
UNIVERSIDADE FEDERAL FLUMINENSE

ALAN LIRA NUNES

OPTIMIZING COMPUTATIONAL COSTS
FOR MAPREDUCE-LIKE SPARK
APPLICATIONS ON THE CLOUD

NITERÓI

2022

ALAN LIRA NUNES

OPTIMIZING COMPUTATIONAL COSTS
FOR MAPREDUCE-LIKE SPARK
APPLICATIONS ON THE CLOUD

Master’s dissertation presented to the Grad-
uate Program in Computing at Universidade
Federal Fluminense as a partial requirement
for obtaining the Master’s Degree in Com-
puting. Concentration area: Computer Sci-
ence.

Advisor:
LÚCIA MARIA DE ASSUMPÇÃO DRUMMOND

Co-advisor:
MARIA CRISTINA SILVA BOERES

NITERÓI

2022

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

N972o Nunes, Alan Lira
 Optimizing Computational Costs for MapReduce-Like Spark
Applications on the Cloud / Alan Lira Nunes ; Lúcia Maria de
Assumpção Drummond, orientadora ; Maria Cristina Silva
Boeres, coorientadora. Niterói, 2022.
 119 f. : il.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2022.

DOI: http://dx.doi.org/10.22409/PGC.2022.m.15437839707

 1. Computação em nuvem. 2. Otimização (Computação). 3.
Tolerância a falha (Computação). 4. Computação paralela e
distribuída. 5. Produção intelectual. I. Drummond, Lúcia
Maria de Assumpção, orientadora. II. Boeres, Maria Cristina
Silva, coorientadora. III. Universidade Federal Fluminense.
Instituto de Computação. IV. Título.

 CDD -

ALAN LIRA NUNES

OPTIMIZING COMPUTATIONAL COSTS FOR
MAPREDUCE-LIKE SPARK APPLICATIONS ON THE CLOUD

Master’s dissertation presented to the Grad-
uate Program in Computing at Universidade
Federal Fluminense as a partial requirement
for obtaining the Master’s Degree in Com-
puting. Concentration area: Computer Sci-
ence.

Approved in July 2022.

EXAMINATION BOARD

Prof. D.Sc. Lúcia Maria de Assumpção Drummond – Advisor, UFF

Prof. D.Sc. Maria Cristina Silva Boeres – Co-advisor, UFF

Prof. D.Sc. Daniel Cardoso Moraes de Oliveira, UFF

Prof. D.Sc. Claude Martin Tadonki, MINES ParisTech-PSL / CRI

Niterói
2022

To the Incarnate Word, Jesus Christ,

Dear of the Eternal Father,

Blessed of the Lord,

Author of Life,

King of Glory,

World Savior,

Desire of the nations,

Desire of the Eternal Hills,

Heavenly Bread,

Universal Judge,

Mediator between God and men,

Master of Virtue,

Lamb without blemish,

Man of pain,

Eternal Priest,

Victim of Love,

Source of Blessings,

Good Shepherd,

Lover of souls,

dedicates this work Alan, sinner.

Acknowledgment

«Sine me nihil potestis facere.» — Without me you can do nothing. (Jo XV, 5)

And though I have been unfaithful and negligent, I cannot be ungrateful and fail

to acknowledge Your Goodness and extol Your Magnificence, beloved God! I adore You

from the abyss of my nothingness. I give You thanks for all the benefits You have done

me. What could You find in me to love me so excessively, even when my heart, stained

with a thousand faults, had for You nothing but indifference and hardness? O Jesus, may

songs of praise be sung to Your Most Generous Heart, which has triumphed over death

and hell, deserving, in truth, all the Glory. Give me strength and courage so that, after

having fought and won here on earth, I may have the happiness of triumphing with You

in Heaven.

Dear professors Lúcia Drummond and Cristina Boeres, I thank you immensely for all

the guidance, patience, incentives, corrections, and learning. I hope I accomplished at

least half of what you planned for me, and for everything I have failed to fulfill due to my

limitations, I sincerely apologize. I’d like to express my gratitude for the journey so far,

and I can’t wait for the incoming adventures and challenges.

I thank professors Daniel de Oliveira, Alba Melo, and Claude Tadonki for the oppor-

tunity to work together. Your ideas and suggestions were of great value for this work.

I thank my beloved father Renato and my beloved mother Neide for all their love,

incentive, and understanding. I recognize how much you fought and still fight for me.

I thank my beloved brother Renan for all the incentives and for always being ready

to help me.

I thank my beloved girlfriend Thamyres for all the love, patience, and affection.

I thank the C+HPC Lab research team at UFF for the opportunities and resources.

I thank CAPES for granting a scholarship for this work to be developed.

I thank CNPq and AWS for the BioCloud Project, which made this work possible.

Ce qui Te reste, ce qu’on refuse,

donnez-moi-ž’en partage, combats et courage, ô mon Dieu.

Ce qu’on rejette, ce qu’on ñ’accepté,

donnez-moi-ž’en partage, Ta croix et courage d’la porter.

Que je sois sûr de vivre à souffrir,

pour défendre la Foi, pour Ton amour mourir, ô mon Dieu.

Que je sois sûr de vivre en danger,

d’embrasser Ta croix, et dans Ta paix mourir, ô mon Dieu.

Non pas douceur, non les honneurs,

donnez-moi-ž’en partage, amers outrages des menteurs.

Non pas succès, non être aimé,

donnez-moi-ž’en partage, la haine et la rage des mauvais.

À moi, mon Dieu, la croix du mépris,

que je reste tout seul dans le plus grand oubli, ô mon Dieu.

À moi Seigneur, la gloire d’être haï,

d’embrasser Ta croix, et dans Ta paix mourir, ô mon Dieu.

Moi je ne veux ni paix ni l’or,

donnez-moi-ž’en partage, la guerre et l’orage, ô mon Dieu.

Je te demande d’un jet Ta croix,

car je n’ai le courage de deux fois la demander.

Que je sois sûr qu’Elle soit mon trésor,

d’embrasser Ta croix, avec ardent amour, sans retour.

Que je sois sûr d’avoir le plus dur,

d’embrasser Ta croix, et dans Ta paix mourir, ô mon Dieu.

(FEDELI, Orlando. Prière du Partage. São Paulo, 11/19/1995 A.D.)

Resumo

Computação em nuvem é atualmente uma das principais opções no cenário de infraestru-

tura computacional. Além de vantagens como o modelo de fatura pay-per-use e elasti-

cidade de recursos, há vantagens técnicas quanto à heterogeneidade e configuração em

larga escala. No modelo Infrastructure as a Service (IaaS), uma gama de recursos físicos

e virtuais está disponível para alocação dinâmica, de acordo com a demanda do cliente,

muitas vezes parecendo ilimitada em termos de tempo ou quantidade. Além disso, como

alternativa ao modelo padrão de precificação de máquinas virtuais (VMs), os provedores

de nuvem oferecem preços com desconto para o aluguel de VMs preemptivas, que podem

ser revogadas a qualquer momento pelo provedor. Assim, aplicações tolerantes a falhas

podem se beneficiar deste mercado preemptivo visando a redução de custos monetários.

Ao lado da necessidade clássica de desempenho (e.g., tempo, espaço, e energia), há um

interesse no custo financeiro que pode vir de restrições orçamentárias. Com base nas con-

siderações de escalabilidade e no modelo de preços das nuvens públicas tradicionais, uma

saída esperada para a estratégia de otimização poderia ser a configuração de VMs mais

adequada para executar uma carga de trabalho específica. Neste trabalho, é desenvolvida

uma aplicação Spark baseada no modelo MapReduce, denominada Diff Sequences Spark,

que realiza comparações de sequências biológicas e identifica as ocorrências de caracteres

de nucleotídeos não correspondentes. Tal aplicação é executada considerando compara-

ções de sequências de coronavírus SARS-CoV-2, que é o vírus responsável pela doença

COVID-19, usando o serviço de nuvem AWS EC2 da Amazon em instâncias de VM on-

demand (padrão) e spot (preemptiva). Sob a perspectiva de otimizações de tempo de

execução e custo monetário, é proposta uma adaptação de um modelo de custo de exe-

cução extraído da literatura, cuja avaliação experimental obteve baixas taxas de erro. Os

resultados experimentais usando tais otimizações superaram os cenários onde um usuário

de nuvem inexperiente selecionaria VMs sem qualquer critério razoável. Por fim, foram

alcançados reduções de custos monetários ao usar instâncias spot em comparação com

suas respectivas opções on-demand, mesmo em cenários com várias revogações de spot

Workers em um cluster Spark.

Palavras-chave: Apache Spark; MapReduce; Computação em nuvem; Otimização.

Abstract

Cloud computing is currently one of the prime choices in the computing infrastructure

landscape. In addition to advantages such as the pay-per-use bill model and resource elas-

ticity, there are technical benefits regarding heterogeneity and large-scale configuration.

In the Infrastructure as a Service (IaaS) model, a range of physical and virtual resources

is available for dynamic allocation, according to the customer demand, often appearing

limitless in terms of time or quantity. Besides, as an alternative to the standard virtual

machines (VMs) pricing model, the cloud providers offer discounted prices for the rental of

preemptive VMs, which can be revoked anytime by the provider. Therefore, fault-tolerant

applications may benefit from this preemptive market seeking monetary cost reductions.

Alongside the classical need for performance (e.g., time, space, and energy), there is an in-

terest in the financial cost that might come from budget constraints. Based on scalability

considerations and the pricing model of traditional public clouds, an expected output for

the optimization strategy could be the most suitable configuration of VMs to run a spe-

cific workload. In this work, is developed an Spark application based on the MapReduce

model, named Diff Sequences Spark, which performs comparisons of biological sequences

and identifies the occurrences of mismatching nucleotide characters. Such an application

runs considering the SARS-CoV-2 coronavirus sequence comparisons, which is the virus

responsible for the COVID-19 disease, using Amazon’s AWS EC2 cloud service in both

on-demand (standard) and spot (preemptive) VM instances. From the perspective of ex-

ecution time and monetary cost optimizations, the adaptation of an execution cost model

extracted from the literature is provided, whose experimental evaluation obtained low

error rates. Experimental results using such optimizations outperformed scenarios where

an inexperienced cloud user would select VMs without any reasonable criteria. Finally,

reduced monetary costs were achieved when using spot instances compared to their re-

spective on-demand options, even in scenarios with multiple spot Workers revocations on

a Spark cluster.

Keywords: Apache Spark; MapReduce; Cloud computing; Optimization.

List of Figures

1 Spark ’s basic distributed architecture. 22

2 Cloud computing ’s classic services stack. 25

3 EMR’s main pricing components for some EC2 instances types. 33

4 Diff Sequences Spark application’s execution flow. 56

5 Comparisons results obtained with the DIFF1 + MW approach. 61

6 Comparisons results obtained with the DIFFopt + MW approach. 61

List of Tables

1 Related work. 66

2 Diff Sequences Spark ’s prediction model training set. 79

3 Diff Sequences Spark ’s prediction model testing set. 82

4 Diff Sequences Spark ’s optimization problems notations. 86

5 Diff Sequences Spark ’s runtime cost optimization results. 90

6 Diff Sequences Spark ’s monetary cost optimization results. 91

7 Diff Sequences Spark ’s on-demand workers optimization results. 92

8 Diff Sequences Spark ’s spot workers no revocation optimization results. . . 93

9 Diff Sequences Spark ’s spot workers revocation scenarios results. 93

10 Evaluation of the Da’s estimation function. 108

11 Diff Sequences Spark ’s application-level optimization results. 111

List of Abbreviations and Acronyms

AIMMS Advanced Interactive Multidimensional Modeling System

AMPL A Mathematical Programming Language

API Application Programming Interface

ARM Advanced RISC Machine

AST Abstract Syntax Tree

AWS Amazon Web Services

BFD Best Fit Decreasing

CaaS Compute as a Service

CLI Command-Line Interface

CoV Coronaviruses

CPU Central Processing Unit

CRESP Cloud RESource Provisioning

CSV Comma-Separated Values

DAG Directed Acyclic Graph

DNA Deoxyribonucleic Acid

DSA Distributed Sequence Alignment

DSL Domain-Specific Language

DW Distributed Write

EBS Elastic Block Store

List of Abbreviations and Acronyms x

EC2 Elastic Compute Cloud

EMR Elastic MapReduce

FIFO First In, First Out

GAMS General Algebraic Modeling System

GiB Gibibyte

GISAID Global Initiative on Sharing All Influenza Data

GPU Graphics Processing Unit

HaaS Hardware as a Service

HANA High-performance ANalytic Appliance

HDFS Hadoop Distributed File System

HP Hewlett-Packard

HPE Hewlett-Packard Enterprise

I/O Input/Output

IaaS Infrastructure as a Service

IBM International Business Machines

ILP Integer Linear Programming

IT Information Technology

JSON JavaScript Object Notation

JVM Java Virtual Machine

KB Kilobyte

KKT Karush-Kuhn-Tucker

LAN Local Area Network

LP Linear Programming

List of Abbreviations and Acronyms xi

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MapR-FS MapR File System

MERS Middle East Respiratory Syndrome

MILP Mixed-Integer Linear Programming

MIQCP Mixed-Integer Quadratically Constrained Programming

MIQP Mixed-Integer Quadratic Programming

MPL Mathematical Programming Language

MPLS Multi-Protocol Label Switching

MRA Multiple Regression Analysis

MRD Most Reference Distance

MSE Mean Square Error

MW Merged Write

NaaS Network as a Service

NCBI National Center for Biotechnology Information

NFSv3 Network File System Version 3

NNLS Non-Negative Least Squares

OS Operating System

PaaS Platform as a Service

QCP Quadratically Constrained Programming

QP Quadratic Programming

R-Squared Coefficient of Determination

RAM Random Access Memory

List of Abbreviations and Acronyms xii

RDBMS Relational Database Management System

RDD Resilient Distributed Dataset

RMSE Root Mean Square Error

RNA Ribonucleic Acid

S3 Simple Storage Service

SaaS Software as a Service

SARS Severe Acute Respiratory Syndrome

SAS Statistical Analysis System

SD-WAN Software-Defined Wide Area Network

SIMD Single Instruction, Multiple Data

SLA Service-Level Agreement

SQL Structured Query Language

StaaS Storage as a Service

SW Smith-Waterman

TXT Text

USD United States Dollar

vCPU Virtual Central Processing Unit

VM Virtual Machine

VPN Virtual Private Network

XML Extensible Markup Language

YARN Yet Another Resource Negotiator

Contents

1 Introduction 12

1.1 Motivation . 12

1.2 Goals . 14

1.3 Contributions . 14

1.4 Organization . 15

2 Background 16

2.1 Apache Spark . 16

2.1.1 Basic Concepts and Features . 16

2.1.2 Resilient Distributed Datasets . 18

2.1.3 DataFrames . 19

2.1.4 Directed Acyclic Graphs . 20

2.1.5 Deployment Modes . 21

2.2 Cloud Computing . 23

2.2.1 Definition and Characteristics . 23

2.2.2 Deployment Modes . 24

2.2.3 Service Layers . 24

2.2.4 Amazon EC2 . 29

2.2.4.1 Typical Spark Cluster Deployment Alternatives on AWS . 32

2.3 Optimization Problems . 33

2.3.1 Definition . 33

2.3.2 Forms of the Linear Programming Problem 35

Contents xiv

2.3.3 Integer Linear Programming Problem 36

2.3.4 Optimization Methods . 36

2.3.5 Gurobi Optimizer . 39

2.4 Multivariate Analysis . 39

2.4.1 Definition and Basic Concepts . 40

2.4.2 Multivariate Techniques Types . 41

2.4.3 Multiple Regression Analysis . 43

2.4.4 Least Squares Estimation . 45

2.4.5 Measures of Predictive Performance for Regression Models 47

3 Biological Sequences Comparison 49

3.1 Problem Definition . 49

3.1.1 Major Types and Basic Characteristics of Biomolecules 49

3.1.2 Nucleotide Sequence . 50

3.1.3 Biological Sequences Analysis . 51

3.2 Spark Implementation . 52

3.2.1 Optimizing and Estimating the Number of Sequences Comparisons 52

3.2.2 Diff Sequences Spark Application’s Execution Flow 55

3.2.3 Illustrative Examples of the Comparisons Results 60

3.2.4 Application-Level Optimization Proposals to Reduce the Runtime . 61

3.3 SARS-CoV-2 Sequences Comparisons: A Study Case 64

3.3.1 Classification and Basic Characteristics of Coronaviruses 64

3.3.2 NCBI’s Viral Sequences Data Repository 65

3.3.3 SARS-CoV-2 Nucleotide Sequences Comparisons on AWS EC2 . . . 65

4 Related Work 66

5 Building the Diff Sequences Spark Application’s Runtime Prediction Model 72

Contents xv

5.1 Review of the CRESP ’s MapReduce Time Cost Model 72

5.1.1 Initial Assumptions . 72

5.1.2 Cost of the Map and Reduce Tasks 73

5.1.3 CRESP ’s Runtime Prediction Model 75

5.2 Diff Sequences Spark ’s Runtime Prediction Model 77

5.2.1 Initial Assumptions . 77

5.2.2 Runtime Prediction Model . 77

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 78

5.3.1 Experimental Environment and Application-Related Settings 78

5.3.2 Training the Prediction Model . 79

5.3.3 Predicting with the Trained Model 82

6 Optimizing the VMs Allocation on AWS EC2 for Diff Sequences Spark Application 84

6.1 Initial Assumptions . 84

6.2 Diff Sequences Spark ’s Monetary Cost Function 85

6.3 Optimization Problems for Diff Sequences Spark 85

6.3.1 Runtime Optimization Subject to Budget Constraint 86

6.3.2 Monetary Cost Optimization Subject to Deadline Constraint 87

7 Experimental Results on AWS EC2 88

7.1 Evaluation of the Diff Sequences Spark ’s Cost Optimizer 88

7.1.1 Experimental Environment and Application-Related Settings 88

7.1.2 Minimizing the Diff Sequences Spark Application’s Runtime Cost . 89

7.1.3 Minimizing the Diff Sequences Spark Application’s Monetary Cost . 89

7.2 Diff Sequences Spark ’s Execution With Spot Instances 89

7.2.1 Experimental Environment and Application-Related Settings 89

7.2.2 Costs of Rental Spot Instances Compared to On-demand Instances 92

Contents xvi

7.2.3 Spot Instances Revocation Scenarios 93

8 Concluding Remarks and Future Direction 94

8.1 Conclusion . 94

8.2 Publications . 95

8.3 Open Issues and Future Works . 96

REFERENCES 98

Appendix A — Da’s Estimation Function Evaluation 107

Appendix B — Diff Sequences Spark’s Application-Level Optimizations Evaluation 109

1 Introduction

1.1 Motivation

Over the last decades, the produced data volume reached an unprecedented level in

academia and industry. According to Hey et al. (HEY et al., 2009), scientific advances will

be increasingly driven by advanced computing capabilities, such as Databases and Cloud

Computing. These resources will help the researchers manipulate and explore massive

datasets, i.e., obtain results through intensive computing for large volumes of data.

In 2020 each person on Earth produced about 1.7 MB of data every second (DOMO,

2020). Although this volume of data brings many analysis opportunities, e.g., to discover

hidden patterns, correlations, and preferences, it also leads to complex challenges, e.g.,

how to process and query such volume of data from different sources and types and

extract knowledge in a suitable time. The well-known and widely used data management

approaches such as Relational Database Management Systems (RDBMS) usually do not

scale for this heterogeneous volume of data (HU et al., 2014).

In recent years the database community has developed a series of solutions for large-

scale data management. For instance, for the NoSQL approach, MonetDB (BONCZ et

al., 2006), MongoDB (MAKRIS et al., 2021), and Polystore systems (KRANAS et al.,

2021) are known solutions. However, the most successful approaches are the Big Data

frameworks, such as Apache Hadoop (APACHE, 2022a) and Apache Spark (ZAHARIA

et al., 2016). Spark improves the performance of applications by automatically exploiting

parallelism and accomplishing in-memory data movement, in contrast to Hadoop, whose

intermediate operations write to the storage volume. Besides, Spark allows users to de-

velop their Big Data analytical applications without concerning the parallel processing

environment complexity (PERERA et al., 2016).

1.1 Motivation 13

Consider a real-world problem of bioinformatics: the biological sequences comparison.

Nowadays, the SARS-CoV-2 coronavirus (CSC, 2020) sequence comparisons analysis is of

great interest, as it allows understanding the behavior of the COVID-19 disease. However,

millions of SARS-CoV-2 coronavirus sequences are available in public genomic databases,

e.g., NCBI (NCBI, 2022a) and GISAID (GISAID, 2022). Commonly, the biological se-

quence comparisons occur using an alignment algorithm, but sometimes this approach is

unwanted. For instance, Lau et al. (LAU et al., 2021) developed a rapid computational

solution to identify the highly conserved regions of SARS-CoV-2 coronavirus sequences to

index mutations across thousands of viral genomes without using any alignment method.

Regardless of whether or not alignment methods are in use, few bioinformatics profession-

als have enough local computing power to perform a large number of biological sequence

comparisons, which characterize a Big Data problem. Thus, the Spark framework is a

reasonable choice to process that volume of data, as it can run on a single computer or

a cluster of computers. In general, the Cloud environments are used to deploy a Spark

Cluster. (YAN et al., 2016).

In Cloud computing, a range of physical and virtual resources can be dynamically

allocated according to customer demand, often appearing limitless in terms of time or

quantity. Of the deployment modes, Public Clouds are the most popular, with Amazon

Web Services (33%), Microsoft Azure (21%), and Google Cloud (8%) the three most used

service providers in the first quarter of 2022 (CHANNELE2E, 2022). Amazon Web Ser-

vices (AWS) is considered the largest Cloud computing platform, spanning 84 availability

zones in 26 geographic regions worldwide (AMAZON, 2022a) and offering 227 categories

of services (AMAZON, 2022b), such as Amazon Elastic Compute Cloud (EC2) (AMA-

ZON, 2022c). Besides the advantages of rapid provisioning of resources and significant

reduction of the operational cost compared to dedicated infrastructures, Cloud providers

also offer discounted prices for renting preemptible VMs. For example, the Spot market

instances at AWS EC2 can be up to 90% cheaper than their on-demand counterparts.

Although the above features represent a step forward, the current Cloud solution that

promotes the usage of Spark is the On-demand Managed Big Data Cluster service. It is

a Platform as a Service (PaaS) model that follows the pay-as-you-go pricing policy, e.g.,

Azure HDinsight, AWS EMR, and Google Dataproc. Despite that, one key issue is how

to select an optimized configuration of parameters, both at Spark and Cloud levels, to

improve the application execution while not overspending financial resources. The Cloud -

native PaaS solutions can scale the number of virtual machines (VAQUERO et al., 2013)

but do not take into account the characteristics of a specific Spark application.

1.2 Goals 14

Different Spark applications may present diverse execution behaviors. So, the initial

provisioning resources setting for a given Spark application on Cloud is still an open

problem. A poor choice of parameters may significantly degrade the execution and lead

to high financial costs that can make the application execution unfeasible. Many works

propose solutions for optimizing the parameters at the Spark level (DE OLIVEIRA et al.,

2021; ARMBRUST et al., 2015a; BOEHM et al., 2016). However, just a few (CHEN

et al., 2014; ZHAO et al., 2015) focus on the initial provisioning of the environmental

resources as a possible way of optimizing the execution of the Spark application.

1.2 Goals

One way to optimize the execution of a Spark application is to find the “best” estimation

of resources, e.g., the number of CPU cores of VM s in the Spark Cluster. Through the aid

of a prediction model that estimates the runtime of a workload under certain conditions,

supposed to be possible to estimate the necessary amount of resources to deploy in the

Cloud and avoid unnecessary deployment before the beginning of the Spark application

execution. It is worth mentioning that the resource selection may be tedious and error-

prone if performed manually.

Having in mind the efficient run of MapReduce-like Spark applications on the Cloud,

the main goal of this dissertation is to propose the formulation of the following optimiza-

tion problems:

a. Runtime optimization subject to a budget constraint; and

b. Monetary cost optimization subject to a deadline constraint.

1.3 Contributions

The main contributions of this dissertation are:

I. Alternative proposals to run large-scale biological sequences comparisons using the

Diff Sequences Spark application, a MapReduce-like Spark application that high-

lights the mismatching nucleotide characters occurrences without the use of conven-

tional methods for alignment of biological sequences;

1.4 Organization 15

II. Practical directions to achieve a more stable and efficient Spark application execu-

tion and to avoid the out-of-memory error due to insufficient resources or the task

scheduling bottleneck caused by a too short or too large amount of data processed;

III. A predictive model based on Multiple Regression Analysis (MRA) to assist the user

in defining the ideal number of computational resources to be deployed in the Cloud ;

IV. Mathematical formulations aiming to minimize the runtime and financial costs of

MapReduce-like Spark applications in the Cloud ;

V. Analysis of spot instances revocation scenarios, in terms of runtime and financial

cost, when running the Diff Sequences Spark application in a Spark Cluster formed

on AWS EC2 ; and

VI. Comprehensive evaluation of the optimization approaches.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 exposes the basic

features of Apache Spark, the root aspects of Cloud Computing, and, in particular, of the

Amazon Public Cloud ’s Infrastructure as a Service solution (known as AWS EC2), the

essential concepts and solving methods for Optimization Problems, and the principles and

techniques of Multivariate Analysis. Chapter 3 presents, in detail, the MapReduce-like

Spark application, named Diff Sequences Spark, implemented for this study. Chapter 4

introduces the related work. Chapters 5 and 6 depict respectively the runtime prediction

model and the mathematical model to optimize the runtime and financial costs of the Diff

Sequences Spark application execution on AWS EC2. Chapter 7 presents the execution

results obtained for the Diff Sequences Spark application with the optimized parameters

compared to their arbitrary selection and the execution results with various spot instances

revocation scenarios on AWS EC2. Finally, Chapter 8 expounds on the conclusions and

future directions.

2 Background

2.1 Apache Spark

This section presents the basic concepts, main features, and deployment modes of Apache

Spark, a unified open-source engine for distributed data processing.

2.1.1 Basic Concepts and Features

Apache Spark (APACHE, 2022b) is a framework designed for optimizing different types of

workloads that vary from batch to iterative parallel operations over large datasets. Spark

executes the applications by chaining a series of operations, as described by Zaharia et

al. (ZAHARIA et al., 2016), and tries to avoid the significant I/O overheads found in

alternative big data frameworks, e.g., Apache Hadoop. The main advantage of Spark is

that it improves the performance of applications by accomplishing, whenever possible,

in-memory data movements, which avoids reading data from and writing results back to

files.

A Spark application is composed of a Driver and Workers. The Driver is a process

that controls the execution. Workers are nodes where the data are processed, and each

Worker may have several associated Executors processes, which in turn execute Tasks

associated with a specific Job. The number of Executors in a Worker is commonly defined

by the user, and some approaches do that automatically, as suggested by De Oliveira

et al. (DE OLIVEIRA et al., 2021) and by Kulkarni & Ramanathan (KULKARNI;

RAMANATHAN, 2022). However, it is not a simple task since the choice of parameters

depends on the computing environment chosen to execute the Spark application.

One key advantage of Spark in comparison to other big data frameworks is its in-

memory structures, such as Resilient Distributed Datasets (RDDs), presented by Zaharia

et al. (ZAHARIA et al., 2012b), and DataFrames, presented by Armbrust et al. (ARM-

BRUST et al., 2015b). Both are in-memory collections of partitioned data instances

2.1 Apache Spark 17

that can be processed in parallel. While RDDs are sets of objects representing data,

DataFrames are collections of distributed data with the same named columns scheme,

i.e., DataFrames act as tables in relational databases like PostgreSQL and Oracle.

Besides the advantages of in-memory data processing, Spark also provides fault toler-

ance mechanisms. Two types of failures may occur in the context of a Spark application:

i.) Driver failure and ii.) Worker failure.

i.) In the case of a Driver failure, the SparkContext object (i.e., the entry point to

a Spark application) becomes unavailable, and all Executors lose their in-memory

data. By defining a replicated Driver it can be solved, but it also adds some overhead

to the application;

ii.) In the case of a Worker failure, all Executors associated with that Worker are lost,

together will all their in-memory data. However, the data are commonly replicated

to other Worker nodes, and each RDD has the capability of handling Worker failures.

