also receive security information from routers

and firewalls via SYSLOG or SNMP; and, (iii) Dragon Server, that manages data from all

of the Dragon Sensor and Dragon Squire engines. Continuous Threat Detection (CTD)

proposed by Claroty monitors the network for early indicators of attack (e.g., DNS scans

and failed login attempts), behavioral anomalies (e.g., atypical communication between

devices), activities defined by custom rules, and signatures defined by Snort and YARA

tools.

3.2 Feature Selection Methods: State of the Art

In addition to the data source definition, feature selection methods to find sub-optimal

subsets (i.e., near to the optimal solution)and increase the intrusion detection performance

are necessary.

3.2.1 Filter-based Feature Selection

One of the simplest feature selection method is the Information Gain (IG) (YANG;

CHUANG; YANG, et al., 2010), obtained through the calculation of entropy. Equa-
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tion 3.1 shows this calculation, where pi is the probability that an instance in the set C

belongs to a given class and m is the number of available features.

Info(C) = −
m∑
i=1

pilog2(pi) (3.1)

The IG is proportional to the entropy reduction, therefore, the features with lower

entropy tend to be selected for presenting a greater information gain. Decision tree

induction algorithms use this technique to discard unnecessary information that could

negatively influence the results.

The Chi-square method (LANCASTER; SENETA, 1969), aims to quantitatively eval-

uate the association between features of two categories. The basic idea of this method is

to establish two hypotheses. The hypothesis H0 says that there is no association between

the analyzed feature and the class. On the other hand, H1 is to say that there is an

association, that is, the feature has a dependency on the class.

x2(fi, yj) =
N(TZ − Y X)2

(T +X)(T + Z)(X + Z)(Y + Z)
(3.2)

Equation 3.2 illustrates the chi-square test, where T is the frequency of feature (fi)

and class label yj in the dataset, X is the frequency of fi appearing without yj, Y is the

frequency of yj appearing without fi, Z is the frequency of neither yj nor ai appearing

together in the dataset, N is the total number of records (THASEEN; KUMAR; AHMAD,

2019).

The correlation-based feature selection approach, Correlation-based Feature Selection

(CFS) (HALL, 1999), consists of constructing correlation matrices Feature × Feature and

Feature × Class. From these matrices, the weight of each set of features is calculated using

the Equation 3.3, where the merit of a set S, which contains k features, is calculated based

on the average of the correlation between feature-class rfc (i.e., represented by rfc) and

the mean between feature-feature rff .

Merit(S) =
k × rfc√

k + k(k − 1)rff
(3.3)

Based on this equation, the ratio between the predictive capacity and the degree of re-

dundancy of each set is possible. Initially, the CFS method has an empty set. Then,

it search features using the best-first-search heuristic (they use a stopping criteria of 5
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consecutive sets without merit improvements). Finally, the set with the greatest merit

should be selected.

There are feature selection approaches that consist of implementing machine learning

mechanisms through Artificial Neural Network (ANN). This type of methodology is aimed

at pruning agents that carry redundant or unimportant information for classification. In

this context, different algorithms in particular can be implemented, such as cognitive

models (KALEEM; FERENS, 2017) or learning algorithms based on feature weighting

(AMINANTO et al., 2017), where the feature weights represent their importance.

3.2.2 Metaheuristics as Wrapping Methods for Feature Selection

The Greedy Randomized Adaptive Search Procedure (GRASP) (QUINCOZES; PASSOS,

et al., 2020) is an iterative multi-start metaheuristic proposed originally to achieve an

approximate solution for graph planarization problems. It has since been generalized to

solve other combinatorial optimization problems in different domains (YUSTA, 2009).

The general GRASP strategy can be carried in two iterative phases: construction and

local search. These steps are repeated until a stop criterion is reached (e.g., the maxi-

mum number of total iterations). For each iteration, a different random seed solution is

generated. The construction phase relies on this seed to generate a Restricted Candidate

List (RCL) and choose from it a randomized greedy solution. The RCL consists of a

predefined number of candidates to compose a feasible solution. Typically, this initial

greedy solution can be improved by a local search phase, that is, the greedy solution is

the starting point for a neighborhood exploration.

Yusta (YUSTA, 2009) demonstrates that GRASP can outperform Sequential Forward

Floating Selection (SFFS), Tabu Search, Genetic and Memetics algorithms in generating

the best feature subset to classify samples from different databases (Spambase, Waveform,

Ionosphere, Vehicle, Wincosin, and German). Esseghir and Amir (ESSEGHIR, 2010)

also apply GRASP for feature selection considering some of those datasets (Ionosphere

and SpamBase) and others (Sonar, Audiology, and Arrhythmia). Whereas the former

work used the K-Nearest Neighbors (KNN) classifier for wrapping evaluations, the latter

explored Artificial Neural Networks — neither compares the used classifier with alternative

algorithms.

Bermejo et al. (BERMEJO; GAMEZ; PUERTA, 2011) use GRASP to deal with large

and high-dimensional datasets with focus on reducing the number of wrapping evaluations

(i.e., those that rely on machine learning algorithms) by using the Incremental Wrapper
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Subset Selection (IWSS) algorithm in the construction phase. The main drawback of this

approach is the possibility of excluding important features due to a premature stop caused

by the current solution exceeding the solution cardinality threshold.

Moshki et al. (MOSHKI; KABIRI; MOHEBALHOJEH, 2015) also use GRASP to

deal with large and high-dimensional datasets. They combined GRASP with an extended

version of Simulated Annealing as a local search procedure to introduce new parameters

that allow the implicit weighting between accuracy and execution time. However, this

method is limited to the implicit trade-off control between these parameters. It is still

unable to control it explicitly. Besides, using accuracy as the target metric is not suitable

for unbalanced datasets because it gives the same weight for all classes (e.g., attacks and

benign).

Diez et al. (DIEZ-PASTOR; GARCIA-OSORIO, et al., 2011) propose GRASP Forest

(G-Forest) for constructing ensembles of decision trees. This method uses concepts of

GRASP for both feature selection and choosing splitting points at each tree node. For

selecting features for each level of the tree, G-Forest assembles an RCL composed of all

features with an Information Gain above a certain threshold. It then proceeds to choose

features randomly from this RCL. Once a feature is chosen, G-Forest computes the IG of

each possible split point for that feature and forms a new RCL following the same strategy

(i.e., using those features with an IG above a certain threshold). The split point is then

chosen randomly from this list. This procedure is repeated until the desired number of

trees is created.

In a later work, Diez et al. (DIEZ-PASTOR; GARCIA-OSORIO; RODRIGUEZ, 2014)

extend their proposed G-Forest to create an Annealed Randomness Forest (GAR-Forest).

The key idea is to introduce a parameter that controls the randomness during the so-

lution construction phase, which ranges from an entirely random procedure to a totally

greedy one. The authors consider 62 datasets (including Waveform, Ionosphere, and Ve-

hicle). However, none of those are related to the cyber security domain. Kanakarajan

and Muniasamy (KANAKARAJAN; MUNIASAMY, 2016) apply GAR-Forest to detect

DoS, Probe, R2L and U2R attacks in traditional networks. The reported results reveal

that F1-Score and accuracy are both slightly over 85%, which means that performance

should be improved.

In our previous work (QUINCOZES; PASSOS, et al., 2020), we experimented with

an adapted version GRASP for FS, namely GRASP-FS. We used GRASP-FS to select

three feature subsets for building expert IDSs for the flooding, blackhole, and grayhole
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attacks (each IDS was specialized in one attack class). The results reveal that the selected

features outperform those selected by traditional filter-based approaches to detect attacks

targeting the CPS perception layer.

3.3 Discussion

To the best of our knowledge, most of the existing proposals report results (from pro-

prietary datasets) that can not be reproduced, compared, nor assessed under different

parameters or scenarios. Most existing IEC–61850 IDS proposals that include GOOSE

and SV use data collected from private testbeds rather than using public datasets. Besides,

this is a particularly complex approach since it requires more effort to reach a consistent

scenario and to ensure the result’s correctness according to the real-world substations

traffic.

Some IDS proposals are evaluated using public datasets to overcome these issues.

However, these datasets are built upon traditional network traffic and typically do not

include substation protocols, especially the IEC–61850 protocols.

Therefore, the proposed traffic generation tool addresses an important challenge since

it enables the generation of realistic data for training, testing, validating, and evaluating

IDSs for digital substations. We implemented the most common attack models that

target the IEC-61850 communication network and reproduced them through our traffic

generation tool (see Figure 8). A real electrical power grid is modeled using PSCAD to

extract electrical measurements of normal and fault scenarios and feed our extensible tool

with realistic data.

Besides the feature generation, it is very important to define which of the generated

features are relevant for each class of attack. Therefore, feature selection methods can

be adopted. Clearly, the use of the GRASP metaheuristic has been frequently considered

in the literature for feature selection. However, this approach is still seldom studied in

the domain of intrusion detection. Thus, before this thesis, it was still unclear how much

GRASP could contribute to the state-of-the-art machine learning-based IDSs.



4 Research Problem

4.1 Security and Threats

The easier communication with IEDs achieved with the IEC–61850 standard also enables

the easier remote manipulation of electrical equipment (e.g., circuit breakers), making

substations more vulnerable to a number of cyber threats (USTUN; FAROOQ; HUSSAIN,

2019; HONG; LIU, 2019). There are many potential cyber vulnerabilities within the

networks and devices of digital substations that can degrade confidentiality, availability,

and data integrity (HAHN; SUN; LIU, 2016). However, cyber-security features are not

included in IEC–61850 (RADOGLOU GRAMMATIKIS; SARIGIANNIDIS, 2019b).

Therefore, understanding these potential vulnerabilities is crucial for designing suit-

able security countermeasures and intrusion detection mechanisms to protect the substa-

tion. Once an attacker gains access to the substation networks, the physical protection of

the substation is no longer sufficient for protecting the infrastructure from potential harm,

thus allowing attackers to cause catastrophic damage (RADOGLOU GRAMMATIKIS;

SARIGIANNIDIS, 2019b). This section covers IEC–61850 specific threats (i.e., replay,

message injection, masquerade, and poisoning attacks) and traditional threats (i.e., Man-

In-The-Middle (MITM), impersonation, password crack, traditional DoS attacks, and

Packet sniffer) that may affect digital substations. Furthermore, the IEC–62351 standard

for securing substation devices is analyzed.

We assume attackers can access the IEC–61850 network: it may happen through an

infected flash drive, remote access (for maintenance), or from a malicious ex-employer,

for example, or by any other way.
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4.1.1 Attacks to IEC-61850 Multicast Protocols

Since the IEC–61850 multicast protocols (GOOSE and SV1) are assumed to run within

the substations’ local network isolated from the Internet, attackers need to gain access to

an intranet interface to capture, spoof, modify or retransmit malicious messages. Attack-

ers may gain physical access to protective IEDs or explore alternatives, such as placing

malware in device software (i.e., through update patches) or first infecting other devices

connected to the network (e.g., technician’s computers). Regardless of the method, from

this point on we assume the attacker has the ability to analyze, spoof, inject, and transmit

malicious frames containing IEC–61850 multicast messages (HONG; LIU, C.; GOVIN-

DARASU, 2014). In Figure 2, these attacks could be launched by an attacker connected

to the process bus — that is where the GOOSE messages are transmitted.

According to Hong et al. (HONG; LIU, C.; GOVINDARASU, 2014), there are 9 main

potential ways for an attacker to exploit vulnerabilities to cause damage and disrupt the

power system components: (i) compromising the user-interface; (ii) interrupting the time

synchronization process; (iii) compromising the station level communication bus; (iv)

gaining access to bay level devices; (v) changing protective device settings; (vi) capturing

and modifying GOOSE messages; (vii) compromising the process level communication

bus; (viii) placing forged values in SV messages; and (ix) compromising the firewall to

gain access to the substation network. From these entry points, attackers may perform

different attack variations, such as message relay, injection, and poisoning to cause Denial

of Service (DoS). These attacks are summarized in Table 1 and detailed below.

4.1.1.1 Replay Attack

This attack model is based on the resending of a previously sent message. The attacker

captures and replays the message without modifying its content. Such retransmission may

occur immediately after the message is captured or after a longer delay.

Checking timestamp and sequence numbers is useful for detecting this malicious be-

havior (HONG; LIU, C.; GOVINDARASU, 2014). In the IEC–61850 architecture pre-

sented in Figure 2, a replay attack could be launched by an attacker connected to either

the process or station bus.

Existing tools may be used to perform this kind of attack. The TCPreplay (TURNER,

2005) can read a variety of packet capture (pcap) files and use them as input to perform
1SV also has a unicast mode.
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Table 1: Summary of threats on IEC–61850 digital substation networks.

Prot. Attack Class Description Countermeasure

GOOSE Naive Injection
(HOYOS; DEHUS;
BROWN, 2012)

Fabricated messages are
transmitted (e.g., com-
mands).

IEC–61850 standard
consistency checking.

SV Naive Injection
(HOYOS; DEHUS;
BROWN, 2012)

Fabricated messages are
transmitted (e.g., mea-
sures).

IEC–61850 standard
consistency checking.

GOOSE IEC–61850 Injec-
tion(HOYOS; DE-
HUS; BROWN, 2012)

Fabricated IEC–61850 com-
pliant commands are trans-
mitted.

Context attributes
consistency checking.

SV IEC–61850 Injec-
tion(HOYOS; DE-
HUS; BROWN, 2012)

Fabricated IEC–61850 com-
pliant messages with fake
measures.

Multiple sources mea-
surements correlating.

GOOSE
and SV

Replay (HONG; LIU,
C.; GOVINDARASU,
2014; RASHID et al.,
2014)

Previous messages are re-
transmitted.

Attributes consistency
checking.

GOOSE Masquerade (USTUN;
FAROOQ; HUSSAIN,
2019)

Messages that mimic real
behavior are transmitted.

Attributes consistency
and correlation check-
ing.

GOOSE Poisoning (KUSH et
al., 2014)

The StNum is excessively
increased.

Attributes consistency
checking.

GOOSE
and SV

Modification
(RASHID et al.,
2014)

Specific attributes are adul-
terated.

Attributes consistency
checking.

GOOSE
and SV

Flooding (RASHID et
al., 2014; KUSH et al.,
2014)

Many messages are trans-
mitted at high frequency.

Message statistics
checking.

message replays. In (NOCE et al., 2017), a GOOSE traffic generator was developed. It

was used for capturing and injecting malicious GOOSE messages to the network. Thus,

it was shown that an attacker can explore these functions to harm a targeted system.

Replay attacks may be especially harmful if the attacker chooses the proper opportunity

to mislead the system during a critical operation. For example, imagine a scenario in

which a message containing a “circuit breaker close” command is captured by an attacker.

If this message is retransmitted (replayed) during an electrical fault or line maintenance,

the circuit breaker may be improperly re-closed, causing severe damage.
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4.1.1.2 Message Injection

Message injection attacks build and transmit false and potentially malicious messages

into the network. This attack can be launched in one of two ways. In the simplest form

of message injection (i.e., Naive Injection), a message created with random values in its

fields without observing its consistency with the rules of the IEC–61850 standard (i.e.,

it may contain invalid field values). Clearly, a syntax-based IDS that works by simply

checking message syntax can detect these fake-injected messages. Also, the combination

of multiple syntax rules to generate more complex rules is a potential way to increase the

accuracy in the detection of message injection attacks.

The second way is to create new messages or modify captured messages that com-

ply with the IEC–61850 standard syntax rules (i.e., IEC–61850 Injection). Note that

in contrast to reply attacks, injection/modification attacks are assumed to send a fabri-

cated or modified message instead of simply retransmitting a past message. A method

for exploiting the GOOSE protocol semantic to launch fake data injection attacks is pre-

sented in (HOYOS; DEHUS; BROWN, 2012), where legitimate messages are captured

and their source and destination Media Access Control (MAC) addresses are spoofed by

using legitimate addresses used to impersonate benign devices. Additionally, the payload

data of the messages (i.e., a boolean parameter) is adulterated to cause malicious actions

in the target. Attackers have to send fake messages in the gap between two legitimate

messages to avoid their behavior being detected by a context-oriented IDS which checks

the consistency between messages.

4.1.1.3 Masquerade Attack

This attack model is a specialization of the injection attack, with a particular improve-

ment: after old messages are captured, they are adulterated to mimic a legitimate be-

havior. In particular, masquerade attacks have an additional step between the capture

and transmission phases: they need to get fresh (and valid) values for SqNum and StNum.

Attackers learn from observing the content of past messages’ to mimic their behavior.

This improvement based on the analysis of the previous messages makes it more difficult

to distinguish fake messages from legitimate ones (USTUN; FAROOQ; HUSSAIN, 2019).

Accordingly, both syntax-based (i.e., that considers individual messages’ syntax) and

anomaly-based IDSs (i.e., that considers the traffic behavior) are expected to fail to detect

it. Instead, an IDS based on more sophisticated techniques, such as machine learning,
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analyzing multiple sources of information from various protocols may be promising for

such a challenging scenario. In Figure 2, this attack could be launched by an attacker

connected either to the process or station buses.

