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Resumo

O Reconhecimento de Atividades Humanas (HAR, do inglês Human Activity Recognition)
envolve o uso de informações de contexto para inferir as atividades que um usuário re-
aliza em suas tarefas diárias. O HAR tem sido amplamente estudado usando diversos
paradigmas, como diferentes abordagens de raciocínio, incluindo técnicas probabilísticas,
baseadas em regras, estatísticas, raciocínio lógico ou aprendizado de máquina (ML, do
inglês Machine Learning), ajustando modelos de inferência para reconhecer ou prever ati-
vidades do usuário. O ML para HAR permite que as atividades possam ser reconhecidas
e até previstas através da análise de dados coletados de diferentes sensores, com maior
precisão do que outros paradigmas. Em domínios de aplicativos HAR, como ambientes in-
teligentes, cidades inteligentes e domínios de e-saúde; a Computação Sensível ao Contexto
(CAC, do inglês Context-Aware Computing) fornece uma infraestrutura para otimizar o
projeto e a construção de soluções de software em cenários onde muitos sensores e dados
são essenciais. A adaptabilidade é crucial para esses sistemas, pois um sistema usando um
modelo de inferência obsoleto pode degradar a qualidade de reconhecimento da atividade.
Em uma revisão sistemática da literatura (SLR, do inglês Systematic Literature Review),
identificamos o estado da arte sobre o uso de ML para HAR em CACs. Observamos que
ML oferece abordagens viáveis para construir modelos de inferência para HAR usando
diferentes abordagens. Além disso, também podemos identificar três principais desafios
ou lacunas, especialmente relacionados ao aprendizado de fluxo de dados e também para
estratégias adaptativas. Primeiro, o uso de estratégias baseadas em lote pode elevar ao
consumo excessivo de memória na implantação de modelos de aprendizado de máquina em
sistemas para CACs. Em segundo lugar, o entendimento do uso de estratégias adaptativas
em sistemas HAR e, consequentemente, explorar novas soluções para recomendar mode-
los adaptativos para novos usuários. Terceiro, há uma falta de abordagens para HAR e
adaptativas em CACs. A partir do primeiro desafio, concluímos que o uso do aprendi-
zado de fluxo de dados em um cenário com poucos recursos de memória é relevante. A
partir do segundo desafio, concluímos que os melhores modelos para um usuário alvo são
aqueles treinados com uma partição que apresenta características topológicas semelhantes
à partição formada pelo usuário alvo. Finalmente, para abordar a terceira lacuna, são
necessários novos algoritmos para lidar com HAR em sistemas para CACs. Este trabalho
tem como objetivo propor soluções adaptativas robustas para o domínio HAR, utilizando
algoritmos baseados em aprendizado de fluxo de dados (DSL, Data Stream Learning).
Ao longo desta pesquisa, utilizamos um conjunto de algoritmos para DSL (de diferentes
métodos) abrangendo métricas tradicionais de avaliação e validação presentes no estado
da arte. Propusemos um novo algoritmo para desenvolver Reconhecimento de Atividades
Humanas Complexas Sequenciais em sistemas para CACs, que concluímos que tem melhor
poder preditivo em cenários com menos atividades atômicas presentes nesses sistemas.

Palavras-chave: Aprendizado de Fluxo de dados, Reconhecimento de Atividades Hu-
manas, Computação Sensível ao Contexto, Adaptabilidade.



Abstract

Human Activity Recognition (HAR) involves the use of context information to infer the
activities that a user performs in his/her daily tasks. HAR has been extensively studied
using diverse paradigms, such as different reasoning approaches, including probabilistic,
rule-based, statistical, logical reasoning, or Machine Learning (ML) techniques, fitting
inference models to recognize or predict user activities. ML for HAR allows that activi-
ties can be recognized and even predicted through analyzing collected data from different
sensors, with greater accuracy than other paradigms. In HAR application domains such
as ambient intelligence, smart cities, and e-health domains, Context-Aware Computing
(CAC) provides an infrastructure to streamline the design and construction of software
solutions in scenarios where many sensors and data are essential. Adaptability is crucial
for these systems, because a system using an obsolete inference model can degrade the
activity’s recognition quality. In a systematic literature review (SLR), we identified the
state-of-the-art on the use ML for HAR in CACs. We observed that ML offers viable ap-
proaches to construct inference models for HAR using different ML approaches, including
batch learning and adaptive learning. In addition, we could also identify three main chal-
lenges or gaps, especially related to data stream learning and adaptive strategies. First,
the use of batch learning strategies may lead to excessive memory consumption in the
deployment of machine learning models in CACs systems. The second is understanding
the use of adaptive strategies in HAR systems, and consequently, it is worth exploring
new solutions for recommending adaptive models for new users. Third, there is a lack of
adaptive HAR approaches in CACs. From the first challenge, we concluded that the use
of data stream learning in a scenario with low memory resources is relevant. From the
second challenge, we concluded that the best models for a target user are those trained
with a partition that presents topological characteristics similar to the partition formed
by the target user. Finally, for tackling the third gap, new algorithms to deal with HAR
in CACs systems are necessary. This work aims to propose robust adaptive solutions to
the HAR domain, using algorithms based on data stream learning (DSL). Throughout
this research, we used a set of DSL algorithms (from different methods) covering tradi-
tional evaluation and validation metrics present in the state-of-the-art. We proposed a
novel algorithm to develop sequential complex HAR in CACs systems, which we conclu-
ded that has better predictive power in scenarios with fewer atomic activities present in
these systems.

Keywords: Data Stream Learning, Human Activity Recognition, Context-Aware Com-
puting, Adaptability.
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Chapter 1

Introduction

Human Activity Recognition (HAR), based on sensors data, has emerged as a key research

area in ubiquitous computing. Activity recognition systems focus on inferring the current

activities of users by leveraging the rich sensory environment [89, 30]. Human Activity

Recognition can be used in smart health applications to alert stakeholders that a person

of interest suffered an accident at home [38]; monitoring of the elderly people, identifying

people that fall, or are not moving for a long time, and so on [33]; or detecting which

type of activity a person is doing, like walking, eating and cooking [49]. Also, HAR can

be used for surveillance and anti-crime securities (for instance, people walking much more

faster, making others to fall, may indicate a robbery or a fugitive of a crime scene [111]),

life logging [39], sports assistance of performance [74] and so on.

Essentially, HAR can use context information and sensors data for inferring the activi-

ties a user performs in his daily tasks. Over the years, several researchers have developed

methods, systems and frameworks for HAR in low complexity scenarios [48, 110]. In sce-

narios with a great number of sensors and a complex context management infrastructure,

HAR services may be provided and supported by context-aware middleware (CAM) solu-

tions, thus avoiding scalability, data annotation, and robustness problems for the solutions

developers [109, 142].

In addition, considering the Machine Learning (ML) paradigm, many methods and

algorithms are appearing in literature as an excellent way for constructing inference models

to many different application scenarios, presenting good results, such as healthcare [119,

120], traffic monitoring [46, 34], sports assistance [130, 74] and others. From the point of

view of data availability [20], ML algorithms can be basically divided into two different

approaches, which are (i) Batch Learning (BL), requiring that all collected data must

be available for constructing the model and, in case of adapting the model, they suffer
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from the catastrophic forgetting issue, being required that all previous and recent data be

collected for constructing a new model; and (ii) Data Stream Learning (DSL), evolving

the model when new data arrives from the stream, and can also consider concept drift

in data. However, although traditional techniques like SVM and Hidden Markov models

have been extensively used in HAR systems, prior studies have not targeted the different

approaches of ML in Context-Aware Systems that provide HAR capabilities. All of these

approaches are important to be considered for constructing inference models to HAR

estimation and inference, or as the users can change the way they move over time, requiring

model adaptation over time; or data may not be correctly or even labeled, requiring

active labeling methods. The full integration of these ML approaches (and capabilities)

directly within HAR can improve the engineering, (including design), of context-aware

applications.

1.1 Contextualization

Traditional techniques for recognizing human activities in context-aware systems deal with

data continuously transmitted by various sensors [142]. Sensory data is a data stream that

contains unlimited data arriving at high speed. Therefore, it is increasingly difficult to

assume scenarios where data is static over time in human activity recognition scenarios [4].

Dynamic changes in activities that reflect variations in user activities are expected and

natural. Therefore, the use of online machine learning concepts (Data Stream Learning)

in activity recognition becomes important for the quality and maintenance of the system’s

effectiveness.

In context-aware scenarios, within limited hardware resources (such as HAR in smartwat-

ches, mobiles, and other wearable technologies), there is a high demand for cheaper algo-

rithms for constructing inference models. They should be able to deal with concept drift.

They should need a low volume of labeled data. Another example of a scenario is the

real-time classification of complex activities. In this case, devices with limited resources

need to be maintained by a solid infrastructure to lead data coming from heterogeneous

sensors and support the machine learning model’s storage. In these scenarios, in particu-

lar when dealing with large amounts of data that need to be processed locally and timely,

robust infrastructures may also be needed, such as edge computing [133].

Furthermore, there is a limitation involving the model’s adaptability in the level of

knowledge acquisition. As evolve time, and the system collects data from new users,
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machine learning models (usually in batch) struggle to extract new knowledge or improve

the model’s reasoning ability. For the most part, the designers of these systems generally

discard the current model, and from new data, create a new model or feed this model

with new knowledge from this new data [59, 21]. Moreover, since most systems use models

based on data from several users (multi-user), it is important to have models that are more

robust to the characteristics of the activities of a specific user.

In addition, there is a challenge in updating models that deal with Complex Human

Activity Recognition (CHAR). A complex activity is composed of a set of activities (set

of states), where these activities can be done by a set of users (evidence). The state-

of-the-art proposes different approaches (described in Chapter 3). However, few works

commonly used the Sequential Complex Activity Recognition (SCHAR). SCHAR uses

parts of activities that involve great physical effort and are represented sequentially (such

as falls, activities of bodybuilding). Therefore, it is necessary to study how many activities

are necessary to represent a sequential complex activity, that adapts quickly and volatility.

1.2 Research Questions

Motivated by the contextualization of the problem involving the recognition of human

activities, this thesis formulated some research questions:

• Q1: Does the use of data stream learning models result better than batch learning

models with limited infrastructure in implementing HAR techniques? This question

aims to analyze the need to use online machine learning approaches (data stream

learning) compared to traditional learning approaches (batch learning), in scenario

with limited memory consumption.

• Q2: Are machine learning models able to adapt to similar users? In this question,

we seek to answer whether there is a possibility of maintaining the quality of machine

learning models while increasing the data stream for a respective user. In essence,

it is to propose a new approach to recommend a model similar to a respective user

through the use of data stream learning.

• Q3: Is it useful to create a model for complex sequential activities that can self-adapt

to the data stream? The objective is to propose a new algorithm for sequential

complex human activities based on stream learning, presenting better performance

than state-of-the-art algorithms.
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Fig. 1.1. Outline (organization) of this work.
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1.3 Thesis Structure

Figure 1.1 presents the outline of this thesis, enrolling chapter by chapter through sequence

workflow.

Chapter 2 presents two machine learning paradigms that will be useful for constructing

the thesis. The first can fit stable (stationary) models that do not change over time, known

as batch learning. Moreover, the second paradigm can fit non-stationary models, whose

models undergo gradual changes over time. This learning is known as stream-learning.

Chapter 3 describes the problem of Human Activity Recognition in a vision of context-

aware systems. This chapter presents the different types of Human Activities Recognition

and research areas.

Chapter 4 describes how the entire process of selecting primary and secondary studies

was carried out, with criteria for collecting and describing the motivation of the research

questions proposed by this work. The chapter summarizes the primary services we found

in Context-Aware Middlewares (CAM) for tackling HAR problems, considering the steps

usually executed in the HAR solutions. Moreover, this chapter presents discussions on

gaps and research challenges.

Chapter 5 compares the behavior of batch learning and data stream learning algorithm

for constructing inference models in HAR scenarios with limited resources in ubiquitous

environment. For this, we used in our methodology a memory control module for restric-

ting memory consumption in batch learning.

Chapter 6 describes the importance of using adaptive strategies in HAR systems.

In this chapter, we carried out two studies relevant to this case. First, we compared

the use of adaptive and non-adaptive strategies. The second study proposes a model

recommendation system based on user characteristics when performing their activities.

Chapter 7 describes a novel algorithm for stream learning based on Sequential Com-

plex Human Activity Recognition. The experiment is based on simulated datasets on

sequential complex human activity recognition. This dataset was created from concepts

at the start-of-the-art and validated.

Chapter 8 presents the final remarks about this research. The chapter describes some

limitations of this research and future works.



Chapter 2

Machine Learning Concepts

As previously mentioned, ML algorithms can be basically divided into two different ap-

proaches, which are (i) Batch Learning and (ii) Data Stream Learning. In batch learning

approach, the entire training dataset is previously available for constructing the infe-

rence model. In this way, an algorithm learns a model after iteratively processing all the

available data. Mainly, the examples are generated according to a stationary random

distribution [51]. On the other hand, considering a set of sensors in which they send in-

formation in real-time to several devices using data based on transient data stream, batch

learning may face a big challenge. Online learning, more recently called the Data Stream

Learning approach, can modify the current model by adding new information [20]. This

chapter briefly reviews those topics in different sections.

2.1 Batch Supervised Machine Learning

In supervised learning, the algorithms present a set S of input samples, where S = {x1, x2,
· · · , xn}, whereN is the number of samples, chosen from a domainX = {(x1, y1), · · · (xn, yn)}
with unknown, random, fixed distribution, where y = f(x), where f is an unknown func-

tion. We have that xi areM-dimensional vectors characterized as follows (xi1, xi2, · · · , xiM),

with values that can be discrete or continuous. The values yi are usually associated with

a discrete set of classes Ck, where k is the number of classes. This representation is for

cases where we have a classification problem of single label.

Let S, a set of examples for a learning algorithm, a classifier h learns an approxi-

mate function f̂ from the unknown function f . Given new examples xi, h predicts a

corresponding value y, using f̂ .



2.2 Data Stream Supervised Machine Learning 7

In batch machine learning, all training data sets are available in memory. An algorithm

learns a decision model after iteratively processing all the data. Essentially the examples

are generated according to a stationary distribution at random.

However, these approaches have no notion of adaptation or refinement of the already

built model. Under realistic conditions, changing activities can occur over time. These

changes include modifying the user’s activity patterns, such as personalization (e.g., wal-

king for one user can be represented as running for another); forgetting (activities that

should be abandoned), and novel activities (to detect new activities). The latter even

exists in approaches that use batch learning [97]. However, it requires model training on

the available data representing the new concepts.

A solution to these existing problems in HAR is the use of stream learning techniques.

A discussion of the using batch machine learning in HAR was given after the state-of-

the-art review process described in Chapter 4. In the next section, the concept of stream

learning is described and its application in scenarios for Human Activity Recognition.

2.2 Data Stream Supervised Machine Learning

On stream supervised machine learning scenarios, the studies cover continuous data

stream [83]. A stream of data is a sequence of data instance (xt, yt) as described in

Fig. 2.1, arriving one data at a time extracted from an unknown probability distribution

ρt(xt, yt); for time t = {1, 2, 3, ..., T}, where y is the corresponding class label. We assume

that an online classifier ho takes a new entry xt in a time range t and then predicts its

label. After some time, the current class label yt is available and is used by ho to evaluate

predictive performance and provide additional information for training updates. This en-

tire process will be repeated in the following steps. Most supervised learning algorithms

based on data classification adopt this technique.

There are three ways [83, 127] of labeling in a continuous data stream: manual,

automatic, and observational. Overall, the process of manually labeling each part of the

data stream is costly and time-consuming. Automatic labeling is performed by configuring

the application at the time of data collection. In the observational method, learning

models are initially trained in automatic configurations; however, users can intervene by

manually marking data streams in case of discrepancies.

However, DSL models present some constraints, as mentioned in Bifet et al. [18]: First

(1), The amount of data that has arrived and will arrive in the future is substantial; in
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Fig. 2.1. Example of knowledge process from data stream models.

fact, the sequence is potentially infinite. Thus, it is impossible to store it all. Only a small

extract can be computed and stored, and the rest of the information is not used. Even if

the information could be stored, it would be unfeasible to go over it for further processing.

Secondly (2), the speed of arrival is immense, so each particular element must be processed

essentially in real-time and then discarded. Finally (3), the distribution generating the

items can change over time. Thus, data from the past may become irrelevant to the

current extract.

Constraints (1) and (2) limit the amount of memory and time-per-item the streaming

algorithm can use. Intense research on the Data Stream algorithms has produced many

techniques using few resources (memory and time-per-item), usually combined with the

sliding-window technique (discussed after). Constraint (3), the importance to adapt to

time changes. A typical approach for dealing is based on the use of sliding windows : The

algorithm keeps a window of size W containing the last W data objects that have arrived

(say, in the last W time steps). When a new object arrives, the oldest element in the

window is deleted to make place for it. The extract of the Data Stream is at every time

computed or rebuilt from the data in the window only. If W is of moderate size, this

essentially takes care of the requirement to use low memory.

Over the years, researchers in machine learning have focused on the batch paradigm.

However, the demand encourages mathematical models to present capacity processing for

a large volume of information (that evolves over time according to non-stationary distri-

bution). In this scenario, it is necessary to permanently maintain a robust decision model

with the current state from newly generated data. Thus, incremental learning techniques

are needed, modifying the current model by adding newly available information. In the

presence of a non-stationary distribution, the system needs to incorporate knowledge eli-

mination techniques, where some information or concepts are no longer needed, given the

current state of the problem. Learning from a data stream requires incremental learning.

This algorithms work with limited computational resources and can detect evolution in
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concept drift [44].

Concept Drift [44] means that the process that generates the data evolves over time.

The indication of changes in the concept reflects in some way in the training sets. Older

observations, which characterize the behavior of data in the past, become obsolete for the

current state under observation. Variations of changes can occur in attributes that are

no longer observed or in the properties of observed attributes. In general, algorithms use

adaptive strategies at regular intervals without considering whether there has been any

change. Some works [54, 75] offer approaches that allow the visualization of important

information from the analysis process (indicating points of change or time windows where

change occurs) and quantifying the degree of change.

In pervasive scenarios, the literature indicates that concept drift must take different

forms. Let F be a source. Assuming that the concept of a sequence of instances changes

from Fi to Fj, we call it sudden drift, if at time t, Fi is suddenly replaced by Fj. Instead

of an abrupt change (sudden drift), for example, a source is changed during a brief period

of time after the change point t, the gradual drift refers to a change with a period where

both sources, Fi and Fj, are active. Over time, the sampling probability of the source

Fi decreases, the sampling probability of the source Fj increases until Fi is completely

replaced by Fj. There is another type of gradual drift called incremental or stepwise drift.

With more than two sources, the difference between sour is minimal, so drift is only noticed

when looking at a longer period. Recurring Concepts means that the previously active

concept reappears after some time. This concept is certainly not periodic. Therefore,

there is no predictive information about when the source will reappear.

Figure 2.2 illustrates the main types of concept drift, assuming uni-dimensional data,

where the average of the data characterizes a source. We only describe the data of a class.

A central feature of the data stream model is that streams evolve over time, and

algorithms must react to the change (Concept drift). Change detection in data has a long

tradition in statistics [20]. Neither all methods are apt for streaming because they require

several passes over the data. We describe only a few streaming-friendly tests used in this

thesis.

The cumulative sum (CUSUM) test [20] is designed to give a warning when the

mean of the input data significantly deviates from its previous value. Given a sequence

of observations xt, define zt = (xt − µ)/σ , where µ is the expected value of the xt and

σ is their standard deviation; if µ and σ are not known a priori, they are estimated

from the sequence itself. Then CUSUM computes the indices and gives a warning. The
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Fig. 2.2. Ilustration of four types of Concept Drift [83].

drift detection method (DDM) [20] is applicable in the context of predictive models.

The method monitors the number of errors produced by a model learned on the previous

stream items. Generally, the model’s error should decrease or remain stable as more

data is used, assuming that the learning method controls overfitting and that the data

and label distribution are stationary. Instead, DDM observes that the prediction error

increases; it takes this as evidence that change has occurred. The geometrical moving

average (GMA) [15] presents the newest observations, greatest weight, and all previous

observation weights decreasing in geometric progression from the most recent back to

the earliest. The term "moving average"(without the adjective "geometric") implies an

ordinary moving average in which k consecutive points are charged with equal weights of

l/k. In the computation of a geometric moving average, the most recent point is assigned

a weight of r, where 0 < r ≤ 1, and each point is assigned a fraction (1 − r) of the

weight of its immediate successor. Tests based on GMAs compare well with numerous

run and moving average tests. In the statistical test of equal proportions (STEPD) [15],

the accuracy of a chunk of recent samples is evaluated and correlated with the overall

accuracy from the birth of the stream while employing a chi-square test to check for
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deviations. The main idea of STEPD is to oversee the accuracy of a base learner over two

windows: a recent window containing the latest examples and an older window with all

the other examples observed by the base learner after the last detected drift.

At the level of algorithms, we describe only a few algorithms used in this thesis:

Hoeffding Adaptive Tree, SamKNN, SGD Multiclass, and Naive Bayes Online. The Ho-

effding Adaptive Tree (HATT) [20] is an adaptive extension to the Hoeffding Tree

that uses ADWIN [19] as a change detector and error estimator. It has theoretical perfor-

mance guarantees and requires no parameters related to change control. SamKnn [20]

(The Self Adjusting Memory (SAM) model for the k Nearest Neighbor (kNN)) constitu-

tes a proven classifier-based KNN within the streaming setting. SAMkNN can deal with

heterogeneous concept drift, i.e., different drift types and rates, using biologically inspired

memory models and coordination. SGD Multiclass [20] implements stochastic gradi-

ent descent for learning various linear models: binary class SVM, binary class logistic

regression, and linear regression for multiples class. Naive Bayes Online [20] ins an

incremental algorithm. It assumes independence of the attributes, and that might not be

the case in many real data streams. It is well suited for the data stream setting. This

classification algorithm is known for its low computational cost and simplicity. We chose

these algorithms because each covers different learning methods and most algorithms leads

with concept change (except Naive Bayes Online).

