
UNIVERSIDADE FEDERAL FLUMINENSE

MARIA LUÍZA LÓPEZ DA CRUZ

Near-Bipartiteness on graphs having small
dominating sets

NITERÓI

2023

MARIA LUÍZA LÓPEZ DA CRUZ

Near-Bipartiteness on graphs having small
dominating sets

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Orientador:
Uéverton dos Santos Souza

Coorientador:
Raquel de Souza Francisco Bravo

NITERÓI

2023

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

C955n Cruz, Maria Luíza López da
 Near-Bipartiteness on graphs having small dominating sets /
Maria Luíza López da Cruz. - 2023.
 56 f.: il.

 Orientador: Uéverton dos Santos Souza.
 Coorientador: Raquel de Souza Francisco Bravo.
 Dissertação (mestrado)-Universidade Federal Fluminense,
Instituto de Computação, Niterói, 2023.

 1. Teoria dos grafos. 2. Algoritmo em grafos. 3.
Complexidade computacional. 4. Otimização combinatória
(Computação). 5. Produção intelectual. I. Souza, Uéverton
dos Santos, orientador. II. Bravo, Raquel de Souza Francisco,
coorientadora. III. Universidade Federal Fluminense. Instituto
de Computação.IV. Título.

 CDD - XXX

MARIA LUÍZA LÓPEZ DA CRUZ

Near-Bipartiteness on graphs having small dominating sets

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Aprovada em agosto de 2023.

BANCA EXAMINADORA

Prof. Uéverton dos Santos Souza - Orientador, UFF

Profª. Raquel de Souza Francisco Bravo - Coorientador, UFF

Prof. Fábio Protti, UFF

Prof. Rodolfo Alves de Oliveira, UFF

Profª. Erika Morais Martins Coelho, UFG

Niterói
2023

“Dê-me, Senhor, agudeza para entender, capacidade para reter, método e faculdade para

aprender, sutileza para interpretar, graça e abundância para falar. Dê-me, Senhor,

acerto ao começar, direção ao progredir e perfeição ao concluir”

(Santo Tomás de Aquino).

Agradecimentos

Primeiramente, agradeço a Deus pelo dom da vida, por todas as coisas boas que Ele

me deu e me dá e pela oportunidade de trilhar essa jornada acadêmica. Agradeço também

pela oportunidade de conhecer tantas pessoas maravilhosas, colegas e amigos com os quais

tive o prazer de conviver durante estes anos na Universidade Federal Fluminense e que

farão sempre parte da minha vida.

Agradeço também à minha família, por todo amor, carinho, atenção e apoio que me

dão. Sem eles, eu não seria nada. Seu carinho e incentivo foram a força motriz que me

impulsionou nos momentos de desafio e incerteza. Eles são minha base, meu porto seguro,

meu tesouro mais precioso.

Desejo registrar também a minha profunda gratidão aos professores que, com dedi-

cação e sabedoria, compartilharam conhecimentos e experiências durante minha jornada

acadêmica. Em especial, não posso deixar de agradecer ao meu orientador, Professor

Uéverton Souza, e à minha coorientadora, Professora Raquel Bravo, pela orientação pre-

cisa, pelos conselhos valiosos e pela paciência em me guiar na elaboração deste trabalho.

Vocês foram verdadeiros mestres, e sou grata por terem acreditado em meu potencial e

contribuído de forma significativa para o meu crescimento acadêmico.

Estendo também meus agradecimentos à CAPES e à FAPERJ pela concessão das

bolsas que tornaram possível a realização deste trabalho. Seu apoio foi essencial para

minha jornada acadêmica e para a concretização deste estudo. Muito obrigada pelo

investimento em minha formação e no avanço da pesquisa no país.

Agradeço também aos funcinários desta instituição, cujo trabalho contribuiu direta

ou indiretamente para o desenvolvimento deste estudo. Sua prontidão e apoio foram

fundamentais em cada etapa deste percurso.

Por fim, agradeço a todos os colegas de curso, pessoas maravilhosas que conheci na

UFF. Cada interação, debate e troca de ideias enriqueceram minha formação acadêmica e

pessoal, deixando uma marca indelével em minha vida. Sou muito privilegiada por tê-los

ao meu lado.

Resumo

No problema Near-Bipartiteness nos é fornecido um grafo simples G = (V,E) e per-

guntado se V (G) pode ser particionado em dois conjuntos S e F de tal forma que S seja

um conjunto estável e F induza uma floresta. Alternativamente, Near-Bipartiteness

pode ser visto como o problema de determinar se G admite um conjunto de vértices de

retroalimentação independente (independent feedback vertex set) S ou uma cobertura

por vértices acíclica (acyclic vertex cover) F . Uma vez que tal problema é NP-completo

até mesmo para grafos com diâmetro três, estudamos primeiramente a propriedade de ser

quase-bipartido em grafos que possuem uma aresta dominante, uma subclasse natural de

grafos com diâmetro três. No que diz respeito a grafos que possuem uma aresta dom-

inante, apresentamos um algoritmo de tempo polinomial para Near-Bipartiteness e

provamos que Connected Near-Bipartiteness, a variante em que a floresta deve ser

conexa, é NP-completo. Além disso, mostramos que Independent Feedback Vertex

Set, o problema de encontrar uma quase-bipartição (S,F) minimizando |S|, e Acyclic

Vertex Cover, o problema de encontrar uma quase bipartição (S,F) minimizando |F|,
são ambos NP-difíceis quando restritos a essa classe de grafos. Estendendo nossa abor-

dagem de tempo polinomial para lidar com Near-Bipartiteness em grafos que possuem

conjuntos dominantes de tamanhos limitados, obtemos um algoritmo de tempo O(n2 ·m)

para resolver Near-Bipartiteness em grafos livres de P5, melhorando o atual estado

da arte de tempo O(n16).

Palavras-chave: Problema da quase-bipartição, conjunto de vértices de retroalimentação

independente, cobertura por vértices acíclica, conjunto independente, aresta dominante.

Abstract

In the Near-Bipartiteness problem, we are given a simple graph G = (V,E) and asked

whether V (G) can be partitioned into two sets S and F such that S is a stable set and

F induces a forest. Alternatively, Near-Bipartiteness can be seen as the problem of

determining whether G admits an independent feedback vertex set S or an acyclic vertex

cover F . Since such a problem is NP-complete even for graphs with diameter three,

we first study the property of being near-bipartite on graphs having a dominating edge,

a natural subclass of diameter-three graphs. Concerning graphs having a dominating

edge, we present a polynomial-time algorithm for Near-Bipartiteness and prove that

Connected Near-Bipartiteness, the variant where the forest must be connected,

is NP-complete. In addition, we show that Independent Feedback Vertex Set,

the problem of finding a near-bipartition (S,F) minimizing |S|, and Acyclic Vertex

Cover, the problem of finding a near-bipartition (S,F) minimizing |F|, are both NP-

hard when restricted to such a class of graphs. Extending our polynomial-time approach

to deal with Near-Bipartiteness on graphs having bounded dominating sets, we obtain

a O(n2 ·m)-time algorithm to solved Near-Bipartiteness on P5-free graphs, improving

the current O(n16)-time state of the art.

Keywords: Near-bipartite; independent feedback vertex set; acyclic vertex cover; stable

set; dominating edge.