It is possible since Spark creates a logical execution plan (i.e., lineage graph) for

all the Tasks executed in the context of an application. For example, if a Worker

fails during the application execution and an RDD is lost, then Spark can apply the

computation originally done on that Worker following the lineage graph.

Spark also offers a set of libraries that can be seamlessly combined to achieve large-

scale data processing complex capabilities, such as:

• Spark SQL for structured data processing, as proposed by Armbrust et al. (ARM-

BRUST et al., 2015b);

• Spark Streaming for real-time data stream processing, as proposed by Zaharia et al.

(ZAHARIA et al., 2012a);

• Spark MLlib for distributed model training using machine learning techniques, as

proposed by Meng et al. (MENG et al., 2016); and

• Spark GraphX for graphs and graph-parallel computation, as proposed by Xin et

al. (XIN et al., 2013).

2.1 Apache Spark 18

Spark provides an interactive shell tool (named spark-shell) for interactive data anal-

ysis and an API for self-contained applications, both available in various programming

languages (Scala, Java, Python, and R). The Spark applications can be executed in a

single computer, in an interconnected set of computers (i.e., in-house cluster), or a shared

on-demand computing resources delivered through the internet (i.e., cloud computing).

2.1.2 Resilient Distributed Datasets

Resilient Distributed Datasets (RDDs), the primary user-facing low-level API in Spark, are

immutable collections of data objects logically distributed among the Workers, allowing

them to be processed in parallel. RDDs can be created by:

i.) Parallelizing an existing data collection inside the Spark application; or

ii.) Referencing a dataset in an external storage system (e.g., Hadoop HDFS and Ama-

zon S3).

Due to their immutability, the result of processing an RDD can be a child RDD

(intermediate result) or data object output (e.g., write the final results to disk). In the

first case, the child RDD always points to its parent RDD, keeping a kinship reference,

i.e., lineage concept. Thus, Spark can track the entire RDDs lineage and provide a fault-

tolerant mechanism to recompute lost data in case of failures. RDDs can be cached on

memory (default), disk, or both, enabling data reuse and execution of partial checkpoints

during the data processing to avoid redundant computation.

In particular, RDDs are split into subsets, named Partitions, and distributed over the

Worker nodes. An RDD holds a reference to partition objects and each partition object

references a subset of the data. Partitions are assigned to Executors, and each is, by

default, loaded in RAM. The number of partitions of an RDD depends on the way it is

generated. Using the parallelize function to an existing data collection, Spark considers

the total number of Executors cores from all alive Workers in the cluster (also known

as default parallelism) and sets one partition per core. Using the read function to an

external dataset, Spark splits the input file into chunks and sets one partition per file

chunk, considering the file system’s default data block size where the input file is stored.

For instance, 128 MB data block size for HDFS.

2.1 Apache Spark 19

All the Spark operators are classified in Transformations and Actions. A Trans-

formation produces a new RDD from an existing one, whereas an Action enables the

modification of current datasets without generating new RDDs. Spark evaluates RDDs

lazily, i.e., it does not compute their result immediately. Instead, Spark registers that a

transformation is chained to an RDD and process it only when an action is invoked.

• Transformations can be classified as Narrow or Wide.

i.) Narrow transformations (e.g., map and filter) do not require rearranging data

between partitions because each partition of the parent RDD is used by at most

one partition of the child RDD, so they are stacked together and performed in

parallel over different partitions;

ii.) Wide transformations (e.g., join and reduceByKey), on the other hand, require

rearranging data between partitions since multiple child RDD partitions may

depend of each parent RDD partition (data dependency). Thus, Spark per-

forms a shuffle by moving data across the cluster with a new set of partitions.

• Actions (e.g., reduce, collect, and saveAsTextFile) are operations that trigger data

processing, previously defined by transformations, to produce result values instead

of RDDs.

2.1.3 DataFrames

DataFrames, the focal abstraction in Spark’s SQL API, are distributed collections of

rows with the same schema (i.e., typed columns that describe the structure of the data).

DataFrame is similar to a table in a relational database and to an RDD of Row objects

and can be manipulated similarly to RDDs. DataFrames can be created by:

i.) Converting an existing RDD within the Spark application;

ii.) Parallelizing an existing data collection within the Spark application; or

iii.) Referencing a dataset from an external storage system (e.g., Hadoop HDFS and

Amazon S3).

A Dataframe derived from a converted RDD will have the same amount of partitions

as the source RDD. For the remaining, the logic described for the RDDs creation is still

2.1 Apache Spark 20

applicable. Concerning the range of dataset sources available for the DataFrames creation,

it is possible to load structured data files (e.g., Avro, Parquet, and Kafka), semi-structured

data files (e.g., CSV, JSON, and XML), unstructured data files (e.g., TXT), and tables

(e.g., MySQL, DB2, Hive, and HBase).

DataFrames keep track of their schema and automatically store data in a columnar

format. It supports all relational operations like projection, join, filter, and aggregations

(e.g., select, join, where, and groupBy), using a domain-specific language (DSL) simi-

lar to R’s built-in data frames and pandas, which leads to more optimized execution.

DataFrames can be more convenient and efficient than Spark’s procedural API in many

situations, for example, when it is needed to compute multiple aggregates in one pass

using a SQL statement, a task hard to express in functional APIs.

DataFrames are also lazily evaluated, so each DataFrame object represents a logical

plan to compute a dataset, but no execution occurs until an output operation is invoked

(e.g., show and write.csv). Apart from the relational DSL, DataFrames can be registered

as temporary tables in the system catalog and queried using SQL so optimizations can

happen across SQL and the original DataFrame expressions.

The DataFrame operations build up an Abstract Syntax Tree (AST) of the relational

expression, which then goes through an extensible query optimizer named Catalyst. It

offers a general framework focused on optimizing the query processing with several sets of

rules that handle different phases of the query execution: analysis, logical optimization,

physical planning, and code generation.

2.1.4 Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) are logical representations of the workflow associated

with the steps of a given Spark application, where Vertices represents RDDs and Edges

the operations to be applied on RDDs.

When a Spark application is launched, the DAGScheduler translates the RDDs opera-

tions identified in the source code into a DAG whenever an action is called. Thus, a DAG

consists of all transformations performed over RDDs to reach a particular result. Each ac-

tion defined in the application spawns a Job composed of a Stages set. The DAGScheduler

implements stage-oriented scheduling, where each stage groups neighboring transforma-

tions that can be executed together in parallel, i.e., without rearranging data between

the partitions of an RDD. A new stage is created whenever a shuffle operation (i.e., a

2.1 Apache Spark 21

wide transformation) has to be executed. The Stages that are not interdependent may be

submitted to the cluster for concurrent execution if there are idle computing resources.

Thus, the DAGScheduler determines a minimal number of stages to execute the job. This

minimal Stages set is submitted as one TaskSet to the TaskScheduler, which is responsible

for assigning the Tasks (units of processing) to the Executors that belong to the Workers

nodes through the Spark Cluster Manager.

Spark adopts the data locality principle to execute tasks where the data is available,

reducing the costs associated with data transferring:

• Firstly it searches for PROCESS_LOCAL tasks, which are the ones launched in the

same Executor process (i.e., data and tasks located together);

• If not, it checks for NODE_LOCAL tasks that may be in different Executor pro-

cesses of the same Worker node;

• If not, it searches for RACK_LOCAL tasks, of which data and tasks are located in

different worker nodes, requiring data transferring through the network;

• Finally, it searches for ANY tasks, which are any pending tasks that may execute

in the target Worker.

2.1.5 Deployment Modes

Although Spark can run locally on one machine, it is essentially a distributed computa-

tional framework that allows building a scalable system for analytics over a large amount

of data using a computer cluster. Each Spark application is a user program built on the

Spark API, which consists of a set of Transformations and Actions. Once the application

is submitted to the cluster, the Driver program is spawned. The Driver is a Java Virtual

Machine (JVM) coordinator process responsible for executing the main function and cre-

ating the SparkContext object of a particular application. It can be launched in one of

the following modes: Client or Cluster.

In the Client Deploy Mode, the Driver is deployed locally as an external client

to the cluster (local machine). This mode allows the user to monitor the status of a

particular application as its output is attached to the client’s command-line interface

(CLI), which is suitable for debugging or testing purposes. The application fails in case

of a communication problem with the client since the Driver resides outside the cluster.

2.1 Apache Spark 22

In the Cluster Deploy Mode, the Driver is deployed inside the cluster. This mode

is suitable for production-ready applications with reliable performance and behavior. It

minimizes the communication latency between the Driver and Executors since the appli-

cation is not submitted from a machine physically far from the cluster. It is also advised

for a long-term execution when monitoring is not needed (Fire-and-forget approach).

Figure 1 illustrates Spark’s basic distributed architecture, which is described below.

– The SparkContext connects to the Cluster Manager, which is responsible for the

resources allocation, and grants exclusive Executors for a particular application;

– Executors are JVM processes running in Workers (cluster nodes) that execute Tasks

and may store data in memory (local cache) or disk. The number of Executors can

be statically allocated (at the beginning of the application) or dynamically allocated

(through the Dynamic Resource Allocation mechanism, based on the workload);

– Tasks are processing units (i.e., operations over a specific Partition of the RDD)

that are serialized and sent by the SparkContext to the Executors. Executors are in

charge of the deserialization and the execution of each task. The serialization process

transforms an object (combination of variables, functions, and data structures with

state and behavior) into a format containing a series of bytes that can be transmitted

faster over the network and reconstructed later. The Tasks are assigned to the idle

Executors, which execute them in parallel according to the number of cores.

Figure 1: Spark ’s basic distributed architecture.

2.2 Cloud Computing 23

This architecture isolates concurrent application executions in the cluster, as each

Driver schedules its set of Tasks to its Executor processes set. The SparkContext is

available throughout the lifetime of the application.

The classes of Cluster Manager supported by Spark for distributed environments are:

i.) Standalone, a simple cluster manager already included in Spark;

ii.) Apache Mesos (HINDMAN et al., 2011), a general cluster manager that can also

run Hadoop MapReduce and service applications;

iii.) Hadoop YARN (KARANASOS et al., 2018), the resource manager, introduced

in Hadoop 2.0, which splits up the functionalities of resource management and job

scheduling/monitoring into separate daemons;

iv.) Kubernetes (BERNSTEIN, 2014), an open-source system to orchestrate container-

ized applications.

2.2 Cloud Computing

This section presents the root aspects of Cloud Computing, aiming at the service and

deployment models with their advantages and concerns.

2.2.1 Definition and Characteristics

According to Foster & Gannon (FOSTER; GANNON, 2017), Cloud Computing is an on-

demand computing and storage access model that delivers, through the internet, a larger

capacity than is available locally. Accessing this capacity in the cloud may be cheaper,

faster, and more convenient than acquiring and operating own computing and storage

systems.

As a self-service model, the customer allocates computing resources automatically

without requiring human interaction with the provider. The resources can be accessed

via heterogeneous client platforms (such as workstations, laptops, and mobile phones)

and are combined to serve multiple consumers at once due to the multi-tenant scheme

used by the providers. Physical and virtual resources range can be dynamically assigned

to customer needs. Generally, there is no control or knowledge over the actual location of

the provided resources despite the possibility to specify higher-level abstracted locations

2.2 Cloud Computing 24

for them, e.g., data center and region. Resources are promised to be provisioned to scale

or release rapidly and often appear unlimited in terms of time or quantity. Their usage

is monitored and controlled, providing cost transparency for providers and customers of

the requested service.

2.2.2 Deployment Modes

Mell & Grance (MELL; GRANCE, 2011) presented four deployments modes for the cloud

computing model:

I. Private Cloud: provisioned for exclusive use by a single organization comprising

multiple business units consumers. HPE Helion Managed Private Cloud, VMware

vRealize Suite Cloud Management Platform, Dell Enterprise Private Cloud Solu-

tion, Cisco ONE Enterprise Cloud Suite, and AWS Virtual Private Cloud are some

options for this deployment mode;

II. Community Cloud: provisioned for exclusive use by a specific community of

consumers from organizations with shared concerns, e.g., mission, security require-

ments, and policy. Cloud4C, Salesforce Community Cloud, IBM Cloud for Gov-

ernment, and Microsoft Government Community Cloud are some options for this

deployment mode;

III. Public Cloud: provisioned for open use by the general public. Amazon Web

Services, Microsoft Azure, Google Cloud, IBM Cloud, and CloudFlare are some

options for this deployment mode; or

IV. Hybrid Cloud: composed of two or more distinct cloud infrastructures that remain

unique entities but are bound together by standardized or proprietary technology

that enables data and application portability, e.g., cloud bursting for load balancing

between private and public clouds. HPE Helion, IBM Bluemix, Verizon Enterprise,

Fujitsu Hybrid Cloud Services, and Cisco Intercloud Fabric are some options for this

deployment mode.

2.2.3 Service Layers

The cloud environment can be a combination of services stacked into layers, having one

service belonging to a higher layer composed of one or more services of its underlying layer.

2.2 Cloud Computing 25

The cloud computing systems fall into one of the following general layers: Application,

Software Environment, Software Infrastructure, Software Kernel, or Hardware/Firmware.

Figure 2 illustrates the classic stack of cloud services (YOUSEFF et al., 2008).

Figure 2: Cloud computing ’s classic services stack.

The Application Layer, referred to Software as a Service (SaaS), is the most com-

monly utilized layer of the cloud and offers many advantages, such as reduced costs for

ongoing operations and software maintenance. The computational work is moved from the

user environment into the provider’s data centers, where the applications are deployed, al-

lowing a superior performance without needing expensive equipment acquirement. Some

limitations or concerns of using this layer are:

• Low customization capabilities for applications: the customers may be limited to

specific functionality, performance, and integration as offered by the providers;

• Performance and downtime: maintenance, cyber-attacks, network issues, and system

failures may impact the application availability;

• Data security and confidentiality: the transferring of sensitive business informa-

tion may result in compromised security and compliance in addition to a cost for

migrating large data workloads; and

2.2 Cloud Computing 26

• Interoperability: if the application is not designed for open integration standards,

customers are forced to build their integration systems or reduce application depen-

dencies.

Google Workspace, Dropbox, Salesforce, Cisco WebEx, and GoToMeeting are examples

of SaaS solutions.

The Software Environment Layer, referred to Platform as a Service (PaaS), is

the most used by cloud applications developers. The providers supply a programming-

language-level environment with a set of APIs to ease the interaction with other cloud

applications, accelerate the development/deployment task, and support scalability and

load balancing of applications.

This model is delivered via the web, so the developers do not have to worry about

managing the infrastructure, software, or operating systems. It is even possible to build

PaaS-integrated applications that use some of its software components, the so-called mid-

dleware applications. Some limitations or concerns of using this layer are:

• Operational limitation: may limit operational capabilities for end-users, affecting

how the solutions are managed, provisioned, and operated (e.g., customized opera-

tions with management automation workflows);

• Compatibility with legacy systems: PaaS may not be a plug-and-play solution with

existing legacy applications and services, so several customizations and configuration

changes may be necessary for legacy systems to work with this service, resulting in

a complex and expensive IT system; and

• Runtime limitations: systems built using this model may not be optimized for the

desired programming language, or the customers may not be able to develop custom

dependencies for their solutions.

Google App Engine, AWS Elastic Beanstalk, Heroku, Red Hat OpenShift, and Azure

Windows Server are examples of PaaS solutions.

The Software Infrastructure Layer, referred to Infrastructure as a Service (IaaS),

provides automated compute resources to other higher-level layers (e.g., SaaS and PaaS)

for constructing new cloud applications or software environments. The focal services

offered in this layer are computational resources, data storage, and network delivered

2.2 Cloud Computing 27

through virtualization technology. They are typically set up by the customer through a

web dashboard or an API, giving complete control over them.

This model provides similar capabilities and technologies as an in-house data center

without requiring the user to maintain or manage it physically. As opposed to SaaS or

PaaS, the IaaS clients are responsible for managing aspects, such as operating systems,

applications, and data. The cost of this service is associated with the resources’ total use

time, which can be purchased as needed and are dynamic, flexible, and highly scalable.

Some limitations or concerns of using this layer are:

• Multi-tenant isolation security: the provider has to ensure that previous customers’

data cannot be accessed by newer since the resources are dynamically allocated

across users as they are made available;

• Learning stage: the customers are responsible for resources monitoring and manage-

ment, backup, and data security, so training may be required for the staff to learn

how to safely and effectively use it; and

• Host infrastructure security: system vulnerabilities can still be sourced from the

host (e.g., execution of arbitrary code on the host with the privileges of the hyper-

visor process) or other VMs (e.g., guest-to-guest attacks, in which attackers use one

VM to access or control other VMs on the same hypervisor) and may expose data

communication in this model to unauthorized entities.

A. The Computational Resources subcategory, referred to Compute as a Service (CaaS),

provides computing units, of which VMs are the most common. It offers finer-

granularity flexibility as the user gets super-user access to them, allowing customized

software stack for performance and efficiency needs. This cloud component grants

the user an unprecedented range of settings and protects the provider’s physical

infrastructure. However, there is a performance interference between VMs sharing

the same physical node, which often prevents providers from guaranteeing full per-

formance to their clients. Usually, a performance decrease is noted if compared with

a dedicated environment. It may also impact the performance of the upper layers,

affecting the SLAs built on top of IaaS’s SLA. DigitalOcean Droplets, Google GCE,

Amazon EC2, IBM Cloud Virtual Servers, Linode, and Azure Virtual Machines are

examples of CaaS solutions.

B. The Data Storage subcategory, referred to Storage as a Service (STaaS), provides

a remote repository and access to the user’s data. It offers cloud applications data

2.2 Cloud Computing 28

scalability beyond the servers’ limited storage resources. Stringent requirements are

expected for the data storage systems, such as high availability, reliability, perfor-

mance, replication, and data consistency. However, no environment features all of

them due to conflicting goals. The STaaS providers usually implement their system

to favor one feature over the others, indicating their choice through respective SLA.

Azure Disk Storage, Google Cloud Storage, Amazon S3, Oracle File Storage, and

IBM Cloud Object Storage are examples of STaaS solutions.

C. The Networking subcategory, referred to Network as a Service (NaaS), allows the

customers to build and operate network architectures without maintaining their

infrastructure. This model can replace virtual private networks (VPNs), multi-

protocol label switching (MPLS) connections, legacy network configurations, and

LAN hardware (e.g., firewall devices and load balancers for distributing network

traffic across multiple servers). It implements communications features for the

cloud systems, such as network security, dynamic provisioning of virtual overlays

for traffic isolation or dedicated bandwidth, communication encryption, and net-

work monitoring. It assures communication that is service-oriented, configurable,

schedulable, and reliable. Aryaka SD-WAN, Pertino Cloud Network Engine, and

Akamai Content Delivery Network are examples of NaaS solutions.

The Software Kernel Layer provides the core software management for the physical

servers that compose the cloud environment. It can be implemented as an OS kernel,

hypervisor, cluster middleware, or virtual machine monitor.

The Hardware/Firmware Layer, referred to Hardware as a Service (HaaS), pro-

vides the physical components and switches that form the backbone of the cloud. Large

companies with massive computational requirements are the target customers of this ser-

vice and take advantage of this model by not investing to acquire and maintain their data

centers. HaaS carries the benefit of built-in maintenance and troubleshooting costs. Ser-

vice provisioners have the technical expertise to host, operate and cost-effectively upgrade

the infrastructure. Upgrades consider the lifetime of the sublease by the customer.

Many technical challenges are addressed to the providers, such as efficiency, ease, and

speed of large-scale systems provision, data center management, scheduling, and power-

consumption optimizations. Since customers do not own the IT equipment outright, it

is necessary to ensure reliable contracts with the service providers as any non-payment

can lead to equipment shutdown. AWS Outposts, Azure Stack, and Google Anthos are

examples of HaaS solutions.

2.2 Cloud Computing 29

2.2.4 Amazon EC2

Elastic Compute Cloud (EC2) is an IaaS public cloud solution hosted by Amazon Web

Services (AWS) that offers a broad compute platform with over 500 virtual machine in-

stance types, according to Amazon (AMAZON, 2022c). The instances are optimized and

suited to different use cases. The following types are available for the customers to exe-

cute applications and workloads with optimal compute, memory, storage, and networking

balance:

I. General Purpose, which is often used for (AMAZON, 2022d):

* Development of macOS applications (Mac family);

* Websites, web applications, microservices, code repositories, and other lighter

processing tasks (fT2, T3, T3a, and T4g families);

* Small and mid-size databases, enterprise applications, low latency networking,

simulation modeling, telecommunication industries, and gaming servers (M4,

M5, M5a, M5n, and M5zn families); and

* Backend servers supporting enterprise applications, application development

environments, and mid-size data stores (A1, M6a, M6i, and M6g families).

II. Compute Optimized, which is often used for (AMAZON, 2022d):

* High-performance web servers, batch processing, distributed analytics, highly

scalable multiplayer gaming, video encoding, scientific modeling, high-performance

computing, log analysis, and CPU-based machine learning inference (C4, C5,

C5a, C5n, C6a, C6g, C6i, C6gn, and C7g families); and

* High-performance computing workloads like fluid dynamics, molecular dynam-

ics, and weather forecasting or high-performance network workloads (Hpc6a

family).

III. Memory Optimized, which is often used for (AMAZON, 2022d):

* Memory-intensive workloads, high-performance databases such as SAP HANA,

SQL, and NoSQL, distributed web scale in-memory caches such as KeyDB,

Memcached, and Redis, mid-size in-memory databases, real-time big data an-

alytics such as Apache Hadoop and Apache Spark, data mining, and real-time

processing of unstructured data (R4, R5, R5a, R5b, R5n, R6g, R6i, and Z1d

families); and

2.2 Cloud Computing 30

* Electronic design automation workloads such as physical verification, static

timing analysis, power signoff and chip gate-level simulation, in-memory an-

alytics such as SAS and Aerospike, and big data processing engines such as

Presto (X1, X1e, X2gd, X2idn, X2iedn, and X2iezn families).

IV. Storage Optimized, which is often used for (AMAZON, 2022d):

* I/O intensive workloads that require higher storage density and fast access to

data sets on local storage, NoSQL databases such as Apache Cassandra and

MongoDB, data warehousing, data streaming, and analytics workloads (I3,

I3en, I4i, Im4gn, and Is4gen families); and

* Distributed file systems such as HDFS and MapR-FS, Big Data analytical

workloads such as Apache Hadoop and Apache Spark, massively parallel pro-

cessing data warehouses such as Redshift and HP Vertica, data processing ap-

plications such as Apache Kafka, multi-node file storage systems such as Lustre

and BeeGFS, MapReduce-based workloads and network file systems such as

NFSv3 (H1, D2, D3, and D3en families).

V. Accelerated Computing, which is often used for (AMAZON, 2022d):

* Machine learning, high-performance computing, computational fluid dynam-

ics, computational finance, seismic analysis, molecular modeling, genomics,

rendering, speech recognition, and other server-side GPU compute workloads

(P2, P3, and P4 families);

* Deep learning training, object detection, image recognition, natural language

processing, forecasting, image, and video analysis, search, ranking and rec-

ommendation engines, advanced text analytics, and language translation and

transcription (DL1, Inf1, and Trn1 families);

* 3D visualizations, application streaming, graphics-intensive applications such

as remote workstations, video rendering, and transcoding, autonomous vehi-

cle simulations, and cloud high fidelity graphics real-time gaming (G3, G4ad,

G4dn, G5, and G5g families); and

* Genomics research, financial analytics, real-time video processing, Big Data

search and analysis, and live event broadcast (F1 and VT1 families).

Many of these types also offer bare metal (dedicated) instances, e.g., m6i.metal, the

corresponding option of the m6i.32xlarge instance type. The bare metal instances allow

2.2 Cloud Computing 31

direct access to the processor and memory of the underlying physical server for running

applications in non-virtualized environments or with a hypervisor implemented by the

customer. This option provides high-performance computing with highly customizable

hardware resources that can be tuned up for maximum performance and provide a ded-

icated compute environment with more security (e.g., data privacy by being the only

tenant on the server).

Regarding the instances billing in EC2, which can be per second, hour, or month of

use depending on the instance type, pricing market, and location region, the main options

offered are On-Demand, Reserved, and Spot :

I. On-demand instances are recommended for applications with short-term or un-

predictable workloads that cannot be interrupted. Also, it is suitable for appli-

cations under development or test due to its high availability and reliability and

for customers that prefer its flexibility without any up-front payment or long-term

commitment. The user pays for the period the instance is under rental. However,

this option has a higher cost than the other pricing models;

II. Reserved instances are recommended for customers that can commit for a 1 to

3-year term, have consumption predictability, or their applications require reserved

capacity for a long and stable execution. The reserved instances option can provide

a significantly higher discount than the on-demand market, depending on the term

length and the upfront payment; and

III. Spot instances are recommended for fault-tolerant workloads that are flexible to

run on multiple instance types such as batch jobs, containerized workloads, web

applications, Big Data clusters, and High-Performance Computing clusters. Com-

pared to the other pricing models, the spot provides the highest discount (up to

90% cheaper than on-demand) but with a fluctuating availability and occasionally

pricing volatility since the customers are bidding on spare computing capacity, i.e.,

idle EC2 instances available. The users must define the maximum price they are

willing to pay per hour per instance, which can be lower, equal, or higher than the

current price for a particular type. If the customer bid is lower than the current

price (gradually adjusted by Amazon), then the instance is not launched.

Amazon EC2 can interrupt the acquired spot instance when: the demand for spot

instances rises, the supply of spot instances decreases, or the spot price exceeds the

customer bid (maximum price), so the SLA’s aspects may be seriously affected by using

2.2 Cloud Computing 32

this pricing model. The customer may set one of the following interruption behavior to

the spot instances: Hibernate, Stop, or Terminate (default).

• If Hibernate is defined, only Amazon EC2 can hibernate and resume a hibernated

instance. The data from memory (RAM) is saved to the EBS root volume, the EBS

root device and attached EBS volumes are preserved, and their data is persisted.

The wake-up occurs when the capacity is available for the same instance type as

the hibernated instance in the same availability zone. Upon restart, the EBS root

device is restored from its earlier state, including the RAM content, previously data

volumes are reattached, and the instance retains its instance ID;

• If Stop is defined, only Amazon EC2 can restart a stopped instance. The EBS

root device and attached EBS volumes are preserved, and their data is persisted.

The restart process occurs when the capacity is available for the same instance

type as the stopped instance in the same availability zone. Upon restart, the EBS

root device is restored from its earlier state, previously attached data volumes are

reattached, and the instance retains its instance ID; and

• If Terminate is defined, Amazon EC2 terminates the instance immediately, wiping

all data and settings (by default).

As pointed out by Teylo et al. (TEYLO et al., 2021a) and by Brum et al. (BRUM

et al., 2021), there are many opportunities and benefits (e.g., monetary cost reduction) in

using spot instances. For example, when the application can handle failures or is executed

within a framework that provides recovering mechanisms in case of VM revocations.

2.2.4.1 Typical Spark Cluster Deployment Alternatives on AWS

The AWS services typically used for Spark clusters deployment are Elastic Compute Cloud

(EC2) and Elastic MapReduce (EMR).

Elastic MapReduce (EMR) is a PaaS solution that simplifies building and operating

Big Data environments and applications through automatically cluster infrastructure pro-

visioning, scaling, and reconfiguring, according to Amazon (AMAZON, 2022e). One of

the ways to use EMR is to build a Spark cluster from EC2 instances, where the customers

choose what instance types to the provision based on their application’s requirements.

So, EMR is suitable for beginner cloud users due to its automatic management and pre-

configured environments. However, there is a cost associated with using the EMR service.

