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Abstract

IaaS cloud service providers traditionally maintain a large portfolio of preconfigured VM

instances (with static resource allocations) in an attempt to be able to offer each of their

users an instance that is capable of meeting the resource requirements of their workloads.

Unfortunately, with such an overwhelming variety of options, a user’s ability to find their

ideal choice is frequently obscured, resulting in the application taking longer to execute

and incurring higher-than-expected costs. Although existing tools have been proposed in

the literature to assist users in identifying an appropriate set of instances, they generally

aim to simply identify the instance type with sufficient resources for a single execution

of a given application. This work focuses on a different aspect of this problem. In many

scientific studies, it is common that experimental workloads are composed of multiple

executions of a parallel application, each with different input data or parameters, for

example, parameter sweep investigations. This work presents a methodology to identify a

set of Pareto optimal execution plans (called configurations) composed of the number and

type of VM instances, the application’s configuration, and per-instance schedules, that

meet the user’s chosen quality of service requirements. Accordingly, the methodology can

provide the user or orchestrator with the fastest and the cheapest solutions, as well as

a selection of compromises in between, so that the most suitable choice can be made at

that moment.

Keywords: Cloud Computing, Scientific Workloads, Job Scheduling, Multi-Objective

Optimization.



Resumo

Provedores de nuvem que oferecem o modelo de Infraestrutura como Serviço (IaaS ) tradi-

cionalmente mantêm um grande portfólio de instâncias de VM pré-configuradas (com alo-

cações estáticas de recursos) na tentativa de oferecer a cada um de seus usuários uma

instância capaz de atender aos requisitos de recursos de suas cargas de trabalho. Infeliz-

mente, com uma variedade tão grande de opções, a capacidade do usuário de encontrar

a escolha ideal é frequentemente obscurecida, fazendo com que a sua aplicação demore

mais para ser executada e incorra em custos maiores do que o esperado. Embora as ferra-

mentas tenham sido propostas na literatura para auxiliar os usuários na identificação de

um conjunto apropriado de instâncias, elas geralmente visam simplesmente identificar o

tipo de instância com recursos suficientes para uma única execução de uma determinada

aplicação. Este trabalho trata de um aspecto diferente deste problema onde a carga de

trabalho é composta por múltiplas execuções de uma aplicação paralela, com diferentes

dados de entrada ou parâmetros, situação comum em experimentos científicos baseados

em investigações de varredura de parâmetros. Este trabalho apresenta uma metodologia

para identificar um conjunto de planos de execução (chamados configurações) Pareto óti-

mos, compostos pelo número e tipo de instância de VM, a configuração da aplicação e

um escalonamento de tarefas por instância, que atendem aos requisitos de Qualidade de

Serviço escolhidos pelo usuário. Assim, a metodologia é capaz de fornecer ao usuário ou

orquestrador as soluções mais rápidas e econômicas, bem como uma escolha de compro-

missos intermediários para que seja feita a escolha mais adequada para aquele momento.

Palavras-chave: Computação em nuvem, Cargas de trabalho científicas, Escalonamento

de jobs, Otimização multi-objectivo.
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1 Introduction

The adoption of cloud computing (BUYYA et al., 2009) has brought numerous benefits

to companies, research institutions that work in a wide variety of areas, and society in

general. As with any commercial enterprise, to meet the diverse needs of even more clients,

cloud providers frequently add to their portfolio of services and resources, adopt the most

recent technologies, make costs more competitive, and introduce new pricing models or

markets. With quick and easy access to relatively cheap and ready-to-use computing

resources, providers aim to entice new, often increasingly less tech-savvy users to migrate

their computational workloads to the cloud.

Given users’ different degrees of familiarity, providers offer cloud computing services

with varying control and administration abstraction levels. One of the oldest, but still

very popular, cloud service models is Infrastructure as a Service (IaaS) (MORENO-

VOZMEDIANO; MONTERO; LLORENTE, 2012). In the Infrastructure as a Service

model, the cloud provider administers their underlying physical infrastructure (which is

hidden from the user) and generally offers the resources for use in the form of a variety

of virtual machine instances (also referred to as VMs or instances), composed of different

types of computing resources like processors, memory, storage, networking, and hardware

accelerators or co-processors. The variety of instances available may be significantly large

given the combinations of resource capacities that can make up an instance’s configura-

tion in terms of the type and number of processing units, the amount of memory per

processing unit, the capacity and speed of its storage, the networking speed, and the

type and amount of hardware accelerators. Under this IaaS model, it is the user who

is responsible for first choosing the most appropriate VM instance from a given list of

pre-configured ones available, which offers the required combination of technologies and

resource capacities for their workload or applications, and then managing the complete

life cycle of the chosen VM instance (from instantiation and booting the operating system

to its shutdown and termination). In addition, there is also the question of from which

region (in the world) to instantiate the VM instance. Not all regions offer the same set of
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instance types, and a given instance’s cost may not necessarily be the same across regions.

More recent cloud service models, such as Platform as a Service (PaaS), Function

as a Service (FaaS), and Software as a Service (SaaS) (LEAVITT, 2009) are becoming

increasingly popular. Although these service models also simplify and decrease the IaaS

decision-making burden on the end user, the burden still exists; it has just been transferred

to the cloud provider. In these models, the cloud provider therefore needs to address these

issues to make their infrastructure more efficient and profitable.

Computing costs in public clouds are predominantly based on a pay-as-you-go model

where each instance type is priced at a predefined rate per hour (but charged per minimum

billable time unit, e.g., per hour or per second). In the IaaS model, virtual machines with

larger resource capacities typically have higher rates, and the total cost depends on how

long the instance is in use, from the moment it is booted up until it is terminated. Cloud

providers also often offer different pricing models or markets where the rate charged for the

instance depends on availability guarantees or upfront payments. Most cloud providers

utilize at least three market concepts: On-demand, Reserved, and Spot instance markets.

The choice of which market to use typically depends on the predictability or frequency

with which the user needs to execute their workloads - the more predictable or frequent,

the more likely the Reserved market will be economically beneficial over the On-demand

or Spot markets.

In practice, the On-demand market is still the most commonly used, despite being

the most expensive. This is perhaps motivated by the fact that the user is not required

to carry out additional preparations, unlike in the case of using the other two markets. In

the On-demand market, the price of instances of the same type typically scales linearly

with increasing capacities (e.g., a VM instance with twice the number of CPUs and twice

the memory will normally be double the rate).

1.1 Motivation

The main challenge that arises from this cost model is how to choose the VM instance

with enough resources to handle the user’s workload without significantly overpaying for

unused or underutilized resources. Often referred to as “right-sizing”, making the correct

decision can be more tricky than initially assumed. In the past, right-sizing was probably

more of an educated guess based on the experience of the application developer and/or

system administrator. Now, with the growing diversity of cloud services on offer, right-
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Figure 1: Distribution of the administrative burden for the different cloud computing
service models.

sizing is no longer a simple task, given that there are a vast number of infrastructure and

application-related options that must be taken into consideration, as well as the often

conflicting objectives of maximizing the performance and minimizing the total cost of the

execution.

As Figure 1 illustrates, while the adoption of other service models such as PaaS, FaaS,

or SaaS will perhaps move this onus to the service provider, even then the same issues

remain to be addressed: Issue (a) identifying the appropriate instance type for the user’s

request and; Issue (b) extracting the required or best performance from each chosen

instance. Although these issues are often addressed independently, scenarios in which

decisions taken regarding one issue can affect the other are common. Existing proposals

to find the “best” VM instance configuration (also called instance type) generally focus

solely on Issue (a) and on identifying the VM instance type that best fits the execution

of a single instance of the target application, whose configuration has been independently

predetermined. If the application needs to be instantiated more than once, these proposals

may not provide the best solution to achieve the user’s cost-performance objective.

The focus of the dissertation is thus different from the one typically adopted by

previous approaches to identifying the best cloud resources to execute an application,

such as those adopted by PARIS (YADWADKAR et al., 2017), Cherrypick (ALIPOUR-

FARD et al., 2017), SCOUT (HSU; NAIR; MENZIES et al., 2018b), Micky (HSU; NAIR;

MENZIES et al., 2018a), MOHEFT (DURILLO; PRODAN, 2014), and by the work

of (BRUNETTA; BORIN, 2019) and (TAVARES; ASSIS; BORIN, 2021). All of these
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approaches assume that cloud resources (the number of instances used) are not limited,

and only a single instance of the application (or task of a parallel application) is allocated

to a VM instance. In this scenario, these approaches do not address the role scheduling

can play in improving the utilization of the chosen pre-configured VM instances.

Our approach differs by considering both of the previously mentioned issues simulta-

neously, providing the user with a set of Pareto optimal configurations (i.e., a set of VM

instances, each with their allocated application instances, configurations, and schedules),

which trade off performance and cost. The motive for providing the user or job orchestra-

tor with options rather than a single solution is that these trade-offs can be quite subtle,

while a small sacrifice in one objective can lead to a significant improvement in the other;

the definition of what constitutes small and significant changes varies with each user and

their objectives. Furthermore, this work assumes that applications may not be rigid and

instead may be moldable (FEITELSON; RUDOLPH, 1996). As such, it can be config-

ured to execute with different quantities of resources (most commonly varying numbers

of CPUs, or amounts of memory), with more resources possibly leading to shorter execu-

tion times. This highlights an interesting four-way relationship between application and

workload performance, the importance of scheduling not only in terms of performance,

but also of resource utilization, and the cost and choice of VM instance to use.

1.2 Contributions

The main contribution of this work is the proposal of a methodology to help public cloud

users (or system management tools such as workflow orchestrators or job schedulers)

choose an appropriate set of instances to execute their workload while respecting the user’s

quality of service objective, be it to maximize performance or minimize their costs or both.

Named PORSCHE (Pareto Optimal Resource Selection sCHEme), the methodology can

be applied to any of the cloud cost markets (On-demand, Reserved, or Spot instances)

and cloud service model (in addition to IaaS, container- and function-as-a-service, CaaS,

and FaaS) thus helping users or service providers, respectively, to improve the utilization

of the underlying VM instances.

As will be shown in Chapter 4, PORSCHE is capable of finding configurations that

satisfy the classic objectives of minimizing the time or total cost of the workload execution,

as well as finding configurations that represent interesting compromises between the total

execution time and the total cost. For example, to find the Pareto optimal configurations
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for one of our case study workloads considering just a single Instance Class with eight

sizes (the AWS EC2 family C5), PORSCHE evaluated a total of almost fourteen thousand

configurations and identified approximately thirty Pareto optimal configurations in sixty

seconds.

The importance of generating the Pareto optimal solution instead of only a single

configuration that optimizes for one objective becomes clear, for example, when comparing

two Pareto optimal configurations suggested by our PORSCHE model for the execution

of our chosen case study application within the same AWS EC2 instance class (the C5

instance family). For example, we found that while one of the optimal configurations was

6.6% more expensive than the other, it was 39 times faster. Although perhaps surprising,

not every user may always be willing to pay for the additional cost. In fact, a user might

only be willing to pay for increased performance in some specific circumstances and not

in others. Thus, providing users with these options may be crucial to help them make

more appropriate decisions. In contrast, note that the faster configuration may not even

be presented to the user by existing methodologies that only optimize a single objective,

such as minimizing the total cost. Comparisons of other Pareto configurations executed

considering multiple AWS EC2 instance families resulted in similar trade-offs.

1.3 Organization

The remainder of this work is organized as follows. Chapter 2 discusses the problem

and related work on finding cloud configurations and respective task schedules that opti-

mize the execution of the application workload according to the user’s chosen objectives.

Chapter 3 presents the proposed PORSCHE methodology, while Chapter 4 describes the

experimental analysis performed to evaluate the model that supports the methodology.

Section 5 draws some conclusions and closes with a discussion of future directions.



2 Background and related work

This chapter discusses the problem of finding the cloud configuration and respective task

schedule that optimizes the execution of the application according to the user’s chosen

objectives. Most of the related work found in the literature focuses on presenting the user

with a single configuration. Our work argues that this may not be particularly useful given

the difficulty that the user may have in defining those objectives precisely. Section 2.1

presents the paradox of choice that users face when having to execute workloads in the

cloud. Section 2.2 provides an overview of the relevant research that has been conducted

in the field and compares this with our proposed work. The remaining sections of this

chapter focus on different aspects of our case study. Taking AWS EC2 as a use case and

our chosen cloud provider, Section 2.3 briefly describes how their cloud infrastructure

is architected and presented to the user. Next, Section 2.4 outlines the multi-objective

optimization problem that is the basis of the proposed methodology. Finally, Section 2.5

identifies the scientific case study adopted in this work and provides a description of the

bioinformatics problem and the application used.

2.1 The paradox of choice

Before running their workload in the cloud, users must make a series of decisions. Some de-

cisions are technical, others economic, and some are more difficult than others. Although

there are numerous cloud service providers today, according to Statista (STATISTA,

2023), three companies dominate 65% of the market: Amazon Web Services (32%), Mi-

crosoft Azure (23%), and Google Cloud (10%). Therefore, the first decision a user must

make is with regard to the choice of service provider. Although providers tend to offer

roughly the same set of services, there may be differences.