One example of a masquerade attack (USTUN; FAROOQ; HUSSAIN, 2019) is an

implementation that changes three specific GOOSE message fields. The main field used

to cause damage is the state field, which is part of the GOOSE DatSet. This field de-

scribes the state of the circuit breaker as open (e.g., under a fault) or closed (e.g., under

normal conditions). By changing this value, an attacker may cause the undesired opera-

tion of a circuit breaker. The attacker may also change additional fields, such as StNum

and SqNum, to make the detection of this malicious action more difficult. Finally, the

frequency in which false messages are transmitted is gradually changed to mimic the

typical (and legitimate) bursty message transmission behavior observed in state changes.

As a consequence, attackers can perform malicious operations such as opening a circuit

breaker when it should be closed. This is worse still if an attacker closes a circuit breaker

improperly (e.g., during line maintenance), where human life may be in danger.

4.1.1.4 Poisoning Attack

The main goal of poisoning attacks (KUSH et al., 2014) is to harm the communication be-

tween publisher and subscriber devices by preventing the subscriber from processing sub-

sequent legitimate GOOSE messages or forcing subscribers to process fabricated GOOSE

messages. The consequences of this attack include both DoS and improper operation of

the devices. Four poisoning attack variations are proposed in (KUSH et al., 2014), as

described below. In Figure 2, all variations of this attack targeting GOOSE messages

could be launched by an attacker connected to either the process or station buses.

• High-Status Number Attack consists of capturing a GOOSE message and sending

a new spoofed message with a higher StNum than that of the legitimate messages.

The subscriber devices would thereafter discard any subsequent legitimate GOOSE

messages with a lower StNum than the poisoned number.

• High-Rate Flooding Attack is a variant of DoS attacks, in which attacker floods

the multicast channel by sending multiple fake messages in short intervals (ahead

of the normal traffic). Each fake message will increase StNum by one expected at

the subscriber devices. Therefore, the result will be similar to the previous variant,

except by the increased difficulty of distinguishing the legitimate messages from the
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flooded fake messages.

• Flooding Attack sending multiple fake messages on the multicast channel. Each

fake message will increase the status number expected at the subscriber devices,

appearing legitimate, and increasing the difficulty of detection. Furthermore, the

legitimate messages may be delayed due to contention in the network or devices

during the flooding. This attack may be better detected by an anomaly-based IDS

since it considers the overall behavior instead of analyzing messages in isolation.

• Semantic Attack consists of observing the legitimate traffic for learning/predicting

the message content and spoofing realistic messages, increasing the status number

every new fake message, at a high rate. Thus, legitimate messages are discarded

since their StNum are lower than the recently received fake messages. Note that

the expected effect is similar to High-Status Number Attack, however, in semantic

attacks the StNum is increased by multiple messages instead of only one. Thus,

whereas High-Status Number Attack may be detected by checking the anomalous

StNum increasing between two consecutive messages, Semantic attack may be better

detected by behavior analysis through an anomaly-based IDS.

4.1.2 Other Inter- and Intra-Substation Threats

In addition to the attacks on the process and station buses, the attacks discussed below

could be launched by an attacker connected to the control center network in Figure 2.

Although these attacks are part of our discussion, we concentrate our scope only on the

IEC–61850 multicast protocols (i.e., GOOSE and SV).

A known issue since 1985 (MORRIS, 1985) in the TCP protocol is the possibility of

MITM attacks by impersonating a legitimate host (i.e., using its IP address). A defense

against this type of attack (BELLOVIN, 1996; GONT; BELLOVIN, 2012) improves the

TCP protocol resistance to this vulnerability. However, an attacker that can observe the

initial messages for a connection may still be able to launch MITM by impersonating that

connection (GONT; BELLOVIN, 2012).

Therefore, the MMS communication protocol over TCP/IP is also vulnerable. Ex-

periments exploiting MITM attacks (KANG; MAYNARD, et al., 2015) demonstrated the

feasibility of causing physical effects on the electrical devices via malicious manipulation

of IED parameters (i.e., data attribute MaxWLim) through injected MMS commands

(i.e, write requests). Aside from TCP, other protocols in the MMS stack may present
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vulnerabilities, such as TPKT and COTP (KIM; JO; SHON, 2016).

Other auxiliary protocols used in digital substations may suffer from three types of

attacks (RASHID et al., 2014; PREMARATNE et al., 2010):

• Password Crack: may target FTP, telnet, or HTTP;

• DoS attacks: high-rate data generated, for example via a PING tool;

• Packet sniffer2: targets the Address Resolution Protocol (ARP) protocol.

Part of these attacks may be avoided by blocking such protocols when they are no

longer used (e.g., FTP may only be used by devices at the commissioning step, and pro-

hibited thereafter), reducing the risk of exploitation. On the other hand, some protocols

(e.g., MMS and Precision Time Protocol (PTP)) may not be blocked, given their vital

roles in the proper function of substation devices. In (MOUSSA; DEBBABI; ASSI, 2016),

authors describe two approaches to perform delay attacks that desynchronize the clocks

of slave nodes and, then, delay the PTP synchronization messages: (i) adding a device to

the network (called a delay box) that aims at delaying the synchronization messages; and

(ii) retransmitting messages with a modified timestamp. In particular, the first approach

requires physical access to the substation to insert such new device, whereas the second

one requires compromising — through a malware installation (either by physical or remote

access) — a device named grandmaster clock, which is responsible for disseminating the

updated timestamp to other devices. Both approaches target the functionality of all the

devices in the network, since their proper function relies on precise time synchronization,

rather than a particular IED.

4.1.3 IEC–62351 Standard

Except for IEC 61850–90-5, which only focuses on cybersecurity of Routable-GOOSE

and SV (R-Goose and R-SV), the IEC–61850 standard does not specify security features

to address these cyber-security vulnerabilities (USTUN; FAROOQ; HUSSAIN, 2019).

Thus, the IEC–62351 standard was publihsed to specify security measures, such as cryp-

tographic, for IEC–61850 applications.

Regarding the MMS, all TCP T-Profile implementations that claim conformance to

IEC–62351-4 (C, 2010) shall support TLS (Transport Layer Security) to provide authen-
2Although sniffing may not be always an attack (i.e., when it is not aimed to steal data and sensitive

information), it can also be used as a first step to acquire information and perform further attacks.
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tication, confidentiality and data integrity. However, it is important to note that this

standard also specifies that such implementations shall permit TLS to be disabled (i.e.,

it does not ensure that TLS will be used). OSI T-Profiles is outside the scope of the

IEC–62351-4 specification.

Because GOOSE and SV have strict timing requirements, IEC–62351 proposes the use

of lightweight algorithms. However, IEC–62351 only recommends the adoption of tech-

niques that may provide message integrity and node authentication. Note that TLS uses

symmetric cipher after establishing the secure session, which can be performed quickly

by secure and dedicated hardware. However, according to IEC–62351-6 (C, 2010), for

applications using GOOSE and SV and requiring 4 ms response times, multicast config-

urations and low CPU overhead, encryption is not recommended. Instead, the SV and

GOOSE messages are supposed to be restricted to a logical substation LAN.

IEC–62351 does not have full solutions geared toward mitigating certain attacks,

including Masquerade attack (USTUN; FAROOQ; HUSSAIN, 2019). Besides, IEC–62351

is not yet complete: it requires more evaluation to address other security aspects (e.g.,

key management evaluation) (STROBEL; WIEDERMANN; ECKERT, 2016).

4.2 Study of the Digital Substations IDS

The field of intrusion detection can be studied under different aspects. There are multiple

design choices that can be used for each of these aspects. Thus, a novel taxonomy is

presented in this section, as summarized in Figure 6.

We classify the existing IDSs considering both design and deployment aspects (they

are separated by a vertical dashed line in Figure 6). Digital substations differ from tra-

ditional information technology systems in many perspectives, such as detection time

requirements, specific hardware implementation and protocols, and other specific charac-

teristics of the IEC-61850 standard. Each of them is addressed in the following subsec-

tions.

4.2.1 Design Aspects

We subdivided the design aspects of an IDS into four main parts: architecture, approach,

type of analysis (i.e., online or offline), and actions (i.e., detection only or prevention).

These aspects and their subcategories are listed to the right of the dashed vertical line in
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Figure 6: Proposed taxonomy for intrusion detection aspects on IEC–61850 digital sub-
stations.

Figure 6.

4.2.1.1 Architecture

In terms of architecture, an IDS may be classified as centralized, distributed, or embedded.

The centralized is the most common architecture since it requires only one additional net-

work element. The goal is to capture and analyze data application logs or network packets

in a central IDS component. The main problem of a centralized IDS is that it has a single

point of failure, as well as a potential bottleneck. As such, it may compromise the services’

availability. It may be prohibitive for an IDS to detect and prevent intrusions timely for

substation time-critical applications. Despite that, most of the current IEC–61850 IDS

proposals are designed considering a centralized architecture (PREMARATNE et al.,

2010; HONG; LIU, C.; GOVINDARASU, 2014; KWON et al., 2015; YOO; SHON, 2015;

YANG; MCLAUGHLIN, et al., 2016; KANG; MCLAUGHLIN; SEZER, 2016; YANG;

XU, et al., 2016; KIM; PARK, 2018; YANG; HAO, et al., 2019).

Embedded IDSs aim at integrating the IDS functionality into substation devices (i.e.,

IEDs) (PREMARATNE et al., 2010) (KABIR-QUERREC et al., 2015) (HONG; LIU,

2019). The main drawbacks of this approach are the new hardware design requirements

and the internal computational overhead. On the other hand, since intrusions are de-
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tected at the target device, this approach may detect and block malicious behavior of

compromised devices before the attack has an effect (e.g., malicious messages are dis-

carded instead of processed).

The distributed approach avoids the aforementioned problems — if one of the IDSs

fails, its load should be sent to other IDSs with available resources. A distributed mech-

anism (MACWAN et al., 2016) was proposed to detect data injection attacks collabora-

tively in digital substations based on the IEC–61850 standard. Similarly, there are other

proposals (HONG; LIU, C.-C.; GOVINDARASU, 2014; HONG; LIU, 2019) involving a

distributed architecture to exchange information among IDSs regarding attack attempts.

Their main idea is to introduce specification-based IDSs modules inside protective IEDs

and Merging Units. Therefore, every GOOSE or SV message is analyzed for security

before being processed for its functionality. These internal modules communicate with

each other to share the detected intrusions.

4.2.1.2 Detection Approach

In another categorization, according to Bostani and Sheikhan (BOSTANI; SHEIKHAN,

2017), an IDS can be categorized into three groups based on its detection approach:

signature-based, anomaly-based, or specification-based. The same categorization is also

employed in more specific Smart Grid scenarios, such as the Advanced Metering Infras-

tructure (AMI) (TONG et al., 2016).

Signature-based methods are characterized by containing a database with samples

that represent known attack profiles, while anomaly- and specification-based methods

attempt to profile the legitimate or “normal” behavior of network traffic or adjacent sys-

tems (BOSTANI; SHEIKHAN, 2017). In particular, specification-based IDSs model a

desirable behavior of a system through its functionalities and security policy (TONG et

al., 2016). However, unlike anomaly-based methods, specification-based methods are hard

to design and generalize for various protocols (i.e., different specification rules would be

necessary for GOOSE, SV, MMS, and other protocols in the substation network) (TONG

et al., 2016; BOSTANI; SHEIKHAN, 2017).

Currently, in the context of IEC–61850 digital substations, most IDSs are specification-

based ones (RADOGLOU GRAMMATIKIS; SARIGIANNIDIS, 2019a; HONG; LIU, C.;

GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU, 2014; KWON et al., 2015;

YANG; MCLAUGHLIN, et al., 2016; KABIR-QUERREC et al., 2015; YANG; XU, et al.,

2016; KIM; PARK, 2018; HONG; LIU, 2019), while some IDSs are based on anomalies
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or are hybrid (i.e., combination between multiple approaches) (PREMARATNE et al.,

2010; YOO; SHON, 2015; YANG; HAO, et al., 2019). Among the methods catego-

rized in (BOSTANI; SHEIKHAN, 2017), the signature-based approach is still the least

explored (KANG; MCLAUGHLIN; SEZER, 2016).

4.2.1.3 Analysis

To the best of our knowledge, there are no proposals that employ real-time analysis

to detect intrusions on IEC–61850 digital substations within a specified time requirement

(deadline). On the other hand, there are preliminary studies (BIFET et al., 2010; FAISAL

et al., 2014; NIXON; SEDKY; HASSAN, 2019) that address this issue for other Smart

Grid domains, and these may be adapted for digital substations in the future.

The MOA (Massive Online Analysis) library (BIFET et al., 2010) can be used for

performing intrusion detection. It was used to detect intrusions in devices from different

AMI (TONG et al., 2016) layers: smart meters, data concentrators, and control centers

(FAISAL et al., 2014). In contrast to the substation devices, AMI applications are closer

to the end-user. Thus, these devices are also part of the power grid infrastructure but at

a higher level.

Recently, online intrusion detection using MOA to detect traditional attacks was

explored (NIXON; SEDKY; HASSAN, 2019). However, from our analysis of the literature,

there is a dearth of studies employing such algorithms for detecting intrusions in substation

networks.

4.2.1.4 Action

Another design aspect that may be considered to build an efficient IDS is the ability to

execute actions to block detected attacks. In this context, the IDPSs (Intrusion Detection

and Prevention Systems) have the capability of responding to the attack to block the

intruder right after the intrusion detection.

The capacity for preventing an attack is closely related to real-time detection since the

latter enables a quick response. Current IDSs designed for digital substations are typically

focused only on detecting, and do not prevent attacks. Some existing efforts include the

proposal of IDSs embedded into IEDs (HONG; LIU, 2019; KABIR-QUERREC et al.,

2015), and traffic blocking in network switches (HA et al., 2016). These may be potential

alternatives to mitigate malicious activities before they cause undesirable effects, such
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as operating improperly an electrical equipment. Currently, there are only a few works

proposing IDPSs and this research field needs to be better explored. Thus, it is an open

challenge in the field of intrusion detection.

Note that real-time IDS and IDPS are not synonymous. While the former refers

to the use of real-time processing tools for detecting intrusions, the latter refers to the

response/mitigation to a detected intrusion.

4.2.2 Deployment Aspects

To deploy an IDS in a digital substation, it is important to define the range of attacks

that will be considered and which data sources will be analyzed to detect them. Similarly,

the proper evaluation methods and metrics should be considered. A summary of the

deployment aspects and their subcategories are listed at the left of the dashed vertical

line in Figure 6.

4.2.2.1 Data Sources and Detection Range

As discussed in Section 4.1, there are multiple entry points in substation networks where

attacks may take place. Therefore, each possible attack should be considered and different

data may be required to address each of them, as follows. Detecting traditional attacks

that may target the station level, such as control centers, requires analyzing different data

sources (i.e., FTP unauthorized access logs, TCP and UDP traffic statistics) from those

used for detecting attacks to the process level, such as fake measurement injection.

Besides the different devices, network segments, and protocols involved in the exe-

cution of each attack, particular features may be relevant to represent specific attackers’

behavior. These features may include parameters from both network and application lay-

ers, ranging from specific field values (e.g., StNum, SqNum, source IP address) to counters

(e.g., the number of transmitted bytes, the number of active connections, rate of packets

per second).

Suppose that an IDS is deployed to detect GOOSE Poisoning, GOOSE Injection, and

SV Flooding attacks. The key features for this IDS to analyze should include:

• StNum: it is typically excessively increased in GOOSE Poisoning attacks;

• SqNum: combined with StNum, this field may reveal modification of important pa-

rameters from the GOOSE dataset, such as circuit breaker state;
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• Timestamp: this field allows computing the message transmission frequency, used

to detect SV Flooding, where many messages are transmitted in a short time.

In fact, it is hard to predict manually all features related to each attack type. This

procedure would require complete expert domain knowledge. This is a major issue of

specification-based IDSs. To match the available features from the data source, IDSs can

employ an automatic feature selection method (CHANDRASHEKAR; SAHIN, 2014). As

described in Section 2.2, feature selection methods can be classified as filters, wrappers,

and embedded algorithms. Filtering algorithms rely mainly on statistical methods to

evaluate individual features, wrapper algorithms employ machine learning for evaluat-

ing different feature sets and identify which feature increases their accuracy. Typically,

wrapping is slower but more accurate than filtering (GANAPATHY et al., 2013).

4.2.2.2 Evaluation

Once the attack detection range and data sources are defined, proper evaluation strategies

must be chosen to assess the IDSs. There are three main methods for evaluating an

IDS. The first one is through realistic3 testbeds, where physical equipment is used to

generate data. The second one consists of generating a synthetic dataset by capturing

real or simulated data from the substation network and injecting attack samples. The

third way is adopting existing labeled dataset containing normal and attack samples –

these datasets may be built through one of the previously presented ways and shared

among the community. The point is that data are usually not generated by the IDS

developer/deployer.