2.3 Optimization Problems 33

In particular, for each EC2 instance, users are additionally charged per second from the

moment their cluster starts until it is terminated, with a one-minute minimum. Figure

3 illustrates the main pricing components of EMR, considering the monthly cost in USD

for using five EC2 instance types (c5.xlarge, m5.xlarge, r5.xlarge, i3.xlarge, and p2.xlarge)

supported in the Northern Virginia region (us-east-1). The average fee for the mentioned

instances in EMR is 25.06% beyond the usual EC2 charges. For all the EC2 instance types

supported in Northern Virginia, the average additional cost is 18.72%, with a standard

deviation of 8.26 (AMAZON, 2022f).

Figure 3: EMR’s main pricing components for some EC2 instances types.

Considering the additional cost of the EMR service, the Spark clusters deployed during

this study were manually built using the EC2 instances. While this option requires cloud

expertise, it supposedly offers cheaper and more customizable environments.

2.3 Optimization Problems

This section presents the basic definition, concepts, and solving methods for optimization

problems, which find the best of all possible solutions that satisfy a given objective.

2.3.1 Definition

Optimization Problem, as presented by Papadimitriou & Steiglitz (PAPADIMITRIOU;

STEIGLITZ, 1998), can be seen as the choice of the best configuration or set of parameters

2.3 Optimization Problems 34

to achieve a given goal. In the past few decades, a hierarchical collection of optimization

problems has come out with corresponding solving techniques that are mainly iterative.

Their convergence is studied through continuous mathematical analysis.

Equation 2.1 represents one end of this hierarchy: the general nonlinear program-

ming problem. Let Rn be the n-dimensional real vector space (i.e., a set of ordered n-tuples

of real numbers), f be the solution or objective function, and gi and hj be the constraints

functions (i.e., conditions that f must satisfy). In this class of optimization problems, the

goal is to find x ∈ Rn, where f , gi, and hj are general functions of x. When f is convex,

gi is concave, and hj is linear, the problem is defined as a convex programming problem.

In this convex class, if f has a local minimum, it will also be a global minimum. When f ,

gi, and hj are all linear, it is defined as a linear programming problem (LP). In this linear

class, any problem is reduced to a solution from among a finite set of possible solutions.

Representative examples of linear problems are resource allocation problems, production

problems, or network flow problems.

minimize f(x)

subject to gi(x) ≥ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(2.1)

There are two categories of optimization problems: the one with continuous variables

and the one with discrete variables (combinatorial problem). In continuous ones, the

goal is a set of real numbers or a function. In combinatorial problems, the goal is to

find an object from a finite or possibly countably infinite set (typically an integer, set,

permutation, or graph). Since these two categories often have different characteristics,

their solving methods have become quite unlike. Linear programming, however, can fit in

both, having a fundamental role in many strictly combinatorial problems.

Consider the mapping c : F → R1, where F is any set (i.e., the domain of feasible

points) and c is the cost function. Stated the input data with enough information to

obtain a solution, an instance of a general optimization problem is a pair (F, c), where we

want to find f ∈ F such that: c(f) ≤ c(y), ∀y ∈ F . Such f is called a globally optimal

solution to the given instance (or simply an optimal solution). An optimization problem

is an instance set I of an optimization problem usually generated similarly.

2.3 Optimization Problems 35

2.3.2 Forms of the Linear Programming Problem

Let A be a matrix m × n with rows a′i, x ∈ Rn, M the set of row indices corresponding

to equality constraints, M̄ the set of row indices corresponding to inequality constraints,

N the column indices corresponding to constrained variables, N̄ the column indices cor-

responding to unconstrained variables, b an m-vector of integers, and c an n-vector of

integers. Papadimitriou & Steiglitz (PAPADIMITRIOU; STEIGLITZ, 1998) defined the

General Form of an LP as follows (Equation 2.2):

min c′(x)

a′i(x) = bi, i ∈ M

a′i(x) ≥ bi, i ∈ M̄

xj ≥ 0, j ∈ N

xj ≶ 0, j ∈ N̄

(2.2)

Besides the general form, Papadimitriou & Steiglitz (PAPADIMITRIOU; STEIGLITZ,

1998) also presented the Canonical Form and the Standard Form of the linear program-

ming problem, as expressed in Equations 2.3 and 2.4, respectively:

min c′(x)

A(x) ≥ b

x ≥ 0

(2.3)

min c′(x)

A(x) = b

x ≥ 0

(2.4)

The canonical, standard, and general forms are all equivalent, so an instance in one

form can be converted to another by a simple transformation such both have the same

solution. This mathematical result is particularly crucial for the Simplex Method imple-

mentation proposed by Dantzig (DANTZIG, 1990), widely adopted to solve LPs, as it

assumes that the LP is in standard form.

2.3 Optimization Problems 36

2.3.3 Integer Linear Programming Problem

Papadimitriou & Steiglitz (PAPADIMITRIOU; STEIGLITZ, 1998) defined Integer Linear

Programming (ILP) as a particular case of LP in the standard form, as expressed in

Equation 2.5, where A, b, c, and x ∈ Z (i.e., assumes only integer values). ILP can be

defined similarly in canonical or general form, as seen in Subsection 2.3.2, as they are

equivalent forms.

min c′(x)

A(x) = b

x ≥ 0, x ∈ Z

(2.5)

The need to formulate and solve ILPs came from the fact that in some LP applica-

tions, fractional solutions were undesirable (e.g., an application in which xj is the number

of resources assigned to the receiver j). When it is expected for the solution x to con-

tain large integers (that may be insensitive to rounding), one corresponding simple LP

approach would be round the solution of ILP to the closest integer. However, rounding

to a feasible integer solution may not always be straightforward. Most frequently, an ILP

consciously uses integer values for modeling combinatorial constraints or different non-

linearities. These ILPs are not susceptible to the rounding approach because rounding

defeats the purpose of the ILP formulation. Another unsuccessful attempt would be a

local search in the neighborhood for the optimal continuous solution. The search space is

often highly constrained, and searching around it does not produce the optimal solution

for the ILP.

2.3.4 Optimization Methods

Rothlauf (ROTHLAUF, 2011) presented the goal of an optimization method: to find an

optimal or near-optimal solution with low computational effort. The effort is measured

as the time (i.e., number of computation steps) and the space (i.e., amount of computer

memory) consumed by the method. There is a trade-off between solution quality and

effort for many optimization methods, where an increasing effort typically provides a

higher quality solution.

Arora & Barak (ARORA; BARAK, 2009) provided the broad notions of computability

theory and complexity classes, defined in terms of the computational effort of solving the

problems concerning particular computational resources like time or memory. Typically

2.3 Optimization Problems 37

the computer is assumed to be deterministic (i.e., given the current state and any inputs,

there is only one possible decision that can be taken by the computer) and sequential (i.e.,

it performs the computation steps one after the other). The complexity class P represents

the set of problems that can be solved in a deterministic sequential computer in time that

is polynomial to the input size. The complexity class NP represents the set of problems

whose solutions can be verified in polynomial time on a non-deterministic machine, given

a certificate (also called a witness) that certifies the answer to a computation. The

complexity class NP-complete represents the set of problems that any other NP problem

can be reduced in polynomial time and whose solution may still be verified in polynomial

time. So, if a deterministic polynomial-time algorithm can be found to solve one of them,

then every NP problem is solvable in a polynomial time. The complexity class NP-hard

represents the set of problems that any other NP problem can be reduced in polynomial

time and whose solution does not have to be verifiable in polynomial time.

Rothlauf (ROTHLAUF, 2011) classified the optimization methods into two types:

Exact and Heuristic. The Exact methods guarantee to find an optimal solution, opposite

to the Heuristic methods. They are often chosen if it is possible to solve an optimization

problem with the amount of effort that grows polynomially with the problem size (whose

belong to the complexity class P). Some types of exact optimization methods are:

I. Analytical and Numerical Optimization Methods, used to find optimal solutions if

the problem is well-defined and highly structured, the objective function is explicitly

known, and there are no constraints on the decision variables; and

II. Linear Optimization Methods, used if the objective function depends linearly on the

decision variables and all relations among the variables are linear. In Continuous

optimization problems, objective function and constraints are continuous and linear.

Two methods are broadly used for this subset of linear problems: Simplex and

Interior Point. In Discrete optimization problems, decision variables are all integers.

The methods commonly used for this subset of linear problems are Decision Tree-

based search approaches (e.g., breadth-first, depth-first, uniform-cost, best-first, and

A*), Branch-and-Bound, Dynamic Programming, and Cutting Plane.

However, if the problem needs exponential effort, then even medium-sized problem

instances become intractable and cannot be solved with exact methods. In this situa-

tion, the Heuristic methods are frequently used, showing good performance for many

NP-complete problems and problems of practical relevance. Such methods are usually

2.3 Optimization Problems 38

problem-specific, as they exploit their particular characteristics. To efficiently build

heuristics, some knowledge about the structure of the problem to be solved is required, as

using a heuristic method incompatible with an optimization problem leads to low quality

solution. Some types of heuristic optimization methods are:

I. Heuristics, which are often based on Greedy Search (e.g., best-first), try to exploit

problem-specific knowledge, but no guarantee of finding an optimal solution. In

construction heuristics, also known as single-pass heuristics, a solution is built from

scratch (i.e., an empty solution) in a step-wise creation process. In each step, parts

of the solution are fixed (e.g., Nearest Neighbor, Nearest Insertion, Cheapest Inser-

tion, and Furthest Insertion). In improvement heuristics, a complete solution (i.e.,

initial solution) is used at the beginning, and improvement attempts are performed

iteratively until the current solution can not improve anymore, i.e., a local optimum

has been reached (e.g., Two-Opt, k -Opt, and Lin-Kernighan);

II. Approximation Algorithms, which are heuristics that allow developing bounds on

the quality of the returned solution (e.g., Fully Polynomial-Time Approximation,

Polynomial-Time Approximation, and Constant-Factor Approximation); and

III. Modern Heuristics or Metaheuristics, which are extended variants of improvement

heuristics, are general-purpose methods applicable to many problems, whose rele-

vant elements are: the representation and variation operators used, the fitness func-

tion, the initial solution, and the search strategy. Metaheuristics use two phases

during the search step: intensification and diversification. The intensification step

improves the quality of existing solutions. The diversification step explores new

areas of the search space by systematically modifying them and accepting partial or

complete solutions that are inferior to the currently obtained solutions. Metaheuris-

tics usually run a limited number of search steps and are stopped after a certain

quality solution level is reached or several search steps are performed. Representa-

tive examples of metaheuristics are Evolutionary Algorithms, Simulated Annealing,

Tabu Search, and Ant Colony Optimization.

2.4 Multivariate Analysis 39

2.3.5 Gurobi Optimizer

Gurobi Optimizer (GUROBI, 2022) is a state-of-the-art solver for mathematical program-

ming models. It supports an extended list of lightweight APIs for modeling, including

Object-Oriented (e.g., C++, Java, .NET, and Python), Matrix-Oriented (e.g., C, MAT-

LAB, and R), and Standard Modeling Languages (e.g., AIMMS, AMPL, GAMS, and

MPL).

Gurobi grants a flexible deployment, allowing a user to solve a single model using one

machine or many users to solve multiple models using many computers (Gurobi Compute

Server). The models can also be solved locally or on a private or public cloud (Gurobi

Instant Cloud). Besides the full-featured evaluation license for commercial users and free

trial hours for the cloud environment, Gurobi supports research, optimization teaching,

and use within academic institutions with free, full-featured copies.

The solvers included in Gurobi are designed to exploit modern architectures and multi-

core processors, using advanced implementations of the latest algorithms to solve a range

of optimization problems, such as Linear Programming (LP), Mixed-Integer Linear Pro-

gramming (MILP), Mixed-Integer Quadratic Programming (MIQP), Quadratic Program-

ming (QP), Quadratically Constrained Programming (QCP), and Mixed-Integer Quadrat-

ically Constrained Programming (MIQCP).

Regarding the implemented algorithms, Simplex, Parallel Barrier with Crossover,

Concurrent, and Sifting are used for LP, and Simplex and Parallel Barrier are used

for QP. These implementations for LP and QP quickly and robustly solve models with

millions of variables and constraints. Parallel Second-Order Cone Programming Barrier

is used for QCP, and Deterministic Parallel, Non-Traditional Search, Heuristics, Solution

Improvement, Cutting Planes, and Symmetry Breaking are used for MIP (MILP, MIQP,

and MIQCP). The MIP and barrier optimizers include shared-memory parallel algorithms

that use all available cores and sockets, while the MILP and MIQP optimizers utilize an

advanced branch-and-cut algorithm.

2.4 Multivariate Analysis

This section presents the basic definition, concepts, and techniques of multivariate anal-

ysis, whose objective is to provide statistical methods that convert collected information

into decision-making knowledge.

2.4 Multivariate Analysis 40

2.4.1 Definition and Basic Concepts

According to Hair et al. (HAIR et al., 2018), Multivariate Analysis refers to all the sta-

tistical techniques that simultaneously analyze multiple measurements on individuals or

objects under investigation, i.e., different variables in a single relationship or set of rela-

tionships. Any simultaneous analysis of more than two variables can be loosely considered

multivariate analysis. However, to be defined precisely as multivariate, all the variables

must be random and interrelated such that their different effects cannot meaningfully be

interpreted separately. Thus, the multivariate character lies in the multiple combinations

of variables (known as variates) and not only in the number of variables or observations.

The multivariate analysis introduces some concepts of particular relevance for the success

of any technique: i) Variate, ii) Measurement Scales, and iii) Measurement Error.

Variate is the linear combination of variables specified by the researcher with weights

empirically determined according to the multivariate technique selected to meet a specific

objective. In the Multiple Regression technique, for example, the variate is determined

to maximize the correlation between the multiple independent variables and the single

dependent variable. It is represented as V = w1·X1+w2·X2+w3·X3+ . . .+wn·Xn, where

V corresponds to the variate value (result), n is the number of weighted variables, Xn is

the observed variable, and wn is the weight determined by the multivariate technique. The

result is a single value, the combination of the whole set of variables that best achieves

the objective.

Measurement Scales are used to accurately represent the concept of interest (i.e.,

each variable used) and are essential for the suitable selection of the multivariate method.

Based on the class of attributes, the data can be classified into nonmetric (qualitative) or

metric (quantitative) categories.

• Nonmetric Measurements can be made with either a nominal or an ordinal scale,

and they describe differences in type or kind by indicating the presence or absence

of a characteristic or property (discrete features). The nominal scales, also known

as categorical scales, provide the number of occurrences in each class or category of

the variable studied (e.g., demographic attributes such as religion or occupation). In

the case of ordinal scales, variables can be ordered or ranked concerning the amount

of the feature possessed, indicating the relative positions in an ordered series (e.g.,

products ranking based on satisfaction level).

2.4 Multivariate Analysis 41

• Metric Measurements are appropriate for attributes involving amount or magnitude

and are used when subjects differ in amount or degree on a particular characteristic.

They can be made with either an interval or a ratio scale. Both interval and ratio

scales have constant units of measurement, so differences between any two adjacent

points on any part of these scales are equal. Nearly any mathematical operation

can be performed on them. However, the interval scales use an arbitrary zero point

(e.g., Fahrenheit and Celsius temperature scales), whereas ratio scales include an

absolute zero point (e.g., weighing machines). Thus, it is unreasonable to say that

any value on an interval scale is a multiple of some other point on the scale, e.g., in

the case of a ratio scale.

Measurement Error is the degree to which the observed values are not represen-

tative of the actual values, having sources of error ranging from the imprecision of the

measurement to the inability of answerers to provide accurate information. So, all the

variables used in multivariate techniques must be assumed to have some degree of mea-

surement error, i.e., having the valid value bound with measurement noise. The measure-

ment error degree is assessed through two essential characteristics: Validity, the degree

to which a measure accurately represents what it is supposed to, and Reliability, the de-

gree to which the observed variable measures the genuine value and is error-free. The

improvement of both characteristics results in a more accurate portrayal of the variables

of interest, avoiding distortions in the observed relationships and making the multivariate

techniques more effective.

2.4.2 Multivariate Techniques Types

Hair et al. (HAIR et al., 2018) emphasized that many multivariate analysis techniques

are extensions of Univariate and Bivariate. The former is for single-variable distribution

analysis and the latter to analyze two variables (e.g., Cross-Classification, Correlation,

Analysis of Variance, and Simple Regression). The simple regression with one predictor

variable is extended in the multivariate case to include several predictor variables, for

example. Some multivariate techniques, like Multiple Regression and Multivariate Anal-

ysis of Variance, provides a way to perform in a single analysis what once took multiple

univariate analyses to accomplish. Still, other techniques are designed exclusively to deal

with multivariate issues, like Factor Analysis and Discriminant Analysis.

Multivariate techniques can be classified as: i) Dependence Technique or ii) Interde-

pendence Technique. A dependence technique may be defined as one in which a variable

2.4 Multivariate Analysis 42

or set of variables is identified as the dependent variable to be predicted or explained by

other variables (known as independent variables), e.g., Multiple Regression Analysis. An

interdependence technique is one in which no single variable or group of variables is de-

fined as independent or dependent. Instead, all the variables are analyzed simultaneously

to find an underlying structure to the entire set of variables or subjects., e.g., Exploratory

Factor Analysis.

Dependence Techniques can be categorized by two main characteristics: (1) the

number of dependent variables, either a single dependent variable, several dependent

variables, or several dependent/independent relationships, and (2) the type of measure-

ment scale employed by the variables, either metric (quantitative/numerical) or nonmetric

(qualitative/categorical).

• The appropriate techniques for an analysis that involves a single dependent metric

variable are Multiple Regression Analysis or Conjoint Analysis, although the latter

may treat the dependent variable as either nonmetric or metric, depending on the

type of data collected;

• If the single dependent variable is nonmetric, then the appropriate techniques are

Multiple Discriminant Analysis and Logistic Regression;

• When the analysis involves several dependent variables, four other techniques are

suitable:

i. Look to the Independent Variables, if the several dependent variables are metric;

ii. Multivariate Analysis of Variance, if the independent variables are nonmetric;

iii. Canonical Correlation, if the independent variables are metric; or

iv. Dummy Variable Coding (i.e., nonmetric data into metric data transforma-

tion) followed by Canonical Analysis, if the several dependent variables are

nonmetric.

• The Structural Equation Modeling technique is appropriate when the analysis in-

volves a set of dependent/independent variable relationships.

Interdependence Techniques cannot be categorized by having either dependent

or independent variables. However, as with dependence techniques, the measurement

properties should be considered.

2.4 Multivariate Analysis 43

• Exploratory Factor Analysis or Confirmatory Factor Analysis, generally considered

to be metric techniques, are the appropriate ones when the structure of variables is

to be analyzed;

• Cluster Analysis should be used if cases or respondents are to be grouped to repre-

sent structure;

• Perceptual Mapping, which has been developed for both metric and nonmetric ap-

proaches, is applicable if the interest is in the shape of objects;

• Correspondence Analysis is appropriate if the interdependencies of variables mea-

sured by nonmetric data are to be analyzed.

2.4.3 Multiple Regression Analysis

Hair et al. (HAIR et al., 2018) defined Multiple Regression Analysis as a statistical

technique that can be used to analyze the relationship between a single dependent variable

(known as the criterion) and several independent variables (known as the predictors). The

independent variables, whose values are known, are exploited to explain or predict the

single dependent value selected by the researcher.

This technique is termed simple regression when the problem involves a single in-

dependent variable or multiple regression when two or more independent variables are

involved. Each independent variable is weighted to ensure maximal prediction from the

independent variables collection. Variable weights denote the relative contribution of the

independent variables to the overall prediction and ease interpretation as to the influence

of each variable in making the prediction. Yet, correlation among the independent vari-

ables complicates the interpretative process. The set of weighted independent variables

forms the regression variate (also known as the regression equation or regression model),

the linear combination of the independent variables that best predict the dependent vari-

able.

In the Simple Linear Regression Model , the predictive power is determined by

the association between the single dependent variable and the single independent variable,

known as the correlation coefficient. Ranging from −1 to +1, the higher its value, the

stronger the relationship and the greater the predictive accuracy. A +1 value indicates

a perfect positive relationship, 0 appoints to no relation, and −1 designates a perfect

negative or reverse relationship (i.e., as one variable grows faster, the other variable grows

slower). Moreover, the simple regression equation can be stated as Y = b0 + b1·X1 + ϵ,

2.4 Multivariate Analysis 44

where: Y is the criterion variable, the predicted or explained variable for any given value

of the independent variable X1; b0 is the intercept, the constant term where the line defined

by the regression equation crosses the Y axis (i.e., the value of Y when X1 = 0); b1 is the

regression coefficient, the numerical value of the parameter estimate directly associated

with X1 that represents the amount of change in Y for a one-unit change in X1; X1 is the

predictor variable, expected to influence Y ; and ϵ is the residual (prediction error of the

sample data), the difference between the actual and predicted values of Y .

In the Multiple Linear Regression Model , the goal is to expand upon the sim-

ple regression model by adding independent variables that have the highest additional

predictive power. Adding more independent variables is based on trade-offs between

increased predictive power versus overly complex and potentially misleading regression

models. Unlike the simple model, the extent of the predictive power for any additional

variable is often determined by its collinearity with other variables already defined in

the regression equation. The collinearity expresses the relationship between two or more

(multicollinearity) independent variables. Ranging from 0 to +1, the higher its value, the

stronger the relationship. A +1 value indicates complete collinearity, and 0 a complete

lack of collinearity. The prediction accuracy increases much more slowly as independent

variables with high multicollinearity are added (due to the decrease of the unique variance

explained by each independent variable). To maximize the prediction from a given number

of independent variables, the researcher should look for independent variables that have

low multicollinearity with the other independent variables and high correlations with the

dependent variable. In an analogous way to the simple equation, the multiple regression

equation can be stated as Y = b0 +
∑

bi·Xi + ϵ, where i is the number of independent

variables.

A standardization process is needed to directly compare the regression coefficients

concerning their relative explanatory power of the dependent variable. It converts all

independent variables to commons scale and variability (dispersion). A standardized unit

of measurement allows for determining which variable has the most impact. The typical

standardization procedure subtracts the variable mean from each observation’s value to

divide it by the standard deviation (the original variable is transformed into a new variable

with a mean of 0 and a standard deviation of 1). When all the variables in a regression

variate are standardized, the b0 term (the intercept) assumes a value of 0, and the regres-

sion coefficients are known as beta coefficients (β). However, the beta coefficients should

be used only to obtain the relative importance of the independent variables included in

the equation and only for those variables with minimal multicollinearity.

2.4 Multivariate Analysis 45

Hair et al. (HAIR et al., 2018) elaborated a six-stage model-building process for the

creation, estimation, interpretation, and validation of a regression analysis.

Stage 1: The objectives are specified, such as the appropriateness of the research

problem, specification of a statistical relationship, and selection of the de-

pendent and independent variables;

Stage 2: The researcher proceeds to design the regression analysis considering factors

such as sample size, the need for variable transformations, and the nature

of the relationship of the independent variables;

Stage 3: With the regression model formulated, the assumptions referred to in the

regression analysis (i.e., normality, linearity, homoscedasticity, and indepen-

dence of the error terms) are first tested for the individual variables;

Stage 4: When all assumptions are met, the model is estimated. Diagnostic analyses

are performed to ensure that the overall model meets the regression assump-

tions and that no observations have undue influence on the results (e.g.,

coefficient of determination, adjusted coefficient of determination, standard

error of the estimate, and statistical significance of regression coefficients);

Stage 5: The following steps are accomplished: interpretation of the regression vari-

ate, analysis of the relative importance of each independent variable in the

prediction of the dependent measure, and evaluation of the multicollinearity

and its effects;

Stage 6: The results are validated to ensure they represent the general population

and can be applied to other contexts and studies.

2.4.4 Least Squares Estimation

As pointed out by Hair et al. (HAIR et al., 2018), the multiple regression analysis objective

is most often achieved through the statistical rule of Least Squares Estimation. This

procedure estimates the value of regression coefficients to minimize the total sum of the

squared residuals, i.e., reduce the discrepancies between observed data and their expected

values. The estimator result is usually denoted by β̂.

Van de Geer (VAN DE GEER, 2005) described the least squares method. In the

regression problem, given the value of X (predictor variables), the best prediction of

2.4 Multivariate Analysis 46

Y (criterion variable) is the mean f(X) of Y , where f is the regression function to

be estimated from sampling n predictor variables and their data pairs responses, i.e.,

(x1, y1), . . . , (xn, yn). Supposing f is known up to a finite number of regression coefficients

β = (β1, . . . , βp), with p ≤ n, then f = fβ. Therefore, β is estimated by the value b

that gives the best fit to the data, i.e., over all possible values, the one that minimizes

Equation 2.6:

β̂ = arg min
b

n∑
i=1

(yi − fb(xi))
2 (2.6)

When fβ is a linear function of β, i.e., fβ(X) = X1·β1 + . . . + Xp·βp, it is more

convenient to use a matrix notation. Let y = (y1, . . . , yn) be the vector of response

variables and let X = [x1, . . . , xp] be the n × p data matrix of the n observations on the

p variables, where xj is the column vector containing the n observations on variable j,

j = 1, . . . , n. Thus, Equation 2.7 express the squared distance between the vector y and

the linear combination b of the columns of the matrix X.

β̂ = arg min
b

∥y −X·b∥2 (2.7)

Chen & Plemmons (CHEN; PLEMMONS, 2010) highlighted that estimation is not

always straightforward since, for many real-world problems, the underlying parameters

represent quantities that can take on only non-negative values. The Non-Negative Least

Squares (NNLS) is a constrained least-squares problem type where the regression coeffi-

cients are not allowed to become negative. So, the previous problem must be modified to

include nonnegativity constraints, as formulated in Equation 2.8.

β̂ = arg min
b

∥y −X·b∥2

subject to b ≥ 0

(2.8)

Some tools implement the NNLS algorithm proposed by Lawson & Hanson (LAW-

SON; HANSON, 1987), an active set method that solves the Karush-Kuhn-Tucker (KKT)

conditions for the non-negative least squares problem. For instance, MathWorks MAT-

LAB’s lsqnonneg (MATHWORKS, 2022) and SciPy optimize’s nnls (SCIPY, 2022).

2.4 Multivariate Analysis 47

2.4.5 Measures of Predictive Performance for Regression Models

Hair et al. (HAIR et al., 2018) explained that predictive quality is always crucial to

ensure the validity of the independent variables, as its measurement is used to assess

the significance of their predictive power. In all instances, whether or not the researcher

intends to interpret the coefficients of the variate, the regression analysis must achieve

acceptable levels of predictive performance to justify its application.

The measures used in the regression models take into account how close the predicted

values are to the actual values and report the prediction errors, unlike other evaluation

measures such as Accuracy Classification Score, which assess the exact correspondence of

predicted values with the actual values.

Regarding suitable metrics of predictive accuracy for regression models, the Coefficient

of Determination (R2 Score) is the most commonly used, as indicated by Hair et al.

(HAIR et al., 2018), along with Mean Square Error (MSE), Root Mean Square Error

(RMSE), and Mean Absolute Error (MAE). The last three are among the most popular

metrics used by the researchers over a timeline of 25 years, as reported by Botchkarev

(BOTCHKAREV, 2019).

Let n be the size of the data set (number of samples), A the set of actual (observed)

values, Ā the mean (arithmetic average) of A, P the set of predicted values, dj = Aj − Ā

the deviation (error) between the j-th value of A and Ā, and ej = Aj − Pj the difference

(residual) between the j-th values of A and P , with j ∈ {1, . . . , n}.

The Coefficient of Determination (R2 Score) metric represents the amount of

variance in the dependent variable that has been explained by the independent variable(s)

in the model, the combined effects of the entire variate (one or more independent variables

plus the intercept) in predicting the dependent variable. It indicates the goodness of fit,

a measure of how well-unseen samples are likely to be predicted by the model using

the proportion of explained variance that ranges from 0.0 (no prediction) to 1.0 (perfect

prediction). Since the variance metric is dataset-dependent, R2 may not be compared

meaningfully across different datasets. Botchkarev (BOTCHKAREV, 2019) defined R2

as follows (Equation 2.9):

R2 = 1−
∑n

j=1 ej
2∑n

j=1 dj
2

(2.9)

If the regression model is well applied and estimated, then the researcher can assume

that the higher the value of R2, the greater the explanatory power of the regression

2.4 Multivariate Analysis 48

equation. Furthermore, it allows for better prediction of the dependent variable. Pal &

Gauri (PAL; GAURI, 2010) hinted as a thumb rule, i.e., based on experience and common

sense, that if the value of R2 is more than 0.90, then the fitted model will be considered

adequate.

