
UNIVERSIDADE FEDERAL FLUMINENSE

RICARDO DE SOUZA MOURA

LESS IS MORE: PRUNING BERTWEET
ARCHITECTURE FOR FINETUNING IN

TWITTER SENTIMENT ANALYSIS

NITERÓI

2023

RICARDO DE SOUZA MOURA

LESS IS MORE: PRUNING BERTWEET
ARCHITECTURE FOR FINETUNING IN

TWITTER SENTIMENT ANALYSIS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como req-
uisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Orientadora:
ALINE MARINS PAES CARVALHO

Coorientador:
ALEXANDRE PLASTINO

NITERÓI

2023

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

M929l Moura, Ricardo de Souza
 Less is more: pruning BERTweet architecture for finetuning
in twitter sentiment analysis / Ricardo de Souza Moura. - 2023.
 73 f.: il.

 Orientador: Aline Marins Paes Carvalho.
 Coorientador: Alexandre Plastino.
 Dissertação (mestrado)-Universidade Federal Fluminense,
Instituto de Computação, Niterói, 2023.

 1. Mineração de opiniões (Computação). 2. Processamento
de linguagem natural (Computação). 3. Twitter (Site de
relacionamentos). 4. Produção intelectual. I. Carvalho,
Aline Marins Paes, orientadora. II. Plastino, Alexandre,
coorientador. III. Universidade Federal Fluminense. Instituto
de Computação.IV. Título.

 CDD - XXX

RICARDO DE SOUZA MOURA

LESS IS MORE: PRUNING BERTWEET ARCHITECTURE FOR FINETUNING IN

TWITTER SENTIMENT ANALYSIS

Dissertação de Mestrado apresentada ao Pro-

grama de Pós-Graduação em Computação da

Universidade Federal Fluminense como req-

uisito parcial para a obtenção do Grau de

Mestre em Computação. Área de concen-

tração: Ciência da Computação

Aprovada em Março de 2023.

BANCA EXAMINADORA

Profa. ALINE MARINS PAES CARVALHO - Orientadora, UFF

Prof. ALEXANDRE PLASTINO - Coorientador, UFF

Profa. FLAVIA CRISTINA BERNARDINI, UFF

Prof. DIEGO FURTADO DA SILVA, ICMC/USP

Niterói

2023

I dedicate this work to my children, who encourage me to fulfil my aspirations and

inspire me to become a better human every day.

Agradecimentos

To my advisors, who showed me the paths to follow and for the trust placed in me.

To my ex-wife (Michelle), children (Matheus and Clara) and current girlfriend (Márcia)

for having understood the importance of this achievement and encouraging me to carry

it out. And finally, to my mother (Romany) and father (José Emílio - in memory), for

all their effort and dedication in providing me with a solid foundation of education and

character.

Resumo

Com o auxílio de técnicas de aprendizado por transferência e mecanismos de atenção,

modelos baseados em Transformer, como o BERT, alcançaram resultados no estado-da-

arte para várias tarefas de Processamento de Linguagem Natural (PLN). O tamanho

desses modelos costuma ser dimensionado em termos do número de parâmetros para con-

tabilizar a absorção de mais informações. No entanto, vários estudos têm chamado a

atenção para sua sobreparametrização e os custos de experimentar modelos tão grandes.

Esta dissertação investiga a sobreparametrização do BERTweet, um modelo baseado em

Transformer treinado com dados do Twitter, com foco na tarefa de análise de sentimento

de tweets. A dissertação contribui com um método de poda que visa reduzir o tamanho

do BERTweet antes de ajustá-lo à tarefa final. Os experimentos avaliam vários modelos

podados propostos que, após o procedimento de ajuste fino, alcançam desempenho ainda

superior ao do modelo completo com o mesmo procedimento de ajuste fino realizado. De-

pois de aplicar o método no BERTweet, o modelo significativamente podado com melhor

resultado geral de desempenho preditivo foi o resultado da poda de 47,22% de todas as

heads (68 de 144 heads), que são os componentes que computam em paralelo os valores de

atenção. Na verificação de generalização, o tempo gasto para o ajuste fino deste modelo

foi reduzido em pelo menos 10%, alcançando o mesmo ou melhor desempenho preditivo

que o do modelo completo considerando um nível de significância de 0,05. O método pro-

posto também pode ser aplicado a outros modelos ou tarefas baseados em Transformer

para encontrar modelos compactados com desempenho semelhante ao completo. Ines-

peradamente, durante a execução de nosso método, nos deparamos com outro modelo

ainda mais podado (74,31% – 107 de 144 heads) com um elevado desempenho preditivo

que, embora tenha sido produzido pelo uso parcial de nosso método, pode ser adotado e

investigado em trabalhos futuros.

Palavras-chave: Análise de Sentimentos , twitter , modelo de linguagem , Transformer

, compressão de modelo, finetuning

Abstract

With the aid of transfer learning techniques, transformer-based models such as BERT have

reached state-of-the-art results for several Natural Language Processing (NLP) tasks. The

size of those models has been scaled in terms of the number of parameters to account for

absorbing more information. However, several studies have called attention to their over-

parametrization and the costs of experimenting with such huge models. This dissertation

investigates the overparametrization of BERTweet, a transformer-based model trained

with Twitter data, focusing on the prevalent task of tweets sentiment analysis. The dis-

sertation contributes with a pruning method that aims at reducing BERTweet size before

tuning it to the task. The experiments evaluate several proposed pruned models that,

after the finetuning procedure, achieve even superior performance than when tuning the

complete model. After applying the method on BERTweet, the significantly pruned model

with the best overall predictive performance was the result of pruning 47.22% of all heads

(68 from 144 heads). In the generalization check, the time spent to finetuning this pruned

model was reduced by at least 10% while achieving the same or better predictive perfor-

mance than the original model with a significance level of 0.05. The proposed method

can also be applied to other transformer-based models or tasks to find compressed models

that performs similarly to the complete one. Unexpectedly, during the execution of our

method, we came across another model that is still more pruned (74.31% – 107 from 144

heads) with high predictive performance that, although the partial use of our method has

produced it, can be adopted and researched in future works.

Keywords: sentiment analysis , twitter , language model , transformer , model compres-

sion , finetuning

List of Figures

1 Methodology adopted to evaluate the proposed pruning method 38

2 Importance order of the heads based on oi, the blue heatmap, and a1, a2

and a3, the orange heatmaps. 43

3 Architecture of the models (moih1, ma1h1, ma2h1, and ma3h1) after

pruning heads according to the best amount of pruning achieved by h1

when using oi, a1, a2, and a3, respectively. 45

4 Architecture of the pruned models generated by approach h2 when using

the orders of importance oi. The orange model is the ranked best. 48

5 Architecture of the pruned models generated by the approach h3 when

using the orders of importance oi. The orange model is the ranked best. . 49

6 Architecture of the best pruned models (moih2, ma1h2, ma2h2, and

ma3h2) identified by approach h2 when using the orders of importance

oi, a1, a2, and a3 respectively. 50

7 Architecture of the best pruned models (moih3, ma1h3, ma2h3, and

ma3h3) identified by approach h3 when using the orders of importance

oi, a1, a2, and a3 respectively. 51

List of Tables

1 Hypothetical input data to ranking models procedure 33

2 Hypothetical input data ranked by predictive performance 33

3 Hypothetical input data with the ranks grouped by models and summed up 34

4 Characteristics of the Twitter sentiment datasets ordered by size (Total

column) . 39

5 Top five models pruned according to h1, using oi. The lower the rank sum,

the better the model. The results presented in this table are the F1 macro

scores achieved by each pruned model using G2 44

6 Best amount of pruned heads based on oi, a1, a2 and a3 according to h1

achieved individually. 46

7 Comparison among the results achieved by mamh1, moih1, and cm over

the Step 2 datasets (g2) . 46

8 Comparison among the results achieved by mamh2, moih2, and cm over

the Step 2 datasets (g2) . 52

9 Comparison among the results achieved by mamh3, moih3, and cm over

the Step 2 datasets (g2) . 53

10 Comparison among the results achieved by mamh1, moih1, mamh2, moih2,

mamh3, moih3 and cm over the Step 2 datasets (g2) 54

11 Comparison among the number of pruned heads from moih1, ma1h1,

ma2h1, ma3h1, moih2, ma1h2, ma2h2, ma3h2, moih3, ma1h3, ma2h3,

and ma3h3 . 55

12 Comparison among the results (F1 Mean and STD, with a percentage

comparison regarding cm) achieved by mamh1, moih1, mamh2, moih2,

mamh3, moih3 and cm, over the generalization check datasets (g3). . . . 56

List of Tables viii

13 Number of parameters and allocated disk space by cm, and the pruned

models . 57

14 Mean time, in seconds, spent to finetune the complete model cm, the

pruned model moih1 and the pruned model ma3h3. The table presents the

proportion in relation to the complete model and the standard deviation

(in parentheses). 58

15 Results (F1 Mean and STD, with a percentage comparison regarding cm)

achieved by the complete model (cm)) and all the best-pruned models

identified in Step 2 over the generalization check datasets (g3). 60

Contents

1 Introduction 12

1.1 Research Questions . 14

1.2 Contributions . 15

1.3 Organization . 16

2 Key Concepts 17

2.1 BERT Overview . 17

2.2 The Self-Attention Mechanism . 18

2.3 BERTweet Language Model . 21

3 Literature Review 22

3.1 Pruning after training . 23

3.2 Pruning before or during training . 24

3.3 Pruning for model analysis . 24

Final Remarks . 25

4 A method to prune BERTweet heads 26

4.1 Step 1: defining an importance order for the heads 27

4.2 Step 2: Selecting the best-ranked pruned model 29

4.2.1 Step 2 – Unrestricted incremental pruning (h1) 30

4.2.2 Step 2 – Incremental pruning restricted by the previous predictive

performance (h2) . 34

Contents x

4.2.3 Step 2 – Incremental pruning restricted by the complete model per-

formance (h3) . 35

5 Computational Experiments 37

5.1 Experimental methodology . 37

5.2 Experimental results . 41

5.2.1 Results of Step 1 – Evaluating the importance order 42

5.2.2 Results of Step 2 – Evaluating the proposed approaches 42

5.2.3 Generalization Check – Evaluating the generalization ability 54

5.2.4 Individual results from the random orders of importance 57

6 Conclusion and Future Works 61

Ethic Statement . 63

REFERENCES 64

1 Introduction

Over the past years, the number of internet users exploring social media platforms such as

Twitter1 has progressively increased. Twitter is one of the most popular social microblog-

ging platforms, with an average of 6,000 posts published every second, corresponding to

over 500 million posts per day2. Users can share real-time information about all topics

and events on Twitter. However, unlike other social media networks, Twitter content – the

tweets – is characterized by a unique and informal linguistic style, where users frequently

use misspelled words, slang, hashtags, emoticons, and share URL links in a limited space

of 280 characters. The tweets’ language and lack of context in such small texts make

it challenging to discover helpful information even with modern Machine Learning and

Natural Language Processing (NLP) methods.

One of the most popular tasks devised to categorize tweets is sentiment analysis. Sen-

timent analysis, or opinion mining, is the field of study that aims to extract opinions,

sentiments, emotions, moods, and attitudes from natural language texts using computa-

tional methods (liu, 2020). Generally, the sentiment analysis task is simplified to figure

out texts polarity or valence, i.e., to detect if they carry a positive or negative connotation.

A trending research topic in NLP, including Twitter sentiment analysis, is how to

numerically represent textual content for a machine to deal with it. The traditional

Bag-of-Words (BoW) (turney; pantel, 2010) method represents words based on their

frequency in a corpus. However, it suffers from sparsity and hence the curse of dimen-

sionality due to the large number of unique words a corpus may contain. Moreover, it

fails to represent the semantics of words. To address those issues, neural-based learning

techniques induce embeddings – dense real-valued low dimensional vectors – from large

corpora to represent words and texts.

Pioneering strategies for generating embeddings (mikolov et al., 2013; turney; pan-

tel, 2010; pennington; socher; manning, 2014) adopted static vector representations
1http://www.twitter.com
2https://www.internetlivestats.com/twitter-statistics/

1 Introduction 13

for words, which remain the same regardless of the context they appear. More recently,

contextualized embedding techniques, such as BERT (devlin et al., 2019), ELMo (liu,

Yijia et al., 2020), and ULMFiT (howard; ruder, 2018), emerged aiming mainly at

the existence of many possible meanings for a word. This way, if one employs the same

word with different meanings, it can be represented with different vectors depending on

the context it appears.

Contextualized embeddings are usually induced with large neural networks trained

with an extensive set of self-supervised examples. BERT, for example, is trained on a large

corpus of unlabelled conventional texts, including English Wikipedia and the Book Corpus

(800M words). BERT architecture is a stack of Transformer encoder layers (vaswani et

al., 2017), each composed of two sublayers linked to each other: a self-attention layer with

parallel heads and a Feed Forward Neural Network (FFNN) layer. The neural network

designed to learn contextualized embeddings also targets transfer learning (pan; yang,

2010; ruder et al., 2019), as they allow for employing the embeddings learned from

generic tasks and data to specific tasks and their examples. In this case, a pre-trained

model is either adapted with a stage of continuous pre-training or finetuned for a specific

task and target dataset (gururangan et al., 2020). Such strategies have been broadly

adopted and rapidly advanced state-of-the-art results for distinct NLP tasks, such as text

classification, machine translation, named entity recognition, among many others (ruder

et al., 2019; han; pang; wu, 2021).

However, although BERT-based models have achieved state-of-the-art results in sev-

eral NLP tasks, representing tweets remains a challenge. In this context, noting the

specificities of tweets and their importance for discovering helpful information from user-

generated context in many domains, Nguyen, Vu, and Nguyen (2020) developed BERTweet,

a BERT model pre-trained exclusively from tweets in English.

Despite their remarkable performance, BERT-like models, including BERTweet, still

lack theoretical results that could better explain the reasons for their performance, limit-

ing further improvements of their architectures. Furthermore, several other Transformer-

based models have emerged since BERT’s launch, each with more parameters than the

other, expecting to retain much more knowledge. Notwithstanding the successful perfor-

mance achieved by these huge models, previous studies have demonstrated they are usu-

ally overparameterized, retaining redundant knowledge, and requiring expensive hardware

with possible environmental consequences to train them (kovaleva et al., 2019; voita

1.1 Research Questions 14

et al., 2019; bender et al., 2021). Such observations have encouraged research on com-

pressing their architectures without considerably harming their performance.

This way, recent studies (press; smith; levy, 2020; k et al., 2020; michel; levy;

neubig, 2019; prasanna; rogers; rumshisky, 2020) have conducted computational

experiments to evaluate the predictive performance of compressed models using specific

datasets and for limited tasks. For instance, Michel, Levy, and Neubig (2019) have noticed

that pruning parts of the models did not incur any noticeable negative impact. Moreover,

Prasanna, Rogers, and Rumshisky (2020) have observed that more than one sub-network

performs as well as the complete network. However, they did not provide any procedure

to identify a sub-network better than the complete one. Nonetheless, there is still a gap in

understanding how compressed language models perform on the sentiment analysis task

on tweets. Moreover, to the best of our knowledge, there is no widespread method in

the literature that aims to suggest a highly compressed Transformer-based model that

could be applied to the sentiment classification of tweets achieving similar or even better

performance than the complete model.

1.1 Research Questions

We hypothesise that there are compressed models that can achieve as good predictive

performance as the complete model, or even better, in the sentiment analysis task. With

this in mind, we aim to identify at least one significantly compressed of these. Thus, in

this dissertation, we intend to answer the following research questions (rq):

RQ1 : Are there finetuned BERTweet pruned models that achieve competitive or even

better predictive performance than the finetuned complete model in the tweets sen-

timent analysis task?

RQ2 : If so, how could one discover a significantly pruned model that reaches such

performance?

To answer these questions, this dissertation presents a method to efficiently com-

press Transformer-based models, focusing on finetuning them to be used in the sentiment

classification of tweets. Since the self-attention mechanism is one of the fundamental un-

derlying components of Transformer-based models and based on the results achieved by

Kovaleva et al. (2019), which demonstrates that disabling some heads could even increase

the performance, our proposed method focuses on pruning BERTweet heads, resulting in

1.2 Contributions 15

a more compact model to be finetuned. The main goal is to achieve a predictive perfor-

mance close to or even better than the finetuned complete model. Furthermore, a pruned

model potentially requires less memory usage than its complete version, less space in the

disk to be stored, and less computational time to be finetuned. All these advantages are

levered to the finetuning procedure and at the inference time. To evaluate the proposed

compressing method, we perform computational experiments by exploring BERTweet’s

architecture using a significant set of twenty-two datasets of tweets (carvalho; plas-

tino, 2021).

Using the proposed compression method, we could efficiently remove 68 heads from

the original model, corresponding to 47.22% of all heads. This pruned model achieved

similar or even better predictive performance than the complete model in all evaluation

datasets. Moreover, the size of the model was reduced by 13.27%, and the time spent in

finetuning decreased by at least 10%, representing at least 30 watts consumption reduction

per hour using the hardware we have employed (Tesla P100-SXM2 GPU).

