
UNIVERSIDADE FEDERAL FLUMINENSE

FRANKLIN JORDAN VENTURA QUICO

L-PRISM: A SPECIFICATION LANGUAGE
FOR MULTIMEDIA SERVICE CHAINS

BASED ON VIRTUALIZATION OF
SENSORS

NITERÓI

2023

UNIVERSIDADE FEDERAL FLUMINENSE

FRANKLIN JORDAN VENTURA QUICO

L-PRISM: A SPECIFICATION LANGUAGE
FOR MULTIMEDIA SERVICE CHAINS

BASED ON VIRTUALIZATION OF
SENSORS

Master Thesis presented to the Programa de
Pós-Graduação em Computação of the Uni-
versidade Federal Fluminense as requirement
to obtain the Degree of Master in Comput-
ing. Area: Computer Science

Advisor:
DÉBORA CHRISTINA MUCHALUAT SAADE

Co-Advisor:
FLÁVIA COIMBRA DELICATO

NITERÓI

2023

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

V468l Ventura Quico, Franklin Jordan
 L-PRISM: A specification language for Multimedia Service
Chains based on Virtualization of Sensors / Franklin Jordan
Ventura Quico. - 2023.
 146 f.

 Orientador: Débora Christina Muchaluat Saade.
 Coorientador: Flávia Coimbra Delicato.
 Dissertação (mestrado)-Universidade Federal Fluminense,
Instituto de Computação, Niterói, 2023.

 1. Domain Specific Language. 2. Internet of Things. 3.
Internet of Media Things. 4. Virtual Multimedia Sensors. 5.
Produção intelectual. I. Muchaluat Saade, Débora Christina,
orientadora. II. Coimbra Delicato, Flávia, coorientadora.
III. Universidade Federal Fluminense. Instituto de
Computação.IV. Título.

 CDD - XXX

Franklin Jordan Ventura Quico

L-PRISM: A specification language for Multimedia Service Chains based on
Virtualization of Sensors

Master Thesis presented to the Programa de
Pós-Graduação em Computação of the Uni-
versidade Federal Fluminense as requirement
to obtain the Degree of Master in Comput-
ing. Area: Computer Science

Approved in April 2023

APPROVED BY

Profª Débora Christina Muchaluat Saade - Advisor, UFF

Profª Flávia Coimbra Delicato - Co-Advisor, UFF

Prof. Paulo de Figueiredo Pires, UFF

Profª Thaís Vasconcelos Batista

Niterói
2023

Acknowledgements

I want to thank God for giving me the strength to reach another life goal.

I appreciate the unconditional support of my dear mother, Florencia, who was always

there to encourage me to follow my dreams and for being one of the greatest examples in

life.

I want to thank my advisor, Professor Débora, who had supported me since before

I even met her, even before I arrived in this beautiful country; thank you very much for

the time dedicated to this research and for all the patience you have with me!

I thank my co-advisor, Professor Flavia, for agreeing to advise me, for all the time

she dedicated to this research, and for her patience with me!

I also thank my friend Anselmo Battisti for his support in this and other projects.

I also thank my friends Julio and Jose for taking the time to participate in face-to-face

training in the experiments of this thesis.

Finally, I thank all my friends and family for the love and friendship. Last but not

least, I thank everyone at the UFF Institute of Computing for welcoming me so well.

Resumo

A virtualização é uma tecnologia amplamente utilizada que pode reduzir a complexidade
derivada da heterogeneidade em ambientes IoT. Uma vez que os sensores multimídia são
uma importante fonte de dados em IoT, surge o paradigma Internet of Media Things
(IoMT). Com base na virtualização e na IoMT, adotou-se o conceito de virtualização de
sensores multimídia (VMS), que são a representação virtualizada dos dispositivos perten-
centes à IoMT. Em muitos cenários, vários processos devem ser aplicados a fluxos multi-
mídia em uma sequência predefinida, criando assim cadeias de VMS, ou seja, cadeias de
serviços multimídia. Existem poucos esforços na literatura para criar uma linguagem de
descrição para apoiar a definição de cadeias de VMS. Para preencher esta lacuna, propo-
mos uma Linguagem Específica de Domínio (DSL) denominada L-PRISM. Esta DSL pode
ser utilizada como base conceitual para desenvolvedores implementarem e virtualizarem
aplicações multimídia utilizando o conceito de VMS. Também apresentamos uma prova de
conceito (PoC) usando L-PRISM para executar cadeias de serviços multimídia baseadas
em VMS. Nosso DSL e PoC foram avaliados por desenvolvedores de software, e os resul-
tados mostram que a adoção do L-PRISM facilita a definição e implantação de cadeias
de serviços multimídia baseadas em VMS.

Palavras-Chaves: Linguagem de Domínio Específico, Internet das Coisas, Internet das
Coisas Multimídia, Sensor Virtual Multimídia.

Abstract

Virtualization is a widely used technology that can reduce the complexity derived from
heterogeneity in IoT environments. Once multimedia sensors are an important data source
in IoT, the Internet of Media Things (IoMT) paradigm emerges. Based on virtualization
and IoMT, the concept of virtualization multimedia sensors (VMS) has been adopted,
which are the virtualized representation of the devices belonging to IoMT. In many sce-
narios, multiple processes must be applied to multimedia streams in a predefined sequence,
thus creating chains of VMS, i.e., multimedia service chains. There are few efforts in the
literature to create a description language to support the definition of chains of VMS. In
order to fill this gap, we propose a Domain Specific Language (DSL) called L-PRISM.
This DSL can be used as a conceptual base for developers to implement and virtualize
multimedia applications using the VMS concept. We also present a proof of concept
(PoC) using L-PRISM to run multimedia service chains based on VMS. Our DSL and
PoC were evaluated by software developers, and the results show that adopting L-PRISM
facilitates the definition and deployment of multimedia service chains based on VMS.

Keywords: Domain Specific Language, Internet of Things, Internet of Media Things,
Virtual Multimedia Sensors.

List of Figures

2.1 V-PRISM three-tier architecture overview [42]. 31

2.2 VMS Hierarchical Categorization [42]. 32

2.3 VMS creation sequence diagram [42]. 36

3.1 Example of extended TOSCA template for VM description (the extended

security attributes are in bold) [32] . 49

4.1 components of a Multimedia Service Chain based on VMS 55

4.2 Class diagram of the L-PRISM metamodel 57

5.1 Class diagram of the L-PRISM metamodel based on TOSCA-NFV. 62

5.2 Simple multimedia service chain with L-PRISM 102

5.3 Diagram and output of a complex multimedia service chain. 102

5.4 Specification of virtual devices with the metamodel of L-PRISM 103

5.5 Specification of virtual multimedia sensors with the metamodel of L-PRISM104

5.6 Specification of virtual link with the metamodel of L-PRISM- Part 1 . . . 106

5.7 Specification of virtual link with the metamodel of L-PRISM- Part 2 . . . 107

5.8 Specification of virtual link with the metamodel of L-PRISM- Part 3 . . . 108

6.1 Interface to upload YAML file. 113

6.2 Interface to upload YAML file - List of VMS. 113

6.3 Interface to upload YAML file - List of Edge Node and list of VD. 114

6.4 Interface for register type VMS (swImage) 114

6.5 Interface for view detail of type VMS (swImage) 114

6.6 Interface to create a VMS, through the intuitive interface. 115

6.7 Interface to select a V D, through the intuitive interface. 116

List of Figures vi

6.8 Intuitive interface to create multimedia service chain based on VMS. 116

6.9 General example of a multimedia service chain created in prototype. 117

7.1 View of the website of main elements of L-PRISM for creating a multimedia

service chain based on VMS . 127

7.2 View the examples of multimedia service chains created with L-PRISM on

the website. 127

7.3 Details of the examples of multimedia service chains created with L-PRISM

on the website. 127

7.4 View the examples of multimedia service chains created with V-PRISM on

the website. 127

7.5 Multimedia service chain that transforms a color video to grayscale - Task 1.128

7.6 Multimedia service chain that bundles two video streams - Task 2. 128

7.7 Complex multimedia service chain - Task 3. 129

7.8 Reuse of multimedia service chains - Task 4. 129

7.9 Number of subjects. 131

7.10 Academic level. 131

7.11 Experience in the use of XML, JSON, and YAML languages. 131

7.12 Time needed per task in the two methods (L-PRISM and Classic method

(V-PRISM)) . 132

7.13 Summary of responses to G1 questions Q2-Q5 133

7.14 Summary of responses to G2 questions . 135

7.15 Results of question Q3 of objective G2 . 137

List of Tables

2.1 Comparison of scalar and multimedia IoT data [29] 27

3.1 Compares languages, templates, and data models 50

4.1 Variables for VNF creation . 54

5.1 Properties of l3AddressData . 63

5.2 Properties of addressData . 65

5.3 Properties of connectivityType . 66

5.4 Properties of virtualCpu . 68

5.5 Properties of virtualMemory . 69

5.6 Properties of virtualStorage . 71

5.7 Properties of virtualGraphicsCard . 72

5.8 Properties of configurableProperties . 73

5.9 Properties of port . 74

5.10 Properties of metric . 76

5.11 Properties of virtualCompute . 77

5.12 Properties of swImage . 80

5.13 Properties of host . 84

5.14 Properties of device . 86

5.15 Properties of source . 87

5.16 Properties of destination . 90

5.17 Properties of vms . 92

5.18 Properties of virtualLink . 97

5.19 Properties of chainModel . 99

List of Tables viii

7.1 Goals of the experiment . 119

7.2 Questions for the goal G1 . 119

7.3 Questions for the goal G2 . 123

7.4 Tasks of the experiment . 129

7.5 Tasks used for Goal G1 . 130

7.6 Tasks used for Goal G2 . 130

List of Acronyms

API : Application Programming Interface;

CDN : Cognitive Dimensions of Notations;

CCO : CPU Consumed;

CoT : Cloud of Things;

DSL : Domain Specific Language;

EC : Edge Computing;

EF : Edge Function;

ENM : Edge Node Manager;

ETSI : European Telecommunications Standards Institute;

GQM : Goal Question Metric;

IoMT : Internet of Media Things;

IoT : Internet of Things;

IP : Internet Protocol;

JSON : JavaScript Object Notation;

L-PRISM : Language for Programming IoT Sensors for Multimedia;

LXC : Linux Containers;

MBT : Megabits Transferred;

MEC : Multi-access Edge Computing;

NFV : Network Function Virtualization;

OS : Operating System;

PoC : Proof-of-Concept;

QoE : Quality of Experence;

QoS : Quality of Service;

RAM : Resource Allocation Manager;

REST : Representational State Transfer;

ROI : Return On Investment;

TAM : Technology Acceptance Model;

V-PRISM : Virtual Programmable IoT Sensor for Multimedia;

VD : Virtual Device;

List of Acronyms x

VMS : Virtual Multimedia Sensor;

VS : Virtual Sensor;

YAML : YAML Ain’t Markup Language;

Contents

1 Introduction 20

1.1 Research Question . 21

1.2 Goals . 24

1.3 Main Contributions . 25

1.4 Dissertation Organization . 25

2 Background 26

2.1 Internet of Media Things - IoMT . 26

2.2 Virtualization Applied to IoMT . 28

2.3 V-PRISM and ALFA . 30

2.3.1 V-PRISM . 30

2.3.1.1 VMS Categorization . 31

2.3.1.2 V-PRISM Logic Components 33

2.3.1.3 V-PRISM Deployment . 35

2.3.1.4 Initialization of a VMS . 35

2.3.2 ALFA . 36

2.3.2.1 ALFA Main Technologies 36

2.3.2.2 Implemented Virtual Devices 39

2.3.2.3 Implemented Virtual Multimedia Sensors 39

2.4 Domain Specific Language (DSL) . 39

2.4.1 Development of a DSL . 40

2.4.1.1 Implementation of a DSL 41

Contents xii

3 Related Work 45

3.1 TOSCA-NFV . 45

3.2 Other languages . 47

4 L-PRISM Proposal and

Development Process 51

4.1 Domain analysis . 52

4.2 L-PRISM Design . 54

4.3 L-PRISM Implementation . 56

4.4 L-PRISM evaluation . 59

4.5 L-PRISM Maintenance . 60

5 L-PRISM Metamodel 61

5.1 Data Types . 63

5.1.1 lPrism.datatype.vms.l3AddressData 63

5.1.1.1 Definition . 64

5.1.1.2 Example . 64

5.1.2 lPrism.datatype.vms.addressData 65

5.1.2.1 Definition . 65

5.1.2.2 Example . 66

5.1.3 lPrism.datatype.vms.connectivityType 66

5.1.3.1 Definition . 66

5.1.3.2 Example . 67

5.1.4 lPrism.datatype.vms.virtualCpu . 67

5.1.4.1 Definition . 68

5.1.4.2 Example . 69

5.1.5 lPrism.datatype.vms.virtualMemory 69

5.1.5.1 Definition . 70

Contents xiii

5.1.5.2 Example . 70

5.1.6 lPrism.datatype.vms.virtualStorage 70

5.1.6.1 Definition . 71

5.1.6.2 Example . 71

5.1.7 lPrism.datatype.vms.virtualGraphicsCard 72

5.1.7.1 Definition . 72

5.1.7.2 Examples . 73

5.1.8 lPrism.datatype.vms.configurableProperties 73

5.1.8.1 Definition . 74

5.1.8.2 Examples . 74

5.1.9 lPrism.datatype.vms.port . 74

5.1.9.1 Definition . 75

5.1.9.2 Example . 76

5.2 Capabilities Types . 76

5.2.1 lPrism.capabilities.vms.metric . 76

5.2.1.1 Definition . 76

5.2.1.2 Example . 77

5.2.2 lPrism.capabilities.vms.virtualCompute 77

5.2.2.1 Definition . 78

5.2.2.2 Example . 79

5.3 Artifact Types . 79

5.3.1 lPrism.artifacts.vms.swImage . 79

5.3.1.1 Definition . 82

5.3.1.2 Example . 83

5.3.2 lPrism.artifacts.vms.host . 84

5.3.2.1 Definition . 84

Contents xiv

5.3.2.2 Example . 85

5.3.3 lPrism.artifacts.vms.device . 85

5.3.3.1 Definition . 86

5.3.3.2 Example . 87

5.4 Relationship Types . 87

5.4.1 lPrism.relationship.vms.source . 87

5.4.1.1 Definition . 88

5.4.1.2 Example . 89

5.4.2 lPrism.relationship.vms.destination 89

5.4.2.1 Definition . 90

5.4.2.2 Example . 91

5.5 Node Types . 91

5.5.1 lPrism.nodes.vms.VDU.vms . 91

5.5.1.1 Definition . 94

5.5.1.2 Example . 96

5.5.2 lPrism.nodes.vms.virtualLink . 97

5.5.2.1 Definition . 97

5.5.2.2 Example . 98

5.6 Chain Type . 98

5.6.1 lPrism.chain.vms.chainModel . 98

5.6.1.1 Definition . 99

5.6.1.2 Example . 100

5.7 Example of the L-PRISM Metamodel . 102

6 ALFA 2.0: Integration of L-PRISM in ALFA 110

6.1 Database . 110

6.2 API . 111

Contents xv

6.3 Web interface . 112

6.3.1 Web interface for L-PRISM . 112

6.3.2 Prototype web interface . 114

6.4 Differences between ALFA and ALFA 2.0 117

7 Evaluation 118

7.1 Experiment Goals . 118

7.1.1 G1 - Questions and metrics . 118

7.1.1.1 G1 - Questions . 119

7.1.1.2 G1 - Hypotheses, Variables, and Constructions 119

7.1.1.3 G1 - Metrics . 121

7.1.2 G2 - Questions and metrics . 122

7.1.2.1 G2 - Questions . 122

7.1.2.2 G2 - Hypotheses, Variables, and Constructions 123

7.1.2.3 G2 - Metrics . 125

7.2 Experiment Tasks . 126

7.2.1 Training phase . 126

7.2.2 Execution phase . 127

7.2.3 Tasks . 128

7.3 Subjects . 129

7.4 Results . 131

7.4.1 G1 - Evaluation . 131

7.4.2 G2 - Evaluation . 134

7.4.3 Threats to Validity . 136

7.4.4 Final considerations . 138

8 Conclusion 139

Contents xvi

8.1 Contributions . 141

8.2 Future work . 141

References 143

Chapter 1

Introduction

In recent years, virtualization technology has gained significant relevance in different

research areas. One of these areas is that of networks, where the introduction of the

concept of Network Function Virtualization (NFV) seeks to decouple network functions

from physical devices through software-based implementation [32]. The introduction of

the NFV concept has significantly impacted different fields of research and the industry.

This impact is mainly because NFV reduces capital costs and operating (CapEx, OpEx),

increases the network’s efficiency and agility, provides a shorter time to implementation,

and improves scalability in the reuse of resources [32].

The Internet of Things (IoT) is another concept that is having a significant impact

on the network area. The main objective of IoT is to have a more connected world where

users can connect to their devices (sensors) faster and intelligently. A sub-area of IoT is

the Internet of Media Things (IoMT) [20], which focuses on working with multimedia-type

sensors and applications. One of the main limitations of IoT sensors is that they have

limited resources for their operation, this limitation is inherited to IoMT sensors, but it

has a more impact on these since IoMT sensors produce and process complex data, com-

pared to traditional sensors that produce and process discrete data. The virtualization

technology applied to IoMT partially addresses the resource limitation problems in this

type of device since the processing and sending of data to end users would be inherited to

the virtual sensor [42]. The research carried out by [42] defines the V-PRISM architecture,

where virtualization technology is applied to IoMT and creates the concept of Virtual-

ized Multimedia Sensor (VMS). This concept encompasses the virtualization of sensors

belonging to IoMT. The VMSs bring with them several benefits, such as reducing the

heterogeneity of the physical sensors, reduction of costs since the VMSs make it possible

that it is not necessary to acquire physical sensors, greater Return on Investment (ROI)

1.1 Research Question 21

since the VMSs can be reused without any additional cost and finally increase of fault

tolerance.

There are scenarios where complex applications must process data streams by different

functions in a defined sequence, thus creating a chain of functions or services. We define

these chains of functions or services in IoMT as a Multimedia Service Chain, which aims

to transfer and process multimedia data through different functions or services distributed

within a network. In a virtualization-based environment based on the VMS concept, the

functions that are part of a multimedia service chain would be represented by VMSs,

where each VMS will perform operations on multimedia data streams and transmit this

processed data through the network.

The architecture proposed by [42] enables the technologies for creating multimedia

service chains based on VMS. Multimedia service chains based on VMS could be managed

more practically and simply. This would allow of the Quality of Service (QoS) [22] control

in the components and the entire service chain to be more accessible. Another aspect to

consider is that, with the virtualization of multimedia sensors, the Quality of Experience

(QoE) can be addressed, a metric that up to now can only be evaluated at the application

level, but with virtualization, it is possible to monitor information related to QoE within

the network [4, 5].

A common issue in research in the multimedia area is that different researchers have

proposed and developed many solutions in the form of software tools that use multimedia

content as a base. These multimedia data can be transformed or processed by algorithms

whose final objective is to deliver one or several responses. One issue with these tools

(software modules), which we call functions, is that most of them are implemented and

tested in closed environments, and their use requires the manual intervention of an expert.

To use each of these functions or services, an exhaustive analysis must be made about its

operation and behavior, to understand what it does, how it works, and what its results

are. That is why most of these functions are little used in practice.

1.1 Research Question

Over time, different applications using virtualization concepts have been developed. Most

of these applications are created without following a specification or pattern in their

development. This implies that external users who wish to use these applications must

have an intermediate to advanced level of knowledge in developing said applications, that

1.1 Research Question 22

is, in the technologies used during their creation. Consequently, this generates a significant

limitation of the community’s access to this type of technology.

One of the main advantages of multimedia applications is their ability to support

multimedia streams with different characteristics, such as different types of formats, res-

olutions, frame rates, bit rates, and compression codecs, allowing greater flexibility in the

management and playback of multimedia content. These advantages can be a double-

edged sword for VMSs since the variation of any of these characteristics can affect the

behavior and operation of VMS. In a virtualized environment, where the multimedia

streams processed by VMSs will have different characteristics, a static configuration of

computing and network resources in a VMS may be inappropriate.

As previously mentioned, one of the problems we face is that to make correct use of vir-

tualized multimedia applications (VMS) one must have a medium to advanced knowledge

of the technologies used both in the development of said applications and the technologies

used for their virtualization.

An alternative to address this problem is to create a specification for the virtualization

of multimedia sensors, which would encourage users to want to use these virtualized

applications. This would allow users interested in using these virtualized applications not

to need advanced knowledge about the technologies used in their development. However,

even with a specification for the virtualization of multimedia applications, users should

have basic to advanced knowledge of the virtualization technologies used.

The level of knowledge of users who want to use virtualized multimedia applications

(VMS) will depend on how complex the IoMT application they want to create will be.

For example, suppose they only want to use a VMS. In that case, they should only know

how to deploy a VMS, but in the case of a complex IoMT application, where different

VMSs must process the multimedia stream(s) in a distributed environment, users should

have knowledge about deploying the applications, and connect them, which translates

into knowing networks, virtualization, and distributed systems.

A study that we take as a base in this work is the architecture presented by [42]. This

architecture addresses the concepts of virtualization in Edge Computing environments,

which addresses the problems mentioned earlier in a certain way. [42] presents a proof of

concept (PoC) of his architecture called ALFA and allows the creation of IoMT application

based on VMS through an intuitive web interface. The problem with ALFA is that it

only allows you to create simple IoMT applications or simple multimedia service chains

based on VMS. To create complex multimedia service chains based on VMS, you need

1.1 Research Question 23

to have advanced knowledge about the virtualization technology used in ALFA. The

communication between VMSs in ALFA is based on IP addresses and ports, which means

that in order to create complex multimedia service chains, it would be necessary to have

knowledge about the available IP addresses and ports of each VMS and to have access

to this information. It is necessary to have relatively advanced knowledge about the

virtualization technology used in ALFA, which in this case is Docker. It is also necessary

to know how a multimedia service chain works; for example, the correct sequence of

creation of each multimedia service chain based on VMS should be. Another limitation

of ALFA is that it only allows you to configure aspects at the application level in the

VMS. Hence, the configuration of the allocation of computational and network resources

is not possible. Furthermore, the most significant limitation of ALFA is that it limits us

to the use of the VMS developed by the author, which makes it difficult if we want to

use a virtualized multimedia application from another author, since [42] does not present

a formal specification to virtualize and integrate virtualized multimedia applications to

ALFA.

One of the solutions that address some of ALFA problems is to extend ALFA so that

it allows creating and configuring the allocation of resources to the VMSs of a multimedia

service chain through its web application. However, even with this, we are still limited to

using the VMSs developed by [42].

Lastly, in real scenarios, developers of complex multimedia applications tend to create

these applications very frequently and some of these applications are usually very similar.

ALFA proposed extension would allow these applications to be created, but they would

have to be developed each time from scratch, and depending on the complexity of the

application, the time required to develop the same application several times would be

considerable.

Using a web application to develop multimedia service chains based on VMS is not

always the most appropriate solution. A web application can be beneficial for users who

are testing the operation of this type of application due to its intuitiveness. However,

if we talk about users who constantly work developing multimedia service chains based

on VMS, using a web application is not the most appropriate since other solutions can

increase their productivity. Additionally, when it comes to complex multimedia service

chains, it is necessary to have an overview of them, so using a web interface becomes a

bit difficult.

Based on the problems and solutions mentioned previously, this work investigates the

1.2 Goals 24

use of Domain Specific Languages (DSL) to create virtualized multimedia applications.

Therefore our main research question is:

RQ: Does using a Domain Specific Language (DSL) facilitate the deployment of

multimedia service chains based on VMS?

