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Resumo

O uso de tecnologia para processamento de fala apresentou um grande crescimento nos
últimos anos, atuando em diversas áreas como forense, civil ou comercial e contribuindo
com a automação de dispositivos eletrônicos. Dentre os dispositivos atualmente provi-
dos com serviços de processamento de fala estão smartphones, tablets, consoles de jogos,
dispositivos de navegação controlados por voz e dispositivos inteligentes de assistência
operando através de comandos de voz. Portanto, houve um aumento na quantidade de
pesquisas relacionadas às tecnologias de processamento de fala e interação por voz, utili-
zadas por ambientes e dispositivos inteligentes. Aliado a isso, nos últimos anos o uso de
Redes Neurais Profundas (RNP) tornou-se um tópico de pesquisa importante em apren-
dizado de máquina, alcançando também um avanço em áreas de processamento de fala.
Em muitas pesquisas as RNPs apresentaram uma excelente capacidade de aprendizagem
de características relacionadas à fala e ao orador, tornando-se uma tecnologia bastante
utilizada em pesquisas de processamento de fala. Diante deste cenário, inicialmente con-
duzimos uma Revisão Sistemática da Literatura (RSL) tendo como objetivo entender o
estado da arte sobre o Processamento de Fala com Foco no Orador (PFFO) usando Redes
Neurais Artificiais (RNA). Foram identificadas 7 áreas de Processamento de Fala, diversas
arquiteturas RNA e outras tecnologias e referenciais teóricos relacionados ao tema. Ape-
sar do conhecimento enriquecedor obtido pela RSL, observamos a ausência de trabalhos
que propusessem uma análise sobre a robustez das RNAs. Consideramos a robustez uma
propriedade importante para um modelo computacional e devido à sua ausência na lite-
ratura analisada, tornou-se um problema oportuno e fundamental criarmos este trabalho
que realiza uma análise exploratória para avaliar a robustez de uma CNN em cenários de
multi-idiomas, usando o Coeficiente Cepstral de Frequência Mel (CCFM) como método
para captura das características do orador. Os cenários exploram características distintas
relacionadas a um conjunto de dados de oradores que falam multi-idiomas e seus resulta-
dos são apresentados e analisados. Como contribuições este trabalho traz as informações
fornecidas pela RSL que promove o enriquecimento do conhecimento relacionado à PFFO
usando RNA, o termo PFFO, que não foi encontrado por nós em nenhum trabalho da
literatura e por último a contribuição metodológica trazida por este trabalho, que apre-
senta um plano experimental organizado, contendo diferentes cenários de multi-idiomas
que exploram uma tarefa de Identificação do Orador (IO) e são executados através de um
roteiro de forma organizada e padronizada.

Palavras-chave: Rede neural convolucional, Identificação de Orador, Processamento de
fala, Rede neural artificial, Processamento de fala com foco no orador, Coeficiente cepstral
de frequência Mel.



Abstract

The use of technology for speech processing has shown great growth in recent years, acting
in several areas such as forensics, civil or commercial and contributing to the automation
of electronic devices. Among the devices currently provided with speech processing ser-
vices are smartphones, tablets, game consoles, voice-controlled navigation devices and
smart assistance devices operating through voice commands. Therefore, there has been
an increase in the amount of research related to technologies for speech processing and
voice interaction, used by smart environments and devices. Allied to this, in recent ye-
ars the use of Deep Neural Networks (DNN) has become an important research topic in
machine learning, also achieving a breakthrough in speech processing areas. In many rese-
arches DNNs showed an excellent ability to learn features related to speech and speakers,
becoming a technology widely used for speech processing research. Given this scenario,
we initially conducted a Systematic Literature Review (SLR) aiming to understand the
state of the art on Speaker-Focused Speech Processing (SFSP) using Artificial Neural
Networks (ANN). Seven areas of Speech Processing, several ANN architectures and other
technologies and theoretical references related to the topic were identified. Despite the
enriching knowledge obtained by SLR, we observed the absence of works that proposed
some sort of analysis about ANN’s robustness. We consider robustness an important
property for a computational model and, due to its absence in the analyzed literature,
it became an opportune and fundamental problem to create this work that performs an
exploratory analysis to evaluate the CNN’s robustness in multi-language scenarios, using
the Mel-Frequency Cepstral Coefficient (MFCC) as a method for capturing speaker fea-
tures. The scenarios explore distinct characteristics related to a dataset of multi-lingual
speakers and their results are presented and analyzed. As contributions this work pre-
sents the information provided by the SLR, that promotes enriching knowledge related
to the SFSP using ANN, the term SFSP, which was not found by us in any other work
of the literature and finally the methodological contribution brought by this work, which
presents an organized experimental plan, containing different multi-language scenarios
that explore a Speaker Identification (SI) task and are executed through a roadmap in an
organized and standardized way.

Keywords: Convolution neural network, Mel-frequency cepstral coefficient, Robustness
analysis, Speaker identification, Speech processing, Speaker-focused speech processing.
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Capítulo 1

Introduction

Using technology for speech processing offers great possibilities for automation, acting in

several areas such as forensics, civil or commercial [60]. In the last years there has been

a great growth in the use of portable devices equipped with microphones to capture the

user’s speech in various environments and applications. Such devices include smartphones,

tablets, gaming consoles, voice-controlled navigation devices and, more recently, several

voice-controlled systems [112]. Smart assistance devices, such as Amazon Echo or Google

Home, work as endpoints for Intelligent Virtual Assistants (IVA), such as Alexa, Siri,

Google Now or Cortana, which are software agents running as cloud services to process

voice commands [27]. Such devices have helped to increase the number of applications

related to voice processing and to expand the research on voice interaction technologies

in smart environments [77].

In voice interaction, the user’s speech is the input for systems or applications [54].

Individual users’ speech have to be processed in order to extract speaker features. Speech

recognition, which focus on identifying the spoken words [73], is fundamental for imple-

menting vocal interfaces and as such has long been studied [110]. On the other hand,

there are applications in which the main purpose is identifying a person by his or her

voice, i.e., the recognition is focused on the speaker. Hence, for many different purposes,

such as, searching multimedia libraries based on speaker identity, user authentication in

access control or for personal identification in forensics [53], the speech processing focusing

on the speaker has gained attention over the last years. Although speech is basically a

non-stationary signal used for transferring a message via words from a speaker to a liste-

ner [103], it has been shown that its analysis is capable of providing additional information

about the speaker such as age [20], gender [63], language being spoken [130], emotional

state [74] and others. As such, speech provides a wider range of possibilities for security
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applications when compared to other biometric features, such as iris and fingerprint [103].

In recent years, the use of Deep Neural Network (DNN) became a hot research topic

in machine learning, also achieving a breakthrough in speech recognition [87] and in

other speech processing activities. DNNs have presented so far an excellent ability to

automatically learn feature representations from high-dimensional input data, as a result

of their outstanding performance in many areas [134]. In addition to the use of DNN in

the generation of a network model, many researchers have also started to use DNN to

extract features from the speaker. According to [61], many researchers have investigated

better ways of generating speaker-specific representations and consequently improving the

detection of speaker change points in thir speeches. DNNs and deep auto-encoders have

been shown to perform quite satisfactorily for this task. One of the most popular DNNs

is the Convolutional Neural Network (CNN). It take this name from mathematical linear

operation between matrixes called convolution [115]. CNN has an excellent performance

in machine learning problems [5]. It has been popular in pattern recognition for non-

relational data, such as images and sound processing [134].

Nonetheless, a large number of researches can be found in the literature proposing

Deep Learning (DL) models to tackle different nuances or approaches for the Speaker Re-

cognition (SR) problem. Such approaches may be, for instance, the Speaker Identification

(SI), which through the speech of a person consists of identifying him in a known popu-

lation of speakers [55] [21], or the Speaker Verification (SV), which consists in deciding

if a speaker is whom he claims to be [21]. Actually, for many authors the SR concept

comprises both SI and SV tasks [99] [103] [7] [14]. Besides these tasks, other approaches

that are closely related to the SR process are the Speaker Segmentation (SS) [61], the

Speaker Diarization (SD) [76], the Speaker Spoofing Detection (SSD) [138] and the Spea-

ker Adaptation (SA) [1]. All of these complementary approaches have in common human

speech as the main input and some sort of speaker-related classification as the output.

Considering the diversity of applications related to Speaker-Focused Speech Proces-

sing (SFSP) and the great use of ANN, mainly DNN, in researches of speech recognition

[87] and other speech processing activities, we decided to initially carry out a Systematic

Literature Review (SLR) to identify the state of the art on SFSP using ANN, where we

could verify a great variety of information. This SLR presents 7 speech processing areas,

different ANN architectures and models and feature extraction methods, as well as other

important information related to the topic. A total of 336 articles were collected by SLR

and we noticed that there were none that explored ANN’s robustness analysis. This ab-
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sence motivated the realization of this work because we understand that robustness is an

important property for any computational model and because we believe in its contribu-

tion to the literature. Faced with this situation, therefore, we proposed an exploratory

analysis of CNN’s robustness when executing a SI task for multi-language scenarios, using

the Mel-Frequency Cepstral Coefficient (MFCC) as a method of capturing speaker fea-

tures. Each experimental scenario explores distinct characteristics related to a dataset

of multi-lingual speakers and their results are presented and analyzed. As contributions

this work brings the information provided by the SLR that promotes enriching knowledge

related to the SFSP using ANN, the term SFSP, which was not found by us in any other

work and therefore, it is suggested by us to represent research that uses speech proces-

sing with a focus on learning speaker features. Finally, the methodological contribution

created by this work, which presents an organized experimental plan, containing different

multi-language scenarios that explore a SI task and are executed through a roadmap in

an organized and standardized way.

1.1 Problem Definition

Speech Processing currently has many application possibilities [60]. Some examples of

areas in which Speech Processing works are: SI [26], SV [12], SR [44], SS [61], SD [76],

SSD [138] and SA [1]. Each of them has different specializations and objectives. To reach

their objectives and present good performances, each solution usually need to overcome

certain obstacles that are present in analyzed audio and that are seen as problems to be

solved. These problems are represented in audio as noise [49] [61], low quality recordings

[26] [118] [141], very short audios [12] [66], among others. Specifically for a SI solution,

some problems presented by articles that make it difficult to identify the speaker are:

people’s voices in the background [44] [62] [126], audios recorded indoors or under real-life

conditions [136], different languages spoken by the same person [14] [77], speakers from

diferente ethnicities or nationalites [28] [131], pronunciation of short sentences [12] [66],

telephone or microphone conversations [98] [65].

This understanding of the challenges related to SI research and other speech proces-

sing areas was acquired by us from a SLR that analyzed the state of the art related to the

topic “SFSP using ANN”, which is explained in detail in Chapter 2. However, although

this SLR has brought us great knowledge about ANN performing tasks related to SFSP,

we observed the absence of works that proposed some sort of analysis about ANN’s ro-

bustness. According to [108] and [143] robustness is the state where the technology or
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process performance is minimally sensitive to factors causing variability. In [69] and [9],

robustness is defined as a property that allows a system to maintain its functions despite

external and internal perturbations. A system’s robustness is understood by [139] as its

capacity to guarantee a desired property in face of the largest set of deviant environmental

behaviors. According to [122], robustness of an algorithm is its sensitivity to discrepancies

between the assumed model and reality.

Therefore, we did not identify any work that evaluated how an ANN would behave in

face of variations related to the specific SFSP task for which the ANN has been trained.

How much variations in a dataset could impact and influence ANN performance when

executing some SFSP task? We consider this analysis of ANN’s robustness a complex

problem but due to its absence in the literature it becomes an opportune and fundamental

problem. Faced with this situation, we thought it would be very important to create a

work proposal that would carry out an exploratory analysis to evaluate the robustness

of a particular ANN. Analyzing studies with this critical view, we identified a CNN

architecture, in one of the articles highlighted by SLR [26], as a good example of an ANN

that could be used by an experimental analysis to test its robustness when performing an

SI task. And we also think that a good example of a SI problem, that could be explored by

this robustness analysis, is the identification of speakers who speak different languages.

Another article highlighted by SLR [14], presented a dataset with speakers who speak

two and three languages and which has good potential for carrying out experiments in a

robustness analysis.

1.2 Objective

Having robustness as an important property for a computational model and due to its

absence in the analyzed literature, we present as the main objective of this work the

challenge of executing an exploratory analysis of CNN’s robustness when performing a SI

task in multi-language scenarios. To achieve this main objective, we present the following

specific objectives:

• Identify the state of the art related to SFSP using ANN, through a SLR;

• Evaluate the execution of an experimental plan to explore the CNN’s robustness

performing a SI task.

Robustness analysis evaluated the CNN performance from an experimental plan, following

an execution roadmap. To plan and achieve the main objective we rely on the knowledge
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acquired from SLR. CNN architecture analyzed was presented by the article [26]. Multi-

lingual scenarios were based on the dataset of multilingual speakers presented by article

[14]. Both articles were highly rated by SLR.

1.3 Methodology

This work developed a research with exploratory purpose, under a qualitative-quantitative

approach, classified as to its nature as a basic research and as to the technical procedures

as a bibliographic and experimental research. According to [47], an exploratory research

aims to provide greater familiarity with the problem, making it more explicit or with the

objective of constituting hypotheses. Such research has as its main objective the improve-

ment of ideas or the discovery of intuitions. Its planning is quite flexible so that it makes

it possible to consider the most varied aspects related to the fact studied. Qualitative ap-

proach brings, as a contribution to the research work, a mixture of rational and intuitive

procedures capable of helping to better understand the phenomena [104]. Quantitative

approach, on the other hand, considers that everything can be quantified, which means

translating into numbers, opinions and information to classify and analyze them [30].

The use of both approaches classifies the research as quali-quantitative. Basic research,

also referred to as pure research, is interested in generate new scientific knowledge and

is, at most, only indirectly involved with how that knowledge will be applied to specific,

practical or real problems [57]. A bibliographic research is elaborated from published

theoretical references, such as books, articles, periodicals, analyzing and discussing the

various scientific contributions that are usually collected through a bibliographic review

[15]. Experimental research essentially consists of determining an object of study, selec-

ting the variables that would be able to influence it, defining the forms of control and

observation of the effects that the variable produces on the object [47].

Initially, in Chapter 2, this work elaborates a process for the execution of an SLR with

the objective of identifying the state of the art of SFSP solutions using ANN. For the col-

lection of articles by the SLR, the search tools of the scientific libraries were used. During

the conduction of the SLR, the selected articles were submitted to a Quality Assessment

(QA) method, created in this work. The analysis of the most prominent articles in the

QA allowed the selection of a CNN from the article [26], a feature extraction method and

a dataset containing speakers who speak 2 and 3 languages. An experimental plan, shown

in Chapter 4, was then elaborated containing scenarios with different proposals that ex-

plored the CNN performance when executing an SI task, allowing to obtain results that
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evaluated its robustness. These scenarios represent variations of the same dataset that

explore specific situations. The dataset selected for CNN training was presented by the

article [14], which is another highly classified by SLR, and contains speakers who speak

two or three languages. Its characteristic of multi-languages per speaker contributed to

the creation of a diversified experimental plan, for this CNN analysis. In Chapter 5, Ac-

curacy and F1 metrics were used to record results of validation and tests during the CNN

learning process. To record the results of the experimental scenarios, the Class and Pro-

babilistic prediction methods were used, which served to evaluate the CNN performance.

An exploratory data analysis was done individually for each experimental scenario and

finally, a conclusive analysis about the CNN’s robustness was made in Chapter 6. To

analyze the results of the experimental scenarios, the method of diagnostic analysis was

used, which seeks to analyze the relationship between the causes and the effects caused

by an experiment performed by CNN. According to [34] [35], the deffinition of “diagnostic

analyses” is: the mode of identifying systemic problems and explain their causes can be

called.

In summary, for achieving our main and specific objectives, we executed the following

actions:

1. Conduction of a SLR to identify the state of the art on SFSP using ANN, taking

note of the technologies and characteristics related to this topic, which include:

SFSP areas such as SI, SV, SR, SS, SC, SD, SSD and SA; grouping of the solutions

identified in the articles into Speaker Modeling (SM) and Speaker-specific Feature

Extraction (SFE) solutions; identification of ANN architectures, identification of

Features Extraction methods, identification of main metrics, identifying the variety

of audio problems presented by the datasets and used in ANN training.

2. Elaboration and execution of an experimental plan to evaluate the robustness of a

CNN architecture performing a SI task, considering the following steps:

(a) Selection of a CNN architecture from a highly rated article by the SLR;

(b) Selection of a dataset containing speakers who speak two or three languages,

from an article highly rated by the SLR;

(c) Construction of a CNN model based on the CNN architecture selected;

(d) Execution of experimental scenarios using the CNN model, exploring dataset

variations, that include: reduction in the number of speakers, reduction in the

number of audios per speaker and variation in the size of speaker audios;

(e) Execution of experimental scenarios using the CNN model, exploring the main
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characteristic of this dataset: the relationship between speakers and languages;

3. Analysis and discussion of results related to the CNN’s robustness.

1.4 Organization

This work is organized as follows: Chapter 2 describes the SLR carried out to understand

the state of the art related to the use of ANN for SFSP and Chapter 3 explains the

technologies and the theoretical reference, selected from the SLR and used by this work,

which includes the CNN architecture and the feature extraction method. In Chapter 4,

entitled Materials and Methods, we present all the planning prepared for the construction

of this exploratory analysis, containing: the presentation of the experimental plan, the

explanation of the audio dataset with multiple languages, the organization of general

steps for the plan experimental execution and the detailing of experimental scenarios that

explore different situations involving the audio dataset. In Chapter 5, the results of CNN

training and experimental scenarios are presented, in a consolidated view in tables and

graphs, and an individual analysis of each scenario is exposed. Finally, in Chapter 6, the

conclusions and a general analysis about the CNN’s robustness and about this work are

presented.



Capítulo 2

Our Literature Review

In this Chapter we present our methodology for conducting a SLR, aiming at understan-

ding the state-of-the-art on the use of ANNs for SFSP. At the end of the chapter, the SI

problem to be analyzed and the ANN architecture selected to carry out this analysis are

presented.

2.1 Methodology for Conducting our SLR

The main objective for conducting our SLR was to identify the state-of-the-art in research

involving ANN for SFSP. The intention is to learn about what is currently being explored

in this type of research. We were interested in knowing what types of ANN are being

used, what solution architectures are being proposed, what types of audio datasets have

been used and what scenarios or characteristics specific audio signals were explored in

research focusing on the speaker. Figure 2.1 shows the steps we executed for conducting

our SLR. Step 1 is Planning, which aims to define what is researched and how SLR is

conducted. This step involves specifying the Research Questions (RQs) and developing

the Review Protocol. Step 2 is Conduction, which aims to execute the SLR from what

was defined in the Planning step. This step involves the Search Execution through a

search sentence whose topics are directly linked to the research objective, carrying out

the Study Selection, conducting a QA on the selected studies and performing the Data

Extraction and Analisys of study contents to answer RQs. Step 3 is Conclusion, in which

aims to formalize the closure of the SLR. This step involves recording the Interpretation

of Results based on the analysis of the studies and the responses obtained by the RQs.

Answers to our RQs are in Chapter 2.4 and Results Discussion is in Chapter 2.5.

Some publications were very important for the understanding, adaptations and con-



2.1 Methodology for Conducting our SLR 9

Figura 2.1: Systematic Literature Review Process adapted from [19].

duction of the SLR performed by this research. Articles [68] [111] contributed to the

conceptual understanding of SLR and its importance in research. In [19] there was a

contribution to the adaptation of the figure 2.1, which represents the SLR process of this

research, and a contribution to the learning in conducting the SLR process. [70] contri-

buted to the learning in conducting the SLR process and to the QA elaboration. Article

[119] contributed to the learning in conducting the SLR process and to the QA elabora-

tion and the presentation of selected articles from scientific libraries. Through the article

[46] the PICOC criterion became known and we incorporated it into the SLR process.

In what follows, we present in more details how we executed each of the tasks in each

step.

2.1.1 Planning

Planning is the first step for executing the SLR. It encompasses the execution of activities

to specify RQs and to develop the SLR protocol.

Specify RQs: For [119], specifying RQs is the most important part of any systematic

review as they conduct all of its methodology. For having this strategic role in the review

process, the RQs in this systematic review were structured with the help of the Population,

Intervention, Comparison, Outcome, Context (PICOC) criteria, as used by [119], whose

meaning and scope of action are explained by [46] and [132] and mentioned in the Table

2.1.

The RQs addressed to this SLR are mentioned below.

• RQ1: What are the SFSP areas found and the percentages of the selected studies
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Tabela 2.1: Application of the PICOC criteria for the elaboration of RQs
Criterion Meaning Scope

Population
Who or What?
The population in which the evidence
is collected.

Works published for SFSP using ANN, from January
2015 to February 2019.

Intervention
How?
What technology, tool or procedure is
being studied?

Use of ANNs for SFSP.

Comparison Compared to what / what is the
alternative?

Performance comparison between different ANNs
architectures.

Outcome What are we trying to accomplish,
improve, effect?

Identification of ANNs with better performance
results for SFSP.

Context Under what circumstances? Automation and security.

that work in each one of them?

• RQ2: What types of ANN architectures with the best performance have been used

by studies focusing on SM and SFE?

• RQ3: About conventional feature extraction methods utilization:

– RQ3.1: What conventional feature extraction methods were used feeding SM

ANN?

– RQ3.2: What conventional feature extraction methods were used as a baseline

for comparison with SFE ANN or feeding SFE ANN?

• RQ4: What were the main metrics used by each SFSP areas?

• RQ5: What were the characteristics explored by the studies in the audio datasets?

• RQ6: Which studies had QA with a grade higher than 75% of the maximum grade?

About these studies, briefly report the ANN architecture that presented the best

performance, the audio aspects explored and the performance measurements pre-

sented.

SLR protocol: We constructed the following Search String to collect the papers to be

analyzed: (“audio”) AND (“neural network”) AND (“speaker identity” OR “speaker iden-

tification” OR “speaker recognition” OR “speaker verification” OR “speaker detection”).

We defined the following inclusion criteria for selecting studies for this SLR:

1. Use of ANNs in the phases of modeling or feature extraction for SFSP systems;

2. Availability of material in electronic format, integral, on the web and published in

English between January 2015 and February 2019.

Our exclusion criteria were the following:
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1. Works that were not speaker-focused and did not present the use of ANN in the

modeling or feature extraction stages;

2. Studies that did not clearly present the solution and architecture of the ANN adop-

ted; and

3. Studies that did not show the performance results of the ANN.

According to [68], in addition to the general inclusion/exclusion criteria, it is consi-

dered essential to assess the “quality” of primary studies. The benefits provided by a QA

can be as follows:

• To provide more detailed inclusion/exclusion criteria;

• To investigate whether quality differences provide an explanation for differences in

study results;

• As a means of weighting the importance of individual studies when results are being

synthesised;

• To guide the interpretation of findings and determine the strength of inferences;

• To guide recommendations for further research.

Therefore, a QA of the studies selected by this SLR was carried out and for this

purpose 10 questions were presented below as QA questions:

• QA1: Was the architecture of the proposed solution clearly and completely presen-

ted?

• QA2: Is the ANN the main method to be assessed by the study?

• QA3: Was there clarity in the explanation of the ANN’s performance?

• QA4: Was the architecture of the ANN used clearly and completely presented?

• QA5: How was the ANN performance compared to the other methods presented by

the study?

• QA6: Does the study describe the dataset used and demonstrate quality and con-

tribution to generating reliability in the results?

• QA7: Do the results of the solutions appear clear and reliable by the way they were

presented?

• QA8: Is the ANN text-independent?

• QA9: Does the study have any additional or specific characteristics that represent

evolution, innovation or versatility? If the answer is yes, explain these characteris-

tics.
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• QA10: Does the research objective present a situation of real relevance in everyday

life?

Quality measurement aims to analyze mainly the level of detail and performance of

the solution proposed by the study and the level of adherence of the study to the SLR

objective. Objective answers were established for each assessment question and a grade

was assigned to each answer. The lowest grade refers to the lowest quality answer and

the highest to the highest quality answer. A weight was also assigned to each assessment

question. The highest weight values were attributed to the assessment questions inter-

preted by us as being more specific to the objective of this SLR. The final grade of each

assessment question is the result of multiplying its weight by the grade of the answer

given to the evaluated study. The final assessment grade for each study is the result of

the sum of the grades for each question, with the highest grade being 63 and the lowest

0. The possible answers to the assessment questions are recorded in Table 2.2.

At the end of the QA execution, we intended to obtain a list of the studies ordered

in descending order by the assessment grade. In theory, studies with higher grades will

be presented as solution projects based on ANNs with better quality for this SLR. A

clarification in particular to QA8 is that the highest grade was established if the ANN is

text-independent because according to the authors of the studies, these are systems with

greater flexibility and versatility in relation to ANNs that are text-dependent. According

to [103], Text-Dependent systems can be used only for co-operative users and the user

needs to utter whatever is being prompted by the system. In Text-Independent system,

there are no constraints on the words that can be used. So this type of system provides

more flexibility for the users, but is more difficult to implement.

Data Extraction and Analysis: Information were extracted from each selected

study which helped in its cataloging, assessment and to answer the SLR’s RQs. The

information extracted for cataloging were: title, summary, year of publication, authors

and publisher, extracted through library search engines. The main data identified to

assist in the assessment and responses to the RQs were: SFSP areas, types of ANNs, ANN

architectures, dataset used, characteristics explored in the audios, performance evaluation

metrics, results of comparison with other methods, use new theories or technologies. The

publication files of the selected studies were obtained in PDF format. The RQ6 will

identify the studies that obtain a grade higher than 75% in the QA. For these studies, a

detailed analysis will be made verifying the solutions presented, the research objectives,

the performance results presented and the audio aspects explored.
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Tabela 2.2: Answers to the QA questions of the SRL.
QA Weight

Replies Maximum
Grade by QAGrade 0 Grade 1 Grade 2 Grade 3 Grade 4

QA1 3

It was not
presented or
presents an
obvious solution
given the
scientific
understanding
of the analyzed
context.

It is not
clear or is
incomplete.

Understandable
but with little
detail or due to
complexity it
could be better
explained.

Clear and
complete. 9

QA2 3
It is not
the main
method.

Divides focus
with another
method.

It is the main
method. 9

QA3 2 No.

Incomplete
or insufficient
explanation
or due to
complexity
could be better
explained.

Yes. 4

QA4 4 It was not
presented.

It is not
clear or is
incomplete.

Understandable
but with little
detail.

Clear and
complete. 12

QA5 3

No result
has been
demonstrated
to assess
performance.

Demonstrates
results
but does not
compare with
any other
method.

Compares
with its
own methods
or with those
of other
articles not
considered
state-of-the-art
or performs
much less than
the state
of the art.

Performance
minimally
below the state
of the art or
demonstrates
superiority
but not as
convincing
(lack of detail).

State-of-the-art
performance
equivalent
or superior.

12

QA6 3

Does not
present
datasets
or uses
inconsistent
or poorly
reliable
datasets
to generate
results.