2.3 Machine Learning Algorithms Used in Sequential
Analysis

Probabilistic Models (PM) have gained in sequential modeling. Typically, a sequence

consists of smaller substructures with different functions, and different functional regions

often display distinct statistical properties [141]. For example, a activity can consist of

multiple domains, e.g, a fall covers some activities (Standing, standing-to-lying, lying). it

would be interesting to predict the constituting domains (corresponding to one or more

states in an probabilistic model) and their locations in the sequence (observations). This

representation can be adapted in the same scenario in Human Activity Recognition, where

we have activities (states) and a sequence of the activities (observations).

Overall, this problem needs a representation: We denote the observed symbol sequence

as x = x1, x2, · · · , xn and the underlying state sequence as y = y1, y2, · · · yn, where yi is the
underlying state of the i− th observation xi. Each symbol xi takes on a finite number of
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possible values from the set of observations O = {O1, O2, · · · , ON} and each state yi takes

one of the values from the set of states S = 1, 2, ...,M , where N and M denote the number

of distinct observations and the number of distinct states in the model, respectively.

Two of the most algorithms used in this area are: Hidden Markov Models (HMM) and

K-Mer Filtered Classifier [90]. In HMM, we assume that the hidden state sequence is a

time-homogeneous first-order Markov chain. This implies that the probability of entering

state j in the next time point depends only on the current state i, and that this probability

does not change over time.

2.3.1 Hidden Markov Models

Hidden Markov Models (HMM) is a statistical model that can describe the evolution of

observable events that depend on internal factors that are not directly observable. We call

the observed event a ‘symbol’ and the invisible factor underlying the observation a ‘state.’

An HMM consists of two stochastic processes: an invisible process of hidden states and

a visible process of observable symbols. The hidden states form a Markov chain, and the

probability distribution of the observed symbol depends on the underlying state.

Firstly, let us define Hidden Markov Models (HMM) [1, 79]. We denote the observed

symbol sequence as X = {x1, x2, · · · , xn} and the underlying state sequence as Y =

{y1, y2, · · · , yn} where Yi is the underlying state of the i − th observation Xi. Each

symbol xi takes on a finite number of possible values from the set of observations O =

{O1, O2, · · · , ON}, and each state Yi takes one of the values from the set of states S=

{1, 2, · · · ,M}, whereN andM denote the number of distinct observations and the number

of distinct states in the model, respectively. We assume that the hidden state sequence

is a time homogeneous first-order Markov chain. This implies that the probability of

entering state j in the next time point depends only on the current state i, and that this

probability does not change over time. Therefore, we have

P{yi+1 = a | yi = b, yi−1 = ii−1, · · · , y1 = b1} =

P{yi+1 = a | yi = 1} = t(a, b)
(2.1)

for all states a, b ∈ S and for all i ≥ 1.

The fixed probability for making a transition from state a to state b is called the

transition probability, and we denote it by t(a, b). For the initial state y1, we denote the
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initial state probability as π(a) = P{y1 = a}∀a ∈ S. The probability that the i − th

observation will be xi = x depends only on the underlying state yi, hence

P{xi = x | yi = b, yi−1, xi−1, · · · } =

P{xi = x | yi = b} = e(x|b)
(2.2)

for all possible observations i ∈ O , all state b ∈ S , and all i ≥ 1 . the emission

probability (e(x | b).) of x at state b is represented by all possible observations x ∈ O,

all state b ∈ S, and all i ≥ 1. The three probability measures t(b, a), π(b), and e(x | b)
completely specify an HMM. For pattern, we used the set of these parameters as Θ. Based

on these parameters, we can now compute the probability that the HMM will generate the

observation sequence x = {x1x2 · · ·xn} with the underlying state sequence y = y1y2 · · · yn.
This joint probability P{x, y | Θ} can be computed by:

P{x, y | Θ} = P{x | y,Θ}P{y | Θ} (2.3)

where

P{x | y,Θ} = e(x1 | y1)e(x2 | y2)e(x3 | y3) · · · e(xn | yn) (2.4)

P{y | Θ} = π(y1)t(y1, y2)t(y2, y3) · · · t(yn−1), yn) (2.5)

As we can see, computing the observation probability is straightforward when we know

the underlying state sequence.

Figure 2.3 show a example of HMM model. The main line of the HMM contains

a sequence of M states, which we call Match States , corresponding to positions that

correspond to a complex activity (HAR) or a protein (biological computing). In Figure,

M = 6. Each of these states can generate a sequence x. π means that each match states

mk, where 1 ≤ m ≤ 6, have distinct distributions. Each mk has a delete state dk that

does not produce any activity but is a state used to skip mk. In Figure 2.3 we have match,

delete and insert states described in squares, circles, and diamonds, respectively. From

each state, there are three possibilities for transitions to other states. Transitions into a

match or delete states always move forward in the model, whereas transitions into insert

states do not. We can serve multiples insertions between match states can exist since

the self-loop on the insert state allows a transition from the insert state to itself. The

transition probability from state q to state r is, as mentioned before, π(r|q).

In order to use HMMs in practical applications, we need to compute the observation
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Fig. 2.3. A Illustration of a basic Hidden Markov Model.

probability P{x|Θ} based on a given HMM. This problem is sometimes called the sco-

ring problem since computing the probability P{x|Θ} is a natural way of ‘scoring’ a new

observation sequence x = x1, x2, · · ·xn. One way to compute the observation probability

is to consider all possible state sequences y for the given x and sum up the probabili-

ties. However, this is computationally very expensive since there are n possible state

sequences. Due to this, there is a dynamic programming algorithm, called the forward

algorithm [79, 141], that can compute P{x|Θ} in an efficient manner.

Another important problem is to find the local optimal state sequence, in the HMM

that maximizes the observation probability of the given symbol sequence x. Among

all possible state sequences y, we want to find the state sequence that best explains

the observed symbol sequence. Finding the optimal state sequence y by comparing all

n possible state sequences is computationally infeasible. However, we can use another

dynamic programming algorithm, well-known as the Viterbi algorithm [79, 141], to find

the optimal path y efficiently. The Viterbi algorithm finds the local optimal sequence that

can maximize the observation probability of the entire symbol sequence. The advantage

of predicting the optimal states individually is that this approach will maximize the

expected number of correctly predicted states. For this reason, the Viterbi algorithm

is often preferred when we are interested in inferring the optimal state sequence for the

entire observation x.

Both algorithms for scoring and optimal path are concerned with analyzing a new

observation sequence x based on the given HMM. However, the solutions to these problems

are meaningful only if the HMM can properly represent the sequences of our interest. Let

us assume that we have a set of related observation sequences x = {x1, x2, · · · , xn } that

we want to represent by an HMM. For example, they may be different sequential of the

same atomic activities (Chapter 7 describes a scenario) that belong to the same functional
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complex activity; in addition, the most probable path itself can be found using the usual

backtracking technique [79]. This is the method we use to obtain our multiple alignments:

each sequence is aligned to the model by the Viterbi Algorithm, after which the mutual

alignment of the sequences among themselves is then determined.

2.3.2 K-mer Filtering Classifier

In this section, we will describe one of the commonly used algorithms for the solution

of many problems, particularly for bioinformatics, mainly by using k-mers as the main

element in detecting sequential alignments.

First of all, we need to define Feature Vector Mapping and K-mers. Feature Vector

Mapping is a mapping of classified objects to the feature space. This mapping is called a

feature vector representation of subject area. Such feature vectors capture the composi-

tional properties of the sequences. Feature mapping rule can be described as a function

M : Ŝ → F , where Ŝ = (s1, s2, · · · , sN), si ∈ {Σ}k is a sequence (for instance sequence

of activities), Σ is the alphabet (for instance Σ = {A,C,D, T}) N is the length of a

sequence, and F = (f1, f2, · · · , fM), fj ∈ < is a feature space, M is the length of feature

vector.

We need define K-mer. Damaševicius [32] define K-mer as a K-base long sequence (k-

tuple). Usually, this representation is for sequence (e.g DNA sequence in bioinformatics).

(a1, a2, · · · , ak), ai ∈ Ŝ, i = 1, 2, · · · , k (2.6)

K-mer filtering is a filter to convert a string attribute into numeric features represented

as the frequency of its k-mer substrings.

where, Ŝ is K-mer feature vector (KMF). KMF is constructed constructed using a

frequency (or probability) of each k-mer in a sequence.

〈Ŝ → ( pj =
nj

N − k + 1
) 〉Ŝ ∈ ΣN , j = 1, · · · , Zk (2.7)

where Σ is the alphabet and Z is number of letters in the alphabet. In probabilistic

domain, alphabet is a set of states. N is the lenght of a sequence, k is a lenght of k-mer.

Manekar and Sathe [88] detail according to best value of k. nj is the number of j-th k-mer

in a sequence.

For example, if you were to take the sequence TCGGTCA and split it into overlapping
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4-mers you would obtain:

Sequence: TCGGTCA

k-mers:

TCGG

CGGT

GGTC

GTCA

K-mers are used to detect overlaps. If two sequences share a k-mer then they must

share ≤ k bases and may overlap. For example (shared k-mer in red):

Read 1 : GGCATTG Read 2 : CCATTGC

k-mers : GGCA CCAT

GCAT CATT

CATT ATTG

ATTG TTGC

It can be seen that both read 1 and read 2 share the 4-mer CATT, hence there is an

overlap between them. K-mers can be used in taxonomic classification to detect overlaps

between sequence reads and database entries.

The training set S is the correspondence between the k-mer frequencies of training

sequences and their groups. The feature vector Fv(s) for an input sequence s is cons-

tructed from the number of occurrences of all k possible k-mers (given Σ), divided by the

total length of N . Next, we process the feature vectors for more efficient use by classifiers

(base classifier). Due to computational limitations, the k for k-mers should be a small

number, because the number of k-mers grows exponentially [57], in other words, the total

number of different k-mers is count(Σ)k, where count function is the number of distinct

observation symbols.

Figure 2.4 shows an example of a workflow based on previous sequence. The first

step is to input raw sequences for feature extraction and feature encoding using Kmer-

processing and frequency-based techniques (Tokenization), respectively. Then the created

sequence ingest to ML model for further analysis.

A major difference between HMM Classifier and traditional classifiers such as Naïve

Bayes (NB), SVM and KNN is that HMM can be applied directly to sequence data while
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Fig. 2.4. Steps for classification of Kmer Filtered Classifier, adapted of [17].

traditional classifiers expect the data to be in the form of feature vectors extracted from

the original sequence data. Here, K-mers filtering show how to simultaneously, extract fe-

atures from sequence data and build/test a model. Thus, K-mer filter allows us to specify

a Base Classifier (AC) and a filter to be applied on the fly before feeding the data to the

predictor. Class for running an AC on data that has been passed through an K-mer filte-

ring. Like the classifier, the structure of the filter is based exclusively on the training data

and test instances will be processed by the filter without changing their structure. Thus, It

is important to determine which AC would be the most effective for classifying sequences,

using their respective k-mer frequencies as feature vectors (numerical representations).

2.4 Final Remarks

In this chapter, we described some concepts of supervised machine learning. Two learning

paradigms were presented within this scenario: supervised batch machine learning and

supervised online machine learning, specifically for classification problems. Unlike batch

supervised machine learning, online supervised learning algorithms can handle continuous

data streams that evolve over time and with changes of concept about the data, allowing

to extract new knowledge without processing a huge volume of information.

In addition, this chapter presented some state-of-the-art algorithms that deal with

sequential data analysis. These algorithms are important, mainly for one of the proposals

of this work, which is described in Chapter 7.



Chapter 3

Human Activity Recognition

HAR intends to observe human-related actions in order to obtain an understanding of

what kind of activities (or routines) individuals perform within a time span. As example,

a system could detect when human is standing, lying down, falling, cooking, driving,

among many other activities. HAR is divided into two areas [128]: Atomic Human Activity

Recognition (AHAR) and Complex Human Activity Recognition (CHAR). Atomic activity

recognition represents the repetition of a simple daily activity such as walking, jogging,

sitting, cycling and so on. Complex activity recognition, involves recognizing activities

with complex and repetitive patterns, represented with different sizes. For [128], Complex

activity recognition can be achieved by recognizing simple activities. Examples of complex

activities are cooking, washing the plants, washing the room, driving a car and so on.

These two concepts are extremely important for conducting this research.

In general, data can be collected in two ways: Multi-user and mono-user. The system

reaches user data around many different users. Mono-user reaches uses data based on

a specific user. Data used for HAR include human postures (e.g sitting, standing, lying

down) and movements (running, walking, jumping). Through these kind of data, HAR

system can infer the executed activity. The most useful scenario for this case is the

Ambient Assisted Living (AAL), where the system analyzes the people behavior in an

assisted environment, where, for example, a caregiver analyzes the patient’s behavior. By

increasing perspective, HAR systems may not be limited to studies with one user, but

with multiple people interacting in an assist living. This problem is known as Ambient

Daily Living (ADL) [142]. ADL is a way to describe a person’s functional status and

his/her interactions with others.

In recent years, there has been an explosion in the number of electronic sensors or
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mobile devices with numerous features, such as accelerometer, proximity sensor, magneto-

meter, GPS, and so on. Wireless communication as portable and implantable bio sensors

(as body area networks (BAN) or body sensor networks (BSN) [29]) are favoring the mo-

nitoring of human physiological activities and actions, such as exit status and movement

patterns. The main advantages for these sensors are: flexibility, due to monitoring results

can be sent to nearby devices such as smartphones, smartwatches and etc, depending

on the application domain; effectiveness and efficiency, due to signals produced by body

sensors can be processed effectively to obtain reliable and accurate physiological estima-

tes; and cost-benefit, due to more sensors being produced in large scale at relatively low

cost. Also, video and depth sensors became an important tool in this research area [126].

Frequently, investing in image identification problems by companies has developed effici-

ent indexing, and storage schemes to improve the user experience. This requires learning

methods from raw videos and video synthesizing based on its content. Some of the main

commercially viable application scenarios are Medical Informatics [114], Detection of Ter-

rorist Attacks [13] and Sport Assistance [130].

3.1 Atomic Human Activity Recognition

For an efficient inference process of sensor data activities, considering a high number of

possible users, tasks and sensors, it is interesting to develop AHAR project with well-

defined steps from data collection even final activity inference.

Figure 3.1, shows the steps of inference problem in AHAR in context middleware

projects [142]. Firstly, sensor data is collected by a sliding window, with a specific time

interval (size window) and an overlapping size value (when applied). It is important to

carefully design the window size because it may provide more appropriate information for

context classification. A shorter window may not acquire the context properly. However,

wider windows would create latency in detection and adds a high computational cost.

Preprocessing and feature extraction for HAR offer necessary modifications to correct

missing and limitations in the data and extract information inside the data, respectively.

After this step, we have diverse characteristics of feature vectors that enable us having

training data for classification and regression algorithms to represent different context

inferences. Classifiers’ output sometimes cannot solve the consistent discrimination of the

activity in a time sequence of adjacent context inferences. In this case, a basic smoothing

technique takes a majority voting scheme with a sliding window of a specific history

length of context inferences. Therefore, any inconsistency (i.e, false positives) can be
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eliminated [142].

Raw
Data

Sliding
Window

Prepro-
cessing

Feature
Extrac-
tion

Infe-
rence

Smo-
othing

Fig. 3.1. Steps of AHAR inference process.

3.1.1 Sliding Window

The sliding window is a data collection strategy relevant to the description of a context

in a time window. A metric to define the size of the window is reasonably necessary. It

favors the generation of more relevant information for the classification of the context. A

smaller window may not take advantage of information necessary to represent a context.

However, a larger window may cause latency issues in context detection producing a

higher computational cost. The value for overlapping is a critical parameter to detect any

variation in context.

The literature presents us with three approaches to the sliding window. These appro-

aches are discussed when data are collected in intelligent environments, whereby they can

be adapted to HAR.

The first approach is Explicit Segmentation [78, 70]. This approach is divided

into two steps. The data stream is segmented into blocks in the first step—each block

corresponding to an activity. The classification of each of the blocks is performed in the

second step. Afterward, the approach has to wait for the future data to make a decision

about the past data, making it a somewhat non-streaming approach. Furthermore, due

to their reliance on future data, significant temporal gaps in successive sensor activities

that are real in daily routines will result in waiting for a long time to make a decision

about past events.

The second approach is a Time-based window [78, 132] representing the division

of the entire sequence of sensor events into equal-sized time intervals. This technique

provides a more straightforward approach to learning activity models during the training

phase on the Explicit Segmentation approach. It further reduces the computational com-

plexity of the Explicit Segmentation process. A time-based window is a good approach

when dealing with data streams obtained from sensors that operate continuously over

time. Data for each time interval is always guaranteed. These systems commonly use

accelerometers and gyroscopes data where is sampled at a constant rate.
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The third approach is the window based on sensor events. This approach splits

the sequence into windows containing an equal number of sensor events. During this

process, this window may vary in duration. The advantage is during the performance of

activities, where several sensors can be triggered. In contrast, during periods of silence,

there will not be many sensor triggers. Sensor events that precede the last event in

a window define the context of the last event. This method also has some inherent

disadvantages. For example, The last sensor event matches the start sensor event in the

next activity. There is a significant amount of time between this event and the previous

sensor event. The relevance of all sensor events in this fragment to the last event may

be minor if the interval is large. Treating all sensor events with equal importance is

not a good strategy. This approach offers computational advantages over the Explicit

Segmentation process. It does not require future sensor events to classify past sensor

events.

3.1.2 Exploratory Analysis, Inference and Smoothing

Exploratory Analysis phase in AHAR explores the data processing, data fusion process

and feature extraction. In general, it is challenging to analyze, fit a classification model,

and estimate new activities from raw data. The data can consist of a large number

of attributes, irrelevant information, and additive noise distortion. This phase extracts

and investigates the spatial characteristics of sensor data in each window and assists in

identifying different activities classes, allowing the prior separation of relevant information

for HAR algorithms.

Features space are constructed using several signal processing primitives: with attri-

butes based on time-space metrics such as mean, standard deviation, and attribute cor-

relation based on frequency spectrum: entropy, fast Fourier transform coefficients (FFT),

wavelet transforms. Table 3.1 summarizes the elements of a feature vector in the time

and frequency domains.

Inference phase defines the training and estimation through machine learning algo-

rithms in batch and stream learning (Chapter 2). Classifiers output sometimes cannot

solve the consistent discrimination of the activity in a time sequence of adjacent context

inferences. In this case, a basic smoothing technique takes a majority voting scheme

with a sliding window of a specific history length of context inferences. Therefore, any

inconsistency (i.e, false positives) can be eliminated [142].
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Table 3.1. Elements of Feature space. Adapted table by Yurur [142].

Feature space features

Time domain

mean, standard deviation,
variance, magnitude,
derivative,
min-max,
amplitude,
histogram,
interquartile range (IQR),
mean absolute deviation,
correlation between axes, peak count, zero crossing rate.

Frequency domain

Fourier transform (FT),
discrete cosine transform (DCT),
entropy, centroid, maximum frequency,
energy FFT ,
FFT mean and FFT standard deviation.

Others Autoregressive Coefficients
wavelet transforms

3.2 Complex Human Activity Recognition

Complex Human Activity Recognition (CHAR) are not as repetitive as simple activities

and may involve various hand gestures; for example, eating, drinking coffee, smoking

and giving a talk. We also place using stairs in this category, because it is not easy to

recognize such activities with a single accelerometer. Usually, additional sensors, such as

a gyroscope [10] and a barometer [11], are gathered with the accelerometer to reliably

recognize using stairs: walking upstairs and downstairs. Atomic activies are present as

basis for CHAR. The thesis itemizes details of the types of CHAR.

• Sequential: Sequentially Complex Human Activity (SCHAR) is a a collection of

simple activities occurring sequentially. For example, a user is stand and suddenly

falls. The fall process evolves three atomic activities: Standing, transaction activity

(stand-to-lye) and lying. Figure 3.2 illustrates three examples as falling (standing),

falling (sitting) and upstairs fainting.

• Concurrent: Concurrent activity is a collection of atomic activities occurring si-

multaneously. For example, a user can clean the dishes while listening a music.

Figure 3.3 illustrate a example. In this scenario, the recognition of the ”Brush

the teeth” activity is displayed. This activity is composed of sub-activities such

as standing, hand-to-face, and movement of the teeth. These activities take place

simultaneously.

• Interleaved: Interleaved activity is a collection of atomic activities switching between
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Standing Standing-
to-Lie

Laying

Walking-
Upstairs Standing Standing-

to-Lie
Laying

Sitting Sitting-
to-Lie

Laying

Fig. 3.2. Three examples of Complex Human Activity Recognition in Sequential Method.

their atomic activities. Figure 3.4 illustrates a example. While talking a phone call,

a user may go to the kitchen to take off the cook and come back to resume the call.

Brush the teeth

Standing

Hand-to-face

Moviment the teeth

Fig. 3.3. Example of Complex Human Activity Recognition in Concurrent Method.

The thesis just covers the sequential complex method. This method is present in our

daily activities, as resting, eating, drinking, using utensil, falling; identification of people

with repetitive activities [47]; identification of musical movements where the player can

present sequential of different musical notes [105]. Sequential approaches are the single-

layered approaches that recognize human activities by analyzing sequences of features.