For various reasons, including reducing communication latency and economic costs,

and government regulations, cloud service providers typically have multiple data centers

worldwide. Having chosen their cloud provider, users must then choose where (in the
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Figure 2: Cloud market (as of Q1 2023). Source: statista.com

world) to execute their workload. Modern cloud providers generally group their data

centers, based on geographical proximity, into Regions. Users may choose the one closest

to them for convenience, but the same resources may have different costs depending on

the chosen region. Each data center in a region is sometimes called an Availability Zone

(AZ) (or just Zone, for some providers). Providers tend to have multiple AZs per region

to increase the capacity of that region and provide higher availability, reducing the risk

of outage of an entire region. It is not uncommon for providers to have multiple copies

of their services on each of the AZs in a region, and they encourage their users to do the

same.

Although the choice of the region may appear straightforward, it does have implica-

tions for the execution of the workload. First, not all regions are created equally: not all

services may be available in every region, or even when available, they may not have the

same set of options, and different regions may charge differently for the desired service.

Also, although the AZs and regions are usually interconnected through high-speed net-

work connections, some classes of applications are highly data-locality sensitive. In this

case, users may decide to execute their workload in the region closest to where the data

are stored. Alternatively, they could opt to move their data to the preferred region for
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the execution of the workload. Still, depending on the volume of data involved, this may

incur additional data-movement costs and delays in the execution. Additionally, corpo-

rate users or users from publicly funded organizations may be obliged to choose a region

within their country to meet legal or regulatory obligations.

The user then must choose the appropriate computing infrastructure for their work-

loads. While cloud providers often offer multiple computing services such as Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), Function as a Service (FaaS), and Soft-

ware as a Service (SaaS), the underlying computing resources are typically preconfigured

by the cloud provider. In the IaaS model, to meet the various demands of users, cloud

providers offer an extensive range of VM instances, each with different predetermined

capacities that can vary in terms of a variety of characteristics, such as CPU processor

architectures from different manufacturers (e.g., Intel, AMD, and ARM), the amount of

main memory available, the amount and location of storage, network bandwidth, and

different types of hardware accelerators such as GPUs and FPGAs. Some of these charac-

teristics are coupled; for example, VM instances with higher numbers of CPUs typically

have higher memory capacities. The increase is usually linear, but the ratio depends on

the VM instance type.

In the IaaS model, it is left to the user to identify the option that best meets their

specific objective. Although the burden is transferred to the provider in other models, it

still exists. Due to the pay-as-you-go pricing model of the cloud market, the consequences

of choosing the wrong set of resources will be longer execution times or poorer execution

efficiencies, and additional unnecessary financial costs. When a cloud provider decides

to offer a service that will potentially be used by millions of users instead of offering the

computing resources to execute it, efficiency is even more paramount due to scale. Several

approaches have attempted to address this problem, some of which are discussed in the

following section.

2.2 Related Work

Cloud providers have been motivated to offer an even more diverse range of VM instances,

in part, by research that has shown that there is no universal cloud VM type that is

an optimal fit for all workloads (ALIPOURFARD et al., 2017), (YADWADKAR et al.,

2017), (HSU; NAIR; FREEH et al., 2018). Therefore, with the rapid adoption of cloud

computing and its growing energetic demands, identifying the best VM configurations,
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even across multiple cloud providers, to efficiently complete a given workload has become

one of the most fundamental problems in cloud resource management.

Research on this problem has typically focused on two aspects, the accurate esti-

mation of performance on a given cloud configuration and the cost of finding the ideal

configuration. In the case of the latter, solutions might be effectively required to explore

the entire search space to characterize the performance of a workload on all of the different

cloud configurations. However, this may be prohibitively expensive or impracticable. To

reduce the cost of the search, proposals employ techniques such as Bayesian optimization

to reduce the number of evaluations necessary to find an efficient solution. Techniques

for addressing the former aspect can be broadly divided into two approaches: prediction

and sequential model-based optimization. Prediction techniques aim to build an accurate

model to estimate, for example, the execution times or running costs of workloads, and

thus determine the best architectural configuration for a given workload. However, the

current consensus is that this method has two drawbacks. First, the accuracy of the

model requires the collection of a significant amount of workload performance data. Sec-

ond, performance in cloud environments is susceptible to a certain degree of variability

due to multi-tenant hosting, where physical resources may be shared with workloads of

other users. This means that performance data collected after benchmarking the work-

load on an instance type might not reflect the subsequent performance obtained by a later

execution. A more recent trend has seen the wide adoption of machine learning techniques

to build these prediction models.

To the best of our knowledge, we could not find any work in the literature that

proposed a solution to the problem of finding the right instance configuration for the

execution of BoT (or Bag-of-Task-like) parallel workloads in the cloud while also focusing

on improving the efficiency of the execution within the chosen VM instance while attending

to differing user’s QoS requirements.

The approach most similar to ours is that of (DURILLO; PRODAN, 2014) where

the authors propose the Multi-Objective Heteregoneous Earliest Finish Time (MOHEFT)

algorithm and its cloud-aware version. MOHEFT is a multi-objective optimized version

of the classic scheduling algorithm HEFT (TOPCUOGLU; HARIRI; WU, 2002). The

original HEFT algorithm minimizes the total time to execute each task by iteratively

mapping the workflow tasks onto the resources that present the earliest finishing time

for that task (i.e., it is a mono-objective algorithm). In contrast, MOHEFT works by

modifying the original HEFT algorithm to calculate the cost of using a chosen resource and
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allows the generation of multiple trade-off solutions instead of building a single schedule.

To generate its Pareto solution, MOHEFT, like our proposed PORSCHE methodology,

uses the dominance concept in which solution A is said to dominate solution B when both

its execution time and resource cost are smaller than the execution time and cost of B,

respectively. Alternatively, solutions A and B are referred to as non-dominated in relation

to each other when one has a shorter execution time at the same time as the other has a

smaller cost, i.e., neither dominates the other. The Pareto set of solutions presented to

the user is thus composed only of non-dominated solutions.

Our proposed methodology shares some concepts with MOHEFT like, for example,

the generation of multiple trade-off solutions and the use of elimination by dominance to

build the Pareto solution set. However, MOHEFT only generates schedules that allocate

a single task per cloud instance. The authors either assume that sufficient quantities

of cloud resources are always available and/or, as is typical in DAG scheduling, do not

consider the concurrent allocation and execution of multiple tasks to the same resource, as

this might delay a task’s finishing time. Therefore, their work does not try to maximize the

utilization of each cloud VM instance. As such, it is impossible to claim that MOHEFT

generates optimal solutions in its Pareto set because there may be more efficient schedules

(especially in terms of cost) that MOHEFT does not generate. Our methodology suggests

the most adequate VM instance configurations to execute the entire workload according

to the user’s QoS objective by first generating custom schedules to optimize the execution

of the tasks allocated to each required cloud instance. Our approach allows users to

analyze the trade-offs between performance and cost according to their needs at that

particular moment, while also considering additional restrictions, for example, the limit

on the number of cloud resources that users can instantiate, a very common security

policy applied by cloud providers to protect users and cloud services.

The PARIS approach proposed in (YADWADKAR et al., 2017) also aims to help users

choose the best VM instance type for their workload by using a machine learning algorithm

(Random Forest) to predict the workload performance according to a user-defined metric

on all of the VM types of interest to the user. Their proposed algorithm has two phases:

an offline phase, where benchmark applications of three different classes of workload are

executed on all VM instance types available to build a performance profile for each VM

type that will be used to train the machine learning model; and an online phase, where

a pilot program that the user chooses as being representative of their actual workload is

executed in two “reference” VM types. The machine learning model is then used with the

metrics collected from the execution of the user workload on the reference VMs to predict
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the performance of the workload on each of the VM types available, presenting to the

user the VMs with average performance and those in the 90th percentile according to the

metric defined by the user.

Although the proposed PARIS algorithm uses data collected by executing the pilot

task provided by the user, if the applications used in the training offline phase are not

sufficiently representative of the user’s actual application, the model will be biased and

may not offer the best configuration for the specific workload of its user. Since our

PORSCHE methodology uses the user’s application in an offline profiling phase, it is

more likely that the offered configurations are more suitable for the users’ workload. Also,

PARIS only considers a single objective (user metric), and thus presents just one solution

to the user. Our methodology considers multiple objectives when generating the Pareto

optimal solution set for the user, a set that contains the configuration that minimizes the

execution time, the configuration that minimizes the total execution cost and maximizes

the throughput, and a selection of compromise configurations in between.

SCOUT, proposed in (HSU; NAIR; MENZIES et al., 2018b), adopts a machine learn-

ing technique called transfer learning that uses data collected from the execution of other

workloads to train a model to predict the workload performance in different VM types.

It uses Sequential Model-Based Optimization (SMBO), a technique that decides which

configurations to investigate (HUTTER; HOOS; LEYTON-BROWN, 2011), reducing the

cost of the search process to find the appropriate cloud configurations. The authors claim

that SCOUT optimizes the search by limiting the search space to regions considered the

most likely to have the best possible solution. The problem with that approach is that it is

unclear which workload is actually used in the transfer learning phase, and its relationship

to the user’s workload may seriously decrease the model’s accuracy. Another important

aspect is that, even though updating the model may generate more accurate predictions,

it does not guarantee the optimality of the solution generated by the current model, or

at least not until iterations are made to the original model (which is based on previous

workloads). Contrary to what is proposed in SCOUT, our methodology guarantees the

optimality of the configurations in the Pareto solution.

2.3 AWS

AWS is the oldest and most well-established (STATISTA, 2023) cloud service provider on

the market, offering an extensive range of services with a portfolio of over 200 services and
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99 Availability Zones within 31 geographical regions around the world. Amazon Elastic

Compute Cloud (EC2) (AMAZON AWS, 2022) is a cloud Infrastructure as a Service

(IaaS) that allows users to create virtual machine instances on remote servers located in

one of AWS’s regions around the world. The cost or rate to hire each type of service is

generally charged per second, but may differ between regions.

The North Virginia region (also known as us-east-1) was the first and is still one of

AWS’s most used regions. This region offers the widest variety of virtual machines and

is generally the first to release the latest generations of Instance Types at a lower cost

compared to other AWS regions. Regarding virtual machines (VMs), there are currently

665 Instance Types divided into 77 VM families in this region1, each of which belongs to

one of five categories (AMAZON AWS, 2021): General Purpose (with 18 families), whose

instances provide a balance of computing, memory, and networking resources; Compute

Optimized (11 families), designed for compute-intensive applications that benefit from

high-performance processors; Memory Optimized (19 families) instances are intended for

workloads that process large data sets in memory and, therefore, have a larger memory

per processing unit ratio; Accelerated Computing (15 families), which uses hardware

accelerators or co-processors, such as GPUs and FPGAs; Storage Optimized (10 families)

designed for workloads that require high bandwidth disk access to massive data sets on

local storage; and HPC Optimized (4 families) designed for memory-bound and data-

intensive high-performance computing (HPC) workloads.

In this work, we refer to the Instance Class as a group of instance types from the same

instance type category and same generation. Each Instance Class is identified by two sets

of characters, composed of letters and numbers, separated by a dot, as in “c7g.large”.

The first letters represent the family of the instance; for example, “c” in “c7g.large” or

the “hpc” in “hpc6a.48xlarge” represents the compute-optimized and HPC-optimized fam-

ilies, respectively. The number after the first letters is the generation of this family; for

example, “c5.large” is the 5th generation of the compute-optimized family. The letters

that follow the number and appear before the dot, if they occur, refer to secondary char-

acteristics of the instances in the class. For example, instances with an “n” after the

number have a faster network adapter, such as c5n.large, which is the 5th generation of

the compute-optimized instances that also has faster network adaptors, or the c7g.large,

which has a specific processor architecture - the custom Amazon’s ARM processor Gravi-

ton, represented by the letter “g”.
1As of August of 2023
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The term following the dot indirectly identifies a given instance’s size (or capacity) in

terms of the CPU and its memory capacity, regardless of the family. The terms used are

medium, large, xlarge, Nxlarge, where N is a number representing a multiplier over the

number of processing units in the xlarge instance of the same instance class, and metal, in

increasing order of the number of physical processing units available to the VM. Except

for the term ’metal’, which represents the entire underlying server, from medium to the

Nth xlarge, each term represents double the number of physical processing units available

in the VM. The amount of memory scales linearly with the number of CPUs, although the

ratio of memory capacity to CPU can vary between different Instance Classes. Regarding

the cost, each Instance Class has a predefined base rental cost per CPU per hour and

scales linearly with the instance size, i.e., the double of resources represents double the

hourly cost.

2.4 Multi-objective optimization

Multi-objective optimization, also known as Pareto optimization, is an area of decision-

making that deals with optimization problems that involve more than one objective func-

tion. According to (MARLER; ARORA, 2004), the definition of Pareto optimality is as

follows.

A point x∗ ∈ X, is Pareto optimal if there does not exist another solution,

x ∈ X, such that F (x) ≤ F (x∗), and Fi(x) < Fi(x∗) for at least one function.

