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Resumo

Path-tracing é um método de renderização tradicionalmente usado em computação grá-
fica, especialmente em cinema, programas de televisão e animações digitais, sendo o estado
da arte quando é necessário realismo gráfico. Path-tracing em tempo real está se tornando
uma abordagem importante para o futuro dos jogos e aplicações interativas, como ambi-
entes interativos de realidade virtual que necessitam de realismo gráfico para alto grau de
imersão. Dado a natureza exponencial, este método de renderização necessita otimizações
para ser executado de forma satisfatória (pelo menos 60 quadros por segundo) em tempo
real. Entre as diferentes possíveis otimizações, a redução de ruído em imagens render-
izadas pelo método de Monte Carlo é importante, devido à baixa densidade de amostras.
Lidando com dispositivos de realidade virtual, outras otimizações podem ser consider-
adas, como técnicas de Foveated Rendering. Este trabalho propõe um novo pipeline de
renderização para reconstrução de ruído de imagens renderizadas com Path-tracing em
tempo-real para aplicações em um sistema de duas telas como um dispositivo HMD (Head-
Mounted Display). Assim, as características da visão foveal são aproveitadas computando
os G-Buffers contendo os atributos da cena e um buffer com a distribuição foveal tanto
para a tela esquerda quanto para a direita. Em seguida, a renderização em path-tracing
é computada conforme o buffer de coordenadas, gerando uma densidade pequena de raios
iniciais por píxel selecionado e, logo, uma imagem ruidosa. Por fim, reconstruímos esta
imagem com o denoiser não-homogêneo, considerando maior densidade de pixels na região
central e menor densidade nas regiões periféricas, conforme as abordagens referentes ao
foveated rendering. Os experimentos mostram que o pipeline de renderização proposto
tem um fator de speedup de 1,35 em comparação com um pipeline sem as otimizações.

Palavras-chave: Foveated rendering, sistemas de duas telas, dispositivos HMD, redução
de ruído, path-tracing.



Abstract

Path-tracing is a rendering method traditionally used in computer graphics, specially
in cinema, television programs and digital animation, being the state-of-the-art when
graphical realism is required. Real-time Path-tracing is becoming an important approach
for the future of games and virtual reality interactive environments, which also requires
graphical realism for its immersive factor. Due to its exponential nature, this method of
rendering requires optimizations for it to be executed in a satisfactory way (with at least
60 frames per second) in real-time. Among different possible optimizations, denoising
Monte Carlo rendered images is necessary, due to low sampling densities. When dealing
with Virtual Reality devices, other optimizations can also be considered, such as foveated
rendering techniques. This work proposes a novel rendering pipeline for denoising a
real-time path-traced application in a dual-screen system such as head-mounted display
(HMD) devices. Therefore, characteristics of the foveal vision are leveraged by computing
G-Buffers with the features of the scene and a buffer with the foveated distribution for
both left and right screens. Later, we path trace the image according to the coordinates
buffer generating only a few initial rays per selected pixel, and, thus, a noisy image.
Lastly, we reconstruct the noisy image output with a novel non-homogeneous denoiser
that accounts the greater pixel density in the central region and the smaller density in the
peripherical regions, according to the approaches referenced by foveated rendering. The
experiments showed that this proposed rendering pipeline could achieve a speedup factor
up to 1.35 compared to one without the optimizations.

Keywords: Foveated rendering, dual-screen systems, HMD devices, denoising, real-time
path-tracing.



List of Figures

1 Ficha catalográfica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 A common representation of the rendering pipeline based on a rasterization
method of rendering. Each one of these stages can also be a rendering
pipeline into itself, subdividing it into different pipelines and other stages. . 16

3 Representation of a ray tracing rendering pipeline. The traversal and the
intersection steps are computed via hardware and are accelerated by specific
core units. Reference from Khronos documentation(KOCH et al., 2020). . . 17

4 Paths that rays follow starting in the camera, with a bounce over a surface.
The colorized rectangles represent objects that have a diffuse surface. In
this type of surface, the bounce is in a random direction given the normal
hemisphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Left shows a path-tracing rendered image without denoising with 1 spp,
middle shows a denoised image, and right shows a ground truth reference
with 1024 spp. Reference from Nvidia Research blog (LEFOHN, 2021). . . 20

6 Distribution of cones and rods in the human vision given the angle of
retina, demonstrating the increased concentration of cones in the center of
the retina, decreasing as it furthers from it. Reference from SNR analysis
in (LIN et al., 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Our proposed rendering pipeline: the foveated distribution is outside the
frame because it does not change between frames and remains the same
across the application execution. There are three denoisers being executed,
and each one is related to the corresponding region of interest. . . . . . . . 28

8 Feature buffers rendered in the left screen in order of calculation, from left
to right: (a) diffuse, (b) world position and (c) world normal. The green
scale at (b) represents the world position not normalized. . . . . . . . . . . 29



List of Figures vii

9 The foveated distribution output, represented in a binary mask, rendered
with the concentric circles delimiting the range of each of the three layers,
with the outer layer being delimited by the borders of the screen. . . . . . 30

10 The path-tracing pass generates a noisy output for both screens using
the G-Buffers and the coordinates buffer as an input, accounting for the
foveated distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 The reconstructed image after the non-homogeneous denoising pass. . . . . 33

12 Top illustration from the original method (DAMMERTZ et al., 2010) of
the À-Trous filter with 3 levels of iterations with increasing step-width,
bottom illustration depicting an example of our adapter À-Trous filter with
3 levels of iterations with decreasing step-width. Ours starts by taking into
account the pixels at distance 2i (black dots) from the center pixel in the
accumulation process, and decreases for each subsequent iteration. The
blue dots are skipped by the À-Trous filter and the gray dots are skipped
by the binary mask modification. . . . . . . . . . . . . . . . . . . . . . . . 35

13 Rendering of Sponza scene in the Base experiment. . . . . . . . . . . . . . 43

14 Rendering of Sponza scene in the NH3LD experiment. . . . . . . . . . . . 44

15 Rendering of Sponza scene in the NH2LD experiment. . . . . . . . . . . . 45

16 Rendering of Sponza scene as a graphical reference using 1024 spp. . . . . 46

17 From left to right, top: reference image, image from Base experiment;
bottom: image from NH2LD experiment, image from NH3LD experiment. 47

18 Heatmap of the difference between the Base experiment and the reference
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

19 Forest scene. Left: the image rendered with 1024 spp as in the Base ex-
periment. Right: the image rendered in our non-homogeneous denoising
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



List of Tables

1 Comparison of the related works. NHD is the pipeline presented in this work. 26

2 Region distribution used in the experiment for comparison, with its reso-
lution, respective area size, samples, and spp density. . . . . . . . . . . . . 37

3 Scenes tested and its characteristics. . . . . . . . . . . . . . . . . . . . . . 40

4 Performance metrics of Base, NH2LD and NH3LD experiments, in averaged
milliseconds per frame for our GPU implementation. . . . . . . . . . . . . 41

5 Objective quality comparison with RMSE, SSIM and PSNR metrics . . . . 42



List of Tables ix



Contents

1 Introduction 12

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Concepts 15

2.1 The Rendering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Path Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Foveated Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Works 22

3.1 Advancements on Path-tracing . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Advancements on Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Advancements on Foveated Rendering . . . . . . . . . . . . . . . . . . . . . 24

3.4 Summary of the related works . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Non-homogeneous denoising for foveated regions 27



Contents xi

4.1 Pre-pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Foveation distribution step . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Path-tracing pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Non-homogeneous denoising pass . . . . . . . . . . . . . . . . . . . . . . . 31

5 Implementation 36

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Results 39

7 Conclusion 49

7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERÊNCIAS 51



1 Introduction

Path tracing is a consolidated rendering approach for achieving photo-realistic graphics,
but currently not suitable for real-time performance. Shadows, global illumination, and
reflection are essential graphical effects that are intrinsically achieved through it. Addi-
tionally, since its complexity is directly related to the number of pixels of the screen, using
it on high-resolution devices is challenging, requiring non-trivial solutions to be used on
head-mounted displays (HMDs).