Presentes
coherent
datasets but
uses little data
or does not
mention the
amount of
data used.

Presentes
coherent
datasets
using large
amounts of
data and
presenting
planning for
its uses.

6

QA7 2
No results,
clarity or
reliability.

The results
could have
been more
detailed to
contribute
with clarity
and reliability.

Clearly and
apparently
reliable
results.

4

QA8 2

It is not,
does not
mention or
makes it clear.

Yes. 2

QA9 2 No. Yes.

Features
additional
or specific
features.

4

QA10 1 No. Yes. 1

MAXIMUM GRADE 63
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Tabela 2.3: Number of studies grouped by year of publication

Scientific Library
Number of Studies per Year

TOTAL
2015 2016 2017 2018 2019

ACM Digital Library 1 0 8 5 1 15
Engineering Village 5 11 13 18 0 47
ScienceDirect 25 41 55 60 31 212
Scopus 7 11 22 21 1 62

TOTAL 38 63 98 104 33 336

2.1.2 Conduction

When conducting our SLR, we carried out the following activities: Search Execution,

Studies Selection, QA of the studies and Data Extraction and Analysis using the selected

studies.

Search Execution: We used the following bases of scientific articles: ACM Digital

Library, Engineering Village, ScienceDirect and Scopus. According to [51], who make

a comparison between 28 academic consultation bases and evaluate 26 requisites, ACM

Digital Library, ScienceDirect and Scopus have a significant content depth and are among

the 14 academic bases advised as principal search systems, motivating their choices as

sources for our literary search. We chose Scopus because it is a reputable scientific library

containing 82 million documents dating back to 1788, 17 million author profiles, 80,000

institutional profiles and 1.7 billion cited references dating back to 1970 [37]. ScienceDi-

rect is Elsevier’s premier platform for peer-reviewed academic literature, containing 19

million articles & chapters, 2,650 peer-reviewed journals, 43,000 Ebooks, and 1.4 million

open access articles, serving academic institutions, government organizations and rese-

arch & development units across a variety of industries [36] [40]. Another reference for

publications chosen was Engineering Village, which is a platform of indexing and abs-

tracting databases in engineering and related fields. It provides access to 12 patent and

engineering literature databases covering a wide range of trusted engineering sources [39]

including Ei Compendex, which is considered the most comprehensive database for engi-

neering literature [38]. The ACM Digital Library is a research, discovery and networking

platform containing a comprehensive bibliographic database focused exclusively on the

field of computing [4].

We used our previously defined Search String, restricting the search to articles pu-

blished between January 2015 and February 2019 and in research areas related to Com-

puter Science. The result of the Search Execution presented a total of 336 studies for the

4 libraries, as can be seen in Table 2.3.
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Study Selection: We selected the studies to be analyzed executing 5 phases: exe-

cuting the Search String in the selected bases, reading the study titles, reading the study

abstracts, reading the studies and grouping the selected studies. The first four phases

selected the studies adhering to the objective of the SLR and the last phase separated

the studies that focus on SM and SFE. We used our inclusion and exclusion criteria for

selecting the studies in all the first four phases. The selection process started with 336

studies and ended with 34 studies. Tables 2.4 and 2.5 show the number of studies selected

in each phase of the process, for each of the 4 scientific libraries. The difference between

the Tables 2.4 and 2.5 is Table 2.4 presents studies that focus on SM and Table 2.5 shows

studies that focus on SFE. Tables 2.6 and 2.7 list the selected studies focusing on SM and

SFE, respectively. The following acronyms were used in these tables to classify the profiles

of selected studies that present ANNs that perform SFSP: SM (Speaker Modeling), SFE

(Speaker-specific Feature Extraction), SI (Speaker Identification), SV (Speaker Verifica-

tion), SR (Speaker Recognition), SS (Speaker Segmentation), SD (Speaker Diarization),

SSD (Speaker Spoofing Detection) and SA. It is important to note that the study S11,

from the Engineering Village library, is accounted for both Tables 2.4 and 2.5 and listed

in both study groups, shown in Tables 2.6 and 2.7, as it presents ANN solutions for both

SM and SFE. Therefore, the 34 studies resulted in a total of 35 QAs performed.

Tabela 2.4: Selection process of studies focusing on SM
Scientific
Library

Search
Execution

Title
Reading

Abstract
Reading

Study
Reading

Selected
SM Studies

Percentage
of Selected

ACM Digital Library 15 10 3 2 2 13.33%
Engineering Village 47 27 18 16 11 23.40%
ScienceDirect 212 46 26 5 1 0.47%
Scopus 62 39 17 11 8 12.90%

Total Selected 336 122 64 34 22 6.55%

Tabela 2.5: Selection process of studies focusing on SFE
Scientific
Library

Search
Execution

Title
Reading

Abstract
Reading

Study
Reading

Selected
SFE Studies

Percentage
of Selected

ACM Digital Library 15 10 3 2 0 0.00%
Engineering Village 47 27 18 16 6 12.77%
ScienceDirect 212 46 26 5 4 1.89%
Scopus 62 39 17 11 3 4.84%

Total Selected 336 122 64 34 13 3.87%

Data Extraction: After the reading and selection phases, data from the studies

were extracted in order to carry out the Literature Analysis and answer the RQs. Ta-

bles 2.8 e 2.9 list some information extracted from the studies focusing on SM and SFE,

respectively. In the column “Types of ANNs”, a categorization of the types of ANNs
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Tabela 2.6: List of selected studies focusing on SM
Cod Study Authors Year Library Profile

S1

Extracting sub-glottal and Supra-glottal features
from MFCC using convolutional neural networks
for speaker identification in degraded
audio signals

Anurag Chowdhury e Arun Ross 2017 Engineering
Village SI

S2 Audio classification using attention-augmented
convolutional neural network Yu Wu, Hua Mao e Zhang Yi 2018 Scopus SI

S3 Discriminative deep audio feature embedding for
speaker recognition in the wild

Simone Bianco, Elia Cereda e
Paolo Napoletano 2018 Engineering

Village SR

S4 Deep speaker embeddings for short-duration
speaker verification

Gautam Bhattacharya, Jahangir
Alam e Patrick Kenny 2017 Engineering

Village SV

S5 Speakers In The Wild (SITW): The QUT speaker
recognition system

Houman Ghaemmaghami,
Md Hafizur Rahman,
Ivan Himawan, David Dean,
Ahilan Kanagasundaram,
Sridha Sridharan e
Clinton Fookes

2016 Engineering
Village SR

S6 A Simple Neural Network Based Countermeasure
for Replay Attack Wenfeng Pang e QianHua He 2017 ACM Digital

Library SSD

S7 Investigating Raw Wave Deep Neural Networks
for End-to-End Speaker Spoofing Detection

Heinrich Dinkel, Yanmin Qian e
Kai Yu 2018 Engineering

Village SSD

S8
An unsupervised neural prediction framework
for learning speaker embeddings using recurrent
neural networks

Arindam Jati e
Panayiotis Georgiou 2018 Engineering

Village SS

S9 The IBM speaker recognition system: Recent
advances and error analysis

Seyed Omid Sadjadi,
Jason W. Pelecanos e
Sriram Ganapathy

2016 Scopus SR

S10 Using Convolutional Neural Networks to Classify
Audio Signal in Noisy Sound Scenes M.V. Gubin 2018 Scopus SV

S11 Advances in deep neural network approaches to
speaker recognition

Mitchell McLaren, Yun Lei e
Luciana Ferrer 2015 Engineering

Village SI

S12 Speaker Recognition for Robotic Control via an
IoT Device

Zhanibek Kozhirbayev,
Berat A. Ero, Altynbek Sharipbay e
Mo Jamshidi

2018 Scopus SR

S14
Speaker identification for the improvement of the
security communication between law enforcement
units

Jaromir Tovarek e Pavol Partila 2017 Engineering
Village SI

S15 Weaknesses of voice biometrics - Speaker
verification spoofing using speech synthesis

Milan Rusko, Marian Trnka,
Sakhia Darjaa e
Marian Ritomský

2017 Scopus SSD

S16 Speaker identification based on combination of
MFCC and UMRT based features

Anett Antony e
R. Gopikakumari 2018 Engineering

Village SI

S17 Audiovisual speaker identification based on lip
and speech modalities Fatma Chelali e Amar Djeradi 2017 Scopus SI

S18 Speaker identification framework by peripheral
and central auditory models Masanori Morise e Kenji Ozawa 2015 Scopus SI

S19
Real time implementation of speaker recognition
system with MFCC and neural
networks on FPGA

Bhanuprathap Kari e
S. Muthulakshmi 2015 Scopus SR

S30 Voxceleb2: Deep speaker recognition Joon Son Chung, Arsha Nagrani,
Andrew Zisserman 2018 Engineering

Village SV

S32 Speaker diarization system using HXLPS and
deep neural network

V. Subba Ramaiah,
R. Rajeswara Rao 2018 Science

Direct SD

S33
Multi-talker Speech Separation With
Utterance-Level Permutation Invariant
Training of Deep Recurrent Neural Networks

Morten Kolbæk, Dong Yu,
Zheng-Hua Tan, Jesper Jensen 2017 Engineering

Village SD

S34 Deep Learning Backend for Single and
Multisession i-Vector Speaker Recognition Omid Ghahabi e Javier Hernando 2017 ACM Digital

Library SV
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Tabela 2.7: List of selected studies focusing on SFE
Cod Study Authors Year Library Profile

S11 Advances in deep neural network approaches
to speaker recognition

Mitchell McLaren, Yun Lei e
Luciana Ferrer 2015 Engineering

Village SI

S13 Speaker verification based on extraction of deep
features

Evangelos Mitsianis,
Evaggelos Spyrou e
Theodore Giannakopoulos

201 Engineering
Village SV

S20
A complete end-to-end speaker verification
system using deep neural networks: From
raw signals to verification result

Jee-Weon Jung, Hee-Soo Heo,
IL-Ho Yang, Hye-Jin Shim e
Ha-Jin Yu

2018 Scopus SV

S21
Employing phonetic information in DNN
speaker embeddings to improve speaker
recognition performance

Md Hafizur Rahman,
Ivan Himawan, Mitchell Mclaren,
Clinton Fookes e Sridha Sridharan

2018 Engineering
Village SR

S22
DNNs for unsupervised extraction of pseudo
speaker-normalized features without explicit
adaptation data

Neethu Mariam Joy,
Murali Karthick Baskar
e S. Umesh

2017 Science
Direct SA

S23
Text-independent speaker verification using
convolutional deep belief network and
Gaussian mixture model

Ivan Rakhmanenko e
Roman Meshcheryakov 2017 Scopus SV

S24 Deep feature for text-dependent speaker
verification

Yuan Liu, Yanmin Qian,
Nanxin Chen, Tianfan Fu,
Ya Zhang e Kai Yu

2015 Science
Direct SV

S25 Deep neural network based i-vector mapping
for speaker verification using short utterances

Jinxi Guo, Ning Xu, Kailun Qian,
Yang Shi, Kaiyuan Xu,
Yingnian Wu e Abeer Alwan

2018 Science
Direct SV

S26
Speaker verification based on the fusion of
speech acoustics and inverted articulatory
signals

Ming Lia, Jangwon Kimd,
Adam Lammertd,
Prasanta Kumar Ghoshe,
Vikram Ramanarayanand e
Shrikanth Narayanan

2016 Science
Direct SV

S27

Deep neural network-based bottleneck feature
and denoising autoencoder-based
dereverberation for distant-talking speaker
identification

Zhaofeng Zhang, LongbiaoWang,
Atsuhiko Kai, Takanori Yamada,
Weifeng Li and Masahiro Iwahashi

2015 Engineering
Village SI

S28

Speaker2Vec: Unsupervised learning and
adaptation of a speaker manifold using deep
neural networks with an evaluation on
speaker segmentation

Arindam Jati e
Panayiotis Georgiou 2017 Scopus SS

S29 A comparison of neural network feature
transforms for speaker diarization

Sree Harsha Yella
e Andreas Stolcke 2015 Engineering

Village SD

S31 Speaker diarization with LSTM
Quan Wang, Carlton Downey,
Li Wan, Philip Andrew Mansfield,
Ignacio Lopz Moreno

2018 Engineering
Village SD
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presented by the study was devised. In the “ANN Architecture” column, the ANN ar-

chitecture that presented the best performance in each study is represented in a very

simplified way. In this representation, only the quantities and types of processing layers

were recorded in the composition of the ANNs. The objective was to show in a simplified

way the complexity and the size of the ANN of each study. Information, such as the

number of neurons in each layer or the type of activation function used by ANN, has been

suppressed. The following acronyms were used to represent information about the types

of ANN and its architectures recorded in the Tables 2.8 and 2.9: 1D (1 Dimension), ANN

(Artificial Neural Network), AP (Average Pooling), BN (Bottleneck), CDBN (Convoluti-

onal Deep Belief Network), CNN (Convolutional Neural Network), CONV (Convolution),

DBN (Deep Belief Network), DNN (Deep Neural Network), FC (Fully Connected), GRU

(Gated Recurrent Unit), LSTM (Long Short-Term Memory), MLP (Multi-Layer Per-

ceptron), MP (Max Pooling), POOL (Pooling), ResNet (Residual Network) and RNN

(Recurrent Neural Network). Table 2.8 presents the models used as baselines for compa-

rison with the SM ANN solutions proposed by the studies and answers whether the ANN

exceeds the performance of the baselines. In the Table 2.9 the same types of information

are also presented but one more column is shown that informs the conventional feature

extraction/conversion methods used on audios by the studies to feed the SFE ANN.

After reading all the papers, we firstly created a taxonomy for gathering all the tasks

regarding to SFSP when the speaker audio is the focus of the application, which we

present in next Chapter. Chapter 2.4 presents the answer to our RQs. For presenting an

unified overview of these tasks and the technologies based on ANNs, Chapter 2.5 presents

a discussion of our results.

2.2 Speaker-Focused Speech Processing (SFSP)

Speech is regarded as a speaker’s biometric characteristic that can be analysed for some

specific purpose [77]. Speech processing focusing on the speaker information have gained

attention over the last years for many different solutions. However, as far as we know,

there is a lack of an overview and a taxonomy that embraces different research areas with

a focus on the speaker. Figure 2.2 was taken from article [21] and shows the representation

of some areas that descend from speech processing. According to our SLR, we were able to

identify 5 new areas descending from speech processing and we show them in Figure 2.3 :

Speaker Adaptation, Speaker Diarization, Speaker Segmentation, Speaker Clustering and

Speaker Spoofing Detection. We base on [21], registered in Figure 2.2, to propose Figure
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Tabela 2.8: Information from selected studies focusing on SM
Cod Area Type of ANN Architecture of SM ANN

(proposed)
Baseline SM Solution

(compares with SM ANN)
Proposed ANN

performs better?

S1 SI 1D-CNN 1D-CNN(3 CONV+1 FC) UBM-GMM,
i-vector/PLDA Yes

S2 SI CNN
CNN(3 basic CONV
+5 CONV/POOL

+2 Attention-based+1 FC)

VGG-11, ResNet-18,
ResNet-34, ResNet-50,

i-vector
Yes

S3 SR CNN(ResNet) CNN(ResNet)(34 CONV
+2 MP+3 FC)

i-vectors/SVM,
i-vectors/PLDA/SVM,

VoxCeleb CNN,
VoxCeleb CNN(variations),

ResNet-18

Yes

S4 SV CNN Deep CNN(8 CONV+4 MP
+2 FC Attention)

i-vectors,
Feedforward(mean),

Feedforward(Attention),
Convnet

In some tests.

S5 SR DNN DNN(6 hidden layers) ANN Models of SITW 2016 Yes

S6 SSD 1D-CNN-RNN 1D-CNN-RNN(2 CONV-1D
+1 GRU+1 FC)-model 2 1D-CNN-RNN-model 1 Yes

S7 SSD CNN-RNN CNN-RNN(3 CONV
+1 LSTM+2 FC)

GMM(MFCC),
DNN(CQCC8k-DD),

GMM(CQCC4k),
DNN,
CNN,
LSTM

In some tests.

S8 SS RNN
Siamese RNN(
2 GRU(3 layers)
+1 FC)

algorithm Bayesian
Information

Criterion (BIC)
Yes

S9 SR DNN DNN(7 FC+1 BN) GMM Yes

S10 SV CNN-RNN CNN-RNN(3 CONV
+1 FC / RNN)

CNN-RNNs(1 to 6
hidden layers) Yes

S11 SI DNN DNN UBM No

S12 SR ANN ANN(2 hidden layers) There is not

No comparisons
with other solutions.
Uses the same ANN
in different scenarios.

S14 SI ANN ANN(1 hidden layer) There is not No comparisons
with other solutions.

S15 SSD DNN DNN(6 hidden layers) Unit Selection synthesizer,
HMM synthesizer Yes

S16 SI MLP MLP(1 hidden layer) There is not

No comparisons
with other solutions.

Uses ANN but it
is not its main
research focus.

S17 SI MLP MLP(1 hidden layer) There is not No comparisons
with other solutions.

S18 SI ANN ANN(2 hidden layers) ANNs(1 to 4 hidden layers) Yes

S19 SR MLP MLP(1 hidden layer) There is not No comparisons
with other solutions.

S30 SV CNN(ResNet) CNN(ResNet)(50 CONV
+1 MP+1 AP+2 FC)

i-vectors/PLDA,
VGG-M,

ResNet-34
Yes

S32 SD DNN DNN There is not

No comparisons
with other solutions.

Uses ANN but it
is not its main
research focus.

S33 SD DNN-CNN-RNN
DNN(3 hidden layers)/

CNN(11 CONV+6 MP+1 AP)/
Bi-directional LSTM (3 layers)

There is not

No comparisons
with other solutions.
Uses the same ANN
in different scenarios.

S34 SV DBN-DNN DBN-Universal DBN-DBN-
DNN(3 hidden layers) DNN(1 hidden layer) No
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Tabela 2.9: Information from selected studies focusing on SFE

Cod Area Types of ANN
Architecture
of SFE ANN
(proposed)

Conventional
Feature Extraction/
Conversion Method
(feeds SFE ANN)

Baseline SFE
Solution (compares
with SFE ANN)

Proposed
ANN

performs
better?

S11 SI DNN(BN) DNN(4 layers+BN) filterbank MFCC,
pcaDCT No

S13 SV CNN CNN(3 hidden layers
+2 MP) STFT

algorthm Speeded
Up Robust Features
(SURF), algorthm

Scale-Invariant
Feature Transform

(SIFT)

Yes

S20 SV CNN-RNN CNN(5 CONV/POOL)
+LSTM+1 FC Pre-emphasis

MLP(7 layers)
/d-vector

/mel-filterbank
energies

Yes

S21 SR DNN(BN)
-DNN(BN)

DNN(7 hidden layers
+BN)+DNN(6 hidden

layers+BN)+DNN
/x-vector(7 hidden

layers+statistic
POOL)

MFCC
UBM/i-vector,
DNN/i-vector

and BN/i-vector
Yes

S22 SA DNN DNN(6 hidden layers)
filterbank with

pitch information,
MFCC, LDA

MFCC, LDA, filterbank,
Conventional FMLLR,

Basis FMLLR with
and without VTLN

Yes

S23 SV CDBN CDBN(3 layers) Not reported
MFCC,

Greedy Add-del
algorithm

No

S24 SV DNN DNN(2 hidden layers) PLP PLP Yes

S25 SV DNN(ResNet)
DNN(6 layer+

Residual Block(2 FC
+BN))

mel-filterbank MFCC Yes

S26 SV DBN DBN MFCC MFCC

Only when
combined
with the
baseline.

S27 SI DNN-DNN(BN) DNN(3 layers)-
DNN(9 layers+BN) MFCC

CMN+MFCC, MCLMS-SS,
MSLP-SS, BF/MLP,

BF/DNN, DAE
Yes

S28 SS DNN DNN(5 hidden layers) MFCC

Some popular
distance metrics:

BIC with MFCC13,
GD with MFCC13,
KL2 with MFCC13,
KL with MFCC40;
and references from

other authors with some
state-of-the-art papers

Yes

S29 SD DNN-ANN

DNN(2 hidden
layers+BN)

and ANN(1 hidden
layer+BN)

MFCC MFCC In some
tests.

S31 SD RNN LSTM(3 layers
+final linear layer)

log-mel-filterbank
energies GMM-UBM/i-vector Yes
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Figura 2.2: Speech processing and other descendant areas, according to [21].

2.3, considering that there was an evolution from 1997 to the actual days. Considering

that our SLR focused on the speaker, we believe that other research focuses, also derived

from Speech Processing, may have emerged from 1997 to the present day, which would

contribute to other ramifications in Figure 2.3. Therefore, Figure 2.3 shows the areas

derived from speech processing and in bold the areas classified as SFSP by our proposed

taxonomy are highlighted. We use the “+” sign to show the cases in which the predecessor

area needs to join the successor areas to be considered.

During the SLR execution, 35 solutions were selected representing 7 different speaker-

focused research areas. Among the researched works we did not find any that presented the

same approach profile as this SLR. In view of the identified research areas, we felt the need

for a taxonomy that would represent the research originated from speech processing but

with a specific research focus on the characteristics related to the speaker. So we propose

the term Speaker-Focused Speech Processing (SFSP). We have not found any work in the

bibliography using this term. In the next subsections we provide a brief explanation of

the 8 research areas identified by SLR and classified by us as SFSP: SI, SV, SR, SS, SC,

SD, SSD and SA. Also, we identified some concepts used in SFSP regarding to ANNs as

well as the typical steps for training ANNs for SFSP. All of these items are described in

what follows.

2.2.1 SFSP Areas

2.2.1.1 Speaker Verification (SV), Speaker Identification (SI) and Speaker
Recognition (SR)

A SV system aims to use a speech sample to test whether a person who claims to have

produced the speech has done so indeed [55] [64]. This is a binary classification problem.
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Figura 2.3: New branches of SFSP considering the evolution of research in speech proces-
sing from 1997 to the actual days.

In other words, the system checks whether the speaker is the person he claims to be and

answers whether this statement is correct or wrong [14]. SV has been widely applied

in telephone or network access control systems, such as telephone banking or apartment

security [138].

A SI system uses a speech sample to select the identity of the person that produced

the speech from among a population of speakers [55] [14]. It searches for the best matching

speaker among the residents already known to the system but it may be that the unknown

speaker is not enrolled in the system. For this reason, in many systems, SI is followed by

SV [64]. It is possible to use this technique to verify speaker identity and control access to

services such as voice dialing, banking by telephone, telephone shopping, database access

services, information services, voice mail, security control for confidential information

areas, and remote access to computers [55].

SR is a specific vocal interaction task and refers to the use of an automated system

or machine to recognize persons from their voices [103]. It is a multi-disciplinary task

that uses the speaker vocal features to deduce information about speaker identity. It is

a branch of biometrics that may be used for identification, verification and classification

of individual speakers [10]. There are two types of SR systems such as text-dependent or

text-independent. The former system utilizes a fixed utterance for training and testing

a person, whereas the later one does not employ a fixed phrase for any cases [77]. At

first glance, the 3 topics, SR, SI and SV, seem to have the same meaning, but there
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Figura 2.4: Representation of speaker identification, verification and recognition systems

are details that differentiate their types of performances. The SR concept includes both

SI and SV tasks [99] [103] [7] [14]. Figure 2.4 shows a representation of the SI, SV

and SR systems. SR usage is rapidly increasing and some applications include: access

control, online transactions, law enforcement, speech data management, multimedia and

personalization [77].

2.2.1.2 Speaker Segmentation (SS), Speaker Clustering (SC) and Speaker
Diarization (SD)

SS, sometimes known as Speaker Change Points Detection, refers to the task of dividing

an audio signal into multiple audio chunks such that each of them denotes a speaker

homogeneous region, ideally containing only one speaker [76] [61]. It aims to detect all

speaker change points [109]. SC refers to unsupervised classification of speech segments

based on speaker voice features. SS followed by SC is called SD [76]. Therefore, a SD

system consists of two main parts: segmentation and clustering [109]. It is the process of

partitioning an input audio stream into homogeneous segments according to the speaker

identity [131]. It answers the question “who spoke when?” in a multi-speaker environment.

In particular, the speaker boundaries produced by diarization systems have the potential

to significantly improve acoustic speech recognition accuracy. [131] further explain that

a typical SD system usually consists of four components:

1. Speech segmentation, where the input audio is segmented into short sections that

are assumed to have a single speaker, and the non-speech sections are filtered out;

2. Audio embedding extraction, where specific features such as MFCC, speaker factors

or i-vectors are extracted from the segmented sections;
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3. Clustering, where the number of speakers is determined, and the extracted audio

embeddings are clustered into these speakers; and optionally

4. Resegmentation, where the clustering results are further refined to produce the final

diarization results.

SS has numerous applications in the fields of SD, speaker tracking and automatic

speech recognition [61]. SD has a wide variety of applications including multimedia in-

formation retrieval, speaker turn analysis, and audio processing [131]. The main SS and

SD utilization is rich transcription applications. Rich transcription is a transcription of a

recorded event. It can works to generate readable transcriptions of conversational speech

in multiple languages, incorporating capitalization, punctuation, speaker change point

markers (segmentation) and speaker clustering (diarization).

2.2.1.3 Speaker Spoofing Detection (SSD)

State-of-the-art SSD systems have achieved great performance in recent times. However,

performance is usually measured in an ideal scenario where impostors do not try to disguise

their voices to make them similar to the target speakers and where target speakers do not

try to conceal their identities [88]. The progress of speech synthesis technology leaded to

automatic SV systems encountering serious spoofing attacks challenges. Spoofing attacks

is the technique where an imposter can easily steal the voiceprint information of a target

speaker and use the stolen information to generate high quality speech signals similar to

those of the target speaker, through voice conversion or speech synthesis techniques [138]

[88]. The generated speech can then be used to attack SV systems [138] where an attacker

masquerades as a target enrolled speaker in order to gain illegitimate access to the system

[52]. That is, while the performance of automatic SV systems have considerably improved

during recent years, as in the case for any other biometric person authentication systems,

reliability of automatic SV systems against spoofing attacks (also known as presentation

attacks) has become an important security concern [52]. Typical counterfeiting attacks

performed on SV systems can be done by different techniques. [120] list such techniques

and explain their meanings:

• Impersonation - It refers to spoofing attacks with human-altered voices and is one

of the most obvious forms of spoofing;

• Replay attacks - It uses speech recordings of a genuine client or concatenation of

shorter speech segments;
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• Voice conversion - It is a technique that electronically converts one speaker’s voice

towards that of another;

• Speech synthesis - It uses a speech synthesizer system adapted to the voice of genuine

clients;

• Artificial, non-speech-like tone signals - Certain short intervals of converted speech

yield extremely high scores or likelihoods. Such intervals are not representative

of intelligible speech but they are nonetheless effective in overcoming typical SV

systems.