The Mean Squared Error (MSE) is a risk metric corresponding to the expected

value of the squared error loss (L2-norm loss function). Derived from the square of

Euclidean distance, it is always a positive value that decreases as the error approaches

zero. A zero value would indicate a perfect fit to the data, although it is rarely achieved

in practice. Botchkarev (BOTCHKAREV, 2019) defined MSE as follows (Equation

2.10):

MSE =

∑n
j=1 ej

2

n
(2.10)

The Root Mean Squared Error (RMSE) metric represents the square root of the

average of squared errors. The effect of each error is proportional to the size of the

squared error. Thus, it is sensitive to outliers, i.e., to the observations that have a sub-

stantial difference between the actual value for the dependent variable and the predicted

value. Being the square root of MSE, it is also always a non-negative value. Botchkarev

(BOTCHKAREV, 2019) defined RMSE as follows (Equation 2.11):

RMSE =

√∑n
j=1 ej

2

n
(2.11)

The Mean Absolute Error (MAE) is a risk metric corresponding to the expected

value of the absolute error loss (L1-norm loss function). It measures the average magnitude

of the errors in a set of predictions. Derived from the Manhattan or taxicab distance,

it is a positive value that decreases as the error approaches zero. Unlike RMSE, each

error influences MAE in direct proportion to the absolute value of the error. Botchkarev

(BOTCHKAREV, 2019) defined MAE as follows (Equation 2.12):

MAE =

∑n
j=1 |ej|
n

(2.12)

Scikit-learn (SCIKIT-LEARN, 2022) is an open-source machine learning library for

the Python programming language that provides, among many other features, a range of

metrics and scoring for evaluating the quality of a model’s predictions. In particular, the

regression metrics submodule is of great use for this study since it implements many loss,

score, and utility functions to measure regression performance.

3 Biological Sequences Comparison

3.1 Problem Definition

Biological Sequences play a crucial role in genetics and bioinformatics research. They are

essential for describing deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein

biomolecules. Also are among the basic entities studied in molecular and computational

biology.

3.1.1 Major Types and Basic Characteristics of Biomolecules

Biomolecules, also known as biological molecules, are any of the numerous substances

produced by cells and living organisms. They have a wide range of sizes, structures, and

functions. The four major types of biomolecules are (ENCYCLOPÆDIA BRITANNICA,

2022a):

i. Carbohydrates ;

ii. Lipids ;

iii. Nucleic Acids ;

iv. Proteins.

Among the biomolecule types, nucleic acids (namely DNA and RNA) have the unique

function of storing an organism’s genetic code — the sequence of nucleotides that deter-

mines the amino acid sequence of proteins, which are fundamental to life on Earth.

The DNA carries the genetic information for the development and functioning of an

organism. It is composed of two linked strands that wind around each other (a shape

known as a double helix that resembles a twisted ladder). Each strand has a backbone

formed by alternating sugar deoxyribose and phosphate groups. Attached to each sugar is

3.1 Problem Definition 50

one of the following four nitrogenous bases : Adenine (A), Cytosine (C), Guanine (G), or

Thymine (T). The two strands are connected by chemical bonds between the bases, such

that adenine base pairs with thymine and cytosine base pairs with guanine. The sequence

of the bases along DNA’s backbone encodes biological information, e.g., the instructions

for generating a protein or RNA molecule (NHGRI, 2022a).

The RNA is a nucleic acid molecule found in all living cells with structural similarities

to DNA. However, unlike DNA, RNA is most often single-stranded. It is composed

of a backbone formed by alternating phosphate groups and sugar ribose (rather than

the deoxyribose found in DNA). Attached to each sugar is one of the following four

nitrogenous bases : Adenine (A), Uracil (U), Cytosine (C), or Guanine (G). During the

DNA transcription step, the uracil base pairs with adenine (replacing thymine), while

the cytosine base pairs with guanine. Three main types of RNA are involved in protein

synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA).

Certain viruses use RNA as their genomic material (NHGRI, 2022c), e.g., SARS-CoV-2

coronavirus (the virus responsible for COVID-19 disease).

3.1.2 Nucleotide Sequence

DNA and RNA molecules are long chains of nucleotides. Each nucleotide consists of a

sugar molecule (either ribose in RNA or deoxyribose in DNA) attached to a phosphate

group and a nitrogenous base (NHGRI, 2022b).

The nucleotide sequence is the most fundamental level of knowledge of a gene or

genome. It contains the instructions for building an organism (i.e., the recessive and

dominant genes’ data), and no understanding of the genetic function or variation could be

complete without obtaining this information (ENCYCLOPÆDIA BRITANNICA, 2022b).

Automatic sequencing machines (DNA sequencers) are generally used to determine the

nucleotide sequence of an organism. The resulting sequence data are stored in a com-

puter as text files and then shared in publicly accessible repositories (ENCYCLOPÆDIA

BRITANNICA, 2022c), such as National Center for Biotechnology Information (NCBI,

2022a) and Global Initiative on Sharing All Influenza Data (GISAID, 2022).

In particular, viruses with an RNA genome, e.g., SARS-CoV-2 coronavirus, are iso-

lated (determined) from the genetic material of cells in the infected host (WU et al.,

2020). Therefore, viral genome sequences are sorted by the host in public repositories.

3.1 Problem Definition 51

3.1.3 Biological Sequences Analysis

Durbin et al. (DURBIN et al., 1998) emphasized that the most basic sequence analysis

task is determining if two sequences are related. It is usually done by aligning the se-

quences (or parts of them) and then deciding whether that alignment is more likely to

have occurred because they are related or just by chance — the Pairwise Alignment.

The key issues are:

i. What sorts of alignment should be considered . Sequences accumulate insertions, dele-

tions as well as substitutions due to mutations. Before the similarity evaluation of

two sequences, one typically begins by finding a plausible alignment between them;

ii. The scoring system used to rank alignments . The basic mutational processes con-

sidered are substitutions, which change residues in a sequence, and insertions and

deletions, which add or remove residues (referred to as gaps, which usually have an

associated penalty). The total score we assign to an alignment will be a sum of

terms for each aligned pair of residues, plus each gap term;

iii. The algorithm used to find optimal (or good) scoring alignments . When both se-

quences have the same length, there is only one possible global alignment. It

becomes more complicated when allowing gaps or searching for local alignments

between subsequences. The algorithm for finding optimal alignments given an ad-

ditive alignment score is known as dynamic programming, which is guaranteed to

find the optimal scoring alignment or set of alignments. However, they are not the

fastest available sequence alignment methods. In many cases, speed is an issue.

The heuristic alignment algorithms search as small a fraction as possible of the

cells in the dynamic programming matrix while still looking at all the high-scoring

alignments;

iv. The statistical methods used to evaluate the significance of an alignment score. From

the assessment, determine if it is a biologically meaningful alignment or just the best

alignment between two entirely unrelated sequences.

The DNA sequences are generally compared with sequence alignment algorithms,

which produce a textual file with highlighted matching characters. However, when highly

similar sequences are compared, the biologists are most interested in their differences,

which may indicate mutations, e.g., SARS-CoV-2 coronavirus and its variants.

3.2 Spark Implementation 52

Sometimes the conventional sequence alignment is unwanted during the analysis. For

instance, Lau et al. (LAU et al., 2021) developed a rapid computational approach to

identify the highly conserved regions of SARS-CoV-2 coronavirus sequences to index mu-

tations across thousands of viral genomes. Their approach avoids the inefficient behavior

of the sequence alignment applied on a scale of thousands of genome sequences and facil-

itates viral pangenome studies.

3.2 Spark Implementation

This section describes the implementation details of the Diff Sequences Spark 1, a simple

Spark application developed to illustrate the problem of provisioning resources in the

Cloud to execute MapReduce-like Spark applications, aiming at cost optimization. Rather

than proposing a novel pairwise sequence alignment tool, our implementation identifies,

comparing position-by-position, all the mismatching characters occurrences, given the

input sequences and the desired characters interval region for each.

3.2.1 Optimizing and Estimating the Number of Sequences Comparisons

A particular requirement for our application is how to optimize and estimate the total

number of sequence comparisons to be processed. Let’s denote it as Da.

Often the biological sequences are compared through the pairwise comparison ap-

proach, which forms subsets of cardinality 2, i.e., two elements (sequences) per subset.

The order of sequences in each formed pair is not relevant: given two sequences seq1 and

seq2, it is equivalent to comparing seq1 with seq2 or seq2 with seq1, which reduces by

half the number of comparisons produced. Furthermore, no subset may contain repeated

sequences to be compared, e.g., {seq1, seq1}. Under these restrictions, it is possible to

apply the closed-form function of the binomial coefficient to obtain Da. Let n be the

total number of distinct elements and k be the subsets’ cardinality. Graham et al. (GRA-

HAM et al., 1994) expressed the binomial coefficient function, denoted as
(
n
k

)
, in the

multiplicative form as follows:(
n

k

)
=

(n)k
k!

=
n · (n− 1) . . . (n− (k − 1))

k · (k − 1) . . . (1)
, where n, k ∈ Z and 0 ≤ k ≤ n (3.1)

Equation 3.1 gets simplified for the pairwise comparison case. In particular, k = 2

1https://github.com/alan-lira/diff-sequences-spark

https://github.com/alan-lira/diff-sequences-spark
https://github.com/alan-lira/diff-sequences-spark

3.2 Spark Implementation 53

and at least two sequences are required for the biological sequences comparison problem

(n ≥ 2). Thus, Da can be estimated as follows:

Da =

(
n

2

)
=

n · (n− 1)

2
, where n ∈ Z and n ≥ 2 (3.2)

Consider an implementation of the pairwise comparison approach, named DIFF1.

Let n be the number of distinct biological sequences. On each comparison procedure,

two Spark distributed data structures are used to store the sequences: one sequence per

data structure. Minding Equation 3.2, a great value of n implies a massive number of

all-pairs comparisons, increasing the total runtime. For instance, n = 1000 sequences to

be compared generates Da = 499 500 pairwise comparisons.

A simple and reasonable way to reduce the number of comparison procedures is dis-

cussed next. Let n be the number of distinct biological sequences. Consider an approach

where a given sequence seqi is compared against all its later sequences seqi+1, . . . , seqn,

∀i ∈ n: seq1 with {seq2, . . . , seqn}, . . ., seqn−1 with {seqn}. On each comparison proce-

dure, two Spark distributed data structures are used to store the sequences: the first for

the seqi and the second for the seqi+1, . . . , seqn sequences. Notice that the last sequence

seqn does not have a later sequence and therefore cannot be compared to an empty subset.

It is trivial to verify that, through this approach, Da can be estimated as follows:

Da = n− 1, where n ∈ Z and n ≥ 2 (3.3)

For instance, n = 1000 sequences to be compared generates Da = 999 comparisons.

Although the number of comparison procedures (Equation 3.3) becomes substantially

reduced when compared to the DIFF1 approach, it is unfeasible in practice for a large n

because the data loading and its immediate processing in the second data structure may

lead to:

• In the worst case, an OutOfMemoryError exception caused by insufficient space in

the JVM heap, which abruptly terminates the application execution; or

• A non-negligible delay experienced by Spark’s Scheduler for scheduling each compar-

ison task. A maximum serialized task size of 100 Kilobytes (KB) is recommended for

any Stage of the application’s DAG (APACHE, 2022f). However, this information

is only known during the application execution, when Spark prints the serialized

size of each task in the Master (APACHE, 2022d).

3.2 Spark Implementation 54

To overcome these Spark limitations, consider the following enhanced approach named

DIFFopt. Let n be the number of distinct biological sequences. A given sequence seqi

is still compared against all its later sequences seqi+1, . . . , seqn, ∀i ∈ n. Once again, the

last sequence seqn does not have a later sequence and therefore cannot be compared to an

empty subset. On each comparison procedure, two Spark distributed data structures are

used to store the biological sequences: the first for the seqi and the second for a subset of

the seqi+1, . . . , seqn sequences. Notice that no subset may contain repeated later sequences

of seqi (i.e., already compared to seqi). Let li be the number of later sequences of seqi

and let maxS be the maximum number of biological sequences that may be stored in

the second data structure, with 1 ≤ maxS < n. Thus, ⌈ li
maxS

⌉ subsets of the seqi’s later

sequences are formed, and [1, . . . , li] comparisons are generated for every seqi, depending

on the value of maxS. Therefore, Da can be estimated as follows:

Da =

⌈

n
maxS

·
(
(n− 1)− (n−maxS

2
)
)⌉

+ ϵ, if 1 ≤ maxS < n
2

2 ·
(
(n− 1)− (maxS

2
)
)
, if n

2
≤ maxS < n

where n, maxS ∈ Z and n ≥ 2

(3.4)

The piecewise-defined function (Function 3.4) established for the DIFFopt approach

was built from the empirical analysis of a small set of n and maxS values combinations

(cf. Appendix A), and it is defined by two equations. The first one is valid when

maxS belongs to the [1, n
2
[subdomain, and the second is valid when maxS belongs to

the [n
2
, n[subdomain. Notice there may be an approximation error ϵ associated with

the first equation, depending on n and maxS values. Also, notice Equation 3.2 is a

particular case of DIFFopt when maxS = 1, and Equation 3.3 is a case of DIFFopt when

maxS = n− 1.

This improved approach potentially reduces the number of sequences comparison pro-

cedures and avoids the execution issues related to running out of memory or delayed

scheduling of tasks when using Spark. For instance, n = 1000 sequences to be compared

using maxS = 100 sequences per data structure generates Da = 5490 comparisons (first

equation), and n = 1000 sequences to be compared using maxS = 500 sequences per

data structure generates Da = 1498 comparisons (second equation). Nevertheless, it is

still essential to fine-adjust the value of maxS accordingly to the type of the biological

sequences. Since different types have diverse quantities of nucleotide letters, the amount

of data to be loaded and processed on each comparison varies from each case.

3.2 Spark Implementation 55

3.2.2 Diff Sequences Spark Application’s Execution Flow

For each Spark application submitted to a Spark cluster, unique SparkContext and Ex-

ecutors JVM processes are created. However, Spark is typically optimized for massive

data processing rather than low latency jobs. Thus, an overhead is associated with JVM

process initialization. If each biological sequences comparison is submitted to the cluster

individually as micro applications, the required time to spawn its processes may exceed

the comparison processing time, mainly for small-sized biological sequences. Our imple-

mentation uses a single SparkContext (and its associated Executors) during the entire

execution, which is responsible for iterating over all the comparison jobs left, in a serial

flow fashion, to avoid multiple processes initializations overhead.

As pointed out by Zaharia et al. (ZAHARIA et al., 2012b), the MapReduce model can

be expressed in the Spark framework through the following transformation operations:

• flatMap, for the Map phase; and

• groupByKey or reduceByKey, for the Reduce phase.

The flatMap transformation flattens the input Spark data structure (DataFrame or

RDD) by applying a user-implemented function to each element. This transformation

outputs a new Spark data structure (of the same type) that can have the same number

of data elements or even more. It is the main difference between using flatMap and

map transformations on Spark since the use of map always returns the same number of

elements contained in the input data structure.

The groupByKey transformation iterates through each key-value pair 〈K, V 〉 of the

input data structure and groups the Vi values of a given Ki key into a single data element.

This transformation outputs a new data structure (of the same type) with K key-value

pairs, where K is the amount of Ki keys in the input data structure. This wide transfor-

mation triggers a data shuffle operation (i.e., data rearranging between partitions).

The reduceByKey transformation merges the Vi values of a given Ki key of the input

data structure into a single data element by applying a user-implemented reduce func-

tion. This transformation also outputs a new data structure (of the same type) with

K key-value pairs, where K is the amount of Ki keys in the input data structure. The

main difference between reduceByKey and groupByKey is that reduceByKey performs the

merging locally on each mapper before sending the results to a reducer (data shuffling),

3.2 Spark Implementation 56

similarly to a Combiner in the MapReduce model. Thus, the reduceByKey may obtain

better performance with larger datasets when compared to groupByKey.

Our Spark application implements, with eventual equivalent adaptations, the use of

the flatMap and reduceByKey transformations, such that:

∗ The Map phase is composed of the Read and Create routines; and

∗ The Reduce phase is composed of the Compare and Write routines.

Figure 4 illustrates the execution flow of the Diff Sequences Spark application, whose

routines are detailed below.

Figure 4: Diff Sequences Spark application’s execution flow.

I. The Read routine, currently performed locally by the Master node, i.e., without

the aid of Spark transformations, is responsible for reading the FASTA-formatted

file (i.e., a text-based format for representing the nucleotide sequences using single-

letter codes) of each biological sequence to be compared in the current iteration.

It splits the chain of nucleotide letters of a given biological sequence into key-value

pairs 〈K, V 〉, where each Ki key stores the index position i of the i-th letter and

each Vi value stores the respective i-th letter, and loads it in a local in-memory data

structure. Two data structures are generated per iteration.

Notice that for any comparison iteration, a biological sequence may have a lesser

data size (i.e., amount of letters) than the other(s). Thus, for some index positions,

there might be an absence of data (letter), which requires proper treatment during

the comparison (Compare routine).

3.2 Spark Implementation 57

DIFF1 approach

The DIFF1 approach allows two biological sequences to be compared per iteration.

In this case, each data structure is filled with the data of one of them, i.e., one

sequence per structure.

DIFFopt approach

The DIFFopt approach allows two or more biological sequences to be compared per

iteration. In this case, the second data structure is filled with multiple sequences’

data. So, each Ki key of the second data structure is associated with a list of Vj

values, where each Vj is the i-th letter of the j-th biological sequence.

II. The Create routine is responsible for creating the Spark data structures that will

store the data generated in the Read routine.

Using RDDs

When choosing RDD as Spark’s data structure, it is enough to use the parallelize

transformation. It takes each data from the local data structures in the Master

(Driver Program) and splits it into logically distributed partitions. With the key-

value pairs data organization, this transformation outputs a particular type of RDD,

named PairedRDD. Two PairedRDDs, denoted as rdd1 and rdd2, are built in this

routine, one per data structure. However, they must be united into a single Paire-

dRDD, denoted as rddu, before advancing to the Compare routine. This step is

reached through the union transformation, which, in practice, appends the rdd2 to

the end of the rdd1.

Using DataFrames

When choosing DataFrame as Spark’s data structure, we first specify its schema,

i.e., the column names and data types that define its structure, the StructType.

The first column of the schema is a LongType for storing the index position, and the

subsequent column(s) is(are) StringType for storing the nucleotide letter(s) corre-

sponding to the index. The createDataFrame transformation takes each data from

the local data structures in the Master (Driver Program), fills each DataFrame’s

column accordingly to the previously defined schema, and splits it into logically dis-

tributed partitions. Two DataFrames denoted df1 and df2 are built in this routine,

one per data structure.

III. The Compare (or Diff Phase) routine is responsible for comparing the Spark data

structures’ elements built in the Create routine.

3.2 Spark Implementation 58

Using RDDs

The rddu is processed through the reduceByKey transformation, which applies a

reduce function over all its elements. The reduce function takes two elements with

the same key (i.e., index position), one originally belonging to the rdd1 and another

originally belonging to the rdd2, and compare their values (i.e., nucleotide letters).

If the DIFF1 approach is used, then the reduce function provides three output

situations:

i. The nucleotide letter from one of the elements is missing (null). In this case,

the index position (key) is marked as incomparable;

ii. The nucleotide letters from both elements are identical. In this case, the index

position (key) is marked as rejected;

iii. The nucleotide letters from both elements are different. In this case, the index

position (key) is marked as accepted.

If the DIFFopt approach is used, then the reduce function iterates through each value

of the element with multiple sequences stored (i.e., the rdd2 element) and provides

three other output situations:

i. The nucleotide letter from one of the elements is missing (null). In this case,

the index position (key) is marked as incomparable;

ii. The nucleotide letters from both elements are all identical. In this case, the

index position (key) is marked as rejected;

iii. At least one nucleotide letter of both elements is different. In this case, every

identical letter found in the multiple sequences element is replaced by the ‘=’

symbol, and the index position (key) is marked as accepted.

After the reduceByKey transformation execution, the filter transformation is used

to discard all the elements from the rddu whose keys were not marked as accepted,

generating as output the rddr.

Using DataFrames

The df1 and df2 are processed through the join transformation. Similar to the SQL

clause, it combines the elements from two DataFrames, given a condition and a type

of join.

3.2 Spark Implementation 59

The join condition specifies how the rows from df1 will be combined with the rows

of df2. In particular, the first column’s value of df1 and df2 must be identical (i.e.,

index position), and the subsequent column’s value (i.e., nucleotide letter) on both

df1 and df2 must be different in the DIFF1 approach. On the other hand, at least one

of the subsequent columns of df2 must be different from the corresponding column

of df1 in the DIFFopt approach.

The join type specified was the full outer join, which returns the combined values

from both DataFrames, appending null values on the side (i.e., DataFrame’s col-

umn) that does not have a match. In particular, when the biological sequences have

a different amount of nucleotide letters, they are incomparable for a given row.

After the join transformation execution, the filter transformation is used to discard

all the rows whose index position’s columns are filled with null values. Additionally,

the drop transformation is used to remove the index column duplicated due to the

join operation (originally belonging to df2), generating as output the dfr.

If the DIFFopt approach is used, then the withColumn transformation is executed

to find and replace with the ‘=’ symbol the columns that have identical values (i.e.,

nucleotide letters) for each row of dfr.

IV. The Write (or Collection Phase) routine is responsible for consolidating the com-

parisons results obtained in the Compare routine. Two approaches are available:

Distributed Write (DW) and Merged Write (MW).

DW approach

In the DW approach, each partition of Spark’s data structure, which holds a chunk

of the comparison results, is written by the Spark’s Executor designated to that

partition. Consequently, the output of each comparison iteration is stored in p files,

where p is the number of partitions defined for Spark’s data structure.

MW approach

In the MW approach, the coalesce transformation is used in Spark’s data structure,

merging its data into a single partition. Consequently, the output of each comparison

iteration is stored in a single file, written by a designated Executor.

Using RDDs

Two transformations are executed in the rddr: sortByKey and map. The sortByKey

is used to sort the elements of rddr in ascending order. The map is used to format

3.2 Spark Implementation 60

each element of rddr with its representation similar to the comma-separated values

(CSV) pattern, making the output data easier to read.

Finally, the saveAsTextFile action is executed, which consolidates the transforma-

tions performed in the previous routines. It persists the rddr’s formatted data, as a

text file, into a non-volatile disk storage destination previously specified.

Using DataFrames

The sort transformation is executed in the dfr to sort its rows by ascending order

of the first column (i.e., index position).

Finally, the write.csv action is executed, which consolidates the transformations

performed in the previous routines. It persists the dfr’s data, as a CSV file, into a

non-volatile disk storage destination previously specified.

3.2.3 Illustrative Examples of the Comparisons Results

Consider four micro sequences to be compared using the Diff Sequences Spark application

(n = 4): {seq1, seq2, seq3, seq4}.

• The seq1 contains the following chain of nucleotide letters: 〈AAAAA〉;

• The seq2 contains the following chain of nucleotide letters: 〈ACGAA〉;

• The seq3 contains the following chain of nucleotide letters: 〈GAGCA〉;

• The seq4 contains the following chain of nucleotide letters: 〈ATAAAT〉.

In the first example, the DIFF1 + MW approach is used. In this case, Equation

3.2 determines the number of sequences comparisons (Da = 6). Figure 5 illustrates the

comparisons results obtained in this scenario.

In the second example, the DIFFopt + MW approach is used. Consider a max-

imum of three sequences to be stored in the second data structure of any comparison

procedure (maxS = 3). In this case, Function 3.4 determines the number of sequences

comparisons (Da = 3). Figure 6 illustrates the comparisons results obtained in this

scenario.

3.2 Spark Implementation 61

Figure 5: Comparisons results obtained with the DIFF1 + MW approach.

Figure 6: Comparisons results obtained with the DIFFopt + MW approach.

3.2.4 Application-Level Optimization Proposals to Reduce the Runtime

This subsection presents some proposals for reducing the Diff Sequences Spark applica-

tion’s runtime, considering the challenge of correctly setting the number of the parti-

tions, the serial execution bottleneck of the application itself, and the default behaviors

of Spark’s cluster for scheduling jobs and for sharing resources across the active jobs.

I. Regarding the Spark data structure’s number of partitions

Spark automatically sets the number of partitions accordingly to the type of task.

For some map-like operations (e.g., read.textFile), it considers each input file size,

and for some reduce-like operations (e.g., groupByKey and reduceByKey), it takes

the largest parent RDD’s number of partitions. Yet, this automatic setup may not be

beneficial for all cases. If Spark’s data structure is split into too many partitions, the

tasks scheduling overhead may overcome their actual processing time. In contrast,

when few partitions are defined, less concurrency is achieved.

3.2 Spark Implementation 62

(a) First solution: general recommendations of Spark

Following the general recommendations of Spark (APACHE, 2022e), one pos-

sible improvement is to set 2-3 partitions (tasks) per CPU core in the cluster.

In this first solution, each Spark’s data structure is repartitioned to three times

the number of cores available through the repartition transformation.

(b) Second solution: damping coefficient

Let Ec be the total number of Executors cores (i.e., the Spark’s default paral-

lelism), Em the size in GiB of Executors memory, mi the number of map tasks

per comparison iteration, M the total number of map tasks, ri the number of

reduce tasks per comparison iteration, and R the total number of reduce tasks.

Since each comparison iteration is composed of two Spark’s data structures

(i.e., either RDD or DataFrame), and each data structure is auto split into Ec

partitions, then mi = 2 · Ec. Thus, M = mi ·Da = 2 · Ec ·Da.

The ri value depends on which Spark’s data structure is in use. Spark’s de-

fault values are: ri = 2 · Ec for two united RDDs, or ri = 200 for two joined

DataFrames (Spark’s default shuffle partitions). By employing the DW ap-

proach, R = ri · Da. Using the MW approach, the resulting data structure

of the Compare routine (i.e., rddr or dfr) coalesces into a single partition.

Therefore, R = 1 ·Da = Da.

Let K = {k ∈ N∗ | k \ Ec} be the set of all the divisors of Ec. We can

specify a damping coefficient ki ∈ K that acts over Ec for each Spark’s data

structure, which allows us to adjust the number of partitions to a value lesser

than the one produced by the default parallelism. Consequently, M = 2· Ec

ki
·Da.

Note that when ki = 1, the default parallelism is applied. Furthermore, an

optimal damping coefficient kopt ∈ K reduces the application runtime the most

compared to each ki ∈ K \ {kopt}.

II. Regarding the serial execution flow of Diff Sequences Spark

The Read and Create routines combined are equivalent to reading (read.textFile),

mapping (map), and flatting (flatMap) the biological sequences data since each

sequence is flattened in i index positions and parallelized to a Spark data struc-

ture. However, they are not performed exclusively through Spark transformations,

which adds an execution bottleneck during the data loading of each comparison.

The biological sequences files are centralized and sequentially loaded in the Master

node (Driver program), so the Executors get idle, awaiting data receiving when the

3.2 Spark Implementation 63

execution moves from one comparison iteration to the next.

(a) First solution: Spark built-in transformations on Map phase

Through the use of the read.textFile, map, and flatMap transformations, to

decentralize the biological sequences files off the Master node, achieving data

loading parallelism per comparison iteration. The difficulty lies in implement-

ing the current Master node’s loading logic, so each Executor knows which files

should be loaded. This solution has not been implemented yet for the Diff

Sequences Spark application.