We investigate if the definition of a domain language (DLS) that supports the use of

multimedia applications based on virtualization, such as Virtualized Network Functions

(VNF) or Virtualized Multimedia Sensors (VMS), will offer the community the possibility

to deploy multimedia applications developed by third parties without the need for prior or

advanced knowledge about its implementation, since a DSL can be used as a conceptual

basis for the virtualization of applications and also for the correct use of these applications.

A DSL also gives us an overview of the implemented solutions, in our case, multimedia

service chains based on VMS. Also, the use of a DSL reduces the implementation time of

already developed solutions since the solutions can be stored in a file where the solutions

are described, and the reuse of these solutions would be very simple; with this, it would be

possible to increase the productivity of the users. Additionally, solutions developed with

a DSL can serve as a knowledge base for other users since DSLs have the characteristic

of being more expressive and close to the vocabulary of a domain, which facilitates the

understanding and writing of new solutions.

1.2 Goals

The main goal of this work is to propose a Domain Specific Language (DSL) for creating

multimedia service chains based on VMS. This DSL is called L-PRISM (Language for

Programming IoT Sensors for Multimedia) and is based on YAML (YAML Ain’t Markup

Language) [39]. L-PRISM can also be used as a conceptual base for developers to imple-

ment and virtualize multimedia applications using the VMS concept. These virtualized

applications could be published, aiming that other developers can use these simply using

L-PRISM. Our proposal will use the concepts of virtualization, Edge Computing (EC),

Internet of Media Things (IoMT), and DSL.

L-PRISM addresses the essential components and attributes of multimedia service

chains. It should be noted that, as other domain languages, it focuses on creating solutions

based on already developed tools or VMS, so it does not address the VMS implementation

process itself, but how VMSs can be used together to build complex solution or multimedia

service chain.

1.3 Main Contributions 25

1.3 Main Contributions

This work provides the following contributions:

• Propose L-PRISM, a DSL designed to create multimedia services chains based on

VMS.

• ALFA 2.0: ALFA Extension for the Integration of DSL L-PRISM in ALFA.

• Evaluation of the proposal for creating multimedia service chains based on VMS

using L-PRISM with an experiment with software developers.

1.4 Dissertation Organization

The remainder of this document is organized as follows. Chapter 2 depicts the background

of our research. Chapter 3 presents related work. We present the L-PRISM proposal and

development process in Chapter 4. The L-PRISM metamodel is discussed in Chapter 5.

Chapter 6 presents ALFA 2.0 and how L-PRISM was integrated into the ALFA platform.

In Chapter 7, we present an evaluation of our work. Chapter 8 brings main conclusions

and future work.

Chapter 2

Background

This chapter presents the main concepts used in this dissertation. Section 2.1 presents

how IoMT arises. Section 2.2 presents concepts related to virtualization and how it can be

applied in the field of IoMT. Section 2.4 presents the main concepts about domain-specific

languages (DSL) and mentions some of the most prominent ones.

2.1 Internet of Media Things - IoMT

The core concept of Internet of Things (IoT) is to connect omnipresent objects such

as mobile devices, sensors, and actuators through a wired or wireless network [29]. This

allows these objects to interact with each other to create or improve systems. The notable

growth of devices connected to the Internet and the increasing demand for multimedia

traffic have given rise to the Internet of Media Things (IoMT) [20][2].

Generally, sensors are designed to consume the least amount of energy possible, with

little storage memory and low processing power. One way to differentiate traditional sen-

sors from multimedia sensors is that traditional sensors produce scalar data, and multi-

media sensors produce unstructured data [29]. The transmission of data from multimedia

sensors requires higher bandwidth, large amounts of memory, and greater computational

power to process this data.

The authors of [29] conducted a detailed study about IoMT. They presented the

difference between data from traditional sensors and multimedia sensors, as depicted in

Table 2.1.

The characteristics of multimedia data make them bulky and require greater band-

width in their transmission process. For this reason, over time, more efficient and intel-

2.1 Internet of Media Things - IoMT 27

Table 2.1: Comparison of scalar and multimedia IoT data [29]
Required
Parameter

Scalar IoT Data Multimedia Data

Data Size
(Approximate)

Bytes to Kilobytes Megabytes to
Gigabytes

Memory Kilobytes to
Megabytes

Megabytes to
Gigabytes

Processing Kilohertz to
Megahertz

Megahertz to
Gigahertz

Storage Kilobytes to
Megabytes

Gigabytes

Bandwidth Kilobytes per second Megabytes per second
Delay Sensitivity Low High
Power Consumption Low High

ligent network solutions have been developed that cover this problem, such as the case

of Edge Computing (EC) [18], which provides benefits such as low latency, consumption

of bandwidth in the core of the network, better use of resources and perhaps increased

security/privacy [18, 9].

Data transmission in traditional multimedia applications can be point-to-point, point-

to-multipoint, or multipoint-to-multipoint. Instead, IoMT applications would require im-

mense resources to perform point-to-multipoint or multipoint-to-multipoint transmission,

which is challenging for IoMT [40].

With the arrival of 5G networks, the increase in network bandwidth, and the more

multimedia services offered, the demand for higher-quality multimedia content has in-

creased rapidly [3]. This, in turn, has caused networks to adopt new technologies, such as

Software Defined Network (SDN) [17], to facilitate the management of resources within

the network in a scalable, flexible, and dynamic way. Another technology adopted is

Network Function Virtualization (NFV) [32], which broke with the traditional monolithic

software and hardware approach.

SDN and NFV allow complex applications to be created on distributed virtual plat-

forms, executing network functions as if they were an application but in a virtual machine

(VM). Thus, their administration and management become more straightforward. SDN

and NFV are two enabling technologies of 5G networks [17] that offer the possibility of cre-

ating QoE-compliant value-added multimedia services, such as high-quality, low-latency

3D/4K/8K video streaming.

2.2 Virtualization Applied to IoMT 28

Traditional applications aim to comply with Quality of Service (QoS), unlike multime-

dia applications that must also focus on Quality of Experience (QoE). According to [10],

QoE is “the degree of pleasure or annoyance to an application or service user. It results

from the fulfillment of their expectations regarding the usefulness and/or enjoyment of the

application or service in light of the personality and current state of the user.”, which

makes it difficult to define whether an application is QoE compliant, unlike the QoS that

is responsible for measuring the performance of an application, in the case of IoMT the

performance from the perspective of the network.

2.2 Virtualization Applied to IoMT

Virtualization is the logical abstraction of physical devices within a network through the

implementation of software [1], which allows modification, management, and updating

to be carried out more easily. Virtualization applied to sensors is not a new idea but

emerging as a viable solution for IoT environments. There are different reasons why

adopting virtual sensors is an alternative to face the challenges of IoT. Some of these are

presented by [42] and are listed as follows.

• Heterogeneity of physical sensors: The great variety of sensor providers means

they have different characteristics, so in physical environments, the coexistence of

sensors from different providers is complex or difficult to maintain [42, 23]. With

sensor virtualization, the lower-level interface is decoupled.

• Impossibility to build a physical device: The costs of physical sensors can

be an obstacle in the system development process. Sensor virtualization is a much

more accessible alternative in terms of costs [42, 24].

• Reuse physical sensors to increase ROI (Return Of Investment): Virtual

sensors can be used in different services; unlike their physical peers, which can only

work in one system, virtual sensors can be part of different systems using the existing

fabric [42, 24].

• Increase fault tolerance: Monitoring physical sensors is a challenge, either due

to the specific characteristics of each provider or the complexity of accessing their

monitoring services. Sensor virtualization is one alternative that can help make

sensor-based system monitoring less complex and more accessible to data [42].

2.2 Virtualization Applied to IoMT 29

The use of virtualization in IoT environments makes these more agile, robust, and

profitable since it would reduce the number of physical devices needed, the network could

be easily segmented, and security policies could be more easily applied to virtual sensors

[28].

One technology that has greatly impacted networks is Network Function Virtual-

ization (NFV), a mechanism for abstracting network functions such as firewalls, load

balancing, route calculation, Etc [1]. On-demand NFV deployment improves scalability

and elasticity to build self-contained and cost-effective applications. NFV optimizes com-

puting capabilities such as memory, storage, and network, unlike their physical peers who

have limited these resources.

Implementing IoMT applications in the cloud or edge and their distribution within

the network nodes have presented challenges, either due to the particular characteristics

of these flows or because they require more resources for their correct processing. One

way to deal with these challenges is to use virtualization. However, traditional virtual-

ization or virtualization based on hypervisor is not the most appropriate method since

this virtualization method requires more computing resources. The virtualization based

on hypervisor installs a complete operating system in a virtual machine, which generates

a greater use of computational resources, and the images used for virtualization are big.

Lightweight virtualization in recent years has positively impacted IoT environments,

as it brings benefits such as fast startup, low deployment costs, and energy efficiency [33].

Virtualization based on containers is a lightweight alternative to virtualization based on

hypervisor. The concept of "containerization" is not new in virtualization, but it has

become very relevant in recent years. Docker [15] is a tool that uses containers, where

processes or applications can run simultaneously within a container, it can also be used

to create services in different containers and these interact with each other.

The introduction of Edge computing brought with it advantages such as latency re-

duction, traffic reduction, and context awareness [9]. It also brought new challenges, such

as resource limitations in edge nodes. Lightweight virtualization based on container is an

alternative to meet these challenges, as it offers the following advantages [9].

• Quick creation and initialization of virtualized instances [9].

• High density of applications, thanks to the fact that the images used are smaller

than virtualization based on hypervisors [9].

• Reduced overhead, virtualization based on container runs its processes on the same

2.3 V-PRISM and ALFA 30

kernel, which reduces power consumption on the host machine [12].

As mentioned above, the idea of virtualization is not recent, and there are different

areas where this technology is used. Virtualization applied to multimedia sensors brings

with it all the advantages of IoT sensor virtualization. Additionally, different approaches

can be applied to address IoMT challenges.

Adopting virtual sensors in IoMT is an excellent strategy to address the challenges

it brings. A software component emulating a multimedia device is called a Virtual Mul-

timedia Sensor (VMS). Virtualization based on container helps make VMS development

more accessible, as it allows the best-suited technology and requirements to be used to

each VMS [42].

2.3 V-PRISM and ALFA

2.3.1 V-PRISM

V-PRISM is an architecture proposed by [42], aimed at managing and orchestrating vir-

tualized multimedia applications in an Edge Computing (EC) environment. V-PRISM is

divided into three levels; cloud, edge, and things as illustrated in Figure 2.1. The cloud

tier is big data centers that have almost unlimited computing and network resources.

These data centers are located a long distance from things, which causes higher latency

between the cloud and things. Elements that are hosted at this tier are IoMT applications.

The Edge level is the intermediate layer between things and the cloud, where the comput-

ing and network resources are smaller compared to the cloud, but the distance between

this layer and things is smaller, so latency decreases considerably. The elements that are

hosted at this level are mostly Edge Nodes, Virtual Devices (VD), Virtual Multimedia

Sensors (VMS), V-PRISM Manager and in some cases IoMT applications. Multimedia

devices are located in the things level. Generally, the elements at this level have limited

computing and network resources, so it is difficult for them to process and store data.

The objective of this level is to produce data streams.

2.3 V-PRISM and ALFA 31

Figure 2.1: V-PRISM three-tier architecture overview [42].

To improve the understanding of this architecture, we point out that a VMS and a

VD are virtualized applications that will process a multimedia stream. The virtualization

of these applications follows the concept of Network Functions Virtualization (NFV) but

is oriented only to multimedia applications; for what we could say that a VMS is a

Virtualized Network Function of multimedia types (VNF - Multimedia).

In Figure 2.1, the process of a multimedia flow produced by a multimedia device in

the things tier is sent to a VD, which will be in charge of retransmitting the multimedia

flow to the VMS that requests it. The VMS will commonly perform some operation on

the multimedia flow and finally will send this multimedia stream to another VMS or some

IoMT application.

2.3.1.1 VMS Categorization

V-PRISM categorizes virtualized multimedia applications to make it easier to organize

and understand these applications. The categorization depends on the abstraction of the

type of multimedia stream the virtualized multimedia application offers. To carry out this

categorization [42] coined two new terms Types of VMS and Types of VD, where Type of

VMS refers to a class and VMS to an object. The categorization follows two purposes,

to categorize the virtualized applications according to the level of complexity (from the

simplest to the most complex), so it also allows directing this type of categorization to the

amount of computing and network resources to instantiate these virtualized applications.

The second purpose is to provide templates for each type of virtualized application (VMS)

2.3 V-PRISM and ALFA 32

to facilitate developers’ use of these VMS.

Figure 2.2 categorizes the types of virtualized multimedia applications, or as [42] calls

VMS, into three categories. VMS as thing, when VMS is in charge of forwarding media

streams. VMS as Process, when the VMS, apart from forwarding the multimedia streams,

also applies some function on this stream. VMS as Service, when the VMS applies high-

level abstract functions to media streams.

Figure 2.2: VMS Hierarchical Categorization [42].

Figure 2.2 also presents a second level of categorization, where virtualized multimedia

applications can be categorized as:

• Replicator : VMS in this category abstracts all the characteristics and behavior of

physical multimedia devices. These VMS do not change the media streams since

their primary function is to forward multimedia streams. The computational re-

sources required to run this type of VMS are low and can be run on edge nodes with

low capacities.

• Improver: VMS in this category fulfill the function of adding some type of function-

ality to IoMT applications, such as; for example, security for multimedia streams

produced by a physical device.

• Converter: VMS in this category address one of the main challenges of IoT, which

is the heterogeneity of things since these VMS are responsible for transforming

multimedia streams according to the needs of multimedia applications.

• Selector: The VMS in this category receives multiple media streams and returns

a single multimedia stream. A characteristic of these VMS is that the different

multimedia streams it receives must be the same type.

• Aggregator: A VMS in this category fulfills the function of receiving multiple mul-

timedia drawings and returning a single multimedia stream. Multimedia streams

2.3 V-PRISM and ALFA 33

receiving this type of VMS must be of the same type.

• Detector: The VMS in this category detects a specific event in the multimedia

stream. It is common for VMS of this type to use Artificial Intelligence techniques

to process the multimedia streams.

• Transformer: The VMS in this category fulfills the function of changing the nature

of the multimedia stream it receives. An example of this type of VMS is the video-

to-text stream converter.

2.3.1.2 V-PRISM Logic Components

V-PRISM follows the ETSI [13] meta-specification and, as a general specification, ad-

dresses the challenges of IoMT in Edge Computing environments. The main components

of V-PRISM fulfill the function of processing multimedia streams produced by multimedia

devices and consumed by IoMT applications. As described above, multimedia applica-

tions are generally implemented in the cloud, and the physical devices that produce the

multimedia streams are at the lowest layer of this architecture (things). The processing

of multimedia streams produced by physical devices is performed by Virtual Multimedia

Sensors (VMS).

The V-PRISM architecture presents a set of components, which we briefly describe

below:

• Virtual multimedia sensor: A Virtual Multimedia Sensor (VMS) is the architectural

component in charge of processing multimedia streams from Physical Devices (mul-

timedia things). Two types of entities can use the data produced by a VMS. The

first is the IoMT applications, and the second is another or other VMS. Therefore,

VMS can form a VMS chain, which we call multimedia service chains based on VMS

in this work.

• Virtual Device: A Virtual Device (VD) is the architectural component in charge of

receiving the flow or multimedia flows produced by the physical devices; only a VD

can be connected to a physical device. VD is independent of the type of multimedia

stream since it is only responsible for transporting the multimedia streams. The

relationship between the VD and VMS is one-to-many since the VD also plays the

role of replicating multimedia streams and sending these streams to different VMSs.

2.3 V-PRISM and ALFA 34

• VMS Registry and VMS Request Manager: The VMS Registry component is used to

manage and provide a list of descriptors for the VMS types available on each Edge

Node. The VMS Request Manager (VRM) component is responsible for receiving

requests to create or delete a VMS.

• Master: The master component has an overview of the computing and network

resources of the edge nodes. Maestro was specified based on the multi-access edge

orchestrator component proposed in [16]. Maestro is the first component executed

after VRM.

• Resource Allocation Manager (RAM): It is the component in charge of defining

which Edge Node a VMS will be installed. This component manages information

such as the amount of CPU, memory, and storage of the Edge Nodes. One of the

premises of this component is that Edge Nodes have limited resources and must be

well managed to guarantee the Quality of Service (QoS) of IoMT applications.

• Virtualization engine: This component is in charge of providing interfaces for the

virtualization of the main components (VD and VMS). Virtual Engine is created to

address the heterogeneity of the technologies used to develop VMS. It also advocates

the use of lightweight virtualization systems, such as containers, since one of the

characteristics of V-PRISM is the limitation of computing and network resources

on Edge Nodes.

• Edge Node Manager (ENM): This component is in charge of managing all Edge

Nodes. This component manages information about how many and which edge

nodes are available at any given time. ENM’s responsibilities are: receiving failure

of virtualized resources, performance measurements of the virtualization infrastruc-

ture, providing management elements of core V-PRISM components, and preparing

the infrastructure to run the VMS images.

• Environment Monitor & VN Monitor: This component provides statistical data

about the VMS and VD.

• VMS Administrator: This component is responsible for creating, deleting, and man-

aging VMS. It also provides monitoring information, such as metadata, to VN mon-

itor. This component must be run on each edge of V-PRISM.

• VD Manager (VDM): This component is responsible for creating, deleting, and

managing VD. Like VMS, VD provides monitoring information that VN monitor

2.3 V-PRISM and ALFA 35

will use. One of the requirements to create a VD is that the Edge Node where the

VD is created must have access to the physical device. This component must be

run on each edge of V-PRISM.

• Stream Sharer (SS): This component allows a VMS to send a multimedia stream to

different destinations.

2.3.1.3 V-PRISM Deployment

As seen so far, V-PRISM has different components which can be implemented in different

Edge Nodes. V-PRISM defines that each Edge Node must have at least the Virtualization

Engine component installed and one or more VMS or VD types.

To enter the V-PRISM environment, the Edge Nodes must have registered in the Edge

Node Manager ; with this, the Edge Nodes can be identified with a unique ID later to use

that ID in the VMS registration and VD.

One of the requirements of V-PRISM is that the Edge Nodes must have some network

communication with each other in order to make the architecture more secure.

2.3.1.4 Initialization of a VMS

The initialization of a VMS has two phases. In the first phase, the VRM component

defines whether the request is valid. In the second phase, if the request is valid, the

Master component creates the VMS. Figure 2.3 shows the sequence diagram of creating

a VMS, where it can be seen that the Service Registry component sends a request to

Maestro to create the VMS. Maestro requests the Edge Node Administrator to retrieve

the list of Edge Nodes available and that have already executed the requested VMS,

having the list of candidate Edge Nodes and the characteristics of the VMS is sent to the

Resource Manager and through the use of a resource allocation algorithm, it will choose

which Edge Node VMS will run. Finally, this information is taken to the VMS manager,

who will call VM to create the VMS.

2.3 V-PRISM and ALFA 36

Figure 2.3: VMS creation sequence diagram [42].

2.3.2 ALFA

ALFA is the implementation of V-PRISM, presented as proof of concept (PoC) by [42].

ALFA instantiates all the components presented in the V-PRISM three-tier architecture.

The source code, as well as additional information for the use of ALFA, is published on

GitHub1.

2.3.2.1 ALFA Main Technologies

The main technologies used to implement ALFA aim to represent the interaction of the

technologies of the V-PRISM components to generate an environment where VMS and

VD can work in Edge Computing environments.

As mentioned above, V-PRISM does not restrict the technologies used to develop VMS

or VD. However, in the implementation, ALFA highlights that GStreamer and OpenCV

were mainly used to implement VMS and VD.

Each VMS or VD is a software instance that is executed within a Docker container,

and its objective is to provide a multimedia flow as if it were a microservice.

The communication protocol used for the implementation of the VMS and VD is

UDP, therefore, the physical devices on the level of things send their multimedia streams

1https://github.com/midiacom/alfa

2.3 V-PRISM and ALFA 37

to VDs using UDP.

1. Edge Nodes

In ALFA, the Edge Nodes are devices with storage, memory, and CPU capable of

running Docker, which are accessible through a TCP/IP network. ALFA allows

the registration of different Edge Nodes so that they can perform all V-PRISM

tasks. However, for the Edge Nodes to be able to communicate, it is necessary to

use Docker Swarm. Docker Swarm is used since it offers load balancing, scaling,

multi-host networking, and security.

After an Edge Node has been registered in ALFA, it will be necessary to install

the different VMS types and VD types that will be used in this Edge Node. Not

all VMS and VD need Internet access, only VMS that communicates with IoMT

applications in the cloud.

2. Docker

ALFA uses Docker as a lightweight virtualization tool since it virtualizes solu-

tions using fewer computational resources than other virtualization tools, such as

hypervisor-based virtualization. A Docker container represents the virtualization of

each of the VMS or VD, so it is possible to manage the life cycle of the containers

using the Docker API.

Docker also has a mechanism to capture the monitoring data of each edge node and

container, so it is possible to use the different components of V-PRISM; for example,

the resource allocation component.

3. VD and VMS in Containers

VMS and VD are run in Docker containers. As mentioned above, V-PRISM does

not restrict the types of technology used for VMS or VD development. ALFA uses

GStreamer as the main library to develop different VMS and VD since it offers

robust tools to manipulate multimedia transmission.

To start a Docker container, a container image must first be created. This image

contains a Dockerfile, which contains all the packages needed for the installation

of this image. Once the Dockerfile is created, it will be used to create the Docker

image using the Docker CLI. ALFA provides Script to install the images available

in ALFA easily.

4. Main APIs used

2.3 V-PRISM and ALFA 38

ALFA uses two different APIs. The first is the Docker API, which is used for con-

tainer orchestration and lifecycle, that is, containers’ orchestration (create, delete,

monitor, and configure). The second API is ALFA REST API, and was developed

by the authors to enable ALFA for users. A web application was also developed

which uses the ALFA REST API. This web application is presented in more detail

below.

5. Web interface application ALFA web application was developed to manage

ALFA infrastructure; this application communicates with the APIs implemented

in the server through an HTTP connection. The main modules of the ALFA web

application are:

• VMS: Lists all VMS created on all Edge Nodes.

• Virtual Device: Lists the VDs created in all the Edge Nodes, which are in-

dependent of each IoMT application and can be used as a multimedia data

source.

• Edge Nodes: Lists the registered Edge Nodes, their status, and the number of

instances running within this Edge Node.

• Locations: Handles all places where a physical device can be deployed.

• VMS types: This shows the list of images (VMS types) available to be used.

It also allows the registration of new VMS-type Docker images.

• Device Types: This shows the list of images (Device types) available to be used.

It also allows the registration of new VD-type Docker images.

As mentioned, each VMS and VD are created in a container, and the communi-

cation between them is done through a publish/subscribe service. To perform this

action, ALFA uses the MQTT2 protocol within each VD, which will start or stop

the multimedia transmission.

6. Resource allocation management Different methods for resource allocation are

adapted to the V-PRISM architecture. In ALFA, the Round-Robin algorithm is

used for the allocation of resources. This method is one of the least complex and is

capable of running in machines with few resources.

2http://mqtt.org/

2.4 Domain Specific Language (DSL) 39

2.3.2.2 Implemented Virtual Devices

Initially, each VD is a Docker image that contains the source code of the VD at the soft-

ware level. When executing these images, we create containers that work as an available

microservice. There are two types of communication between the VD and VMS. The first

is the media stream (received by UDP) which flows in only one direction. The second

is the control data (received by TCP), which can flow in both directions, such as text

messages sent to an MQTT server. Among the VDs implemented in ALFA, the VD RTSP

to UDP video, USB Camera, Mic and SmartPhone RTSP Server stand out.