Speech synthesis and voice conversion attacks in turn, have gained more attention due

to two reasons: first, both speech synthesis and voice conversion attacks techniques have

improved significantly where high quality speech signals can be generated with limited

amount of training data and the second, the availability of freely available open-source

speech synthesis and voice conversion tool kits which can easily be used by non-expert

attackers [52]. To prevent these attacks, combat methods known as SSD have been

developed. SSD is a binary classification task and your goal is to discriminate spoofed

speech from the genuine speech [52]. Research in SSD has been carried out to improve

the security of SV systems and uses several techniques. DL has already been successfully

introduced into the speaker falsification research community as can be seen in [75] and

[25]. As another example, [52] highlights the main contribution of the paper presented by

[116] that uses features extracted of audios in the training of DNN for SSD. According to

[33], the spoofing detection community is focused on two directions: SFE and classifier

optimization in the SM.

2.2.1.4 Speaker Adaptation (SA)

In speech recognition, SA refers to the range of techniques whereby a speech recogni-

tion system is adapted to the acoustic features of a specific user using a small sample

of utterances from that user [123] [1]. The development of speaker-independent speech

recognition systems has seen significant progress; however, the recognition performance of

these systems has not yet reached that of speaker-dependent speech recognition systems in

which a user’s speech is registered before hand. Much hope has therefore been placed on

the establishment of SA techniques that can bring performance of a speaker-independent

system up to that of a speaker-dependent one using the smallest amounts of data [123]. In

many cases it is undesirable to train an speaker-dependent system due to the large amount

of training data needed and hence the required enrollment time. Therefore SA techniques
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which tune an existing speech recognition system to a new speaker are of great interest.

Adaptation methods require a sample of speech (adaptation data) from the new speaker

so that the models can be updated. The amount of adaptation data needed depends on

the way the SA technique uses the data and on the type of system to be adapted [84].

[81] explain SA can be formulated in a number of ways and mentions four different SA

setups, as seen:

1. adaptive clustering, in which an existing set of speaker-independent speech models

is updated using a new set of speaker-independent data;

2. speaker transformation or speaker conversion, in which a well-trained model for

one speaker is converted into a model for a new speaker using a small amount of

speaker-specific training data;

3. speaker adaptation, in which a speaker-independent (or multispeaker) model is

adapted to a single speaker using speaker specific training data from the new talker;

4. sequential adaptation, in which speaker-specific training data are acquired over time,

and the speaker-dependent model is adapted sequentially every time that new trai-

ning data is acquired.

These implementations differ only in the ways in which the training data are utilized;

the adaptation techniques involved are usually very similar. To [65], various SA/norma-

lization approaches in DNN can be classified into three categories: network components

adapted towards a particular speaker, speaker-normalized input features and input featu-

res appended with speaker-specific features. The first category adapts either the weight

functions or the bias terms in DNN to a particular speaker. The second category provides

speaker-normalized features as DNN inputs. In the third category, DNNs are made aware

of the speaker in- formation during training by augmenting DNN input with auxiliary

codes that carry speaker information [81].

2.3 Artificial Neural Networks (ANNs) for SFSP

In this Chapter we show the types of ANNs identified by our SLR and explain each

one, based on broader concepts available in various works of literature. We also find it

interesting to explain some concepts, which we found in the analyzed articles, that are

used in the ANN training processes for SFSP. Finally, we show the steps that make up

the ANNs training for SFSP after analyzing in the articles the explanations given by each

one of them about the step by step used in the execution of their SFSP processes.
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2.3.1 Types of ANNs

Generic ANN Model: According to [106], ANNs are computational processing systems

heavily inspired by biological nervous systems (such as the human brain) operation.

ANNs are mainly comprised by a high number of interconnected computational no-

des (referred to as neurons), working entwine in a distributed fashion to collectively

learn from the input in order to optimise its final output. The calculation within a

neuron is generally done by two operators: one input operator and one activation

function. The input operator can be, for example, the result of sum the neuron in-

puts and one bias. The activation function determines the output of the neuron from

the result of the input operator. Neurons are connected to each other by synaptic

connections, which relay the output of a neuron to the input of another, multiplying

it by a coefficient called synaptic weight. Neurons are organized in layers, which

are divided into three groups: one input layer, one or many hidden layers and one

output layer. Too many hidden layers can lead to an overfitting phenomenon of

the ANN; not enough layers can lack robustness for the ANN to learn the problem.

Synaptic weights and biases are optimized by a training algorithm [16]. [106] state

that the input data is usually loaded in the form of a multidimensional vector to

the input layer, which will be distributed to the hidden layers. The hidden layers

will then make decisions from the previous layer and weigh up through a stochastic

change. Weights updating is referred to as the process of learning.

Multilayer Perceptron (MLP): MLP is a very simple model of ANN and is based on

the principle of a feed-forward-flow of information, i.e. the network is structured

in a hierarchical way [128]. It is important to mention that the MLP model is a

variant form of the classical ANN model and this model has been widely used in the

current era of big data analytics. The basic MLP model comprises of three layers:

(I) input layer, (II) hidden layer and (III) output layer. Basically the input layer

receives the set of input data, the processing of the features is performed in the

hidden layer(s), and the output layer is used to reveal the predicted results[117].

The input units play no active role in processing the information flow, because they

just distribute the signals to the units of the first hidden layer. All hidden units work

in an identical way and the output unit is a simpler version of a hidden unit. In an

MLP, each hidden unit transforms the signals from the former layer to one output

signal, which is distributed to the next layer. Each hidden unit has an, in general

nonlinear, activation function. The activation function is modulo a translation via
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an individual bias, the same for all hidden units. The output of a hidden unit is

determined by the weighted sum of the signals from the former layer, which is then

transformed by the activation function. In the output unit the activation function

is the identity function[128].

Deep Neural Network (DNN): On the other hand, an ANN having many multiple

hidden layers, stacked upon each-other, is commonly called DNN. DNN architectures

are characterized by one or more hidden layers consisting of hidden nodes, with each

hidden node representing a nonlinear activation function [41]. ANNs differ by their

architectures composition, represented by different amounts and types of layers and

neurons. The deep architecture in DNNs is a set of non-linear activation functions

that enables the network to effectively model complex non-linear mappings from

input to output [134]. DNNs have been proved to present an excellent ability to

automatically learn important representations of characteristics of the data inserted

in the network. So, DNNs have recently attracted much attention due to their

excellent performance in phone recognition, handwritten digits recognition, face

recognition, etc. Researchers began to study how to incorporate DNN in SR [142].

The appropriate numbers of layers and neuron units per layer that allow the best

performance of a DNN are identified during training. In theory, more units in each

layer achieve better performance in recognition tasks, according to [141]. Conversely,

a too large number of units may lead to overlearning, which causes diminished

performance.

Algorithms for learning such as DNN are called DL. DL refers to a branch of machine

learning techniques which attempts to learn high level features from data. Since

2006, DL has become a new area of research in many applications of machine learning

and signal processing. Various DL architectures have been used in speech processing

[45]. In recent years, machine learning research has seen a marked switch from hand-

crafted features to those that are learned from raw data, mainly due to the success

of DL. DL models have become increasingly important in speech recognition, object

recognition/detection, and more recently in natural language processing. Recent

advances in DL have benefited from a confluence of factors, such as the availability

of large-scale datasets, computational resources, and advances in both unsupervised

and supervised training algorithms [23].

Convolutional Neural Network (CNN): One of the most popular DNNs is CNN. It

take this name from mathematical linear operation between matrixes called con-
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volution. CNN has an excellent performance in machine learning problems [5]. It

has been popular in pattern recognition for non-relational data, such as images and

sound processing [134]. A traditional CNN architecture consists of a sequence of

layers which may include convolutional layer, non-linearity layer, pooling layer and

fully-connected layer [5] [26]. The convolutional and fully-connected layers have pa-

rameters but pooling and non-linearity layers don’t have parameters [5]. Basically

a CNN consists of interleaved convolutional layers and pooling layers. The former

layers utilize locally connected filters to share weights across the input, which ena-

bles translation invariance of the input, and the latter layers are designed to reduce

the dimensionality of the data. These convolutional filters also have interpretable

time and frequency meanings for audio spectrograms and are able to learn time-

frequency feature representations from two dimensions [134]. According to [26] the

convolutional layer in a CNN is where majority of the learning process takes place.

Design and placement of the filters along the various layers of a CNN determine the

“concepts” that are learned at each layer. [26] still claim that "deciding the shape

of filters in CNNs is crucial to effectively learning the target concept from the input

data". [85] believe that multiple layers in a deep network do not have to use the same

filter shapes since they may capture different types of information. [134] highlight

the importance of CNN contributions when they say that CNNs have been broadly

applied in pattern recognition using many typical architectures such as VGG nets

or ResNets. CNN has had ground breaking results over the past decade in a variety

of fields related to pattern recognition; from image processing to voice recognition.

The most beneficial aspect of CNNs is reducing the number of parameters in ANN .

This achievement has prompted both researchers and developers to approach larger

models in order to solve complex tasks, which was not possible with classic ANNs

[5].

Residual Network (ResNet): Due to the difficulty in training DNNs, [56] presented a

residual learning framework to ease the training of substantially deeper networks,

called ResNet. The performance results with ResNet presented by [56] winned the

1st place on the ILSVRC 2015 classification task. It is a new CNN model called deep

ResNet for image classification. The main difference between a ResNet and a typical

CNN is that the second organizes the architecture in blocks combining basic units

such as convolution, nonlinear mapping, pooling or batch normalization in a cascade

manner. A ResNet has a shortcut pathway directly connecting the input and output

of these blocks [133]. The layers of the neural network were explicitly reformulated
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by [56] learning residual functions, with reference to layer inputs, instead of learning

unreferenced functions. According to [56], these ResNets are easier to optimize and

can gain accuracy from considerably increased depth.

Recurrent Neural Network (RNN): Another type of DNN largely used in signal pro-

cessing is the RNN. RNN are composed by powerful dynamical systems that incor-

porate an internal memory, or hidden state, represented by a self-connected layer of

neurons [18]. This property makes them well suited to model temporal sequences,

such as frames in a magnitude spectrogram or chord labels in a harmonic progres-

sion, by being trained to predict the output at the next time step given the previous

ones. RNNs are completely general in that in principle they can describe arbitra-

rily complex long-term temporal dependencies, which made them very successful in

music applications. Some works perform the combination of different ANNs, such

as [107] who idealized an architecture combining CNN and RNN in their ANN. Ac-

cording to [107] the combination occurred, because CNN is good at extracting and

subsampling globe features while RNN is good at capturing the long term depen-

dencies along a sequence, that is, capturing the past message and the current one

to find its dependencies.

Deep Belief Network (DBN): Finally, other type of DNN largely used in signal pro-

cessing is DBN. DBN is a generative probabilistic model composed of one visible

(observed) layer and many hidden layers. Each hidden layer unit learns a statistical

relationship between the units in the lower layer. The higher layer representations

tend to become more complex [82]. The building block of a DBN is a probabilistic

model called a Restricted Boltzmann Machine (RBM), used to represent one layer

of the model [80]. RBM is a generative stochastic ANN that can learn a probability

distribution over its set of inputs [2]. RBM real power emerges when RBMs are stac-

ked to form a DBN, a generative model consisting of many layers. In a DBN, each

layer comprises a set of binary or real-valued units. Two adjacent layers have a full

set of connections between them, but no two units in the same layer are connected.

2.3.2 Some Concepts Used in ANN Training for SFSP

Extracting speaker’s specific features of the is not an easy task. Audio-only SR systems

are far from being perfect, especially under noisy conditions [24]. The presence of various

environmental noises and reverberation in the input speech signal has a significant negative

impact on the performance of most applications that deal with speech [112]. According



2.3 Artificial Neural Networks (ANNs) for SFSP 31

to [89], even the session variability between training and test recordings of the same

speaker can heavily degrade the system performances in SV. This type of variability is

usually attributed to the audio channel effects, although it also includes phonetic and

intra-speaker variations such as changes of speaker’s emotion, health and others. In

this Chapter we discuss a few methods and techniques to feature extraction and other

characteristics regarding to ANN training for SFSP.

Spectrograms: Spectrograms are images that result from the spectral content of audios

[98]. They are used for training neural networks through visual feature extraction

from the spectral content. A spectrogram is a bidimensional image that displays the

change of frequency along the vertical axis and time along the horizontal axis. It is

calculated using the Short-Time Fourier Transform (STFT) on windowed audio fra-

mes [134]. The brighter a “pixel” is, the higher the energy at this time and frequency.

Spectrograms are commonly used for sound classification [85]. In spectrograms, lo-

cal filters tend to capture variations within one frequency region, while global filters

could capture the relationships between different harmonics and syllables [85].

Usually, a whole spectrogram is used as CNN input to obtain the global feature re-

presentation. To learn more salient features, the spectrogram is split into segments,

which contain small frames along the time axis, being called a time-distributed spec-

trogram [134]. Each segment is a part of the spectrogram in a short interval which

contains some vocalization and is labeled with one class [85]. Using these small time-

distributed segments of the spectrogram as CNN input, different local features at

different time steps are learned. However, spectrograms also represent the distribu-

tion of energy along the change of frequency. In many approaches, frequency-domain

only features (e.g., MFCCs) also obtain good results in audio classification tasks,

which have proved the importance of frequencies information [134].

Data Embeddings: In the context of ANN, embeddings are low-dimensional, learned

continuous vector representations of discrete variables [58]. Data embedding is used

in many machine learning applications to create low-dimensional feature represen-

tations, which preserves the structure of data points in their original space [23].

The embeddings are established by a ANN whose particular architecture allows to

integrate the original data structure within the learnt representations. More pre-

cisely, considering that a Knowledge Base is defined by a set of entities and a set

of relations between them, a model can learn one embedding for each entity, that

is, one low dimensional vector, and one operator for each relation, that is, a matrix
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[17]. It is a usual practice of reduction of dimensionality, that is to say, to project

data of high dimension in a representation of low dimension, reflecting the intrinsic

structure of the data and achieving a better performance in future processing.

ANN based audio embeddings (d-vectors) have seen wide-spread use in SV applica-

tions, often significantly outperforming previously state-of-the-art techniques based

on i-vectors [131]. Recent advancements in DNN research have attracted speech sci-

entists to utilize the distinctive ability of DNNs to learn and extract speaker-specific

features from audio. The most common trend is to use some loss function that

discriminates between speakers and extract one or more meaningful hidden layer

representations, generally known as “speaker embeddings”, which are then used as

speaker-specific features [62]. Following steps equivalent to those described by [58],

neural network embeddings can be used:

• Finding nearest neighbors in the embedding space. These can be used to make

recommendations based on user interests or cluster categories;

• As input to a machine learning model for a supervised task;

• For visualization of concepts and relations between categories.

Bottleneck Features (BF): BF or simply Bottleneck (BN) are generated from a MLP

or DNN in which one of the internal layers has a small number of hidden units,

relative to the size of the its other layers. This special small hidden layer creates a

constriction in the network to compress the task-related (classification or regression)

information into a low dimensional representation. Therefore, BFs can be considered

as nonlinear transformation and dimensionality reduction of the input features to

a DNN [137] [83]. BFs can be derived using both unsupervised and supervised

method. In unsupervised approach, classically, an autoencoder with one hidden

layer trained to predicts input features themselves. In the supervised approach,

works as BFs are created by an MLP or DNN trained to predict the class label, for

example, phonemes or phoneme states [83].

BFs have been used in many studies for SR [118] [105] [95], speech recognition [137],

language identification [93] and acustic event recognition [101]. BFs in many studies

are obtained from traditional feature extraction methods, such as MFCC or PLP

[43] [114], but have also been combined with features from these traditional methods

to be used as DNNs input, showing improvements in its performance in the tasks

of recognition using audios [137] [95] [83]. [118] explore methods to further improve

BFs and obtain experimental results that show that the exploration of phonetic
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Figura 2.5: Representation of a DNN with BFs extraction layer

information encoded in BFs obtains further improvements to speaker embeddings

systems. It is believed that because the BFs capture information complementary to

the conventional features derived from the audio spectra [137], that such information

is more effective in the recognition tasks, however it is necessary to preserve the

original input features [83]. Figure 2.5 shows a representation of a DNN that extracts

BFs through one of its hidden layers.

2.3.3 Steps to training ANNs for SFSP

After becoming familiar with these SFSP tasks, we are going forward to understand how

they are executed. We observed that SFSP systems follow a very similar execution process.

Some differences can be considered as peculiarities within the execution process of each

of them. We also note that there is a lack of standardization in the nomenclatures used

by the authors. In order to clarify the basic steps that make up the SFSPs executions,

we represent these steps in Figure 2.6, which shows a generic SFSP process execution

model. To create this SFSP process execution generic model, we analyzed the works that

explain the step by step they used to execute their SFSP process. According to [66],

conventional SV systems are normally composed by following four stages: pre-processing,

acoustic feature extraction, speaker feature extraction and binary classification. [127]

state that biometric identification based on the human voice consists of three main steps.

The process begins with the biometric sample (recording of speech), followed by a speech

processing (features extraction). The final step is the classification of the speaker. For

[64], both the SV and SI system consist of three essential elements: SFE, SM and speaker

matching. SFE concerns to extracting essential features from an input speech for SR;

and SM concerns to probabilistically modeling the feature of the enrolled speakers. [77]

draws attention to the need for the existence of a step before the ANN modeling so that

a treatment is performed on the input data to highlight the information of interest to the
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Figura 2.6: Generic SFSP Process Execution Model

system when it says that “the training process requires a large number of samples and

the characteristic specificity is not obvious, which results the DL cannot work directly”.

Reinforcing [64] point of view, [103] mentions that there are three basic steps involved in

SI:

• SFE: This step converts raw speech signals into a set of feature vectors. There are

different types of features that can be extracted from the speech and depending

on the choice, the accuracy of recognition varies. Some feature extraction algo-

rithms available are MFCC, PNCC (Power Normalized Cepstral Coefficients), LPC

(Linear Prediction Coefficients), PLP (Perceptual Linear Prediction), RASTA PLP

(Relative Spectral PLP), IHC (Inner Haircell Coefficients) etc.

• SM: The extracted features are used to generate models corresponding to each spe-

aker and stored in specific representations to perform comparison during testing.

Different methods available are GMM (Gaussian Mixture Models), DNN, HMM

(Hidden Markov Models), i-vector method, among others.

• SI: The final stage involves the classification of the test speech signal. Relative

scores are computed for each of the speaker models and the one with the highest

score is identified to be the test speaker.

Based on these definitions, we developed Figure 2.6, which shows the basic steps for

training and using an ANN for SFSP. We can divide the process in two steps: Enrollment

and Recognition. In Enrollment, an audio dataset containing many speakers samples is

utilized in the ANN training. First, features are extracted from this samples. This features

are then utilized to ANN training during the ANN Modeling execution. Finally, a ANN
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Tabela 2.10: Result of QA in studies focusing on SM
Pos Cod Prof. QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 Final

Grade

Final
Grade

Percent.

1 S2 SI 9 9 4 12 12 6 4 2 2 1 61 96.83%

2 S3 SR 6 9 4 12 12 6 4 2 2 1 56 88.89%

3 S1 SI 9 9 4 12 6 3 4 2 2 1 52 82.54%

3 S8 SS 9 9 4 12 3 6 2 2 4 1 52 82.54%

4 S7 SSD 3 9 4 12 12 3 4 2 0 1 50 79.37%

5 S30 SV 3 9 4 12 6 6 4 2 2 1 49 77.78%

6 S4 SV 6 9 4 8 9 3 2 2 2 1 46 73.02%

6 S5 SR 6 6 4 8 9 6 4 2 0 1 46 73.02%

7 S9 SR 9 6 4 8 6 6 4 0 0 1 44 69.84%

8 S10 SV 6 9 2 8 3 6 4 2 2 1 43 68.25%

8 S33 SD 6 6 4 8 6 6 4 2 0 1 43 68.25%

9 S34 SV 6 6 4 4 9 6 4 2 0 1 42 66.67%

9 S6 SSD 0 9 4 8 3 6 4 2 0 1 37 58.73%

10 S32 SD 9 3 4 4 6 3 4 2 0 1 36 57.14%

11 S11 SI 6 6 2 0 6 6 4 2 2 1 35 55.56%

11 S12 SR 6 9 4 0 3 6 4 0 2 1 35 55.56%

12 S15 SSD 0 6 4 0 6 6 2 0 2 1 27 42.86%

12 S17 SI 9 6 4 0 3 0 2 2 0 1 27 42.86%

13 S16 SI 3 3 4 4 6 0 2 2 0 0 24 38.10%

14 S14 SI 0 9 4 0 3 0 2 2 0 1 21 33.33%

15 S18 SI 0 9 4 0 3 0 2 0 0 1 19 30.16%

15 S19 SR 3 9 2 0 3 0 2 0 0 0 19 30.16%

model is obtained where the speakers voiceprints are registred to usage in recognition

process. Recognition step represents the ANN model usage, where unknowned speakers

will be evaluated by the ANN model trained. First, features has to be extracted like in

Enrollment step and the recognition Decision is evaluated by the ANN model.

2.4 Answering Our Research Questions

This Chapter presents the results of the literature analysis carried out using the data

extracted from the selected studies and the results of the QA. The QA was applied to

each of the 34 selected studies and produced a total of 35 results. After assigning grades

for each of the 10 QA questions, a final grade was calculated for each study. Tables 2.10

and 2.11 list the results of the QA, showing the studies classified by their final grades in

descending order. Studies that obtained a valid grade in the QA9 presented a justification,

as requested. Table 2.12 shows the justifications for these studies. In what follows, we

describe the answers for our RQs for the selected studies.
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Tabela 2.11: Result of QA in studies focusing on SFE
Pos Cod Prof. QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 Final

Grade

Final
Grade

Percent.

1 S28 SS 6 9 4 8 12 6 4 2 2 1 54 85.71%

2 S25 SV 6 9 4 4 12 6 4 2 2 1 50 79.37%

3 S27 SI 6 9 4 8 9 6 4 0 2 1 49 77.78%

4 S31 SD 6 9 4 8 9 3 4 2 2 1 48 76.19%

5 S20 SV 9 9 4 8 6 6 4 0 0 1 47 74.60%

5 S21 SR 6 9 4 12 6 3 2 2 2 1 47 74.60%

5 S22 SA 9 3 4 8 6 6 4 2 4 1 47 74.60%

5 S29 SD 6 9 4 12 6 3 4 2 0 1 47 74.60%

6 S24 SV 9 6 4 8 6 6 4 0 2 1 46 73.02%

7 S11 SI 6 9 4 4 6 6 4 2 2 1 44 69.84%

8 S13 SV 3 9 4 12 6 0 0 0 0 0 34 53.97%

9 S23 SV 3 9 4 4 6 0 2 2 0 1 31 49.21%

10 S26 SV 6 3 0 0 6 3 2 2 2 1 27 42.86%

2.4.1 RQ1: What are the SFSP areas found and the percentages
of the selected studies that work in each one of them?

Table 2.13 shows the SFSP areas identified in the SM and SFE studies. The area with

the largest number of studies was SV, followed by SI and SR. Analyzing each focus of

approach, SV appears with the greatest number of studies of SFE, with a difference much

greater than the other SFSP areas that have practically equal amounts. With regard to

the SM focus, SI area appears in first place. The other SFSP areas have smaller amounts

of studies, but there is no big difference between them. No SM works were found in the

SA area, nor were there SFE works in the SSD area. Finally, it can be seen that there is

a preference in research with SV and SI areas, since they correspond to 28% of the SFSP

areas (in total 7), but they represent more than half of the works analyzed with 54.29%.

2.4.2 RQ2: What types of ANN architectures with the best per-
formance have been used by studies focusing on SM and
SFE?

Table 2.14 shows 18 types of identified ANN architetures. Of these 18, 11 were found in

the SM studies and also 11 in the SFE studies. Only 4 types of ANN architectures were

common to the SM and SFE approaches: RNN, DNN, CNN and CNN-RNN. Traditional

DNN appears with the highest number in both SM and SFE approaches and in total it was

used in 22.86% of the works. If we consider the use of DNN also with the participation of

other networks, we count 8 types of architectures using DNN and 42.88% of the analyzed
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Tabela 2.12: Justifications for QA9
Cod Profile AQ9

Grade Justifications for QA9

S1 SI 2 Specializing in noisy audios and sub and speaker supra-glottal features.

S2 SI 2 The network specializes in SI and an attention mechanism is introduced to systematically improve
the features of certain frequency bands: the FreqCNN.

S4 SV 2 Neural network specialized in short duration audio (5 seconds).

S8 SS 4

a) It involves unsupervised training and, therefore, can be trained on real life data, in which the
audio streams have multiple speakers with change points from unknown speakers. This makes it
highly scalable.
b) Learn embeddings from short-term speakers, which can be useful for applications like SS.
c) GRUs exploit sequential information in MFCC frames and help to learn speaker links faster
than CNNs, even with fewer parameters.
d) The implementation of a Siamese network reduces the number of parameters compared to the
dense architecture.

S10 SV 2

SV in noisy audios. It takes a new approach to solve the problem of separating audio signals
from speech that are mixed with other sounds in the original audio. In the first stage, an CNN
determines the presence or absence of the speech signal in a noisy scene. In the second stage,
other neural networks filter the speech signal determined in the first stage.

S11 SI 2
It highlights a problem of incompatibility between microphone and telephone channels affecting
SI systems based on DNN and proposes the method called Average and Normalization of
Variance showing improvement with its application. The method is not shown in detail.

S12 SR 2 Study of application on Human-Robot Interactions and Internet of Things devices using dialect
regions in America and English, French and German’s multilingual speeches.

S15 SSD 2
Utterances were used as input for three synthesizers to create the spoofing utterances. The
study create spoofing utterances to be tested on SV systems to verify the ability to break the
protection of these systems through the SV functionality.

S21 SR 2
Application of Stacked BFs in DNNs as a technique to improve the features
extraction from the speaker. It explored the possibilities of improving the performance of the
speaker embeddings system by employing phonetically rich BF for training RNPs.

S22 SA 4

Proposes a feature extractor based on DNN. An DNN is trained to produce normalized
pseudo-features of the speakers (FMLLR) from 3 types of extractors with non-normalized features
(filterbank, MFCC and LDA). In order to achieve this, in its training, DNN receives
non-normalized features at its entrance, having as target, at its exit, the corresponding normalized
features. In the end it learns to produce the normalized pseudo-features. These features are later
used for acoustic modeling in another DNN (the study does not show details of this DNN). The
best performance was achieved using Cepstral Mean Normalization (CMN) for normalization and
the combination of FMLLR + VTLN (Vocal Tract Length Normalization) features as a target for
learning the network.

S24 SV 2
Proposes obtaining deep features through a multi-task neural network to absorb features of the
speaker and speech (phoneme or phrase) and to execute some method on these features to
generate the acoustic model to identify the speaker and the speech.

S25 SV 2
Proposes a DNN-based technique to train non-linear mapping of i-vectors representing short
utterances from a long audio version, in order to improve the performance of the evaluation on
the short utterances.