Furthermore, path tracing is the current state-of-the-art in real-time rendering games,
interactive rendering in graphical applications, and pre-rendering films. Recently, Nvidia
launched RTX GPUs, embedded with hardware acceleration related to path tracing (KIL-
GARIFF et al., 2018), enabling an increasing number of consumers and workplaces to
leverage these optimizations for real-time applications, such as games and virtual reality.

1.1 Motivation

Even so, it is still laborious and time-consuming for the graphical processors to render at
high resolutions. Therefore, performance optimizations are required, such as hardware-
based Bounding Volume Hierarchy (BVH) acceleration structure, ray-polygon intersec-
tions computed in hardware, and better sampling of the traced pixels. Denoising is one
of the most important optimization methods. It is used to reduce the variance in a noisy
image produced by the path-tracing rendering on a low ray sampling. In the literature,
it is possible to find different denoising techniques such as wavelet filters (DAMMERTZ
et al., 2010), bilateral filters (PARIS; DURAND, 2006), machine learning algorithms
(KALANTARI; SEN, 2013), sampling with spatio-temporal accumulation (SCHIED; KA-
PLANYAN, et al., 2017), deep-learning techniques (INTEL®, 2019), to name a few of
the most prominent ones.

Foveated rendering is an important topic and is related to the fact that the human
eye can only distinguish important details of pigments in a central region of the retina,
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called fovea (REDDY; REDDY, 1997).

1.2 Proposal

This work presents a novel approach to reconstruct path-traced rendered environment
images in real-time by leveraging the perception characteristics at the center of the human
vision. The proposed rendering pipeline splits the path-traced noisy image in different
concentric layers and apply denoising strategies on each layer differently, with parameter
values that are adapted according to the different regions of the visual field. Doing so, we
intend to reduce the number of traced rays at the peripheral area of the retina, applying
stronger denoising filters, but maintaining acceptable number of rays at the central region
of the display.

1.3 Hypothesis

The hypothesis that this work is attempting to validate is the following one: could a
path-traced rendering pipeline, in foveation, with a non-homogeneous method of denoising
be more efficient in terms of computer performance, while maintaining or even slightly
decreasing in quality, than a path-traced rendering pipeline with a fixed denoising?

1.4 Objective

The objective of this dissertation is divided in two major points and one minor. The
first one is to make an improvement in the performance of the path-tracing rendering in
foveated systems, so that it can be more feasible to run a realistic scene in a virtual reality
environment. The second is to make this into a rendering pipeline in a way that can be
applied easily into a game or a graphical application that runs in an HMD. And even
a third one can be also discussed, about the effective implementation of the rendering
pipeline.

1.5 Contributions

We tested our solution using a collection of scenes with different triangles count, different
display resolutions corresponding to the entirety of the dual screens of a regular HMD,
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different spatial sampling configurations for the path-traced step, and different reconstruc-
tion layer parameters. Our method achieved speedup improvements in all configurations
when compared to non-optimized implementations.

The contributions can be summarized in both the introduction of a non-homogeneous
denoising rendering pipeline and its implementation, and an improvement in the perfor-
mance of real-time path-tracing images in a virtual reality environment.

1.6 Structure

In this chapter, we discuss the motivations, objectives, hypothesis, main contributions
and main aspects that have led to the development of this work. For the next chapters,
this work is organized as follows.

In chapter 2, the main theoretical concepts are explained in order to increase the
comprehension of this work and its main aspects. These concepts were explored during
the research and implementation of this work.

In chapter 3, the Related Works section brings the groundwork laid down by previous
research in the most relevant fields to develop this work, which are Path-tracing, denois-
ing and foveated rendering. Distinguishing the main contributions of these works, their
limitations and how the proposed solution implements upon them.

In chapter 4 we introduce our proposed rendering pipeline. It explains each step of
the proposed rendering pipeline, from the scene input specification to the generation of
the denoised output.

In chapter 5, the implementation details of the pipeline are presented, including the
main algorithm that was introduced, modifications to the parameters of the groundwork,
the input and output of the rendering pipeline.

In chapter 6, the results obtained through performance benchmarks are presented.
It also describes an objective analysis of the graphical quality through commonly used
metrics.

At last, the work is concluded in chapter 7, bringing a summarized discussion of how
the implementation and the experiments contributed to the field of research. We also
discuss how this work could be extended by future researches.



2 Concepts

This section aims to present the main concepts involved in the idealization and imple-
mentation of the work proposed by this dissertation.

2.1 The Rendering Pipeline

A graphics rendering pipeline consist of different stages to render one or multiple objects
in a scene into an image to be shown in the target display (or displays, in the case of
virtual reality). These stages are run either in the CPU or the GPU, depending on the
task of each step. Figure 2 illustrates a common representation of how the pipeline is
split into different stages.

In a pipeline with n steps, the i step with i ranging from 2 to n depends on the results
of the step i� 1. Thus, the rendering pipeline is incremental and, excluding the first one,
each step either alters or add data on top of the result of the previous steps.

There are other forms of rendering pipelines, like the ones implemented for fully offline
rendering. The approach described is basically the canonical of real-time rendering.

Usually, most of the programmer’s work resides in coding the shading stages inside
the Geometry or the Fragment stages. There are other steps such as render output units
that are not fully programmable and only configurable. Additionally, each step, when
executed on the GPU, can be described in the form of a shader.

2.1.1 Shaders

The shaders are programs that are executed in a process inside the GPU. The parallel
nature of the GPU guarantees that the shaders are the same across an entire streaming
processor. Thus, the shaders that are supplied for the GPU are going to be executed in
each one of its cores. This guarantees that the same task will be run for a set of data,



2.2 Ray Tracing 16

Figure 2: A common representation of the rendering pipeline based on a rasterization
method of rendering. Each one of these stages can also be a rendering pipeline into itself,
subdividing it into different pipelines and other stages.

e.g. a set of vertices representing a model or a set of pixels representing the displays.

Ray-tracing rendering pipelines were defined a little bit different from rasterization
and its APIs requires a set of shaders who are also different from rasterization. While
the latter follows the steps of vertex processing, followed by geometry shaders and ending
in a pixel shader, the former includes 5 different ones, from ray generation to misses and
hits.

There’s still the use of general compute shaders, which are used for a parallel task
to be executed in the GPU, related to graphical rendering or other type of task. In
this work, we use the power of compute shaders as a rendering task, in the form of the
non-homogeneous denoising step.

2.2 Ray Tracing

Ray-tracing started being massively adopted by the industry and consumers after 2018
with NVIDIA’s RTX architecture (KILGARIFF et al., 2018). In contrast with rasteriza-
tion, it has little hardware optimization over these last few decades. Bounding volume
hierarchy (BVH) structure calculations and ray-triangle intersections started being ac-
celerated by a dedicated hardware unit inside the GPU, known as RT cores. Figure 3
represents a pipeline of the ray-tracing method of rendering in the GPU, including the
shaders that we use in our work such as ray generation, intersection processing of any or
closest hit, and miss processing using the skybox or a clear color.