Similarly, Pareto efficiency or optimality in task scheduling is finding the task schedule

for which no other schedule or allocation is better or more efficient.

To find all Pareto optimal configurations - which, in the proposed PORSCHE model,

includes custom task scheduling for the execution of a given workload on a given instance

class, our proposed PORSCHE model applies the concept of dominance, also defined

by (MARLER; ARORA, 2004) as follows.

A vector of objective functions, F (x∗) ∈ Z, is non-dominated if there does

not exist another vector, F (x) ∈ Z, such thatF (x) ≤ F (x∗) with at least one

Fi(x) < Fi(x∗). Otherwise, F (x∗) is dominated.

Therefore, our proposed model finds all optimal (or non-dominated) configurations in

the search space to provide users with a Pareto solution set with only optimal configura-

tions. It is worth noting that the search space comprises all possible configurations using
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the different instance sizes in each of the instance classes of interest. Chapter 3 explains

in detail how the configurations in the search space are determined and the generation of

the Pareto solution set presented to the user.

2.5 A Bioinformatics Case Study

The proposed methodology is designed to be used in a broad range of scientific envi-

ronments that require multiple executions of a given application, for example, often seen

with SaaS and scientific portals. With more and more scientists relying on cloud resources

instead of on-premise, both execution time and cost limitations have turned realizing ex-

periments into a multi-objective cloud resource optimization problem. To exemplify the

benefits of the proposal, with such bag-of-tasks (BoT) workloads, a bioinformatics case

study has been adopted here: the pairwise alignment of biological sequences, using a

tool called MASA-OpenMP (DE O. SANDERS et al., 2016). Sequence alignment is a

key step in addressing various problems in bioinformatics, where pairs of sequences of

DNA, RNA, or protein are compared to identify regions of differences that result from

functional, structural, or evolutionary changes between sequences (ALURU, 2005).

The class of alignment algorithm used depends on the type of alignment required and

what information one wants to know about the sequence. For example, global alignment

algorithms are used when one wants to compare the whole sequence. On the contrary,

local alignment algorithms are used when the scientist is interested in comparing only part

of the sequence. Moreover, these algorithms can produce the optimal alignment or be a

heuristic that, while it may execute comparatively faster, does not guarantee an optimal

solution. Pairwise sequence alignment algorithms are essential to identify similarities

or differences between two sequences. For example, during the recent pandemic, these

algorithms were heavily used to help identify virus mutations and variants of the SARS-

CoV-2 virus.

Our motivating case study is a bioinformatics cloud service that has gained significant

importance recently, in part, due to the recent COVID-19 pandemic. Mutations allow

viruses to change and evolve, and when these changes are significantly different from

the original virus, they are known as variants. Performing DNA sequence comparisons

to find, for example, new SARS-CoV-2 variants or variants of other viruses is essential

for understanding the infection each virus can cause, how easily that virus spreads, the

severity of associated symptoms, and the effectiveness of respective vaccines, among other
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aspects.

To identify variants, scientists map the genetic material of viruses (known as DNA

sequencing) and look for differences between sequences to identify regions that may have

changed. Authorities are interested in identifying variants of concern that spread more

easily within a population, cause more severe disease, escape the immune response of the

body, change its clinical presentation, or decrease the effectiveness of protocols – such

as public health measures, diagnostics, treatments, and vaccines. The recent pandemic

has only highlighted the importance of this type of analysis, as exemplified by the more

than 20 million SARS-CoV-2 DNA sequences obtained from human infections around the

world, which have rapidly been made available to scientists in public genome databases

such as GenBank (https://www.ncbi.nlm.nih.gov/genbank/) of the National Center for

Biotechnology Information (NCBI) and GISAID (https://www.gisaid.org/).

There are already a few online sequence alignment services, such as Clustal Omega2

and VectorBuilder3. Still, both, like most of the others, have severe limitations, such as

the size of the sequences in the input, making it impossible to execute more extensive

sequences. Another serious problem is that most services do not comply with any user

Quality of Service (QoS) requirement or provide any information on the execution, such

as the estimated execution time (which may vary depending on the number and size of

the sequences). Our approach aims to enable the efficient execution of DNA Sequence

Alignment (our study case) on the cloud, not only for end-users but also to enable cloud

service providers to provide an efficient sequence alignment service, respecting users’ QoS

requirements.

Multi-Platform Architecture for Sequence Aligners (MASA) is a tool to carry out pair-

wise biological sequence alignments on various hardware/software platforms. It has been

shown to support the alignment of massive DNA sequences with more than 200 million

base pairs (DE O. SANDERS et al., 2016). This work focuses on using MASA-OpenMP,

the freely available multithreaded OpenMP implementation4 of MASA, designed to har-

ness the computing power of multiple CPU cores on a server, but further investigation with

other computing resources supported by the MASA architecture is listed in future work.

MASA-OpenMP makes a pairwise comparison of two DNA sequences using the Myers and

Miller (MYERS; MILLER, 1988) variation of the Smith-Waterman algorithm (SMITH;

WATERMAN, 1981) to find the optimal alignment and the degree of similarity between
2https://www.ebi.ac.uk/Tools/msa/clustalo/
3https://en.vectorbuilder.com/tool/sequence-alignment.html
4Source code available at https://github.com/edanssandes/MASA-OpenMP.git

https://github.com/edanssandes/MASA-OpenMP.git
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the pair of chosen sequences.

Each sequence in the alignment is represented by a text-based format in which nu-

cleotides or amino acids (or lack of both) are represented using single-letter codes, in a

format known as FASTA5. The “size” of a sequence is measured in terms of how many

nucleotides or amino acids there are in the DNA sequence of an organism. This may

vary from a few thousand (in the case of simple organisms such as viruses) to billions of

characters (in the case of human or chimpanzee DNA sequences).

Figure 3: MASA-OpenMP’s memory consumption (in MegaBytes) versus sequence length
(in thousands (K) of characters)

When executed on a EC2 c5.24xlarge VM instance with sufficient memory capacity,

the highly optimized MASA-OpenMP has a quadratic (or O(n2)) complexity in rela-

tion to the sequence size (or more precisely the product of the lengths of the two se-

quences (MILLS et al., 2023)), in terms of both memory and (serial) execution time, as

can be seen in Figures 3 and 4, respectively. A typical experiment, or MASA workload,

is made up of multiple independent pairwise alignment tasks. Such experiments, com-

posed of independent tasks, are thus known as Bag-of-Tasks (BoT) workloads. Due to

these characteristics, a job scheduler or workflow manager has the burden of determining

the optimal degree of concurrency and the degree of parallelism of each task, given the
5https://en.wikipedia.org/wiki/FASTA_format
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Figure 4: MASA-OpenMP’s execution time (in seconds) versus sequence length (in thou-
sands (K) of characters)

resources available, so that the workflow execution meets the user’s QoS requirements.

Unlike existing tools to find cloud configurations that only match resources to the work-

load, by being able to adjust the degree of parallelism of tasks, our approach is able to

better match the workload to the resource type available. The methodology heavily ex-

plores this malleable characteristic to optimize the task schedule considering both degrees

of parallelism and concurrency, on each instance, to offer a better opportunity of finding

configurations that best satisfy the user’s QoS requirements.



3 A Pareto Optimal Resource Selection
Scheme

This chapter describes the design of our proposed methodology PORSCHE (Pareto Op-

timal Resource Selection sCHEme), which aims to provide the job manager of either the

user or the service provider with a selection of, rather than just one, cloud instance con-

figuration options for a given workload. This research focuses on workloads that consist

of the execution of a set of independent, possibly parallel, application tasks. The differ-

ent configuration options are Pareto optimal trade-offs between execution time and cloud

cost and take into consideration user-defined limitations in terms of cloud instance types

and the number of concurrent instances. This chapter presents the different stages of the

PORSCHE methodology, the motivation and applicability, and the software developed to

create the application-specific execution models used to determine good configurations.

3.1 PORSCHE - “There is No Substitute”

Cloud-based services are often offered to users at no cost or at no additional cost (other

than for the computational resources they use). Therefore, such services must be imple-

mented as efficiently as possible to be both viable and sustainable. This section presents

the foundations of a methodology to identify “ideal” VM instance-and-schedule config-

urations for resource- and cost-efficient executions of workloads composed of parameter

sweep executions of a given application. With such workloads becoming the workhorse

of large-scale scientific experiments and simulation-based investigations, cloud providers

are seeking to entice these scientists to use their ready-made cloud environments, e.g.,

ElasticBLAST for genomic sequence alignments on AWS or GCP (CAMACHO et al.,

2023).

As explained in the previous chapter, unlike previous approaches that generally only

identify a single cloud configuration to satisfy the user’s requirements, our PORSCHE

framework (the title of this section comes from the slogan that the Porsche car manufac-
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turer used in the 1970s.) presents the user with multiple Pareto optimal cloud configu-

rations in terms of cost, execution time, and the number of instances. Since optimizing

various objectives can be difficult and somewhat subjective, the aim is to help the user

visualize the trade-offs between objectives and empower them to make more informed de-

cisions about the cloud configuration that best fits their current needs. This is especially

useful when the objectives themselves are not clear to the user, are imprecisely defined, or

are in fact flexible since, for example, the user might see that a less obvious configuration

may adhere better to their objective at perhaps the cost of a minor relaxation of one of

their restrictions.

Our methodology not only identifies configurations that meet the classic objectives

of obtaining the fastest execution time or having the cheapest cost but also different

configurations between these extremes that trade-off cost and performance to different

degrees. For instance, it may be possible to find an alternative configuration that reduces

the total execution time for a slight increase in cost, or vice versa. Furthermore, a given

user may be subject to specific restrictions, for example, the total number of instances

they can use simultaneously. The usual practice in such cases might be to say that not all

of the configurations found may be feasible and simply remove those that do not meet the

restriction. However, such an approach does not identify all Pareto optimal solutions. The

restriction must be incorporated at the beginning of the process. Each configuration also

has its own custom task schedule to execute the workload allocated to the VM instance

as efficiently as possible. These configurations would not be present in a solution that

presents the user with a single configuration that focuses only on meeting one objective

or constraint.

PORSCHE derives an application-specific performance-cost model, to quickly evalu-

ate cloud configurations, from a data collection phase that characterizes the application

and the instance types available to the user, while identifying an appropriate workload

execution plan for the execution of the experiment for each instance type and size consid-

ered. As illustrated in Figure 5, the PORSCHE methodology is comprised of three stages

or phases: a one-off Application Characterization Phase, a one-off pre-processing (or of-

fline) phase that builds Instance Class Profiles for the chosen application, and; an online

phase that identifies viable Service Request Configurations for each submitted workload.

A filtered subset with only the most efficient configurations generated in the online phase

is presented to the user, so they may decide which best meets their QoS requirements.
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Figure 5: PORSCHE’s three-stage approach

3.2 Characterizing the application

Identifying time- and cost-efficient configurations in the online phase for a given experi-

ment requires first determining an ideal workload scheduling strategy for the tasks to be

allocated to each VM instance. Clearly, the resulting schedule depends on the optimiza-

tion criterion used (e.g., minimizing time, cost, or both), which is only defined by the user

at the end of the process. Therefore, the strategy must identify schedules that optimize

different criteria. This depends not only on the number of tasks in the workload, but

also on the degree of parallelization of each task since the application is considered to be

moldable.

This first characterization phase thus aims to understand the application’s behavior in

terms of resource consumption, the sequential execution times in relation to problem size

(or different parameter values), and the scalability of concurrent and parallel executions.

The methodology achieves this characterization by executing the application under three

different scenarios: (1) While using the largest VM size for a given instance type (so

that the application will not be restricted due to a lack of resources and will not suffer

interference from co-hosted applications of other users), execute the application a few

times each time with different inputs to measure the sequential execution times and

identify changing resource demands during their executions, within the domain of possible

problem sizes. A benchmark instance of the application is chosen from one of these
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executions as a representative of the application; (2) The chosen benchmark instance

is executed in parallel with an increasing number of threads to understand the parallel

efficiency and scalability of the application, and; (3) Multiple instances of this benchmark

are executed concurrently to analyze this form of scalability. Scenario (1) defines the

reference execution with which the efficiencies of the two parallelization scenarios (2)

and (3) will be compared. While Scenario (2), the Amdahl strategy, aims to identify

faster executions, and Scenario (3), the Gustafson strategy, looks for higher throughputs,

combining both approaches (the hybrid strategy) might improve the utilization of the

instance being used.

This application characterization phase also helps eliminate instance type/size con-

figurations, which cannot meet the application’s resource requirements, from the search

space prior to the online phase. For example, suppose that a single instance of the ap-

plication needs a minimum amount of 10 GiB of local RAM memory to execute with a

given problem size, then all instance sizes within an Instance Class that do not comply

with this need not be considered. The limited resource capacities of the VM instances will

also influence the type of scheduling strategy to be used for the portion of the workload

allocated to each instance. For example, since cloud providers typically maintain a fixed

ratio of CPUs and RAM memory for each Instance Class, this means that, depending

on the size of the problem and the characteristics of the application, the degree of paral-

lelism or concurrency may be limited by the number of CPUs or the amount of memory

available (SODRÉ; BOERES; REBELLO, 2022).