The activity is composed as a sequence of observations (i.e., feature vectors), and induce

that an activity has occurred if the system observes a particular sequence characterizing

the activity. Sequential approaches first convert a sequence of atomic activities into a

sequence of feature vectors by extracting features (e.g., degrees of joint angles) that des-

cribe the status of a person per timestamp. Once feature vectors have been extracted,

sequential approaches analyze the sequence to measure how likely it is that the feature
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Fig. 3.4. Example of Complex Human Activity Recognition in interleaved method.

vectors were produced by single user performing the activity. If the likelihood between

the sequence and the activity class (or the posterior probability of the sequence belonging

to the activity class) is high enough, the system decides that the activity has occurred.

Figure 3.5 shows a example of SCHAR.

Fig. 3.5. An example matching between two “falling” sequences with different nonlinear
execution rates. Each number represents a particular status (i.e., pose) of the person.
Figure based on Aggarwal et al. [7].

The most approaches are State Model-Based and Exemplar-Based [7]. State model-

based approaches are the sequential approaches that represent a CHAR as a model com-

posed of a set of states. The model is statistically trained so that it corresponds to

sequences of feature vectors belonging to its activity class. More specifically, the statis-

tical model is designed to generate a sequence with a certain probability. Generally, one

statistical model is constructed for each activity. For each model, the probability of the

model generating an observed sequence of feature vectors is calculated to measure the li-

kelihood between the action model and the input sequence. An atomic activity is assumed

to be in one state at each time frame. Each state generates an observation (i.e., a fea-

ture vector)—the system transitions to another state in the next timestamp, considering

the transition probability between states. Once transition and observation probabilities

are trained for the models, activities are commonly recognized by solving the evaluation
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problem. The evaluation problem is the problem of calculating the probability of a gi-

ven sequence generated by a particular state model. If the calculated probability is high

enough, the state model-based approaches can decide that the activity corresponding to

the model occurred in the given input.

Exemplar-based approaches represent human activities by maintaining a template

sequence or a set of sample sequences of action executions. Given a new input, exemplar-

based approaches compare the sequence of feature vectors extracted from the input with

the template sequence (or sample sequences). If their similarity is high enough, the

system is able to deduce that the given input contains an execution of the CHAR. The

purpose of this function is to include information about the sequence structure, i.e., to

find overlapping sequences of primitives that occur together. As mentioned in previous

chapter, k-mer is a string of length k associated to the number of times a k-mer Pattern

appears as a substring of a sequence.

Finally, this information is closely associated with the concepts of HMM and K-mers

mentioned in the previous chapter. Thus, we can implement SCHAR models from HMM

and K-mer filtering algorithms.

3.3 Context-Aware System for Human Activity Recog-
nition

Firstly, to discuss context-aware systems properly, it is necessary to define “Context”.

In the literature, the main definition of context is presented in Abowd [5]: “Context is

any information that can be used to characterise the situation of an entity. An entity is

a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves.”. There is a range of

alternative definitions in the literature reflecting minor variations of this definition [102].

Specifically, Dey et al.[36] extended that definition to explain how context is used in a

computational system or project: “A system is context-aware if it uses context to provide

relevant information and/or services to the user, where relevancy depends on the user’s

task.”. This definition is commonly used in computing area, as it helps to identify that

context-aware can be seen as a functionality in a computer system.

Context-awareness can be applied in two levels: low-level (hardware) and high-level

(software). In the low-level, context recognition facilitates tasks such as efficient routing,

modeling, reasoning, storage, and event detection, mainly considering energy consumption
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and availability [102]. At this level, resources such as knowledge and data for decision-

making are limited. So, complex data processing is not allowed in hardware level. A

positive aspect is that simple features can be stored, such as energy consumption costs

and data transport. In the high-level, knowledge is generated by extracting from data

and reasoning. In other words, softwares in the high-level can be capable of modify raw

data into knowledge. Systems that apply context-awareness in the high-level have more

resources and flexibility to use, ensuring computational power for performing complex

reasoning and the broad access and use of data and knowledge.

Context Aware Computing (CAC) should provide functionalities for acquiring context

information from several sources (e.g. physical and virtual sensors). Moreover, raw-sensor

data (low-level context) needs to be retrieved and automatically transformed into context

data, structured according to a specific data model. This facilitates the inference of com-

plex context data, which may be used to trigger different context-aware behaviors. This

process may be divided into stages, composing a context life cycle [102]. The context life

cycle represents how sensor data is collected, modeled and, processed and how complex

knowledge can be extracted from sensor data to be later disseminated. The context life

cycle is comprised by 4 (four) stages: Context Acquisition; Context Modelling; Context

Reasoning; and Context Dissemination, as illustrated in Figure 3.6 . Context acquisi-

tion stage: data is collected from several real or virtual sensors; Context modeling

stage: the collected data is stored according to a specific context model or representation.

Thus, this stage is also responsible for defining context properties, relationships and de-

tails. Context reasoning stage: the reasoning operations occurs and they can be more

efficiently performed if the previous stage is properly executed. Context dissemination

stage: context is delivered to consumer applications [102].

Our focus on this study is the context reasoning stage. Usually, it involves (i) a

deduction method (however ML is based on induction), which uses a knowledge based

related to an available context ; or (ii) a process defined by a higher-level context infe-

rence [22, 102]. The importance of reasoning arises from two inherent characteristics of

the low-level data: uncertainty and imperfection in context reasoning, regarding to unk-

nown, inaccurate or erroneous data source. The reasoning performance can be measured

using efficiency, integrity and interoperability. This cycle is divided into 3 (three) steps:

(a) context processing, (b) sensor data fusion and (c)context inference [102, 118]. Du-

ring (a) context processing step, the data undergoes through a cleaning and enrichment

process: relevant features are selected; inconsistent and redundant data are eliminated;

missing values are corrected; outliers are removed; and context is validated via multiple
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Context Acquisition

Context Modelling

Context Reasoning

Context Dissemination

Fig. 3.6. The four stages of the context life cycle [102].

sources. In (b) sensor data fusion step, there is a scenario with multiple sensors, combined

to ensure more accurate, reliable and complete data, which can not be generated from

a single sensor. In (c) context inference step, the system generates high-level context

information, based on lower level context.

There are many different context reasoning approaches that can be divided into four

categories [102]:

1. Context reasoning algorithms based on fuzzy logic are very different from traditional

logic. In traditional logic theory, acceptable truth values are 0 or 1. However, fuzzy

logic allows a partial truth where confidence values represent degrees of pertinence

membership of a value into a categories of a semantic variable. In ubiquitous com-

puting scenarios, real world representations with fuzzy logic are more comfortable

than traditional logic, especially when variables that need semantic interpretation

are not easy. For instance, or very light, heavy and very heavy but the true th-

reshold weight values for defining who is heavy or very light is not an easy task.

Usually, fuzzy logic is used for this kind of knowledge representation, joined to a

mechanism for fuzzy logic inference.

2. Context reasoning based on ontology uses a strategy dependent on description logic

(another family of logic formalism for knowledge representation). An advantage of

this reasoning is using integrated ontologies [102]. On the other hand, a disadvantage

is the difficult for finding missing values or ambiguous information. Due to this

aspect, it is more common the use of rules-based reasoning.

3. Context reasoning based on rules uses rules formed as propositional. Rules can also
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be used with context reasoning based on ontology [67]. Context reasoning based on

rules shows advantage in situations where it is necessary generate high-level context

information using low-level context. Moreover, it can be used for defining events.

4. Context reasoning based on ML finds out relations among context variables from di-

rect context samples. The literature covers studies using supervised, unsupervised,

and reinforcement learning approaches [102]. In supervised learning, given a set

of labeled training data, a function is constructed using the training data to label

(predict) new instances. If results (predictions) are discrete values, we have a clas-

sification problem; if results are continuous values, we have a regression problem.

For unsupervised learning, training samples do not have correct labels associated

to them. Unsupervised learning tasks are useful for detecting patterns relying on

data. Usually, its main task is ring for constructing data partitions. Reinforcement

learning aims to take suitable action to maximize reward in a special situation.

3.4 Data Stream Learning for Human Activity Recog-
nition

This section describes characteristics of the HAR inference process in scenarios that in-

ference methods use data stream learning techniques. Some terms in activity recognition

have their corresponding meanings in data stream learning, albeit in different settings

and with different situations [4].

One is the Learning from concept drift - (LFCT). It mainly refers to the change in

data distribution as a flow evolves. This change happens as described in Section 2.2.

The main problem in Human Activity Recognition associated with LFCT is the persona-

lization problem. Personalization is defined as the process of tuning an overall template

to represent a user’s customized way of performing different activities. An example of

a scenario is when the user starts the training for a marathon. In initial workouts, the

runner takes shorter strides with moderate speed. During practice, he changes his way

of running to a longer stride with a more intense speed. The learning model must learn

that there has been a "refinement"in the user’s running mode. The significant limitation

on personalization issues is that maybe the way a user A runs, not necessarily a user B,

will run that way. Perhaps the way A performs the activity may represent just a cooper.

In contrast, for the user B, it may represent a walk.

An outlier is an observation that deviates from the other observations that it arouses
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suspicion that a different mechanism generated it. The outliers in continuous data stream

learning correspond to abrupt changes in the data streams of the underlying concepts.

Outliers can be referred to as noise, anomalies, and abnormalities. The term Outlier

Detection in HAR refers to a sudden activity, such as fall detection. Detecting sudden

activity is similar to detecting outliers in that both aim to find unusual events in the

data. The “sudden activity” issue matches the “fall detection” problem widely discussed

in HAR, especially for elderly people.

In stream learning approaches, Concept Evolution is the monitoring data stream to

discover new concepts. The concept evolution term is analogous to detecting new activities

in activity recognition.

In contrast to the Concept Evolution, some concepts have become outdated and no

longer relevant to the target domain. These concepts require an adaptive mechanism

to forget about abandoned concepts. The term Concept Forgetting [53] is present and

relevant to Human Activity Recognition while users no longer perform activities. Concept

Forgetting aims to continually update the model to reflect the latest changes to the data

and remove outdated/abandoned activities.

The problems covered in HAR throughout this section are summarized in Table 3.2.

The table shows a subset of problem terminology in stream learning and their correspon-

ding related terms in activity recognition.

Table 3.2. Terminology between data stream learning and Human Activity Recognition
(Based on Abdallah [4]).

Stream Learning
Problems Meaning Human Activity

Recognition Example

Learning from
concept drift

Data Stream
change detection and response Personalization

Model Tuning
to suit
a
personal way of
performing activities

Concept Evolution
Discovery the new
concept in
Data Stream

Detection of
new activities

Discovery new
activities

Outlier Detection Anomaly
Detection in data stream

Suddenly
Activity Detection

Detection of suddenly
changes
of a activity

Concept forgetting Decremented learning
outdated learning

Concepting
Forgetting

Decremental
learning
forgetting
activities
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3.5 Final Remarks

This chapter describes the definition of Recognition of Human Activities and the concepts

of AHAR and CHAR concepts. In AHAR, the chapter describes the workflow of the

activity from the collection process to the inference process. In CHAR, the chapter shows

Different types of complex human activity recognition and detection strategies based on

computational biology concepts.

This chapter also presents concepts of HAR applied in context-aware systems. It

presents the definition of context, the life cycle of a context, and how these concepts are

in the Human Activity Recognition domain. Finally, the chapter presents scenarios in

recognition of human activities that use methods based on data stream learning.



Chapter 4

Systematic Literature Review

To achieve our goals in Chapter 1, the thesis includes a Systematic Literature Review

(SLR) following the methodology proposed by [76]. The study intended to identify all

relevant primary and secondary studies related to context reasoning in context-aware mid-

dlewares (CAMs). Three steps was executed: planning, collect and analysis. During the

planning step, the study defined our research protocol, composed by research questions,

search strategy and study selection (inclusion and exclusion) criteria. This study esta-

blished four Research Questions (RQs): RQ1: What are the different context reasoning

categories present on CAMs projects?; RQ2: Which are the machine learning algorithms

(ML) used for generating models for context reasoning in CAMs?; RQ3: Which CAMs

have tools to support data processing on real-time?; RQ4: What are the Human Activity

Recogntion (HAR) scenarios usually tackled by the research works?

The search strategy had to embrace three areas of interest: CAMs, HAR, and ML,

specially considering the DSL approaches. In this way, the study defined the search string

as: ( ("middleware") AND ("context-aware"OR "ambient intelligence") AND ("Machine

Learning"OR "Decision Models") AND ("Human Activity Recognition"OR "activity re-

cognition") AND ("data stream"OR "online reasoning"OR "real-time reasoning") ). The

real interest in this research was limited by the terms ("ML"OR "Decision Models") in

the context of CAMs. "Decision Models" term was chosen by [102], which generalizes

the concept of inference techniques for context reasoning. The collection of terms ("data

stream"OR "online reasoning"OR "real-time reasoning") were chosen for understanding

the state-of-the-art of using data stream in data stream learning domain, due to the poten-

tial of dealing with huge volume of data collection over time and possibility of presenting

concept drift concept (see Section 2.2). The study selected the most commonly used di-
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gital libraries to conduct our research, namely: Ei compendex 1, ISI web of knowledge 2,

Science Direct 3, Scopus 4 and springer Link 5. The study selected publications between

2013 and 2018.

Selection criteria was divided into inclusion and exclusion criteria. Only one inclusion

criteria was (I1:) Publications that use of ML in CAM, specially in HAR Applications.

Seven exclusion criteria were (E1:) Publications must have inference or reasoning methods

on CAM; (E2:) Publications must have middlewares; (E3:) Publications must have HAR

terms; or describe middlewares and ML interaction issues; (E4:) Publication must be full

paper. Short papers, books, letters, notes, and patents are excluded; (E5:) Publications

must be in English; (E6:) Publications must be unique. If a publication is repeated,

other copies of that publication are excluded; and (E7:) Publications must be between

2013-2018. (There were scenarios where the publication database had returned results

out-of-date.)

Figure 4.1 shows the PRISMA Flow Diagram [94]. The flow diagram describes the

information flow through the SLR phases, mapping the number of identified, included and

excluded papers. The first phase, consisted of applying our search string in each publica-

tion database, returned 234 publications. Second phase involves duplicity identification

and screening the articles for applying inclusion and exclusion criteria. Firstly, the study

removed eight duplicated publications; after the study selected 43 accepted publications

for analysis. The main inclusion criteria was analyzing publications approaching ML as

context reasoning in CAMs. The study decided to not include only HAR applications to

understand if any CAM could be used for this kind of problem. Also, The study conside-

red publications explaining different inference algorithms for context reasoning in CAMs

on HAR scenarios.

4.1 Answering Our SLR Research Questions

4.1.1 Context Reasoning Categories in CAMs projects

Table 4.1 shows the different context reasoning approaches present in CAMs presented in

our selected studies. The table was divided into five lines, each one corresponding to a
1https://www.engineeringvillage.com/home.url
2https://www.webofknowledge.com/
3https://www.sciencedirect.com/
4https://www.scopus.com
5https://link.springer.com/
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Publication Screened
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Fig. 4.1. Information flow through the steps of the review using PRISMA Flow Diagram
(Adapted from Moher et al. [94]).

category of Context Reasoning, described in Section 3.3. The main observation is that

all selected publications focus on the HAR problem, except for those containing machine

learning as context reasoning technique. Some publications are present in more than one

category of Context Reasoning. Most of them are secondary papers (surveys or literature

reviews). These publications are marked in bold in our table.

4.1.2 ML Algorithms Used in CAMs

For answering the second research question (RQ2), we gathered studies that only uses

machine learning algorithms for some context inference techniques in CAMs, i.e., the 28

papers presented in the first line in Table 4.1. For this, the study considered not only

papers that tackle HAR but also the ones that tackle other kinds of domains. Table 4.2

shows the learning algorithms in columns and the analyzed studies in lines. A cell marked

with
√

indicates that the study of the respective line uses the learning algorithm of

the respective column. Supervised learning algorithms for regression and classification

tasks were gathered: optimization-based (SVM and Artificial Neural Networks — ANN);

distance-based (KNN); rules-based (Decision Tree — DT — and Random Forest — RF);

probabilistic-based (Naive Bayes — NB — , Bayesian Networks — BN — Hidden Markov

Models — HMM and, — probabilistic models adapted for Data Stream — PDS ; Fuzzy

Logic-based; and Regression Models — RM. The results show the existence of a nearly

uniform distribution in the number of papers using many classification techniques, except
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Table 4.1. Answering RQ1: Studies presenting different CAMs with different context
reasoning, grouped in diferent categories.

Cat. Context # Studies Publications
Reasoning
Machine 28 [40] [86]
Learning [13] [37]

[95] [122]
[52] [68]
[142] [110]
[102] [118]
[134] [143]
[8] [99]
[117]
[108] [98]
[6] [27]
[130] [12]
[12] [106]
[103] [23]
[104] [87]

Fuzzy 5 [58] [102]
Logic [118] [107]

[135]
Rules 8 [114] [50]

[102] [118]
[123] [137]
[136] [96]

Ontology 7 [65] [102]
based [118] [66]

[10] [139]
[72]

Proabilistic 4 [48] [102]
Logic [118] [135]

for Bayesian Networks, Fuzzy Logic, and probabilistic data stream models. We observe

that PDS (Probabilistic Model for Data Stream) was only used by Rasanen et al. [108].

4.1.3 Processing Real Data in CAMs

For answering the third research question RQ3, the study collected publications that

support real-time data processing. This data can be generated either in using a stream

format, using some data model transmitted in a real-time stream, or manipulating this

data from the collection up to the inference occurs in real-time. Table 4.3 shows the

results. Publications assigned as ‘No’ are publications that neither work with real-time

data nor papers that does not describe how data is transmitted (real-time or not). It is

worth noticing that the majority of CAM publications assigned as ‘No’ use a strategy of

contexts inference without ML algorithms.
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Table 4.3. Answering RQ3: CAM publications that support and do not support real-
time data processing.

Support real-time # Pub. Publications
data processing

Yes 26 [50] [13]
[52] [95]
[68] [58]
[122, 98]
[102],[142]
[143] [99]
[108] [118]
[130] [134]
[37] [12]
[135] [10] [139]
[136] [72]
[103] [96]
[110]

No 17 [114] [48]
[86]
[117]
[87]
[118] [65]
[107] [8]
[23] [66]
[123] [106]
[6] [104]
[27] [137]

4.1.4 HAR Scenarios of Application Related to CAMs

For answering the fourth research question RQ4, this study gathered publications that

tackle different possible scenarios of HAR application, shown in Table 4.4. These scenarios

contain all algorithms for context reasoning under CAM for HAR. There is only 36 papers

in this table because papers that do not tackle the HAR problem were not considered for

answering this RQ4. It is worth noticing that Ambient Assisted Living and Daily Living

Activities are the kinds of HAR with more associated papers.

4.1.5 Relation of Our Themes of Interest in the Analyzed Papers

The study conducted a broader overview based on selected publications. The author con-

sidered three main areas of interest: Context-Aware Middleware (CAM), Human Activity

Recognition (HAR) and Machine Learning (ML) algorithms. The goal is to understand

what are the relationship among them. In this way, the author questioned what are

the studies that propose solutions in the following three intersections: ML and CAMs;

HAR and CAMs; and HAR, ML and CAM. This study did not consider the intersection
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Table 4.4. Answering RQ4: Different scenarios considering HAR.

Human Activity # Pub Publications
Recognition scenarios
Ambient Assist Living 15 [40] [86]

[48] [98]
[107] [37]
[102] [8]
[117]
[106] [137]
[135] [10] [139]
[136]

Medical Informatic 6 [114] [95]
[107] [12]
[72] [104]

Terrorist Attacks 1 [13]
Detection

Activity Daily 13 [50] [52]
Living [68] [87]

[58] [102]
[118] [99]
[66] [123]
[137] [6]
[96]

Sport Assistance 2 [108]
[130]

between HAR and ML because we are interested in situations where scalability is a main

concern, such as ambient intelligence and smart cities scenarios, where a huge large of

sensors could be used; Ambient Assisted Living (AAL) problems, where systems analyzes

people behavior in an assisted environment; and so on.

For answering this question, the author constructed a Venn diagram, explicitly showing

the intersection between the three interested areas. Figure 4.2 shows a visual represen-

tation of the constructed Venn diagram. Each circle in Venn diagram is relative to one

of the three research areas: Context-Aware Middleware (CAM ); Machine Learning (ML);

and Human Activity Recognition (HAR). The set {(CAM ∩ML) − HAR} (pink color

in the figure) gather 5 publications that present context-aware middleware which context

inference is made using ML-based models. The set {(CAM ∩ HAR) − ML} (lime or

green color in the figure) gather 16 publications that present CAM project, description

and context reasoning modeling (without ML algorithms) for tackling HAR domain. The

set {(CAM∩ML∩HAR} (blue color in the figure) gathers 22 publications, which present

a CAM project with an inference method based on ML for HAR scenarios. As mentioned

before, {(HAR∩ML)−CAM} does not present any publication because of the exclusion

criteria of the systematic review. Table 4.5 shows all publications distributed in each area.
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(CAM)

HAR ML

(26)
(2)(15)

−

Fig. 4.2. Venn’s Diagram for each research area. (N) represents the number of publica-
tions.

Table 4.5. Publications present in each (sub)set related to intersection areas of our Venn
diagram shown in Figure 4.2.

Sets for intersections Publications
{(CAM ∩ML)−HAR} [110]

(2) [103]
{(CAM ∩HAR)−ML} [114] [50]

(15) [48] [65]
[58]
[107] [136]
[66] [123]
[137] [135]
[10] [139]
[72] [96]

{CAM ∩ML ∩HAR} [86] [142]
(26) [98]

[13] [95]
[40] [99]
[52] [68]
[87] [102]
[122] [37]
[134] [143]
[8] [104]
[23] [118]
[117]
[108]
[6]
[130] [12]
[27] [106]

This document analyzed more carefully {CAM ∩ ML ∩ HAR} subset to identify

how ML algorithms act as a context reasoning technique in CAM projects in the HAR

scenarios. this study observed that most systems use predefined models obtained using

a training data collected through multiple resamples. However, the analysis is performed

offline.