List of Figures

1 Example of a boolean expression in 3-CNF. 25

2 Example of Independent Feedback Vertex Set problem. 30

3 Example of near-bipartiteness problem. 30

4 Example of Acyclic Vertex Cover problem. 31

5 Example of Connected Near-Bipartiteness problem. 31

6 Example of graph G and an near-bipartition representation from the for-

mula φ = (x1 + x2 + x4) · (x2 + x3 + x4) · (x2 + x3 + x4), 36

7 Example of graph and Near-Bipartition representation from the formula

(x2 + x3) · (x1 + x3) · (x2 + x4). 40

8 Flowchart: Verification of whether a P5-free graph admits a near-bipartition. 50

Lista de Abreviaturas e Siglas

CNF conjunctive normal form

FPT Fixed-Parameter Tractable

IFVS Independent Feedback Vertex Set

TSP Traveling Salesman Problem

Contents

1 Introduction 12

1.1 Motivation . 12

1.2 Goals . 14

1.3 Main Contribution . 15

1.4 Dissertation Organization . 15

2 Basic Concepts 17

2.1 Definitions . 17

2.2 Complexity of algorithms . 21

2.2.1 Time Complexity . 22

2.2.2 Classification of Problems . 22

2.2.3 Complexity classes . 23

2.3 Boolean formulas and satisfiability problems 24

2.3.1 2SAT . 25

2.3.2 1-in-3SAT . 26

2.3.3 Positive-Min-Ones-2SAT . 26

2.4 Graph Problems . 27

2.4.1 Vertex Cover . 27

2.4.2 Independent Set . 27

2.4.3 Feedback Vertex Set . 28

3 Near-bipartition problem in P5-free graphs and graphs with dominating edge 29

Contents ix

3.1 Near-bipartition problem . 29

3.2 P5-free graphs and graphs with dominating edge 32

3.2.1 Graphs having a dominating edge 32

3.2.2 P5-free graphs . 32

3.2.3 Auxiliary Lemmas . 33

4 Results obtained in graphs having a dominating edge 35

5 Results obtained in P5-free graphs 42

5.1 Summary of Cases . 49

6 Conclusion 51

6.1 Future works . 52

REFERÊNCIAS 53

1 Introduction

With the constant advance of technology, graphs are increasingly becoming a part of

everyday tasks for a significant portion of the population. They directly or indirectly

assist in accessing linked websites on the internet or finding the shortest route, for example.

Another well-known and extensively studied application involves partitioning the set of

vertices in a graph into subsets. This partitioning technique is widely used in clustering

and detecting problems in social networks, as well as in scheduling problems and image

processing. Hence, the diversity of problems within the field of Graph Theory highlights

the importance of this subject both in theory and practice.

1.1 Motivation

In 1972, Richard Karp presented the NP-completeness proof of 21 fundamental problems

for Computer Science (KARP, 1972). Feedback Vertex Set, Independent Set

and Vertex Cover are three of these classical problems. Feedback Vertex Set

consists of finding a minimum set of vertices such that its removal eliminates all cycles of

the input graph, Independent Set consists of determining a maximum set of pairwise

nonadjacent vertices (also known as a stable set), and Vertex Cover is the problem of

determining a minimum set of vertices intersecting all edges (called vertex cover) of the

input graph. Note that if S is a stable set of G = (V,E) then F = V (G) \ S is a vertex

cover of G.

An independent feedback vertex set (IFVS) of a graph G is a set of vertices that is

independent/stable and also a feedback vertex set of G. Defined by Yang A. and Yuan J.

in (YANG; YUAN, 2006), a graph G = (V,E) has a near-bipartition (S,F) if there exist

S ⊆ V and F = V \ S such that S is a stable set, and F induces a forest. Furthermore,

S and F can be empty sets. A graph that admits a near-bipartition is a near-bipartite

graph. Note that the class of near-bipartite graphs is exactly the class of graphs having

independent feedback vertex sets. Also, a graph G has an independent feedback vertex

1.1 Motivation 13

set S if and only if it has an acyclic vertex cover F , i.e., a vertex cover F such that G[F]

is acyclic (a vertex cover inducing a forest).

The problem of recognizing near-bipartite graphs, so-called Near-Bipartiteness, is

NP-complete even when restricted to graphs with maximum degree four (YANG; YUAN,

2006), graphs with diameter three (BONAMY et al., 2018), line graphs (BONAMY et

al., 2019), and planar graphs (BONAMY et al., 2017; DROSS; MONTASSIER; PIN-

LOU, 2017). On the other hand, Brandstädt et al. (BRANDSTÄDT; BRITO, et al.,

2013) proved that Near-Bipartiteness is polynomial-time solvable on cographs. Yang

and Yuan (YANG; YUAN, 2006) showed that Near-Bipartiteness is polynomial-time

solvable for graphs of diameter at most two and that every connected graph of maximum

degree at most three is near-bipartite except for the complete graph on four vertices (K4).

Besides, Bonamy et al. (BONAMY et al., 2019) proved that Near-Bipartiteness on

P5-free graphs can be solved in O(n16) time. FPT algorithms parameterized by k for

finding an independent feedback vertex set of size at most k can be found in (AGRAWAL

et al., 2017; LI; PILIPCZUK, 2020; MISRA; PHILIP, et al., 2012)

A coloring for a graph G is an assignment of colors (labels) to all vertices of G. A

proper coloring for G is an assignment of color c(u), for each vertex u ∈ V , such that

c(u) ̸= c(v) if uv ∈ E(G). A graph G is k-colorable if there exists a proper coloring for G

with at most k colors. The chromatic number of G, χ(G), is the smallest number k for

G being k-colorable. A clear necessary condition for a graph to be near-bipartite is the

following.

Proposition 1. If a graph G is near-bipartite then G is 3-colorable.

By Proposition 1, it holds that K4 is a natural forbidden subgraph for near-bipartite

graphs. A graph G is called perfect if for every induced subgraph H of G holds that

its chromatic number equals the size of its largest clique, χ(H) = ω(H). In particular,

ω(G) = χ(G).

Given the relationship between Near-Bipartiteness and 3-Coloring it becomes

interesting to question the behavior of Near-Bipartiteness on subclasses of perfect

graphs. Note that a perfect graph is 3-colorable if and only if it is K4-free.

However, the complexity of 3-Coloring and Near-Bipartiteness are not nec-

essarily the same, depending on the graph class being explored. Grötschel, Lovász and

Schrijver (GRÖTSCHEL; LOVÁSZ; SCHRIJVER, 1984) proved that Coloring is solved

in polynomial time for perfect graphs, while Brandstädt et al. (BRANDSTÄDT; BRITO,

1.2 Goals 14

et al., 2013) proved that Near-Bipartiteness is NP-complete in the same graph class.

Near-Bipartiteness can also be seen as a variant of 2-Coloring. For an input

graph G, the question is whether its vertex set can be colored with two colors (not

necessarily properly coloring) such that one color class is K2-free (a stable set), and

the other is cycle-free (i.e., induces a forest). Other 2-Coloring variants have already

received attention in the literature. In (ACHLIOPTAS, 1997), Achlioptas studied the

problem of determining if there exists a bipartition of V (G) where each part (color class) is

H-free for some fixed graph H. He showed that for any graph H on more than two vertices,

the problem is NP-complete. Another variant was considered by Schaefer (SCHAEFER,

1978), who asked whether a given graph G admits a 2-coloring of the vertices such that

each vertex has exactly one neighbor with the same color as itself. Schaefer proved

that such a problem is NP-complete even for planar cubic graphs. The problem studied

by Schaefer (SCHAEFER, 1978) is a particular case of a defective coloring called (2,1)-

coloring. A (k,d)-coloring of a graph G is a k-coloring of V (G) such that each vertex has at

most d neighbors with the same color. Some studies on (2,1)-coloring include (BORODIN;

KOSTOCHKA; YANCEY, 2013; COWEN; GODDARD; JESURUM, 1997; LIMA, Carlos

Vinicius et al., 2021). In addition, the problem of finding a bipartition where each part

induces a subgraph of minimum degree at least k (for a given integer k) was studied

in (BANG-JENSEN; BESSY, 2019). Also, the problem of partitioning the edge set of

a graph into a stable set of edges (matching) and a forest has been studied in (LIMA,

Carlos V.G.C. et al., 2017; PROTTI; SOUZA, 2018).

1.2 Goals

Motivated by the studies of 2-coloring variants and the natural relevance of feedback

vertex sets that are independent/stable as well as vertex covers that are acyclic, we focus

on the Near-Bipartiteness problem and its variants.