Surprisingly, while evaluating our method against a random order strategy, we came

across a compressed model created from pruning 107 heads from the original model that

achieved similar or even better predictive performance than the complete model in all

evaluation datasets. This prune corresponds to 74.31% of all heads, which reduces 19.10%

from the original model size. Furthermore, the time spent in finetuning decreased by at

least 52%, representing approximately 150 watts consumption reduction per hour using

the hardware we have employed (Tesla V100-SXM2 GPU).

Given the accelerated rate that new tweets arrive daily, a model may be finetuned

several times when in operation. This way, we believe the amount of resource reduction is

notable for those intending to finetune BERTweet with their own Twitter sentiment clas-

sification dataset and have limited computational resources but aim at acquiring similar

or superior predictive performance to the original model.

1.2 Contributions

To sum up, this dissertation contributes with:

1. A compressing method applied on BERTweet to the sentiment classification task,

which can be extended to other Transformer-based models and tasks.

2. A methodology to evaluate the finetuning procedure on compressed models.

1.3 Organization 16

3. An analysis of a large set of twenty-two datasets of tweets that have been extensively

used in the literature of Twitter sentiment analysis.

4. A map of heads to be pruned from the BERTweet model according to the importance

order estimated by the method.

5. A map of heads to be pruned from the BERTweet model according to an importance

order chosen by chance.

1.3 Organization

This dissertation is organized as follows. Chapter 2 presents an overview of BERT’s

architecture, the self-attention mechanism, and the BERTweet model. In Chapter 3, we

present some related works. The proposed compressing method and the computational

experiments 3 performed to evaluate it are detailed in Chapters 4 and 5, respectively.

Finally, in Chapter 6, we present the conclusions and directions for future research.

3The code and experiments are publicly available https://github.com/MeLLL-UFF/multiheads_
sentiment

https://github.com/MeLLL-UFF/multiheads_sentiment
https://github.com/MeLLL-UFF/multiheads_sentiment

2 Key Concepts

In this chapter, we introduce the concepts necessary for understanding the compressing

method proposed in this dissertation and presented in Chapter 4. Section 2.1 gives an

overview of BERT’s architecture model. We further detail the self-attention mechanism in

Section 2.2 as it is an essential component of Transformer-based models and our proposed

compressing method. Lastly, Section 2.3 presents specific aspects of BERTweet.

2.1 BERT Overview

In their paper, Vaswani et al. (2017) introduced the Transformer, a sequence transduction

model based entirely on attention mechanisms (bahdanau; cho; bengio, 2015; luong;

pham; manning, 2015). Its architecture comprises a stack of encoder layers and a stack

of decoder layers. Each stack has its corresponding embedding layer for its respective

inputs, with an output layer on top of the decoder stack. The encoder embedding layer

feds data to the first encoder layer, but from the second layer, the input data is the

output data from the previous layer. Similarly, the decoder embedding layer feds data to

the first decoder layer, but from the second layer, the input data is the output data from

the previous layer; however, all decoder layers receive the output from the last encoder

layer as input as well. Each encoder layer comprises two sublayers linked to each other:

a self-attention layer with multiple parallel heads and a Feed Forward Neural Network

(FFNN) layer. Each decoder layer, in turn, comprises three sublayers linked to each

other: a self-attention layer with multiple parallel heads, an encoder-decoder attention

layer with multiple parallel heads, and an FFNN layer. The purpose of the encoder stack

is to produce an encoded representation of the input sequence. On the other hand, the

decoder stack seeks to deliver a target sequence aimed at the transduction of the input

sequence.

BERT is a stack of Transformer-encoder layers designed by Devlin et al. (2019)

and pre-trained on unlabeled data over two different tasks: Masked Language Model-

2.2 The Self-Attention Mechanism 18

ing (MLM) and Next Sentence Prediction (NSP). The data used to pre-train the model

include the BooksCorpus (zhu et al., 2015) (800M words) and the English Wikipedia

(2,500M words) corpora. In MLM, some tokens from a sequence are masked, and the

model has to predict an appropriate token to fill that mask with. In NSP, in turn, two

masked sentences are concatenated as input. Sometimes they correspond to sentences

next to each other in the original text, sometimes not. The model then has to predict

whether the two sentences follow each other.

Devlin et al. (2019) released BERT models in two different sizes: BERTBASE and

BERTLARGE. While BERTBASE consists of 12 encoder layers, each with 12 heads in its

self-attention sublayer, BERTLARGE consists of 24 encoder layers, each with 24 heads in

its self-attention sublayer.

BERT receives as input a single sentence (for single-sequence tasks like sentiment

analysis) or a pair of sentences (for sequence-pair tasks like question-answering) repre-

sented as a sequence of tokens. The WordPiece algorithm (wu et al., 2016), pre-trained

with a vocabulary of 30,000 tokens, tokenizes the input.

Devlin et al. (2019) also proposed a framework to finetune BERT pre-trained model

using labeled data for a specific downstream task to leverage and refine the knowledge

acquired during the pre-training process. In addition, they presented a feature-based ap-

proach, where fixed features are extracted from the pre-trained model to define embedding

representations for tokens. Next, those embeddings can serve as examples to train any

classification model.

2.2 The Self-Attention Mechanism

Words with the same spelling can have different meanings depending on the sentence

they appear in or their position within the sentence. The main goal of the Transformer

self-attention mechanism is to compute a contextualized word embedding that leverages

the importance of other words1 in the same sentence.

The self-attention mechanism follows the attention mechanism (bahdanau; cho;

bengio, 2015; luong; pham; manning, 2015), epitomized by Vaswani et al. (2017) and

formulated as follows:
1Although we refer to each sentence piece as “words”, the process is performed for all tokens generated

by the tokenization procedure.

2.2 The Self-Attention Mechanism 19

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V , (2.1)

where Q, K, and V are matrices composed of query, key, and value vectors, respectively.

The query and key vectors have the same dimension dk, whereas the value vector has

dimension dv. The attention mechanism aims at calculating weights that represent the

alignment of the inputs (key) relative importance in the sequence for a particular input

(query). More generally, Q are the vectors one wants to calculate attention for, while K

are the vectors one wants to figure the attention against. V , in turn, is used to represent

these attentions after being weighted and summed up. The difference between attention

and self-attention is that the latter assumes the key and query are in the same sentence.

The attention operation performs in parallel for each head from a layer. This way, the

output of that layer must be a composition of the output from each of its heads. To this

end, Vaswani et al. (2017) proposed to concatenate those outputs, as shown in Equations

2.2 and 2.3:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)W
0 (2.2)

headi = Attention(QWQ
i ,KWK

i ,V W V
i), (2.3)

where h is the number of heads and W 0, WQ
i , WK

i , and W V
i are weight matrices optimized

during the training process.

BERT contains a stack of encoder layers with self-attention sublayers. The input from

the first layer is a matrix compound of vectors looked up from the static vocabulary of

each token from the input sequence. In the other layers, the keys, values, and queries of

the self-attention sublayer come from the output of the previous layer (vaswani et al.,

2017). Therefore, Equations 2.2 and 2.3 can be simplified to Equations 2.4 and 2.5, as

follows:

MultiHead(X) = Concat(head1, . . . , headh)W
0 (2.4)

headi = Attention(XWQ
i ,XWK

i ,XW V
i), (2.5)

where X is a matrix compound of the output from the previous layer.

2.2 The Self-Attention Mechanism 20

To aid the understanding, we present a simple example of an input sequence composed

of three tokens: A, B, and C. Next, we describe the process that occurs in one head for

the first input token, A, but the same applies to all input tokens from the input sequence.

As the first step, for each token, A, B, and C, which are represented by input vectors

xA, xB, and xC (output from the previous layer), three other vectors are defined: query

vectors: qA, qB, and qC ; key vectors: kA, kB, and kC ; and value vectors: vA, vB, and vC .

They are defined by multiplying the input token representations xA, xB, and xC to the

matrices (WQ, WK , and W V) learned during the training process.

The second step consists in computing a score sij for each input token i regarding

input token j. This score indicates how much attention should be placed on other parts

of the input sentence. It is calculated as the dot product between vector qi, from input

i, and vector kj, from the input j, i.e., sij = qi · kj. Considering the given example and

token A, after calculating the scores sAA, sAB, and sAC , if sAB < sAC , it means that token

C influences the representation of token A more than token B.

The third step consists in (i) computing the ratio between those scores and the square

root of the dimensionality of the key vector (dk), which in BERT is 64, and (ii) applying a

softmax operation on these results. Assuming that sAA = 110, sAB = 50, and sAC = 100,

then the results of the softmax operation are 77.70%, 0.04%, and 22.26%, respectively.

These results express how relevant an input token from the sequence regards the input

token A. Note how small the softmax result is for a token B (0.04%).

Next, in the fourth step, the value vectors vA, vB, and vC are multiplied to their

respective softmax results, producing the weighted value vectors wvAA, wvAB, and wvAC .

The intuition here is to keep the highest value vectors to more relevant input tokens and

drop irrelevant ones once they are multiplied to tiny numbers.

In the fifth and final step, the weighted value vectors are summed up, resulting in

a vector zA, i.e., zA = wvAA + wvAB + wvAC . Steps 1 to 5 occur in each head that

compounds the self-attention sublayer. The zA vectors from each head are concatenated

and multiplied to W 0 (another matrix optimized during the training process) so that the

FFNN sublayer receives only one vector. It is then sent to the FFNN sublayer, which

passes its output to the next encoder layer.

2.3 BERTweet Language Model 21

2.3 BERTweet Language Model

Tweets contain a unique and informal linguistic style, where users frequently use mis-

spelled words, slang, hashtags, emoticons, and share URL links. This way, existing lan-

guage models trained on conventional text corpora, like Wikipedia, may not correspond

well with tweets. Models trained on such corpora hold a traditional vocabulary that

scarcely matches the tweet vocabulary, even if applying a data-wrangling process. Even

in Transformer-based architectures that adopt subwords-based tokenizers, the noisy vo-

cabulary of tweets may break words into several small pieces, hence completely losing the

original sentence meaning.

To fill that gap, Nguyen, Vu, and Nguyen (2020) trained BERTweet, a public large-

scale pre-trained language model for English tweets. Its architecture is based on BERTBASE

(12 layers and 12 heads in each layer). It was trained based on the RoBERTa (liu, Yinhan

et al., 2019) pre-training procedure, which, when compared to BERT, includes: training

the model longer on more data using bigger batches, eliminating the next sentence pre-

diction target task; training on longer sequences; and dynamically changing the masking

pattern applied to the training data. The corpus used to train BERTweet consists of 850M

English tweets, which contain 16bn tokens and require about 80GB of drive space. From

the 850M tweets, 845M were streamed from 01/2012 to 08/2019, and 5M are related to

the COVID-19 pandemic. BERTweet models are publicly available in Huggingface (wolf

et al., 2020).

BERTweet addressed three NLP tasks for Twitter data in (nguyen; vu; nguyen,

2020): Part-Of-Speech (POS) tagging, Named-Entity Recognition (NER), and text clas-

sification. The results show that BERTweet outperformed the previous state-of-the-art

models on all these tasks.

3 Literature Review

The number of parameters of transformer-based models has grown continually over the

years. BERTBASE, for example, has 110M parameters whereas GPT-2 (radford et al.,

2018), Turing-NLG (rosset, 2020), and GPT-3 (brown et al., 2020) have 1.5B, 17B, and

175B, respectively. Besides the inaccessible amount of parameters to low computational

resources, experiments conducted in several previous works showed that pruning some

heads or even layers does not harm the model’s performance significantly and may still

increase it in some cases(michel; levy; neubig, 2019; voita et al., 2019; sajjad et

al., 2020). Thus, interest in efficiently compressing models has increased, focusing on

smaller models with minimum performance decline compared to larger models. They can

be categorized into three main approaches: Knowledge Distillation (hinton; vinyals;

dean, 2015), which is the process of transferring knowledge from a large model to a

smaller one, Quantization (shen et al., 2020; zafrir et al., 2019), in which parameters

are represented with fewer bits, and Pruning (kovaleva et al., 2019; k et al., 2020;

michel; levy; neubig, 2019; voita et al., 2019; sajjad et al., 2023; clark et al.,

2019; kao et al., 2020; baan et al., 2019; tenney; das; pavlick, 2019; gordon;

duh; andrews, 2020; fan; grave; joulin, 2020; chen et al., 2020; sanh; wolf;

rush, 2020), which involves disabling or removing parts of the networks that are either

redundant or less relevant to the task at hand. Pruning approaches are categorized into

unstructured and structured pruning. Unstructured methods prune weights irrespective of

which architecture block they belong to, whereas structured methods prune architecture

blocks. Our work fits into the structured pruning category once we propose a method to

efficiently prune heads and layers from BERTweet. Next, we briefly describe the methods

according to the moment the pruning happens (before or after training). We also include

methods that prune models focused on analyzing them.

3.1 Pruning after training 23

3.1 Pruning after training

Fan, Grave, and Joulin (2020) have proposed the LayerDrop, a form of structured dropout,

which has a regularization effect during training and allows for efficient pruning at infer-

ence time. K et al. (2020) have experimented with a varying number of layers, heads,

and parameters from the mBERT model (devlin et al., 2019), the multilingual version

of BERT. They concluded that the number of heads was less significant than the number

of layers.

Michel, Levy, and Neubig (2019) evaluated pruned models at test time. They removed

one or more attention heads from a given architecture and measured the performance dif-

ference at test time. They considered two trained models: WMT (vaswani et al., 2017),

reporting BLEU (BiLingual Evaluation Understudy) scores on the newstest2013 test set,

and BERT (devlin et al., 2019), reporting accuracies on MultiNLI (williams; nan-

gia; bowman, 2018) validation set. They modified the multi-headed attention formula

by adding a new variable to zero out some head computations. The first experiment

removed the heads one by one and checked the importance of a head, comparing the

performance of the complete model against the performance of the pruned one. If the

performance was similar, the head was marked as redundant given the rest of the model.

They concluded that, at test time, most of the heads were redundant given the rest of

the model. The second experiment removed all heads except one in a given layer and

compared the performance of the complete model against the pruned one. They figured

out that, for most layers, one head is indeed sufficient at test time. Lastly, the third

experiment established an order of importance for all heads, removing them individually

to evaluate what could happen when removing heads from different layers. They noticed

that this last approach pruned up to 20% and 40% of heads from WMT and BERT mod-

els, respectively, without incurring in any noticeable negative impact. They have also

observed that a pruned model is more efficient than the complete one, showing a speedup

in inference time by ≈ 17.5% for larger batch sizes using a BERT model with 50% of all

attention heads pruned.

Sajjad et al. (2023) explored strategies to drop entire layers from pre-trained models.

They pruned up to 40% layers from BERT, RoBERTa, and XLNet while keeping up to

98% of the original performance. During this process, they realized that some tasks are

more robust to dropping any layers, but, in general, the lower layers are the most crucial

to maintaining the downstream task performance. They also stated that the layers must

3.2 Pruning before or during training 24

be dropped regarding the target class to achieve a smaller model close to the optimal

network.

3.2 Pruning before or during training

Most studies regarding pruning approaches consider compressing the model after training,

making inference more efficient. However, Frankle and Carbin (frankle; carbin, 2019)

investigated if training a pruned model instead of a complete one could reach a suitable

model in less time. As a result, they concluded that exist smaller sub-networks trained

from scratch faster than their larger counterpart, achieving similar or even higher accuracy.

Prasanna, Rogers, and Rumshisky (2020) and Chen et al. (2020) analysed BERT from

the perspective of Frankle and Carbin’s hypothesis(frankle; carbin, 2019). Prasanna,

Rogers, and Rumshisky (2020) showed that it is possible to uncover sub-networks that

perform as well as the complete model. Moreover, they noticed that, in many cases, even

the “bad” sub-networks could be reinitialized to the pre-trained BERT weights and fine-

tuned to achieve robust performance. Chen et al. (2020) focused on finding compressed

models that were universally trainable on several downstream tasks. Using an unstruc-

tured pruning method, they realized that, on most downstream tasks, the uncovered

finetuned models are not helpful to other tasks. Nevertheless, sub-networks discovered

from finetuning using the masked language model task are universal and valuable to other

tasks. Gordon, Duh, and Andrews (2020) analyzed BERT transfer capability and con-

cluded that it could be pruned before becoming publicly available without affecting its

capacity for any tasks.