Ray-tracing is inherently more computationally expensive than rasterization due to
the nature of its exponential algorithm. From its starting point being the cameras, it
traverses the scene through a viewport pixel until it hits a triangle. From this collision,
another set of ray is cast to the lights in the scene to check if the objects are occluded by
other objects.

So, from 1 ray generated per pixel other N new rays are created, where N is the
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Figure 3: Representation of a ray tracing rendering pipeline. The traversal and the
intersection steps are computed via hardware and are accelerated by specific core units.
Reference from Khronos documentation(KOCH et al., 2020).

number of lights. If the ray hits a surface of an object, it can generate another N rays
at each ray-triangle intersection with the objects in the scene. And it also may generate
more rays at this intersections, to cover graphical effects such as reflection, refraction and
global illumination.

In this work, we proposed a rendering pipeline of shading using ray-tracing shaders
steps run in the GPU and a foveation distribution step in the CPU. One could also
implement it using the rasterization shaders for the Pre-pass step.

It is perfectly acceptable to use a hybrid approach instead of a purist full path-
tracing rendering pipeline. Specially when this approach results in an increase in the
performance and little to no graphical effects are lost. After all, the performance in a real-
time rendering is the preference, specially in virtual reality environments which require at
least 90 FPS to be acceptable. Rasterization can and should be used in steps such as G-
Buffer computations, in the same way that compute shading is suited for post-processing
techniques and shadow maps, as it was done in this work in the step of non-homogeneous
denoising.
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2.3 Path Tracing

Path-tracing is a specific form of ray-tracing that intends to diminish the exponential
factor of the original proposition by Whitted (WHITTED, 1979). Kajiya introduced a
new, faster form of ray-tracing (KAJIYA, 1986) that computed the rendering equation
(2.1) in a novel way.

Lo(x,!o) = Le(x,!o) +

Z

⌦

Li(x,!i)fr(x,!i,!o)(!i · n) d!i (2.1)

In the rendering equation, the term of the outgoing light Lo represents the final shaded
color for a point x with the direction outgoing to the eye !o. The term Le represents the
emitted light, in case a point is a light source. The integrand over the domain ⌦ have
three terms: incoming light Li represents the shaded color for a point x with the direction
incoming from the light !i, the material term in function fr represents the reflected light
for the surface in the given directions and point, and the dot product !i ·n represents the
Lambert term of the importance given to the incoming light related to the normal n of
the surface.

Kajiya’s rendering equation describes a ray-tracer that traces several rays per pixel
through a path (hence, path-tracing) using only a single bounce in a random direction
through the triangle hemisphere. This way, the samples do not grow exponentially, but
only in the desired depth of the path. To shade the pixel, one must average the rays
sampled in a single pixel. This form of rendering leverages from the Monte Carlo method
(VEACH; GUIBAS, 1995) of integrating the rendering equation in a numerical integra-
tion, that is based in selecting random samples and averaging these samples to give the
resulting light. Figure 4 illustrates how a path tracer works.

The resulting variance in the image is directly related to the number of samples. Thus,
the downside from this method of rendering is that, in order to converge to a satisfactory
rendered image with a low enough variance between the pixels, thousands of rays must
be cast. In any use case that does not have the needs to be rendered in real-time, this is
feasible with render programs that leverage from the CPU or GPU multi-threading. But
for applications such as VR environments or games, where the rendering in GPU also
shares time slices with other tasks, a few samples per pixel are a problem of its own. This
problem greatly increases when expanding for some thousands of rays.
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Figure 4: Paths that rays follow starting in the camera, with a bounce over a surface. The
colorized rectangles represent objects that have a diffuse surface. In this type of surface,
the bounce is in a random direction given the normal hemisphere.

2.4 Denoising

Denoising is a strategy for image reconstruction when the image was generated by a Monte
Carlo path-tracing rendering method, and it has left a high variance in the shaded pixels
of the image. Without it, the rendered image will have only a vague resemblance to the
ground truth image (that has no variance) since it will be full of variance between each of
the pixels in the same neighborhood. Figure 5 shows a difference between the process of
denoising and the ground truth image, with three different rendered images, one being a
path-traced image without the denoiser applied (high-variance), one being a path-traced
image with the denoiser applied, and one being the ground-truth image.

Denoising takes as an input a noisy image, features over the scene (such as normal
and position generated using G-Buffers), and applies filters in the pixels to transform it
in an output image with almost no difference to the ground truth image. So, instead
of rendering an image with thousands of samples per pixel, an optimized path-tracing
rendering pipeline (such as the one from this work) can generate it with few samples per
pixels and apply denoising over it to get a comparable result.

Besides the G-Buffers, denoising techniques such as filters (DAMMERTZ et al., 2010)
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Figure 5: Left shows a path-tracing rendered image without denoising with 1 spp, middle
shows a denoised image, and right shows a ground truth reference with 1024 spp. Refer-
ence from Nvidia Research blog (LEFOHN, 2021).

are usually an average over the current pixel with its neighboring pixels, giving weight to
each pixel’s contribution in according to its position, similarity to the central pixel, and
even the normal. There are also denoising techniques such as (SCHIED; KAPLANYAN,
et al., 2017) which use color data from the same pixels but over different points in time,
i.e. previous frames, adding a temporal accumulation instead of merely spatially. This is
also a form of increasing the number of samples, and it is most effective in a non-moving
scene, since the pixels are mostly the same over sequential frames.

There are also deep learning techniques that can be fed ground truth images and noisy
images as an input and produce a neural network capable of denoising an image with a
quality comparable to a "conventional" denoising and its convolution filters (INTEL®,
2019).

2.5 Foveated Rendering

Foveated rendering is a concept that aims to improve the rendering performance by lever-
aging the characteristics of the human vision, such as the distribution of cones and rods
in according to the angle of the eye, as illustrated in Figure 6. It does so by concentrating
most of the rendering efforts in an area that the user will focus, the center of the vision,
and diminishing the details and effects in other areas, as the periphery of the vision.
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It usually does either from monitoring the user’s gaze using an eye-tracking system via
cameras, or from assuming the user is focusing on the center of the screen.

Figure 6: Distribution of cones and rods in the human vision given the angle of retina,
demonstrating the increased concentration of cones in the center of the retina, decreasing
as it furthers from it. Reference from SNR analysis in (LIN et al., 2012).

There are different forms of leveraging the foveation, and it is not a new concept.
(DUCHOWSKI; ÇÖLTEKIN, 2007) adopts the user’s gaze to limit the level-of-detail
in an object to decrease the number of vertices given the distance to the focused area.
By decreasing the LOD of the objects in the periphery, it can improve the performance
or choose to give more details to the focused area. For shading, there’s the possibility
to render in different resolutions according to the areas of the vision, such as dividing
the viewport in three different areas with each one with decreasing resolution that was
implemented in (GUENTER et al., 2012).

Foveation can also be used to affect other steps of the rendering, such as post-process
and denoising. In a path-tracing rendering pipeline, the number of rays can be adapted
in according to the user’s gaze as well. In the center of the vision, one can diminish
the number of rays and in the area correspondent to the periphery of the vision (or the
viewport), the denoising can also be adapted. Multiple ray density and denoising factors,
according to the fovea is the main proposal of our work presented, combining it with
concepts of (GUENTER et al., 2012).



3 Related Works

This work combines different rendering methods and advantages in one single rendering
pipeline. We present in this chapter each of the similar rendering methods available in
the literature.