4.1 Answering Our SLR Research Questions 39

4.1.6 Papers in the Intersection of the Themes

In this section, we briefly describe all our analyzed papers. We firstly present them divided

into the sets constructed using our Venn diagram. After, Table 4.6 shows the middleware

proposed by each paper. In this table, papers marked with “survey” are secondary works

and do not propose or present a new middleware; and papers marked with “no name”

means that the authors did not give a name for their middleware.

• Papers in {(CAM ∩ ML) − HAR}: These studies present CAM which context

inference is made using ML-based models, but not tackle HAR problems:

� [110] proposed an energy efficient framework for data gathering based on com-

pression techniques, in particular as a component of a middleware for the

smartphones.

� [103] implemented a CAM to learn robot tasks.

• Papers in {(CAM ∩HAR)−ML}: These papers present CAM project, description

and context reasoning modeling (without ML algorithms) for tackling HAR domain:

� [107] proposed a context-aware service delivery under a middleware. This

project aims to exploit the variety of interaction mode/capabilities according to

the current situation, users, and the context in a distributed human-computer

interface.

� [48] developed a framework that supports intelligibility and user control of

context-aware applications. It identifies and exposes the internal middleware

models which influence adaptation decisions, and facilitates generations of ex-

planations regarding evaluations of the models. These middleware models sup-

ports different context reasonings and context models developed using context

modelling language.

� [66] presented a CAM that provides context sharing in a cooperative way.

� [123] proposed a CAM based on techniques and principles from semantic web

and multi-agent systems domains. This middleware provides the necessary

flexibility to deploy different kinds of context provisioning patterns to address

different ambient intelligence applications.

� [10] introduces a meta-level architecture for disseminating a high-level of con-

text abstraction for heterogeneous profiles and service sources via a top-level

ontology.
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� [114] presented a initial study using CAM for medical workflow organization.

� [50] proposed a framework for collaborative-based body sensor networks. This

tool can collaborate with each other to achieve a common goal. They allow the

development of smart wearable systems for cyber-physical pervasive computing

environments.

� [65] presented a CAM architecture for extracting contextual information from

social networks in emergency scenarios considering Smart Cities environments.

� [58] proposed a context-aware system for modeling activity via Markov Logic

Network. The system recognize atomic and complex (composite) activities.

� [137] presented a framework end-to-end web-based in-home monitoring system

for convenient and efficient care delivery. This framework also supports an IoT

(Internet of Things) middleware.

� [136] presented a prototype for Web-based IoT smart home systems. This

project helps older people live in their own homes independently, longer, and

safer. It exploits the heterogeneous contextual information (e.g., daily acti-

vities) captured and learned from IoT devices. So, it deliveries the context

reasoner as a service and makes decision in an user-friendly way.

� [135] proposed a middleware property for detection of asynchronous context.

� [139] reviewed the application of the Semantic Web to pervasive and sensor-

driven systems dedicate to stream data modeling and stream context reasoning.

� [72] presented sensors-based system to support clinicians’ diagnosis for people

suffering from Alzheimer disease and dementia.

� [96] proposed an approach to evaluate the risk of complex activities based on

actions and the user performance in these activities.

Papers in {(CAM ∩ML ∩ HAR}: These papers present a CAM project with an

inference method based on ML for HAR scenarios:

� [86] described the construction of a system that uses information from mobile

devices to detect person presence. For this, the paper uses a middleware in the

cloud focused in Human-Computer Interaction.

� [40] proposed Ambient Assisted Living (AAL) solutions using robot ecology

concepts with information processing algorithms, which include perception,

learning and actuation.
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� [104] surveyed the role of Wireless Body Area Network (WBAN) applications

and network architecture dedicated for data collection, data transmission and

data analysis in the realm of Internet of Things.

� [98] modeled user occupancy and activity patterns using ML approaches.

� [13] described a framework which supports a middleware for early identification

and prediction of terrorist actions.

� [52] developed an incremental approach for recognizing, predicting, and trac-

king Activities of Daily Living (ADLs) within a smart home infrastructure.

This work uses a middleware that focuses on accessible and inclusive user in-

terfaces by allowing any device or service to be accessed and manipulated by

any controller. Moreover, this tool provides a standardized architecture that

supports the flexible integration and reuse of heterogeneous sources.

� [134] provided a middleware that supports a solution to the Bayesian network

for uncertain inference and designing a mechanism to give the middleware

access a powerful computational ability.

� [143] described the emerging concepts to applications of context-awareness in

mobile platforms and research directions, pointing out difficulties and possible

solutions.

� [8] proposed an ambient intelligent system of in-home psychiatric care service

for emergency psychiatry (EM-psychiatry).

� [99] presented an activity recognition system that classifies in the near real-

time a set of common daily activities. The data were sampled by sensors em-

bedded in a smartphone carried out by the user from sensors. The authors used

middleware capabilities in the form of service discovery and communication.

� [87] proposed a CAM for HAR, instead of using a simpler middleware, as the

one proposed by [99].

� [23] proposed an intelligent middleware for mobile context-aware frameworks.

It is able to learn sensor usage habits, inimizing energy consumption of the

system.

� [108] presented an approach for modeling statistical dependencies in multi-

variate discrete sequences by using hyperdimensional random vectors in HAR

domain.

� [6] presented a sensor system for enhanced context and activity recognition

while requiring a minimal set of sensor nodes.
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� [130] introduced a framework for professional volleyball training based on

machine-learning techniques.

� [12] proposed an intelligent framework for the smart devices to enable conti-

nuous verification of users under different social networking applications.

� [117] proposed an immobility tracking system that can analyze physical ac-

tivities and identify immobility behavior of the elderly on time. This system

uses a message-oriented middleware.

� [95] presented a survey containing an overview of essential functions and ser-

vices for monitoring and detecting human behavior, including its concepts,

approaches and processing techniques. Moreover, they present an analysis and

evaluation of the existing research approaches in the area of e-health systems,

as well as some middlewares for e-health systems.

� [68] proposed an edge intelligence framework for building IoT applications

based on a specific middleware. Authors also implemented a user activity

recognition engine, and compared its performances on either an edge device or

cloud servers.

� [122] proposed a context middleware that provides context information to

applications and infers logical context.

� [27] presented a privacy-preserving middleware called PRECISE that imple-

ments context-aware services based on location. PRECISE provides users with

custom context-aware recommendations.

� [106] introduces an annotation mechanism for an AAL platform that can re-

cognize and provide alerts for generic activities and behaviors.

� [102] surveyed context awareness from an IoT perspective. He presented the

necessary background by introducing the IoT paradigm and context-aware fun-

damentals. This publication assisted us as a basis for understanding definitions,

terms, and concepts in context-aware systems.

� [118] reviewed, through a historical perspective ,ubiquitous and pervasive com-

puting, ambient intelligence and wireless sensor networks. After, they described

CAC researches.

� [37] surveyed any topics concerning to AAL. In particular, the authors propose

future works related to ambient sensor data and data processing through ML

algorithms for detecting and classifying activities.
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� [142] surveyed many important aspects about CAMs in context-aware HAR

systems. The authors discussed communication and support services and em-

bedded infrastructure in these middlewares. Moreover, data mining process

was present since the collect step up to the inference process.

Table 4.6. Different middlewares in the analyzed papers. Papers marked with “survey”
are secondary works and do not propose or present a new middleware. Papers marked
with “no name” means that the authors did not give a name for their middleware.

Publications Middlewares Links
[12] no name -
[99] giraffPlus http://www.giraffplus.eu/
[101] survey -
[87] capm -
[86] no name -
[98] no name -
[48] PACE https://tinyurl.com/u5kcfvd
[13] no name -
[8] no name -
[6] no name -
[123] CONSERT https://tinyurl.com/twcqzds
[130] No name -
[23] no name -
[66] no name -
[134] (CARM) -
[110] no name -
[107] no name -
[108] no name -
[142] survey -
[143] survey -
[52] openURC www.openurc.org
[10] Kalimucho -
[68] WuKong https://tinyurl.com/unaclwu
[95] survey -
[40] peis https://tinyurl.com/sjr82fr
[50] no name -
[137] WITSCare -
[72] no name -
[118] survey -
[58] no name -
[114] no name -
[65] COLLEGA -
[106] no name -
[37] survey -
[27] precise -
[117] MOM -
[122] ConProVA -
[104] survey -
[135] MIPA https://tinyurl.com/w4yrwl9
[139] survey -
[103] no name -
[96] no name -

http://www.giraffplus.eu/
https://tinyurl.com/u5kcfvd
https://tinyurl.com/twcqzds
www.openurc.org
https://tinyurl.com/unaclwu
https://tinyurl.com/sjr82fr
https://tinyurl.com/w4yrwl9
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4.2 Services Available in CAMs for HAR

In this step, this study analyzed publications that propose CAMs or services in CAMs

for supporting the development of applications involving HAR problems, using or not

ML algorithms to construct models to compose the context reasoner. Fig. 3.1 shows the

steps usually followed by the solutions for tacling HAR problems, named: (i) Raw Data;

(ii) Sliding Window; (iii) Preprocessing; (iv) Feature Extraction; (v) Inference; and (vi)

Smoothing. In what follows, we summarize the main aspects and services presented in

literature for each of the steps.

Related to (i) Raw data, the analyzed studies frequently use sensor technologies,

including small sized sensors, e.g., accelerometer, proximity sensor, magnetometer, GPS,

and so on. In general, these resources are present in mobile devices nowadays, such

as smartphones, smartwatches, and others. Overall, accelerometer is usually applied as

either a tool to measure walking consumption or a monitor to recognize user physical

activities such as postures, gestures and movements. Most of the measured features or

events are related to human posture or movement, environment or human physiology

signals [142, 143]. For instance, [117, 87, 23] use accelerometers and GPS, WiFi and

cell towers as human posture or movement features; [37] use temperature and humidity

sensors, microphones and cameras as environmental features; and [8] use attachment

of external devices such as heart rate or electrocardiogram, finger pulse, and others as

physiological signals.

Related to (ii) Sliding Window, (iii) Preprocessing and (iv) Feature Extraction, one

of the key advantages when using CAMs for implementing HAR systems is allowing an

abstraction level that deals with sensors processing, including sensors removal and inser-

tion, data processing and others. A unified interface for heterogeneous sensors offered by

CAMs brings flexibility to implement HAR systems using difforeat external data. In this

way, different data sources can provide various kinds of contexts [102, 134], allowing many

diverse applications to be constructed in an easier way than that not using CAM. Also,

CAMs for implementing HAR systems are capable of wrapping, i.e., controlling physi-

cal devices and interacting with them to receive data, analyzing, and delivering physical

world information, through sensor networks, embedded systems, RFID or NFC tags, and

so on, to the application services in a transparent way. This degree of transparency al-

lows a clear separation between the application layer and the internal middleware layers.

Therefore, the applications can receive the context but not know the source of it. Hence,

a CAM creates a shielded interface by both enhancing the level of abstraction support
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needed by the application, hiding lower layer operations between the physical layer (i.e.,

hardware and communications) at the bottom and the application layer at the top.

Related to (v) Inference and (vi) Smoothing, the analyzed studies usually maintain

simple semantic structures for inference or context reasoning. In general, the used models

appear to be simple constructions that guarantee legibility for humans. Thus, knowledge

representation in the form of simple rules is more present in context reasoning modules

of the analyzed CAMs. We understand that this occurs mainly due to expensive real-

time operation in smart devices, scalability problem for labeling real data and bandwidth

problem in exchanging large amounts of information when using ML algorithms. More

specifically, collecting training data classes to fit statistical or other kinds of models using

ML algorithms can be very challenging in some scenarios using CAMs. Therefore, sensors

must be lightweight and unobtrusive. One solution is to take advantage of cloud compu-

ting technologies, enabling information and ensemble situational resources to be shared

among co-located devices [82, 142, 95, 37].

4.3 Research Challenges

The thesis presented in Section 4.2 a discussion on the papers presenting CAMs that im-

plement different context reasoners for HAR (Section 3.3) as well as which works presents

CAMs (or services of CAMs) that use ML for constructing models to create their con-

text reasoners. However, there are many limitations in these studies concerning to data

stream management under different types of distribution, how to deal with the evolution

of models that evolve over time and others.

Abdallah et al.[4] state that obtaining training data for ML into a supervised learning

strategy is an expensive real-time operation for a smart device. There are difficulties

related to data acquisition and analysis; resource management for training samples sto-

rage; data fusion when different data types are available; scalability in labeling data; and

bandwidth on exchanging massive volumes of information. Therefore, using sensors should

be computationally light, and ML algorithms should be not only using batch methods,

which can be computationally costly in situations where many users may use the system.

In this way, in what follows, we discuss the main research challenges for evolving CAMs

for complex HAR systems.

One of the main advantages in CAMs is offering services for data fusion. [50] and

[99] presented mechanisms for this end. However, only data from common sensors, such
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as body sensors, were used. On the other hand, for HAR systems, investing in image

identification problems by companies may lead to efficient indexing and storage schemes

to improve user experience. This also requires learning methods from raw videos and

video synthesizing based on its content. For this end, CAMs must evolve to include these

types of services.

Traditional HAR approaches stand on the assumption that collected data distribution

is stationary. This assumption is commonly violated when data provided by real-time

sensors evolve over time. Data stream mining and stream learning approaches deal with

this type of data, which brings constraints imposed by the stream data nature, such

as Concept Drift [20]. Concept drift in HAR can be abrupt, for instance a change in

walking pattern after an accident; gradual, for instance, an evolution of walking pattern

for children; incremental, for instance, a change in walking pattern during healing from

an injury; or recurrent, for instance, a sudden change in the walking pattern according

to the situations [4]. In this way, there is a lack of services in CAMs that manage the

distribution of non-stationary data in context-aware scenarios, as we could not find in

literature many stream mining approaches used to address HAR in CAMs.

There are just a few works that tackle HAR with machine learning models conside-

ring the limitation of memory consumption. Therefore, cheaper learning algorithms and

models, in the way that they consume a lower quantity of memory, may be present in

these systems to assist the inference in these activities. Some studies have adopted stra-

tegies that deal with reduced memory [121, 124, 115, 77]. All of them use batch learning

algorithms. However, none of them explicitly considers restriction in memory consump-

tion and do not compare the two approaches (batch and online). This comparison is

important, especially when consumption resources are limited.

Moreover, it is important to observe that, in HAR situations, obtaining online labeled

data can be challenging. From the point of view of labeled data availability, there are two

approaches [64]: (i) passive learning, where the data is previously labeled (in the case of

batch learning) or arrives labeled in the stream labeled data; or (ii) active learning, where

the data must be labeled over time but users. In this way, new proposals for obtaining

online data in this scenario could be interesting, specially considering active labeling

techniques, such as proposed by [93], whose propose a methodology for semi-supervised

learning for labeling data for HAR. Other inspirations for this can be found in proposals

for other problems where labeling is difficult [73].

Another open challenge is regarding to complex HAR. One way for modeling complex
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HAR is representing a sequence of dependent atomic activities. Thus, an efficient HAR

system may focus on dealing with the dependency among data for predicting executed

activities. In the studies we analyzed, only [58] tackled composite activities. There are

new approaches for tackling complex HAR, such as the ones proposed by [116] and [56],

that should be considered for being added as services in CAMs.

Finally, there are many researchers discussing requirements for guaranteeing Trustworthy

AI (TAI). According to [125], the fifth TAI principle is explicability, which seeks to pro-

duce (more) interpretable AI models whilst maintaining high levels of performance and

accuracy. According to the guidelines of the European Union for TAI [43], explicability is

composed by transparency, interpretability, reliability and controllability of AI. So, there

is a need for investigating which of these aspects are important for HAR as well as inclu-

ding these features as services in CAMs as well, in order to improve the development of

HAR solutions.

Resuming, there are some significant research directions for evolving CAMs to incor-

porate ML and data processing services for enhancing HAR systems development:

• In ubiquitous computing, resources managing (for instance memory consumption) is

crucial. So, it is important the use of strategies that lead the memory comsumption

in machine learning models deployed in this systems.

• CAMs must offer services to be able to develop complex HAR systems. This may

lead to facilitate the development of applications in Ambient Intelligence in general,

including Ambient Assisted Living applications, which are more and more necessary

nowadays.

• CAMs must offer services for allowing adaptive models for HAR, considering the

dynamics of both activities and context reasoning in streaming environment. For

example, the context reasoner should perceive that the activity pattern is not static.

For example, a person may walk differently from one day to another due to an

accident.

• CAMs must offer services for online labeling the data, in order to allow stream

learning algorithms to fit models for each user, considering their evolution in their

activities.

• There are some papers presenting good results using deep learning algorithms for

HAR, such as the method proposed by [144]. Offering deep learning framework in
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CAM is interesting for faciliting by development of HAR systems. However, issues

regarding to computational cost must be addressed in this scenario.

• Transfer learning aims to adapt a solution to a task or domain to help building

models to other domains or tasks by exploiting prior knowledge [100]. Collecting

labeled data for new users can be difficult. So, CAMs could also offer services for

supporting transfer learning for HAR problems.

Despite the relevance and the extensive study in Context-Aware Middleware, our

current research only covers Context-Aware Computing, dedicated to using a middleware

in one of our studies.

4.4 Final Remarks

In this Section, we aimed to understand the state-of-the-art in the development of CAMs

for aiding the construction of HAR applications, specially when using ML. To achieve

this end, we conducted a systematic literature review, selecting publications related to

CAM projects that either incorporate ML algorithms or in for HAR solutions. We were

also particularly interested to understand how these middlewares deliver context inference

(reasoning) service. Although the literature presented many different methods for context

reasoning, this work emphasized cases involving ML. Our main interest in ML is due to

has been presented good results in many different types of HAR problems. We answered

our four research questions through analyzing the papers selected in our systematic review

processes.

As result of our analysis, we could observe some limitations that deserve attention

from context-aware researchers community. CAMs should evolve to offer services for (i)

developing complex HAR systems; (ii) allowing adaptive models for HAR, including the

management of non-stationary data by stream learning algorithms; (iii) allowing online

labeling the data; (iv) incorporating deep learning frameworks; and (v) supporting transfer

learning for HAR problems.



Chapter 5

Impact of Memory Control on Batch
Learning versus Stream Learning in
Human Activity Recognition

HAR systems need reasoning methods to infer high-level knowledge about the user and/or

the environment. In general, HAR systems use several machine learning approaches to

construct models for inference, such as distance-based [87, 130], probability-based [8, 14],

optimization-based [104, 95, 86], and rules-based [117, 68]. Most of the state-of-the-art

works propose the use of models based on batch machine learning. These models can lead

to segmented data and extract the pattern of a (relatively) low volume of data. However,

the disadvantages of batch learning algorithms are: (i) they can need high processing capa-

city and high memory consumption, in special; and (ii) they consider the data distribution

is stationary [24, 138], i.e., the data distribution does not evolve over time. Regarding

the disadvantage (i), distance-based models are the ones that most consume memory

among all the approaches, due to memorizing data. Probabilistic-based (more specifically

the Naive Bayes family of algorithms) and rules-based (or tree-based) are most simple,

due to the facility of calculating probabilities and defining rules, respectively. However,

when retraining batch models (given some frequency-time) happens (due to the new data

stream), the systems that use batch learning tend to consume much memory. The con-

sumption happens due to having to store the entire stream. This consumption is necessary

to reconstruct a new model when using batch learning algorithms [4].

Regarding the disadvantage (ii), Online Models (OM) [55] (constructed using Online

or Data Stream Learning algorithms) were presented in the literature with more flexibility

to lead non-stationary distribution data. Moreover, Online Models act on scenarios where

data distribution changes are present. In this way, OM appears as a solution for systems
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with low memory resources. The model incorporates new information of segmented data

of activities, which evolves with high speed, detecting changes, and adapting the activities

models to the most recent information. However, these models feed on recently labeled

data. Furthermore, they require a minor computational cost. On the other hand, these

models may require too much data to converge [20], as each instance is seen by the algo-

rithm only once, which may lead to a minor potential for generalization when compared

to batch algorithms, considering the same memory consumption.

An essential parameter is the point of data adaptability. As explained in previous

chapters, the batch learning approach adapts periodically, reprocessing the most recent

data. In contrast, the online approach does self-adaptation processes over time, as each

sample is labeled.

Considering this panorama, analyzing the performance of batch models and online

models focused on memory consumption is important. The objective is to verify the

impact in batch models with similar memory resources to online models, considering the

quality of the inference. To this end, memory consumption must be fixed for batch models,

with memory size similar to the data stream learning models. In this way, our aim in

this work is to analyze the robustness of batch models constructed considering limited

memory resources, compared to online models. To this end, we created a memory control

module that manages memory consumption when new data arrives to construct new batch

models. Our focus is on verifying if the batch learning models on this setup can obtain

the same (or best) results versus data stream learning algorithms.

5.1 Experimental Methodology

This study only consider the Atomic Human Activity Recognition (AHAR). As described

in Section 3.1, AHAR process can be divided into various steps, as illustrated in Figure 3.1:

Raw data collection, Sliding window, Preprocessing and feature extraction, and Inference.

Raw data collection collects data from differents datasets described on Chapter 5.2.1.

For Preprocessing ; our study fuses data from different sensors. Each dataset describes

its sensors (e.g accelerometer, gyroscope). The feature extraction is different for each

dataset. Section 5.2.3 describes the features of construction for each dataset.

The key point in this work is the inference step. Our assumption is that batch le-

arning, and online algorithms models can consume limited memory size in deployment

environment. Thus, the author created a memory control module that helps to fit the
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Algorithm 1 memory control module for (BMmc)
Input: xi, incoming segment stream; yi predicted label for xi, incoming stream; M : size

of memory cap; S = security samples; Registry R
Output: A model BMmc with size at most size M .
1: BMmc is created under S samples
2: repeat
3: yi ← Classify(xi, BMmc);
4: R← R

⋃
xi.