3.3 Pruning for model analysis

Pruning processes have also been used to analyze models. The intuition is that a com-

pressed model comprises the most valuable components for prediction. This way, uncover-

ing what these sub-networks do might reveal what the complete network does. Kovaleva et

al. (2019) focused on the interpretation of self-attention, which is one of the fundamental

underlying components of BERT. They proposed five attention patterns that repeat across

different heads, indicating the overall model overparameterization. They show that dis-

abling attention in certain heads improves performance over the regular finetuned BERT

models. Voita et al. (2019) performed computational experiments to analyze the influence

of individual attention heads of transformer models on machine translation. Moreover,

3.3 Pruning for model analysis 25

they investigated if the quality of the translation could be kept even with a reduced num-

ber of attention heads. For this purpose, they first identified the most critical attention

head from each encoder layer, using the layer-wise relevance propagation technique (ding

et al., 2017) and characterized roles for them, creating three distinct types: positional,

syntactic, and rare words. To understand if the remaining heads (which are not part of

any role) are still essential or redundant for translation, they introduced a head pruning

process based on the technique proposed in (louizos; welling; kingma, 2018). The

computational experiments showed that most attention heads could be removed from the

fully trained model without significantly losing translation quality. However, they re-

ported not being confident in ensuring that a model could be trained from scratch with

such few heads.

Final Remarks In the current dissertation, we propose a pruning method and analyze

the performance of pruned BERTweet models for the sentiment analysis task on Twitter

data. Presumably, having a huge model to be applied to tweets seems excessive, once

tweets are too concise. Our method prunes the model head by head according to an order

of importance calculated using an approach based on the method proposed in (michel;

levy; neubig, 2019). However, different from (michel; levy; neubig, 2019) and

others (fan; grave; joulin, 2020; k et al., 2020; kovaleva et al., 2019; voita et al.,

2019; sajjad et al., 2023), which focus on making inference more efficient, we are also

interested in making finetuning more efficient. This way, we would like to know whether

there exist pruned models that could be finetuned, consuming less computing resources

while still achieving similar or even better performance than finetuning the complete

model. Moreover, we provide a model architecture template that one can easily adopt to

finetune using their own dataset and reach better results than with the complete model.

Our conclusion aligns with the outcomes of (prasanna; rogers; rumshisky, 2020;

chen et al., 2020). Although they have used distinct pruning processes, they stated that

there are sub-networks that perform as well as the complete model.

4 A method to prune BERTweet heads

Usually, BERT-based pre-trained models are finetuned to be applied to a downstream

task. This dissertation presents a method to prune heads of BERTweet pre-trained models,

focusing on the finetuning performance applied to the task of Twitter sentiment analysis.

The main goal is to reach a smaller model that achieves a competitive or even better

predictive performance than the complete model. We argue that a pruned model would

require less memory usage than its complete version, less space in the disk to be stored, and

its finetuning process would take less computational time. Hence, the pruned model would

require simpler hardware to be adjusted and embedded in the production system while also

contributing to less carbon emission (strubell; ganesh; mccallum, 2019). Notably,

in this dissertation, we leverage the possible redundant information that BERTweet heads

might accommodate by choosing which heads to remove when finetuning them for tweets

sentiment analysis.

However, finding a pruned model that performs as well as the original one is not trivial.

Previous studies pointed out that several sub-networks may have the same or better

predictive performance as the complete model (frankle; carbin, 2019). Specifically,

BERTweet, the base architecture that we select to prune, comprises 144 heads distributed

in 12 layers. This way, to avoid the combinatorial explosion of testing each one of the vast

numbers of models that could be generated when pruning subsets of BERTweet heads,

the proposed method establishes an order of importance for the heads and prunes them

incrementally in the opposite order. In this context, the method works in two sequential

steps. First, it defines a hierarchy of importance for all heads (called here as Step 1).

Then, considering this hierarchy, it determines the best-pruned model architecture to be

finetuned among all pruned models generated during the pruning process (called here as

Step 2). Sections 4.1 and 4.2 detail these steps.

For robustness and to avoid bias, it is crucial to use a different and unique collec-

tion of datasets in each of these steps. Moreover, previous literature observed that the

finetuning procedure could produce substantially different results due to some random

4.1 Step 1: defining an importance order for the heads 27

internal procedure (dodge et al., 2020). This way, to mitigate the impact it could make

on the results achieved by a unique execution, each finetuning procedure executed in the

proposed method (Step 1 and Step 2) must be performed a reasonable amount of times

using different seeds. Consequently, the model evaluation must be computed according

to the mean results achieved by all the executions. We incorporate those experimental

decisions into the proposed method to ensure the intended robustness.

Although this study focuses on the BERTweet model and the sentiment classification

task, the proposed method is general enough to be applied to other Transformer-based

models and tasks.

4.1 Step 1: defining an importance order for the heads

To establish the order of importance for the heads, we propose an approach similar to that

presented by Michel, Levy, and Neubig (2019). There, they modify the original Attention

Equation 2.5 by including head mask variables (ξ), as one can see in Equation 4.1. The

variables ξ constitute a matrix of all heads from all layers. While in the original work

ξ could assume values in {0,1} to indicate if a head would be discarded or not, in our

approach, they are always 1. This way, all heads are constantly considered in the model

optimization, and the related head gradients values are accumulated to compute the

numerical importance of the heads.

headi = ξiAttention(XWQ
i ,XWK

i ,XW V
i), (4.1)

Algorithm 1 details how our proposal determines the importance order of the heads. It

receives five input parameters: datasets, seeds, nepochs, nlayers and pretrained_model.

The datasets parameter is a set of labeled datasets that are used to define the importance

order based on the update of attention weights during the finetuning procedure. The seeds

parameter is a set of integer numbers used as random seeds in random procedures. They

are used in the finetuning process to account for the random weight initialization of the

final classification layer and provide reproducibility. The nepochs parameter indicates the

number of times the finetuning procedure is executed with the same data. The nlayers

parameter represents the number of layers that compose the architecture. Lastly, the

pretrained_model is the initial model (pre-trained BERTWeet model in our case), which

will be finetuned during the process. For each dataset and each seed (lines 4 and 6),

4.1 Step 1: defining an importance order for the heads 28

the procedure first initializes the random seed (line 8) and loads the pre-trained model

(BERTweet pre-trained model), adding a classification layer on top of it (line 9). Next,

it calls the function responsible for calculating the importance of heads considering a

combination of dataset and seed (line 10), which is presented in Algorithm 2. Ultimately,

it defines the order of importance of all heads based on the accumulated gradient values

from ξ for all the examples, averaged by the datasets, seeds, and epochs (lines 13 and 14).

Algorithm 1 Step 1 - Calculating the importance order of heads
Require:

datasets, seeds, nepochs, nlayers, pretrained_model
Ensure:

head_importance_rank
1: ndatasets← |datasets|
2: nseeds← |seeds|
3: Let head_importances_by_ds be a new ndatasets× nseeds matrix
4: for d = 1 to ndatasets do
5: dataset← datasets[d]
6: for s = 1 to nseeds do
7: seed← seeds[s]
8: Initialize random seed (seed)
9: Load pretrained_model adding a classifier on top

10: head_importances_by_ds[d,s] ← calculate_head_importance
(pretrained_model, dataset, nepochs, nlayers) ▷ Algorithm 2

11: end for
12: end for
13: head_mean_importances← calculate_mean(head_importances_by_ds) ▷ Mean

of all datasets, seeds, and epochs results
14: head_importance_rank ← order head_mean_importances from highest to lowest

Algorithm 2 receives four input parameters: model, dataset, nepochs and nlayers.

The model parameter is the model to finetune. The dataset parameter is the labeled

dataset used to finetune the model. The nepochs and nlayers parameters are exactly

the same provided to Algorithm 1. For each epoch, the procedure initializes each value

in ξ to 1 (line 5). Then, it performs the usual forward step (line 7) and finetunes model

within the backward pass (line 8) with each batch of examples in the dataset. Next, it

accumulates the absolute gradient values computed during the backward pass according

to ξ (line 9). The intuition is that the more a variable gradient is absolutely changed,

the more important its underlying head is to the finetuned model. At this point, different

from Michel, Levy, and Neubig (2019), which normalize the final accumulated gradients

results by layer using ℓ2 normalization, we normalize the accumulated gradients for each

batch (line 11) and repeat the normalization at the end of each epoch (line 15) using

Min-Max normalization.

4.2 Step 2: Selecting the best-ranked pruned model 29

Algorithm 2 Step 1 - Function for calculating the importance order of heads for one
dataset
1: function calculate_head_importance(model, dataset, nepochs, nlayers)
2: Let head_importance be a new nlayers× nlayers matrix ▷ to accumulate the

gradients
3: ntokens← number of tokens in dataset
4: for epoch = 1 to nepochs do
5: Let head_mask be a nlayers× nlayers matrix filled with 1
6: for each batch ∈ dataset do
7: loss← Forward pass batch on model using head_mask
8: gradients← Backward pass(loss)
9: head_mask_abs_grads← get_head_mask_abs_grads(gradients) ▷

gradients from head_mask only
10: head_importance← head_importance + head_mask_abs_grads
11: head_importance← min_max_normalization(head_importance)
12: Update model parameters using gradients
13: end for
14: head_importance← head_importance/ntokens ▷ To avoid the influence of

the number of tokens each dataset has
15: head_importance← min_max_normalization(head_importance)
16: end for
17: return head_importance
18: end function

4.2 Step 2: Selecting the best-ranked pruned model

Once the order of importance for the heads is determined, Step 2 uses it as input to

search for a significantly pruned model. To execute this step, we propose three different

approaches. In the first approach (h1), explained in subsection 4.2.1, we incrementally

prune the model’s heads following the order of importance determined in Step 1 without

any restriction. In this case, the procedure produces several models for each dataset

that will be evaluated later. In the second approach (h2), described in subsection 4.2.2,

although we also incrementally prune the model’s heads, we evaluate the pruned model

produced at each iteration and keep the pruning only if the predictive performance of the

current pruned model is better than the previous one. Otherwise, we hold the head on

the model. The third approach (h3), detailed in subsection 4.2.3, is very similar to the

second one; however, instead of evaluating the predictive performance of the pruned model

at each iteration against the result of the previous one, the comparison is always made

against the predictive performance of the complete model. At the end, the second and

third approaches produce just one model for each dataset. Independently of the adopted

4.2 Step 2: Selecting the best-ranked pruned model 30

approach, we established the strategy of removing the entire layer if we have pruned all

the heads in the same layer.

4.2.1 Step 2 – Unrestricted incremental pruning (H1)

Algorithm 3 details the pruning procedure without restricting the heads that can be

pruned. It receives five input parameters: datasets, seeds, head_importance_rank,

nheads and pretrained_model. The datasets parameter is a set of labeled datasets that

are used to finetune each pruned model generated during the process and to train and

test classifiers to evaluate those models. The seeds parameter is a set of integer numbers

used as random seeds in random procedures and to provide reproducibility. They are

used to split each dataset into two parts to feed the finetuning and evaluation process.

They are also used internally in these processes themselves. The head_importance_rank

parameter is the order of importance of the heads determined in Step 1. The nheads

parameter is the total number of heads from the adopted model architecture. Lastly, the

pretrained_model is the initial model (pre-trained BERTWeet model, in our case), which

will be pruned and finetuned during the process.

In this approach, for each dataset (line 4), we iterate over all possible numbers of

heads (k) that can be pruned from the pre-trained model (line 6). At each iteration, we

look up the k less important heads (line 7) and then call the function prun_adj_eval

(line 8), described by Algorithm 4, to prune and adjust the pre-trained model and return

the result of its predictive performance. At the first iteration (k = 0), we capture the

predictive performance of the complete model once any head can be pruned from the

pre-trained model. At the second iteration, the head marked as less relevant in Step 1

is pruned, yielding the first pruned model. Next, that head and the second less relevant

head are pruned together, yielding the second pruned model and so on. Since BERTweet

architecture comprises 144 heads (12 heads for each of the 12 layers), and the proposed

method removes heads incrementally, one at each time, we end up with 144 models’

predictive performance (one from the complete model and 143 from the pruned ones)

for each dataset. Ultimately, we perform a ranking process to determine the best model

architecture based on the predictive performances achieved by the evaluated models (line

11). To this end, we call the ranking_models function, expressed by Algorithm 5.

The prun_adj_eval function, detailed in Algorithm 4, concerns pruning, adjusting,

and evaluating a pre-trained model. It receives four input parameters: pretrained_model,

dataset, seeds, and heads_to_prune. The pretrained_model and seeds parameters are

4.2 Step 2: Selecting the best-ranked pruned model 31

Algorithm 3 Step 2 (h1) – Determining the best-pruned model to be finetuned, among
all pruned models evaluated during the pruning process
Require:

datasets, seeds, head_importance_rank, nheads, pretrained_model
Ensure:

best_pruned_model
1: ndatasets← |datasets|
2: nseeds← |seeds|
3: Let predict_performances be a new ndatasets× nheads matrix
4: for d = 1 to ndatasets do
5: dataset← datasets[d]
6: for k = 0 to (nheads− 1) do
7: heads_to_prune← get_first_kheads(head_importance_rank, k)
8: predict_performances[d, k] ← prun_adj_eval(pretrained_model,

dataset, seeds, heads_to_prune) ▷ Algorithm 4
9: end for

10: end for
11: best_pruned_model← ranking_models (predict_performances) ▷ Algorithm 5

the same input parameters from Algorithm 3. The dataset parameter is a dataset used

to adjust and evaluate the pruned model. Finally, the head_to_prune parameter is a

set of heads to prune from the pre-trained model. In Algorithm 4, for each provided

seed (line 4), the dataset is split into two parts (trains_ds and eval_ds) to adjust and

evaluate the model (line 7). Next, the pre-trained model is pruned (line 8) and adjusted

(line 9) using the train_ds portion. The model is adjusted in a continuous pre-training

fashion (gururangan et al., 2020) to accommodate possible changes in the parameters

caused by the removed heads. Thus, unlike Step 1, no additional layer is attached to

BERTweet architecture. Instead, we further pre-train the models with the Masked Lan-

guage Model (MLM) intermediate task (devlin et al., 2019). Precisely, we follow the

strategy “Within-Task Further Pre-Training” (sun et al., 2019), where the models are

adjusted by applying the same training strategy adopted in the original MLM training

but using data from the target task. We keep the same strategy since finetuning and

evaluating the models adequately, concerning the target task, take too much time in the

available infrastructure. After this procedure, the model is evaluated (line 12) using the

eval_ds part of the dataset. At this point, we aim to identify the predictive performance

of the adjusted pruned model. To this end, every example is passed through the model

to extract the features and to create the example representation, namely the embeddings

(line 10). These embeddings are then used to train and test a classifier, considering that

embeddings used to test must not be used to train (line 12). The model’s predictive

4.2 Step 2: Selecting the best-ranked pruned model 32

performance results from testing its respective classifier (line 13), and the return of this

function is the mean of the predictive performances achieved for all seeds (line 15).

Algorithm 4 Step 2 - Function for pruning, adjusting and evaluating a model
1: function prun_adj_eval(pretrained_model, dataset, seeds, heads_to_prune)
2: Let F1_metrics be an array of nseeds elements
3: nseeds← |seeds|
4: for s = 1 to nseeds do
5: seed← seeds[s]
6: Initialize random seed (seed)
7: train_ds, eval_ds← split_dataset(dataset, seed)
8: model← create_pruned_model(pretrained_model, heads_to_prune)
9: model← continuous_pre_training(model, train_ds)

10: features← extract_features(model, eval_ds)
11: labels← get_labels(eval_ds)
12: metrics← cross_validation(features, labels, seed)
13: F1_metrics[s]← metrics
14: end for
15: return calculate_mean(F1_metrics)
16: end function

The ranking_models function, described in Algorithm 5, concerns ranking and de-

ciding which model is the best one among all evaluated. It receives one input parameter,

models_performance, a matrix with the predictive performances of all models (pruned

and complete ones) for each dataset. This procedure starts ranking these models com-

paratively according to the predictive performance achieved by each dataset (line 2). The

model with the best predictive performance is ranked as 1; the second is ranked as 2,

and so on. In the case of a draw, the rank values are summed up and divided among the

tied models so that if two models draw in the second place, for example, each of them is

ranked as 2.5, i.e., (2 + 3)/2 = 2.5. Next, the model’s ranks are summed up (line 3) and

sorted by the rank sum in decreasing order (line 4). Lastly, the function returns the best

model (line 5), represented by that which reaches the lowest rank sum.

Algorithm 5 Step 2 - Function for ranking models
1: function ranking_models(models_performance)
2: rmodels_ds← rank_models_by_dataset(models_performance)
3: rsum_models← sum_rank_models(rmodels_ds)
4: models_sorted← get_models_sort_by_ranksum_desc(rsum_models)
5: return models_sorted[0]
6: end function

4.2 Step 2: Selecting the best-ranked pruned model 33

Ranking models procedure in details

To illustrate the process, next, we present a hypothetical example in which the input

data is composed of the results achieved by running the Algorithm 3 with two datasets A

and B. For simplicity, we have considered only three models (nheads=2) by each dataset:

the complete model (k = 0), a one-head pruned model (k = 1), and a two-head pruned

model (k = 2). Table 1 exposes this hypothetical input data.

The ranking models’ procedure starts by calculating the ranks based on each dataset’s

predictive performance results. The highest predictive performance gets ranked 1; the

second highest gets ranked 2, and so on. In case of a draw, a mean of the ranks is applied.