Among these, there are different methods available for path-tracing rendering, each
one suited for a different type of application. There are interactive rendering, offline ren-
dering and real-time rendering. Since our proposal focus in a real-time application, the
discussed methods are all applicable to have a real-time performance with the implemen-
tation.

Besides that, this work acknowledges the advancement of other optimization tech-
niques that fall into different categories in the research area that are the path-tracing
reconstruction algorithms and techniques known as denoisers. There are denoisers that
use machine learning-driven filters or sampling through spatio-temporal accumulation.
This work focus on real-time reconstruction techniques that uses a rule-based system,
such as bilateral kernel filtering with geometric data in the form of G-Buffers.

In the realm of foveated rendering, there are a few techniques that can be applied or
adapted to a path-tracing rendering pipeline.

Our work combines these features to improve path-tracing rendering within dual-
screen systems, taking advantage of reduced density of pixel required in peripheral display
regions. This section describes the basics and related works associated with its proposal.

3.1 Advancements on Path-tracing

Whitted (WHITTED, 1979) introduced the first ray-traced image with not only shadows
directly projected from a light source but also including a series of additional graphi-
cal effects, such as specular reflection and refraction, simulating the light transport with
optical properties from the Fresnel equations. Later, Cook (COOK; PORTER; CAR-
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PENTER, 1984) introduced a random distribution of the rays sampled in the hemisphere
of a reflected surface.

Kajiya introduced a novel form of ray tracing, named path tracing, which solved the
exponential problem that the nature of ray tracing methods introduced (KAJIYA, 1986).
It combined concepts of Monte Carlo integration and, instead of shooting a set of rays
for each ray bounce, it shot only one ray for each ray bounce. Given this property, it is
possible to achieve a high level of graphical realism with all the mentioned visual effects
and global illumination features in a much faster way. This is made through several
samples per pixel, i.e., the lighting factor of an object that is perceived with the light rays
bouncing from different surface sources.

Hybrid approaches such as (BARRÉ-BRISEBOIS et al., 2019; SABINO et al., 2012)
were introduced to further improve performance optimizations by leveraging the advan-
tages of rasterization, ray-tracing, and compute shaders. It uses rasterization in G-Buffer,
direct shadowing stages and ray-tracing in other steps such as direct, indirect lighting,
and real-time reflections. It also uses compute shaders in the post-processing stages.

To guarantee that the path-tracing algorithm via Monte Carlo integration produces
a result that converges into a photo-realistic image, it is necessary hundreds (if not thou-
sands) of samples per pixel to achieve an almost perfect image. Today, the most de-
manding scenes can handle at most a few sample per pixel (spp) with global illumination.
This generates an image with Monte Carlo variance noise and, due to the nature of Monte
Carlo integration, the noise is decreased only in a square-root proportion to the number of
samples (VEACH; GUIBAS, 1995). Hence, there is a need to reconstruct this non-perfect
noisy image using properties from the scene’s geometry.

There are several works that are dedicated to improve the state of the art of ray/path-
tracing. A recent survey (HUA et al., 2019) of some of these works is a good starting
point to understand and to improve the quality/performance of rendering.

3.2 Advancements on Denoising

Several algorithms and techniques are available for reconstructing images in real-time.
Methods related to machine learning techniques and neural network training have recently
gained attention. Some of these works use the concept of autoencoders, which are being
popularized due to their adoption by the graphics industry, such as Intel Open Image
Denoise (INTEL®, 2019) and Nvidia Optix Autoencoder (NVIDIA, 2017). There are
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also techniques that use concepts of image analysis and processing, such as convolution
filters. These are constituted by bilateral filters, which can produce simple results with
some graphical artifacts of brightness change or blur. The caveat is that bilateral filters
can be computationally expensive as the size of the filters increases, becoming inefficient
for the use in path tracing and real-time requirements.

Filters guided by buffers progressively reduce the artifacts. More specifically, the filter
introduced by Dammertz et al. (DAMMERTZ et al., 2010) is known as Edge-Avoiding
À-Trous. This filter satisfactorily fills the noisy image, being capable of avoiding almost
any artifacts, which makes this suited for filters with big kernel size and spaced with
smaller sampling size. Further on this, there is another Edge-Aware filter, proposed by
Qi et al. (QI; WU; HE, 2012), that improves this approach and is capable of decreasing
the atmospheric fog and the haze of an image by filtering with a decreasing step in each
iteration of the process. Although the original problem was not related to rendering, these
results may also be applied to reducing the same artifacts present in a noisy image.

Other works use similar filtering concepts, such as those produced by Schied et al.
(SCHIED; KAPLANYAN, et al., 2017; SCHIED; PETERS; DACHSBACHER, 2018),
which uses a guided filter with spatio-temporal variance and temporally accumulates the
samples using accumulation buffers from previous frames in a way that moving objects
are accounted for the global illumination.

Regression-based techniques with QR factorization are recently showing promising
results due to their high performance for real-time denoising in path tracing pipelines
(KOSKELA; IMMONEN, et al., 2019). Zwicker et al. (ZWICKER et al., 2015), and
Kaplanyan et al. (KAPLANYAN et al., 2019) present more details and discussions related
to the topic.

3.3 Advancements on Foveated Rendering

Foveated rendering divides the rendering areas into different regions, using specific and
separated rendering parameters for each region. Guenter et al. (GUENTER et al., 2012)
split the image into three distinct layers with varying rates of sampling following the user
gaze, enabling lower selection in the layer far from the center of the fovea gaze due to
its small retina cell cones density. Their work is relevant due to the introduction of the
layers based on the user’s gaze, even though it uses rasterization as its rendering method.
It showed with benchmarking that foveation rendering achieves a speedup with a factor
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of 5-6x of a non-foveated rendering on desktop displays (GUENTER et al., 2012).

Weier et al. (WEIER et al., 2016) introduced the idea that a linear falloff is more
suitable when dealing with ray tracing for HMD, in comparison with the previous hyper-
bolic falloff, due to the motion perception in the periphery vision area (WEIER et al.,
2016). Since it used only direct lighting with point lights, area lights, or ambient occlu-
sion shading, it missed global illumination and reflection effects. Their proposal achieved
different speedups ranging from 1.46 to 4.18 depending on the rendering configuration.

Meng et al. (MENG et al., 2018) developed a work based on a new type of kernel
log-polar space mapping, using polynomial functions to map the Cartesian coordinates
in an early stage of the rendering pipeline (and inverting the transform afterwards). By
leveraging the log-polar, they managed to gain a significant speedup and mitigated the
low sampling with a temporal anti-aliasing method with a Gaussian filter with a 3x3
kernel.

Koskela et al. (KOSKELA; LOTVONEN, et al., 2019) introduced a Visual-polar
mapping instead, and path-tracing samples in this space that follows the distribution of
the visual acuity of human vision, gaining performance in the rendering and denoising
phases.

A recent survey (MOHANTO et al., 2022) also provides an integral view of foveated
rendering, including these mentioned papers and some others who are tangential to the
objects of study of our work as described here.

Our work improves real-time performance optimizations by introducing a novel con-
cept of a non-homogeneous type of path-traced image reconstruction, using denoising
filtering algorithms with different levels according to the linear falloff of the center of the
user’s gaze and rendering it in a path tracing environment with a pre-determined ray
sample distribution.

