
UNIVERSIDADE FEDERAL FLUMINENSE

CARLOS HENRIQUE ZILVES NICODEMUS

Managing Vertical Memory Elasticity in
Containers

NITERÓI

2020

UNIVERSIDADE FEDERAL FLUMINENSE

CARLOS HENRIQUE ZILVES NICODEMUS

Managing Vertical Memory Elasticity in
Containers

A thesis presented to the Computing Post-
graduate Program of the Universidade Fed-
eral Fluminense in partial fulfillment of the
requirements for the degree of Doctor of Sci-
ence. Research Area: Computer Science

Advisor:
Eugene Francis Vinod Rebello

NITERÓI

2020

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

N633m Nicodemus, Carlos Henrique Zilves
 Managing Vertical Memory Elasticity in Containers / Carlos
Henrique Zilves Nicodemus ; Eugene Francis Vinod Rebello,
orientador. Niterói, 2020.
 130 f.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2020.

DOI: http://dx.doi.org/10.22409/PGC.2020.d.10046273786

 1. Computação em Nuvem. 2. Gerenciamento de Memória. 3.
Elasticidade Vertical de Recursos. 4. Conteinerização. 5.
Produção intelectual. I. Rebello, Eugene Francis Vinod,
orientador. II. Universidade Federal Fluminense. Instituto de
Computação. III. Título.

 CDD -

Computer Science

Acknowledgement

Thanks to all my family and friends who always supported me in this endeavor. My

wife Hannah, who was always by my side, even when I thought about giving up everything.

To my advisor, Vinod Rebello, who helped to mature the ideas that I had for the VEMoC

tool and refine them. To the professors and directors of the Computing Postgraduate

Program of the Institute de Computação at UFF, for their patience and support to allow

this work could be completed. Finally, I would also like to thank the funding agencies,

CAPES and FAPERJ, who each provided me with a postgraduate scholarship for different

periods during this work.

Resumo

A adoção da tecnologia de contêiner para implantar uma grande variedade de aplicações e
serviços em clusters, data centers na nuvem e até mesmo em cloudlets na borda, tem au-
mentado continuamente. Essa forte demanda levou ao desenvolvimento de plataformas de
orquestração de contêineres capazes de gerenciar de alguns contêineres em computadores
simples, com restrição de recursos, para executar milhares de aplicativos em contêineres
em centenas de máquinas. Em cada uma dessas escalas, a utilização eficiente de recursos
e a maximização do rendimento são dois objetivos importantes ao tentar reduzir os custos
operacionais da organização que hospeda esses ambientes. Embora os contêineres alocados
sejam executados como processos, logicamente isolados em um único servidor, eles com-
partilham os recursos do servidor e o kernel do sistema operacional. Considerando que
as capacidades dos recursos são limitadas, os contêineres co-hospedados podem sofrer al-
guma degradação de desempenho, ao competir por recursos como CPU, memória e largura
de banda de E/S. Mesmo que os contêineres consumam tais recursos elasticamente, os
frameworks de escalonamento ainda devem alocar contêineres de acordo com a disponi-
bilidade de recursos e limitar a quantidade de recursos que cada contêiner pode usar,
para que a interferência seja minimizada. Atualmente, é prática comum ao agendar con-
têineres, reservar efetivamente a quantidade máxima de memória exigida pelo contêiner,
para toda a duração de sua execução. Em vez disso, este trabalho propõe uma ferramenta
escalonável de orquestração de contêineres chamada o VEMoC (para Vertical Elasticity
Management of Containers), projetada para ajustar constantemente a quantidade máx-
ima de memória que cada contêiner co-hospedado pode usar naquele momento, com base
no comportamento dos aplicativos que cada contêiner está executando. Nossa abordagem
visa aumentar o número médio de contêineres que podem ser hospedados em um servi-
dor, sem impactar o desempenho dos contêineres co-alocados. A avaliação experimental
do VEMoC mostra que, por meio de ajustes cuidadosos dos limites de memória do con-
têiner, manipulação de páginas entre memória prinicpal e memória swap, e a preempção
de contêineres, melhorias na utilização da memória, custos de nuvem e rendimento do tra-
balho podem ser alcançados sem prejudicar o desempenho dos contêineres em comparação
com os mecanismos empregados por sistemas de orquestração de contêineres corporativos,
como o Kubernetes. Além disso, o VEMoC é um gerenciador de contêineres agnóstico
e modular, que permite que ele seja estendido para usar uma variedade de sistemas de
contêineres e empregar novos mecanismos de elasticidade de recursos.

Keywords: Computação em nuvem, gerenciamento de memória, elasticidade vertical,
contêinerização, orchestração de infraestrutura.

Abstract

The adoption of container technology to deploy a diverse variety of modern-day appli-
cations in clusters, cloud data centers and even cloudlets at the edge has been steadily
increasing. This strong demand has led to the development of container orchestration
platforms capable of managing a few containers on resource constraint single board com-
puters to running thousands of containerized applications across hundreds of machines.
At each of these scales, efficient resource utilization and throughput maximization are two
important objectives when trying to reduce the hosting organization’s operating costs. Al-
though co-allocated containers execute as logically isolated processes on a single host, they
share the host’s resources and the operating system kernel. Given resource capacities are
limited, co-hosted containers may suffer some performance degradation when competing
for resources such as CPU, memory and I/O bandwidth. Even though containers consume
such resources elastically, scheduling frameworks must still allocate containers according
to resource availability and limit the amount of resources that each container can use so
that interference is minimized. Currently, it is common practice when scheduling contain-
ers to effectively reserve the maximum amount of memory required by the container for
the entire duration of its execution. Instead, this work proposes a scalable container or-
chestration tool, called Vertical Elasticity Management of Containers (VEMoC), designed
to constantly adjust the maximum amount of memory each co-hosted container may use
at that moment, based on the behavior of the applications each are running. Our ap-
proach aims to increase the average number of containers that can be hosted on a server,
without impacting the performance of the co-allocated containers. Experimental evalu-
ation of VEMoC shows that through its careful adjustment of container memory limits,
manipulation of pages between memory and swap, and container preemption, improve-
ments in memory utilization, cloud costs, and job throughput can be achieved without
prejudicing container performance when compared to mechanisms employed by enterprise
container orchestration systems, like Kubernetes. In addition, VEMoC is a modular and
container engine agnostic framework, which allows it to be extended to use a variety of
container engines and employ new resource elasticity mechanisms.

Keywords: Cloud computing, memory management, vertical elasticity, containerization,
infrastructure orchestration.

Contents

List of Figures ix

List of Tables xi

List of Acronyms and Abbreviations xiii

1 Introduction 1

1.1 Motivation and Objectives . 3

1.2 Contributions . 5

1.3 Thesis Outline . 7

2 Container Virtualization 9

2.1 The Core Concepts of Virtualization . 10

2.2 Container Namespaces . 13

2.2.1 Computational Resource Allocation 14

2.2.2 Disk Storage . 15

2.2.3 Communication between Containers 18

2.3 Container Virtualization Technologies . 18

2.3.1 Docker . 19

2.3.2 Linux Containers - LXC . 19

2.3.3 Apache Mesos . 20

2.3.4 Google Kubernetes . 20

2.4 Cloud Elasticity vs Scalability . 20

Contents vii

2.4.1 Horizontal Elasticity of Virtual Clusters 21

2.4.2 Vertical Elasticity in Containers . 22

3 Related Work on Memory Elasticity 24

4 The VEMoC Architecture 28

4.1 Cloud Manager . 29

4.1.1 Cloud Monitor . 29

4.1.2 Cloud Scheduler . 30

4.2 Host Manager . 31

4.2.1 Host Monitor . 31

4.2.2 Request Receiver . 32

4.2.3 Container Manager . 33

5 Managing Vertical Memory

Elasticity 36

5.1 The VEMoC Orchestration Engine . 36

5.2 Phase 1: Calculate the Memory Demand of Inactive Containers 40

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 43

5.3.1 Container Memory Consumption Rate 43

5.3.2 Container Memory Classification 45

5.3.3 Estimate Container Memory Demand 46

5.4 Phase 3: Passive Memory Limit Reduction 49

5.5 Phase 4: Active Memory Limit Reduction 50

5.6 Phase 5: Increase Container Memory Limits 52

5.7 Phase 6: Pause or Suspend Containers . 54

5.8 Phase 7: Start or Resume Inactive Containers 57

5.9 Summary . 58

Contents viii

6 Performance Evaluation and

Analysis 59

6.1 Experimental Setup . 59

6.2 Container State Transition Costs . 61

6.2.1 Container Creation and Destruction under Docker and LXC 61

6.2.2 Pausing and Suspending Containers under Docker and LXC 64

6.3 Memory Utilization Effectiveness . 69

6.4 Container and Host Manager Overheads 74

6.5 Managing Container Memory Limits . 76

6.6 Benefits of Vertical Memory Elasticity . 79

6.6.1 Scenario 1: Two 4 GiB J1 jobs are submitted 50 seconds apart to a

host with 6 GiB of available memory 80

6.6.2 Scenario 2: One 4 GiB J2 job is followed by one 4 GiB J1 job, 100

seconds later, on a host with 6 GiB of available memory 81

6.6.3 Scenario 3: One 4 GiB J2 job is followed by five 4 GiB J1, at 10

seconds intervals, using all the available memory (23.5GiB) on a

host while sharing the Linux operating system. 82

6.7 Scalability Analysis . 83

7 Conclusions and Future Work 84

References 88

Appendix A -- Container versus Virtual Machines: A Case Study 94

A.1 Availability test . 95

A.2 Performance Test . 97

A.3 Scalability Test . 98

A.3.1 CPU Allocation Test . 101

Appendix B -- Memory Consumption Trends 105

List of Figures

2.1 Full Virtualization (Host 1) x Containerization (Host 2). 12

2.2 cgroups resource organization for cpu and memory resources allocation. . . 15

2.3 The Rootfs File System and Union File System container storage types. . . 17

2.4 Container Horizontal Elasticity . 22

2.5 Container Resource Vertical Elasticity . 22

4.1 Architectural Model for VEMoC Container-based Cloud Management . . . 29

4.2 States of the Container Life Cycle . 34

5.1 Phases of a VEMoC Management Iteration 37

6.1 Average container initialization and termination times. 62

6.2 Breakdown of LXC container initialization time. 62

6.3 The average times to Pause and Unpause a container in relation to its

memory consumption, for Docker and LXC. 65

6.4 The average times to suspend/resume a container in relation to its memory

consumption. 66

6.5 Average times to suspend or resume several LXC containers, that consumed

2GB of Memory, sequentially and in parallel. 67

6.6 Suspend and Resume Behaviors of an LXC container that consumes 2 GiB

of memory. 68

6.7 Container Memory Utilization vs Effectiveness for a single container. . . . 70

6.8 Container Memory Limit Utilization for 2 containers. 72

6.9 Container Memory Utilization for 4 containers. 73

6.10 The execution times of 4 GiB jobs J1 and J2 with different container mem-

ory limits. 75

List of Figures x

6.11 VEMoC predicting the memory demand of a J1 type job. 77

6.12 VEMoC predicting the memory demand of a J2 type job. 78

6.13 VEMoC predicting the memory demand of a J4 type job. 79

A.1 GARP scalability for the modeling step . 99

A.2 GARP scalability for the test stage . 100

A.3 GARP scalability for the projection stage 101

A.4 GARP scalability, for the modeling stage, with fixation of cores. 102

A.5 Evaluation of the GARP algorithm regarding the use of hyperthreading. . . 103

List of Tables

6.1 LXC Create, Start and Destroy containers from images of different sizes. . 63

6.2 Docker Create + Start and Destroy containers from images of different sizes. 63

6.3 Average duration in seconds to Pause and Unpause containers varying mem-

ory consumption under Docker and LXC. 64

6.4 Average Suspend and Resume times in seconds for Docker and LXC con-

tainers. 66

6.5 The average total times to suspend and resume several LXC containers

consuming 2 GiB of memory, with commands executed sequentially and in

parallel using threads. 67

6.6 Memory consumption metrics as the CML of a single container is increased.

Data presented in Figure 6.7. 71

6.7 Memory metrics for 2 containers as presented in Figure 6.8. 71

6.8 Memory metric values presented in Figure 6.9 for the execution of 4 con-

tainers simultaneously. 74

6.9 Average execution times in seconds with 95% confidence intervals for 4 GiB

jobs on different platforms. 74

6.10 Comparing allocation strategies under Scenario 1 81

6.11 Comparing allocation strategies under Scenario 2 82

6.12 Comparing allocation strategies under Scenario 3. 82

6.13 Execution of small J1 jobs with VEMoC, starting the jobs in intervals of

5 seconds. 83

A.1 GARP: Average time and standard deviation of the three stages 97

A.2 MAXENT: Average time and standard deviation for the three steps 97

A.3 ENVDIST: Average time and standard deviation of the three steps 98

List of Tables xii

B.1 Verification of all possible combinations for values of the adopted Cgroups

Memory Metrics. 107

List of Acronyms and Abbreviations

AHMU : Average Host Memory Utilization;

AJTT : Average Job Turnaround Time;

API : Application Programming Interface;

CM : Container Manager;

CML : Container Memory Limit;

CMU : Container Memory Usage;

CRIU : Checkpoint/Restore in Userspace;

HM : Host Manager;

HMUT : Host Memory Utilization;

HRM : Host Reserved Memory;

LRU : Least Recently Used;

LXC : Linux Containers;

MCT : Memory Consumption Trends;

MPF : Major Page Fault;

MTT : Memory Trend Timer;

MUE : Memory Usage Effectiveness;

NAHM : Non-Allocated Host Memory;

OCI : Open Container Image;

OS : Operating System;

PCM : Page Cache Memory;

QoS : Quality of Service;

RAM : Random Access Memory;

RSS : Resident Set Size;

SU : Swap Usage;

THM : Total Host Memory;

TMTP : Total Memory-Time Product;

VEMoC : Vertical Elasticity Management of Containers;

Chapter 1

Introduction

Over the last few years, the adoption of cloud computing by users and enterprises has

grown rapidly with a substantial offering of services from cloud providers such as Amazon,

Microsoft and Google. Through the public cloud´s pay-as-you-go model, users can have

their applications and services hosted in a malleable online environment, without the

need to invest in infrastructure on the user’s own premises. Being located at a cloud

provider’s central data center, however, data communication latencies may often impact

user experience. Thus, cloud providers have begun to augment their regional data centers

with multiple smaller so called edge data centers, strategically located closer to clients.

However, having restricted amounts of resources, these smaller edge systems typi-

cally have to support different types of jobs – from high-availability long-running ones to

latency-sensitive, or even deadline constrained batch jobs – each containing scientific and

business applications that may employ a variety of technologies from areas such as Big

Data and Artificial Intelligence (AI), Internet of Things (IoT) and web services, among

others. The majority of cloud infrastructures thus support multi-tenancy, where applica-

tions belonging to multiple users may be scheduled on the same shared set of compute

resources, allowing for better resource utilization and higher job throughput.

Initially, cloud providers started with virtualization technologies (hypervisors and

virtual machines) to offer on-demand execution environments to users [81]. These robust

virtual systems, with pre-reserved amounts of computational resources (CPU, memory,

disk space, etc), dedicated operational systems, libraries and applications, are capable

of simulating physical machines. However, to customize the virtual machines to meet

their needs, users tend to require remote access to the host to both configure the system

and install libraries to run their applications, all of which requires significant amounts of

know-how and time.

1 Introduction 2

More recently, an alternate virtualization technology has been gaining popularity

because of its apparent greater portability and ease of use – Containers [9]. A container

is a lightweight virtual environment that shares the same operating system with the host,

but with its own applications and libraries, and thus has a smaller size compared to

an equivalent virtual machine (VM). Deploying an application to a cloud that uses this

technology is simple, since containers allow the developer to package up their application

with all of the required components such as libraries and other dependencies, and submit

them to the provider’s cloud container platform. Currently, Docker [28] is probably the

most popular, but a number of other container technologies have also gained a foothold in

the community, including Linux Containers (LXC) [14], Containerd [17], CoreOS Rocket

(rkt) [64], and OpenVZ [76].

Containers provide advantages for cloud providers too in terms of better levels of con-

solidation [20] and lower energy consumption [49]. Application performance is often close

to that obtained when running on bare-metal servers (i.e., without virtualization), since

many of the overheads encountered when running applications in VMs are avoided [79].

Since a container has no pre-reserved resources allocated to it, it can use as much of

the free resources available on the host (up to predefined limits), as and when its encap-

sulated application requires. This feature allows applications to avoid the performance

degradation that affects VMs when insufficient resources have been pre-allocated.

Cloud providers have obvious financial incentives to invest in more efficient data cen-

ters. While the amount of computing carried out in data centers more than quintupled

between 2010 and 2018, the amount of energy they consumed worldwide grew only six

percent during that period, thanks to improvements in energy efficiency. Nevertheless,

data centers are responsible for 1% of the electricity consumed globally. In an attempt

to address the environmental impact, law makers intend to force cloud providers to be-

come carbon neutral and energy efficient by 2030. With the forecasts of growth in cloud

computing and significant increases energy consumption, technological and infrastructure

improvements alone will be insufficient for cloud providers to meet their legal demands.

Providers are thus promoting a more efficient form of cloud computing known as server-

less computing, also related to function-as-a-service, that takes advantage of the flexibility

of containers and their ability to consume just the resources they require, i.e., they are

elastic.

Elastic virtual environments expand and contract resource allocations to meet de-

mand. Two forms of elasticity can be employed, based on the characteristics of the

1.1 Motivation and Objectives 3

running application: a horizontal and/or a vertical approach. The horizontal approach

creates replicas of the running virtual environments in order to distribute the number of

requests for a service or split a given workload amongst them. This technique is typically

used with micro-services and online applications. Each replica is equal to the original and

the quantity of resources allocated is fixed at the time of their creation. The vertical ap-

proach changes the resource allocation of a virtual environment dynamically, shrinking or

expanding it, based on the application consumption, at run time and without restarting

it. This approach can be used for applications and services that do not scale in parallel

or for serial workloads. Both approaches aim to avoid performance degradation.

1.1 Motivation and Objectives

Containers, however, do offer less isolation than VMs and this can cause them to interfere

with the execution of each other. A resource intensive or run away container could degrade

the performance of all containers and the host. Memory, for example, is generally a

resource that is difficult to reclaim without the container’s application terminating or

being killed. In fact, operating systems frequently kill processes when the host is running

low on memory and cloud orchestrators, like Google’s Borg system, kill any container

that consumes more Random Access Memory (RAM) than expected. To address this,

a utilization limit can be set to the maximum amount of each type of resource that

can be allocated to the container, thus controlling the degree of vertical elasticity. While

a container will not be able to acquire a resource capacity that exceeds this established

limit, these limits can be adjusted during the container’s execution without the need to

stop or restart the container.

While greater ease and efficiency has thus motivated the increasing adoption of con-

tainers, one of the major resource management problems to solve in cloud computing

(whether using containers or VMs) is predicting precisely the actual resource require-

ments [41, 65] of a user’s application throughout the duration of its execution. From a

cloud provider’s point of view, foreseeing the consumption can help maximize the use of its

infrastructure by intelligently allocating virtual environments across the available servers.

More efficient server utilization will permit a larger number of jobs to be accommodated

and reduce costs. For users, this knowledge might help avoid the unnecessary expense of

contracting oversized virtualized environments.

In practice, estimating these requirements can be very difficult, especially without

1.1 Motivation and Objectives 4

previous knowledge of the service or application’s behavior. Users, themselves tend to

request more resources than necessary for their applications, i.e., over-provisioning, and

thus incur additional financial expenses, and possibly longer waiting times if the job needs

to be queued. All this adds up to a poorer utilization of the infrastructure and a loss of

revenues for cloud provider given that servers are being sub-utilized or perhaps even being

left idle. Under-provisioning, on the other hand, occurs when insufficient resources have

been reserved for the service or application, which can cause a significant deterioration in

performance or even a malfunction in the execution of the application. In both of these

scenarios, this will increase the costs for the user.

Cloud orchestration platforms are responsible for allocating virtual environments (be

them VMs or containers) to appropriate host servers, where they will share the host’s

resources with the other co-allocated virtual environments. Each host server is considered

to have a fixed total capacity for each type of resource (for example, CPU cores, RAM

or I/O bandwidth). Currently, it is common practice to determine the maximum amount

of each resource that the user’s application requires, and then define these amounts as

static utilization limits for its container (in the case of VMs, the capacity of each resource

allocated to the VM) for the duration of its execution. This choice is motivated by

the option of a less complex approach to resource management. The Kubernetes [44]

orchestrator, for example, schedules containers according to one of three quality of service

(QoS) classifications:

Guaranteed – A container that is said to require a guaranteed quality of service will

only be allocated to a host that has enough idle resources to meet the container’s

predefined utilization limits. This ensures that the sum of all allocated container

limits is less that the total capacity of the host. Nevertheless, note that this still

means some portion of the resources will remain underutilized since an application

may not require a capacity equivalent to its utilization limit for its entire execution.

Burstable – Under this QoS level, the orchestrator reserves or guarantees only a portion

of each resource utilization limit, known as the container request, but will allow a

container to use additional resources, up to its limit, if available. In relation to

guaranteed QoS, this QoS level aims to make better use of the host resources and

improve system efficiency.

Best-effort – In this case, a container does not define any limit or request but is per-

mitted to execute using whatever idle resources the host has available.

1.2 Contributions 5

While it appears that mixing containers with different qualities of service might im-

prove resource utilization, the problem is that both best-effort and burstable containers

may be placed on hosts with insufficient resources to meet their requirements. Due to

their elastic behaviour, the execution of these containers could therefore cause resource

contention, by obtaining resources that were idle and then holding on to them when they

are required by other containers to whom they were guaranteed. In this scenario, contain-

ers with no resource guarantees can indeed cause interference and affect the performance

other containers including guaranteed ones. The only safety mechanism that Kubernetes

provides is to kill containers that consume more than their resource utilization limit (if

defined), but this will lead to wasted computation and resource consumption.

The aim of this thesis is to address the challenge of trying to maximize resource

utilization by allowing, for example, containers with batch or latency insensitive jobs take

advantage of these underutilized host resources without compromising the performance of

other co-allocated containers. The amount of resources to be allocated to each container

must be estimated in advance and carefully controlled to avoid performance degradation or

interference between containers due to an unfair distribution of resources. Different from

the existing solutions, this problem cannot be solved efficiently by exploiting elasticity

alone. Any attempt risks the possibility that resource demands exceed availability so

resources might have to be reacquired by the orchestrator and redistributed by throttling,

suspending or migrating certain containers. Such an orchestrator requires an enhanced

resource management strategy. The benefits, given the existence of some applications that

can tolerate delays, will allow these container-based cloud platforms to further consolidate

workloads to improve utilization, reduce energy consumption and save in costs for both

users and cloud providers.

1.2 Contributions

Given the importance that RAM memory availability plays in application performance,

this work has designed a container orchestration tool called VEMoC (Vertical Elasticity

Management of Containers). The tool exploits vertical memory elasticity to allow cloud

providers to increase server utilization, without a deterioration in individual container

performance. Note the focus of this work is not implementing elasticity in containers

but rather on its orchestration. While container engines implement resource elasticity

inherently, under a model of infinite resources, when resources are limited, more complex

scheduling decisions beyond the scope of these container engines must be taken. For ex-

1.2 Contributions 6

ample, if host memory becomes scarce, which containers would be chosen to “collaborate”

by donating some or all of their allocated resources to others in need? Future work on VE-

MoC will look to incorporate other resource types such as CPU cores and I/O bandwidth

in to the framework.

The principal contributions of this thesis include:

• The design of the VEMoC scheduling algorithm to manage the distribution of the

host’s memory amongst the running containers allocated to that host. Described in

detail in Chapters 4 and 5, the algorithm executes a sequence of 7 stages in each

scheduling interval to manage the life-cycle of the set of queued containers. The

algorithm incorporates a number of novel features:

– It integrates container life-cycle management, including the pausing and sus-

pension of containers (Section 5.7), and memory elasticity of containers into a

unified decision making process.

– The scheduler operates at a higher temporal resolution than existing elastic-

ity management tools by not having to depend on the synchronous collection

of monitoring data relating to the host and running containers. This allows

VEMoC both to reduce the amount of extra container capacity that needs

to be reserved for unforeseen demands (but is generally unused) and to react

faster to changes in individual container requirements. In both cases this helps

significantly in improving memory utilization efficiency.

– Employs a novel and more precise model to predict a container’s memory con-

sumption (Section 5.3) that does not require apriori knowledge about the re-

quirements of the applications running in the container.

– To address the failings of previous work, particularly in terms of resource uti-

lization efficiency, resource allocation adjustments are not fixed in size nor are

they only triggered when statically predetermined thresholds are reached. VE-

MoC also adapts to changes in the behavior of the operating system as the

available memory on the host becomes scarce.

– In the context of memory consumption, it is prudent to reclaim memory no

longer being used by a container. Cloud environments may or may not have

automatic garbage collection schemes and, if they do, they often have a sig-

nificant impact on performance. To address this, VEMoC proposes the use of

a generic approach referred to as memory stealing (described in Sections 5.4

and 5.5).

1.3 Thesis Outline 7

• To evaluate the VEMoC scheduling algorithm and compare it with existing ap-

proaches, a modular, scalable container orchestration system (Chapter 4) has been

implemented, with a reusable and expandable framework for the resource manage-

ment of LXC and Docker containers. This framework can easily be used to develop

and test other scheduling algorithms and provides support for other containerization

technologies. Additionally, it supports the development of algorithms to manage

multiple instances of VEMoC.