Table 2 consolidates these ranks, sorting the results by dataset and descending rank.

Table 1: Hypothetical input data to ranking models procedure
Model Dataset Pred. Performance

Complete A 97.5

One-head pruned A 97.5

Two-heads pruned A 98

Complete B 97.5

One-head pruned B 98

Two-heads pruned B 97

Table 2: Hypothetical input data ranked by predictive performance
Model Dataset Rank

Two-heads pruned A 1.0

Complete A 2.5

One-head pruned A 2.5

One-head pruned B 1.0

Complete B 2.0

Two-heads pruned B 3.0

Lastly, the ranks are grouped by model and summed up. We consider the model with

the lowest rank sum the best among all evaluated. Table 3 presents the ranking sum

applied to the hypothetical example. As can be observed in this case, the best model

is represented by the one-head pruned, which means we should prune just the first head

from the complete model based on the order of importance defined in Step 1.

4.2 Step 2: Selecting the best-ranked pruned model 34

Table 3: Hypothetical input data with the ranks grouped by models and summed up
Model Rank Sum

One-head pruned 3.5

Two-heads pruned 4.0

Complete 4.5

4.2.2 Step 2 – Incremental pruning restricted by the previous predictive
performance (H2)

This approach is detailed in Algorithm 6 and receives the same input parameters as the

previous one (Algorithm 3). In Algorithm 6, although we also incrementally prune the

model’s heads, we evaluate the pruned model created at each iteration and keep the

pruning only if the predictive performance of the current pruned model is better than

the previous one. Otherwise, we preserve the head on the model. Thus, we first identify

this set of heads to be pruned for each dataset and store them on best_heads_to_prune

variable (line 4). To this end, for each dataset (line 6), we iterate over all head’s index

(line 8) and look up the k-th head based on the provided order of importance (line 9).

Next, we append this current head to the current best set of heads (line 10) and call

the function prun_adj_eval (the same Algorithm 4 used in the approach h1) to get

the predictive performance of the pre-trained model pruned by these heads (line 11). As

we are interested in the best set of heads, for each iteration, we compare the predictive

performance of the current model, F1_mean, to the best model so far, best_F1 (line

12). If the F1_mean is greater or equal to best_F1, we update best_heads_to_prune

aggregating the new head (line 14) and update best_F1 to be F1_mean (line 13). After

iterating over all datasets, we end up with the best model – more precisely, with the heads

that must be pruned from the pre-trained model – for each dataset individually. Hence,

to run the ranking_models (the same Algorithm 5 used in h1) function and decides

about the best among all those models (line 24), we need to iterate over the datasets one

more time to calculate the predictive performance of each of the identified models over

all the datasets.

4.2 Step 2: Selecting the best-ranked pruned model 35

Algorithm 6 Step 2 (h2) – Determining the best-pruned model to be finetuned, among
all pruned models generated during the pruning process
Require:

datasets, seeds, head_importance_rank, nheads, pretrained_model
Ensure:

best_pruned_model
1: ndatasets← |datasets|
2: nseeds← |seeds|
3: Let best_F1 be an array of ndatasets elements initialized with value 0
4: Let best_heads_to_prune be an array of ndatasets elements
5: Let model_perfs be a new ndatasets× ndatasets matrix
6: for d = 1 to ndatasets do
7: dataset← datasets[d]
8: for k = 0 to nheads do
9: head← get_k_th_head(head_importance_rank, k)

10: temp_heads = best_heads_to_prune[d] + head
11: F1_mean ← prun_adj_eval (pretrained_model, dataset, seeds,

temp_heads) ▷ Algorithm 4
12: if F1_mean >= best_F1[d] then
13: best_F1[d]← F1_mean
14: best_heads_to_prune[d]← temp_heads
15: end if
16: end for
17: end for
18: for i = 1 to ndatasets do
19: for j = 1 to ndatasets do
20: dataset← datasets[j]
21: model_perfs[i,j] ← prun_adj_eval (pretrained_model, dataset, seeds,

best_heads_to_prune[i]) ▷ Algorithm 4
22: end for
23: end for
24: best_pruned_model← ranking_models (model_perfs) ▷ Algorithm 5

4.2.3 Step 2 – Incremental pruning restricted by the complete model per-
formance (H3)

This approach is detailed in Algorithm 7. It receives the same input parameters as the

first and second approaches (Algorithm 3 and Algorithm 6), and it is very similar to the

second one. The main difference concerns the way of deciding whether a head must be

part of the best set of heads or not. For each iteration, instead of comparing the predictive

performance from the current model to that from the best model so far, as we did in the

second approach, the predictive performance of the pruned model is always compared

to the predictive performance of the complete model (line 16). For this reason, we first

capture the predictive performance from the complete model for each dataset (line 6).

4.2 Step 2: Selecting the best-ranked pruned model 36

Algorithm 7 Step 2 (h3) – Determining the best-pruned model to be finetuned, among
all pruned models generated during the pruning process
Require:

datasets, seeds, head_importance_rank, nheads, pretrained_model
Ensure:

best_pruned_model
1: ndatasets← |datasets|
2: nseeds← |seeds|
3: Let cm_F1 be an array of ndatasets elements
4: for d = 1 to ndatasets do
5: dataset← datasets[d]
6: cm_F1[d]← prun_adj_eval(pretrained_model, dataset, seeds, ∅) ▷

Algorithm 4
7: end for
8: Let best_heads_to_prune be an array of ndatasets elements
9: Let model_perfs be a new ndatasets× ndatasets matrix

10: for d = 1 to ndatasets do
11: dataset← datasets[d]
12: for k = 1 to nheads do
13: head← get_k_th_head(head_importance_rank, k)
14: temp_heads = best_heads_to_prune[d] + head
15: F1_mean ← prun_adj_eval(pretrained_model, dataset, seeds,

temp_heads) ▷ Algorithm 4
16: if F1_mean >= cm_F1[d] then
17: best_heads_to_prune[d]← temp_heads
18: end if
19: end for
20: end for
21: for i = 1 to ndatasets do
22: for j = 1 to ndatasets do
23: dataset← datasets[j]
24: model_perfs[i,j] ← prun_adj_eval(pretrained_model, dataset, seeds,

best_heads_to_prune[i]) ▷ Algorithm 4
25: end for
26: end for
27: best_pruned_model← ranking_models(model_perfs) ▷ Algorithm 5

5 Computational Experiments

This chapter presents the experimental results obtained by evaluating the method de-

scribed in Chapter 4. We describe the experimental methodology we followed in Sec-

tion 5.1. Then, in Section 5.2, we report and discuss the experimental results with which

we answer the research questions rq1 and rq2.

5.1 Experimental methodology

This section presents the evaluation of our neural language model pruning proposed

method. As mentioned in Chapter 4, the method is arranged into two sequential steps.

First, it determines an order of importance for all heads (Step 1), next, it identifies the

best-pruned model architecture (Step 2) among all evaluated. Sections 5.2.1 and 5.2.2

detail the method’s results, i.e., the outputs of Steps 1 and 2, respectively. In addition, to

check if the best-pruned model architecture suggested by the method generalizes well, we

propose a generalization check to evaluate it. Section 5.2.3 presents and discusses such

an evaluation. Figure 1 visually presents the methodology flow applied to execute the

experiments.

Datasets: For robustness and to avoid bias, we use a different and unique collection of

datasets in each step of the method and the generalization check. We use a large set of

twenty-two datasets of tweets1 that have been extensively used in the Twitter sentiment

analysis literature (carvalho; plastino, 2021; barreto et al., 2022). They provide a

diverse scenario in evaluating the performance of the pruned model architectures in the

sentiment classification task. We arrange all these data into three groups (g1 for Step 1,

g2 for Step 2, and g3 for Generalization Check), trying to equally distribute the datasets

and the total amount of tweets among the three groups.
1The datasets are publicly available at https://github.com/joncarv/air-datasets

https://github.com/joncarv/air-datasets

5.1 Experimental methodology 38

Figure 1: Methodology adopted to evaluate the proposed pruning method

5.1 Experimental methodology 39

Table 4 presents the datasets used in each group, including their abbreviation name

and some statistics, such as the number of positive tweets (#pos column), number of

negative tweets (#neg column), the total number of tweets (Total column), the minimum

number of tokens, i.e., number of tokens of the smallest tweet in the dataset (min column),

the maximum number of tokens (max column), the mean number of tokens (mean column)

and its standard deviation (std column), and the sum of all tokens from all tweets (sum

column).

Table 4: Characteristics of the Twitter sentiment datasets ordered by size (Total column)

Dataset Abbrev. #pos #neg Total #tokens
min max mean std sum

G1 (Step 1)
irony iro 22 43 65 8 46 25.02 8.89 1626
sarcasm sar 33 38 71 7 46 23.70 8.50 1683
SemEval-Fig S15 47 274 321 8 49 24.92 7.69 7998
archeage arc 724 994 1,718 5 47 24.79 8.38 42593
HCR HCR 539 1,369 1,908 7 76 29.90 6.67 57056
STS-gold STS 632 1,402 2,034 5 49 21.31 9.08 43348
SemEval16 S16 8,893 3,323 12,216 6 55 28.38 6.65 346740

G2 (Step 2)
person per 312 127 439 7 70 27.27 8.36 11973
hobbit hob 354 168 522 5 53 21.27 9.30 11102
movie mov 460 101 561 7 57 25.14 9.41 14101
SemEval18 S18 865 994 1,859 3 56 24.01 9.16 44630
SentiStrength SSt 1,340 949 2,289 5 51 24.44 8.67 55948
Vader vad 2,897 1,299 4,196 3 52 21.16 8.97 88775
SemEval17 S17 2,375 3,972 6,347 4 53 26.15 7.53 165975

G3 (Generalization Check)
aisopos ais 159 119 278 6 43 22.57 8.58 6275
sentiment140 stm 182 177 359 4 52 23.13 9.77 8305
iphone6 iph 371 161 532 7 46 21.43 8.88 11400
sanders san 570 654 1,224 4 55 24.44 9.13 29917
Narr Nar 1,739 488 1,227 4 49 21.09 9.32 25872
OMD OMD 710 1,196 1,906 5 50 22.94 8.18 43715
Target-dependent Tar 1,734 1,733 3,467 5 76 25.21 8.62 87417
SemEval13 S13 3,183 1,195 4,378 5 92 29.35 7.16 128497

Tweets preprocessing: As this dissertation’s main objective is to compare the per-

formance of the finetuning procedure over the original model (complete model) and the

pruned ones and not the behavior of different preprocessing techniques, we apply a simple

preprocessing strategy as adopted in (barreto et al., 2022). More clearly, for each tweet

in a given dataset, we only replace URLs by the tag someurl, and user mentions by the

5.1 Experimental methodology 40

tag someuser. Lastly, all tweets are lowercased and tokenized, i.e., split into a sequence

of tokens. The tokenization procedure follows the same strategy adopted by Nguyen, Vu,

and Nguyen (2020) to generate the BERTweet base model “vinai/bertweet-covid19-base-

uncased”. To this end, we leverage the Huggingface Transformer library (wolf et al.,

2020) using the tokenizer with the same name of the model, i.e., “vinai/bertweet-covid19-

base-uncased”.

Computational experiments details:2 All scripts are coded in Python and are based

on PyTorch (paszke et al., 2019), Huggingface Transformer library, and scikit-learn (pe-

dregosa et al., 2011). Since all tweets are lowercased, we adopted the BERTweet base

model “vinai/bertweet-covid19-base-uncased”3, which results from further pre-training

the pre-trained model “vinai/bertweet-base” on a corpus of 23M English COVID-19

tweets. While Step 1 and all experiments involving cm and the approach h1 were per-

formed in a Tesla P100-SXM2 GPU within the Ubuntu operating system, running in

a machine with Intel(R) Xeon(R) CPU E5-2698 v4 processor, all experiments involving

approaches h2 and h3 were performed in Tesla V100-SXM2 GPU within the Centos7

operating system, running in a machine with Intel(R) Xeon(R) Gold 6126.

Computational experiments seeds: Given the importance of executing the finetuning

procedure several times, as explained in Chapter 4, we decided to run it ten times. For

Step 1 and Step 2, we used seeds 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. In the generalization check,

we used seeds 101, 102, 103, 104, 105, 106, 107, 108, 109, 110. We establish a different

set of seeds for the generalization check to keep it still more isolated from the method

execution.

To perform Step 2 of the method, each dataset from g2 is split into two equal parts.

The first part, the finetuning fold, is used to further adjust each model (the complete

BERTweet model or the pruned ones) with the continuous pre-training procedure. The

second part, the classification fold, is used to learn an SVM classifier (cortes; vapnik,

1995) and evaluate the adjusted models in terms of F1-macro score, following a stratified

ten-fold cross-validation. We adopted this classifier once it reached the best overall results

in (barreto et al., 2022). For each adjusted model and dataset, every tokenized example

(a single tweet) is passed through the model to extract the features and create the tweet

representation, namely the tweet embedding, fed to the SVM classifier. We define the

tweet embedding as the mean of each of its token embeddings. The token embedding, in
2The code and experiments are publicly available https://github.com/MeLLL-UFF/multiheads_

sentiment
3https://huggingface.co/vinai/bertweet-covid19-base-uncased

https://github.com/MeLLL-UFF/multiheads_sentiment
https://github.com/MeLLL-UFF/multiheads_sentiment
https://huggingface.co/vinai/bertweet-covid19-base-uncased

5.2 Experimental results 41

turn, is defined as the concatenation of the weights from the last layers (four or fewer,

depending on the number of layers available in the pruned model). Based on the results

presented in (barreto et al., 2022), we adopted the scikit-learn implementation of the

SVM classifier (SVC) (pedregosa et al., 2011) using all default parameter values, except

for the class balance parameter (class_weight = balanced).

The generalization check evaluates the selected pruned model and compares it to the

baseline BERTweet model. Apart from that, the procedure is similar to Step 2, adjusting

the model with part of the examples and following a feature extraction procedure to

generate and evaluate a classifier with the other part. The goal is to examine if the

pruned model architecture suggested by the method generalizes well on a different data

set. Because of that, we consider the datasets in g3.

For all training procedures, including those performed in Steps 1 and Step 2 of the

method and in the generalization check, the language models were adjusted using AdamW

(loshchilov; hutter, 2019), by setting the learning rate parameter to 2e-5, adam

epsilon to 1e-8, batch size of 16. We ran for four epochs.

Lastly, to determine whether the differences among the results are statistically sig-

nificant at a 0.05 significance level, we ran the t-test from the library SciPy (virtanen

et al., 2020). Whenever applicable, we present the results of the statistical tests in the

results tables. We use the symbol ≻ to show that the results achieved by some model x

are significantly better than those achieved by another model y so that {x} ≻ {y}.

5.2 Experimental results

This section presents the experimental results of each step from the method and the

generalization check. Section 5.2.1 presents the result of Step 1 (the order of importance

of the heads) and three random orders of importance, which compose a random order

strategy created to enrich the evaluation of our method. In Section 5.2.2 and Section

5.2.3, the results of Step 2 and the generalization check are respectively exhibited. Lastly,

in Section 5.2.4, we explain the results achieved by running Step 2 using the three random

orders of importance individually.

5.2 Experimental results 42

5.2.1 Results of Step 1 – Evaluating the importance order

At this point, one reasonable question is whether the order proposed by Step 1, referred

to as oi, yields good results compared to simply choosing a random order of importance

to the heads. Thus, besides comparing the results of the pruned models identified by our

method to the complete model, we also compare them to pruned models detected after

running Step 2 with a random order strategy. The result of the random order strategy is

computed from the mean results of the execution of Step 2 with three different random

orders of importance called a1, a2, and a3.

Figure 2 presents the order of importance established to the heads of the BERTweet

model architecture using our proposed method and the random order strategy. The layers

are enumerated from the bottom to the top of the model, i.e., layer 0 corresponds to the

initial layer, while layer 11 is the model’s final layer. The blue-toned heatmap refers to

the output of Step 1 of our proposal, named here as oi. Each value in the cells represents

the importance of that head, where the lower the value, the more important it is, making

its chance of being removed lower. More clearly, the value 0 corresponds to the most

important head (row 0, column 0, stronger blue), whereas the value 143 refers to the least

important one (row 8, column 4, lighter blue), which would be the first to be removed

during the pruning procedure.

The heatmaps in orange tones in Figure 2 show the three randomly generated orders

of removal for the heads, namely a1, a2, and a3. As before, the stronger the color, the

later the head is chosen to be removed.

As can be observed in the order of importance established in Step 1 (oi) presented in

Figure 2, the most essential heads concentrate on the six bottom layers of the model and on

the last one. It corroborates in parts the findings of Sajjad et al. (2023), which concluded

that the bottom layers are most critical to keeping downstream task performance. On the

other hand, the presence of so many important heads on the last layer also agrees with

Jawahar, Sagot, and Seddah (2019), who stated that semantic features, likely important

to sentiment analysis task, are in the top layers of BERT, closest to the classification

layer.