3.4 Summary of the related works

Among these related works, (KOSKELA; LOTVONEN, et al., 2019), (MENG et al.,
2018), (WEIER et al., 2016), and (GUENTER et al., 2012) are the ones who developed
advancements in the field of foveated rendering together with either ray-tracing/path-
tracing and/or denoising further, being the most relevant to the development of our work
on a path-traced rendering pipeline with non-homogeneous denoising for virtual reality.
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Table 1 brings a comparison between this work and these other works.

Table 1: Comparison of the related works. NHD is the pipeline presented in this work.
Work Rendering Post-processing Foveation

Non-homogeneous Denoising (NHD) Ray-tracing Non-homogeneous
Edge-avoiding wavelet denoising Linear falloff

(KOSKELA; LOTVONEN, et al., 2019) Ray-tracing Block-wise Multi-order
feature regression denoising Visual-polar space

(MENG et al., 2018) Rasterization Anti-aliasing
with 3x3 Gaussian Filter Log-polar space

(WEIER et al., 2016) Ray-tracing Temporal resampling Linear falloff

(GUENTER et al., 2012) Rasterization Hardware MSAA
and temporal reprojection Hyperbolic falloff



4 Non-homogeneous denoising for
foveated regions

This work proposes a novel rendering pipeline suitable for path-tracing techniques running
on HMDs. Although the proposed solution is agnostic of the hardware, when designing for
a better performance a GPU-based system is ideal due to obvious rendering requirements
and to the Non-homogeneous denoising step which is also highly parallelized.

This section describes the rendering pipeline as it is designed to run on both GPU and
CPU. The pipeline is illustrated in the Figure 7 and involves four steps: (1) the pre-pass
that computes G-Buffers; (2) the foveation distribution step, that computes the pixels
that will be sampled in the following passes; (3) the path-tracing pass that computes
the lighting for both screens including graphical effects and (4) the non-homogeneous
denoising applied onto a noisy path-traced image being rendered in two screens, with the
foveation adjustment.

4.1 Pre-pass

The first stage consists of a set of ray-tracing shaders that generates one sample of ray
for each pixel (spp) in both sides of the viewport (one for the left and one for the right
eye). Once the traced ray hits a surface, the shading data of the point intersected is
computed. The calculated shading data for each pixel can be seen in Figure 8, with the
diffuse component of the texture (a in the figure); the position in world coordinates (b);
the normal of the surface in world coordinates (c). The result of this computation is stored
in buffers (G-Buffers), required for the subsequent passes, including both the path-tracing
(by feeding the buffers as input of a deferred shading process) and denoising passes.
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Figure 7: Our proposed rendering pipeline: the foveated distribution is outside the frame
because it does not change between frames and remains the same across the application
execution. There are three denoisers being executed, and each one is related to the
corresponding region of interest.

4.2 Foveation distribution step

In order to take advantage of the fovea distribution, in this stage we compute a buffer
with only the pixels that are being selected to be sampled with rays in the further step of
ray generation. This computation is constant for all frames and independent of the time
or the scene. For this reason, we choose to compute this step in the CPU and to transfer
it to a constant buffer to the GPU.

In that sense, for coordinates distribution, we used only one buffer. Moreover, the
buffer is used in both the left and right sides of the screen in the same way, i.e., a pixel with
coordinates (x, y) is either going to be sampled or not in both screens. This simplification
disregards any possible mismatch of the cones’ distribution between one eye and the other.

Using concepts similar to those proposed by Weier et al. (WEIER et al., 2016), this
step builds a three-layer distribution that is represented by concentric circles of pixels
with different sampling decay, in a linear proportion in each layer. Even though previous
studies have already shown that the decay of cones in the view falls in a hyperbolic
distribution (GUENTER et al., 2012), there is a major advantage in choosing a linear
distribution in foveated rendering: the movement in the scene around the periphery area
of the vision affects less the perception when compared to the hyperbolic distribution.
Thus, we follow with a linear distribution to mitigate this problem.
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Figure 8: Feature buffers rendered in the left screen in order of calculation, from left
to right: (a) diffuse, (b) world position and (c) world normal. The green scale at (b)
represents the world position not normalized.

The first layer represents the fovea by being located at the center of the screen and
has a radius r0. It is defined in such a way that the samples are taken at full resolution,
i.e., each pixel will receive at least one sample. In case of a configuration of 1 spp, it
should be the same spatial sampling that occurred in the G-Buffers computation in the
pre-pass step. The inner radius of the second layer is defined with the starting radius
right where the first layer ends, i.e., r0 + 1 is the inner radius. r1 is its outer radius.
Thus, it is the first layer outside the fovea layer. As in previous works (WEIER et al.,
2016), a linear proportion decay is applied in this layer, starting from r0 + 1 and ending
in r1, parametrized with the probability p as a constant for this step in order to calculate
the random value. This gives the sub-sampling effect of the middle layer, with each pixel
having a probability p of being sampled according to the distance of the pixel to the
center of the fovea. The third layer starts from radius r1 + 1 and ends in the edge of the
viewport, being the layer outside the second layer. It receives even less sampling than the
second layer values, with a constant probability of 1 � p for a pixel being sampled by a
ray.

Once the computation of foveation distribution is complete, the screen coordinates of
the pixels are stored in the coordinates buffer in the form of a contiguous list of the coor-
dinates to be selected. We also store this computation in a binary mask for the denoising
pass to access the coordinates in constant time (with the index to their coordinates in
each of the GPU executing thread in the next steps), as shown in Figure 9. Thus, the
output of this step are both the coordinates buffer with the size of the number of pixels
that are being sampled, and the binary mask, containing the positions of the sampled
pixels decided by the foveated distribution with linear decay, through the probability p.
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Figure 9: The foveated distribution output, represented in a binary mask, rendered with
the concentric circles delimiting the range of each of the three layers, with the outer layer
being delimited by the borders of the screen.

This step is necessary for the posterior path tracing pass in each one of the screens of the
HMD and for the denoising pass.

4.3 Path-tracing pass

The following step computes the direct shadows and the global illumination. Using the
previously computed coordinates buffer, the set of path-tracing shaders generates rays only
with the coordinates defined by each thread index, according to the buffer. The number of
threads is equal to the number of coordinates in the coordinates buffer, and each thread
selects only its corresponding coordinate in the buffer to select for sampling. This is
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used for generating rays that will pass through the buffer instead of every pixel on the
screen. Thus, when taking into account the rendering based on visual acuity advantage,
we maintain the sub-sampling property of this render pass, with a density of full-sampling
for the inner layers and smaller for the middle and outer layers. Through this foveated
rendering technique, it is possible to decrease the number of generated rays through a
configurable proportion given by the size of the coordinates buffer in the previous step.

For each pixel, we compute the indirect lighting, direct lighting, and shadow effects,
using two different groups of shaders: the shadow group and the indirect lighting group.
For the shadow group, when the generated ray hits a point, it shoots a visibility ray to
a random light in the scene. For the indirect lighting group, when the generated ray hits
a point, it shoots an indirect ray to a random direction in the hemisphere to compute its
color, along the standard secondary shadow ray for its bouncing factor. For computing
the BRDF, we used the Lambertian material (OREN; NAYAR, 1994).

It is worth noting that instead of two ray-tracing programs or instance of programs
running, there is only one program that runs for both the screens. In doing so, we intend
that the same program and shader groups are executed for the screen representing the
left and right eyes. The difference between the shading of the screens is that, besides
the origin and the direction, when generating a ray and defining where it is on screen
coordinates, it must account for an offset, given by the width of the leftmost screen.