There are well-known datasets containing generic traffic which can be used for eval-

uating IDSs targeting traditional network protocols (YANG; HAO, et al., 2019). Un-

fortunately, to the best of our knowledge, there are no IEC–61850-based public datasets

available, probably because of the proprietary or sensitive nature of the data. Therefore,

acquiring real (or even realistic) traffic represents a big challenge.

In particular, Yoo and Shon (YOO; SHON, 2015) reported experiments based on a

real digital substation, where GOOSE and MMS traffic is used to evaluate a specification-

based IDS. However, most IDS proposals in the literature are evaluated in small test-beds

and/or using simulation tools, as shown in Table 2.

In terms of simulation tools, there is a specific hardware and simulation software
3We assume as a realistic (not real) scenario, a model of the real substation environment.
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named Real-Time Digital Simulator (RTDS). Although it has already been used for eval-

uating IDSs (HONG; LIU, 2019), it is a professional tool and typically too expensive for

wide use in academic research. Additionally, it can not reproduce attacks.

Table 2: Summary of IDSs evaluation techniques (ordered by date)

Ref. Year Approach Data Source Evaluation

(PREMARATNE
et al., 2010)

2010 Anomaly Generic Testbed

(HONG; LIU, C.;
GOVINDARASU,
2014)

2014 Specification GOOSE and SV Testbed

(HONG; LIU, C.-C.;
GOVINDARASU,
2014)

2014 Specification GOOSE and SV Testbed

(KWON et al., 2015) 2015 Specification GOOSE and MMS Testbed
(YOO; SHON, 2015) 2015 Anomaly GOOSE and MMS Real Subs.
(YANG; MCLAUGH-
LIN, et al., 2016)

2016 Specification GOOSE, SV, and MMS. Testbed

(KANG; MCLAUGH-
LIN; SEZER, 2016)

2016 Signatures MMS Testbed

(YANG; XU, et al.,
2016)

2017 Specification GOOSE, SV, and MMS. Testbed

(KIM; PARK, 2018) 2018 Specification GOOSE and SV Prototype
(YANG; HAO, et al.,
2019)

2019 Anomaly Generic Dataset

(HONG; LIU, 2019) 2019 Specification GOOSE and SV Simulation

4.2.2.3 Metrics

Finally, it is necessary to choose the proper metrics to assess the IDS in light of the

expected goals and requirements. From the basic indicators True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives (FN), different metrics can be

derived. Important metrics include Accuracy (i.e., the fraction of correct IDS classifi-

cations with respect to the total number of samples analyzed), Recall (i.e., how many

attacks are detected of the universe of attack samples), and Precision (i.e., how many

attack classifications are in fact attacks instead of false positives (TATBUL et al., 2018)).

Finally, F1-Score is a commonly used metric in machine learning. It is computed using

TP, FP, and FP. This metric can be derived from Precision and Recall. As TNs are not

a factor in F1-Score, this metric is immune to biases introduced by a large imbalance to-

ward normal instances (something common in security datasets, given the small amount
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of attacks in comparison with the large number of non-attack data), contrary to what

happens with accuracy. Formally, these metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Recall =
TP

TP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

F1Score = 2× Precision× Recall
Precision + Recall

(4.4)

4.3 Specification Rules Assessment

According to Table 2, all works that consider both the IEC–61850 multicast protocols (i.e.,

GOOSE and SV) employ specification-based IDSs — except for (YOO; SHON, 2015),

that employs an anomaly-based IDS (RADOGLOU GRAMMATIKIS; SARIGIANNIDIS,

2019a; HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU,

2014; KWON et al., 2015; YANG; MCLAUGHLIN, et al., 2016; KABIR-QUERREC et

al., 2015; YANG; XU, et al., 2016; KIM; PARK, 2018; HONG; LIU, 2019). Therefore,

in this section, we focus on specification-based IDSs to assess their efficiency. In the

following, we present a compilation and analysis of such rules employed by the state-of-

the-art specification-based IDSs. Note that at this point we do run practical experiments,

but an analytical exercise to check the ability for each rule under each attack behavior. In

the following subsections, we define the attacker assumptions and detail the specifications

rules.

4.3.1 Attacker Assumptions

This section describes the scenarios considered for the specification rules assessment. This

study aims at understanding the real efficiency of the specification-based IDSs. The

attackers’ behaviors are modeled after four different attacks presented in Section 4.1.1,

namely Replay, Injection, Masquerade, and DoS attacks.

Replay and Masquerade attacks assume that the attacker can listen, capture, and
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retransmit past messages into the network. As discussed in Section 4.1.1, we expect

specification-based IDSs to have more difficulty in detecting Masquerade attacks, due to

the careful analysis of the traffic standard carried out by the attacker before sending the

masquerade messages.

DoS attacks are assumed to abide by the expected syntax of individual messages, but

assumed to violate behavioral rules (e.g., increasing load through message flooding).

Note that each attack is assumed to be performed individually, separately from each

other. Thus, one attack does not affect the detection performance for other attack models.

4.3.2 Specifications Rules

Through a systematic review of the literature, we have compiled the following list of

specification rules. In addition, rules from the same author were grouped and evaluated

in rule sets (RSet).

#R1) GOOSE messages must have MAC address starting with 01-0c-cd-01 (HONG; LIU,

2019; HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVIN-

DARASU, 2014; YANG; MCLAUGHLIN, et al., 2016; YANG; XU, et al., 2016);

#R2) GOOSE messages must have the TPID field with value 0x8100 (YANG; MCLAUGH-

LIN, et al., 2016; YANG; XU, et al., 2016);

#R3) GOOSE messages must have the ethertype field equal to 0x88B8 (YANG; MCLAUGH-

LIN, et al., 2016; YANG; XU, et al., 2016);

#R4) GOOSE messages must have TimeAllowedToLive equal to double of the value of

MaxTime (e.g., 5000ms) (YANG; MCLAUGHLIN, et al., 2016; YANG; XU, et al.,

2016);

#R5) GOOSE messages must have the APPID field formatted as a 4-byte hexadecimal (e.g,

0000-3FFF) (YANG; MCLAUGHLIN, et al., 2016; YANG; XU, et al., 2016);

#R6) Consecutive GOOSE messages must have consistent values for fields gocbRef,

timeAllowedToLive, datSet, goID, t, StNum, SqNum, test, confRev, ndsCom

and numDatSetEntries (HONG; LIU, 2019; HONG; LIU, C.; GOVINDARASU,

2014; HONG; LIU, C.-C.; GOVINDARASU, 2014; YANG; XU, et al., 2016);

#R7) GOOSE messages must have the APPID field matching the last two octets of the

destination multicast address (YANG; XU, et al., 2016);
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#R8) The IED control block name must be consistent with the value of the goID field

(i.e., the LD/LN value in the gocoRef field must match the datSet field from the

GOOSE APDU) (YANG; XU, et al., 2016);

#R9) The size of frames containing GOOSE messages should be equal to 8 bytes +

APDU size, and APDU size should be less than 1492 bytes (YANG; MCLAUGH-

LIN, et al., 2016; YANG; XU, et al., 2016);

#R10) The SqNum in GOOSE messages should be set to zero whenever the value of the

StNum changes (w.r.t the previous message) (HONG; LIU, 2019; HONG; LIU, C.;

GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU, 2014; YANG; XU,

et al., 2016);

#R11) The number of messages captured in an interval must not exceed a predefined thresh-

old (20% above the expected maximum) (HONG; LIU, 2019; HONG; LIU, C.;

GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU, 2014; KWON et

al., 2015);

#R12) The number of messages captured in an interval must not be equal to zero (HONG;

LIU, 2019; HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVIN-

DARASU, 2014; KWON et al., 2015);

#R13) The transmitter’s timestamp should not be higher than the receiver’s timestamp (HONG;

LIU, 2019; HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVIN-

DARASU, 2014);

#R14) The transmitter’s timestamp from GOOSE messages should not be more than 4 ms

apart from the receiver’s timestamp (HONG; LIU, 2019; HONG; LIU, C.; GOVIN-

DARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU, 2014);

#R15) The Recency metric, represented by the last GOOSE message’s arrival, must respect

a minimum and a maximum threshold (KWON et al., 2015);

#R16) The Frequency metric, represented by the average number of received GOOSE mes-

sages, must respect a minimum and a maximum predefined threshold (KWON et

al., 2015);

#R17) The Monetary metric, represented by the total number of received GOOSE mes-

sages, must be within a predefined threshold (KWON et al., 2015). The difference

from rule #R11) is that this rule considers only received GOOSE messages;
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#R18) Only messages with specific source port, IP and MAC addresses are allowed (YANG;

MCLAUGHLIN, et al., 2016; YANG; XU, et al., 2016);

#R19) Only MMS, COTP, TPKT, and SNTP protocols are allowed on the station level

network and only the GOOSE, SV, and IEEE 1588 protocols are allowed on the

process level network (YANG; MCLAUGHLIN, et al., 2016; YANG; XU, et al.,

2016). Thus, attackers exploiting other protocols are detected by this rule;

#R20) There must be consistency between the GOOSE switch-in messages (e.g., breaker

opening) and the value of the report sent by the MMS protocol (i.e., MMS signal

report) (YANG; MCLAUGHLIN, et al., 2016; YANG; XU, et al., 2016);

#R21) The number of bytes that travel per second must not exceed a predefined thresh-

old (KWON et al., 2015; YANG; XU, et al., 2016);

#R22) The number of packets that travel per second must not exceed a predefined thresh-

old (KWON et al., 2015; YANG; XU, et al., 2016);

#R23) The length of the packet (specified in the packet header) must not exceed a prede-

fined threshold (YANG; XU, et al., 2016);

#R24) The total size of the packet must not exceed a predefined threshold (YANG; XU,

et al., 2016).

If one or more specification rules are not satisfied, it is assumed that an anomaly has

occurred. This anomaly may be either a misbehavior (e.g., as a consequence of high load

or the improper function of some software or device) or an intentional violation caused

by the malicious action of an attacker. For this analysis, we focus on the latter.

Each rule is assessed by its ability to detect five different attacks. Specifically, we

classified each rule’s detection capabilities into four levels:

• Detect: the rule always detects all possible variations of the attack.

• HProb: there is a high probability that the rule detects most variations of the attack

(i.e., it only fails to detect the attack under very specific and unlikely circumstances).

• Part: the rule is partially successful, that it, it detects some of the attack variations,

or under certain parameters (e.g., a specific field should have a value in a known

range). However, there are cases in which the same kind of attack is not detected.
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Table 3: Specification rules assessment results.

Attacks

Rules Replay Naive
Injection

IEC-61850
Injection Masquerade DoS

#R1 Fail HProb Fail Fail Fail
#R2 Fail HProb Fail Fail Fail
#R3 Fail HProb Fail Fail Fail
#R4 Fail HProb HProb Fail Fail
#R5 Fail HProb Fail Fail Fail
#R6 Detect HProb HProb Fail Fail
#R7 Fail HProb Fail Fail Fail
#R8 Fail HProb HProb Fail Fail
#R9 Fail HProb Fail Fail Fail
#R10 Detect HProb Part Fail Fail
#R11 Fail Fail Fail Fail Detect
#R12 Fail Fail Fail Fail Part
#R13 Fail Part Part Fail Part
#R14 Part HProb HProb Fail Fail
#R15 Part Fail Part Fail Detect
#R16 Fail Fail Fail Fail Detect
#R17 Fail Fail Fail Fail Detect
#R18 Fail HProb Part Fail Fail
#R19 Part Part Part Fail Fail
#R20 Fail Fail Fail Fail Fail
#R21 Fail Fail Fail Fail Detect
#R22 Fail Fail Fail Fail Detect
#R23 Fail Part Fail Fail Part
#R24 Fail Part Fail Fail Part
#RSet1 Part HProb HProb Fail Fail
#RSet2 Detect HProb HProb Fail Detect
#RSet3 Detect HProb HProb Fail Detect
#RSet4 Detect HProb HProb Fail Detect
#RSet5 Detect HProb HProb Fail Detect
#RSet6 Part Fail Part Fail Detect
All Detect HProb HProb Fail Detect
Rule Set References (RSet):
#RSet1: (YANG; MCLAUGHLIN, et al., 2016)
#RSet2: (HONG; LIU, 2019)
#RSet3: (HONG; LIU, C.; GOVINDARASU, 2014)
#RSet4: (HONG; LIU, C.-C.; GOVINDARASU, 2014)
#RSet5: (YANG; XU, et al., 2016)
#RSet6: (KWON et al., 2015)
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• Fail: the rule always fails to detect the attack.

When deployed in digital substations, specification-based IDSs are typically configured

based on specialized domain knowledge. Most of the specifications rules are defined by

considering the consistency between message field values and the specifications established

by the IEC–61850 standard.

Our first conclusion is that most of these rules are not able to detect Replay attacks

since the values of malicious messages are the same as the legitimate ones. However, as

shown in the second column of Table 3, rules #R6 and #R10 detect Replay attacks be-

cause these rules consider the consistency between multiple consecutive messages instead

of considering only the parameters from a single message. In particular, the attributes

StNum and SqNum allow them to detect messages out of context. Rule #R14 detects re-

play attacks only if there is a delay of at least 4 ms between the retransmitted and the

legitimate message, which might not always be the case. Similarly, rule #R15 may detect

replay attacks exceeding a minimum or a maximum predefined time interval since the last

received message. Also, #R19 only works if an IEC–61850 message is transmitted in an

unauthorized communication bus (e.g., MMS in the process bus (YANG; MCLAUGHLIN,

et al., 2016; YANG; XU, et al., 2016)).

Regarding Naive Injection attacks, Table 3 shows that rules #R1 to #R10 may,

individually, detect IEC–61850 standard violations on particular message fields. Whereas

each stand-alone rule (e.g., #R6) is limited to detect Naive Injection attacks only when

specific fields are violated, we assume that this attack model has a high probability of

containing multiple inconsistent fields – as it is not aware of the IEC-61850 standard. For

example, StNum (a 32-bit integer (IEC, I. E. C., 2003)) may have 4,294,967,295 possible

values, thus a naive injection attacker has a very small chance to correctly guess the proper

value. Similarly, rules #R14 and #R18 are likely to detect these attacks based on the

message context, but they fail if the SqNum of the fake message is eventually set to zero or

if the transmitter’s timestamp is within the 4 ms from the receiver’s timestamp. There are

other rules (i.e., #R13, #R14, #R19, #R23, and #R24) with limited potential to detect

naive injection attacks since such rules are based on parameters that may eventually be

inconsistent with their specifications. Our conclusion is that even stand-alone rules have

a high probability of detecting Naive Injection attacks, which can be still more easily

detected when considering the combination of multiple specification rules (see bottom of

Table 3).

IEC–61850 Injection attacks assume attackers have the knowledge to send syntac-
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tically correct fake messages that match the IEC–61850 standard (but not necessarily

behavioral consistent); in this case, only 4 rules have a high probability of detecting such

attacks. Both domain-based (e.g., #R4 and #R8) and context-based (e.g., #R6 and

#R14) rules consider fields not known by attackers without access to the network traffic

pattern and to the substation parameters. In particular, to bypass #R14, an attacker

would need timing synchronism with the target devices to have their messages being de-

livered in valid periods. Thus, these fields are not expected to be properly forged by this

attack model. Rule #R10 detects a single syntactically correct message if the attacker

does not set the SqNum field to zero after a malicious StNum change. Moreover, rule #R18

detects some IEC–61850 Injection attacks if the used port, IP, and MAC addresses refer

to an unauthorized device. The efficacy of rules #R13 and #R15 is limited to cases in

which the fake message has an invalid timestamp or is transmitted in an excessively short

interval, respectively.

It is worth noting that rule #R13 is able to detect in part both Naive and IEC–61850

injection attacks, that is, only when the fake timestamp is higher than the local time at

the receiver. Both replay and masquerade attacks are not detectable by this rule because

replay attacks do not change the timestamp (i.e., it will be lower than the local time at

the receiver whenever the clocks are synchronized) and masquerade attacks have sufficient

knowledge to insert a valid timestamp. Most DoS variations are not detectable by rule

#R13 since such attacks focus on resource overload. However, DoS attacks that operate

by leading the system to an invalid status such as poisoning attacks can be detected. In

this case, this rule may be useful to detect messages with an incorrect timestamp.

The masquerade attack manages to circumvent all specification rules included in state-

of-the-art solutions that have both syntax and behavioral consistency. The attacker profile

indicates an advanced knowledge about the operation of the substation – potentially ob-

tained through a historical analysis of the messages transmitted in the network. Therefore,

it is important to note that further improvements to deal with this particular attack are

necessary. In the next chapter we provide a solution for such problem.

Rules #R11, #R12 and #R16 are suitable to detect flooding or other generic DoS

attacks because they consider message counters capable of detecting anomalous behavior.