3.3 Building the Instance Class Execution Profiles

Cloud providers offer a variety of VM instance configurations in the form of Instance

Classes, each might employ a different processor architecture, have different amounts of

memory per core, and, of course, have different costs. These variations are likely to affect

applications differently. The second phase of the methodology aims to understand how

the application might perform on each of the Instance Classes available to the user by

building Instance Class Execution Profiles. A profile is created for the Instance Class by

executing the benchmark application on its largest instance size. It is important to note

that when the Instance Class has more than one CPU architecture available, executing

the application on each architecture available in the Instance Class may be necessary to

characterize the class fully. As in the previous phase, the evaluation is carried out in

the largest-sized instance of the class to lower the chance of interference with other VM
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instances co-hosted on the same underlying hardware.

Each instance profile is composed of three execution models for the benchmark ap-

plication. Each model predicts the execution time under three parallelization strategies:

Amdahl (parallel), Gustafson (concurrent), and hybrid (a combination of the concurrent

and parallel execution strategies). In the Amdahl strategy, the application instances are

executed sequentially, but each is a single process with multiple threads. The Gustafson

strategy assumes that multiple instances of the application are executed concurrently,

each as a single thread process in the VM instance. Finally, the hybrid strategy combines

the previous ones and executes multiple application processes, each with multiple threads,

per VM instance.

To generate the Amdahl strategy model, a single instance of the parallel application

is executed in the largest VM instance of the class with an increasing number of threads,

starting with two and increasing with factors of the number of physical processing units

available on every size of the instance class until the number of threads equals the number

of physical processing units. Experience has shown that, even in architectures with hyper-

threading (or equivalent technologies), performances rarely show improvement beyond this

upper limit. For example, the C5 instance class has eight different sizes available, as shown

in Table 3.3. To generate the complete Amdahl strategy model for the C5 instance class,

the performance of the benchmark application with 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, and

48 threads is measured. This does not necessarily mean that the benchmark application

has to be executed explicitly with each of these quantities of thread, since the performance

of intermediate values can be interpolated from neighboring values.

Instance Number
Size of CPUs
large 1
xlarge 2
2xlarge 4
4xlarge 8
9xlarge 18
12xlarge 24
18xlarge 36
24xlarge 48

Table 1: C5 instance sizes and respective physical processing units available.

The collected execution times are stored as the C5 dataset that will be used in the

online phase to estimate the total execution time of instance workloads when using this

strategy. After assembling the dataset, the parallel scalability of the benchmark applica-
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tion on the chosen Instance Class is obtained by calculating the efficiency of each parallel

execution in relation to the serial execution of the same application, using Equation 3.1,

where SET represents the serial execution time, PETt is the parallel execution time with

t threads, and NCPU is the number of physical processing units used by the process. Note

that when calculating the efficiency of this Amdahl strategy, some additional executions

may be needed to identify more precisely when changes to the efficiency trends occur.

These efficiencies will also be used in the online phase as one of the measures to choose

an adequate strategy to generate custom schedules for configurations with the fastest

execution times and for configurations with the most efficient executions.

EfAmdahl = ((SET/PETt)/NCPU) (3.1)

To generate the Gustafson strategy model, the benchmark application must also be

executed in the largest VM instance in the Instance Class, with increasing degrees of

concurrency (also using factors of the number of physical processing units), starting from

one for every physical processing unit available to the VM instance up to a variable upper

limit which depends on the processor architecture, the number of physical processing units

available to the VM instance, and the application’s resource consumption from the appli-

cation characterization phase. Again, the execution time of each execution configuration

is collected and stored in a dataset that will be used in the online phase to estimate the

total execution time of a given workload when using this Gustafson strategy. The con-

current scalability of the benchmark application on the chosen Instance Class is obtained

by calculating the efficiency in relation to its sequential single core execution using Equa-

tion 3.2, where SET is the serial execution time, CETp is the execution time obtained

when running p application processes concurrently, and NCPU is the number of physical

processing units available in the VM instance.

EfGustafson = ((SET/CETp)/NCPU) (3.2)

The aim of calculating these concurrency efficiencies is to identify the best obtainable

efficiency and the configurations that fall in this highest range of values (i.e., where the

efficiency peaks). This efficiency range is determined by the relation between the num-

ber of concurrent processes and the number of physical processing units used with the

processes. The range values will be used in the online phase as one of the measures to

choose the appropriate strategy to adopt when determining the custom schedule to obtain
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configurations with the highest throughput.

The hybrid strategy model looks for configurations that trade-off shorter execution

times for higher throughput. Since this strategy combines the two previous ones, one

might find it tempting to use the datasets already generated in parallel and concurrent

executions to lower the profiling costs. The problem with this approach is that there is

typically a non-negligible slowdown when executing multiple instances simultaneously in

relation to executing a single one. In compensation, increasing the number of threads

of a single parallel execution generally improves the time. Using the datasets generated

in previous stages without considering the combined effect may lower the methodology’s

accuracy because the hybrid configurations may be incorrectly favored or prejudicated

when generating the Pareto solutions.

Although it may be possible to predict an accurate slowdown rate, it appears difficult

to extend this accuracy to other instance sizes purely through modeling. Therefore, the

methodology opts to obtain the information experimentally by running the benchmark

application on the largest instance with combinations of x concurrent processes with y

multiple threads such that x×y = 2.Np. Since it may not be the cheapest or most efficient

way to achieve this, more work on this aspect is proposed as future work.

All three datasets are used to generate equations in the online phase, employing

multivariate regression to estimate missing intermediate values if necessary. While at

least three data points for each strategy are necessary, more data points improve the

accuracy of an equation’s fit. On the other hand, obtaining more data points requires

more benchmarking executions in this pre-processing phase, which incurs a higher cost

to generate these strategy profiles. Note that this pre-processing phase is only executed

once for each instance class, usually when a new generation of VM instances is released

by the cloud provider. Such instances generally bring novel processing architectures and

technologies whose impact can vary from application to application. Nevertheless, there

is a tradeoff between the initial cost of obtaining more accurate models during this second

pre-processing phase against the gains from better choices of instances and task schedules

for the user’s job.

3.4 Building the Service Request Configurations

The online phase of the proposed methodology is responsible for generating a Pareto op-

timal solution containing the Service Request Configurations that will be presented to
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the users so that they may choose the most appropriate one, according to their own QoS

requirements. The solution contains configurations that minimize the execution time,

obtain high throughputs to reduce the total cost, and multiple combinations that rep-

resent compromises between execution time and cost. The solutions presented can also

be designed to present configurations subject to additional constraints, such as a maxi-

mum number of instances to be employed. The inputs of this phase are the number of

tasks and other relevant application-specific characteristics obtained during the applica-

tion characterization phase, including the duration of each task’s execution and resource

requirements. The user may also include the preferred instance class, the maximum total

cost, the maximum number of instances to be used, or the maximum total execution time

as optional additional parameters. These additional parameters may be used to refine the

generation of the Service Request Configurations before presenting the final configurations

to the users in later stages of the framework.

Each Service Request Configuration (also referred to as a configuration) is composed

of: the instance size in the instance class; the number of instances to be used; the estimated

total execution time; and the estimated total cost of the execution. Additionally, the

configuration includes a custom task schedule that identifies the number of tasks per

instance, the maximum number of concurrent tasks per round, the number of threads per

task, and the number of rounds, which identifies the number of application processes to

be executed sequentially on that instance independently of the degrees of parallelism and

concurrency.

To derive the custom task schedule according to the strategy being evaluated, an

estimate of the execution time for each round is required, taking into consideration the

number of concurrent tasks, the number of threads per task, and the number of processing

units available. To discover the estimated execution time, a profiled execution is identified

that coincides with the corresponding parameters (i.e., the number of concurrent tasks, the

number of threads per task, and the number of processing units) or at least is extrapolated

from the information available in the dataset for the given strategy, collected in the offline

characterization phase. If an experimental value for the given parameters was not found,

multivariate regression is used to generate a best-fit function to estimate the execution

time based on the data points available. The profile data collected previously are used to

validate the precision of the function, choosing a maximum limit of 10% error in order to

accept the function.

One of the most important aspects of the methodology is that it aims to be time-
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Algorithm 1 Configuration creation algorithm
1: InstSet← AllInstInInstClasses− InstEliminatedByPreviousSteps
2: for InstType ∈ InstSet do
3: NCPU ← PhysicalCPUCount(InstType)
4: Ninstances ← 1
5: while Ninstances ≤ Ntasks do
6: NtaskPerInst ← Ntasks / Ninstances

7: if NtasksPerInst ≤ (NCPU / 2) then
8: Nthreads ← NtasksPerInst/NCPU

9: if NtasksPerInst ≥ 2 then
10: Texec ← EstimateExecutionT ime(NtaskPerInst, Nthreads, Hybrid)
11: else
12: Texec ← EstimateExecutionT ime(1, Nthreads, Amdahl)
13: end if
14: Cost← Texec ∗ (InstanceHourlyCost(InstType) / 3600)
15: else
16: PMax ← NCPU ∗ ArchEffUpperLimit(InstType)
17: PMin ← NCPU ∗ ArchEffLowerLimit(InstType)
18: Schedule← GenSched(NtaskPerInst, Pmax, Pmin)
19: Texec ← CalcExecutionT ime(Schedule)
20: Cost← Texec ∗ (InstanceHourlyCost(InstType) / 3600)
21: end if
22: Ninstances ← Ninstances + 1
23: end while
24: end for

and cost-efficient. To accomplish that, the methodology tries to eliminate configurations

considered “unfit” or impossible as early as possible. This strategy greatly reduces the

number of calculations made while generating the configurations, reducing the cost of

generating solutions. It is worth remembering that some configurations may already have

been considered unfit based on the data generated in the previous phases. Therefore, the

first step in this phase is to eliminate all configurations considered to be unviable using

the information generated in previous phases. One criterion used in the elimination is

excluding Instance Classes without datasets from previous phases. It may be possible to

reuse the datasets of other Instance Classes with some adaptation, and more work on this

is proposed as future work, but without the dataset for the Instance Class, the inaccuracy

of the generated solution may be high. Another criterion to eliminate a configuration

at this stage is when the instance in the configuration does not have enough resources

to execute a single task of the workload, as identified in the application characterization

phase.

Algorithm 1 describes the steps of the methodology to generate the configurations.
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In line 1, one can see that the set of instances available to generate the configurations

(InstSet) for the given Instance Class is the set of all instances in the Instance Class

(AllInstInInstClasses) minus the set of instances considered unfit in previous steps (In-

stEliminatedByPreviousSteps). After eliminating the unfit configurations, all remaining

instances in the list are evaluated using task schedules to optimize the execution, as seen

in line 2 of the Algorithm 1.

Next, for each instance in the set of remaining instances, the algorithm generates con-

figurations with different numbers of that instance type, starting from one, i.e., executing

all tasks in a single instance, up to the number of instances equal to the number of tasks,

i.e., executing one task per instance, as seen in line 5 of the Algorithm 1. For each config-

uration, the number of tasks per instance that need to be executed is obtained by dividing

the number of tasks by the number of instances, as shown in line 6 of the Algorithm 1. If

the calculated number of tasks per instance is smaller than half the number of physical

processing units available to the instance and bigger than one, we use Hybrid’s strategy

model to estimate the execution time (line 10), which will be used to calculate the total

cost (line 14). If it is smaller than half the number of physical processing units available

to the instance and equals one, we use the Amdahl scheduling strategy (line 12) for the

same purpose.

When calculating the number of threads per task to increase the overall efficiency of

the configuration, we always consider using all available processing units and respecting

the parallel efficiency scalability limits found in the application characterization phase

(i.e., not to use more threads per task than the predetermined maximum number of

threads per task for the benchmark application’s input after which there is a decrease in

the performance).

On the other hand, if the calculated number of tasks per instance is larger than

half the number of physical processing units available to the instance, we use Gustafson’s

scheduling strategy, as seen in lines 16 to 20 of the Algorithm 1. When using the Gustafson

strategy model, we generate a custom schedule for the execution of the tasks in the

instance, considering both the lower- and upper-efficiency bounds found in the instance

characterization phase (lines 16 to 18). The function that generates the schedule tries

to distribute the tasks so that there are always more processes in execution concurrently

than the lower efficiency bound and less than the upper efficiency bound, guaranteeing

that the execution is always in the best efficiency range. The algorithm can then calculate

the total execution time based on the generated schedule (line 19) and multiply it by the
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instance cost per second to find the total execution cost (line 20).