(b) Second solution: multi-threading pool

Spark supports concurrent job execution in the cluster, opposite the default

behavior that runs one job per time in a First In, First Out mode (FIFO). Mul-

tiple jobs (Spark actions) within each Spark application may concurrently run

if submitted by different threads (APACHE, 2022c). Consider the Producer-

Consumer pattern, where the Producer threads are responsible for produc-

ing the Spark data structures of the current iteration (Map phase), and the

Consumer threads are responsible for sending the already built Spark data

structures for processing (Reduce phase). The sum of Producer and Consumer

threads should be bounded by the number of CPU cores in the Master. This

strategy ensures that Spark jobs are always ready to be processed since they

are stored in a fixed-size thread-safe shared queue.

III. Regarding the Spark’s sharing of resources across the active jobs

In addition to the Producer-Consumer solution, it is possible to set the FAIR

scheduling mode using one or more fair pools for a balanced sharing of resources

from the active Executors across the active jobs. Through a single resources pool,

every job has the same priority for the available resources’ usage in the cluster.

Appendix B presents the evaluation of the above-proposed application-level opti-

mizations, allowing the selection of the most optimized configuration available to execute

the Diff Sequences Spark application, considering the DIFF1 + MW approach. All exper-

iments in this work specified in the following chapters employ this configuration.

3.3 SARS-CoV-2 Sequences Comparisons: A Study Case 64

3.3 SARS-CoV-2 Sequences Comparisons: A Study Case

The sudden emergence of the severe respiratory disease known as COVID-19, caused by

a novel severe acute respiratory syndrome, the SARS-CoV-2 (CSC, 2020), has recently

become a public health emergency at a pandemic outbreak level, threatening human

beings worldwide.

3.3.1 Classification and Basic Characteristics of Coronaviruses

Coronaviruses (CoV s) are a family of viruses that cause illness in humans and animals.

They belong to the subfamily Coronavirinae, family Coronaviridae, and order Nidovirales

and are classified into four genera:

i. Alphacoronavirus (α-CoVs);

ii. Betacoronavirus (β-CoVs);

iii. Gammacoronavirus (γ-CoVs); and

iv. Deltacoronavirus (δ-CoVs).

Currently, there are seven types of CoVs known to cause infections in humans: 229E

(α-CoV), NL63 (α-CoV), OC43 (β-CoV), HKU1 (β-CoV), SARS-CoV (β-CoV), MERS-

CoV (β-CoV), and SARS-CoV-2 (β-CoV). The first four types typically cause mild clin-

ical symptoms, such as rhinorrhea, cough, and fever. However, the last three types can

affect respiratory, gastrointestinal, hepatic, and nervous systems and may cause respira-

tory failure, multiple organ dysfunction, and even death (BAHRAMI; FERNS, 2020).

CoVs are enveloped viruses with a single-strand, positive-sense RNA genome (i.e., the

viral genome can be directly translated into viral proteins) ranging from 26 to 32 kilobases

in length. Since each kilobase contains a thousand base pairs of RNA, the CoVs hold the

longest known genome for an RNA virus (WEISS; NAVAS-MARTIN, 2005).

In particular, the SARS-CoV-2’s pathology level (i.e., the propensity to cause disease

to the infected hosts) is higher than the previously related coronaviruses, identified as

Severe acute respiratory syndrome, the SARS-CoV (DROSTEN et al., 2003), and Middle

East respiratory syndrome, the MERS-CoV (ZAKI et al., 2012). Genome sequence analy-

sis of SARS-CoV-2 revealed a close resemblance to them (NAQVIA et al., 2020): it shares

about 82% sequence identity with SARS-CoV and MERS-CoV and 90% or more sequence

3.3 SARS-CoV-2 Sequences Comparisons: A Study Case 65

identity for essential enzymes and structural proteins, such as spike (S), envelope (E),

membrane (M), and nucleocapsid (N). Besides, all three are zoonotically transmitted

(i.e., transmission between species, from animals to humans, and vice versa) and spread

among humans through close contact. The primary reproduction number R0 (i.e., the

transmissibility of infectious agents) of SARS-CoV-2 was about 2.6, which significantly

contributed to the exponential growth of infection cases (HELLEWELL et al., 2020).

3.3.2 NCBI’s Viral Sequences Data Repository

The NCBI Virus (HATCHER et al., 2017) is a value-added viral sequence data resource

hosted by the National Center for Biotechnology Information (NCBI). It includes modules

for many viral groups, such as influenza virus, Dengue virus, West Nile virus, Ebolavirus,

MERS coronavirus, Rotavirus A, Zika virus, and most recently, SARS-CoV-2 coronavirus.

The users select publicly available sequences based on standardized gene, protein, and

metadata terms. After selection, a suite of tools supports user-directed activities, such

as retrieving the nucleotide or protein sequences data (as FASTA-formatted files) for

research. However, when the user wants to retrieve multiple sequences at once, the NCBI

Virus system merges them into a single downloadable file. Thus, an auxiliary tool may be

required to split them. For that purpose, we developed the Fasta Sequences File Splitter 2,

a command-line tool to split one multiple FASTA-formatted sequences file into individual

FASTA-formatted sequences files.

Presently, around 5.77 million nucleotide records (DNA sequences), with humans as

the infected host, are available for the SARS-CoV-2 virus at NCBI Virus (NCBI, 2022b).

Due to the massive amount of data, the analysis is often done by geographical region and

period, comparing a subset of sequences to each other (i.e., the all-against-all matching).

3.3.3 SARS-CoV-2 Nucleotide Sequences Comparisons on AWS EC2

To illustrate the problem of optimizing computational costs for MapReduce-like Spark

applications on the cloud, we have selected at the NCBI Virus a subset of 540 SARS-

CoV-2 full-length nucleotide sequences3, with humans as the infected host, from the South

America region. It is input data of the Diff Sequences Spark application, which will be

executed using different launching characteristics for several Spark clusters deployed in

Amazon’s AWS EC2 cloud service.

2https://github.com/alan-lira/fasta-splitter
3https://doi.org/10.17605/OSF.IO/TDEPK

https://github.com/alan-lira/fasta-splitter
https://doi.org/10.17605/OSF.IO/TDEPK
https://doi.org/10.17605/OSF.IO/TDEPK
https://github.com/alan-lira/fasta-splitter
https://doi.org/10.17605/OSF.IO/TDEPK

4 Related Work

Regarding performance improvement of Big Data applications on the Cloud at a minimal

cost, the literature provides works that either tackle the resource provisioning problem,

the application scheduling considering monetary costs and deadlines, or the provision of

a formalization of the problem. Table 1 summarizes the related work, emphasizing their

main contribution concerning the proposed framework, the objective, the applications

evaluated, and the environment considered.

Table 1: Related work.

Reference Framework
Main

Contributions
Applications

and Workloads
Experimental
Environments

(CHEN et al., 2014) CRESP

• Efficient resource provisioning

for MapReduce Hadoop

applications in public clouds;

• Execution time optimization,

subject to budget constraint;

• Execution cost optimization,

subject to deadline constraint.

⋄ WordCount;

⋄ Sort;

⋄ PageRank;

⋄ TableJoin.

∗ In-house Cluster;

∗ Amazon AWS EC2.

(ZHAO et al., 2015) SparkSW
• Implementation of the

Smith-Waterman algorithm

on Apache Spark.

⋄ Protein sequences

of UniProt Reference

Clusters (UniRef100).

∗ In-house Cluster.

(XU, B. et al., 2017a) DSA

• Implementation of scalable

distributed sequence alignment

system on Apache Spark;

• Use of data parallel strategy

based on SIMD instruction to

parallelize the algorithm in

each core of worker node;

• Use of Alluxio as

primary storage.

⋄ Protein sequences

of UniProt Reference

Clusters (UniRef100).

∗ In-house Cluster.

(Continued on the next page)

4 Related Work 67

Table 1: Related work. (cont.)

Reference Framework
Main

Contributions
Applications

and Workloads
Experimental
Environments

(XU, B. et al., 2017b) CloudSW

• Scalable implementation of

the Smith-Waterman algorithm

in two modes:

− alignment scores (ASM) and

− alignment traceback (ATM);

• Implementation of an

API tool service.

⋄ Protein sequences

of UniProt Reference

Clusters (UniRef100).

∗ In-house Cluster;

∗ Alibaba Aliyun

E-MapReduce.

(YAN et al., 2016) TR-Spark

• Execution cost prediction;

• Transient instances stability

prediction.

⋄ TPC-DS Benchmark

(SQL-like Jobs);

⋄ Bing API;

⋄ Cortana Session;

⋄ PageRank.

∗ Home-built

TR-Spark Simulator;

∗ Microsoft Azure Batch.

(XU, F. et al., 2018) iSpot

• Transient instances

stability prediction;

• Spark application

performance modelling;

• Analytical checkpointing

mechanism.

⋄ WordCount,

Grep, and Sort

(BigDataBench);

⋄ Alternating Least

Squares (ALS);

⋄ Frequent Pattern

Growth (FP-Growth);

⋄ PageRank

(Spark MLlib).

∗ Amazon AWS EC2;

∗ Google GCE.

(XU, Y. et al., 2020) Dagon

• DAG scheduling;

• Resources use maximization;

• Cache-aware management.

⋄ LinearRegression,

LogisticRegression,

and DecisionTree

(SparkBench);

⋄ K-Means and

TriangleCount

(SparkBench);

⋄ ConnectedComponent

and PregelOperation

(SparkBench).

∗ In-house Cluster.

(ISLAM et al., 2020)
ILP

and

BFD

• Scheduling algorithms that

reduces the execution costs;

• Prioritization of jobs based

on their given deadlines.

⋄ WordCount, Sort,

and PageRank

(BigDataBench).

∗ Nectar Research Cloud.

(Continued on the next page)

4 Related Work 68

Table 1: Related work. (cont.)

Reference Framework
Main

Contributions
Applications

and Workloads
Experimental
Environments

(ISLAM et al., 2021)
SLA

Scheduler

• Service-level agreement (SLA)

Spark job scheduler

in a hybrid cloud.

⋄ WordCount, Sort,

and PageRank

(BigDataBench).

∗ Home-built

Event-Based Simulator;

∗ Hybrid Cluster

(Nectar Research Cloud

virtual machines from

two different regions).

Chen et al. (CHEN et al., 2014) proposed CRESP (an acronym for Cloud RESource

Provisioning), a resource provisioning optimizer method for running MapReduce appli-

cations in public clouds. The work focus on the performance analysis of the following

critical variables: the logic and time complexity of the Reduce function for a specific

application, the input data size, and the number of available Mappers (map slots) and

Reducers (reduce slots) on the cluster. With these variables in hand, Chen et al. (CHEN

et al., 2014) provided a time cost model, expressed as a weighted linear combination of a

set of non-linear functions. The weights can be learned through small-scale experiments

of execution time measurements for a particular application applied to the non-negative

linear regression problem. Chen et al. (CHEN et al., 2014) formulated two optimization

problems: minimizing time within a monetary budget or cost within a deadline constraint.

The experiments were conducted on in-house and AWS EC2 clusters to validate the cost

model. Low error rates were obtained from the model prediction considering WordCount,

Sort, PageRank, and TableJoin applications. Results showed the benefits of their ap-

proach on the execution time reduction or monetary cost compared to randomly selected

cluster configurations.

The following studies can be highlighted as aiming at works in the literature related

to Spark applications. SparkSW, as remarked by Zhao et al. (ZHAO et al., 2015), is

the first Spark-based implementation of the Smith-Waterman algorithm that provides

scalability and load-balancing for biological sequence pairwise alignment in a distributed

environment. By employing a Spark MapReduce Model on HDFS, SparkSW implements:

data pre-processing, the main calculations of Smith-Waterman performed by the map

tasks, and a summary operation achieved by the reduce tasks. An experimental evaluation

was carried out on a small in-house cluster consisting of four nodes, each with 188 GB of

RAM and 32 processing cores, to align a significant number of sequences. However, the

4 Related Work 69

size of the local cluster was not expressive regarding scalability.

DSA, presented by Xu et al. (XU, B. et al., 2017a), leverages a data-parallel strategy

based on SIMD instructions to parallelize the algorithm on each core associated with a

Worker. It employs the memory-based distributed file system Alluxio as primary storage

to speed up I/O performance and reduce network traffic. A performance comparison with

SparkSW was executed considering an in-house cluster, showing that DSA achieved up

to 201x speedup over SparkSW.

CloudSW, introduced by Xu et al. (XU, B. et al., 2017b), also leverages Spark and

SIMD instructions to accelerate SW algorithm, supports alignment scores and trace-backs,

and provides services to run in the cloud. Experimental results showed that CloudSW

achieves up to 3.29 times speedup over DSA and 621 times over SparkSW. Note that the

Intel SIMD instructions used in DSA and CloudSW are not portable across microarchi-

tectures, e.g., they cannot be executed in ARM processors.

Works have been exploring the spot instances usage to reduce operating costs. TR-

Spark, issued by Yan et al. (YAN et al., 2016), allows the execution of Spark applications

on transient resources based on resource stability, data size reduction aware scheduling,

and lineage-aware checkpointing process. TR-Spark specifies background tasks on nodes

not fully utilized for their primary assigned tasks. These re-computation costs are min-

imized by backing up intermediate results according to the resources instability level,

re-computation cost, and data lineage. TR-Spark also prioritizes those tasks that output

the least amount of data. Also, a proactive checkpointing policy is devised by saving

data blocks before the virtual instances fail, defined following a probabilistic approach.

Although Yan et al. (YAN et al., 2016) plan to minimize checkpointing overheads, revoca-

tion time is hard to predict accurately. Albeit the paper has shown promising performance

results, their work focus on the stability prediction of the VMs.

Also tackling transient instances in the cloud, Xu et al. (XU, F. et al., 2018) pre-

sented iSpot. It evaluates the stability degree during a job execution based on the Long

Short-Term Memory (LSTM) method, an artificial recurrent neural network capable of

learning order dependence in sequence prediction problems. Furthermore, iSpot models

the Spark applications’ performance via automatic job profiling. It also provides an ana-

lytical performance checkpointing mechanism, considering the Spark performance model,

data checkpointing, and restoration overheads. Although the results show a decrease in

the financial costs, their analyses rely only on spot instances.

Islam et al. (ISLAM et al., 2020) proposed a scheduling framework developed on

4 Related Work 70

top of Apache Mesos that provides two online/dynamic algorithms: the Integer Linear

Programming model and the Best Fit Decreasing heuristic. Their output enhances job

performance and minimizes the allocation cost of heterogeneous VMs in the cloud. The

main focus is to deploy a Spark cluster through cost-effective Executors placement among

Workers nodes for any job in the cluster, maximizing resource utilization while prioritizing

jobs based on their given deadlines. This work deployed a prototype of SLA-Scheduler,

established by Islam et al. (ISLAM et al., 2021). The benefits of their approach were

evaluated using WordCount, Sort, and PageRank applications from the BigDataBench

benchmark, published by Wang et al. (WANG et al., 2014), against two scheduling

techniques, Spark’s FIFO and Morpheus, the latter disclosed by Jyothi et al. (JYOTHI

et al., 2016). It obtained resource cost reduction of up to 34% and, for mixed and network-

bound jobs, a completion time reduction of up to 14%.

Extending their work, Islam et al. (ISLAM et al., 2021) tackled the problem of

executing Spark applications on a hybrid cloud computing cluster. In this version, the

scheduler analyses only jobs that meet their deadlines to make a cost-effective executor

placement decision. It is reached by profiling each job to estimate the completion time,

used as input for the proper job scheduling in the VMs. Reinforcing the use of SLA-

Scheduler, two algorithms were proposed and included in the framework: a modified

version of the First Fit and a Greedy approach that iteratively places all the Executors of

a job in the most cost-optimal position. Initially, extensive simulation-based experiments

were performed to analyze their proposals against baseline algorithms. Later, Islam et

al. (ISLAM et al., 2021) also developed a prototype on top of Apache Mesos cluster

manager and executed experiments in a real cluster using a mixed workload of WordCount,

Sort, and PageRank applications from BigDataBench. Indeed, their proposed scheduling

algorithms reduced the costs by up to 20%, but only compared to other strategies that

did not consider the assignment of Executors to a hybrid Spark cluster.

Xu et al. (XU, Y. et al., 2020) proposed Dagon, a middleware that maximizes through-

put by exploiting task resource demands for the stages of the DAG. It dynamically re-

configures resources to run the tasks through the following mechanisms: DAG-aware task

assignment, sensitivity-aware delay scheduling, and priority-aware cache management.

The first reduces resource fragmentation, the second prevents executors from wasting

resources due to unnecessary waiting for high-locality tasks, and the last makes cache

eviction and prefetches decisions based on the stage priority determined by the first mech-

anism. Dagon was implemented on the Spark framework through modifications of the

DAGScheduler, TaskScheduler, BlockManagerMaster, and BlockManager modules. Com-

4 Related Work 71

parisons were carried out between Dagon and Graphene, a dependency-aware scheduler

implemented by Grandl et al. (GRANDL et al., 2016), and between Dagon and MRD, a

reference-distance-based cache management scheme implemented by Perez et al. (PEREZ

et al., 2018). Dagon reduced job completion time by up to 42% and increased the CPU

utilization by up to 46%, considering workloads from the SparkBench benchmark intro-

duced by Li et al. (LI et al., 2017). In this work, we note that it is technically possible

to influence task scheduling in Spark.

5 Building the Diff Sequences Spark
Application’s Runtime Prediction
Model

5.1 Review of the CRESP’s MapReduce Time Cost Model

Chen et al. (CHEN et al., 2014) proposed CRESP (an acronym for Cloud RESource

Provisioning), a resource provisioning optimizer method to execute MapReduce Hadoop

applications in public clouds. Understanding their MapReduce time cost model allowed

us to propose a runtime prediction model for the Diff Sequences Spark application.

5.1.1 Initial Assumptions

When CRESP was proposed, Chen et al. (CHEN et al., 2014) didn’t use the YARN

manager (also known as MapReduce 2.0 or MRv2). So, at the time, the following charac-

teristics of the Hadoop framework (APACHE, 2022a) were considered for their modeling:

• The JobTracker daemon in the Master node is responsible for scheduling and as-

signing computational tasks to the Worker nodes;

• The TaskTracker daemon in a Worker node is composed of the map slots (Mappers),

which run map tasks, and the reduce slots (Reducers), which run reduce tasks ;

• According to the cluster capacity, a Worker can only accommodate a fixed number

of slots. Typically, a multi-core Worker allocates one slot per CPU core, either map

or reduce;

• An application (Job) is driven by the number of input data splits, which are depen-

dent upon the block size defined on HDFS ; and

• Each map task handles one chunk of the input data.

5.1 Review of the CRESP ’s MapReduce Time Cost Model 73

Chen et al. (CHEN et al., 2014) assumed there are m map slots (Mappers) and r

reduce slots (Reducers) in total, distributed over the Worker nodes of a cluster. Besides,

if there are M chunks of data, then M map tasks, in total, will be scheduled and assigned

to the m slots. In the ideal case, m map tasks run simultaneously (a Map phase round).

If M > m, then ⌈M
m
⌉ Map phase rounds are required. R reduce tasks are to be executed

in total, a setting defined manually by the user or automatically by Hadoop. If R > r,

more than one Reduce phase round is required. However, unlike the map tasks, there is

no data size restriction for reduce tasks. So, usually, R = r.

5.1.2 Cost of the Map and Reduce Tasks

Chen et al. (CHEN et al., 2014) analyzed the MapReduce execution process to determine

the cost of the map and reduce tasks.

A Map Task is divided into three main components, which are sequentially executed:

Read, Map, and Sort/Partition.

i. The Read component reads, either locally or remotely, a block b of data from the

disk. The average cost, denoted as i(b), is determined by the input data size of b;

ii. The Map component, a user-defined function, maps block b into a list of key-value

pairs 〈k, v〉, whose size, denoted as om(b), might vary depending on the block b’s

data. Its cost, denoted as f(b), is also determined by the input data size of b;

iii. The Sort/Partition component sorts by key the key-value pairs list om(b) into R

partitions for the R reduce tasks. The cost for sorting and partitioning om(b) is

denoted as s(om(b), R).

In practice, map tasks in the same Map phase round may not finish simultaneously

due to the system configuration, disk I/O rate variation, network traffic performance

variation, and data distribution. Thus, an error component, denoted as ϵm, is included in

the map task cost modeling. The overall cost of a map task, denoted as Φm, is the sum

of the costs of the above components. It is defined as follows (Equation 5.1):

Φm = i(b) + f(b) + s(om(b), R) + ϵm (5.1)

Notice the i(b) and f(b) components are related to the data size of block b and the

complexity of the map function, independently of m and M parameters. Also, notice the

5.1 Review of the CRESP ’s MapReduce Time Cost Model 74

s(om(b), R) component is slightly linear to R. Thus, Φm is defined in terms of m, M , r,

and R as follows (Equation 5.2):

Φm(m,M, r,R) = µ1 + µ2 ·R + ϵm

Where, µ1, µ2, and ϵm are application-specific constants.
(5.2)

A Reduce Task is divided into four main components, which are sequentially executed:

Shuffle, MergeSort, Reduce, and WriteResult. Assuming that the k keys of the Map phase

are equally distributed to the R reduce tasks, the total amount of data for each reduce

task is bR = M · om(b) · k
R
. Furthermore:

i. The Shuffle component pulls the partition’s corresponding data (i.e., the key-values

pairs outputted from the Map phase). Most of the time, it is overlapped with the

Map phase. Usually, only the Map phase’s last round contributes to this component

cost, denoted as c(bR). Thus, c(bR) ≈ m · om(b) · k
R
;

ii. The MergeSort component merges by key the partition’s pulled data through mul-

tiple rounds. Assuming a buffer size B, then ⌈logB(M)⌉ merge rounds are required.

Its cost is denoted as ms(bR). Thus, ms(bR) ∝ bR · ⌈logB(M)⌉;

iii. The Reduce component, a user-defined function, reduces (i.e., process) the parti-

tion’s merged data with an application-specific complexity, denoted as g(bR). It is

assumed that the output data size, denoted as or(bR), is often less than bR;

iv. The WriteResult component writes back the result to multiple nodes. Its cost,

denoted as wr(or(bR)), is determined by or(bR).

Due to disk I/O rate variation and network traffic performance variation, the costs for

the Shuffle and WriteResult components may vary. Thus, an error component, denoted

as ϵr, is included to reduce task cost modeling. The overall cost of a reduce task, denoted

as Φr, is the sum of the costs of the above components. It is defined as follows (Equation

5.3):

Φr = c(bR) +ms(bR) + g(bR) + wr(or(bR)) + ϵr (5.3)

Notice the c(bR) component is linear to bR, the ms(bR) component is proportional to

bR, and the wr(or(bR)) component is linear to or(bR). Keeping the relevant components,

Φr is defined in terms of m, M , r, and R as follows (Equation 5.4):

5.1 Review of the CRESP ’s MapReduce Time Cost Model 75

Φr(m,M, r,R) = λ1 ·
(m
R

)
+ λ2 ·

(
M · log2(M)

R

)
+ g

(
M

R

)
+ λ3 ·

(
M

R

)
+ ϵr

Where, λ1, λ2, λ3, and ϵr are application-specific constants.

(5.4)

5.1.3 CRESP’s Runtime Prediction Model

Chen et al. (CHEN et al., 2014) pointed out that the overall time complexity, denoted as

T , depends on the number of Map phase and Reduce phase rounds. However, there is a

cost, denoted as Θ(M,R), for Hadoop to manage and schedule the map and reduce tasks.

According to them, Θ(M,R) is linear to M and R, such that (Equation 5.5):

Θ(M,R) = ξ1 ·M + ξ2 ·R

Where, ξ1, and ξ2 are application-specific constants.
(5.5)

As such wise, the overall time cost T is represented as follows (Equation 5.6):

T =

⌈
M

m

⌉
· Φm +

⌈
R

r

⌉
· Φr +Θ(M,R) (5.6)

Chen et al. (CHEN et al., 2014) were more interested in the relationship between the

dependent variable T and the following independent variables: the input data size M × b,

the user-defined number of reduce tasks R, the number of map slots m, and the number

of reduce slots r. To this end, they assumed that:

• The number of map tasks M is a multiple of the number of map slots m, such that

M ≥ m and m | M . Thus, the
⌈
M
m

⌉
factor is simplified to M

m
; and

• The number of reduce tasks R equals the number of reduce slots r. Thus, the
⌈
R
r

⌉
factor is simplified to 1.

Plugging Equations 5.2, 5.4, and 5.5 into Equation 5.6 and keeping only the

variables M , R, and m in the cost model, we obtain (Equation 5.7):

5.1 Review of the CRESP ’s MapReduce Time Cost Model 76

T (M,m,R) = µ1 ·
(
M

m

)
+ µ2 ·

(
M ·R
m

)
+ ϵm +

λ1 ·
(m
R

)
+ λ2 ·

(
M · log2(M)

R

)
+ g

(
M

R

)
+ λ3 ·

(
M

R

)
+ ϵr +

ξ1 ·M + ξ2 ·R

(5.7)

The complexity of Reduce component g
(
M
R

)
has to be estimated with the specific

application. However, if it is linear to the size of the input data, which is frequent

according to Chen et al. (CHEN et al., 2014), then its contribution can be merged to the

λ3 ·
(
M
R

)
part because g

(
M
R

)
∼

(
M
R

)
. Also, the ϵm and ϵr noises can be combined into an

overall noise variable denoted as ϵ. Thus, T (M,m,R) is simplified to (Equation 5.8):

T (M,m,R) = µ1 ·
(
M

m

)
+ µ2 ·

(
M ·R
m

)
+

λ1 ·
(m
R

)
+ λ2 ·

(
M · log2(M)

R

)
+ λ3 ·

(
M

R

)
+

ξ1 ·M + ξ2 ·R + ϵ

(5.8)

According to the transformed cost components meaning, the µ1, µ2, λ1, λ2, λ3, ξ1,

and ξ2 constants cannot assume negative values. Moreover, T is linear to its transformed

cost components and non-linear to its variables M , m, and R. Therefore, it is defined as

a weighted linear combination of a set of non-linear functions, such that (Equation 5.9):

T (M,m,R) = β0 +
7∑

i=1

βi·xi + ϵ

Where, x1 =
M

m
, x2 =

M ·R
m

, x3 =
m

R
, x4 =

M · log2(M)

R
, x5 =

M

R
, x6 = M , x7 = R, and

βi ≥ 0, i = 0 . . . 7

(5.9)

Thus, T (M,m,R) is expressed in the form of multiple linear regression. The beta

coefficients βi, which represent the contribution of each component xi in the prediction

model, vary from application to application. The β0 (known as intercept) represents a

constant cost of T when xi = 0, i = 1 . . . 7. Moreover, all the βi can be derived from the

non-negative linear regression analysis with measurements taken from experimental runs.

The ϵ term represents the random error in measurements caused by unknown changes.

5.2 Diff Sequences Spark ’s Runtime Prediction Model 77

5.2 Diff Sequences Spark’s Runtime Prediction Model

Starting from the CRESP model proposed by Chen et al. (CHEN et al., 2014) and

with the necessary adaptations to the Spark environment, we present below a runtime

prediction model for the Diff Sequences Spark application.

5.2.1 Initial Assumptions

Regarding the Spark framework (APACHE, 2022b), at version v3.2.1, the following char-

acteristics were considered for our modeling proposal:

• The Driver daemon in the Master node is responsible for scheduling and assigning

computational tasks to the Worker nodes;

• The Executor daemon in a Worker node can run both map and reduce tasks, typi-

cally one task per CPU core;

• A Worker can accommodate zero, one, or multiple Executors according to the avail-

ability of its resources (CPU cores and RAM), which are split among them;

• The number of input data splits (partitions) can be programmatically adjusted at

the application level, independently of the data loading function specified; and

• Each map task handles one chunk (partition) of the input data.

Consider there are Ec Executors cores, in total, distributed over the Worker nodes

of a cluster. Besides, if there are M chunks of data, then M map tasks, in total, will be

scheduled and assigned to the Ec cores. In the ideal case, Ec map tasks run simultaneously

(a Map phase round). If M > Ec, then ⌈M
Ec
⌉ Map phase rounds are required. R reduce

tasks are to be executed in total, a setting defined programmatically by the user or

automatically by Spark. If R > Ec, then ⌈ R
Ec
⌉ Reduce phase rounds are required.