Thus, the main objective of this work is to analyze the Near-Bipartiteness problem

in specific cases of graphs having a dominating edge, as well as in P5-free graphs. Fur-

thermore, we aim to extend the analysis to the problem of partitioning the set of vertices

in graphs that have a dominating edge into two sets S and T , where S is an independent

set and T is a tree. Therefore, the objectives of this study are:

1. Analyze the Near-Bipartiteness problem in graphs with dominating edge and

P5-free graphs.

1.3 Main Contribution 15

2. Extend the analysis to the problem of partitioning the set of vertices in graphs with

dominating edge into two sets S and T , where S is an independent set and T is a

tree (Connected Near-Bipartiteness).

3. Study the problem of finding a near-bipartition (S,F) minimizing |S| (Independ-

ent Feedback Vertex Set (IFVS)) in graphs with dominating edge.

4. Investigate the problem of finding a near-bipartition (S,F) minimizing |F| (Acyclic

Vertex Cover) in graphs with dominating edge.

By achieving these objectives, we aim to advance the knowledge and understanding

of the Near-Bipartiteness problem and its variants, contributing to the fields of graph

theory and computational complexity.

1.3 Main Contribution

The study aims to demonstrate that the Near-Bipartiteness problem can be solved

in O(n4) time for a graph without induced P5, improving upon the existing result in

the literature of O(n16) soluability (BONAMY et al., 2019). In this way, these findings

contribute to a better understanding of the problem and provide more efficient solutions

in practical scenarios.

Regarding the Near-Bipartiteness problem on P5-free graphs, it is mentioned in

(BACSÓ; TUZA, 1990) that every connected graph without P5 as induced subgraphs

contains either a dominating clique or a dominating P3. Therefore, for a connected graph

without as induced P5, the goal is to determine if it admits the Near-Bipartiteness,

and this can be achieved by following these steps proposed in this dissertation:

1. Check the existence of a set inducing K4 in O(n4) time (which certifies no answer).

2. Obtain a dominating P3 or K3 (due to (BACSÓ; TUZA, 1990)).

3. Execute the algorithms described in Theorem 5 (for graphs having dominating K3)

or Theorem 6 (for graphs having dominating P3), which will be presented in Chapter

5 of this work, solving the problem in O(m.n2) ∼= O(n4) time.

1.4 Dissertation Organization

The dissertation will be organized into seven chapters as follows:

1.4 Dissertation Organization 16

• Chapter 1: Introduction. In this chapter, we provide a contextualization of the

Near-Bipartiteness problem and its relevance. Additionally, we highlight the

objectives and main contributions of this work to the literature.

• Chapter 2: Theoretical foundations. Here, we present fundamental concepts and

notions of graphs that will be used throughout this dissertation. We also discuss

satisfiability problems and graph problems that are employed in the mathematical

proofs developed. Finally, we present an introduction to the concepts of algorithm

complexity and problem classification.

• Chapter 3: The Near-Bipartiteness problem. In this chapter, we delve deeper

into the Near-Bipartiteness problem, the main subject of this study. We define

the concept of near-bipartite graphs and Near-Bipartiteness, and present some

existing results in the literature related to this problem.

• Chapter 4: Graphs having a dominating edge an P5-free graphs. This chapter

presents each of the special graph classes chosen for the study of Near-Bipar-

titeness. In addition, we will also present some auxiliary lemmas that were used

during the development of the mathematical proofs, which will contribute to their

understanding.

• Chapter 5: Results obtained in graphs having a dominating edge. Here, we present

the results obtained from studying Near-Bipartiteness in graphs with a dom-

inating edge, as well as the partitioning of the vertex set of these graphs into an

independent set and a tree (Connected Near-Bipartiteness). Additionally, the

problem of finding a near-bipartition (S,F) minimizing |S| (Independent Feed-

back Vertex Set (IFVS)) and the problem of finding a near-bipartition (S,F)

minimizing |F| (known as Acyclic Vertex Cover) have also been studied for

this class of graphs.

• Chapter 6: Results obtained in P5-Free graphs. This chapter presents the results

obtained from studying Near-Bipartiteness in P5-free graphs. Additionally, we

provide a table of time complexities for each of the cases analyzed in this work.

• Chapter 7: Conclusion. In this final chapter, we recapitulate the main findings and

contributions of the study, as well as discuss possible future research directions.

2 Basic Concepts

In this chapter, we will present definitions and basic concepts in the area of Graph Theory

that will be used throughout this work.

2.1 Definitions

Definition 1 (Loop). A loop is an edge whose vertex is related to itself, that is, given a

graph G, an edge e ∈ E(G) is said to be a loop when e = (v,w) and v = w, v, w ∈ V (G).

Definition 2 (Multiple edges). Double edges, also called multiple edges, are edges that
have the same endpoints, that is, given a graph G, the edges e1, e2 ∈ E(G) are called
multiple edges if e1 = (v1, v2) and e2 = (v3,v4) where v1, v2, v3 and v4 ∈ V (G) with
v1 = v3 and v2 = v4.

Definition 3 (Graph). A graph is an ordered pair G = (V,E), where V is a finite and
nonempty set of vertices, denoted by V (G) and E is a set of unordered pairs of distinct
vertices, called edges, denoted by E(G).

Other point to be mentioned is that a simple graph does not contain loops (see
definition 1), nor multiple edges (see definition 2). In this work, we will denote by graphs
what we define as simple graphs.

Definition 4 (Directed graph). A directed graph, also known as a digraph D, is an ordered
pair (V,E), denoted as D = (V,E), where V is a finite non-empty set of elements called
vertices, and E is a set of ordered pairs of distinct vertices in V, called directed edges or
arcs. For each distinct pair of vertices (v, w) in D, there is a unique direction in the edge
(v, w) from v to w, and we say that (v, w) diverges from v and converges to w.

The graphs referenced in this work are referred to as undirected graphs, as they have
undirected edges. Therefore, in an undirected graph G, if (u, v) is an edge belonging to
E(G), then both u is adjacent to v and v is adjacent to u.

Definition 5 (Cardinality of the set of vertices). The cardinality of the set of vertices,
that is, the number of vertices of a graph will be denoted by n or |V (G)|, or simply, |V |.

2.1 Definitions 18

Likewise, the cardinality of the set of edges of a graph will be called by m or |E(G)|, or
simply, |E|.

Definition 6 (Trivial graph). A graph G is said to be trivial if |V (G)| = 1, that is, if G
has only one vertex.

Definition 7 (Adjacent vertices). A vertex u is adjacent to another vertex v in G if
(u,v) ∈ E(G). In this case, we say that u and v are neighbours in G, and that the edge
e = (u,v) is incident to u and v, or which has endpoints u and v. The notation uv is also
used to express that u is adjacent to v. Otherwise, we say that u and v are non-adjacent.

Definition 8 (Neighborhood). Let u be a vertex of the graph G. We denote by N(u) the
set of vertices adjacent to u in G, i.e., N(v) = {u ∈ V (G) : vu ∈ E(G)}. Such a set is
called the neighborhood of u. On the other hand, N [u] denotes the set N(u) ∪ {u}, which
is named closed neighborhood of u.

Alternatively, we can also define the neighborhood in a graph concerning a subset of
vertices or an edge as follows:

Neighborhood of a vertex concerning a subset of vertices: The neighborhood of a vertex
v concerning a subset of vertices S of the graph G, denoted as NS(v), is the set of vertices
in S that are adjacent to v. Formally, NS(v) = {u ∈ S | (v, u) ∈ E(G)}.

Neighborhood of an edge concerning a subset of vertices: The neighborhood of an edge
e concerning a subset of vertices S, denoted as NS(e), is the set of vertices in S that are
adjacent to at least one of the endpoints of e. Formally, NS(e) = {v ∈ S | v is adjacent
to e}.

Definition 9 (Universal vertex). A vertex u is said to be universal when N(u) = V (G)−
{u}, that is when the neighborhood of the vertex u is all the vertices of the graph except
it.

Definition 10 (Degree of a vertex). The degree of a vertex v ∈ V (G), denoted by d(v),
is the number of edges incident to vertex v.