5.2.2 Results of Step 2 – Evaluating the proposed approaches

As explained in Section 4.2, Step 2 can follow three different approaches: h1, h2, and h3.

In this Subsection, we present the results achieved by each one of them when running with

5.2 Experimental results 43

Figure 2: Importance order of the heads based on oi, the blue heatmap, and a1, a2 and
a3, the orange heatmaps.

5.2 Experimental results 44

the order of importance established in Step 1 (oi). We compare them to the complete

model (CM) results and the results when running the same approaches with the random

order strategy.

The algorithm followed in h1 defines a ranking of 144 models (the complete and 143

pruned ones) just before deciding on the best-pruned model, as described in Subsection

4.2.1. Table 5 presents the top five models with their respective F1-macro mean scores for

each dataset when running with the order of importance oi. As can be observed in this

table, the model pruned by the first 68 heads was the best-ranked; thus, it was selected

as the best. As explained in Section 4.2.1, the models’ ranking procedure is calculated

based on the sum of ranks each model reaches in each dataset. The lower the rank sum,

the better the model. Even though the model pruned by the first 68 heads had achieved

the best predictive performance only in one dataset (person), its rank sum was the

lower, reaching 188.0. The exact process was executed using the three random orders of

importance: a1, a2, and a3. Table 6 summarizes the results of Step 2 when following

the approach h1. Figure 3 exposes the architecture of the self-attention layers from each

of these pruned models, which we refer to as moih1, ma1h1, ma2h1, and ma3h1 from

this point on, where the first one stands for the model proposed by h1 using the order of

importance established in Step 1. The others refer to the models proposed by h1 using

the three random orders of importance.

Table 5: Top five models pruned according to h1, using oi. The lower the rank sum, the
better the model. The results presented in this table are the F1 macro scores achieved by
each pruned model using G2

Datasets Amount of heads pruned
68 61 69 72 65

SemEval17 91.18 90.97 91.25 91.22 90.76
Vader 88.86 88.75 88.71 88.90 88.80
SentiStrength 85.56 85.78 85.52 85.51 85.66
SemEval18 86.96 86.96 86.86 86.97 87.03
movie 72.50 72.33 72.41 71.71 72.30
hobbit 74.67 75.04 74.89 74.43 75.01
person 70.54 70.75 70.66 70.36 70.59
Rank Sum 188.0 191.0 200.5 212.0 212.5
Rank Pos. 1 2 3 4 5

Before presenting the generalization performance of the pruned models generated by

using h1 corresponding to the generalization check, we show its results using the datasets

from (g2) in Table 7. In this table, we present the mean and standard deviation of the

F1-score from all executions (10 seeds) of the complete model (cm), moih1, and the

5.2 Experimental results 45

Figure 3: Architecture of the models (moih1, ma1h1, ma2h1, and ma3h1) after pruning
heads according to the best amount of pruning achieved by h1 when using oi, a1, a2,
and a3, respectively.

5.2 Experimental results 46

Table 6: Best amount of pruned heads based on oi, a1, a2 and a3 according to h1
achieved individually.

Order of importance Best Amount of pruning
oi 68
a1 18
a2 20
a3 14

model resulting from the average results obtained by the pruned models using the three

random orders of importance and h1, named mamh1. The best results for each dataset

are highlighted in the table. Moreover, the table presents a percentage comparison among

cm and the other models to identify their performance’s improvement or decline.

Table 7: Comparison among the results achieved by mamh1, moih1, and cm over the
Step 2 datasets (g2)

Datasets F1-macro: Mean (STD) t-testmamh1 moih1 cm

S17 91.08 (0.52)
-0.18%

91.18 (0.40)
-0.07%

91.24 (0.43)
100% -

vad 88.64 (0.58)
+0.01%

88.86 (0.52)
+0.26%

88.63 (0.84)
100% -

SSt 85.86 (1.06)
-0.19%

85.56 (1.05)
-0.53%

86.02 (0.74)
100% -

S18 87.57 (0.72)
+0.54%

86.96 (1.00)
-0.16%

87.10 (0.66)
100% -

mov 71.72 (2.08)
+1.72%

72.50 (2.38)
+2.82%

70.51 (3.64)
100% -

hob 73.43 (2.97)
+0.98%

74.67 (3.89)
+2.68%

72.72 (3.33)
100% -

per 69.52 (1.81)
+1.12%

70.54 (2.01)
+2.60%

68.75 (1.70)
100% {moih1} ≻ {cm}

As can be observed in this table, moih1 yielded the best model in four datasets,

whereas cm won in two and mamh1 won in only one. When comparing exclusive moih1

to cm; the former triumphs in four datasets and the latter in the others three. The more

expressive results of moih1 were achieved on the smaller datasets, and the result achieved

in per dataset was statistically significant at the level of significance established in our

methodology. Curiously, per is the dataset from g2 whose sentences have more tokens on

average, 27.27 (standard deviation of 8.36), as exposed in Table 4. Comparing only the

results achieved by mamh1 to cm, we realize that mamh1 won in five datasets, whereas

cm won in two. However, none of these results was statistically significant at the level of

5.2 Experimental results 47

significance established in our methodology. Further, when comparing moih1 to mamh1,

the former overcomes the latter in five datasets, although without statistical significance.

As explained in subsections 4.2.2 and 4.2.3, during the execution of the approaches h2

and h3, the decision on the best-pruned model was based on a ranking of only seven pruned

models in contrast to the 143 from h1. It happened because h2 and h3 generate one

pruned model for each dataset, and we ran this step with seven datasets (g2). Different

from h1, with which we can identify the generated pruned models by the number of heads

pruned, in h2 and h3, the generated pruned models must be more detailed. Therefore,

those generated by using oi with h2 and h3 are presented in Figures 4 and 5, respectively,

with the ranked best highlighted in orange. Similarly to what we did with h1, h2 and h3

were also executed using the three random orders of importance. Figures 6 and 7 expose

the architecture of the self-attention layers from each best-pruned model selected when

using respectively h2 and h3 with the four orders of importance: oi, a1, a2, and a3.

From this point on, we refer to these models as moih2, ma1h2, ma2h2, ma3h2, moih3,

ma1h3, ma2h3, and ma3h3.

Analogous to what we did to h1, before presenting the generalization performance of

the pruned models corresponding to the generalization check, we show the results achieved

by h2 and h3 using the datasets from Step 2.

In Table 8, we present the mean and standard deviation of the F1-score from all

executions (10 seeds) of the complete model (cm), moih2, and the model resulting from

the average results obtained by the pruned models using the three random orders of

importance and h2, named mamh2. The best results for each dataset are highlighted in

the table. Furthermore, the table presents a percentage comparison among cm and the

other models to identify their performance’s improvement or decline.

As can be observed in Table 8, moih2 yielded the best model in four datasets, whereas

mamh2 won in the other three. On the other hand, when comparing moih2 merely to

cm, the former won in all datasets. Similar to moih1, the more expressive results of

moih2 were achieved on the smaller datasets, and the result achieved in mov dataset

was statistically significant at the level of significance established in our methodology.

Moreover, when comparing mamh2 to cm, we realize that mamh2 won in five datasets,

whereas cm won in one, and we have a drawn on the s17 dataset. However, none of

these results was statistically significant at the level of significance established in our

methodology. Further, when comparing moih2 to mamh2, the former overcome the

latter in four datasets but without statistical significance.

5.2 Experimental results 48

Figure 4: Architecture of the pruned models generated by approach h2 when using the
orders of importance oi. The orange model is the ranked best.

5.2 Experimental results 49

Figure 5: Architecture of the pruned models generated by the approach h3 when using
the orders of importance oi. The orange model is the ranked best.

5.2 Experimental results 50

Figure 6: Architecture of the best pruned models (moih2, ma1h2, ma2h2, and ma3h2)
identified by approach h2 when using the orders of importance oi, a1, a2, and a3 re-
spectively.

5.2 Experimental results 51

Figure 7: Architecture of the best pruned models (moih3, ma1h3, ma2h3, and ma3h3)
identified by approach h3 when using the orders of importance oi, a1, a2, and a3 re-
spectively.

5.2 Experimental results 52

Table 8: Comparison among the results achieved by mamh2, moih2, and cm over the
Step 2 datasets (g2)

Datasets F1-macro: Mean (DTD) t-testmamh2 moih2 cm

S17 91.24 (0.60)
0%

91.26 (0.43)
+0.02%

91.24 (0.43)
100% -

vad 88.91 (0.82)
+0.32%

88.75 (0.56)
+0.14%

88.63 (0.84)
100% -

SSt 85.92 (0.81)
-0.12%

86.10 (0.88)
+0.09%

86.02 (0.74)
100% -

S18 87.82 (0.91)
+0.83%

87.71 (0.88)
+0.70%

87.10 (0.66)
100% -

mov 72.73 (1.98)
+3.15%

73.53 (1.67)
+4.28%

70.51 (3.64)
100% {moih2} ≻ {cm}

hob 73.55 (2.98)
+1.14%

73.73 (2.46)
+1.39%

72.72 (3.33)
100% -

per 70.37 (2.10)
+2.36%

69.91 (2.16)
+1.69%

68.75 (1.70)
100% -

In Table 9, we present the mean and standard deviation of the F1-score from all

executions (10 seeds) of the complete model (cm), moih3, and the model resulting from

the average results obtained by the pruned models using the three random orders of

importance and h3, named mamh3. The best results for each dataset are highlighted in

the table. Furthermore, the table presents a percentage comparison among cm and the

other models to identify their performance’s improvement or decline.

As can be observed in Table 9, mamh3 yielded the best model in six datasets, whereas

cm won in the other one. When comparing moih3 to cm exclusively, the former won in

four datasets, but with statistically significant only in s18, the latter won in the other

three with statistical significance in s17. Moreover, when comparing mamh3 to cm,

we realize that mamh3 won in six datasets with statistical significance in s18 and per

datasets, whereas cm won in one. Further, when comparing moih3 to mamh3, the latter

overcomes the former in all datasets but without statistical significance.

In Table 10, we bring all these results together to directly compare them. We can

observe in this table that mamh3 yielded the best model in four datasets, whereas moih2

won in three. When we compare the pruned models identified by our method to the com-

plete one, we realize that all three approaches achieved very good predictive performance.

In some cases, these results were statistically significant at the level of significance es-

tablished in our methodology. More expressive results were achieved on smaller datasets,

5.2 Experimental results 53

Table 9: Comparison among the results achieved by mamh3, moih3, and cm over the
Step 2 datasets (g2)

Datasets F1-macro: Mean (STD) t-testmamh3 moih3 cm

S17 91.05 (0.52)
-0.21%

90.69 (0.46)
-0.60%

91.24 (0.43)
100% {cm} ≻ {moih3}

vad 88.92 (0.62)
+0.33%

88.65 (1.64)
+0.02%

88.63 (0.84)
100% -

SSt 86.06 (0.77)
+0.05%

85.48 (0.87)
-0.63%

86.02 (0.74)
100% -

S18 89.03 (0.53)
+2.22%

87.85 (0.73)
+0.86%

87.10 (0.66)
100%

{moih3} ≻ {cm}
{mamh3} ≻ {cm}

mov 70.90 (3.17)
+0.55%

70.74 (3.08)
+0.33%

70.51 (3.64)
100% -

hob 74.81 (1.89)
+2.87%

73.68 (2.49)
+1.32%

72.72 (3.33)
100% -

per 71.99 (0.93)
+4.71%

68.07 (2.16)
-0.99%

68.75 (1.70)
100% {mamh3} ≻ {cm}

indicating that, for these cases, a huge pre-trained model has too much superfluous infor-

mation that harms the finetuning quality applied.

If for one side, it is crucial to evaluate the pruned models in terms of predictive

performance, for the other side, we are interested in identifying how compressed they are.

Table 11 presents the number of pruned heads from the best-pruned models determined

by our method and by each of the models that compound the random strategy.

Notably, the moih1 is the most compressed model identified by our method, although

moih3 is very compact as well. Regardless of being so compacted, we can observe that

they achieved an outstanding predictive performance. moih1 did not win in any dataset,

but, with statistical significance, its results were only overcome in dataset s18 by moih3

and mamh3; however, in dataset per, its results were better than moih3 and in dataset

s17, better than cm and moih3. moih3, on the other hand, was overcome with statistical

significance in four datasets, but in only one by the complete model cm.

Surprisingly, the random order strategy mamh3, which is composed of very com-

pressed models, achieved a spectacular predictive performance compared to the complete

model. Compared to all models, it wins in four datasets, but compared to only the com-

plete model, this model wins in six. In Section 5.2.4, we detail the results achieved by the

random order strategy applied to the datasets from the generalization check.

5.2 Experimental results 54

Table 10: Comparison among the results achieved by mamh1, moih1, mamh2, moih2,
mamh3, moih3 and cm over the Step 2 datasets (g2)

Datasets F1-macro: Mean (STD) t-testmamh1 moih1 mamh2 moih2 mamh3 moih3 cm

S17
91.08
(0.52)
-0.18%

91.18
(0.40)
-0.07%

91.24
(0.60)
0%

91.26
(0.43)

+0.02%

91.05
(0.52)
-0.21%

90.69
(0.46)
-0.60%

91.24
(0.43)
100%

{cm} ≻ {moih3}
{moih1} ≻ {moih3}
{moih2} ≻ {moih3}
{mamh2} ≻ {moih3}

vad
88.64
(0.58)

+0.01%

88.86
(0.52)

+0.26%

88.91
(0.82)

+0.32%

88.75
(0.56)

+0.14%

88.92
(0.62)

+0.33%

88.65
(1.64)

+0.02%

88.63
(0.84)
100%

-

SSt
85.86
(1.06)
-0.19%

85.56
(1.05)
-0.53%

85.92
(0.81)
-0.12%

86.10
(0.88)

+0.09%

86.06
(0.77)

+0.05%

85.48
(0.87)
-0.63%

86.02
(0.74)
100%

-

S18
87.57
(0.72)

+0.54%

86.96
(1.00)
-0.16%

87.82
(0.91)

+0.83%

87.71
(0.88)

+0.70%

89.03
(0.53)

+2.22%

87.85
(0.73)

+0.86%

87.10
(0.66)
100%

{moih3} ≻ {cm}
{moih3} ≻ {moih1}
{mamh3} ≻ {cm}
{mamh3} ≻ {moih1}
{mamh3} ≻ {moih2}
{mamh3} ≻ {moih3}

mov
71.72
(2.08)

+1.72%

72.50
(2.38)

+2.82%

72.73
(1.98)

+3.15%

73.53
(1.67)

+4.28%

70.90
(3.17)

+0.55%

70.74
(3.08)

+0.33%

70.51
(3.64)
100%

{moih2} ≻ {cm}
{moih2} ≻ {mamh3}
{moih2} ≻ {mamh1}
{moih2} ≻ {moih3}

hob
73.43
(2.97)

+0.98%

74.67
(3.89)

+2.68%

73.55
(2.98)

+1.14%

73.73
(2.46)

+1.39%

74.81
(1.89)

+2.87%

73.68
(2.49)

+1.32%

72.72
(3.33)
100%

-

per
69.52
(1.81)

+1.12%

70.54
(2.01)

+2.60%

70.37
(2.10)

+2.36%

69.91
(2.16)

+1.69%

71.99
(0.93)

+4.71%

68.07
(2.16)
-0.99%

68.75
(1.70)
100%

{moih1} ≻ {cm}
{moih1} ≻ {moih3}
{mamh2} ≻ {moih3}
{mamh3} ≻ {cm}
{mamh3} ≻ {moih2}
{mamh3} ≻ {moih3}

The results achieved by moih1, moih2, and moih3 indicate that we can positively

answer the research question rq1 once these models present similar or even better predic-

tive performance than the complete one. Moreover, moih1 and moih3 are significantly

compressed, indicating that we can positively answer the research question rq2. However,

to reinforce those answers, we demonstrate the generalization of these results to different

datasets in Section 5.2.3.

5.2.3 Generalization Check – Evaluating the generalization ability

After executing the generalization check, the results aim to verify the pruned models’

generalization capabilities. Table 12 presents the mean and standard deviation of the F1-

score from all executions (10 seeds) of cm, moih1, mamh1, moih2, mamh2, moih3, and

mamh3, over the generalization check’s datasets (g3). The best results for each dataset

5.2 Experimental results 55

Table 11: Comparison among the number of pruned heads from moih1, ma1h1, ma2h1,
ma3h1, moih2, ma1h2, ma2h2, ma3h2, moih3, ma1h3, ma2h3, and ma3h3

Model Number of pruned heads
ma3h3 107 (74.31%)
moih1 68 (47.22%)
ma1h3 61 (42.36%)
moih3 55 (38.19%)
ma2h3 51 (35.42%)
ma3h2 22 (15.28%)
ma2h1 20 (13.89%)
ma1h1 18 (12.50%)
ma3h1 14 (9.72%)
ma2h2 12 (8.33%)
moih2 10 (6.94%)
ma1h2 09 (6.25%)

are highlighted in the table. Moreover, the table presents a percentage comparison among

cm and all the other models to identify their performance’s improvement or decline.