5: Retrain(BMmc, xi)
6: if size(BMmc) > M then
7: BMmc ← ∅
8: repeat
9: Take xi ∈ R
10: Retrain(BMmc, xi)
11: i← i+ 1
12: until There no are object in R or size(BMmc) > M
13: end if
14: until There are no stream xi.

batch models (BMmc), under a respective memory size of the model. Algorithm 1 des-

cribes the memory control module for fitting models (BMmc). Let xi be a new segment

of the stream, and M be the memory size for constructing the model. For this value,

we selected the memory size used by an online model within the same learning approach

(probabilistic-based, rules-based, and so on). Let S (security samples) be a set of sam-

ples that offers initial information for (BMmc). We used 7% of samples for the initial fit

distributed uniformly per each class. Registry R is a subset of the dataset with recent

xi labeled instances. This registry is similar to a buffer for control the sample sequence.

Its objective is maintaining the model updated with the new data arriving in the stream,

considering a time-frequency. The algorithm retrain BMmc model for each new segment

xi. This element is stored in R. If the memory of BMmc is much larger than M , the

algorithm uses the most recent labeled instances xi ∈ R. The order in the sequence xi
and xi+1 is preserved.

Algorithm 2 Retrain function
Input: xi, incoming segment stream; A model BMmc with size at most size M
1: the system gathered all object (OBJs) used on model BMmc

2: BMmc is trained as from OBJs
⋃
xi
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5.2 Materials and Methods

5.2.1 Datasets

We selected the datasets HAPT 1 (two parts), REALDISP 2. We used the two datasets

individually due to the different number of samples. Thus, it allows us to create one

thin dataset and one big dataset. The choice of all datasets is due to the lack of studies

involving datasets with labeled data concerning transition labels. This format of the

dataset may allow support to develop complex human activities [112].

HAPT [112]: The dataset was carried out with a group of 30 volunteers aged 19-48

years. They performed a set of six basic activities: three static postures (standing, sitting,

lying) and three dynamic activities (walking, walking downstairs, and walking upstairs).

The experiment also included postural transitions between the static postures: stand-to-

sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. All participants wore

a smartphone (Samsung Galaxy S II) on their waist during the experiment. The study

captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz

using the embedded accelerometer and gyroscope of the device. The experiments labeled

the data manually. The obtained dataset was randomly partitioned into two sets, where

70% of the volunteers was selected for generating the training data and 30% the test data.

In our study, we separate two datasets: HAPT1 and HAPT2 means the training set and

test set, respectively.

REALDISP [16]: The REALDISP (REAListic sensor DISPlacement) dataset was

initially collected to investigate the effects of sensor displacement in the activity recogni-

tion process in real-world settings. The dataset includes a wide range of physical activities

(warm-up, cool-down, and fitness exercises), sensor modalities (acceleration, rate of turn,

magnetic field, and quaternions), and participants (17 subjects). The dataset contains

information for three different scenarios depending on whether the sensors are positioned

in predefined positions or placed: In the first scenario, the sensors are positioned by the

instructor in predefined locations within each body part. In the second scenario, the

user chose the position of the sensors on the body parts specified by the instructor, but

without hinting where they need to be precisely placed. Finally, the instructor introduced

an intentional mispositioning of sensors using rotations and translations concerning the

ideal placement.
1https://bit.ly/3frazYN
2https://bit.ly/35N4ZM8
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Table 5.1 describes the total of activities (number of classes); window size is the

quantity of data under the window and information about overlapping. The total of

segments is the number of samples for test and training models. Each segment is created

by a sliding window, and lastly, the number of features extracted. More details about the

execution process are described in the next subsection.

Table 5.1. Description of datasets used in Chapter 5.

Datasets HAPT REALDISP
Total of activities 12 33

Total of users 30 17

Window size 128 (≈ 2.56s) 200 (≈ 4s)
(segments)

Total of segments 7767 (HAPT1) 9213
(number of samples) 3162 (HAPT2)

Type of sliding window Explicit Segmentation Explicit Segmentation
sliding windows sliding windows
(50% overlap) (50% overlap)

Total of features 53 200

5.2.2 Deployment Environment

For the creation of a ubiquitous environment, the author decided to use in this expe-

riment containers technology [26]. Containers provide a higher level of abstraction for

the application management and contribute to development in many distributed applica-

tion challenges [25], e.g. portability and performance overhead. This study used Docker

technology. The use of Docker containers allows us high isolation and less resource con-

sumption. Figure 5.1 describes the architecture of deployment environment.

In container, the author created several Images (img i), where i ∈ [1, n]. Each image

process the AHAR steps in workflow (WF ). Each workflow has a different deployed ML

model. the setup of configuration is described in Table 5.2. We have a size of memory

cap M (capsize) where the maximal of the memory where the model can reach. The λ

means a "swap" that the model can not exploit. If size(BMmc) > M +λ, the system will

shut down.
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Table 5.2. Information about deployment enviromment.

HAPT1 HAPT2 REALDISP

Model Capsize λ Model Capsize λ Model Capsize λ

J48 76,9 KB 500 KB J48 37,2 KB 500 KB J48 89,3 KB 500 KB

KNN 35,3 MB 500 KB KNN 14,5 MB 500 KB KNN 15,3 MB 500 KB

NB 471 KB 500 KB NB 471 KB 500 KB NB 456,5 KB 500 KB

SMO 76,4 KB 500 KB SMO 76,4 KB 500 KB SMO 1,5 MB 500 KB

Physical Machine

Host os

Docker engine

Container

Img 1 Img 2 Img n

WF WF WF

Fig. 5.1. Deployment enviroment.

5.2.3 Experimental Setup

Firstly, the data flow as a stream in raw data format. For data segmentation, the ex-

periment used a fixed size of the sliding window. In this technique, a window is moved

over the data stream to extract a data segment with a fixed size that is then used in

subsequent processing steps. In this work, there is a 50% overlapping for all datasets.

After, the process of feature extraction is applied. For HAPT, the author used the

extracted feature processing based by Anguita et al. [11]). We generated 53 features

enrolling in this dataset. For REALDISP, we used 200 features for construction. Its

calculation is based on mean, standard deviation, variance in x, y, and z. All of this,

the author have a set of features (named by F ), and created ‖F‖ as a feature. We

represented all features as a vector V . From V , we create a histogram in Vx,Vy,Vz. We
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gathered all features, and generated Ai with 40 features. This dataset has five devices

(i = 5) distributed on the body. So, we created Ai for each device and gathered all

features. So, the author have 200 features.

We selected four batch learning algorithms and four data stream learning algorithms

at the level of comparison between the two types of learning. To deal with different types

of distribution and model construction methods, we chose for each approach of learning:

an optimization-based algorithm, a distance-based algorithm, a probabilistic-based algo-

rithm, and a rules-based (using trees). The batch algorithms are SMO, Ibk (KNN) (k =

5), Naive Bayes, and J48 (C4.5), considering all are implemented in WEKA [62]. The

algorithms with an online approach are SGD, SAMkNN (k = 5), Naive Bayes (online

version), and Hoeffding Adaptive Tree. All classifications algorithms are implemented

on framework MOA [21]. The choice of these algorithms is due to their robustness and

performance. The choice of the k value for the distance-based algorithms (SAMkNN and

KNN) is due to satisfactory results compared to all k values.

During the stream processing, the batch models have a restricted memory consump-

tion size M , according to the function memory control module. The M generated by the

SGD is the value of M capsize for the SMO. The M of KNN value is the maximum con-

sumption calculated by SAMkNN; the M value of Naive Bayes in the batch is equivalent

to the memory consumption of the Naive Bayes online version.

Finally, the author performed a quantitative analysis between each algorithm, using

accuracy and Kappa Statistic as an evaluation metric. As an evaluation strategy, we used

the prequential [55]. It is the most commonly used in environments with data stream.

Prequential allows the calculation of the error rate of algorithms (accumulated sum of loss

functions between the prediction and observed values). We used it, especially in scenarios

in non-stationary data distributions [55].

We performed these experiments using the Mac os High sierra 10.13 de 64 bits opera-

ting system and the JDK 1.8.0.201 64-bit Java runtime. The same machine was running

both the sensor client nodes and the server. In addition to this, we have the following

settings:

• Processor: 2.9 G2,3 GHz Intel Core i5

• Memory: 4 GB 1333 MHz DDR3
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5.3 Analysis of Results

This section describes an analysis of the results of all experiments. Figures 5.2,5.3,5.4,5.4

and 5.5 show results about accuracy in HAPT (train and test) datasets. Figures 5.6,5.7

show results about same metric in REALDISP dataset. The author compared BMmc

models to online models with the same method. The author observed that distance-

based algorithms (composed by KNN and SAMkNN) in these scenarios show oppositive

results for HAPT datasets (dataset with the fewer segment data). Probabilistic-based

methods (composed by Naive Bayes and Naive Bayes online) show middling and similar

results. Both of them do not offer good accuracy for big datasets as REALDISP. Overall,

optimization-based methods (composed by SMO and SGD) show a limited accuracy, ex-

cept for SGD using REALDISP. While rule-based method as J48 as Hoeffing Adaptative

Tree is a non-accentuated decrease in the learning curve, its convergence is faster than

other models. In general, for all algorithms, the result shows that online models have

the best results in all metrics; however, BMmc models have a relation between the level

of memory consumption and quality of accuracy. Increased consumption can improve

the result of the accuracy metric. However, under big datasets, exhibited in Figures 5.6

and 5.7, batch models do not show good results to online methods, except for IBK.
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Fig. 5.2. Accuracy of BMmc models
for HAPT1. Axis-Y means the value of
metric and Axis-X means learning eva-
luation instances.

Fig. 5.3. Accuracy of BMmc models
for HAPT2. Axis-Y means the value of
metric and Axis-X means learning eva-
luation instances.

Fig. 5.4. Accuracy of online models for
HAPT1.

Fig. 5.5. Accuracy of online models for
HAPT2. Axis-Y means the value of me-
tric and Axis-X means learning evalua-
tion instances.
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Fig. 5.6. Accuracy of BMmc models for
REALDISP. Axis-Y means the value of
metric and Axis-X means learning eva-
luation instances.

Fig. 5.7. Accuracy of online models for
REALDISP. Axis-Y means the value of
metric and Axis-X means learning eva-
luation instances.

Fig. 5.8. Kappa statistic of BMmc mo-
dels for HAPT1. Axis-Y means the va-
lue of metric and Axis-X means learning
evaluation instances.

Fig. 5.9. Kappa statistic of BMmc mo-
dels for HAPT2. Axis-Y means the va-
lue of metric and Axis-X means learning
evaluation instances.



5.3 Analysis of Results 59

Fig. 5.10. Kappa statistic of online mo-
dels for HAPT1. Axis-Y means the va-
lue of metric and Axis-X means learning
evaluation instances.

Fig. 5.11. Kappa statistic of online mo-
dels for HAPT2. Axis-Y means the va-
lue of metric and Axis-X means learning
evaluation instances.

Fig. 5.12. Kappa statistic of BMmc

models for REALDISP. Axis-Y means
the value of metric and Axis-X means
learning evaluation instances.

Fig. 5.13. Kappa statistic of online mo-
dels for REALDISP. Axis-Y means the
value of metric and Axis-X means lear-
ning evaluation instances.

Concerning to Kappa metric, Figures 5.8 to 5.13 show all results. For HAPT1, J48

executed a straightforward result; however, the other datasets, the performance was low.

For data stream learning, SAMkNN has the best results. For HAPT2, two approaches

obtained similar order for the evolution models. Distance-based and rules-based had subs-

tantial results. About the REALDISP dataset, neither batch models nor online models

acquired good results. Overall, data stream learning obtains the best results, in particu-

lar, using distance-based models. The lack of new data (in quantity) shows the principal

limitation for the batch model. Overall, strategies using data stream learning have better

results than batch models with restricted memory using evaluation metrics.

Statistical Test: In order to verify if there is a statistical difference among the
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algorithms according to accuracy and kappa metrics, The author executed the Wilcoxon

Signed-Rank statistical test for multiples domains, one for each metric, as indicated by [69]

and [35]. We aimed to compare the machine learning algorithms in batch and online

in test-paired format to verify if there is a statistical difference among the algorithms

according to accuracy and kappa statistic. The author compares algorithms by type of

method: SGD x SMO, KNN x SAMkNN, J48 x Hoeffding Adaptive Tree, and Naive Bayes

x Naive Bayes Online. The null hypothesis could not be rejected considering different

critical values, indicating that the algorithms present similar results considering these

metrics.

Thus, we can conclude that in a scenario with few sample data, there is no behavior

significantly between the batch and online algorithms, according to the pairwise compa-

rison between different approaches. Nevertheless, according to the graphics, there is a

tendency for online algorithms to converge to a better result over time.

5.4 Final Remarks

Considering the scenario where computational resources are limited, effective strategies

are welcome for HAR, in special for adaptability reasons. Systems that require agile

decision making must fit into resource restrictions, such as memory size. In this way, this

paper presents a comparative analysis between batch machine learning models considering

restriction in memory consumption and data stream learning algorithms. The author used

collected data from sensors available in benchmark datasets presented in the literature.

The goal is to identify whether batch learning algorithms with limited memory resources

can be robust compared to data stream learning algorithms.

In our study, the author compared four batch learning with limited memory size

to four data stream learning algorithms. These algorithms follow different learning ap-

proaches: distance-based learning, rules-based learning, probability-based learning, and

optimization-based learning. Our results show that batch models are more sensitive to

low data volume and low memory size than online models. According to the reduced

memory consumption, batch learning presented difficulty in generalizing the models. On-

line models converge fast and show good results, in particular to SAMkNN. Finally, we

made a statistical test paired-test between algorithms that use same strategy. The null

hypothesis could not be rejected indicating that the algorithms present similar results

considering all applied metrics.



Chapter 6

Analysis of Adaptive Models in HAR

Considering ubiquitous scenarios, there is a huge difficulty in creating models based on

multiple users; due to physical characteristics or different ways to execute the activities.

For example, a sedentary person might perform walking one way, while that activity

might be a jog for an athlete. Alternatively, the way a younger user sits in a chair may

be different from how an older person sits.

One way to solve this problem would be to annotate data for a specific user. However,

this hypothesis is invalid due to the lack of labeled data. Therefore, continuous learning

approach for tailoring the model to best fit a specific user is crucial for improving re-

cognition accuracy, as mentioned in Section 3.4. We define model personalisation as the

process of tuning a general model to represent a user’s personalised way of performing

different activities. The vast majority of activity recognition research did not consider

the personalisation issue.

Due to the intrinsic characteristics of each user, a more practical strategy is to identify

a better general model that becomes specific to a specific user. Examples of works [61, 131,

84] address multi-user data to create models for HAR. However, the proposed approaches

do not deal with data in a streaming environment. There is a challenge in dealing with

the data distribution; while the stream evolves, the model can generate drifts from the

data distribution. This scenario can fit into a problem of Learning from concept drift,

when the data stream changes detection and response. A possible solution would be

to identify user profiles with similar characteristics in performing activities. Thus, the

evolution process occurs smoothly, and consequently, the model would adapt more and

more to the end-user.

This chapter is separated into two points. The first point makes a comparison between
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adaptive models over time about non-adaptive models. The analysis is broad and covers

the impact of learning models adopting adaptive strategies over time. The objective is

to identify how adaptive and non-adaptive models are based on training with multi-user

data without distinguishing between user-profiles and the evolution of model learning over

time. The process is as follows: u models were created, where u is the number of users

present in the dataset. Given a respective user U , two models (Mo1 andMb2) were trained

with data u− 1 users (except user data U), then we can call "leave one(user)-out". Mo1

uses a model adaptation strategy based on the Data Stream Learning algorithms that

evolves over time. Mb2 uses a non-adaptive strategy, where the model does not update

its model over time. Only the U data is tested in this scenario without any update process

in Mb2.

The second point (from the first point results), we realized that adaptive models are

fundamental in an environmental stream and there is a possibility to recommend models to

a specific user. This recommendation is based on relevant characteristics according to way

that the users perform their activities. Thus, this second research proposes a technique

for identifying similar users from generated training sets of different users. This technique

integrates unsupervised algorithms, and applies hybrid similarity measures technique for

recognizing activities.

6.1 Datasets

We selected the HAPT 1 and REALDISP datasets 2 (similar to last chapter). Moreover

Forth-Trace [71], WISDM [80] and ExtraSensory datasets [129]. Different in previous

study (Chapter 5), in HAPT, we gathered the training data and testing data in same

dataset.

Forth-trace [71]: Forth-trace dataset is collected from 15 participants wearing 5

Shimmer wearable sensor nodes on the Left Wrist, Right Wrist, Torso, Right Thigh and

Left Ankle. The participants performed a series of 16 activities (7 basic and 9 postural

transitions).

WISDM [80]: WISDM dataset uses phone-based accelerometers to perform activity

recognition, a task that involves identifying the physical activity a user is performing.

Thus, the authors collected labeled accelerometer data from twenty-nine users who per-
1https://bit.ly/3frazYN
2https://bit.ly/35N4ZM8
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formed daily activities such as walking, jogging, climbing stairs, sitting, and standing.

They then aggregated this time series data into examples that summarize the user acti-

vity over 10-second intervals.

ExtraSensory [129]: ExtraSensory Dataset was collected from 60 participants who

participated for approximately 7 days. The authors used a mobile app on their phones,

and it was used to collect sensor measurements and labels (associated with a context-

aware). The sensor measurements were recorded automatically for a window of 20-seconds

every minute from an accelerometer, gyroscope, magnetometer, audio, location, and phone

state from the person’s phone, and accelerometer+compass provided by a smartwatch. In

addition, the data was collected in the wild: participants used their phones in any way that

was convenient to them, engaged in their typical behavior, and reported a combination

of labels that fit their context.

The description of all parameters of the study is present in Table 6.1. This table

describes: the total of the activities (number of classes); window size is the quantity of

data under the window and information about overlapping. The total of segments is the

number of samples for recognizing the activity.

Table 6.1. Description of datasets used in Chapter 6.

Datasets HAPT REALDISP Forth-trace Extrasensory WISDM
Total of activities 12 33 16 8 6

Total of users 30 17 15 60 36

Window size 128 (≈ 2.56s) 200 (≈ 4s) 10 (≈ 2s) 3(≈ 20s) 200
(segments) ( ≈ 1s)

Total of segments 10929 (HAPT) 9213 3900 237600 5424
(number
of samples)

Type of sliding Explicit Explicit Explicit Explicit Explicit
window Segmentation Segmentation Segmentation Segmentation Segmentation

sliding windows sliding windows sliding windows sliding windows sliding windows
(50% overlap) (50% overlap) (50% overlap) (no overlap) (no overlap)

Total of features 53 200 135 160 43

The central characteristic of the data stream models is that streams evolve over time,

and algorithms must react to the change. One of the important characteristics of choosing

the dataset is that the data changes over time. This feature allows us to validate the

importance of using adaptive algorithms. We apply concept change detection algorithms

to identify whether the data evolves over time. Figures 6.1, 6.2, 6.3, 6.4, 6.5 shows us
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the results for the previously mentioned datasets. The axis-x means the data stream

envolving in time. the axis-y is represented by data distribution in a x samples.

The DDM algorithm identified the concept drift of Forth-trace and HAPT. DDM

observes that the prediction error of the model increases. It takes this evidence that change

has occurred. CUSDM identified the concept drift in WISDM. Probably, it is identified

when the mean of the input data deviates significantly from its previous value. The

Geometrical Moving Average Detection Method identified concept drift in the Realdisp

dataset. The method of assigning weights is based on geometric progression. The latest

first observation is assigned with the greatest weight. The previous weights assigned to

the observations decreased in geometric progression. The Extrasensory has concept drift

from statistical analysis by STEPD. The STEPD means the accuracy of a classifier for

recent W examples will equal the overall accuracy from the beginning of the learning if

the target concept is stationary. A significant decrease in recent accuracy suggests that

the concept is changing.

Fig. 6.1. Graphical Representation
of concept drift identification in Forth-
Trace dataset.

Fig. 6.2. Graphical Representation of
concept drift identification in HAPT da-
taset.

Fig. 6.3. Graphical Representation of
concept drift identification in Realdisp
dataset.

Fig. 6.4. Graphical Representation of
concept drift identification in WISDM
dataset.
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Fig. 6.5. Graphical Representation of
concept drift identification in ExtraSen-
sory dataset.

6.2 Experimental Design

Firstly, the data stream appears in raw data format. For data segmentation, the expe-

riment used a fixed sliding window size. In this technique, a window is moved over the

data stream to extract a data segment with a fixed size that is then used in subsequent

processing steps. Table 6.2 shows all configuration of each dataset.

After, the process of feature extraction is applied. For HAPT, the author used the

extracted feature processing based by Anguita et al. [11]). We generated 53 features

enrolling in this dataset. For REALDISP, the author used 200 features for construction.

Its calculation is based on mean, standard deviation, and variance in x, y, and z. All of

this, we have a set of features (named by F ) and create ‖F‖ as a feature. We represented

all features as a vector V and a histogram in Vx,Vy,Vz. We gathered all features, creating

Ai with 40 features. As this dataset has five devices (i = 5) distributed on the body.

Thus the author created Ai for each device and gathered all features. So, the author has

200 features. For FORTH-TRACE, we used similar to [71], we gathered: Mean, Median,

Standard Deviation, Variance, Root Mean Square, Averaged Derivated, Skewness, Kur-

tosis, Interquartile Range, Zero Cross Rating, Mean Cross Rating, Pairwise Correlation,

Spectral Entropy as feature in our system. For WISDM, we used similar to [80], we gathe-

red the fraction of accelerometer samples. average x, y, and z values in a specific number

of records, approximations of the dominant frequency, average absolute deviations from

the mean value for each axis, standard deviation, the average of the square roots of the

sum of the values of each axis squared; as features in our study. For ExtraSensory, we used

similar to [129], we used Accelerometer and Gyroscope (26 features each); 9 statistics

of the magnitude signal: mean, standard deviation, third moment, fourth moment, 25th

percentile, 50th percentile, 75th percentile, value entropy and time-entropy; 2 autocorre-

lation features from the magnitude signal; Watch accelerometer (46 features); Location
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(17 features); Audio (26 features): Phone State (34 features).