Definition 11 (Subgraph). A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). That is, the set of vertices of H is equal to or contained in the set of
vertices of the graph G. Likewise, the set of edges of H is equal to or contained in the set
of edges of the graph G.

On the other hand, the induced subgraph is a graph that preserves the structure of
the original graph. In other words, let G be a graph and Y be a subset of the vertices
of G, Y ⊆ V (G), Y ̸= ∅. The subgraph H of G induced by Y , denoted by G[Y], is the
subgraph H of G such that V (H) = V (G[Y]) = Y and E(H) is the set of all edges of G
that have both endpoints in Y , E(H) = E(G[Y]) = {(x,y) ∈ E(G) | x ∈ Y e y ∈ Y }. For
this work, when we refer to subgraphs we will implicitly assume that they are induced
subgraphs.

2.1 Definitions 19

Definition 12 (Complete graph). A graph G is complete if, for any two distinct vertices
of G, these are adjacent. We denote by Kn the complete graph with n vertices.

Definition 13 (Isomorphism). Given two graphs G1 and G2, we say that G1 and G2 are
isomorphic, denoted as G1 ≈ G2, when there exists a bijective function (an injective and
surjective function):

f : V (G1) → V (G2)

Such that,

(v1, v2) ∈ E(G1) ↔ (f(v1), f(v2)) ∈ E(G2)

Thus, for G1 ≈ G2 to hold, if (v1, v2) represents an edge in G1, with v1 and v2 being
their corresponding vertices, then (f(v1), f(v2)) is an edge in G2, and their vertices f(v1),
f(v2), respectively, are the images of v1 and v2. In this way, it can be said that the function
f : V (G1) → V (G2) preserves their adjacencies.

Furthermore, some noteworthy observations are:

• Since f is injective and surjective, we have |V (G1)| = |V (G2)|;

• As for each pair (v, w) ∈ |E(G1)|, there is a corresponding pair (f(v), f(w)) ∈
|E(G2)|. Therefore, |E(G1)| = |E(G2)|.

Definition 14 (Dominating edge). A dominating edge e = (e1, e2) of a graph G is an
edge that belongs to E(G), and for each remaining vertex w of V (G) \ {e1, e2} (w ̸= e1
and w ̸= e2) w is adjacent to e1 or to e2.

Definition 15 (Walk). A walk P in a graph G is an alternating finite sequence of ver-
tices and edges of the form (v1, e1, v2, e2, . . . , vn), where the vertices v1 and vn are called,
respectively, origin and end of the walk P and the other vertices are called internal.

It is worth noting that in a walk you can have repeated edges and vertices. However,
when there is a case where all the edges of a walk are distinct, it is called trail. Another
particular case is when all vertices belonging to a walk are distinct. In this case it is called
path (see definition 16). In particular, a path is a trail.

Definition 16 (Path). A path in a graph G is a walk P = v1v2 . . . vk, where the vi’s are
vertices (two by two distinct).

Definition 17 (Chord). A chord in P is an edge connecting two non-consecutive vertices
of a path P .

2.1 Definitions 20

Definition 18 (Induced path). An induced path is a path without chords. Pk denotes a
path induced by k vertices. We say that a graph is free of Pk when it does not contain a
Pk as an induced subgraph.

Definition 19 (Cycle). A path v1, . . . , vk, vk+1 is called a cycle when v1, . . . , vk is a path
with k ≥ 3 and v1 = vk+1.

Definition 20 (Cyclic graph). A graph G is said to be cyclic when G contains a cycle
as an induced subgraph. Otherwise, we say that G is acyclic. We denote a cyclic graph
with n vertices by Cn, n ≥ 3. A cycle is called an even cycle if n is even, C4, C6, . . . Cn,
otherwise, Cn is odd if n is odd, C3, C5, C7, . . . Ck.

Definition 21 (Maximal/Minimal). A set S is maximal with respect to a given property
P if S satisfies P, and every set S’ that properly contains S does not satisfy P. On the
other hand, the set S is minimal with respect to a given property P if S satisfies P and
every set S’ that is properly contained in S does not satisfy P.

Definition 22 (Maximum/Minimum). A set S is considered maximum with respect to a
given property P when it is both maximal concerning P and has the highest cardinality of
vertices. Conversely, S is regarded as a minimum set with respect to property P when it
is both minimal concerning P and has the lowest cardinality of vertices.

Definition 23 (Clique). A set of vertices C of a graph G is a clique, if the subgraph C
of G, G[C], is a complete graph. We denote by ω(G) the size of the maximum clique, that
is:

ω(G) = max { |V ′| / V ′ ⊆ V and V ′ is a clique of G }

Definition 24 (Independent set). A graph G is null or edgeless when it has no edge, that
is, E(G) = ∅. A set of vertices I of a graph G is an independent set if the subgraph I of G,
G[I], is a graph without edges. We define by α(G) the size of the maximum independent
set, that is:

α(G) = max { |V ′| / V ′ ⊆ V and V ′ is an independent set of G }

A point to emphasize is that every edgeless graph is an independent set. However, not
every independent set is a edgeless graph.

Definition 25 (Coloring). A coloring of a graph G is a partition of V(G) where each
class of the partition is an independent set. A k-coloring is a partition of V(G) into k
classes. The chromatic number of G, denoted by χ(G), is the smallest k for which there
is a k-coloring of G. In this case, we say that the graph G is k-chromatic or k-colorable.

2.2 Complexity of algorithms 21

Definition 26 (Connected/ Disconnected graph, Connected component). A graph G is
connected if for every pair of distinct vertices v and w of V (G) there is a path from v to
w. Otherwise, G is said to be disconnected. A connected component of G is a maximally
connected subgraph of G.

Definition 27 (Tree). A tree is an acyclic and connected graph. A tree T is said to be
rooted when some vertex v ∈ V (T) is chosen and thus classified as the root of the tree. In
this way, the graphical representation becomes the root at the top and all the other vertices
of the tree below it, as if the tree were “hanging” by the root, thus having a clear hierarchy
between the vertices. Let v, w be two vertices of a rooted tree T with root r. If v belongs
to the path from r to w in T , then we call v an ancestor of w and w a descendant of v. In
particular, if (v,w) ∈ E(T) then v is the parent of w, denoted by parent(w), w being the
child of v, denoted by child(v). Two vertices that have the same parent are called siblings.
The root r of a tree has no parent, while every vertex v ̸= r has a single parent. A leaf
is a vertex that has no children. The level of a vertex v, level(v), of a tree is called the
distance from the root r to v, that is, the number of edges that separate the vertex v from
the root and the height of the tree T is the highest of the levels.

Definition 28 (Complement of a graph). The complement of a graph G is a graph G
wiyh the same set of vertices as G such that there will be an edge between two vertices
(v, e) in G, if and only if there is no edge in between (v, e) in G.

Definition 29 (Bipartite graph). A graph G is bipartite when the set of vertices of G
can be partitioned into two subsets, V1 and V2, such that every edge of G joins a vertex of
V1 to another of V2, that is, it is possible to partition V (G) into two independent sets. A
graph is said to be complete bipartite if it is bipartite and has edges connecting each of the
vertices of V1 to each of the vertices of V2. That is, for each pair of vertices v1, v2, being
v1 ∈ V1 and v2 ∈ V2, there is an edge connecting them. We denote by Kn,m the complete
bipartite graph, where |V1| = n e |V2| = m. A graph is k-partied when its set of vertices
can be partitioned into k independent sets. A graph is split if its set of vertices can be
partitioned into an independent set and a clique.

Definition 30 (Perfect graph). A graph G is perfect if and only if for every induced
subgraph H of G, the size of the largest clique of H is equal to the chromatic number of
H, that is, χ(H) = ω(H).

For this work, we used the notations and standard concepts of Graph Theory. It is
worth mentioning that any notation that was not defined/mentioned in this section can
be found in (BONDY; MURTY, et al., 1976).