S26 SV 4

Fusion approach at the level of speech and physiological features, combining acoustic (speech)
and articulatory (estimated) information from the speakers for verification tasks of independent
and text-dependent speakers. The tract variables include nine articulatory parameters such as lip
aperture, lip protrusion, jaw opening, the constriction degree and constriction location of tongue
tip, tongue blade and tongue dorsum.

S27 SI 2 Network specializing in long-distance speech and provides a mechanism for speech dereverberation
with noise.

S28 SS 2 Presents a neural network to prove the assumption that two audio clips close to the audio refer to
the same speaker.

S30 SV 2 The study presents a new dataset containing more than 6,000 celebrities worldwide, of
different ethnicities and languages, and a large number of videos and audios.

S31 SD 2
Telephone conversations in six languages: Arabic, English, German, Japanese, Mandarin and
Spanish. It also implements a representation of speaker embeddings, called d-vector, which the
study shows to perform better than i-vector.
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Tabela 2.13: Number of studies selected by SFSP Areas

SFSP Areas
SM SFE Total

Amount Percent. Amount Percent. Amount Percent.

SV 4 18.18% 6 46.15% 10 28.57%
SI 7 31.82% 2 15.39% 9 25.72%
SR 5 22.73% 1 7.69% 6 17.14%
SD 2 9.09% 2 15.39% 4 11.43%
SSD 3 13.64% 0 3 8.57%
SS 1 4.54% 1 7.69% 2 5.71%
SA 0 1 7.69% 1 2.86%

TOTAL 22 100.00% 13 100.00% 35 100.00%

works. Of the 18 types of networks, 7 are architectures made up of more than one

neural network. The wide variety of ANN architectures can perhaps be explained by

the variety of types of research in the studies. As each type of ANN presents specific

actions on different types of approaches, the combination between them further expands

the possibilities of specialized actions. 3 types of ANN used the BF technique. All 3

were from studies focused on SFE. The use of BN assists in the specific selection of the

speaker features in order to improve the performance of the speaker modeling neural

networks. Proportionally, there is a greater variety of architectures in the SFE works

because the 13 works used 11 different types of architectures, corresponding to 84.62%

difference in architectures, while in the SM focus the 22 works also used 11 different types

of architectures, but corresponding to 50.00%. We think that a justification for the greater

variety of types of neural networks related to SFE works is the great diversity of audio

scenarios analyzed by these works. Each of these audio scenarios explores very different

conditions in their datasets and possibly the need to explore specific situations when

extracting speaker features is the cause of the large number of different neural network

architectures.

2.4.3 RQ3: About conventional feature extraction methods uti-
lization:

• RQ3.1: What conventional feature extraction methods were used fee-

ding SM ANN? In the 22 SM studies, 12 different types of conventional feature

extraction methods were identified, totaling 27 uses. Table 2.15 lists the methods

identified and the number of uses in the studies. The purpose of these methods is to

read and extract the speaker features existing in the audios so that they feed the SM

ANNs. It is possible to observe a very large use of the traditional MFCC method,

corresponding to 40.74% of the 27 uses. 3 studies did not inform the extraction
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Tabela 2.14: Number of studies selected by types of ANN Architectures
Types of ANN
Architectures

SM SFE Total

Amount Percent. Amount Percent. Amount Percent.

DNN 5 22.73% 3 23.08% 8 22.86%
ANN 3 13.64% 0 3 8.57%
MLP 3 13.64% 0 3 8.57%
CNN 2 9.09% 1 7.69% 3 8.57%
CNN-RNN 2 9.09% 1 7.69% 3 8.57%
CNN(ResNet) 2 9.09% 0 2 5.71%
RNN 1 4.55% 1 7.69% 2 5.71%
1-D CNN-RNN 1 4.55% 0 1 2.86%
1-D CNN 1 4.55% 0 1 2.86%
DNN-CNN-RNN 1 4.55% 0 1 2.86%
DBN-DNN 1 4.55% 0 1 2.86%
DNN(ResNet) 0 1 7.69% 1 2.86%
DNN(BN)-DNN(BN) 0 1 7.69% 1 2.86%
DNN-DNN(BN) 0 1 7.69% 1 2.86%
DNN(BN) 0 1 7.69% 1 2.86%
CDBN 0 1 7.69% 1 2.86%
DBN 0 1 7.69% 1 2.86%
DNN-ANN 0 1 7.69% 1 2,86%

TOTAL 22 100.00% 13 100.00% 35 100.00%

methods but reported that the ANN was fed with spectrograms. The second most

used method was the STFT, 3 times, quite distant from the MFCC that was used

by 11 studies. The other methods had only 1 use.

• RQ3.2: What conventional feature extraction methods were used as a

baseline for comparison with SFE ANN or feeding SFE ANN? For studies

focusing on SFE, the conventional feature extraction methods were used in two ways,

acting as: baseline for performance comparison with the SFE ANNs proposed by the

studies and as a first step in the feature extraction, feeding the SFE ANNs. Table

16 lists the methods identified and the number of uses in these two scenarios. There

is an absolute preference in the use of the MFCC method in these two scenarios

in relation to the other 7 identified methods. Its use was accounted for in 60% of

studies as a baseline for comparison with ANN and 46.67% as a method of feeding

ANN. Another 4 methods are also used in the two scenarios, but with much less

use than the MFCC. The result of this analysis carried out by RQ3 shows that the

MFCC method had an absolute preference in surveys related to SM and SFE.
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Tabela 2.15: Conventional Feature Extractors that feed SM ANNs.
Conventional Feature Extraction Method Amount Percent.

MFCC 11 40.74%
Short Time Fourier Transform (STFT) 3 11.11%
Not informed 3 11.11%
log filterbank energies 1 3.70%
pcaDCT 1 3.70%
raw-waveform feature 1 3.70%
RNP(BN) 1 3.70%
Unique mapped real transform (UMRT) 1 3.70%
Feature space Maximum Likelihood Linear Regression (fMLLR) 1 3.70%
Perceptual Linear Predictive (PLP) 1 3.70%
Holoentropy with the eXtended Linear Prediction using
autocorrelation Snapshot (HXLPS) + i-vector 1 3.70%

Frequency Filtering (FF) 1 3.70%
Fast Fourier Transform 1 3.70%

TOTAL 27 100.00%

Tabela 2.16: Feature Extractors acting as: baseline for performance comparison with
proposed SFE ANN and conventional method of extraction to feed the proposed SFE
ANN.

Conventional Feature
Extraction Method

Comparing performance
with SFE ANN (baseline)

Feeding the
SFE ANN

Amount Percent. Amount Percent.

MFCC 9 60.00% 7 46.67%
pre-emphasis 0 1 6.67%
log mel filterbank energies 2 13.33% 2 13.33%
log filterbank energies 0 1 6.67%
LDA 1 6.67% 1 6.67%
PLP 1 6.67% 1 6.67%
STFT 1 6.67% 1 6.67%
pcaDCT 1 6.67% 0
Not informed 0 1 6.67%

TOTAL 15 100.00% 15 100.00%
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Tabela 2.17: Main metrics used by SFSP areas.
Metric SI SR SV SD SS SA SSD Total

Equal Error Rate (EER) 2 4 8 1 3 18
Accuracy 4 2 2 1 9
minimum Detection Cost Function (minDCF) 1 4 5
Cost primary 2 1 3
Detection Error Tradeoff (DET) 1 2 3
minimun Cost Detection Error Tradeoff (minCDET) 1 1 2
Recognition Rate (RR) 2 2
Diarization Error Rates (DER) 2 2
Word Error Rate 1 1
Phone Error Rate 1 1
Other metrics (Total: 21) 2 4 2 7 3 1 5 24

TOTAL 12 13 20 9 4 3 9 70

2.4.4 RQ4: What were the main metrics used by each SFSP
areas?

Table 2.17 shows the accounting for all 31 metrics used by the studies. The 10 main

metrics, most used or which had the most highlights in the studies, were listed, and the

other 21 least used were grouped. RQ4 was developed because we assume that there

would be a trend in the use of certain metrics for each SFSP area. But this trend was

not identified due to the wide variety of metrics used by each one. The SR area was

the one with the highest number of different metric types, 9 in total, followed by: SV

with 8, SD with 8, SSD with 7, SI with 6, SS with 4 and SA with 3. The SS and SA

areas show a smaller number of types of metrics that appear to be a trend. But this is

probably not true because both have a very small number of selected studies, respectively

2 and 1 studies, if compared to the number of studies in the other SFSP areas. What can

also be seen in Table 2.17 is that the EER metric is the one with the greatest number of

uses, being used in 18 studies, corresponding to more than 25%. It is also the one with

the highest usage per SFSP area, being used in 5 of the 7 areas. It comes followed by

Accuracy, which has 9 uses in studies. The 5 most used metrics together account for 38

uses. They correspond to 16% of the metrics and 54% of the uses in the studies.

2.4.5 RQ5: What were the characteristics explored by the studies
in the audio datasets?

A wide variety of audio characteristics explored by the studies were identified, 21 in total.

The list of these characteristics is shown below:

1. Speaker physiological features;
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2. Degraded audios;

3. Noise audios;

4. Different types of speech;

5. Speakers of different ethnicities or nationalities;

6. Speakers with different accents of the same language;

7. Speakers from different professions;

8. Speakers of different ages;

9. Bilingual or trilingual speakers;

10. Short speeches;

11. Speech from long distances;

12. Unique speakers;

13. Multi-speakers;

14. Real life conditions;

15. Audio falsification categories;

16. Telephone or microphone conversations;

17. Speakers of the same language, without any specific approach;

18. Combined with other media or other representations of the individual’s features;

19. Phonemes, letters or words;

20. Related to stories or movies;

21. Closed places.

This large and distinct number of characteristics that the datasets address shows a very

interesting current situation of research with ANNs for SFSP. This list helps to show

how complex the process of audio feature extraction is so that later the ANN modeling

can happen. The distinct features extracted from such audio characteristics show the

need for extractions of specific features according to the objective of the study. We can

conclude that the generalization of an ANN model proves to be very complex today due

to the varied situations, audio characteristics and speaker individual features, which can

be represented in each audio.

Tables 2.18 and 2.19 show, respectively, in which SM and SFE studies the 21 audio

characteristics were covered. It can be seen that the study focusing on SM that explored

different audio characteristics the most was S3, with 5. Second is S17, which addresses 4

types of audio characteristics. The most explored characteristic in studies focusing on SM

was number 12, used by 6 studies and which presents the simplest approach with the use

of unique speakers. In second place are characteristics 17 and 19, with 4 uses and that



2.4 Answering Our Research Questions 43

Tabela 2.18: The various audio characteristics explored by studies focusing on SM.
Cod

Audio Characteristics Explored by SM Studies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S1 X X

S2 X

S3 X X X X X

S4 X

S5 X X X

S6 X

S7 X

S8 X X

S9 X

S10 X

S11 X

S12 X X

S14 X X

S15 X X

S16 X X

S17 X X X X

S18 X X

S19 X X

S30 X

S32 X

S33 X

S34 X X

address, respectively, speakers of the same language and learning about phonemes, letters

or words. For the SFE focus, the S28 study was the one that addressed the largest number

of different characteristics, with 5. Next are studies S13, S27 and S31, which each used

3 types of audio characteristics. And the characteristics most used by the SFE studies

were number 3, 12, 16 and 17, used in 3 studies each. Next, the most used characteristics

were: 2, 5, 14, 19 and 20, used in 2 studies each.

2.4.6 RQ6: Which studies had QA with a grade higher than 75%
of the maximum grade?

Given the RQ6, in this SLR phase, the studies that had the best QA (grade greater than

75% of the maximum grade) are registered in the tables 2.20 and 2.21. Six SM studies

and four SFE studies were selected, which should have a summary report on the ANN

architecture, audio aspects and performance measurements covered by their research.

A brief analysis of the studies with the best QAs are described in what follows. They

are divided in SM and SFE studies.
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Tabela 2.19: The various audio characteristics explored by studies focusing on SFE.
Cod

Audio Characteristics Explored by SFE Studies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S11 X

S13 X X X

S20 X

S21 X X

S22 X X

S23 X X

S24 X X

S25 X

S26 X X

S27 X X X

S28 X X X X X

S29 X X

S31 X X X

Tabela 2.20: SM Studies selected by RQ6
Pos Cod Study Profile Library Grade Percent

1 S2 Audio classification using attention-augmented
convolutional neural network SI Scopus 61 96.83%

2 S3 Discriminative deep audio feature embedding for
speaker recognition in the wild SR Engineering

Village 56 88.89%

3 S1
Extracting sub-glottal and Supra-glottal features
from MFCC using convolutional neural networks
for speaker identification in degraded audio signals

SI Engineering
Village 52 82.54%

3 S8
An unsupervised neural prediction framework for
learning speaker embeddings using recurrent neural
networks

SS Engineering
Village 52 82.54%

4 S7 Investigating Raw Wave Deep Neural Networks
for End-to-End Speaker Spoofing Detection SSD Engineering

Village 50 79.37%

5 S30 VoxceleB2: Deep speaker recognition SV Engineering
Village 49 77.78%

Tabela 2.21: SFE Studies selected by RQ6
Pos Cod Study Profile Library Grade Percent

1 S28

Speaker2Vec: Unsupervised learning and
adaptation of a speaker manifold using deep
neural networks with an evaluation on speaker
segmentation

SS Scopus 54 85.71%

2 S25 Deep neural network based i-vector mapping
for speaker verification using short utterances SV ScienceDirect 50 79.37%

3 S27
Deep neural network-based bottleneck feature
and denoising autoencoder-based dereverberation
for distant-talking speaker identification

SI Engineering
Village 49 77.78%

4 S31 Speaker diarization with LSTM SD Engineering
Village 48 76.19%
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SM – S2: [134] present an CNN architecture containing 3 layers called “Basic convolu-

tional block” followed each by 1 convolution block and a function max pooling 2x2,

stride 2. After that, 2 layers called “Attention-based block” are executed, which are

also followed, each one, by 1 convolution block and max pooling 2x2, stride 2. The

CNN ends with a fully connected layer followed by a normalization layer softmax.

Each “Basic convolutional block"layer has a grouping that brings together other

layers of convolution and concatenation and addition operations. Each “Attention-

based block” layer has convolution layers, layers containing attention method and

addition operation. The audio signal is represented by spectrograms to feed the neu-

ral network. The study presents a versatility neural network application, because in

addition to the use for SI, it is also used for the speakers’ accents classification and

emotion recognition in speech. For training, the CHAINS dataset was used, contai-

ning the following speech audios: solo (one person speaking), synchronous, retell,

RSI (Repetitive Synchronous Imitation), whisper and fast. The results obtained

by the proposed neural network demonstrate superior performance to the state-of-

the-art. Using the Accuracy and the Unweighted Average Recall (UAR) as metrics,

the CNN, called FreqCNN, had an average performance of 98.04% and 98.05%, res-

pectively. The performances of the other neural networks for Accuracy and UAR

were: VGG-11 neural networks with 75.21% and 75.11%, ResNet-18 with 75.04%

and 74.99%, ResNet-34 with 66.05% and 66.00%, and ResNet-50 with 66.95% and

66.75%.

SM – S3: [14] present a 34 layers CNN(ResNet) architecture of residual convolution

(ResNet-34), inspired by the neural network VoxCeleb VGG-M [102], containing 3

layers max pooling and 3 fully connected layers. At the end, normalization is perfor-

med by softmax. The audio signals are extracted by the conventional STFT method

and represented in the form of a spectrogram for feeding the neural network. The

study aims to act in a multilingual scenario. The focus of the study was on the SR

problem in real life. For this purpose, the following datasets were used: VoxCeleb,

containing celebrities of various ethnicities with use of English, with accents and

in different conditions of the real world; and SIWIS, presenting a cross-language

scenario, that is, containing bilingual and trilingual speakers using English, French,

German and Italian. As it presents an SR research area, the study performs tests on

SI and SV and experimental results show the effectiveness of the proposed solution

in relation to the state-of-the-art. In SI tests, ResNet-34 performed better than the

other solutions using the VoxCeleb dataset, obtaining the accuracy percentages of
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85.2% and 93% in top 1 and top 5, surpassing the other version proposed by the

study, ResNet-18, and the other compared methods: VoxCeleb RNC, i-vector / Pro-

babilistic Linear Discriminant Analysis(PLDA) / Support Vector Machine (SVM)

and i-vector / SVM. In the SV tests, using the EER metric, ResNet-34 obtained a

value of 5.2%, surpassing all other competitors with the dataset SIWIS, but in the

VoxCeleb dataset, it remained with 8.5% , being surpassed only by the VoxCeleb-

256D embedding method which obtained 7.8%.

SM – S1: [26] created a CNN architecture based on 1D filters. The network contains

3 convolution layers and 1 fully connected layer. In conjunction with the first 2

convolution layers, the network presents a layer containing an activation function

Rectified Linear Unit (ReLU) followed by a function max pooling 2x1, stride 2x1.

After the convolution layers, it also has 2 layers of dropout containing a ReLU layer

between them. The CNN is finished with a normalization layer softmax for 168

classes. The MFCC method was used to represent the audio signals that feed the

network with 1D representation. The study proposes a specialization in SI based on

degraded audios. The learning focus is directed to the sub-global and supra-global

features of each speaker. Such features belong to the human speech production

apparatus. The research used training with the following datasets: TIMIT, con-

taining clean speech recordings of the eight main American English dialects with

increased noise; NTIMIT, containing TIMIT data retransmitted and captured by

telephone; SITW, containing speech samples collected from open source media; and

Fisher, containing telephone conversations between pairs of people. [26] say that

their proposed solution is compared with the existing baseline schemes with regard

to research on synthetic and naturally degenerate speech data. A comparative test

was performed between the 1D-CNN and the Universal Background Model with

Gaussian Mixture Model (UBM-GMM) and i-vector / PLDA models using the TI-

MIT dataset. This dataset contained the voices of 168 speakers incorporating noise

from: conversations, F-16 fighters, cars and factories. Later, the voices of 1052

people from the Fisher English Training Speech Part 1 dataset were added to the

training. When evaluating the performance of the 3 methods, it was found that

the 1-D CNN far exceeded the other 2 methods. The 1-D CNN presented 13.78%

and 51.98% representing the worst and the best accuracy percentage in top 1 and

35.31% and 72.42% in top 5. The numbers reached by the other methods as worst

and best results were 0% and 16.56% for UBM-GMM, and 0.19% and 6.54% for i-

vector-PLDA at top 1; and 0% and 26.19% for UBM-GMM, and 0.39% and 19.14%
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for i-vector-PLDA at top 5.

SM – S8: [62] study presents an Siamese networks architecture having two identical

RNNs, whose weight values are shared. Each Siamese twin network contains 3

RNN-GRU layers with 200 hidden units in each layer. The authors report that the

preference for GRU over LSTM is due to the smaller number of parameters. Each

Siamese network produces a embedding of dimension 512. A calculation is perfor-

med with the embeddings provided by the two GRU networks producing a result of

the same dimension 512, which will be the entrance of a fully connected layer. The

network single output is made through a non-linear sigmoidal function that predicts

if the pair of audio segments used as network input, is genuine (0) or imposter (1).

The Feature Extraction is done with 40-dimensional high definition MFCC method,

calculated with a sliding window of 25ms frame length and 10ms frame shift, using

the Kaldi toolbox. The study aim is to present an unsupervised training framework

for learning speaker-specific embeddings using a Neural Predictive Coding techni-

que. The network is trained in unlabeled audio with multiple and unknown speaker

exchange points. The speakers’ short-term stationarity is assumed, that is, the spe-

ech frames with temporal proximity come from a single speaker. On the other hand,

it is assumed that two random segments of short speech from different audio streams

originate from two different speakers. Based on this hypothesis, a binary classifica-

tion scenario is developed to predict whether a pair of short speech segments comes

from the same speaker or not. A deep Siamese network based on RNN is trained

and the resulting embeddings, extracted from a hidden layer representation of the

network, are employed as the speaker embeddings. The datasets used were YoUSC-

Tube and TED-LIUM for training and tests, respectively. In the validation, audio

segments with duration between 1s and 3s were randomly created. As baseline, a

speaker change detection algorithm based on the BIC metric was used. Two types of

metrics were used to evaluate the results: F1 score, which is based on the harmonic

mean of precision and recall; and the coverage and purity metrics. The proposed

solution exceeds the baseline by scoring 0.86 in F1 score against 0.74 and (0.88,

0.86) in (coverage, purity), against (0.92, 0.75).

SM – S7: [33] propose a neural network architecture in study S7 that combines CNN,

RNN (LSTM) and DNN and is therefore called CLDNN. There are 3 convolution

blocks in the 3 initial layers, each composed of a convolution layer, a normalization

batch layer and a ReLU activation layer. Then there is a RNN-LSTM layer and at

the end there are 2 fully connected DNN layers. The last layer is a linear activation.
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The audio signals are represented in raw waveform features form to feed the neu-

ral network. The study is concerned with the security of SV systems in real-world

applications and proposes a neural network specialized in SSD that surpasses previ-

ous attempts that used the BTAS2016 dataset (0.19% Human-targeted Translation

Edit Rate), positioning itself as the current state-of-the-art model for such a data-

set. The proposed model is able to distinguish spoofing attempts regardless of the

device, exploring the spoofing methods: repetition, speech synthesis and voice con-

versation. Regarding the ASVspoof2015 dataset, the proposed end-to-end solution

achieves an error rate of 0.00% using the Equal Error Rate (EER) metric for the S1

to S5 spoofing speech detection. BTAS2016 and AVSpoof2015 datasets were used

for training the neural network. The proposed architecture achieves the best re-

sults on the BTAS2016 basis, with 0.189 under the HTER metric (Human-targeted

Translation Edit Rate) and 0.171 under ERR.

SM – S30: [28] draws attention to the two main contributions of the S30 study: first,

the creation of a new dataset called “VoxCeleb2"that gathers large-scale audiovi-

sual data collected from YouTube. It contains over a million statements from over

6,000 celebrities. Secondly, the development and comparison of CNN models for

recognizing voice identity under various conditions, using the VoxCeleb2 dataset.

The architecture presented for best performance is an CNN(ResNet), called by the

authors ResNet-50, which contains 50 convolution layers and has in its final block

1 fully connected layer, followed by a average pool layer and ends with a fully con-

nected layer, rated for 5,994 classes. The network is fed by audio signals in the

spectrogram form. The VoxCeleb1 dataset was used for the baseline methods and

VoxCeleb2 for the methods proposed by the study. The performance analysis uses

two metrics for the evaluation: EER and a cost function. The ResNet-50 method

surpassed all methods obtaining 0.429 in the cost function and 3.95% in EER against

the following respective values for other methods: 0.549 and 4.83% of ResNet-34,

0.609 and 5.94% of VGG-M and 0.73 and 8.8% of i-vector + PLDA.

SFE – S28: [61] constructed a neural network to act as an automatic encoder with (2k

+ 1) hidden layers, where the (k + 1) layer is the one that provides, through BN,

the speaker feature representations. The best performing network operated with

5 layers (k = 2). At the entrance of the neural network, audio vectors containing

MFCC features were used. Sequential vector segments of audio features, w1 and

w2, are created with the size of d frames each. The construction of each pair (w1
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and w2 ) is separated by ∆ frames. This ∆ distance is measured from the end of

segment w2, of the previous pair, to the end of segment w2, of the next pair. In

this experiment, the ∆ distance is not so great, allowing an intersection between the

pairs, that is, there are enough repetitions of the speaker features between sequential

pairs. Each pair becomes a training sample (input and output) for the automatic

encoder. For each pair, w1 goes to the autoencoder input layer and w2 goes to the

output. The automatic encoder tries to reconstruct w2 using w1, minimizing a loss

function through training. According to [61], this structure allows you to explore a

longer context to capture speaker features and compress them into a smaller vector

representation. The conventional method of Feature Extraction used for reading

the audio signal is the MFCC, which feeds the neural network. A proposal for a

new method to learn how to collect speaker features in an unsupervised manner

is presented. They begin from the assumption of active speaker stationarity in a

audio short time and then derive a speaker representation using DNN. They assume

that temporally close speech segments belong to the same speaker and, as such,

a joint representation, connecting these close segments, can encode their common

information. Thus, this BN representation will mainly be capturing specific speaker

information. The authors promote the method saying that it does not need to be

supervised, does not need to create labels for the training samples and does not need

to use VAD (Voice Activity Detection) resources. The proposed representation is

presented as having the possibility of being used in different applications, such as

SD and SI, but the authors present only their evaluation tests using on SS (which is

the identification of different speaker sections in an audio). [61] used the following

datasets for training: TED-LIUM, mostly with audio from just one speaker; and

Youtube, containing monologues by a single speaker, discussions between several

speakers, films, speeches with background music inside and outside studios, audios

with different languages including English, Spanish, Hindi and Telugu. During the

evaluation, the datasets used were TED-LIUM, NIST RT-06 (data from conference

meetings) and Couples Therapy Corpus (which present spontaneous conversations

between husband and wife). They demonstrated in the study that the proposed

method surpasses state-of-the-art SS algorithms and the baseline methods based on

the MFCC. Its performance, using the F1 score measurement method, registered

0.86 (TED-LIUM), 0.85 (YouTube) and 0.85 (YouTube large), compared to 0.73,

0.78, 0.74 and 0.79, which are performances of 4 works considered until then to

be the state-of-the-art. Such works used in their performance evaluations artificial
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dialogs created from the TIMIT dataset.

SFE – S25: [50] analyzed the problem of performance drop in SV systems when proces-

sing short audios. They show how the performance of solutions based i-vector SV

systems degrade rapidly as the duration of the evaluation utterances decreases. To

address this issue, they propose two novel nonlinear mapping methods which train

DNN models to map the i-vectors extracted from short utterances to their corres-

ponding long-utterance i-vectors, in order to improve the short-utterance evaluation

performance. Both proposed solutions model the joint representation of short and

long utterance i-vectors by using an autoencoder. The mapped i-vector can res-

tore missing information and reduce the variance of the original short-utterance

i-vectors. After tests with other methods considered state-of-the-art, all using i-

vectors, the proposed DNNs achieves best results. It is a DNN with 6 hidden layers

using residual blocks. Each residual block consists of two fully-connected layers and

a short-cut connection that performs a summation between the entrance of the first

layer to the end of the second layer. The authors also carry out further training with

concatenation of phonemes to short audios. The audio signals are represented by 40

mel-filterbank features with an audio frame length of 25ms. The datasets used were

NIST SRE 2010 and Speaker In The Wild (SITW). Both DNNs proposed provide

significant improvement and result in a 24.51% relative improvement in EER from

a baseline system. The addition of residual blocks improved performance to 26.47%

compared to baseline. And the addition of phonemes improved even more, reaching

28.43% in relation to baseline.

SFE – S27: [141] carry out a research to SI by applying methods for the dereverberation

of distant speech audios. For this, a solution is assembled using BN derived from

an DNN and an automatic coding method for dereverberation. The audio signal

representation for network input is done by the 25 dimensional MFCC method with

audio frame length of 25ms, frame change of 10ms and sampling frequency of 16kHz.