• An experimental evaluation on a physical server has shown VEMoC to be more effi-

cient than existing approaches adopted by production services such as [44]. This is

the case not only in terms of memory utilization (with VEMoC constantly sustain-

ing utilization efficiencies above 90% while traditional threshold approaches have

their peak utilization efficiencies limited by their chosen threshold value, typically

between 70% and 80% [2, 48]) and job turn around times (where VEMoC can be as

much as twice as fast) but also in terms of lowering costs for clients, being at least

50% more efficient in the majority of the comparisons.

1.3 Thesis Outline

An introduction to containerization is given in Chapter 2, presenting the core concepts

and technologies used to create and manage containers as well as citing a few examples of

commonly adopted implementations. The chapter also focuses on the existing elasticity

techniques available in virtual environments and some of the ideas used as a basis for

the design of the VEMoC architecture. Chapter 3 summarizes some of the related work

in the literature with a particular focus on research into resource elasticity and memory

elasticity in virtual environments (both virtual machines and containers).

Chapter 4 describes the cloud orchestrator framework developed for VEMoC that

is composed of two types of controllers: the Host Manager (Section 4.2) that is used

to manage the life-cycles of the containers during their respective executions on a server,

and; the Cloud Manager (Section 4.1) that receives and manages the system’s job requests

and collects monitoring data for from all available hosts to aid global scheduling decisions

and for further analysis. A detailed description of the VEMoC algorithm is provided in

Chapter 5. This includes the steps designed to dynamically manage memory allocations

on a given host in order to control the distribution of the available memory between co-

allocated containers, and to maximize the memory utilization with minimal impact on the

1.3 Thesis Outline 8

performance of the applications in execution. Some experimental evaluations and analysis

of the results are presented in Chapter 6, including the costs of transitioning through

the stages of a container’s life cycle, the overhead of the VEMoC framework as well as

comparing VEMoC’s management policy against other three mechanisms commonly used

by enterprise orchestrators today, in terms of execution times, memory utilization and

cost. VEMoC is shown to be able to manage multiple containers simultaneously, without

losing performance or significantly increasing the latency of its execution. Finally, Chapter

7 draws some conclusion and indicates promising avenues for future work.

Also included in this thesis are two appendices with additional background material.

Appendix A complements the motivation for this work with an initial case study to

compare the performances between the use of containers and virtual machines to run

scientific applications. The results of this study helped make the decision to focus on the

use of containers as a technology for creating virtual environments in a cloud. Appendix B

provides the theoretically foundation for a key, novel aspect of the seven stage VEMoC

algorithm – how it uses rates of change in operating system memory metrics to classify

containers in its second stage, which determines the respective actions taken for each

container at later stages. The simplicity of Algorithm 3 (Section 5.3.2) is derived from an

analysis of all possible memory consumption trends that could occur during the execution

of a container, based on the memory usage metrics collected by the VEMoC framework.

Chapter 2

Container Virtualization

This chapter provides a brief overview of container virtualization technology, its concepts,

how it works, and some of the most common examples in use. To finish, the chapter

discusses how this technology can be used to create an elastic environment that is able to

adapt to the demands of the application(s) running inside each container.

According to Bernstein [9], most commercial cloud infrastructures, whether for ap-

plications or services, widely employ hypervisor-based virtualization technologies, such

as VMware [78], Xen [16] and KVM [45], including Amazon Web Services (AWS) and

Microsoft Azure. However, some companies are already offering container-based services,

such as Amazon EC2 Container Service (ECS), Google Cloud Container Engine and Azure

Container Service (ACS), capable of deploying and managing container clusters, as well

as providing the necessary scheduling and load balancing across the available physical

resources. This new type of service, called Container as a Service (CaaS) [61], is being

offered by cloud providers as an intermediate service model between that of Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS). However, of these service models,

Container-as-a-Service is distinguished by a fundamentally different approach to virtu-

alization: the use of container technology. While computational resources in IaaS are

offered to the user in the form of a VM or a container, and in PaaS, virtual environments

are offered for specific purposes such as a database service or a web server, in CaaS, con-

tainers are available to load images that can contain applications or services ready for use

(microservices), with the advantage of a lower consumption of computational resources,

comparable performance and being more scalable [66].

Container virtualization is not a new concept, as pointed out by Almeida in [23], as it

was based on the command chroot. Chroot [36] was released in 1979, on Unix version 7,

as a command to segregate a user’s access to the system’s root directory ("/" or root).

2.1 The Core Concepts of Virtualization 10

Later, in 2000, this concept was expanded to the jail command in the FreeBSD version 4

[72], allowing, in addition to the file system, the network and users to be also separated

into subsystems. In 2005, Sun Microsystems launched its Solaris 10 operating system

with a functionality known as Solaris Zones [62], which is considered one of the origins of

container virtualization as it is known today. Each Solaris Zone created an isolated envi-

ronment for the execution of applications sharing the same image of the operating system,

with the computational resource capacity being limited. Such an implementation allowed

applications to run without any knowledge of, or suffering interference from, other applica-

tions running in different "zones", even from those running with administrator privileges.

It was later renamed to Solaris Containers, when the term gained popularity. Currently,

one of the main container virtualization technologies on the market is Docker [25], devel-

oped by the dotCloud group. Docker was initially developed based on the Linux Container

virtualization technology, LXC [14] but currently uses its own virtualization library, the

containerd [17], maintained by the Open Container Initiative [46]. Much of the work

presented in thesis derives from the use of LXC as its base containerization technology.

2.1 The Core Concepts of Virtualization

Currently, a number of competing virtualization technologies exist and differ from each

other in the way virtual environments are created, the level of isolation of environments

and how computational resources are reserved and used. First, they fall in one of two

groups, the majority implement complete virtualization or simply virtualization, the

second, containerized virtualization or simply container.

Complete virtualization aims to create instances called virtual machines (VMs), that

are virtualized environments totally isolated from the server or host operating system

(OS). VMs have their own operating system that, for example, allows one to have a

Windows environment running on a Linux servers or vice versa. VMs have their own set

of libraries and services, in addition to their own set of applications, creating a complete

environment capable of simulating a real machine. There are two ways of implementing

full virtualization, one using the virtual machine manager as a server application and the

other where the manager is embedded in the server’s OS or is the OS itself, also known

as paravirtualization.

Under paravirtualization, the virtual machine manager is "embedded" in the kernel of

the server OS, through the use of modules, to create a system commonly called bare metal,

2.1 The Core Concepts of Virtualization 11

meaning one that is close to the hardware. This was considered to allow gains of perfor-

mance through more direct access to the server’s computational resources. Examples of

this type of model include VMware ESXi [78], Xen Server [16] and KVM [45].

In the case of complete or full virtualization, a virtual machine manager is an applica-

tion that runs on the server OS, which generates an extra management layer to translate

operations. While this can hurt performance in relation to paravirtualization, the perfor-

mance difference between the two models has fallen drastically due to chip manufacturers

incorporating hardware support for virtualization. Given full virtualization does not re-

quire modifications to the server OSs, this model has become the most popular. Examples

include VirtualBox [54] and VMware Player[77].

To allow access to the physical hardware, VMs use drivers, a set of virtual devices that

simulate the hardware devices on the server and that perform the function of transmitting

access instructions between the VM and the hypervisor. Due to their structure, VMs are

considered robust yet heavy environments because they incur small but not insignificant

performance overheads compared to the physical machine, and tend to need large storage

spaces to hold the complete installation of a new OS.

Today, the primary means of managing VMs is through the hypervisor, a set of

modules and dedicated instructions for virtualization that are sent to the kernel of the

server OS to allow the creation and management of VMs and obtain access to available

hardware devices. The hypervisor is responsible for the allocation and use of computa-

tional resources by VMs, as well as the control of communication (network) and storage

(disk), and thus is the "brain" of the virtualization system. A VM is "interpreted" by

the server OS as a single process, regardless of what is running internally, occupying and

consuming the resources reserved by the hypervisor.

Container virtualization does not differ from other virtualization technologies in terms

of its objectives: to create virtualized environments for the isolation of applications and

services, and; to share the computational resources of the same server. But it does

differs in the way these environments are created and how they access computational

resources available on the server hardware. Figure 2.1 presents a comparison between the

structure of a complete virtualization system (Host 1) and the containerized virtualization

system (Host 2). The complete virtualization model, also called type 1, is considered the

most used virtualization model today, mainly in the cloud, and is considered the main

competitor of container virtualization.

In containerized virtualization, the isolation of the virtual environment is reduced to

2.1 The Core Concepts of Virtualization 12

Figure 2.1: Full Virtualization (Host 1) x Containerization (Host 2).

only the libraries, services and applications that the user needs to perform their tasks [32].

In containers, the kernel and OS structures are shared between the server and the contain-

ers. Due to this sharing of structures with the host’s OS, a container does not need layers

of hardware "emulation", which means its performance is close to that of the physical ma-

chine. Allowing the container’s size to be reduced facilitates its storage and efficiency in

the use of computational resources, and is thus often called lightweight virtualization [75]

since this permits faster start-up times and lower overheads [56]. Note that the virtual-

ization layer runs as an application on top of the operating system (OS) and thus may

also be referred to as operating system virtualization.

The management of the containers is performed through a service or management

application, which allows the creation and maintenance of the containers inside the server

OS, using isolation layers called namespaces. Due to the weak isolation of the virtual

environment, each application or service running internally in a container is viewed as a

server OS process, which can have its status modified by the server administrator (root).

The containers can only see the status of their own processes.

Another important feature in containers is that they do not require specialized hard-

ware to function and can be run on any machine with an OS capable of running them,

including old hardware and different types of architectures. VMs, on the other hand,

require that the server have specialized hardware for their correct operation, for example,

2.2 Container Namespaces 13

the processor should have enabled a set of additional instruction, such as Intel VT [42]

and AMD-V [1], which allow access and control of physical machine devices.

2.2 Container Namespaces

A namespace is a feature of the Linux kernel that partitions kernel resources so that

one group of processes may see one set of resources while another group of processes will

see a different set [10] [11]. For example, each process running on a Linux machine is

enumerated with a process ID (PID). Each PID is assigned a namespace. PIDs in the

same namespace can have access to one another because they are programmed to operate

within a given namespace. PIDs in different namespaces are unable to interact with one

another by default because they are running in a different context or namespace.

Containers, being symbolic virtualized instances within the server’s operating system,

use this feature for isolation. A process running in a container under one namespace

cannot access the namespace related information outside of its container or information

running inside a different container. In fact, a container is composed of several namespaces

to limit the visibility that a group of processes has over various system entities such as

process trees, network interfaces, user IDs, and filesystem mounts. Thus, namespaces are

categorized into one of several groups:

• cgroup - control group is one of the principal namespaces of a system, responsible

for allowing and/or restricting access to a given computational resource (such as

CPU, memory, input and output, network or a device) by processes belonging to a

given group.

• Network - allows the isolation of system resources connected to the network,

whether they be devices, protocol stacks, routing tables, firewalls, ports, sockets,

among others.

• Mount - The mount namespace is used to isolate mount points such that processes

in different namespaces cannot view each others’ files, thus providing isolation be-

tween container file systems. It creates a subtree of directories for the container,

just like the existing file system on the server, but prohibits access to directories

above its mount point (where the container was created).

• PID - this group isolates the processes running inside a container under the same

identifier on the server. This makes it possible to change the states of the processes

2.2 Container Namespaces 14

of a container as a group, and thus permit functionalities such as the migration of

containers between servers.

• User - allows the mapping of user identifiers (UID) and group identifiers (GID)

between the container and the server, facilitating the identification of the owners of

the running processes and increasing security.

• UTS - this group provides the isolation of hostname and domain (NIS domain-

name), allowing a container to have its own identifier on the network.

• IPC - handle the communication between processes by using shared memory areas,

message queues, and semaphores, etc., avoiding conflicts with instances belonging

to other groups.

2.2.1 Computational Resource Allocation

The allocation and reservation of computational resources for a container is done through

the cgroups namespace. control groups (cgroups) creates an independent hierarchical

system, in the form of a tree, for each type of computational resource (memory, CPU,

I/O, network and devices) available in the operating system, associating each of them with

a set of processes or tasks, as well as containers [47]. Each leaf node in the tree represents

a set of processes, using the same identifier and that will share a certain amount of that

resource. Usage limits (quantity, priority, and access) can be defined for each node in

each of the existing subsystems.

In Figure 2.2, there are two examples of how cgroups organizes two of the most used

resources in a container, the CPU and the memory. The cgroups creates subtrees for each

type of task, in this case, containers and databases, and their leaf nodes are represented

by a unique identification. The same leaf node identifier will be used in each hierarchy,

with only the limits for the use of that particular resource being informed [59].

For processing (CPU), limits can be set with regard to access to the cores of a proces-

sor, the execution time on the processor (time slot), or weights for sharing the processing

time between groups that will use the same features. In the case of memory, limits on the

maximum amount of memory that a given container can access can be imposed. These

limits restricts the amount of memory a container can access when there is unused mem-

ory available, preventing greedy processes from using all the host resources. Also these

limits can be used for several scheduling decisions: suspending a container for lack of

2.2 Container Namespaces 15

Figure 2.2: cgroups resource organization for cpu and memory resources allocation.

memory; increasing the amount of memory and even migrating a particular container due

to a lack of resources.

For disk access (BlkIO), we can use cgroups to control access to disk read and write

functions, whether this limitation is for a particular device, or sets different weights be-

tween containers, this enables access privileges for a certain container. The same is true

for network traffic, with traffic classes and priorities for outbound traffic being defined

for a given container. Incoming traffic is not controlled by cgroups. Setting weights for

disk access and network traffic, can prioritise a container with critical communication and

storage services, in detriment of general purpose containers executing in the same host,

when these resources suffer a lot of competition. If the network or the disk is free, any

container can use them without restrictions. In addition to accessing resources, cgroups

also controls access to certain devices in the system, allowing tasks to read or write from,

for example, GPUs or even manipulating the network interface to create communication

tunnels.

2.2.2 Disk Storage

Traditionally, virtual machines (VMs) store their operating system, program libraries,

applications and services within virtual drives called disk images on a server, the format

of which may vary according to the hypervisor used [71]. This disk image acts as an

isolated storage system for each VM and prevents the data stored within a VM from

2.2 Container Namespaces 16

being visible to the server or other VMs. This disk image is a file created together

with the VM, specifying the maximum size it can occupy, disk update methods and the

persistence of the stored data. Note, however, that a disk image of a VM can occupy large

amounts of disk space on the physical machine and so may be divided into several smaller

files. When creating the VM, there is an option for the disk to occupy its maximum size,

the entire defined space (fixed-sized file), or occupy it incrementally, during the life time

operation of the VM (copy-on-write file) [71].

Containers are created from a template compatible with the kernel of the host server

OS, and stored on the host’s file system or remotely in the cloud, in which case, the

image must be downloaded before the container is created. Unfortunately, storing these

container images using existing file systems can be inefficient in terms of disk space and

affect the time to start a container.

In Linux, a container is considered to be a process, but the only way to create a new

process is forking the existing process. The fork operation creates a separate address space

for the child process that has an exact copy of all the memory segments of the parent

process. To create a new container, all the files of the image layers need to be copied

into the container’s namespace. A container is expected to start in a few milliseconds.

If a huge payload is needed to be copied at the time of starting a container, this can

significantly increase the time to boot the container.

Union File Systems [26] are used to help efficiently share physical memory segments

among containers. A Union File System works on top of the other file-systems to give a

single, coherent and unified view of the files and directories of separate file-systems. In

other words, it mounts multiple directories to a single root, creating an illusion of merging

contents of several directories into one without modifying its original (physical) source,

as exemplified in Figure 2.3.

Following the chroot concept, a folder for the container is created as a subdirectory

on the server (which will be the root of the container) that recreates the OS directory

structure, based on the container image used for its creation. In this model, the containers

will initially occupy the size of the image used but may be increased in accordance with

the creation of new files and the installation of new applications and services internally,

up to a size limit defined by the virtualization system administrator. An internal user

of the container does not have access to the directories and files of the server system,

except if there are mappings between the directories and appropriate access permissions,

as observed in the /bin directory of the test container, in Figure 2.3. However, the

2.2 Container Namespaces 17

Figure 2.3: The Rootfs File System and Union File System container storage types.

system administrator has access to all directories, being able to change files and internal

directories of the container, which reduces file security and reduces the isolation between

virtual and server systems.

A container is composed of multiple branches or layers. A sandbox of a container is

composed of one or more image layers and a container layer mapped using hash algorithms

for identification. When created, a container adds a new container layer, with read and

write privileges on disk, where any modifications made will be stored, while the other

layers below do not change, being configured as read-only content.

Under the Union File System, internal users of the container will continue to view the

file system as if they were on a real machine, with a traditional OS directory structure

and files, while the server administrator does not have access to the internal content

of the container. This increases the security of services and internal data as well as

the insulation of the container. It is also possible to map a server directory for access

within the container, such as a volume or disk attached to the container, which can be

read-only or with write permissions as well. The example of Figure 2.3 shows an image

initially containing three layers, where a layer was added to each new version of the

2.3 Container Virtualization Technologies 18

image, containing their respective modifications. The container layer, created as a result

of the creation of the container, is integrated with the image layers. In addition, the

images can be shared between several containers, allowing a reduction of the total space

needed for storage of the containers, a control of its content (based on its versioning) and

its distribution through the cloud, since its layers are only accessible to read and each

container creates a separate layer to write its own data.

2.2.3 Communication between Containers

A container, initially, is an environment completely isolated from the network, not ac-

cessible via the Internet or even the Intranet, thus is a relatively secure environment for

critical applications that involve processing sensitive data. However, container virtualiza-

tion technologies, such as LXC, allow containers to communicate with other containers on

the same server, via an internal network or bridge, interconnecting them. This communi-

cation is useful in cases such as: services stored in different containers, such as a website

and its database, for example.

It is also possible to expose the container to the external network by opening spe-

cific ports on the server where a container can start listening to communication requests,

an approach widely used by online services and websites. However, a problem encoun-

tered is the communication between containers running on different servers. Systems like

Docker have some technologies that overcome this limitation and allow this type of com-

munication, such as an overlay network [27] where the messages exchanged between the

participating containers are sent through gossip protocols using different types of network

tunnels.

2.3 Container Virtualization Technologies

Although the concept of containerization and process isolation has been around for decades,

it has recently become a major trend in software development, encapsulating or packaging

up software and all its dependencies so that it can run uniformly and consistently on any

infrastructure. The technology is quickly maturing, resulting in measurable benefits for

developers and operations teams as well as overall software infrastructure.

Containerization allows developers to create and deploy applications faster and more

securely since applications need only be “written once and run anywhere.” This portability

is important in terms of the development process and vendor compatibility. However,

2.3 Container Virtualization Technologies 19

other notable benefits include fault isolation, ease of management and security. Together,

containers and cloud computing are bring application development and delivery to new

levels not possible with traditional methodologies and environments.

Several competing container virtualization systems can be found in use, each with

different objectives and purposes, serving various market demands such as companies

with large scale services, research laboratories, application developers, and even ordinary

users. They can be separated into container technology and container managers. The

former create and manage containers on just one machine, like Docker and LXC, while

the latter manages containers on multiple machines simultaneously, like Apache Mesos

and Kubernetes, using one or more of the existing container technologies.

To run a containerized system, we only need a SO that supports one or more of these

containerization technologies and container images compatible with the machine’s SO.

The most common SO used to run containers is any distribution based on Linux Kernel.

2.3.1 Docker

Docker [25] is one of the most widely adopted container virtualization technologies on

the market. It was developed by DotCloud, a company offering platform solutions for

developers. Initially it was designed so that developers could have development envi-

ronments that facilitate the sharing of the application among their teams, providing a

shared environment and versioning control, in addition to allowing the application to be

deployed quickly at a client, without the need to configure the host server, thus providing

a ready-to-use environment.

It was originally based on the LXC virtualization system, but later developed its own

container virtualization library, libcontainer, currently maintained by the Open Container

Initiative (OCI)[46] as Containerd [17], with the aim of creating a standard for the creation

and use of containers. Today, it has several solutions for containerizing services and

applications, tailored to meet the needs of different market niches.

2.3.2 Linux Containers - LXC

LXC [14] is an interface that allows you to create containers using the process isolation

functions present in the Linux kernel. It was based on chroot, extending its original func-

tionality and now offers tools and libraries for the use and development of new container-

based solutions. These tools allow the simple and easy creation of containers, without

2.4 Cloud Elasticity vs Scalability 20

the need to modify the kernel of the system. Currently maintained by Canonical Ltd.,

the developers of Ubuntu, it has been modified into a new technology to conform to the

OCI standard. Consequently, support for LXC has been reducing as investment is moved

to the development of LXD [15], considered to be the successor to LXC. The LXD can

manage containers on multiple machines and is capable of running a entire Linux System,

from other distributions, inside a container, like a virtual machine can.

2.3.3 Apache Mesos

Apache Mesos [6] is an application isolation solution based on the Linux kernel, but with a

different level of abstraction. It is a container manager that offers a client-server environ-

ment with features for managing computer resources and scheduling tasks for applications

such as Hadoop, Spark, and MPI. Its manager is capable of running instances of these

applications on different machines or in the cloud, by requesting the application scheduler

for new tasks to be performed on their nodes, through the Mesos Master service. It offers

linear scalability, fault tolerance, and high availability mechanisms and is compatible with

other container virtualization technologies, such as Docker.

2.3.4 Google Kubernetes

Kubernetes [44] is an open-source system developed by Google, for the creation and

management of containers, offering automatic provisioning environments for users’ appli-

cations. It uses a structure called a pod, which can be composed of several containers

spread across the network, but which work as a single environment for the application

to run. The environments are scalable and incorporate recovery mechanisms and load

balancing services. Kubernetes can use several container technologies for its pods. One of

the most frequently used is rkt [64], an container engine capable of running pods directly

in the Unix process model, without the need for a central daemon running in the SO.

2.4 Cloud Elasticity vs Scalability

One of the main characteristics of cloud computing is the offer of virtualized environments

capable of meeting the demands of users’ applications and services. Scalability addresses

the changing needs of an application within the confines of the infrastructure by statically

adding or removing resources to meet the application demands if they change between

2.4 Cloud Elasticity vs Scalability 21

executions. The purpose of elasticity is to match the resources allocated with actual

amount of resources needed by the application at any given point in time of its execution.

In most cases, both of these are handled by adding resources to existing instances —

called scaling up or vertical scaling — and/or adding more copies of existing instances —

called scaling out or horizontal scaling.

Elasticity is the ability to grow or shrink infrastructure resources dynamically as

needed to adapt to workload changes in an autonomic manner, maximizing the use of

resources. During its execution, an application’s behavior may vary, impacting the con-

sumption of resources, and where the lack of availability in turn may affect its execution.

Furthermore, if the virtual environment where it is being executed has not been config-

ured appropriately, an unexpected execution error may occur. To avoid such problems,

one of two elasticity techniques can be used to allow the virtual environment to change its

capacity during the execution of the application: horizontal elasticity of a virtual cluster,

and; vertical elasticity of containers.

2.4.1 Horizontal Elasticity of Virtual Clusters

The horizontal elasticity is directly linked to the running application or service within

a virtual cluster. In this model, additional instances or containers are added to, or re-

moved from, the virtual cluster within the cloud, depending on the amount of work the

application has to perform.

This is most common form of elasticity implemented in clouds, especially for: running

Web services where requests can be distributed across an elastic set of replicated service

instances; task management services, where the number of servers in the cluster can

change, or; autonomous parallel applications, capable of managing their own workloads,

depending on the size of the environment where they are being executed.

A cloud management system that uses this technique can request the creation of new

containers, called replicas that use the same image of the application that is running

in the primary container, and form a larger virtual cluster when the consumption of

resources of each container rises close to their reserved limits, as seen in Figure 2.4. With

more instances, the application will be able to re-balance the load between them, avoiding

overloading the existing containers and possible improve the QoS of the application or

the service in execution.

Just as new containers can be added to a virtual cluster, a management system can

2.4 Cloud Elasticity vs Scalability 22

Figure 2.4: Container Horizontal Elasticity

also remove containers if the demand for the service running on the cluster is low. In this

case, computational resources will be released to the cloud provider for the creation of

other containers for other applications. This offers providers the opportunity to increase

the utilization of the cluster, reducing its idleness.

2.4.2 Vertical Elasticity in Containers

Vertical elasticity is the possibility of increasing or decreasing the amount of computa-

tional resources in a given virtual environment, based on their demand. Using the resource

consumption information from the container, a manager can perform one of the actions

proposed and exemplified in Figure 2.5:

Figure 2.5: Container Resource Vertical Elasticity

1. Expanding resource capacity - In this scenario, the application needs more

2.4 Cloud Elasticity vs Scalability 23

computational resources than it currently has available for use, which can result in

loss of performance and slow execution. The controller, having spare computational

resources available, can allocate more resources by an amount compatible with the

application’s need, thus reducing performance loss. For example, this might be in

the form of an increase in the amount of memory that the container can access or

the number of vCPUs available for its applications.

2. Shrinking resource capacity - In this scenario, a container has more resources

than it needs at that given moment, either because it has a reduced workload or

because the heaviest part of an application has already been executed. In these

cases, the controller can return an amount of the allocated resources back to the

host, making it available for allocation to new containers or to others already in

execution. For example, when there are sub-utilized or idle vCPUs in a container.

These elasticity techniques can be applied to different types of resources, in particular,

for CPU and memory. In the case of CPUs, adding or removing vCPUs will depend on the

number of tasks running in the container. One can also define quotas, different weights

for containers that share vCPUs, defining priorities between them. In this model, larger

slices of capacity can be given to applications that need more processing power. Allowing

a higher level of sharing can be especially useful for clouds with limited resources, for

example, cloudlets or edge computing. In the case of memory, one typically defines the

maximum limits on the amount of memory that a container can use.