Experimental Setup: We selected four data stream learning algorithms. To deal

with different distribution and model construction methods, this work choose the respec-

tive leearning algorithm: an optimization-based algorithm, a distance-based algorithm, a

probabilistic-based algorithm, and a rules-based (using trees). The algorithms with an

online approach are SGD, SAMkNN (k = 5), Naive Bayes (online version), and Hoeffding

Adaptive Tree. All classification algorithms are implemented on framework MOA [21].

The choice of these algorithms is due to their robustness and performance. The choice of

the k value for the distance-based algorithm (SAMkNN) is due to satisfactory results. Fi-

nally, the author performed a quantitative analysis of each algorithm, using the following

performance evaluation measures: accuracy, Kappa Statistic and precision as evaluation

metrics. As the metrics for Error Estimation, the most commonly used in environments

with data stream was used prequential test-then-train [55]. Prequential allows the cal-

culation of the error rate of algorithms (accumulated sum of loss functions between the

prediction and observed values). This evaluation is best, especially in scenarios in non-

stationary data distributions [55]. Processing time is measured in seconds, while memory

usage is given in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM dispended per

hour of processing (GB-Hour). We adopted a window size W = 100 to keep accordingly

to the defaults provided in the Massive Online Analysis (MOA) framework. The other

parameters follow the same case.

We performed these experiments using the Linux Ubuntu 20.04 64-bit operating sys-

tem and the JDK 1.8.0.201 64-bit Java runtime. The same machine was running both the

sensor client nodes and the server. In addition to this, we have the following settings:

• Processor: 2.9 GHz Intel® Xeon(R) CPU E3-1545M v5

• Memory: 16 GB

6.3 Case Study #1: Comparison between static and
adaptive models

One of the significant challenges of context-aware HAR systems is to deal with the high

heterogeneity of user-profiles (such as height, weight, gender) present in HAR models.

This heterogeneity exists due to the lack of data labeled by users; consequentially, there

is necessary to use different user data to generalize the models. However, most of these
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models do not undergo updates over time, impacting adaptability and inference quality.

This study compares models with adaptable strategies in relation to non-adaptive models

(models that do not undergo adaptation).

Therefore, based on data stream learning algorithms, we use two strategies: In the

first strategy, the classified data is tested, and later, the models are retrained. In the

second strategy, data stream learning evolves over time, but the models do not undergo

an update process. The model becomes static over time. The goal is to identify the

predictive power of models with evolving data over time.

Figure 6.6 shows the design of this study. We separated the datasets by each user

(u1, u2, · · · , uN). All models are trained for all ui, except ux, where ux 6= ui. ux is our

test sample. This scenario is repeated for n users. Figures 6.7, 6.8, 6.9, 6.10, 6.11, 6.12

show the behavior involving all users in relation to adaptive and non-adaptive models.

We adopted a window size W = 500 to keep track of in all experiments. Each line present

in the graphic is a process of evolution of user data in the multi-user model. On the left

side, we see the adaptive approach to the models, and on the right, the use of the models

in a non-adaptive approach in three metrics. From these results, we can see an evolution

curve in most users in adaptive approach. In other words, the adaptive strategy tends

to increase the robustness of the algorithm inference process over time. Thus, we used

these adaptive models as base classifiers in the next case study. The Evaluation time (cpu

seconds) mean is present in Figure 6.13 e 6.14. Another relevant measure is the model

cost (RAM-Hours) that in our scenarios is ≈ 0.0.

Fig. 6.6. Illustration shows us the process methodology. We have a test user with colorful
color and train users with black color. The labelled model as "update"has an updating
process evolving over time. The labelled model as "without update"does not have an
updating process evolving over time.
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Fig. 6.7. Accuracy evolution involving adaptive models
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Fig. 6.8. Accuracy evolution involving non-adaptive models
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Fig. 6.9. Kappa metric evolution involving adaptive models
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Fig. 6.10. Kappa metric evolution involving non-adaptive models
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Fig. 6.11. Precision metric evolution involving adaptive models



6.3 Case Study #1: Comparison between static and adaptive models 73

Fig. 6.12. Precision metric evolution involving non-adaptive models

Fig. 6.13. Evaluation time (cpu se-
conds) mean involving adaptive models

Fig. 6.14. Evaluation time (cpu se-
conds) mean involving non-adaptive mo-
dels

Statistical Test: We executed the Friedman Signed-Rank statistical test for multi-
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ples domains, one for each metric, as indicated by [69] and [35]. We aimed to compare four

adaptive models and four models non-adaptive models. to verify if there is a statistical

difference among the algorithms according to accuracy, kappa and recall.

Because of the null hypotheses were rejected on both metrics, we also executed the

post-hoc Nemenyi test [69, 35], to verify how the algorithms are ranked and, also, where

is the difference among them. Figures 6.15, 6.15 and 6.17 present the results obtained

using, respectively, accuracy, kappa and recall metrics. As CD (Critical Difference) value

is high, for both diagrams, we can conclude that the post-hoc test is powerful enough to

detect any significant differences between the algorithms. So, the null hypothesis (they

behave similarly) can be rejected with 0.05% significance.

Fig. 6.15. Statistical test for accuracy metric. Models’ name with suffix ’_ser’ are
adaptive models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.

Fig. 6.16. Statistical test for Kappa metric. Models’ name with suffix ’_ser’ are adaptive
models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.

Fig. 6.17. Statistical test for Recall metric. Models’ name with suffix ’_ser’ are adaptive
models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.
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6.4 Case Study #2: A Strategy of Recommendation
Models for a Respective User

Throughout case study #1, we can consider the following scenario: Imagine a HAR system

that, instead of offering a generalist model (which is the most traditional approach in state

of the art) and using a strategy in which the implemented model fits a respective user.

In other words, the system contains a deployed model where it will be adaptable to the

user’s characteristics. These systems would create fitted models with fewer data needed

and, consequently, would adapt to the user robustly over time.

This second case study address this scenario, offering a model recommendation stra-

tegy initially in batch from initial data from the user group similar to the test user. After

the recommendation, the model would use an adaptive strategy over time based on test

user data. The strategy is divided into 2 phases: Phase 1: Build Learning Model and

Phase 2: New Activity Recognition.

6.4.1 Phase 1: Build Learning Model

Initially, supervised learning is applied to labeled data to train and generate the learning

model. Algorithm 3 shows Building Learning Model process. First of all, the generated

model consists of a set of clusters for a unique user. Each cluster represents one of the

labeled activities applied while training the model. The Model (Mo) creates a partition P

composed by k clusters (in respect of k activities) in the training data. After, the algorithm

analyze the partition characteristics. Partition characteristics are relative criteria that

describe all clusters of a unique partition (User data). Characteristics of a partition

include the cluster centroids, densities, within-cluster standard deviations, and boundaries

(gravitational force). Thus, we used four measures that represent the features of training:

• Distance: In this metric, we adopt the use of distance in cluster centroids. A cluster

centroid is a mean n-dimensional instance inside the cluster. One way of extracting

information about all clusters is to use the information from the sum of the mean

square error of all clusters.

• Density: Each cluster has unique density characteristics, which separate it from

other clusters. Cluster density reflects the distribution of data points inside the

cluster. It is described by the Formula 6.1, where (m) is the number of points in

the cluster, (a) is an n-dimensional data point inside the cluster, and (ci ) is the
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centroid cluster. Let Sz the size of the cluster, the average distance(Avgdist) is

the within-cluster sum of the distances between cluster’s examples and respective

cluster centroid divided by the number of examples within the cluster. This equation

calculates the density of each cluster in relation to the other remaining clusters. In

the end, the used formula in the study is the density of the partition, present in

Equation 6.3. This equation calculates Ck
dens that sum of Cdens of all clusters.

Ck
dens =

Sz

Avgdist
(6.1)

Avgdist =

∑m
i=1(a− ci)
m

(6.2)

Cdens =
k∑

i=1

Ci
dens (6.3)

• Gravitational force: Based on state-of-the-art [1, 2, 3], the authors discuss that

the gravitation force is the natural attraction force between any two objects in the

universe. According to Newton’s universal law of gravity, the strength of gravitation

between two objects is in direct ratio to the product of the masses of the two objects,

but in inverse ratio to the square of the distance between them. The law is described

in Equation 3.4: Where Fgk is the gravitation between two objects (clusters); G is

the constant of universal gravitation; m1 is the mass of object 1 (size of cluster i);

m2 is the mass of object 2 (size of cluster j); r the distance between the two objects

( Euclidean distance between clusters’ centroids). According to Equation 6.5, each

cluster generates its gravitational force created from its weight. We calculate the

sum of the gravitational force of each cluster relative to all clusters in the same

partition. The advantage of this strategy indicates that the bigger the candidate’s

weight, the stronger the gravitational force produced around it. Therefore, the

probability of attracting more data objects increases.

Fgk = G
m1 ·m2

r2
(6.4)

Fg =
k−1∑
i=1

k∑
j=i+1

G
mi ·mj

r2
(6.5)

• WICSD ( Within Cluster Standard Deviation): This measure considers the cohe-

sion inside each cluster. The standard deviation of n-dimensional points inside the

cluster is calculated as the equation 6.6. Where (m) is the number of points in the

cluster, ai is an n-dimensional data point inside the cluster, and (ck) is the cluster
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centroid. Clusters with similar standard deviations are more likely to present the

same activity/label. After, based on Equation 6.7, we apply the sum of WISCDM

for different clusters. Thus, we created the global representation for each partition

P .

WICSDk =

√√√√ m∑
i=1

(ai − ck)2

m
(6.6)

WICSD =
k∑

i=1

WICSDi (6.7)

Algorithm 3 Building Learning Model
Input: incoming segment stream of the user ui; number a of activities
Output: A partition (Pf ) with k=4 clusters with different number of users.
1: Let X the set of users ui.
2: repeat
3: Set a in k-means (k = a), apply the algorithm in ui, and create a partition Pi with
a activities clusters.

4: Calculate Distance metric from all clusters.
5: Calculate Density metric from all clusters.
6: Calculate Gravitational Force metric from all clusters.
7: Calculate WICSD metric from all clusters.
8: Reserve all previous calculated metrics as features (V ) to a instance ui.
9: Let V associated to ui and save it in dataset Susers.
10: until There are no listed user ui ∈ X.
11: Apply K-means (k=4) in Susers and create Pf .

Thus, the feature set is represented by four features of training. This information

represents unique information for each user (partition). In the end, we have a dataset

with four features, where each row corresponds to a unique user. Finally, after the feature

extraction process and feature set building, we applied the K-means algorithm with k=4

for separating groups of similar users (Partition Pf ). We chose K-means for its simplicity

and a commonly used algorithm in the literature. The choice of the value k is manual,

and the value of 4 is due to different characteristics sensitive to the user’s profile: age,

weight, height, and sex.

Figure 6.18 shows this representation in the training step. We can see a group of

users where each user passes individually for the respective workflow. After extracting

features about all users, we applied a clustering algorithm to divide similarity groups. The

centroids of the respective clusters are essential objects for the model recommendation

step for new users.
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Fig. 6.18. Workflow for building a learning model and new model recommender.

6.4.2 Phase 2: New Model Recommender

As the stream evolves, we assess learning model partitions to predict new clusters’ labels.

This is handled with a distance between partitions. Partitions are similar if they match

based on the distance of the centroid between the Partition candidate and partitions of

all clusters. The algorithm checks how similar it is to other partitions in the learning

model for each newly formed partition. Algorithm 4 describes and Figure 6.18 shows the

process in Testing Step (Model Recommender). We can see the respective sample of the

users test, where the data undergoes a feature extraction process. The feature extraction

process is similar to the training phase: First, the groups of activities are generated from

the clustering process, and values of the features are based on four functions that involve

distance, density, gravitational force, and WICSD. From the vector (v) created with these

features, the algorithm calculates the shortest distance between v and clusters’ centroids

(cPfw, where we have w = [1 · · · k] clusters) in Partition Pf . Clusters’ centroids are a

mean of the centroid values of each cluster present in the respective Partition Pf .
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Algorithm 4 New Model Recommender
Input: incoming segment stream of the test user ut; number a of activities, A partition

composed by all training users (Pf )
Output: A recommendation of the best cluster (with users data for model building) to

be addressed to ut
1: Set a in k-means (k = a), apply the algorithm in ut, and create a partition Pi with a

activities clusters
2: Calculate Distance metric from all clusters.
3: Calculate Density metric from all clusters.
4: Calculate Gravitational Force metric from all clusters.
5: Calculate WICSD metric from all clusters.
6: Reserve all previous calculated metrics as features (Vu) to a instance ut.
7: Calculate the distance (Vu) of all clusters’ centroids (cPfw) that belongs to Pf . The

shortest distance between cu and any cPfw (centroid of cluster w ∈ Pf ) addresses that
cluster x is the best cluster to be assigned to ut.

6.4.3 Results

We present the experiments that we have performed to validate the robustness of the

proposed method and discuss its improvements and limitations. Firstly, we randomly

select a group of users for testing the experiment in two phases. The first one is updating

a pre-trained model with groups of similarity, and the other is updating a multi-user model

containing the data of all users in the dataset. The objective is to analyze the growth

curve about the following metrics: Accuracy, precision, and recall. Table 6.2 shows us

the characteristics of samples randomly selected from the partitions recommended for the

respective user. The column Number of users in Partition Cluster target explains how

many users were used to train the recommender model to respective user (RU), and the

respective dataset used in the research.

Table 6.2. Description of selected users in case study #2.

Respective User (RU) Number of users in Partition Cluster target (G) Dataset
#1 6 Extrasensory
#2 7 Extrasensory
#3 5 HAPT
#4 12 HAPT
#5 5 FORTH-TRACE
#6 2 FORTH-TRACE
#7 5 REALDISP
#8 2 REALDISP
#9 7 WISDM
#10 12 WISDM

To check the robustness of the activities model, we described the trained activities

fromG individuals in Partition Cluster target. A improvement of the results were obtained
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in the majority of the users, while using this strategy of recommendation models, as shown

in the figures present in Appendix A. In this study, we did a pairwise comparison between

the model trained with characteristics close to a RU (metric_user_single) and the model

trained with data from all users metric_user _multi, evolving training over time with RU.

These models are evaluated and validated based on Accuracy, Kappa, and recall metrics.

We can see a significant improvement in most users about the three metrics. However,

the main limitation is neither all users are trained for all activities available in the study,

consequently, we have unbalanced classes. This situation compromised the quality of the

inference.

Statistical Test: We executed the Wilcoxon Signed-Rank statistical test for multi-

ples domains in pair of models, one for each metric, as indicated by [69] and [35]. We aimed

to compare the performance of recommended model (user_single) and model multi-user

(user_multi), to verify if there is a statistical difference among the algorithms according

to accuracy, kappa and recall.

Because of the null hypotheses were rejected on both metrics, we also executed the

post-hoc Nemenyi test [69, 35], to verify how the algorithms are ranked and, also, where

is the difference among them. Figures 6.19, 6.20 and 6.21 present the results obtained

using, respectively, accuracy, kappa and recall metrics. As CD (Critical Difference) value

is high, for both diagrams, we can conclude that the post-hoc test is powerful enough to

detect any significant differences between the algorithms. So, The null hypothesis (they

behave similarly) can be rejected with 0.05% significance.

Fig. 6.19. Statistical test for accuracy metric. Models’ name with suffix ’_ser’ are
adaptive models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.

Fig. 6.20. Statistical test for Kappa metric. Models’ name with suffix ’_ser’ are adaptive
models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.
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Fig. 6.21. Statistical test for Recall metric. Models’ name with suffix ’_ser’ are adaptive
models. Models’ name with suffix ’_no_evolution’ are non-adaptive models.

6.5 Final Remarks

The need for HAR systems that are more cohesive with each user’s profile leads machine

learning developers to assemble more general strategies worrying about the diversity of

information without actually worrying about the need for a specific user. In addition,

updating these models is more expensive and expensive, as they happen in a manual,

non-adaptive way.

Therefore, this study analyzed in two directions: 1) a comprehensive analysis of the

importance and use of an adaptive strategy over time and 2) a proposal to recommend a

model that best suits the profile of a target user. Regarding the first direction, the study

shows that adaptive strategies tend to improve more the effectiveness of models than

non-adaptive strategies, allowing deliveries of more robust models to users. Regarding the

second study, this research proposes a strategy that covers several aspects in relation to

the human activities features, according to groups of user-profiles globally. This proposal

recommends HAR models through clustering algorithms and strategies based on relative

criteria to define user groups’ profiles. One of models can be more adjust to a respective

user.



Chapter 7

A Novel Approach for Sequential
Human Activity Recognition

As mentioned in previous Chapters, traditional HAR approaches stand on the assump-

tion that collected data distribution is stationary. This assumption is commonly violated

when data provided by real-time sensors evolve over time. The state-of-the-art proposes

different approaches (described in chapter 3), mostly applied in Atomic Human Activity

Recognition scenarios. As in AHAR scenarios, adaptability is also present in Complex

Human Activity Recognition. The form a user performs a complex activity can be modi-

fied over time [140, 113], indicating the need for models to evolve. However, this chapter

is focused on Sequential Complex Human Activity Recognition (SCHAR). In this way,

there is a lack of algorithms to manage the distribution of non-stationary data with any

stream mining approaches. We could not find a stream mining approache used to address

SCHAR in the literature using sensor data (e.g accelerators, gyroscope, magnetometer).

The use of State Model-Based and Exemplar-Based SCHAR can be a challenge in

a stream environment due to the factors such as temporal and action sequences. Con-

sidering these factors, this thesis proposes a new customized algorithm based on data

stream mining for SCHAR, called KFC4Stream. KFC4Stream is based on a traditional

computational biology algorithm for gene sequencing, known k-mers filtering Classifier.

This algorithm adopts Exemplar-Based SCHAR as a strategy of knowledge. KFC4Stream

algorithm is compared to two batch learning algorithms to SCHAR in the state-of-the-art:

Hidden Markov Models (HMM) and K-mers filtering Classifier. We validated our proposal

from two experimental analyses with artificial and real datasets. The first experimental

scenario used artificially generated datasets to assess the performance of the algorithms

considering a set of activities according to different sizes of representing the activities,
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i.e., we evaluate the performance of these algorithms when varying the number of atomic

activities to represent a SCHAR.

The second experimental scenario considered two real datasets: the Opportunity da-

taset [28] is a CHAR dataset where the levels between activities have a degree of de-

pendency, e.g., the mid-level gesture annotations are generated automatically from the

low-level hand actions. The second dataset is the Milan dataset: this dataset describes

sequential ADL where a woman and dog lived for around three months. We used a group

of quantitative metrics for evaluating the algorithms: Accuracy, kappa, precision, recall

and F1 measures (traditional metrics in Stream Learning and MOA API [21])

7.1 KFC4STREAM: A Sequential Complex Human Ac-
tivity Recognition Algorithm

This Section describes our proposal SCHAR algorithm within in a data stream learning

context. We coined K-mer Filtering Classifier and adapted it to the stream-learning

context.

7.1.1 Features of the KFC4STREAM

Most state-of-the-art algorithms could not be applied directly to SCHAR sequence data

sets. The proposed algorithm implements all features in sequencial way. KFC4STREAM

can integrate the SCHAR feature extraction step (mentioned in Section 2.3.2), allowing

on-the-fly mapping of SCHAR sequences into feature vectors. This process simplifies

the process of building machine learning-based models for different SCHAR tasks and

facilitates the deployment of developed models [1].

The feature extraction is similar to that described in Section 2.3.2. This step has to

be performed to map each SCHAR sequence into a feature vector. Figure 7.1 shows an

example of workflow. Also, same figure describes the algorithm to calculate the sum of

k-mer frequencies scores.
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Fig. 7.1. For each k-mer in the query (k=6), a list of similar k-mers and their fre-
quency scores is generated (green frame). For each such k-mer (red), a pointer to a list
of representative sequences containing this k-mer is looked up in an array (index table)

.

7.1.2 Training Phase

The Training Phase is similar to described in Section 2.3.2. The training set S is the

correspondence between the k-mer frequencies of training sequences (atomic activities)

and their groups. The feature vector Fv(s) for an input sequence s (atomic activities) was

constructed from the number of occurrences of all k possible k-mers (given Σ), divided by

the total length of N . Next, we processed the feature vectors as stream for more effective

of the Stream Learning Classifiers (base classifier). Figure 7.1 shows final step of training.

The table look-up and frequency of sequences constantly updates over time.

7.1.3 Inference

The process of inference starts in K-mer filtering step. This step shows how to simul-

taneously extract features from sequence data (atomic activities) and test a model. As

KFC4STREAM is based on K-mer filtered classifier, the algorithm uses a stream le-

arning algorithm and a filter to be applied on the fly before feeding the data to the

predictor—class for running a stream learning algorithm (base classifier) on data passed

through K-mer filtering. Like the classifier, the structure of the filter is based exclusively
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on the training data, and the filter will process test instances without changing their

structure. Thus, it is important to determine which stream learning classifier would be

the most effective for classifying sequences, using their respective k-mer frequencies as

feature vectors (numerical representations).

7.1.4 Implementation

K-mer representation is implemented as part of the Genome Annotation Toolkit (Gen-

notate) [81]. Gennotate is an extension of WEKA [63], a widely used machine learning

workbench supporting many standard machine learning algorithms. Most of these al-

gorithms could not be applied directly to SCHAR sequence data sets. Developers may

pre-process their data for feature extraction and then apply MOA implemented algorithms

to the data set in its numerical representation. Gennotate can integrate the SCHAR fea-

ture extraction step into WEKA and allow on-the-fly mapping of SCHAR sequences into

feature vectors. This simplifies the process of building machine learning-based models for

different SCHAR tasks and facilitates the deployment of developed models [1].