The solution architecture has two inputs for the MFCC audio signal: one has the

objective of performing a dereverberation of the audio signal, where it executes an

5 layer DNN entitled as an automatic encoder of cepstral domain for elimination

noise; the other has the objective of transforming the original features of the audio

signals into discriminative features for the speeches with reverberation, where a 5

layer DNN is performed with BN being extracted from layer 3. The two networks

are conceived as DBN but, according to the authors, after configuring DBN using

Restricted Boltzmann Machines (RBMs), it is trained discriminatively using the
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backpropagation algorithm to maximize the probability of class labels and in gene-

ral, after this discriminative training type, a DBN is called an DNN. The Japanese

Newspaper Article Sentence (JNAS) corpus, which obviously contains articles from

Japanese newspapers, was used as dataset of clean speeches. The audio datasets

Real World Computing Partnership (RWCP) and CENSREC-4, that contains Japa-

nese sound scene bases, were used to simulate the reverberation over clean audios.

Eight types of reverb were used in the tests and training of the network, which

normally occur in everyday situations, among them: Japanese style bedroom and

bathroom, small and large rooms with tatami flooring, conference room, elevator

room, echo room in panel and cylindrical formats. The performance results that the

proposed method surpassed some approaches to dereverberation, considered state-

of-the-art, such as multichannel least mean squares (MCLMS). Compared with the

MCLMS, a reduction in the relative error rates of 21.4% was obtained with the use

of DNN for discriminative transformation, which performs the extraction of BF and

47.0% using the DNN that works as an feature automatic encoder, performing the

dereverberation. In addition, the use of both DNNs has further improved perfor-

mance.

SFE – S31: [131] propose a 3 layers RNN-LSTM architecture, each layer having 768

nodes, with a projection of 256 nodes. The solution is based on audio embeddings

using d-vector, which according to the authors had already submitted contributi-

ons to studies such about SV. The research is directed to the use of d-vectors for

SD, working in performance comparisons with the traditional i-vector. The audio

signals are represented with log-mel-filterbank energies. Evaluations are carried out

on 3 public datasets: CALLHOME American English (LDC97S42 + LDC97T14);

2003 NIST Rich Transcription (LDC2007S10), the English conversational telephone

speech (CTS) part; and 2000 NIST Speaker Recognition Evaluation (LDC2001S97),

Disk-8, known in the literature as CALLHOME, which contains 500 statements in

six languages: Arabic, English, German, Japanese, Mandarin and Spanish. Dia-

rization was performed using 4 clustering algorithms: Naive, Links, K-Means and

Spectral. The performance comparison is made between the d-vector and i-vector

model using the Diarization Error Rates (DER) metric. The proposed d-vector

model shows superiority over i-vector in all evaluations using the 4 clustering algo-

rithms.
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2.5 Results Discussion

The analysis of the 34 studies selected by this SLR showed a wide research variety. The

results presented by the RQs and the QA were very enriching, helping to learn about the

topic addressed. Carrying out a general analysis on the topic, which deals with the use

of ANN for SFSP, interesting issues related to this type of research can be highlighted.

Beginning on audio processing, the identification of the 21 distinct audio characteristics

covered by the research shows the wide variety of situations that were explored by the

studies. This result was recorded in Chapter 2.4.5 in response to RQ5, in Tables 2.18

and 2.19. Most of the studies presented 2 types of audios characteristics but there were

studies that arrived to present 5 audio characteristics. Particularities existing in each

audio characteristic make us reflect on the complexity existing in research of this nature.

Although the interest of this SLR was to explore SFSP-related research, while reading the

papers it was possible to identify other research focuses that also extract audio features,

such as emotion recognition, speech recognition and language identification. This helped

to show the variety of possibilities for research on audio. Analyzing speaker-focused

studies, the following SFSP areas were identified in the selected studies: SA, SD, SI,

SR, SS, SSD and SV. This result responds to RQ1 as recorded in Chapter 2.4.1, listed

in Table 2.13. This further capillarizes the possibilities of research on audios and shows

that, proportionally, considering the number of 34 studies analyzed, the 7 SFSP areas

identified represent a wide variety showing that research of this nature is well diversified.

This SLR has specialized in analyzing ANN solutions to address SFSP. During the

analysis, we concluded that most articles have two main phases in the ANN system for

SFSP: SFE and SM. SFE is the solution for extraction of audio speaker features and

SM is the solution modeling focused on the speaker using as input the data structure

created in SFE. ANN solutions were presented for both SFE and SM and therefore we

decided to segment the QA results in two lists: studies focused on SM (Table 2.10) and

studies focused on SFE (Table 2.11). The ANN architectures presented by the 35 solutions

analyzed were obviously completely different. We try to group the solutions in similar

types of ANN architectures, creating a typification and quantifying it with the objective

of identifying trends. Even so, the number of different types of ANNs architectures was

considered large. We found 18 different types of ANN architectures in the 35 solutions.

The result of this typification served as a response to RQ2 and was recorded in Chapter

2.4.2, listed in Table 2.14. The 22 SM solutions and the 13 SFE solutions were both related

to 11 different types of ANN architectures. Taking into account the proportionality of
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these numbers, they show that apparently the SFE researches present a greater variety of

solution types than the SM researches. Of the 18 types of architectures identified, 11 used

a single type of ANN in their architectures, while the other 7 used two or three types.

Comparing SFE with SM studies, in general, SFE solutions seem to be more complex.

This complexity is justified by the wide variety of situations that the audio datasets

can represent. Each SFE solution extracts from the audios features that are related to

the specific situations treated as objectives by the studies. Therefore, for each situation

analyzed by the studies, the ANNs solutions combined with feature extraction methods are

quite diverse, appearing to be more complex solutions. Other important issues addressed

by the SFE solutions were related to the moment for extracting the audio features and

their better vector representations. BF and Embeddings were examples of solutions that

addressed these issues. Vector representations with speaker features extracted from the

SFE solution are used as SM input solutions for modeling the ANN solution. SLR selected

13 studies that presented SFE solutions. Instead of directly reading audios, these SFE

solutions are powered by conventional features extraction methods. But these methods

were also used in the studies as a baseline to compare their results with the results obtained

by SFE ANNs. In the SM solutions, the conventional features extraction methods used

to produce ANN input were also identified. RQ3 asks about the conventional features

extraction methods identified in the analyzed studies. Chapter 2.4.3 presents the answers

in Tables 2.15 and 2.16 for the SM and SFE studies, respectively. The conventional MFCC

method was widely used by SM and SFE studies. In SM solutions, where a total of 12

methods were identified, the MFCC was used as ANN input in 40.74% of cases. In SFE

solutions, where a total of 8 methods were identified, it was used as a baseline in 60% of

comparisons and as ANN input in 46.67% of cases. Another issue related to the analysis

was the types of metrics practiced by SFSP areas. There was curiosity about what types

of metrics existed and if there was any trend in their use for each SFSP area. Many

metrics were identified, 31 in total, and they were used 70 times in the 34 studies. The

most widely used metric was the EER, being used 18 times, corresponding to 25.71% of all

uses, and mentioned in 5 of 7 SFSP areas. Secondly, the most used metric was Accuracy

with 9 uses (12.86%). The other metrics had a maximum of 5 uses. The main metrics

identified in their accounting are shown in Chapter 2.4.4, in Table 2.17, in response to

RQ4. It was not possible to identify a metric standard for each SFSP area because studies

in the same SFSP area used different metrics.

A QA was performed on the studies selected by the SLR. Ten questions were created,

each containing a grade and a weight. The objective was to verify research qualities and
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analyze informations related to the theme SFSP for ANN. QA results were organized in

two lists for SM and SFE studies. SM and SFE study results were ordered by their final

grades and presented in Tables 2.10 and 2.11 respectively. RQ6 asked “Which studies had

QA with a score higher than 75% of the maximum score?”. In Chapter 2.4.6, in Tables 2.20

and 2.21, 6 SM and 4 SFE studies were presented in response to the RQ6. A brief report

on each of these 10 solutions was also requested in RQ6. For each one, it was recorded in

Chapter 2.4.6: its architecture, the research objective, a brief summary of the idealized

solution and the performance result of the solution in comparison with other solutions.

During the analysis of the studies, solutions were identified that made comparisons with

the state-of-the-art. Of the 22 SM studies, 3 compared their solutions with the state-of-

the-art and managed to overcome them. As for the other studies, 11 made comparisons

with other solutions considered baselines and 8 made comparisons with variations of the

proposed solutions themselves or with no other solution. The 3 studies that overcame the

state-of-the-art were S2, S3 and S5. They were among the 8 studies best evaluated by QA

but only S2 and S3 were among the 6 selected by RQ6. In relation to the 13 SFE studies,

3 exceeded the state-of-the-art. The other 10 studies made comparisons with solutions

considered baseline. The 3 studies that overcame the state-of-the-art were S27, S28 and

S31. They were among the 4 studies best evaluated by QA and all were selected by RQ6.

Briefly mentioning each of these studies that overcame the state-of-the-art, we will

emphasize the aspects highlighted by their solutions that made a difference during the

comparison of results. In the study S2, [134] propose a task-independent model, called

FreqCNN, to automatically extracts distinctive features from each frequency band using

convolution kernels from a ANN. The authors structured on the network two types of

blocks called “Basic Convolutional Block” and “Attention-Based Block”. The study uses

the spectrogram as a representation of the audio signals and as ANN input. The spec-

trogram represents time on the abscissa axis (x) and frequency on the ordinate axis (y).

The authors explain that normally the spectrogram is divided into frames within the

same time domain that are called a time-distributed spectrogram along the x-axis. But

in this study they practice a division of the spectrogram distributed in frequency, by

the y-axis. The idea is to pay attention to the energy distribution in different frequency

intervals over the entire time window. In the Basic Convolutional Block, with this repre-

sentation distributed in the frequency, using multiple convolution layers, global and local

information of the frequencies are extracted. In the Attention-Based Block, an attention

mechanism is used where the model learns to reorganize the global feature representation.

Using different local features, the model reorganizes them to form a new global feature
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representation. By aggregating all the attention-based global features and the original

global representation, the final output of the block is obtained. The proposed CNN has

overcome the state-of-the-art. The proposed CNN surpassed the state-of-the-art and its

results showed better performance than VGG-11, ResNet-18, ResNet-34, ResNet-50 and

i-vector solutions, running on 3 relevant data sets and using Accuracy and Unweighed

Average Recall (UAR) metrics.

Bianco et al., in study S3 [14], inspired by the neural network VoxCeleb VGG-M [102],

proposed a modification in it and present two CNNs(ResNet): ResNet-18 and ResNet-34.

ResNets were used in the SR problem in the wild, where utterances maybe of variable

length and also contain irrelevant signals [135]. The problems of SI and SV are tested

and compared to other methods considered state-of-the-art. The networks are fed with

audio data spectrograms. These ResNets were originally designed for image classification.

The proposed architecture is trained using a linear combination of two loss functions:

contrasting center loss and crossed entropy softmax. This allowed the construction of a

trained network for SI that incorporates discriminative features. In addition, these featu-

res can be applied directly to the SV using cosine similarity, without adding complexity

to the training process. The experimental results show the effectiveness of the proposed

solution in relation to the state-of-the-art. The proposed network shows to be robust in

unrestricted conditions and, more important, it shows to be quite robust in a multilingual

characteristic. In SI tests the best top-1 accuracy is obtained by the proposed ResNet-34

architecture with contrastive-center loss, with an improvement of 4.7% with respect to

the state-of-the-art. In the study S5, [44] presents the QUT SR system as a competitor

in the SR challenge Speakers In The Wild (SITW) 2016. The proposed system achieved

a ranking of second place, out of all participating teams, in the main core-core condition

evaluations. In this condition, a segment of audio with speech from a single speaker (but

including potential non-speech and noise portions) is compared to another segment of

speech from a claimant (also possibly including non-speech and noise portions). This

system uses an i-vector/PLDA approach, with domain adaptation and a DNN trained to

provide speaker feature statistics.

In the study S27, from [33], the proposed solution mentions that the research stimulus

was generated due to the few studies already carried out with DNNs to recognize speakers

who speak at a distance. In this study, BF derived from a DNN and a cepstral domain De-

noising AutoEncoder (DAE)-based dereverberation are presented for distant-talking SI,

and a combination of these two approaches is proposed. The proposed method shows supe-

rior results to the methods MultiChannel Least Mean Squares with Spectral Subtraction
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(MCLMS-SS), MultiStep Linear Prediction with Spectral Subtraction (MSLP-SS), BF

extracted from MultiLayer Perceptron (BF-MLP) and MFCC with Cepstral Mean Nor-

malization (MFCC-CMN). Compared with the MCLMS, authors obtained a reduction in

relative error rates of 21.4% for the BF and 47.0% for the autoencoder feature. Moreover,

the combination of likelihoods of the DNN-based BF and DAE-based dereverberation

further improved the performance. [61] present in the study S28 a novel solution termed

Speaker2Vec to derive a speaker-features manifold learned in an unsupervised manner.

The DNN is employed for SS, but the authors mention that it could also be employed for

SD and SI. The assumption of short-term active-speaker stationarity is analyzed, that is,

audio parts with temporally-near speech segments belong to the same speaker. And for

this, embeddings are obtained from the speaker using DNN. During the DNN training,

two sequential audio segments are extracted from speakers’ speeches. The first segment

feeds the DNN and the next segment goes to the DNN’s end to obtain a comparison

with the first segment processing result. The trained model generates the embeddings

for the test audio and applies a simple distance metric to detect speaker-change points.

The proposed method outperforms 5 SS algorithms considered state-of-the-art and MFCC

based baseline methods on four evaluation datasets. In the study S31 [131] report on the

domain of i-vector-based audio embedding techniques in SV and SD applications. They

mention about the rise of DL in various domains and that ANN based audio embeddings,

also known as d-vectors, have consistently demonstrated SV performance. Based on these

observations, the study proposes the development of a new d-vector based RNN(LSTM)

solution to SD. The system is evaluated using three public datasets and is carried out in

conjunction with 4 clustering methods. RNN(LSTM) results are compared to those of 6

publications taken as a reference, managing to overcome all of them.

Based on the content analyzed in the 34 studies, it was possible to perceive that SFSP

research using ANN is in the process of evolution and has overcome methods considered

state-of-the-art. Many studies have shown great complexity in their solution architectures,

mainly the SFE studies. SFE solutions need to perform the extraction of specific audio

features. It is at this moment that the speaker speech features are selected and the other

sounds and noises are filtered. To extract the speaker features, several methods were

observed in the analyzed solutions, the MFCC being the most used. In an SFE solution,

the speaker features are inputed in the ANNs to improve the speakers data and to produce

feature vectors, which have higher quality in their representation. These feature vectors

are used as input to another speaker classification or clustering solution, which can be

another ANN of an SM solution. The SM studies also presented very interesting solutions
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using the training and modeling of ANNs for the speakers classification or clustering.

During the execution of the SLR, 7 SFSP areas were identified: SA, SD, SI, SR, SS, SSD

and SV, a number of segmentation areas considered large for the 35 analyzed solutions.

This shows the variety of areas in SPSF research. The largest amount of research was

directed to SV, SI and SR, corresponding to 10, 9 and 6 solutions, that is, 71.43% of

the total. Another important topic, which caught our attention, was the great diversity

of acoustic characteristics identified in the datasets used by the solutions. We identified

21 different acoustic characteristics and presented in tables 2.18 and 2.19 which of these

were used by each SM and SFE study. Most datasets used more than one acoustic

characteristic, the S3 study being the one that used the most, in total 5. Some of the 21

audio characteristics identified were: degraded audios, speakers from different professions,

bilingual or trilingual speakers, short speeches, multi-speakers, real life conditions, audio

falsification categories and telephone or microphone conversations. We also adopted a

representation for the identified ANN architectures in order to quantify and identify a

possible trend of use in this type of research. The variety of architectures was very large

because many studies used different types of ANNs in the same solution. We recorded 18

types of ANN architectures found and we could not say that there is a trend in the type

of ANN used for SFSP.

Although the focus of this SLR was on the speaker, we identified in these same 34

studies the conduction of research directed to the identification of emotions, speech and

language using also the extraction of characteristics from the audios. Taking into account

that ANNs are computer systems inspired by the functioning of the animal brain [7], if

we associate the solutions analyzed by this SLR with the functioning of the brain and

other systems of the human body, we can say that the SFE and SM solutions resemble the

role played by the human auditory and brain systems in identifying people speaking. But

despite the excellent results presented by the studies analyzed, it is clear that research

still needs to go a long way towards improvement. In general, the studies analyzed showed

excellent results and a perspective of evolution in future research.



Capítulo 3

Technologies and Theoretical Refe-
rence Used for the Experiment

This Chapter presents the technologies used to create the experimental plan, used to eva-

luate the robustness of the CNN architecture. Section 3.1 presents the CNN architecture

adapted and the list of technologies and tools used. The MFCC method used to extract

features from audio files is explained in section 3.2. Also explained in the following secti-

ons are the data input matrix used to CNN training and the criteria established for CNN

performance evaluations.

3.1 CNN Architecture Adapted

CNN architecture adapted in this work was inspired on the CNN proposed by [26]. This

CNN features 1-dimensional convolutional filters and was used by [26] as a specialization

proposal for the SI task based on degraded audios. The learning focus is directed to the

sub-global and supra-global features of each speaker. Such features belong to the human

speech production apparatus. In its training, the data input was made with the features

extracted from the audio spectrogram images, by the MFCC method.

Article [26] presents an interesting explanation about the use of 1-dimensional CNN

(1D-CNN) in Speech Processing (SP) solutions. The authors mention that small square-

shaped filters are especially good for learning local patterns in image data, such as edges

and corners, due to the high correlation between pixels in a small local neighborhood [26].

But this is not the case when a matrix with MFCC features is inputed in CNN, since,

as far as we knows, a local semantic structure cannot be captured by a two-dimensional

filter and therefore a 1D filter becomes the best solution for learning speaker-dependent
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features stored in the MFCC feature matrix. According to [26] the time variable is not

such a relevant characteristic for reading audio data in SR and SI tasks. They says that,

in the field of speech recognition, 1D filters across the time variable have shown promising

results by effectively learning temporal features in the data. However, in the context of

text-independent SR, the temporal relevance of speaker-related features is greatly reduced

(but not eliminated), as the content of speech is generally unrelated to the speaker’s

identity, especially in cases where data is collected for experimental research purposes

and not in a natural conversational mode. The use of MFCC method by [26] is due to its

ability to capture acoustics features of supra-glottic and sub-glottic vocal tracts, reported

by the authors as more beneficial for the SI task. Such features register the acoustics of the

trachea-bronchial airways and are known to be robust to noise in SI task. Therefore, such

MFCC ability, indicates its potential to contribute to CNN learning. Comparative tests

were performed by [26] between the 1D-CNN, UBM-GMM and i-vector/PLDA models

and 1D-CNN outperformed the other two solutions. Details of the results presented by

[26] can be found in Chapter 2.4.6.

CNN from [26] was analyzed and adapted by us. In our CNN version, we kept the

same types and amounts of layers, and the same amount of feature maps produced by the

convolution and maximum pooling layers. The following changes were made: maximum

pooling strides changed from 2 to 1, in kernel size of the 3 convolution layers and in

number of speaker classes. The purpose of our work is also a specialization in SI task but

based on multilingual speakers, using the dataset SIWIS proposed by [14]. MFCC method

was also used to represent the audio signals that feed the CNN. Through a 26-dimensional

MFCC the audio files features are extracted, with the objective of learning by CNN the

“voiceprint” of each speaker. Figure 3.1 shows the 1D-CNN architecture adapted and used

in the experiments of this work.

3.1.1 Technologies and Tools Used for CNN Adaptation and Trai-
ning

For the adaptation and training of the CNN architecture, the following technological

resources were used:

• Python Programming Language version 3.6.41;

• Anaconda version 5.1.02, which is a python distribution platforms;
1https://www.python.org/
2https://www.anaconda.com/
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Figura 3.1: CNN architecture adapted from [26], being used by us in a SI task.

• Tensorflow version 2.0.03, which is an open source library used for numerical com-

puting and large-scale machine learning;

• Keras version 2.2.44, which is an open source software library that provides a Python

interface for ANN;

• Spyder5, which is an Integrated Development Environment (IDE), a free and open

source scientific environment for Python;

• Notebook Dell Inspiron 55706, 15-inch screen; 24 GB of RAM; Intel® Core™ proces-

sor i7-8550U CPU @ 1.80GHz [4 Cores] [8 Logical processors]; Microsoft Windows

10 Home Single Language operating system, 64 bits; AMD Radeon™ 530 graphics

card.

CNN training was conducted over 200 epochs. A total of 14,744 audio files from

the dataset SIWIS were used. 13,270 files (90% of the total) were used for training

and validation, 80% of which were used for training and 20% for validation. 1,474 files

(10% of the total) were used for CNN testing. Before starting the training of CNN, the

matrix containing the data for training and validation was randomly ordered. Figure

3.2 shows the CNN architecture summary, built for training. A total of 27,652 trainable

parameters were recorded. This CNN architecture summary is the result of building the

CNN architecture design shown in Figure 3.1.
3https://www.tensorflow.org/
4https://keras.io/
5https://www.spyder-ide.org/
6https://www.dell.com/
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Figura 3.2: The CNN architecture summary.

3.2 Audio Feature Extraction Method Used

Audio feature extraction is the method used to filter out the features of interest that

are embedded in the audio. They are widely used in SFSP solutions, as we could see

through SLR, where MFCC was identified as the feature extraction method most used

by the analyzed studies, as recorded in Chapter 2.4.3. In this studies, after performing

the features extraction, data are used as input for ANN training. MFCC was used by

[26] to train the CNN architecture selected for this experiment. MFCC analysis is a

audio feature extraction method widely used in nonstationary signals study, including the

recognition and speech intelligibility studies [72]. MFCC representation was created by

Paul Mermelstein in 1976 [97]. In his article, Mermelstein emphasized that mel-based

cepstral parameters have the advantage that generally fewer parameters suffice for an

adequate representation of the power spectrum than other coefficients representations [97].

Detailing a little more, MFCC method initially receives the speech as input, converts the

voice signal that has its base in time domain to frequency through the Fourier Transform.

The signal in frequency is then processed by the Mel Filter Bank and after that Discrete

Cosine Transform is done for transforming the mel coefficients back to time domain. The

result of this method produces the MFCCs. Figure 3.3 represents the MFCC method

steps, according to the content presented by [97] [100] [125].

MFCC is based on the “mel” scale, which is a theory inspired on the characteristics

and perceptions of human hearing [71]. Mel scale was created by Stevens, Volkmann and
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Figura 3.3: MFCC method steps.

Newmann in 1937 [124], which define it as follows: “The mel scale equates the magnitude

of perceived differences in pitch at different frequencies”. That is, the mel scale reflects

how people hear musical tones. Human perception of frequency contents of sounds for

speech signal does not follow a linear scale. Thus for each tone with an actual frequency,

measured in Hertz (Hz), a subjective pitch is measured on mel scale [125]. The reference

relationship between the mel scale and frequency is as follows: the pitch of 1 KHz, tone

40 dB (decibel) above the perceptual hearing threshold, is defined as 1,000 mels [125].

The approximate formula used to calculate the mels for a certain frequency f in Hz is::

Mel(f) = 2595 ∗ log10(1 +
f

700
)

3.3 Data Input Matrix Used for CNN Training

To perform CNN training, there is first the need to organize a data structure to be used

as input to CNN. This data structure must store specific information extracted from the

audios containing the speaker’s features to be used in CNN training and is formed by a

three-dimensional matrix using the dimensions: Samples X Timestep X Features. The

method used to extract features is MFCC, which is traditionally used in Speech Processing

research, as presented in Chapter 2. For each audio reading time unit, we established that

a 26-dimensional MFCC vector would be extracted, that is, 26 speaker features. There

was then the need to establish what would be the lenght of time for reading the audio to

perform each MFCC extraction. As the speaker’s speech is CNN’s learning focus, audio

reading for feature extraction needs to be based on a lenght of time that represents a

minimum unit of speech. We then resorted to literature in search of this representative

period of a minimum unit of speech.

About a minimum unit of speech, [8] say that words can be broken into syllables and

phonemes, and the phoneme is the unit in the speech stream represented by the symbols in

an alphabetic script. In [129] different units of word representations are mentioned, when
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they say that: “In English, Dutch, and other European languages, it is well established that

the fundamental phonological unit in word production is the phoneme; in contrast, recent

studies have shown that in Chinese it is the atonal syllable and in Japanese the mora”.

In article [29] the authors suggest that language rhythm may be the key to predicting

the basis of speech segmentation. They explain that each language can have a different

segmentation that represents this language rhythm: just as stress is the basis of speech

rhythm in English, in French the rhythm is based on syllables and in Japanese the unit of

language rhythm is the mora. In Japanese, the phonological unit for speech production is

considered to be the mora [78]. Mora is a rhythmical unit typically consisting of consonant

e vowel or just vowel, but never consonant alone [129]. For [79], the language rhythm on

Japanese, which is sometimes called syllable-timed, is based on the mora which roughly

corresponds to a Japanese letter or consonant-vowel syllable.

In [79] an investigation has been made for individual phonemes on Japanese, focusing

mainly on their duration in continuous speech, spoken at different speeds: fast, normal

and slow. The conclusion of this investigation was the normal speaking rate (n-speech) is,

on average, 150 milliseconds/mora (or 400 morae/minute). Although we have identified

minimum speech representations for some languages, we could not find any research that

proposed the average duration of time of a minimum speech unit for the existing languages

in the dataset SIWIS. Only in [79] we find a time duration proposal, but for the Japanese

language, using mora as the rhythmic unit concept of the language. As we needed to

determine a length of time for reading the audio features through a sliding window (Ti-

mestep) we decided to take as a reference what was proposed by [79] and established as

a representation of the minimum unit of speech the period of 150 milliseconds (ms). We

also established that, during the audio reading process, there is an overlap of the sliding

windows of 20%, that is, the last 20% of the audio of each timestep read is repeated at the

beginning of the next timestep. This window overlap helps CNN learn during its training

as it establishes a link between the last sample read and the next sample to be read, which

are labeled with the same speaker class. A timestep, with its 150 ms, then considers for

each reading window: 80% new audio data and 20% repeat data from previous window.

Therefore, the sliding window stride for reading new audio data is 120 ms.

To complete the structure of the data input matrix, it remained to establish the

number of timesteps that represent an audio sample. We identified that the length of time

of the smallest audio file in the dataset SIWIS is 0.7 seconds, evaluating the possibility of

using it as a smaller size reference for an audio sample. We also verified that in the entire

dataset SIWIS only 3 files were less than 1 second. When running these 3 files, we could
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not identify any speech sounds. Unlike other audios, which we selected by sampling, and

we clearly hear the speeches of the speakers. These 3 smaller files were then excluded

from the dataset SIWIS for CNN training. We then observed that the minimum audio

sample size could not be less than 1 second. Considering that 1 timestep is 150 ms, the

number of timesteps closest to 1 second is 7, totaling 1.05 seconds. As there is no audio

with a length of 1.05 seconds in the dataset SIWIS, we have established that the number

of timesteps representing an audio sample is 8, totaling 1.2 seconds.