3.5 Generating the Pareto solution

After all of the configurations in the search space have been generated, PORSCHE analy-

ses each of them to identify those configurations that are optimal, including the configura-

tions that attend to the classical objectives, that is, the two that minimize the execution

time and minimize the total cost, respectively, along with solutions that trade cost for

performance. It is important to note that of all the solutions generated, the intermediary

(or trade-off) solutions are the most interesting because they represent neither the lowest

cost nor the shortest execution time but a compromise, while also considering the number

of instances in the solution, which may or may not be an additional restriction. To the

best of our knowledge, most of the other proposed solutions to this problem found in

the literature try to maximize only one of these objectives, rarely both, and none offer

multiple trade-off solutions focused on efficiency. Our methodology offers configurations

that identify both classic objectives and several compromise solutions in between that the

user may not otherwise be aware of.

The search for Pareto optimal solutions involves evaluating all generated configura-

tions and eliminating the non-dominant configurations to assemble the solution set. This

is achieved by comparing all of the configurations generated against each other and elimi-

nating those for which there exists another configuration with the same or lower cost but a

shorter execution time (i.e., dominated in terms of the execution time) or a configuration

that has the same or lower execution time but a smaller cost (i.e., dominated on cost). A

final step involves removing instances of dominant configurations with equivalent execu-

tion times and total costs from the optimal solution set. When equivalent configurations

are detected, a secondary objective, chosen by the user, may used to give preference to a

certain type of solution. For example, a secondary objective may be to opt for the con-

figuration that requires the fewest VM instances (the current default objective) in order

to improve the likelihood that sufficient resources will be available in the Cloud to meet

the request.

It is also worth noting that the limits or conditions used by the model to consider a

configuration dominant or equivalent configuration are not exact. It is necessary to allow

for a certain degree of “fuzziness”, for example, configurations with a difference in cost of

less than one cent of a dollar (the smallest billable unit) are in fact considered equal. The
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same applies to configurations with differences in execution time of less than 10%. In this

case, this is to allow for the inherent variation in the performance of cloud executions,

which in turn may be caused by a number of factors that, for example, influence the state

of operation of the underlying hardware on which the VM is allocated, causing distortions

in some executions.

To close this chapter, an interesting observation that can be made concerning the

characteristics of the configurations generated and those that make up the Pareto solution

set is that each configuration generally falls into one of five groups related to the overall

efficiency of the workload execution. The first group is comprised of configurations that

only use the parallel Amdahl strategy, where only a single task is executed per VM

instance, using multiple threads to harness the processing capacity available, and thus,

there are no concurrent tasks in execution within an instance. These are the configurations

that usually yield the fastest execution times and are the most expensive found in the

Pareto solution set. The number of tasks assigned to the instance can vary between 1 and
N
2
, where N is the number of CPUs of the instance. The second and third groups are each

comprised of configurations where the number of tasks per instance is less than the number

of physical processing units available to the VM instance, i.e., less than N . In the second

group, the configurations execute parallel tasks concurrently under a hybrid scheduling

strategy. The degree of parallelism is smaller than that of the first group, but often the

execution is more efficient. In contrast, the third group reduces the degree of parallelism

to one, i.e., the tasks have no parallelism (the Gustafson strategy). Since the number of

tasks is smaller than the number of CPUs, the VM instance is underutilized, which tends

to harm the general efficiency of the solution. Thus, configurations of this third group

generally do not make the Pareto solution set. The fourth and fifth groups are comprised

of configurations where the number of tasks per VM is equivalent to or greater than the

number of physical processing units (N) and use the Gustafson scheduling strategy. In

the fourth group, the number of tasks that can be executed concurrently is insufficient

for the instance to execute at its most efficient rate, the range identified during the offline

profiling phase. However, the fifth group has configurations with a sufficient number of

allocated tasks to allow the execution to occur in the most efficient range, maximizing

the use of the VM’s resources. This is usually where the most cost-efficient configurations

are found, and if they exist, normally dominate configurations in the fourth group.
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This chapter discusses the experiments performed to evaluate and highlight the advan-

tages, benefits, and possible caveats of using our methodology to aid in choosing the ideal

cloud configuration for a realistic scientific case study: A DNA Sequence Alignment Ser-

vice using MASA-OpenMP. Amazon Web Services (AWS) was used as the cloud provider

for the evaluation, mainly because it is the oldest and most widely used (i.e., the largest

in terms of market share) public cloud provider. The computational resources used in the

experimentation were AWS’s EC2 virtual machine instances hosted in the AWS region of

North Virginia (us-east-1). This is the region that generally has the lowest hourly cost per

virtual machine instance, and is the one where new AWS instances are usually launched

first1.

Two example workloads were used in the evaluation; one to generate the instance pro-

files and another to simulate a realistic user workload, generating a solution with the con-

figurations. The workload used to generate the instance profiles, denoted here as SPalign,

was composed of 200 variants of SARS-CoV-2 DNA sequences, chosen at random from

the NCBI database, which were each aligned against the established reference genome of

SARS-CoV-2 (identified as snc_045512). The workload used to validate the model, denoted

as SUalign, was composed of the alignment of 1738 SARS-CoV-2 sequences randomly cho-

sen from the NCBI database against the SARS-CoV-2 reference genome. This SUalign

workload mimics the work of a biologist trying to identify potentially new strains or vari-

ants of the SARS-CoV-2 virus. The number of sequences in the SUalign workload was also

chosen at random to avoid biasing configurations in which the workload might fit perfectly

in some given instance type, but in general, this is not important to the objective of the

experiment.

Although the framework may be applied to any instance or group of instances in the

cloud, for simplicity and illustration, the experiments presented here focus on examples
1For example, during the modeling of our framework, the latest third generation of Graviton processors

were first debuted on the us-east-1 region
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of the fifth, sixth, and seventh generations of EC2 instance types from the Compute

Optimized family, one generation of Intel processors and two generations of AWS Graviton

processors. For this bioinformatics application, the C5a instances with AMD processors

performed worse than the Intel instances and thus were excluded from the experiment for

motives of clarity (as can be seen by the size of some of the following tables). All virtual

machine instances for the experiment have the operating system Ubuntu Server 20.04 LTS

64-bit installed (which showed to have better performance than both the newer Ubuntu

Server 22.04 and Amazon Linux 2) and were executed in the On-demand market. Table 2

summarizes the main characteristics of the Compute Optimized families, while Tables 3

and 4 presents the available instance sizes and costs of the Intel-based C5 family in the

us-east-1 region for which instance profiles are generated.

Family Processor Architecture Base Price

C5 Intel Xeon Scalable Processors (8124M / 8275CL) US$0.085
C6g AWS Graviton2 Processor (64-bit Arm Neoverse) US$0.034
C7g AWS Graviton3 Processor (64-bit Arm Neoverse) US$0.036

Table 2: Main processing characteristics and On-Demand price per hour of the cheapest
instance of the respective AWS EC2 Compute Optimized Instance Families on us-east-1
region, with Linux OS (as of July 2023).

Instance Number RAM Price
Size of CPUs (GiB) (USD/h)
large 1 4 $0.085
xlarge 2 8 $0.17
2xlarge 4 16 $0.34
4xlarge 8 32 $0.68
9xlarge 18 72 $1.53
12xlarge 24 96 $2.04
18xlarge 36 144 $3.06
24xlarge 48 192 $4.08

Table 3: C5 instance sizes with their respective numbers of physical CPUs and amounts
of RAM, as well as the on-demand price per hour with a Linux OS, in us-east-1 (as of
July 2023).

4.1 Application characterization and building the Instance
Class Execution Profiles

As most OpenMP applications, MASA-OpenMP by default, creates as many threads per

process as there are processing units available (as seen by the operating system). If pro-
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c6g c7g
Instance Number RAM Price Price
Size of CPUs (GiB) (USD/h) (USD/h)
medium 1 2 $0.034 $0.0361
large 2 4 $0.068 $0.0723
xlarge 4 8 $0.136 $0.1445
2xlarge 8 16 $0.272 $0.2890
4xlarge 16 32 $0.544 $0.5781
8xlarge 32 64 $1.088 $1.1562
12xlarge 48 96 $1.632 $1.7342
16xlarge 64 128 $2.176 $2.3123

Table 4: C6g and C7g instance sizes with the number of physical CPUs and amount of
RAM available, and on-demand price per hour with Linux in us-east-1 (as of July 2023).

cessor architecture has multithreading capabilities, the number of threads may not neces-

sarily be the number of physical cores. Therefore, to build the parallel execution strategy

dataset, the profiling method externally adjusts the number of threads a single MASA-

OpenMP process employs using OpenMP’s OMP_NUM_THREADS variable. The exe-

cution times of alignments with different numbers of threads per process are collected, as

explained in Chapter 3, to identify the best configurations in terms of performance, cost,

and efficiency.

As described by the documentation of the instance class provided by AWS on its

website at 2, the C5 family employs more than one Intel processor architecture: Instances

may come with an Intel Xeon Scalable Platinum 8124M (first generation) or the newer

Intel Xeon Scalable Platinum 8275CL (second generation). While the latter is generally

the faster processor, the documentation also states that when a family has more than

one processor architecture, the user does not normally get to choose which processor

architecture it will receive with its allocated VM instance. In the case of the C5 family,

the only thing that AWS guarantees is that the 12xlarge and 24xlarge instance sizes will

have the newer Intel Xeon Scalable Platinum 8275CL. Thus, instance profiles for both

processor architectures have to be generated, as explained in Chapter 3. On the other

hand, our experiments showed that whenever one instantiated instances with the sizes

large, xlarge, 4xlarge, 9xlarge, and 18xlarge of the C5 Instance Class in the us-east-

1 region (no matter the Availability Zone), they always had the 1st generation of the

Intel Xeon Scalable Platinum 8124M as the underlying processor architecture. While

the 2xlarge instance size sometimes had the 1st generation of the Intel Xeon Scalable

Platinum 8124M, other times it might have the 2nd generation of the Intel Xeon Scalable
2https://aws.amazon.com/ec2/instance-types/c5/
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Platinum 8275CL.

As mentioned in Chapter 3, it is necessary to build a dataset, one for each processor

architecture in an Instance Class. For C5, Table 5 presents the dataset of the Am-

dahl strategy on the largest instance with the 2nd generation of the Intel Xeon Scalable

Platinum 8275CL, while Table 6 also presents the execution times for the benchmark ap-

plication, which form the dataset for the Amdahl strategy on the largest instance with an

Intel Xeon Scalable Platinum 8124M. As one might notice, executing more configurations

helps to identify more precisely how the efficiency changes in relation to the degree of

parallelism. In both architectures, using 36 threads obtains the shortest execution times.

Number of threads Execution Efficiency
per task time (s)

1 1.311 1.000
2 0.746 0.879
4 0.461 0.711
8 0.308 0.532
16 0.247 0.332
18 0.232 0.314
24 0.207 0.264
36 0.189 0.193
48 0.199 0.137
64 0.237 0.115
72 0.281 0.097
96 0.390 0.070

Table 5: Amdahl’s strategy dataset on C5.24xlarge (8275CL processor architecture, with
48 CPUs) executing MASA-OpenMP’s comparison with SARS-Cov-2 sequence.

Throughout the experimentation with the C5 family, the newer 2nd generation of the

Intel Xeon Scalable Platinum 8275CL performed consistently better than the older 1st

generation of the Intel Xeon Scalable Platinum 8124M. This indicates that the config-

urations with instances in which datasets were collected with the newer processor will

dominate the configurations with the older and slower processor architecture, given that

both have the same cost per hour. Therefore, they will be preferred when generating

the Pareto Optimal solution. Unfortunately, we did not know that until we executed the

instance profiling phase. This will be the case with any Instance Class that eventually has

multiple processor architectures as the underlying infrastructure since users are not pre-

viously informed of which processor architecture will be available to their VM instances

when there is more than one possibility. We cannot ignore the different processor archi-

tectures in the underlying infrastructure when they exist. More work on how to reuse

data from different processor architectures to reduce the cost of generation of the instance
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Number of threads Execution Relative
per task time (s) Efficiency

1 1.446 0.907
2 0.818 0.801
4 0.494 0.663
8 0.321 0.511
16 0.264 0.310
18 0.255 0.286
24 0.239 0.229
36 0.233 0.156
48 0.283 0.097
64 0.315 0.065
72 0.368 0.049

Table 6: Amdahl’s strategy dataset on C5.18xlarge (8124M processor architecture, with
36 CPUs) executing MASA-OpenMP’s comparison with SARS-Cov-2 sequence. The effi-
ciency presented is calculated in relation to the fastest sequential execution time obtained
on any instance, which in this case was 1.311s on a C5.24xlarge instance (with an 8275CL
processor architecture and 48 CPUs).

profiles will be proposed as future work.

After collecting the data and assembling the dataset for Amdahl’s strategy, the parallel

efficiency of the benchmark application: MASA-OpenMP with SARS-CoV-2 sequences

can be calculated. As seen in Figure 6, the parallel efficiency of MASA-OpenMP rapidly

decreases as the number of threads per process increases. It is also important to note that

the C5.24xlarge instance has 48 physical processing units available (96 threads/vCPUs

with Intel Hyper-threading technology enabled). That is why the efficiency decreases

slightly slower after the number of threads hits 48. This shows that although the execution

times for the alignment of SARS-CoV-2 sequences, using a single MASA-OpenMP process,

improve using an increasing number of threads (up to 36), the usage of these resources

becomes increasingly inefficient. This is an indicator that executing more comparisons

using fewer threads each may be a more cost-effective use of this C5.24xlarge instance, at

least for comparisons of the SARS-CoV-2 virus.