2.3.2.3 Implemented Virtual Multimedia Sensors

Like VDs, VMSs are encapsulated in Docker images containing the source code that

will process the multimedia stream and deliver the results to another VMS or an IoMT

application.

Among the VMS implemented in ALFA, there are Video Greyscale, Video Crop, Video

QR code detection, Noise detector, face counter, and Video Mosaic.

In this work, we use V-PRISM and ALFA for different stages of our proposal. We

also present an extension of ALFA, oriented to the administration of multimedia service

chains. This extension is called ALFA 2.0 and is presented in more detail in Chapter 6.

2.4 Domain Specific Language (DSL)

The development of computer tools for specific domains is increasingly complex, either

because of each domain different characteristics or the different fields of knowledge that

each domain needs. For example, different fields must be considered to develop a modern

web system, such as usability, security, persistence, and the different business rules [21].

An alternative to developing these tools is the adoption of a Domain Specific Language

(DSL), which allows implementation solutions based on already developed technologies,

where users of a DSL would not have to worry about the encoding technologies with which

these base technologies have been developed.

A DSL allows for better abstraction compared to commonly used programming lan-

guages. However, developing a DSL is difficult since different tools must be provided to

support the DSL development and maintenance process, ensuring its consistency, evalu-

2.4 Domain Specific Language (DSL) 40

ation, and maintainability [21].

In [21], the authors present six categories, which address the characteristics a DSL

must have, as detailed below.

• Notation: Determines if the models or programs developed with the DSL are

presented in the textual, graphical, or tabular form [21].

• Semantics: Refers to the meaning of the models developed with the DSL; the

semantics can be of two types, translational and interpretive. Translational seman-

tics generate a program in a language based on the model. Interpretive semantics

executes a model without any previous translation [21].

• Editor support: It refers to the editing mode of the models developed with the

DSL. There are two editing modes, free-form editing, where the user can freely

write and edit their model, and projection editing, where the user has to work with

pre-defined layouts to write and edit their models [21].

• Validation: The DSL can identify structural, syntactic, and semantic disagree-

ments and inconsistencies in the models developed by the users. There are two

types of validation: structural and semantic validation [21].

• Tests: The tests aim to debug the language; for this, you can perform semantic

and syntactic tests [21].

• Compatibility: It refers to the fact that the metamodels of a DSL can include

structural characteristics of other metamodels [21].

2.4.1 Development of a DSL

The DSL can be developed in two ways, both internal and external: Internal DSLs are

designed to work with the base language and are limited by the grammar of the host

language, which limits the editor’s functionality since the editor does not know the gram-

mar of the host language. Unlike the internal DSL, the external DSL is implemented

independently of the host language, so it has its grammar and editor; this makes the DSL

more flexible, and the editor can help programmers develop solutions for the DSL domain.

This dissertation uses the term DSL when referring to an external DSL.

The DSL development process consists of five stages [30].

2.4 Domain Specific Language (DSL) 41

• Domain analysis: In this stage, the domain for which the DSL is being developed

is analyzed. To perform this task, it is necessary to obtain and understand the

concepts and relationships of the domain, and it is also important to define the

limit or limits of the domain.

• Design: In this stage, the design of the DSL is defined. To carry out this task, it

will be necessary to use the domain problems found in the previous stage, and each

problem will be evaluated and coded.

• Implementation: In this stage, the language is implemented based on the de-

sign defined in the previous stage. To perform this task, tools available for DSL

implementation can be used.

• Evaluation: In this stage, the new DSL is evaluated in order to know if the DSL

meets the business needs.

• Maintenance: It is a stage after the startup; this stage is carried out continuously

to update the new DSL to the continuous changes of the business.

The DSL analysis and design stages depend directly on the study of the domain for

which the DSL is proposed. Therefore, a specific process is not defined for the analysis

and design stages since they vary according to the specific domain.

2.4.1.1 Implementation of a DSL

There are two approaches to implementing a DSL, the compiler approach and the inter-

preter approach. In the compilation approach, the compiler translates programs written

with the DSL into a low-level language for later execution by the computer. In the in-

terpretation approach, programs written with the DSL will be interpreted by a compiler

designed for the DSL. The interpretation approach leads to a complex task since it will be

necessary to implement a compiler, which requires a lot of effort and time. In addition,

it should be noted that DSLs are lightweight languages; therefore, their implementation

must be fast and with as little effort and knowledge as possible.

According to [30], the implementation stage of a new DSL must comply with three

work components: 1) The abstract representation that will include the definition of the

language structure, 2) The editor, which will allow the user to implement, manipulate

the abstract representation and 3) The generator, which will transform the abstract rep-

resentations into a coded executable.

2.4 Domain Specific Language (DSL) 42

1. Aspects of language structure

To define the structure of a DSL, there are mainly two approaches.

• The first approach is the grammar-based approach, where the language will

be defined directly by the grammar of the language; usually, Context Free

Grammar (CFG) is used for the formal definition of the language syntax; the

metalanguages of the CFG are modified to fit appropriately with the new DSL

definition.

• The second approach is model-based ; this approach does not use grammar

rules; on the other hand, this approach uses metamodels to define the structure

of the language. Programs written with the model-based approach conform to

the metamodel defined by the language developer; Furthermore, the structure

of the metamodel of the language is used to describe the abstract syntax and

not the concrete syntax. One of the main advantages of using this technique

is that the model-based approach provides a higher level of abstraction of the

domain than the grammar-based technique.

In this work, we use the model-based approach to define the structure of our DSL.

This approach will help us better represent the concepts, attributes, and relation-

ships between the components of a multimedia service chain based on virtual mul-

timedia sensors.

2. Aspects of the Language Editor

To define the DSL editor, the structure defined in the previous stage must be con-

sidered. Based on this structure, it is defined how users of the new language will

edit solutions based on the new DSL. Users will be able to edit their solutions, either

grammar-based or model-based. Two approaches can approach the definition of the

editor of a DSL:

• The first approach is parser-based editing . In this type of editing, users

interact with the concrete syntax; the process consists of users inputting se-

quences of characters to a text buffer, then a parser matches this sequence with

the language’s grammar, thus building an Abstract Syntax Tree (AST). This

approach is commonly used when the DSL structure is defined following the

grammar-based approach.

• The second approach is projection editing (i.e., parser-less editing), also

called parser-less editing; since you do not need a parser to build the AST,

2.4 Domain Specific Language (DSL) 43

there is no need to transform the concrete syntax into the abstract syntax.

This type of edition depends on the abstract representation of the domain and

can be represented in textual, graphical, or tabular form. This approach is

commonly used when the DSL structure is defined following the model-based

approach.

In this work, we define the editor of our DSL using the projection-based approach

since language modularity, notation freedom, and representation flexibility of solu-

tions based on the new DSL can be easily achieved using this approach.

3. Aspects of language semantics

The semantics of the language define step by step how the computer executes the

solutions implemented with the language of the new DSL, and there are two ways

to define the semantics of a DSL:

• Translational semantics or translation semantics define the meaning of the

language and how it will be translated into a different language; commonly,

DSL languages are translated into a general-purpose language such as Java,

JavaScript, C, Python, Etc. An example of translational semantics is compilers,

which translate a high-level language into a low-level language.

The translation of a language can be implemented in two ways:

(a) Model transformation (i.e., from model to model) consists of translating

the DSL language into a different language independent of the specific

syntax of both languages. Model transformation can be done using two

approaches. The first approach is the classic one, which consists of building

a destination AST while traversing the source AST. The second approach

builds a relationship between the source AST and the destination AST.

(b) Code generation (that is, Model-to-Text) consists of directly transforming

the source language into the source code of the target language. The source

language must have embedded source code from the target language to

implement this translation.

• Interpretive semantics , unlike translation semantics, directly translates the

solutions implemented by the DSL language, or in other words, executes the

source language directly without translating it into another language. The

semantic actions are executed while the AST is traversed to carry out this

process.

2.4 Domain Specific Language (DSL) 44

In this work, we define the language semantics of our DSL using translational se-

mantics; additionally, we use model transformation using the classical approach for

language translation.

In short, DSLs are language specifications that describe in detail the features, syntax,

and behavior of systems in a specific field [27]. Over the years, different domain languages

have been proposed to help develop network systems and architectures, such as YANG

[34], and TOSCA-NFV [36], as will be described in the following chapter.

Chapter 3

Related Work

This chapter presents the works related to using DSL, templates, metamodels, etc., to

develop IT solutions. Our primary focus is whether any of these works suits our require-

ments. Additionally, they help us better understand why, how, and for what these tools

were designed, and we also mention some works that use some of these tools in their

solutions.

TOSCA-NFV is a language that we take as the basis for our proposal; for this reason,

we detail this language more deeply.

3.1 TOSCA-NFV

The TOSCA-NFV profile is a specific data model for Network Function Virtualization

(NFV) based on the TOSCA language. This profile aims to capture in a template the

requirements for the implementation and behavior of Network Services (NS) based on Vir-

tualized Network Functions (VNF) to later create the instances based on the specification

[36].

The TOSCA metamodel uses different templates to describe cloud network services

workloads; The main templates are the node template, responsible for modeling the service

components, and the relationship template, responsible for modeling the relationships

between the service components. Additionally, TOSCA provides templates for node types

and relationship types; these templates help define a service’s life cycle operations. Finally,

a service template, which groups the different templates described above, will be processed

by an orchestration engine.

TOSCA-NFV uses the concepts of NFV and mentions that end-to-end services in NFV

3.1 TOSCA-NFV 46

require software tools for their management and orchestration and that most of these tools

use Network Service Descriptors (NSD) to capture the requirements of implementation

and operational behavior of network services (NS).

In order to describe the network services based on NFV, TOSCA implements the NFV

template, which describes the attributes and requirements necessary to implement this

service. It also presents an NFV orchestrator (NFVO), which is in charge of managing

the life cycle of the network service; a VNF Manager (VNFM), which manages the life

cycle of a VNF; and finally VIM, which is in charge of managing the resources virtualized.

The template in charge of describing a network service is called Network Service De-

scriptor (NSD); this describes the relationship that exists between the VNF and possibly

the Physical Network Functions (PNF) and their connections through Virtual Links (VL).

Below are the different TOSCA-NFV templates [36]:

• VNF Descriptor (VNFD) is a template describing a VNF in terms of requirements

and behavior. It also contains requirements for connectivity, interface, and virtual-

ized resources such as CPU, RAM, and disks.

• VNF Forwarding Graphical Descriptor (VNFFGD) is a template that describes the

or part of the network service topology, referring to the VNFs, PNFs, and VLs.

• Virtual Link Descriptor (VLD) is a template that describes the links between VNFs,

PNFs, and network service endpoints.

• Physical Network Function Descriptor (PNFD) is a template that describes the

connectivity, interface, and KPI requirements between the physical device and VL.

• Network Service Descriptor (NSD) is a template NFVO uses to manage the NS life

cycle. Within the NSD structure, one can find zero or many VNFDs, zero or many

PNFs, zero or many VLDs, and finally, zero or many nested NSDs.

The templates proposed by TOSCA-NFV are based on the TOSCA-simple-Profile-

YAML specification; they use this specification based on how a VNF is implemented. For

example, they describe that the VNFD template is similar to the specification of a Virtual

Deployment Units (VDU), and for this reason, the VDU can be considered a subsystem

of a VNF and thus be part of the VNFD template.

The description of the different templates of the TOSCA-NFV metamodel is composed

of a series of elements that are grouped into seven main groups [36].

3.2 Other languages 47

• Data Types

• Artifact Types

• Capability Types

• Requirements Types

• Relationships Types

• Interface Types

• Node Types

These groups describe different elements that will be part of the TOSCA-NFV tem-

plates. These elements can be part of other elements as an aggregation function.

In this work, we use the TOSCA-NFV metamodel as a reference for implementing

our DSL. We will use the elements partially or totally; in some cases, we will add new

attributes to the existing elements. This is shown in more detail in Chapter 5, where we

compare the TOSCA-NFV metamodel and the metamodel of our proposal.

3.2 Other languages

A domain language related to the network area is YANG [34], a data modeling language

used to describe network configurations and telecommunications services. YANG can

be used for NETCONF-based operations, including configuration, data state, remote

procedure calls (RPCs), and notifications. YANG models can be translated into XML

syntax, allowing applications using XML parsers to operate and manipulate YANG [7]

models. However, the YANG language does not have the features required to describe

virtual media sensors.

OpenStack developed a project for the orchestration of applications in the cloud. That

project is called HEAT [31]. Heat is a template that allows the configuration of multiple

composite applications in the cloud. HEAT additionally has an orchestration engine to

launch applications [31]. HEAT presents its different components through the YAML

language, with which you can configure instantiation, networking, storage, and pretty

much everything that OpenStack offers [31].

3.2 Other languages 48

The work of [38] proposes an architecture for federated network environments based

on OpenStack. This presents OpenStack Federation Flow Manager (OSFFM), an orches-

tration agent layered to parse a template HOT [31]. The authors extend HOT intending

to be able to implement distributed edge computing services. For this, it creates two types

of templates: Microservices template that is fully compatible with HOT and distributed

services template compatible with the proposed HOT extension. It should be noted that

these templates are based on the YAML serialization language, as it is interoperable,

open, and human-friendly.

Mininet-NFV [11] proposes a framework for NFV orchestration to implement and

operate NFV or network services on Mininet. This work takes as a reference that Mininet

is an excellent tool for agile experimentation of networks/SDN/NFV and that different

works use Mininet for prototyping, testing, or implementation of NFV-based solutions.

However, it stands out that none of these works uses TOSCA-NFV as a data model

to create templates or descriptors of their solutions [11]. The primary operations of

Mininet-NFV for the use of TOSCA-NFV are that it takes an inventory of the allocation

of virtual and physical resources, it uses a VNF descriptor (VNFD) that defines the

behavior information and deployment of VNF and deployment of end-to-end network

services in templates using decomposed VNFs [11]. Mininet-NFV supports parameterized

TOSCA-NFV templates and network definitions via virtual link descriptors.

In [32], the authors propose an extension of the TOSCA-NFV model, allowing basic

security functions to be organized effectively, allowing clients to use these functions as a

service, and establishing high-level security policies for VNFs. That study concludes that

open-source VNF orchestrators do not allow establishing security policies in the life cycle

of NFV services. [32] extends the TOSCA data model, incorporating a set of security-

related attributes such as security level, tenant domain, members, and security groups,

as shown in Figure 3.1. He also develops a security orchestrator prototype that uses a

TOSCA analyzer and software-defined tenant access control. They also validated this

security orchestrator prototype.

In contrast to the languages, templates, and data models presented, our L-PRISM

proposal focuses on using lightweight virtualization to create IoMT applications (create

VMS) to deploy VMS chains (Multimedia Service Chains) in Edge Computing environ-

ments. L-PRISM abstracts most of the variables that influence the behavior of VMS and

its interaction within the network, so L-PRISM allows:

• Register VMS in architectures that have integrated L-PRISM more simply.

3.2 Other languages 49

Figure 3.1: Example of extended TOSCA template for VM description (the extended
security attributes are in bold) [32]

• Present VMS clearly and the summarized way so that third parties can use these

VMS without needing advanced knowledge about their implementation.

• Create multimedia service chains using VMS.

• Manage multimedia service chains, as well as their components.

Table 3.1 compares some languages, templates, and data models. The last row of the

table presents our L-PRISM proposal. Each column in the table means.

• IoMT: Analyzes some of the languages, templates, and data models in IoMT ap-

plications.

• Edge Computing: Analyzes if some languages, templates, and data models work

on edge computing environments.

• Light Virtualization: Analyzes if some languages, templates, and data models

were designed to work with some light virtualization method to virtualize its com-

ponents.

• Service Chain: Analyzes if some of the languages, templates, and data models

support the definition of service chains in their models.

3.2 Other languages 50

Table 3.1: Compares languages, templates, and data models

Papers

Io
M

T

E
d
ge

C
om

p
u
ti

n
g

L
ig

ht
V

ir
tu

al
iz

at
io

n

S
er

vi
ce

C
h
ai

n
YANG [34] - - - ✓
HEAT [31] - - - ✓
OSFFM [38] - ✓ - ✓
TOSCA-NFV [36] - ✓ - ✓
Mininet-NFV [11] - ✓ ✓ ✓
TOSCA-NFV Security [32] - ✓ - ✓
L-PRISM ✓ ✓ ✓ ✓

Chapter 4

L-PRISM Proposal and
Development Process

This chapter introduces L-PRISM, a Domain Specific Language (DSL) [21] that describes

multimedia service chains based on virtual media sensors (VMS). As mentioned in previous

chapters, L-PRISM is based on serialization language TOSCA-NFV [36] but focuses on

lightweight virtualization technologies and Edge Computing. L-PRISM is based on the

YAML serialization format for its simple, readable, and friendly syntax.

The main advantages of L-PRISM are:

• L-PRISM allows describing, implementing, and managing multimedia service chains

based on VMS.

• In general, L-PRISM facilitates the use of virtualized multimedia applications or

VMS developed by third parties, so developers of VMS-based solutions do not need

to have advanced knowledge about the technologies or tools used in developing the

components of a multimedia service chain.

• L-PRISM also enables interoperability and portability of multimedia service chains

across different platforms or architectures that have L-PRISM embedded. This

advantage was not tested in this work, so it is proposed for future work.

To develop our Domain Specific Language (DSL) L-PRISM, we follow the implemen-

tation model of an external DSL since our focus is to represent how a multimedia service

chain and its components work. Additionally, external DSLs are more flexible compared

to internal DSLs; this means that by using the external DSL implementation method, we

do not depend directly on the base language that will compile the solutions, with this

4.1 Domain analysis 52

we address one of our secondary objectives, which is to that our DSL can be used as a

theoretical basis for the implementation of future solutions that use the virtualization of

multimedia sensors as a basis.

To achieve the five stages of DSL development, we follow the steps defined in [30],

which are described in the following sections.

4.1 Domain analysis

In this stage, an analysis was carried out on multimedia applications in virtualized envi-

ronments to understand and abstract the main characteristics that influence the correct

functioning of multimedia applications. It should be noted that the abstracted features do

not address the internal implementation of the applications, but only configurable char-

acteristics, non-functional requirements, such as allocation of computing and network

resources, communication requirements, etc.

The work carried out by [19] mentions that service chains or chaining of network func-

tions allow the automatic connection of services in a wired or wireless network. These

service chains can serve different objectives, which makes their components or functions

differ within each type of service chain. The authors of [19] also mention that the Net-

work Functions Virtualization (NFV) and Software Defined Networks (SDN) enable the

possibility that the connection of virtualized network services can be made automatically.

In turn, this would allow the creation of service chains based on Virtualized Network

Functions (VNF).

For our study, virtualization technology allows us to divide multimedia services chains

into levels of virtualized multimedia functions or, as it is called in [42], Virtual Multimedia

Sensors (VMS). The technology used for this division is known as service segmentation

[19]. These virtualized functions can be administered and managed by different applica-

tions; for example, in [3] and [19], they use OpenStack to instantiate the physical part

and create a VNF. This allows for managing computational resources such as CPU, RAM,

and GPU for each VNF.

The architecture proposed by [42] divides the necessary resources for the proper func-

tioning of the VNF into two parts. In the first part, it describes the necessary resources

for sending data; These resources know the nodes that are part of the cloud edge present

within the network, the number of VNFs that can be executed in each cloud edge node,

the latency that exists between the nodes and the application server, the CPU usage

4.1 Domain analysis 53

level, amount of free memory, battery level, resource usage history, Etc. The second part

focuses on resources at the application level, as is the case of CPU, RAM, GPU, and

bandwidth necessary for an application to run correctly.

In the different investigations carried out, various service chains have been observed;

in turn, it can be seen that the components that are part of these service chains are very

similar. For example, [3] presents a teleimmersive multimedia application that aims to

communicate with two users (players) and viewers interacting in a 3D environment. For

this application to work, it is necessary to use a Transformer multimedia 3D (T3D), which

both players will use, and a Replay to allow viewers to connect. In a typical scenario, one

server with all three physical devices (two T3Ds and one Replay) would need to be used

to create this media service chain. However, using virtualization technology, in this case,

NFV, the T3D (vT3D - VNF), and the Replay (vReplay - VNF) could be virtualized. This

chain of multimedia services based on NFV would be composed of two Physical Network

Functions (PNF) that will have to be instantiated, three VNFs, and Virtual Links (VL)

that will be in charge of connecting the entire chain of multimedia services.

At [3], they also present a chain of multimedia services that aims to broadcast live-

streaming events. This chain of multimedia services is composed of a digital signal trans-

former (SDI) to Internet Protocol (IP), a media processor (MPE), a compression engine

(CE), a speech-to-text (S2T) engine, and a network service (NS). In that example, MPE,

CE, S2T, and NS can be virtualized network functions and services, making the mul-

timedia service chain much more efficient and cost-effective. This virtualization-based

multimedia service chain comprises a PNF, different VNFs, and VLs that connect this

entire multimedia service chain.

The variables found in the different studies are presented in Table 4.1, these variables

were described directly or indirectly since some articles mention them as problems to be

solved, and others evaluate their experiments with these variables.

Another analysis that was carried out is the scenarios where different applications have

to interact with each other as if it were a directed graph. During our study, we saw that

complex multimedia applications need to process one or many multimedia streams through

different processes. In our proposal, we call these complex applications as multimedia

service chains, and those in charge of processing the multimedia streams are the Virtual

Multimedia Sensors (VMS).

4.2 L-PRISM Design 54

Table 4.1: Variables for VNF creation

N
et

w
or

k
b
an

d
w

id
th

L
at

en
cy

R
A

M

C
P

U
s

E
n
er

gy

Battisti [42] X X X X X
Alvarez [3] X X X X
Imagane [19] X X X
Zikria [41] X X X X X

4.2 L-PRISM Design

To carry out this stage, we remember that our main objective is to create multimedia

service chains based on virtual multimedia sensors (VMS). In addition to the fact that

we use as a base the architecture proposed by [42], where multimedia service chains can

be implemented in distributed environments, and the virtualization model is lightweight

virtualization or virtualization based on containers. The design process of our DSL has

the following steps.

1. Defining the components of the multimedia service chain: In this step, we

identify the different services and components that will be part of different types of

multimedia service chains.

To better understand the components that are part of a multimedia service chain,

we present Figure 4.1, in which it can be seen that a multimedia service chain is

made up of different elements, each of these is presented below:

(a) Virtual Device (VD): The VDs can be part of one or many multimedia

service chains; consequently, when a multimedia service chain is created, it

does not create VDs; the multimedia service chains subscribe to the VDs.

This may include services for data capture, processing, storage, transmission,

and playback of multimedia content.

(b) Virtual Multimedia Sensor (VMS): The VMS is in charge of processing

the multimedia streams coming from the VD, one of the main characteristics of

the VMS is that the amount of computational resources necessary for its correct

4.2 L-PRISM Design 55

Figure 4.1: components of a Multimedia Service Chain based on VMS

operation is not the same for all solutions, the allocation of these resources will

depend on the multimedia stream to be processed. Also, unlike VDs, VMSs

are created with the multimedia service chain.

(c) Virtual Link (VL): The VLs are responsible for creating communication

from VD to VMS, VMS to VMS, and VMS to an endpoint. It should be noted

that since the lightweight virtualization model is being used, we define the

VLs in the simplest way possible and do not focus on the aspect of network

configuration and management.

2. Container design: In this step, we define the containers that will house the differ-

ent services and components of the chain. Taking into account that each service or

component will be encapsulated in an independent container, which will facilitate

its deployment, management, and scalability.

The container design is defined based on the architecture proposed by [42]; since

we use docker as a lightweight virtualization tool, based on docker and the char-

acteristics of the components of a multimedia service chain, we define the services

necessary that we will use from docker to fulfill our primary objective.