2.2 Complexity of algorithms

In recent years, the Computing area has witnessed significant advances, particularly in
the domain of Algorithms and Complexity Theory, where the focus lies on creating and

2.2 Complexity of algorithms 22

investigating computational algorithms. This field aims to delve into problems that can
be effectively tackled with computers, seeking to generate the most optimal solutions for
such problems. Additionally, it involves classifying these problems into distinct categories
based on their level of complexity or difficulty, including those that may be intractable.
As a result, as the field continues to evolve, the study of algorithms and complexity theory
remains instrumental in the pursuit of computational efficiency and problem classification.

2.2.1 Time Complexity

Within the scope of Graph Theory, the study of algorithmic problems and their time
complexity plays a fundamental role. Formally, an algorithmic problem consists of a set
D of all possible inputs to the problem, called set of instances, and a question Q to be
answered.

The resolution of an algorithmic problem depends on the development of an algo-
rithm capable of taking an instance of the problem as input and producing an output
that effectively answers the question posed by the problem. This algorithm serves as a
computational tool to navigate through the complexities of the problem and provide a
desired solution.

The term "complexity" generally refers to the required resources for an algorithm
to solve a problem from a computational perspective. Specifically, time complexity, or
simply complexity, characterizes the time requirements of an algorithm. It can be defined
as a function that operates on the size of problem instances, expressing the time needed
for the algorithm to solve the problem for various input sizes. In essence, it quantifies the
maximum amount of time the algorithm can require to solve a problem of a particular
size.

Understanding the time complexity of algorithms in the context of Graph Theory is
crucial for assessing their efficiency and predicting their performance in different instances
of the problem. By analyzing the growth patterns and behavior of time complexity func-
tions, researchers and practitioners can make informed decisions about algorithm selec-
tion, optimization strategies, and ultimately obtain more effective problem-solving results.
References such as the works by (CORMEN et al., 2009) or (DASGUPTA; PAPADIM-
ITRIOU; VAZIRANI, 2006) delve deeper into the topic of time complexity analysis and
its significance in Graph Theory and beyond.

2.2.2 Classification of Problems

In relation to the categorization of problems, there are three distinct types that can be
identified. A problem is classified as an optimization problem when the objective is to
find the best feasible solution among a given set of possibilities. On the other hand,
an evaluation problem is characterized by the need to calculate the cost associated with
an ideal feasible solution. Lastly, a problem is said to be a decision problem when the
question to be observed/analyzed requires an answer in the form of a definitive “YES” or
“NO” answer. Below is an example of a decision problem that we denote as p, to illustrate
this concept.

2.2 Complexity of algorithms 23

Let π represent the following problem: "Given a graph G, determine whether G is a
near-bipartite graph."

Considering the π problem, its set of instances consists of all possible graphs. Conse-
quently, we can represent the π problem as follows:

Generic instance of π: A graph G.
Question: Is G a near-bipartite graph?

It is evident that the aforementioned problem π is actually a decision problem, more
specifically, a recognition problem. To solve the problem π it is necessary to develop an
algorithm capable of recognizing near-bipartite graphs.

2.2.3 Complexity classes

As for the classification of algorithms, we refer to an algorithm as polynomial if its time
complexity, which measures the number of steps the algorithm takes, can be expressed
as a polynomial function of the input size. In other words, polynomial algorithms are
those that consume a reasonable amount of time, and their computation times don’t grow
excessively fast as the problem size increases. The class of decision problems for which
polynomial algorithms exist is known as P, and such problems are referred to as polynomial
problems.

A decision problem is considered polynomial non-deterministic when every instance
that produces a “YES” answer has a concise certificate. In essence, the algorithm can
generate a proof that the “YES” answer can be verified within a reasonable amount of
time for the given instance size. This class of decision problems is denoted as NP. On the
other hand, the Co-NP class consists of problems that have a succinct certificate for the
instances that produce a response “NO”.

Regarding the relation between the P and NP classes, it is established that P is a sub-
set of NP, meaning that any decision problem solvable by a polynomial-time deterministic
algorithm can also be solved by a polynomial-time non-deterministic algorithm. In fact, if
a problem Π belongs to P and α represents any deterministic polynomial-time algorithm
for Π, we can construct a non-deterministic polynomial-time algorithm for Π simply by
utilizing α as a recognition algorithm to justify the “YES” answer for Π. Therefore, if Π
belongs to P, it also belongs to NP. However, the question of whether P is a subset of NP
(P ⊆ NP) or whether P is equal to NP (P = NP) remains an unresolved problem.

Another important class of problems is NP-complete, which comprises NP problems
that have the property that if any one of them can be solved in polynomial time, then
every other NP-complete problem can also be solved in polynomial time. In other words,
we can define NP-Complete problems as a class that represents the set of all problems
X in NP for which it is possible to reduce any other NP problem Y to X in polynomial
time.

Let π1 (D1, Q1) and π2 (D2, Q2) be two decision problems. A transformation or
polynomial reduction from problem π1 to π2 is a function f , f : D1 → D2, that satisfies
two conditions: The first one is f can be computed in polynomial time, and the second

2.3 Boolean formulas and satisfiability problems 24

one is for every instance I ∈ π1, I produces a “YES” answer for π1 if and only if f(I)
produces a “YES” answer for π2.

To prove that a certain problem π is NP-complete, it suffices to demonstrate that
π ∈ NP and for every problem π′ ∈ NP there is a polynomial transformation of π′ into
π.

Similarly, a decision problem π belongs to the class Co-NP-complete (and is referred
to as Co-NP-complete) when π ∈ Co-NP and there exists a (Co-)NP-complete problem
π′ such that:

(1) if π′ is NP-complete, there is a function f computable in polynomial time where for
every instance I ′ of π′, I ′ produces a “YES” answer for π′ if and only if I = f(I ′)
produces a “NO” answer for π; and

(2) if π′ is Co-NP-complete, there is a function f computable in polynomial time where
for every instance I ′ of π′, if I ′ produces a “NO” answer for π′ if and only if I = f(I ′)
produces a “NO” answer for π.

Finally, we have the class of NP-hard problems, which represents the computational
complexity of decision problems that are at least as hard as problems in the NP class
(non-deterministic polynomial time). These problems are considered among the most
challenging to solve efficiently. The field of Graph Theory, with its diverse applications
in various domains, presents a vast number of NP-hard problems to be analyzed, like
the well-known Traveling Salesman Problem (TSP), the Graph Coloring Problem, and
the Hamiltonian Cycle Problem. These problems have been much studied due to their
computational intractability and wide implications such as optimization, scheduling and
other practical domains. Consequently, the literature presents several proposals for ap-
proximation algorithms and heuristic techniques to solve these NP-hard graph problems,
trying to find a balance between solution quality and computational efficiency. Graph
theory provides a rich foundation for exploring the complexities of NP-hard problems and
developing innovative approaches to tackle their complexity (GAREY; JOHNSON, 1979;
CORMEN et al., 2009).

As a reference for this section, we recommend (GAREY; JOHNSON, 1979) and
(SZWARCFITER, 1988).

2.3 Boolean formulas and satisfiability problems

Satisfiability problems involve determining the existence of satisfactory assignments to
logical formulas by assigning truth values to their variables. In other words, their goal is
to determine whether a given logical formula in conjunctive normal form (CNF) can be
satisfied.

A boolean expression in CNF is a standardized way of representing a logical formula
using conjunctions (∧) and disjunctions (∨). In this work, we adopt the notation (·) to
represent conjunctions and (+) to represent disjunctions.

In CNF, the boolean expression is written as a conjunction of clauses, where each
clause is a disjunction of literals (boolean variables or their negations). Each clause is

2.3 Boolean formulas and satisfiability problems 25

enclosed in parentheses. As for the literals, xi and xi, they represent, respectively, the
positive and negative literals of variable xi. Below, Figure 1 is an example of a boolean
expression in CNF:

Figure 1: Example of a boolean expression in 3-CNF.

In the expression above, we have two clauses: (x1 + x2 + x3) and (x1 + x2 + x4).
Additionally, it can be verified that this boolean formula is in 3-CNF. That is, it is a
boolean expression composed of two clauses, where each of them has exactly three literals
connected by logical OR operators represented by (+). The clauses are connected by
AND operators represented by (·).