In particular, #R12 works only in an advanced stage of DoS, where no legitimate messages

are being delivered. Similarly, rules #R15, #R17, #R21, and #R22 allow the detection

of anomalies in transmission time such as those caused by DoS attacks. Therefore, even

though these rules may detect intrusion attempts, they are not effective in distinguishing
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malicious and legitimate messages. Finally, rules #R13, #R23, and #R24 are limited in

detecting DoS attacks because these rules are based on single malformed messages.

A complete and more accurate detection can be achieved by the composition of rules.

This may enable IDSs to detect and distinguish the different attack variations as well as

to measure the attackers’ expertise. Also, the combination of rules may reveal possible

correlations between events. For instance, #R18 may reveal a malicious IP connected to

the network, while #R19 detects a malicious attempt to generate unauthorized traffic,

and #R12 reports a compromised state causing the system to be unavailable. However,

despite the potential of complex rules to detect more attacks, even if building an IDS by

using the combination of current state-of-art rules is still unable to detect all attacks.

Existing specification-based IDSs employ different combinations of the aforementioned

rules. In (YANG; MCLAUGHLIN, et al., 2016) and (KWON et al., 2015), only a part of

replay attacks are detected even after combining multiple rules. Also, they fail to detect

masquerade attacks. Rules used in (YANG; MCLAUGHLIN, et al., 2016) present a high

probability to detect Naive and IED–61850 injection, but fail to detect DoS. On the other

hand, the rules used in (KWON et al., 2015) enable DoS detection but fail to detect Naive

Injection and detect only part of IEC–61850 injection attacks. The combinations of rules

presented in (HONG; LIU, 2019; HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU,

C.-C.; GOVINDARASU, 2014; YANG; XU, et al., 2016) provide a similar capability to

detect all attacks: they detect replay and DoS attacks, and present a high probability

of detecting Naive and IEC–61850 injection attacks. Finally, the last row of Table 3

shows that, even combining all rules, both Naive and IEC–61850 attacks are not always

detected, although they provide a high detection probability. Masquerade attacks, on the

other hand, still cannot be detected. A potential solution may be the extraction of more

representative features by considering both GOOSE and SV traffic.

Although the computation of the metrics discussed in Section 4.2.2 requires numerical

indicators (i.e., TP, TN, FP, and FN), it is possible to qualitatively estimate the expected

level of recall to specification-based IDSs in detecting the five attacks analyzed in this

section based on Table 3. In summary, masquerade attacks would present the lowest

recall due to their high number of false negatives. Similarly, replay attacks may present a

low recall by IDSs that do not employ rules #R6 and #R10. On the other hand, Naive

Injection and DoS attacks are expected to have a higher recall since there are more rules

to detect them.

Since specification-based IDSs are designed by modeling specific malicious actions, it is
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reasonable to expect a high precision to all rules (i.e., a low number of false positives) even

if they have poor recall. Estimating the accuracy without the knowledge of the number

of samples analyzed would be not possible, because it may be affected by imbalanced

datasets (i.e., disproportional number of attacks and legitimate samples).

4.4 Discussion on Digital Substations IDS

To the best of our knowledge, this is the first work to present an in-depth survey on IDS

aspects for digital substations based on the IEC–61850 standards. We covered intrusion

detection approaches, data sources, architectures, evaluation methods, and metrics, and

compared 6 existing proposals. Moreover, we assessed 24 specification rules for detecting

five different attack types (RADOGLOU GRAMMATIKIS; SARIGIANNIDIS, 2019a;

HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU, 2014;

KWON et al., 2015; YANG; MCLAUGHLIN, et al., 2016; KABIR-QUERREC et al.,

2015; YANG; XU, et al., 2016; KIM; PARK, 2018; HONG; LIU, 2019).

Among the assessed aspects we identified the lack of data available for training, test-

ing, and evaluating the current IDSs as the main factor to be studied in the field of

IEC–61850 intrusion detection. Our evaluation also shows that further advancement is

necessary for state-of-the-art IDSs to deal with the current and mainly the novel attacks

that may be launched (i.e., new rules would need to be built manually). In particular,

specification-based IDSs have limited attack detection capabilities through their static

specification rules (HONG; LIU, 2019; HONG; LIU, C.; GOVINDARASU, 2014; HONG;

LIU, C.-C.; GOVINDARASU, 2014; YANG; XU, et al., 2016).

A potential way to handle such challenges is to employ machine learning algorithms.

Nevertheless, it would require proper datasets with representative information about mul-

tiple types of attacks. In Chapter 5 we formulate a hypothesis and present a solution for

the generation of realistic and updated intrusion datasets.



5 Hypothesis and Proposed Solution

5.1 Hypothesis

Based on an in-depth study on the field of the digital substations’ IDS, as presented in

Chapter 4, we identified a weakness in the literature in terms of evaluating datasets to

support the use of dynamic methods such as machine learning algorithms.

Several existing works employ static rules to detect malicious behavior and perform

intrusion detection. On the other hand, IDSs that employ machine learning have their

focus on generic attacks, that is, that are not specialized for substations networks.

The lack of attack signatures and public data availability is a key factor that im-

poses serious challenges to the current state-of-art IDS. Although our study shows that

specification-based IDSs are frequently used, other types of IDSs also require data for

being assessed. Therefore, the aforementioned conclusions provided evidence to support

and formulate the hypothesis of this thesis:

• The scarcity of dynamic attack datasets based on IEC-61850 limits the

development potential of IDSs. By providing realistic datasets and se-

lecting their representative features to describe a range of attacks, it is

possible to design more robust IDSs.

To assess that hypothesis, we implement the workflow shown in Figure 7. According

to this workflow, the main scope of this work is on the proposal and assessment of a novel

extensible tool named Efficacious Reproducer Engine for Network Operations (ERENO).

ERENO is tailored to reproduce the behavior of the GOOSE and SV protocols, mak-

ing it possible to model a range of attacks. As shown in Figure 7 ERENO takes the

following inputs: (i) Electric samples, generated either by simulation tools or real

devices and (ii) a set of Attack Use Cases that describes the attacker behavior when

performing malicious activities on the network. More details about the ERENO, power
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Figure 7: The proposed solution architecture.

grid simulations, substation traffic generation (GOOSE and SV protocols), and malicious

traffic generation (attacks targeting the GOOSE protocol) are given in Section 5.2.

The second component embedded into ERENO (at the bottom of ERENO in Figure 7)

is the Feature Extraction. This process performs operations on the generated traffic data

by Traffic Generator (at the top of ERENO in Figure 7). From the generated substation

traffic, the Feature Extraction component extracts basic features (13 from SV and 22

from GOOSE). Additionally, it generates novel enriched features (24 from SV and 10

from GOOSE) to improve the detection performance when they are processed by IDSs.

More details about the Feature Extraction process are given in Section 5.3.

As an additional component to improve the detection performance when processing

the 69 features of the generated dynamic datasets, we propose a novel implementation

of the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic, named

GRASP for Feature Selection (GRASP-FS), which is adapted to select features through

a hybrid approach that combines filter methods (for selecting good features candidates)

and wrapping methods (for assessing reduced subsets composed by the previously selected

candidates).

More details about GRASP-FS are given in the Section 5.4.

Finally, at the right part of the Figure 7, the workflow shows the use of Intrusion De-

tection Algorithms to assess both the resulting features from the generated dataset under

different metrics. More details about the assessment of ERENO are given in Chapter 6.

5.2 Data Generation: ERENO Extensible Tool

The ERENO Tool is built under 5 pillars: (i) realistic data generation; (ii) representative

features generation; (iii) extensible to cover multiple attacks; (iv) modular to separate
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each responsibility in an individual replaceable components, and (v) open-source code to

allow the academia community to use and improve it.

ERENO can generate realistic data for SV and GOOSE protocols because it repro-

duces the behavior defined in the IEC–61850 standards based on electrical samples (i.e.,

current and voltage) input from any source. The produced traffic may contain events

from the transmission line with both normal operation and electric fault scenarios.

ERENO is easily extensible as it supports the implementation of customized attack

use cases. This way, novel attacks can be modeled and incorporated into ERENO at any

time. Thus, ERENO is able to provide realistic and updated attack datasets for training,

testing, and assessing IDSs. The overall process is shown in Figure 8 and described below.

PSCad
Simulation

Power Grid
Model

results.out

Power Grid
Simmulations

ERENO
Traffic Generation

Use Cases   
Specifications     

Elemental
Reproducer
Engine for
Network
Operations GOOSE

Features  

SV
Features  

IEC-61850 IDS
Dataset

Figure 8: Proposed ERENO Extensible Tool for generation of realistic IEC–61850-based
datasets.

Therefore, ERENO takes electrical samples as inputs from any source such as a power

grid modeling tool (see Section 5.2.1) in a column-oriented format (e.g., the results.out

output of PSCad, show in Figure 8) as a reference to build SV (see Section 5.2.2) and

GOOSE (see Section 5.2.3) traffic representation of the substation and transmission line

normal operation without electric faults and with the occurrence of electric faults; this

electric fault traffic is also benign traffic (i.e., not an intrusion) because it represents a

natural electrical fault rather than an attacker action. Therefore, we introduce the Goose

Event Manager component (it is part of the Traffic Generator in Figure 7) to support

attacking use case specifications (see Section 5.2.4).
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5.2.1 Power Grid Simulations

To generate data regarding the substation and transmission line operation in a realistic

way, we modeled a real transmission line in the Brazilian electrical power system. This

transmission line interconnects two substations (Serra da Mesa in the State of Goias, and

Samambaia in the Federal District).

In the proposed implementation, we used the Power Systems Computer-Aided Design

(PSCAD (LTD, 2019)) tool to reproduce the modeled transmission line. PSCAD is a

simulation tool that simulates electromagnetic transients, used for modeling and analysis

of power systems, including steady-state and transient scenarios, as well as electrical faults

(e.g., any abnormal electric current, such as a short circuit). Thus, this tool enables the

modeling of power system components and electrical faults analysis through parameter

sweep, such as fault location, resistance and type.

Substation 1 
 

Voltage Transformer 
(VT)

Current Transformer 
(CT)

249 Km

229 kV : 66.4 3000 : 1A

Substation 2 
 

Voltage Transformer 
(VT)

Current Transformer 
(CT)

229 kV : 66.4 3000 : 1A

...
Segment 1 Segment 12
20.75 Km 20.75 Km

Electric Faults

Figure 9: Simulated electric power grid model.

The simulated transmission line has three phases (A, B, C–and G for ground) and

is 249 km long, with 12 segments of 20.75 km each. To generate a large number of

fault and normal behavior data instances, we created several fault scenarios. Eleven fault

types are applied along the transmission line in 12 different locations. These fault types

include single-phase faults (i.e., AG, BG, and CG), phase-to-phase faults and three-phase

faults (i.e., AB, BC, CA, ABC, and ABCG). In addition, each fault case considers three

different fault resistance values (i.e., 10 Ω, 50 Ω, 100 Ω). These parameters are based

on (PINHEIRO et al., 2021).

Using this methodology, the ensuing dataset is obtained by considering combinations

of all parameter values, namely 12 fault locations, 3 fault resistance and 11 fault types, or

12×3×11 = 396 scenarios. Each simulation run lasts 1 second, of which 900 ms represent

normal conditions and 100ms represent a programmed fault at the fixed timestamp of

500ms (lasting 100ms until time 600ms). This fault duration (i.e., 100ms) is set as

the maximum fault duration allowed by the ONS (Brazilian electrical system operations

organization) (Operador Nacional do Sistema Elétrico - ONS) (OPERADOR NACIONAL
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DO SISTEMA ELÉTRICO, 2021).

5.2.2 SV Traffic Generation

The plot step parameter on PSCAD can be adjusted to set the time interval between

each electrical signals reading (samples). Since the IEC–61850-9-LE specifies 80 messages

per cycle for protection applications, a 60 Hz system will require 4,800 messages per

second (i.e., 60 Hz × 80 messages = 4,800 messages/s).

Therefore, to generate an equivalent (approximated) number of samples on PSCAD,

we set the plot step parameter on PSCAD to 1
4,800
≈ 208 µs.

Once the electric values are available (i.e., current and voltage), the ERENO traffic

generator can be implemented. The analog current and voltage values from a substation

are measured by the simulated Voltage Transformer (VT) and Current Transformer (CT),

illustrated in Figure 9, digitized by our traffic generator, and converted to SV messages

(in compliance with the IEC–61850-9-LE standard).

5.2.3 GOOSE Traffic Generation

The main goal of GOOSE messages is to enable the communication of substation events, as

described in Section 2.1.2.2. Since our study assumes a scenario where electric faults may

occur, a GOOSE traffic generator was implemented to simulate the publication of events

related to the operation of circuit-breakers as typically done by protection applications.

The generated GOOSE features are shown in Section 5.3.

The ERENO generator produces GOOSE messages to simulate what would be sent

by a physical IED. Thus, these messages are based on the current circuit-breaker status.

Also, we assume that the ERENO is generating GOOSE messages from Substation 1 of

Figure 9. During the first 500 ms of each simulation run, GOOSE messages are transmit-

ted every T0 milisseconds with the boolean value that represents the circuit-breaker status

set to a false, that means a “closed” circuit-breaker. When an event occurs (e.g., a fault),

a GOOSE message is sent immediately and retransmitted according to the behavior de-

scribed in Section 2.1.2.2. In real scenarios, both T1 and T0 are defined in the Substation

Configuration Description (SCD) file through MinTime and MaxTime tags. In our simu-

lation, we assume these values as 4 ms and 1,000 ms, respectively, as in (HADELI, H.

et al., 2009; HADELI et al., 2009). Thus, the assumed SCD tags are defined as follows:
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1. <MinTime unit=“ms”>4</MinTime>

2. <MaxTime unit=“ms”>1000</MaxTime>

To reproduce a realistic behavior of a physical IED, we made the following assumptions

to drive our GOOSE traffic generation model:

• Assumption 1 : We assume that the SV messages are transmitted immediately at

the begin of each simulation run; However, the first GOOSE message is transmitted

only after the end of the first SV cycle. That means that the expected timestamp

to the first GOOSE message is 16.6 ms. This timestamp is computed assuming a

60 Hz system (i.e., 60 cycles / 1 second).

• Assumption 2 : We assume that once an electric fault occurs, it will trigger a GOOSE

message reporting such event only after an hypothetical IEDs’ protection algorithm

detect it (i.e., through processing the corresponding SV messages). Therefore, we

refer to this processing time as TIED. We assume TIED = 6.20 ms, based on the

time reported in (FERNANDES; BORKAR; GOHIL, 2014).

• Assumption 3 : Since we assumed MaxTime as 1,000 ms, GOOSE messages are

transmitted every 1 second, under normal conditions (i.e., if no event occurs). How-

ever, as we simulated faults at the 500 ms of each simulation run, novel GOOSE

messages are sent starting at 506.2 ms (i.e., 500 ms + TIED) and following the

bursting mode.

• Assumption 4 : We assume an Exponential Backoff function1 to define the intervals

for message retransmission during the GOOSE bursting mode. Thus, after the

first GOOSE message (at 506.2 ms) reporting the fault event (occurred at 500 ms),

other messages are transmitted with the same status but with an increasing sequence

number (as shown in Table 5).

• Assumption 5 : As the GOOSE bursting would have a duration of 192 ms be-

fore reaching T0, according our assumed backoff, the 5th message would be sent

at 698.2ms. However, the fault duration is 100 ms. Thus, instead of the expected

message at 698,2ms, another burst is triggered at 606.2 ms to report the line reestab-

lishment. The description of each message and its respective interval is shown in

Table 4. The values of StNum, SqNum, and the cbStatus are shown in Table 5.

1The Exponential Backoff function used is available online at http://backoffcalculator.com/.
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Table 4: Generated GOOSE messages per simulation run.

Time Description Interval Next message

16.6 ms Periodic GOOSE message T0 1000 ms
500 ms Fault occurrence

506.2 ms GOOSE status change T1 4 ms
510.2 ms GOOSE status change T1 4 ms
514.2 ms GOOSE status change T2 25.2 ms
539.4 ms GOOSE status change T3 158.8 ms
600 ms Line recovery

606.2 ms GOOSE status change T1 4 ms
610.2 ms GOOSE status change T1 4 ms
614.2 ms GOOSE status change T2 25.2 ms
639.4 ms GOOSE status change T3 158,8 ms
798.2 ms Periodic GOOSE message T0 1000 ms

Table 5: Field values for the generated GOOSE messages per simulation run.