3. Design of the communication between the containers: In this step, we estab-

lish the communication and coordination mechanisms between the containers that

are part of the multimedia services chain. For this, we will use as a base the ar-

chitecture proposed by [42], where the standard communication protocol MQTT is

4.3 L-PRISM Implementation 56

used, and communication interface definition based on docker, where we will create a

swarm where we can register each of the nodes (servers) distributed within a network

and in turn, each container belonging to this swarm will be able to communicate

and exchange data with each other.

As we mentioned before, the communication design between the components of the

multimedia service chain was defined based on the V-PRISM architecture and its

ALFA proof of concept, proposed by [42].

4. Container orchestration definition: The container orchestration will be done

by using the docker API. Multimedia service chains are applications with different

components, so at the time of their creation, there are some requirements, such as.

The VDs are components of the service chain that are already created, so they are

containers with an IP address and an identifier by which we can communicate.

In the case of VMS, since they are not created, it must be taken into account that

to communicate with a VMS, it is necessary to have its IP address; following this

line, the multimedia service chain must be created from the final element backward.

Additionally, the endpoints where the multimedia streams resulting from a multi-

media service chain will be reproduced must have the necessary programs to capture

and reproduce these streams.

5. Resource management design: We leave resource management for future work;

these are presented in greater detail in Section 8.2.

6. Validation and tests: Different tests of different types of multimedia service chains

were carried out. To carry out these tests, virtualized multimedia applications

developed by [42] were used, and their deployment was initially carried out using

docker through command lines in a terminal, later an interface was implemented

within version 2.0 of ALFA. This interface allows to implement complex multimedia

service chains intuitively. ALFA 2.0 is presented in more detail in Section 6.3.2.

4.3 L-PRISM Implementation

To carry out the implementation stage of our DSL, we use the compilation approach since

we focus on the definition of a high-level language which will be translated into a low-level

language in order to be compiled. To complete this stage, we had to comply with the

three components defined by [30], which we detail below.

4.3 L-PRISM Implementation 57

1. Language structure aspect To define the language structure of our DSL, we

followed the model-based approach, which was defined based on the analysis and

design described in Sections 4.1, and 4.2 respectively. As a result, we present the

metamodel of our language summarized in Figure 4.2. We detail this metamodel

in Chapter 5. As shown in Figure 4.2, we present a class diagram describing the

attributes and relationships that are part of a multimedia service chain. In turn,

we separate these elements by color and describe them below:

Figure 4.2: Class diagram of the L-PRISM metamodel

• Elements in green color are the data types; these will form part of the more

complex structures of our metamodel. We represent this process as an aggre-

gation function.

• Elements in lead color represent the types of capabilities that components of a

multimedia service chain might have; for example, the virtualCompute element

groups together the computational capabilities of a virtualized component.

• Elements in purple color represent the artifacts that can be used in a multime-

dia service chain; for example, based on our requirements, multimedia service

4.3 L-PRISM Implementation 58

chains can be implemented in distributed environments, so their components

could be implemented on different servers within a network (host), so when

describing a VMS within a multimedia service chain, it must be defined in

which node this VMS will be implemented.

• Elements in yellow color represent the necessary elements so that the different

components of a multimedia service chain can communicate; for example, the

source element presents the necessary attributes to define from where the send-

ing of a multimedia stream will start, in the same way, the destination element

helps to define the configuration of the destination of the media stream.

• Elements in pink color represent the elements to be created in a multimedia

service chain; for our domain, we define two main elements, vms which repre-

sents a container, and virtualLink which represents the network configuration

between two containers.

• Finally, the orange element is our main element, which describes a multimedia

service chain, this element groups all the elements described above and is the

element to test in future stages.

The metamodel elements of our DSL are presented in more detail in Chapter 5.

Additionally, we present the formal definition and examples of how these elements

would be used with the base language that will be discussed later.

2. Language editor aspects

To define the language editor of our DSL, we follow the projection editing approach,

also called parser-less editor. Our language uses the YAML language as a base since

it offers different advantages [39]:

• Readability: YAML is a data serialization format noted for its readability and

ease of understanding by humans and machines. Its simple and structured syn-

tax makes interpreting and writing YAML code easier than other configuration

or data exchange formats.

• Flexibility: YAML is a flexible format that supports a wide variety of data

structures, such as objects, lists, and dictionaries. This allows us to efficiently

model and represent different aspects of our specific domain, adapting to the

requirements defined in the previous stages.

• Cross-platform support: YAML is a widely recognized standard supported

by various programming languages and platforms. This means that we can use

4.4 L-PRISM evaluation 59

this language in our DSL. Additionally, using YAML will allow our DSL or parts

of it to work in different environments and systems, facilitating interoperability

and adoption by other developers.

• Integration with existing Tools: YAML has broad compatibility with var-

ious tools and frameworks, allowing you to take advantage of the utilities and

libraries already available in the YAML ecosystem. This includes editors, val-

idators, documentation generators, and more, which can improve the workflow

for developers using our DSL.

• Fast learning curve: YAML is a simple and readable syntax that makes it

easy for developers and users to quickly become familiar with our DSL. This

can speed up the adoption process and facilitate collaboration on projects that

reference our YAML-based DSL.

In general, the choice of YAML as the base language for our DSL is based on its

qualities of readability, flexibility, cross-platform support, integration with existing

tools, and fast learning curve. These features will make our DSL intuitive and easy

to use, and in turn, YAML is tailored to our specific needs and makes our DSL

widely accepted by developers.

3. Aspects of language semantics

We follow the translational semantics approach to define the language semantics

of our DSL. Our language, as previously specified, is based on the YAML language

and based on the V-PRISM architecture and its ALFA proof of concept proposed by

[42], where the language to be compiled is JavaScript executed on a nodeJS server.

The solutions implemented with our DSL will be implemented in a file in YAML

format, which will be sent as a nodeJS server (backend), which will be in charge of

transforming our model to the JavaScript language and using the classic approach

where an AST will be built in JavaScript while traversing our YAML file.

Aspects of the language semantics of our DSL are based on the architecture and

proof of concept proposed by [42], for which ALFA was extended to a version that

we call ALFA 2.0. This extension is presented in more detail in Chapter 6.

4.4 L-PRISM evaluation

The evaluation of our DSL is presented in detail in Chapter 7.

4.5 L-PRISM Maintenance 60

4.5 L-PRISM Maintenance

We leave the maintenance stage of our DSL for future work.

Chapter 5

L-PRISM Metamodel

This chapter presents in detail the L-PRISM metamodel. We describe the data types used

throughout the description in Section 5.1 and their elements are presented in Figure 5.1

in dark green. The structures that represent the different capabilities that a component

can have are described in Section 5.2 and their elements are presented in Figure 5.1 in

lead color. The different artifacts that represent global elements that developers can use

is described in Section 5.3 and their elements are presented in Figure 5.1 in purple color.

The elements that are used in the connections of the different elements in a multimedia

service chain are described in Section 5.4 and their elements are presented in Figure 5.1 in

yellow color. The types of nodes that represent the virtualized components are described

in Section 5.5 and their elements are presented in Figure 5.1 in pink color, and finally

in Section 5.6 we present the main chainModel structure that describes a multimedia

service chain based on virtual multimedia sensors and there is presented in Figure 5.1 in

orange color.

As mentioned above, the language of our DSL is based on the TOSCA-NFV meta-

model. For this reason, we use TOSCA-NFV as the primary reference for developing our

metamodel.

The TOSCA-NFV metamodel has different elements used to implement its templates.

TOSCA-NFV presents these elements in groups, as mentioned in Section 3.1, in the same

way, our metamodel takes these elements as a base for our specification. Figure 5.1

presents the L-PRISM metamodel based on the TOSCA-NFV metamodel. The elements

marked in light green are elements or attributes added to the TOSCA-NFV metamodel.

These elements or attributes are described in greater detail in the subsequent sections.

It should be clarified that L-PRISM metamodel is not an extension of the TOSCA-

5 L-PRISM Metamodel 62

Figure 5.1: Class diagram of the L-PRISM metamodel based on TOSCA-NFV.

5.1 Data Types 63

NFV metamodel since our work addresses concepts and technologies that TOSCA-NFV

does not address.

5.1 Data Types

5.1.1 lPrism.datatype.vms.l3AddressData

The data type l3AddressData is defined by TOSCA-NFV [37], and ETSI-NFV [13];

its function is to inform about the configuration of the IP addresses within a subnet,

information such as whether the IP addresses will be assigned manually or automatically

by the orchestrator.

The l3AddressData data type is specified for network and subnet management, al-

lowing developers to configure and manage IP addresses within the network. L-PRISM

supports the l3AddressData data type. However, our PoC will only allow the configura-

tion of two of its properties since both ALFA and ALFA 2.0 do not contemplate network

management.

The properties of l3AddressData are described in detail in Table 5.1.

Table 5.1: Properties of l3AddressData

Name Required Type Description

ipAddress-

Assignment

Yes Boolean Specifies whether the IP ad-

dress will be assigned manu-

ally by the user or automati-

cally by the orchestrator [37].

The default value is True (Automati-

cally assigned by the orchestrator)

floatingIpActivated No Boolean

ipAddressType Yes String Specifies the type of address; this

type of address must be compatible

with the properties of the architec-

ture where the network will work [37].

Valid values: ipv4, ipv6

Continued on next page

5.1 Data Types 64

Table Continued from Previous Page

Name Required Type Description

numberOfIp-

Address

No Integer Minimum number of IP addresses to

assign [37].

5.1.1.1 Definition

Source Code 5.1 shows the formal definition of l3AddressData proposed in L-PRISM.

Source Code 5.1: Definition of l3AddressData in L-PRISM

lPrism . datatypes . vms . l3AddressData :

p rope r t i e s :

ipAddressAssignment :

type : B o o l e a n

requ i red : true

f l o a t i n g IpAc t i v a t ed :

type : B o o l e a n

requ i red : f a l s e

ipAddressType :

type : s t r i n g

requ i red : f a l s e

c on s t r a i n t s :

- va l id_va lues : [i p v 4 , i p v 6]

numberOfIpAddress :

type : I n t e g e r

requ i red : f a l s e

5.1.1.2 Example

Source Code 5.2 shows an example of using the l3AddressData data type in L-PRISM.

Source Code 5.2: Example l3AddressData in L-PRISM

l3AddressData :

ipAddressAssignment : true

f l o a t i n g IpAc t i v a t ed : f a l s e

ipAddressType : i p v 4

5.1 Data Types 65

numberOfIpAddress : 1

5.1.2 lPrism.datatype.vms.addressData

It is a complex data type that is used by TOSCA-NFV [37] and ETSI-NFV [13]. This

data type provides information about the address assigned to the connection point. The

addressData is a structure with addressType and l3AddressData as attributes specified

in Table 5.2.

Table 5.2: Properties of addressData

Name Required Type Description

addressType Yes String Describe the address that was as-

signed to the connection point. This

address can be assigned by the orches-

trator or by the user; this will depend

on the state of the apAddressAssig-

nament attribute of l3AddressData

[37].

l3AddressData No lP rism.data−
type.vms. −
l3Address−
Data

Provide information on the address

assigned to the connection point.

5.1.2.1 Definition

Source Code 5.3 shows the formal definition of addressData data type proposed in L-

PRISM.

Source Code 5.3: Definition of addressData in L-PRISM

lPrism . datatypes . vms . addressData :

p rope r t i e s :

addressType :

type : S t r i n g

requ i red : true

c on s t r a i n t s :

5.1 Data Types 66

- va l id_va lues : [mac_addr e s s , i p _ a d d r e s s]

l3AddressData :

type : l P r i s m . d a t a t y p e s . vms . L 3Add r e s sDa t a

requ i red : f a l s e

5.1.2.2 Example

Source Code 5.4 shows an example of using the addressData data type in L-PRISM.

Source Code 5.4: Example addressData in L-PRISM

addressData :

addressType : IP a d d r e s s

l3AddressData :

ipAddressAssignment : true

ipAddressType : IPv4

5.1.3 lPrism.datatype.vms.connectivityType

It is a complex data type that uses TOSCA-NFV [37] and ETSI-NFV [13], to describe

the type of connection. The structure of connectivityType is composed of the attributes

described in the table 5.3.

Table 5.3: Properties of connectivityType

Name Required Type Description

layerProtocol Yes String Identifies the connection protocol

through which we can connect (eth-

ernet, mpls, odu3, ipv4, ipv6,

pseudo_Wire).

flowPattern No String Identifies the connection mode (Line,

Tree, Mesh)

5.1.3.1 Definition

Source Code 5.5 shows the formal definition of connectivityType data type proposed in

L-PRISM.

5.1 Data Types 67

Source Code 5.5: Definition of connectivityType in L-PRISM

lPrism . datatypes . vms . connect iv i tyType :

p rope r t i e s :

l a y e rPro to co l :

type : s t r i n g

requ i red : true

c on s t r a i n t s :

- va l id_va lues : [e t h e r n e t , i p v 4 , i p v 6]

f l owPattern :

type : s t r i n g

requ i red : true

c on s t r a i n t s :

- va l id_va lues : [L i n e , Tree , Mesh]

Unlike TOSCA-VNF, which uses the connectivityType to create VitualLinks, L-

PRISM uses the connectivityType to create the virtual machine image (swImage - VMS),

so that by creating a chain of multimedia services, end users can know the type of con-

nection that will exist between the connection points.

5.1.3.2 Example

Source Code 5.6 shows an example of using the connectivityType data type in L-PRISM.

Source Code 5.6: Example connectivityType in L-PRISM

connect iv i tyType :

l a y e rPro to ca l : i p v 4

f l owPattern : L i n e

5.1.4 lPrism.datatype.vms.virtualCpu

It is a data type defined in TOSCA-NFV [37] that describes the properties of the CPU at

each connection point. virtualCpu is a structure that is made up of different properties,

which will allow the manipulation of CPU properties. The properties and the attributes

are described in Table 5.4.

5.1 Data Types 68

Table 5.4: Properties of virtualCpu

Name Required Type Description

numVirtualCpu No Integer It is a property that defines the num-

ber of processors assigned to the con-

nection point (VMS); this property is

of integer type that, by default, will

have the same value as minNumVirtu-

alCpu and that can be modified when

creating the multimedia service chain.

minNumVirtual-

Cpu

Yes Integer It is a property that will allow defining

the minimum amount of CPU num-

ber that the connection point (VMS)

will need; this property will have to

be defined in the creation of the im-

age (swImage).

The minNumVirtualCpu property is proposed by L-PRISM, as an additional property

to the structure proposed by TOSCA-NFV.

5.1.4.1 Definition

Source Code 5.7 shows the formal definition of virtualCpu data type proposed in L-

PRISM.

Source Code 5.7: Definition of virtualCpu in L-PRISM

lPrism . datatypes . vms . v irtua lCpu :

p rope r t i e s :

numVirtualCpu:

type : i n t e g e r

requ i red : true

minNumVirtualCpu:

type : i n t e g e r

requ i red : true

5.1 Data Types 69

5.1.4.2 Example

Source Code 5.8 shows an example of using the virtualCpu data type in L-PRISM.

Source Code 5.8: Example virtualCpu in L-PRISM

virtualCpu :

numVirtualCpu: 2

minNumVirtualCpu: 1

5.1.5 lPrism.datatype.vms.virtualMemory

It is a data type used by TOSCA-NFV [37] to describe the properties of memory used by

the virtual machine. The properties and the attributes are described in Table 5.5.

Table 5.5: Properties of virtualMemory

Name Required Type Description

virtualMemSize Yes Integer Defines the amount of memory in

megabytes (MB) assigned to the con-

nection point (VMS). This property

is of integer type that, by default,

will have the same value as minVir-

tualMemSize, and that can be modi-

fied when creating a multimedia ser-

vice chain.

minVirtualMem-

Size

Yes Integer This property will allow defining the

minimum amount of memory that

must be assigned to the connection

point. This property must be defined

when creating the image (swImage).

The minVirtualMemSize property is proposed by L-PRISM, as an additional property

to the structure proposed by TOSCA.

5.1 Data Types 70

5.1.5.1 Definition

Source Code 5.9 shows the formal definition of virtualMemory data type proposed in

L-PRISM.

Source Code 5.9: Definition of virtualMemory in L-PRISM

lPrism . datatypes . vms . virtualMemory :

p rope r t i e s :

virtualMemSize :

type : s c a l a r −u n i t . s i z e # Number

requ i red : true

minVirtualMemSize :

type : s c a l a r −u n i t . s i z e # Number

requ i red : true

5.1.5.2 Example

Source Code 5.10 shows an example of using the virtualMemory data type in L-PRISM.

Source Code 5.10: Example virtualMemory in L-PRISM

virtualMemory :

virtualMemSize : 1 0 2 4

minVirtualMemSize : 5 1 2

5.1.6 lPrism.datatype.vms.virtualStorage

TOSCA-NFV does not describe a data type related to storage, but it does consider

storage in the virtual machine deployment. In this specification, we define the data type

virtualStorage since virtualized multimedia applications require sufficient storage space

to store the multimedia data to be processed, the application data (code, files, etc.), and

the associated temporary files.

The properties and the attributes of virtualStorage are described in Table 5.6.

5.1 Data Types 71

Table 5.6: Properties of virtualStorage

Name Required Type Description

virtualStorage-

Size

No Integer Defines the amount of storage in

megabytes (MB) assigned to the con-

nection point (VMS). This property

is of integer type that, by default,

will have the same value as minVirtu-

alVirtualStorageSize, and that can be

modified when creating a multimedia

service chain.

minVirtual-

StorageSize

No Integer This property will allow defining the

minimum amount of storage that

must be assigned to the connection

point. This property must be defined

when creating the image (swImage).

5.1.6.1 Definition

Source Code 5.11 shows the formal definition of virtualStorage data type proposed in

L-PRISM.

Source Code 5.11: Definition of virtualStorage in L-PRISM

lPrism . datatypes . vms . v i r t u a l S t o r a g e :

p rope r t i e s :

v i r t u a l S t o r a g eS i z e :

type : s c a l a r −u n i t . s i z e # Number

requ i red : f a l s e

minVir tua lStorageS ize :

type : s c a l a r −u n i t . s i z e # Number

requ i red : f a l s e

5.1.6.2 Example

Source Code 5.12 shows an example of using the virtualStorage data type in L-PRISM.

5.1 Data Types 72

Source Code 5.12: Example virtualStorage in L-PRISM

v i r t u a l S t o r a g e :

v i r t u a l S t o r a g eS i z e : 1 0 0 0 0

minVir tua lStorageS ize : 5 0 0 0

5.1.7 lPrism.datatype.vms.virtualGraphicsCard

TOSCA-NFV does not describe a data type related to graphics card. In this specification,

we define the data type virtualGraphicsCard since Some virtualized multimedia applica-

tions require a powerful graphics card to handle the graphical demands of the application

and ensure the application QoS.

The properties and the attributes of virtualGraphicsCard are described in Table 5.7.

Table 5.7: Properties of virtualGraphicsCard

Name Required Type Description

virtualGraphics-

CardSize

No Integer Defines the amount of memory of the

graphics card in megabytes (MB) as-

signed to the connection point (VMS).

This property is of integer type that,

by default, will have the same value

as minVirtualGraphicsCardSize, and

that can be modified when creating

a multimedia service chain.

minVirtual-

GraphicsCard-

Size

No Integer This property will allow defining the

minimum amount of graphic memory

(VRAM) that must be assigned to the

connection point. This property must

be defined when creating the image

(swImage).

5.1.7.1 Definition

Source Code 5.13 shows the formal definition of virtualGraphicsCard data type proposed

in L-PRISM.

5.1 Data Types 73

Source Code 5.13: Definition of virtualGraphicsCard in L-PRISM

lPrism . datatypes . vms . v i r tua lGraphicsCard :

p rope r t i e s :

v i r tua lGraph ic sCardS i ze :

type : s c a l a r −u n i t . s i z e # Number

requ i red : f a l s e

minVirtualGraphicsCardSize :

type : s c a l a r −u n i t . s i z e # Number

requ i red : f a l s e

5.1.7.2 Examples

Source Code 5.14 shows an example of using the virtualGraphicsCard data type in L-

PRISM.

Source Code 5.14: Example virtualGraphicsCard in L-PRISM

virtua lGraphicsCard :

v i r tua lGraph ic sCardS i ze : 1 0 2 4

minVirtualGraphicsCardSize : 5 1 2

5.1.8 lPrism.datatype.vms.configurableProperties

It is a data type that allows to describe the configurable properties of an element. In

the case of L-PRISM, the virtual device (VD) or VMS can have properties that can be

configured before its initialization.

The properties and the attributes of configurableProperties are described in Table

5.8.

Table 5.8: Properties of configurableProperties

Name Required Type Description

additionalConfigu-

rableProperties

Yes String Defines a variable that can be set.

This data type is commonly used in

the description of the software image.

5.1 Data Types 74

5.1.8.1 Definition

Source Code 5.15 shows the formal definition of configurableProperties data type pro-

posed in L-PRISM.

Source Code 5.15: Definition of configurableProperties in L-PRISM

lPrism . datatypes . vms . c on f i gu r ab l eP rope r t i e s :

p rope r t i e s :

add i t i ona lCon f i gu r ab l ePrope r t i e s :

type : S t r i n g

requ i red : true

5.1.8.2 Examples

Source Code 5.16 shows an example of using the configurableProperties data type in

L-PRISM.

Source Code 5.16: Example configurableProperties in L-PRISM

c on f i gu r ab l eP rope r t i e s :

add i t i ona lCon f i gu r ab l ePrope r t i e s : " 13 "

5.1.9 lPrism.datatype.vms.port

The port data type describes an input or output port enabled on a VMS. In L-PRISM,

this port has characteristics oriented to the treatment of multimedia streams. Therefore,

in addition to the port number, the properties of the type, format, and quality of the

multimedia stream that will enter through the specified port are added.

The properties and the attributes of port are described in Table 5.9.

Table 5.9: Properties of port

Name Required Type Description

numPort Yes integer Port number has enable.

Continued on next page

5.1 Data Types 75

Table Continued from Previous Page

Name Required Type Description

typeStream Yes String Multimedia stream type to use this

port. This attribute can receive four

values (video, audio, image, or text)

formatStream No list Multimedia stream formats to be used

by this port.

qualityStream No list Multimedia stream formats to be used

by this port.

5.1.9.1 Definition

Source Code 5.17 shows the formal definition of port data type proposed in L-PRISM.

Source Code 5.17: Definition of port in L-PRISM

lPrism . datatypes . vms . port :

p rope r t i e s :

numPort:

type : S t r i n g

requ i red : true

typeStream :

type : S t r i n g

requ i red : true

c on s t r a i n t s :

−va l id_va lues : [v i d e o , a ud i o , image , t e x t]

formatStream :

type : l i s t

entrySchema :

type : S t r i n g

requ i red : f a l s e

qual i tyStream :

type : l i s t

entrySchema :

type : S t r i n g

requ i red : f a l s e

5.2 Capabilities Types 76

5.1.9.2 Example

Source Code 5.18 shows an example of using the port data type in L-PRISM.

Source Code 5.18: Example port in L-PRISM

port :

numPort: 5 0 0 0

typeStream : v i d e o

formatStream : # not define

qual i tyStream : # not define

5.2 Capabilities Types

5.2.1 lPrism.capabilities.vms.metric

Metric is a type of particular capacity that is used to monitor a virtualized element.

This capacity is significant in case a VMS sends reports on its operation. The capacity

Metric was modified to fit the V-PRISM architecture, but it still works as defined by

TOSCA-NFV [37].

The properties and the attributes of metric are described in Table 5.10.