The execution of multiple alignment tasks concurrently, one process per comparison

with one thread per process, is then carried out to build the Gustafson strategy dataset. To

ensure that the environment was indeed being used concurrently, each of the workloads was

configured to execute two hundred comparisons sequentially, with the average execution

time of a comparison of the slowest workload being recorded. The experiment is repeated

with increasing numbers of concurrent processes starting from a baseline of one process

up to four times the total number of physical CPUs available in the VM instance. To
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Figure 6: MASA-OpenMP parallel efficiency using increasing numbers of threads on EC2’s
C5.24xlarge instance (8275CL processor architecture, with 48 CPUs).

better understand the scalability of an instance family, the largest instance in this case of

the C5 family (with Intel Hyper-Threading enabled) was used. Table 7 shows the dataset

obtained for the Gustafson strategy using a C5.24xlarge instance.

The execution data show that increasing the number of concurrent processes in the

VM instance beyond the number of CPUs available (in this case, 48) increases the sys-

tem’s efficiency and, consequently, its throughput. It is worth noting that there is a small

slowdown, as one might expect, due to concurrency and a possible lowering of the clock

frequency to compensate for the increased energy consumption. Figure 7 shows the effi-

ciency of the execution on the largest instance of the C5 family, instance c5.24xlarge, and

highlights a “range of efficiency”, where the efficiency is at its highest, as mentioned in

the previous chapter. For the AWS´s third generation of Computed Optimized Intel In-

stances, the best efficiency range begins when there are at least 2.5 processes per physical

CPU and remains fairly constant up to as many as 10 processes per CPU in some in-

stances (e.g., c5.12xlarge), especially when using the larger ones that have a lower chance

of suffering interference from other co-hosted VMs. This finding is interesting because the

number of vCPUs available to instances using Intel processors (that come with Intel´s

Hyper-Threading Technology enabled by default) is twice the number of physical CPUs



4.2 Generating the Pareto optimal solution for the real workload of MASA-OpenMP 47

Number of concurrent Execution Efficiency
processes time (s)

1 1.31 1.000
2 1.32 0.992
4 1.36 0.963
8 1.38 0.949
16 1.39 0.942
32 1.40 0.936
48 1.45 0.903
64 1.74 1.004
72 1.86 1.056
96 2.20 1.191
120 2.68 1.222
128 2.85 1.226
144 3.20 1.228
168 3.89 1.179
192 6.03 0.869

Table 7: Dataset for Gustafson’s scalability on a C5.24xlarge (8275CL processor architec-
ture, with 48 CPUs).

inducing users to run only 1 or 2 processes per CPU (and not 2.5!). This indicates that

executing more processes concurrently than the number of vCPUs would be necessary for

this benchmark application to achieve peak efficiency and increase the system’s through-

put. This may be extremely counter-intuitive to a user, who would instinctively, at most,

submit as many processes as there are vCPUs. Especially for a service that potentially

executes millions of DNA sequence alignments in the cloud, this inefficiency would cause

a significant increase in cost. Therefore, Figures 6 and 7 clearly show that, in this case,

to achieve the objective of obtaining the highest throughput, it is important to use more

processes with a single thread, i.e., to use Gustafson’s strategy instead of a single process

with multiple threads, i.e., Amdahl’s strategy.

4.2 Generating the Pareto optimal solution for the real work-
load of MASA-OpenMP

After the instance profiles were generated, the service request configurations were gen-

erated based on the data collected using the C5 family in the profile generation phase.

Given the sizes and costs of instances in the C5 family shown in Table 3, the PORSCHE

methodology ends up evaluating 13911 configurations. The total number of configurations

evaluated is the product of the number of tasks in the workload (i.e., “problem size”) and
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Figure 7: The efficiency of executing an increasing number of concurrent MASA-OpenMP
processes, each with a single thread each, on a C5.24xlarge Instance with 48 CPUs.

the number of instance sizes per each instance family under consideration. In this case,

there were 1738 tasks (alignments) in the workload, and eight instance sizes of the C5

family were considered; therefore, 13911 configurations were evaluated. From the origi-

nal 13911 configurations evaluated, only 30 configurations were actually non-dominated,

therefore, they were selected to enter the Pareto optimal solution as explained in Sec-

tion 3.5. Table 8 presents an overview of each of the 30 configurations, ordered by cost,

identifying the number and type of instance, and the predicted execution time. Table 9

presents the corresponding scheduling part of the identified configurations and describes

the parallelisation approach to be used to execute the workload on the given instance type.

In both tables, lines with white backgrounds represent the cheapest configurations with

concurrent executions, i.e. using Gustafson’s strategy; lines with light gray backgrounds

represent configurations with hybrid executions, i.e. using Hybrid’s strategy; and lines

with dark gray backgrounds show the fastest configurations with parallel executions, i.e.

using Amdahl’s strategy.

Table 8 highlights the importance of presenting the user with multiple configurations.

Line 1 shows the configuration with the cheapest execution cost. When comparing lines

1 and 2, it is possible to see that using the same instance size with different scheduling

strategies yields very different results. The configuration in line 2 is 1.2% more expensive

than the solution in line 1 but it is also 3.9 times faster. Comparing lines 1 and 3, the
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configuration in line 1 is 6.6% more expensive, but it is more than 39 times faster, using an

instance size different from the one suggested in the configuration in line 1. An approach

that focuses on minimizing the execution cost might ignore the configurations in both

lines 2 and 3 because those configurations are not the ones with the cheapest execution

cost. However, for a user with flexibility in terms of expenses, perhaps an increase of only

1.2% or even 6.6% in the cost would be worth a return of a 3.9 or 39-fold improvement

in performance, respectively.

Configuration Instance Number of Estimated Estimated
Number Size instances execution time (s) total cost ($)

1 4xlarge 3 74.919 0.0425
2 4xlarge 12 18.982 0.0431
3 24xlarge 20 1.914 0.0453
4 24xlarge 21 1.842 0.0476
5 24xlarge 22 1.775 0.0499
6 24xlarge 23 1.728 0.0521
7 24xlarge 24 1.684 0.0544
8 24xlarge 25 1.642 0.0567
9 24xlarge 26 1.603 0.0589
10 24xlarge 27 1.578 0.0612
11 24xlarge 28 1.555 0.0635
12 24xlarge 29 1.522 0.0657
13 24xlarge 30 1.502 0.0680
14 24xlarge 31 1.492 0.0703
15 24xlarge 32 1.474 0.0725
16 24xlarge 33 1.456 0.0748
17 24xlarge 34 1.448 0.0771
18 24xlarge 35 1.433 0.0793
19 24xlarge 36 1.425 0.0816
20 24xlarge 37 1.412 0.0839
21 4xlarge 46 4.936 0.0434
22 4xlarge 47 4.827 0.0444
23 24xlarge 76 0.552 0.0861
24 24xlarge 92 0.544 0.1043
25 24xlarge 109 0.536 0.1235
26 24xlarge 134 0.528 0.1519
27 2xlarge 1738 0.394 0.1641
28 4xlarge 1738 0.283 0.3283
29 9xlarge 1738 0.163 0.7387
30 12xlarge 1738 0.149 0.9849

Table 8: Partial view of the solution set generated by the PORSCHE framework for the
execution of 1738 alignments using MASA-OpenMP on instances from the C5 family.
Each configuration identifies the size of the instance, the number of instances required,
and the estimated execution time and cost.
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The same happens when comparing the configurations that result in the fastest ex-

ecution times. Comparing lines 30 and 29, for example, shows that an increase of 10%

in the execution time results in a decrease of 25% in total cost. These are just a few

examples of the importance of generating and presenting multiple solutions to the users.

A common misconception when using the cloud is that the number of instances avail-

able to a user is unlimited. In practice, cloud providers impose hard limits on the maxi-

mum number of instances (or CPUs) that a user may use at the same time. Additionally,

resources at each availability zone are limited, and if the chosen region is particularly

busy, there may not be a sufficient number of instances of the required type available to

meet the request. When there exists a limit on the number of instances that can be used

simultaneously, one might assume that it would be correct to simply ignore configurations

that do not meet the criterion. Using the example experiment and its set of solutions

presented previously in Table 8, Table 10 aims to show that this common assumption

is flawed. The limit must be passed as a parameter to the algorithm before the config-

urations are generated. This is because, contrary to what one might think, the Pareto

solution generated with a limit on the number of instances may be entirely different from

the one without this limit. For example, the set of Pareto solutions generated for the

same experiment, with 1738 alignments but with an imposed limit of 40 simultaneously

executed instances, and shown in Table 10, differs from the one without the limit shown

in Table 8. Not only is the number of solutions fewer, as expected, but some of the so-

lutions were not in the previous solution set (e.g., configurations 3, 4, 5, 24, 25, and 26),

i.e., Table 10 is not a subset of Table 8. This happens because configurations that were

dominated by configurations with more instances would not enter the Pareto solution set

without a limit. On the other hand, when the limit is considered in the generation of the

configurations (i.e. before the Pareto solution is generated), those solutions with more

instances would not even be calculated, allowing the now non-dominated configurations

to be included in the Pareto solution set. The user must then know this limit value prior

to generating the configurations.

A possible limitation of using our methodology is that the number of configurations in

the Pareto solution has not been limited to a predefined manageable number during this

generation stage. When presented to a user, this number of options may be too many,

which, in turn, may make the decision overwhelming and confusing for the user. To

mitigate this problem, several refinements may be made in the generation of the Pareto

solution. For example, having seen the range of performances and costs in an initial

Pareto solution set, the user may then choose to pass a maximum threshold for the total
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Configuration Number Maximum Number of Number
Number of comparisons number of threads per of

per instance parallel processes per process rounds
1 580 20 1 29
2 145 19 1 8
3 87 87 1 1
4 83 83 1 1
5 79 79 1 1
6 76 76 1 1
7 73 73 1 1
8 70 70 1 1
9 67 67 1 1
10 65 65 1 1
11 63 63 1 1
12 60 60 1 1
13 58 58 1 1
14 57 57 1 1
15 55 55 1 1
16 53 53 1 1
17 52 52 1 1
18 50 50 1 1
19 49 49 1 1
20 47 47 1 1
21 38 19 1 2
22 37 19 1 2
23 23 23 4 1
24 19 19 5 1
25 16 16 6 1
26 13 13 7 1
27 1 1 8 1
28 1 1 16 1
29 1 1 36 1
30 1 1 48 1

Table 9: The schedule portion of each configuration within the solution set presented in
Table 8. The second column identifies the workload of the instance, while the third and
fourth define the degree of parallelism in terms of the Gustafson and Amdahl models,
respectively.
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Configuration Instance Number of Estimated Estimated
Number Size instances execution time (s) total cost ($)

1 4xlarge 3 74.919 0.0425
2 4xlarge 12 18.982 0.0431
3 4xlarge 23 9.873 0.0434
4 4xlarge 33 6.981 0.0436
5 9xlarge 21 4.917 0.0446
6 24xlarge 20 1.914 0.0453
7 24xlarge 21 1.842 0.0476
8 24xlarge 22 1.775 0.0499
9 24xlarge 23 1.728 0.0521
10 24xlarge 24 1.684 0.0544
11 24xlarge 25 1.642 0.0567
12 24xlarge 26 1.603 0.0589
13 24xlarge 27 1.578 0.0612
14 24xlarge 28 1.555 0.0635
15 24xlarge 29 1.522 0.0657
16 24xlarge 30 1.502 0.0680
17 24xlarge 31 1.492 0.0703
18 24xlarge 32 1.474 0.0725
19 24xlarge 33 1.456 0.0748
20 24xlarge 34 1.448 0.0771
21 24xlarge 35 1.433 0.0793
22 24xlarge 36 1.425 0.0816
23 24xlarge 37 1.412 0.0839
24 24xlarge 38 1.405 0.0861
25 24xlarge 39 1.399 0.0884
26 24xlarge 40 1.394 0.0907

Table 10: Solutions proposed by the framework for the execution of 1738 alignments using
MASA-OpenMP on the C5 instance family with the additional constraint of a maximum
of 40 instances. New configurations not present in Table 8 are indicated in gray.



4.3 Validating the Methodology 53

execution time or total cost and generate a refined Pareto solution set.

4.3 Validating the Methodology

Section 4.2 presented the results of applying the PORSCHE methodology to the AWS

EC2 C5 instance class (that is, the 5th generation of compute-optimized instances with

Intel processors). This section aims to validate the extensibility and feasibility of applying

this methodology to another distinct AWS EC2 instance class. We opted to use another

instance class of the compute-optimized family but with an entirely different processor

architecture. The family C6g, the sixth generation of compute-optimized instances, is

based on Amazon’s custom-built ARM processor, Graviton2.