During the reading of an audio, if the last part does not complete the exact size of

a sample, being therefore less than 8 timesteps, the initial timesteps of this audio are

repeated to complement this last sample. Each sample is labeled with the audio speaker’s

name. The amount of audio samples depends on the size of the audio. A group of samples

is stored in a Batch for each CNN data input. We set the quantity of 50 samples for each

lot. Therefore, the total amount of batches in CNN training depends on the amount and

sizes of the audio files. In summary, the data structure organized for input the neural

network presents a matrix, formed by Batch x Samples x Timesteps x Features, having

the following definitions:

• Feature - Minimum unit of speaker features representation. Each feature unit is the

representation of one MFCC;

• Timestep - Phonetic representation unit of speech defined with a time of 150 ms.

Contains 26 MFCC Features representing 26 speaker features, read in each 150 ms

section of the audio;

• Sample - Unit of sample of the speaker’s speech. It is the smallest representative

unit of the speaker’s speech extracted from the audio file. Contains the size of 8

Timesteps;

• Batch - Sample pooling unit. Divides the read samples from the audios into pre-

defined batch sizes. It stores all data extracted from the audio files of the dataset

SIWIS to use them as input to CNN in each training epoch. The defined size for

each batch is 50 Samples.

Figure 3.4 shows the numerical representation of MFCC features extracted from an

audio file of the dataset SIWIS. It is also shown the representation of the configuration

established for the data input matrix that feeds the CNN. The representation of the data

input matrix for CNN is also shown. The matrix contains 3 dimensions: Samples X

Timesteps X Features. Timesteps and Features dimensions were predefined with sizes

8 and 26 respectively. Samples dimension varies according to the audio file size. The
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data in Figure 3.4 refer to the audio file EN_A3_LEO_008.wav, 4.28 seconds long and

represented in the matrix by 5 samples.

Figura 3.4: MFCC features extracted from an audio file of the dataset SIWIS and repre-
sentation of the dimensions that constitute the data input matrix: Samples X Timesteps
X Features.

3.4 Criteria used for Evaluating CNN Performance

Two types of evaluations were used to analyze CNN performance: Accuracy and F1

metrics, to evaluate the CNN performance in its training; and two prediction calculations,

to evaluate the CNN performance executing the SI task.

3.4.1 Accuracy and F1 Metrics

Accuracy and F1 metrics were used by the experimental plan, detailed in Chapter 4, to

evaluate CNN performance in its training. The two metrics are widely used in the scientific

literature and use in their formulas the 4 values existing in the Confusion Matrix: True

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). These

values are counted during CNN training by comparing the predicted class for a problem

with its true class. Figure 3.5 presents a confusion matrix model. In this Chapter the

Accuracy and F1 metrics are explained.

Accuracy: According to [96] “Accuracy is a qualitative performance characteristics, ex-

pressing the closeness of agreement between a measurement result and the value of

the measurand”. Accuracy represents the number of correct predictions divided by

the total number of predictions. It is a widely used metric that assesses how well

a binary classification test correctly identifies or excludes a condition. In this case,
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Figura 3.5: Confusing matrix of predictive results.

the answer to be checked is whether the audio speaker predicted by the network is

correct. A maximum accuracy score is 1.0 and means that all elements correctly

predicted correspond to the total amount of predictions. The Accuracy formula is:

Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP + TN + FP + FN

F1 Score: It is defined as the harmonic mean of precision and recall [140]. This score

takes both FP and FN into account. A good F1 Score means that there are low FP

and low FN. Accuracy is a better metric to use when the distribution of the class is

similar, while the F1 score is a better metric when there are unbalanced classes. In

many real-life classification problems there is an unbalanced distribution of classes

and therefore the F1 score is the most suitable metric. An F1 Score is considered

perfect when it’s 1, while the model is a total failure when it’s 0. The F1 Score

formula is:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

Precision: It tries to answer the following question: “Which portion of the positive

elements was really correct?”. Another way to explain its meaning would be to

consider relevant and selected elements to then answer the following question: “How

many selected elements are relevant?” [59]. Figure 3.6 highlights who are the

relevant elements and the selected elements. Precision is also referred to as Positive

Predictive Value (PPV). A perfect precision score has a value of 1.0 and means

that all selected (predicted) elements are relevant but does not inform whether all

relevant elements have been selected. The Precision formula is:

Precision =
TP

TP + FP

Recall: It is a synonym for True Positive Rate (TPR) and more commonly called Sensi-
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Figura 3.6: Relevant and selected elements.

tivity. Like Precision the Recall calculation is also based on the relevant elements.

Recall tries to answer the question: “Which portion of the truly positive elements

was identified correctly?”. Another way to explain its meaning would be to consider

relevant and selected elements to then answer the following question: “How many

relevant elements are selected?” [59]. A perfect Recall score has a value of 1.0

and means that all relevant elements have been selected (predicted) but it does not

inform how many irrelevant elements have been also selected. The Recall formula

is:

Recall =
TP

TP + FN

3.4.2 Class and Probabilistic Prediction Calculations

These two prediction calculations were also used by the experimental plan, detailed in

Chapter 4, but to evaluate CNN performance when performing a SI task. When the CNN

model processes an audio, the prediction results show the percentage of chances that all

classes of speakers known by CNN have to be the speaker of the analyzed audio. The

operation of the two prediction calculations is different and both are explained in detail in

this Chapter. The prediction is performed for each minimal audio partition, called audio

sample. To consolidate the calculation, we average the sample predictions and present

the final prediction result for the analyzed audio.
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Class Prediction by Audio Sample: This prediction points to only one speaker, among

all known speakers, as the supposed owner of speech in each of the analyzed audio

samples. After the python function “model.predict_classes7” predicted all audio

samples, we calculated the sample percentage for each predicted speaker. The spea-

ker with the highest percentage of samples is selected as the supposed audio speaker

and if his percentage is greater than the limit value for acceptance (65%) the result

is considered valid. If this percentage is less than or equal to 65%, the result is

considered inconclusive. In order to monitor the result, the supposed audio speaker

is also compared with the real audio speaker and if it is the same, the result is

considered correct, otherwise it is considered incorrect. This prediction calculation

is named by us as “Class Prediction”.

Probabilistic Prediction of each Class by Audio Sample: This prediction calcula-

tes, for each audio sample, a prediction percentage for each of the known speakers,

showing the probability that each one has to be the speaker of the analyzed sample.

After the python function “model.predict_proba8” predicts all audio samples, we

present the final prediction percentage for each speaker by averaging the predicti-

ons made for them in each audio sample. The speaker with the highest average

prediction percentage is selected as the supposed audio speaker and if his percen-

tage is greater than the threshold value for acceptance (65%) the result is considered

valid. If this percentage is less than or equal to 65%, the result is considered incon-

clusive. In order to monitor the result, the supposed audio speaker is also compared

with the real audio speaker and if it is the same, the result is considered correct,

otherwise it is considered incorrect. This prediction calculation is named by us as

“Probabilistic Prediction”.

As a hypothetical example of using the two prediction calculations, suppose that there

is an audio, belonging to speaker “A” and that it has 10 sample units. We adopts 65% as

the minimum prediction threshold for identifying the speaker as the owner of the audio.

Table 3.1 and 3.2 show the hypothetical results of the Prediction Calculation 1 and 2,

respectively. Table 3.1 shows that the 10 samples of the supposed audio had a prediction

distributed among 4 speakers. CNN predicted that the audio speaker would be speaker

“B” in 7 samples of this audio, which means 70% prediction for speaker “B”. As 70%
7Python function that generate class predictions for the input samples, detailed in https://www.

kite.com/python/docs/tensorflow.keras.Sequential.predict_classes.
8Python function that return estimates for all classes ordered by class label, detailed in https://www.

kite.com/python/docs/sklearn.linear_model.LogisticRegression.predict_proba.
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is greater than the 65% threshold, the speaker “B” is appointed as the supposed audio

speaker, obtaining an incorrect prediction result. Table 3.2 shows that the 10 samples

of the supposed audio had a prediction distributed among the 5 speakers. The system

calculated for each speaker the average percentage of prediction over the 10 samples.

Speaker “A” obtained an average percentage of 89.86% in the audio prediction. As this

value is greater than the 65% threshold, the speaker “A” is appointed as the supposed

audio speaker, obtaining a correct prediction result.

Tabela 3.1: Hypothetical example of Prediction Calculation 1 (Class Prediction) with an
incorrect prediction result

Speaker
Amount of

Samples Predicted
per Speaker

Prediction Percentage
per Speaker

Predicted
Speaker

Correct
Speaker

A 1 10% X
B 7 70% X
C 1 10%
D 1 10%
E 0 0%

Result 10 100% Incorrect Prediction

Tabela 3.2: Hypothetical example of Prediction Calculation 2 (Probabilistic Prediction)
with a correct prediction result

Speaker Average Percentage of
Sample Prediction per Speaker

Predicted
Speaker

Correct
Speaker

A 89.86% X X
B 6.16%
C 2.51%
D 1.45%
E 0.02%

Result 100% Correct Prediction

In this research, the value of 65% was established as Threshold for the audio speaker

prediction classification. This value was empirically established for this investigation of

the CNN robustness, being created in a parameterizable way and can be changed in future

investigations. That is, if the prediction result is greater than 65% the predicted speaker

is appointed as the supposed audio speaker. If the prediction result is less than or equal

to 65%, the result is considered inconclusive. The prediction result can be correct or

incorrect. Five classifications were used for the prediction results. These classifications

have the following meaning:
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• Top 5 - percentual when the correct speaker was among the 5 speakers with the

highest prediction percentage;

• Top 3 - percentual when the correct speaker was among the 3 speakers with the

highest percentage of prediction;

• Top 1 (Speaker Correct) - percentual when the correct speaker was correctly pre-

dicted and got the highest prediction percentage among all 36 speakers;

• Top 1 > 65% (Threshold) - percentual when the correct speaker was correctly pre-

dicted and reached the prediction percentage above 65% (threshold to point the

speaker), being established by this research as the speaker who owns the audio;

• Top 1 > 99% - percentual when the correct speaker was correctly predicted and got

the highest possible percentage of prediction.



Capítulo 4

The Experimental Plan

Sections of this Chapter explain the Materials and Methods used by the Experimental

Plan created for this CNN robustness analysis. First section shows the material used

by the Experimental Plan, which is the audio dataset SIWIS. In the next section, the

Experimental Plan is presented, showing an overview of all experimental scenarios per-

formed. Then, the general steps for executing the Experimental Plan are presented, in an

organized way, through the representation of business processes. Finally, each scenario of

the experimental plan is explained.

4.1 Material Used by the Experimental Plan

For the execution of the Experimental Plan, an audio dataset was used as a strategic item

for the elaboration of the experimental scenarios.

4.1.1 Audio Dataset Used

The audio dataset used in these experiments was presented by [14] and is called SIWIS

(Spoken Interaction With Interpretation in Switzerland). It is a well-structured multilin-

gual speaker base, with a considerable amount of audios by speaker and which presented

good possibilities for experiments to explore SR, SI and SV scenarios. SIWIS research

project is a Swiss-NSF (National Science Foundation) funded project gathering several

research teams in Switzerland and the CSTR (Centre for Speech Technology Research)

in University of Edinburgh [48]. Part of the SIWIS1 project is this audio dataset that
1The SIWIS project website is https://www.idiap.ch/project/siwis/, and by redirecting to

the University of Geneva website, through the link https://www.unige.ch/lettres/linguistique/
research/latl/siwis/database/, the audio dataset can be requested.
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contains speakers who speak 2 and 3 languages in a universe of 4 languages: the 3 main

official languages of Switzerland (French, German and Italian) and English. The data-

set has a total of 36 speakers, of which 22 speak 2 languages and 14 speak 3 languages.

Table 4.1 shows the number of speakers who speak 2 and 3 languages by gender. Figure

4.1 shows a Venn diagram with the distribution of the 36 speakers, who speak 2 or 3

languages, among the 4 languages of the dataset SIWIS.

Tabela 4.1: Number of speakers in the dataset SIWIS that speak two or three languages
by gender.

Gender Speaks 2
Languages

Speaks 3
Languages Total

Female 10 10 20
Male 12 4 16

Total 22 14 36

Figura 4.1: Venn diagram showing the distribution of the 36 speakers among the 4 lan-
guages, in the dataset SIWIS.

There are approximately 170 audio files for each language speakers speak, correspon-

ding to a total recording of approximately 20 minutes. Dataset SIWIS has a size of 7.0

GBytes, contains 14,744 files in wav format and a total audio time over 23 hours and

30 minutes. Table 4.2 shows the number of speakers and audio files by language in the

dataset SIWIS. Table 4.3 shows an accounting of audio files, from the dataset SIWIS, by

time ranges.

4.2 Experimental Plan Steps for CNN Analysis

We present experimental plan steps to analyze the CNN robustness. CNN architecture

used is shown in Figure 3.1. Experimental scenarios were designed to explore the CNN
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Tabela 4.2: Number of speakers and audio files by language, in dataset SIWIS.
Language Nº of speakers Nº of audio files

English 22 3,771
French 31 5,332
German 17 2,903
Italian 16 2,738

Total 86 14,744

Tabela 4.3: Accounting of audio files by time ranges (in minutes : seconds), from SIWIS.
Time Ranges
(min : sec)

Number of
Audio Files

< 00:01 3
00:01 to 00:02 1,120
00:03 to 00:05 8,727
00:06 to 00:10 4,621
00:11 to 00:15 177
00:16 to 00:20 32
00:21 to 00:35 19
01:14 to 02:00 39
02:05 to 02:27 6

Total 14,744

performance when used in SI tasks. Each scenario exposes different situations and varia-

tions of the SIWIS audio dataset. Table 4.4 presents the steps for the execution of this

experimental plan. For the preparation of each experimental scenario, a different version

of the Original SIWIS audio dataset was created and used in CNN training. For the exe-

cution of the experimental scenarios, their CNN models performed the SI task using 10%

of the audio files from the SIWIS dataset, separated for testing. As a reference model

for the experimental scenarios, we used the SI results presented by CNN trained with

the Original SIWIS audio dataset. Accuracy and F1 metrics, explained in Chapter 3.4.1,

were used to train the CNN to select the model for each experimental scenario. Class and

Probabilistic prediction calculations, explained in Chapter 3.4.2, were used to obtain the

SI results during the execution of each experimental scenario. The percentages of samples

used in scenarios 1, 2 and 3 to reduce the number of speakers, the number of samples or

the size of the samples were made empirically, based on common sense to reduce these

parameters.
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Tabela 4.4: Experimental plan steps for CNN analysis.
Scenario Nº Experimental Scenario Criteria for Evaluation

1 Speaker
Reductions

80% of speakers

Class and Probabilistic
Prediction Calculations

60% of speakers

40% of speakers

20% of speakers

2
Audio File
Reductions
per Speaker

80% of audio files

60% of audio files

40% of audio files

20% of audio files

3
Variations
in Audio
File Size

50% of audio size

75% of audio size

125% of audio size

150% of audio size

4 SI task using an Unknown
Language (German)

A language totally
unknown by CNN

A language partially
unknown by CNN

5 Adding a new speaker class

6 SI task using another Unknown Language
(Portuguese) for the new speaker class

4.3 Research Procedure for Executing the Experimen-
tal Plan

For the execution of the Experimental Plan, a roadmap was elaborated considering its

general steps in a standardized and organized way. For this, business processes were

created2 3 for the fulfillment of each step. Figure 4.2 shows the business process used

to execute each experimental scenario. The business process “Execution of Experimental

Scenario for CNN Analisys” contains two sub-processes that group specific activities for

CNN training and for using CNN performing SI tasks. Sub-processes are visually identified

by Business Process Model and Notation (BPMN) with a “plus” sign inside its blue box.

These two sub-processes are explained in sections of this Chapter.
2The business processes were mapped using the standard Business Process Model and Notation

(BPMN™), https://www.bpmn.org/.
3The Bizagi Modeler® tool, available at https://www.bizagi.com/en/platform/modeler, was used

for mapping business processes.



4.3 Research Procedure for Executing the Experimental Plan 75

Figura 4.2: Research Procedure using BPMN to Experimental Scenario for CNN Analisys.

4.3.1 Creation of CNN Model for SI task

This business process performs the creation of a CNN model trained specifically for SI

task, using SIWIS as the audio dataset and MFCC as the feature extraction method.

In this process, specific parameters for CNN training are configured, the analysis of the

training results is performed and the CNN model is saved. Figure 4.3 presents this process.

The parameters used by each activity during the execution of this business process are

detailed in Appendix A.0.1.

Figura 4.3: Research Procedure using BPMN to Creation of CNN Model for SI task.

4.3.1.1 CNN Training and Testing for SI Task

Sub-process of the Creation of CNN model for SI task process, its purpose is the training,

validation and testing of the CNN architecture for SI task. Figure 4.4 presents this sub-

process. The parameters used by each activity during the execution of this business

process are detailed in Appendix A.0.2.

Figura 4.4: Research Procedure using BPMN to CNN Training and Testing for SI Task.
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4.3.2 CNN Performing SI Task

This process represents the use of the CNN model, already trained, to perform the SI

task proposed by each scenario of the experimental plan. Figure 4.5 shows the mapping

of this business process. To automate the execution of the scenarios, a python tool was

developed that executes all its activities. The figure 4.6 shows the tool in operation. The

parameters used by each activity during the execution of this business process are detailed

in Appendix A.0.3.

Figura 4.5: Research Procedure using BPMN to CNN performing SI Task.

Figura 4.6: Tool constructed in Python for automation of the business process “CNN

performing SI task”.

4.4 Experimental Scenarios

This section details the experimental plan’ scenarios.
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4.4.1 Speaker Reductions

This scenario evaluates the CNN performance when being trained with SIWIS containing

different amounts of classes (speakers). The purpose of this scenario is to analyze how the

number of speaker classes influences the CNN performance when used in SI task. Four

new SIWIS versions with speaker reductions were created, using approximately 80%, 60%,

40% and 20% of the total 36 speakers. After training, CNN performs the SI task with

the test audio files from SIWIS to evaluate its prediction performance. These new SIWIS

versions are identified as versions 2, 3, 4 and 5 in Table 4.5.

Tabela 4.5: Number of speakers used in scenarios for speaker reductions.
SIWIS

Scenario
SIWIS
Version

Number of
Speakers

Percentage
of Speakers

Original SIWIS 1 36 100%

Speaker
Reductions

2 29 80.55%
3 22 61.11%
4 14 38.88%
5 7 19.44%

4.4.2 Audio File Reductions per Speaker

This scenario evaluates the CNN performance when being trained with SIWIS containing

different amounts of audio files to represent the speaker classes. The audio files represent

the samples used in CNN training to learn speaker features. The purpose of this scenario is

to analyze how the number of audio files influences the CNN performance when used in SI

task. Four new SIWIS versions with audio file reductions per speaker were created, using

approximately 80%, 60%, 40% and 20% of each speaker’s audio files. The file reduction

percentage was applied equally to the speakers’ languages. After training, CNN performs

the SI task with the test audio files from SIWIS to evaluate its prediction performance.

These new SIWIS versions are identified as versions 6, 7, 8 and 9 in Table 4.6.

4.4.3 Variations in Audio File Size

This scenario evaluates the CNN performance when trained with SIWIS containing va-

riations in the sizes of the audio files that represent the speaker classes. The purpose of

this scenario is to analyze whether increasing or decreasing sample sizes influence CNN

performance when used in SI task. Four new SIWIS versions were created with variations
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Tabela 4.6: Number of audio files used in CNN training and validation, corresponding to
scenarios for audio file reductions per speaker.

SIWIS
Scenario

SIWIS
Version

Number of
Audio Files

Percentage of
Audio Files

Discarded Files
(less than 1s)

Original SIWIS 1 13,268 100% 3

Audio File Reductions
per Speaker

6 10,609 79.96% 2
7 7,943 59.87% 1
8 5,326 40.14% 1
9 2,660 20.05% 0

in audio file sizes, using approximately 50%, 75%, 125% and 150% of its original sizes.

After training, CNN performs the SI task with the test audio files from SIWIS to evaluate

its prediction performance. These new SIWIS versions are identified as versions 10, 11,

12 and 13 in Table 4.7. Variations in audio files sizes was made by removing 50% and

25% of their endings, for SIWIS versions 10 and 11, and with a doubling of 25% and 50%

of their endings, for SIWIS versions 12 and 13.

Tabela 4.7: Number of samples, from audio files, used in scenarios for variations in audio
file size.

SIWIS
Scenario

SIWIS
Version

Total Size of Audio Files
(in number of samples)

Percentage
of Size

Original SIWIS 1 85,764 100%

Variations in
Audio File Size

10 50,149 58.47%
11 68,537 79.91%
12 104,737 122.12%
13 122,293 142.59%

4.4.4 SI task using an Unknown Language (German)

This analysis evaluate the CNN performance when executing the SI task, processing audios

of speakers known by CNN, but speaking a language unknown by CNN. The purpose is

to evaluate the impact that an unknown languages can reflect on CNN performance.

Two situations were planned in this scenario: when the language is totally and partially

unknown by CNN.

I - Language totally unknown by CNN: To create this scenario with the same

speakers existing in SIWIS, it was necessary to simulate this situation. Therefore, one of

the four SIWIS languages was excluded. The excluded language was German, represented



4.4 Experimental Scenarios 79

by 17 speakers in SIWIS. Figure 4.7 shows a new version of the Venn diagram, previously

shown by Figure 4.1, but now without German audio for 17 speakers, as identified by the

white numbers. All speakers were kept in this new SIWIS version despite the exclusion

of the German language. Old German-speaking speakers are now represented by only 1

or 2 other languages in SIWIS. This new SIWIS version was then used for CNN training

and the CNN model performed the SI task for the test audios of all speakers, including

German language audios.

Figura 4.7: Venn diagram showing the distribution of speakers, after removing the German
language from SIWIS. White numbers identify reductions, in relation to Figure 4.1.

II - Language partially unknown by CNN: In this scenario CNN performs the

SI task, for known classes of speakers, speaking a language known only by some of these

speakers. In this other simulation German language is represented in SIWIS by only

half of the German-speaking speakers. This trained CNN model processes test audios

from all speakers, including German audios. Figure 4.8 shows a new version of the Venn

diagram after the removal of audios in German language for some speakers, as identified

by the white numbers. All speakers were kept in this new SIWIS version, but of the 17

speakers who speak German, 8 speakers had their German audios excluded, continuing

to be represented in SIWIS by the other languages they speak.

4.4.5 Adding a new speaker class

In this scenario CNN performs the SI task for a new speaker class. The new speaker,

labeled “LEO”, was added in SIWIS increasing the number of speakers to 37. The purpose

of this scenario is to analyze CNN’s performance when receiving the inclusion of one more

speaker class speaking 3 languages. In addition, the new speaker is also used in a next

scenario, for tests with another language. To include this new speaker 514 new audio files

were recorded by him in three languages already existing in SIWIS: English (167 files),
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Figura 4.8: Venn diagram showing the distribution of speakers after a reduction of German
language for some speakers, in SIWIS. White numbers identify reductions, in relation to
Figure 4.1.

Italian (173 files) and French (174 files). Table 4.8 shows the number of audio files for

each language, after adding the new speaker LEO. Figure 4.9 shows the updated Venn

diagram adding the new speaker LEO with audios in three languages.

Tabela 4.8: Increase in number of speakers and audio files per language, in SIWIS, after
the addition of the new speaker LEO.

Language Speakers by language Nº of files

English 23 3,938
French 32 5,506
German 17 2,903
Italian 17 2,911

Total 89 15,258

Figura 4.9: Venn diagram showing the new distribution of speakers after inclusion of the
new speaker LEO, in SIWIS. The white number identify the increase, in relation to Figure
4.1.
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4.4.6 SI task using another Unknown Language (Portuguese) for
the New Speaker Class

In this scenario, Portuguese was chosen to represent the fifth language in SI tests with

CNN. Portuguese is a non-existent language in SIWIS and therefore the scenario is about

another language unknown by CNN. The purpose is to observe if the CNN performance,

in the SI tests, suffers any variation when being tested with a fifth language unknown by

CNN. To construct this scenario only the new LEO speaker was used. Ten new audio files

were recorded in Portuguese by speaker LEO. The sentences of these ten audio files are

shown in Table 4.9. SI tests were performed with the test files of the speaker LEO plus

the 10 new audio files in Portuguese.

Tabela 4.9: Speaker LEO’s 10 new sentences recorded in Portuguese.
Nº Audio Size

(in seconds) Portuguese Sentences

1 5.95 O Império Romano foi o período pós-republicano da Roma Antiga.

2 20.68

A Lagarta foi a primeira a falar. “Qual é o tamanho que você quer ter?”
perguntou. “Oh, eu não sou exigente com relação à altura”, Alice respondeu
apressadamente; “Só não gosto de mudar com tanta frequência, sabe.”
“Não sei”, disse a Lagarta [22].

3 12.41 Dorothy morava no meio das grandes pradarias do Kansas, com o tio
Henry, que era fazendeiro, e a tia Em, que era a esposa do fazendeiro [86].

4 11.77 Há três coisas na vida que nunca voltam atrás: a flecha lançada, a palavra
pronunciada e a oportunidade perdida.

5 3.12 Quem ri por último ri melhor.

6 1.42 Bom dia!

7 12.89 Os Jogos Olímpicos, no formato que conhecemos, foram disputados pela
primeira vez em 1896 na cidade de Atenas, na Grécia [42].

8 8.42 As frutas são alimentos ricos em nutrientes e substâncias que contribuem
com a saúde.

9 3.79 Viajar faz bem para a vida e para a alma!

10 3.0 Um dois três quatro cinco.



Capítulo 5

Presentation of Experimental Re-
sults

In this Chapter, initially, the results of CNN training are shown. Then the results of

each experimental scenario are analyzed. These analysis allowed the evaluation of CNN’s

robustness. According to the robustness definitions shown in Chapter 1.1 we can highlight

what was recorded by [108] and [143], who quite objectively said that robustness is the

state where the technology or process performance is minimally sensitive to factors causing

variability. Therefore, robustness is a very important property for a system, technology

or process as it means their ability to guarantee their desired performance or behavior in

the face of deviant environmental behaviors or external and internal disturbances.

The prediction results of the experimental scenarios had as reference the results of

the CNN trained with the Original SIWIS dataset. All scenario results are presented

in Tables and Graphs that show the values of the Class and Probabilistic Prediction

calculations arranged in the 5 rankings, presented in Chapter 3.4.2. That prediction

values represent the average prediction percentages of CNN performing the SI task for

the speakers involved in each scenario.

5.1 CNN Training Results for the Experimental Scena-
rios

CNN training results are shown in Table 5.1. Accuracy and F1 results, collected from

the validation and test steps, are shown for each experimental scenario. CNN training

results for the reference model, which used the Original SIWIS dataset, are also shown.