Time StNum SqNum cbStatus

16 ms 0 0 0
506.2 ms 1 0 1
510.2 ms 1 1 1
514.2 ms 1 2 1
539.4 ms 1 3 1
606.2 ms 2 0 0
610.2 ms 2 1 0
614.2 ms 2 2 0
639.4 ms 2 3 0
798.2 ms 2 4 0

5.2.4 Malicious Traffic through Attack Use Cases

In this section we describe the attack use cases that generate malicious traffic. Specifically,

we exploit GOOSE protocol vulnerabilities to reproduce attacks from 7 attack use cases

based on those attacks studied in Section 4.1.1. The assumptions and specific parameters

for each attack use case are described below — attack use cases are responsible for attacker

behavior modeling. The attacks described below were implemented and made available

(both the dataset2 and the source-code3).
2ERENO IEC–61850 Intrusion Dataset: https://abre.ai/ereno-dataset
3ERENO Traffic Generator Source-code: https://github.com/sequincozes/iec61850generator
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5.2.4.1 Random Replay Attacks (UC01)

This use case is based on the capture and retransmission of a previously sent message

at multiple random simulation moments. Consequently, these replay attacks may have

different impacts depending on the message content and context in which it is retransmit-

ted, varying from outages to equipment damage or, in worst case, offering risk to human

life. Note that replay attacks assume that the original message content is not changed.

5.2.4.2 Inverse Replay Attacks (UC02)

This use case is a variation of UC01. The main difference is that instead of performing

retransmissions with random status, the attacker attempts to cause more damage by

choosing messages with a status different to the expected to be transmitted at that given

moment.

To run this attack, the attacker captures previously sent GOOSE messages; then,

it monitors the network to identify specific events (e.g., electric faults or electric line

reestablishment) and attempts to report a fake status by injecting an old message with

a different event. The malicious message may be retransmitted during, before or after a

fault event.

For example, if a fault event occurs, the attacker sends (an older) GOOSE message

(i.e., with outdated/inverse circuit-breaker status) to the subscribers. The result is the

undesired closing of the circuit-breaker, rather than remaining open as expected in this

fault scenario. The practical effects may be the damage to the electrical equipment or,

in the worst case, offering risk to human life (e.g., by reestablishing a transmission line

during equipment maintenance). To cause the inverse result (i.e., improperly opening the

circuit-breaker) the attacker sends the malicious message under normal conditions. Each

message is sent at a random moment. If the attack action is done during a fault situation,

one message captured during a normal situation is transmitted. Otherwise, one message

captured during a fault situation is transmitted. This attack model also assumes that

the original message content is not modified (i.e., the incorrect status comes from an old

message with its integrity preserved, including the older sqNum and stNum).

5.2.4.3 Masquerade Attacks towards Outage (UC03)

Masquerade messages are built with advanced strategies to difficult distinguishing them

from legitimate messages. Thus, for this use case, the attacker transmits fabricated mes-
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sages that mimic fault events under normal situations. This includes reproducing the

retransmission period between two messages (see Figure 5), as well as StNum and SqNum

field values to cause the same behavior shift as the correspondent legitimate messages.

This use case was set up to suggest the existence of a fault through GOOSE messages

while the SV measurements are normal during random periods of 100 ms for each 1-second

simulation run, accordingly to the traffic generation parameters presented in Section 5.2.3.

Thus, these attacks are never carried out when an outage event is occurring. Accordingly,

the generated SV data corresponds to the normal line operation whereas GOOSE messages

carry a control block status that corresponds to a fault.

5.2.4.4 Masquerade Attacks towards Equipment Damage (UC04)

This use case follows the same logic as UC03. However, instead of sending malicious

GOOSE messages to report a fake fault during a normal situation, it sends malicious

GOOSE messages reporting a normal status operation during a fault. The attacker

transmits fabricated messages that also mimic the GOOSE bursting (described in Sec-

tion 5.2.3), StNum and SqNum field values to cause the same behavior shift as the corre-

spondent legitimate messages (see Figure 5).

This use case inserts fake messages in the time window between 500 ms and 600 ms

of each 1-second simulation run (i.e., the same period during which faults are set up to

occur).

5.2.4.5 Message Injection (UC05)

This implementation of the Injection Attack assumes that the attacker is able to fabricate

and transmit fake messages with either random modifications (i.e., without observing its

consistency with the IEC–61850 standard) or with modifications that comply with the

standard.

In contrast to previous use cases, in the UC05 the attacker does not need to capture

previous messages. It can just inject new fabricated messages. Thus, these messages are

not likely to have valid values for field as sqNum and stNum.
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5.2.4.6 High Status Number Attack (UC06)

This use case represents a poisoning attack that explores the setting of high – and incon-

sistent – values to StNum. To implement that behavior, GOOSE messages are captured

and sent with their StNum set to be higher than the range of legitimate messages. In

particular, we put random values (from 10,000 to 100,000) in this field. This range was

set to reach a trade-off considering that the higher the forged value is, the easier it is to

detect the attack, but larger values cause more damage as it takes more time for legitimate

messages to reach/surpass the fake increased status.

The expected behavior on the subscriber devices is to discard any legitimate GOOSE

frames since their status numbers will appear to be outdated (lower than expected).

5.2.4.7 High-Rate Flooding Attack (UC07)

This use case explores DoS attacks, in which an attacker floods the multicast channel by

sending multiple fake messages. Each fake message will contain an increased value of the

status number, as expected at the subscriber devices.

Since it is increasing each message’s StNum, at a later time, a legitimate message will

be discarded because its StNum is smaller than the current one.

Therefore, the result will be similar to the previous variant, except by the increased

difficulty of distinguishing the legitimate messages from the flooded fake messages. Ad-

ditionally, this attack can cause resource exhaustion.

5.3 Feature Extraction and Enrichment

Once the traffic is generated by ERENO, the resulting output is an IEC–61850 dataset

in a format ready to be processed by machine learning algorithms (e.g., J48 algorithm).

Whereas some features are directly extracted from the network packets (e.g., GOOSE and

SV APDU), other features are generated from the enrichment process described below.

This process is responsible for generating more representative features from the basic

features through their correlation and simple computations involving information on one

or more features or messages.
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5.3.1 SV Features

The SV protocol payload has important data regarding the physical devices, including the

measured current (i) and voltage (v) from merging unities and other IEDs. These features

can be collected at multiple devices. In our scenario, we assume a three-phase transmission

line connecting two substations (see Section 5.2.2 for more details). Therefore, we can

extract 13 basic SV features: the current timestamp (1), the current from each phase

and substation (3 phases × 2 substations = 6), and the voltage from each phase and

substation (3 phases × 2 substations = 6). The full list of basic SV features is listed as

follows:

1. time: The SV timestamp.

2. isbA: Current from Samambaia substation (sb) at Phase A.

3. isbB: Current from Samambaia at Phase B.

4. isbC: Current from Samambaia at Phase C.

5. ismA: Current from Serra da Mesa substation (sm) at Phase A.

6. ismB: Current from Serra da Mesa at Phase B.

7. ismC: Current from Serra da Mesa at Phase C.

8. vsbA: Voltage from Samambaia at Phase A.

9. vsbB: Voltage from Samambaia at Phase B.

10. vsbC: Voltage from Samambaia at Phase C.

11. vsmA: Voltage from Serra da Mesa at Phase A.

12. vsmB: Voltage from Serra da Mesa at Phase B.

13. vsmC: Voltage from Serra da Mesa at Phase C.

The aforementioned features can be used by IDSs to create models that represent

the current status of the power grid. These model can be correlated with the substation

events (e.g., those reported from GOOSE messages). Any inconsistency in this correlation

can be considered suspicious, malicious or anomalous activity.
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5.3.2 Enriched SV Features

Each current and voltage value represents a snapshot of a reading on a specific timestamp.

Therefore, this information by itself may be of little relevance to an IDS. On the other

hand, consecutive current and voltage measures can be used to represent an electrical

waveform. A typical electrical waveform during the normal operation of the transmission

line follows the behavior illustrated in Figure 10.

Figure 10: Balanced three-phase readings (OMAKAZI, 2022).

The occurrence of events on the transmission line may affect the current and voltage

variables. When multiple consecutive values are analyzed together, it is possible to esti-

mate the current transmission line state and detect anomalies (e.g., electrical faults and

line maintenance). A hypothetical situation of anomalous signals in the one of the three

phases (i.e., Phase 1) is shown in Figure 11. This is considered anomalous because it does

not follow the expected behavior in comparison to the other phases (i.e., its lagging of

140º instead of the expected 120º and its amplitude is higher than the normal range).

Figure 11: Unbalanced three-phase readings (OMAKAZI, 2022).

In electrical grids protection functions, there are statistical methods to combine multi-

ple readings of the same feature on different timestamps and generate more representative

features. We explore two methods to derive novel features: Trapezoidal Area Sum (Tra-

pAreaSum) (WEIDEMAN, 2002) and Root Mean Square (RmsValue) (SATOH et al.,



5.3 Feature Extraction and Enrichment 69

2020).

The enriched SV features based on the RMS Value method are the following:

14. isbARmsValue: Current RMS Value from Samambaia at Phase A.

15. isbBRmsValue: Current RMS Value from Samambaia at Phase B.

16. isbCRmsValue: Current RMS Value from Samambaia at Phase C.

17. ismARmsValue: Current RMS Value from Serra da Mesa at Phase A.

18. ismBRmsValue: Current RMS Value from Serra da Mesa at Phase B.

19. ismCRmsValue: Current RMS Value from Serra da Mesa at Phase C.

20. vsbARmsValue: Voltage RMS Value from Samambaia at Phase A.

21. vsbBRmsValue: Voltage RMS Value from Samambaia at Phase B.

22. vsbCRmsValue: Voltage RMS Value from Samambaia at Phase C.

23. vsmARmsValue: Voltage RMS Value from the voltage from Serra da Mesa at

Phase A.

24. vsmBRmsValue: Voltage RMS Value from the voltage from Serra da Mesa at

Phase B.

25. vsmCRmsValue: Voltage RMS Value from the voltage from Serra da Mesa at

Phase C.

The enriched SV features based on the TrapAreaSum method are the following:

26. isbATrapAreaSum: Current Trapezoidal Area Sum from Samambaia at Phase A.

27. isbBTrapAreaSum: Current Trapezoidal Area Sum from Samambaia at Phase B.

28. isbCTrapAreaSum: Current Trapezoidal Area Sum from Samambaia at Phase C.

29. ismATrapAreaSum: Current Trapezoidal Area Sum from Serra da Mesa at Phase

A.

30. ismBTrapAreaSum: Current Trapezoidal Area Sum from Serra da Mesa at Phase

B.
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31. ismCTrapAreaSum: Current Trapezoidal Area Sum from Serra da Mesa at Phase

C.

32. vsbATrapAreaSum: Voltage Trapezoidal Area Sum from Samambaia at Phase

A.

33. vsbBTrapAreaSum: Voltage Trapezoidal Area Sum from Samambaia at Phase

B.

34. vsbCTrapAreaSum: Voltage Trapezoidal Area Sum from Samambaia at Phase

C.

35. vsmATrapAreaSum: Voltage Trapezoidal Area Sum from Serra da Mesa at Phase

A.

36. vsmBTrapAreaSum: Voltage Trapezoidal Area Sum from Serra da Mesa at Phase

B.

37. vsmCTrapAreaSum: Voltage Trapezoidal Area Sum from Serra da Mesa at Phase

C.

5.3.3 Basic GOOSE Features

The basic GOOSE features extracted are those that can be directly extracted from the

individual GOOSE messages. We propose the extraction of 22 features from GOOSE

without any additional processing — similar to the SV Basic Features extraction.

38. t: The timestamp of the last state change;

39. gooseTimestamp: The GOOSE timestamp;

40. sqNum: The GOOSE sequence number;

41. stNum: The GOOSE status number;

42. cbStatus: Circuit-breaker status on GOOSE;

43. frameLen: The GOOSE ethernet frame length;

44. ethDst: The GOOSE ethernet destination address;

45. ethSrc: The GOOSE ethernet frame source address;
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46. ethType: The GOOSE ethernet frame type;

47. gooseTTL: The time allowed to live;

48. gooseAppid: The GOOSE application ID;

49. gooseLen: The GOOSE frame length;

50. TPID: The tag priority ID;

51. gocbRef : The GOOSE control block reference;

52. datSet: The IED dataset path;

53. goID: The GOOSE flow ID;

54. test: The test flag;

55. confRev: The configuration revision;

56. ndsCom: The GOOSE NDSCOM parameter;

57. numDatSetEntries: The number of entries on the datSet;

58. APDUSize: The Application Data Unit (APDU) size;

59. protocol: The used protocol (expected: GOOSE).

5.3.4 Enriched GOOSE Features

The GOOSE traffic may also gain representativity if its features have their values com-

bined along the time. Based on this assumption we compose 10 novel features that can be

used to check the consistency between the behavior from multiple consecutive messages

and the proposed behavior on the IEC–61850 standards (see Section 2.1.2.2 for more

details about the expected GOOSE behavior).

From the 10 enriched GOOSE features, 8 are generated by computing the difference

between the feature value of the current message (n) and the feature value of the imme-

diately previous message (n-1).

60. stDiff : StNum{n} - StNum{n-1};

61. sqDiff : SqNum{n} - SqNum{n-1};
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62. gooseLengthDiff : gooseLength{n} - gooseLength{n-1};

63. cbStatusDiff : cbStatus{n} - cbStatus{n-1};

64. apduSizeDiff : apduSize{n} - apduSize{n-1};

65. frameLengthDiff : frameLength{n} - frameLength {n-1};

66. timestampDiff : timestamp{n} - timestamp{n-1};

67. tDiff : t{n} - t{n-1};

The last two features are computed combining two different pieces of seemingly unre-

lated information. First, we compute the difference between the current GOOSE message

timestamp (i.e., gooseTimesTamp) and the timestamp of the last GOOSE message with

a status change (i.e., t). Then, we compute the difference between the current GOOSE

message timestamp and the timestamp of the last captured SV message. These features

are computed as follows:

68. timeFromLastChange: gooseTimesTamp{n} - t{n};

69. delay: gooseTimestamp{n} - time{n}.

The proposed feature enrichment is based on the assumption that multiple consecutive

messages can provide more information about the behavioral shifting during malicious

actions (e.g., sequence number resetting after the status changes on substation devices).

Similarly, the difference between the timestamps from two consecutive messages may

reveal messages being transmitted in an improper high-rate.

5.4 Feature Selection: GRASP-FS

As the ERENO traffic generator can generate any feature that can be derived from SV

and GOOSE protocols — note that we propose 69 features but others can be implemented

into the ERENO open source project —, it is important to define which features are more

suitable for IDSs to detect precisely multiple types of attacks.

Therefore, as an additional contribution to the ERENO tool, we propose the GRASP-

FS as an implementation of the GRASP metaheuristic applied to the Feature Selection

(FS) problem. The GRASP metaheuristic (QUINCOZES; PASSOS, et al., 2020) is a
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multi-start or iterative process, in which each iteration consists of two phases: construction

and local search, as shown in Figure 12.

Figure 12: GRASP-based FS process.

The construction phase builds a feasible solution (i.e., using features previously as-

sessed through a filter-based method), at the step C1 in Figure 12, whose neighborhood is

investigated until a local optimum solution is found during the local search phase, at the

steps LS1 to LS5 in Figure 12. These phases are called in lines 5 and 10 of Algorithm 1.

The use of GRASP applied to the feature selection problem enables the increase of

a fitness function (e.g., accuracy, or F1-Score) with a parameterized computational cost.

Thus, an optimized feature subset is given as a solution.

Our GRASP implementation adapted to FS problem has the following input pa-

rameters: the entire dataset features (all), the maximum global number of iterations

(maxTime), and the desired feature subset length (|FS|). Note that the latter is used

only when required by the local search method (e.g., bit-flip). Some methods have their

own stop criteria (e.g., incremental wrapper methods). To reduce the feature space for

analysis, an Restricted Candidate List (RCL) is considered. Also, note that generating

an RCL implies excluding features from both construction and local search phases. In

our implementation, the RCL is generated once to avoid unnecessary overhead.

The subsets generated in the construction phase are used as seed solutions for the

neighborhood exploration, during the local search procedure. This entire process is re-

peated until the global criteria is reached (i.e., maxTime). For each general iteration, the

local search runs until the maximum iteration number (maxIt) is reached. Each feasible
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Algorithm 1: GRASP-based FS Algorithm (QUINCOZES; PASSOS,
et al., 2020)

input : all // all available features
maxTime // maximum GRASP running time
L-RCL // qty. of features to compose RCL
|FS| // initial feature length
maxIt // maximum number of iteration

output: bestFS // optimized feature subset
1 begin
2 bestFS ← ∅
3 bestFS.accuracy ← 0
4 while currentTime < maxTime do
5 greRaFS ← construct(|FS|, L-RCL, all)
6 greRaFS.accuracy ← eval(greRaFS)
7 if greRaFS.accuracy > bestFS.accuracy then
8 bestFS ← greRaFS
9 end

10 bestLocal ← localSearch(greRaFS, RCL, maxIt)
11 if bestLocal.accuracy > bestFS.accuracy then
12 bestFS ← bestLocal
13 end
14 end
15 end
16 return bestFS

solution found is evaluated through the fitness function and the best overall solution is

kept. When the local criteria is achieved, the best local solution is given as result and

then compared to the best global solution. After maxTime is reached, the best overall

result is given as the final output. This output is perhaps a sub-optimal selection because

of the stopping criteria. Details of the construction and local phases are presented in the

rest of this chapter.