5.2.2 Runtime Prediction Model

Through adapting Equation 5.9, and bearing in mind the assumptions described in the

previous subsection, the Diff Sequences Spark application’s runtime prediction model,

denoted as TDSS, is defined as follows (Equation 5.10):

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 78

TDSS(M,R,Ec) = β0 +
7∑

i=1

βi·xi + ϵ

Where, x1 =
M

Ec
, x2 =

M ·R
Ec

, x3 =
Ec

R
, x4 =

M · log2(M)

R
, x5 =

M

R
, x6 = M , x7 = R, and

βi ≥ 0, i = 0 . . . 7

(5.10)

Thus, TDSS(M,R,Ec) is expressed in the form of multiple linear regression. We are

more interested in the relationship between the dependent variable T and the following

independent variables: the number of map tasks M , the number of reduce tasks R, and the

number of Executors cores Ec. It is possible to predict the runtime cost T through learning

the beta coefficients βi from the non-negative linear regression analysis of experimental

run measurements taken of the Diff Sequences Spark application.

5.3 Evaluation of the Diff Sequences Spark’s Prediction Model

Moving forward with experimental investigations about T and the influence of the M , R,

and Ec variables, we evaluated the Diff Sequences Spark ’s runtime prediction model using

a specially designed dataset.

5.3.1 Experimental Environment and Application-Related Settings

We considered the following general settings to generate the runtime dataset:

I. Regarding the experimental environment (Spark on AWS EC2)

* AWS EC2 Memory Optimized Instances: the z1d.6xlarge instance (24 CPU

cores and 192 GiB RAM) for the Master node, and the {r5.large, r5.xlarge,

r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r6i.large, r6i.xlarge, r6i.2xlarge,

r6i.4xlarge, r6i.8xlarge, r6i.12xlarge, z1d.large, z1d.xlarge, z1d.2xlarge, z1d.3xlarge,

z1d.6xlarge, z1d.12xlarge} subset of instances for the Worker nodes. The mem-

ory optimized offers the best cost-benefit execution (NUNES et al., 2021);

* Spark Cluster: single Master node and {1, . . ., 6} Worker nodes, with a single

Executor per Worker ;

* Spark’s Scheduler: FAIR Standalone scheduler, which employs a single fair

resource sharing pool.

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 79

II. Regarding the Diff Sequences Spark application

* Data Input: n ∈ {2, 4, 8, 16, 32, 64} SARS-CoV-2 nucleotide sequences;

* Spark’s Data Structure: RDD ;

* Diff Phase: DIFF1;

* Collection Phase: MW;

* Optimizations: damping coefficient ki = Ec, and multi-threading pool com-

posed of 12 producer and 12 consumer threads in the Master, with a maximum

capacity of 300 ready-to-run comparison jobs in the shared queue.

Let ωw be the Worker instance name and ιw the number of Workers per experiment.

Concerning each experimental measurement, since ki is set to Ec, M = 2 ·Da map tasks

are run in total (with Da Map phase rounds required). Also, since the MW approach

is used, R = Da reduce tasks are run in total (i.e., one per sequences comparison job).

Several experiments were executed (90 in total), with 70% (63) randomly selected for the

training set and the remaining 30% (27) for the testing set.

5.3.2 Training the Prediction Model

Table 2 summarizes the T , M , R, and Ec values for the training set, which are considered

in the learning step of the runtime prediction model. Through an implementation1 that

uses the SciPy optimize’s nnls library (SCIPY, 2022) to solve the non-negative least

squares curve fitting problem, and applying it to the training set experiments, we obtained

β̂ = {β0 = 0, β1 = 0.011, β2 = 0, β3 = 0.083, β4 = 0, β5 = 5.034, β6 = 0.055, β7 = 0},
which are the weights (contributions) of the xi components of Equation 5.10.

Table 2: Diff Sequences Spark ’s prediction model training set.

Worker Node
Ec Em n Da ki M R

Runtime T

(Seconds)ωw ιw

r5.large
1 2 14 8 28 2 56 28 27.82

4 8 56 2 1 8 2 1 12.91

r5.xlarge 1 4 29 32 496 4 992 496 103.11

(Continued on the next page)

1https://github.com/alan-lira/crespark

https://github.com/alan-lira/crespark
https://github.com/alan-lira/crespark

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 80

Table 2: Diff Sequences Spark ’s prediction model training set. (cont.)

Worker Node
Ec Em n Da ki M R

Runtime T

(Seconds)ωw ιw

r5.xlarge

3 12 87 2 1 12 2 1 11.32

5 20 145 16 120 20 240 120 23.69

5 20 145 2 1 20 2 1 11.38

2 8 58 32 496 8 992 496 73.53

r5.2xlarge
3 24 183 16 120 24 240 120 22.36

3 24 183 64 2016 24 4032 2016 216.17

r5.4xlarge

6 96 738 8 28 96 56 28 14.13

1 16 123 16 120 16 240 120 23.17

2 32 246 8 28 32 56 28 14.43

3 48 369 8 28 48 56 28 14.11

4 64 492 8 28 64 56 28 14.07

r5.8xlarge

1 32 247 8 28 32 56 28 14.40

2 64 494 64 2016 64 4032 2016 238.73

6 192 1482 64 2016 192 4032 2016 235.59

4 128 988 64 2016 128 4032 2016 237.52

r5.12xlarge

4 192 1488 32 496 192 992 496 59.92

1 48 372 16 120 48 240 120 21.72

3 144 1116 64 2016 144 4032 2016 233.22

r6i.large

4 8 56 64 2016 8 4032 2016 233.84

5 10 70 8 28 10 56 28 15.34

5 10 70 16 120 10 240 120 25.40

r6i.xlarge

3 12 87 64 2016 12 4032 2016 225.06

4 16 116 8 28 16 56 28 14.55

2 8 58 64 2016 8 4032 2016 240.27

r6i.2xlarge

1 8 60 8 28 8 56 28 14.25

5 40 300 16 120 40 240 120 20.82

1 8 60 32 496 8 992 496 66.18

2 16 120 32 496 16 992 496 60.49

r6i.4xlarge
6 96 732 32 496 96 992 496 58.29

4 64 488 64 2016 64 4032 2016 235.41

(Continued on the next page)

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 81

Table 2: Diff Sequences Spark ’s prediction model training set. (cont.)

Worker Node
Ec Em n Da ki M R

Runtime T

(Seconds)ωw ιw

r6i.4xlarge
5 80 610 16 120 80 240 120 20.50

6 96 732 64 2016 96 4032 2016 235.75

r6i.8xlarge

4 128 984 64 2016 128 4032 2016 236.24

3 96 738 32 496 96 992 496 58.27

2 64 492 16 120 64 240 120 20.35

5 160 1230 32 496 160 992 496 58.31

2 64 492 64 2016 64 4032 2016 234.42

r6i.12xlarge
4 192 1480 64 2016 192 4032 2016 234.32

3 144 1110 64 2016 144 4032 2016 237.69

z1d.large

6 12 84 16 120 12 240 120 25.81

5 10 70 64 2016 10 4032 2016 226.08

5 10 70 32 496 10 992 496 68.68

z1d.xlarge

3 12 87 16 120 12 240 120 23.83

5 20 145 64 2016 20 4032 2016 221.79

4 16 116 64 2016 16 4032 2016 228.71

z1d.2xlarge

2 16 122 16 120 16 240 120 22.65

6 48 366 64 2016 48 4032 2016 235.06

6 48 366 32 496 48 992 496 58.95

z1d.3xlarge

2 24 184 8 28 24 56 28 13.21

4 48 368 8 28 48 56 28 12.75

3 36 276 16 120 36 240 120 20.81

z1d.6xlarge

4 96 740 64 2016 96 4032 2016 231.75

6 144 1110 64 2016 144 4032 2016 231.08

4 96 740 32 496 96 992 496 57.91

3 72 555 32 496 72 992 496 58.02

6 144 1110 32 496 144 992 496 57.84

z1d.12xlarge

2 96 744 16 120 96 240 120 21.21

4 192 1488 32 496 192 992 496 57.86

3 144 1116 32 496 144 992 496 58.10

4 192 1488 64 2016 192 4032 2016 233.49

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 82

5.3.3 Predicting with the Trained Model

We evaluated the prediction quality of our model by fixing the learned βi coefficients values

(β̂) in Equation 5.10 and by using the M , R, and Ec values from each experiment of the

testing set to predict each respective T value, denoted as Tpredicted. Then, each Tpredicted

was compared to its actual T value, denoted as Tactual, to determine the prediction error

for each experiment, denoted as ∆T , where ∆T = |Tpredicted − Tactual| (i.e., the absolute

error). Table 3 summarizes the Tactual, Tpredicted, and ∆T values of the testing set.

Finally, through an implementation2 that uses the Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), and Coefficient of Determination (R2) regression metrics

from the Scikit-learn library (SCIKIT-LEARN, 2022), the following regression scores were

achieved: MAE = 4.048, RMSE = 6.095, and R2 = 0.994. One should recall that the

closest MAE and RMSE are to zero, and the closest R2 is to one, the most precise the

regression model is. Thus, we obtained a very accurate model for the Diff Sequences Spark

application.

Table 3: Diff Sequences Spark ’s prediction model testing set.

Worker Node
Ec Em n Da ki M R

Tactual

(Seconds)

Tpredicted

(Seconds)
∆T

ωw ιw

r5.large

5 10 70 16 120 10 240 120 28.81 23.47 5.34

1 2 14 2 1 2 2 1 12.98 10.35 2.63

4 8 56 8 28 8 56 28 18.57 13.23 5.34

r5.2xlarge

6 48 366 4 6 48 12 6 13.17 11.39 1.78

3 24 183 8 28 24 56 28 14.64 13.23 1.41

1 8 61 4 6 8 12 6 12.24 10.85 1.39

r5.8xlarge 2 64 494 16 120 64 240 120 21.58 23.29 1.71

r5.12xlarge
6 288 2232 64 2016 288 4032 2016 231.42 230.90 0.52

1 48 372 32 496 48 992 496 60.17 64.59 4.42

r6i.large 5 10 70 64 2016 10 4032 2016 224.71 235.11 10.40

(Continued on the next page)

2https://github.com/alan-lira/crespark

https://github.com/alan-lira/crespark
https://github.com/alan-lira/crespark

5.3 Evaluation of the Diff Sequences Spark ’s Prediction Model 83

Table 3: Diff Sequences Spark ’s prediction model testing set. (cont.)

Worker Node
Ec Em n Da ki M R

Tactual

(Seconds)

Tpredicted

(Seconds)
∆T

ωw ιw

r6i.large 5 10 70 32 496 10 992 496 67.29 65.44 1.85

r6i.xlarge
3 12 87 16 120 12 240 120 23.68 23.43 0.25

6 24 174 16 120 24 240 120 22.50 23.33 0.83

r6i.2xlarge 4 32 240 64 2016 32 4032 2016 237.82 232.10 5.72

r6i.4xlarge 2 32 244 16 120 32 240 120 20.60 23.31 2.71

r6i.12xlarge

1 48 370 64 2016 48 4032 2016 231.84 231.65 0.19

4 192 1480 32 496 192 992 496 58.21 64.45 6.24

2 96 740 16 120 96 240 120 20.28 23.30 3.02

z1d.large
2 4 28 32 496 4 992 496 90.80 67.05 23.75

2 4 28 8 28 4 56 28 19.33 13.30 6.03

z1d.xlarge
2 8 58 8 28 8 56 28 16.02 13.23 2.79

5 20 145 32 496 20 992 496 61.68 64.90 3.22

z1d.2xlarge
4 32 244 8 28 32 56 28 13.99 13.25 0.74

5 40 305 32 496 40 992 496 60.20 64.63 4.43

z1d.3xlarge
5 60 460 32 496 60 992 496 58.38 64.55 6.17

3 36 276 32 496 36 992 496 59.07 64.66 5.59

z1d.12xlarge 1 48 372 64 2016 48 4032 2016 232.48 231.65 0.83

6 Optimizing the VMs Allocation on
AWS EC2 for Diff Sequences Spark
Application

6.1 Initial Assumptions

Consider the following characteristics for the computational environment on AWS EC2,

the Diff Sequences Spark application, and the Diff Sequences Spark ’s application runtime

prediction model:

I. Regarding the computational environment (Spark on AWS EC2)

* The Spark cluster is composed of one or more Master nodes of the same VM

instance type and one or more Worker nodes of the same VM instance type;

and

* There is a maximum number of vCPU s (CPU cores) for all running VM in-

stances a user can rent at a time (vCPU s quota constraint).

II. Regarding the Diff Sequences Spark application

* The M map tasks number is assumed to be known (estimated) before solving

the optimization problem; and

* The R reduce tasks number is assumed to be known (estimated) before solving

the optimization problem.

III. Regarding the Diff Sequences Spark ’s runtime prediction model

* The βi coefficients values, i.e., β̂ = {β0, β1, β2, β3, β4, β5, β6, β7}, are assumed

to be known (learned) before solving the optimization problem.

6.2 Diff Sequences Spark ’s Monetary Cost Function 85

Let ιm be the number of Master nodes, where ιm ≥ 1, let γm be the number of CPU

cores per Master VM instance, let ιw be the number of Worker nodes, where ιw ≥ 1, and

let γw be the number of CPU cores per Worker VM instance. The total number of CPU

cores for the Spark cluster, already considering the vCPU s quota constraint, is defined

as Tc = (ιm · γm) + (ιw · γw). Therefore, the maximum number of CPU cores that can be

acquired for the Executors is Ecmax = Tc − (ιm · γm). Moreover, the minimum number of

CPU cores that can be acquired for the Executors is Ecmin
= γw.

6.2 Diff Sequences Spark’s Monetary Cost Function

Let υm be the monetary cost per unit of time to rent each Master VM instance and υw

be the monetary cost per unit of time to rent each Worker VM instance.

Consider the Diff Sequences Spark application’s runtime cost function, denoted as

TDSS (Equation 5.10), with all its values known (user-provided) except for Ec. Bearing

in mind the assumptions described in the previous section, the Diff Sequences Spark

application’s monetary cost function, denoted as CDSS, is defined as follows (Equation

6.1):

CDSS(Ec) = ((ιm·υm) + (ιw·υw)) ·TDSS(Ec)

Where, ιw =

⌈
Ec

γw

⌉
, and M , R, ιm, υm, γw, and υw are user-provided constants.

(6.1)

6.3 Optimization Problems for Diff Sequences Spark

Cloud users often have a challenging responsibility in picking the most appropriate VMs

configuration to run their applications due to a wide variety of resources made available by

the cloud providers. To propose a solution to overcome this challenge, we are interested

in optimizing the VMs allocation to execute the Diff Sequences Spark application on

AWS EC2, considering two conflicting minimization goals: runtime and financial cost.

Furthermore, Table 4 summarizes the notation defined for both objectives.

6.3 Optimization Problems for Diff Sequences Spark 86

Table 4: Diff Sequences Spark ’s optimization problems notations.
Notation Description

TDSS Runtime cost function for Diff Sequences Spark (Equation 5.10).
CDSS Monetary cost function for Diff Sequences Spark (Equation 6.1).
βi Beta coefficients learned with Multiple Regression Analysis (user-provided).
M Number of map tasks for Diff Sequences Spark (user-provided).
R Number of reduce tasks for Diff Sequences Spark (user-provided).
ιm Number of Master nodes (user-provided).
υm Monetary cost per unit of time to rent each Master VM instance (user-provided).
γw Number of CPU cores per Worker VM instance (user-provided).
υw Monetary cost per unit of time to rent each Worker VM instance (user-provided).

Ecmin Minimum number of CPU cores that can be acquired for the Executors (user-provided).
Ecmax Maximum number of CPU cores that can be acquired for the Executors (user-provided).
ϕ Budget constraint to execute the Diff Sequences Spark application (user-provided).
τ Time constraint to execute the Diff Sequences Spark application (user-provided).

Ecopt The optimal number of CPU cores for the Executors (optimization output).
ιw Number of Worker nodes to be acquired (derived from Ecopt).

Notice that the number of Worker nodes to be acquired is derived from the Ecopt

value, such that ιw =
⌈
Ecopt

γw

⌉
.

6.3.1 Runtime Optimization Subject to Budget Constraint

Given a user-provided budget constraint denoted as ϕ (i.e., the maximum monetary

spend) to execute the Diff Sequences Spark application, the optimization problem that

minimizes the runtime cost is defined as follows (Equation 6.2):

Input: βi, M , R, ιm, υm, γw, υw, Ecmin
, Ecmax , ϕ

Output: Ecopt

Minimize TDSS

Subject to CDSS ≤ ϕ

Ecopt ≥ Ecmin

Ecopt ≤ Ecmax

(6.2)

6.3 Optimization Problems for Diff Sequences Spark 87

6.3.2 Monetary Cost Optimization Subject to Deadline Constraint

Given a user-provided deadline constraint denoted as τ (i.e., the maximum time spend)

to execute the Diff Sequences Spark application, the optimization problem that minimizes

the monetary cost is defined as follows (Equation 6.3):

Input: βi, M , R, ιm, υm, γw, υw, Ecmin
, Ecmax , τ

Output: Ecopt

Minimize CDSS

Subject to TDSS ≤ τ

Ecopt ≥ Ecmin

Ecopt ≤ Ecmax

(6.3)

7 Experimental Results on AWS EC2

7.1 Evaluation of the Diff Sequences Spark’s Cost Optimizer

The experimental evaluation aims at the benefits of using the VMs allocation optimizer

to execute the Diff Sequences Spark application on AWS EC2 in contrast to a random

selection of VMs provided by an inexperienced cloud user. For that goal, we implemented1

the optimization problems defined in the previous chapter using the Gurobi Optimizer

solver (GUROBI, 2022) to obtain the optimal number of CPU cores for the Executors

and, consequently, the appropriate Spark cluster size (i.e., the number of Master and

Worker nodes).

7.1.1 Experimental Environment and Application-Related Settings

We considered the general settings described in Subsection 5.3.1 plus the following

changes:

I. Regarding the Diff Sequences Spark application

* Data Input: n ∈ {2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96} SARS-CoV-2 nucleotide

sequences.

II. Regarding the Diff Sequences Spark ’s optimization problems

* Master Nodes: ιm = 1 and υm = 2.232 USD per hour of use;

* Optimization Constraints: Ecmin
= γw, Ecmax = 10 · Ecmin

, ϕ = 2.5 USD, and

τ = 0.2 hours (≡ 12 minutes ≡ 720 seconds).

1https://github.com/alan-lira/crespark

https://github.com/alan-lira/crespark
https://github.com/alan-lira/crespark

7.2 Diff Sequences Spark ’s Execution With Spot Instances 89

Suppose an inexperienced cloud user randomly selected the number of CPU cores

for the Executors, denoted as Ecrnd
, such that Ecmin

≤ Ecrnd
≤ Ecmax . Also, let T be the

runtime cost in seconds and C be the monetary cost in USD to execute the Diff Sequences

Spark application under several experimental configurations.

7.1.2 Minimizing the Diff Sequences Spark Application’s Runtime Cost

Table 5 summarizes the results when the runtime minimization is aimed using the op-

timizer, with a maximum monetary spend ϕ = 2.5 USD. Notice the optimal selection of

parameters allowed an average runtime cost reduction of 3.6% compared to the scenarios

where the user does not know the proper selection of parameters.

7.1.3 Minimizing the Diff Sequences Spark Application’s Monetary Cost

Table 6 summarizes the results when the monetary cost minimization is aimed using the

optimizer, with a maximum runtime spend τ = 0.2 hours (≡ 12 minutes ≡ 720 seconds).

Notice the optimal selection of parameters allowed an average monetary cost reduction of

48.67% compared to the scenarios where the user does not know the proper selection of

parameters.

7.2 Diff Sequences Spark’s Execution With Spot Instances

Since Spark provides a fault-tolerant environment, we also investigate the effect of using

spot instances Workers in the runtime and monetary cost of the Diff Sequences Spark ap-

plication, contemplating scenarios with either spot instances revocation or not. Notice the

eventual loss of Workers shall not impact the execution completion as the SparkContext

will be launched into the on-demand instance Master (Driver program).

7.2.1 Experimental Environment and Application-Related Settings

We considered the general settings described in Subsection 5.3.1 plus the following

changes:

7.2 Diff Sequences Spark ’s Execution With Spot Instances 90

Ta
bl

e
5:

D
iff

Se
qu

en
ce

s
Sp

ar
k’

s
ru

nt
im

e
co

st
op

ti
m

iz
at

io
n

re
su

lt
s.

n

O
P

T
IM

IZ
A

T
IO

N
IN

P
U

T
S

O
P

T
IM

A
L

S
E
L
E
C

T
IO

N
R

A
N

D
O

M
S
E
L
E
C

T
IO

N
%

C
H

A
N

G
E

P
ar

am
et

er
s

R
es

u
lt

s
P
ar

am
et

er
s

R
es

u
lt

s

γ
w

ω
w

υ
w

ϕ
M

R
E

c
m

i
n
E

c
m

a
x
E

c
o
p
t

ι w
T (s
)

C
(U

S
D

)
E

c
r
n
d

ι w
T (s
)

C
(U

S
D

)
T

C

2
2

r5
.la

rg
e

0.
12

6
2.

5
2

1
2

20
2

1
12

.9
0

0.
00

84
16

8
13

.7
2

0.
01

24
−

6.
03

%
−

31
.6

1%
3

r6
i.l

ar
ge

0.
12

6
2.

5
6

3
2

20
2

1
12

.5
4

0.
00

82
4

2
12

.5
3

0.
00

86
+

0.
13

%
−

4.
95

%
4

z1
d.

la
rg

e
0.

18
6

2.
5

12
6

2
20

3
2

13
.1

2
0.

00
95

6
3

14
.1

7
0.

01
10

−
7.

36
%

−
13

.5
4%

6
4

r5
.x

la
rg

e
0.

25
2

2.
5

30
15

4
40

8
2

14
.2

3
0.

01
08

20
5

15
.1

8
0.

01
47

−
6.

25
%

−
26

.5
5%

8
r6

i.x
la

rg
e

0.
25

2
2.

5
56

28
4

40
14

4
14

.5
8

0.
01

31
12

3
14

.9
1

0.
01

24
−

2.
17

%
+

6.
08

%
12

z1
d.

xl
ar

ge
0.

37
2

2.
5

13
2

66
4

40
34

9
17

.4
6

0.
02

71
24

6
17

.2
5

0.
02

14
+

1.
24

%
+

26
.5

4%

16
8

r5
.2

xl
ar

ge
0.

50
4

2.
5

24
0

12
0

8
80

61
8

22
.2

2
0.

03
87

32
4

22
.1

8
0.

02
62

+
0.

16
%

+
47

.7
0%

24
r6

i.2
xl

ar
ge

0.
50

4
2.

5
55

2
27

6
8

80
80

10
35

.9
5

0.
07

26
8

1
41

.7
3

0.
03

17
−

13
.8

5%
+

12
8.

98
%

32
z1

d.
2x

la
rg

e
0.

74
4

2.
5

99
2

49
6

8
80

80
10

58
.6

8
0.

15
77

48
6

59
.4

4
0.

11
06

−
1.

27
%

+
42

.6
1%

48
12

z1
d.

3x
la

rg
e

1.
11

6
2.

5
22

56
11

28
12

12
0

12
0

10
12

6.
79

0.
47

17
96

8
12

5.
96

0.
39

05
+

0.
65

%
+

20
.7

8%
64

z1
d.

3x
la

rg
e

1.
11

6
2.

5
40

32
20

16
12

12
0

12
0

10
23

9.
72

0.
89

18
84

7
22

7.
26

0.
63

41
+

5.
48

%
+

40
.6

4%
96

z1
d.

3x
la

rg
e

1.
11

6
2.

5
91

20
45

60
12

12
0

12
0

10
55

1.
83

2.
05

28
60

5
55

2.
28

1.
19

84
−

0.
08

%
+

71
.2

9%

2
16

r5
.4

xl
ar

ge
1.

00
8

2.
5

2
1

16
16

0
16

1
11

.0
0

0.
00

99
48

3
11

.9
8

0.
01

75
−

8.
12

%
−

43
.3

6%
3

r6
i.4

xl
ar

ge
1.

00
8

2.
5

6
3

16
16

0
16

1
9.

98
0.

00
90

64
4

10
.3

9
0.

01
81

−
3.

92
%

−
50

.3
1%

4
r6

i.4
xl

ar
ge

1.
00

8
2.

5
12

6
16

16
0

16
1

10
.3

3
0.

00
93

80
5

14
.6

5
0.

02
96

−
29

.5
0%

−
68

.5
9%

6
24

z1
d.

6x
la

rg
e

2.
23

2
2.

5
30

15
24

24
0

24
1

11
.6

4
0.

01
44

48
2

11
.9

5
0.

02
22

−
2.

63
%

−
35

.0
9%

8
z1

d.
6x

la
rg

e
2.

23
2

2.
5

56
28

24
24

0
24

1
13

.0
6

0.
01

62
14

4
6

14
.6

1
0.

06
34

−
10

.5
6%

−
74

.4
4%

12
z1

d.
6x

la
rg

e
2.

23
2

2.
5

13
2

66
24

24
0

34
2

15
.2

3
0.

02
83

96
4

15
.6

6
0.

04
85

−
2.

72
%

−
41

.6
3%

16
32

r5
.8

xl
ar

ge
2.

01
6

2.
5

24
0

12
0

32
32

0
61

2
21

.6
1

0.
03

76
96

3
21

.1
3

0.
04

86
+

2.
26

%
−

22
.6

3%
24

r6
i.8

xl
ar

ge
2.

01
6

2.
5

55
2

27
6

32
32

0
14

1
5

35
.5

8
0.

12
17

19
2

6
36

.0
1

0.
14

33
−

1.
20

%
−

15
.1

0%
32

r6
i.8

xl
ar

ge
2.

01
6

2.
5

99
2

49
6

32
32

0
25

4
8

58
.2

8
0.

29
72

16
0

5
58

.3
0

0.
19

94
−

0.
04

%
+

49
.0

7%

48
48

r5
.1

2x
la

rg
e

3.
02

4
2.

5
22

56
11

28
48

48
0

48
0

10
12

6.
82

1.
14

40
96

2
12

6.
72

0.
29

15
+

0.
08

%
+

29
2.

48
%

64
r6

i.1
2x

la
rg

e
3.

02
4

2.
5

40
32

20
16

48
48

0
48

0
10

23
3.

79
2.

10
88

33
6

7
22

4.
03

1.
45

62
+

4.
36

%
+

44
.8

2%
96

z1
d.

12
xl

ar
ge

4.
46

4
2.

5
91

20
45

60
48

48
0

14
4

3
53

0.
11

2.
30

07
38

4
8

55
7.

90
5.

88
02

−
4.

98
%

−
60

.8
7%

7.2 Diff Sequences Spark ’s Execution With Spot Instances 91

Ta
bl

e
6:

D
iff

Se
qu

en
ce

s
Sp

ar
k’

s
m

on
et

ar
y

co
st

op
ti

m
iz

at
io

n
re

su
lt

s.

n

O
P

T
IM

IZ
A

T
IO

N
IN

P
U

T
S

O
P

T
IM

A
L

S
E
L
E
C

T
IO

N
R

A
N

D
O

M
S
E
L
E
C

T
IO

N
%

C
H

A
N

G
E

P
ar

am
et

er
s

R
es

u
lt

s
P
ar

am
et

er
s

R
es

u
lt

s

γ
w

ω
w

υ
w

τ
M

R
E

c
m

i
n
E

c
m

a
x
E

c
o
p
t

ι w
T (s
)

C
(U

S
D

)
E

c
r
n
d

ι w
T (s
)

C
(U

S
D

)
T

C

2
2

r5
.la

rg
e

0.
12

6
0.

2
2

1
2

20
2

1
12

.9
9

0.
00

85
2

1
12

.6
2

0.
00

83
+

2.
94

%
+

2.
94

%
3

r6
i.l

ar
ge

0.
12

6
0.

2
6

3
2

20
2

1
12

.3
6

0.
00

81
4

2
12

.5
2

0.
00

86
−

1.
32

%
−

6.
32

%
4

z1
d.

la
rg

e
0.