7.2 Environment Development Setup

This section guides through the basic description involved in the architecture. Our En-

vironment used contextnet [41]. In its structure, there are a mobile node and stationary

node of the SDDL core. This stationary node will play the role of a server processing

node, capable of processing application messages from the logic node (LN) according to

AHAR application (Context Life) specific logic, and sending messages back to the (LN).

Our sample application is composed of two components: a client node and a stationary

node, as illustrated in Figure 7.2. The LN creates a stream that is sent to the SDDL core.

Our processing node receives this stream and executes SCHAR inference, keeps track of

the stream, and prints the classification output.

As a simplification, the entire application system, composed of the mobile client,

gateway, and processing node, runs locally on a single machine. However, it can be easily

modified to run on distributed machines (which will be a future step). The example

illustrates the asynchronous send and receives primitives for both the client and core type

of nodes.

We performed these experiments using the Linux Ubuntu 20.04 64-bit operating sys-
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Fig. 7.2. Illustration about the used environment, based on Contextnet

tem and the JDK 1.8.0.201 64-bit Java runtime. The same machine was running both the

sensor client nodes and the server. In addition to this, we have the following settings:

• Processor: 2.9 GHz Intel® Xeon(R) CPU E3-1545M v5

• Memory: 16 GB

7.3 Case Study #1: Artificial Dataset

This section presents the experiments to evaluate KFC4Stream performance compared to

HMM, K-mer Filtered Classifier. We generated SCHAR activities from datasets menti-

oned before. Due to few SCHAR datasets, this thesis proposes three artificial datasets.

We continue to use the HAPT, REALDISP and Forth-trace datasets for benchmark tests

and creation of SCHAR datasets . We created HAPT_complex, Realdisp_complex, and

Forth-trace_complex, which are SCHAR artificial complex datasets based on the mentio-

ned datasets. Figure 7.3 shows the workflow to build the SCHAR datasets. The process is

divided into three steps. The first step builds AHAR activities, which are base activities

for building the SCHAR activity. The study gathers different stream learning classifiers

and tests them to define which one should be a base classifier. The base classifier is the

standard classifier for building essential AHAR activities in a sequential complex activity.

The second step builds the activity buffer. According to the characteristics of segmen-

tation and transition between two activities, the ordering of sequential complex activity

and the number of activities (buffer) that represents a sequential activity are defined.
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The third step is the final step, where recognizing sequential complex human activities is

carried out.

Fig. 7.3. A workflow of this case study. The author builds since sensor data step until
the SCHAR inference.

7.3.1 Step I – Generating AHAR

In Step (I), we created a HAR, respecting the temporal order for each sample. We ap-

plied this data to the Atomic HAR process to generate atomic activities. Thus, we applied

the process described in Section 3.1. We simulated a source that sends packages to the

AHAR process (via ContextNet project). Moreover, we apply the SMOTE algorithm [42]

to generate a larger population of samples. This SMOTE was applied to raw dataset

samples, preserving order by activities. The algorithm was applied to the sliding win-

dows, respecting the sequence of existing data. Table 7.1 shows all the characteristics of

preprocessing and sliding window. Overall, 40% aleatory samples were used for training

under all AHAR datasets. During this Step, we use the prequential evaluation method.

The sampling frequency is 100 objects AHAR sliding window samples by stream window.

For classification, we used the used previous algorithms in stream learning. Each

algorithm is based on different methods:

• SamKNN (lazy-based): k =3; limit of samples = 5000; minSTMSize = 50; Relative

LTM Size = 0.4.

• Naive Bayes Online (probabilistic-based).
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Table 7.1. Description of datasets used in Chapter 7.

Datasets HAPT REALDISP Forth-trace
Total of activities 12 33 16

Total of users 30 17 15

Window size 128 (≈ 2.56s) 200 (≈ 4s) 10 (≈ 2s)
(segments)

Total of segments 10929 (HAPT) 9213 3900
(number of samples)

Type of sliding window Explicit Segmentation Explicit Segmentation Explicit Segmentation
sliding windows sliding windows sliding windows
(50% overlap) (50% overlap) (50% overlap)

Total of features 53 200 135

• Hoeffding Adaptative Tree (rules-based): Grace Period = 200; Split Criteria = Info

Gain.

• SGD Multi-Class (Optimization-based): Loss Function = Hinge; Lambda Regulari-

zation = 0.005; Learning Rate = 0.005.

Experimental Protocol: All metrics are computed accordingly to the Prequential

test-then-train procedure. We adopted a window size W = 500 to keep track of in all

experiments. All remaining parameters were set accordingly to the defaults provided in

the Massive Online Analysis (MOA) framework.

Figures 7.4, 7.5, and 7.6 show the results established on different accuracy, preci-

sion, and kappa metrics (Tradicional metric in Stream Learning and MOA API [21]),

respectively.

Fig. 7.4. Accuracy evolution involving adaptive models



7.3 Case Study #1: Artificial Dataset 89

Fig. 7.5. Precision evolution involving non-adaptive models

Fig. 7.6. Kappa metric evolution involving adaptive models

We could observe that SamKnn has the best predictive power among all algorithms in

Hapt and Realdisp. SGD has the best result in the Forth-Trace dataset. Thus, we adopt

SamKnn as the base classifier for AHAR to HAPT_Complex and Realdisp_Complex.

SGD is the base classifier for Forth-Trace_complex.

7.3.2 Step II - Phase of Buffer of Activities

In this study, we have non-transition and transition atomic activities. For a close-to-real

simulation, it is necessary to calculate how much information is needed from each activity

to compose/form a sequential activity. We considered the approach published in [60] used

the emerging pattern technique to perform the segmentation concurrently and recognize

the SCHAR activities. In this approach, the segmentation is performed recursively. That

is, by detecting an activity that has commenced at time t, with the average span of L, the

duration from t to t + L is analyzed and considered a segment. Then, the next activity

starts from time t + L.

Thus, we need to analyze the impact of more activities in the same sequential activity

buffer. It means that each dataset has data in different buffer sizes. Figure 7.7 shows us

examples of buffers of different sizes. Thus, HAPT_complex has 14 of size buffer, Forth-

trace_complex has 12 of size buffer, and Realdisp has 22 of size buffer. This information

allows for variability in how much information a buffer can store to represent an activity.

The choice of this value is due to a range capable of carrying a comfortable amount of
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SCHAR activities without compromising the classification quality. Because large and

super small buffer values cannot capture the amount of information necessary for that

activity, on the other hand, a high buffer value leaves the quality of the respective SCHAR

down, as it may collect information that does not represent the respective activity. In

Figure, The boxes with white colors represent the sequence. The boxes with orange colors

represent other sequences over time.

Fig. 7.7. Example of the Buffer of activities.

Table 7.2. Information about SCHAR datasets used in this study.

Dataset length of a sequence (N) Number of letters in alphabetic (Σ)
Forth-trace_complex 12 17

HAPT_complex 14 12
Realdisp_complex 22 33

Opportunity 89 31
Milan 50 32

7.3.3 Step III - Phase of SCHAR

In this step, the inference process is carried out to recognize sequential complex activities.

For this study, we compare the evolution of KFC4STREAM versus Kmer Filtered Clas-

sifier and HMM. We adopt HMM because of its predictive potential in problems related

to alignment and sequencing, as mentioned in Chapter 2.3. As HMM and Kmer Filtered

Classifier are batch-based, we adopt the use of a meta classifier, known as WEKAClassi-

fier (Annex A) that buffers a chunk of the stream and the batch classifier learns on this

chunk.

Experimental Protocol: All metrics are computed accordingly to the Prequential

test-then-train procedure. Processing time is measured in seconds, while memory usage

is given in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM used per hour of

processing (GB-Hour). We adopted a window size W = 100 to keep track of in all

experiments. WekaClassifier has the same value for the size of first window (= 100) and

W . For KFC4STREAM and K-mer Filtered Classifier, we use k = 3. Table 7.2 shows all
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information related length of sequence and number of letter of alphabetic (Σ, number of

atomic activities) of each dataset.

As parameters, K-mer Filtered Classifier uses Naive Bayes as a classifier base. Naive

Bayes is commonly used in sequential analyses and alignment analyses [1, 9, 85].

Figures 7.8, 7.9, 7.10, 7.11 e 7.12 show the results based on different accuracy, pre-

cision, kappa, recall and f1 metrics, respectively. We have a Time taken to build mo-

del: For HAPT_complex: 0.92s in K-mer Filtered Classifier, 0.81s in KFC4STREAM,

0.02s in HMM. For Forth-trace_complex: 5.18s in K-mer Filtered Classifier, 5.28s in

KFC4STREAM, 0.05s in HMM. In Realdisp_complex: 299.38s in K-mer Filtered Classi-

fier, 299.78s in KFC4STREAM, 0.03s in HMM.

Fig. 7.8. Accuracy metric involving three algorithms in three datasets.

Fig. 7.9. Kappa metric involving three algorithms in three datasets.

Fig. 7.10. Precision metric involving three algorithms in three datasets.

The results of the experiments are presented using several perspectives to observe

the performance of the prequential variations from different situations related to the

process of learning in data streams. We can see the most cases covering different metrics;

KFCSTREAM shows better results and more stability in relation to all metrics over time.

Initially, HMM developed good results; however, evolving the time, KFC4STREAM shows
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Fig. 7.11. Recall metric involving three algorithms in three datasets.

Fig. 7.12. F1 metric involving three algorithms in three datasets.

the best results. The most cases, K-mer Filtered Classifier shows the worst results from

initial evaluation until the final process.

7.4 Case Study #2: Real Datasets

For this scenario, we show an exploratory study using two real datasets which use SCHAR.

The respective datasets are:

• Oportunity Dataset: The OPPORTUNITY Dataset [28] for Human Activity

Recognition from Wearable, Object, and Ambient Sensors is a dataset devised to

benchmark human activity recognition algorithms.

• Milan dataset: This dataset describes sensor events collected in the WSU smart

apartment testbed while two people execute their daily activities. Activities are

represented by a sequence of events on some devices present in an apartment. [31].

7.4.1 Oportunity Dataset

This dataset [28] provides realistic scenarios of activities with a variety of sensing modali-

ties. The number of instances for different activities is unbalanced. The data is collected

by four different users performing daily morning activities. A total of 72 sensors in 10

modalities are deployed for data collection. The sensors are located on objects in the

environment and the subject’s body. Environmental sensors are attached to fixed places

in a studio flat with a kitchen, deckchair, and outdoor access where subjects performed
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Table 7.3. Time execution and Model cost in three artificially dataset.

Dataset Algorithms evaluation time
(cpu seconds)

model cost
(RAM-Hours)

Forth-Trace_complex
HMM 0.14 ≈ 0.0
K-mer Filtered Classifier 2.78231749 ≈ 0.0
KFC4STREAM 0.0913 ≈ 0.0

HAPT_complex
HMM 0.12 ≈ 0.0
K-mer Filtered Classifier 1.59242633 ≈ 0.0
KFC4STREAM 0.217800914 ≈ 0.0

Realdisp_complex
HMM 3.22 ≈ 0.0
K-mer Filtered Classifier 17.116238187 ≈ 0.0
KFC4STREAM 0.124645981 ≈ 0.0

activities. The collected data consists of annotated complex, interleaved, and hierarchi-

cal naturalistic activities, with a vast number of atomic activities executions (mode of

locomotion, postures of left and right arm and upper body posture) about 30,000.

Figure 7.13 shows the schematic example according to the dataset. This represen-

tation becomes important for how we represent our data. For example, Activity I and

Activity II are represented in the article as middle activities. This activity is simulta-

neously composed of the atomic activities Mode of locomotion, Right Arm Posture, Left

Arm Posture, Upper Body Posture. In our SCHAR scenario, the Activities (I, II, · · · , n)

are atomic activities for the studied algorithms. The dataset also consists of data for

the four high-level (complex) activities of “Relaxing”, “Coffee time”, “Early morning”, and

“Sandwich time” enrolled with 64 atomic Activities. The sampling rate for the OPPOR-

TUNITY dataset is 20 Hz. We set the chunk size for all experiments to 50 instances (2.5

seconds) The representation is similar to Figure 7.7 where each box represents the atomic

activities.

First, an analysis was made of the independence of the variables present in the dataset

to define the atomic activities. This process was done exclusively in a combination of two

features: middle level and locomotion activities. In our interpretation, they represent

activities that make up a SCHAR dataset due to the description of the authors of the

dataset [28], where the synchronization gesture between middle activities and locomotion

are independent. Thus, we allow us to get the best power prediction in our test classifiers.

For the representation of the sequential dataset, we split the buffer of activities with

the size of 50 activities in sequential form. This representation is similar to Figure 7.7.

The atomic activities (Activity I, Activity II, · · · , Activity n) is represented by the middle

activities. The Complex activities means High level activities. We have the following

activities:
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Fig. 7.13. Schematic Example of an activity hierarchy. Mode of locomotion, postures
of left and right arm and upper body posture distinguish activity I. Activities I and II
together form the high level activity. Description updated of [28].

• A pair Pa of two atomic Activities <middle activities, locomotion>. List of middle

activities: Open Door 1; Open Door 2; Close Door 1; Close Door 2; Open Fridge;

Close Fridge; Open Dishwasher; Close Dishwasher; Open Drawer 1; Close Drawer

1; Open Drawer 2; Close Drawer 2; Open Drawer 3; Close Drawer 3; Clean Table;

Drink from Cup; Toggle Switch; List of locomotion activities: Stand, Walk, Sit and

Lie. For two atomic activities.

• Complex Activities: Relaxing; Coffee time; Early morning; Cleanup; Sandwich time;

Unlock

All activities Pa and complex activities have a neutral state where the person does

nothing or something the model can not predict. We have 68 available atomic activi-

ties; however, we just used 31 because, with the more extended alphabet, the algorithm

extrapolated the memory cost during model training.

For the first case, it is first necessary to find the initial atomic activities, representing

the complex activity. All details present in this data are presented in Chavarriaga et

al. [28]. As in case study #1, four data stream learning algorithms were used as a base

classifier according to different methods. Each algorithm is based on different methods:

• SamKNN (lazy-based): k =3; limit of samples = 5000; minSTMSize = 50; Relative

LTM Size = 0.4
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• Naive Bayes Online (probabilistic-based)

• Hoeffding Adaptative Tree (rules-based): Grace Period = 200; Split Criteria = Info

Gain

• SGD Multi-Class (Optimization-based): Loss Function = Hinge; Lambda Regulari-

zation = 0.005; Learning Rate = 0.005

Experimental Protocol: All metrics are computed accordingly to the Prequential

test-then-train procedure. Processing time is measured in seconds, while memory usage is

given in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM used per hour of processing

(GB-Hour). We adopted a window size W = 1000 to keep track of in all experiments.

WekaClassifier has the same value for the size of first window (= 1000) andW . We have a

Time taken to build model: 96.56s in K-mer Filtered Classifier, 95.56s in KFC4STREAM,

0.29s in HMM. Table 7.2 shows all information related length of sequence and number of

letter of alphabetic (Σ, number of atomic activities) of Oportunity dataset.

Figures 7.14, 7.15, 7.16, 7.17, 7.18 show the results. The SGD Algorithm showed

better results in most of the metrics. Moreover, the evolution curve is more stable, where

it represents a possible convergence. Given this, SGD served as a base classifier for AHAR.

For the recognition process of complex activities, we developed the same methodology

as in the case study #1. We compared K-mer Filtered Classifier, HMM, and KFC4Stream.

We chose k=3 to K-mer Filtered Classifier and KFC4Stream due to be a default value in

all start-of-the-art mentioned before.

Fig. 7.14. Accuracy evolution involving
AHAR Classifiers

Fig. 7.15. Precision evolution involving
AHAR Classifiers
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Fig. 7.16. Kappa evolution involving
AHAR Classifiers

Fig. 7.17. Recall evolution involving
AHAR Classifiers

Fig. 7.18. F1 evolution involving AHAR Classifiers.

In SCHAR scenarios, we move forward to test KFC4STREAM on real life activity

recognition data streams presented in this dataset. We used commonly metrics tested in

previous study. We compare KFC4Stream versus HMM and K-mer Filtered Classifier.

Figures 7.19,7.20 , 7.21, 7.22, 7.23 and Table 7.4 show the results.
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Fig. 7.19. Accuracy evolution involving
SCHAR Classifiers

Fig. 7.20. Precision evolution involving
SCHAR Classifiers

Fig. 7.21. Kappa evolution involving
SCHAR Classifiers

Fig. 7.22. Recall evolution involving
SCHAR Classifiers
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Fig. 7.23. F1 evolution involving SCHAR Classifiers.

Table 7.4. Evaluation time and model cost to Opportunity dataset.

Algorithms evaluation time (cpu seconds) model cost (RAM-Hours)

HMM 0.04 ≈ 0.0

K-mer Filtering Classifier 9.047 ≈ 0.0

KFC4STREAM 3.904 ≈ 0.0

In this SCHAR scenario, KFC4STREAM can handle better than other algorithms

on most metrics, except for Kappa Statistic. In addition, we can observe more stability

and fast convergence to the evolution curve of the algorithm. HMM, in most metrics, has

an evolution in its curve. K-mer Filtered Classifier remains mostly a decreasing curve of

metrics evolution. Kappa metric was an exception. Due to the Kappa metric being a more

sensitive measure for quantifying the predictive performance, we assume the majority class

has not a significant influence on the behavior of the models.
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7.4.2 Milan Dataset

This dataset contains sensor data collected in the home of a volunteer adult. The residents

in the home were a woman and a dog. The woman’s children visited on several occasi-

ons. The following activities are annotated within the dataset: Bed-to-Toilet, Chores,

Desk_Activity, Dining_Rm_Activity, Eve_Meds, Guest_Bathroom, Kitchen_Activity,

Leave_Home, Master_Bathroom, Meditate, Watch_TV, Sleep, Read, Morning_Meds

and, Master_Bedroom_Activity. Milan Dataset contains 2310 instances in all.

The sensor events are generated from motion, door closure, and temperature sensors.

The layout of the sensors in the home is shown in Figure 7.24

Fig. 7.24. Schematic Example of distribution of sensors in environment. Image extracted
in [31]

Dataset is selected based on the same criteria by [45] on the challenges that include

similar events in the instances of different activities, the addition of noise in the data-
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Bed_to_Toilet begin
2009-10-16 03:55:58.000006 B OFF
2009-10-16 03:56:05.000085 A ON
2009-10-16 03:56:07.000039 A OFF
2009-10-16 03:56:08.000022 D ON
2009-10-16 03:56:09.000037 A ON
2009-10-16 03:56:11.000089 A OFF
2009-10-16 03:56:13.000002 A ON
2009-10-16 03:56:18.000024 D OFF
2009-10-16 03:56:20.000005 A OFF
2009-10-16 03:56:22.000019 E ON
2009-10-16 03:56:35.000079 E OFF
2009-10-16 03:56:38 J ON
2009-10-16 03:56:50.000008 J OFF
2009-10-16 03:58:14.000016 J ON
2009-10-16 03:58:26.000021 J OFF
2009-10-16 03:58:28.000002 E ON
Bed_to_Toilet end

Fig. 7.25. Example of the raw data in the dataset.

sets because of the presence of nonparticipating agents such as pets in the home, and

the sensor errors affecting the inputs during an activity instance. Another factor is the

number of instances per activity class since fewer instances make it challenging for the

learning methods to be trained. In contrast, the large number of instances increases the

computational cost. The data are represented as follows, as illustrated in Figure 7.25. We

have a sensor activation sequence, where each sensor sets a binary value as open/close,

on/off, and temperature. Each temperature has a binary value between more or less a

ε. ε is a truncated mean value according to all values in a respective sensor. This case

study extends the use of the proposed algorithm KFC4STREAM because, at this point,

there are atomic activities in a sequential representation. The objective is to identify the

predictive potential of the algorithms in sequential data.

The dataset has a structure as follow in Figure 7.25. The letters (A, B, C, D, E,

F) mean an action in respective activities, and (OFF, ON) mean the state. The atomic

activity is described by a sequence of states in sequential form. Other information means

the timestamp of activity.

For our study of the case, A atomic activity is a par of activity + state. Based on

previous example, we can assume e.g: (A,OFF) = A1; (A,ON) = A2; (B,OFF) = A3;

(D,ON) = A4 (D,OFF) = A5; (E,ON) = A6;(E,OF) = A7; (J,OFF) = A8; (J,ON) = A9.
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Thus, our sequence for Bed_to_toilet is = A3A1A2A4A2A1A2A5A6A7A9A8A9A8A9.

Data stream learning algorithms used according to different methods. Each algorithm

is based on different methods:

• SamKNN (lazy-based): k =3; limit of samples = 5000; minSTMSize = 50; Relative

LTM Size = 0.4

• Naive Bayes Online (probabilistic-based)

• Hoeffding Adaptative Tree (rules-based): Grace Period = 200; Split Criteria = Info

Gain

• SGD Multi-Class (Optimization-based): Loss Function = Hinge; Lambda Regulari-

zation = 0.005; Learning Rate = 0.005

Experimental Protocol: All metrics are computed accordingly to the Prequential

test-then-train procedure. Processing time is measured in seconds, while memory usage is

given in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM used per hour of processing

(GB-Hour). We adopted a window size W = 50 to keep track of in all experiments.

WekaClassifier has the same value for the size of first window (= 50) and W = 25. the

k value for KFC4STREAM and K-mer Filtered Classifier is k=3. We have a Time taken

to build model: 2218.56s in K-mer Filtered Classifier, 2215.56s in KFC4STREAM, 0.03s

in HMM. Table 7.2 shows all information related length of sequence and number of letter

of alphabetic (Σ, number of atomic activities) of Milan dataset.