To support this objective, LXC takes advantage of cgroups [47] to define limits and

control access to the resources and devices of a server. With this technology, it is possible

to define weights or quotas of CPU usage, allowing a scenario where one can maximize

the allocation of virtual environments, using slices of processing time, particularly useful

in environments with a high degree of resource sharing and limited amounts of available

resources.

This thesis work extends the ideas and concepts of managing memory elasticity in

virtual environments presented by [68], in the development of MEC. Unlike MEC, which

works with the elasticity of memory in VMs, this thesis is directing its research towards

the dynamic sharing of resources, working with the elasticity of memory in containers.

The MEC uses memory distribution over VMs, while the VEMoC focuses on managing

memory allocations to containers, by adjusting their memory limits dynamically, with

LXC and cgroups.

Chapter 3

Related Work on Memory Elasticity

While there exists a number of definitions in the literature for elasticity [7, 18, 37, 40],

this work defines elasticity as the ability of a system to add and remove resources (such

as CPU cores, memory, VM or container instances) “on the fly” to adjust the quantity

available to an application in real time. The economics of cloud computing is built on the

premise ofmulti-tenancy - where public or private cloud architectures are designed to share

computing resources between multiple users. Elasticity is thus one of the fundamental

characteristics necessary for cloud computing in order to scale and contract computing

resources according to the demands of the application workloads in a timely fashion.

Implementing elasticity efficiently is of financial importance to, and is still a major

research challenge for, cloud computing providers. In the literature [3, 18, 37, 51, 52], much

attention has been given to the elasticity of virtual machines, while these is comparatively

little, as yet, on the elasticity of containers. Furthermore, most of the approaches focus

on horizontal elasticity, due to its simplicity as it does not require any extra support

from the virtualization engine. Only a few address vertical elasticity, and fewer still

focus on memory. Given this relative lack of study and the importance memory has

on the performance of applications, especially in the context of high impact fields of

research such as Big Data, Artificial Intelligence and Deep Learning combined with the

trend towards multi-tenant clouds, this thesis addresses the problem of vertical memory

elasticity. Therefore, this chapter briefly discussing some of the most relevant research

and tools from the literature that focus primarily on this topic.

Studies such as [21], among others, initially motivated the use of vertical elasticity, in

particular, of vCPUs in VMs, by showing that an elastic VM implementation performs

better than using multiple VM instances each with a single vCPU. The reason for this

3 Related Work on Memory Elasticity 25

being the fact that the former consumes less resources and avoids increasing overhead

costs when scaling-up vCPUs. While many approaches show that they can improve the

utilization efficiency of the resource, the majority fail to tackle the other half of the same

problem: The question of how to allocate appropriate amounts of a limited resource

between competing applications.

One can find a wide range of resource management tools from proposals in the lit-

erature to enterprise class tools employed extensively in production, including container-

based cloud orchestrators like Docker Swarm [30] and Kubernetes [44], elastic management

of VMs, e.g. [13, 34, 48, 68] and, more recently, elastic management of containers [2, 5, 22].

Containers themselves may be deployed on bare metal or, as is common in public clouds,

inside VMs [4, 63].

Enterprise class orchestrators [65] have typically focused on horizontal elasticity, chang-

ing the number of containers (or pods, as referred to in the context of Kubernetes) based

on demand (e.g. requests/second of online applications). Here, the number of containers

is scaled up or down according to predefined rules. In an experimental phase, vertical pod

autoscaling allows Kubernetes to readjust the pod resource limits, however, each change

requires the pod to be restarted, thus limiting its effectiveness [39].

Academic research, like [22] and [5], have applied horizontal elasticity to containers

by creating and removing container replicas within a virtual cluster based on the load or

the number of application tasks within their architectures. De Alfonso et al. [22] used

a container to act as a front-end master to receive requests and create worker nodes

(container replicas) to then handle each request using Docker Swarm and its scheduling

policies to decide where to allocate the replica. This type of approach works well for

online and distributed applications, where either tasks are executed based on requests for

a unique application (online) or a workflow is divided into different (distributed) tasks.

The quantity of resources can then be elastically grown to support the required number

of tasks. However this approach cannot benefit serial applications, which are typically

offline and executed in batch, but need to execute in a single virtual environment. In this

case, the capacity of the environment need to be increased.

Extensive research on container elasticity exists [3] where the main focus, like [22]

and [5], has been on horizontal elasticity for applications that can have multiple instances

or be distributed. However, vertical elasticity is claimed to be more applicable, efficient,

and faster [2, 56] given resource limits are adjusted in line with the run time consumption,

without the need for additional hosts, tools, and, in some cases, licenses. Previous work

3 Related Work on Memory Elasticity 26

by [8], [34], and [48], for example, have applied this vertical elasticity to adjust the amount

of memory of VMs. Baruchi and Midorikawa compared two metrics for vertical memory

elasticity, the Exponential Moving Average of the memory utilization and the number of

page faults, and concluded that the latter leads to a better performance when used as the

main criteria for allocating memory [8]. The work in [34] proposed a hybrid approach that

takes into account the application performance and the resource utilization when realizing

vertical elasticity of memory. Control theory is used to synthesize a feedback controller

that meets the application performance constraints by auto-scaling the allocated memory,

at run time.

Many of these approaches have characteristics in common. Often vertical re-sizing

is only triggered when reaching a predefined percentage of capacity or performance. As

these amounts or rate increase, the system effectively becomes less sensitive to changes

and less efficient. Also, the majority of these proposals only consider the execution of

online applications, and when resources on the host become scarce, they always assume

that additional capacity is available elsewhere in the environment. Sawamura et. al.,

however, consider pausing or migrating them should there be insufficient resources to

meet the demands of all executing VMs simultaneously [68].

More recently, these elasticity techniques have begun to be applied in a similar fashion

to containers [57]. ElasticDocker is an example of a tool to manage CPU and memory

limits, making adjustments when consumption reaches a predefined upper or lower thresh-

old [2]. Their approach to manage vertical elasticity in containers, also involves invoking

live migration when no more resources are available on the host [2]. However, approaches

based on thresholds and fixed elasticity adjustment ratios can fail to provide enough

resources in time and, in practice, cause container performance to degrade.

The Vertelas framework supports vertical elasticity when executing containers inside

VMs on Amazon Elastic Compute Cloud (EC2) [63]. The scheme maintains multiple

VMs, each with different memory configurations, on standby in a suspended state. If

a container has insufficient memory, Vertelas suspends it generating a checkpoint with

CRIU (Checkpoint/Restore in Userspace) [19] and starts one of the standby VMs with

more memory to which it migrates and resumes the container. In effect, this solution

does not actively manage the resources of containers, nor is it interested in improving the

utilization of already deployed VMs.

Different from ElasticDocker, this thesis uses a set of memory consumption metrics,

collected periodically, during a scheduling cycle, to define the amount of memory a con-

3 Related Work on Memory Elasticity 27

tainer may need or give up, over the next cycle, without interfering with the performance

of applications running in co-allocated containers. It also allows for pausing or even

suspending some containers when resources become scarce so that others can finish their

tasks without being prejudiced. These preempted containers resume their execution when

enough resources are once again available. More details of our proposed approach can be

seen in Chapters 4, which describes the tools components and architecture, and 5, which

describes the functionalities present in the orchestration strategy.

Chapter 4

The VEMoC Architecture

This chapter describes the VEMoC framework, its architecture and components, which

have implemented to create an elastic container service so that the VEMoC orchestra-

tion algorithm (described in Chapter 5) can be evaluated within a cloud-like environment.

This architecture is based on how the enterprise container orchestrators manage containers

within infrastructures composed of multiple servers, commonly adopted by the principal

cloud providers on the market. Typically, cloud providers aim to offer services that allows

a user to submit a container image to run their application, within the provider’s infras-

tructure, with little or no knowledge of where their application will run. Our architecture

continues to support this model and is designed so that it can be easily incorporated into

existing cloud container services or perhaps, more usefully, allow users to create their own

portable container service within the VMs they rent from enterprise cloud providers or

run on their own infrastructures.

Our VEMoC architectural model has been design to sit between a container orchestra-

tion platform and a container engine with the aim of managing the life cycle of containers

in a cloud environment or edge infrastructure. It is composed of two management levels:

a Cloud Manager and multiple local Host Managers, as presented in Figure 4.1.

As shown in Figure 4.1, the Cloud Manager (CM) is responsible for managing the

infrastructure and the user’s (jobs) requests. The CM receives monitoring information

regarding each of the hosts that comprise the cloud infrastructure and their respective

containers. With this information, the CM aims to determine an ideal initial placement

of containers to execute the jobs requests it receives.

Each Host Manager (HM) is responsible for creating, executing, and monitoring the

containers allocated to it by the CM. In addition, it must also decide how to distribute

4.1 Cloud Manager 29

Figure 4.1: Architectural Model for VEMoC Container-based Cloud Management

the host’s available resources to each container, adjusting the allocations dynamically,

according to application demand at run time. Redistribution of resources may involve

other actions including container pausing, suspension and/or migration due to a lack of

sufficient available resources on the host, as discussed further in the sections that follow.

Cloud management is thus distributed as each Host Manager makes its own local resource

allocation decisions independently and autonomously of the Cloud Manager and other

Host Managers.

4.1 Cloud Manager

The Cloud Manager (CM) is a service responsible for receiving and managing user’s

requests (job submissions), collect monitoring information from all hosts and containers

in the infrastructure, determining where each container that will compose the request

are to be instantiated and create a execution history of each application executed in this

architecture. The CM is composed of the Cloud Scheduler, a Cloud Monitor, a database,

and two lists: a Host List and a Request List, as shown in Figure 4.1.

4.1.1 Cloud Monitor

The Cloud Monitor periodically collects monitoring data sent from the hosts, updates

the host list with the latest resource consumption information, updates the job status

4.1 Cloud Manager 30

in the request list, and stores monitoring information in the database. The monitoring

data contains CPU usage, memory and swap consumption information of each host, and

the resource consumption/requirements for each container allocated to it, whether in

execution or not. While all data is logged in the database, more recent information is also

accessible via the host list. The host list and monitoring information is used by the Cloud

Scheduler to make decisions regarding where new jobs (taking into consideration their

requirements) should be submitted for execution. Received job submissions are inserted

in the request list, which is updated with the progress of such user requests, and follows

the container status of each request until its completion.

The container data is also stored in the database for use as historical information to

trace their execution and can be used for postmortem analysis of application behavior.

In addition, this could also be used to provide finer grained billing since a resource can

be charged for the exact usage rather than the current practice of having to pay for a

quantity (determined prior to execution) of resources of a predetermined capacity, which

are typically oversized for the application’s actual needs.

4.1.2 Cloud Scheduler

Each user job request is considered to require a set of containers, where each container may

execute an application or a workflow of application tasks. Both classes of applications are

considered – online ones that must execute continuously and cannot be suspended, and

batch ones that have a finite execution time. The request can optionally define a minimum

and maximum amount of resources, per container, necessary to execute its application or

workflow (e.g. quantity of CPU cores and memory). The Cloud Scheduler is the module

responsible for orchestrating the execution of these requests, allocating each container

instance to an appropriate host in the cloud.

An initial container allocation can be determined by one of many scheduling policies,

for example, [43]. However, since a container’s resource requirements change over time,

the Cloud Scheduler is also responsible for coordinating the migration of containers from

an overloaded host to an alternative location. Discussions regarding these orchestration

policies have been discussed elsewhere [73, 74] and thus have been omitted here as the

Host Manager rather than the Cloud Scheduler is the principal focus of this work.

4.2 Host Manager 31

4.2 Host Manager

The Host Manager (HM) is a service that manages the resources of a single host machine.

An instance of this service runs on each host that makes up the cloud infrastructure. Its

goal is to schedule container requests received from the Cloud Manager and arbitrate the

host’s resources elastically between running containers. This is achieved through three

modules: the Host Monitor, the Request Receiver and the Container Manager; and two

container lists: the Active List and the Inactive List.

4.2.1 Host Monitor

The Host Monitor is the module that determines the capacity of the host (e.g., the number

of physical or virtual cores and the amount of physical memory) and constantly collects

metrics (every second) to provide statistics regarding the resource utilization of its re-

spective host and the containers under the HM’s supervision. Some of the host CPU and

memory related metrics include:

• The number of cores available on the host to execute containers – considers the

possibility that some of the host’s processing capacity may be reserved for other

activities;

• Percentage CPU utilization per core;

• In addition to the total memory present in the host, the amount of memory in use,

and free and available memory is collected, together with;

• Total swap memory, swap used, swap free, and swap-in and swap-out traffic.

The Python system and process utility library named psutil has various functions to

collect resource usage information from operating systems like Linux or Windows and is

used to collect host information. For the following container-related CPU and memory

statistics, the library APIs (Application Programming Interface) of the respective con-

tainer technologies are used to consult the following information in the cgroup files of each

container:

• The set of CPU cores that the container is pinned to;

• Total CPU time utilized by each container in processor cycles or ticks;

4.2 Host Manager 32

• Total memory used by the container as Resident Set Size (RSS) and Page Cache

Memory (PCM) – RSS refers to the pages allocated to the container in the main

memory, while PCM refers to the pages that originated from the disk and that are

now cached in main memory for rapid access;

• Active and Inactive Pages: Active pages are those used recently, while Inactive pages

refer to those in the Least Recently Used (LRU) list associated with a container;

• Total amount of memory page in/out operations that were generated from the be-

ginning of the container’s execution and the number of major page faults;

• Total amount of swap memory used by the container, and;

• The current memory and swap limits of each container;

These host and container utilization metrics are then used by the Container Manager

to predict future demands of each respective container and determine if these can be met

by the host by reallocating resources through some form of appropriate action. Additional

necessary information is then derived by VEMoC from this data. Host Reserved Memory

refers to the total amount of memory that is reserved specifically for operating system

processes and other internal host and container services. This changing value is taken

into consideration when calculating the amount of memory available for the containers.

It is also assumed that some specific CPU cores of the host can be reserved for exclusive

use by the host Operating System (OS) and services Host Reserved Cores. While this

reduces the chance of containers competing with system processes it does not eliminate

this possibility, as there are no guarantees that a system process will not temporarily use

an idle core currently assigned to a container.

4.2.2 Request Receiver

The Request Receiver module is responsible for receiving job requests from the Cloud

Scheduler and deploying the corresponding containers for execution. Initially, such con-

tainer requests are queued in a list of containers awaiting execution on the host. Each

container request is composed of:

• The container name, based on the request id and container number inside the re-

quest;

4.2 Host Manager 33

• The location of the container image that contains the required application and

libraries;

• The command and the parameters for the application(s) to be executed within the

container;

• (Optional) The maximum expected memory usage by the container, MaxMemLim

– this is used as a safety mechanism to avoid spurious container behavior that might

adversely affect the host and other containers. This parameter can also be viewed

as the equivalent of the fixed predefined resource allocation used in conventional

(non-managed elastic) container based systems;

• (Optional) The minimum amount of memory that should be allocated during the

container’s execution. Again, acts as a safety to guarantee a certain quantity of

resources.

For technologies that need to create the containers prior to being able to initialize

them, like LXC, the Request Receive Module creates the container before inserting it into

the Inactive Container queue, to speed up the container’s startup when its application

is scheduled to execute. Just like the monitor modules, the Request Receiver and Cloud

Scheduler communicate using sockets over the network.

4.2.3 Container Manager

The Container Manager is the most important component of the VEMoC architecture.

It is responsible for managing resource usage (in this work, specifically memory) of each

executing container on its respective host. Its purpose is to manage the life cycle of each

container allocated to it by the Cloud Manager, from the creation of the container, to

determining the maximum amount of each resource the container can use at any given

time during execution until it terminates and is destroyed. The state transitions during

this life cycle are shown in Figure 4.2 and described below.

• QUEUED: the container is created and/or is waiting to be started by the Container

Manager, depending on the container technology (e.g. LXC or DOCKER) being

employed. LXC containers are created prior to being started while Docker containers

are created during the start process;

• RUNNING: this state indicates that the container is being executed and consum-

ing resources;

4.2 Host Manager 34

Figure 4.2: States of the Container Life Cycle

• PAUSED: indicates that the container’s execution has been temporarily stopped

but the memory resources it has consumed remains allocated to it;

• SUSPENDED: the container has been suspended by the Container Manager,

which may occur when there is insufficient memory for an efficient execution of

its application. A checkpoint is created and saved on the host’s disk to allow the

container to be resumed later. When suspended, the resources that were being

consumed by the container are released for use by other containers in the same

host;

• MIGRATING: the container is being migrated to another host either because of

a lack of resources in the current host or for server consolidation. The respective

checkpoint file will be "migrated" too, if not already on a shared file system, so that

it can resume its execution on another host. This behavior is outwith the scope of

this work and is not discussed here;

• FINISHED: the container ends its execution, with or without errors and the re-

sources used by it have been released back to the host for use by the other containers;

• DESTROYED: the container is destroyed by the Container Manager to liberate

space on the host’s disk. The original base container image is preserved but the

instance specific data produced is deleted.

To control the life cycles of the containers allocated to the host, the Container Manager

constantly controls the distribution of memory assigned to each container by changing the

maximum amount of memory the container can use, and their respective states, at regular

scheduling intervals. This scheduling algorithm is described in detail in the following

4.2 Host Manager 35

chapter. To implement the algorithm, the Container Manager uses four auxiliary lists: a

list of active containers (ACList), i.e. those in a RUNNING or PAUSED state (as these

containers are holding on to or consuming host resources); a list of inactive containers

(ICList), i.e. containers in a QUEUED or SUSPENDED state; a list of job requests from

the CM (JobReqList); and a Core Allocation List used to identify which CPU cores are

in use by the running containers.

With the implementation this architecture and all of its components, the VEMoC

algorithm presented next can be evaluated against alternative strategies (see Chapter 6)

in a real cloud deployment scenario, whether it be to distribute virtual environments over

a cluster or manage all of them in one machine, without the need to resort to simulation.

Chapter 5

Managing Vertical Memory
Elasticity

Server consolidation and resource elasticity are two key foundations of resource manage-

ment in cloud computing. Vertical memory elasticity, if implemented efficiently, can be

used as an effective method to assign sufficient amounts of memory to applications (en-

capsulated in virtual environments such as containers) while allowing cloud providers to

instantiate more containers in a physical node without the risk of over-provisioning. This

chapter briefly describes the memory management policies adopted by VEMoC to show

that, when resources are scarce and insufficient, the consequent performance losses can be

mitigated to a certain degree, thus offering an opportunity to improve server utilization.

VEMoC combines the use of two preemption schemes (pausing and suspension) with ver-

tical memory elasticity into a coordinated scheduling policy for the effective management

of containers.

5.1 The VEMoC Orchestration Engine

Vertical memory elasticity is a technique used to change the amount of memory a virtual

environment like a virtual machine or a container can use during its execution, without

the need to stop and restart it. In virtualization environments, a VM can choose to

use as much of its already allocated memory as it wishes, but should it require more

than this, the VM will have to use swap, even if the host has addition memory available.

Differently, containers are not allocated pre-reserved amounts of memory, but rather have

upper bounds that are defined through cgroups, which limit the maximum amount each

can consume. A container can use any amount of memory up to this limit or that the host

5.1 The VEMoC Orchestration Engine 37

has available (if less than the limit), after which it will be forced to use swap and suffer the

consequent performance degradation. Beware however, that if the container application

cannot use swap memory, it may terminate abnormally with an out of memory error.

Kubernetes [44] adopts the philosophy that swap space is not needed (and should be

disabled on the host) since its containers (pods) should have a memory limit set high

enough to meet their respective application’s maximum requirements and be allocated

to hosts with enough available resources to meet them (Guaranteed Quality of Service).

Nevertheless, if host runs low on memory or a container’s memory consumption reaches

that limit, an Out of Memory (OOM) exception may cause the container to be "killed"

by the host operating system.

This work proposes a new approach to manage the memory limits of containers, at

run time, based on the memory consumption of its running application(s), while trying to

prevent the application from losing performance or even being unexpectedly terminated

due to a lack of memory. This approach makes a set of iterative management and schedul-

ing decisions at autonomously reconfigurable frequencies in order to predict and react to

changes in demand while balancing response times with management overheads.

Figure 5.1: Phases of a VEMoC Management Iteration

During each scheduling interval, the VEMoC algorithm follows a sequence of up to 7

phases, P1 to P7 in the Figure 5.1. The objective is to define a Container Memory Limit

(CML) for each running container that is sufficiently large enough to meet the needs of

that respective container until the end of the next scheduling cycle, while maximizing

the number of running containers (this includes resuming paused containers, restarting

suspended ones and/or starting new jobs, if possible) and all without (significantly) de-

grading their performance. The percentage of the memory allocation limit actually being

used at a given time by each container defines its true memory utilization (MemUtil).

5.1 The VEMoC Orchestration Engine 38

The aim is therefore to maximize MemUtil without slowing the container’s application(s)

due to swap usage.

Since a lack of a sufficient amount of memory can significantly impact the application

performance and that accurately predicting when and by how much the memory limit

should be changed is generally difficult for every type of application, overestimating the

value of the Container Memory Limit, CML, is a common practice to allow for sudden

or unforeseen increases in demand for memory. Given this limit is often used to make

orchestration decisions, MemUtil could in practice be quite inefficient, especially if the

limit for each container is defined statically as a worse case maximum value. The VEMoC

Host Manager, described in Algorithm 1, dynamically adjusts the CML of each running

container with three goals: to maintain high but safe MemUtil values; to reduce the

average turnaround times of batch jobs, and; to improve host memory utilization.

In Algorithm 1, the 7 phases of VEMoC are preceded by setting a few necessary

variables that describe some of system capabilities of the host where VEMoC is running

(Lines 1 to 4 of algorithm 1). These variables describe: the duration of the scheduling

interval that VEMoC uses to collect and analyze monitoring data (LongInt, ShortInt

and determine its base operating frequency SchedInt), in seconds; the latency of VEMoC

during the last scheduling interval (SchedLat), also in seconds; the read and write rates

for memory (MemWrRt) and swap (SwapInRt and SwapOutRt) of the host, in mem-

ory pages per second; the maximum percentage memory utilization before a container

uses swap (MaxMU) and the maximum amount of memory the machine can provide

(HMUT), in memory pages. We use memory pages (in Linux, each memory page equals

4 KB) due to cgroups, which uses this unit of measure for system memory management.

Some of this metrics are obtained through experimentation using test applications (the

host memory rates and the MaxMU), while others can be chosen arbitrarily in a config-

uration file (for example, LongInt). In the specific case of LongInt, the smallest value

that can be used is 6 seconds in order to have enough monitoring data points to predict

the memory demand of a running container.

A brief initial summary of each of the seven phases (P1 to P7) of Figure 5.1 is presented

below, while thereafter, the remainder of this chapter will describe in each of these phases

in further detail in a separate section of their own.

• In P1 (Lines 7 to 17 of Algorithm 1), VEMoC identifies the amount of memory

necessary to start an inactive container. This is either the defined minimum memory

requirement to start the execution of new containers or the memory necessary to

5.1 The VEMoC Orchestration Engine 39

restart the execution of a container that has been suspended by VEMoC.

• In P2 (Lines 18 to 25 of Algorithm 1), VEMoC obtains a picture of the current

state of the host, and the memory resource allocation and usage by the containers.

Using the data from the previous scheduling interval, this phase aims to estimate

the demand of each running container for the current interval.

• In P3 (Lines 26 and 27 of Algorithm 1), VEMoC reduces the memory limits of any

containers that appear to have an overestimated memory allocation. This reduction

aims to make a more conservative estimate of memory usage while still minimizing

the chance that container will require the use of memory swap.

• In P4 (Lines 28 and 29 of Algorithm 1), VEMoC “steals” memory from the containers

that appear to have inactive memory, forcing then to send some of their stale (least

recently accessed) memory pages to swap. This technique consists of temporarily

reducing the memory limit below the amount of memory in use. cgroups will then be

forced to send the least recently used (LRU) memory pages to swap. The recovered

memory can then be made available for use by the other containers in need.

• In P5 (Lines 30 and 31 of Algorithm 1), VEMoC determines the proportion of the

available memory that should be added to the reservation of each container that

has been predicted to require than its current limit during the current scheduling

interval. All, while at the same time, trying to serve as many containers as possible.

• In P6 (Lines 32 and 33 of Algorithm 1), VEMoC must decide what action to take

with respect to those containers that could not be satisfied in Phase 5 and whose

predicted consumption will now likely exceed the their memory limit before the end

of the next scheduling interval. Unlike many of the previous identified elasticity con-

trollers in the literature, VEMoC also considered pausing or suspending containers

as part of its elasticity and scheduling policies.

• In P7 (Lines 34 and 35 of Algorithm 1), if Phases 4 and 6 were not necessary,

VEMoC will try to assign the remaining available host memory from Phase 5 to

containers in the inactive list. The approach will first prioritize the resumption of

previously suspended containers and then permit new queued containers to initiate,

if there are any and given sufficient memory.

After these phases have been completed, VEMoC calculates the latency to make these

decisions in order to precisely factor this into the schedule and the prediction model for

5.2 Phase 1: Calculate the Memory Demand of Inactive Containers 40

the next interval. This is necessary in order to avoid making future adjustments to the

container limits too late.

5.2 Phase 1: Calculate the Memory Demand of Inac-
tive Containers

Each phase is composed of a number of stages or steps. The steps in Phase 1 are summa-

rized as follows. The first step consists of receiving job requests from the Cloud Manager

and placing their corresponding containers in the inactive queue (Lines 7 to 10 of Algo-

rithm 1). Next, the algorithm calculates the amount of memory that would be required

by those queued containers (Lines 11 to 17). The inactive queue (ICList) contains the

new containers that have not begun their execution and containers that are currently

suspended. To begin its execution, a new container should at least receive its minimum

memory allocation (MinMemLim). On the other hand, to restart a suspended one, it will

need to have the same memory limit (defined as the Container Memory Limit, CML) it

had at the moment prior to its suspension plus the supplemental amount ∆L that wasn’t

available when the container was suspended.