By designing the path-tracing step in this way, there is a possibility for increasing the
ray coherence from both cameras and, thus, an improvement in the memory locality of
the BVH computations, discussed further in the chapter 5. With this render pass, the
result is a noisy output image representing the path traced algorithm applied in the scene
accounting for the foveation distribution, as shown in Figure 10.

4.4 Non-homogeneous denoising pass

The non-homogeneous denoising pass is responsible for the image reconstruction. This
stage receives the output from the path-tracing pass with the noisy image, along with
the G-Buffers and the binary mask as an input. After the pass finishes, the output is the
denoised image with less variance than the path-traced image, as shown in Figure 11.

Since the foveated noisy image has different sampling densities for every layer with
varying amount of noise, one single denoising pass will decrease the variance in a different
proportion to each of the layers. By adjusting the denoising step to three different layers,
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Figure 10: The path-tracing pass generates a noisy output for both screens using the G-
Buffers and the coordinates buffer as an input, accounting for the foveated distribution.

we split the denoising step in accordance to this particularity. This way, we differentiate
the image in three layers, using the same layers used in the foveation distributed step, as
shown in Figure 9. The pass applies the denoising process for each layer using the Edge-
Avoiding À-Trous filter (DAMMERTZ et al., 2010) adapted to account for the foveation
distribution. Since the filter works by weighting the noisy image, the world normal and
the world position G-Buffers input against the neighbors’ pixels, we need to filter with the
binary mask as input. This mask works like a selection filter that decides which neighbor
pixel is going to be accumulated for the final color of the current pixel being iterated. This
works in a way that the sub-sampling does not darken and further increases the variance
of the shaded pixel. Thus, from the original weight function

w(i,j) = wrt(i,j) ⇤ wn(i,j) ⇤ wx(i,j) (4.1)

with pixel positions i and j, where wrt is the weight of the path-traced color, wn is the
weight of the world normal, wx is the weight of the world position. The modified version
is

w(i,j) = wrt(i,j) ⇤ wn(i,j) ⇤ wx(i,j) ⇤ b(i, j) (4.2)

with the added binary mask b(i,j) at the pixel.
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Figure 11: The reconstructed image after the non-homogeneous denoising pass.

As in the original, the weights wrt(i,j), wn(i,j), and wx(i,j) are defined as the differ-
ence in the value of the neighbor pixel (i, j) and the current pixel (u,v) being denoised. So,
e.g., wrt(i,j) = e�(|rt(i,j)�rt(u,v)|) is the weight of the path-traced color. The other weights
are computed similarly.

By processing the denoise pass only once on both sides of the screen, it is not possible
to achieve a satisfactory noise reduction in the inner layer and let alone the middle and
outer layers, given that each of the outer layers requires a different number of iterations in
proportion to the respective sampling. Among the three layers, by following the foveation
distribution and applying to the denoising configuration, the inner layer starts from the
center of the screen to the radius r0 and requires M levels of iteration, the middle layer
starts from radius r0 + 1 to the r1 and requires N levels, and the outer layer starts from
radius r1 +1 to the border of the viewport and requires P levels, following the inequality
M < N < P .

Each iteration in a layer reconstructs only the area corresponding to that layer. It
does so with a 5×5 kernel using a convolution mask based on the same cubic B-spline
as described in (DAMMERTZ et al., 2010): ( 1
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1
16), with the difference that it is

extended to a two-dimensional kernel. Thus, in the borders of each layer, the neighbor
pixels from other layers may be selected for the accumulation of the final shading color.
The only exception is on the outer layer, where the neighbor pixels could be out of screen
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or in the wrong side of the screen (in this case, these pixels are not selected), and the pixels
that were not selected in according to the binary mask. With this, we can optimize the
filter to be more efficient by leveraging the sub-sampling configuration from the foveated
distribution.

The original Edge-Avoiding À-Trous filter(DAMMERTZ et al., 2010) works in a way
that it uses three values as references of the pixel, including the color of the noisy input, the
normal of the surface represented in the pixel, and the world position of the surface. Then
it computed the difference between the neighboring pixels (which can vary in according to
the desired size of the kernel) and these reference values by using the dot product. These
deltas, combined with a chosen constant for each of the values, result in the weight that
each neighbor pixel have in the final contribution of the shaded color.

Note that an optional diffuse buffer multiplication is mentioned in the original filter
that may improve the details that were blurred during this denoising pass. There are
a couple of caveats in choosing to use this diffuse buffer: in the path-tracing pass, the
computation of the illumination has to be done without the material evaluation, and it
can only be done in case of diffuse surfaces.

To reduce some of the known artifacts originated from the Edge-Avoiding À-Trous
filter, we use the modified version with a decreasing step-width (QI; WU; HE, 2012),
instead of an increasing step-width in subsequent iterations as illustrated in Figure 12.

The output of this pass is the final image that the user will see in each frame being
rendered. This pass is described in the form of a pseudocode by Algorithm 1.
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Figure 12: Top illustration from the original method (DAMMERTZ et al., 2010) of the
À-Trous filter with 3 levels of iterations with increasing step-width, bottom illustration
depicting an example of our adapter À-Trous filter with 3 levels of iterations with de-
creasing step-width. Ours starts by taking into account the pixels at distance 2i (black
dots) from the center pixel in the accumulation process, and decreases for each subsequent
iteration. The blue dots are skipped by the À-Trous filter and the gray dots are skipped
by the binary mask modification.

Algorithm 1: Non-homogeneous denoising
Input: M , N , P , binary mask B, current color texture rt, world normal texture n,

world position texture x.
Output: Denoised texture c
Function computeDenoise(step, ra, rb):

foreach paralel pixel (u,v) in the texture rt from ra to rb do

sum 0
cumw  0
foreach selected neighbour (i,j) in the texture rt at the distance 2step do

w(i,j) wrt(i,j) ⇤ wn(i,j) ⇤ wx(i,j) ⇤B(i, j)
sum sum+ rt(i,j) ⇤ w(i,j) ⇤ kernel(i,j)
cumw  cumw + w(i,j) ⇤ kernel(i,j)

end

c(u,v) sum/cumw

end

Function Main:
for i M � 1 to 0 do computeDenoise(i, 0, r0);
for j  N � 1 to 0 do computeDenoise(j,r0, r1);
for k  P � 1 to 0 do computeDenoise(k, r1, rmax);
return c



5 Implementation

This chapter details our implementation, which includes both the foveation distribution
details, the path-tracing rendering sampling and details and the denoising configuration.

5.1 Implementation

This work implemented the proposed rendering pipeline and its ray-tracing programs using
the Microsoft DirectX APIs for the graphics shaders, the Valve OpenVR APIs (SELAN;
LUDWIG; LEIBY, 2015) for the integration with the HMD, and imGui (CORNUT, 2014)
for the GUI integration for the experiments. All of these libraries and APIs are inside the
Falcor framework, developed by NVIDIA (BENTY et al., 2018).

The Falcor framework used is in a currently deprecated version (3.2.2). The reason
for this choice is that, despite its lack of clear documentation, it integrates all the APIs
mentioned above easily, enabling rapid prototyping and development for this project.
With the support for two-screen rendering of an HMD device and support for DirectX
ray tracing shaders, it is suitable for ray tracing applications rendered in an HMD.