Table 5.10: Properties of metric

Name Required Type Description

state Yes Boolean –

listPorts No list —.

5.2.1.1 Definition

Source Code 5.19 shows the formal definition of metric capabilities type proposed in

L-PRISM.

Source Code 5.19: Definition of metric in L-PRISM

lPrism . c a p a b i l i t i e s . vms . metr ic :

p rope r t i e s :

s t a t e :

5.2 Capabilities Types 77

type : B o o l e a n

requ i red : true

l i s t P o r t s :

type : l i s t

entrySchema :

type : l P r i s m . d a t a t y p e s . vms . p o r t

requ i red : f a l s e

5.2.1.2 Example

Source Code 5.20 shows an example of using the metric capabilities type in L-PRISM.

Source Code 5.20: Example host in L-PRISM

metr ic :

s t a t e : True

l i s t P o r t s :

−

numPort: 1 5 0 0 1

typeStream : t e x t

5.2.2 lPrism.capabilities.vms.virtualCompute

virtualCompute encompasses the computational resources that can be assigned to a vir-

tualized component. These resources can be configured in the VMS or preconfigured in

the software image registry.

The properties and the attributes of virtualCompute are described in Table 5.11.

Table 5.11: Properties of virtualCompute

Name Required Type Description

VirtualMemory Yes lPrism.data-

type.vms.vir-

tualMemory

Describes the minimum amount of

RAM required by software images and

the amount allocated to the virtual-

ized component (VMS, VD).

Continued on next page

5.2 Capabilities Types 78

Table Continued from Previous Page

Name Required Type Description

VirtualCpu Yes lPrism.data-

type.vms.vir-

tualCpu

Describes the minimum number of

CPUs required by software images

and the number allocated to the vir-

tualized component (VMS, VD).

VirtualStorage Yes lPrism.data-

type.vms.vir-

tualStorage

Describes the minimum amount of

storage required by software images

and the amount allocated to the vir-

tualized component (VMS, VD).

VirtualGraphics-

Card

No lPrism.data-

type.vms.vir-

tualGraphics-

Card

Describes the minimum amount of

graphic memory required (if required)

by the software image and the amount

allocated to the virtualized compo-

nent.

5.2.2.1 Definition

Source Code 5.21 shows the formal definition of virtualCompute capabilities type pro-

posed in L-PRISM.

Source Code 5.21: Definition of virtualCompute in L-PRISM

lPrism . c a p a b i l i t i e s . vms . virtualCompute :

p rope r t i e s :

VirtualMemory:

type : l P r i s m . d a t a t y p e . vms . v i r t u a l M e m o r y

requ i red : true

VirtualCpu :

type : l P r i s m . da ta − t y p e . vms . v i r t u a l C p u

requ i red : true

Vi r tua lS torage :

type : l P r i s m . d a t a t y p e . vms . v i r t u a l S t o r a g e

requ i red : true

VirtualGraphicsCard :

type : l P r i s m . d a t a t y p e . vms . v i r t u a l G r a p h i c s C a r d

requ i red : f a l s e

5.3 Artifact Types 79

5.2.2.2 Example

Source Code 5.22 shows an example of using the virtualCompute capabilities type in

L-PRISM.

Source Code 5.22: Example virtualCompute in L-PRISM

virtualCompute :

VirtualMemory:

virtualMemSize : 1 0 2 4

minVirtualMemSize : 5 1 2

VirtualCpu :

numVirtualCpu: 2

minNumVirtualCpu: 1

Vir tua lS torage :

v i r t u a l S t o r a g eS i z e : 1 0 0 0 0

minVir tua lStorageS ize : 5 0 0 0

VirtualGraphicsCard :

v i r tua lGraph ic sCardS i ze : 1 0 2 4

minVirtualGraphicsCardSize : 5 1 2

5.3 Artifact Types

The artifacts in L-PRISM are considered tools that are available to developers. Within

these tools, we have the software images swImage, the host host where different virtual-

ized components can be mounted, and the virtualized devices vd. The latter becomes a

virtualized component but does not work only for a developer. V Ds are available to all

developers.

5.3.1 lPrism.artifacts.vms.swImage

It is an artifact defined by TOSCA-NFV [37] that presents a data model that describes a

system image that will be used to virtualize multimedia sensors VMS.

It is used to register software images developed by the community. This description

does not display any component. It is a registry that will provide the necessary information

to whoever wishes to use this software image.

5.3 Artifact Types 80

swImage uses a data structure that is described in detail in Table 5.12.

Table 5.12: Properties of swImage

Name Required Type Description

name Yes String Name of image

description No String Description of image

version Yes String Version of image

ImageSrc Yes String A reference to where the image is reg-

istered within the files, each image has

an exact file address where it was cre-

ated.

startupParameters No lPrism.data-

type.vms.-

configurable-

Properties

They are the initialization variables

required by the image. This variable

is defined at the discretion of the soft-

ware image author and information

server for the developer who uses this

image.

operatingSystem Yes String Operating system used by the soft-

ware image.

virtualCompute Yes lPrism.capa-

bilities.vms-

.virtual-

Compute

Describes the minimum computa-

tional properties that must be as-

signed to the software image. As men-

tioned in this study, computing ca-

pabilities may vary according to the

multimedia stream type, format, and

quality. However, a minimum capac-

ity of computing resources is also re-

quired for its operation.

Continued on next page

5.3 Artifact Types 81

Table Continued from Previous Page

Name Required Type Description

inputPorts No list It offers information about which

ports can receive multimedia streams;

additionally, it offers information

about what type of stream is accepted

by the port and the formats and qual-

ities that the software image can pro-

cess.

In case the author of the software im-

age leaves this variable null, it will

have to be configurable in startupPa-

rameters. We recommend placing this

property so that developers using this

software image can understand how

the image works.

outputPorts No list It offers information about which

ports are enabled to send informa-

tion flows. This variable is available if

the image offers data streams specifi-

cally for a port; this is commonly used

when the software image offers infor-

mation about the performance met-

rics of the software image put into

production. This information is help-

ful for developers using this software

image.

connectivityType Yes lPrism.da-

tatypes.vms-

.connectivity-

Type

Describes the behavior of the software

image in terms of the type of output

connection it will have.

End of Table swImage

5.3 Artifact Types 82

5.3.1.1 Definition

Source Code 5.23 shows the formal definition of SwImage artifact proposed in L-PRISM.

Source Code 5.23: Definition of SwImage in L-PRISM

lPrism . a r t i f a c t s . vms . SwImage:

derived_from : l P r i s m . a r t i f a c t s . Dep l oymen t . Image

p rope r t i e s :

name:

type : S t r i n g

requ i red : true

d e s c r i p t i o n :

type : S t r i n g

requ i red : f a l s e

ve r s i on :

type : S t r i n g

requ i red : true

operat ingSystem :

type : S t r i n g

requ i red : f a l s e

ImageSrc :

type : S t r i n g

requ i red : true

startupParameters :

type : map

entrySchema :

type : . . d a t a t y p e . vms . c o n f i g u r a b l e P r o p e r t i e s

requ i red : f a l s e

virtualCompute :

type : . . c a p a b i l i t i e s . vms . v i r t u a l C o m p u t e

requ i red : true

inputPorts :

type : l i s t

entrySchema :

type : . . d a t a t y p e s . vms . p o r t

requ i red : f a l s e

5.3 Artifact Types 83

outputPorts :

type : l i s t

entrySchema :

type : . . d a t a t y p e s . vms . p o r t

requ i red : f a l s e

connect iv i tyType :

type : . . d a t a t y p e s . vms . c o n n e c t i v i t y T y p e

requ i red : true

5.3.1.2 Example

Source Code 5.24 shows an example of using the SwImage artifact in L-PRISM.

Source Code 5.24: Definition of swImage in L-PRISM

lPrism . a r t i f a c t s . vms . SwImage:

name: Example r e g i s t e r s o f t w a r e imag e

de s c r i p t i o n : D e s c r i p t i o n o f s o f t w a r e imag e

ve r s i on : 1 . 0

operat ingSystem : l i n u x

ImageSrc : d e v i c e / b l a c kAndWh i t e

startupParameters : Null

virtualCompute :

VirtualMemory:

virtualMemSize : Null

minVirtualMemSize : 5 1 2

VirtualCpu :

numVirtualCpu: Null

minNumVirtualCpu: 1

Vir tua lS torage :

v i r t u a l S t o r a g eS i z e : Null

minVir tua lStorageS ize : 5 0 0 0

VirtualGraphicsCard : Null

inputPorts :

−

numPort: 5 0 0 0

typeStream : v i d e o

5.3 Artifact Types 84

outputPorts : Null

connect iv i tyType :

l a y e rPro to co l : i p v 4

f l owPatter : L i n e

5.3.2 lPrism.artifacts.vms.host

A host can be characterized as an entity intended to provide computing resources to

applications implemented within them. TOSCA-NFV does not define or specify this

element in detail. In L-PRISM, a host works as an element at the service of the developers,

which means that it is within the category of artifacts. According to [42], a host can be

defined as a small to medium-sized computing entity that aims to provide computing,

storage, and network resources to the components deployed within this host.

The architecture on which L-PRISM is based is V-PRISM, and in this, it is defined

that a host is controlled by a masterhost, which manages the available hosts within the

network.

The structure of the host artifact is detailed in Table 5.13.

Table 5.13: Properties of host

Name Required Type Description

name Yes String Name of host

description No String Description of host

addressIp Yes lPrism.data-

type.vms.-

addressData

Describes the host’s IP address,

addressIp serves as the host identi-

fier, so developers can easily describe

where their peers will be created.

isMaster Yes Bool Defines if the node that is being reg-

istered will be master or not.

5.3.2.1 Definition

Source Code 5.25 shows the formal definition of host artifact proposed in L-PRISM.

Source Code 5.25: Definition of host in L-PRISM

5.3 Artifact Types 85

lPrism . a r t i f a c t s . vms . host :

p rope r t i e s :

name:

type : S t r i n g

requ i red : true

d e s c r i p t i o n :

type : S t r i n g

requ i red : f a l s e

address Ip :

type : l P r i s m . d a t a t y p e . vms . a d d r e s s D a t a

requ i red : true

i sMaster :

type : B o o l

requ i red : true

5.3.2.2 Example

Source Code 5.26 shows an example of using the host artifact in L-PRISM.

Source Code 5.26: Example host in L-PRISM

lPrism . a r t i f a c t s . vms . host :

name: h o s t m a s t e r Mid i a com

de s c r i p t i o n : T h i s i s h o s t m a s t e r i n Mid i acom

address Ip :

addressType : 1 9 2 . 1 6 8 . 0 . 1 0 1

i sMaster : true

5.3.3 lPrism.artifacts.vms.device

To fully understand virtual devices (device), whose attributes are presented in Table 5.14,

it is necessary to recall one of the main reasons why they were proposed to virtualize

multimedia sensors. One of the main advantages of virtualized physical sensors is that a

media stream can be replicated multiple times and sent to different destinations, unlike

the physical sensor, which can only send its stream to one destination. L-PRISM treats

this element as if it were already created and working, so it would only require an identifier

5.3 Artifact Types 86

to subscribe to this element in order for it to replicate and send its media stream to the

new subscriber.

Table 5.14: Properties of device

Name Required Type Description

name Yes String name that was given to the virtualized

physical device (device). This name

only serves as a guide for the user.

description No String describes the virtualized sensor. This

field is for users to understand the

device better.

host Yes String Specifies on which of the hosts within

the network the device will work.

Hosts are identified by their ad-

dress (IP, MAC), which must have

been previously registered using of

lP rism.artifacts.vms.host

5.3.3.1 Definition

Source Code 5.27 shows the formal definition of device artifact proposed in L-PRISM.

Source Code 5.27: Definition of device in L-PRISM

lPrism . a r t i f a c t s . vms . dev i ce :

p rope r t i e s :

name:

type : S t r i n g

requ i red : true

d e s c r i p t i o n :

type : S t r i n g

requ i red : f a l s e

host :

addres :

type : l P r i s m . a r t i f a c t s . vms . h o s t

requ i red : true

5.4 Relationship Types 87

5.3.3.2 Example

Source Code 5.28 shows an example of using the device artifact in L-PRISM.

Source Code 5.28: Example device in L-PRISM

lPrism . a r t i f a c t s . vms . host :

name: D e v i c e c o l o r t o bw

de s c r i p t i o n : D e v i c e t r a n s f o r m v i d e o c o l o r

host : 1 9 2 . 1 6 8 . 1 . 1 0 1

5.4 Relationship Types

Relationship types presents the different elements used to model how the different com-

ponents of a multimedia service chain relate to each other. These elements are defined by

specifying properties and attributes.

L-PRISM presents two elements in relationship types, source that defines the proper-

ties where the sending of the multimedia stream will start, and destination that defines

the properties where the multimedia stream will be received.

5.4.1 lPrism.relationship.vms.source

The structure of the source relationship type is detailed in Table 5.15.

Table 5.15: Properties of source

Name Required Type Description

sourceName Yes String describes from which component of

the service chain the transmission of

the media stream is initiated. This

data must be identical to that config-

ured either in a deviceName (Section

5.6.1) or a vmsName (Section 5.5.1.

Continued on next page

5.4 Relationship Types 88

Table Continued from Previous Page

Name Required Type Description

sourceType Yes String describes the type of component that

will initiate the transfer of the multi-

media stream; this data type has con-

ditions, for now only (vms device).

outputType Yes String describes the type of media stream

that will be sent. Multimedia applica-

tions typically process media streams

of one type but do not always produce

the output of the same input stream

type.

formatType No String describes the format of a media

stream type. The format of a mul-

timedia stream influences the applica-

tion behavior. An example is that it is

different to process a 360px video than

a 4K video, most likely that more net-

work bandwidth is needed for the sec-

ond case.

networkBandwidth No lPrism.data-

type.vms.-

networkBand-

width

defines the bandwidth that will be as-

signed to this connection source. The

connection between virtualized com-

ponents in a host does not need to

configure this attribute. Still, for

connections between different network

hosts, it is necessary to consider defin-

ing this value.

5.4.1.1 Definition

Source Code 5.29 shows the formal definition of source relationship type proposed in

L-PRISM.

Source Code 5.29: Definition of source in L-PRISM

lPrism . r e l a t i o n s h i p . vms . source :

5.4 Relationship Types 89

p rope r t i e s :

sourceName:

type : S t r i n g

requ i red : true

sourceType :

type : S t r i n g

requ i red : true

outputType :

type : S t r i n g

requ i red : true

formatType :

type : S t r i n g

requ i red : f a l s e

networkBandwidth:

type : l P r i s m . d a t a t y p e . vms . n e two r kBandw i d t h

requ i red : f a l s e

5.4.1.2 Example

Source Code 5.30 shows an example of using the source relationship type in L-PRISM.

Source Code 5.30: Example source in L-PRISM

lPrism . r e l a t i o n s h i p . vms . source :

sourceName: VD1

sourceType : d e v i c e

outputType : v i d e o

formatType : Null

networkBandwidth: Null

5.4.2 lPrism.relationship.vms.destination

The structure of the destination relationship type is detailed in Table 5.16.

5.4 Relationship Types 90

Table 5.16: Properties of destination

Name Required Type Description

destinationName Yes String describes which component of the

service chain will receive the media

stream. This data must be identical

to the one configured in a vmsName

of one of the vms (Section 5.5.1) used

in the same multimedia service chain.

destinationIp No lPrism.data-

type.vms.-

addressData

complex data type initially defined

by TOSCA-NFV and adapted in L-

PRISM, which describes a network

address (IP, MAC).

destinationPort Yes lPrism.data-

type.vms.-

port

describes a UDP port and type of mul-

timedia stream that the destination of

the connection accepts.

5.4.2.1 Definition

Source Code 5.31 shows the formal definition of destination relationship type proposed

in L-PRISM.

Source Code 5.31: Definition of destination in L-PRISM

lPrism . r e l a t i o n s h i p . vms . d e s t i n a t i on :

p rope r t i e s :

destinationName :

type : S t r i n g

requ i red : true

d e s t i n a t i on Ip :

type : S t r i n g

requ i red : f a l s e

de s t i na t i onPor t :

type : l P r i s m . d a t a t y p e . vms . p o r t

requ i red : true

5.5 Node Types 91

5.4.2.2 Example

Source Code 5.32 shows an example of using the destination relationship type in L-

PRISM.

Source Code 5.32: Example destination in L-PRISM

lPrism . r e l a t i o n s h i p . vms . d e s t i n a t i on :

destinationName : VMS1

de s t i n a t i on Ip : Null

de s t i na t i onPor t :

numPort: 5 0 0 0

typeStream : v i d e o

5.5 Node Types

5.5.1 lPrism.nodes.vms.VDU.vms

A vms within a multimedia service chain is used for processing one or several multimedia

streams and generate one or more output results. The result of a vms can be directed to

one or more destination VMS(s), or can be provided for an end user application. Char-

acteristics such as type, format, and quality of a multimedia stream make multimedia

applications stand out. These characteristics influence the amount of computational re-

sources that a multimedia application will need for its proper functioning, resources such

as CPU, RAM, storage, and in some cases, the graphics card will vary according to the

characteristics of the multimedia flow that a multimedia application will process. In the

case of virtualized multimedia applications, another resource that must be considered

is network bandwidth since, in many cases, multimedia streams tend to occupy a high

bandwidth.

The structure of the vms node type is detailed in Table 5.17.

5.5 Node Types 92

Table 5.17: Properties of vms

Name Required Type Description

vmsName Yes String The VMS name assigned by the devel-

oper of the multimedia service chain.

This data type works as an ID in

a virtualLink. The name of a vms

must be unique in a multimedia ser-

vice chain.

vmsDescription No String The description of the VMS in a mul-

timedia service chain.

configurable-

Properties

No lPrism.data-

type.vms-

.configurable-

Properties

Describes the properties that can be

set on this component. It will depend

directly if the selected image has con-

figurable properties.

address No lPrism.data-

type.vms-

.addressData

Describes the address of the virtual-

ized component (IP,MAC). In L-

PRISM, we do not consider the ad-

dress configuration in the description,

since network management would be

a complex task when working with

lightweight virtualization technology.

We leave this description so that it

can be used in future work.

This variable is not considered in the

description, but in the orchestration,

each virtualized component has an ad-

dress (IP,MAC) assigned by the or-

chestrator.

Continued on next page

5.5 Node Types 93

Table Continued from Previous Page

Name Required Type Description

network No String Describes the network to which the

virtualized component will belong. L-

PRISM does not consider this data in

the description since this component

will be virtualized in a network pre-

configured by the host to which it is

assigned.

ports No lPrism.data-

type.vms-

.ports

Describes the ports that will be made

available by the virtualized compo-

nent. L-PRISM does not consider

this data in the description since this

information comes from the image

(swImage), which can be configured

in configurableProperties or, failing

that, they will already be static vari-

ables that the author of the image will

make available.

This variable is not considered in the

description, but in the orchestration,

the orchestrator will enable the pre-

configured gates.

virtualCompute No lPrism.capa-

bilities.vms-

.virtualCom-

pute

Describes the storage, memory, pro-

cessing, and graphics card require-

ments that will be allocated to the vir-

tualized component.

If this description is not included, the

default description defined when cre-

ating the image for this component

will be used.

Continued on next page

5.5 Node Types 94

Table Continued from Previous Page

Name Required Type Description

monitorignPara-

meter

No lPrism.capa-

bilities.vms.-

metric

It describes whether the component to

be virtualized offers data to be able to

monitor its operation.

The monitoring parameters can be

memory consumption, CPU usage,

bandwidth consumption, activity

time, latency, etc.

virtualBinding No lPrism.capa-

bilities.vms.-

virtualBin-

dable

Describes whether the virtual-

ized component functions as a

subscription-based service, similar to

an API. L-PRISM uses this property

for the VDs since the operation

of these will depend on the VMS

subscribed to the VD. This capability

is mandatory on VDs and can be

used by VMSs that are implemented

to act as services.

vmsType Yes lPrism.arti-

facts.vms.-

swImage

Describes the software image that will

be used; this image brings different

properties.

host Yes lPrism.arti-

facts.vms.-

host

Describes the host where the con-

tainer will be created. L-PRISM con-

siders that within a cloud/edge plat-

form, there may be different hosts

with different capacities; within each

host, different virtualized components

(containers) may be hosted.

5.5.1.1 Definition

Source Code 5.33 shows the formal definition of vms node type proposed in L-PRISM.

Source Code 5.33: Definition of vms in L-PRISM

lPrism . nodes . vms .VDU. vms:

5.5 Node Types 95

p rope r t i e s :

vmsName:

type : S t r i n g

requ i red : true

vmsDescr ipt ion :

type : S t r i n g

requ i red : f a l s e

c on f i gu r ab l eP rope r t i e s :

type : map

entrySchema :

type : . . d a t a t y p e . vms . c o n f i g u r a b l e P r o p e r t i e s

requ i red : f a l s e

a t t r i b u t e s :

address :

type : l P r i s m . d a t a t y p e . vms . a d d r e s s D a t a

requ i red : f a l s e

network :

type : S t r i n g

requ i red : f a l s e

port s :

type : map

entrysSchema :

type : l P r i s m . d a t a t y p e . vms . p o r t s

requ i red : f a l s e

requirements :

virtualCompute :

type : l P r i s m . c a p a b i l i t i e s . vms . v i r t u a l C o m p u t e

requ i red : f a l s e

c a p a b i l i t i e s :

monitorignParameter :

type : l P r i s m . c a p a b i l i t i e s . vms . m e t r i c

requ i red : f a l s e

v i r tua lB ind ing :

type : l P r i s m . c a p a b i l i t i e s . vms . v i r t u a l B i n d a b l e

requ i red : f a l s e

5.5 Node Types 96

a r t i f a c t s :

vmsType:

f i l e :

type : P r i sm . a r t i f a c t s . vms . swImage

requ i red : true

host :

address :

type : l P r i s m . a r t i f a c t s . vms . h o s t

requ i red : true

5.5.1.2 Example

Source Code 5.34 shows an example of using the vms node type in L-PRISM.

Source Code 5.34: Example vms in L-PRISM

vms:

vmsName: My VMS

vmsDescr ipt ion : D e s c r i p t i o n my VMS

c on f i gu r ab l eP rope r t i e s : # not define

address : # not define

network : # not define

port s : # not define

virtualCompute :

virtualMemory :

virtualMemSize : 1 0 2 4

minVirtualMemSize : 5 1 2

virtualCpu :

numVirtualCpu: 2

minNumVirtualCpu: 1

v i r t u a l S t o r a g e :

v i r t u a l S t o r a g eS i z e : 1 0 0 0 0

minVir tua lStorageS ize : 5 0 0 0

virtua lGraphicsCard : Null

monitorignParameter : # not define

v i r tua lB ind ing : # not define

vmsType: 6 3 8 e 7 0 b 1 0 a 1 f b d 0 0 2 6 f c c a e 8

5.5 Node Types 97

host : 1 9 2 . 1 6 8 . 0 . 1 1 7

5.5.2 lPrism.nodes.vms.virtualLink

The interconnections between the elements of a multimedia service chain are described

by virtualLink. This element provides information on two other components, the source

point (source) where the stream is sent from and the destination point (destination)

where the stream will be received.

To better describe this element, Section 5.4.1 presents the source element attributes

examples, and Section 5.4.2 presents the destination element attributes and examples.

The structure of the virtualLink node type is detailed in Table 5.18.

Table 5.18: Properties of virtualLink

Name Required Type Description

source Yes lPrism.rela-

tionship-

.vms.source

Describes the point from which the

multimedia stream is being sent.

destination Yes lPrism.rela-

tionship.vms-

.destination

Describes the destination point,

which will receive the multimedia

stream.