The third step of this phase (Lines 18 to 23) consists of calculating how much free

memory the host server currently has available to allocate to the non-finished containers on

this host, i.e. the currently available Non-Allocated Host Memory (NAHM) . The host’s

operating system obviously needs to allocate memory for itself and whatever local host ser-

vices that are considered necessary. However, to improve system performance, operating

systems also make use of “free” memory to hold various data structures, for example, for

disk caching. Defined here as the Host Reserved Memory (HRM), Equation 5.1 estimates

the amount of memory being used at time t by system related processes by determining

the amount of memory being used (CMU) by the active containers and measuring the

Host’s Available Memory (HAM) that includes both the free and buffered/cache memory.

The Total Host Memory (THM) is the total amount of physical memory on the host.

HRM(t) = THM − (
n∑

i=1

CMUi(t))−HAM(t) (5.1)

Using the data collected by the Host Monitor (in line 18), Equation 5.2 can then

calculate NAHM at time t by discounting the memory already being used by the host

(HRM) and already allocated by the Host manager, i.e. the sum of the Container Memory

5.2 Phase 1: Calculate the Memory Demand of Inactive Containers 41

Algorithm 1 VEMoC Host Manager Algorithm
1: LongInt← 6; ShortInt← max(LongInt/2, 3)
2: SchedLat← 0.1; SchedInt← LongInt
3: HMUT ← 5976883; MaxMU ← 0.997
4: MemWrRt← 9999;SwapInRt← 6600;SwapOutRt← 33000
5: while True do
6: sT ime← getActualT ime()
7: for each Container i ∈ JobReqList do
8: InactiveT imei ← sT ime
9: ICList.append(i, QUEUED)

10: JobReqList.remove(i)

11: ICMem← 0
12: for each Container i ∈ ICList do
13: Statei ← getContainerState(i)
14: if (Statei = QUEUED) then
15: ICMem← ICMem+MinMemLimi

16: else if (Statei = SUSPENDED) then
17: ICMem← ICMem+ CMLi + ∆Li

18: HostUpdateInfo()
19: NAHM,HAM,TCML← getHostMemoryInfo()
20: if HAM < 218 then MUE ← min(MaxMU,MaxMU − (HAM + TCML −

HMUT)/((20× 109)/212)
21: else
22: MUE ←MaxMU
23: SpMemCap←MemWrRt× (SchedInt+ SchedLat)
24: PauCount← 0;PauDemand← 0; StealCheck ← False
25: Algorithm 4 (Estimate Memory Demand)
26: if (NAHM < PauDemand+ UrgentNeed+ InNeed+ ICMem) then
27: Algorithm 5 (Passive Limit Reduction)
28: if (NAHM < PauDemand+ UrgentNeed+ InNeed) then
29: Algorithm 6 (Active Limit Reduction)
30: if (PauDemand <> 0) OR (UrgentNeed <> 0) OR (InNeed <> 0) then
31: Algorithm 7 (Increase Memory Limits)
32: if (PauDemand <> 0) OR (UrgentNeed <> 0) OR (InNeed <> 0) then
33: Algorithm 8 (Suspension)
34: else if (StealCheck = False) AND (length(ICList) <> 0) then
35: Algorithm 10 (Container Start/Resume);
36: fT ime← getActualT ime(); SchedLat← fT ime− sT ime
37: if SchedLat < SchedInt then sleep(SchedInt− SchedLat− 0.007)

Limit (CML) for each of the n running or paused containers (identified by the ACList).

NAHM(t) = THM − (
n∑

i=1

CMLi(t))−HRM(t) (5.2)

This is implemented in Line 19 of Algorithm 1 by substituting Equation 5.1 in Equa-

5.2 Phase 1: Calculate the Memory Demand of Inactive Containers 42

tion 5.2:

NAHM(t) = HAM(t)−
n∑

i=1

(CMLi(t)− CMUi(t)) (5.3)

Our approach manipulates the container’s memory limit (CML) rather than its actual

memory consumption since the Host Manager (HM) effectively considers that the CML

is the quantity of memory that is guaranteed for that running container, until the next

scheduling interval. Since a container will be unable to use more memory than the HM

has allocated, it cannot “steal” additional memory and interfere with memory allocation

of other containers. On the other hand, the HM must choose the value of each limit

carefully. Overestimating the value will leave resources idle while underestimating the

demand will force the container to use swap or perhaps even be killed by the operating

system because of a lack of available memory.

The concept of HRM goes some way to help prevent the host’s operating system

and its processes from stealing the memory of the running containers, given that these

processes have a higher execution priority than the co-located containers. Also, since the

principal motivation of this work is to improve host utilization, additional hurdles need

to be overcome when the sum of the memory limits of the active containers begin to

reach the total memory of the host. In practice, containers may be forced to use a swap

before actually reaching their respective set memory limits, i.e., prematurely from their

point of view. This can be compounded if the host’s processes use more memory than

that accounted for by HRM . In this case, this can cause memory theft from a running

container, even if the container’s consumption is below its respective CML, forcing it to

use swap before reaching the memory limit.

The principal motive behind these scenarios is the fact that modern operating systems

proactively swap out pages as memory becomes scarce. This behavior even affects how

much of their allocated memory containers can use before data is moved preemptively to

swap. To quantify this, we experimentally determined the Memory Usage Effectiveness

(MUE) of a container (Line 20). On our test host server, we found that containers can

only use around 99.8% of their limit (MaxMU defined in Line 3) before having to use

swap if the host’s memory usage does not exceed a 22.8 GiB threshold of the given the 24

GiB physically installed. The Host’s Memory Usage Threshold, HMUT , is also defined

in Line 3 but in terms of 4096 byte memory pages. However, as the amount of memory

being used rises above this threshold, the value of MUE deteriorates, as discussed in

the experimental analysis of Section 6.3 to define MUE. The rest of Algorithm 1 steps

through the remaining phases, if their respective prerequisite conditions are met.

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 43

5.3 Phase 2: Classify Running Containers by their Re-
cent Memory Consumption

This phase consists of classifying each of the active containers held in ACList and de-

termining which of the running containers will likely need to have their CML increased.

The amount of additional memory expected to be required by a container in the near

future is estimated based on its recent memory usage behaviour and is predicted using

the monitoring data obtained during the previous scheduling interval. This process can

be divided into three steps:

• Calculate the memory consumption rate of a container i in the ACList (line 7 of

Algorithm 4 which calls Algorithm 2).

• Classify container i based on its Memory Consumption Trends (MCTs) (line 8 of

Algorithm 4 calls Algorithm 3).

• Estimate the memory demand of container i and determine whether this container

will be a candidate to receive more memory or a candidate to give up memory for

other containers in need (Algorithm 4).

5.3.1 Container Memory Consumption Rate

In this step, the host and container execution metrics collected (which were described in

Section 4.2.1) during two overlapping windows of time (one long, the other shorter) are

used to specifically determine (in Algorithm 2) the average rate per second of memory

page in (PgIn) and page out (PgOut) operations for each container i.

Algorithm 2 starts by retrieving the monitored data metrics for two periods of time,

one long LongInt and the other short ShortInt both going back in time from the time

stamp of the last recorded set of metrics. The long window gets the metrics collected

during the entire previous scheduling cycle, while the short window covers a more recent

portion (approximately the last half cycle) in the same period. We use windows of time

to factor out noise in the measurements and two different windows (Lines 2 to 8) to avoid

misinterpreting the container’s memory consumption behavior during the last scheduling

cycle by trying to detect changes in the rates of consumption during the cycle. This helps

identify transitions in container behaviour early. In addition, the algorithm calculates the

average usage of swap memory (SU) and the number of major page faults (MPF), which

represent how many times it was necessary to bring pages in from swap into main memory.

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 44

Algorithm 2 Phase 2: MemConsumptionRate()
Require: Container i, LongInt, ShortInt
1: PgV ar ← 33
2: dataLlist, timeLlist← getContainerHistory(i, LongInt)
3: dataSlist, timeSlist← getContainerHistory(i, ShortInt)
4: wallLtime← timeLlist[0]− timeLlist[1]
5: wallStime← timeSlist[0]− timeSlist[1]
6: MDLati ← sT ime− timeSlist[0]
7: SUi ← (getSU(dataLlist[0])− getSU(dataLlist[1]))/wallLtime
8: MPFi ← getMPF (dataLlist[0])− getMPF (dataLlist[1])
9: if MPFi ≤MTMPF then MPFi ← FALSE

10: else MPFi ← TRUE

11: PgIni ← getPageIn(dataLlist[0])− getPageIn(dataLlist[1])/wallLtime
12: PgOuti ← getPageOut(dataLlist[0])− getPageOut(dataLlist[1])/wallLtime
13: PIS ← getPageIn(dataSlist[0])− getPageIn(dataSlist[1])/wallStime
14: if PgIni > 0 then
15: if PgIni ≤ PIS then MCi ← PIS + PgV ar
16: else MCi ← (PIS + PgIni)/2 + PgV ar

17: else MCi ← 0

18: PgIni ← PgIni >> 6;PgOuti ← PgOuti >> 6
19: return MCi, SUi,MPFi, PgIni, PgOuti,MDLati

The variable PgV ar is used to compensate for imprecise measurements of memory page

metrics by cgroups. On our system, we determined experimentally the variation between

successive measurements, in this case, 33 pages. The MDLat is the age of the most recent

metrics used to calculate the consumption rates (i.e., how out of date they were), which is

necessary to know in order to make accurate predictions. High precision is fundamental

to reducing spare reserved memory capacity and achieving high memory utilization but

this also increases the risk of using swap due to unforeseen events.

After this, Algorithm 2 then determines the page in (PgIn and PIS) and page out

rates (PgOut) during each data window (Lines 11 to 13). The PgIn counter is in-

cremented whenever the container needs a new memory page not already in the main

memory, independent of its origin, be it a new page or a page from swap. This metric

can be combined with the number of major page faults (MPF) to identify, if necessary,

the volume of pages brought back to the main memory from the swap, which is located

on disk. Similarly, the PgOut counter is incremented when the container removes pages

from the main memory, including pages sent to swap during swap-out operations.

In Lines 14 to 19, the algorithm then calculates the average memory consumption rate

(MC), comparing the numbers of pages created in memory during the long and short

windows. By basing decisions on rates of change over neither overly short or lengthy

time intervals, instead of using absolute metric values, this allows the algorithm to make

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 45

decisions that are less susceptible to noise or sporadic behaviour, and more flexible in

terms of the durations of the monitoring data window and the scheduling interval. In

addition to being more robust, the VEMoC controller’s control logic becomes simpler.

5.3.2 Container Memory Classification

With these rates of change determined, the approach makes a memory usage prediction

for each container for a future period of time, i.e., the next scheduling interval, first by

classifying the running containers according to one of the three Memory Consumption

Trends, defined in Algorithm 3. The logic for this implementation has been obtained

by the optimization of the 20 viable combinations (out of 108 possible permutations) of

the monitored metric rates. For further details regarding this optimization are presented

in the Annex B. The following three Memory Consumption Trends (MCTs) help us to

identify which containers are candidates for relinquishing memory and which containers

will likely need additional memory, based on their behaviour during previous scheduling

interval:

• RISING: Containers that had a non-zero PgIn count during the last scheduling

interval, i.e., those that required memory pages to be brought to RAM;

• FALLING: Containers that have voluntarily reduced their RAM consumption during

the last scheduling interval;

• STABLE: These are containers that do not fall into the two previous trends since

they had no page major faults occurring during the last scheduling interval, and their

memory and swap consumption was around zero, unless they were being forced to

swap out memory by VEMoC.

Algorithm 3 identifies the operating conditions that define the MCTs but focuses

on the containers that change MCT state and, when this does happen, a timestamp is

recorded. For example, any container that is performing swap-out operations (Lines 1 to

6) or that is allocating new memory pages in main memory (Lines 20 to 24) are classified

as RISING. Classified as STABLE are those containers that either do not consume any

memory (Lines 7 to 10), i.e., have no change their memory usage CMU , or those that

create more pages in memory than it sends to swap (Lines 17 to 19). The FALLING

trend is used to identify those containers that are voluntarily decreasing their memory

consumption (Lines 11 to 16).

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 46

Algorithm 3 Phase 2: MemClassification()
Require: Container i, Swap Usage SUi, Major Page Faults MPFi, Page In PgIni, PageOut

PgOuti
1: if MPFi = TRUE then
2: if MemRepoi = TRUE then
3: RepoSIi ← TRUE

4: if MCTi 6= RISING then
5: MCTi ← RISING
6: STi ← getActualT ime()

7: else if (PgIni = 0) AND (PgOuti = 0) then
8: if MCTi 6= STABLE then
9: MCTi ← STABLE

10: STi ← getActualT ime()

11: else if PgOuti ≥ PgIni then
12: if SUi = 0 then
13: if BlockRepoi = TRUE then BlockRepoi ← FALSE

14: if MCTi 6= FALLING then
15: MCTi ← FALLING
16: STi ← getActualT ime()

17: else if MCTi 6= STABLE then
18: MCTi ← STABLE
19: STi ← getActualT ime()

20: else
21: if BlockRepoi = TRUE then BlockRepoi ← FALSE

22: if MCTi 6= RISING then
23: MCTi ← RISING
24: STi ← getActualT ime()

25: MTTi ← getActualT ime()− STi
26: return MCTi,MTTi

In each case, the timestamp is kept to identify when the current state began. Each

scheduling interval, independently of whether or not container i changed its Memory

Consumption Trend MCTi, its Memory Trend Timer (MTTi) that maintains the total

continuous time the container has been in this state, is updated. This classification helps

identify the behavior of the running containers during each scheduling interval and is used

to decide if a container will need more memory or perhaps can provide memory for those

other containers in need.

5.3.3 Estimate Container Memory Demand

After the memory consumption classification, the running containers whose Container

Memory Limits (CML) should be increased are added to one of two lists, based on the

motive for their predicted memory consumption, using Algorithm 4. The amount by which

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 47

the CML should be increased is determined by a number of factors. First, the predicted

memory consumption for the next scheduling interval uses one of two average PgIn rates

per second – one over a longer interval of time and a second over a smaller one – as

calculated by Algorithm 2. A function of the higher of the two rates is adopted to account

for any acceleration or deceleration in memory consumption during the last scheduling

interval. The quantity of memory expected to be consumed is derived by multiplying this

rate by the time between when the latest monitoring data were collected and when the

CMLs will again be updated in the next scheduling cycle (see line 12 of Algorithm 4).

Second, the CML needs to be adjusted as the amount of the memory limit a container

can effectively use (MUE) may not be close to 100% (for the host and system installation

used in our experiments, the highest value of MUE was 99.8% of MaxMU) and which

decreases when the host begins to run out of memory (see Section 6.3 for further details).

Finally, adjustments may be needed if the containers have a predetermined maximum

memory consumption limit that should not be exceeded.

If a container’s existing CML is not likely to be sufficient to meet the predicted de-

mand for the next cycle, this RISING container will be placed in one of two lists depending

on whether or not Major Page Faults (MPFs) occurred during the previous scheduling

interval – indicating that the container realized swap-in operations. The InNeedList

identifies the RISING containers whose CMLs would be exceeded if their memory con-

sumption were to be extrapolated using their consumption rate calculated in Algorithm 2

but where no MPFs occurred. The RISING containers in the UrgentList while also likely

to exceed their CML, are presumed to likely incur further MPFs in the near future. If

no additional memory is given to the container, pages will have to be swapped out to

make room for incoming pages. If the swapped-out pages then have to be brought back to

memory at a later time, this will likely negatively impact the container’s execution time.

Therefore, priority for extra memory should be given to the container to compensate and

avoid page thrashing and future swap usage.

The ProviderList holds a list of containers that will not likely require their CML to

be increased during the next scheduling interval and thus, might be able to release some

of their “reserved” memory for the other containers in need. The variables InNeed and

UrgentNeed store the sum total of the each container i’s additional memory requirements,

∆Li, in their corresponding lists. These values are then used in Algorithms 1 and 7 to 9 to

determine the total outstanding additional memory demand for the running containers,

including the paused ones (Lines 45 to 47 of Algorithm 4) with their respective ∆L value

that was calculated during the cycle in which they were paused.

5.3 Phase 2: Classify Running Containers by their Recent Memory Consumption 48

Algorithm 4 Phase 2: Estimate Memory Demand
Require: Active Containers ACList, Schedule Interval SchedInt
1: InNeedList← []; UrgentList← []; ProviderList← []
2: InNeed← 0; UrgentNeed← 0
3: MemTest← 2000; MTMPF ← 33
4: for each Container i ∈ ACList do
5: Statei ← ContainerState(i)
6: if (Statei = RUNNING) then
7: MCi, SUi, MPFi, PgIni, PgOuti, MDLati ←MemConsumptionRate(i)
8: MCTi,MTTi ←MemClassif(i, SUi,MPFi, PgIni, PgOuti)
9: CMUi ← getMemoryUsed(i);

10: CMLi ← getMemoryLimit(i)
11: if MCTi = RISING then
12: ∆Mi ←MCi × (SchedInt+MDLati + SchedLat)
13: if MTTi < SchedInt then ∆Mi ← max(∆Mi, SpMemCap)

14: ∆Li ← (CMUi + ∆Mi)/MUE − CMLi

15: if ∆Li > 0 then
16: if CMLi + ∆Li > MaxMemLimi then ∆Li ←MaxMemLimi − CMLi

17: if MPFi = TRUE then
18: UrgentList.append(i); UrgentNeed← UrgentNeed+ ∆Li

19: else
20: InNeedList.append(i); InNeed← InNeed+ ∆Li

21: else ProviderList.append(i)

22: else if MCTi = STABLE then
23: if (MTTi < SchedInt/2) AND (RepoSIi = TRUE) then
24: BlockRepoi = TRUE; RepoSIi = FALSE
25: diff ← (CMUi − CMURepoi) >> 6
26: if diff ≥ 0 then RepoMLimi ← CMURepoi; MemRepoi ← FALSE

27: if (BlockRepoi = FALSE) AND (MTTi < SchedInt/2) then
28: NAHM ← NAHM + CMLi − (CMUi −MemTest)/MUE
29: CMLi ← (CMUi −MemTest)/MUE
30: if CMLi < MinMemLimi then
31: NAHM ← NAHM − (MinMemLimi − CMLi)
32: CMLi ←MinMLimi

33: MemRepoi ← TRUE; CMURepoi ← CMUi

34: LastRepoi ←MTTi; UpdateLRUi ← TRUE
35: setMemoryLimit(i, CMLi)
36: else if (((BlockRepoi = TRUE) AND (MTTi < SchedInt/2)) OR

(UpdateLRUi = TRUE)) then
37: UpdateLRUi ← FALSE
38: ∆Li ← (CMUi + SpMemCap)/MUE − CMLi

39: if (∆Li > 0) then
40: if CMLi + ∆Li > MaxMemLimi then ∆Li ←MaxMemLimi − CMLi

41: InNeedList.append(i); InNeed← InNeed+ ∆Li

42: else ProviderList.append(i)

43: else ProviderList.append(i)

44: else ProviderList.append(i)

45: else if (Statei = PAUSED) then
46: PauDemand← PauDemand+ ∆Li

47: PauCount← PauCount+ 1

5.4 Phase 3: Passive Memory Limit Reduction 49

Containers that have just changed their state and become classified as STABLE (i.e.

have no memory consumption for at least one scheduling interval) are subject to a tem-

porary, one scheduling cycle reduction to their CML in preparation for Phase 4. During

this and the following cycle (if the container continues to be STABLE), it is not added

to the ProviderList. Once all have been categorized, the total demand for additional

memory by running containers, including paused ones, can now be easily determined.

Additionally, provider containers can have their memory ’stolen’ if the HM detects

inactive memory in Algorithm 6 sending this quantity (or a swap-out rate) of inactive

memory to swap. However, if the container changes their memory state because of swap-

in operations, this container receive a block flag, which prevents it from having memory

removed until it regains its stability.

5.4 Phase 3: Passive Memory Limit Reduction

The two previous phases of Algorithm 1 have identified the total predicted memory de-

mand for the next scheduling interval. This third phase is only executed if host does

not already have sufficient free memory available (Line 26 of Algorithm 1). to meet the

demand. Since, in previous scheduling intervals, the Host Manager may have over esti-

mated a container’s memory reservation, Algorithm 5 is used in this phase in an attempt

to reduce the CML of those containers that have an excess allocation.

The containers, previously classified by Algorithm 3 as either FALLING or STABLE,

and RISING containers that did not need to have their CMLs increased, will have been

added to the ProviderList, as candidates to yield part of their memory limit for use by

other containers in need of more memory. Note that this does not involve the actual trans-

fer of any memory between containers. This is a bookkeeping operation to redistribute

excess amounts of the pre-reserved memory limit amongst containers. Any algorithm,

however, must try to avoid reducing the limit too far and cause the container to use swap

memory during the next scheduling interval.

Algorithm 5, initially determines how much memory a container in the ProviderList

is likely to consume until the next scheduling interval, using the current CMU , a quantity

of spare memory, SpareM , and the amount of memory needed by a RISING container

deltaM (Lines 2 to 4). SpareM is the maximum number of pages a container could

allocate, based in the MemWrRt rate of their host, until the next scheduling interval

SchedInt, less 20%. Should a previous stable container suddenly start accessing new

5.5 Phase 4: Active Memory Limit Reduction 50

Algorithm 5 Phase 3: Passive Memory Limit Reduction
Require: ProviderList, Memory Utilization Effectiveness (MUE), Non Allocated Host Mem-

ory (NAHM)
1: for each Container i ∈ ProviderList do
2: deltaM ← 0; SpareM ← SpMemCap× 0.8
3: if (MCTi = RISING) then
4: deltaM ← ∆Mi

5: if (CMUi + deltaM + SpareM) < (CMLi ×MUE) then
6: εi ← CMLi − (CMUi + deltaM + SpareM)/MUE
7: CMLi ← CMLi − εi
8: NAHM ← NAHM + εi
9: if CMLi < MinMemLimi then

10: NAHM ← NAHM − (MinMemLimi − CMLi)
11: CMLi ←MinMemLimi

12: setMemoryLimit(i, CMLi)

data, SpareM would be the amount of memory consumed before VEMoC could detect,

react and update the container’s CML.

In Algorithm 5, if the sum of CMU , deltaM and SpareM is below the effective

amount of memory (this takes into consideration the variable percentage of the total

memory limit that can be consumed, Memory Utilization Efficiency MUE) the container

has access to, the algorithm reduces the CML and adds the amount removed to the

quantity of currently non allocated host memory NAHM for later redistribution (Lines 5

to 8). If the new CML is below the container’s minimum memory limit (MinMenLim), a

container may suffer a loss of performance. To avoid this, the CML is set toMinMenLim

and the difference is removed from NAHM (Lines 9 to 11).

5.5 Phase 4: Active Memory Limit Reduction

This phase is more aggressive than Phase 3 and attempts to repossess memory from STA-

BLE containers in the ProviderList by forcing them to swap-out some of their inactive

memory, memory believed to be no longer necessary, at least in the short term. Note

that each container has its own LRU (Least Recently Used) list, identifying its active and

inactive memory pages. Through cgroups, the inactive anonymous variable returns the

size in bytes of the inactive memory pages listed in a container’s LRU list. VEMoC tries

to decrease the CML by an amount equivalent to the remaining memory demand or the

quantity of inactive pages available, whichever is smaller.

The LRU list classifies an page as inactive or “cold” when its contents have not ac-

cessed by the container application for a determinate period of time, which indicates page

5.5 Phase 4: Active Memory Limit Reduction 51

Algorithm 6 Phase 4: Active Memory Limit Reduction
Require: ProviderList, Non Allocated Host Memory (NAHM), Container Memory in Use

(CMUi), Container Memory Limit(CMLi)
1: RepoInt← 50; MinRepoThd← 256
2: TMemReq ←MemoryNeeded+ UrgentlyNeeded+ PauDemand
3: StealCheck ← False
4: sort(ProviderList, getMTT (C), decrescent)
5: Index← 0
6: while (TMemReq −NAHM > 0) AND (Index < length(ProviderList)) do
7: i← ProviderList[Index]
8: if (MCTi = STABLE) AND (BlockRepoi = FALSE) AND (CMUi > RepoMLimi)

then
9: βi ← getMemoryInactive(i)

10: if βi > MinRepoThd then
11: RepoL← min(SwpOutRt× SchedInt, TMemReq −NAHM)
12: if βi > RepoL then
13: βi ← RepoL

14: NAHM ← NAHM + βi
15: CMLi ← CMLi − βi
16: StealCheck ← True
17: LastRepoi ←MTTi
18: MemRepoi ← TRUE
19: if (CMLi ×MUE) < RepoMLimi then
20: NAHM ← NAHM − (RepoMLimi − CMLi ×MUE)
21: CMLi ← RepoMLimi/MUE

22: setMemoryLimit(i, CMLi)
23: else if (MTTi > LastRepoi + SchedInt×RepoInt) then
24: NAHM ← NAHM + CMLi − (CMUi +MemTest)/MUE
25: CMLi ← (CMUi +MemTest)/MUE
26: UpdateLRUi ← TRUE
27: if CMLi < MinMemLimi then
28: NAHM ← NAHM − (MinMemLimi − CMLi)
29: CMLi ←MinMemLimi

30: setMemoryLimit(i, CMLi)

31: else if (MCTi = STABLE) AND ((MTTi > LastRepoi +SchedInt×RepoInt)) then
32: BlockRepoi ← FALSE

33: Index← Index+ 1

candidates to swap-out. The increase in swap can also cause the Linux kernel to classify

more pages as inactive, by reducing the period of time a page is considered active or “hot”,

adding them to LRU list and thus offering further opportunities to obtain more space in

main memory for new pages.