18
6

0.
2

12
6

2
20

2
1

14
.0

9
0.

00
95

8
4

14
.3

4
0.

01
19

−
1.

75
%

−
20

.1
7%

6
4

r5
.x

la
rg

e
0.

25
2

0.
2

30
15

4
40

4
1

15
.8

9
0.

01
10

16
4

15
.1

3
0.

01
36

+
4.

99
%

−
19

.5
1%

8
r6

i.x
la

rg
e

0.
25

2
0.

2
56

28
4

40
4

1
18

.1
8

0.
01

25
28

7
15

.1
6

0.
01

68
+

19
.9

2%
−

25
.4

5%
12

z1
d.

xl
ar

ge
0.

37
2

0.
2

13
2

66
4

40
4

1
24

.5
6

0.
01

78
20

5
17

.3
7

0.
01

97
+

41
.3

7%
−

10
.0

3%

16
8

r5
.2

xl
ar

ge
0.

50
4

0.
2

24
0

12
0

8
80

8
1

27
.2

8
0.

02
07

24
3

22
.0

4
0.

02
29

+
23

.8
0%

−
9.

53
%

24
r6

i.2
xl

ar
ge

0.
50

4
0.

2
55

2
27

6
8

80
8

1
41

.3
4

0.
03

14
48

6
36

.4
2

0.
05

32
+

13
.5

2%
−

40
.9

1%
32

z1
d.

2x
la

rg
e

0.
74

4
0.

2
99

2
49

6
8

80
8

1
66

.8
6

0.
05

53
56

7
59

.3
9

0.
12

27
+

12
.5

8%
−

54
.9

7%

48
12

z1
d.

3x
la

rg
e

1.
11

6
0.

2
22

56
11

28
12

12
0

12
1

13
3.

64
0.

12
43

96
8

12
6.

53
0.

39
23

+
5.

61
%

−
68

.3
2%

64
z1

d.
3x

la
rg

e
1.

11
6

0.
2

40
32

20
16

12
12

0
12

1
23

6.
44

0.
21

99
60

5
22

6.
84

0.
49

22
+

4.
23

%
−

55
.3

3%
96

z1
d.

3x
la

rg
e

1.
11

6
0.

2
91

20
45

60
12

12
0

12
1

49
6.

71
0.

46
19

72
6

55
9.

00
1.

38
63

−
11

.1
4%

−
66

.6
8%

2
16

r5
.4

xl
ar

ge
1.

00
8

0.
2

2
1

16
16

0
16

1
11

.0
6

0.
01

00
11

2
7

12
.0

0
0.

03
10

−
7.

80
%

−
67

.8
4%

3
r6

i.4
xl

ar
ge

1.
00

8
0.

2
6

3
16

16
0

16
1

9.
92

0.
00

89
32

2
10

.4
5

0.
01

23
−

5.
04

%
−

27
.5

8%
4

r6
i.4

xl
ar

ge
1.

00
8

0.
2

12
6

16
16

0
16

1
10

.3
8

0.
00

93
14

4
9

12
.1

2
0.

03
81

−
14

.3
9%

−
75

.4
6%

6
24

z1
d.

6x
la

rg
e

2.
23

2
0.

2
30

15
24

24
0

24
1

11
.6

4
0.

01
44

14
4

6
11

.8
3

0.
05

14
−

1.
68

%
−

71
.9

1%
8

z1
d.

6x
la

rg
e

2.
23

2
0.

2
56

28
24

24
0

24
1

12
.9

9
0.

01
61

19
2

8
13

.7
9

0.
07

70
−

5.
83

%
−

79
.0

7%
12

z1
d.

6x
la

rg
e

2.
23

2
0.

2
13

2
66

24
24

0
24

1
15

.3
7

0.
01

91
21

6
9

16
.1

2
0.

09
99

−
4.

63
%

−
80

.9
3%

16
32

r5
.8

xl
ar

ge
2.

01
6

0.
2

24
0

12
0

32
32

0
32

1
21

.7
5

0.
02

57
28

8
9

21
.4

0
0.

12
11

+
1.

63
%

−
78

.8
1%

24
r6

i.8
xl

ar
ge

2.
01

6
0.

2
55

2
27

6
32

32
0

32
1

35
.6

1
0.

04
20

22
4

7
36

.0
1

0.
16

35
−

1.
10

%
−

74
.2

9%
32

r6
i.8

xl
ar

ge
2.

01
6

0.
2

99
2

49
6

32
32

0
32

1
58

.4
5

0.
06

90
25

6
8

58
.5

1
0.

29
84

−
0.

10
%

−
76

.8
9%

48
48

r5
.1

2x
la

rg
e

3.
02

4
0.

2
22

56
11

28
48

48
0

48
1

12
7.

85
0.

18
67

33
6

7
12

6.
89

0.
82

48
+

0.
75

%
−

77
.3

7%
64

r6
i.1

2x
la

rg
e

3.
02

4
0.

2
40

32
20

16
48

48
0

48
1

23
8.

60
0.

34
84

48
1

23
6.

98
0.

34
60

+
0.

68
%

+
0.

68
%

96
z1

d.
12

xl
ar

ge
4.

46
4

0.
2

91
20

45
60

48
48

0
48

1
55

4.
01

1.
03

05
43

2
9

55
9.

64
6.

59
25

−
1.

01
%

−
84

.3
7%

7.2 Diff Sequences Spark ’s Execution With Spot Instances 92

I. Regarding the Diff Sequences Spark application

* Data Input: n = 256 SARS-CoV-2 nucleotide sequences.

II. Regarding the Diff Sequences Spark ’s optimization problems

* Master Nodes: ιm = 1 and υm = 2.232 USD per hour of use;

* Worker Nodes: γw = 4 and υw = 0.372 USD per hour of use (if on-demand

instance) or υw = 0.1116 USD per hour of use (if spot instance);

* Optimization Constraints: Ecmin
= γw, Ecmax = 8 · Ecmin

, and ϕ = 6.0 USD.

Suppose the inexperienced cloud user is willing to take the advice of the optimizer

to compare n = 256 SARS-CoV-2 sequences with a maximum monetary spend ϕ = 6.0

USD. Moreover, let T be the runtime cost in seconds and C be the monetary cost in USD

to execute the Diff Sequences Spark application.

7.2.2 Costs of Rental Spot Instances Compared to On-demand Instances

The Spark cluster is initially to be formed exclusively by on-demand instances. The

single Master node is of z1d.6xlarge instance type and costs υm = 2.232 USD per hour

of use. The Workers nodes are of z1d.xlarge instance type, and each costs υw = 0.372

USD per hour of use. Table 7 summarizes the results obtained. In this initial setup, the

optimizer recommended the rental of eight on-demand Workers (Ecopt = 32, ιw = 8), and

the average runtime and monetary costs obtained after the execution were, respectively,

3411.54 seconds and 4.9354 USD.

Table 7: Diff Sequences Spark ’s on-demand workers optimization results.

n

OPTIMIZATION INPUTS OPTIMAL SELECTION
Parameters Results

γw ωw υw ϕ M R Ecmin Ecmax Ecopt ιw
T
(s)

C
(USD)

256 4 z1d.xlarge 0.372 6.0 65 280 32 640 4 32 32 8 3411.54 4.9354

Next, all the Workers nodes are replaced by spot instances. The Workers are also

of z1d.xlarge instance type, and each costs υw = 0.1116 USD per hour of use. Table

8 summarizes the results obtained. In this more economical setup, the optimizer still

recommended the rental of eight Workers (Ecopt = 32, ιw = 8), and the average runtime

and monetary costs obtained after the execution were, respectively, 3411.93 seconds and

2.9616 USD.

7.2 Diff Sequences Spark ’s Execution With Spot Instances 93

Table 8: Diff Sequences Spark ’s spot workers no revocation optimization results.

n

OPTIMIZATION INPUTS OPTIMAL SELECTION
Parameters Results

γw ωw υw ϕ M R Ecmin Ecmax Ecopt ιw
T
(s)

C
(USD)

256 4 z1d.xlarge 0.1116 6.0 65 280 32 640 4 32 32 8 3411.93 2.9616

Note that while the average runtime kept equivalent, a 39.99% reduction of the mon-

etary cost was achieved, demonstrating the benefits of using the spot instances.

7.2.3 Spot Instances Revocation Scenarios

Finally, we are interested in the primary analysis of spot instances revocation scenarios

when running the Diff Sequences Spark application in a Spark cluster formed on AWS

EC2. Consider the following revocation scenarios:

• None: no spot Workers revocation occurs. It is the baseline scenario (i.e., starting

point used for comparisons), which considers the average results obtained in the

previous subsection for spot instances;

• RS1: two spot Workers (25%) are revoked after 900 seconds of execution;

• RS2: two spot Workers (25%) are revoked after 1800 seconds of execution; and

• RS3: two spot Workers (25%) are revoked after 2700 seconds of execution.

Table 9 summarizes the average (Avg) and standard deviation (StDev) values for the

runtime (T) and monetary cost (C), and the percentage change between the revocation

scenarios. Notice the RS1 scenario obtained the worst execution time average results (an

increase of 0.70%) due to Workers loss at the beginning. On the other hand, it allowed

the lowest monetary cost to run the application (a reduction of 4.61%).

Table 9: Diff Sequences Spark ’s spot workers revocation scenarios results.
Revocation
Scenario

T (s) C (USD) Percentage Change
Avg StDev Avg StDev T C

None 3411.93 22.13 2.9616 0.0192 0% 0%
RS1 3435.73 22.38 2.8250 0.0180 +0.70% −4.61%
RS2 3418.28 18.38 2.8667 0.0148 +0.19% −3.20%
RS3 3415.61 19.13 2.9204 0.0154 +0.11% −1.39%

8 Concluding Remarks and Future Di-
rection

8.1 Conclusion

This work presented a computational cost optimization model proposal for executing

MapReduce-like Spark applications in the Cloud. This model aids the user in the most

appropriate Spark cluster sizing, given an input parameter set that characterizes the

target application (e.g., number of map tasks, number of reduce tasks, and number of

Executors cores) and the optimization objective (i.e., time minimization subject to budget

constraint or cost minimization subject to deadline constraint).

The Diff Sequences Spark application was developed to evaluate the proposed model.

It is a bioinformatic-related application that highlights the mismatching nucleotide char-

acters of the under comparison biological sequences. Its first version (v0.8.31) aimed at

DataFrames usage through a higher-level abstraction with relational programming, a more

direct implementation than RDDs (NUNES et al., 2021). Two comparison approaches

were implemented, DIFF1 and DIFFopt. The former allows two biological sequences to

be compared per iteration (application’s flow cycle), and the latter allows two or more

at a time, capped by the maxS constant defined by the user. Preliminary results using

multiple Worker nodes showed that DIFFopt achieved approximately 92.3% faster execu-

tion time when compared to DIFF1, considering n = 64 SARS-CoV-2 input sequences

and maxS = 63 (NUNES et al., 2021). Its second version (v0.9.92) aimed at RDDs

usage through a lower-level abstraction with functional programming that offered even

faster sequences comparisons. Preliminary results using a single Worker node and the

DIFF1 approach showed that RDDs achieved approximately 30.4% execution time reduc-

tion when compared to DataFrames, considering n = 64 SARS-CoV-2 input sequences

(NUNES et al., 2022). Application-level optimizations were also applied. For instance,

multiple threads (producer-consumer pattern) on the Master node spawn simultaneous
1https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.8.3
2https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.9

https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.8.3
https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.9
https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.8.3
https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.9

8.2 Publications 95

comparison jobs to the Spark cluster and avoid idle resources. Also, a damping coeffi-

cient on each comparison job’s partitions optimizes the number of tasks and reduces the

runtime. Preliminary results showed an average runtime reduction of 67.69% when using

the application-level optimizations (NUNES et al., 2022).

Several experiments of the Diff Sequences Spark application were executed to learn

and assess the proposed cost prediction model, expressed as a multiple linear regression

function and solved as a non-negative least squares problem. A high accuracy model was

established, considering the regression metrics MAE, RMSE, and R2 and their values,

respectively, 4.048, 6.095, and 0.994. When using the trained model and bearing in

mind the optimizer output, the average runtime subject to a budget constraint and the

monetary cost subject to a deadline constraint were reduced by up to 3.6% and 48.67%,

respectively, when compared to arbitrary resource selections by an inexperienced Cloud

user.

The effect of using spot instances for Workers nodes in the runtime and monetary cost

of the Diff Sequences Spark application was also investigated, contemplating scenarios

with either spot instances revocation or not. In the tested environment with no instance

revocation, the spot Workers achieved a 39.99% average reduction of the monetary cost

while keeping the average runtime equivalent to their on-demand counterparts. Finally,

the impacts of spot instances revocations were evaluated for the Diff Sequences Spark

application execution, considering various revocation scenarios. Even in the worst tested

case, the application ran successfully with a slight increase of 0.70% in the execution time,

benefiting from Spark’s efficient fault-tolerant mechanism.

8.2 Publications

The following works production occurred along the development of this dissertation:

I. Directly related to the research theme:

(NUNES et al., 2021, 2022)

II. Indirectly related to the research theme:

(TEYLO et al., 2021b)

8.3 Open Issues and Future Works 96

8.3 Open Issues and Future Works

Taking into account the Diff Sequences Spark application itself, the Cloud environment,

and the Cost Optimizer Model proposed in this dissertation, the following issues and

future directions are of particular interest:

I. Regarding the Diff Sequences Spark application’s current development

state:

a. Spark built-in transformations on Map phase: the current Diff Sequences Spark

application version (v0.9.123) does not support the use of the read.textFile,

map, and flatMap transformations functions. Although the use of Producer-

Consumer threads (multi-threading pool) reduces the application runtime, the

implementation of these Spark built-in transformations would allow the data

parallelism decentralized from Master, likely obtaining a considerable boost in

application performance;

b. Merged Write approach: the MW executes the shuffling of partial data results

among the Worker nodes (i.e., Executors) before writing the comparison result

to the storage volume. However, the data shuffle is a costly operation for

Spark. If the number of biological sequence comparisons is high or the data per

sequence file is large, a significant Spark environment overhead may incur along

the application execution. The Distributed Write (DW) approach combined

with a Storage as a Service (STaaS) solution, e.g., Amazon S3, might be

enough to avoid excessive shuffling. For each biological sequence comparison,

using DW, merging the partial results into one file in the remote storage would

require an additional computational step. However, it should be significantly

cheaper than Spark’s internal procedure for large data amounts; and

c. DIFFopt approach on RDDs: in previous work (NUNES et al., 2021), we con-

firmed the efficiency of the DIFFopt approach compared to DIFF1 when run-

ning a reasonable amount of biological sequence comparisons (i.e., n = 540

SARS-CoV-2 sequences). However, at the time, we only had DataFrames im-

plemented for the Diff Sequences Spark application. In the current version

(v0.9.123), it is already possible to use RDDs with the DIFFopt approach to

run the comparisons. So it should be interesting to evaluate the efficiency

of RDDs against DataFrames for biological sequence comparisons, now both

using DIFFopt.
3https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.12

https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.12
https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.12
https://github.com/alan-lira/diff-sequences-spark/releases/tag/v0.9.12

8.3 Open Issues and Future Works 97

II. Regarding the Cloud environment:

a. Spot instances revocation: a time constraint might be part of an SLA, such

that if several spot instances revocation occur, the agreement might get vio-

lated. Reactive schemes, such as the one developed by Teylo et al. (TEYLO

et al., 2021a), should provide proper treatment in these situations.

b. Backup instances in case of Masters’ failure: task assignment and management

in Spark takes place exclusively in Master nodes, so there must be at least

one active Master for a given application. Although replicated Master nodes

increase the monetary cost, it provides greater assurance to the application

execution.

c. Backup instances in case of Workers’ failure: task processing in Spark takes

place exclusively in Workers nodes, so there must be at least one active Worker

for a given application. For example, if a spot instance type is revoked, all

Workers of that type most likely will be lost. To avoid the lack of Work-

ers problem, one could define at least one Worker instance in the on-demand

market that can run the application while new spot Workers are initializing

or renting different spot instance types (with unlike revocation rates) for the

Worker nodes.

III. Regarding the MapReduce-like Spark application’s cost optimizer model :

a. Heterogeneous VMs configurations support: the optimization model proposed

in this dissertation assumes that the Master nodes instances are homogeneous

(i.e., same instance type) and the Worker nodes instances are homogeneous.

However, sometimes it is required to build a heterogeneous Spark Cluster, e.g.,

due to a VM instance’s lack of availability. An enhanced model would in-

clude a greater variety of configurations, with different sizes of Spark Clusters,

satisfying new provisioning constraints; and

b. Adaptability degree evaluation: a usage evaluation of the model proposed in

this dissertation to other Spark applications will allow verifying its degree of

adaptability and, if necessary, improve it to obtain a more general model. An-

other form of evaluation concerns the degree of adaptability to other MapRe-

duce frameworks. It is currently under investigation, initially considering the

classic Word Count application and the MARLA framework (CAMPBELL et

al., 2022).

REFERENCES

ABRAMOWITZ, Milton; STEGUN, Irene A. Handbook of Mathematical

Functions With Formulas, Graphs, and Mathematical Tables. Washington,

D.C., USA: U.S. Government Printing Office, 1964. p. 14.

AMAZON. Amazon AWS - Global Infrastructure. 2022. Available from:

<https://aws.amazon.com/en/about-aws/global-infrastructure/>. Visited on:

30 June 2022.

. Amazon AWS - Services. 2022. Available from:

<https://aws.amazon.com/en/products/>. Visited on: 17 Apr. 2022.

. Amazon EC2. 2022. Available from: <https://aws.amazon.com/ec2/>.

Visited on: 17 Apr. 2022.

. Amazon EC2 Instance Types. 2022. Available from:

<https://aws.amazon.com/ec2/instance-types/>. Visited on: 18 Apr. 2022.

. Amazon EMR Features. 2022. Available from:

<https://aws.amazon.com/emr/features/>. Visited on: 22 July 2022.

. Amazon EMR Pricing. 2022. Available from:

<https://aws.amazon.com/emr/pricing/>. Visited on: 22 July 2022.

APACHE. Apache Hadoop. 2022. Available from: <https://hadoop.apache.org/>.

Visited on: 20 Apr. 2022.

. Apache Spark. 2022. Available from: <https://spark.apache.org/>.

Visited on: 20 Apr. 2022.

. Apache Spark: Concurrently Jobs Within Application. 2022. Available

from: <https://spark.apache.org/docs/latest/job-scheduling.html#overview>.

Visited on: 30 June 2022.

. Apache Spark: Knowing The Size of Each Task. 2022. Available from:

<https://spark.apache.org/docs/0.9.2/tuning.html#broadcasting-large-

variables>. Visited on: 10 June 2022.

https://aws.amazon.com/en/about-aws/global-infrastructure/
https://aws.amazon.com/en/products/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/emr/features/
https://aws.amazon.com/emr/pricing/
https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/docs/latest/job-scheduling.html#overview
https://spark.apache.org/docs/0.9.2/tuning.html#broadcasting-large-variables
https://spark.apache.org/docs/0.9.2/tuning.html#broadcasting-large-variables

REFERENCES 99

APACHE. Apache Spark: Level of Parallelism. 2022. Available from:

<https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism>.

Visited on: 30 June 2022.

. Apache Spark: Recommended Task Size. 2022. Available from:

<https://issues.apache.org/jira/browse/SPARK-2185>. Visited on: 1 June 2022.

ARMBRUST, Michael et al. Scaling spark in the real world: performance and usability.

VLDB Endowment, VLDB Endowment, v. 8, n. 12, p. 1840–1843, 2015. DOI:

10.14778/2824032.2824080.

ARMBRUST, Michael et al. Spark SQL: Relational Data Processing in Spark. In:

PROCEEDINGS of the 2015 ACM SIGMOD International Conference on Management

of Data. Melbourne, Victoria, Australia: Association for Computing Machinery, 2015.

(SIGMOD ’15), p. 1383–1394. DOI: 10.1145/2723372.2742797.

ARORA, Sanjeev; BARAK, Boaz. Computational Complexity: A Modern

Approach. Cambridge, United Kingdom: Cambridge University Press, 2009. p. 27–43.

DOI: 10.1017/CBO9780511804090.

BAHRAMI, Afsane; FERNS, Gordon A. Genetic and pathogenic characterization of

SARS-CoV-2: a review. Future Virology, Future Medicine, v. 15, n. 8, p. 533–549,

2020. DOI: 10.2217/fvl-2020-0129.

BERNSTEIN, David. Containers and Cloud: From LXC to Docker to Kubernetes.

IEEE Cloud Computing, v. 1, n. 3, p. 81–84, 2014. DOI: 10.1109/MCC.2014.51.

BOEHM, Matthias et al. SystemML: declarative machine learning on spark. VLDB

Endowment, VLDB Endowment, v. 9, n. 13, p. 1425–1436, 2016. DOI:

10.14778/3007263.3007279.

BONCZ, Peter et al. MonetDB/XQuery—Consistent and Efficient Updates on the

Pre/Post Plane. International Conference on Extending Database Technology,

v. 3896, p. 1190–1193, 2006. DOI: 10.1007/11687238_89.

BOTCHKAREV, Alexei. A New Typology Design of Performance Metrics to Measure

Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of

Information, Knowledge, and Management, Informing Science Institute, v. 14,

p. 45–76, 2019. DOI: 10.28945/4184.

https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism
https://issues.apache.org/jira/browse/SPARK-2185
https://doi.org/10.14778/2824032.2824080
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.2217/fvl-2020-0129
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.1007/11687238_89
https://doi.org/10.28945/4184

REFERENCES 100

BRUM, Rafaela et al. A Fault Tolerant and Deadline Constrained Sequence Alignment

Application on Cloud-Based Spot GPU Instances. European Conference on Parallel

Processing, Springer International Publishing, p. 317–333, 2021. DOI:

10.1007/978-3-030-85665-6_20.

CAMPBELL, Ronald et al. MapReduce na AWS: Uma Análise de Custos

Computacionais Utilizando os Serviços FaaS e IaaS. XXIII Symposium in High

Performance Computing Systems, SBC, Florianópolis, SC, Brazil, 2022. (Under

Review).

CHANNELE2E. Cloud Market Share 2022: Amazon AWS, Microsoft Azure,

Google Cloud. 2022. Available from: <https://www.channele2e.com/news/cloud-

market-share-amazon-aws-microsoft-azure-google/>. Visited on: 10 June 2022.

CHEN, Donghui; PLEMMONS, Robert J. Nonnegativity Constraints in Numerical

Analysis. In: THE Birth of Numerical Analysis. Hackensack, New Jersey, USA: World

Scientific, 2010. p. 109–139. DOI: 10.1142/9789812836267_0008.

CHEN, Keke et al. CRESP: Towards Optimal Resource Provisioning for MapReduce

Computing in Public Clouds. IEEE Transactions on Parallel and Distributed

Systems, IEEE, v. 25, n. 6, p. 1403–1412, June 2014. DOI: 10.1109/TPDS.2013.297.

CSC, Coronaviridae Study Group. The species Severe acute respiratory

syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.

Nature Microbiology, Nature Publishing Group UK London, v. 5, n. 4, p. 536–544,

2020. DOI: 10.1038/s41564-020-0695-z.

DANTZIG, George B. Origins of the Simplex Method. New York, NY, USA:

Association for Computing Machinery, 1990. p. 141–151. DOI: 10.1145/87252.88081.

DE OLIVEIRA, Douglas et al. Towards optimizing the execution of spark scientific

workflows using machine learning-based parameter tuning. Concurrency and

Computation: Practice and Experience, Wiley Online Library, v. 33, n. 5, 2021.

DOI: 10.1002/cpe.5972.

DIJKSTRA, Edsger W. A first exploration of effective reasoning. Department of

Computer Sciences. University of Texas at Austin. Austin, TX, USA, July 1996.

Available from: <http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1239.PDF>.

Visited on: 30 June 2022.

DOMO. Data never sleeps. 2020. Available from:

<https://www.domo.com/solution/data-never-sleeps-6>. Visited on: 1 Feb. 2022.

https://doi.org/10.1007/978-3-030-85665-6_20
https://www.channele2e.com/news/cloud-market-share-amazon-aws-microsoft-azure-google/
https://www.channele2e.com/news/cloud-market-share-amazon-aws-microsoft-azure-google/
https://doi.org/10.1142/9789812836267_0008
https://doi.org/10.1109/TPDS.2013.297
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1145/87252.88081
https://doi.org/10.1002/cpe.5972
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1239.PDF
https://www.domo.com/solution/data-never-sleeps-6

REFERENCES 101

DROSTEN, Christian et al. Identification of a Novel Coronavirus in Patients with

Severe Acute Respiratory Syndrome. New England Journal of Medicine (NEJM),

Massachusetts Medical Society, v. 348, n. 20, p. 1967–1976, 2003. DOI:

10.1056/nejmoa030747.

DURBIN, R. et al. Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1998.

ENCYCLOPÆDIA BRITANNICA. Biomolecule Definition. 2022. Available from:

<https://www.britannica.com/science/biomolecule>. Visited on: 4 July 2022.

. DNA Sequencing. 2022. Available from:

<https://www.britannica.com/science/DNA-sequencing>. Visited on: 4 July 2022.

. Sequencing and bioinformatic analysis of genomes. 2022. Available

from: <https://www.britannica.com/science/genomics#ref974394>. Visited on: 4

July 2022.

FOSTER, Ian; GANNON, Dennis B. Cloud Computing for Science and

Engineering. Cambridge, MA, USA: MIT Press, 2017.

GISAID. GISAID - Global Initiative on Sharing Avian Influenza Data. 2022.

Available from: <https://gisaid.org/>. Visited on: 20 Feb. 2022.

GRAHAM, Ronald L.; KNUTH, Donald E.; PATASHNIK, Oren. Binomial Coefficients.

In: CONCRETE Mathematics: A Foundation for Computer Science. Boston,

Massachusetts, USA: Addison-Wesley, 1994. p. 153–154.

GRANDL, Robert et al. GRAPHENE: Packing and Dependency-Aware Scheduling for

Data-Parallel Clusters. 12th USENIX Conference on Operating Systems Design

and Implementation, USENIX Association, Savannah, GA, USA, p. 81–97, 2016.

GUROBI. Gurobi Optimizer. 2022. Available from:

<https://www.gurobi.com/products/gurobi-optimizer/>. Visited on: 3 May 2022.

HAIR, Joseph F. et al. Multivariate Data Analysis. Andover, Hampshire, United

Kingdom: Cengage Learning, 2018.

HATCHER, Eneida L. et al. Virus Variation Resource – improved response to emergent

viral outbreaks. Nucleic Acids Research, Oxford Academy, v. 45, n. D1,

p. d482–d490, Jan. 2017. DOI: 10.1093/nar/gkw1065.

HELLEWELL, Joel et al. Feasibility of controlling COVID-19 outbreaks by isolation of

cases and contacts. The Lancet Global Health, Elsevier, v. 8, n. 4, e488–e496, 2020.

DOI: 10.1016/S2214-109X(20)30074-7.

https://doi.org/10.1056/nejmoa030747
https://www.britannica.com/science/biomolecule
https://www.britannica.com/science/DNA-sequencing
https://www.britannica.com/science/genomics#ref974394
https://gisaid.org/
https://www.gurobi.com/products/gurobi-optimizer/
https://doi.org/10.1093/nar/gkw1065
https://doi.org/10.1016/S2214-109X(20)30074-7

REFERENCES 102

HEY, Anthony JG; TANSLEY, Stewart; TOLLE, Kristin Michele. The Fourth

Paradigm: Data-intensive Scientific Discovery. Redmond, WA, USA: Microsoft

Research Lab, 2009. ISBN 978-0-9825442-0-4. Available from:

<http://research.microsoft.com/en-us/collaboration/fourthparadigm/>.

HINDMAN, Benjamin et al. Mesos: A Platform for Fine-Grained Resource Sharing in

the Data Center. In: PROCEEDINGS of the 8th USENIX Conference on Networked

Systems Design and Implementation. Boston, MA: USENIX Association, 2011.