As can be observed, there exists a possible assignment of truth values to the variables
x1 . . . x4 that makes the expression φ true. Therefore, we say that φ is satisfied.

Satisfiability problems are much studied in the area of computer science and mathe-
matics due to their wide applications. In this section, we will discuss some of them that
were used during the development of this work.

2.3.1 2SAT

The 2SAT problem or 2-Satisfiability is a well-known polynomial problem (P) in
graph theory and computational complexity (ASPVALL; PLASS; TARJAN, 1982). It
belongs to the class of Boolean satisfiability problems. In 2SAT, the logical formula
consists of clauses, which are disjunctions of literals connected by logical OR operators,
with each clause containing exactly two literals (2-CNF). The task is to find an assignment
of truth values to the variables that satisfies all the clauses.

Instance: A Boolean formula composed of 2-CNF clauses where the literals
can be Boolean variables or their negations.

Goal: Find (if any) an assignment of true or false values to the variables
that satisfies all the clauses in the 2-CNF formula.

2SAT

The 2SAT problem has applications in various areas, including formal verification,
artificial intelligence, and optimization. It has been extensively studied in both graph
theory and computational complexity. Efficient algorithms, such as the famous Tarjan’s

2.3 Boolean formulas and satisfiability problems 26

algorithm, have been developed to solve 2SAT in linear time, making it a fundamental
problem in the field.

2.3.2 1-in-3SAT

The 1-in-3-SAT problem is a variant of the well-known satisfiability problem, which plays
a crucial role in graph theory and theoretical computer science. The 1-in-3-SAT problem
is known to be NP-complete (GAREY; JOHNSON, 1979).

In this problem, we are given a Boolean formula in conjunctive normal form (CNF)
where each clause contains exactly three literals. The goal is to determine if there exists
an assignment of truth values to the variables such that exactly one literal in each clause
evaluates to true.

Instance: A Boolean formula composed of 3-CNF clauses where the literals
can be Boolean variables or their negations.

Goal: Find (if any) an assignment of true or false values to the variables
that satisfies at least one literal in each 3-CNF clause.

1-in-3SAT

2.3.3 Positive-Min-Ones-2SAT

The Positive-Min-Ones-2SAT is a relevant NP-complete problem in the field of graph
theory and Boolean satisfiability (MISRA; NARAYANASWAMY, et al., 2013). In this
problem, the objective is to determine whether a given Boolean formula in conjunctive
normal form (CNF) has a truth value assignment, minimizing the number of variables
that have been assigned true.

In a CNF formula, a clause is a disjunction of literals, where each literal represents a
Boolean variable. In the Positive-Min-Ones-2SAT problem, each clause must consist
of exactly two literals. The goal is to find a truth assignment that makes the entire
formula true, with the additional constraint of minimizing the number of variables set to
true.

Instance: A set of 2-CNF clauses where the literals are Boolean variables.
Goal: Find (if any) an assignment of true or false values to the variables

that minimizes the number of variables set to true in the clauses.

Positive-Min-Ones-2SAT

Furthermore, this problem can be naturally related to the Minimum Vertex Cover
problem in graph theory. In a graphical interpretation, Boolean variables can be repre-
sented as vertices in a graph, and 2-CNF clauses can be mapped to edges in the graph.

Each clause Ci corresponds to an edge in the graph, connecting two vertices repre-
senting the variables vi and wi. The task of minimizing the number of true variables in

2.4 Graph Problems 27

the clauses is equivalent to selecting the smallest possible number of vertices in such a
way that each edge of the graph is incident to at least one selected vertex.

2.4 Graph Problems

Throughout this section, we will explore some graph problems that were fundamental for
the development of this work. These problems have been widely studied in the field of
graph theory.

2.4.1 Vertex Cover

The Vertex Cover problem is a fundamental problem in graph theory that has garnered
significant attention in both theoretical and practical domains. In simple terms, the
problem aims to find the smallest set of vertices in a graph such that every edge in the
graph is incident to at least one vertex in the set. This set of vertices is known as a vertex
cover.

Formally defined, a vertex cover in a graph G is a subset V ′ of the vertex set V , such
that for every edge (u, v) in G, at least one of the vertices u or v is in V ′. The goal is to
identify the smallest possible vertex cover in the given graph.

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) the smallest set of vertices such that every edge of

the graph has at least one of its endpoints belonging to this set.

Vertex Cover

The Vertex Cover problem is one of the classic NP-complete problems (KARP,
1972) studied in the field of graph theory.

2.4.2 Independent Set

The independent set problem, as its name suggests, aims to find the largest indepen-
dent set of vertices in a graph. An independent set is a subset of vertices in which no two
vertices are adjacents. The goal is to identify the largest possible subset of vertices that
satisfies this condition.

Formally, an independent set in a graph G is a subset of vertices V ′ such that for
every pair of vertices u and v in V ′, there is no edge between u and v in G. The objective
of the independent set problem is to identify the largest independent set in the given
graph.

2.4 Graph Problems 28

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) the largest set in which no pair of vertices are con-

nected by an edge.

Independent Set

The independent set problem is widely recognized and extensively studied in the
field of graph theory. It is known to be NP-complete (KARP, 1972), indicating its com-
putational complexity.

2.4.3 Feedback Vertex Set

The Feedback Vertex Set problem is a fundamental problem in graph theory that
focus on finding the smallest set of vertices in a graph whose removal eliminates all cycles.
In other words, the goal is to identify a vertex set that, when removed from the graph,
transforms it into an acyclic graph.

Formally defined, a feedback vertex set in a graph G is a subset of vertices V ′ such
that the removal of these vertices from G results in a graph without any cycles. The
objective of the Feedback Vertex Set problem is to determine the smallest possible
feedback vertex set in the given graph.

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) the smallest set of vertices such that, after removing

these vertices and their incident edges, the resulting is an acyclic
graph.

Independent Set

The Feedback Vertex Set is a well-known NP-complete problem (KARP, 1972),
indicating its computational complexity in finding an optimal solution. Researchers have
proposed various approximation algorithms and heuristics to efficiently find near-optimal
solutions for this problem.

3 Near-bipartition problem in P5-free
graphs and graphs with dominating
edge

3.1 Near-bipartition problem

In this chapter, we will address the problem of near-bipartiteness and other relevant
problems considered for the development of this dissertation. This problem is currently
a subject of extensive study and presents itself as a complex challenge involving the
analysis of graphs and the identification of near-bipartite structures. By delving into
this problem in detail, we aim to understand its characteristics and properties for graphs
having a dominating edge and for P5-free graphs, which will be discussed in Chapter
3.2. Additionally, we will discuss other related problems that are fundamental to the
construction and improvement of the work carried out. By analyzing these issues, our
intention is to provide valuable insights for the advancement of the field and contribute
to more efficient and effective solutions in this specific domain.

Since a near-bipartition (S,F) of a graph G is a partition of V (G) into an independent
set S and an induced forest F , we consider the following problems.

The problem of Independent Feedback Vertex Set (IFVS) is a well-studied
problem in graph theory that combines the concepts of feedback vertex set and independent
set. A set S of vertices in a graph G is a feedback vertex set of G if removing the vertices
in S results in an acyclic graph, i.e., the graph G− S is a forest.

The Independent Feedback Vertex Set problem considered in this work is
formulated as follows: given an undirected graph G with its set of vertices and edges, the
goal is to find a minimum-sized independent feedback vertex set of G. In other words, we
aim to determine the existence of a near-bipartition (S,F) of G that minimizes the size
of S. Below, in Figure 2, is an example of graph G that admits an independent feedback
vertex set.

It is important to mention, not every graph admits an independent feedback vertex set
(consider complete graphs on at least four vertices). Graphs that do admit an independent
feedback vertex set are said to be near-bipartite, and we can ask about recognizing these
graphs.