We evaluated the metrics results as satisfactory but some CNN training results for the
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scenarios were a little surprising. Reference scenario showed a result within our expec-

tations. Speaker reduction scenarios showed an increase in metrics, in relation to the

reference scenario, as the number of speakers decreased, as expected. Scenarios of audio

file reductions per speaker showed a reduction in metrics only with the amount of 20% of

the total. The expectation was this performance would start to drop in first scenario of

audio file reduction. In scenarios of variations in audio file size, metric results were also

a little surprising because the reduction in audio file size reduces the amount of samples,

but it presented a better result than the reference scenario. And when file sizes increased,

metrics were expected to increase much more. For scenario of SI using an Unknown Lan-

guage (German), the complete removal of a language did not present an improvement in

metrics in relation to its partial removal. The last two scenarios, whose CNN model was

trained to contemplate one more speaker, showed increases in the Accuracy and F1 results

in relation to the Original SIWIS, contrary to what was expected, because theoretically

adding one more speaker class makes CNN training more complex.

Tabela 5.1: CNN training results for the experimental scenarios.
Scenario

Nº Experimental Scenario Epoch
Validation Test

Accuracy F1 Accuracy F1

Reference Original SIWIS 151 0.8300 0.8344 0.8348 0.8382

1 Speaker
Reductions

80% of speakers 122 0.8579 0.8615 0.8551 0.8585

60% of speakers 179 0.9174 0.9192 0.9139 0.9179

40% of speakers 91 0.9646 0.9645 0.9607 0.9608

20% of speakers 33 0.9814 0.9811 0.9803 0.9800

2
Audio File
Reductions
per Speaker

80% of audio files 94 0.8436 0.8490 0.8468 0.8504

60% of audio files 100 0.8489 0.8541 0.8467 0.8506

40% of audio files 92 0.8300 0.8347 0.8399 0.8449

20% of audio files 155 0.7975 0.8078 0.7839 0.7956

3
Variations
in Audio
File Size

50% of audio size 89 0.8494 0.8501 0.8442 0.8489

75% of audio size 101 0.8681 0.8728 0.8618 0.8662

125% of audio size 131 0.8384 0.8405 0.8286 0.8372

150% of audio size 51 0.8607 0.8656 0.8604 0.8655

4 SI using an Unknown
Language (German)

Language totally
unknown by CNN 187 0.8350 0.8383 0.8370 0.8405

Language partially
unknown by CNN 133 0.8430 0.8435 0.8385 0.8413

5 Adding a new speaker class
134 0.8411 0.8427 0.8375 0.8438

6 SI using another Unknown Language
(Portuguese) for the new speaker class
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5.2 Results of Experimental Scenarios

This Chapter presents the results of the experimental scenarios, planned in Table 4.4 of

Chapter 4.3.

5.2.1 Scenarios of Speaker Reduction

In this scenario, Table 5.2 and Figure 5.1 show prediction results for the Original SIWIS

scenario and the scenarios with speaker reductions. Differences in relation to the reference

scenario begin to be perceived more clearly in scenario with 60% of speakers, but the

biggest differences are noticed in scenarios with large speaker reductions, when the number

of speakers is 40% and 20% of total. In scenario with 80% of speakers, the results do not

show improvement in CNN performance. Comparing the results in rankings view, we

see that Top 1, Top 1 > 65% and Top 1 > 99% show a gradual improvement in CNN

performance, as the number of speakers decreases. Top 3 ranking presents high numbers

only in scenarios with 40% and 20% of speakers. The scenario results showed that the

number of speaker classes influenced CNN performance. This confirms the assumption we

had before running the scenario, as theoretically adding one more speaker makes learning

more complex for CNN. However, we noticed that the results were more evident only

when there was a very large reduction in number of speakers. In scenario with 80% of

speakers, the results showed no improvement in CNN performance, despite the reduction

in speakers. It was not possible to identify a general pattern of CNN behavior that

could contribute to the creation of a prediction equation with the aim of estimating the

CNN performance with possible additions of new speaker classes. The two prediction

calculations presented similar results, but in the individual comparison of results, the

Probabilistic prediction calculation presented better results. In general, we consider CNN

performance to be below expectations, considering only the Top 1 ranking, which is when

CNN hits the audio speaker, the prediction results were very low and even having only

20% of original speakers did not reach 50% of the average prediction percentage.

5.2.2 Scenarios of Audio File Reduction

Table 5.3 and Figure 5.2 present the CNN prediction results for Original SIWIS scenario

and for scenarios with audio file reductions. Results of the 4 audio file reduction scenarios

were practically all lower than the Original SIWIS scenario. As the audio files reduction

implies a smaller amount of samples, we imagined that the result would be a progressive
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Tabela 5.2: Comparison of average prediction percentages between the scenario trained
with Original SIWIS and the speaker reduction scenarios.

Scenario Perc.
Speak.

Nº of
Speak. Lang. Nº of

Files Predict. Top 5 Top 3 Top 1 Top 1
> 65%

Top 1
> 99%

Original
SIWIS 100% 36 EN,FR,

GE,IT 1,473 Class 98.17% 56.75% 19.55% 0.95% 0.07%
Prob. 94.23% 56.48% 20.1% 1.9% 0.07%

Speaker
Reduction

80% 29

EN,FR,
GE,IT

1,233 Class 97% 52.96% 20.92% 1.46% 0.08%
Prob. 91.97% 52.64% 19.79% 4.7% 0%

60% 22 942 Class 96.5% 52.44% 23.35% 2.44% 0.53%
Prob. 93.42% 54.78% 26.33% 7.43% 0.11%

40% 14 617 Class 94.81% 62.07% 32.74% 5.67% 0.49%
Prob. 95.3% 65.15% 35.66% 12.48% 0.32%

20% 7 306 Class 98.69% 70.59% 32.35% 18.95% 11.76%
Prob. 99.02% 80.39% 43.79% 23.2% 10.78%

Figura 5.1: Comparison of CNN prediction results, in 5 rankings, involving scenarios of
speaker reductions and the Original SIWIS.

decrease in CNN performance in relation to the reference scenario. But that’s not what

happened. Analyzing Top 3 and Top 1 rankings, we initially see the scenario with 80% of

audio files showing a reduction in CNN performance, but considering the other scenarios,

as the amount of audio files decreases, CNN performance improves, getting closer to

the reference scenario. Unfortunately it was not possible to draw an exact definition of

CNN behavior in face of audio file reductions, but through the results we can see that

the drastic sample reduction did not cause a drastic drop in CNN performance. As we

observed in speaker reduction scenarios, average prediction percentages showed poor CNN

performance, especially in Top 1 ranking.
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Tabela 5.3: Comparison of average prediction percentages between the scenario trained
with Original SIWIS and the audio file reduction scenarios.

Scenario Perc.
Audio

Nº of
Speak. Lang. Nº of

Files Predict. Top 5 Top 3 Top 1 Top 1
> 65%

Top 1
> 99%

Original
SIWIS 100% 36 EN,FR,

GE,IT 1,473 Class 98.17% 56.75% 19.55% 0.95% 0.07%
Prob. 94.23% 56.48% 20.1% 1.9% 0.07%

Audio File
Reduction

80%

36 EN,FR,
GE,IT 1,473

Class 96.95% 48.88% 13.78% 1.09% 0.07%
Prob. 93.69% 49.29% 15.48% 2.72% 0%

60% Class 96.95% 51.93% 15.07% 0.41% 0%
Prob. 93.89% 52.89% 16.02% 1.83% 0%

40% Class 97.49% 52.48% 17.52% 0.88% 0%
Prob. 94.23% 52.41% 16.97% 2.58% 0%

20% Class 97.08% 54.65% 19.55% 1.83% 0.14%
Prob. 94.37% 52.48% 18.47% 3.12% 0%

Figura 5.2: Comparison of CNN prediction results, in 5 rankings, involving scenarios of
audio file reductions and the Original SIWIS.

5.2.3 Scenarios of Variations in Audio File Size

CNN prediction results for Original SIWIS scenario and for scenarios with variation in

audio file sizes are demonstrated in Table 5.4 and Figure 5.3. Top 5 ranking results are

very close in the 4 scenarios, not favoring this analysis. Percentages presented in Top 3

and Top 1 rankings, once again, are the ones that show the greatest variation, allowing

for the analysis. Through them we see that the two scenarios with reduction in audio file

sizes influenced the loss of CNN performance, when compared to the reference scenario.

But the two scenarios with increasing audio file sizes had different results. In scenario

with a 25% increase in the audio file size, CNN improved its performance in relation

to the two previous scenarios, which had reductions. But in relation to the reference
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scenario, despite the amount of samples having increased, there was no improvement in

CNN performance. The scenario with the biggest increase in the audio file sizes, with a

growth of 50%, showed the worst result among all the scenarios. Regarding the Top 1

> 65% and Top 1 > 99% rankings, they showed insignificant results, not favoring this

analysis. Therefore, we see that reducing the audio file sizes, which means reducing the

number of samples, influenced the loss of CNN performance. But scenarios with added

samples showed no improvement. Files growth was 25% and 50% duplication of their

final parts. In this case, we supose that the addition of samples already known does not

contribute to CNN learning.

Tabela 5.4: Comparison of average prediction percentages between the scenario trained
with Original SIWIS and scenarios of variations in audio file sizes.

Scenario Size
Perc.

Nº of
Speak. Lang. Nº of

Files Predict. Top 5 Top 3 Top 1 Top 1
> 65%

Top 1
> 99%

Original
SIWIS 100% 36 EN,FR,

GE,IT 1,473 Class 98.17% 56.75% 19.55% 0.95% 0.07%
Prob. 94.23% 56.48% 20.1% 1.9% 0.07%

Variation
in Audio
File Size

50%

36 EN,FR,
GE,IT 1,473

Class 96.81% 51.19% 16.84% 2.72% 0.41%
Prob. 92.26% 50.64% 16.63% 3.26% 0.07%

75% Class 97.15% 53.09% 18.67% 0.54% 0%
Prob. 94.84% 52.68% 18.13% 2.17% 0%

125% Class 96.33% 54.65% 19.14% 1.15% 0.14%
Prob. 92.94% 53.7% 19.28% 2.44% 0.07%

150% Class 96.88% 51.39% 14.05% 0.48% 0%
Prob. 93.69% 51.53% 15.95% 1.77% 0%

Figura 5.3: Comparison of CNN prediction results, in 5 rankings, involving scenarios of
variations in audio file sizes and the Original SIWIS.
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5.2.4 Scenarios of SI task using an Unknown Language (German)

Table 5.5 and Figure 5.4 present the average prediction percentages for Original SIWIS

scenario and two other scenarios that use a language unknown by CNN. The construction

of these two scenarios was explained in Chapter 4.4.4. Observing the results, we see that

only the Top 3 and Top 1 rankings show considerable differences between the 3 scenarios

analyzed. In other 3 rankings the average results are very close for the 3 scenarios. In

scenario where the German is totally excluded, the average prediction percentages for SI

dropped by almost half for Top 3 and Top 1 rankings. In scenario where the German

language is partially excluded, although approximately half of the German-speaking spe-

akers were kept, the drop in average prediction percentages was large, approximately 35%

in relation to the Original SIWIS scenario. These results raise suspicion about the possi-

ble interference the language unknown by CNN may have caused during the SI. In other

words, during CNN training, possibly in addition to the speaker features, the learning

of language features would also influence CNN’s better performance in SI task. During

CNN training, the strategic function of capturing the speaker features was performed by

the MFCC. Therefore, possibly a large share of responsibility for the results presented in

this scenario is related to the MFCC.

Tabela 5.5: Comparison of average prediction percentages between the scenario trained
with Original SIWIS and the SI scenarios using an unknown language (German).

Scenario Scenario
Nº

Nº of
Speakers Lang. Nº of

Files Predict. Top 5 Top 3 Top 1 Top 1
> 65%

Top 1
> 99%

Original
SIWIS Reference 17 GE 291 Class 98.97% 41.92% 28.18% 1.37% 0.34%

Prob. 95.53% 44.33% 21.99% 1.72% 0.34%

Language totally
unknown by CNN 4.1 17 GE 291 Class 95.88% 21.99% 12.03% 1.37% 0.69%

Prob. 92.44% 26.80% 12.37% 1.72% 0%

Language partially
unkonwn by CNN 4.2 17 GE 291 Class 97.25% 28.52% 15.46% 0.34% 0%

Prob. 90.72% 29.21% 15.46% 1.72% 0%

5.2.5 Scenario of Adding a New Speaker Class

Table 5.6 and Figure 5.5 present the prediction results for the Original SIWIS scenario

and the scenario where one more speaker class was added to the SIWIS. The included

speaker is labeled LEO and speaks three languages. As SIWIS is composed of speakers

who speak two or three languages, Table 5.6 and Figure 5.5 show average prediction

percentages grouped in speakers with 2 and 3 languages. New speaker LEO’s individual

results were also presented for comparison. Top 3 and Top 1 rankings are the ones that

best highlight the differences between the scenario results. But for the new speaker, the



5.2 Results of Experimental Scenarios 89

Figura 5.4: Comparison of CNN prediction results, in 5 rankings, between scenarios of a
language totally and partially unknown by CNN and the Original SIWIS.

values of all rankings are high. Comparing scenarios results, before and after the inclusion

of the new speaker, it is noticeable that after the inclusion there was a slight decrease

in CNN performance for both groups of 2 and 3 language speakers. Observing now the

new speaker’s individual results we see a great performance achieved by CNN for the

identification of this new speaker. This good performance contribution was not enough to

raise CNN’s average prediction percentage. Tables 5.7 and 5.8 present individual results

of 10 speakers with the highest average prediction percentage in Top 1 ranking, evaluated

before and after the addition of the new speaker. Comparing these results we can see that

most speakers had a worsening in their prediction percentage, but for some speakers (25

and 21) there was a small improvement after the inclusion of one more speaker. In Top

1 > 65% ranking, some improvements also occurred for other speakers, in Probabilistic

Prediction calculation, but with percentages still much lower than those presented by the

new speaker LEO. Therefore, the addition of a new speaker class in this SI solution causes

a decrease in CNN performance when predicting the speaker classes that already existed

in SIWIS dataset. But for this new speaker, CNN performance showed extraordinary SI

results, far above the prediction results presented for the original speakers from SIWIS

dataset.
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Tabela 5.6: Comparison of average prediction percentages between the scenario trained
with Original SIWIS and the scenario of adding a new speaker class.

Scenario Scen.
Nº

Nº of
Speakers

Nº of
Lang.

Nº of
Files Predict. Top 5 Top 3 Top 1 Top 1

> 65%
Top 1
> 99%

Original
SIWIS Ref.

22 2 755 Class 98.82% 52.63% 10.96% 0.26% 0%
Prob. 96.12% 52.09% 14.99% 1.73% 0%

14 3 718 Class 97.51% 61.06% 28.65% 1.67% 0.14%
Prob. 92.20% 61.09% 25.60% 2.10% 0.14%

Adding a new
speaker class 5

22 2 755 Class 99.21% 51.04% 9.15% 0.66% 0%
Prob. 94.94% 49.41% 13.31% 1.20% 0%

15 3 770 Class 96.13% 58.76% 22.54% 0.98% 0%
Prob. 92.20% 57.92% 21.84% 3.36% 0%

Adding a new
speaker class

(only new speaker results)
5 1 3 52

Class 100% 100% 100% 96.15% 71.15%
Prob. 100% 100% 100% 90.38% 51.92%

Figura 5.5: CNN prediction results, in 5 rankings, for speakers who speak 2 and 3 lan-
guages, before and after the addition of the new speaker.

5.2.6 Scenario of SI task using another Unknown Language (Por-
tuguese) for the New Speaker Class

In this scenario, Table 5.9 and Figure 5.6 present the prediction results just for new

speaker LEO. Audios were processed using three known languages and one new language

unknown by CNN (Portuguese). Results were very good, in general, presenting high

prediction percentages. CNN’s prediction of unknown-language audios was practically on

par with the other three known languages. Comparing number by number, we see in Top

1 > 65% ranking the new language is below the other languages and in Top 1 > 99%

this difference increases in relation to some known languages. It is possible to say despite

the differences identified, CNN performance remained stable with the unknown language,

as the small differences between the languages occurred only in the two most rigorous
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Tabela 5.7: List of 10 speakers with the highest average prediction percentage in Top 1
ranking (speaker correct prediction), before adding the new speaker.

Scenario Sc.
Nº Nº Speak. Nº

Lang. Lang. Nº
File Predict. Top 5 Top 3 Top 1 Top 1

> 65%
Top 1
> 99%

Original
SIWIS Ref.

1 39 2 FR, IT 34 Class 100% 97.06% 44.12% 2.94% 0%
Prob. 100% 100% 97.06% 32.35% 0%

2 36 3 EN, GE,
IT 51 Class 98.04% 86.27% 74.51% 0% 0%

Prob. 94.12% 90.2% 72.55% 3.92% 0%

3 06 3 EN, FR,
GE 51 Class 100% 80.39% 56.86% 1.96% 0%

Prob. 98.04% 82.35% 66.67% 0% 0%

4 03 3 EN, FR,
GE 51 Class 100% 100% 70.59% 7.84% 0%

Prob. 92.16% 78.43% 41.18% 5.88% 0%

5 40 2 FR, IT 34 Class 97.06% 64.71% 17.65% 0% 0%
Prob. 100% 91.18% 50% 2.94% 0%

6 14 2 FR, IT 35 Class 97.14% 71.43% 48.57% 0% 0%
Prob. 100% 91.43% 51.43% 0% 0%

7 05 3 EN, FR,
GE 51 Class 92.16% 56.86% 41.18% 3.92% 0%

Prob. 96.08% 64.71% 41.18% 5.88% 0%

8 35 3 EN, FR,
GE 51 Class 100% 62.75% 21.57% 1.96% 0%

Prob. 98.04% 76.47% 43.14% 5.88% 0%

9 25 3 EN, FR,
IT 51 Class 98.04% 68.63% 19.61% 0% 0%

Prob. 84.31% 56.86% 21.57% 0% 0%

10 21 2 GE, IT 33 Class 100% 42.42% 12.12% 0% 0%
Prob. 84.85% 30.3% 21.21% 0% 0%

Tabela 5.8: List of 11 speakers with the highest average prediction percentage in Top 1
ranking (speaker correct prediction), after adding the new speaker.

Scenario Sc.
Nº Nº Speak. Nº

Lang. Lang. Nº
File Predict. Top 5 Top 3 Top 1 Top 1

> 65%
Top 1
> 99%

Adding a new
speaker class 5

1 LEO 3 EN, FR,
IT 52 Class 100% 100% 100% 96.15% 71.15%

Prob. 100% 100% 100% 90.38% 51.92%

2 39 2 FR, IT 34 Class 97.06% 91.18% 35.29% 0% 0%
Prob. 100% 97.06% 91.18% 17.65% 0%

3 36 3 EN, GE,
IT 51 Class 94.12% 80.39% 49.02% 0% 0%

Prob. 94.12% 82.35% 74.51% 13.73% 0%

4 06 3 EN, FR,
GE 51 Class 100% 90.2% 52.94% 0% 0%

Prob. 94.12% 84.31% 66.67% 0% 0%

5 03 3 EN, FR,
GE 51 Class 100% 98.04% 66.67% 3.92% 0%

Prob. 98.04% 86.27% 23.53% 5.88% 0%

6 40 2 FR, IT 34 Class 97.06% 52.94% 8.82% 0% 0%
Prob. 91.18% 76.47% 47.06% 2.94% 0%

7 14 2 FR, IT 35 Class 100% 82.86% 45.71% 5.71% 0%
Prob. 100% 88.57% 40% 5.71% 0%

8 05 3 EN, FR,
GE 51 Class 90.2% 49.02% 27.45% 1.96% 0%

Prob. 100% 54.9% 39.22% 7.84% 0%

9 35 3 EN, FR,
GE 51 Class 98.04% 64.71% 35.29% 3.92% 0%

Prob. 98.04% 74.51% 37.25% 13.73% 0%

10 25 3 EN, FR,
IT 51 Class 100% 72.55% 21.57% 1.96% 0%

Prob. 90.2% 68.63% 21.57% 3.92% 0%

11 21 2 GE, IT 33 Class 100% 45.45% 18.18% 0% 0%
Prob. 84.85% 33.33% 27.27% 0% 0%

rankings. Supposedly, this slight drop in CNN performance is really due to the fact that

the language is unknown. But in this scenario, it can be said the unknown language did

not compromise CNN performance in SI task.
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Tabela 5.9: Comparison of average prediction percentages using languages already known
by the new speaker and another unknown language (Portuguese).

Scenario Scenario
Nº Speaker Lang. Nº of

Files Predict. Top 5 Top 3 Top 1 Top 1
> 65%

Top 1
> 99%

Adding a new
speaker class 5

LEO EN 17 Class 100% 100% 100% 88.24% 82.35%
Prob. 100% 100% 100% 82.35% 29.41%

LEO FR 18 Class 100% 100% 100% 100% 55.56%
Prob. 100% 100% 100% 94.44% 66.67%

LEO IT 17 Class 100% 100% 100% 100% 76.47%
Prob. 100% 100% 100% 94.12% 58,82%

SI using another
unknown language for
the new speaker class

6 LEO PO 10
Class 100% 100% 100% 80% 50%
Prob. 100% 100% 100% 90% 20%

Figura 5.6: CNN prediction results for the new speaker, in 5 rankings, using audios in
the 3 known languages and in the unknown language (Portuguese).

5.3 Final Remarks

This Chapter presents the final remarks about the results of the experimental scenarios.

CNN training results for the experimental scenarios, in general, presented good Accuracy

and F1 values, which are in line with our expectations. But comparing these results with

each other, we were able to identify some unexpected situations, as detailed in Chapter

5.1. Comparing the validation and testing values of each scenario, we see that they were

almost identical for all scenarios, with no drop in CNN performance during the tests,

remaining stable. Now looking at results of experimental scenarios and making a general

comparison of the results presented by the two prediction calculations, it is possible to

say that their results are very similar. In a few situations there were major differences
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between the two. Comparing the two calculations, number with number, we see the first

5 experimental scenarios presented Probabilistic Prediction results slightly higher than

Class Prediction results in Top 1 rankings, which are the ones who point out the correct

speaker in the first place. In scenario 6, which analyzes only one speaker, the results

showed a very high CNN performance and most of them were 100% of prediction in

both calculations. Comparing the two calculations in this scenario 6, Class Prediction

presented better results in relation to Probabilistic Prediction. We consider as a result of

comparison between the two prediction calculations that both were useful for the analyses,

presented reliable and similar results, and there are possibilities of using both in some SI

solution.

CNN performance in 5 rankings were analyzed. Top 5 ranking results remained sta-

ble in all 6 scenarios, not showing average prediction percentages with values lower than

90% for the speakers’ collective results. This strongly demonstrates the correct speaker

was among the 5 speakers with the highest prediction. Despite the stability in Top 5

results and their percentages above 90%, the average prediction percentage of 100% was

expected to occur many times, but it did not happen in speakers’ collective results, only

in speakers’ individual results, presented in scenarios 5 and 6. Top 3 ranking, despite

having presented the average prediction percentages much lower than Top 5 ranking, was

widely used by the analyzes because its variation allowed the comparison between the

scenarios results. Its average prediction result with the highest value was 80.39%, in Spe-

aker Reduction scenario, being mostly between 50% and 60%, in scenarios that had the

36 speakers. Its lowest average prediction percentage was 21.99% in 4.1 scenario, when

the German language was completely removed from the dataset. In scenarios 5 and 6,

Top 3 ranking achieved 100% with just the new speaker LEO, in all his results. Top 1

ranking, just like Top 3 ranking, served to compare the scenarios due to the variations

in its results, but presented very low average prediction percentages. It is the ranking

that counts when CNN correctly predicts the audio speaker as the most rated. Its highest

average predictions were 43.79% in speaker reduction scenario and 20.1% with 36 speakers

in Original SIWIS scenario. Its lowest average prediction was in scenario 5, which adds a

new speaker to the dataset, presenting 9.15% as average prediction for speakers who speak

2 languages. In the individual results, shown in scenarios 5 and 6, only the new speaker

LEO achieved 100% in Top 1 ranking, on both prediction calculations. As for the other

speakers, only 4 were highlighted (speakers 39, 36, 06 and 03) who obtained prediction

percentages above 50%. Top 1 > 65% ranking verifies when CNN hits the audio speaker,

presenting a prediction percentage greater than 65%. The highest average prediction per-
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centages were 23.2% in speaker reduction scenario and 3.26% with 36 speakers in audio

file size variation scenario. Its worst prediction performance was 0.41%, with 36 speakers,

in audio file reduction scenario. These results showed a very low performance for CNN. In

the individual results, in general, Top 1 > 65% ranking also presented very low prediction

percentages, showing great oscillation between the two prediction calculations and also

between the moments before and after adding the new speaker. Many speakers had 0%

prediction in their results. Analyzing the prediction of the new speaker, on the other

hand, CNN presented a very high result, standing out among other 36 speakers, scoring

96.15% and 90.38% as average prediction percentage in class and probabilistic prediction

calculations. Top 1 > 99% ranking is when CNN correctly predicts the speaker unani-

mously. This ranking did not contribute much to the analysis as the average prediction

percentages of the 36 original speakers was 0%. Only the new speaker presented signi-

ficant and very high percentages for this ranking, obtaining 71.15% and 51.92% in class

and probabilistic prediction calculations.

Analyzing the four experimental Speaker Reductions scenarios from Chapter 5.2.1, we

see that there was a progressive increase in CNN’s average prediction percentages as the

number of speakers decreased. Results confirmed the suspicion that the number of speaker

classes influence CNN performance. Regarding the numbers presented, CNN performance

did not present high results, especially if we consider the Top 1 ranking, the one where

the speaker is correctly predicted. Results of the Audio File Reductions scenarios, from

Chapter 5.2.2, showed a very different situation from what we assumed would happen. In

each scenario, the amount of audio files is reduced more and more, and so it was expected

that CNN performance would also decrease more and more. CNN performance drop

happened initially, in scenario of 80% audio files. In following scenarios, with fewer and

fewer audio files, CNN performance improved. And in the last scenario, with 20% of audio

files, CNN achieved the same performance as the original scenario. Unfortunately, it was

not possible to draw a conclusive analysis of CNN performance taking into account the

evolution of the four scenarios. We only verified that, in the scenario containing 20% of the

original number of audio files, it was possible to obtain the same performance as the CNN

trained with the original dataset. Which means that a very large number of samples will

not necessarily provide a big increase in CNN performance. Scenarios with variations in

Audio File Size, from Chapter 5.2.3, showed results very different from what was expected.

Two scenarios had reductions in audio file sizes and two had increases, with repetition

of their final parts. Scenarios with reduced audio file sizes clearly show a reduction

in CNN performance compared to the reference scenario. But the two scenarios with
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increasing showed no performance gains. In this case, we understand that the addition of

repeated samples did not favor CNN learning. In experimental scenarios that evaluated

the CNN performance using German as an unknown language, from Chapter 5.2.4, the

performance decrease was clear. In scenario that partially excludes German (scenario

4.2), 8 of the 17 speakers had their language excluded. CNN performance in this scenario

showed a very large drop, approximately 40% in relation to the reference scenario, in Top

1 ranking. When the total exclusion of German occurs (scenario 4.1), this percentage

decreases to approximately 50% in relation to the reference scenario, in Top 1 ranking.