(NSDI’11), p. 295–308.

HU, Han et al. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial.

IEEE Access, IEEE, v. 2, p. 652–687, 2014. DOI: 10.1109/ACCESS.2014.2332453.

ISLAM, Muhammed Tawfiqul et al. Cost-efficient Dynamic Scheduling of Big Data

Applications in Apache Spark on Cloud. Journal of Systems and Software, Elsevier,

v. 162, 2020. DOI: 10.1016/j.jss.2019.110515.

ISLAM, Muhammed Tawfiqul et al. SLA-based Scheduling of Spark Jobs in Hybrid

Cloud Computing Environments. IEEE Transactions on Computers, IEEE, v. 71,

n. 5, p. 1117–1132, 2021. DOI: 10.1109/TC.2021.3075625.

JYOTHI, Sangeetha Abdu et al. Morpheus: Towards Automated SLOs for Enterprise

Clusters. 12th USENIX Conference on Operating Systems Design and

Implementation, USENIX Association, Savannah, GA, USA, p. 117–134, 2016.

KARANASOS, Konstantinos; SURESH, Arun; DOUGLAS, Chris. Advancements in

YARN Resource Manager. In: ENCYCLOPEDIA of Big Data Technologies.

Washington, DC, USA: Springer International Publishing, 2018. p. 1–9. DOI:

10.1007/978-3-319-63962-8_207-1.

KRANAS, Pavlos et al. Parallel query processing in a polystore. Distributed and

Parallel Databases, Springer, v. 39, n. 4, p. 939–977, 2021. DOI:

10.1007/s10619-021-07322-5.

KULKARNI, Apurva; RAMANATHAN, Chandrashekar. HS-PARAM: Hive-Spark

Parameterization Framework to Optimize Ingestion and Storage of Heterogeneous Data.

14th International Conference on Communication Systems & Networks,

Bangalore, India, p. 227–230, 2022. DOI: 10.1109/COMSNETS53615.2022.9668594.

LAU, Billy T. et al. Profiling SARS-CoV-2 mutation fingerprints that range from the

viral pangenome to individual infection quasispecies. Genome Medicine, BioMed

Central, v. 13, n. 1, p. 1–23, 2021. DOI: 10.1186/s13073-021-00882-2.

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
https://doi.org/10.1109/ACCESS.2014.2332453
https://doi.org/10.1016/j.jss.2019.110515
https://doi.org/10.1109/TC.2021.3075625
https://doi.org/10.1007/978-3-319-63962-8_207-1
https://doi.org/10.1007/s10619-021-07322-5
https://doi.org/10.1109/COMSNETS53615.2022.9668594
https://doi.org/10.1186/s13073-021-00882-2

REFERENCES 103

LAWSON, Charles L.; HANSON, R.J. Linear Least Squares with Linear Inequality

Constraints. In: SOLVING Least Squares Problems. Philadelphia, USA: Society for

Industrial & Applied Mathematics, 1987. chap. 23, p. 158–173. DOI:

10.1137/1.9781611971217.ch23.

LI, Min et al. SparkBench: A Spark Benchmarking Suite Characterizing Large-Scale

in-Memory Data Analytics. Cluster Computing, Kluwer Academic Publishers, USA,

v. 20, n. 3, p. 2575–2589, 2017. DOI: 10.1007/s10586-016-0723-1.

MAKRIS, Antonios et al. MongoDB Vs PostgreSQL: A comparative study on

performance aspects. GeoInformatica, Springer, v. 25, n. 2, p. 243–268, 2021. DOI:

10.1007/s10707-020-00407-w.

MATHWORKS. MATLAB lsqnonneg. 2022. Available from:

<https://www.mathworks.com/help/matlab/ref/lsqnonneg.html>. Visited on: 10

May 2022.

MELL, Peter; GRANCE, Timothy. The NIST Definition of Cloud Computing.

Computer Security Division, Information Technology Laboratory, National Institute of

Standards & Technology (NIST), Gaithersburg, Maryland, USA, 2011. DOI:

10.6028/NIST.SP.800-145.

MENG, Xiangrui et al. MLlib: Machine Learning in Apache Spark. The Journal of

Machine Learning Research, JMLR.org, v. 17, n. 1, p. 1235–1241, Jan. 2016.

NAQVIA, Ahmad Abu Turab et al. Insights into SARS-CoV-2 genome, structure,

evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et

Biophysica Acta (BBA) - Molecular Basis of Disease, Elsevier, v. 1866, n. 10,

2020. DOI: 10.1016/j.bbadis.2020.165878.

NCBI. NCBI - National Center for Biotechnology Information. 2022. Available

from: <https://www.ncbi.nlm.nih.gov/>. Visited on: 20 Feb. 2022.

. NCBI SARS-CoV-2 Resources. 2022. Available from:

<https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=

Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%

20coronavirus%202,%20taxid:

2697049&HostLineage_ss=Homo%20sapiens%20(human),%20taxid:9606>. Visited on:

5 July 2022.

NHGRI. Deoxyribonucleic Acid (DNA) Definition. 2022. Available from:

<https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid>. Visited

on: 4 July 2022.

https://doi.org/10.1137/1.9781611971217.ch23
https://doi.org/10.1007/s10586-016-0723-1
https://doi.org/10.1007/s10707-020-00407-w
https://www.mathworks.com/help/matlab/ref/lsqnonneg.html
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1016/j.bbadis.2020.165878
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%20coronavirus%202,%20taxid:2697049&HostLineage_ss=Homo%20sapiens%20(human),%20taxid:9606
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%20coronavirus%202,%20taxid:2697049&HostLineage_ss=Homo%20sapiens%20(human),%20taxid:9606
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%20coronavirus%202,%20taxid:2697049&HostLineage_ss=Homo%20sapiens%20(human),%20taxid:9606
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome%20coronavirus%202,%20taxid:2697049&HostLineage_ss=Homo%20sapiens%20(human),%20taxid:9606
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid

REFERENCES 104

NHGRI. Nucleotide Definition. 2022. Available from:

<https://www.genome.gov/genetics-glossary/Nucleotide>. Visited on: 4 July

2022.

. Ribonucleic Acid (RNA) Definition. 2022. Available from:

<https://www.genome.gov/genetics-glossary/RNA-Ribonucleic-Acid>. Visited

on: 4 July 2022.

NUNES, A.L. et al. Optimizing Computational Costs of Spark for SARS-CoV-2

Sequences Comparisons on a Commercial Cloud. Concurrency and Computation:

Practice and Experience, 2022. (Under Review).

NUNES, A.L. et al. Towards Analyzing Computational Costs of Spark for SARS-CoV-2

Sequences Comparisons on a Commercial Cloud. XXII Symposium in High

Performance Computing Systems, SBC, Belo Horizonte, MG, Brazil, p. 192–203,

2021. DOI: 10.5753/wscad.2021.18523.

PAL, Surajit; GAURI, Susanta Kumar. Assessing effectiveness of the various

performance metrics for multi-response optimization using multiple regression.

Computers & Industrial Engineering, v. 59, n. 4, p. 976–985, 2010. DOI:

10.1016/j.cie.2010.09.009.

PAPADIMITRIOU, Christos H.; STEIGLITZ, Kenneth. Combinatorial

Optimization: Algorithms and Complexity. Mineola, New York, USA: Dover

Publications, 1998.

PERERA, Shelan; PERERA, Ashansa; HAKIMZADEH, Kamal. Reproducible

Experiments for Comparing Apache Flink and Apache Spark on Public Clouds. arXiv,

2016. DOI: 10.48550/arXiv.1610.04493.

PEREZ, Tiago BG; ZHOU, Xiaobo; CHENG, Dazhao. Reference-distance Eviction and

Prefetching for Cache Management in Spark. 47th International Conference on

Parallel Processing, ACM, Eugene, OR, USA, p. 1–10, 2018. DOI:

10.1145/3225058.3225087.

ROTHLAUF, Franz. Optimization Methods. Berlin, Germany: Springer

International Publishing, 2011. p. 45–102. DOI: 10.1007/978-3-540-72962-4_3.

SCIKIT-LEARN. sklearn.metrics. 2022. Available from: <https://scikit-

learn.org/stable/modules/model_evaluation.html#regression-metrics>. Visited

on: 13 May 2022.

https://www.genome.gov/genetics-glossary/Nucleotide
https://www.genome.gov/genetics-glossary/RNA-Ribonucleic-Acid
https://doi.org/10.5753/wscad.2021.18523
https://doi.org/10.1016/j.cie.2010.09.009
https://doi.org/10.48550/arXiv.1610.04493
https://doi.org/10.1145/3225058.3225087
https://doi.org/10.1007/978-3-540-72962-4_3
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

REFERENCES 105

SCIPY. optimize nnls. 2022. Available from: <https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html>.

Visited on: 10 May 2022.

TEYLO, Luan et al. A dynamic task scheduler tolerant to multiple hibernations in

cloud environments. Cluster Computing, Springer International Publishing, v. 24,

n. 2, p. 1051–1073, 2021. DOI: 10.1007/s10586-020-03175-2.

TEYLO, Luan et al. Comparing SARS-CoV-2 Sequences using a Commercial Cloud

with a Spot Instance Based Dynamic Scheduler. In: 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing (CCGrid). Melbourne,

Australia: IEEE, 2021. p. 247–256. DOI: 10.1109/CCGrid51090.2021.00034.

VAN DE GEER, Sara Anna. Least Squares Estimation. In: ENCYCLOPEDIA of

Statistics in Behavioral Science. Chichester, West Sussex, England: John Wiley & Sons,

2005. v. 2, p. 1041–1045. DOI: 10.1002/0470013192.

VAQUERO, Luis Miguel; RODERO-MERINO, Luis; BUYYA, Rajkumar. Cloud

scalability: building the Millennium Falcon. Concurrency and Computation:

Practice and Experience, v. 25, n. 12, p. 1623–1627, 2013. DOI: 10.1002/cpe.3008.

WANG, Lei et al. BigDataBench: A big data benchmark suite from internet services.

IEEE 20th International Symposium on High Performance Computer

Architecture, IEEE, p. 488–499, 2014. DOI: 10.1109/HPCA.2014.6835958.

WEISS, Susan R.; NAVAS-MARTIN, Sonia. Coronavirus Pathogenesis and the

Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology

and Molecular Biology Reviews, American Society for Microbiology Journals, v. 69,

n. 4, p. 635–664, 2005. DOI: 10.1128/MMBR.69.4.635-664.2005.

WU, Fan et al. A new coronavirus associated with human respiratory disease in China.

Nature, Nature Publishing Group, v. 579, n. 7798, p. 265–269, 2020. DOI:

10.1038/s41586-020-2008-3.

XIN, Reynold S et al. GraphX: A Resilient Distributed Graph System on Spark. First

International Workshop on Graph Data Management Experiences and

Systems, ACM, New York, NY, USA, p. 1–6, 2013. DOI: 10.1145/2484425.2484427.

XU, Bo et al. DSA: Scalable Distributed Sequence Alignment System Using SIMD

Instructions. 17th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, IEEE, p. 758–761, 2017. DOI: 10.1109/CCGRID.2017.74.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://doi.org/10.1007/s10586-020-03175-2
https://doi.org/10.1109/CCGrid51090.2021.00034
https://doi.org/10.1002/0470013192
https://doi.org/10.1002/cpe.3008
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1128/MMBR.69.4.635-664.2005
https://doi.org/10.1038/s41586-020-2008-3
https://doi.org/10.1145/2484425.2484427
https://doi.org/10.1109/CCGRID.2017.74

REFERENCES 106

XU, Bo et al. Efficient Distributed Smith-Waterman Algorithm Based on Apache Spark.

IEEE 10th International Conference on Cloud Computing, IEEE, p. 608–615,

2017. DOI: 10.1109/CLOUD.2017.83.

XU, Fei et al. Cost-Effective Cloud Server Provisioning for Predictable Performance of

Big Data Analytics. IEEE Transactions on Parallel and Distributed Systems,

IEEE, v. 30, n. 5, p. 1036–1051, 2018. DOI: 10.1109/TPDS.2018.2873397.

XU, Yinggen; LIU, Liu; DING, Zhijun. DAG-Aware Joint Task Scheduling and Cache

Management in Spark Clusters. IEEE International Parallel and Distributed

Processing Symposium, IEEE, p. 378–387, 2020. DOI:

10.1109/IPDPS47924.2020.00047.

YAN, Ying et al. TR-Spark: Transient Computing for Big Data Analytics. 17th ACM

Symposium on Cloud Computing, ACM, Santa Clara, CA, USA, p. 484–496, 2016.

DOI: 10.1145/2987550.2987576.

YOUSEFF, Lamia; BUTRICO, Maria; DA SILVA, Dilma. Toward a Unified Ontology of

Cloud Computing. In: GRID Computing Environments Workshop (GCE). Austin,

Texas, USA: IEEE, 2008. p. 1–10. DOI: 10.1109/GCE.2008.4738443.

ZAHARIA, Matei et al. Apache Spark: A Unified Engine for Big Data Processing.

Communications of the ACM, Association for Computing Machinery, New York,

NY, USA, v. 59, n. 11, p. 56–65, 2016. DOI: 10.1145/2934664.

ZAHARIA, Matei et al. Discretized Streams: An Efficient and Fault-Tolerant Model for

Stream Processing on Large Clusters. 4th USENIX Conference on Hot Topics in

Cloud Computing, USENIX Association, Boston, MA, USA, 2012.

ZAHARIA, Matei et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

in-Memory Cluster Computing. In: PROCEEDINGS of the 9th USENIX Conference on

Networked Systems Design and Implementation. San Jose, CA, USA: USENIX

Association, 2012. (NSDI ’12), p. 15–28.

ZAKI, Ali M. et al. Isolation of a Novel Coronavirus from a Man with Pneumonia in

Saudi Arabia. New England Journal of Medicine, Massachusetts Medical Society,

v. 367, n. 19, p. 1814–1820, 2012. DOI: 10.1056/NEJMoa1211721.

ZHAO, Guoguang; LING, Cheng; SUN, Donghong. SparkSW: Scalable Distributed

Computing System for Large-Scale Biological Sequence Alignment. 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, IEEE,

p. 845–852, 2015. DOI: 10.1109/CCGrid.2015.55.

https://doi.org/10.1109/CLOUD.2017.83
https://doi.org/10.1109/TPDS.2018.2873397
https://doi.org/10.1109/IPDPS47924.2020.00047
https://doi.org/10.1145/2987550.2987576
https://doi.org/10.1109/GCE.2008.4738443
https://doi.org/10.1145/2934664
https://doi.org/10.1056/NEJMoa1211721
https://doi.org/10.1109/CCGrid.2015.55

107

APPENDIX A — Da’s Estimation Function
Evaluation

In Dijkstra’s own words (DIJKSTRA, 1996), “A picture may be worth a thousand words,

a formula is worth a thousand pictures.”

Subsection 3.2.1 (Diff Sequences Spark ’s implementation details section) presented

a mathematical formula that outputs the estimation value of the number of biological

sequence comparisons that will be processed, denoted as Da. Given the number of unique

sequences (n), where each sequence seqi must be compared against all the others without

repetitions, and given the maximum simultaneous sequences that are compared against

seqi at a time (maxS), Da can be estimated as follows:

Da =

⌈

n
maxS

·
(
(n− 1)− (n−maxS

2
)
)⌉

+ ϵ, if 1 ≤ maxS < n
2

2 ·
(
(n− 1)− (maxS

2
)
)
, if n

2
≤ maxS < n

where n, maxS ∈ Z and n ≥ 2

(A.1)

This piecewise-defined function (Function A.1) was built from the empirical analysis

of a small set of n and maxS values combinations, where n ∈ [2, 10] and maxS ∈ [1, n[,

having 45 elements in total. As presented by Abramowitz & Stegun (ABRAMOWITZ;

STEGUN, 1964), if x0 is an approximation to the true value of x, then:

(a) The Absolute Error of x0 is ∆x = x0 − x. So, x− x0 is the correction to x. It is the

difference between the approximation value x0 and its true value x;

(b) The Relative Error of x0 is δx = ∆x
x

= x0−x
x

= x0

x
− 1. It is the ratio of ∆x to the

true value x, which indicates how good the approximation value x0 is relative to the

size of the true value x; and

(c) The Percentage Error is 100 times the relative error. It expresses δx as a value

between 0 and 100 rather than as a fraction.

Appendix A — Da’s Estimation Function Evaluation 108

The estimation values of Da were confronted with their actual values through the

above error analysis metrics, mainly concerning the magnitude (modulus) of the relative

error. An approximation error ϵ (∆x) was observed in 6 of the 20 combinations that fitted

into the first equation, i.e., when maxS ∈ [1, n
2
[. A minimum relative error of 0.05 (5.0%)

was obtained with the {n = 9,maxS = 2} combination, which represents the best-case

approximation error. A maximum relative error of 0.1667 (16.67%) was obtained with the

{n = 5,maxS = 2} combination, which represents the worst-case approximation error.

The average relative error was 0.0917 (9.17%) with a 0.0429 standard deviation for these

six combinations. Furthermore, none of the 25 combinations that fitted into the second

equation experienced approximation errors, i.e., when maxS ∈ [n
2
, n[.

To extrapolate the evaluation of Da’s estimated values accuracy, larger combinations

sets of n and maxS were formed, as summarized in Table 10. Each combination set shows

its respective number of combinations, the number of approximation error occurrences in

both equations of Function A.1, and the minimum, maximum, average, and standard

deviation of the relative error (δx) for the first equation.

Table 10: Evaluation of the Da’s estimation function.

Ranges
Number of

Combinations

MAX(n)!

2! · (MAX(n) − 2)!

FIRST EQUATION

maxS ∈ [1, n
2
[

SECOND EQUATION

maxS ∈ [n
2
, n[

Occurrences Relative Error (δx) Occurrences

n maxS Error-Free With ϵ
Error Min. Max. Avg. Std.

Dev. Error-Free With ϵ
Error

[2, 10] [1, n[45 14 6 0.05 0.1667 0.0917 0.0429 25 0
[2, 1000] [1, n[499 500 25 799 223 701 4.008 · 10−6 0.1667 0.0099 0.0089 250 000 0
[2, 2000] [1, n[1 999 000 60 016 938 984 1.001 · 10−6 0.1667 0.0098 0.0091 1 000 000 0
[2, 3000] [1, n[4 498 500 97 407 2 151 093 4.447 · 10−7 0.1667 0.0098 0.0091 2 250 000 0
[2, 4000] [1, n[7 998 000 136 523 3 861 477 2.501 · 10−7 0.1667 0.0098 0.0092 4 000 000 0
[2, 5000] [1, n[12 497 500 177 289 6 070 211 1.601 · 10−7 0.1667 0.0097 0.0092 6 250 000 0

Notice the first row contains the results for the combinations set used in the Da’s func-

tion building process, and the subsequent rows show the extrapolated results. Although

the occurrences of ϵ errors increase for larger combinations set for the first equation, their

relative error’s minimum, average, and standard deviation are significantly reduced. So,

Da’s estimation function is still helpful for higher ranges and achieves low average relative

errors. Once again, no approximation errors ϵ occurred for the second equation.

Lastly, the implementation for Da’s estimation and analysis of its respective approx-

imation errors is available here1, and the evaluation results data are available here2.

1https://github.com/alan-lira/biological-sequences-comparisons-number-estimator
2https://doi.org/10.17605/OSF.IO/TDEPK

https://github.com/alan-lira/biological-sequences-comparisons-number-estimator
https://doi.org/10.17605/OSF.IO/TDEPK
https://github.com/alan-lira/biological-sequences-comparisons-number-estimator
https://doi.org/10.17605/OSF.IO/TDEPK

109

APPENDIX B — Diff Sequences Spark’s
Application-Level Optimizations
Evaluation

Subsection 3.2.4 (Diff Sequences Spark ’s implementation details section) presented some

runtime improvement proposals. Consider the following optimization scenarios:

• OS1: the Master node submits one sequences comparison job per time to the Spark

cluster through the default FIFO scheduling mode (unique active job within the

application); and

• OS2: the Master node, composed of 12 producer and 12 consumer threads, sub-

mits multiple sequences comparison jobs to the Spark cluster through the FAIR

Standalone scheduler, which employs a single fair resource sharing pool.

Moreover, consider the following general settings:

I. Regarding the experimental environment (Spark on AWS EC2)

* AWS EC2 Memory Optimized Instances: the z1d.6xlarge instance (24 CPU

cores and 192 GiB RAM) for the Master node, and the {z1d.large, z1d.xlarge,

z1d.2xlarge} subset of instances for the Worker nodes. The memory optimized

offers the best cost-benefit execution (NUNES et al., 2021);

* Spark Cluster: single Master node and {1, 2, 4} Worker nodes, with a single

Executor per Worker.

Appendix B — Diff Sequences Spark ’s Application-Level Optimizations Evaluation 110

II. Regarding the Diff Sequences Spark application

* Data Input: n = 64 SARS-CoV-2 nucleotide sequences;

* Spark’s Data Structure: RDD ;

* Diff Phase: DIFF1;

* Collection Phase: MW;

* Optimizations: damping coefficient ki and multi-threading pool composed of

12 producer and 12 consumer threads in the Master, with a maximum capacity

of 300 ready-to-run comparison jobs in the shared queue.

Let ωw be the Worker instance name, ιw the number of Workers per experiment, Ec

the total number of Executors cores (default parallelism), K the set of all the divisors

of Ec, where K = {k ∈ N∗ | k \ Ec}, Em the size in GiB of Executors memory, n the

number of distinct biological sequences, Da the total number of sequence comparisons to

be processed, where Da =
n·(n−1)

2
, ki the damping coefficient, M the total number of map

tasks, where M = 2 · Ec

ki
·Da, R the total number of reduce tasks, where R = Da, and T

the runtime in seconds of each experiment.

Table 11 summarizes the advantages of using the OS2 optimization scenario instead

of OS1. Regarding the optimal damping coefficient kopt obtained for each scenario, i.) for

OS1, if Ec ≤ 4, then kopt = Ec; otherwise, kopt = Ec

4
; and ii.) for OS2, kopt = Ec. The

average runtime reductions when using kopt instead of any ki ∈ K \ {kopt} are 24.34% and

27.66% for OS1 and OS2, respectively. The average runtime reduction after switching

from OS1 to OS2 is 67.69%.

Appendix B — Diff Sequences Spark ’s Application-Level Optimizations Evaluation 111

Table 11: Diff Sequences Spark ’s application-level optimization results.
Worker Node

Ec Em n Da ki M R
Runtime T (s) Percentage

Changeωw ιw OS1 OS2

z1d.large

1 2 14 64 2016 1 8064 2016 1076.72 610.89 −43.26%
2 4032 982.75 549.57 −44.08%

2 4 28 64 2016
1 16 128

2016
948.00 381.37 −59.77%

2 8064 871.14 329.21 −62.21%
4 4032 849.16 294.21 −65.35%

4 8 56 64 2016

1 32 256

2016

1017.91 352.04 −65.41%
2 16 128 763.86 240.47 −68.52%
4 8064 772.54 231.01 −70.10%
8 4032 843.56 230.11 −72.72%

z1d.xlarge

1 4 29 64 2016
1 16 128

2016
1038.74 376.92 −63.71%

2 8064 928.05 322.38 −65.26%
4 4032 908.57 289.17 −68.17%

2 8 58 64 2016

1 32 256

2016

992.73 347.57 −64.99%
2 16 128 766.04 245.75 −67.92%
4 8064 778.99 238.12 −69.43%
8 4032 817.38 229.93 −71.87%

4 16 116 64 2016

1 64 512

2016

1028.86 350.30 −65.95%
2 32 256 869.42 244.15 −71.92%
4 16 128 696.17 229.79 −66.99%
8 8064 711.10 223.68 −68.54%
16 4032 795.54 215.47 −72.92%

z1d.2xlarge

1 8 61 64 2016

1 32 256

2016

1229.70 336.65 −72.62%
2 16 128 784.19 241.51 −69.20%
4 8064 903.31 237.40 −73.72%
8 4032 799.22 234.09 −70.71%

2 16 122 64 2016

1 64 512

2016

1021.47 334.92 −67.21%
2 32 256 856.59 242.65 −71.67%
4 16 128 697.71 237.32 −65.99%
8 8064 710.44 233.31 −67.16%
16 4032 782.24 214.77 −72.54%

4 32 244 64 2016

1 129 024

2016

1131.13 259.35 −77.07%
2 64 512 892.91 234.08 −73.78%
4 32 256 849.94 232.15 −72.69%
8 16 128 686.30 214.18 −68.79%
16 8064 716.54 209.08 −70.82%
32 4032 795.57 208.76 −73.76%

	aa3e1dda0feae444ae3bfeb8451a8f0a61c447d45a9ff8364ed700299c03554c.pdf
	91fa2426f310430f05ee79c0f8e849f7ed144066369c2ef08faab1c99be8f4dd.pdf
	ce14cd47406310d234768991b9914b57da934d8d5af5934bb9d1083b124474ed.pdf
	aa3e1dda0feae444ae3bfeb8451a8f0a61c447d45a9ff8364ed700299c03554c.pdf
	Introduction
	Motivation
	Goals
	Contributions
	Organization

	Background
	Apache Spark
	Basic Concepts and Features
	Resilient Distributed Datasets
	DataFrames
	Directed Acyclic Graphs
	Deployment Modes

	Cloud Computing
	Definition and Characteristics
	Deployment Modes
	Service Layers
	Amazon EC2
	Typical Spark Cluster Deployment Alternatives on AWS

	Optimization Problems
	Definition
	Forms of the Linear Programming Problem
	Integer Linear Programming Problem
	Optimization Methods
	Gurobi Optimizer

	Multivariate Analysis
	Definition and Basic Concepts
	Multivariate Techniques Types
	Multiple Regression Analysis
	Least Squares Estimation
	Measures of Predictive Performance for Regression Models

	Biological Sequences Comparison
	Problem Definition
	Major Types and Basic Characteristics of Biomolecules
	Nucleotide Sequence
	Biological Sequences Analysis

	Spark Implementation
	Optimizing and Estimating the Number of Sequences Comparisons
	Diff Sequences Spark Application's Execution Flow
	Illustrative Examples of the Comparisons Results
	Application-Level Optimization Proposals to Reduce the Runtime

	SARS-CoV-2 Sequences Comparisons: A Study Case
	Classification and Basic Characteristics of Coronaviruses
	NCBI's Viral Sequences Data Repository
	SARS-CoV-2 Nucleotide Sequences Comparisons on AWS EC2

	Related Work
	Building the Diff Sequences Spark Application's Runtime Prediction Model
	Review of the CRESP's MapReduce Time Cost Model
	Initial Assumptions
	Cost of the Map and Reduce Tasks
	CRESP's Runtime Prediction Model

	Diff Sequences Spark's Runtime Prediction Model
	Initial Assumptions
	Runtime Prediction Model

	Evaluation of the Diff Sequences Spark's Prediction Model
	Experimental Environment and Application-Related Settings
	Training the Prediction Model
	Predicting with the Trained Model

	Optimizing the VMs Allocation on AWS EC2 for Diff Sequences Spark Application
	Initial Assumptions
	Diff Sequences Spark's Monetary Cost Function
	Optimization Problems for Diff Sequences Spark
	Runtime Optimization Subject to Budget Constraint
	Monetary Cost Optimization Subject to Deadline Constraint

	Experimental Results on AWS EC2
	Evaluation of the Diff Sequences Spark's Cost Optimizer
	Experimental Environment and Application-Related Settings
	Minimizing the Diff Sequences Spark Application's Runtime Cost
	Minimizing the Diff Sequences Spark Application's Monetary Cost

	Diff Sequences Spark's Execution With Spot Instances
	Experimental Environment and Application-Related Settings
	Costs of Rental Spot Instances Compared to On-demand Instances
	Spot Instances Revocation Scenarios

	Concluding Remarks and Future Direction
	Conclusion
	Publications
	Open Issues and Future Works

	REFERENCES
	Appendix A — Da's Estimation Function Evaluation
	Appendix B — Diff Sequences Spark's Application-Level Optimizations Evaluation