The experiment uses the same workload as the previous section with 1738 DNA se-

quence alignments of the SARS-CoV-2 sequences (i.e., each sequence with approximately

30,000 characters long) to allow some insights into the differences between the two in-

stance families to be identified. Since the application is being used, there is no need

to repeat the application characterization phase. Instead, the previous experimentation

knowledge (and data) about the application collected with C5 instances will be reused.

The instance class execution profile is built using the largest instance size of the C6g

family, the 16xlarge, with 64 CPUs and 128 GB of RAM. It is worth noting that the

Graviton2 processor architecture present on the C6g instance family does not support

Hyper-Threading technology; therefore, each CPU corresponds to one vCPU. Unlike the

C5 instance class, C6g employs a single processor architecture, and therefore, only one

profile is needed. Tables 11, 12, and 13, present the datasets generated for each of the

three scheduling strategies.

After creating the Instance Class Execution Profile, the next step is to generate and

analyze the possible configurations to identify the Pareto solution set. As in the case of

the C5 instance class, the C6g family also has eight different instance sizes available, and

therefore the same number of configurations, 13911, will be generated. Finally, a Pareto

solution is generated by finding the non-dominated configurations within these 13911

configurations. Table 14 presents the 53 non-dominated configurations in the Pareto

solution set.

As with the Pareto solution for the C5 instance class, comparing the configurations

on the C6g Pareto solution set with each other again throws up some interesting config-

urations that might otherwise not be presented to the user. For example, comparing the
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Number of threads Execution Relative
per task time (s) Efficiency

1 1.792 0.732
2 0.986 0.665
4 0.589 0.556
8 0.385 0.426
16 0.314 0.261
32 0.227 0.180
48 0.218 0.125
64 0.251 0.082
128 1.105 0.009

Table 11: Data set for the Amdahl strategy on a C6g.16xlarge VM Instance. The efficiency
presented is calculated in relation to the fastest sequential execution time obtained on
any instance, which in this case was 1.311s on a C5.24xlarge instance (with an 8275CL
processor architecture and 48 CPUs).

estimated time and cost obtained by the configuration on the first line with the one on the

second line, i.e., comparing the configurations that produce the cheapest results, it is pos-

sible to see that, while the configuration on the second line is only three one-hundredths

of a cent ($0.0003) more expensive, it is twice as fast. However, the configuration on the

first line uses eight times fewer instances. Comparing the configurations in lines three

and four with the configuration in line one also results in similar results. Both are less

than $0,001 and more expensive, but are more than twice as fast, at the expense of using

many more VM instances.

There are even more interesting findings when comparing the configurations on both

Pareto solutions for the C5 and C6g instance families. For example, although the Pareto

solution set for the C5 instance family has the configuration with the shortest execution

times, it is the set for the C6g instance family that has the configuration with the lowest

cost. Therefore, a Pareto solution considering both instance families would present con-

figurations with instances from both instance families. The fastest configurations would

certainly have instances from the C5 instance family, while the cheapest configurations

would certainly have instances from the C6g instance family.
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Number of Execution Relative
concurrent processes time (s) Efficiency

1 1.807 0.726
2 1.910 0.686
4 1.910 0.686
8 1.904 0.689
16 1.889 0.694
32 1.880 0.697
48 1.891 0.693
64 1.900 0.690
96 2.660 0.739
128 3.650 0.718
160 4.538 0.722
192 5.503 0.715

Table 12: Data set for the Gustafson strategy on a C6g.16xlarge VM Instance. The effi-
ciency presented is calculated in relation to the fastest sequential execution time obtained
on any instance, which in this case was 1.311s on a C5.24xlarge instance.

Number of concurrent Number of threads Execution Relative
processes per process time (s) Efficiency

2 32 0.221 0.186
4 16 0.308 0.266
8 8 0.383 0.428
16 4 0.586 0.559
32 2 1.018 0.644

Table 13: Data set for the Hybrid strategy on a C6g.16xlarge VM Instance.

Instance Number of Estimated total Estimated

size instances execution time (s) total cost (USD$)

1 8xlarge 12 7.974 0.0290

2 2xlarge 97 3.976 0.0293

3 4xlarge 65 2.995 0.0295

4 12xlarge 22 2.934 0.0299

5 4xlarge 67 2.899 0.0304

6 8xlarge 34 2.889 0.0308

7 12xlarge 23 2.840 0.0313

8 16xlarge 26 1.982 0.0314

9 16xlarge 27 1.928 0.0326

10 large 869 1.910 0.0328

11 4xlarge 109 1.889 0.0329
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12 8xlarge 55 1.880 0.0332

13 12xlarge 76 0.979 0.0345

14 8xlarge 116 0.960 0.0351

15 12xlarge 79 0.941 0.0358

16 16xlarge 60 0.935 0.0363

17 12xlarge 83 0.903 0.0376

18 16xlarge 65 0.881 0.0393

19 12xlarge 87 0.865 0.0394

20 8xlarge 134 0.846 0.0405

21 12xlarge 92 0.828 0.0417

22 16xlarge 70 0.827 0.0423

23 8xlarge 145 0.791 0.0438

24 16xlarge 76 0.774 0.0459

25 12xlarge 103 0.755 0.0467

26 8xlarge 158 0.737 0.0478

27 12xlarge 109 0.719 0.0494

28 8xlarge 174 0.684 0.0526

29 16xlarge 92 0.668 0.0556

30 12xlarge 125 0.650 0.0567

31 8xlarge 194 0.633 0.0586

32 12xlarge 134 0.616 0.0607

33 12xlarge 145 0.586 0.0657

34 16xlarge 116 0.564 0.0701

35 12xlarge 158 0.549 0.0716

36 8xlarge 249 0.533 0.0753

37 12xlarge 174 0.516 0.0789

38 16xlarge 134 0.512 0.0810

39 4xlarge 580 0.483 0.0876

40 16xlarge 158 0.461 0.0955

41 12xlarge 218 0.453 0.0988

42 16xlarge 174 0.436 0.1052

43 12xlarge 249 0.422 0.1129

44 16xlarge 194 0.411 0.1173

45 4xlarge 869 0.383 0.1313
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46 16xlarge 249 0.361 0.1505

47 16xlarge 290 0.336 0.1753

48 12xlarge 435 0.332 0.1972

49 16xlarge 348 0.311 0.2103

50 8xlarge 869 0.308 0.2626

51 16xlarge 580 0.261 0.3506

52 16xlarge 869 0.221 0.5253

53 12xlarge 1738 0.218 0.7879

Table 14: The solution set suggested by the model for the execution of 1738 alignments us-

ing MASA-OpenMP on the C6g instance class with the instance size, number of instances,

and estimated execution time and costs.

To validate the precision of the methodology on the C6g instance class, five of the

cheapest, five of the fastest, and 20 other configurations were executed on AWS EC2. The

variation between the measured and predicted execution times ranged from -12,48% (i.e.,

the actual execution time was greater than the one estimated by the model) to +3,05%

(i.e., the actual execution time was shorter than the estimated by the model). Table 15

shows the difference between the estimated execution times and the actual execution time

measured by executing the suggested configuration in C6g instances.
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Instance Number of Execution time per round (s) Difference (%)

size instances Estimated Actual

1 8xlarge 12 4.016 4.123 -2.60%

2 2xlarge 97 3.976 4.090 -2.79%

3 4xlarge 65 2.995 3.055 -1.95%

4 12xlarge 22 2.934 2.974 -1.35%

5 4xlarge 67 2.899 2.940 -1.40%

6 8xlarge 34 2.889 2.935 -1.56%

7 12xlarge 23 2.84 2.859 -0.66%

8 16xlarge 26 1.982 1.923 3.05%

9 16xlarge 27 1.928 1.873 2.92%

11 4xlarge 109 1.889 1.846 2.33%

12 8xlarge 55 1.88 1.840 2.18%

13 12xlarge 76 0.979 0.995 -1.57%

14 8xlarge 116 0.96 0.989 -2.98%

29 16xlarge 92 0.668 0.726 -7.99%

31 8xlarge 194 0.633 0.723 -12.48%

34 16xlarge 116 0.564 0.586 -3.74%

36 8xlarge 249 0.533 0.582 -8.49%

38 16xlarge 134 0.512 0.584 -12.33%

39 4xlarge 580 0.483 0.508 -4.96%

40 16xlarge 158 0.461 0.509 -9.50%

42 16xlarge 174 0.436 0.456 -4.48%

44 16xlarge 194 0.411 0.414 -0.74%

45 4xlarge 869 0.383 0.427 -10.21%

46 16xlarge 249 0.361 0.364 -0.92%

47 16xlarge 290 0.336 0.351 -4.39%

49 16xlarge 348 0.311 0.338 -7.93%

50 8xlarge 869 0.308 0.309 -0.46%

51 16xlarge 580 0.261 0.264 -1.08%

52 16xlarge 869 0.221 0.222 -0.25%

53 12xlarge 1738 0.218 0.213 2.49%
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Table 15: Comparison of the actual and the estimated execution time of the suggested

configurations for executing the study case application on the EC2 C6g instance class.

4.3.1 Further testing on Graviton’s new generation - C7g

The recent release of instances with AWS’s third generation of Graviton processor offered

the opportunity to investigate if and how a new generation of processor might change the

resulting Pareto solution set. Tables 16, 17, and 18 present the new datasets for the three

respective strategies using the largest C7g instance available.

Number of threads Execution Relative
per task time (s) Efficiency

1 1.222 1.073
2 0.671 0.977
4 0.394 0.832
8 0.257 0.638
16 0.208 0.394
32 0.153 0.268
64 0.2 0.102

Table 16: Amdahl’s strategy dataset on C7g.16xlarge. The efficiency presented is calcu-
lated in relation to the sequential execution time obtained on the C5.24xlarge instance,
which was 1.311.

Number of Execution Relative
concurrent processes time (s) Efficiency

1 1.222 1.073
2 1.219 1.075
4 1.218 1.076
8 1.218 1.076
16 1.22 1.075
32 1.222 1.073
64 1.266 1.036
96 1.847 1.065
128 2.476 1.059
160 4.254 0.770
192 6.214 0.633

Table 17: Gustafson’s strategy dataset on C7g.16xlarge. The efficiency presented is calcu-
lated in relation to the fastest sequential execution time obtained on any instance, which
in this case was 1.311s on a C5.24xlarge instance.

After generating the datasets, they are used to generate Pareto solutions for the same
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Number of concurrent Number of threads Execution Relative
processes per process time (s) Efficiency

2 32 0.153 0.268
4 16 0.212 0.386
8 8 0.261 0.628
16 4 0.402 0.815
32 2 0.700 0.936

Table 18: Hybrid’s strategy dataset The efficiency presented is calculated in relation to
the fastest sequential execution time obtained on any instance, which in this case was
1.311s on a C5.24xlarge instance.

1738 alignments. Fifty-eight configurations were found. Table 19 presents an excerpt of

the solution that contains the size of the instances, the number of instances, the estimated

total execution time, and the total cost.

When comparing the Pareto solution set for the C7g instance family (Table 19) with

the Pareto solution sets for the other instance families (Tables 8 and 14) tested so far

(i.e., C5 and C6g), the set for the C7g instance family presents the configuration with the

shortest execution time and also the configuration with the lowest cost. This is interesting

because it shows that AWS’s latest generation of Graviton instances, which feature a

custom ARM processor architecture, perform better than the more commonly used C5

instances, which feature 8275CL and 8124M Intel processor architectures. Furthermore,

note that this is in spite of the fact that the 8275CL processor obtained the fastest

sequential execution. When AWS launched its C6g family powered by Arm-based AWS

Graviton2 processors, they claimed that these instances deliver up to 40% better price

performance over C5 instances. The cheaper Pareto configurations do indeed use c6g

instances, while faster execution configurations employ c5 instances. It is perhaps worth

noting that this direct comparison may not exactly be fair given that the processor in the

C7g instance family is far newer than the processors in the C5 instance family. In fact,

AWS has released two further generations of Intel-based instances, c6i and, most recently,

c7i. However, end users may not be aware of this or their price performance differences.