5.4.1 Construction Phase

In the construction phase, an initial solution is generated based on a greedy and ran-

domized process. However, to avoid waste of computational and time resources, instead

of a full GRASP iteration from a poor seed solution, the traditional GRASP algorithm

introduces the concept of RCL. Such elimination of features is typically defined by us-

ing some knowledge about the problem at hand (e.g., from a domain expert) or through

metrics supported by statistical methods. A small RCL typically provides less diversity

and a greater risk of overfitting as well as a potential for missing important features. In

contrast, a very large RCL reduces the chance of a good solution being achieved in a

reasonable time. Thus, the RCL size is important to the trade-off between diversity and

overfitting. In FS, filter-based methods can be used to create the RCL due to their small
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computational complexity (ESSEGHIR, 2010; QUINCOZES; PASSOS, et al., 2020), but

the features selected to compose the RCL do not guarantee that the generated solutions

will have good results (e.g., precision or F1 scores). Thus, using wrapper-based methods

may also be an alternative to the RCL generation.

Algorithm 2: construction Phase
input : all // all available features

L-RCL // qty. of features to compose RCL
|FS| // initial feature length

output: greRaFS // Greedy-Random FS subset
1 begin
2 if rclFeatures = ∅ then
3 foreach feature ∈ all do
4 GR ← getGr(feature)
5 end
6 all ← attributeRankByGR(all)
7 rclFeatures ← selectTopRanked(all, L-RCL)
8 end
9 greRaFS ← ∅

10 while ( |greRaFS| < |FS|) do
11 greRaFS ← ∪ selectRandomly(feature ∈ rclFeatures )
12 end
13 end
14 return greRaFS

The Gain Ratio (GR) filter-based method performs feature ranking at the construction

phase and then selects the top-ranked features. Therefore, in the first GRASP iteration,

when the rclFeatures is empty, the GR is computed for each feature (see line 4, Al-

gorithm 2). Once the RCL is generated, it is used to generate the initial solution (i.e.,

greRaFS, in Figure 12) in a greedy and randomized way for each GRASP iteration. In

particular, features are chosen randomly from the RCL to be added to greRaFS (see line

11, Algorithm 2) until the solution length reaches the threshold |FS|. This step is repre-

sented as Construction 1 (C1), in Figure 12, and is followed by a wrapper evaluation (C2).

The evaluated solution is compared to the current best solution (C3), which is updated

when outperformed (C4).

Note that any algorithm or method can be used as an alternative to GR, including

the full set of features or manually chosen features. In our substation scenarios, we can

choose to use specific GOOSE and/or SV features as part of the RCL, for example.

5.4.2 Local Search Phase

Starting from a seed solution, the local search consists of a set of local movements to derive

neighbor solutions (i.e., new similar feature subsets with few features different from the
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seed subset). We use greRaFS from the construction phase as a seed to the neighborhood

exploration, represented as LS1 (local search) in Figure 12. The next steps are repre-

sented by LS#, where # is their sequence number. The local movements are defined by

the neighborhood structure (i.e., algorithms that handle a set of local search algorithms)

used in each LS#, which can be drawn among the ones that follow. The Bit-Flip (BF)

local search explores neighboring solutions by exchanging features between the RCL and

greRaFS (e.g., adding one feature and removing another per iteration). The Incremental

Wrapper-based subset Selection (IWSS) local search performs an iterative feature selec-

tion, keeping only those features that present an improvement in the fitness function. The

IWSS with replacement (IWSSR) local search also performs an incremental subset selec-

tion, but considers also feature replacement instead of just adding new ones (BERMEJO;

GAMEZ; PUERTA, 2011; MORADKHANI et al., 2015). Thus, whereas IWSS only dis-

cards new features without improvements, IWSSr may remove previously selected features

if their replacement by new ones can improve the solution.

Algorithm 3: Local Search
input : RCL // Restricted Candidate List of features

greRaFS // Seed solution to neighbors generation
maxIt // Maximum number of iteration

output: bestLocal // Best feature set in the local neighborhood
1 begin
2 bestLocal ← greRaFS
3 while currentIteration++ <maxIt do
4 bestNeighborFS ← localMovement (greRaFS, RCL)
5 bestNeighborFS.accuracy ← evaluate(bestNeighborFS, classifier)// eval
6 if bestNeighborFS.accuracy > bestLocal.accuracy then
7 bestLocal ← bestNeighborFS.accuracy
8 end
9 end

10 end
return : bestLocal

In our previous work (QUINCOZES; PASSOS, et al., 2020) we implemented only Bit-

Flip algorithm as a simple local search neighborhood structure. In further experiments,

we also assess the Variable Neighborhood Descent (VND) (HANSEN; MLADENOVIC,

1999) and the Random Variable Neighborhood Descent (RVND) (PENNA; SUBRAMA-

NIAN; SATORU, 2013) metaheuristics, which can use multiple neighborhood structures,

including the Bit-Flip and two others: IWSS and IWSSr. In particular, RVND chooses

and removes neighborhoods structure randomly at each iteration, whereas VND does it

sequentially. Also, RVND employs a reset procedure: after each local search method

execution, if the found solution outperforms the current best solution, the previous meth-

ods are put again in the neighborhood structure list and may be reselected (i.e., if it is
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randomly selected again).

Regardless of the method used to perform localMovement, each generated solution

should be evaluated through the selected fitness function, represented as LS2 in Figure 12.

If the evaluated solution is the best in the local neighborhood (LS3), the best local solu-

tion is updated (LS4). We employ classifier algorithms as wrapper methods to perform

evaluations and compute the classifier accuracy as a fitness function (see line 5 in Algo-

rithm 3). The local search procedures (i.e., localMovement and evaluate operations)

are repeated until a local stop criteria is reached (LS5), in this case, a maximum number

of iterations (maxIt).



6 Experiments, Results and Discussion

6.1 Feature Processing: Selection and Enrichment

In this section, we study two feature processing techniques to improve the IDSs’1 results:

Feature Enrichment and Feature Selection. Whereas the former aims at generating novel

features to provide more valuable information, the latter aims at discarding irrelevant or

redundant features (see Section 3.2). This study aims at answering the following questions:

• How can Feature Selection improve the performance of IDSs in

detecting each class of attack?

• Can Feature Enrichment be an alternative for improving the IDSs’

performance when Feature Selection is not enough?

6.1.1 Feature Selection

We carried out experiments to measure the feature selection performed by GRASP-FS

Metaheuristic, as proposed in Section 5.4. Since our scope is on attacks targeting the

GOOSE protocol, we take the 22 basic GOOSE features (presented in Section 5.3.3) as

our baseline case. These are the features with index 38 to 59 in our proof-of-concept

dataset. Therefore, these features were selected to compose the RCL for GRASP-FS.

This means that both construction and local search procedures are limited to using the

basic GOOSE features.

The parameters used to set up the GRASP-FS algorithm are shown in Table 6. Both

training and testing datasets have the same number of samples, generated by using the

ERENO tool. The chosen local search algorithms do not require a fixed-length feature

subset. We aim at assessing all basic GOOSE features, thus we do not restrict the candi-

date features from RCL to a smaller subset. We use the F1-Score metric because it can
1We use the J48 algorithm as an IDS implementation in our results.
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Table 6: The chosen parameters for our methodology.

Parameter Value

Portion of data used for training 50%
Portion of data used for testing 50%
Number of features to select (N) Dynamic
Number of features to compose the RCL 22 (max GOOSE features)
Basis for RCL generation All Basic GOOSE Features
Objective Function (decision criteria) F1-Score
Classifier Algorithm J48
Local Search Algorithms IWSSR, BF, and IWSS
Neighborhood Structure RVND

deal with unbalanced datasets. Based on previous experiments, we choose: the J48 algo-

rithms to perform wrapping evaluations; IWSSr, BF, and IWSS to perform local search;

and, RVND neighborhood structure (QUINCOZES; PASSOS, et al., 2020; QUINCOZES;

KAZIENKO; COPETTI, 2018).

6.1.2 Feature Enrichment

In this section, we assess how feature enrichment can contribute to the IDSs’ detection

performance. We start by taking the basic GOOSE features as a baseline and then we

perform incremental feature enrichment:

• GOOSE: only the basic GOOSE features, presented in Section 5.3.3. These are the

features with index 38 to 59 in our proof-of-concept dataset.

• GOOSE & SV: the basic GOOSE features (described above) and basic SV features

presented in Section 5.3.1. The SV features are those with index 1 to 13 in our

proof-of-concept dataset.

• GOOSE & SV++: the basic GOOSE and basic SV features (as the previous item) with

addition of the enriched SV features presented in Section 5.3.2. The enriched SV

features are those with index 14 to 37 in our proof-of-concept dataset.

• GOOSE++ & SV++: the basic and enriched features from both GOOSE and SV pro-

tocols (i.e., the features used for this experiment are all the 69 features).
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6.1.3 Results for Feature Processing

6.1.3.1 Random Replay attacks (UC01)

The detailed results for the UC01 are shown in Table 7.

J48 reached a accuracy (97.44%) and recall (99.95%) upper the 97% for detecting

Random Replay attacks (UC01) with the 22 basic GOOSE features. However, its precision

was only 78.82%, which leads the F1-Score to 88.14%.

After the GRASP-FS processing, only 3 features were selected (i.e., features 38, 39,

and 58). Interestingly, this reduced feature subset improved the F1-Score to 93.06%. The

accuracy was improved to 98.58% and precision to 87.05%. The recall was not affected,

albeit it was already high. Thus, the main improvements with GRASP-FS were observed

for the precision (+8.23%) and F1-Score (+4.92%) metrics.

Table 7: Detection performance of J48 for Random Replay attacks with different input
features.

Accuracy Precision Recall F1-Score TP TN FP FN

GOOSE 97.44% 78.82% 99.95% 88.14% 38982 360922 10475 18
GRASP-FS 98.58% 87.05% 99.95% 93.06% 38982 365599 5798 18

GOOSE & SV 93.75% 60.32% 99.96% 75.23% 38983 345748 25649 17
GOOSE & SV++ 92.56% 56.08% 99.88% 71.83% 38954 340894 30503 46

GOOSE++ & SV++ 100% 100% 99.99% 99.99% 38996 371397 0 4

Since the F1-Score reached by J48 with GRASP-FS for the UC01 is still below 94%,

we experiment with more features than just the basic GOOSE ones. Both the GOOSE

& SV and GOOSE & SV++ features were not able to enhance the IDS performance – they

had 75.23% and 71.83% F1-Score. These results show that having more features is not

always good (i.e., the additional features may introduce wrong decisions when they are

irrelevant). On the other hand, GOOSE++ & SV++ features, without GRASP-FS, lead the

F1-Score to 99.99%.

6.1.3.2 Inverse Replay Attacks (UC02)

For detecting Inverse Replay attacks (UC02), J48 reached a accuracy of 99.33% and

precision of 98.27% with the GOOSE features. Its recall was lower (89.18%), which results

in a F1-Score of 93.5%.

The GRASP-FS procedure selected 3 features from the 22 available (i.e., features 40,

42, and 58). This reduced feature subset improved the F1-Score to 93.85%. The accuracy
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was slightly improved to 99.35% and the recall to 91.54%. However, precision was worse

(96.28%). Note that GRASP-FS does not yield worse solutions: the chosen selection

criteria is F1-Score and, considering both precision and recall, the F1-Score (93.85%) is

still slightly higher than using just the basic GOOSE features (93.5%).

Table 8: Inverse Replay attacks feature selection and enrichment assessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 99.33% 98.27% 89.18% 93.50% 27037 526281 476 3282
GRASP-FS 99.35% 96.28% 91.54% 93.85% 27754 525686 1071 2565

GOOSE & SV 99.33% 99.93% 87.77% 93.46% 26612 526738 19 3707
GOOSE & SV++ 99.81% 100.00% 96.52% 98.23% 29264 526757 0 1055

GOOSE++ & SV++ 99.93% 100.00% 98.80% 99.39% 29954 526757 0 365

Clearly, only feature selection was not enough for significantly enhancing the IDS

performance on this scenario. Thus, as an alternative, feature enrichment was used. The

GOOSE & SV provided a barely worse performance. However, GOOSE & SV++ and GOOSE++

& SV++ features were able to improve the results. In particular, GOOSE++ & SV++ lead the

F1-Score to 99.39% – an gain of 5.89%. The detailed results are shown in Table 8.

6.1.3.3 Masquerade Attacks towards Outage (UC03)

Masquerade attacks towards Outage (UC03) were detected with a very low F1-Score by

J48 when using the basic GOOSE features. The poor precision (43.87%) and low recall

(69.17%) lead the J48 to reach the lowest F1-Score (52.24%) when compared to all other

studied attacks. Actually, these results are already expected since masquerade attacks are

designed to confuse the IDSs by mimicking the legitimate behavior. Thus, neither GOOSE

nor GRASP-FS are able to significantly improve the IDS accuracy – GRASP-FS reached

53.4% F1-Score with 3 features: 39, 41, 42.

Table 9: Masquerade (outage) attacks feature selection and enrichment assessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 94.78% 43.87% 64.55% 52.24% 11102 357194 14203 6098
GRASP-FS 94.66% 43.48% 69.17% 53.40% 11898 355930 15467 5302

GOOSE & SV 95.68% 51.01% 60.31% 55.27% 10374 361435 9962 6826
GOOSE & SV++ 97.06% 65.52% 70.65% 67.99% 12152 365003 6394 5048

GOOSE++ & SV++ 99.95% 99.70% 99.22% 99.46% 17065 371345 52 135

The only way to overcome the challenge imposed by masquerade attacks is to combine

features from both GOOSE and SV and enrich them. The simple correlation of these

protocols presented by GOOSE & SV features does not present significative improvement –
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the F1-Score improves only 3.03%. In fact, basic SV features are not very representative

for masquerade attacks. However, when SV and GOOSE features are enriched, they

gain information value and can detect masquerade attacks with high accuracy (99.95%),

precision (99.7%), recall (99.22%), and F1-Score 99.46%. The detailed results are shown

in Table 9.

6.1.3.4 Masquerade Attacks towards Equipment Damage (UC04)

Although Masquerade Attacks towards Equipment Damage (UC04) detection is not as

hard as the UC03, it follows a similar logic. J48 reached a low performance when using

the GOOSE features. The low precision (56.16%) and recall (80.1%) lead the F1-Score to

65.96%. As in UC03, these results are also already expected by the same reason: mas-

querade attacks are designed to confuse the IDSs by mimicking the legitimate behavior.

Although GRASP-FS presented an improvement on the F1-Score (+6.56%) with four

features (i.e., 39, 40, 42, and 58), this metric is still low (72.52%).

Table 10: Masquerade (equipment damage) attacks feature selection and enrichment as-
sessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 96.30% 56.06% 80.10% 65.96% 13954 360461 10936 3466
GRASP-FS 97.22% 65.16% 81.75% 72.52% 14241 363781 7616 3179

GOOSE & SV 97.67% 66.02% 99.02% 79.22% 17250 362518 8879 170
GOOSE & SV++ 99.99% 99.94% 99.88% 99.91% 17399 371386 11 21

GOOSE++ & SV++ 99.98% 99.87% 99.79% 99.83% 17383 371375 22 37

Thus, similarly to the UC03, the only way to overcome the challenge imposed by

masquerade attacks is to combine GOOSE and SV features. In contrast to UC03 detec-

tion, only the SV features need to be enriched to detect UC04. Whereas GOOSE & SV

features provide a 79.22% F1-Score, GOOSE & SV++ and GOOSE++ & SV++ can repre-

sent the masquerade attacks with a high performance: they reached 99.91% and 99.83%

F1-Scores, respectively. In particular, the enrichment of SV features (SV++) for this attack

is more relevant than the enrichment of GOOSE because SV++ can provide information

about the actual transmission line status (i.e., if there is a electrical fault occurring or

not). The detailed results are shown in Table 10.

6.1.3.5 Random Message Injection (UC05)

In contrast to the previously discussed attacks, the Random Message Injection (UC05)

is easily detected by J48 even when using only the GOOSE features. It reached 100% on
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all metrics. To keep the consistency with the discussion of other attacks, we show the

detailed found results in Table 11.

Table 11: Random Message Injection attacks feature selection and enrichment assessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0
GRASP-FS 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0

GOOSE & SV 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0
GOOSE & SV++ 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0

GOOSE++ & SV++ 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0

According to the presented results of GOOSE, it would be not necessary to use any ad-

vanced feature processing method except if the goal is to reduce the amount of information

needed to process this class of attack.

6.1.3.6 High-Status Number Attack (UC06)

J48 reached a perfect recall (100%) and a reasonable good accuracy (98.84%) for detecting

the High-Status Number (UC06) attacks. Nevertheless, its precision was only 89.12%

and, consequently, its F1-Score was the metric was impaired. Thus, in this case, feature

enrichment and feature selection may be assessed to improve such results. The results are

shown in Table 12.