5.5.2.1 Definition

Source Code 5.35 shows the formal definition of virtualLink node type proposed in L-

PRISM.

Source Code 5.35: Definition of virtualLink in L-PRISM

lPrism . nodes . vms . v i r t ua lL i nk :

p rope r t i e s :

source :

type : l P r i s m . r e l a t i o n s h i p . vms . s o u r c e

requ i red : true

d e s t i n a t i on :

type : l P r i s m . r e l a t i o n s h i p . vms . d e s t i n a t i o n

5.6 Chain Type 98

requ i red : true

5.5.2.2 Example

Source Code 5.36 shows an example of using the virtualLink node type in L-PRISM.

Source Code 5.36: Example virtualLink in L-PRISM

v i r t ua lL i nk :

source :

sourceName: VD1

sourceType : d e v i c e

outputType : v i d e o

formatType : # not define

networkBandwidth: # not define

de s t i n a t i on :

destinationName : VMS1

de s t i na t i on IP : # not define

de s t i na t i onPor t :

numPort: 5 0 0 0

typeStream : v i d e o

5.6 Chain Type

5.6.1 lPrism.chain.vms.chainModel

L-PRISM represents a multimedia service chain as a language element named chainModel.

A chainModel has three main components: Virtual Device (devices), Virtual Multimedia

Sensors (vmss), and their connections (virtualLinks).

The structure of the chainModel is detailed in Table 5.19.

5.6 Chain Type 99

Table 5.19: Properties of chainModel

Name Required Type Description

chainName Yes String the name of the multimedia service

chain.

chainDescription No String the description of a multimedia ser-

vice chain.

devices Yes list list of virtual devices that compose

the multimedia service chain.

vmss Yes list list of VMSs that compose the multi-

media service chain

virtualLinks Yes list list of virtual connections between vir-

tual devices and VMSs.

5.6.1.1 Definition

Source Code 5.37 shows the formal definition of chainModel proposed in L-PRISM.

Source Code 5.37: Definition of chainModel in L-PRISM

lPrism . chain . vms . chainModel :

p rope r t i e s :

chainName:

type : S t r i n g

requ i red : true

cha inDesc r ip t i on :

type : S t r i n g

requ i red : f a l s e

dev i c e s :

type : l i s t

entrySchema :

deviceName:

type : S t r i n g

requ i red : true

dev i ce Id :

index :

type : l P r i s m . a r t i f a c t s . vms . d e v i c e

5.6 Chain Type 100

requ i red : true

requ i red : true

vmss:

type : l i s t

entrySchema :

type : l P r i s m . n o d e s . vms .VDU . vms

requ i red : true

v i r t u a l L i nk s :

type : l i s t

entrySchema :

type : l P r i s m . n o d e s . vms . v i r t u a l L i n k

requ i red : true

5.6.1.2 Example

Source Code 5.38 shows an example of using the chainModel in L-PRISM.

Source Code 5.38: Example chainModel in L-PRISM

chainModel :

chainName: VMS Cha in

cha inDesc r ip t i on : V i d e o F l ux

dev i c e s :

−

deviceName: e x amp l e 1 v i d e o b a l l

dev i ce Id : 6 3 8 e 7 0 b 1 0 a 1 f b d 0 0 2 6 f c c a f 4

vmss:

−

vmsName: vms1 e x amp l e 1

vmsDescr ipt ion : My VMS d e s c r i p t i o n

vmsType: 6 3 8 e 7 0 b 1 0 a 1 f b d 0 0 2 6 f c c a e 4

startupParameters : # Null

host : 1 9 2 . 1 6 8 . 0 . 1 1 7 # IP

virtualCompute :

virtualMemory :

virtualMemorySize : 1 0 2 4

virtualCPU :

5.6 Chain Type 101

numVirtualCpu: 2

v i r t u a l S t o r a g e :

v i e r t u a l S t o r a g eS i z e : 1 0 0 0 0

v i r t u a l L i nk s :

- # virtualLink 1

source :

sourceName: e x amp l e 1 v i d e o b a l l

sourceType : d e v i c e

outputType : v i d e o

formatType : # not define

networkBandwidth: # not define

de s t i n a t i on :

destinationName : vms1 e x amp l e 1

de s t i n a t i on Ip : # define for orchestrator

de s t i na t i onPor t :

numPort: 5 0 0 0

typeStream : v i d e o

- # virtualLink 2

source :

sourceName: vms1 e x amp l e 1

sourceType : vms

outputType : v i d e o

formatType : # not define

networkBandwidth: # not define

de s t i n a t i on :

destinationName : 1 9 2 . 1 6 8 . 0 . 1 0 1 # My PC

de s t i n a t i on Ip : 1 9 2 . 1 6 8 . 0 . 1 0 1 # My IP

de s t i na t i onPor t :

numPort: 2 0 0 0 2 # my port

typeStream : v i d e o

Figure 5.2 shows the example of the multimedia service chain implemented with L-

PRISM. This chain receives a multimedia stream from the device (video ball); for this ex-

ample, we assume that this device has as its identifier deviceId: 638e70b10a1fbd0026fccaf4,

the video stream sent by (video ball) is processed by a multimedia application (VMS1)

that has the function of transporting UDP-UDP data (it only retransmits the multimedia

5.7 Example of the L-PRISM Metamodel 102

stream). Finally, VMS1 transmits the media stream to address 192.168.0.101 on port

20002. The detailed implementation of this example can be found on the website1.

Figure 5.2: Simple multimedia service chain with L-PRISM

5.7 Example of the L-PRISM Metamodel

This Section presents an example of specifying a multimedia service chain based on VMS

using our metamodel.

For this example, we use a complex multimedia service chain, which we see on the left

in Figure 5.3. In this multimedia service chain, two multimedia streams from two different

Virtual Devices (VD) are processed by different Virtual Multimedia Sensors (VMS). The

result of this multimedia service chain is seen on the right-hand side of Figure 5.3.

Figure 5.3: Diagram and output of a complex multimedia service chain.

1https://fventuraq.github.io/taks1-details.html

5.7 Example of the L-PRISM Metamodel 103

For a better understanding, we separate this description into three parts, the descrip-

tion of the virtual devices (VD), the description of the virtual multimedia sensors (VMS),

and finally, the description of the virtual link (VL).

1. Description of the virtual devices (VD)

Figure 5.4 presents how the specification of a multimedia service chain is started

using our metamodel. As mentioned above, our metamodel uses YAML as the base

language, and line 1 is how all YAML files should be initialized. Then in line 2,

we call our main element chainModel, which within its structure, will store the

essential elements of a multimedia service chain; VD, VMS, and VL. Additionally,

chainModel requests a name and description for the multimedia service chain, as

shown in lines 3 and 4.

Figure 5.4: Specification of virtual devices with the metamodel of L-PRISM

As the first main element of a multimedia service chain, we present the list of VD

described from lines 6 to 12. devices store a list of VD. We use two VDs in this

example.

The first VD we call colorBar, as shown in line 8, and in line 9, we place the VD

identifier (deviceId) to give us the architecture where this VD is working. Let us

remember that VDs are considered artifacts already working within the architecture,

and what we do is request the multimedia stream from a VD.

In the same way, the second VD is specified from lines 10 to 12. We call this VD

Ball, and we place its identifier, which, if we look closely, is different from the

previous VD.

We clarify that lines 7 and 10 are the way YAML represents an element inside a list

and remember that devices stores elements of type VD.

5.7 Example of the L-PRISM Metamodel 104

2. Description of the virtual multimedia sensors (VMS)

In Figure 5.5, we present the specification of the list of VMS used in this example.

In line 14, vmss is a list of VMS. In this example, we specify that we will create

three VMS.

Figure 5.5: Specification of virtual multimedia sensors with the metamodel of L-PRISM

The first VMS is marked in the red box in Figure 5.5. This VMS will have the

name (vmsName) VMS1 defined in line 16. In line 17, we place the type of VMS

(vmsType), a code that refers to a docker image. For this example, the code placed

belongs to a VMS that joins two multimedia streams (vms merge). In line 18

(host), we define in which Edge Node this VMS will be orchestrated; the list of

host must also be provided to be able to do this configuration. Finally, from lines

20 to 24, we define the computational resources assigned (virtualCompute) to this

VMS, as seen in the formal specification of virtualCompute in previous sections,

the elements that are part of it are not required. That is why for this VMS, we only

use virtualMemory and virtualCPU , where we allocate 1024MB of RAM and 1

CPU for this VMS.

The second VMS is the one that is marked in the green box in Figure 5.5. This

VMS will have the name (vmsName) VMS2 defined in line 26. In line 17, like the

previous VMS, we place the VMS type (vmsType), a code that references a docker

5.7 Example of the L-PRISM Metamodel 105

image. Looking closely at that figure, you can see that the vmsType of VMS1 and

VMS2 are identical since we used the same image to display two containers that

will receive different media streams. Like VMS1, the specification of the allocation

of computational resources is made from lines 29 to 33.

The third VMS is the one that is marked in the blue box in Figure 5.5. This VMS

will have the name (vmsName) VMS3 defined in line 35. In line 36, like the

previous VMS, we place the type of VMS (vmsType), a code that refers to a docker

image. For this example, the code attached to this VMS belongs to a VMS image

that transforms a multimedia stream of color video to a black-and-white video (vms

black-white). If you take a closer look at the image, you can see that the vmsType

of VMS3 differs from the previous VMSs, since we used a different image to unfold

the container. The specification of the allocation of computational resources is made

from lines 38 to 45, and you can see two new elements, which specify the allocation

of storage resources (1000MB) and GPU allocation (null).

3. Description of the virtual link (VL)

Figures 5.6, 5.7, and 5.8 present the specification of the VL list used in this example.

In line 47, virtualLinks is a list of VLs. In this example, we specify that we will

create six VLs.

The first VL is marked in the red box in Figure 5.6. This VL represents the connec-

tion between the VD ColorBar and the VMS VMS2. As mentioned in the formal

specification of a VL, it has two elements in its structure, source, and destination.

source specifies the properties from which the multimedia stream will be sent, for

this VL sourceName is the VD ColorBar, and since the source is a VD sourceType

will be device, we also set the type of multimedia stream will be sent from this com-

ponent, in this VL outputType will be video. For this example, we do not specify the

format of the multimedia stream; it is for this reason that we do not put anything in

formatType. destination specifies the properties of who will receive the multimedia

stream; for this VL the destination destinationName is the VMS VMS2. We do

not put any data in destinationIp because VMS2 does not exist yet, and therefore

there is not yet an IP address attributed to VMS2. Finally, specify the properties

about which port destinationPort of VMS2 will receive the multimedia stream sent

by ColorBar; for this VL, the port in charge of receiving the multimedia stream will

be 15000, and it will be of type video. The author of the VMS commonly defines

the information about the port enabled to receive the multimedia stream, so those

5.7 Example of the L-PRISM Metamodel 106

who use these applications must have this information to configure the VLs.

Figure 5.6: Specification of virtual link with the metamodel of L-PRISM- Part 1

The second VL is the one that is marked in the green box in Figure 5.6. This VL

represents the connection between the VD ColorBar and the VMS VMS3. For this

VL, sourceName is the VD ColorBar, and since the source is a VD, sourceType

will be device, we also place the type of multimedia stream that will be sent from

this component in this VL outputType will be video. For this example, we do not

specify the format of the multimedia stream; it is for this reason that we do not put

anything in formatType. destination specifies the properties of who will receive

the multimedia stream; for this VL the destination destinationName is the VMS

VMS3. We do not put any data in destinationIp because VMS3 does not exist

yet, and therefore there is not yet an IP address attributed to VMS3. Finally,

specify the properties about which port destinationPort of VMS3 will receive the

multimedia stream sent by ColorBar; for this VL, the port in charge of receiving

the multimedia stream will be 5000, and it will be of type video. The author of

the VMS commonly defines the information about the port enabled to receive the

multimedia stream, so those who use these applications must have this information

to configure the VLs.

The third VL is the one marked in the red box in Figure 5.7. This VL repre-

sents the connection between the VMS VMS3 and the VMS VMS2. For this VL,

sourceName is the VMS VMS3, and as the source is a VMS, sourceType will be

5.7 Example of the L-PRISM Metamodel 107

vms, we also place the type of multimedia stream that will be sent from this compo-

nent; in this VL outputType will be video. For this example, we do not specify the

format of the multimedia stream; it is for this reason that we do not put anything in

formatType. destination specifies the properties of who will receive the multimedia

stream; for this VL the destination destinationName is the VMS VMS2. We do

not put any data in destinationIp because VMS2 does not exist yet, and therefore

there is not yet an IP address attributed to VMS2. Finally, specify the properties

about which port destinationPort of VMS2 will receive the multimedia stream

from VMS3; for this VL, the port in charge of receiving the multimedia stream will

be 15001, and it will be of type video. The author of the VMS commonly defines

the information about the port enabled to receive the multimedia stream, so those

who use these applications must have this information to configure the VLs.

Figure 5.7: Specification of virtual link with the metamodel of L-PRISM- Part 2

The fourth VL is the one marked in the green box in Figure 5.7. This VL rep-

resents the connection between the VMS VMS2 and the VMS VMS1. For this

VL, sourceName is the VMS VMS2, and since the source is a VMS, sourceType

will be vms, we also place the type of multimedia stream that will be sent from

this component in this VL outputType will be video. For this example, we do not

specify the format of the multimedia stream; it is for this reason that we do not put

anything in formatType. destination specifies the properties of who will receive

the multimedia stream; for this VL the destination destinationName is the VMS

VMS1. We do not put any data in destinationIp because VMS1 does not exist

5.7 Example of the L-PRISM Metamodel 108

yet, and therefore there is not yet an IP address attributed to VMS1. Finally,

specify the properties about which port destinationPort of VMS1 will receive the

multimedia stream from VMS2; for this VL, the port in charge of receiving the

multimedia stream will be 15000, and it will be of type video. The author of the

VMS commonly defines the information about the port enabled to receive the mul-

timedia stream, so those who use these applications must have this information to

configure the VLs.

The fifth VL is the one marked in the red box in Figure 5.8. This VL represents the

connection between the VD Ball and the VMS VMS1. For this VL sourceName

is the VD Ball, and since the source is a VD sourceType will be device, we also

place the type of multimedia stream that will be sent from this component in this

VL outputType will be video. For this example, we do not specify the format of the

multimedia stream; it is for this reason that we do not put anything in formatType.

destination specifies the properties of who will receive the multimedia stream; for

this VL the destination destinationName is the VMS VMS1. We do not put any

data in destinationIp because VMS1 does not exist yet, and therefore there is not

yet an IP address attributed to VMS1. Finally, specify the properties about which

port destinationPort of VMS1 will receive the multimedia stream from Ball; for

this VL, the port in charge of receiving the multimedia stream will be 15001, and

it will be of type video. The author of the VMS commonly defines the information

about the port enabled to receive the multimedia stream, so those who use these

applications must have this information to configure the VLs.

Figure 5.8: Specification of virtual link with the metamodel of L-PRISM- Part 3

5.7 Example of the L-PRISM Metamodel 109

Finally, the sixth VL is the one that is marked in the green box in Figure 5.8; this

VL represents the final connection between the VMS VMS1 and the final point. For

this VL, sourceName is the VMS VMS1, and as the source is a VMS, sourceType

will be vms, we also place the type of multimedia stream that will be sent from

this component; in this VL, outputType will be video. For this example, we do not

specify the format of the multimedia stream; it is for this reason that we do not put

anything in formatType. destination specifies the properties of who will receive the

multimedia stream. For this VL, the destination destinationName is a computer

within the network, so the destination’s IP address will represent the destination’s

name. In this case, the component that will receive the multimedia stream is a

computer or device that already exists and has an IP address. In destinationIp, we

place the IP address 192.168.0.102, which for our example, is a computer within our

network. Finally, specifying the properties about which port destinationPort of the

computer 192.168.0.102 will receive the multimedia flow coming from VMS1, for

this VL, the port in charge of receiving the multimedia flow will be 10004 and will

be of type video. The port information will depend on which available ports can be

used on the computer or device that is used to deploy the multimedia service chain.

In this chapter, we presented L-PRISM metamodel, our proposed domain language

for creating multimedia service chains based on VMS. In Chapter 6, we will present ALFA

2.0 and how L-PRISM was integrated into the ALFA [42] tool.

Chapter 6

ALFA 2.0: Integration of L-PRISM
in ALFA

This chapter describes the integration of L-PRISM into the V-PRISM architecture [6], de-

scribed in Section 2.3. As L-PRISM is a DSL for creating multimedia service chains based

on VMS, the V-PRISM architecture had to be extended to support solutions developed

with L-PRISM.

Besides the architecture, we also extended V-PRISM implementation (ALFA) in a

new version called ALFA 2.0.

Since ALFA uses Docker containers to run VMS and virtual devices (VDs), any ap-

plication can run regardless of the underlying technologies used. One of the premises of

L-PRISM is that it can be used as a guide to develop and virtualize multimedia appli-

cations (VMS). ALFA 2.0 aims to facilitate the registration, compression, and use of the

different elements that are part of L-PRISM within the V-PRISM architecture.

To meet the objective of ALFA 2.0, different changes were made to the modules

database, API, and the webapplication., This is detailed in the following sections.

6.1 Database

ALFA uses MongoDB as a database; this database allows storing information about VMS

images (type VMS), running VMS, virtual devices (VD), host (Nodes), and with our

extension also multimedia service chains. For the database to store information about the

multimedia service chains created on ALFA, chainModel was implemented. This model

stores the list of VDs used, list of VMS created, list of virtual links (VL), and additional

6.2 API 111

information such as name and description of the multimedia service chain created. The

implementation of chainModel is based on the definition of vms.chainModel described

in detail in Section 5.6.1.

For the ALFA database to fully adapt to L-PRISM, the models vmsTypeModel,

vmsModel, and deviceModel also had to be extended. In the case of vmsTypeModel,

it was adapted according to the definition of the swImage artifact described in Section

5.3.1. In the case of vmsModel, this model was extended to support the definition of

the V DU.vms node type described in Section 5.5.1. Finally, deviceModel has its model

extended to support the definition of the device artifact described in Section 5.3.3.

6.2 API

ALFA implementation already has an API used to manage a VMS’s life cycle. Within

the ALFA API services, no aspect of VMS chains was considered, so new services were

added, which allow users to create multimedia service chains based on VMS. The main

service that was implemented enables users to upload from the front-end a YAML file

where the multimedia service chain is described using L-PRISM. Internally this service

processes each of the elements following the following rules:

• The lists of VD, VMS, and VL are separated.

• The VMS at the end of the multimedia service chain is searched for since it contains

complete information about its operation. For example, the final components of a

multimedia service chain contain information about the address (IPv4) where the

processed multimedia stream will be sent.

• Every time an element of the VMSs list is executed and transformed into a container,

information is captured to help complete the information of other elements of the

multimedia service chain. For example, for a VMS to send a multimedia stream

to another VMS, it would need the IP address of the destination VMS. The list of

VMSs in the YAML file will be transformed into containers, and when this happens,

Docker will assign them an IP address. This IP address will be used so that other

elements of the multimedia service chain can communicate with the created VMS

(container). For this reason, each time a VMS is created, we capture some data,

such as IP, container id, and others, to complete information on other elements

within the multimedia service chain (VMS, VD, VL).

6.3 Web interface 112

• When a VMS is created, one looks for which of all the connections (VL) has destine

to this VMS as its final element. Once the VL related to the created VMS is found,

the VMS that is specified in origin is created of this VL.

• When the entire list of VMSs has been created, the connection between the VDs

and VMSs is created. This process consists of subscribing the VMS to the VD flows.

• Once this process is finished and the data is completed, the multimedia service chain

is stored in the database, and a response is sent to the front-end.

List4Chain in other implemented service is one that is in charge of bringing the list

of VMS types (VMStype), the list of virtual devices (V D), and the list of nodes (host).

Figure 6.2 and Figure 6.3 show how these lists present the necessary information that the

users will be required to create multimedia service chains using L-PRISM.

Additionally, some minor modifications were made to other services to support the

CRUD (create, read, update, delete) of the elements described in the database.

6.3 Web interface

6.3.1 Web interface for L-PRISM

A new component has been added to the ALFA web application, which allows uploading

a YAML file and sending it to the backend through the API described in Section 6.2.

Figure 6.1 shows the implemented interface, in which it can be seen that in the upper

right part, there is a button to load the YAML file. Additionally, the information on the

VMSs, virtual devices (VDs), and Nodes (Host), available so that users can use them to

create multimedia service chains, is shown.

We also present the list of available VMS, as shown in Figure 6.2. The list of

EdgeNodes, with the state in which it is located. And finally, the list of available Virtual

Devices (VDs) presents additional information, such as whether the VD is running and

ready to send its multimedia stream, as shown in Figure 6.3.

L-PRISM not only allows creating multimedia service chains but also allows register-

ing new elements that can be used in the multimedia service chain. Figure 6.4 shows the

modified VMS type registration interface (swImage) for L-PRISM, allowing easy regis-

tration of new VMS types. Figure 6.5 shows the interface that allows seeing in detail the

6.3 Web interface 113

Figure 6.1: Interface to upload YAML file.

Figure 6.2: Interface to upload YAML file - List of VMS.

6.3 Web interface 114

Figure 6.3: Interface to upload YAML file - List of Edge Node and list of VD.

types of registered VMS. This interface will help users better understand the behavior of

the elements they need to create chains of multimedia services.

Figure 6.4: Interface for register type VMS
(swImage)

Figure 6.5: Interface for view detail of type
VMS (swImage)

6.3.2 Prototype web interface

An interface was developed that allows the implementation of multimedia service chains

through an intuitive interface; this interface can be seen in Figure 6.8. To create a chain

of multimedia services based on VMS using a traditional method (command lines in a

terminal) the elements must be created separately and mainly, the order of creation must

be from the end (endpoint), backwards. This is because the multimedia service chains

work as a directed acyclic graph (DAG) [17], where the initial nodes of the DAG would be

the VDs and the internal nodes would be the VMS. To create the communication between

6.3 Web interface 115

V D to VMS, VMS to VMS, and VMS to a final − destination, some information

about the destination where the multimedia flow will be sent must be known. In ALFA

2.0, this destination is represented by the IP address. To create a multimedia service

chain traditionally, you must create the final element first since you have the necessary

information for its execution.

The ALFA 2.0 interface follows the model of implementing multimedia service chains

traditionally, which means that a specific order must be followed to create a multimedia

service chain. First, the VMSs is created (from the end to the back), as shown in Figure

6.6, and at the end, the VDs are selected, as shown in Figure 6.7, that will send media

streams to this media service chain. Clicking on Save will use a service designed to process

the data from the multimedia service chain, defined through the intuitive interface.

Figure 6.6: Interface to create a VMS, through the intuitive interface.

Figure 6.9 shows how a multimedia service chain would be implemented with the

prototype interface. This figure shows the service chain to be created, the components

registered in the interface, and the expected result.

One of the bases to develop this interface is that in future work, a YAML file can

be loaded where a multimedia service chain has been implemented using L-PRISM, and

this chain can be displayed graphically to facilitate the understanding of the operation of

multimedia service chain based on VMS.

6.3 Web interface 116

Figure 6.7: Interface to select a V D, through the intuitive interface.

Figure 6.8: Intuitive interface to create multimedia service chain based on VMS.

6.4 Differences between ALFA and ALFA 2.0 117

Figure 6.9: General example of a multimedia service chain created in prototype.

6.4 Differences between ALFA and ALFA 2.0

ALFA 2.0, as such, is not just a new version of ALFA, it is more than a simple extension.

The main difference between ALFA and ALFA 2.0 is that the functionality to create

multimedia service chains based on VMS has been added to ALFA 2.0. To add this

functionality, new elements were included in ALFA existing modules, and the Chain

module was designed and developed from scratch.