The G-Buffers are computed based on (WYMAN et al., 2018) implementation, with
modifications in order to support two screens. This modification is done to support each
of the screens with a different view matrix representing the left and the right eye. With
these two different matrices, the ray-generation shader traces a ray for each side of the
screen, with reference to the pixel in each screen and its corresponding view matrix. It
enables the computation of the G-Buffers of both screens by the end of a single rendering
pass of the ray-tracing shaders, i.e., with a single run of the ray-tracing program instead
of running the same program for each side of the screens separately. This improves the
memory utilization of the triangle-ray intersection calculations in the RTX GPU, since
there is ray coherence in both of the different cameras.

The computation of the foveation distribution, is made in a CPU function before
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loading the scene, which is passed to the GPU via a constant buffer. This way, we can
guarantee that there is no impact in the total performance of the rendering pipeline.
The computation consists of the iterating over every pixel on the left side of the screen,
verifying in which region one pixel belongs to, and then selecting the pixel. In the inner
layer, every pixel is selected. In the middle and outer layer, a random toss with the
probability p set to p = 0.5 define which pixel is going to be selected, following the linear
decay mentioned in the previous chapter. In the current implementation, we set this
probability for the two resolutions tested in our experiments: Full HD (960×1080 per
screen) and the "near-4K" resolution of the Oculus Quest 2 (1832×1920 per screen). This
results in the sample distribution cited in Table 2. After this process, we fill both the
coordinate buffer and the binary mask.

Table 2: Region distribution used in the experiment for comparison, with its resolution,
respective area size, samples, and spp density.

Resolution Region Radius
(in pixels)

Area
(in pixels) Samples spp

FHD
Inner 144 65144 260576 4

Middle 288 195432 586296 3
Outer - 776224 1552448 2

Quest 2
Inner 265 220618 882472 4

Middle 530 661855 1985565 3
Outer - 2634967 5269934 2

The path-tracing pass is a modified version based on an existing implementation
(WYMAN et al., 2018) of the diffuse illumination using a Lambertian model of reflec-
tion for the objects of the scene and also used for global illumination. In this case, the
modification is done in order to generate the initial rays based on the coordinates buffer
size and to trace the rays only through the coordinates given by the buffer. With this
modification, we were able to generate only a controlled amount of rays in the initial ray
generation shader, given the foveated distribution calculated in the previous step.

The implementation was tested with different spp densities, including the configu-
ration that achieved satisfactory performance in the current hardware, fixed in 4 spp
density for the inner layer. The middle layer has a sub sampling resulting in 3 spp, and
the outer layer has a sub sampling resulting in 2 spp. These path tracing shaders, like
as the G-Buffers shaders, were also modified so that they could compute the lighting in
both screens in a single pass. Since the G-Buffers already account for both sides of the
screens, this modification in the path tracing step was simplified, and it can be resumed to
a mapping of the coordinates buffer to the pixel launch coordinates in the ray-generation
shader. For the right side of the screen, this mapping also accounts for an offset related
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to the width of the left screen so that the pixel launch coordinates are correctly shifted
to dispatch the rays in the GPU shader.

Our denoising step consists of iterating over the levels of denoising and dispatching
a compute task to the GPU. As the compute shader is the same for all three layers, we
only pass the required arguments, such as inner radius, outer radius, and the current step
width. This implementation also includes an adaptation and translation of the GLSL
shader provided by (DAMMERTZ et al., 2010) with some modifications. We changed the
loop to a version introduced by Qi et al.(QI; WU; HE, 2012), with a decreasing step-width
in each subsequent iteration of the levels of the execution of the shader, in order to reduce
the artifacts near the edge of the scene objects. Here, we also included the modification
in the path-tracing pass to account for both the left and the right sides of the image (left
and right eye). Besides that, since this reconstruction was done in a compute shader, we
can dispatch a separate task for every region. The computation of the denoising is done
so that each thread calculates the weighted sum of its neighboring pixels in both sides
of the image, by implementing an offset of the screen width. We avoid the pixels that
should not be selected in either of the regions by selecting through our binary mask from
the foveated distribution.



6 Results

This chapter details an exploration of our experiments, based on different configurations
of input parameters. We give some of the results from our experiments in the form of
both objective quality analysis and performance analysis through the pipeline. Finally, a
brief discussion of the benchmarks is made, with a speedup analysis.

To present and discuss the results of this work, a series of experiments using different
configurations was performed in a single hardware platform. We ran our experiments
through an implementation with a machine with the specifications: Intel Core i7-3770S
CPU @ 3.10GHz, 8.00 GB RAM, NVIDIA GeForce RTX 2080, Windows 10 OS.

We choose to measure the performance of our rendering pipeline using the GPU
frame rendering time as the metric, in milliseconds. In doing so, we can diminish any
possible interference from the varying OS system load or other background processes
running on the machine (a concern when using the FPS metric) and also compare the
performance by using a common metric between the experiments. Since the time of the
foveated distribution step finishes before the beginning of the rendering pipeline, we did
not measure the time it takes to compute this stage.

We render the scenes with the camera traversing a pre-defined path instead of a static
frame of a single image. This is so that we can observe movement through different
scene geometry, lighting and texture configurations. We measure the results over 1000
subsequent frames and take the average metric of how long it took to generate a frame
for each scene. This amount of frames makes the different configurations varies in terms
of how long it took to reach the 1000 frames, and also varies the amount of times the
pre-defined path was run. Our target resolutions were set to Full HD (960×1080 per
screen, totaling 1920×1080) since it is a common resolution in most devices, and “near-
4K” from the Quest 2 HMD (1832×1920 per screen, totaling 3664×1920), which is a
popular virtual-reality headset.

To have a variation of the features of a possible scene, we selected three different scenes
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Table 3: Scenes tested and its characteristics.
Scene Triangle Count Light Count

Pink Room 786056 1 directional; 2 point lights
Sponza 262267 1 directional; 1 point lights
Forest 198541 80 point lights

to be used in our experimentation. Each scene has varying specifications of triangles and
light count, as detailed in Table 3.

The first experiment is referred as Base for the comparison between our experiments,
since it is our baseline for speedup calculations. This configuration was chosen as a
reference for the performance analysis because it does not include neither a foveation
distribution nor our non-homogeneous denoising. Instead, the pipeline in these Base ex-
periments renders a full-screen denoising pass to a path-tracing with sampling of 4 spp
across the entirety of the dual-screen viewport. The amount of denoising iterations is con-
figured with 5 iterations in the full-screen denoising pass, i.e., M = 5 in this configuration.
Figure 13 shows the image rendered as a result of this configuration.

In the subsequent experiments referenced as Non-Homogeneous 3-Layer Denoising
(NH3LD), we applied the proposed rendering pipeline optimizations. The foveation dis-
tribution has three layers as concentric circles, and also coincides with the regions split
for the non-homogeneous denoising pass. Following the split in Table 2, for the sake of
comparison, we also set the inner layer with a path-tracing sampling density of 4 spp, de-
creasing the sampling in the middle and outer layers. The amount of denoising iterations
is configured with 2 iterations for the inner layer, 3 iterations for the middle layer and 5
iterations for the outer layer, i.e., M = 2, N = 3, P = 5 in this configuration. Figure 14
shows the image rendered as a result of this configuration.

We also consider that the outer layer in the NH3LD experiment has the greater
number of denoising levels. Analyzing the averaged millisecond per frame performance in
our experiments, we can compare it to the Base experiment. In the same level of denoising,
the proposed solution with the non-homogeneous denoising optimization applied to three
layers shows a speedup of up to 1.35.