The Linux kernel updates the LRU list whenever a process suffers memory stress.

Therefore, as soon as a container is reclassified as STABLE in Phase 2, VEMoC forces it

to swap out a small amount of memory, pages being chosen from the LRU list. This serves

two objectives: first, for the kernel to update the LRU list by reclassifying the container’s

5.6 Phase 5: Increase Container Memory Limits 52

active and inactive pages, and; second, to test if the container has pages in memory from

outside it current working set. If the pages that were swapped out are later required to be

brought back to RAM, the container is blocked from suffering larger memory repossessions

in Phase 4 and the MPFs caused will classify the container as RISING, in urgent need of

memory.

Initially, Algorithm 6 calculates the total memory demand (TMemReq) originating

from Algorithm 4 (Line 2). After this, sorts the ProviderList, in descending order of age

in the current MCT, prioritizing the containers that have been in a STABLE or FALLING

state for the longest, as the candidates to give up a portion of their CML (Line 4).

While Algorithm 6 is unable to meet the demand and there are candidates to donate

CML, it will try to reduce the CML of a container from ProviderList, by the amount

of existing inactive memory sufficient to meet the demand or by the maximum that the

host server can swap out in a single scheduling cycle, while maintaining the container’s

minimum memory requirements (Lines 6 to 22). Once a container has donated some of its

allocation, there is an interval of time, RepoInt before it can do so again. If a container

has not made a CML donation for a long time, i.e., longer than the RepoInt, Algorithm 6

will try to “steal” some of their CML (Lines 23 to 30). This will be repeated until the

demand is met or there are no more donors on the ProviderList.

5.6 Phase 5: Increase Container Memory Limits

This phase seeks to distribute non-allocated host memory (NAHM) to the containers in

need of additional memory. In terms of satisfying demand, Algorithm 7 considers three

groups of containers: priority is given to paused containers (Lines 1 to 13), followed by

those RISING containers already using swap (in the UrgentList, Lines 14 to 25) and

finally those containers in the InNeedList (Lines 26 to 40).

Since there might not be a sufficient amount of available memory for all containers

in each group, the containers are ordered by their total run time so far. This heuristic

ordering is used in this version of VEMoC as a simple approximation to ordering the con-

tainers by the shortest remaining execution time (information we assume is not available

a priori to the Container Manager). The motivation being that these containers are most

likely to release their resources sooner. Following this ordering, Algorithm 7 adopts an

all-or-nothing policy where it increases the limit of container i by the whole requested

amount (∆i) unless this would exceed the container’s maximum MaxMemLimi. If there

5.6 Phase 5: Increase Container Memory Limits 53

Algorithm 7 Phase 5: Increase Container Memory Limits
Require: inNeedList, InNeed, UrgentList, UrgentNeed, NAHM
1: if (NAHM > 0) AND (PauDemand > 0) then
2: sort(ACList, getRunningT ime(C), decrescent)
3: Index← 0
4: while (NAHM > 0) AND (Index < length(ACList)) do
5: i← ACList[Index]
6: if (getContainerState(i) = PAUSED) AND (∆Li ≤ NAHM) then
7: CMLi ← CMLi + ∆Li

8: NAHM ← NAHM −∆Li

9: setMemoryLimit(i, CMLi)
10: UnpauseContainer(i); Statei ← RUNNING
11: PauDemand← PauDemand−∆Li

12: PauCount← PauCount− 1

13: Index← Index+ 1

14: if (NAHM > 0) AND (UrgentNeed > 0) then
15: sort(UrgentList, getRunningT ime(C), decrescent)
16: Index← 0
17: while (NAHM > 0) AND (Index < length(UrgentList)) do
18: i← UrgentList[Index]
19: if NAHM ≥ ∆Li then
20: CMLi ← CMLi + ∆Li

21: NAHM ← NAHM −∆Li

22: setMemoryLimit(i, CMLi)
23: UrgentNeed← UrgentNeed−∆Li

24: UrgentList.remove(i)

25: Index← Index+ 1

26: if (NAHM > 0) AND (InNeed > 0) then
27: sort(InNeedList, getRunningT ime(C), decrescent)
28: Index← 0
29: while (NAHM > 0) AND (Index < length(InNeedList)) do
30: i← InNeedList[Index]
31: if (InNeed > NAHM) AND (MemRepoi = TRUE) AND (BlockRepoi =

FALSE) then
32: InNeed← InNeed−∆Li

33: inNeedList.remove(i)
34: else if NAHM ≥ ∆Li then
35: CMLi ← CMLi + ∆Li

36: NAHM ← NAHM −∆Li

37: setMemoryLimit(i, CMLi)
38: InNeed← InNeed−∆Li

39: inNeedList.remove(i)

40: Index← Index+ 1

is insufficient NAHM available to cover ∆i, then the container is left unsatisfied and the

algorithm checks the following containers to see if the remaining NAHM can completely

meet their respective demands.

If VEMoC cannot satisfy the needs of all the containers, Algorithm 1 will attempt

5.7 Phase 6: Pause or Suspend Containers 54

to adopt preemptive measures in Phase 6 to resolve the issue. On the other hand, if,

however, all containers have received their requested allocation and there is still some non-

allocated memory left, Algorithm 1 will move directly to Phase 7 and consider starting

new containers or resuming the suspended ones both being held in the list of inactive

containers ICList.

5.7 Phase 6: Pause or Suspend Containers

If the previous phase was unable to attend the predicted additional memory requirements

of all of the containers for the next cycle, this sixth phase looks to sacrifice one or more of

the containers to benefit the others. The approach proposes a combination of preemption

strategies - pausing and suspending containers. While suspension is used to release mem-

ory to redistribute among the remaining containers in need, pausing is used to protect the

performance of a running container that might otherwise have to use swap. While pausing

a container appears to bring little gain since its resources are not released back to the sys-

tem, there are two benefits: it reduces competition to access limit resources, e.g. memory

bandwidth, and; if only for a relatively short time while waiting for memory to become

available, could help avoid costly swap-in operations later that it might be incurred if left

running. While containers with online applications should not be paused or suspended,

this approach permits containers with batch-type applications to take advantage of spare

unused capacity on host servers.

In terms of scheduling, the costs of pausing and unpausing a container, and suspending

and then resuming a container, can have a significant impact on what and when certain

decisions have to be made. As the experimental analysis concluded in Section 6.2.2, the

latency to carry out suspension operations depend principally on the container’s memory

consumption at the time of the operation.

The proposed preemption scheme is divided in two algorithms: Algorithm 8 handles

the special case where only one container requires memory, while Algorithm 9 covers the

general case where more than one requires more memory and thus all of the running and

paused containers are candidates for suspension. When there is only one active container

on the host, care should be taken to avoid deadlock: Lines 9 to 16 of Algorithm 8 address

the case where the system is executing a single container and this container is in need of

memory, while Lines 17 to 23, handle the scenario where the system no longer has running

containers and so any available memory can be allocated to the single paused container.

5.7 Phase 6: Pause or Suspend Containers 55

Even though there is not enough memory to meet the container’s demand, the algorithm

will resume it after increasing the CML by what ever spare NAHM it has left. The final

scenario (Lines 5 to 8) is where only one of a number of running containers should have its

CML increased. Here, we opt to pause a container that is already using swap but leave a

container in the InNeed list running as we are still not certain that it is short of memory.

Algorithm 8 Phase 6: Handle Single Container Demand
Require: ACList, MemoryNeeded, ProviderList, NAHM, PauCount, PauDemand
1: RunCount← length(ACList)− PauCount
2: NumCount← length(UrgentList) + length(InNeedList)
3: if (NumCount+ PauCount > 1) then Algorithm 9
4: else if (NumCount = 1) then
5: if (RunCount > 1) AND (UrgentlyNeeded <> 0) then
6: i← UrgentList[0]
7: PauseContainer(i)
8: Statei ← PAUSED
9: else

10: if UrgentlyNeeded = 0 then
11: i← InNeedList[0]
12: else
13: i← UrgentList[0]

14: CMLi ← CMLi +NAHM
15: setMemoryLimit(i, CMLi)
16: NAHM ← 0
17: else if (RunCount = 0) then
18: i← ACList[0]
19: CMLi ← CMLi +NAHM
20: setMemoryLimit(i, CMLi)
21: UnpauseContainer(i)
22: Statei ← RUNNING
23: NAHM ← 0

Algorithm 9 employs container suspension. However, different from cost of pausing a

container which can be completed almost instantly, this operation can be costly in terms of

latency. The suspended container’s memory can only be returned to host for redistribution

once the suspension operation is complete, which (as seen in the experimental analysis

of Section 6.2.2) can be relatively time consuming as it depends on amount of memory

being used by the container at the time of suspension.

VEMoC thus opts to suspend one of the containers in need, which also reduces the

demand. The RUNNING or PAUSED container with a CML sufficient to attend the

predicted demand of the remaining active containers and that has the smallest memory

consumption CMU is chosen. If none satisfy this condition, VEMoC chooses the one

with the largest CML from the same group. If there are containers that did not receive

5.7 Phase 6: Pause or Suspend Containers 56

Algorithm 9 Phase 6: Container Suspension
Require: ACList, MemoryNeeded, ProviderList, NAHM, PauCount, PauDemand
1: SuspThd← 768× 1024
2: MemDemand← UrgentlyNeeded+MemoryNeeded+ PauDemand
3: Cands← NumCount+ PauCount− 1
4: MemAvail← NAHM
5: sort(ACList, Largest.CML.F irst())
6: Index← 0
7: Hold← FALSE
8: while (Cands > 0) AND (Index < length(ACList)) do
9: i← ACList[Index]

10: Statei ← getContainerState(i)
11: if (i ∈ UrgentList) OR (i ∈ InNeedList) OR (Statei = PAUSED) then
12: if Hold = TRUE then
13: if CMLi ≥MemDemand−∆Li then
14: if (CMUi < CMUj) OR (CMLj < MemDemand−∆Lj) then j ← i

15: Cands← Cands− 1
16: else
17: j ← i;Hold← TRUE

18: Index← Index+ 1

19: if Hold = TRUE then
20: if (j ∈ UrgentList) then
21: UrgentNeed← UrgentNeed−∆Lj

22: UrgentList.remove(j)
23: NumCount← NumCount− 1
24: else if (j ∈ InNeedList) then
25: MInNeed←MInNeed−∆Lj

26: inNeedList.remove(j)
27: NumCount← NumCount− 1
28: else if (Statej = PAUSED) then
29: PauDemand← PauDemand−∆Lj

30: PauCount← PauCount− 1
31: UnpauseContainer(j)

32: ContainerSuspend(j)
33: NAHM ← NAHM + CMLj

34: if CMUj ≤ SuspThd then
35: Algorithm 7 (Increase Container Memory Limits)
36: if (NumCount > 0 then
37: Index← 0
38: while (Index < length(UrgentList)) do
39: i← UrgentList[Index]
40: if ∆Li/SwapInRt > SchedInt+ SchedLat then
41: PauseContainer(i)

42: Index← Index+ 1

what they need, VEMoC calculates whether it would be worthwhile to pause them until

the next cycle rather than leave them running. To avoid waiting until the next cycle for

the memory of the suspended container to become available (detected automatically as

5.8 Phase 7: Start or Resume Inactive Containers 57

NAHM in future scheduling intervals), VEMoC estimates if the memory will be available

by the middle of the next cycle and if the waiting containers will have enough memory

capacity to continue running without impediment until then.

A special case is where only one remaining container requires memory. If it is the only

active container, VEMoC gives it what ever spare NAHM remains and leaves it running.

If it is a paused container, it is unpaused and VEMoC does the same. If there are other

containers running and the container is in UrgentList, it may be paused, if worthwhile,

(it is not suspended as there is no other container to benefit from its resources).

The suspension of a container is initiated from its respective container daemon with a

system call to the CRIU [19] checkpoint package. This program generates a checkpoint of

the running container and stops the container so that its execution can be resumed later on

the current host or on another one, if available, after migrating the suspended container.

While the operating system is expected to release the memory of suspended containers as

soon as possible, its availability will be identified as NAHM in future scheduling intervals.

5.8 Phase 7: Start or Resume Inactive Containers

This last phase is only executed if the host had sufficient non allocated memory to address

the predicted need of all of its running containers. Here, VEMoC uses any remaining

NAHM to first resume the suspended containers and then queued new ones. Initially,

the algorithm sorts the Inactive Container List (ICList) based on their queued time, thus

attempting to start (or resume) the oldest container first, available memory permitting.

Algorithm 10 repeats this action over the entire ICList as long as there is memory

available. The queue time is measured from the moment the container arrived at the host

and indicates how long the container has existed in the host.

If a container state is SUSPENDED, the VEMoC algorithm can only resume a con-

tainer if the amount of memory available is sufficient to cover the memory limit CML

plus its memory demand prior to its suspension (Lines 3 to 13). Similarly, if the container

state is QUEUED, it will only be started if there is sufficient available memory to attend

the application’s minimum memory limit, as defined during the user’s job submission

(Lines 14 to 24).

The Cloud Manager monitors the state of the queues of each of its hosts, in order

to balance the workload. Given that containers held in ICList are initial candidates for

migration, the Cloud Manager is responsible for determining if the container should be

5.9 Summary 58

Algorithm 10 Phase 7: Start or Resume Inactive Containers
Require: ICList, NAHM
1: sort(ICList, longest.QueuedT ime.first())
2: Index← 0
3: while (NAHM > 0) AND (Index < length(ICList)) do
4: i← ICList[Index]
5: Statei ← getContainerState(i)
6: if Statei = SUSPENDED then
7: if CMLi + ∆i ≤ NAHM then
8: NAHM ← NAHM − CMLi −∆i

9: CMLi ← CMLi + ∆i

10: ResumeContainer(Ci)
11: Statei ← RUNNING

12: Index← Index+ 1

13: Index← 0
14: while (NAHM > 0) AND (Index < length(ICList)) do
15: i← ICList[Index]
16: RequestMemoryi ← getRequestMemory(i)
17: if RequestMemoryi ≤ NAHM then
18: NAHM ← NAHM −RequestMemoryi
19: CMLi ← RequestMemoryi
20: StartContainer(i)
21: Statei ← RUNNING
22: RepoSIi ← FALSE; BlockRepoi ← FALSE
23: RepoMLimi ←MinMLimi

24: Index← Index+ 1

migrated to another host. The design of the Cloud Manager, being responsible for the

initial container allocation and any subsequent migrations, will be discussed elsewhere, as

it is not the focus of this work.

5.9 Summary

This chapter has discussed in detail the design and mechanics of the VEMoC controller

to manage vertical memory elasticity of containers. To evaluate the VEMoC algorithm

and find out how containers behave under various scenarios, the following chapter first

presents a series of experiments to motivate the configuration of VEMoC. This is then

followed by a comparison, in terms of a number of metrics, of the performance of VEMoC

with common scheduling algorithms used by commercial container orchestrators.

Chapter 6

Performance Evaluation and
Analysis

To configure the VEMoC algorithm and calibrate the values of some of the system specific

variables appropriately, it is necessary to understand the behavior of containers and the

host under different situations. To this end, after an initial section describing the setup

and configuration of the computing environment used in the evaluation, the following

three sections each present a series of experiments carried out to analyse aspects often

overlooked in other implementations: the costs of changing container states including

container suspension and performance difference between two leading container technolo-

gies; the necessity of the proposed Memory Utilization Effectiveness (MUE) function to

facilitate the use CML as a form of precisely controlling the memory allocation of a con-

tainer, and; the overheads associated with container virtualization and managing vertical

elasticity, respectively. After this, the next two sections help visualise the key adjust-

ments VEMoC makes to CML when executing jobs and then compares the performance

of VEMoC with some common scheduling approaches used by other state-of-the-art con-

tainer orchestrators. The final section, briefly evaluates the scalability of the VEMoC

architecture in terms of being able to manage increasing number of containers.

6.1 Experimental Setup

To evaluate the quality of our proposal, the VEMoC Host Manager has been implemented

in Python 3 and is capable of managing and monitoring the life cycle of containers while

applying vertical memory elasticity to improve server utilization. The python library

psutil (version 5.6.3) is used to collect the host metrics, while for container technology,

6.1 Experimental Setup 60

the tool supports both LXC (version 3.2.1) with its python API python36-lxc (3.0.4) and

Docker Community Edition (version 19.03.6) with its API (3.7.3).

The VEMoC system is composed of two modular services, the Cloud Manager and the

Host Manager, with their respective components mentioned in Section 4. Communica-

tion between managers occurs through sockets while access to a MariaDB database server

(10.4.12) and a MongoDB server (2.6.12) for the Local Database makes use of compatible

python MySQL connectors (2.2.9). We use the relational database (MariaDB) to store

the control information for the VEMoC architecture, such as the list of users, container

execution requests, executed container execution history, among other management in-

formation. To store the metrics collected by the Host Manager, we use the non-relational

database (MongoDB), due to the better performance when handling large volumes of

data.

Since the experiments presented here focus on maximizing host resource utilization,

all job requests from the Cloud Manager are sent to the same host. The host in question

runs CentOS Linux 7.7 with kernel version 4.20.11 on two Intel Xeon X5650 processors

(each with 6 cores at 2.67GHz) with hyperthreading enabled, 24 GiB of DDR3 RAM

memory, 8 GiB of Swap memory and 2 TB of disk space.

To simulate container applications, and precisely control memory access and usage,

some experiments presented in this chapter employ a number of synthetic memory in-

tensive jobs (J1 and J2), proposed in [67, 68] and a modification version of job J3,

denoted here as job J4. These jobs were designed highlight a classic failing of many

existing elasticity controllers to be able to differentiate between an application’s memory

consumption and its real requirements. By requirements, we mean the actual amount of

memory necessary to execute without suffering performance degradation. These proposed

jobs access a vector of a predetermined size sequentially, and repeatedly, a fixed number

of times to model different degrees of temporal data locality. This, these jobs can be used

to exemplify the main memory usage behaviors typically found during the execution of

an application, such as the continuous and increasing memory consumption (J1 and J2)

with different localities or the allocation of the entire data set and its manipulation over

time (J4).

While J1 accesses the elements of its entire vector of size M sequentially, and repeat-

edly, for a fixed number of iterations, J2 accesses its vector (with the same size M) in

blocks of size w (where w = M/4 in these experiments for illustrative purposes), for the

same number of iterations over each block. J3 is a mixture of two jobs, the first iteration

6.2 Container State Transition Costs 61

traverses the entire vector while subsequently iterating three times over each block. How-

ever, in our modification of J3, job J4 iterates over each block backwards, from the last

block of vector to the first, performing vector shrink and releasing the memory allocated

in the visited vector. All jobs have the same amount of work and memory demands,

but because of their distinct memory access patterns, their requirements differ over time.

This allows us to investigate how data locality and types of swap usage impact memory

elasticity and container scheduling. The vector size is large enough so that it and a block

do not fit into the host’s cache hierarchy.

6.2 Container State Transition Costs

Linux Containers, or LXC for short, is an operating system level virtualization technology

that allows the creation and running of multiple isolated Linux environments on a single

host. LXC uses cgroups to partition resource allocation into so called isolated namespaces.

Docker containers are considered more portable since they package a single application

and all of its dependencies in a virtual environment that can run on any Linux server since

the container itself relies on the functionalities provided by the infrastructure’s operating

system.

6.2.1 Container Creation and Destruction under Docker and LXC

Given the significant popularity of both Docker and LXC containers, the first set of

experiments presented here aim to identify the transition times between container states,

in relation to the respective container technology being employed. The graph in Figure 6.1

presents the average times in seconds to initialize a container from the inactive queue,

and the time to remove the finished container from the host and liberate its allocated disk

space. The results show that Docker appears to have a significant advantage over LXC

when starting a container (5 times quicker).

While Docker provides a single command to start a container, LXC breaks this opera-

tion into two steps: first, container creation decompresses the container image to a specific

sub-directory, after which the container can be booted. The average times for each of these

steps is presented in Figure 6.2. Having separate commands, however, means they can

be executed at different times. In this work, a container is created on submission to the

host and is inserted in the inactive queue. Later, when the HM determines appropriate,

the container will be started, assigned resources, and moved to the active queue. This

6.2 Container State Transition Costs 62

Figure 6.1: Average container initialization and termination times.

can help hide at least some of this relatively high overhead. If the average queuing time

were to be larger than the average time to create a LXC container, the effective cost to

start a container would then be significantly lower than Docker (less than 4% of the time

in comparison).

Figure 6.2: Breakdown of LXC container initialization time.

To verify the influence of the image size on the creation time, we repeat the experiment

with 2 other images, based on real applications: OpenJDK [55], a programming language

framework for Java and Elasticsearch[33], a distributed data analyzer. For LXC contain-

ers, the time to create and destroy a container depends on the size of the container image

after being decompressed, as seen in Table 6.1. For Docker containers, the time does not

6.2 Container State Transition Costs 63

depend on the size of the image, but the time to create a new layer to save the changes

made by the container instance, as seen in Table 6.2. These tables present the average

times to create, start and destroy a container under both technologies. Although the same

image is used for both, for LXC containers, the docker image is converted to an Open

Container Initiative (OCI) [12] image with Skopeo [69]. This conversion can generate an

image with different size from the original docker image, normally a little smaller than

the original, as observed in the Tables 6.1 and 6.2. Docker images are downloaded to the

local image repository apriori to minimize the influence on the creation and start time of

the Docker container. If an image were not to be available in the local repository, Docker

would need to download the image from an external hub first, adding the download time

to the creation and start time. Subsequent container creation operations need only to

create the new layer for each instance.

Table 6.1: LXC Create, Start and Destroy containers from images of different sizes.
Image Create (s) Start (s) Destroy (s) Size
Jobs 11.165 0.099 0.326 211 MiB

OpenJDK 20.617 0.096 0.331 498 MiB
Elasticsearch 31.371 0.100 0.393 735 MiB

Table 6.2: Docker Create + Start and Destroy containers from images of different sizes.
Image Create and Start (s) Destroy (s) Size
Jobs 2.778 1.201 368 MiB

OpenJDK 2.711 1.224 511 MiB
Elasticsearch 2.821 1.539 811 MiB

Although the Docker image is larger, the slower creation time for LXC can be ex-

plained as follows. The storage driver used by the Docker for this test is the DeviceMap-

per [29, 31] that allows containers to share a base image. One image is generally composed

of several read only layers. Each layer is a storage structure where successive changes made

to the image are saved, and represents the version of that image, much like a software

version controller. When a docker container is created, the image layers are mounted

as read only and a new layer is created with read/write permissions to save the changes

made during the execution of this instance of the container.

On the other hand, LXC must unpack the base image, which is stored in a compressed

OCI image format [12], and recreate the file system tree structure, Root Filesystem or

rootfs, inside a specific sub-directory in the host’s file system. This structure recreates a

copy of the file system hierarchy of the operating system to which the libraries, archives

and application files required during the execution of the container are added. The du-

6.2 Container State Transition Costs 64

ration of these unpacking and file system operations account for almost all of the cost to

initiate a submitted LXC container.

When destroying a container, the removal of the disk layer in a Docker container is

four times slower than the sub-tree removal for a LXC container. Being the last transition

in the life cycle of a container, since image sizes are relatively small in term device storage

capacities, the cost to destroy a container and free up disk space has little impact on

container management performance but has been included here for completeness.

6.2.2 Pausing and Suspending Containers under Docker and LXC

In terms of dynamic container management, the costs of Pausing and Unpausing a con-

tainer, and Suspending and then Resuming a container, are an important factor in schedul-

ing decisions. The costs in terms of scheduling latency depend principally on the con-

tainer’s memory consumption at the time of the operation. To investigate how the transi-

tion times between the states RUNNING and PAUSED and SUSPENDED, respectively,

vary, we control the memory consumption of a J1 job and trigger the transition of con-

tainer state when the consumption reaches a predetermined size, under both Docker and

LXC. The Pause operation, denominated Freeze in the terminology of container technolo-

gies, consists of pausing every processes running in the container, and the container itself.

But, different from suspension, the container’s resources are not returned to the operating

system after the freeze operation, nor is its state saved to disk (which would facilitate

its migration to another host). Unpausing the container returns it to a running state as

shown earlier in Figure 4.2.

Table 6.3: Average duration in seconds to Pause and Unpause containers varying memory
consumption under Docker and LXC.

Memory Used Pause Unpause
MUi Docker LXC Docker LXC
1 GiB 0.076 0.002 0.080 0.002
2 GiB 0.072 0.002 0.074 0.002
3 GiB 0.079 0.002 0.076 0.002
4 GiB 0.077 0.002 0.077 0.002
5 GiB 0.076 0.002 0.076 0.002
6 GiB 0.076 0.002 0.075 0.002
7 GiB 0.075 0.002 0.080 0.002
8 GiB 0.073 0.002 0.075 0.002

Analyzing the graphs in Figure 6.3 and Table 6.3, the times to pause and unpause a

container are extremely small in relation to suspending or resuming a container, being on

6.2 Container State Transition Costs 65

Figure 6.3: The average times to Pause and Unpause a container in relation to its memory
consumption, for Docker and LXC.

average 0.076 seconds for Docker but an order of magnitude smaller for LXC (around 0.002

seconds), for containers consuming between 1 and 8 GiB of memory. Effectively, for both

technologies, the transition cost to pausing or unpause a container will have little effect on

performance, only the duration the container remains in the paused state. VEMoC aims

to only pause in need containers (i.e., those that are swapping pages between memory

and swap) for the short time it takes to reclaim memory from suspended containers.