Chapter 7

Evaluation

This chapter describes the experiments performed for evaluating L-PRISM and answer-

ing our research question "Does using a Domain Specific Language (DSL) facilitate the

deployment of multimedia service chains based on VMS?".

The Goal Question Metric (GQM) [25] approach was adopted to carry out the exper-

iments. The GQM method has a hierarchical structure of three levels (Goals, Questions,

and Metrics) that refines the results and makes them provide reliable information. The

goals present the phenomenon to be analyzed, each objective can be represented with one

or more questions, and one or more metrics are used to answer each question.

Section 7.1 presents the evaluation process, following the GQM method [25], where

we detail how to analyze the two main goals of our experiments. Section 7.2 explains the

tasks proposed to participants. Section 7.3 describes the subjects that participated in our

experiments and Section 7.4 provides results and discussion.

7.1 Experiment Goals

The goals of this experiment are shown in Table 7.1. Goal G1 analyzes the application

engineering process with and without L-PRISM to evaluate the efficiency and productivity

of developing multimedia service chains. Goal G2 evaluates the comprehensibility of L-

PRISM to analyze if variables, attributes, and structures are understandable for subjects.

7.1.1 G1 - Questions and metrics

The questions defined for G1 are based on some of the Technology Acceptance Model

(TAM) [35]. This approach will help to validate L-PRISM from a quantitative point of

7.1 Experiment Goals 119

Table 7.1: Goals of the experiment
Goal Description Perspective
G1 Analyze the application engineering process with and

without L-PRISM to evaluate the efficiency and pro-
ductivity of developing multimedia service chains.

Efficiency and
Productivity

G2 Evaluate the comprehensibility of L-PRISM to analyze if
variables, attributes, and structures are understandable
for subjects.

Usability

view.

7.1.1.1 G1 - Questions

Questions Q1−Q6 shown in Table 7.2 are related to the first goal, focusing on efficiency

and productivity in developing multimedia service chains based on VMS. The answers

to these questions will be obtained through the metrics defined for G1 in the controlled

experiment.

Table 7.2: Questions for the goal G1
Question Description
Q1 Is the application engineering process using L-PRISM effective in

terms of time for developing multimedia service chains based on
VMS, compared to the traditional approach (V-PRISM)?

Q2 Does the developer claim that using L-PRISM makes it easier to
understand the functional and non-functional requirements of the
multimedia service chain based on VMS.?

Q3 Does the developer claim that using L-PRISM facilitates creating
multimedia service chains based on VMS.?

Q4 Does the developer claim that L-PRISM is useful to create multi-
media service chains based on VMS?

Q5 Does the developer claim that using L-PRISM makes it easier to
reuse multimedia service chains created with L-PRISM to create
new multimedia service chains?

Q6 Is the process of modifying multimedia service chains based on VMS
faster with L-PRISM? Compared with the traditional method (V-
PRISM).

7.1.1.2 G1 - Hypotheses, Variables, and Constructions

For goal G1 of this experiment, it will be necessary to derive the null hypotheses, called

H0ij, and their corresponding alternative hypotheses called H1ij, where i corresponds to

7.1 Experiment Goals 120

the goal; in this case, G1(1) and j is a counter, in case there is more than one hypothesis

for this goal.

Null hypotheses:

• H011 The use of L-PRISM is equivalent to the traditional development of multimedia

service chains based on VMS in terms of development time.

• H012 Compression of functional and non-functional requirements of multimedia ser-

vice chains with L-PRISM is the same as the traditional method (V-PRISM).

• H013 The use of L-PRISM is just as productive in developing VMS-based multimedia

service chains compared to the traditional method (V-PRISM).

• H014 L-PRISM is just as beneficial for developing multimedia service chains based

on VMS as the alternative method.

• H015 The use of L-PRISM maintains the same degree of complexity in reusing

other multimedia service chains based on VMS compared to the traditional method

(V-PRISM).

• H016 The time required to modify a multimedia service chain with L-PRISM and

the alternative method is equivalent.

Alternative hypotheses:

• H111 L-PRISM is better than the traditional development of multimedia service

chains based on VMS in terms of development time.

• H112 L-PRISM makes it easier to understand the functional and non-functional

requirements of multimedia service chains based on VMS.

• H113 L-PRISM is more productive than the traditional development of multimedia

service chains based on VMS.

• H114 L-PRISM is more helpful for developing multimedia service chains based on

VMS than the alternative method.

• H115 The use of L-PRISM makes the reuse of multimedia service chains already

developed less complex compared to the traditional method (V-PRISM).

7.1 Experiment Goals 121

• H116 The time required to modify a multimedia service chain with L-PRISM is less

than the alternative method.

To answer the questions related to G1, as well as to check if its formulated hypotheses

are true or false, the following constructs are defined:

• Development effort.

• Understanding of requirements.

• Perceived ease of use.

• Perceived utility.

• Perceived reuse.

• Reuse effort.

These constructs represent the properties we want to evaluate for G1. Additionally,

these will be measured according to the metrics defined in Section 7.1.1.3.

7.1.1.3 G1 - Metrics

Since there is no standard metrics that can evaluate all the questions defined for G1,

we use some of the metrics defined in the Technology Acceptance Model (TAM) [35].

Additionally, we specify our metrics based on the constructs proposed in Section 7.1.1.2.

The goal of the proposed metrics is to quantitatively evaluate the development process

of multimedia service chains based on VMS using L-PRISM and the traditional method

(V-PRISM).

M1 is defined to evaluate the development effort construct: This metric records the

total time required to perform the proposed tasks considering both approaches (L-PRISM

and TRADITIONAL(V-PRISM)). The objective of M1 is to measure the time it takes

each participant to develop different multimedia service chains based on VMS using the

two approaches. This metric will help answer Q1 of G1.

M2 is defined to assess the design and understanding of the requirements: The objec-

tive of M2 is to assess the participant’s understanding of the functional and non-functional

requirements of the four tasks. Considering that a clear understanding of the requirements

7.1 Experiment Goals 122

positively affects the development of the different tasks, this metric helps to answer Q2

of G1. This metric is measured using a questionnaire based on the Likert scale [26].

M3 is defined to evaluate the construct of perceived ease of use: The objective of

M3 is to measure the opinion of the participant about usability in both approaches; this

metric captures the degree to which a person believes that the use of a particular system

or model is better [14]. This metric will help to answer Q3 of G1. This metric is measured

using a questionnaire based on the Likert scale [26].

M4 is defined to evaluate the perceived usefulness construct: The objective of M4 is

to measure the participant’s opinion regarding the usefulness of L-PRISM for developing

multimedia service chains based on VMS. This metric indicates the degree to which a

person believes that a particular system or method helps develop a specific task [14].

This metric will answer Q4 of G1. This metric is measured using a questionnaire based

on the Likert scale [26].

M5 is defined to evaluate the construct of perceived reuse: The objective of M5 is

to evaluate the opinion of the participant regarding code reuse using L-PRISM in the

development process of multimedia service chains based on VMS. This metric indicates

how a person can reuse existing code to create new applications. This metric will help

to answer Q5 of G1. This metric is measured using a questionnaire based on the Likert

scale [26].

M6 is defined to evaluate the reuse effort construct: The objective of M6 is to mea-

sure the time required to modify or add new functionality to an application previously

developed with L-PRISM. This metric measures the average time to modify a previously

developed application. This metric will help answer questions Q6 of G1.

7.1.2 G2 - Questions and metrics

The questions defined for G2 are based on the Cognitive Dimensions of Notations (CDN)

[8]. This approach will help to validate L-PRISM from a usability point of view.

7.1.2.1 G2 - Questions

Questions Q1−Q7 shown in Table 7.3 are related to the second goal, focusing on usability

in developing multimedia service chains based on VMS.

The answers to these questions will be obtained through the metrics defined for G2

7.1 Experiment Goals 123

in the controlled experiment.

Table 7.3: Questions for the goal G2
Question Description
Q1 How easy is it to visualize or find the various components of L-

PRISM while creating or changing a multimedia application?
Q2 How easy is modifying a multimedia service chain with L-PRISM?
Q3 Is the L-PRISM language too verbose to specify a multimedia ser-

vices chain?
Q4 In general, do the elements and attributes of L-PRISM represent

well a multimedia service chain?
Q5 Is it easy to understand the data types and structures in L-PRISM?
Q6 There are structures and data types in L-PRISM that can be closely

related, and changes to one can affect the other. Are those depen-
dencies visible?

Q7 Does L-PRISM generally seem easy or difficult to understand (for
example, when changing different elements of a multimedia service
chain)?

7.1.2.2 G2 - Hypotheses, Variables, and Constructions

For goal G2 of this experiment, it will also be necessary to derive null hypotheses, called

H0ij, and their corresponding alternative hypotheses called H1ij, where i corresponds to

the goal; in this case, G2(2) and j is a counter, in case there is more than one hypothesis

for this purpose.

Null hypotheses:

• H021 L-PRISM components are hard to find when creating or modifying a multi-

media application.

• H022 Changes to existing applications are difficult to make.

• H023 The data types and structures in L-PRISM are too extensive to describe.

• H024 L-PRISM elements have a strange description.

• H025 Data types and structures are difficult to understand.

• H026 Dependencies exist between components or data types in L-PRISM and are

not visible.

• H027 L-PRISM at a general level is difficult to understand.

7.1 Experiment Goals 124

Alternative hypotheses:

• H121 L-PRISM components are easy to find when creating or modifying a multime-

dia application.

• H122 Changes to existing applications are easy to make.

• H123 The data types and structures in L-PRISM are reasonably brief to describe.

• H124 The elements of L-PRISM have a simple description.

• H125 Data types and structures are easy to understand.

• H126 The dependencies between the components or data types in L-PRISM are easy

to recognize.

• H127 L-PRISM at a general level is easy to understand.

To answer the questions related to G2, as well as to check if its formulated hypotheses

are true or false, the following constructs are defined:

• Visibility

• Viscosity

• Diffuseness

• Closeness of Mapping

• Role Expressiveness

• Hidden dependencies

• Hard mental operations

These constructs represent the properties that we want to evaluate for G2. These will

be measured according to the metrics defined in Section 7.1.2.3.

7.1 Experiment Goals 125

7.1.2.3 G2 - Metrics

As mentioned previously, the cognitive dimensions metric will be used to assess the G2

questions. The objective of using these metrics is to evaluate L-PRISM usability.

M1 is defined to evaluate the visibility construct: This metric records how easy it

is to see the different components of L-PRISM. The objective of M1 is to evaluate the

complexity that the participants have when visualizing the components. This metric will

help answer Q1 of G2 through a questionnaire based on the Likert scale [26].

M2 is defined to evaluate the Viscosity construct: This metric records the resistance

to changes of applications made with L-PRISM. The objective of M2 is to evaluate how

difficult it is to modify an application made with L-PRISM. This metric helps answer Q2

of G2 through a questionnaire based on the Likert scale [26].

M3 is defined to assess the diffuseness construct: This metric records the level of

understanding and usefulness of L-PRISM components. The objective of M3 is to test

whether participants understand the behavior of L-PRISM data types and structures.

This metric helps answer Q3 of G2 through a questionnaire based on the Likert scale [26].

M4 is defined to evaluate the Closeness of Mapping construct: This metric records

the proximity of L-PRISM to the performance of multimedia applications. The objective

of M4 is to perceive if the participants relate L-PRISM with the operation or behavior of

multimedia applications. This metric helps to answer Q4 of G2 through a questionnaire

based on the Likert scale [26].

M5 is defined to evaluate the Expressiveness construct: This metric records the

expressiveness of the L-PRISM components. The objective of M5 is to assess whether

participants can understand what the L-PRISM elements are for just by reading them.

This metric helps answer Q5 of G2 through a questionnaire based on the Likert scale [26].

M6 is defined to evaluate the Hidden Dependencies construct: this metric registers

if the relationships between the different components are not visible. The objective of

M6 is to assess whether the participants can easily recognize the relationships between

L-PRISM components. This metric helps answer Q6 of G2 through a questionnaire based

on the Likert scale [26].

M7 is defined to assess the Hard Mental Operations construct: This metric records

the overall complexity of L-PRISM. The objective of M7 is to evaluate if L-PRISM is

challenging to understand at a general level. This metric helps answer Q7 of G2 through

7.2 Experiment Tasks 126

a questionnaire based on the Likert scale [26].

7.2 Experiment Tasks

The experiment was planned to occur in two phases, the training phase and the execution

phase.

7.2.1 Training phase

In the first or training phase, the participants are trained in two topics:

• Understanding and development of multimedia service chains based on VMS. For

this, it is necessary to carry out the manual deployment of a multimedia service

chain. In this stage, the help of the V-PRISM architecture presented by [42] (model

1) is used. With this, we want to simulate the development of multimedia service

chains based on VMS using the traditional method (manually executing each of the

components of the multimedia service chain (V-PRISM)).

• Development of multimedia service chains based on VMS using L-PRISM (model

2), for which a module was implemented within V-PRISM, which allows the loading

of an application made with L-PRISM (File in YAML format).

The material delivered to the subjects for the training stage is available on the web-

site1. This website presents the following content:

• Information about L-PRISM and the researchers involved in its development.

• Summary of L-PRISM and the main elements used to create a multimedia service

chain based on VMS. Figure 7.1 shows how the main elements of a multimedia

service chain based on VMS are presented on the website. You can also see the

example code of each element and its details.

• Examples of multimedia service chains created with L-PRISM as shown in Figure

7.2. Additionally, each example is detailed with a brief description of the multimedia

service chain created, the code using L-PRISM in YAML format, a reference image of

how the multimedia service chain is structured, a video showing the implementation
1https://fventuraq.github.io/lprism.html

7.2 Experiment Tasks 127

process in detail, the command line to display the result and finally an image of how

the result should be when displaying this example. Figure 7.3 shows a view of an

example on the website.

• Examples of multimedia service chains created with the traditional method (V-

PRISM) are presented in videos, as shown in Figure 7.4. These videos detail creating

multimedia service chains based on VMS using V-PRISM.

Figure 7.1: View of the website of main el-
ements of L-PRISM for creating a multime-
dia service chain based on VMS

Figure 7.2: View the examples of multime-
dia service chains created with L-PRISM on
the website.

Figure 7.3: Details of the examples of multi-
media service chains created with L-PRISM
on the website.

Figure 7.4: View the examples of multime-
dia service chains created with V-PRISM on
the website.

Additionally, the participants will answer a characterization questionnaire which will

provide information about professional experience and software development skills.

7.2.2 Execution phase

In the second or execution phase, each participant will be randomly assigned which model

1 or 2 to start. After they know which model they will start the experiment with, they

will be given the tasks described in Section 7.2.3.

7.2 Experiment Tasks 128

7.2.3 Tasks

• Task 1: Create a multimedia service chain based on VMS with and without L-

PRISM, which receives a multimedia stream (color video), transforms the video to

grayscale, and finally publishes this video stream on a computer within the network

by port 10002; refer to Figure 7.5.

Figure 7.5: Multimedia service chain that transforms a color video to grayscale - Task 1.

• Task 2: Create a multimedia service chain based on VMS with and without L-

PRISM, comparing a raw video stream and the same greyscale-transformed video

stream, finally publishing this video stream on a computer within the network

through port 10003; refer to Figure 7.6.

Figure 7.6: Multimedia service chain that bundles two video streams - Task 2.

• Task 3: Add to task 2 a different video stream (video ball), group with the result

of task 2, and finally publish this video stream on a computer within the network

through port 10004; refer to Figure 7.7.

• Task 4: Replicate task 3 and publish this video stream on a computer within the

network through port 10005; refer to Figure 7.8.

The tasks are organized as shown in Table 7.4 for two participants PA and PB.

7.3 Subjects 129

Figure 7.7: Complex multimedia service chain - Task 3.

Figure 7.8: Reuse of multimedia service chains - Task 4.

Table 7.4: Tasks of the experiment

Participants FIRST LAST

L-PRISM TRADITIONAL
/ V-PRISM L-PRISM TRADITIONAL

/ V-PRISM

PA T1, T2, T3,
T4 - - T1, T2, T3,

T4

PB - T1, T2, T3,
T4

T1, T2, T3,
T4 -

Different tasks were used to answer G1 and G2 questions, as depicted in Tables 7.5

and 7.6.

7.3 Subjects

The profile of the participants involved in the experiment includes (i) educational level;

(ii) level of knowledge in the field of networks, multimedia systems, virtualization tools,

7.3 Subjects 130

Table 7.5: Tasks used for Goal G1

Goals Question Metrics Tasks

G1

Q1 M1 T1, T2, T3, T4
Q2 M2 T1, T2, T3, T4
Q3 M3 T1, T2, T3, T4
Q4 M4 T1, T2, T3, T4
Q5 M5 T3, T4
Q6 M6 T2, T3, T4

Table 7.6: Tasks used for Goal G2

Goals Question Metrics Tasks

G2

Q1 M1 T1, T2, T3, T4
Q2 M2 T3, T4
Q3 M3 T1, T2, T3, T4
Q4 M4 T1, T2, T3, T4
Q5 M5 T1, T2, T3, T4
Q6 M6 T1, T2, T3, T4
Q7 M7 T1, T2, T3, T4

and distributed systems; and (iii) level of knowledge in programming languages.

The participants are graduate and postgraduate students in computer science or re-

lated to the computing area, organized as mentioned above; they have experience from

introductory to advanced in the profile mentioned above. Additionally, all participants

were trained with previously developed materials and signed a confidentiality and consent

form that explains the experiment procedure.

Ten subjects participated in the experiments. They were computer science developers

aged 26-39 years, 9 were men, and 1 was a woman, as shown in Figure 7.9 (a). Their

academic degree was 20% undergraduate, 30% graduate, and 50% post-graduate, as shown

in Figure 7.10. About your level of experience with the languages in XML, JSON and

YAML (from 1 (no experience) to 5 (a lot of experience)). Median answers were 4 for

XML, 5 for JSON, and 3 for YAML, as shown in Figure 7.11. We built a testbed with

edge nodes in the lab to run the experiments.

Three subjects did it physically at the lab and seven subjects did it remotely. All of

them were observed all the time during the experiment, even the remote ones.

7.4 Results 131

Figure 7.9: Number of subjects. Figure 7.10: Academic level.

Figure 7.11: Experience in the use of XML, JSON, and YAML languages.

7.4 Results

7.4.1 G1 - Evaluation

Figure 7.12 will help us answer questions Q1 and Q6 of G1; the metrics used for these

questions are related to time. As shown in Figure 7.12, the average time in minutes with

a confidence interval of 90% to perform the tasks with L-PRISM is presented by blue

bars. The average times in minutes with a confidence interval of 90% to carry out the

tasks with the traditional method (V-PRISM) are presented by orange bars. Table 7.5

presents the relationship of the questions, metrics, and tasks for G1, together with Figure

7.12, provides us with the necessary information to analyze the responses to questions Q1

and Q6.

• For question Q1 of G1, the development effort metric was used, and the results for

this response depend on four Tasks 1, 2, 3 and 4. As seen in Figure 7.12, the times in

7.4 Results 132

Figure 7.12: Time needed per task in the two methods (L-PRISM and Classic method
(V-PRISM))

minutes to perform the tasks with L-PRISM are similar to those of the traditional

method (V-PRISM), so it can be concluded that both methods are equivalent in

the development effort. This result validates the null hypothesis of Q2 defined in

Section 7.1.1.2; this means that "The use of L-PRISM is equivalent to the tradi-

tional development (V-PRISM) of VMS-based multimedia service chains in terms

of development time."

• For question Q6 of G1, the perceived reuse metric was used, and the results for this

answer depend on Task4. As shown in Figure 7.12, the time in minutes to perform

task 4 with L-PRISM (average 1.10 minutes) is notably smaller than the traditional

method (V-PRISM) (average 4.89 minutes), so it can be concluded that L-PRISM

is superior in relation to perceived reuse. This result validates the alternative hy-

pothesis of Q2 defined in Section 7.1.1.2; this means that "The time required to

modify a chain of multimedia services with L-PRISM is less than the traditional

method (V-PRISM)."

In Figure 7.13, each colored region represents the percentage of subjects who chose

the option indicated at the bottom of this figure. For a better analysis of the results, the

types of responses for questions Q2 to Q5 of G1 will be evaluated by values of 1 to 5, where

responses range from ”StronglyDisagree = 1” to ”StronglyAgree = 5”. Additionally,

Table 7.5 presents the relationship between the questions and metrics of G1; this, related

7.4 Results 133

to the results of the answers presented in Figure 7.13 leads us to a brief discussion for

each of the questions mentioned above.

Figure 7.13: Summary of responses to G1 questions Q2-Q5

• For question Q2 of G1, it can be seen that 60% of the subjects Strongly Agree (5)

and 40% Agree (4). The value of the mode for Q2 is (MO = 5); this means that

most of the subjects Strongly Agree with this question. The value of the median is

(Md = 5), which means that the subjects Strongly Agree with Q2. The results of

Q2 lead us to validate the alternative hypothesis of Q2 defined in Section 7.1.1.2;

this means that "L-PRISM facilitates the understanding of the functional and non-

functional requirements of VMS-based multimedia service chains."

• For question Q3 of G1, it can be seen that 60% of the subjects Strongly Agree (5)

and 40% Agree (4). The value of the mode for Q3 is (MO = 5); this means that

most of the subjects Strongly Agree with this question. The value of the median is

(Md = 5), which means that the subjects fully agree with Q3. The results of Q3

lead us to validate the alternative hypothesis of Q3 defined in Section 7.1.1.2; this

means that "L-PRISM is more productive than the traditional V-PRISM method,

to develop chains of multimedia services based on VMS."

• For question Q4 of G1, it can be seen that 70% of the subjects Strongly Agree (5)

and 30% Agree (4). The value of the mode for Q4 is (MO = 5); this means that

most of the subjects Strongly Agree with this question. The value of the median is

(Md = 5), which means that the subjects fully agree with Q4. The results of Q4

lead us to validate the alternative hypothesis of Q4 defined in Section 7.1.1.2; this

7.4 Results 134

means that "L-PRISM is more useful than the traditional method (V-PRISM) to

develop chains of multimedia services based on VMS."

• For question Q5 of G1, it can be seen that 80% of the subjects Strongly Agree (5)

and 20% are Neutral (3). The value of the mode for Q5 is (MO = 5); this means

that most of the subjects Strongly Agree with this question. The median value

for Q5 is (Md = 5), which means that the subjects Strongly Agree with Q5. The

results of Q5 lead us to validate the alternative hypothesis of Q5 defined in Section

7.1.1.2; this means that "The reuse of multimedia service chains already developed

with L-PRISM is less complex compared to the traditional method (V-PRISM)."

Based on the results obtained for questions Q1 and Q6 of G1, which are directly

related to the productivity perspective, it can be seen that our L-PRISM proposal is

slightly better than the traditional method when it comes to creating simple multimedia

service chains for the first time. When it comes to creating complex multimedia service

chains for the first time, it is a bit worse. However, in creating a complex multimedia

service chain for the second or more time L-PRISM is utterly superior to the traditional

method. So we can conclude that L-PRISM is more productive the more it is used.

Regarding the results obtained through the metrics defined for questions Q2 to Q5

related to the efficiency of L-PRISM, a median of 5 (Md = 5) was obtained in all these

cases, which shows that L-PRISM is excellent from the point of view of efficiency. Then

it is possible to conclude that the goal G1 was achieved.

7.4.2 G2 - Evaluation

In Figure 7.14, each colored region represents the percentage of subjects who chose the

option indicated at the bottom of this figure. For a better analysis of the results, the

types of responses for questions Q1 to Q7 of G2 will be evaluated by values of 1 to 5,

where responses range from StronglyDisagree = 1 to StronglyAgree = 5. Additionally,

Table 7.6 presents the relationship between the questions and G2 metrics; this, related to

the results of the answers presented in Figure 7.14 leads us to a brief discussion for each

of the questions mentioned above.