As can be observed in Table 12, mamh3 won in six datasets, whereas moih1 won in

the other two. Similar to what we observed in Step 2, the most relevant improvements

were on the smaller datasets.

Comparing the pruned models detected by our method to the complete one, it is pos-

sible to realize that moih1 won in two datasets (stm and ais) with statistical significance

and won in four more datasets without it. However, moih1 lost in the other two datasets,

but without statistical significance. moih2 overcame cm in all datasets, although without

presenting statistical significance. moih3 won in two datasets, but we recognized that it

had the worst predictive performance among them, being surpassed by cm in six datasets,

albeit in just one (omd), with statistical significance.

On the other hand, when we compare the results of moih1 to moih2, moih1 surpassed

moih2 in half of the datasets, while being the smallest identified by our method as exposed

in Table 13. With statistical significance, moih2 overcame moih1 in one dataset (san)

whereas moih1 won moih2 in another one (ais).

When we compare moih1 to the pruned models identified by the random strategy

(mamh1, mamh2, and mamh3), a highlight must be done to mamh3. mamh3 is com-

posed of very compressed models and won in six datasets while losing to moih1 in the

other two. Compared to cm, mamh3 won in all datasets. Such a good performance was

also observed in Step 2. mamh1 and mamh2, in turn, are not so pruned. Although they

5.2 Experimental results 56

Table 12: Comparison among the results (F1 Mean and STD, with a percentage compar-
ison regarding cm) achieved by mamh1, moih1, mamh2, moih2, mamh3, moih3 and
cm, over the generalization check datasets (g3).
Datasets F1-macro: Mean (STD) t-testmamh1 moih1 mamh2 moih2 mamh3 moih3 cm

S13
84.14
(2.39)
-0.50%

84.58
(1.78)

+0.02%

84.61
(1.76)

+0.06%

84.70
(1.55)

+0.17%

85.01
(1.31)

+0.53%

84.95
(1.66)

+0.46%

84.56
(1.73)
100%

-

Tar
84.45
(0.80)

+0.27%

84.27
(0.77)

+0.06%

84.62
(0.80)

+0.47%

84.62
(0.75)

+0.47%

85.06
(0.78)

+1.00%

83.98
(0.99)
-0.29%

84.22
(0.75)
100%

{mamh3} ≻ {cm}
{mamh3} ≻ {moih3}
{mamh3} ≻ {moih1}

OMD
83.47
(0.99)

+0.01%

82.84
(1.20)
-0.74%

83.29
(0.93)
-0.20%

83.49
(1.66)

+0.04%

83.73
(1.01)

+0.32%

81.66
(0.99)
-2.16%

83.46
(1.13)
100%

{cm} ≻ {moih3}
{moih1} ≻ {moih3}
{moih2} ≻ {moih3}
{mamh1} ≻ {moih3}
{mamh2} ≻ {moih3}
{mamh3} ≻ {moih3}

Nar
93.05
(1.30)

+0.14%

93.28
(1.43)

+0.39%

92.97
(1.33)

+0.05%

93.24
(1.22)

+0.34%

94.01
(0.72)

+1.17%

92.88
(1.15)
-0.04%

92.92
(1.44)
100%

{mamh3} ≻ {moih3}

san
85.68
(1.47)
-0.09%

84.96
(1.34)
-0.93%

85.74
(1.36)
-0.02%

86.36
(1.46)

+0.70%

86.92
(0.91)

+1.35%

84.56
(1.00)
-1.39%

85.76
(1.96)
100%

{mamh3} ≻ {moih1}
{mamh3} ≻ {moih3}
{moih2} ≻ {moih1}
{moih2} ≻ {moih3}
{mamh2} ≻ {moih3}

iph
74.09
(2.59)

+0.38%

75.16
(2.23)

+1.83%

74.61
(2.49)

+1.08%

75.06
(2.53)

+1.69%

75.67
(1.98)

+2.52%

72.97
(2.16)
-1.14%

73.81
(2.49)
100%

{moih1} ≻ {moih3}
{mamh3} ≻ {moih3}

stm
78.82
(3.78)

+0.33%

82.40
(2.89)

+4.89%

79.70
(3.22)

+1.45%

81.11
(2.98)

+3.25%

82.00
(2.98)

+4.38%

76.68
(3.54)
-2.39%

78.56
(4.29)
100%

{moih1} ≻ {cm}
{moih1} ≻ {mamh1}
{moih1} ≻ {moih3}
{moih2} ≻ {moih3}
{mamh3} ≻ {moih3}
{mamh3} ≻ {cm}

ais
82.25
(3.13)

+0.60%

86.68
(3.29)

+6.02%

82.77
(3.34)

+1.24%

82.20
(3.74)

+0.54%

84.90
(2.44)

+3.84%

84.14
(3.29)

+2.91%

81.76
(4.08)
100%

{mamh3} ≻ {cm}
{moih1} ≻ {cm}
{moih1} ≻ {mamh1}
{moih1} ≻ {mamh2}
{moih1} ≻ {moih2}

have not won in any dataset, they achieved competitive performance in six and seven, re-

spectively. With statistical significance, moih1 won mamh1 in the dataset stm and won

mamh1 and mamh2 in the dataset ais. In Section 5.2.4, we detail the results achieved

by the random order strategy applied to the datasets from the generalization check. The

reasons for the excellent performance of mamh3 are discussed there.

These results enhance the answers to the two research questions rq1 and rq2. We

uncover pruned models which perform as well as the complete model, or even better, in

datasets that the method did not have access to during the pruning strategy. Furthermore,

our method proved efficient in identifying a significantly pruned model, moih1.

5.2 Experimental results 57

Table 13: Number of parameters and allocated disk space by cm, and the pruned models
Model Allocated Disk Space Number of Parameters

cm 539,950,787 MB (100.00%) 134,965,505.00 (100.00%)
moih1 468,297,089 MB (-13.27%) 117,053,633 (-13.27%)
moih2 532,079,023 MB (-1.46%) 132,997,505 (-1.46%)
moih3 496,655,519 MB (-8.02%) 124,141,505 (-8.02%)
ma1h1 525,781,548 MB (-2.62%) 131,423,105 (-2.62%)
ma2h1 524,207,185 MB (-2.92%) 131,029,505 (-2.92%)
ma3h1 528,930,275 MB (-2.04%) 132,210,305 (-2.04%)
ma1h2 532,866,215 MB (-1.31%) 133,194,305 (-1.31%)
ma2h2 530,504,627 MB (-1.75%) 132,603,905 (-1.75%)
ma3h2 522,632,782 MB (-3.21%) 130635905 (-3.21%)
ma1h3 491,932,378 MB (-8.89%) 122,960,705 (-8.89%)
ma2h3 499,804,282 MB (-7.44%) 124,928,705 (-7.44%)
ma3h3 436,809,392 MB (-19.10%) 109,181,633 (-19.10%)

In addition, we have also recorded the time spent to finetune the complete model

cm and the pruned model moih1 – the most pruned model proposed by our method

that still achieves a good predictive performance – for all executions (10 seeds). Table 14

summarizes these results, presenting the mean time spent for each dataset. We can realize

that moih1 provokes improvements of more than 20% when compared to the complete

model.

5.2.4 Individual results from the random orders of importance

So far, we have only exposed the predictive performance resulting from the random or-

der strategy without individually presenting the results from the pruned models which

compose it. In this section, we provide further details on these individual results once a

random choice selected by chance might perform well (chen et al., 2020).

Table 15 presents the mean F1-macro results achieved by the models pruned with our

approaches (moih1, moih2, and moih3), the complete model (cm), and the pruned mod-

els based on the random orders of importance (ma1h1, ma2h1, ma3h1, ma1h2, ma2h2,

ma3h2, ma1h3, ma2h3, ma3h3), over the generalization check datasets (g3). When

evaluating the models generated by pruning according to random orders of importance

separately, we observed that these pruned models could provide as good results as the

complete model or even better.

Remarkably, the model ma3h3 presents an astonishing predictive performance and

still is the most compressed model among all, as observed in Table 13. For most of the

5.2 Experimental results 58

Table 14: Mean time, in seconds, spent to finetune the complete model cm, the pruned
model moih1 and the pruned model ma3h3. The table presents the proportion in relation
to the complete model and the standard deviation (in parentheses).

Dataset Mean time spent to finetune
ma3h3 moih1 cm

SemEval13 61.81 (10.23)
-55.07%

114.57 (19.53)
-16.72%

137.58 (21.15)
100%

Target-dependent 46.10 (3.58)
-55.83%

91.08 (7.33)
-12.74%

104.38 (8.94)
100%

OMD 20.61 (1.02)
-55.94%

40.16 (2.99)
-14.15%

46.78 (4.29)
100%

Narr 14.07 (0.53)
-58.06%

26.47 (1.56)
-21.10%

33.55 (3.30)
100%

sanders 15.26 (0.56)
-57.45%

29.57 (0.68)
-17.54%

35.86 (4.51)
100%

iphone6 6.52 (0.11)
-53.13%

12.42 (0.30)
-10.71%

13.91 (0.62)
100%

sentiment140 5.39 (0.24)
-56.64%

10.18 (0.66)
-18.10%

12.43 (2.03)
100%

aisopos 4.11 (0.06)
-52.81%

7.64 (0.14)
-12.28%

8.71 (0.90)
100%

datasets, its results surpassed all the other models with statistical significance, and for

the dataset stm, it promoted almost 12% of improvement. Once this pruned model was

generated from a random order of importance, we cannot unhesitatingly determine what

induced such good performance; however, observing its architecture, we realize that ten

of the twelve layers have, in the maximum, four heads. It indicates that we can keep just

a few heads for each layer from the original model, to perform the finetuning procedure,

analogous to the finding of Michel, Levy, and Neubig (2019), which identified that for

most layers, one head is indeed sufficient at inference time.

Although the approach h3 generates the best-pruned model (ma3h3) with a random

order of importance, when using it with the proposed order of importance oi, the produced

model did not yield so good results. moih3 presented a decline in its performance in six

datasets compared to the complete model. However, when applying the approach h1 with

oi, the model moih1 reaches outstanding performance, mainly in the small datasets. It

indicates that the definition of a presumably favorable order of importance is not always

aligned with how the approaches perform the pruning process.

Considering the compression, ma1h3 and ma2h3 have also achieved good perfor-

mance compared to the complete model; however, they did not stand out in any dataset

as much as moih1 and ma3h3 regarding the predictive performance.

5.2 Experimental results 59

In addition, we have also recorded the time spent to finetune the ma3h3 model when

using the generalization check’s datasets (g3). Table 14 presents the mean time spent in

each of these datasets. We can realize that ma3h3 provokes improvements of more than

58% when compared to the complete model; however, it is essential to consider that the

hardware used to compute this time was different from that used in the complete model,

as explained in Section 5.1.

The results achieved by ma1h3, ma2h3, and ma3h3 corroborate to answer our re-

search questions rq1 and rq2 positively once we demonstrate that even when applying

a random order of importance of the heads, the approach H3 yield significantly pruned

models that reach as good results as the complete one or even better.

5.2 Experimental results 60

Ta
bl

e
15

:
R

es
ul

ts
(F

1
M

ea
n

an
d

ST
D

,w
it

h
a

pe
rc

en
ta

ge
co

m
pa

ri
so

n
re

ga
rd

in
g

c
m

)
ac

hi
ev

ed
by

th
e

co
m

pl
et

e
m

od
el

(c
m

))
an

d
al

lt
he

be
st

-p
ru

ne
d

m
od

el
s

id
en

ti
fie

d
in

St
ep

2
ov

er
th

e
ge

ne
ra

liz
at

io
n

ch
ec

k
da

ta
se

ts
(g

3)
.

M
od

el
s

F
1-

m
ac

ro
:

M
ea

n
(S

T
D

)
S
13

T
ar

O
M

D
N

ar
sa

n
ip

h
st

m
ai

s

c
m

84
.5

6
(1

.7
3)

10
0.

0%
84

.2
2

(0
.7

5)
10

0.
0%

83
.4

6
(1

.1
3)

10
0.

0%
92

.9
2

(1
.4

4)
10

0.
0%

85
.7

6
(1

.9
6)

10
0.

0%
73

.8
1

(2
.4

9)
10

0.
0%

78
.5

6
(4

.2
9)

10
0.

0%
81

.7
6

(4
.0

8)
10

0.
0%

m
a
1h

1
84

.8
5

(1
.9

9)
+

0.
34

%
84

.6
6

(0
.8

6)
+

0.
52

%
83

.8
9

(0
.8

4)
+

0.
52

%
93

.3
6

(1
.3

3)
+

0.
47

%
85

.7
6

(2
.2

3)
0.

00
%

74
.5

6
(2

.9
2)

+
1.

02
%

78
.7

7
(4

.8
7)

+
0.

27
%

81
.8

2
(3

.8
6)

+
0.

07
%

m
a
2h

1
83

.9
0

(3
.2

8)
-0

.7
8%

84
.1

9
(1

.0
7)

-0
.0

4%
83

.1
0

(1
.4

8)
-0

.4
3%

92
.7

7
(1

.1
8)

-0
.1

6%
85

.5
6

(1
.4

8)
-0

.2
3%

73
.3

6
(2

.6
7)

-0
.6

1%
78

.2
1

(4
.0

8)
-0

.4
5%

82
.0

6
(2

.8
6)

+
0.

37
%

m
a
3h

1
83

.6
7

(3
.5

7)
-1

.0
5%

84
.5

1
(0

.9
2)

+
0.

34
%

83
.4

2
(1

.2
6)

-0
.0

5%
93

.0
2

(1
.6

5)
+

0.
11

%
85

.7
1

(1
.2

5)
-0

.0
6%

74
.3

4
(2

.4
0)

+
0.

72
%

79
.4

9
(3

.8
0)

+
1.

18
%

82
.8

8
(3

.6
5)

+
1.

37
%

m
o
ih

1
84

.5
8

(1
.7

8)
+

0.
02

%
84

.2
7

(0
.7

7)
+

0.
06

%
82

.8
4

(1
.2

0)
-0

.7
4%

93
.2

8
(1

.4
3)

+
0.

39
%

84
.9

6
(1

.3
4)

-0
.9

3%
75

.1
6

(2
.2

3)
+

1.
83

%
82

.4
0

(2
.8

9)
+

4.
89

%
86

.6
8

(3
.2

9)
+

6.
02

%

m
a
1h

2
84

.8
2

(1
.9

5)
+

0.
31

%
84

.5
8

(0
.8

4)
+

0.
43

%
83

.4
7

(1
.0

3)
+

0.
01

%
92

.9
8

(1
.3

9)
+

0.
06

%
86

.1
5

(1
.6

2)
+

0.
45

%
74

.8
2

(2
.3

4)
+

1.
37

%
79

.0
4

(4
.1

7)
+

0.
61

%
83

.2
6

(3
.9

3)
+

1.
83

%

m
a
2h

2
84

.6
3

(1
.5

8)
+

0.
08

%
84

.6
8

(0
.8

4)
+

0.
55

%
84

.1
2

(1
.3

3)
+

0.
79

%
93

.3
0

(1
.6

7)
+

0.
41

%
85

.7
5

(1
.5

6)
-0

.0
1%

74
.7

5
(2

.6
5)

+
1.

27
%

79
.7

3
(2

.6
3)

+
1.

49
%

82
.6

2
(2

.9
7)

+
1.

05
%

m
a
3h

2
84

.3
9

(1
.8

4)
-0

.2
0%

84
.6

1
(0

.8
4)

+
0.

46
%

82
.2

9
(0

.9
6)

-1
.4

0%
92

.6
2

(1
.2

1)
-0

.3
2%

85
.3

1
(1

.0
9)

-0
.5

2%
74

.2
6

(2
.7

1)
+

0.
61

%
80

.3
0

(3
.2

6)
+

2.
21

%
82

.4
3

(3
.7

8)
+

0.
82

%

m
o
ih

2
84

.7
0

(1
.5

5)
+

0.
17

%
84

.6
2

(0
.7

5)
+

0.
47

%
83

.4
9

(1
.6

6)
+

0.
04

%
93

.2
4

(1
.2

2)
+

0.
34

%
86

.3
6

(1
.4

6)
+

0.
70

%
75

.0
6

(2
.5

3)
+

1.
69

%
81

.1
1

(2
.9

8)
+

3.
25

%
82

.2
0

(3
.7

4)
+

0.
54

%

m
a
1h

3
85

.0
2

(1
.6

8)
+

0.
54

%
84

.7
6

(0
.9

7)
+

0.
64

%
82

.9
0

(1
.5

2)
-0

.6
7%

93
.2

4
(0

.8
5)

+
0.

34
%

86
.0

9
(1

.1
8)

+
0.

38
%

74
.4

0
(2

.1
5)

+
0.

80
%

79
.6

3
(4

.8
8)

+
1.

36
%

82
.3

3
(2

.4
2)

+
0.

7%

m
a
2h

3
84

.4
7

(1
.6

9)
-0

.1
1%

84
.3

7
(0

.7
3)

+
0.