Table 12: High-Status Number attacks feature selection and enrichment assessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 98.84% 89.12% 100.00% 94.25% 39000 366636 4761 0
GRASP-FS 100.00% 100.00% 100.00% 100.00% 39000 371397 0 0

GOOSE & SV 98.84% 89.12% 100.00% 94.25% 39000 366636 4761 0
GOOSE & SV++ 98.84% 89.12% 100.00% 94.25% 39000 366636 4761 0

GOOSE++ & SV++ 98.84% 89.12% 100.00% 94.25% 39000 366636 4761 0

According to Table 12, none of those assessed feature subsets could provide more

information regarding the High-Status Number attack. Consequently, they could not

improve the results of our IDS implemented by the J48 algorithm.

On the other hand, the use of GRASP-FS resulted in a reduced subset of 5 features (i.e.,

40, 42, 47, 54, 57) that was able to reach 100% on all metrics. Thus, the GOOSE features

were already enough to represent this attack but there were features that hindered or

confused the analyses, and therefore needed to be discarded through the FS – that was

where GRASP-FS excelled.
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6.1.3.7 High-Rate Flooding Attack (UC07)

Similarly to the UC05, the High-Rate Flooding (UC07) attacks are easily detected by

J48. It also reached 100% for all metrics, either using GOOSE, GOOSE & SV, GOOSE &

SV++, or GOOSE++ & SV++. Thus, we recommend using only GOOSE to reduce the amount

of information to be processed. The results are shown in Table 13.

Table 13: High-Rate Flooding attacks feature selection and enrichment assessment.

Accuracy Precision Recall F1Score TP TN FP FN

GOOSE 100.00% 100.00% 100.00% 100.00% 18570 371397 0 0
GRASP-FS 100.00% 100.00% 100.00% 100.00% 18570 371397 0 0

GOOSE & SV 100.00% 100.00% 100.00% 100.00% 18570 371397 0 0
GOOSE & SV++ 100.00% 100.00% 100.00% 100.00% 18570 371397 0 0

GOOSE++ & SV++ 100.00% 100.00% 100.00% 100.00% 18570 371397 0 0

6.2 Dataset Features Assessment

In this section, we study the generated dataset features to answer the following question:

• How well features are used for detecting each attack class?

The J48 classifier was chosen for such an analysis because it generates a single decision

tree, thus enabling the assessment of the feature used to make decisions through the

generated tree. Note that the J48 is a decision tree algorithm that employs a pruning

method as an embedded feature selection (that is why each tree in this section has a

different height). The expected results are the correct usage of the generated features to

build accurate decision trees. Note that our goal is not to assess the J48 algorithm: we

aim at checking if the generated features can enable J48 to build consistent decisions trees

to make decisions (e.g., without any bias).

In the following figures, the nodes (ellipses) represent features and arrows represent

the decision taken by J48 according to their values compared to a threshold. The leaves

(gray boxes) represent the J48 output classes and the number of instances classified in

such class that followed the path from the root to that leaf.

The decision tree model generated by J48 for Random Replay attacks (UC01), shown

in Figure 13, has the timestampDiff feature at the root. This feature enables J48 to

detect replay messages sent in a too short period of time from the previous one. However,

since some replay messages are sent with a significant delay from the original message,
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timestampDiff

random_replay (34290.0)

<= 0.003967

timeFromLastChange

> 0.003967

frameLen

<= 1000

random_replay (3472.0)

> 1000

normal (355058.0/3.0)

<= 261

timeFromLastChange

> 261

normal (16342.0)

<= 0.191

random_replay (1235.0)

> 0.191

Figure 13: Random Replay Attacks (UC01)

other features are considered, such as timeFromLastChange and frameLen. The former

can detect replay attacks transmitted in a period of time longer than MaxTime (i.e.,

1000 ms in our scenario). Nevertheless, some attack instances eventually have consistent

timestamps (e.g., when a replay attack is sent at the expected time interval from the

original message). Therefore, additional features (e.g., frameLen), that may reveal mes-

sages with additional content, were used by J48 to build its decision trees in such cases.

The combination of the aforementioned features enables the J48 decision tree to detect

UC01 attacks with a very high F1-Score (99.99%). The precision and recall are 100% and

99.99%, respectively.

J48 used sqDiff at the root of the decision tree for the UC02, as shown in Figure 14.

This feature enables J48 to decide whether and how much the SqNum was changed from the

last GOOSE message. According to Section 2.1.2.2, any changes on the devices’ physical

status reported by GOOSE should reset the SqNum and trigger the GOOSE burst mode.

Otherwise, SqNum will keep increasing at regular periods. The timeFromLastChange and

timestampDiff features are also used in the lower levels of the J48 decision tree. In this

use case, J48 generated more false negatives (i.e., 365) than for UC01 (i.e., 4). Thus,

the resulting accuracy, recall, and F1-Score were slightly lower: 99.93%, 98.80%, and

99.39%, respectively. The precision was 100% since precision itself does not consider false
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sqDiff

timeFromLastChange

<= 0

timestampDiff

> 0

normal (1545.0)

<= 0.033

inverse_replay (23234.0)

> 0.033

inverse_replay (2014.0)

<= -0.007996

SqNum

> -0.007996

timestampDiff

<= 3

normal (518726.0)

> 3

normal (10772.0)

<= 0.004

inverse_replay (785.0)

> 0.004

Figure 14: Inverse Replay Attacks (UC02)

negatives.

The UC03 and UC04 model more intelligent intruder behavior: instead of simply

replaying old messages, it follows the requirements of IEC-61850 and attempts to imi-

tate the legitimate users’ behavior. Therefore, the decision trees built by J48 to detect

these attacks are more complex and require a deeper analysis (more features need to be

considered).

A very important contribution of our traffic generation tool, as well as the resulting

generated dataset, is the possibility of cross referencing two IEC–61850 protocols by IDSs:

GOOSE and SV. With such a possibility, even very sophisticated GOOSE attacks can

be identified based on the correlation of the physical/electrical measures and the current

circuit-breaker status reported by IEDs. Whereas features derived from the current and

voltage can be extracted from the SV messages payload, the physical circuit-breaker status

is reported by cbStatus field in the GOOSE messages. Any malicious attempt of sending

a fake cbStatus may cause an inconsistency (e.g., a fault being reported by GOOSE while

stable current and voltage measures are transmitted on the SV messages payload).

The J48 algorithm considered several features to build a decision tree for Masquerade

Attacks aiming to cause outage by reporting fake electrical faults (UC03). An outage
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<= 2
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> 0.48972
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<= 0.000036
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> 0.000036
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<= 0.000127
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> 0.000127

ismA

<= 0.41574
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> 0.41574
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<= 0.125366
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> 0.125366

normal (6.0)

<= -0.000011

masquerade_fake_fault (20.0)

> -0.000011

Figure 15: Masquerade Attacks - Outage (UC03)

may happen when an actuator IED process a modified GOOSE and responds by opening

the circuit-breaker during normal operation. As shown in Figure 15, the root node is

cbStatus that represent the fake status imposed by the masquerade attack. Whenever

cbStatus represent a closed circuit-breaker (i.e., cbStatus = 0), J48 concludes that any

UC03 is not being ran (i.e., it happens 335,908 times). Otherwise, other features are

analyzed to check the its consistency to the cbStatus value. As already expected, most

of these features are those derived from SV messages, such as the vsbARmsValue and

ismATrapAreaSum. These features are representative to check if a fault is ocurring (i.e.,

they are expected to have anomalous values during a fault). Thus, when there are no

faults occurring J48 concludes that a fake fault event is being sent by the masquerade

attack. Besides, the delay feature is also used to improve the classification performance.

J48 reached a 99.46% F1-Score, 99.70% precision, 99.22% recall, and 99.95% accuracy for

the UC03 attack.

The Masquerade Attacks reporting fake normal situations (UC04) have similar logic

to UC03, but a very different decision tree model was generated (see Figure 16). As in

the UC03 decision tree model, the most predominant features are those related to the
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<= 0
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> 0
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<= 0.48972

normal (63.0)

> 0.48972

Figure 16: Masquerade Attacks - Equipment Damage (UC04)

electrical signals carried by SV and to the cbStatus. However, the root feature was the

vsbARmsValue. Other electrical signals were used next to the root (e.g., isbARmsValue,

ismC, and isbA). Besides, the final decision considers timestampDiff and cbStatus.

They can determine, respectively, whether a suspicious message has an anomalous de-

lay from the previous legitimate message and whether it has the circuit-breaker status

indicating an electric fault. Therefore, the decision tree model generated by J48 also

corresponds to the expected attacker behavior mapping for this attack. J48 reached an

accuracy of 99.98%, precision of 99.87%, recall of 99.79%, and a F1-Score of 99.83%.

confRev

gooseTimeAllowedtoLive

<= 1

injection (38211.0)

> 1

gooseTimeAllowedtoLive

<= 11062

injection (711.0)

> 11062

injection (78.0)

<= 10992

normal (371397.0)

> 10992

Figure 17: Random Message Injection attacks (UC05)

The Random Message Injection attacks (UC05) are simpler to detect than others due

to the naive attacker behavior and lack of information about the targeting environment.
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Therefore, there are multiple features that are inconsistent with the expected domain

features (see Figure 17). One of them is the confRev (i.e., a configuration parameter field

defined by the substation environment), used at the root of the J48 decision tree model for

UC05. Whereas some messages have a consistent value for the GOOSE confRev field, a

large part of the attacks are detected by using the gooseTimeAllowedtoLive range. Note

that when deploying an IDS, the legitimate value for confRev would change over the time.

Only these two features are enough to enable a 99.99% accuracy, 100% precision, 99.99%

recall, and 99.99% F1-Score.

StNum

normal (371397.0)

<= 4954

high_StNum (39000.0)

> 4954

Figure 18: High Status Number attacks (UC06)

The decision tree built by J48 to classify the High Status Number attacks (UC06)

is very simple (see Figure 18). Only the StNum feature is used to check whether is too

high or not. In fact, this assumption would be enough if all the future StNum are known

and the correct StNum range is mapped. In a real scenario, this assumption can lead

to a too simple and inefficient decision tree model. That was the case in our realistic

experimentation scenario. By analyzing all training instances, J48 built a decision tree

in which every message containing the StNum higher than 4954 is classified as an attack.

However, although it reached 100% of recall, its precision was 89.12%. Similarly, its

accuracy was 98.84% and its F1-Score is 94.24%. This result shows a potential point of

improvement in the classification performance. Note that our scope is limited to ensuring

a consistent dataset. Improving or assessing the classifier itself is not included in our

goals, thus can be addressed by future work.

Finally, detecting the Poisoned High-Rate Attack (UC07) is also easy because the

attacker sends too many messages in a very short period of time. Such a behavior originate

a clearly anomalous timestampDiff (see Figure 19). In a few cases, the frameLen may

help the decision because it maps messages with excessive length caused by the high

stNum transmitted. The J48 algorithm generated zero false positives and negatives. Thus,

accuracy, precision, recall, and F1-Score are 100%.

We summarize all aforementioned results for individual use cases analyses in Table 14.

Based on these results we can conclude that the proposed features generated by ERENO
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timestampDiff

poisoned_high_rate (18486.0)

<= 0.000244

frameLen

> 0.000244

normal (371397.0)

<= 270

poisoned_high_rate (88.0)

> 270

Figure 19: Poisoned High-Rate Attack (UC07)

Table 14: Results for each individual attack class

Use Case Accuracy Precision Recall F1Score

UC01 100% 100% 99.99% 99.99%
UC02 99.93% 100% 98.80% 99.39%
UC03 99.95% 99.70% 99.22% 99.46%
UC04 99.98% 99.87% 99.79% 99.83%
UC05 100% 100% 100% 100%
UC06 98.84% 89.12% 100% 94.25%
UC07 100% 100% 100% 100%

are very representative to detect most of the attack use cases. This conclusion is in

accordance with our hypothesis: by providing realistic datasets we described a range of 7

attacks and enabled an IDS based on the J48 classifier algorithm to reach good results.

6.3 Multi-class

In the previous sections we studied how each feature can be used to perform intrusion

detection for different attack types individually (Section 6.2) and how feature enrichment

and feature selection can improve the intrusion detection, also for each individual attack

(Section 6.1). In both analysis we did not consider what happens when multiple attack

classes are put together and how each attack class impacts the detection of each other.

Thus, in this section we assess a multi-class IDS implemented through the J48 algo-

rithm. This analysis considers the same feature subsets previously studied for individual

attack classes (GOOSE, GOOSE & SV, GOOSE & SV++, or GOOSE++ & SV++), but now con-

sidering all classes together. So, instead of performing multiple experiments with each



6.3 Multi-class 91

attack, we use a larger single dataset containing all of them and process it once. This

study aims at answering the following questions:

• Can feature enrichment improve the multi-class intrusion detection?

• How does each attack class impact the performance of an IDS to

detect other attacks classes?

In Section 6.3.1 we explore the confusion matrix and the weighted metrics for each

feature subset.

6.3.1 Analyzing the Confusion Matrices

To assess how each attack impacts the detection of the others for each of the four feature

subsets, we provide two pieces of information:

• The resulting confusion matrix. The rows in a confusion matrix represent the ex-

pected class and the columns represent the result of the classification. The main

diagonal of the matrix represents the number of instances classified correctly;

• Detailed information regarding the metrics that can be extracted from it. Below the

confusion matrix, we present both absolute and weighted metrics for each feature

subset. The weighted metrics are used to fairly represent the performance of the IDS

to detect attacks in multi-class scenarios, where each class is weighted according to

its percentage contribution to the total number of instances in the dataset. These

metrics are computed through the weighted average of the precision, recall, and

F1-Score metrics for each attack according to the confusion matrix data.

Our experiments reveal that the weighted average of the F1-Score metric from all

attack increases as the feature enrichment process is done. A summary of our analysis is

presented in Table 15. As shown, the weighted F1-Score for the basic GOOSE features has

the lowest value, less than 75%, whereas the GOOSE++ & SV++ features reach more

than 99% for this metric. We present the detailed results and their confusion matrices in

Tables 16, 17, 18 and 19.

In Table 16, we show the results for the basic GOOSE features, which enable the J48

classifier to reach an weighted F1-Score of 72.84% (bottom right) as result of its multi-

class analysis. When taken separately, the hardest attack use case is the UC03 (with only
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Accuracy Precision Recall F1Score
GOOSE 95.23% 75.98% 75.22% 72.84%

GOOSE & SV 97.18% 83.62% 84.45% 82.20%
GOOSE & SV++ 98.29% 86.72% 89.66% 87.22%

GOOSE++ & SV++ 99.88% 99.76% 99.29% 99.52%

Table 15: The impact of feature enrichment on multi-class detection.

13.73% F1-Score). The confusion matrix shows that most of these masquerade attack

samples are being incorrectly classified into the normal class (UC00). On the other hand,

most of the UC05 instances are correctly classified into the expected class and, thus, have

a F1-Score of 99.64%.

Table 16: The resulting confusion matrix for J48 when using only the GOOSE features.

Exp. / Res. UC00 UC01 UC02 UC03 UC04 UC05 UC06 UC07

UC00 2710866 11396 119 18930 13828 0 0 0
UC01 1411 35321 357 187 105 0 0 1619
UC02 2728 7441 10547 1399 0 641 0 7563
UC03 13001 836 297 2927 0 0 0 139
UC04 7514 408 0 0 9260 0 238 0
UC05 11 2 0 0 0 38987 0 0
UC06 6 36 0 0 0 0 38958 0
UC07 128 67 55 1983 0 0 0 16337

Absolute Metrics Weighted Metrics

Instances Prec. Rec. F1Sc. W-Prec. W-Rec. W-F1Sc.
UC01 39000 (19.45%) 90.57% 63.63% 74.75% 17.62% 12.38% 14.54%
UC02 30319 (15.12%) 34.79% 92.72% 50.59% 5.26% 14.02% 7.65%
UC03 17200 (8.58%) 17.02% 11.51% 13.73% 1.46% 0.99% 1.18%
UC04 17420 (8.69%) 53.16% 39.93% 45.60% 4.62% 3.47% 3.96%
UC05 39000 (19.45%) 99.97% 98.38% 99.17% 19.44% 19.14% 19.29%
UC06 39000 (19.45%) 99.89% 99.39% 99.64% 19.43% 19.33% 19.38%
UC07 18570 (9.26%) 87.98% 63.67% 73.88% 8.15% 5.90% 6.84%

75.98% 75.22% 72.84%

In Table 17, we show that the GOOSE & SV features enable the J48 classifier to reach an

weighted F1-Score of 82.20% as result of its multi-class analysis. When taken separately,

the hardest attack use case is still the UC03 (but now J48 has reached a higher F1-Score

of 38.15%). The confusion matrix shows that most of these masquerade attack samples

are still being classified into the normal class (UC00). On the other hand, most of the

UC05 instances are correctly classified into the expected class and, thus, have a F1-Score

of 99.96%.
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Table 17: The confusion matrix for J48 when using only the GOOSE & SV features.