• For question Q1 of G2, it can be seen that 20% of the subjects Strongly Agree

(5), 70% Agree (4), and 10% Neutral (3). The value of the mode for Q1 of G2

is (MO = 4); this means that most of the subjects Agree with this question. The

7.4 Results 135

Figure 7.14: Summary of responses to G2 questions

median value for Q1 of G2 is (Md = 4), which means that the subjects Agree with

Q1. The results of Q1 lead us to validate the alternative hypothesis of Q1 defined

in Section 7.1.2.2; this means that "L-PRISM components are easy to find when

creating or modifying a multimedia application."

• For question Q2 of G2, it can be seen that 70% of the subjects Strongly Agree (5)

and 30% Agree (4). The value of the mode for Q2 of G2 is (MO = 5); this means

that the majority of the subjects Strongly Agree with this question. The median

value for Q2 of G2 is (Md = 5), which means that the subjects Strongly Agree

with Q2. The results of Q2 lead us to validate the alternative hypothesis of Q2

defined in Section 7.1.2.2; this means that "Changes to existing applications made

with L-PRISM are easy to make."

• For question Q3 of G2, it can be seen that 10% of the subjects Strongly Agree (5),

40% Agree (4), 20% Neutral (3), 10% Disagree (2) and 20% Strongly Disagree (1).

The value of the mode for Q3 of G2 is (MO = 4); this means that most of the

subjects Agree with this question. The median value for Q3 of G2 is (Md = 3),

which means that the subjects are neutral concerning Q3. The results of Q3 lead

us to validate the null hypothesis of Q3 defined in Section 7.1.2.2; this means that

“The data types and structures in L-PRISM are too extensive to describe.”

• For question Q4 of G2, it can be seen that 70% of the subjects Strongly Agree

(5) and 30% Agree (4). The value of the mode for Q4 of G2 is (MO = 5); this

means that the majority of the subjects Strongly Agree with this question. The

7.4 Results 136

median value for Q4 of G2 is (Md = 5), which means that the subjects Strongly

Agree with Q4. The results of Q4 lead us to validate the alternative hypothesis of

Q4 defined in Section 7.1.2.2; this means that "The elements of L-PRISM have a

simple description."

• For question Q5 of G2, it can be seen that 70% of the subjects Strongly Agree (5)

and 30% Agree (4). The value of the mode for Q5 of G2 is (MO = 5); this means

that the majority of the subjects Strongly Agree with this question. The median

value for Q5 of G2 is (Md = 5), which means that the subjects Strongly Agree with

Q5. The results of Q5 lead us to validate the alternative hypothesis of Q5 defined in

Section Section 7.1.2.2; this means that “The data types and structures in L-PRISM

are easy to understand.”

• For question Q6 of G2, it can be seen that 30% of the subjects Strongly Agree (5)

and 70% Agree (4). The mode value for Q6 of G2 is (MO = 4); this means that

most subjects Agree with this question. The median value for Q6 of G2 is (Md = 4),

which means that the subjects Agree with Q6. The results of Q6 lead us to validate

the alternative hypothesis of Q6 defined in Section 7.1.2.2; this means that "The

dependencies between components or data types in L-PRISM are easy to recognize."

• For question Q7 of G2, it can be seen that 40% of the subjects Strongly Agree

(5) and 60% Agree (4). The mode value for Q7 of G2 is (MO = 4); this means

that most subjects Agree with this question. The median value for Q7 of G2 is

(Md = 4), which means that the subjects Agree with Q7. The results of Q7 lead us

to validate the alternative hypothesis of Q7 defined in Section 7.1.2.2; this means

that "L-PRISM at a general level is easy to understand."

About the results obtained through the metrics defined for the G2 questions, related

to the usability of L-PRISM, median results were obtained (Q1 = 4, Q2 = 5, Q3 = 3,

Q4 = 5, Q5 = 5, Q6 = 4, Q7 = 4), with the mode of the medians equal to 4, 5 and

the median of the medians equal to 4. This shows that L-PRISM is between good and

excellent from the usability point of view, then it is possible to conclude that the goal G2

was also achieved.

7.4.3 Threats to Validity

Within our results, we can observe that Q3 of G2 did not have the results we expected,

but it was also observed that the results are not inclined to accept or reject, as shown

7.4 Results 137

in Figure 7.15. This led us to conduct a small investigation with participants about this

question.

Figure 7.15: Results of question Q3 of objective G2

The results are due to two reasons. The first is that the question was poorly posed;

what was really wanted to ask is:

• Is the L-PRISM language verbose to specify a multimedia services chain?

However, what was asked was:

• Is the L-PRISM language too verbose to specify a multimedia services chain?

The second reason is that the questionnaire was carried out in Portuguese, and the

participating subjects have Spanish and Portuguese as their mother tongue. For those who

have Portuguese as their mother tongue, they did not have any doubts when answering

the questionnaire, but those whose mother tongue is Spanish asked what verbose means

in the question:

• Q3 of G2: A linguagem L-PRISM é muito verbosa para especificar uma cadeia de

serviços multimídia?

Which it was answered that the question in English was:

• Is the L-PRISM language verbose to specify a multimedia services chain?

7.4 Results 138

Some other observations on our validation are mentioned below.

• The L-PRISM evaluation included the participation of 10 subjects, which could be

considered a small sample size. Therefore, the results obtained may not be fully

supported by the sample evaluated.

• It is important to note that the majority of the participants in the evaluation of

L-PRISM were friends of the researcher, which could have introduced bias into the

results. It is possible that the researcher’s friends share similar opinions, which may

have influenced their evaluations of L-PRISM and led to more favorable results than

would have been obtained with a more diverse and representative sample.

7.4.4 Final considerations

As can be seen, the results for the questions that expect positive responses are as expected,

and for Q3 of G2 the results are somewhat ambiguous; a subsequent consultation was made

with the participants asking about this result, and the conclusion was that the question

was not very clear, hence the disparity in the responses.

This chapter presented the methodology used to validate L-PRISM. The next chapter

presents the conclusions, main contributions, limitations, and future work.

Chapter 8

Conclusion

Unlike general programming languages, such as Java, C++, or Python, which can be used

to develop various applications, Domain Specific Languages (DSL) are designed to solve

specific problems or tasks within a framework in a particular domain. Templates are an-

other tool that offers similar solutions to DSL since they allow instantiating applications

simply using a pre-defined schema. Usually, a template describes the application compo-

nents and the relationships between them. Another tool similar to DSL and templates is

data models, which are used to describe the structure and relationships between data in

an application or system. Data models facilitate the design of applications or systems.

In general, there is little effort in the literature to help create multimedia service chains

based on VMS. None of the DSL, templates, and data models found in the literature

address the concepts that are used for the specification and orchestration of multimedia

service chains based on VMS. One of the languages that most resemble our objective is

TOSCA-NFV.

TOSCA-NFV is a declarative modeling language that allows describing cloud applica-

tions and services in a standardized way. TOSCA-NFV extends the functionalities of the

TOSCA specification to allow the description and orchestration of services based on NFV.

TOSCA-NFV was modeled to work in the cloud, and although it could be used in Edge

Computing environments, it would not be the most appropriate since its specification is

based on virtualization based on hypervisors, and this type of virtualization requires a

complete operating system to be installed inside a virtual machine, which generates a

higher use of computational resources. TOSCA-NFV also bases its specification to create

services on NFV, and its specification focuses on the behavior of network functions and

does not address multimedia applications or services.

8 Conclusion 140

This thesis introduces L-PRISM, a DSL based on YAML, for creating multimedia

service chains based on VMS. Our DSL describes the main data types, capabilities, ar-

tifacts, and relationships that are part of the structure of the multimedia service chain

based on VMS. L-PRISM bases its specification on the concepts of Internet of Media

Thing (IoMT), lightweight virtualization (containerization), and Edge computing, aiming

to specify and orchestrate multimedia service chains based on VMS.

In order to validate L-PRISM, the ALFA implementation was extended, which we

call ALFA 2.0. The main objective of this extension is to allow YAML files that contain

the specification of a multimedia service chain based on our L-PRISM, to be loaded by a

web interface and sent through an API to a service that will be in charge of orchestrating

the elements of this multimedia service chain (VD, VMS, VL), to register this multimedia

service chain within a database finally.

ALFA 2.0 is released under an open-source license and can be accessed on GitHub1.

Additionally, other features were implemented in ALFA 2.0, as:

• Adaptation of the main elements of ALFA (VD, typeVMS, and VMS) so that de-

velopers who use L-PRISM can use these elements without any problem.

• A service that retrieves from the database the necessary information to specify a

multimedia service chain (list of VMS types (type VMS), list of host (Nodes), and

list of virtual devices (VD)).

• A module that creates multimedia service chains through an intuitive interface was

used as proof of concept in the early stages to validate that the V-PRISM architec-

ture would support L-PRISM.

The Goal Question Metric (GQM) method was used to validate L-PRISM. Firstly,

two goals were defined (G1 and G2), and for each goal, a group of questions related to a

group of metrics was proposed. The questions for G1 use Technology Acceptance Model

(TAM) metrics, and the questions for G2 use Cognitive Dimensions of Notations (CDN)

metrics.

A group of developers carried out the experiment stage; this stage was divided into

two phases. The first phase is the training phase, where the group of developers had

to be trained in how to create multimedia service chains based on VMS, with L-PRISM

1https://github.com/fventuraq/alfa

8.1 Contributions 141

and a traditional method (simulating the deployment of each VMS by console using V-

PRISM), in order to be able to train, a website2 was set up that contains information

about L-PRISM, implementation examples with L-PRISM and V-PRISM. The second

phase is to perform four tasks. Each task is to create a multimedia service chain based

on VMS with L-PRISM and the traditional method (V-PRISM). At the end of the tasks,

the participants had to complete a questionnaire containing the questions G1 and G2.

The results obtained for both objectives were promising. For G1, it can be concluded

that L-PRISM is excellent from the point of view of efficiency, and in the case of

productivity, it was shown that L-PRISM is slightly superior in most cases. For G2, it

could be concluded that L-PRISM is good from the usability point of view.

8.1 Contributions

In summary, the main contributions achieved in this thesis were:

• Design and develop L-PRISM language for creating multimedia service chains based

on VMS.

• Integrate L-PRISM into the V-PRISM architecture with the extension of ALFA to

ALFA 2.0.

• Evaluate L-PRISM comparing to a traditional method for creating multimedia ser-

vice chains with V-PRISM.

8.2 Future work

One future work is developing a framework that allows viewing multimedia service chains

created with L-PRISM. This framework could help to make the solutions implemented

with our proposal more understandable. Additionally, it could also be used to design

multimedia service chains and export them in our language.

One of the characteristics of using virtualization is that access to virtualized applica-

tion monitoring information is not very complex, which would allow capturing different

types of information. As future work, we propose to create an API that allows capturing

2https://fventuraq.github.io/lprism.html

8.2 Future work 142

and storing the operational data of multimedia service chains and their components, in-

tending to create a database that can be used for investigations related to the operation

or behavior of multimedia applications in environments virtualized.

One of the characteristics of virtualized multimedia applications is that the amount

of resources assigned to them is not always the most appropriate for their operation. The

use of machine learning techniques can be very useful in environments where virtualized

multimedia applications work since the number of resources assigned to these applications

could be self-managed by an AI, thanks to the fact that virtualization makes access to

monitoring data easier. We also intend to integrate L-PRISM to the 5G architecture

and extend the L-PRISM specification to support a different application domain, besides

IoMT.

References

[1] Alam, I.; Sharif, K.; Li, F.; Latif, Z.; Karim, M. M.; Biswas, S.; Nour, B.;
Wang, Y. A Survey of Network Virtualization Techniques for Internet of Things
Using SDN and NFV. ACM Computing Surveys 53, 2 (Mar. 2021), 1–40.

[2] Allouche, M.; Mitrea, M.; Moreaux, A.; Kim, S.-K. Automatic smart con-
tract generation for internet of media things. ICT Express 7, 3 (2021), 274–277.

[3] Alvarez, F.; Breitgand, D.; Griffin, D.; Andriani, P.; Rizou, S.; Zioulis,
N.; Moscatelli, F.; Serrano, J.; Keltsch, M.; Trakadas, P., et al. An
edge-to-cloud virtualized multimedia service platform for 5g networks. IEEE Trans-
actions on Broadcasting 65, 2 (2019), 369–380.

[4] Barakabitze, A. A.; Ahmad, A.; Mijumbi, R.; Hines, A. 5g network slic-
ing using sdn and nfv: A survey of taxonomy, architectures and future challenges.
Computer Networks 167 (2020), 106984.

[5] Barakabitze, A. A.; Barman, N.; Ahmad, A.; Zadtootaghaj, S.; Sun, L.;
Martini, M. G.; Atzori, L. Qoe management of multimedia streaming services in
future networks: a tutorial and survey. IEEE Communications Surveys & Tutorials
22, 1 (2019), 526–565.

[6] Battisti, A.; Muchaluat-Saade, D. C.; Delicato, F. C. V-PRISM: An edge-
based iot architecture to virtualize multimedia sensors. In 2020 IEEE 6th World
Forum on Internet of Things (WF-IoT) (2020).

[7] Björklund, M. YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, Oct. 2010.

[8] Blackwell, A. F.; Green, T. R. A cognitive dimensions questionnaire optimised
for users. In PPIG (2000), vol. 13, Citeseer.

[9] Boudi, A.; Farris, I.; Bagaa, M.; Taleb, T. Assessing lightweight virtualization
for security-as-a-service at the network edge. IEICE Transactions on Communica-
tions 102, 5 (2019), 970–977.

[10] Brunnström, K.; Beker, S. A.; De Moor, K.; Dooms, A.; Egger, S.; Gar-
cia, M.-N.; Hossfeld, T.; Jumisko-Pyykkö, S.; Keimel, C.; Larabi, M.-C.,
et al. Qualinet white paper on definitions of quality of experience.

[11] Castillo-Lema, J.; Venâncio Neto, A.; de Oliveira, F.; Takeo Kofuji, S.
Mininet-nfv: Evolving mininet with oasis tosca nvf profiles towards reproducible nfv
prototyping. In 2019 IEEE Conference on Network Softwarization (NetSoft) (2019),
pp. 506–512.

References 144

[12] Celesti, A.; Mulfari, D.; Galletta, A.; Fazio, M.; Carnevale, L.; Vil-
lari, M. A study on container virtualization for guarantee quality of service in
Cloud-of-Things. Future Generation Computer Systems 99 (2019), 356–364.

[13] Chiosi, M.; Clarke, D.; Willis, P.; Reid, A.; Feger, J.; Bugenhagen,
M.; Khan, W.; Fargano, M.; Cui, C.; Deng, H., et al. Network functions
virtualisation: An introduction, benefits, enablers, challenges and call for action. In
SDN and OpenFlow world congress (2012), vol. 48, sn, pp. 1–16.

[14] Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS quarterly (1989), 319–340.

[15] Docker. What is a Container?, 2020. https://www.docker.com/resources/
what-container, Accessed: Mar 25, 2023.

[16] ETSI. MEC 003 - V2.1.1 - Multi-access Edge Computing (MEC); Framework and
Reference Architecture. Tech. rep., ETSI, Valbonne/França, 2019.

[17] Grigoriou, E.; Barakabitze, A. A.; Atzori, L.; Sun, L.; Pilloni, V. An
sdn-approach for qoe management of multimedia services using resource allocation.
In 2017 IEEE International Conference on Communications (ICC) (2017), pp. 1–7.

[18] IEEE Communications Society. IEEE Std 1934-2018 : IEEE Standard for
Adoption of OpenFog Reference Architecture for Fog Computing. IEEE, 2018.

[19] Imagane, K.; Kanai, K.; Katto, J.; Tsuda, T.; Nakazato, H. Performance
evaluations of multimedia service function chaining in edge clouds. In 2018 15th
IEEE Annual Consumer Communications & Networking Conference (CCNC) (2018),
IEEE, pp. 1–4.

[20] ISO. Iso/iec 23093-1:2022 information technology — internet of media things — part
1: Architecture, 2022. Accessed: Mar 25, 2023.

[21] Iung, A.; Carbonell, J.; Marchezan, L.; Rodrigues, E.; Bernardino,
M.; Basso, F. P.; Medeiros, B. Systematic mapping study on domain-specific
language development tools. Empirical Software Engineering 25 (2020), 4205–4249.

[22] Jan, M. A.; Usman, M.; He, X.; Ur Rehman, A. SAMS: A seamless and
authorized multimedia streaming framework for WMSN-Based IoMT. IEEE Internet
of Things Journal 6, 2 (2019), 1576–1583.

[23] Karaagac, A.; Dalipi, E.; Crombez, P.; De Poorter, E.; Hoebeke, J.
Light-weight streaming protocol for the Internet of Multimedia Things: Voice stream-
ing over NB-IoT. Pervasive and Mobile Computing 59 (2019), 101044.

[24] Kim-Hung, L.; Datta, S. K.; Bonnet, C.; Hamon, F.; Boudonne, A. A
scalable IoT framework to design logical data flow using virtual sensor. International
Conference on Wireless and Mobile Computing, Networking and Communications
2017-October, ii (2017).

[25] Koziolek, H. Goal, question, metric. In Dependability metrics. Springer, 2008,
pp. 39–42.

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

References 145

[26] Likert, R. A technique for the measurement of attitudes. Archives of psychology
(1932).

[27] Mernik, M.; Heering, J.; Sloane, A. M. When and how to develop domain-
specific languages. ACM computing surveys (CSUR) 37, 4 (2005), 316–344.

[28] Mouradian, C.; Ebrahimnezhad, F.; Jebbar, Y.; Ahluwalia, J. K.;
Afrasiabi, S. N.; Glitho, R. H.; Moghe, A. An IoT Platform-as-a-Service
for NFV Based-Hybrid Cloud/Fog Systems. IEEE Internet of Things Journal 4662,
c (2020), 1–1.

[29] Nauman, A.; Qadri, Y. A.; Amjad, M.; Zikria, Y. B.; Afzal, M. K.; Kim,
S. W. Multimedia internet of things: A comprehensive survey. IEEE Access 8
(2020), 8202–8250.

[30] Negm, E.; Makady, S.; Salah, A. Survey on domain specific languages imple-
mentation aspects. International Journal of Advanced Computer Science and Appli-
cations 10, 11 (2019).

[31] Openstack. Welcome to the heat documentation! — openstack-heat 19.1.0.dev30
documentation. url https://docs.openstack.org/heat/latest/, May 2021.

[32] Pattaranantakul, M.; He, R.; Zhang, Z.; Meddahi, A.; Wang, P. Leverag-
ing network functions virtualization orchestrators to achieve software-defined access
control in the clouds. IEEE Transactions on Dependable and Secure Computing 18,
1 (2021), 372–383.

[33] Petrolo, R.; Morabito, R.; Loscrì, V.; Mitton, N. The design of the gateway
for the cloud of things. Annals of Telecommunications 72 (2017), 31–40.

[34] Schönwälder, J.; Björklund, M.; Shafer, P. Network configuration manage-
ment using netconf and yang. IEEE communications magazine 48, 9 (2010), 166–173.

[35] Surendran, P., et al. Technology acceptance model: A survey of literature.
International Journal of Business and Social Research 2, 4 (2012), 175–178.

[36] TOSCA, O. Tosca simple profile for network functions virtualization (nfv) version
1.0, committee specification draft 04, 2017.

[37] Tosca, O. Tosca simple profile for network functions virtualization, 2020.

[38] Villari, M.; Celesti, A.; Tricomi, G.; Galletta, A.; Fazio, M. Deployment
orchestration of microservices with geographical constraints for edge computing. In
2017 IEEE Symposium on Computers and Communications (ISCC) (2017), pp. 633–
638.

[39] YAML. Yaml 1.2. especificación completa. https://yaml.org/spec/1.2/spec.
html. Accessed: Mar 25, 2023.

[40] Zikria, Y. B.; Afzal, M. K.; Kim, S. W. Internet of Multimedia Things (IoMT):
Opportunities, Challenges and Solutions. Sensors (Basel, Switzerland) 20, 8 (2020),
1–8.

https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html

References 146

[41] Zikria, Y. B.; Afzal, M. K.; Kim, S. W. Internet of multimedia things (iomt):
Opportunities, challenges and solutions, 2020.

[42] Éden Battisti, A. L. V-PRISM: An Edge-Based Architecture to Virtualize Mul-
timedia sensors in the Internet of Media Things. Tese de Doutorado, Instituto de
Computação, Universidade Federal Fluminense, Niterói, RJ, Brasil, Julho 2020.

	Introduction
	Research Question
	Goals
	Main Contributions
	Dissertation Organization

	Background
	Internet of Media Things - IoMT
	Virtualization Applied to IoMT
	V-PRISM and ALFA
	V-PRISM
	VMS Categorization
	V-PRISM Logic Components
	V-PRISM Deployment
	Initialization of a VMS

	ALFA
	ALFA Main Technologies
	Implemented Virtual Devices
	Implemented Virtual Multimedia Sensors

	Domain Specific Language (DSL)
	Development of a DSL
	Implementation of a DSL

	Related Work
	TOSCA-NFV
	Other languages

	L-PRISM Proposal and Development Process
	Domain analysis
	L-PRISM Design
	L-PRISM Implementation
	L-PRISM evaluation
	L-PRISM Maintenance

	L-PRISM Metamodel
	Data Types
	lPrism.datatype.vms.l3AddressData
	Definition
	Example

	lPrism.datatype.vms.addressData
	Definition
	Example

	lPrism.datatype.vms.connectivityType
	Definition
	Example

	lPrism.datatype.vms.virtualCpu
	Definition
	Example

	lPrism.datatype.vms.virtualMemory
	Definition
	Example

	lPrism.datatype.vms.virtualStorage
	Definition
	Example

	lPrism.datatype.vms.virtualGraphicsCard
	Definition
	Examples

	lPrism.datatype.vms.configurableProperties
	Definition
	Examples

	lPrism.datatype.vms.port
	Definition
	Example

	Capabilities Types
	lPrism.capabilities.vms.metric
	Definition
	Example

	lPrism.capabilities.vms.virtualCompute
	Definition
	Example

	Artifact Types
	lPrism.artifacts.vms.swImage
	Definition
	Example

	lPrism.artifacts.vms.host
	Definition
	Example

	lPrism.artifacts.vms.device
	Definition
	Example

	 Relationship Types
	 lPrism.relationship.vms.source
	 Definition
	 Example

	 lPrism.relationship.vms.destination
	 Definition
	 Example

	 Node Types
	 lPrism.nodes.vms.VDU.vms
	 Definition
	 Example

	 lPrism.nodes.vms.virtualLink
	 Definition
	 Example

	 Chain Type
	 lPrism.chain.vms.chainModel
	 Definition
	 Example

	Example of the L-PRISM Metamodel

	ALFA 2.0: Integration of L-PRISM in ALFA
	Database
	API
	Web interface
	Web interface for L-PRISM
	Prototype web interface

	Differences between ALFA and ALFA 2.0

	Evaluation
	Experiment Goals
	G1 - Questions and metrics
	G1 - Questions
	G1 - Hypotheses, Variables, and Constructions
	G1 - Metrics

	G2 - Questions and metrics
	G2 - Questions
	G2 - Hypotheses, Variables, and Constructions
	G2 - Metrics

	Experiment Tasks
	Training phase
	Execution phase
	Tasks

	Subjects
	Results
	G1 - Evaluation
	G2 - Evaluation
	Threats to Validity
	Final considerations

	Conclusion
	Contributions
	Future work

	References