18
%

84
.0

3
(0

.8
8)

+
0.

68
%

93
.5

0
(1

.1
3)

+
0.

62
%

85
.2

1
(1

.6
1)

-0
.6

4%
75

.1
2

(2
.3

4)
+

1.
77

%
78

.7
5

(4
.0

9)
+

0.
24

%
84

.6
0

(4
.2

1)
+

3.
47

%

m
a
3h

3
85

.5
5

(0
.9

8)
+

1.
17

%
86

.0
4

(0
.8

8)
+

2.
16

%
84

.2
5

(1
.1

6)
+

0.
95

%
95

.2
9

(0
.8

5)
+

2.
55

%
89

.4
5

(0
.9

2)
+

4.
30

%
77

.5
0

(2
.1

2)
+

5.
00

%
87

.6
3

(1
.8

6)
+

11
.5

5%
87

.7
8

(2
.6

1)
+

7.
36

%

m
o
ih

3
84

.9
5

(1
.6

6)
+

0.
46

%
83

.9
8

(0
.9

9)
-0

.2
8%

81
.6

6
(0

.9
9)

-2
.1

6%
92

.8
8

(1
.1

5)
-0

.0
4%

84
.5

6
(1

.0
0)

-1
.4

0%
72

.9
7

(2
.1

6)
-1

.1
4%

76
.6

8
(3

.5
4)

-2
.3

9%
84

.1
4

(3
.2

9)
+

2.
91

%

t-
te

st
{m

a
3h

3}
≻

{a
ll

}

{c
m

}
≻

{m
o
ih

3,
m

a
3h

2}
{m

o
ih

1}
≻

{m
o
ih

3}
{m

o
ih

2}
≻

{m
o
ih

3}

{m
a
1h

1}
≻

{m
o
ih

1,
m

o
ih

3,
m

a
3h

2}
{m

a
2h

1}
≻

{m
a
3h

2,
m

o
ih

3}
{m

a
3h

1}
≻

{m
a
3h

2,
m

o
ih

3}
{m

a
1h

2}
≻

{m
o
ih

3,
m

a
3h

2}

{m
a
2h

2}
≻

{m
o
ih

1,
m

o
ih

3,
m

a
3h

2}
{m

a
1h

3}
≻

{m
o
ih

3}

{m
a
2h

3}
≻

{m
o
ih

3,
m

o
ih

1,
m

a
3h

2}

{m
a
3h

3}
≻

{m
o
ih

1,
m

o
ih

3,
m

a
1h

3,
m

a
3h

2}

{m
a
3h

3}
≻

{a
ll

}

{m
a
3h

3}
≻

{a
ll

}
{m

a
1h

3}
≻

{m
o
ih

3}
{m

a
1h

2}
≻

{m
o
ih

3}
{m

a
3h

1}
≻

{m
o
ih

3}

{m
o
ih

2}
≻

{m
o
ih

3,
m

o
ih

1}

{m
o
ih

1}
≻

{m
o
ih

3}
{m

a
2h

3}
≻

{m
o
ih

3}
{m

a
3h

3}
≻

{a
ll

}

{m
o
ih

1}
≻

{c
m

,m
o
ih

3,
m

a
2h

1,
m

a
1h

2,
m

a
2h

2,
m

a
2h

3}
{m

o
ih

2}
≻

{m
o
ih

3}
{m

a
2h

2}
≻

{m
o
ih

3}
{m

a
3h

2}
≻

{m
o
ih

3}
{m

a
3h

3}
≻

{a
ll

}

{m
o
ih

1}
≻

{c
m

,m
o
ih

2,
m

a
1h

1,
m

a
2h

1,
m

a
3h

1,
m

a
1h

2,
m

a
2h

2,
m

a
3h

2,
m

a
1h

3}

{m
a
3h

3}
≻

{c
m

,m
o
ih

2,
m

o
ih

3,
m

a
1h

3,
m

a
1h

1,
m

a
2h

1,
m

a
3h

1,
m

a
1h

2,
m

a
2h

2,
m

a
3h

2}

6 Conclusion and Future Works

While deeper and wider Transformer-based models have achieved remarkable performance

in several NLP tasks, they also require substantial computational resources, limiting their

usability and increasing carbon emission. Moreover, it sounds intuitive that relying on

such huge models to solve NLP tasks applied to short texts, like tweets, may be excessive.

Traditionally, a common framework adopted to train Transformer-based models is

to finetune a pre-trained model to a specific task. Michel, Levy, and Neubig (2019)

demonstrated that it is beneficial to adopt one additional step, namely, pruning portions

of finetuned models to be used at inference time, reducing the amount of computational

resources to the inference procedure while achieving similar or even better performance.

However, performing the finetuning procedure over the original huge model would still

demand substantial computational resources, mainly when it is necessary to finetune the

model several times or make several copies on the disk.

This dissertation focused on removing BERTweet heads before finetuning the model

for the tweets sentiment analysis task. BERTweet is a BERT-based model trained with

tweets. Our intuition is that the several heads and layers of BERT-based models retain re-

dundant information that could be safely discarded. This way, the proposed pruned model

would become more compatible with simpler hardware, requesting fewer computational

resources and contributing to less carbon emission.

We proposed two research questions to guide our investigation:

RQ1 : Are there finetuned BERTweet pruned models that achieve competitive or even

better predictive performance than the finetuned complete model in the tweets sen-

timent analysis task?

RQ2 : If so, how could one discover a significantly pruned model that reaches such

performance?

6 Conclusion and Future Works 62

We positively answered these questions by creating a method that prunes heads and

layers from the original model by identifying the most relevant heads according to the

gradients for the sentiment analysis task. We experimented with removing the heads

incrementally, starting from the less to the most important ones. Using this paradigm,

we implemented three approaches (h1, h2, and h3) so that pruned models were generated

and evaluated against the sentiment analysis task. Based on the predictive performance of

the pruned models, we selected the best of each approach and compared them to each other

and the complete model, besides comparing them to pruned models identified by a random

order strategy. The selected pruned models from the approach h1 are significantly pruned

and yield competitive or even better performance than the complete one. Surprisingly, the

three pruned models generated by approach h3 using the random orders of importance

are significantly compact and achieved competitive or even better performance than the

complete one. A highlight must be done to the pruned model resulting from the approach

h3 and random order of importance a3, which is the most pruned and reaches the best

predictive performance among all.

This way, the experimental results pointed out that there are sub-networks within

BERTweet architecture that can be finetuned and applied to the sentiment analysis of

tweets. They perform as well or even better than doing the same process with the complete

BERTweet model while still saving computational resources. The approach h1 using the

order of importance oi, proposed in this dissertation, pruned 47.22% of BERTweet heads

(68 from 144 heads), corresponding to a reduction of 13.27% of the physical model. This

reduction has also saved at least 10% of the time spent adapting the language model

parameters while achieving the same or better predictive performance than the original

network with a significance level of 0.05. On the other hand, the approach h3 using the

random order of importance a3, pruned 74.31% of the BERTweet heads (107 from 144

heads), corresponding to a reduction of 19.19% of the physical model. This reduction has

also saved at least 52% of the time spent adapting the language model parameters while

achieving better predictive performance than the complete model. The results we achieved

are evidence of the findings observed by Frankle and Carbin (2019) and corroborated by

Prasanna, Rogers, and Rumshisky (2020), and Chen et al. (2020), once they reported

that it is possible to uncover sub-networks that perform as good as a larger counterpart

neural model or even better.

Therefore, we advise adding the pruning step before the finetuning as part of the tra-

ditional framework, at least when using it for tweets sentiment analysis. Notwithstanding,

although we have implemented and evaluated our proposed method based on BERTweet

6 Conclusion and Future Works 63

and the sentiment analysis task, we believe it is generic enough to be used for other tasks

or Transformer-based models.

This study has some limitations. The first limitation is that we didn’t compare the

results achieved by the pruned models selected by our method to small models available

and pruned models generated using other pruning strategies. The second limitation is the

missing evaluation in Step 2 using the same finetuning procedure and classifier adopted in

Step 1. It seems more coherent, but we could not experiment with it due to limited hard-

ware resources. Another limitation concerns the lack of a deep quality analysis regarding

why some heads harm the models’ predictive performance after executing the finetuning

procedure.

Future works could apply and evaluate the proposed method in a broader range of

tasks and models, including other than Transformers. Moreover, it would be interesting

to compare the models suggested in this dissertation to small models like ALBERT (lan

et al., 2020)(an ALBERT configuration similar to BERT-large has 18x fewer parameters

and can be trained about 1.7x faster and still achieve significant improvements in sev-

eral representative downstream tasks) and to models produced using different pruning

strategies. Another promising future path to model pruning and understanding is to

investigate why some heads do not contribute to or even harm the model predictive per-

formance when we execute the finetuning procedure, mainly to small datasets. Also, it is

interesting to evaluate if the size of input sentences influences the number of parameters

that Transformer-based models must have to tackle NLP tasks successfully.

Ethic Statement All the datasets contemplated in this dissertation were compiled from

previous work that made them publicly available. Even though we have not collected any

tweets by ourselves, we comprehend that using data from the Twitter platform should

evoke ethical reflections. Twitter users presume their posts are not private; however, they

are typically not explicitly informed that their tweets can be used for scientific purposes.

Moreover, they usually consider that every tweet is transitory whereas it can be collected

and stored by anyone anywhere. We did our best not to include sensitive content in our

examples and not disclose their authors’ identities.

REFERENCES

baan, Joris; hoeve, Maartje ter; wees, Marlies van der; schuth, Anne; rijke, Maarten

de. Understanding Multi-Head Attention in Abstractive Summarization. CoRR, abs/1911.03898,

2019. arXiv: 1911.03898. Available from: <http://arxiv.org/abs/1911.03898>.

bahdanau, Dzmitry; cho, Kyunghyun; bengio, Yoshua. Neural Machine Translation by

Jointly Learning to Align and Translate. In: 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings. [S.l.: s.n.], 2015.

barreto, Sérgio; moura, Ricardo; carvalho, Jonnathan; paes, Aline; plastino,

Alexandre. Sentiment analysis in tweets: an assessment study from classical to mod-

ern word representation models. Data Mining and Knowledge Discovery, Springer,

p. 1–63, 2022.

bender, Emily M.; gebru, Timnit; mcmillan-major, Angelina; shmitchell, Shmar-

garet. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In:

proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans-

parency. Virtual Event, Canada: Association for Computing Machinery, 2021. (FAccT

’21), p. 610–623. isbn 9781450383097.

brown, Tom B.; mann, Benjamin; ryder, Nick; subbiah, Melanie; kaplan, Jared;

dhariwal, Prafulla; neelakantan, Arvind; shyam, Pranav; sastry, Girish; askell,

Amanda; agarwal, Sandhini; herbert-voss, Ariel; krueger, Gretchen; henighan,

Tom; child, Rewon; ramesh, Aditya; ziegler, Daniel M.; wu, Jeffrey; winter,

Clemens; hesse, Christopher; chen, Mark; sigler, Eric; litwin, Mateusz; gray,

Scott; chess, Benjamin; clark, Jack; berner, Christopher; mccandlish, Sam;

radford, Alec; sutskever, Ilya; amodei, Dario. Language Models are Few-Shot

Learners. In: advances in Neural Information Processing Systems 33: Annual Confer-

ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

2020, virtual. [S.l.: s.n.], 2020. Available from: <https://proceedings.neurips.cc/

paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>.

https://arxiv.org/abs/1911.03898
http://arxiv.org/abs/1911.03898
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

REFERENCES 65

carvalho, Jonnathan; plastino, Alexandre. On the evaluation and combination of

state-of-the-art features in Twitter sentiment analysis. Artif. Intell. Rev., v. 54, n. 3,

p. 1887–1936, 2021.

chen, Tianlong; frankle, Jonathan; chang, Shiyu; liu, Sijia; zhang, Yang; wang,

Zhangyang; carbin, Michael. The Lottery Ticket Hypothesis for Pre-trained BERT

Networks. In: advances in Neural Information Processing Systems 33: Annual Con-

ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual. [S.l.: s.n.], 2020. Available from: <https://proceedings.neurips.

cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html>.

clark, Kevin; khandelwal, Urvashi; levy, Omer; manning, Christopher D. What

Does BERT Look at? An Analysis of BERT’s Attention. In: linzen, Tal; chru-

pala, Grzegorz; belinkov, Yonatan; hupkes, Dieuwke (Eds.). Proceedings of the

2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for

NLP, BlackboxNLP@ACL 2019, Florence, Italy, August 1, 2019. [S.l.]: Association for

Computational Linguistics, 2019. P. 276–286. doi: 10.18653/v1/W19-4828. Available

from: <https://doi.org/10.18653/v1/W19-4828>.

cortes, Corinna; vapnik, Vladimir. Support-vector networks. Machine learning, Springer,

v. 20, n. 3, p. 273–297, 1995.

devlin, Jacob; chang, Ming-Wei; lee, Kenton; toutanova, Kristina. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. In: pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,

June 2019. P. 4171–4186. doi: 10.18653/v1/N19-1423.

ding, Yanzhuo; liu, Yang; luan, Huanbo; sun, Maosong. Visualizing and Understand-

ing Neural Machine Translation. In: proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,

Canada: Association for Computational Linguistics, July 2017. P. 1150–1159. doi:

10.18653/v1/P17-1106. Available from: <https://aclanthology.org/P17-1106>.

dodge, Jesse; ilharco, Gabriel; schwartz, Roy; farhadi, Ali; hajishirzi, Hannaneh;

smith, Noah A. Fine-Tuning Pretrained Language Models: Weight Initializations,

Data Orders, and Early Stopping. CoRR, abs/2002.06305, 2020. arXiv: 2002.06305.

Available from: <https://arxiv.org/abs/2002.06305>.

https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P17-1106
https://aclanthology.org/P17-1106
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305

REFERENCES 66

fan, Angela; grave, Edouard; joulin, Armand. Reducing Transformer Depth on De-

mand with Structured Dropout. In: 8th International Conference on Learning Rep-

resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. [S.l.]: Open-

Review.net, 2020. Available from: <https://openreview.net/forum?id=SylO2

yStDr>.

frankle, Jonathan; carbin, Michael. The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks. In: 7th International Conference on Learning Represen-

tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. [S.l.]: OpenReview.net,

2019. Available from: <https://openreview.net/forum?id=rJl-b3RcF7>.

gordon, Mitchell A.; duh, Kevin; andrews, Nicholas. Compressing BERT: Studying

the Effects of Weight Pruning on Transfer Learning. In: proceedings of the 5th

Workshop on Representation Learning for NLP, RepL4NLP@ACL 2020, Online, July

9, 2020. [S.l.]: Association for Computational Linguistics, 2020. P. 143–155. doi: 10.

18653/v1/2020.repl4nlp-1.18. Available from: <https://doi.org/10.18653/

v1/2020.repl4nlp-1.18>.

gururangan, Suchin; marasović, Ana; swayamdipta, Swabha; lo, Kyle; beltagy,

Iz; downey, Doug; smith, Noah A. Don’t Stop Pretraining: Adapt Language Models

to Domains and Tasks. In: proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics. Online: Association for Computational Linguis-

tics, July 2020. P. 8342–8360. doi: 10.18653/v1/2020.acl-main.740. Available

from: <https://aclanthology.org/2020.acl-main.740>.

han, Wenjuan; pang, Bo; wu, Ying Nian. Robust Transfer Learning with Pretrained Lan-

guage Models through Adapters. In: proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing (Volume 2: Short Papers). Online: Association

for Computational Linguistics, Aug. 2021. P. 854–861. doi: 10.18653/v1/2021.acl-

short.108. Available from: <https://aclanthology.org/2021.acl-short.108>.

hinton, Geoffrey E.; vinyals, Oriol; dean, Jeffrey. Distilling the Knowledge in a Neural

Network. CoRR, abs/1503.02531, 2015. arXiv: 1503.02531. Available from: <http:

//arxiv.org/abs/1503.02531>.

howard, Jeremy; ruder, Sebastian. Universal Language Model Fine-tuning for Text

Classification. In: proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Associa-

https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://aclanthology.org/2021.acl-short.108
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

REFERENCES 67

tion for Computational Linguistics, July 2018. P. 328–339. doi: 10.18653/v1/P18-

1031. Available from: <https://aclanthology.org/P18-1031>.

jawahar, Ganesh; sagot, Benoıt; seddah, Djamé. What Does BERT Learn about the

Structure of Language? In: proceedings of the 57th Annual Meeting of the Associ-

ation for Computational Linguistics. Florence, Italy: Association for Computational

Linguistics, July 2019. P. 3651–3657. doi: 10.18653/v1/P19-1356. Available from:

<https://aclanthology.org/P19-1356>.

k, Karthikeyan; wang, Zihan; mayhew, Stephen; roth, Dan. Cross-Lingual Ability

of Multilingual BERT: An Empirical Study. In: 8th International Conference on

Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[S.l.]: OpenReview.net, 2020. Available from: <https://openreview.net/forum?

id=HJeT3yrtDr>.

kao, Wei-Tsung; wu, Tsung-Han; chi, Po-Han; hsieh, Chun-Cheng; lee, Hung-Yi.