Therefore, in this scenario, it was evident the exclusion of a language greatly influenced

CNN performance drop when executing the SI task.

In scenario 5, from Chapter 5.2.5, where a new speaker who speaks three languages

was added to the SIWIS dataset, results of this new speaker are presented and compared

with results of the original speakers who speak 2 and 3 languages, belonging to the same

dataset and the original dataset (Table 5.6). After the addition of the new speaker, CNN

performance decreased on the SI task for the original speakers. But for the new speaker,

CNN performance proved to be spectacular, presenting a prediction result not yet seen

with the original speakers. In no other result had the Top 1 ranking > 65% reached

prediction values above 90%, as presented for the new speaker. In Top 1 > 99% ranking,

which checks when there is a unanimous prediction for a single speaker, the prediction

values had not yet reached 1% in scenarios with 36 speakers and reached 71% for the new

speaker identification. In individual comparisons, shown in Table 5.8, the 11 speakers

with the best results in Top 1 ranking after the addition of the new speaker were listed.

Results showed that CNN performance when executing the new speaker’s prediction is

much superior in relation to the other speakers. CNN performance to identify the new

speaker LEO can be considered excellent. Unfortunately, we were unable to discover

what influenced the occurrence of such a large difference between the prediction results

of the new speaker and the other 36 speakers. Even the phrases of the 3 languages, used

for recording the new speaker LEO’s audios, were the same used by speakers already

existing in SIWIS dataset. When listening to the new speaker’s audios and the other 36

speakers’ audios, it was not possible to identify differences in quality between them. Even

though these differences are imperceptible to human hearing, there is supposedly some

issue related to the recording time of the new speaker’s audios that may have provided

more quality or technical compatibility with the CNN used, favoring its performance when

executing the SI task for the new speaker. The investigation necessary to discover the

motivating factors of these differences in results was not included in planning of this work.
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Supposedly, factors such as the recording environment, the equipment and technologies

used, the quality of the speaker’s speech, the influence of other sounds, may be related to

these differences in results.

In the last scenario, CNN performance is tested using audios for the new speaker

in another unknown language: Portuguese. CNN performance was very good because

the SI with the unknown language presented prediction results at the same level as the

other three languages known by CNN. Only in Top 1 > 99% ranking was it possible to

see greater differences in SI results between the unknown and the known languages. We

believe that the language spoken by the speaker in the audio may exert some influence

on his identification by CNN. In scenario 4, using German as an unknown language for a

larger number of speakers, this influence could be better noticed in the average of CNN

performance results. But we suppose that it was not so evident for the new speaker due

to CNN good performance in identifying this speaker, as shown by the results of scenarios

5 and 6.

The roadmap created to execute the Experimental Plan, using the representation

of business processes, aimed to perform the CNN robustness analysis in a standardized

and organized way. The planning really worked out because the experimental scenarios

followed the same pattern of execution, from CNN training, to fulfill the requirements

of each scenario, until the execution of experimental tests with the CNN model. In

addition, the roadmap followed a standard business process notation that allows an easy

understanding of all steps. MFCC method fulfilled its function in capturing the speakers

features but we could not evaluate its contribution to CNN performance. To achieve this,

in future research it would be interesting to perform this same robustness analysis using

others feature extraction methods identified by SLR. The SIWIS dataset of multi-lingual

speakers contributed greatly to the Experimental Plan creation, enabling the elaboration

of varied scenarios that explored very different situations for CNN performance evaluation.

It is an interesting audio dataset with possibilities of use in future research related to multi-

lingual speakers. And yet, a reservation must be made in this statement. Unfortunately,

the CNN architecture used by this work and trained with the SIWIS dataset to perform the

SI task, did not perform well when predicting the original speakers from SIWIS dataset.

CNN good performance was only achieved when a new speaker, which did not exist in

SIWIS, was inserted after creating its audios using the same languages and sentences as

the speakers already existing in the SIWIS dataset. Regarding the CNN architecture

used, it is a little complex architecture compared to some ANN architectures identified

by the SLR that showed great complexity and greater amounts of layers. It was originally
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presented by article [26] performing the SI task for noisy audio. Therefore, being trained

with a dataset that contains multi-language speakers, it showed that it can be used for

other SI problems.

In conclusion, CNN’s average prediction results in scenarios 1 to 4 showed very poor

performance in Top 1 rankings. But in scenarios 5 and 6, with the addition of the new

speaker, the individual prediction results showed that CNN performance was excellent in

Top 1 rankings, reaching maximum percentages in prediction of the new speaker. Still

in scenarios 5 and 6, we could see the addition of a new speaker influenced an even

greater decrease in CNN performance, in prediction of the other existing speakers. This

performance difference is possibly related to some technical or quality difference between

the new audios recorded for the new speaker and the original speakers’ audios from the

SIWIS dataset. These technical and quality comparisons between the audios could not be

investigated in this work. Regarding the evaluation of CNN performance in SI task, we

rely only on scenarios 5 and 6, to say that CNN can achieve very good prediction results

in SI, but the ideal characteristics of the audios to obtain this great performance still need

to be clarified in future work. Despite the poor prediction performance in scenarios 1 to

4, during the analysis of the experimental scenarios we took into account the variation of

their results when comparing them. In scenario 1, Speaker Reduction, it was clear there

was a decrease in CNN performance as the number of speakers increased. In scenario 2,

Audio File Reductions, it was shown that a minimum amount of audio files allowed CNN

to learn the speakers’ features and keep its performance practically equal to the scenario

with the original number of speakers. In scenario 3, Variation in audio file sizes, both

the removal and the addition of audio sizes showed a worsening in CNN performance,

with no contributions. In scenario 4, where CNN performs SI for an unknown language,

the average prediction results showed an evident performance drop when the language

is unknown to CNN, giving the impression of a great influence. But this drop in CNN

performance did not happen in the individual prediction results of scenario 6, used for the

new speaker, where another unknown language was used. These differences reinforce the

existence of a big difference between the new speaker’s audio and the original speakers’

audios from the SIWIS dataset, showing that the new speaker’s audios present a better

quality for learning by CNN.



Capítulo 6

Conclusions

The SFSP theme and the ANN computational model are two prominent subjects in the

academic universe and that present concrete contributions to the technological evolution

of machine learning and the automation of speech processing solutions. There was a

motivation to deepen the knowledge on these two very relevant subjects and the best way

we found was to carry out an SLR to identify the state of the art in SFSP using ANN.

The result produced by SLR was very enriching because in addition to the idenfication of

the state of the art, it brought us a lot of other related information. But what caught our

attention was the fact that we did not identify any work that was concerned with carrying

out an ANN robustness analysis, that is, that evaluated how much the performance of an

ANN executing an SFSP task remains minimally sensitive to factors that cause variability

[108] and [143]. The absence of this type of work in the analyzed literature was a new

motivation for its accomplishment, as it is a contribution to the literature and for the

understanding that robustness is a very relevant property for a computational model.

Considering the wide variety of research identified by the SLR, we found a relevant dataset

that contains speakers who speak multi-languages, presented by article [14]. We also

identified a CNN, whose article [26] was well ranked by QA carried out during the SLR

and which we believe was a very good architecture used for this work. Given this scenario

and considering the motivational factors mentioned, we decided to produce this robustness

analysis work, evaluating the performance of this CNN, based on an experimental plan

that explored the SI task, using multi-language scenarios.

One of the specific objectives of this work was to identify the state of the art related to

SFSP using ANN, through a SLR. The objective was fulfilled very satisfactorily because in

addition to identifying the state of the art on SFSP using ANN, a large amount of enriching

information related to this topic was learned. Among this information, we highlight the
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interesting and varied research problems related to SFSP, the use of a wide variety of ANN

models and architectures and different speaker feature extraction methods. We adapted

from the literature a process for executing the SLR and created a QA on the selected

articles. These procedures were essential for conducting activities in an organized manner,

resulting in the identification of the state of the art related to SFSP using ANN. The full

details of this SLR were presented in Chapter 2. Another specific objective was: evaluate

the execution of an experimental plan to explore the CNN’s robustness performing a

SI task. An experimental plan was created to contain scenarios that explore the CNN

performance using variations of different characteristics related to the SI task. The SIWIS

dataset [14] was used for the elaboration of different scenarios in the experimental plan.

Dataset originally contains 36 speakers who speak 3 or 2 languages out of 4 existing

languages. Different scenarios addressed variations in the number of speakers, in the

number of audio files per speaker and in the size of the speaker’s audios. Another 3

scenarios addressed CNN performance when executing SI using unknown languages. For

the execution of the experimental plan, research procedures were created that helped a lot

in the agility, organization and standardization of the experimental scenarios. Planning,

creation and execution of this experimental plan were performed in the best possible way,

obtaining good results and becoming a contribution of this work as a roadmap model

for the execution of future robustness analyzes for ANNs or other computational models.

This objective was also fulfilled very satisfactorily. All of this planning and creation is

detailed in Chapter 4.

The main objective of this work was to perform an exploratory analysis of CNN’s

robustness when performing an SI task in multi-language scenarios. The executed ex-

perimental plan, the results of the CNN training and the execution of the experimental

scenarios are presented in Chapters 5.1 and 5.2. The analysis of CNN’s performance re-

sults was detailed in Chapter 5.3, where the results of the scenarios were compared with

each other, taking as the main comparison the reference scenario, which contains the origi-

nal composition of the dataset SIWIS. The final result of this exploratory analysis showed

that CNN had its robustness affected differently by each experimental scenario. While for

scenario 6, CNN’s robustness analysis was practically 100%, having irrelevant reflections

on its performance, scenarios 1, 4.1 and 4.2 had a stronger effect on its robustness, making

it have a greater variation in its performance. Scenarios 2, 3 and 5 had little effect on its

robustness. As a response to the problem and main objective of this work, the exploratory

analysis of CNN’s robustness was well performed and presented interesting results that

contributed to a greater understanding of the impacts related to this SI problem. It was
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possible to get an idea of the reflexes that the variation of specific parameters, represented

in the experimental scenarios, can cause in the CNN performance. But it is necessary to

evolve this analysis model so that it can present a final result on robustness, instead of

partial results for each scenario.

Contributions provided by this work are:

• a SLR containing a large amount of relevant and enriching information related to

the SFSP using ANN theme, which shows: a variety of research problems specific

to the SFSP areas, a large number of ANN models and architectures and speaker

feature extraction methods;

• the term SFSP, not found in the literature analyzed by the SLR, coined by this us

and which represents speech processing research with a learning focus on speaker

features;

• a methodological contribution, due to the strategic way in which the work of setting

up the experiments was addressed: the creation of an experimental plan containing

different scenarios that explored characteristics of a SI task, and the creation of a

roadmap for the execution of the experimental activities, organized in the form of

research procedures and performed in a standardized way;

• the execution of the experiments and the presentation of their results, showing the

analysis of CNN’s robustness when performing a SI task for multilingual speakers.

6.1 Limitations and Future Works

During the experiments, it was evident the great differences between the prediction results

of original speakers from the dataset SIWIS and the new speaker inserted in the same da-

taset. While CNN’s prediction values were very low for the original speakers, for the new

speaker CNN’s performance was exceptional. This situation was unexpected and would

need to be investigated to understand the reason for such a big difference in CNN’s per-

formance. Another research limitation was the use of Class and Probabilistic prediction

calculations instead of some specific metric to evaluate robustness. An opportunity for

future work would be the use of proper metrics for robustness analysis after a literature

search. Another observation refers to the use of only the selected CNN as the analyzed

computational model. There is the possibility of using other types of ANN or other types

of computational models in the same experimental plan to compare results between them.

In this same vein, only MFCC was used as a speaker feature extraction method. Other
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methods presented by the SLR could also be used, becoming one more variable parameter

for the experimental plan. Still as a suggestion to increase parameters, variations in the

CNN architecture characteristics could be used, such as the number of layers or kernels.

Finally, the absence of a method that presents a proposal for a final result for the robust-

ness analysis, representing all the individual results of the experimental scenarios, would

be an interesting work that would contribute to the creation of a robustness classification

and a comparative robustness ranking between the computer models that were analyzed.
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APÊNDICE A -- Business Process
Parameterizations

This Appendix shows the parameters used to execute the business processes presented in

Chapter 4.3.

A.0.1 Business process parameterization: Creation of CNN Mo-
del for SI task

We detail the parameters used during the execution of each activity that makes up the

business process called: “Creation of CNN Model for SI task”. The activities are in bold

and are represented in Figure 4.3 of Chapter 4.3.1.

Start (green circle): Starts the process;

Select CNN architecture: Selects CNN architecture showed in Figure 3.1;

Select Audio Dataset: Selects the version of the SIWIS audio dataset for the scenario

to be analyzed;

Select Feature Extraction Method: Selects MFCC method;

Configure parameters for training: Established configuration:

1. Number of epochs: 200;

2. Number of MFCC parameters: 26 (Number of features captured in each audio

signal reading.);

3. Initial learning rate: 0.002;

4. Neural network learning optimization algorithm: Adam (Method that optimi-

zes CNN’s learning calculation using the learning rate.);

5. Loss function: Categorical Cross Entropy (Method used to calculate the loss.);

6. Test percentage: 0.1 (10% of audio files in each speaker directory that is used

for testing.);
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7. Validation split: 0.2 (20% is the total samples that is used for validation. The

remaining 80% will be used for training.);

8. Shuffle: 1 (0 - does not shuffle; 1 - shuffles the order of files, keeping the order

of samples by files.);

9. Smaller file size: 1 (In seconds. Files smaller than 1 second were not used.);

10. Phoneme size: 0.15 (In seconds. Unit of time established to represent an audio

phoneme and the Timestep. Based on the concepts of [79].);

11. Window overlap percentage: 0.2 (20% of the final samples from the previous

window is repeated at the beginning of the posterior window.);

12. Window size: 0.15. (Width of the audio signal reading window. Same as

phoneme size.);

13. Stride size: Window size * (1 - Window overlap percentage) = 0.12 (Stride -

how far the window goes to read the next frame audio signal. An overlapping

is being applied. As the window is 15 ms and we want 20% overlap, the stride

is 12 ms. That is, each window takes 3 ms from the previous window as

overlapping data.);

14. Batch size: 50 (Number of samples for CNN input.);

15. Timestep amount for each Sample: 8. (Amount established according to the

reasoning detailed in Chapter 3.3.);

CNN Training and Testing for SI Task: Executes “CNN Training and Testing for SI

Task” Sub-process;

Evaluate results of epochs: Evaluates the times that presented the best CNN training

results;

Save CNN model: Saves the trained CNN model.;

Finish (red circle): Terminates the process.

A.0.2 Sub-process parameterization: CNN Training and Testing
for SI Task

In this chapter, we detail the parameters used during the execution of each activity that

makes up the sub-process called: “CNN Training and Testing for SI Task”. The activities

are in bold and are represented in Figure 4.4 of Chapter 4.3.1.1.

Start (green circle): Starts the process;

Read audio files from audio dataset: Reads audio files from all speakers in the audio
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dataset;

Run Feature Extraction Method: Extract MFCC features from audio files;

Standardize features: Standardizes MFCC features using the following formula:

stdMatMFCC =
matMFCC − AM

SD

where SD is the calculation of the Standard Deviation along the specified axis; AM

is the calculation of the Arithmetic Mean along the specified axis; matMFCC is the

matrix of original values for MFCC features; stdMatMFCC is the matrix resulting

from MFCC features with standardized values;

Stores features in configurated data structure: Performed by tasks:

1. Stores MFCC features in a data structure;

2. Creates the data structure on the dimensions: Batch x Samples (50) x Timestep

(8) x Features (26), labeling the speakers’ samples/timesteps and segmenting

them to be used for training, validation and testing;

3. Shuffles audio file samples in the data structure: shuffles the order of files

keeping the order of samples in each file;

Create speraker label structure: Performed by tasks:

1. Creates the speakers labels structure;

2. Formats the speakers labels structure with numerical and sequential values

replacing speaker names;

3. Segments the speaker label structure for training, validation and testing;

Segment training and validation data: Segments the data structure containing the

speaker audio features into two parts: for training and for validation;

Estabilish the metrics: Metrics calculated in Training and Validation are: Accuracy,

Precision, Recall and F1;

Perform training and validation: Performed by tasks:

1. Creates files for execution: log files, trained model, model weights, model re-

sults and neural network parameter records;

2. Performs CNN training using speakers’ data structures and labels for each 200

epochs;

3. Performs CNN validation using speakers’ data structures and labels at the end

of each epoch;

4. Saves metric values for each epoch, during training and validation;

5. Saves the CNN model in H5 format if the Accuracy Validation value is higher;
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Perform testing on the trained model: Performed by tasks:

1. Selects audio files on test directory. Audio files were previously separated;

2. Performs tests for the CNN model and saves the test results;

Save results: Saves the best CNN model results. The model considered best is the one

with the best Validation Accuracy. Files containing the training, validation, and

testing values for this model are saved separately.

Finish (red circle): Terminates the process.

A.0.3 Business process parameterization: CNN performing SI
Task

In this chapter, we detail the parameters used during the execution of each activity that

makes up the business process called: “CNN performing SI Task”. The activities are in

bold and are represented in Figure 4.5 of Chapter 4.3.2.

Start (green circle): Starts the process;

Read audio file to requesting speaker: Reads audio files for a given speaker;

Run Feature Extraction Method: Extract MFCC features from audio files;

Standardize features: Standardizes MFCC features using the same formula used on

training process:

stdMatMFCC =
matMFCC − AM

SD

;

Store features in configurated data structure: Stores MFCC features in a data struc-

ture with de following dimensions: Samples (dependent on audio file size) x Timestep

(8) x Features (26);

Run CNN modeled: Performed by tasks:

1. Loads the CNN model;

2. Inputs in CNN model the data structure containing speaker features;

3. Runs the CNN model;

Run Prediction Methods: Performed by tasks:

1. Runs the Class Prediction calculation;

2. Shows in an orderly way the first 5 speakers pointed by the Class Prediction;

3. Runs the Probabilistic Prediction calculation;
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4. Shows in an orderly way the first 5 speakers pointed by the Probabilistic Pre-

diction;

Verify if the prediction result is conclusive: Compares the results of Class Predic-

tion and Probabilistic Prediction with the Acceptance Threshold, set at 65%. If

the class indicated by both Predictions is the same and the prediction percentage

is greater than 65% in both Predictions, this class is presented as the result of the

SI. Otherwise it informs that the result is inconclusive;

Present the speaker identification result: Prints the SI result.

Finish (red circle): Terminate the process;
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APÊNDICE B -- CNN Architecture’s
Sequential Layer Chaining

This Appendix present a vision of CNN architecture’s sequential layer chaining. This is

a complementary view to Figure 3.2, where the CNN architecture summary is shown.
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Figura B.1: CNN architecture showing sequential layer chaining and the input and output
parameters of each layer.
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APÊNDICE C -- Additional knowledge

In this Appendix we present brief reports on the history of biometric identification and

ANN.

C.1 A Brief About Biometric Identification

Biometrics is a term derived from the Greek words “bios” (life) and “metrikos” (measure)

and stands for a personal identification that uses measurable characteristics of a person

[90]. It refers to identifying an individual based on his or her distinguishing physiological

and/or behavioral characteristics (biometric identifiers) [60]. Historical records point to

the use of biometrics 31,000 years ago, when fingerprints were used by prehistoric men

as a signature. In 500 B.C. Babylonian business transactions were done on the basis of

fingerprints on clay tablets as a means of security. In 14th Century Chinese used finger-

prints for business transactions and also to differentiate their children [11]. More recently,

around the mid-nineteenth century, the practice of using biometric methods began to

become more widespread for identifying people and for creating registers of biometric

identifiers. The first record of finger and hand prints which was recorded uniformly was

in 1858 by Sir William Herschel who was in Civil Services, India and wanted to make a

record of employees to distinguish them [11]. But other ideas emerged that relied on diffe-

rent ways to identify a person. Some were discarded as they proved to be ineffective over

time. In 1879 Alphonse Bertillon, a police officer in Paris, introduced the anthropometric

registering method. But the anthropometry didn’t last too long, really quickly revealing

its deficiencies and error possibilities. The main imperfections of this method, we can

mention: the instability of the human body’s parameters (it wasn’t applicable to children

and teenagers); subjectivism in measuring the important parts of the human body (police

officers didn’t place the measurement instrument in the same point all over the time);

decalcifications, caused by the aging, diseases or trauma, producing the modification of

the dimensions of human skeleton [90]. In 1936 the concept of iris pattern to recognize
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humans was proposed by an ophthalmologist Frank Burch [11]. Many researches were

carried out using different physiological and behavioral characteristics of the human body

and were used as biometric identifiers to obtain a method that presented precision. Some

biometric identifiers already used are: fingerprint, DNA, face recognition, iris recognition,

hand, signature, voice, gait, keystroke [11]. Given several examples of people who have

dedicated themselves to research contributing to the evolution of biometric methods, the

scientific literature considers that Francis Galton played a noteworthy part in the syste-

matic introduction of quantitative methods to investigate biological phenomena. Because

of his considerable contributions, Galton is designated as the “pioneer of heredity and

biometry” [6]. With the advent of technology and its evolution, biometric systems were

developed where several previously researched methods were codified. A biometric system

provides automatic identification of an individual based on a unique feature or characte-

ristic possessed by the individual [92]. It is essentially a pattern recognition system that

makes a personal identification by establishing the authenticity of a specific physiological

or behavioral characteristic possessed by the user [60]. The proof of the effectiveness of bi-

ometric systems had as a return the popular credibility in their use. As a result, tools and

devices were created that facilitated its use. Biometric systems then began to be used in

several areas. Some areas of use of biometrics are: Forensic, with application in criminal

investigation, corpse identification, parenthood determination; Civilian, with application

in national ID, driver’s license, welfare disbursement, border crossing; Commercial, with

application in Automated Teller Machine (ATM), credit card, cellular phone, access con-

trol [60]. Biometrics presents fundamental concepts that need to be taken into account

when designing a biometric system. An ideal biometric should be universal, where each

person possesses the characteristic; unique, where no two persons should share the charac-

teristic; permanent, where the characteristic should neither change nor be alterable; and

collectable, where the characteristic is readily presentable to a sensor and is easily quanti-

fiable [60]. The relationship between biometrics and security systems became very strong

with the advancement of technology. In general, large investments in security areas have

become a necessity for companies and corporations. Hacker attacks on corporate systems,

especially banking systems, have intensified more and more and have become a daily risk

not only for institutions but also for their customers. The provision of ever more effective

security tools has become a market demand made by customers of technological services

and products. Updating security systems is a frequent need for corporations but also for

citizens, for the protection of their personal data. Use of biometrics in security systems

is a reality. During a security project the designer of a practical biometric system must
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consider a number of issues, including: Performance, that is, a system’s accuracy, speed,

robustness, as well as its resource requirements, and operational or environmental factors

that affect its accuracy and speed; Acceptability, or the extent people are willing to accept

for this particular biometric identifier in their daily lives; Circumvention, as in how easy it

is to fool the system through fraudulent methods [60]. According to [31], the acceptance

of a biometric identification system depends, on the one hand, on its operational, techni-

cal and manufacturing characteristics and, on the other, on the final application and its

financial possibilities. Thus, it should minimally consider the following characteristics to

attest to its feasibility: reliability, ease of use, user acceptance, ease of implementation

and cost.

An automatic biometric pattern recognition system can establish a person’s authenti-

city through their specific physiological or behavioral characteristics [31]. Some examples

of behavioral biometrics are: keystroke dynamics, signature recognition, SR, voice recog-

nition, gait recognition and lip motion [121], [67], [32], [13]; and examples of physiological

biometrics are: fingerprint, face recognition, iris recognition, hand geometry, retina ge-

ometry, palmprint, hand vein geometry, dna, thermal imaging, ear shape, body odor,

fingernail bed (dermal structure under the fingernail) [13]. With regard to the different

biometric technologies in use, fingerprint continues to be the leading technology in terms

of market share. It is probably the best-known biometric technology, and currently em-

ployed in a number of real-world applications. Face recognition is also a popular biometric

technique in some countries, as it seems to be the most user-friendly, although it does

not reach a high degree of accuracy. Iris recognition, although not being quite popular,

is probably the most accurate biometric technology developed so far, according to [31].

In 2003 [31] also showed the results of a survey on biometric market share by technology,

from 2002, where the use of fingerprint appeared as the most used method, corresponding

to 42.5% of the solutions, followed by face recognition (12.6%), hand geometry (12%),

iris recognition (11.3%), biometric middleware (9.5%), signature recognition (6%) and

voice recognition (5.3%). In 2009, a new survey presented by [91] showed that fingerprint

was still among the most used methods and presented the following result: Automated

Fingerprint Identification System (AFIS)/Live scan (38.3%), fingerprint (28.4%), face

recognition (11.4%), biometric middleware (8%), iris recognition (5.1%) and voice re-

cognition (3%). In [3], a more current survey, from 2013, brings the following results

with major highlights: AFIS/Live scan (34%), fingerprint (25%), face recognition (13%),

iris recognition (5%), hand geometry (5%), biometric middleware (5%), voice recognition

(3%), vein recognition (3%) and multiple traits (3%). In results, from 2002 to 2013, fin-
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gerprint remained ahead as the most used method. Currently, fingerprint is still widely

used and incorporated as a biometric identification method in personal devices such as

smartphones.

C.2 A Brief About ANN

The first step taken towards ANN took place in 1943 when neurophysiologist Warren

McCulloch and mathematician Walter Pitts described how neurons in the brain might

work and modeled a simple neural network using electrical circuits [94]. Since then, much

research has contributed to the evolution of ANN and its use in machine learning solutions.

In recent years, machine learning has become more and more popular in research and

has been incorporated in a large number of applications, including multimedia concept

retrieval, image classification, video recommendation, social network analysis, text mining,

and so forth [113]. According to [106], ANNs are computational processing systems heavily

inspired by biological nervous systems (such as the human brain) operation. ANNs are

mainly comprised by a high number of interconnected computational nodes (referred to as

neurons), working entwine in a distributed fashion to collectively learn from the input in

order to optimise its final output. An ANN having many multiple hidden layers, stacked

upon each-other, is commonly called DNN [106]. DNN architectures are characterized by

one or more hidden layers consisting of hidden nodes, with each hidden node representing

a nonlinear activation function [41]. In recent years, the use of DNN became a hot research

topic in machine learning, also achieving a breakthrough in speech recognition [87] and

in other speech processing activities. DNNs have presented so far an excellent ability to

automatically learn feature representations from high-dimensional input data, as a result

of their outstanding performance in many areas [134]. One of the most popular DNNs

is the Convolutional Neural Network (CNN). It take this name from mathematical linear

operation between matrixes called convolution [115]. CNN has an excellent performance

in machine learning problems [5]. It has been popular in pattern recognition for non-

relational data, such as images and sound processing [134].
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