This is yet more evidence of the importance of a tool like PORSCHE to aid the user in

choosing the right configuration for their workload and budget.
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Instance Number of Estimated total Estimated

size instances execution time (s) total cost (USD$)

1 2xlarge 83 2.963 0.0200

2 12xlarge 22 1.968 0.0212

3 4xlarge 67 1.934 0.0215

4 16xlarge 17 1.912 0.0218

5 12xlarge 23 1.874 0.0222

6 4xlarge 70 1.842 0.0225

7 16xlarge 18 1.783 0.0231

8 8xlarge 37 1.720 0.0238

9 12xlarge 25 1.708 0.0241

10 4xlarge 76 1.680 0.0244

11 12xlarge 26 1.636 0.0250

12 2xlarge 158 1.557 0.0254

13 4xlarge 83 1.544 0.0267

14 16xlarge 21 1.542 0.0270

15 8xlarge 43 1.518 0.0276

16 xlarge 348 1.399 0.0279

17 2xlarge 194 1.283 0.0311

18 medium 1738 1.222 0.0349

19 12xlarge 76 0.673 0.0366

20 8xlarge 116 0.660 0.0373

21 12xlarge 79 0.647 0.0381

22 16xlarge 60 0.643 0.0385

23 12xlarge 83 0.620 0.0400

24 16xlarge 65 0.605 0.0417

25 12xlarge 87 0.594 0.0419

26 8xlarge 134 0.581 0.0430

27 12xlarge 92 0.568 0.0443

28 8xlarge 145 0.543 0.0466

29 16xlarge 76 0.531 0.0488

30 12xlarge 103 0.518 0.0496

31 8xlarge 158 0.506 0.0507

32 12xlarge 109 0.493 0.0525
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33 8xlarge 174 0.469 0.0559

34 16xlarge 92 0.458 0.0591

35 12xlarge 125 0.445 0.0602

36 8xlarge 194 0.433 0.0623

37 12xlarge 134 0.422 0.0646

38 xlarge 1738 0.394 0.0698

39 16xlarge 116 0.386 0.0745

40 12xlarge 158 0.376 0.0761

41 8xlarge 249 0.365 0.0800

42 12xlarge 174 0.354 0.0838

43 16xlarge 134 0.351 0.0861

44 4xlarge 580 0.331 0.0931

45 16xlarge 158 0.316 0.1015

46 12xlarge 218 0.310 0.1050

47 16xlarge 174 0.299 0.1118

48 12xlarge 249 0.289 0.1199

49 16xlarge 194 0.282 0.1246

50 2xlarge 1738 0.257 0.1395

51 16xlarge 249 0.247 0.1599

52 16xlarge 290 0.230 0.1863

53 12xlarge 435 0.228 0.2095

54 16xlarge 348 0.214 0.2235

55 4xlarge 1738 0.208 0.2791

56 16xlarge 580 0.180 0.3725

57 16xlarge 869 0.153 0.5582

58 16xlarge 1738 0.145 1.1163

Table 19: Excerpt of a solution offered by the model to the execution of 1738 alignments

using MASA-OpenMP on the C7g instance class demonstrating the instance size, number

of instances suggested by the model, and the estimated execution time and costs.
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Table 20 shows an excerpt of the solution with the scheduling information.

Number Maximum Number of Number

of comparisons number of threads of

per instance parallel processes per process rounds

1 21 11 1 2

2 79 79 1 1

3 26 26 1 1

4 103 103 1 1

5 76 76 1 1

6 25 25 1 1

7 97 97 1 1

8 47 47 1 1

9 70 70 1 1

10 23 23 1 1

11 67 67 1 1

12 11 11 1 1

13 21 21 1 1

14 83 83 1 1

15 41 41 1 1

16 5 5 1 1

17 9 9 1 1

18 1 1 1 1

19 23 23 2 1

20 15 15 2 1

21 22 22 2 1

22 29 29 2 1

23 21 21 2 1

24 27 27 2 1

25 20 20 2 1

26 13 13 2 1

27 19 19 2 1

28 12 12 2 1

29 23 23 2 1

30 17 17 2 1
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31 11 11 2 1

32 16 16 3 1

33 10 10 3 1

34 19 19 3 1

35 14 14 3 1

36 9 9 3 1

37 13 13 3 1

38 1 1 4 1

39 15 15 4 1

40 11 11 4 1

41 7 7 4 1

42 10 10 4 1

43 13 13 4 1

44 3 3 5 1

45 11 11 5 1

46 8 8 6 1

47 10 10 6 1

48 7 7 6 1

49 9 9 7 1

50 1 1 8 1

51 7 7 9 1

52 6 6 10 1

53 4 4 12 1

54 5 5 12 1

55 1 1 16 1

56 3 3 21 1

57 2 2 32 1

58 1 1 48 1

Table 20: Excerpt of a solution offered by the model to the execution of 1738 alignments

using MASA-OpenMP on the C7g instance class demonstrating the scheduling infor-

mation (Number of comparisons per instance, Maximum number of parallel processes,

Number of threads per process, Number of rounds).
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As before, 30 of the suggested solutions were executed: five of the cheapest, five of the

fastest, and 20 other configurations. Again, the executions were reasonably accurate and

presented the user with configurations that might have otherwise been obscured. Table 21

shows the percentual difference between the estimated and actual execution times found.

Further improvements in the accuracy of the generated solution are necessary and are

proposed as future work. This is important because, as accurate as the configurations

may seem when executing the configurations in the solution, a slight difference in the

estimated execution time could generate an entirely different Pareto solution. Therefore,

the optimization of the model’s accuracy is of paramount importance. On the other hand,

the intrinsic performance fluctuations inherent to the Cloud may make these optimizations

difficult. Consequently, deciding the right granularity of the improvements in the accuracy

must always consider a trade-off between the accuracy of the data used by the model and

the cost of generating them, as explained before.

Instance Number of Execution time per round (s) Difference (%)

size instances Estimated Actual

1 2xlarge 83 2,963 3,405 13,0%

2 12xlarge 22 1,968 2,001 1,7%

3 4xlarge 67 1,934 1,996 3,1%

4 16xlarge 17 1,912 1,982 3,5%

5 12xlarge 23 1,874 1,927 2,8%

8 8xlarge 37 1,72 1,807 4,8%

9 12xlarge 25 1,708 1,782 4,1%

11 12xlarge 26 1,636 1,707 4,1%

12 2xlarge 158 1,557 1,703 8,6%

13 4xlarge 83 1,544 1,622 4,8%

19 12xlarge 76 0,673 0,706 4,7%

20 8xlarge 116 0,66 0,675 2,3%

23 12xlarge 83 0,62 0,697 11,0%

24 16xlarge 65 0,605 0,677 10,7%

25 12xlarge 87 0,594 0,697 14,8%

32 12xlarge 109 0,493 0,544 9,3%

33 8xlarge 174 0,469 0,495 5,2%

39 16xlarge 116 0,386 0,399 3,3%

40 12xlarge 158 0,376 0,463 18,8%
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41 8xlarge 249 0,365 0,398 8,3%

44 4xlarge 580 0,331 0,346 4,3%

45 16xlarge 158 0,316 0,348 9,1%

50 2xlarge 1738 0,257 0,263 2,3%

51 16xlarge 249 0,247 0,250 1,1%

52 16xlarge 290 0,23 0,239 3,9%

54 16xlarge 348 0,214 0,231 7,3%

55 4xlarge 1738 0,208 0,229 9,4%

56 16xlarge 580 0,18 0,181 0,6%

57 16xlarge 869 0,153 0,152 -0,4%

58 16xlarge 1738 0,145 0,142 -1,9%

Table 21: Pareto solution Comparison of the actual and the estimated execution time

of the suggested configurations for executing the case study application on the EC2 C7g

instance class.

To finish, we generated a Pareto solution considering all three instance families tested:

C5, C6g, and C7g. Table 22 shows the resulting Pareto solution. As expected, the

configuration with the shortest execution time and the configuration with the cheapest

execution feature C7g instances.

Instance Number of Execution total Estimated

size instances execution time (s) total cost (USD$)

1 c7g.2xlarge 83 2.963 0.020

2 c7g.12xlarge 22 1.968 0.021

3 c7g.4xlarge 67 1.934 0.022

4 c7g.16xlarge 17 1.912 0.022

5 c7g.12xlarge 23 1.874 0.022

6 c7g.4xlarge 70 1.842 0.023

7 c7g.16xlarge 18 1.783 0.023

8 c7g.8xlarge 37 1.720 0.024

9 c7g.12xlarge 25 1.708 0.024

10 c7g.4xlarge 76 1.680 0.024

11 c7g.12xlarge 26 1.636 0.025

12 c7g.2xlarge 158 1.557 0.025
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13 c7g.4xlarge 83 1.544 0.027

14 c7g.16xlarge 21 1.542 0.027

15 c7g.8xlarge 43 1.518 0.028

16 c7g.xlarge 348 1.399 0.028

17 c7g.2xlarge 194 1.283 0.031

18 c6g.12xlarge 76 0.979 0.035

19 c6g.8xlarge 116 0.960 0.035

20 c6g.12xlarge 79 0.941 0.036

21 c6g.16xlarge 60 0.935 0.036

22 c7g.12xlarge 76 0.673 0.037

23 c7g.8xlarge 116 0.660 0.037

24 c7g.12xlarge 79 0.647 0.038

25 c7g.16xlarge 60 0.643 0.039

26 c7g.12xlarge 83 0.620 0.040

27 c7g.16xlarge 65 0.605 0.042

28 c7g.12xlarge 87 0.594 0.042

29 c7g.8xlarge 134 0.581 0.043

30 c7g.12xlarge 92 0.568 0.044

31 c7g.8xlarge 145 0.543 0.047

32 c7g.16xlarge 76 0.531 0.049

33 c7g.12xlarge 103 0.518 0.050

34 c7g.8xlarge 158 0.506 0.051

35 c7g.12xlarge 109 0.493 0.053

36 c7g.8xlarge 174 0.469 0.056

37 c7g.16xlarge 92 0.458 0.059

38 c7g.12xlarge 125 0.445 0.060

39 c7g.8xlarge 194 0.433 0.062

40 c7g.12xlarge 134 0.422 0.065

41 c7g.xlarge 1738 0.394 0.070

42 c7g.16xlarge 116 0.386 0.075

43 c7g.12xlarge 158 0.376 0.076

44 c7g.8xlarge 249 0.365 0.080

45 c7g.12xlarge 174 0.354 0.084

46 c7g.16xlarge 134 0.351 0.086
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47 c7g.4xlarge 580 0.331 0.093

48 c7g.16xlarge 158 0.316 0.102

49 c7g.12xlarge 218 0.310 0.105

50 c5.4xlarge 580 0.264 0.110

51 c7g.2xlarge 1738 0.257 0.140

52 c7g.16xlarge 249 0.247 0.160

53 c5.4xlarge 869 0.212 0.164

54 c7g.4xlarge 1738 0.208 0.279

55 c7g.16xlarge 580 0.180 0.373

56 c7g.16xlarge 869 0.153 0.558

57 c7g.16xlarge 1738 0.145 1.116

Table 22: Excerpt of a solution offered by the model to the execution of 1738 alignments

using MASA-OpenMP on the C5, C6g, and C7g instance classes demonstrating the in-

stance size, number of instances suggested by the model, and the estimated execution

time and costs.

It is important to note that while generating the Pareto solution, both the execution

time and cost of the configurations were rounded to the nearest unit (second or cent, in

case of execution time and cost, respectively). This had an intended impact on the Pareto

solution generated because this way, equivalent configurations were made equal, therefore

eliminating one of them, by default the one with the bigger number of instances, as men-

tioned in Chapter 3. This is an example of the use of secondary objectives as refinements,

also mentioned in Chapter 3, in this case, to have a lower number of configurations in

the solution (by eliminating configurations considered equivalent). Another important

consideration is that the minimum billable time, which is 60 seconds on AWS but may

vary for other cloud providers, was left out of the cost calculations for simplicity’s sake. It

is important because considering this minimum billable time could change the Pareto so-

lution generated since configurations with execution times shorter than 60 seconds would

have their execution time rounded to 60 seconds.

In this chapter, we have tested the PORSCHE methodology with a real-world bioin-

formatics workload, the DNA Sequence Alignment, using MASA-OpenMP, with different

instance families. We have proved that the PORSCHE methodology is easily applicable

to different instance families, even from newer generations, like the C7g instance family,

and that it is also flexible enough to attend to different user objectives.
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Generating and offering multiple optimal configurations to users is important because

it allows them not only to use configurations that meet the classic objectives of finding

the fastest execution possible or the one with the lowest cost but also to identify con-

figurations that may not be as obvious and yet offer interesting compromises in relation

to the originally chosen objective. Furthermore, these additional configurations may be

important when having to comply with certain constraints.

Simply choosing the “right” instance for the workload is insufficient to guarantee the

efficient use of the selected resources. Task scheduling plays an important role when

trying to maximize execution efficiency, and therefore in identifying the “right” instance

and obtaining an optimal configuration to execute the given workload in the cloud. To

obtain such schedules, it is important to characterize the application in terms of both

its parallel scalability and concurrent scalability. Often, the ideal schedule may combine

both to different degrees.

A core aspect of the execution model used by the PORSCHE methodology is the fact

that it uses efficiency as the principal metric to make comparisons between alternative

configurations across resources. With this, the model is able to identify the transition

points when one scheduling strategy should be abandoned and another adopted to identify

alternative configurations that might better address the users’ objectives for the instance

classes being considered.

It is worth noting that in this work this black-box methodology has only been exten-

sively tested with MASA-OpenMP workloads (in the context of Bag-of-task-like scientific

experiments), using pairs of sequences of similar sizes, on AWS EC2. Expanding the evalu-

ation to other applications and scientific experiments, or to other MASA-OpenMPs work-

loads with sequences of different sizes, and additional public cloud providers is important

to understand the effectiveness and the practical applicability of the approach. Equally

essential is minimizing the cost of the profiling phase of the methodology by reducing the
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number of evaluations required during both offline phases - application characterization

and instance profiling - to obtain a model with an acceptable degree of accuracy for use

during the online phase that is executed every for every experiment to be executed.
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