BERT’s output layer recognizes all hidden layers? Some Intriguing Phenomena and

a simple way to boost BERT. [S.l.]: arXiv, 2020. doi: 10.48550/ARXIV.2001.09309.

Available from: <https://arxiv.org/abs/2001.09309>.

kovaleva, Olga; romanov, Alexey; rogers, Anna; rumshisky, Anna. Revealing the

Dark Secrets of BERT. In: proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for

Computational Linguistics, Nov. 2019. P. 4365–4374. doi: 10.18653/v1/D19-1445.

Available from: <https://aclanthology.org/D19-1445>.

lan, Zhenzhong; chen, Mingda; goodman, Sebastian; gimpel, Kevin; sharma, Piyush;

soricut, Radu. ALBERT: A Lite BERT for Self-supervised Learning of Language

Representations. In: 8th International Conference on Learning Representations, ICLR

2020, Addis Ababa, Ethiopia, April 26-30, 2020. [S.l.]: OpenReview.net, 2020. Avail-

able from: <https://openreview.net/forum?id=H1eA7AEtvS>.

liu, Bing. Sentiment analysis: Mining opinions, sentiments, and emoticons. [S.l.]: Cam-

bridge University Press, 2020.

liu, Yijia; che, Wanxiang; wang, Yuxuan; zheng, Bo; qin, Bing; liu, Ting. Deep

Contextualized Word Embeddings for Universal Dependency Parsing. ACM Trans.

Asian Low Resour. Lang. Inf. Process., v. 19, n. 1, 9:1–9:17, 2020. doi: 10.1145/

3326497. Available from: <https://doi.org/10.1145/3326497>.

https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031
https://doi.org/10.18653/v1/P19-1356
https://aclanthology.org/P19-1356
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://doi.org/10.48550/ARXIV.2001.09309
https://arxiv.org/abs/2001.09309
https://doi.org/10.18653/v1/D19-1445
https://aclanthology.org/D19-1445
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1145/3326497
https://doi.org/10.1145/3326497
https://doi.org/10.1145/3326497

REFERENCES 68

liu, Yinhan; ott, Myle; goyal, Naman; du, Jingfei; joshi, Mandar; chen, Danqi;

levy, Omer; lewis, Mike; zettlemoyer, Luke; stoyanov, Veselin. RoBERTa:

A Robustly Optimized BERT Pretraining Approach. CoRR, abs/1907.11692, 2019.

arXiv: 1907.11692. Available from: <http://arxiv.org/abs/1907.11692>.

loshchilov, Ilya; hutter, Frank. Decoupled Weight Decay Regularization. In: 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019. [S.l.]: OpenReview.net, 2019. Available from: <https://openr

eview.net/forum?id=Bkg6RiCqY7>.

louizos, Christos; welling, Max; kingma, Diederik P. Learning Sparse Neural Net-

works through L_0 Regularization. In: 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-

ference Track Proceedings. [S.l.]: OpenReview.net, 2018. Available from: <https:

//openreview.net/forum?id=H1Y8hhg0b>.

luong, Thang; pham, Hieu; manning, Christopher D. Effective Approaches to Attention-

based Neural Machine Translation. In: proceedings of the 2015 Conference on Em-

pirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,

September 17-21, 2015. [S.l.]: The Association for Computational Linguistics, 2015.

P. 1412–1421.

michel, Paul; levy, Omer; neubig, Graham. Are Sixteen Heads Really Better than One?

In: advances in Neural Information Processing Systems 32: Annual Conference on

Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada. [S.l.: s.n.], 2019. P. 14014–14024. Available from: <https:

//proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54

f69f-Abstract.html>.

mikolov, Tomás; sutskever, Ilya; chen, Kai; corrado, Gregory S.; dean, Jeffrey.

Distributed Representations of Words and Phrases and their Compositionality. In:

advances in Neural Information Processing Systems 26: 27th Annual Conference on

Neural Information Processing Systems 2013. Proceedings of a meeting held December

5-8, 2013, Lake Tahoe, Nevada, United States. [S.l.: s.n.], 2013. P. 3111–3119.

nguyen, Dat Quoc; vu, Thanh; nguyen, Anh Tuan. BERTweet: A pre-trained language

model for English Tweets. In: proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations. [S.l.: s.n.], 2020.

P. 9–14.

https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html

REFERENCES 69

pan, Sinno Jialin; yang, Qiang. A Survey on Transfer Learning. IEEE Trans. Knowl.

Data Eng., v. 22, n. 10, p. 1345–1359, 2010.

paszke, Adam; gross, Sam; massa, Francisco; lerer, Adam; bradbury, James; chanan,

Gregory; killeen, Trevor; lin, Zeming; gimelshein, Natalia; antiga, Luca; des-

maison, Alban; kopf, Andreas; yang, Edward; devito, Zachary; raison, Martin;

tejani, Alykhan; chilamkurthy, Sasank; steiner, Benoit; fang, Lu; bai, Junjie;

chintala, Soumith. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In: advances in Neural Information Processing Systems 32. [S.l.]: Curran

Associates, Inc., 2019. P. 8024–8035. Available from: <http://papers.neurips.

cc / paper / 9015 - pytorch - an - imperative - style - high - performance - deep -

learning-library.pdf>.

pedregosa, f.; varoquaux, g.; gramfort, a.; michel, v.; thirion, b.; grisel,

o.; blondel, m.; prettenhofer, p.; weiss, r.; dubourg, v.; vanderplas, j.;

passos, a.; cournapeau, d.; brucher, m.; perrot, m.; duchesnay, e. Scikit-

learn: Machine Learning in Python. Journal of Machine Learning Research, v. 12,

p. 2825–2830, 2011.

pennington, Jeffrey; socher, Richard; manning, Christopher. GloVe: Global Vectors

for Word Representation. In: proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for

Computational Linguistics, Oct. 2014. P. 1532–1543. doi: 10.3115/v1/D14-1162.

Available from: <https://aclanthology.org/D14-1162>.

prasanna, Sai; rogers, Anna; rumshisky, Anna. When BERT Plays the Lottery, All

Tickets Are Winning. In: proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020. [S.l.]:

Association for Computational Linguistics, 2020. P. 3208–3229. doi: 10.18653/v1/

2020.emnlp-main.259. Available from: <https://doi.org/10.18653/v1/2020.

emnlp-main.259>.

press, Ofir; smith, Noah A.; levy, Omer. Improving Transformer Models by Reordering

their Sublayers. In: proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics. Online: Association for Computational Linguistics,

July 2020. P. 2996–3005. doi: 10.18653/v1/2020.acl-main.270. Available from:

<https://aclanthology.org/2020.acl-main.270>.

radford, Alec; wu, Jeffrey; child, Rewon; luan, David; amodei, Dario; sutskever,

Ilya. Language Models are Unsupervised Multitask Learners, 2018. Available from:

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.acl-main.270
https://aclanthology.org/2020.acl-main.270

REFERENCES 70

<https://d4mucfpksywv.cloudfront.net/better-language-models/language-

models.pdf>.

rosset, Corby. Turing-NLG: A 17-billion-parameter language model by Microsoft. [S.l.]:

Microsoft, Feb. 2020. Available from: <https : / / www . microsoft . com / en - us /

research/blog/turing-nlg-a-17-billion-parameter-language-model-by-

microsoft/>.

ruder, Sebastian; peters, Matthew E; swayamdipta, Swabha; wolf, Thomas. Trans-

fer Learning in Natural Language Processing. In: proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Tutorials. [S.l.: s.n.], 2019. P. 15–18.

sajjad, Hassan; dalvi, Fahim; durrani, Nadir; nakov, Preslav. On the effect of drop-

ping layers of pre-trained transformer models. Computer Speech & Language, Elsevier

BV, v. 77, p. 101429, Jan. 2023. doi: 10.1016/j.csl.2022.101429. Available from:

<https://doi.org/10.1016%5C%2Fj.csl.2022.101429>.

sajjad, Hassan; dalvi, Fahim; durrani, Nadir; nakov, Preslav. Poor Man’s BERT:

Smaller and Faster Transformer Models. CoRR, abs/2004.03844, 2020. arXiv: 2004.

03844. Available from: <https://arxiv.org/abs/2004.03844>.

sanh, Victor; wolf, Thomas; rush, Alexander M. Movement Pruning: Adaptive Sparsity

by Fine-Tuning. In: advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual. [S.l.: s.n.], 2020. Available from: <https://proceedings.neuri

ps.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html>.

shen, Sheng; dong, Zhen; ye, Jiayu; ma, Linjian; yao, Zhewei; gholami, Amir; ma-

honey, Michael W.; keutzer, Kurt. Q-BERT: Hessian Based Ultra Low Precision

Quantization of BERT. In: the Thirty-Fourth AAAI Conference on Artificial Intel-

ligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-

gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. [S.l.]:

AAAI Press, 2020. P. 8815–8821. Available from: <https://aaai.org/ojs/index.

php/AAAI/article/view/6409>.

strubell, Emma; ganesh, Ananya; mccallum, Andrew. Energy and Policy Consider-

ations for Deep Learning in NLP. In: proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics. [S.l.]: Association for Computational

Linguistics, 2019. P. 3645–3650.

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://doi.org/10.1016/j.csl.2022.101429
https://doi.org/10.1016%5C%2Fj.csl.2022.101429
https://arxiv.org/abs/2004.03844
https://arxiv.org/abs/2004.03844
https://arxiv.org/abs/2004.03844
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409

REFERENCES 71

sun, Chi; qiu, Xipeng; xu, Yige; huang, Xuanjing. How to Fine-Tune BERT for Text

Classification? In: chinese Computational Linguistics - 18th China National Confer-

ence, CCL 2019, Kunming, China, October 18-20, 2019, Proceedings. [S.l.]: Springer,

2019. v. 11856. (Lecture Notes in Computer Science), p. 194–206. doi: 10.1007/978-

3-030-32381-3_16. Available from: <https://doi.org/10.1007/978-3-030-

32381-3%5C_16>.

tenney, Ian; das, Dipanjan; pavlick, Ellie. BERT Rediscovers the Classical NLP Pipeline.

In: proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics. Florence, Italy: Association for Computational Linguistics, July

2019. P. 4593–4601. doi: 10 . 18653 / v1 / P19 - 1452. Available from: <https : / /

aclanthology.org/P19-1452>.

turney, p. d.; pantel, p. From Frequency to Meaning: Vector Space Models of Seman-

tics. Journal of Artificial Intelligence Research, AI Access Foundation, v. 37, p. 141–

188, Feb. 2010. issn 1076-9757. doi: 10.1613/jair.2934. Available from: <http:

//dx.doi.org/10.1613/jair.2934>.

vaswani, Ashish; shazeer, Noam; parmar, Niki; uszkoreit, Jakob; jones, Llion;

gomez, Aidan N.; kaiser, Lukasz; polosukhin, Illia. Attention is All you Need.

In: advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,

USA. [S.l.: s.n.], 2017. P. 5998–6008. Available from: <https://proceedings.neuri

ps.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>.

virtanen, Pauli; gommers, Ralf; oliphant, Travis E.; haberland, Matt; reddy,

Tyler; cournapeau, David; burovski, Evgeni; peterson, Pearu; weckesser,

Warren; bright, Jonathan; van der walt, Stéfan J.; brett, Matthew; wilson,

Joshua; millman, K. Jarrod; mayorov, Nikolay; nelson, Andrew R. J.; jones,

Eric; kern, Robert; larson, Eric; carey, c j; polat, İlhan; feng, Yu; moore, Eric

W.; vanderplas, Jake; laxalde, Denis; perktold, Josef; cimrman, Robert; hen-

riksen, Ian; quintero, e. a.; harris, Charles R.; archibald, Anne M.; ribeiro,

Antônio H.; pedregosa, Fabian; van mulbregt, Paul; scipy 1.0 contributors.

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Meth-

ods, v. 17, p. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

voita, Elena; talbot, David; moiseev, Fedor; sennrich, Rico; titov, Ivan. Ana-

lyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest

Can Be Pruned. In: proceedings of the 57th Annual Meeting of the Association

https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3%5C_16
https://doi.org/10.1007/978-3-030-32381-3%5C_16
https://doi.org/10.18653/v1/P19-1452
https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1452
https://doi.org/10.1613/jair.2934
http://dx.doi.org/10.1613/jair.2934
http://dx.doi.org/10.1613/jair.2934
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/s41592-019-0686-2

REFERENCES 72

for Computational Linguistics. Florence, Italy: Association for Computational Lin-

guistics, July 2019. P. 5797–5808. doi: 10.18653/v1/P19- 1580. Available from:

<https://aclanthology.org/P19-1580>.

williams, Adina; nangia, Nikita; bowman, Samuel. A Broad-Coverage Challenge Cor-

pus for Sentence Understanding through Inference. In: proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,

Louisiana: Association for Computational Linguistics, June 2018. P. 1112–1122. doi:

10.18653/v1/N18-1101. Available from: <https://aclanthology.org/N18-1101>.

wolf, Thomas; debut, Lysandre; sanh, Victor; chaumond, Julien; delangue, Clement;

moi, Anthony; cistac, Pierric; rault, Tim; louf, Rémi; funtowicz, Morgan;

davison, Joe; shleifer, Sam; platen, Patrick von; ma, Clara; jernite, Yacine;

plu, Julien; xu, Canwen; scao, Teven Le; gugger, Sylvain; drame, Mariama;

lhoest, Quentin; rush, Alexander M. Transformers: State-of-the-Art Natural Lan-

guage Processing. In: proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations. Online: Association for Com-

putational Linguistics, Oct. 2020. P. 38–45. Available from: <https://www.aclweb.

org/anthology/2020.emnlp-demos.6>.

wu, Yonghui; schuster, Mike; chen, Zhifeng; le, Quoc V.; norouzi, Mohammad;

macherey, Wolfgang; krikun, Maxim; cao, Yuan; gao, Qin; macherey, Klaus;

klingner, Jeff; shah, Apurva; johnson, Melvin; liu, Xiaobing; kaiser, Lukasz;

gouws, Stephan; kato, Yoshikiyo; kudo, Taku; kazawa, Hideto; stevens, Keith;

kurian, George; patil, Nishant; wang, Wei; young, Cliff; smith, Jason; riesa,

Jason; rudnick, Alex; vinyals, Oriol; corrado, Greg; hughes, Macduff; dean,

Jeffrey. Google’s Neural Machine Translation System: Bridging the Gap between Hu-

man and Machine Translation. CoRR, abs/1609.08144, 2016. arXiv: 1609.08144.

Available from: <http://arxiv.org/abs/1609.08144>.

zafrir, Ofir; boudoukh, Guy; izsak, Peter; wasserblat, Moshe. Q8BERT: Quantized

8Bit BERT. In: 2019 Fifth Workshop on Energy Efficient Machine Learning and

Cognitive Computing - NeurIPS Edition (EMC2-NIPS). [S.l.: s.n.], 2019. P. 36–39.

doi: 10.1109/EMC2-NIPS53020.2019.00016.

zhu, y.; kiros, r.; zemel, r.; salakhutdinov, r.; urtasun, r.; torralba, a.; fi-

dler, s. Aligning Books and Movies: Towards Story-Like Visual Explanations by

Watching Movies and Reading Books. In: 2015 IEEE International Conference on

https://doi.org/10.18653/v1/P19-1580
https://aclanthology.org/P19-1580
https://doi.org/10.18653/v1/N18-1101
https://aclanthology.org/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016

REFERENCES 73

Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society, Dec.

2015. P. 19–27. doi: 10.1109/ICCV.2015.11. Available from: <https://doi.

ieeecomputersociety.org/10.1109/ICCV.2015.11>.

https://doi.org/10.1109/ICCV.2015.11
https://doi.ieeecomputersociety.org/10.1109/ICCV.2015.11
https://doi.ieeecomputersociety.org/10.1109/ICCV.2015.11

	Introduction
	Research Questions
	Contributions
	Organization

	Key Concepts
	BERT Overview
	The Self-Attention Mechanism
	BERTweet Language Model

	Literature Review
	Pruning after training
	Pruning before or during training
	Pruning for model analysis
	Final Remarks

	A method to prune BERTweet heads
	Step 1: defining an importance order for the heads
	Step 2: Selecting the best-ranked pruned model
	Step 2 – Unrestricted incremental pruning (h1)
	Step 2 – Incremental pruning restricted by the previous predictive performance (h2)
	Step 2 – Incremental pruning restricted by the complete model performance (h3)

	Computational Experiments
	Experimental methodology
	Experimental results
	Results of Step 1 – Evaluating the importance order
	Results of Step 2 – Evaluating the proposed approaches
	Generalization Check – Evaluating the generalization ability
	Individual results from the random orders of importance

	Conclusion and Future Works
	Ethic Statement

	REFERENCES