With respect to suspending and resuming containers, both technologies use CRIU [19]

(version 3.14) to generate a checkpoint that can be used later to restore the container’s

execution from the point it was suspended. The delay to carry out these operations

increases for containers with a higher memory consumption. This means that suspending

containers with lower memory consumption (MU) should allow the host to recover and

redistribute the corresponding memory earlier.

As shown in Figure 6.4 and Table 6.4, the corresponding suspend and resume opera-

tions in Docker are consistently much slower, with times increasing faster as the amount

of memory used by a container becomes larger. LXC suspend operations are one order

of magnitude faster than those of Docker, with the resume operations being one to two

orders better. Although container suspension may be a relatively new functionality in

Docker space, and further optimizations may be developed in the future, the stark con-

trast in performance is surprising. The times obtained for Docker might be acceptable

6.2 Container State Transition Costs 66

Figure 6.4: The average times to suspend/resume a container in relation to its memory
consumption.

Table 6.4: Average Suspend and Resume times in seconds for Docker and LXC containers.
Memory Used Suspend Resume

MUi Docker LXC Docker LXC
1 GiB 55.858 0.774 47.719 1.679
2 GiB 91.501 1.277 64.738 2.151
3 GiB 129.656 2.084 104.363 2.327
4 GiB 172.211 10.420 151.435 2.479
5 GiB 220.848 22.050 194.819 3.156
6 GiB 269.416 33.914 252.532 3.999
7 GiB 314.342 46.714 343.421 4.623
8 GiB 398.821 59.130 516.615 5.781

for checkpointing and restarting an extremely long running container that is executing

on a device that may fail. However, for applications of shorter duration, or big data

applications, the overheads may make the adoption of Docker as a container manager

impractical.

This aim of this work is not to enter in to the merits of one technology over the other,

but rather to gain an insight into the costs of operations relevant to managing the vertical

elasticity of containers. In the following experiments, we chose to use LXC because of its

significantly lower cost to suspend and resume a container, which are key operations in

the context of vertical memory elasticity.

6.2 Container State Transition Costs 67

Returning to the specific question of suspending LXC containers, from Figure 6.4 and

Table 6.4, we observe that the time taken for the container’s resources to be released

increases almost exponentially with respect the amount of memory being used by the

container. The resources of a suspended container will only be available after the check-

point is created and the container stops. Thus, the redistribution of memory by VEMoC

must wait the suspension operation of the container to complete. At first sight, from the

point of view of the host manager, it appears that, in most cases, it would be better to

suspend two smaller containers than a single one of the equivalent total size.

Figure 6.5: Average times to suspend or resume several LXC containers, that consumed
2GB of Memory, sequentially and in parallel.

Table 6.5: The average total times to suspend and resume several LXC containers con-
suming 2 GiB of memory, with commands executed sequentially and in parallel using
threads.

Suspension Time (s) Resumption Time (s)
No. of Containers Sequential Parallel Sequential Parallel

1 1.233 1.246 2.007 2.021
2 6.521 10.390 3.176 2.079
4 45.239 50.608 6.844 2.608
6 86.907 102.244 12.032 23.297
8 124.377 138.827 16.427 103.212

Figure 6.5 presents the average times to suspend 2, 4 and 8 containers (using 2 GiB

of RAM) during the same scheduling interval. Two approaches are considered: the first

6.2 Container State Transition Costs 68

Figure 6.6: Suspend and Resume Behaviors of an LXC container that consumes 2 GiB of
memory.

is a sequential approach where containers are suspended one command at a time, and;

second, by using threads to issue commands in parallel, the containers are suspended

simultaneously. Note that the durations are now longer than expected, in relation to the

sum of individual times presented in Figure 6.4. When suspending a container, its check-

point (image and state) has to be written to disk and the larger the checkpoint size the

longer the operation takes. If we overlap multiple suspension operations, the contention

to access disk impacts the suspension time of all containers. Furthermore, as disk writes

are non-blocking operations, subsequent sequentially issued suspension commands also

take longer since operations are being delayed by earlier ones. For example, if the host

manager needs 4 GiB of memory, based on Table 6.4, it appears to be better to choose to

6.3 Memory Utilization Effectiveness 69

suspend two 2 GiB containers rather than one of 4 GiB, but suspend them one at a time,

based on Table 6.5, rather than suspending both at the same time. In terms of resuming

multiple suspended containers, it appears that the best approach would be to allow up to

four containers to be resumed in parallel.

To observe the memory availability on the host during the suspension and resumption

of a container, we monitor the execution of a two loop J1 job that requires 2 GiB +

8 MiB, as seen in Figure 6.6. The 8 MiB of additional memory gives the experiment

target threshold to initiate the suspension function once MU ≥ 2 GiB. The container is

resumed from the suspended state 10 seconds after the end of the suspension operation.

The CML was set to 2 GiB plus 16 MiB to avoid forcing the container to use swap. The

monitor was set to collect container information every second and then go back to sleep.

Analysing the Figure 6.6, the host memory consumption (purple line) accompanies

the consumption behavior of the container (blue line) in execution. Note the host OS

consumes almost 800 MiB of RAM for its own data structures. 54 seconds into the

execution, the suspension initiates and after 2 seconds (2 monitoring cycles) completes,

stopping the container and releasing its 2 GiB of memory back to the host. Having been

recognized as available on the host, this memory could be used immediately for allocation

to other containers. The resume operation is scheduled to commence 10 seconds after the

suspension finished. The operation allows the container to restart its execution from the

point immediately before the suspension, restoring the same memory resources that were

used earlier and continuing the execution without subsequently affecting its performance.

6.3 Memory Utilization Effectiveness

Given a container memory limit (CML), its fair to assume that the container will have

unrestricted access to this amount of memory. However, there are scenarios where this is

not the case, especially given that the objective is to maximize the utilization of the host’s

memory. One must remember that this is a parameter of cgroups, used to guarantee that

the consumption of memory by a container does not exceed this predefined value. Its

definition does not necessarily imply that a container will be able to use this amount of

memory. For example, a container with a CML of 2 GiB does not guarantee that an

application that needs 2 GiB will be able to execute without an out-of-memory (OOM)

error or having to use swap. Thus, an elasticity controller cannot use CML alone to

manage memory elasticity.

6.3 Memory Utilization Effectiveness 70

Figure 6.7: Container Memory Utilization vs Effectiveness for a single container.

The following experiment aims to discover how much of a container’s CML can effec-

tively be used before the operating system begins moving data to swap, i.e., aims to find

its maximum memory utilization. The experiment first executes a single container with

different memory limits on a server with 24 GiB of physical RAM, starting with CML

of 1 GiB followed by increments of 1 GiB at a time. The container runs a J1 job that

consumes 128 MiB more memory than its CML to guarantee all the memory defined by

CML is used, while sending the rest to swap. Figure 6.7 presents the Memory Usage

Effectiveness (MUE) obtained by a single container, based on Equation 6.1 that uses the

Container Memory Usage at the first instant that the use of swap is detected.

6.3 Memory Utilization Effectiveness 71

MUE =
CMU

CML
(6.1)

Table 6.6: Memory consumption metrics as the CML of a single container is increased.
Data presented in Figure 6.7.

CML CMU MUE (%) HRM HTMU HAM
1 0.997 99.749 0.582 1.579 21.585
2 1.996 99.781 0.581 2.577 20.587
3 2.994 99.790 0.589 3.583 19.581
4 3.992 99.791 0.594 4.586 18.578
5 4.990 99.795 0.596 5.585 17.579
6 5.988 99.797 0.599 6.587 16.578
7 6.986 99.798 0.597 7.583 15.581
8 7.984 99.798 0.618 8.602 14.562
9 8.982 99.797 0.616 9.598 13.566
10 9.980 99.799 0.622 10.602 12.562
11 10.978 99.801 0.623 11.601 11.564
12 11.976 99.801 0.629 12.605 10.559
13 12.974 99.801 0.633 13.607 9.557
14 13.972 99.802 0.631 14.603 8.561
15 14.970 99.801 0.631 15.601 7.562
16 15.968 99.801 0.639 16.608 6.556
17 16.966 99.802 0.637 17.603 5.561
18 17.964 99.802 0.636 18.601 4.563
19 18.962 99.801 0.640 19.602 3.561
20 19.960 99.802 0.648 20.608 2.555
21 20.958 99.802 0.649 21.608 1.556
22 21.956 99.802 0.649 22.605 0.559
23 22.212 96.576 0.650 22.863 0.302
24 22.582 94.092 0.564 23.146 0.082

Table 6.7: Memory metrics for 2 containers as presented in Figure 6.8.
TCML TCMU MUE (%) HRM HTMU HAM

2 1.995 99.741 0.542 2.536 20.636
4 3.991 99.780 0.538 4.529 18.643
6 5.987 99.790 0.550 6.538 16.634
8 7.983 99.791 0.579 8.562 14.609
10 9.979 99.795 0.573 10.552 12.620
12 11.975 99.795 0.578 12.554 10.618
14 13.972 99.797 0.582 14.553 8.619
16 15.968 99.799 0.579 16.547 6.624
18 17.964 99.798 0.428 18.392 4.780
20 19.960 99.798 0.464 20.423 2.748
22 21.956 99.800 0.450 22.406 0.766
24 22.111 92.128 0.616 22.727 0.446

6.3 Memory Utilization Effectiveness 72

Observing Figure 6.7 and its corresponding Table 6.6, the containers were able to

use 99.8% of their limit before having to use the swap, but only while the host’s memory

usage does not exceed 22.8 of the 24 GiB physically installed. After that, the MUE drops

dramatically, affecting not only the container, but the other processes in the system,

as noted in the column HRM , which represents the memory usage of the other host

processes.

Figure 6.8: Container Memory Limit Utilization for 2 containers.

The following experiments extend this investigation to consider multiple concurrently

executing containers. TCML and TCMU are the sum of their respective CMLs and

CMUs, while HTMU is the host’s total memory usage. Given CMU is the maximum

quantity of memory used before swap usage occurred, MUE continues to be calculated

6.3 Memory Utilization Effectiveness 73

as the ratio of TCMU to TCML. As shown in Figure 6.8 and Table 6.7, we can observe

that the pattern remains with MUE tapering off as HTMU reaches the 24 GiB limit.

However, the fall is now more distinct as the two containers start to affect each other,

reducing the amount of memory that can be used effectively. A similar trend was observed

when running four containers simultaneously, Figure 6.9 and Table 6.8 that shows MUE

drops under 90%, and the total memory utilization, TCMU , does not even reach 22 GiB.

Figure 6.9: Container Memory Utilization for 4 containers.

Based on these experiments, we choose an upper bound for the value of HTMU ,

in terms of memory pages, to determine the value of the constant Host Memory Usage

Threshold (HMUT), as shown in Line 3 of Algorithm 1 presented earlier in Section 5.2)

and used a best-fit linear regression analysis to derive a function to adjust the percentage

MUE at each scheduling interval, in relation to the current amount of memory available

6.4 Container and Host Manager Overheads 74

Table 6.8: Memory metric values presented in Figure 6.9 for the execution of 4 containers
simultaneously.

TCML TCMU MUE (%) HRM HTMU HAM
4 3.990 99.757 0.745 4.735 18.440
8 7.983 99.783 0.737 8.719 14.456
12 11.975 99.791 0.603 12.578 10.598
16 15.967 99.792 0.788 16.755 6.421
20 19.959 99.795 0.784 20.744 2.431
24 21.479 89.497 0.817 22.296 0.880

on the host, HAM , as described in Lines 20 to 22 of Algorithm 1, during Phase 1 of

VEMoC.

6.4 Container and Host Manager Overheads

To determine reference execution times for the jobs, this set of experiments executed a

varying number of 4 GiB J1 or J2 jobs concurrently, on 3 different platforms: 1) directly

on the host server; 2) inside a LXC container; and 3) inside a LXC container managed

by VEMoC. Each execution was repeated 20 times, with Table 6.9 showing the average

times with 95% confidence intervals.

Table 6.9: Average execution times in seconds with 95% confidence intervals for 4 GiB
jobs on different platforms.

Number of Concurrent Containers 1 2 5
J1 job directly on the host 420.5 ±0.7 423.7 ±1.1 439.8 ±4.1
J1 job inside a LXC container 422.7 ±0.4 433.7 ±3.7 452.7 ±1.5
VEMoC managed J1 LXC container 422.8 ±0.9 428.4 ±2.5 445.3 ±1.5
J2 job directly on the host 422.2 ±0.7 422.9 ±0.6 436.5 ±7.0
J2 job inside a LXC container 421.2 ±0.6 428.7 ±5.0 450.0 ±1.4
VEMoC managed J2 LXC container 420.9 ±0.6 427.1 ±2.3 445.9 ±3.2

The times show in Table 6.9 that there is little overhead between all three scenarios.

In particular, VEMoC does not cause interference, while adjusting CML to dynamically

provide sufficient memory for the application. As the number of running jobs increases,

so does their average execution times as the jobs compete for memory bandwidth, as

expected. Although not conclusive, the results hint at VEMoC having a beneficial impact

on LXC container management.

To demonstrate how an application might be (or not be) affected by wrong decisions

when setting CML, we compare executions of 4 GiB J1 and J2 jobs with different fixed

6.4 Container and Host Manager Overheads 75

values for container’s CML. Remember that the codes of two jobs are almost identical,

both access each element of their vector 4 times. Given an unlimited amount of memory,

both jobs consume 4 GiB. The difference then between them is only their memory access

pattern, with J1 successively accessing each element of the vector once from the beginning

to the end before returning to access the first element again. In the case of J2, the vector

is divided into four blocks, with the elements of the first block being accessed sequentially

in a cycle 4 times before moving to the next block and repeating the same process before

progressing. The execution times of each job are shown in Figure 6.10.

Figure 6.10: The execution times of 4 GiB jobs J1 and J2 with different container memory
limits.

The performance of job J1 suffers degradation as CML drop below the value equiva-

lent to the size of the vector. On the other hand, J2 continues to execute with a consistent

duration while the CML remains larger than the size of the block (1 GiB in this case).

Since both jobs require at least 4 GiB memory, when executed with a smaller CML, the

respective containers will be forced to use swap. The difference in their execution times

is due to their different working sets and the Linux kernel’s least recently used (LRU)

page substitution policy when swapping pages out of memory. In the case of J1, the least

recently used pages that are swapped to disk to make room for the required pages are

themselves the ones that will need to be accessed again by the application in the near

future. The increase in the execution time in relation to one with a CML of a little more

(16 MiB) than 4 GiB is due to the additional delay caused by the swap in operations. A

slowdown for J2 only occurs when the CML is below 1 GiB + 16 MiB (16 MiB being

the amount of memory required by the container process itself to execute). Notice that

6.5 Managing Container Memory Limits 76

the 1 GiB limit coincides with the size of the vector processed within a block. Because

of data locality in J2, the working set size to process a block is only 1 GiB. The pages

of memory that are swapped out are no longer accessed, thus no swap in operations are

required to execute J2 although swap is being used. As one can see from Figure 6.10,

the differences in both the execution times and memory consumption are glaring. As far

as we know, VEMoC is the only container elasticity controller to make this distinction

and try to take advantage of it, although some previous work has been proposed in the

context of virtual machines [67, 68]

6.5 Managing Container Memory Limits

VEMoC dynamically adjusts the limit CML on the memory a container has access to

during its execution, without compromising its performance and without exceeding the

minimum and maximum memory limits of the job. To exemplify the dynamic changes

made to CML, this section first presents the execution an individual J1, J2 and J4 job,

each with a vector size of 4GiB, divided into 4 blocks in the case of jobs J2 and J4, and

1 block for J1.The Max Memory Limit (MaxML) is set to 16 MiB above the vector size

to allow the execution of 4 loops with sufficient available memory. All jobs start with the

Minimum Memory Limit (MinML) of 512 MiB.

The J1 job represents those applications that initially allocate their datasets to mem-

ory before processing the data during its execution. The staircase behavior present in

Figure 6.11 shows VEMoC (by way of Algorithms 2, 3, 4 and 7) proactively increasing

the CML of the container during the allocation of the entire vector in memory (and

execution of the first cycle). When the job completes this allocation phase its mem-

ory consumption remains stable (after 110 seconds, approximately), VEMoC maintains

CML = MaxML during the rest of the job execution, with sufficient spare memory to

avoid swap usage and performance degradation. Look carefully at what happens between

105 and 110 seconds, you might see a dip in the CML. This behaviour is related to

discussion related to non-working set memory at the end of the previous section and will

become clearer in the next example.

J2 aims to represent jobs who work on parts of their datasets, one or a few at a

time. Figure 6.12 shows that a J2 job reaches its first stability phase (after 25 seconds,

approximately, the equivalent to a quarter of the time to allocate 4 GiB). The pattern

of consumption repeats for each additional one of the four blocks. At similar points in

6.5 Managing Container Memory Limits 77

Figure 6.11: VEMoC predicting the memory demand of a J1 type job.

the first three phases, one can see that the CML is significantly higher than the memory

consumption of the container. VEMoC has included sufficient "spare capacity" to guard

against sudden changes in the container’s memory consumption, until the next scheduling

cycle. This spare capacity is maintained as long as the host has enough available mem-

ory but can be donated (through algorithm 5 to RISING containers in need additional

memory, should the host not have enough memory to serve them.

The valley presented in the green line of the CML, is where Algorithm 4 forces the

Linux kernel reclassify the containers active and inactive pages, given the container has

reached a STABLE state. This is so that Algorithm 6 can decide whether is container

could be a candidate from which memory can be removed, should the host not have enough

in the future. A small test is carried out by forcing a small amount of the container’s

memory to swap. VEMoC then waits to see it is then swapped back in. If not then the

6.5 Managing Container Memory Limits 78

Figure 6.12: VEMoC predicting the memory demand of a J2 type job.

container hold data from outside its current working set in memory. In Figure 6.12, we

see shortly afterwords that memory consumption returns to the previous level indicating

that the data is still part of the container’s working set.

J4 represents the somewhat rarer case where applications free up memory they are

no longer using during their execution. As seen in Figure 6.13, the initial behavior of

J4 is identical to that of J1, where the vector is being allocated to memory. When the

job finishes processing a block, J4 shrinks the vector, freeing the memory used by the

removed block. This is detected by VEMoC in Algorithm 4, which adjusts the CML

appropriately, while again updating the LRU page list, and then incorporating the spare

capacity, in case new data needs to be brought into memory before the next cycle.

6.6 Benefits of Vertical Memory Elasticity 79

Figure 6.13: VEMoC predicting the memory demand of a J4 type job.

6.6 Benefits of Vertical Memory Elasticity

The following three experiments demonstrate VEMoC’s ability to predict and adjust the

CML to meet the memory demands of each job in scenarios where insufficient memory

is available (and migration has been disabled). All containers begin with a minimum

memory limit of 512 MiB and are pinned to distinct CPU cores for the duration of their

executions.

The performance of VEMoC is compared with the following three commonly adopted

forms of defining memory limits for containers (loosely based on Kubernetes QoS termi-

nology):

• Guaranteed – with the limit set at the maximum amount of memory required, the

job will only be submitted when that amount is available;

• Fair Share - Prior to execution, the available memory is divided equally among the

6.6 Benefits of Vertical Memory Elasticity 80

jobs to be executed;

• Best Effort – Run jobs on arrival if the minimum memory limit is available. Contain-

ers can use what ever free memory is available, limited only by their own maximum

memory limit.

These comparisons are based on five 5 different metrics:

• The Total Scenario Execution Time (TSET) is the wallclock time from the first job

submission to end of the last job, in seconds;

• The Average Job Turnaround Time (AJTT) in seconds;

• The Average Memory Utilization (MemUtil) is the average for the scenario of each

of the job’s average percentage MemUtil (i.e., CMU
CML

) over their respective execution;

• The Total Memory-Time Product (TMTP) is a cost metric (in millions of page-

seconds) for clients, which considers the duration a quantity of memory was reserved

for, in that scenario, and;

• The Average Host Memory Utilization (AHMU) percentage that represents the ef-

fective use of the host’s memory during TSET.

6.6.1 Scenario 1: Two 4 GiB J1 jobs are submitted 50 seconds
apart to a host with 6 GiB of available memory

With insufficient memory for both identical jobs, orchestration with a Guaranteed policy

will run the jobs sequentially, while a Fair Share policy reserves 3 GiB for each. In the

case of Best Effort and VEMoC, ultimately, the amount of memory each job receives, and

when, depends on the relative delay between submissions. The difference between the

two resulting schedules is that VEMoC suspends the second job to release its memory

for use by the first (Phase 6). From the data in Tables 6.4 and 6.5, VEMoC does not

need to pause the first job since it will not be affected by the suspension delay. If the

interval between jobs had been larger, enough so that the first job had received all the

memory it required, the second job would have been paused by VEMoC, avoiding the

suspension and resume costs. Table 6.10 presents the metrics for each scheme and the

percentage difference in relation to VEMoC (red is how much worse, blue is how much

better, compared to VEMoC, the traditional approaches performed).

6.6 Benefits of Vertical Memory Elasticity 81

Table 6.10: Comparing allocation strategies under Scenario 1
TSET AJTT MemUtil TMTP AHMU

Guaranteed 843.2
(4.9%)

606.3
(2.6%)

87.1
(10.1%)

886.98
(10.9%)

58.1
(5.7%)

Fair Share 1245.2
(54.9%)

1193.2
(101,8%)

96.4
(0.5%)

1876.71
(134.6%)

92.2
(49.7%)

Best Effort 1284.0
(59.7%)

1236.9
(109.2%)

95.2
(1.8%)

2019.6
(152.5%)

92.8
(50.6%)

VEMoC 804.0 591.2 96.9 799.8 61.6

VEMoC performs better than the three orchestration policies in all of the metrics,

except for AHMU . VEMoC has a slightly better TSET and AJTT in relation to Guar-

anteed, because the second J1 job took advantage of some spare capacity before being

suspended when the host has used up its available memory. Fair Share and Best Effort

both force the containers to use swap which delays their executions significantly. However,

since both containers are executing concurrently, AHMU is high since all the available

memory is being used.

Nonetheless, our proposal reserves 152% and 134% fewer pages than Best Effort and

Fair Share, respectively, which means that VEMoC is the cheapest alternative for the

user, even compared to the Guaranteed, the most commonly employed policy by cloud

providers.

6.6.2 Scenario 2: One 4 GiB J2 job is followed by one 4 GiB J1
job, 100 seconds later, on a host with 6 GiB of available
memory

Memory accesses for the J2 job have more locality than those of J1. Phase 4 allows

VEMoC to identify that J2 may have pages in memory that it no longer needs and forces

J2 to swap them out, reducing its RAM consumption. VEMoC is thus able to obtain

the memory required for J1 without having to suspend or pause either job. Under a

Guaranteed policy, the jobs again run sequentially. However, under both Fair Share,

where the memory is divided evenly between both jobs, and Best Effort, where the J1

jobs consumes memory faster to obtain the 4 GiB it needs thus leaving the J2 job with

just 2 GiB, the jobs without their required amount of memory are forced to the use swap.

Remember though that job J2’s performance is not affected by swapping out pages and

thus both policies obtain a better TSET and AJTT (see Table 6.11) than Scenario 1. In

this scenario, although Best Effort now turns out to be better that Fair Share because J1

6.6 Benefits of Vertical Memory Elasticity 82

did not need to use swap, VEMoC is clearly still more efficient.

Table 6.11: Comparing allocation strategies under Scenario 2
TSET AJTT MemUtil TMTP AHMU

Guaranteed 841.1
(58.8%)

582.8
(36.7%)

73.1
(22.3%)

884.8
(50.6%)

48.8
(28.0%)

Fair Share 793.2
(49.8%)

561.8
(31.8%)

83.1
(11.7%)

883.6
(50.4%)

60.5
(10.8%)

Best Effort 637.9
(20.4%)

483.1
(13.2%)

71.1
(24.4%)

1002.7
(70.7%)

65.3
(3.7%)

VEMoC 529.7 426.2 94.1 587.5 67.8

6.6.3 Scenario 3: One 4 GiB J2 job is followed by five 4 GiB
J1, at 10 seconds intervals, using all the available mem-
ory (23.5GiB) on a host while sharing the Linux operating
system.

This scenario is designed to stress the host, given this workload would be require the con-

tainers to consume all the physical memory in the system to achieve good performance,

without leaving any for the operating system and other hosts processes. Table 6.12 shows

VEMoC again performs better and suffers less interference than the other three mecha-

nisms because of its awareness of MUE and its perception of HRM , reflected by the lower

MemUtil values. Guaranteed started all but one job on arrival, while Fair Share ran all

jobs concurrently (as reflected by a higher AHMU) but with less than ideal amounts of

memory. With 3 of the J1 jobs acquiring sufficient memory helped Best Effort’s AJTT.

Table 6.12: Comparing allocation strategies under Scenario 3.
TSET AJTT MemUtil TMTP AHMU

Guaranteed 867.8
(59.6%)

506.9
(3.1%)

82.6
(11.8%)

2788.4
(5.4%)

42.8
(42.2%)

Fair Share 779.6
(43.4%)

663.6
(35.0%)

84.9
(9.3%)

4093.0
(54.7%)

73.7
(0.4%)

Best Effort 715.1
(31.5%)

543.4
(10.5%)

72.6
(22.4%)

4407.8
(66.7%)

63.0
(14.9%)

VEMoC 543.6 491.7 93.6 2644.9 74.0

Moreover, VEMoC achieves an average of 74% host utilization, while allocating at

least 50% fewer pages than Best Effort and Fair Share, and a per container latency that is

at least 11% better than them. In summary, VEMoC is consistency better independently

of the metric adopted.