3.1 Near-bipartition problem 30

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) a minimum independent feedback vertex set of G,

i.e., a near-bipartition (S,F) of G that minimizes the size of S.

Independent Feedback Vertex Set

Figure 2: Example of Independent Feedback Vertex Set problem.

Another problem analyzed was the near-bipartiteness problem, which holds sig-
nificant importance in Graph Theory. In this problem, given an undirected graph, the
objective is to determine if it is possible to partition the set of vertices into two parts,
S and F , where S forms an independent set and F forms an acyclic set (i.e., induces a
forest). In Figure 3 we have an example of a graph G which is near-bipartite.

The near-bipartiteness problem is known to be NP-complete, even for graphs with
a maximum degree of 4 (YANG; YUAN, 2006) or diameter 3 (BONAMY et al., 2017), as
mentioned in Chapter 1.

Studying near-bipartiteness is relevant from both a theoretical and practical per-
spective. Theoretically, the problem provides insights into the complexity of graph par-
titioning problems and their relationships with other classical problems. Furthermore,
understanding the structure of graphs that admit a near-bipartition can lead to the de-
velopment of efficient algorithms for solving related problems.

Instance: A simple undirected graph G = (V,E).
Question: Does G have a near-bipartition (S,F)?

Near-Bipartiteness

Figure 3: Example of near-bipartiteness problem.

3.1 Near-bipartition problem 31

Another problem addressed in this work was the Acyclic Vertex Cover. This
problem involves finding a minimum-sized set of vertices in an undirected graph that
covers all the edges of the graph while ensuring that the chosen set of vertices does not
induce any cycles in the resulting graph. In other words, the goal is to find a set of vertices
that covers all the edges of the graph in an acyclic manner (See an example in Figure 4).

Furthermore, the Acyclic Vertex Cover problem is related to other challenges in graph
theory, such as the Independent Feedback Vertex Set problem and the Vertex
Cover problem which further enhances its impact and relevance in graph research.

Instance: A simple undirected graph G = (V,E).
Goal: Find (if any) a minimum acyclic vertex cover of G, i.e., a near-

bipartition (S,F) of G that minimizes the size of F .

Acyclic Vertex Cover

Figure 4: Example of Acyclic Vertex Cover problem.

Also, we consider the problem of determining whether a graph G can have its set
of vertices partitioned into an independent set and a tree, called Connected Near-
Bipartiteness See an example in Figure 5), which was shown to be NP-complete even
on bipartite graphs of maximum degree four by Brandstädt, Le, and Szymczak (BRAND-
STÄDT; LE; SZYMCZAK, 1998).

Instance: A simple undirected graph G = (V,E).
Question: Does G have a near-bipartition (S,F) such that G[F] is connected?

Connected Near-Bipartiteness

Figure 5: Example of Connected Near-Bipartiteness problem.

3.2 P5-free graphs and graphs with dominating edge 32

3.2 P5-free graphs and graphs with dominating edge

In Graph Theory, the study of graph classes is of great importance to understand and
characterize specific properties of these structures. In this chapter, we will discuss two
particular classes of graphs: graphs having a dominating edge and P5-free graphs. We
will explore their definitions and properties.

3.2.1 Graphs having a dominating edge

.

Graphs with dominating edges are objects of study in the field of Graph Theory,
with a wide range of research and results dedicated to this class of graphs. Graphs with
dominating edges have a special property related to dominance. Given a graph G, it is
said to be a graph having a dominating edge if it has an edge e = (e1, e2) ∈ E(G) such
that for every vertex v ∈ V (G), v ̸= e1 and v ̸= e2, either v is adjacent to e1 or v is
adjacent to e2.

The class of graphs having a dominating edge is a natural subclass of graphs with
diameter three, a class for which near-bipartiteness remains NP-complete (BONAMY
et al., 2018). Concerning this special class of graphs, we present a polynomial-time al-
gorithm for Near-Bipartiteness and prove that Connected Near-Bipartiteness,
the variant where the forest must be connected, is NP-complete. In addition, we show
that Independent Feedback Vertex Set, the problem of finding a near-bipartition
(S,F) minimizing |S|, and Acyclic Vertex Cover, the problem of finding a near-
bipartition (S,F) minimizing |F|, are both NP-hard when restricted to graphs having a
dominating edge.

3.2.2 P5-free graphs

P5-free graphs are a special class of graphs that do not contain any subgraph isomorphic
to a path of five vertices (P5), see Definition 16. This class of graphs has been extensively
studied due to its interesting properties.

The study of P5-free graphs dates back to the late 1960s when researchers began
exploring the structural properties of graphs that did not contain fixed-size paths. This
category of graphs has since been extensively investigated in the field of Graph Theory.

For instance, Hoàng et al. (HOANG et al., 2010) demonstrated that the k-Coloring
problem can be solved in polynomial time for P5-free graphs, where k is any integer.
Additionally, Golovach and Heggernes (GOLOVACH; HEGGERNES, 2009) established
that Choosability becomes tractable for P5-free graphs when the parameters are fixed,
specifically considering the size of the lists of admissible colors.

Furthermore, Lokshantov et al. (LOKSHTANOV; VATSHELLE; VILLANGER, 2014)
made a significant contribution by addressing a longstanding unresolved problem. They
provided a polynomial-time algorithm for Independent Set on P5-free graphs.

Finally, we also highlight that Bonamy et al. (BONAMY et al., 2019) proved that

3.2 P5-free graphs and graphs with dominating edge 33

Near-Bipartiteness on P5-free graphs can be solved in O(n16) time. Regarding this
problem in the analyzed cases for P5-free graphs in this work, we demonstrate that the
problem of Near-Bipartiteness can be solved in O(n4) time for a graph without P5,
improving upon the existing literature result of O(n16) mentioned above.

Thus, in Chapter 4 and Chapter 5, we will present each of the analyzed cases for these
special graph classes. The discovered findings contribute to a better understanding of the
problems and provide more efficient solutions in practical scenarios.

3.2.3 Auxiliary Lemmas

In this section, we will present two auxiliary lemmas that were used during the mathe-
matical proofs. These lemmas pertain to certain recurring aspects in the proofs of specific
cases analyzed. The creation of this subsection aimed to reduce repetitions of sections
and/or ideas throughout the proofs, avoiding excessively lengthy and tiresome analyses.

Lemma 1. A graph G admits an independent set A such that G[V − A] is an edgeless
graph if and only if G is bipartite.

Proof. Assume that G is bipartite, meaning that its vertex set V can be partitioned into
two disjoint subsets V1 and V2 such that all edges in G connect vertices from V1 to V2.
Let A be one of these subsets, say V1, and let B be the other subset, V2. Then, A is an
independent set (independent set) because there are no edges between vertices within A
or within B.

Now, consider the graph G[V −A], which is obtained by removing all vertices in A and
their incident edges from G. Since A is an independent set, there are no edges between
A and B, so removing A does not affect the edges between B and the remaining vertices
in G[V − A]. Therefore, G[V − A] is still an edgeless graph.

Conversely, suppose that G admits an independent set A such that G[V − A] is an
edgeless graph. We want to show that G is bipartite.

Let’s create two sets, V1 and V2, where V1 contains the vertices in A, and V2 contains
the vertices in V − A. Since A is an independent set, there are no edges within A or
within V2. Also, since G[V − A] is an edgeless graph, there are no edges between V1 and
V2, as removing A does not create any new edges between these sets.

Therefore, we have successfully partitioned the vertex set V into two disjoint subsets,
V1 and V2, such that all edges in G connect vertices from V1 to V2. This defines G as a
bipartite graph.

Lemma 2. Given a graph G with a dominating edge (u,v), if G admits a partition (S,T)
with (u,v) ∈ E(T) then N(u,v) induces a bipartite graph.

Proof. Let G be a graph with a dominating edge (u, v). We observe that this dominating
edge cannot belong to any independent set in G. Consequently, vertices u and v cannot

3.2 P5-free graphs and graphs with dominating edge 34

be part of the same independent set. Suppose that G admits a partition (S,T) where
(u, v) belongs to E(T), implying that {u, v} ∈ T .