Exp. / Res. UC00 UC01 UC02 UC03 UC04 UC05 UC06 UC07

UC00 2737532 6049 1 8935 2622 0 0 0
UC01 1424 36669 405 289 106 0 80 27
UC02 2750 9503 12874 1799 0 0 0 3393
UC03 9435 124 504 7119 0 0 0 18
UC04 167 408 0 0 16613 0 232 0
UC05 24 3 2 1 0 38970 0 0
UC06 1 19 4 6 4 0 38965 1
UC07 18 62 63 1970 0 0 0 16457

Absolute Metrics Weighted Metrics

Instances Prec. Rec. F1Sc. W-Prec. W-Rec. W-F1Sc.
UC01 39000 (19.45%) 94.02% 69.40% 79.86% 18.29% 13.50% 15.53%
UC02 30319 (15.12%) 42.46% 92.93% 58.29% 6.42% 14.05% 8.81%
UC03 17200 (8.58%) 41.39% 35.38% 38.15% 3.55% 3.04% 3.27%
UC04 17420 (8.69%) 95.37% 85.88% 90.37% 8.29% 7.46% 7.85%
UC05 39000 (19.45%) 99.92% 100% 99.96% 19.44% 19.45% 19.44%
UC06 39000 (19.45%) 99.91% 99.21% 99.56% 19.43% 19.30% 19.36%
UC07 18570 (9.26%) 88.62% 82.72% 85.57% 8.21% 7.66% 7.92%

83.62% 84.45% 82.20%

In Table 18, we show that the GOOSE & SV++ features enable the J48 classifier to reach

an weighted F1-Score of 87.22% as result of its multi-class analysis. Again, when taken

separately, the hardest attack use case is the UC03. The F1-Score of UC03 was higher

than the previous analysis but it is still low (47.27%). The confusion matrix shows that,

with these enriched SV features, more masquerade attack samples are being classified into

the correct class (8,618 in UC03) than the normal class (3,375 in UC00). However, there

are still many instances classified into other classes such as UC01 and UC02, contributing

to the low F1-Score of UC03. The F1-Score of the UC05 was approximately the same

(0.2% lower) as the F1-Score provided by GOOSE & SV, but this still is the easiest attack

detected by J48. Its F1-Score was 99.94%.

In Table 19, we show that the GOOSE++ & SV++ features enable the J48 classifier to

reach a very high weighted F1-Score of 99.52% as result of its multi-class analysis. The

hardest attack remains the same (i.e., UC03), but its F1-Score was enhanced to 94.92%,

which is much more acceptable than the previous assessments. The confusion matrix

shows that most of the masquerade attack samples are being classified correctly but part

of these attacks are confused with normal class (1,327 in UC00) and a few are classified

as UC05. All other attacks have a 100% value (or a very close 99.77%) for their F1-Score

– and similar behavior for the other metrics. These results reveal that, as expected, the



6.4 Results Discussions and Lessons Learned 94

Table 18: The confusion matrix for J48 when using only the GOOSE & SV++ features.

Exp. / Res. UC00 UC01 UC02 UC03 UC04 UC05 UC06 UC07

UC00 2751443 321 0 3375 0 0 0 0
UC01 1193 37146 508 138 1 0 0 14
UC02 30 4920 15907 5504 0 0 77 3881
UC03 6919 1038 519 8618 22 0 0 84
UC04 39 0 0 0 17381 0 0 0
UC05 38 4 3 0 0 38955 0 0
UC06 4 26 5 4 0 0 38960 1
UC07 0 0 39 1623 0 0 0 16908

Absolute Metrics Weighted Metrics

Instances Prec. Rec. F1Sc. W-Prec. W-Rec. W-F1Sc.
UC01 39000 (19.45%) 95.25% 85.48% 90.10% 18.53% 16.63% 17.52%
UC02 30319 (15.12%) 52.47% 93.68% 67.26% 7.93% 14.16% 10.17%
UC03 17200 (8.58%) 50.10% 44.74% 47.27% 4.30% 3.84% 4.05%
UC04 17420 (8.69%) 99.78% 99.87% 99.82% 8.67% 8.68% 8.67%
UC05 39000 (19.45%) 99.88% 100% 99.94% 19.43% 19.45% 19.44%
UC06 39000 (19.45%) 99.90% 99.80% 99.85% 19.43% 19.41% 19.42%
UC07 18570 (9.26%) 91.05% 80.95% 85.70% 8.43% 7.50% 7.94%

86.72% 89.66% 87.22%

proposed feature enhancement was able to provide a very significantly improvement on

the overall IDS’ performance.

6.4 Results Discussions and Lessons Learned

In this section, we summarize the answers for the key questions raised for feature process-

ing (Section 6.1), dataset features asssessment (Section 6.2), and multic-class (Section 6.3)

experiments. The main leassons learned are the following:

• Feature selection can improve the IDSs’ detection performance: our as-

sessment shown how feature selection improved the performance of an IDS based on

the J48 algorithm. In particular, the results show in Section 6.1 that using GRASP-

FS as a feature selection method for reducing the basic GOOSE features to smaller

subsets can improve the F1-Score metric for J48 detecting most attacks. Our de-

tailed results show the following improvements for each attack class use case: UC01

(+4.92%), UC02 (+0.35%), UC03 (+1.16%), UC04 (+6.56%), and UC06 (+5.75%).

The use cases UC05 and UC07 were not improved because they were easily detected

by J48, which already had a 100% F1-Score.
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Table 19: The confusion matrix for J48 when using all features (GOOSE++ & SV++).

Exp. / Res. UC00 UC01 UC02 UC03 UC04 UC05 UC06 UC07

UC00 2753812 0 0 1327 0 0 0 0
UC01 1 38999 0 0 0 0 0 0
UC02 0 0 30319 0 0 0 0 0
UC03 297 0 0 16741 0 162 0 0
UC04 0 0 0 0 17420 0 0 0
UC05 13 0 0 5 0 38981 1 0
UC06 0 0 1 0 0 1 38998 0
UC07 0 0 0 0 0 0 0 18570

Absolute Metrics Weighted Metrics

Instances Prec. Rec. F1Sc. W-Prec. W-Rec. W-F1Sc.
UC01 39000 (19.45%) 100% 100% 100% 19.45% 19.45% 19.45%
UC02 30319 (15.12%) 100% 100% 100% 15.12% 15.12% 15.12%
UC03 17200 (8.58%) 97.33% 92.63% 94.92% 8.35% 7.95% 8.14%
UC04 17420 (8.69%) 100% 100% 100% 8.69% 8.69% 8.69%
UC05 39000 (19.45%) 99.95% 99.58% 99.77% 19.44% 19.37% 19.41%
UC06 39000 (19.45%) 99.99% 100% 100% 19.45% 19.45% 19.45%
UC07 18570 (9.26%) 100% 100% 100% 9.26% 9.26% 9.26%

99.76% 99.29% 99.52%

• Feature enrichment can improve the IDSs’ detection performance: our as-

sessment shown that using feature enrichment can significantly improve IDSs’ per-

formance. In particular, we assessed the feature enrichment through different com-

binations and correlations of GOOSE and SV features. Our detailed results show

the following improvements for each attack class use case: UC01 (+11,85%), UC02

(+5.89%), UC03 (+47.22%), UC04 (33.95%), and UC06 (5.75%). In some cases,

the feature enrichment process reached very high results (e.g., 99.99% F1-Score for

UC01). In contrast to the feature selection, the additional information provided by

feature enrichment does not improve the UC06. This evidences that both feature

enrichment and feature selection should be considered. As discussed, the use cases

UC05 and UC07 already had a 100% F1-Score. The additional insight about them

is that the enriched features do not negatively affect the detection performance.

• The proposed features can describe multiple attacks classes: the overall

dataset features assessment reveal how well the proposed features are used for J48

detecting each attack use case. We show that J48 successfully classified UC01,

UC02, UC03, and UC04 with F1-Scores above the 99%, and UC05 and UC07 with

a 100% F1-Score. The lowest result was to UC06 (94.25%). In fact, the UC06
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processing was too simple since it considered only one feature (i.e., the StNum

feature). Whereas this feature is expected to be very representative because this

attack class is characterized by high StNums, more information is needed to avoid

premature decisions.

• Feature enrichment can improve the multi-class analysis: the assessment

of the whole dataset (i.e., 7 attack classes and 1 normal class) that feature enrich-

ment can consistently improve the IDSs’ detection performance. The only combina-

tion of GOOSE and SV features resulted in an improvement from 72.84% to 82.20%

on the F1-Score. When enriching the SV features, the F1-Score went up to 87.22%.

Finally, with the enriched GOOSE and SV features, we reached a 99.52% F1-Score.

• Multiple attacks impact the detection of each other: the confusion matri-

ces analysis reveals that when multiple attack classes are simultaneously considered

for training and testing an IDS, some attack instances are classified as belonging

to other attack classes – especially when the features are not much representative.

Even though these cases are less harmful than confusing an attack to the normal

class, it still results in more false positives and false negatives. The basic features

were the most affected by false alarms (e.g., 24.54% of the UC02 samples were clas-

sified as UC01). On the other hand, the feature enrichment can overcome this issue,

as it resulted in a very low number of false alarms (e.g., the average precision and

recall are above the 99%).



7 Conclusion

The integration of communication technologies with the traditional power grid system and

the deployment of novel communication protocols exposes digital substation networks

based on the IEC–61850 standard to various threats and security challenges to digital

substations.

In this thesis, we performed an in-depth survey on the field of IDSs for IEC–61850-

based substations and mapped their multiple aspects to understand (i) the range of attacks

covered by the state-of-art IDSs, (ii) the available data source for IDSs analysis, (iii) the

evaluation methods employed, (iv) the metrics adopted, as well as the IDSs (v) archi-

tectures, (vi) approaches, (vii) type of analysis, and (viii) response actions. As result,

we found a critical issue on building robust IDSs: the lack of data available for training,

testing, and assessing them.

With focus on the lack of available datasets for intrusion detection in communication

systems and networks in the context of electrical substations we proposed the ERENO

traffic generation tool. As an additional contribution, we made it available both the

ERENO source code and a baseline dataset composed of 7 state-of-art attack classes and

1 legitimate traffic class which are represented through 69 features. These features include

both basic SV and GOOSE features and enriched features that provides additional and

more representative information for IDSs from these protocols.

The dataset generated by ERENO is realistic because it is based on a real substation

modeled with the PSCAD simulation tool and on state-of-art attack classes modeled as

use cases. The behavior for all classes are designed considering both electrical faults and

normal scenarios.

Furthermore, we proposed a novel implementation of the GRASP metaheuristic,

named GRASP-FS, to perform feature selection on the generated dataset.

Our results reveal that the proposed tool can successfully generate datasets for train-

ing, testing, and evaluating IDSs based on the IEC–61850 network communication pro-
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tocols. The proposed feature enrichment provided novel features for GOOSE and SV

protocols that demonstrated to be efficient. The full set composed by 69 features im-

proved the J48 classifier algorithm precision, recall, accuracy, and F1-Score up to 19.47%,

12.21%, 2.28%, and 16.02%, respectively.

7.1 Contributions

Our main contributions are summarized as follows:

• We introduced a novel methodology for simulating both normal and faulty scenarios

on power grids through the PSCAD (LTD, 2019) tool, reproducing a real transmis-

sion line;

• We presented a study of the current attack scenarios targeting IEC–61850 systems;

• We proposed the ERENO tool to generate realistic GOOSE and SV traffic features,

taking as input the modeled real scenario in PSCAD;

• We identified and extracted the features of the electrical and computer networks do-

mains that are correlated with malicious actions. We also composed novel enhanced

features;

• We implemented 8 use cases on the ERENO tool to generate 7 attack classes and

one class of benign normal traffic;

• We made the ERENO–IEC–61850 dataset, which was generated by the ERENO

tool, available publicly1;

• We proposed the GRASP-FS, a novel implementation of the GRASP metaheuristic

for the feature selection.

7.2 Publications

Along the development of this thesis, we documented each step of our study through aca-

demic articles published in international journals and national/international conferences.

Part of our research had a direct contribution to this thesis (see Section 7.2.1). Another

part is composed by productions which do not compose this thesis (i.e., that are beyond
1https://github.com/sequincozes/ereno
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the scope), but study correlated themes. Therefore, they are also mentioned here because

they are indirect products of the doctoral research (see Section 7.2.2).

7.2.1 Production of Direct Results

1. QUINCOZES, S. E., PINHEIRO, J. L., PASSOS, D., DE ALBUQUERQUE, C.

V. N., MOSSE, D. ERENO: A Framework for Generating Realistic IEC–61850 In-

trusion Detection Datasets. Planned target: Transactions on Dependable and

Secure Computing, expected to 2022 (in progress).

2. Production under Review: QUINCOZES, S. E., PASSOS, D., DE ALBU-

QUERQUE, C. V. N., MOSSE, D. An Extended Assessment of Metaheuristics-based

Feature Selection for Intrusion Detection in CPS Perception Layer. Submitted tar-

get: Annals of Telecommunications, expected to 2022 (under review).

3. Published Production (QUINCOZES; ALBUQUERQUE, et al., 2021): QUIN-
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7.3 Open Issues and Future Works

The ERENO tool is modular and open-source, it is easy to use as a basis for future

researches on IDS. In future works, we plan to extend the ERENO with more use cases to

cover novel attacks. Besides, we plan to deploy real-time processing techniques to process

more complex traffic generated by ERENO.

Although in the last years a few studies addressed IDSs in the context of Smart Grid,

research on intrusion detection in digital substations is still at an early stage. Thus,

several research topics remain open:

• More general IDSs: current IEC–61850-based IDSs rely on expert knowledge about

the substation components, the standard, and its protocols. In particular, speci-

fication-based IDSs have limited attack detection capabilities (HONG; LIU, 2019;
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HONG; LIU, C.; GOVINDARASU, 2014; HONG; LIU, C.-C.; GOVINDARASU,

2014; YANG; XU, et al., 2016). As shown in Section 4.3, many detection rules fail

to detect all or part of attacks due to their high specialization. With ERENO-based

datasets, it will be possible to develop more robust IDS proposals by using novel

machine learning algorithms;

• Add Preventive Measures to IDSs: traditional IDSs are focused on detecting ma-

licious behavior. Accordingly, the intrusions attempts are logged or a warning is

issued. However, due to the critical role of substation networks, it is important to

replace them with IDPSs, which may take proper actions to prevent the attack

instead of just detecting the intruders’ behavior. Clearly, issues of cost, timeliness,

performance, and overhead must come into play as well;

• Big Data Issues: improving the accuracy from current specification-based IDSs may

require combining multiple and heterogeneous data sources (e.g., SCADA-level logs,

GOOSE commands, SV measures, MMS reports). On the other hand, the IDSs’

processing time should be low enough to detect intrusions timely. Such data volume,

variety, and velocity characterize a Big Data challenge (DAI, HONG-NING AND

WONG, RAYMOND CHI-WING AND WANG, HAO AND ZHENG, ZIBIN AND

VASILAKOS, ATHANASIOS V, 2019), even though it is at the electric digital

substation scale.

Based on the aforementioned open issues, we point out some potential future direc-

tions. These research topics are based on novel approaches that are still not well explored

into substation networks and may be useful to address most of the existing issues on

detecting and preventing intrusions in IEC–61850 substations.

• Smart IDS: an IDS based on more sophisticated techniques, such as machine learn-

ing, analyzing multiple sources of information may be promising for dealing with

the most challenging scenarios in which anomaly and specification-based IDSs are

ineffective (e.g., for detecting masquerade attacks). El Mrabet et al. (EL MRABET

et al., 2019) adopted a deep learning architecture to automatically extract features

and make a predictive classification in other Smart Grid environments (i.e., AMI).

Applying it to substation networks may also yield good results, but that approach

has not been explored;

• Proactive Blocking: a promising approach to analyze the network traffic looking

for malicious patterns in a timely manner consists of using additional hardware



7.3 Open Issues and Future Works 104

between the devices. This idea was previously introduced by Kim and Park (KIM;

PARK, 2018). They proposed an FPGA-based IDS to process IEC–61850 packets

and detect intrusions by rule matching. This idea has the potential of blocking

malicious traffic before it arrives at the target device;

• SDN and IDSs : Researchers have proposed building IDSs based on Software Defined

Network (SDN) to enable general proactive flow blocking and forwarding suspicious

traffic to IDSs (HA et al., 2016). Since SDN enables the flow forwarding through

software applications, an implementation of this approach in digital substation net-

works may be interesting to handle suspicious traffic and blocking messages when

they are detected as malicious;

• Real-time IDS: initial efforts of building a real-time IDS for Smart Grids were car-

ried out by M. Faisal et al. (FAISAL et al., 2014). They used the MOA Framework

to process streaming data and detect malicious traffic. However, they did not con-

sider substation networks, only addressing AMI communication. Employing similar

techniques in IEC–61850 networks may be a promising research direction.
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