6.7 Scalability Analysis 83

6.7 Scalability Analysis

To evaluate the ability of VEMoC to manage increasing numbers of containers, a final

scenario is considered where several small J1 jobs (with a working set of 1 GiB) are sub-

mitted for execution at 5 second intervals between them, simulating the submission of

micro-services to a (function-as-a-service) host. Each job is executed in a distinct con-

tainer whose execution is managed by VEMoC, executing under its default configuration

where its host monitor is activated every second and the scheduling interval was 6 seconds.

Table 6.13: Execution of small J1 jobs with VEMoC, starting the jobs in intervals of 5
seconds.

Nº of Jobs AJTT Monitor Avg. Time CM Avg. Time
1 106.1 ±0.6 0.045 ±0.01 0.106 ±0.01
5 115.3 ±3.8 0.247 ±0.01 0.575 ±0.04
10 119.5 ±5.9 0.507 ±0.03 1.171 ±0.14
15 118.5 ±5.3 0.940 ±0.01 2.262 ±0.30

Table 6.13 presents the AJTT , the average time to monitor all of the running con-

tainers, and VEMoC’s Container Manager (CM) processing latency per scheduling cycle.

After completing their respective cycles of execution, both the host monitor and VEMoC

container manager sleep for the time remaining to complete their respective monitoring

or scheduling interval. The execution times were collected from the tool’s log file of the

same execution.

Analysing the results presented in the Table 6.13, VEMoC is able to collect statistics

from up to 15 containers, simultaneously, within the same second. The host monitor

collects statistics from each container’s cgroup files through the LXC API. On our host

system, this information is stored on standard SATA hard disks and without redundancy

or mirroring (RAID), thus improvements might be expect through the optimized use of

high speed storage devices, such as Solid State Drives (SSD).

As for the Container Manager, it was able to manage the same number of containers

in less than half of the total scheduling interval of 6 seconds, demonstrating that VEMoC

can scale from a few containers with heavy jobs to many containers with small jobs.

Nevertheless, these are still varying non-trivial latencies that have had to be taken into

consideration by the prediction model used by VEMoC. Although, we do not expect to

running significantly higher numbers of containers, these two intervals could be enlarged

to permit the effective management of greater numbers of container per host.

Chapter 7

Conclusions and Future Work

The rapidly increasing adoption of cloud computing has turned it into a multi-billion dollar

business. Cloud providers offers computing resources and services, on demand, over the

Internet, while aiming to quickly adjust the amount of resources to meet customer needs,

without over- or under-provisioning, and thus be able to charge each user for exactly what

was used. With high computing capacities capable of processing large volumes of data, the

cloud is making computing more accessible, reducing operational costs and accelerating

the time to generate results and develop products. With the increasing demand for the

use of the cloud, these providers must continue to search for new solutions to make

the utilization of server machines in their data centers even more efficient, as well as

guaranteeing good levels of quality of service for their users at lower costs and in a more

sustainable way.

To make computing more efficient, cloud providers offer virtual environments that

share the available computing infrastructure. Much has been analyzed regarding the

use of container virtualization technology [32, 58]. Containers are minimalistic virtual

environments, with resource allocation being based on the application to be executed,

that share the operating system with the host server, and do not require specialized

hardware for virtualization, as opposed to virtual machines. However, this technology is

still in the process of consolidation and continues to face several challenges related to the

dynamic allocation of resources, and the monitoring and management of the quality of

service being offered to cloud users [3].

A preliminary evaluation, summarised in Appendix A, concluded that, in general,

container virtualization has performance and efficiency advantages over virtual machines.

Results such as these appear to be motivating an increased migration towards container

based cloud services including serverless computing. Increasing the efficiency of these

7 Conclusions and Future Work 85

types of services is of financial and operational importance to cloud providers and moti-

vated the the theme of this thesis. Additionally, with the trend in microprocessor devel-

opment towards an ever-increasing numbers of cores per socket over the last decade, the

performances of applications have become increasing more sensitive to the availability of

memory. This thesis has therefore presented VEMoC, a container orchestration tool to

manage the life cycle of containers allocated to a host for execution. VEMoC is equipped

with an algorithm to enhance the containers with vertical memory elasticity in order to

increase server utilization without adversely affecting individual container performances.

This thesis initially introduced the basic concepts of containerization and elasticity

in Chapter 2, while briefly describing in Chapter 4 the design and implementation of a

scalable modular cloud architecture that collects a variety of resource utilization metrics

used by VEMoC to make iterative memory allocation decisions during scheduling cycles.

The cloud management architecture itself is a conventional two-level hierarchy that en-

compasses multiple VEMoC instances. Described in detail in Chapter 5, the VEMoC

orchestration algorithm executes a sequence of 7 stages in each scheduling interval to

manage the life-cycle of the set of queued containers. The algorithm incorporates a num-

ber of novel features, including: low overheads, thus higher performance, due to a simple

control logic afforded by evaluating container consumption trends rather than making

decisions based on absolute values; a focus on the distribution of the host’s memory re-

sources and not just individual container’s elastic allocation; the recovery of both unused

and underutilized memory; uses a proposed Memory Utilization Effectiveness (MUE)

metric to take into consideration the change in behaviour of the Linux operating system

under extremely high memory utilization, the scenario where an orchestrator like VEMoC

is of fundamental importance, and; the possibility of stopping or pausing the execution

of some containers to favor the execution of others.

A series of experimental evaluations elaborated in Chapter 6 demonstrated the tech-

nique of vertical memory elasticity, with Docker and LXC containers within the context of

the VEMoC architecture. In order to make accurate predictions, the first experiments aim

to understand the mechanics of how containers behave with respect to changes in mem-

ory usage limits, the duration of container state transitions and data collection latencies,

and the costs to pause/unpause and suspend/resume containers with varying amounts of

memory consumption. One aspect, not previously seen discussed in other research, is that

a container ability to utilize all of the memory within its memory limit (CML) depends

on the proportion of free memory on the host. A new metric MUE was proposed to

address this issue.

7 Conclusions and Future Work 86

A comparative evaluation on a physical server has shown VEMoC to be more efficient

than existing approaches adopted by production services such as [44]. This is the case

not only in terms of memory utilization (with VEMoC constantly sustaining utilization

efficiencies above 90%) and job turn around times (where VEMoC can be as much as

twice as fast) but also in terms of lowering costs for clients, being at least 50% more

efficient in the majority of the comparisons. Note that traditional threshold or capacity-

based vertical elasticity approaches have their peak utilization efficiencies bounded by

their chosen threshold value, typically between 70% and 80% [2, 48]. The sustained or

average memory utilization over the execution of the container can therefore be signif-

icantly lower than this. By considering memory read/write speeds, together With the

asynchronous monitoring data collection and low scheduling cycle time, VEMoC is able

to track the memory consumption of containers and adjust their limits, without causing

their respective applications use swap unnecessarily.

Another aspect that has not been discussed much is VEMoC’s robustness. While

operating systems frequently kill processes when the host runs low on memory, cloud

orchestrators, like Google’s Borg system, may kill containers that consume more RAM

than expected. In fact, Kubernetes [44] adopts the philosophy that swap space is not

needed (and should be disabled on the host) since its containers (pods) should have a

memory limit set high enough to meet its application’s maximum requirement and only

be allocated to a host with resources available to meet this limit (Guaranteed QoS).

Nevertheless, if a host runs low on memory or a container reaches that limit, an Out of

Memory (OOM) exception may cause the container to be “killed” by host’s OS. This leads

to wasted resource consumption and longer completion times.

VEMoC does not require a priori knowledge about the requirements of the applica-

tions running in the container instead uses page level predicted memory consumption

rates, rather than arbitrary usage thresholds for fine-grained vertical elasticity of mem-

ory, combined with the prudent use of memory stealing and container preemption. Across

a set of scenarios, comparing VEMoC with 3 scheduling strategies widely used in other

container orchestrators, VEMoC demonstrated superior performance, even where memory

becomes extremely scarce. Moreover, the VEMoC demonstrated its scalability by manag-

ing 15 containers running simultaneously consuming less than half of the scheduling cycle

time available. Through its dynamic mechanism VEMoC is able to adjust for varying

monitoring and scheduling times, which permits it to scale to cope with larger quantities

of containers on each host of a cloud infrastructure.

7 Conclusions and Future Work 87

Some of the work and results derived from this thesis have been presented at the 2020

IEEE International Conference on Utility and Cloud Computing [53]. Although the ex-

perimental results presented in this thesis were primarily obtained with LXC containers,

VEMoC does work with other container engines such as Docker. In the specific case of

Docker, some improvements in the host monitor are needed because a limitation found

in the Docker API that makes it impossible to monitor the host and multiple containers

simultaneously, every second. This perhaps could be resolved by substituting the default

Docker API function to collect the monitoring metrics with an container independent

one that can parse the cgroups system files directly. Furthermore, the container sus-

pension functionality available in Docker is still experimental, which is perhaps motive

for its relative poor performance in relation to LXC. One can only expect the suspen-

sion and resumption costs for Docker to improve with further development in the future.

Meanwhile, alternative checkpoint library implementations for Docker and other container

engines should be evaluated.

Other avenues of future work also include extending VEMoC to other container en-

gines through the creation of a corresponding compatible container module for each new

container engine. This would also allow VEMoC to be integrated with other orchestration

systems, like Kubernetes, to offer more flexible autoscaling features. Furthermore, having

a modular architecture, VEMoC can also be used for the elaboration and evaluation of

new scheduling policies for container-based infrastructures.

The VEMoC architecture and tool has been developed and deployed in real environ-

ments, including public cloud infrastructures, within evaluations carried out in situ, rather

than using data collected through simulations. VEMoC also supports the elastic manage-

ment of CPU utilization and follow on work might want investigate how to integrate CPU

throttling with memory elasticity to reduce the number of expensive preemption events

to improve performance and costs.

References

[1] Advanced Micro Devices, Inc. AMD Virtualization. http://www.amd.com/
pt-br/solutions/servers/virtualization, 2016. Accessed on: 10/08/2016.

[2] Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Autonomic vertical
elasticity of docker containers with elasticdocker. In 2017 IEEE 10th international
conference on cloud computing (CLOUD) (2017), IEEE, pp. 472–479.

[3] Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Elasticity in cloud
computing: State of the art and research challenges. IEEE Transactions on Services
Computing 11, 2 (2018), 430–447.

[4] Al-Dhuraibi, Y.; Zalila, F.; Djarallah, N. B.; Merle, P. Coordinating
vertical elasticity of both containers and virtual machines. In CLOSER 2018 - The
8th International Conference on Cloud Computing and Services (2018).

[5] Anton, V.; Ramón-Cortés, C.; Ejarque, J.; Badia, R. M. Transparent execu-
tion of task-based parallel applications in docker with comp superscalar. In Parallel,
Distributed and Network-based Processing (PDP), 2017 25th Euromicro International
Conference on (2017), IEEE, pp. 463–467.

[6] Apache Software Foundation. Apache mesos. http://mesos.apache.org/,
2017. Accessed on: 01/07/2017.

[7] Badger, L.; Grance, T.; Patt-Corner, R.; Voas, J. Cloud computing synop-
sis and recommendations. Tech. rep., National Institute of Standards and Technology,
05 2012.

[8] Baruchi, A.; Midorikawa, E. A survey analysis of memory elasticity techniques.
In Euro-Par 2010 Parallel Processing Workshops, vol. 6586 of LNCS. Springer, 2011,
pp. 681–688.

[9] Bernstein, D. Containers and cloud: From LXC to Docker to Kubernetes. IEEE
Cloud Computing 1, 3 (2014), 81–84.

[10] Biederman, E.; Kerrisk, M. Namespaces - overview of linux namespaces.
http://man7.org/linux/man-pages/man7/namespaces.7.html, 2017. Accessed
on: 15/06/2017.

[11] Biederman, E. W.; Networx, L. Multiple instances of the global linux names-
paces. In Proceedings of the Linux Symposium (2006), vol. 1, pp. 101–112.

[12] Boulle, J. Open container iniciative image format specification. https://
github.com/opencontainers/image-spec/blob/master/spec.md, 2017. Accessed
on: 05/03/2020.

References 89

[13] Calatrava, A.; Romero, E.; Moltó, G.; Caballer, M.; Alonso, J. M. Self-
managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future
Generation Computer Sys. 61 (2016), 13–25.

[14] Canonical Ltd. LinuX containers - lxc. https://linuxcontainers.org/lxc/
introduction, 2020. Accessed on: 27/02/2020.

[15] Canonical Ltd. What is lxd? https://linuxcontainers.org/lxd/
introduction/, 2020. Accessed on: 22/06/2020.

[16] Citrix Systems Inc. Citrix hypervisor. http://xenserver.org/, 2020. Accessed
on: 10/08/2020.

[17] Cloud Native Computing Foundation. Containerd. https://containerd.
io/, 2020. Accessed on: 20/07/2020.

[18] Coutinho, E. F.; Sousa, F.; Rego, P.; Gomes, D.; de Souza, J. Elasticity in
cloud computing: A survey. Annals of Telecommunications 70, 7 (2015), 289–309.

[19] CRIU contributors. Checkpoint/restore in userspace - CRIU. https://criu.
org/, 2017. Accessed on: 15/06/2017.

[20] Cuadrado-Cordero, I.; Orgerie, A.-C.; Menaud, J.-M. Comparative exper-
imental analysis of the quality-of-service and energy-efficiency of vms and contain-
ers’ consolidation for cloud applications. In International Conference on Software,
Telecommunications and Computer Networks (SoftCOM 2017) (sept 2017), pp. 1–6.

[21] Dawoud, W.; Takouna, I.; Meinel, C. Elastic virtual machine for fine-grained
cloud resource provisioning. In Proc. of the 4th International Conference on Global
Trends in Computing and Communication Systems (2012), Springer, pp. 11–25.

[22] de Alfonso, C.; Calatrava, A.; Moltó, G. Container-based virtual elastic
clusters. Journal of Systems and Software 127 (2017), 1–11.

[23] de Almeida, J. M. B. Container, o novo passo para a virtualização. Mini
Paper Series of Tecnology Leadership Council Brazil 10, 234 (2015). Disponível
em https://www.ibm.com/developerworks/community/blogs/tlcbr/resource/
mp/TLC-BR_Mini_Paper_Ano_10_N_234_Containers.pdf?lang=en.

[24] de Souza Munoz, M.; De Giovanni, R.; de Siqueira, M.; Sutton, T.;
Brewer, P.; Pereira, R.; Canhos, D.; Canhos, V. Openmodeller: a generic
approach to species’ potential distribution modelling. GeoInformatica 15, 1 (2011),
111–135.

[25] Docker Inc. Docker engine user guide. https://docs.docker.com/engine/
userguide/, 2016. Accessed on: 01/07/2016.

[26] Docker Inc. About images, containers, and storage drivers. https:
//docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/,
2017. Accessed on: 17/06/2017.

References 90

[27] Docker Inc. Docker overlay network - get started with multi-host
networking. https://docs.docker.com/engine/userguide/networking/
get-started-overlay, 2017. Accessed on: 17/06/2017.

[28] Docker Inc. Docker get started. https://docs.docker.com/get-started/, 2020.
Accessed on: 27/02/2020.

[29] Docker Inc. Docker storage drivers. https://docs.docker.com/storage/
storagedriver/select-storage-driver/, 2020. Accessed on: 27/02/2020.

[30] Docker Inc. Swarm mode overview. https://docs.docker.com/engine/swarm/,
2020. Accessed on: 27/02/2020.

[31] Docker Inc. Use the device mapper storage driver. https://docs.
docker.com/storage/storagedriver/device-mapper-driver/, 2020. Accessed
on: 22/06/2020.

[32] Dua, R.; Raja, A. R.; Kakadia, D. Virtualization vs containerization to support
paas. In Cloud Engineering (IC2E), 2014 IEEE International Conference on (2014),
IEEE, pp. 610–614.

[33] Elasticsearch B. V. What is elasticsearch? https://www.elastic.co/pt/
what-is/elasticsearch, 2020. Accessed on: 22/06/2020.

[34] Farokhi, S.; Jamshidi, P.; Lakew, E. B.; Brandic, I.; Elmroth, E. A hybrid
cloud controller for vertical memory elasticity: A control-theoretic approach. Future
Generation Computer Sys. 65 (2016), 57–72.

[35] Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance
comparison of virtual machines and linux containers. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS) (2015), pp. 171–
172.

[36] Friedl, S. Go directly to jail: Secure untrusted applications with chroot. Linux
Magazine (2002).

[37] Galante, G.; de. Bona, L. C. E. A survey on cloud computing elasticity. In 2020
IEEE/ACM 5th International Conference on Utility and Cloud Computing (UCC)
(2012), p. 263–270.

[38] Geller, G. N.; Melton, F. Looking forward: Applying an ecological model web
to assess impacts of climate change. Biodiversity 9, 3-4 (2008), 79–83.

[39] Google. Vertical pod autoscaling. https://cloud.google.com/
kubernetes-engine/docs/concepts/verticalpodautoscaler, 2020. Accessed on:
05/07/2020.

[40] Herbst, N. R.; Kounev, S.; Reussner, R. Elasticity in cloud computing: What
it is, and what it is not. In 10th International Conference on Autonomic Computing
(ICAC 13) (San Jose, CA, June 2013), USENIX Association, pp. 23–27.

References 91

[41] Hong, C.-H.; Varghese, B. Resource management in fog/edge computing: A
survey on architectures, infrastructure, and algorithms. ACM Comput. Surv. 52, 5
(Sept. 2019).

[42] Intel Corporation. Intel Virtualization Technology (Intel VT).
http://www.intel.com.br/content/www/br/pt/virtualization/
virtualization-technology/intel-virtualization-technology.html, 2016.
Accessed on: 10/08/2016.

[43] Kloh, H.; Rebello, V. E. F.; Boeres, C.; Shulze, B.; Ferro, M. Static job
scheduling for environments with vertical elasticity. Concurrency and Computation:
Practice and Experience 32, 19 (2020).

[44] Kubernetes contributors. Kubernetes. https://kubernetes.io/, 2017. Ac-
cessed on: 01/07/2017.

[45] KVM contributors. Kernel virtual machine. http://www.linux-kvm.org/page/
Main_Page, 2016. Accessed on: 10/08/2016.

[46] Linux Foundation. Open container initiative. https://www.opencontainers.
org/, 2017. Accessed on: 10/06/2020.

[47] Menace, P.; Jackson, P.; Lameter, C. Cgroups. https://www.kernel.org/
doc/Documentation/cgroup-v1/cgroups.txt, 2017. Accessed on: 15/06/2017.

[48] Moltó, G.; Caballer, M.; de Alfonso, C. Automatic memory-based vertical
elasticity and oversubscription on cloud platforms. Future Generation Computer
Systems 56 (2016), 1–10.

[49] Morabito, R. Power consumption of virtualization technologies: An empirical
investigation. In 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC) (Dec 2015), pp. 522–527.

[50] Muhammad, H. htop - an interactive process viewer for unix. http://hisham.hm/
htop/, 2016. Accessed on: 01/07/2016.

[51] Najjar, A.; Serpaggi, X.; Gravier, C.; Boissier, O. Survey of Elasticity Man-
agement Solutions in Cloud Computing. In Continued Rise of the Cloud: Advances
and Trends in Cloud Computing, Z. Mahmood, Ed. Springer New York, July 2014,
pp. 235–263.

[52] Naskos, A.; Gounaris, A.; Sioutas, S. Cloud Elasticity: A Survey. In Algo-
rithmic Aspects of Cloud Computing (ALGOCLOUD 2015), I. Karydis, S. Sioutas,
P. Triantafillou, and D. Tsoumakos, Eds., vol. 9511, LNCS. Springer Berlin, Germany,
July 2016, p. 151–167.

[53] Nicodemus, C. H.; Boeres, C.; Rebello, V. E. F. Managing vertical memory
elasticity in containers. In 2020 IEEE/ACM 13th International Conference on Utility
and Cloud Computing (UCC) (2020), pp. 132–142.

[54] Oracle Corporation. Oracle VirtualBox. https://www.virtualbox.org/, 2017.
Accessed on: 01/07/2017.

References 92

[55] Oracle Corporation. Openjdk. https://openjdk.java.net/, 2020. Accessed
on: 22/06/2020.

[56] Pahl, C. Containerization and the paas cloud. IEEE Cloud Computing 2, 3 (2015),
24–31.

[57] Paraiso, F.; Challita, S.and Al-Dhuraibi, Y.; Merle, P. Model-driven
management of docker containers. In 9th IEEE International Conference on Cloud
Computing (CLOUD 2016) (San Francisco, CA, USA, Jun 2016), pp. 718–725.

[58] Peinl, R.; Holzschuher, F.; Pfitzer, F. Docker cluster management for the
cloud - Survey results and own solution. Journal of Grid Computing 14 (2016),
265–282.

[59] Petazzoni, J. Anatomy of a container: Namespaces, cgroups & some
filesystem magic - linuxcon. https://pt.slideshare.net/jpetazzo/
anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon,
2016. Accessed on: 15/06/2016.

[60] Phillips, S. J.; Dudík, M.; Schapire, R. E. A maximum entropy approach
to species distribution modeling. In Proc. of the 21st International Conference on
Machine Learning (2004), pp. 83–90.

[61] Piraghaj, S. F.; Dastjerdi, A. V.; Calheiros, R. N.; Buyya, R. Efficient
virtual machine sizing for hosting containers as a service. In 2015 IEEE World
Congress on Services (SERVICES) (2015), IEEE, pp. 31–38.

[62] Price, D.; Tucker, A. Solaris zones: Operating system support for consolidating
commercial workloads. In LISA (2004), vol. 4, pp. 241–254.

[63] Qazi, K. Vertelas-automated user-controlled vertical elasticity in existing commer-
cial clouds. In 2019 4th International Conference on Computing, Communications
and Security (ICCCS) (2019), IEEE, pp. 1–8.

[64] RedHat Inc. Coreos rkt. https://coreos.com/rkt/, 2020. Accessed on:
05/07/2020.

[65] Rodriguez, M. A.; Buyya, R. Container-based cluster orchestration systems: A
taxonomy and future directions. Software: Practice and Experience 49, 5 (2019),
698–719.

[66] Rouse, M.; Bigelow, S. Containers as a Service
(CaaS). http://searchitoperations.techtarget.com/definition/
Containers-as-a-Service-CaaS, 2017. Accessed on: 01/07/2017.

[67] Sawamura, R.; Boeres, C.; Rebello, V. E. F. Evaluating the Impact of Mem-
ory Allocation and Swap for Vertical Memory Elasticity in VMs. In 2015 27th In-
ternational Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD) (Oct 2015), pp. 186–193.

[68] Sawamura, R.; Boeres, C.; Rebello, V. E. F. MEC: The memory elastic-
ity controller. In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC) (Dec 2016), pp. 111–120.

References 93

[69] Skopeo contributors. Skopeo. https://github.com/containers/skopeo,
2020. Accessed on: 20/07/2020.

[70] Stockwell, D. The garp modelling system: problems and solutions to automated
spatial prediction. International Journal of Geographical Information Science 13, 2
(1999), 143–158.

[71] Su, Y.; Liao, X.; Jin, H.; Bell, T. Data hiding in virtual machine disk images.
In IEEE International Conference on Computer and Information Technology (CIT)
(2010), pp. 2278–2283.

[72] The FreeBSD Community. Jails. https://docs.freebsd.org/pt-br/books/
handbook/jails/, 2020. Accessed on: 27/02/2020.

[73] Valencia, J. Combining VM preemption schemes to improve vertical memory
elasticity scheduling in clouds. Master’s thesis, Pós Graduação em Computação,
Instituto de Computação, Universidade Federal Fluminense, 2018.

[74] Valencia, J.; Boeres, C.; Rebello, V. E. F. Combining VM preemption
schemes to improve vertical memory elasticity scheduling in clouds. In IEEE/ACM
11th International Conference on Utility and Cloud Computing (UCC) (2018), IEEE
Computer Society, pp. 53–62.

[75] Vaughan-Nichols, S. J. New approach to virtualization is a lightweight. Computer
39, 11 (2006).

[76] Virtuozzo International GmbH. Openvz. https://openvz.org, 2020. Ac-
cessed on: 05/07/2020.

[77] VMware Inc. Vmware workstation player. https://www.vmware.com/br/
products/workstation-player.html.

[78] VMware Inc. vsphere e vsphere with operations management. http://www.
vmware.com/br/products/vsphere.html, 2016. Accessed on: 10/08/2016.

[79] Xavier, M. G.; Neves, M. V.; Rossi, F. D.; Ferreto, T. C.; Lange, T.; De
Rose, C. A. F. Performance evaluation of container-based virtualization for high
performance computing environments. In 21st Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (2013), pp. 233–240.

[80] Zarco-González, M. M.; Monroy-Vilchis, O.; Alaníz, J. Spatial model of
livestock predation by jaguar and puma in Mexico: Conservation planning. Biological
Conservation 159 (2013), 80 – 87.

[81] Zhang, Q.; Cheng, L.; Boutaba, R. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications 1, 1 (2010), 7–18.

94

APPENDIX A -- Container versus Virtual
Machines: A Case Study

In order to compare the performance of containerization with the classic virtualization

technology, we used as a case study, an important scientific biodiversity tool, called

Openmodeller (OM) [24], developed by the Environmental Information Reference Cen-

ter (CRIA) together with other national and international partners, and widespread in

the biological and ecological community [38] [80]. The OM is responsible for modeling

ecological niches using a large amount of data to be processed and shared between the

different instances of the application, during a scientific experiment.