A third experiment tested a different split in the non-homogeneous denoising pass,
using two layers with different levels of denoising instead of the three-layer design used
in the previous experiment. We reference it as Non-Homogeneous 2-Layer Denoising
(NH2LD). Note that the foveated distribution still has the three-layer as described in
Table 2. For the denoising split, the inner layer coincides with the foveated distribution
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as well. The outer layer is a join region with the middle and outer layer from the foveated
distribution. In other words, the outer layer in the denoising split begins from the circles
with radius r0 + 1 and goes until the edge of the viewport. The amount of denoising
iterations is configured with 3 iterations for the inner layer and 5 iterations for the outer
layer, i.e., M = 3, N = 5 in this configuration. Figure 15 shows the image rendered as a
result of this configuration.

We again consider that the outer layer in the NH2LD experiment has the greater
number of denoising levels. Analyzing the performance in our experiments with the
configuration of the same level of denoising in the first experiment, it is possible to see
that the proposed solution with the non-homogeneous denoising optimization applied to
two layers achieves a speedup of up to 1.33. The detailed performance measurements with
the total averaged milliseconds per frame and the speedup are in Table 4.

Table 4: Performance metrics of Base, NH2LD and NH3LD experiments, in averaged
milliseconds per frame for our GPU implementation.

Resolution Scene Renderer Total
time (ms) Speedup factor

FHD

Pink Room
Base 16.26 —

NH2LD 13.99 1.16
NH3LD 12.81 1.26

Sponza
Base 31.01 —

NH2LD 23.28 1.33
NH3LD 22.95 1.35

Forest
Base 22.84 —

NH2LD 18.46 1.23
NH3LD 17.54 1.30

Quest 2

Pink Room
Base 45.32 —

NH2LD 40.58 1.11
NH3LD 39.19 1.15

Sponza
Base 99.27 —

NH2LD 75.52 1.31
NH3LD 74.62 1.33

Forest
Base 73.66 —

NH2LD 60.24 1.22
NH3LD 59.03 1.24

For an analysis of objective quality, we rendered the same scenes without the foveation
distribution step optimization. We also increased the number of samples for 1024 spp
temporally accumulated across several frames, where no denoising was applied to these
reference images. This configuration without denoising and with increased sampling makes
the three different scenes into our ground truth for the analysis. Figure 16 shows the
image rendered as a result of this configuration. In order to measure the error between
the reference rendered images and the optimized by our rendering pipeline, we used Root-
Mean-Square Error (RMSE), Structural Similarity (SSIM) (WANG et al., 2004), and Peak
Signal-To-Noise Ratio (PSNR) metrics.
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As show in Table 5, we see a minor variance in the metrics of both our experiments of
non-homogeneous denoising in comparison to the full-screen denoise in the Base experi-
ment.

To make the comparison between the images easier, the Figure 17 has the four images
rendered with our pipeline with the same section being cropped. Three of the images are
from our experiments (Base, NH3LD, and NH2LD) and one from the reference image.

Table 5: Objective quality comparison with RMSE, SSIM and PSNR metrics
Scenes Rendering Pipeline RMSE (%) SSIM PSNR (dB)

Pink Room
Base 3.2862 0.986438 28.659183

NH2LD 3.4374 0.985774 28.030232
NH3LD 3.5997 0.987343 27.619445

Sponza
Base 5.7633 0.918678 21.879093

NH2LD 5.9252 0.913988 21.420517
NH3LD 5.9029 0.913633 21.468767

Forest
Base 3.7991 0.813191 22.339938

NH2LD 3.8649 0.795324 22.37879
NH3LD 4.1787 0.778536 21.69204

Another objective analysis was made in the form of an image, using an algorithm
developed by NVIDIA Research (ANDERSSON et al., 2020) and the available executable
build of the source code at (LELONG, 2020). This is a difference image evaluator, that
given a reference image, it compares to another image and produces a heatmap with an
approximated perceived difference between the two images.

To make the comparison of each heatmap easier, the Figure 18 align side by side the
image differences between our three experiments (Base, NH3LD, and NH2LD) and the
reference image. The brightest spots in the figure represent the biggest difference between
the experiment and the reference image, and, thus, the darkest spot represents the lowest
difference.
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Figure 13: Rendering of Sponza scene in the Base experiment.
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Figure 14: Rendering of Sponza scene in the NH3LD experiment.
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Figure 15: Rendering of Sponza scene in the NH2LD experiment.
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Figure 16: Rendering of Sponza scene as a graphical reference using 1024 spp.
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Figure 17: From left to right, top: reference image, image from Base experiment; bottom:
image from NH2LD experiment, image from NH3LD experiment.
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Figure 18: Heatmap of the difference between the Base experiment and the reference
image.



7 Conclusion

This work presented a novel real-time rendering pipeline for virtual reality devices, using
non-homogeneous denoising scaled according to foveated regions. Our proposed pipeline
was able to present the same effects of visual realism achieved when using regular de-
noising, but reducing the number of rays and increasing performance. We leveraged the
foveation distribution created in the CPU, stored and passed to the GPU in a coordinates
buffer with different spatial sampling in each layer of the visual field. For so, it was im-
portant to decrease the initial ray generation in the GPU shader and its bounces. Adding
non-homogeneous denoising also enabled a decrease in the load of work for the recon-
struction steps, with different levels to apply the Edge-Avoiding À Trous (DAMMERTZ
et al., 2010) algorithm for the corresponding denoising layers.

Our experiments were executed with this optimized pipeline in several configurations
against a non-optimized one. These configurations used different implementation details
such as the size of layers, number of layers, and levels of denoising. These experiments
were able to show a speedup in rendering time performance of up to 1.35.

7.1 Limitations

Despite our advancements in the denoising path-tracing images in foveated rendering field,
there are a couple of limitations in our work and implementation.

Too many lights. In the case of too many lights in a scene, specially emitted lights,
the denoising ends up not clearing the image in a way that maintains the details of the
geometry and texture. This can be seen in Figure 19.

Falcor framework. While this framework has several abstractions that make the de-
velopment faster, the current version hides a lot of stages for the end user in a way that
it makes it very difficult to tune it for performance. As a first improvement on this work,
one future implementation could use other frameworks or engines or even the libraries
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Figure 19: Forest scene. Left: the image rendered with 1024 spp as in the Base experi-
ment. Right: the image rendered in our non-homogeneous denoising configuration.

that Falcor gathers, with the caveat of integrating all of these.

7.2 Future Works

This work can be further explored in a series of different directions. This section lists some
of these enhancements that we had a glimpse during our research and implementation.

Other wavelets filters. In future works, we intend to explore how to apply the non-
homogeneous denoising with other known denoisers in the latest step of the rendering
pipeline, such as SVGF (SCHIED; KAPLANYAN, et al., 2017) or BMFR (KOSKELA;
IMMONEN, et al., 2019).

User study. Another extension is by conducting a user study to test the human
perception of the graphical quality. Despite the objective quality analysis in the chapter 6,
there is a possibility that we can enhance the performance in order to a perceived quality
through different implementation settings, to further optimize our denoising and path-
tracing parameters.

Log-polar mapping. Adding the log-polar coordinates mapping to the rendering pipeline
brings difficulties for the denoising and post-processing phase, specially because of aliasing
and flickering. Combining the works of log-polar mapping (MENG et al., 2018) or Visual-
Polar (KOSKELA; LOTVONEN, et al., 2019) space and our denoiser is a possibility.

Path-tracing improvements. Rendering can always be improved, specially in the path-
tracing phase. While Lambertian is a good approach to diffuse surfaces, we would like to
include other types of materials that encompass specular surfaces, such as GGX (WAL-
TER et al., 2007; BURLEY; STUDIOS, 2012).
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