As in case study #1, we compared KFC4STREAM with other algorithms that deal

with sequential data (K-mer Filtered Classifier and Hidden Markov models). We used the

same metrics in case study #1 (Accuracy, Precision, Recall, and F-Measure). Figures 7.26

7.27, 7.28 ,7.29 and 7.30 show the results covering accuracy, precision, recall and F-

measure, respectively. Table 7.5 shows the evaluation time and model cost.
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Fig. 7.26. Accuracy evolution invol-
ving HMM, K-mer Filtered Classifier,
and KFC4STREAM.

Fig. 7.27. Precision evolution invol-
ving HMM, K-mer Filtered Classifier,
and KFC4STREAM.

Fig. 7.28. Kappa evolution involving
HMM, K-mer Filtered Classifier, and
KFC4STREAM.

Fig. 7.29. Recall evolution involving
HMM, K-mer Filtered Classifier, and
KFC4STREAM.
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Fig. 7.30. F1 evolution involving HMM, K-mer Filtered Classifier, and KFC4STREAM.

Table 7.5. Evaluation time and model cost to Opportunity dataset.

Algorithms Evaluation time (cpu seconds) Model cost (RAM-Hours)

HMM 0.04 ≈ 0.0

K-mer Filtering Classifier 2.817 ≈ 0.0

KFC4STREAM 0.132 ≈ 0.0

For this approach, the results show us that KFC4Stream is sensitive to poorly dis-

tributed classes (we can observe that it presents a fast growth curve of accuracy and a

positive result to other algorithms. However, when looking at the other evolution metrics,

its growth evolution has minimal growth. The growth curve is almost linear, reaching a

value that converts more quickly. However, for this dataset scenario, where we have a re-

duced buffer with few samples, KFC4STREAM has major overfitting issues in specifically

majority classes.

Statistical Test:
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We executed the Friedman Signed-Rank statistical test for multiples domains, one for

each metric, as indicated by [69] and [35]. We aimed to compare HMM, K-mer Filtered

Classifier, and KFC4STREAM on three artificial dataset and two real datasets, to verify if

there is a statistical difference among the algorithms according to accuracy, kappa metric,

precision, recall and F1 measures. We used the final metrics evolved the data stream.

Because the null hypotheses were rejected on among metrics, we also executed the

post-hoc Nemenyi test [69, 35], to verify how the algorithms are ranked and, also, where

is the difference among them. Figures 7.31, 7.32, 7.33, 7.34 and 7.35 present the results

obtained using, respectively, accuracy, kappa, precision, recall and F1 metrics. As CD

(Critical Difference) value is high, for all diagrams, we can conclude that the post-hoc

test is powerful enough to detect any significant differences between all algorithms. So,

The null hypothesis (they behave similarly) can be rejected with 0.5% significance. We

can conclude that KFC4STREAM has the best results in the overall form for different

metrics.

Fig. 7.31. Statistical test for accuracy metric on SCHAR algorithms.

Fig. 7.32. Statistical test for kappa metric on SCHAR algorithms.

Fig. 7.33. Statistical test for precision metric on SCHAR algorithms.
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Fig. 7.34. Statistical test for recall metric on SCHAR algorithms.

Fig. 7.35. Statistical test for f1 metric on SCHAR algorithms.

7.5 Final Remarks

This chapter covers a different type of HAR system from the study in previous chap-

ters. We analyzed Complex Human Activity Recognition in a scenario where a tempo-

ral/sequential dependency exists between the atomic activities in a data stream called

Sequential Complex Human Activity Recognition (SCHAR). Given the importance of

SCHAR in previous chapters and the lack of work on data stream learning, we propose

KFC4STREAM, an algorithm based on the K-mer Filtered Classifier, however, focused

on data stream learning. Performance analyzes of our proposed algorithm were performed

with traditional algorithms for sequential data analysis through artificial data (created

by the author) and on original data available in the literature. We can observe that

KFC4STREAM has high predictive power in reduced size compared to the number of

atomic activities previously trained.



Chapter 8

Conclusion

Over the last decades, new technologies for collecting, storing, and processing data have

arrived. These technologies are more and more accessible to users. Sensors have par-

ticularly invaded humans’ life in the last years, being largely present in devices. These

devices can communicate with each other, without user assistance. All those devices, the

users that both generate and consume these data, and the computational systems that

orchestrate all these entities form a software ecosystem. An advantage of these ecosys-

tems is the generation of many opportunities for new applications that improve quality

of life, such as the applications in Ambient Assisted Living, for instance, helping elders in

their daily activities. Researchers have explored the Human Activity Recognition (HAR)

area to propose techniques and tools to assist this type of activity with increasing scale,

reliability, and safety. However, as more diverse are the activities, as larger the necessity

for different types of sensors. In this way, larger is the necessity to properly collect and

manage this kind of data, as well as manage the necessary knowledge for inferring HAR.

This scenario leads to arise the necessity of CAMs to provide management solutions for

helping HAR systems for diverse problems.

This study initially aimed to understand the state-of-the-art development of HAR

applications in context-aware systems, especially when using ML. To achieve this end,

we conducted a systematic literature review, selecting publications related to CAM pro-

jects that either incorporate ML algorithms or in for HAR solutions. All setups about

this study was published in AI review Journal [92]. We were also particularly interes-

ted to understand how these middlewares deliver context inference (reasoning) service.

Although the literature presented many different methods for context reasoning, this

work emphasized cases involving ML. Our primary interest in ML is due to has been pre-

sented promising results in many different types of HAR problems. We answered our four
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research questions by analyzing the papers selected in our systematic review processes.

As a result of our analysis, we could observe some limitations that deserve attention from

the context-aware researchers’ community. CAMs should evolve to offer services for (i)

impact the use of limited resources in data stream learning for context-aware computing;

(ii) allowing adaptive models for HAR, including the management of non-stationary data

by stream learning algorithms; (iii) (i) developing complex HAR systems in looking for

the adaptability of the algorithms. Thus, we elaborate some research questions about

these limitations:

RQ1: Does the use of batch learning models with limited infrastructure result better

than online models in implementing HAR techniques?

Findings: Under the first limitation, considering the limited computational resour-

ces, effective strategies are welcome for HAR. Systems that require agile decision-making

must fit into resource restrictions, such as memory size. We present a comparative analysis

between batch machine learning models considering restrictions in memory consumption

and data stream learning algorithms. All setups about this study was published in MICAI

proceedings [91]. We used collected data from sensors available in benchmark datasets

presented in the literature. The goal is to identify whether batch learning algorithms with

limited memory resources can be robust compared to data stream learning algorithms.

Our study compared four batch learning with limited memory sizes to four data stream le-

arning algorithms. These algorithms follow different learning approaches: distance-based

learning, rules-based learning, probability-based learning, and optimization-based lear-

ning. Our results show that batch models are more sensitive to low data volume and

low memory size than online models. According to the reduced memory consumption,

batch learning presented difficulty generalizing the models. Online models converge fast

and show favorable results, in particular to SAMkNN, beside the statistical test means

that most algorithms in similar methods does not have difference statistical significance.

/ Future Works: we will apply it in a distributed environment where we have heteroge-

neous data with high volume. Also, We intend to apply a study replacing memory model

control for BMmc to WekaClassifier. Moreover, we intend to apply this approach in edge

computing and monitor the performance of models in edge nodes, for example in Federate

Learning scenarios.

RQ2: Are machine learning models able to adapt to similar users?

Findings: For the second limitation, we observe that in context-aware HARs sce-

narios, there is a concern about how these HAR systems are best suited to a specific
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user. We propose a strategy for recommending HAR models created from user data with

characteristics similar to a respective target user. This similar user data refers to how

training users perform the same activities as a target user. First, an analysis was made

of the importance of implementing adaptive strategies over time, comparing adaptive al-

gorithms with non-adaptive versions. We can observe in most datasets that non-adaptive

models suffer a degradation in their quality compared to adaptive models. Thus, we pro-

pose a strategy for recommending adaptive models based on initial data from a target

user. We apply a k-means clustering algorithm to these data and compare the structure of

this partition with partitions previously trained by the system. These trained partitions

gather the following characteristics: cluster centroids, densities, within-cluster standard

deviations, and boundaries (gravitational force). The system recommends a robust model

with characteristics in executing activities similar to the target user. / Future Works:

A future step is implementing a recommender system for models of complex activities.

Moreover, we intend apply this and proposed actual system as service in a ubiquitous

context-aware middleware.

RQ3: Is it possible to create a model for complex sequential activities that can self-

adapt to the data stream?

Findings: For the third limitation, we observed that after the systematic review

process, there is a lack of works that propose some solution for data stream learning in

a scenario of Recognition of complex activities in sequential form (SCHAR). Therefore,

we propose the KFC4STREAM algorithm, a data stream learning algorithm based on

the K-mer Filtered Classifier. We applied three experiments on an artificial dataset and

two real datasets. The results show that KFC4STREAM has better predictive power in

scenarios where the size of atomic activities is minimal, and the activity buffer is small.

These results are compared to the main state-of-the-art algorithms in sequential data

analysis, in the case of K-mer Filtered Classifier and Hidden Markov Models. In addition,

the training of this model is sensitive to the number of atomic activities because the

greater the number of activities, the longer the data training time. / Future Works:

we will propose new algorithms based on stream learning that solve new problems in

recognizing complex activities, such as Concurrent and Interveleated Complex Activities.

Extend the study for different values of k, allowing us a broader view of the performance

of the KFC4STREAM at the value of k. Other future step is to evaluate this scenario

in a scalable production environment, with multiple nodes sending packets around the

network with activity infos. The number of nodes must be in the thousands or millions.

Another objective will be to apply KFC4STREAM in scenarios present in bioinformatics,
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such as genome size estimation, Sequence Alignment, and other scenarios.
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APPENDIX A -- Results involving models
mono versus multi-user

This Appendix shows several views involving all users mentioned in Chapter 6. The

results are based on metrics: Accuracy, Kappa, Recall. Visualizations were made from

lineplot plots involving data from two types of users:

1. acuracy_user_single: Let the target user that was tested under the fitted model

from groups of users with similar characteristics to the respective target user.

2. acuracy_user_multi : Let the target user in a fitted model from all data users (who

participated in the training step).
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A.1 Results for Each User

A.1.1 User #1

A.1.1.1 Accuracy

Fig. A.1. Accuracy of the Multi-label
Adaptative Hoeffding Tree in User #1

Fig. A.2. Accuracy of the Naive Bayes
Online in User #1

Fig. A.3. Accuracy of the SamKnn in
User #1

Fig. A.4. Accuracy of the Stochastic
Gradient Descendant in User #1
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A.1.1.2 Kappa

Fig. A.5. Kappa metric of the Multi-
label Adaptative Hoeffding Tree in User
#1

Fig. A.6. Kappa metric of the Naive
Bayes Online in User #1

Fig. A.7. Kappa metric of the SamKnn
in User #1

Fig. A.8. Kappa metric of the Stochas-
tic Gradient Descendant in User #1
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A.1.1.3 Recall

Fig. A.9. Recall of the Multi-label
Adaptative Hoeffding Tree in User #1

Fig. A.10. Recall of the Naive Bayes
Online in User #1

Fig. A.11. Recall of the SamKnn in
User #1

Fig. A.12. Recall of the Stochastic
Gradient Descendant in User #1
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A.1.1.4 Evaluation time (cpu seconds)

Fig. A.13. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in User #1

Fig. A.14. Evaluation time of the
Naive Bayes Online in User #1

Fig. A.15. Evaluation time of the
SamKnn in User #1

Fig. A.16. Evaluation time of the Sto-
chastic Gradient Descendant in User #1
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A.1.2 User # 2

A.1.2.1 Accuracy

Fig. A.17. Accuracy of the Multi-label
Adaptative Hoeffding Tree in the User
# 2

Fig. A.18. Accuracy of the Naive Bayes
Online in the User # 2

Fig. A.19. Accuracy of the SamKnn in
the User #2

Fig. A.20. Accuracy of the Stochastic
Gradient Descendant in the User #2
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A.1.2.2 Kappa

Fig. A.21. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
#2

Fig. A.22. Kappa of the Naive Bayes
Online in the User # 2

Fig. A.23. Kappa of the SamKnn in
the User # 2

Fig. A.24. Kappa of the Stochastic
Gradient Descendant in the User # 2
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A.1.2.3 Recall

Fig. A.25. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
# 2

Fig. A.26. Recall of the Naive Bayes
Online in the User # 2

Fig. A.27. Recall of the SamKnn in
the User # 2

Fig. A.28. Recall of the Stochastic
Gradient Descendant in the User # 2
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A.1.2.4 Evaluation time (cpu seconds)

Fig. A.29. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User # 2

Fig. A.30. Evaluation time of the
Naive Bayes Online in the User # 2

Fig. A.31. Evaluation time of the
SamKnn in the User # 2

Fig. A.32. Evaluation time of the Sto-
chastic Gradient Descendant in the User
# 2
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A.1.3 User # 3

A.1.3.1 Accuracy

Fig. A.33. Accuracy of the Multi-label
Adaptative Hoeffding Tree in the User
# 3

Fig. A.34. Naive Bayes Online in the
User # 3

Fig. A.35. Accuracy of the SamKnn in
the User # 3

Fig. A.36. Accuracy of the Stochastic
Gradient Descendant in the User # 3
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A.1.3.2 Kappa

Fig. A.37. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
# 3

Fig. A.38. Kappa of the Naive Bayes
Online in the User # 3

Fig. A.39. Kappa of the SamKnn in
the User # 3

Fig. A.40. Kappa of the Stochastic
Gradient Descendant in the User # 3
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A.1.3.3 Recall

Fig. A.41. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
# 3

Fig. A.42. Recall of the Naive Bayes
Online in the User # 3

Fig. A.43. Recall of the SamKnn in
the User # 3

Fig. A.44. Recall of the Stochastic
Gradient Descendant in the User # 3
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A.1.3.4 Evaluation time (cpu seconds)

Fig. A.45. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User # 3

Fig. A.46. Evaluation time of the
Naive Bayes Online in the User # 3

Fig. A.47. Evaluation time of the
SamKnn in the User # 3

Fig. A.48. Evaluation time of the Sto-
chastic Gradient Descendant in the User
# 3
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A.1.4 User # 4

A.1.4.1 Accuracy

Fig. A.49. Accuracy of the Multi-label
Adaptative Hoeffding Tree in the User
# 4

Fig. A.50. Accuracy of the Naive Bayes
Online in the User # 4

Fig. A.51. Accuracy of the SamKnn in
the User # 4

Fig. A.52. Accuracy of the Stochastic
Gradient Descendant in the User # 4
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A.1.4.2 Kappa

Fig. A.53. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
# 4

Fig. A.54. Kappa of the Online Naive
Bayes in the User # 4

Fig. A.55. Kappa of the SamKnn in
the User # 4

Fig. A.56. Kappa of the Stochastic
Gradient Descendant in the User # 4



A.1 Results for Each User 137

A.1.4.3 Recall

Fig. A.57. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
# 4

Fig. A.58. Recall of the Naive Bayes
Online in the User # 4

Fig. A.59. Recall of the SamKnn in
the User # 4

Fig. A.60. Recall of the Stochastic
Gradient Descendant in the User # 4
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A.1.4.4 Evaluation time (cpu seconds)

Fig. A.61. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User # 4

Fig. A.62. Evaluation time of the
Naive Bayes Online in the User # 4

Fig. A.63. Evaluation time of the
SamKnn in the User # 4

Fig. A.64. Evaluation time of the Sto-
chastic Gradient Descendant in the User
# 4
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A.1.5 User # 5

A.1.5.1 Accuracy

Fig. A.65. Multi-label Adaptative Ho-
effding Tree in the User # 5

Fig. A.66. Naive Bayes Online in the
User # 5

Fig. A.67. SamKnn in the User # 5

Fig. A.68. Stochastic Gradient Des-
cendant in the User # 5
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A.1.5.2 Kappa

Fig. A.69. Kappa metric of the Multi-
label Adaptative Hoeffding Tree in the
User # 5

Fig. A.70. Kappa metric of the Naive
Bayes Online in the User # 5

Fig. A.71. Kappa metric of the
SamKNN in the User # 5

Fig. A.72. Kappa metric of the Sto-
chastic Gradient Descendant in the User
# 5



A.1 Results for Each User 141

A.1.5.3 Recall

Fig. A.73. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
# 5

Fig. A.74. Recall of the Naive Bayes
Online in the User # 5

Fig. A.75. Recall of the SamKnn in
the User # 5

Fig. A.76. Recall of the Stochastic
Gradient Descendant in the User # 5
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A.1.5.4 Evaluation time (cpu seconds)

Fig. A.77. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User # 5

Fig. A.78. Evaluation time of the
Naive Bayes Online in the User # 5

Fig. A.79. Evaluation time of the
SamKnn in the User # 5

Fig. A.80. Evaluation time of the Sto-
chastic Gradient Descendant in the User
# 5
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A.1.6 User # 6

A.1.6.1 Accuracy

Fig. A.81. Accuracy of the Multi-label
Adaptative Hoeffding Tree in the User
# 6

Fig. A.82. Accuracy of the Naive Bayes
Online

Fig. A.83. Accuracy of the SamKnn in
the User # 6

Fig. A.84. Accuracy of the Stochastic
Gradient Descendant in the User # 6
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A.1.6.2 Kappa

Fig. A.85. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
# 6

Fig. A.86. Kappa of the Naive Bayes
Online in the User # 6

Fig. A.87. Kappa of the SamKnn in
the User # 6

Fig. A.88. Kappa of the Stochastic
Gradient Descendant in the User # 6
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A.1.6.3 Recall

Fig. A.89. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
# 6

Fig. A.90. Recall of the Naive Bayes
Online in the User # 6

Fig. A.91. Recall of the SamKnn in
the User # 6

Fig. A.92. Recall of the Stochastic
Gradient Descendant in the User # 6
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A.1.6.4 Evaluation time (cpu seconds)

Fig. A.93. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User # 6

Fig. A.94. Evaluation time of the
Naive Bayes Online in the User # 6

Fig. A.95. Evaluation time of the
SamKnn in the User # 6

Fig. A.96. Evaluation time of the Sto-
chastic Gradient Descendant in the User
# 6
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A.1.7 User # 7

A.1.7.1 Accuracy

Fig. A.97. Accuracy of the Multi-label
Adaptative Hoeffding Tree in the User
# 7

Fig. A.98. Accuracy of the Naive Bayes
Online in the User # 7

Fig. A.99. Accuracy of the SamKnn in
the User #7

Fig. A.100. Accuracy of the Stochastic
Gradient Descendant in the User #7
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A.1.7.2 Kappa

Fig. A.101. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
#7

Fig. A.102. Kappa of the Naive Bayes
Online in the User #7

Fig. A.103. Kappa of the SamKnn in
the User #7

Fig. A.104. Kappa of the Stochastic
Gradient Descendant in the User #7
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A.1.7.3 Recall

Fig. A.105. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
#7

Fig. A.106. Recall of the Naive Bayes
Online in the User #7

Fig. A.107. Recall of the SamKnn in
the User #7

Fig. A.108. Recall of the Stochastic
Gradient Descendant in the User #7
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A.1.7.4 Evaluation time (cpu seconds)

Fig. A.109. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User #7

Fig. A.110. Evaluation time of the
Naive Bayes Online in the User #7

Fig. A.111. Evaluation time of the
SamKnn in the User #7

Fig. A.112. Evaluation time of the Sto-
chastic Gradient Descendant in the User
#7
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A.1.8 User #8

A.1.8.1 Accuracy

Fig. A.113. Accuracy of the Multi-
label Adaptative Hoeffding Tree in the
User #8

Fig. A.114. Accuracy of the Naive
Bayes Online in the User #8

Fig. A.115. Accuracy of the SamKnn
in the User #8

Fig. A.116. Accuracy of the Stochastic
Gradient Descendant in the User #8
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A.1.8.2 Kappa

Fig. A.117. Kappa of the Multi-label
Adaptative Hoeffding Tree in the User
#8

Fig. A.118. Kappa of the Naive Bayes
Online in the User #8

Fig. A.119. Kappa of the SamKnn in
the User #8

Fig. A.120. Kappa of the Stochastic
Gradient Descendant in the User #8
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A.1.8.3 Recall

Fig. A.121. Recall of the Multi-label
Adaptative Hoeffding Tree in the User
#8

Fig. A.122. Recall of the Naive Bayes
Online in the User #8

Fig. A.123. Recall of SamKnn in the
User #8

Fig. A.124. Recall of the Stochastic
Gradient Descendant in the User #8
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A.1.8.4 Evaluation time (cpu seconds)

Fig. A.125. Evaluation time of the
Multi-label Adaptative Hoeffding Tree
in the User #8

Fig. A.126. Evaluation time of the
Naive Bayes Online in the User #8

Fig. A.127. Evaluation time of
SamKnn in the User #8

Fig. A.128. Evaluation time of the Sto-
chastic Gradient Descendant in the User
#8
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ANNEX A -- Wekaclassifier Package

Wekaclassifier is a meta-classifier to use classifiers from WEKA API. Figure A.1 shows a

example of workflow of a model.

Wi W W

T T T

Fig. A.1. Workflow of a model built by WekaClassifier.

WEKAClassifier builds a model of W instances every T instances only for non incre-

mental methods (In our study, all models are not incremental). For incremental methods,

WEKAclassifier is trained for every instance. In Wi, the value i means the size of first

Window for training learner. The implementations is available at GitHub1.

1https://github.com/Waikato/moa/blob/master/moa/src/main/java/moa/classifiers/meta/
WEKAClassifier.java

https://github.com/Waikato/moa/blob/master/moa/src/main/java/moa/classifiers/meta/WEKAClassifier.java
https://github.com/Waikato/moa/blob/master/moa/src/main/java/moa/classifiers/meta/WEKAClassifier.java