The modeling of ecological niches - ENM (Ecological Niche Modeling) is a procedure

for determining the extent of the geographical distribution of species, predicting the dis-

tribution of species in different geographical and climatic contexts, as well as studying

other aspects of evolution and ecology . This modeling has been used in several situations,

such as: searching for rare or endangered species; identification of suitable regions for the

(re)introduction of species; forecasting the impact of climate change on biodiversity; defi-

nition and assessment of protected areas; preventing the spread of invasive species, among

other applications.

Openmodeller can be considered a fundamental application for several countries, es-

pecially Brazil, to comply with their agreements with the United Nations regarding the

Earth’s biodiversity by 2020. We are providing a cloud ENM service to the scientific

community.

In our experiments, we performed the three stages of OM sequentially:

• Modeling (om_model): responsible for generating distribution models from an XML

request file, containing the information necessary for their execution (modeling al-

gorithm, set of species location points and environmental layers) .

A.1 Availability test 95

• Test (om_test): evaluation of the distribution model generated in the previous step,

checking if the entry points have the same spatial references as the points generated

in the modeling.

• Projection (om_proj): uses the model generated in the modeling stage and the

templates used to generate a distribution map, storing its result in an image file, to

facilitate the visualization of the results obtained .

For the modeling stage, OM has several algorithms with different functionalities. In

our experiments, we use the following algorithms:

• GARP-BS [70]: an implementation of a genetic algorithm for the creation of eco-

logical niche models.

• MAXENT [60]: a machine learning algorithm to calculate the probability of an

epistemic distribution.

• ENVDIST: a genetic algorithm based on metrics of environmental dissimilarities.

For the tests, 32 GB of data were made available for the environmental layers, informa-

tion about the environment in which the species will be projected, in the OM. These data

were shared through the NFS version 3 protocol, between the server and the VMs, while

in the containers, we use a direct mapping mechanism of local directories, also between

the server and the containers. The test host is running CentOS Linux 7.7 with kernel

4.20.11, has two Intel Xeon X5650 (6 cores at 2.67GHz) with hyperthreading enabled, 24

GB of DDR3 RAM memory, 8 GB of Swap memory and 2 TB of disk space.

Over the next few sections, we will demonstrate here some experiments that we have

carried out so far to support the use of containers as the basis for a computational cloud

aimed at high performance scientific applications, evaluating from the availability of the

service, to a performance comparison between containers, virtual machines and real ma-

chines, analyzing the results and indicating the paths we followed in this work.

A.1 Availability test

In this first experiment, we compare the times of creating a virtual machine and a con-

tainer, to evaluate the time needed to provision a system for the execution of a user’s

A.1 Availability test 96

application. For the creation of the virtual machine, we use the KVM virt-clone com-

mand and consider the cloning time as the VM creation time. We opted for cloning the

VM instead of creating a new VM, due to the time required for the OS installation to

take time, which would make the test uneven, since the container uses pre-defined images

of the OS for its creation. For containers, we use the mechanism for the direct execution

of a command within it. This method was used because we wanted the necessary time

from creation to the execution of a common command, such as the directory listing on

Linux (ls command), and its finalization (closing the container).

Ten VM clones and ten container executions were performed in Docker and we took an

average of the times obtained using the Linux time command. The average time obtained

in the cloning of the VM was 29.95 seconds, with a standard deviation of 8.67, while the

average time for creation, execution of the command, and completion of the container

was 2.72 seconds with a standard deviation. 0.31.

Analyzing the times obtained, we can see that a container will be available to the user

in an 1100% faster time, approximately. This is due to the large disk size of an VM, as the

size of its disk file (equivalent to the HD of the VM), depends on the size that the OS will

occupy, in addition to the files of the users and / or applications made available and when

cloning such VM, we made a copy of the disk file, generating a new configuration file,

as some identifiers are unique among VMs, such as the network interface (NIC), where a

new MAC address is defined for the new VM. The larger the disk of a VM, the longer the

time for cloning.

In the case of containers, a pre-created image based on an OS is used (in our case,

a Linux CentOS) equal to that of the server and a new layer (in the case of Docker)

is created, to store the modifications made in the container after creation. When the

container is created for the first time, the virtualization system performs a download of

the image and stores it internally on the server, generating an image in cache, which

speeds up the creation of containers based on the same Image. We do not consider this

first creation because its time is very different from the creation of the container with the

image already in cache. This first creation in our test, was approximately 34 seconds, for

the image of the standard CentOS system from the Docker repository.

Thus, we can say that a container will be available to the user in a much shorter time

than a VM, however lean, which makes them more acceptable for the development of a

computing cloud environment, where the time needed for the provisioning is relatively

important for service quality.

A.2 Performance Test 97

A.2 Performance Test

In this experiment, the objective was to evaluate the performance of virtual environments

of VMs (KVM) and containers (Docker) in comparison to direct execution on the server for

scientific applications. We used OM and the three algorithms mentioned earlier: GARP,

MAXENT, and ENVDIST. An instance of OM was run on each of the virtualization

technologies and on the server. We repeated each test ten times and the average time of

each step was recorded for the three algorithms and their respective standard deviations.

Table A.1: GARP: Average time and standard deviation of the three stages
GARP (time in seconds)
Modeling Testing Projection

Physical Machine 655,128 ± 2.50 54,186 ± 0.96 291,429 ± 32.65
Virtual Machine 690,563 ± 3.07 81,220 ± 2.43 313,727 ± 28.60

Container 654,305 ± 2.43 53,686 ± 0.65 291,967 ± 28.95

In the table A.1, we can see that, for the GARP algorithm, the time obtained in

the container was slightly better (in milliseconds) than the time obtained directly on the

server, for the modeling and testing steps, while in VM this time was 5.4% and almost

50% worse, for the same stages, respectively. The modeling step has a lot of intensive

processing (for needing and processing countless entry points and data) and the GARP

algorithm is long lasting (more than 10 minutes), so the loss generated by the hardware

emulation was not so harmful, considering the virtualized environment, but when the

process is short, like the test step, this loss is noticeable.

In the projection stage, the time obtained by the container was very close to that

obtained on the server, also in the milliseconds, while the virtual machine showed a loss

of approximately 7.7%. At this point, the algorithm spends much of the time generating

an image file that demonstrates the results obtained in the modeling, requiring the reading

of the entry points and other data for this generation. In addition, the image has a size

equivalent to the number of entry points, the more points, the larger the file. Therefore,

the VM presented worse results than the container for this algorithm.

Table A.2: MAXENT: Average time and standard deviation for the three steps
MAXENT (time in seconds)

Modeling Testing Projection
Physical Machine 61,557 ± 0.52 53,116 ± 0.75 35,505 ± 0.18
Virtual Machine 90,785 ± 3.02 81,156 ± 2.85 40,135 ± 0.27

Container 61,490 ± 0.60 52,907 ± 0.44 35,835 ± 0.48

A.3 Scalability Test 98

Table A.3: ENVDIST: Average time and standard deviation of the three steps
ENVDIST (time in seconds)

Modeling Testing Projection
Physical Machine 52,561 ± 0.07 53,080 ± 0.71 30,968 ± 0.42
Virtual Machine 81,589 ± 3.17 78,939 ± 2.87 34,499 ± 0.40

Container 52,695 ± 0.21 52,607 ± 0.11 31,081 ± 0.27

In the tables A.2 and A.3, of the MAXENT and ENVDIST algorithms, respectively,

the difference between containers and VMs was more noticeable, being around 55.2%

worse than the server, in the modeling step of the ENVDIST algorithm and 52.8% for the

MAXENT algorithm step, algorithms considered less demanding in terms of processing,

and the same processes being considered short, on average of 1 minute, considering the

time of the physical machine. This difference was small, for the projection stage, where

the VM still presents the worst result, as observed in the GARP algorithm of the table

A.1.

Analyzing the results obtained in this test, it was observed that for algorithms consid-

ered fast or short, the loss caused by the emulation of hardware, in the case of VMs, was

very harmful, being this greater than 50%, in several cases, while the container presented

results very close or even a little better than on the server, demonstrating that with con-

tainers we can have some of the main characteristics of virtualization technologies with a

performance close to the real (directly on the machine).

A.3 Scalability Test

Most of the high performance scientific applications used in scientific research have the

possibility of processing large volumes of data in parallel, in clusters and computational

clouds, to reduce their execution time, the analysis of scalability was idealized for virtu-

alization platforms compared to the physical environment (server).

The GARP algorithm of OM was used, as it is the algorithm that consumes more

computational resources than the three tested algorithms and because it is the algorithm

with the longest execution. The experiment was repeated 10 times for 4, 8, 12, 16, 20,

and 24 VMs or containers, simulating a parallel environment with a high workload. Each

VM or container executes a complete OM instance (modeling, testing and projection), on

the same shared data set (the environmental layers). This test aims to simulate the use

of several users simultaneously in a shared environment. OpenMPI was used to initialize

A.3 Scalability Test 99

OM in all containers or VM simultaneously.

Figure A.1: GARP scalability for the modeling step

In the graph A.1, it is observed that the execution of the containers presented a

performance similar to the execution of the physical machine, while the number of pro-

cesses/containers was less than the number of physical cores available on the server (8

processes) however, when reaching the limit of physical cores (12 cores) and starting to

overload them (from 12 cores), the execution in the containers suffered a significant loss,

being up to 94% worse than the execution in the physical machine and even 60% worse

compared to execution in the VM (for 24 processes). This is because, during modeling,

the GARP algorithm performs several iterations of its genetic algorithm to obtain sev-

eral sets of results, selecting the best ones as output, which requires many disk access

operations to read the environmental layers, which are shared by all containers using a

Docker directory mapping function. In VMs, these environmental layers are shared by

the host through the NFS protocol, and do not generate an overhead on disk access. The

difference in performance of the VMs, compared to the physical machine, involves yet

another processing overhead, common for this virtualization technology, due to several

factors, such as the abstraction of the host hardware for the VM, the interpretation of

system instructions between VM and host, among others, as discussed in [79] and in [35].

In Figure A.2, we can see that the performance in the container was better than in

A.3 Scalability Test 100

Figure A.2: GARP scalability for the test stage

the VM, however it was worse (reaching twice) compared to the execution on the phys-

ical machine. In the Test phase, there is a check if the occurrence points, used for the

generation of the model, were properly referenced in the modeling result and the same

environmental layers used in the modeling are used. There are fewer read-on-disk opera-

tions, so the loss of performance involves more processing, as there was CPU competition

between the containers, by not using the virtual cores available through hyperthreading.

VMs, on the other hand, uses virtual cores, but suffers a greater loss of performance than

containers. This phenomenon can be observed using a Linux system command called htop

[50] that graphically displays the use of processing resources (physical and virtual cores)

in addition to the consumption of memory and processes being executed.

Figure A.3 shows the repetition of the behavior observed in Figure A.1, because

to make the projection, OpenModeller needs to read a template, which is a file that

contains information like the size of the cells and the spatial references used to generate

the distribution map, corresponding to the environmental layer used in the modeling.

Subsequently, an image has to be generated, which requires concurrent reading operations

on the same file (the environmental layers and templates) and the writing of the process

image file on each container to disk.

We can conclude that Docker container management was not able to efficiently handle

A.3 Scalability Test 101

Figure A.3: GARP scalability for the projection stage

the multiple concurrent disk access operations over shared data, as well as not using the

virtual cores available by hyperthreading, generating competition for processing between

processes, while the execution in the VM suffered a loss of performance already pointed

out by other works, for applications with intensive processing.

A.3.1 CPU Allocation Test

After carrying out the scalability tests using OM, questions arose about the reasons that

led the containers to present bad results, when the number of containers was equal to or

greater than the number of cores of the server, even knowing that in smaller instances

the result was always close to that obtained on the physical machine.

It was initially considered that the problem could have occurred due to the sharing

of the database (layers), however, when analyzing the consumption of resources during

execution, using the tool htop present in Linux, it was concluded that the problem was

the misuse of the available cores, where the virtual cores provided by the hyperthreading

technology of the processors on the server was not used.

To remove this doubt, the scalability test was repeated, setting a core for each running

container. To perform this operation, Docker was replaced by the virtualization system

A.3 Scalability Test 102

for LXC [14] containers. Cgroups [47] was used to fix the core. The GARP algorithm

of OM was used and we analyzed the modeling step, one of the heaviest OM steps and

where the largest consumption of CPU resources is concentrated and for the longest time.

The test was repeated ten times and the average time obtained in each run was used.

Figure A.4: GARP scalability, for the modeling stage, with fixation of cores.

In Figure A.4, we have LXC-Best, which corresponds to the setting of a core per

container, first allocating the physical cores (the first 12) and then virtual ones (from 13

to 24). The LXC-HT corresponds to the equal allocation between physical and virtual

cores, that is, in each column, half of the cores are physical and the other half their virtual

pairs. In addition, we used the standard execution of LXC and compared it with the data

obtained in the test of Figure A.1.

Analyzing the graph of Figure A.4, we can conclude that fixing the cores, using the

physical cores first, is the most effective way to execute applications inside the containers,

presenting results very close to those obtained in the physical machine. We can also

observe that the LXC-HT presented a constant behavior, regardless of the number of

instances being executed, for using in a balanced way, physical and virtual cores.

Considering the result obtained with the fixation of the cores, we believe that the

problems obtained previously are related to how the virtualization systems are seeing the

processors, since it was possible to obtain satisfactory results with the fixation, while the

A.3 Scalability Test 103

standard execution of the LXC presented close to Docker, which is slightly better.

To evaluate the influence of hyperthread and a multiprocessor architecture multicore

on the functioning of scientific applications in virtualized environments, we use the re-

sults obtained with twelve processes, which is equivalent to the number of physical cores

available on the server used for the tests. LXC was executed with hyperthread disabled,

LXC without HT, and compared with the results already presented.

Figure A.5: Evaluation of the GARP algorithm regarding the use of hyperthreading.

By looking at Figure A.5, we can conclude that hyperthread has some influence on

the behavior of containers, since the time obtained with it disabled was almost twice the

best result (LXC-Best) . In addition to the influence of hyperthread it is possible to verify

that the virtualization system is not "seeing", on its own, all the available cores, being

necessary to fix them manually.

Using Htop, to accompany the test, it was observed that the container virtualization

systems, both LXC and Docker, did not use the cores of the second processor, which can

be confirmed by the result obtained in the column LXC without HT of the graph A.5.

We can conclude that container virtualization really presents better results than VMs,

with a performance close to that of the physical machine, which makes it an excellent

candidate to be used in the creation of a cloud service. It is also possible to conclude the

need for more intelligent systems, capable of reserving computational resources, for the

A.3 Scalability Test 104

management of the cloud environment, since to obtain a performance close to the real,

we need to control the resources and maximize their use.

105

APPENDIX B -- Memory Consumption Trends

Using Cgroups, VEMoC is able to access several metrics that help capture the behavior of

a container and the applications running inside it. However, since duration of scheduling

cycles can vary, in order to obtain accurate predictions VEMoC calculates the rate of

change of key metrics to make the decision less time sensitive. A further hypothesis

is that approach leads to a simpler management control function than using the actual

metric values. This appendix aims to present the rationale for the simple logic, and thus

fast execution, of Algorithm 3 used in Phase 2 to classify containers (see Section 5.3.2).

VEMoC analyses the following five Cgroup memory metrics to implement vertical

memory elasticity:

• PgIn: the number of memory pages created in the main memory, be it a new page

or a page brought from the disk (swap-in).

• PgOut: the number of pages sent to disk (swap-out) or pages freed from main

memory.

• Major Page Faults (MPF): the number of times a page was brought back from

swap to the main memory.

• Memory Usage (MU): indicates whether the amount of memory used increased,

decreased or remained stable.

• Swap Usage (SU): the same as MU but for the swap. We also classify the type of

swap operation that is taking place: only swap-in (SI), only swap-out (SO), or both

swap-in and out (SISO).

With these metrics, VEMoC classifies the containers behavior into one of three distinct

groups:

Appendix B -- Memory Consumption Trends 106

• RISING: Containers that increase their memory consumption, during the period of

time;

• FALLING: Containers that have voluntarily reduced their RAM consumption during

the period of time;

• STABLE: These are containers that do not fall into the two previous trends since

they had no page major faults occurring during the period of time, and their memory

and swap consumption was around zero, unless they were being forced to swap out

memory by VEMoC itself.

How VEMoC comes to this conclusion is motivated by Table B.1, which presents

all possible combinations (108 in total) of the previous memory metrics. However, after

careful analysis, only 20 of these combinations can actually occur in practice (lines in red

with an Id).

Appendix B -- Memory Consumption Trends 107

Ta
bl
e
B
.1
:
V
er
ifi
ca
ti
on

of
al
l
po

ss
ib
le

co
m
bi
na

ti
on

s
fo
r

va
lu
es

of
th
e
ad

op
te
d
C
gr
ou

ps
M
em

or
y
M
et
ri
cs
.

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

1a
P
i
=

P
o
=

0
=

0
=

0
=

0
N
on

e
A
ll
op

s
in

m
em

S
T
A
B
L
E

P
i=

P
o
=

0
=

0
=

0
>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
=

0
<
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
>
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
>
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
>
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
<
0

=
0

N
ot

po
ss
ib
le

P
i=

P
o
=

0
=

0
<
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
=

0
<
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

=
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

=
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

=
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

>
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

>
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

>
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

<
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

<
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
=

0
>
0

<
0

<
0

N
ot

po
ss
ib
le

P
i
>
P
o
=

0
=

0
=

0
=

0
N
ot

po
ss
ib
le

Appendix B -- Memory Consumption Trends 108

T
ab

le
B
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

P
i
>
P
o
=

0
=

0
=

0
>
0

N
ot

po
ss
ib
le

P
i
>
P
o
=

0
=

0
=

0
<
0

N
ot

po
ss
ib
le

2a
P
i
>
P
o
=

0
=

0
>
0

=
0

N
on

e
In
cr
ea
si
n
g
M
U

R
IS
IN

G

P
i>

P
o
=

0
=

0
>
0

>
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
=

0
>
0

<
0

N
ot

po
ss
ib
le

P
i
>
P
o
=

0
=

0
<
0

=
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
=

0
<
0

>
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
=

0
<
0

<
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

=
0

=
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

=
0

>
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

=
0

<
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

>
0

=
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

>
0

>
0

N
ot

po
ss
ib
le

2b
P
i
>
P
o
=

0
>
0

>
0

<
0

S
I

R
IS
IN

G

P
i>

P
o
=

0
>
0

<
0

=
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

<
0

>
0

N
ot

po
ss
ib
le

P
i>

P
o
=

0
>
0

<
0

<
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

=
0

=
0

=
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

=
0

=
0

>
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

=
0

=
0

<
0

N
ot

po
ss
ib
le

Appendix B -- Memory Consumption Trends 109

T
ab

le
B
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

0
=

P
i
<
P
o

=
0

>
0

=
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

=
0

>
0

>
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

=
0

>
0

<
0

N
ot

po
ss
ib
le

3a
0
=

P
i
<
P
o

=
0

<
0

=
0

N
on

e
A
p
p
li
ca
ti
on

fr
ee
in
g
u
p
m
em

or
y

FA
L
L
IN

G

3b
0
=

P
i
<
P
o

=
0

<
0

>
0

S
O

Fo
rc
ed

in
ac
ti
ve

m
em

or
y
to

sw
ap

“S
T
A
B
L
E
”

FA
L
L
IN

G
?

0
=

P
i
<
P
o

=
0

<
0

<
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

=
0

=
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

=
0

>
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

=
0

<
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

>
0

=
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

>
0

>
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

>
0

<
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

<
0

=
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

<
0

>
0

N
ot

po
ss
ib
le

0
=

P
i
<
P
o

>
0

<
0

<
0

N
ot

po
ss
ib
le

4a
P
i
=

P
o
<
>
0

=
0

=
0

=
0

N
on

e
A
p
p
fr
ee
in
g
u
p
as

m
u
ch

as
it

u
se
s.

C
on

ta
in
er

is
te
ch
n
ic
al
ly

S
T
A
B
L
E

G
iv
en

P
i,
R
IS
IN

G

4b
P
i
=

P
o
<
>
0

=
0

=
0

>
0

S
O

M
u
st

b
e
d
u
e
to

C
M
L
li
m
it
in
g
M
U

R
IS
IN

G

P
i=

P
o
<
>
0

=
0

=
0

<
0

N
ot

po
ss
ib
le

Appendix B -- Memory Consumption Trends 110

T
ab

le
B
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

P
i
=

P
o
<
>
0

=
0

>
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

=
0

>
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

=
0

>
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

=
0

<
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

=
0

<
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

=
0

<
0

<
0

N
ot

po
ss
ib
le

4c
P
i
=

P
o
<
>
0

>
0

=
0

=
0

S
IS
O

R
IS
IN

G

4d
P
i
=

P
o
<
>
0

>
0

=
0

>
0

S
O

W
it
h
so
m
e
S
I
b
u
t
le
ss
,
lo
ok

s
st
ab

le
R
IS
IN

G

4e
P
i
=

P
o
<
>
0

>
0

=
0

<
0

S
I

A
p
p
fr
ee
s
u
p
so
m
e
to
o

R
IS
IN

G

P
i
=

P
o
<
>
0

>
0

>
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

>
0

>
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

>
0

>
0

<
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

>
0

<
0

=
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

>
0

<
0

>
0

N
ot

po
ss
ib
le

P
i
=

P
o
<
>
0

>
0

<
0

<
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

=
0

=
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

=
0

>
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

=
0

<
0

N
ot

po
ss
ib
le

5a
P
i
>
P
o
<
>
0

=
0

>
0

=
0

N
on

e
A
p
p
fr
ee
s
m
em

R
IS
IN

G

5b
P
i
>
P
o
<
>
0

=
0

>
0

>
0

S
O

R
IS
IN

G

Appendix B -- Memory Consumption Trends 111

T
ab

le
B
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

P
i
>
P
o
<
>
0

=
0

>
0

<
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

<
0

=
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

<
0

>
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

=
0

<
0

<
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

>
0

=
0

=
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

>
0

=
0

>
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

>
0

=
0

<
0

N
ot

po
ss
ib
le

5c
P
i
>
P
o
<
>
0

>
0

>
0

=
0

S
IS
O

R
IS
IN

G

5d
P
i
>
P
o
<
>
0

>
0

>
0

>
0

S
O

W
it
h
so
m
e
b
u
t
le
ss

S
I

R
IS
IN

G

5e
P
i
>
P
o
<
>
0

>
0

>
0

<
0

S
I

W
it
h
so
m
e
S
O

or
A
p
p
fr
ee
s
m
em

R
IS
IN

G

P
i
>
P
o
<
>
0

>
0

<
0

=
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

>
0

<
0

>
0

N
ot

po
ss
ib
le

P
i
>
P
o
<
>
0

>
0

<
0

<
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

=
0

=
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

=
0

>
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

=
0

<
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

>
0

=
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

>
0

>
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

=
0

>
0

<
0

N
ot

po
ss
ib
le

Appendix B -- Memory Consumption Trends 112

T
ab

le
B
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

Id
|P
gI
n
|
V
s
|P
gO

u
t|

M
P
F

|M
U
|

|S
U
|

S
w
ap

U
se

C
om

m
en
t

A
ct
io
n

6a
0
<
>
P
i
<
P
o

=
0

<
0

=
0

N
on

e
A
p
p
fr
ee
s
m
em

,
cu
rr
en
tl
y
cl
as
se
d

as
R
IS
IN

G
b
u
t
n
o
sw

ap
FA

L
L
IN

G

6b
0
<
>
P
i
<
P
o

=
0

<
0

>
0

S
O

S
w
ap

ou
t
m
or
e
th
an

P
i.

O
r
co
u
ld

b
e
fo
rc
ed

sw
ap

.

FA
L
L
IN

G
or

S
T
A
B
L
E

S
T
A
B
L
E

0
<
>
P
i<

P
o

=
0

<
0

<
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

=
0

=
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

=
0

>
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

=
0

<
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

>
0

=
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

>
0

>
0

N
ot

po
ss
ib
le

0
<
>
P
i<

P
o

>
0

>
0

<
0

N
ot

po
ss
ib
le

6c
0
<
>
P
i
<
P
o

>
0

<
0

=
0

S
IS
O

A
ls
o
A
p
p
fr
ee
s
m
em

R
IS
IN

G

6d
0
<
>
P
i
<
P
o

>
0

<
0

>
0

S
O

W
it
h
so
m
e
b
u
t
le
ss

S
I

R
IS
IN

G

6e
0
<
>
P
i
<
P
o

>
0

<
0

<
0

S
I

A
p
p
fr
ee
s
m
em

p
er
h
ap

s
so
m
e
S
O

R
IS
IN

G

Appendix B -- Memory Consumption Trends 113

A few observations with regards to Table B.1:

• From Algorithm 2 (Section 5.3.1), note that the page in and page out values (Pi and

Po) VEMoC calculates are currently the average page counts over its long interval,

which are then normalised to a per second rate before have their precision is scaled

down to cover the 33 page variance observed in the monitored metrics PgIn and

PgOut;

• Similarly MU and SU are the rate of change values in memory and swap usage,

respectively, measured in memory pages (of 4096 bytes) per second, i.e., MUi » 12

and SUi » 12;

• Given condition is in blue, the combination or condition in light red is not possible;

• Remember tendencies are considered over a number of time intervals to reduce the

impact of noise.

Given the viable combinations, it is relatively simple to then optimise to determine the

appropriate action. For example, when Major Page Faults occur (MPF > 0), the con-

tainer state (Statei) should be RISING, thus covering Ids 2b, 4c, 4d, 4e, 5c, 5d, 5e,

6c, 6d, and 6e. This optimization leads to the MemClassification() function described

in Algorithm 3 (see Section 5.3.2) used in Phase 2 of VEMoC to define the Memory

Consumption Trend of a container.