Given that graph G admits a partition (S,T) where (u, v) belongs to E(T), we con-
clude that the graph G− {u,v} must induce a bipartite graph. In other words, the set of
vertices of G with the dominating edge removed must be partitionable into two indepen-
dent sets A1 and A2, where all vertices to be placed in A1 belong to partition T , and the
vertices belonging to A2 are part of partition S.

Thus, we have shown that N(u, v) (the vertices adjacent to u and v) induces a bipartite
graph. Therefore, N(u, v) can be partitioned into two disjoint subsets A1 and A2.

4 Results obtained in graphs having a
dominating edge

In this chapter, we will present our findings regarding the study of partitioning a graph
with a dominating edge into a stable set and a tree (Connected Near-Bipartiteness),
as well as the problem of partitioning it into a stable set and a forest (Near-Bipartiteness).

Next, we show that Connected Near-Bipartiteness is NP-complete on graphs
having a dominating edge, while Near-Bipartiteness becomes solvable in polynomial
time within the same class.

Theorem 1. Connected Near-Bipartiteness is NP-complete even when restricted
to graphs having a dominating edge.

Proof. The proof is based on a reduction from 1-in-3SAT, a well-known NP-complete
problem (GAREY; JOHNSON, 1979). In such a problem we are given a formula φ
in conjunctive normal form where each clause contains exactly three literals and asked
whether there exists a satisfying assignment so that exactly one literal in each clause is
set to true.

Given an instance φ of 1-in-3SAT, we construct a graph G such that φ has a truth
assignment such that each clause has exactly one literal set to true if and only if G is
partitionable into a stable set and a tree.

From φ we construct G as follows:

1. first consider G = ({u, v}, {uv});

2. add a chordless cycle C of size 4 in G induced by {k1, k2, k3, k4}, and add edges from
u for all vertices in C;

3. add a chordless cycle C ′ = l1,m, l2, n1, n2;

4. add the edges ul1, ul2, vm, vn1 and vn2;

At this point, notice that every (S,T)-partition of G has v ∈ S and u ∈ T .

5. for each variable xi of φ create vertices vxi
and vxi

and add edges vxi
vxi

, uvxi
and

uvxi
;

6. for each clause Cj of φ create a vertex cj in G and add the edge vcj;

4 Results obtained in graphs having a dominating edge 36

7. Finally, add an edge cjvxi
if the clause Cj contains the literal xi, and add an edge

cjvxi
if the clause Cj contains the literal xi. (see Figure 6 below)

It is worth noting that there is no possibility of cycle formation in the induced sub-
graphs that remain in the graph G constructed from the formula φ of 1-in-3SAT. Firstly,
chordless cycles are added, such as the cycle C of size 4 induced by {k1, k2, k3, k4}, which
is cycle-free internally. Then, a second chordless cycle C ′ is added. Furthermore, vertices
u and v are connected to these cycles in a way that keeps all cycles separate, and there
are no additional vertices that form cycles between them.

Moreover, during the rest of the construction, vertices and edges are added in a manner
that maintains this property of chordless cycles. Therefore, the structure of the graph G
is such that there is no opportunity for cycle formation in the induced subgraphs that
remain after partitioning, which is crucial for the success of the reduction.

The Figure 6 shows a example of a graph, denoted as G, constructed from a 3-CNF
formula φ = (x1 + x2 + x4) · (x2 + x3 + x4).(x2 + x3 + x4) according to Theorem 1.
Furthermore, it presents an (S,T)-partition of G derived from a 1-in-3 truth assignment
of φ. In this representation, the white vertices form the stable set, while the black vertices
form the tree.

Figure 6: Example of graph G and an near-bipartition representation from the formula
φ = (x1 + x2 + x4) · (x2 + x3 + x4) · (x2 + x3 + x4),

.

4 Results obtained in graphs having a dominating edge 37

If φ is a 3-CNF formula having a truth assignment A such that each clause has
exactly one literal set as true, then we can construct an (S, T)-partition of G by setting
S = {k1, k3, l1, v} ∪ {vxi

: xi = false ∈ A} ∪ {vxi
: xi = true ∈ A} (clearly S is a

stable set). Since A defines a 1-in-3 truth assignment then each vertex cj has exactly one
neighbor in G[V \ S] then T = V \ S induces a tree.

Conversely, if G admits an (S,T)-partition then, by construction, it holds that v ∈ S
and u ∈ T . This implies that every vertex cj belongs to T , and that for each pair vxi

,
vxi

exactly one of these vertices belongs to T . Also, since T is connected each cj has at
least one neighbor in T , thus as T is acyclic each vertex cj has exactly one neighbor in
T (each cj must be a leaf in T). Therefore, we can construct a 1-in-3 truth assignment
by setting xi = true iff vxi

∈ T .

Contrasting with Theorem 1, we show that when we remove the connectivity con-
straint, i.e., we look for a forest instead of a tree, the problem becomes polynomial-time
solvable.

Theorem 2. Given a graph G and a dominating edge of G, one can determine in O(n2)
time whether G is a near-bipartite graph.

Proof. Let u, v ∈ V (G) be two vertices of G such that uv is a dominating edge of G.
Suppose that G has a near-bipartition (S,F). Without loss of generality, we may assume
that G does not have vertices with degree one. At this point, we may consider just two
cases:

Case 1. Suppose that u, v ∈ F .

As uv ∈ E(F), then N(u) ∩ N(v) ⊆ S, otherwise F has cycles. Thus, N(u) ∩ N(v)
must be a stable set. For a remaining vertex w belonging to either N(u) \ N(v) or
N(v) \ N(u): if it has a neighbor in S then it must belong to F ; if it has a neighbor
z (z ̸= u and z ̸= v) that must be in F , then w must belong to S, otherwise, the
edge wz together with uv induces a cycle in F . Thus, by checking if N(u) ∩ N(v) is
stable and then successively applying the operations previously described according to a
Breadth-First Search from N(u)∩N(v), in linear time, we can either conclude that such a
near-bipartition with u, v ∈ F does not exist, or build a partition (S ′, F ′, U) of V (G) such
that S ′ is stable, F ′ ⊇ {u, v} induces a forest, and U is the set of unclassified vertices.
Note that, by construction, no vertex in U has neighbors in S ′∪F ′\{u, v}. Since any pair
of adjacent vertices together with u and v induces a cycle, G has a near-bipartition (S,F)
with {u, v} ⊆ F if and only if G[U] has an independent vertex cover, which is equivalent
to U inducing a bipartite graph (see Lemma 2).

Case 2. Suppose that u ∈ S and v ∈ F .

If u ∈ S and v ∈ F then N(u) ⊆ F . Thus, N(u) must induce a forest and N(u) ∩N(v)
must be a stable set. At this point, only the vertices belonging to N(v) \N [u] are unclas-
sified.

Let B = N(v) \ {u}.

4 Results obtained in graphs having a dominating edge 38

If G has a near-bipartition (S,F) then G[B] must be bipartite, so that its vertices can
be partitioned into two sets (B1, B2) such that B1 ⊆ S and B2 ⊆ F . Thus, we must find
a bipartition of B that satisfies the following conditions:

− N(u) ∩N(v) ⊆ B2;

− for each component T of G[N(u) \N [v]] (which is a tree) it holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T) induces a cycle);

• T has at most one neighbor in B2 (otherwise F has cycles).

Note that any bipartition (B1, B2) satisfying the above restrictions is sufficient to form
a near-bipartition such that B1 ∪ {u} = S. Now, we can reduce the problem of finding
such a bipartition of G[B] to the 2SAT problem by building a 2-CNF formula φ as follows:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ N(u) ∩N(v) create a clause (xw);

3. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

4. for each vertex w ∈ B with at least two neighbors in the same component T of
G[N(u) \N [v]], create a clause (xw);

5. For each component T of G[N(u) \N [v]], and for each pair of vertices w1, w2 in the
neighborhood of T , create a clause (xw1 + xw2);

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ
can be built in O(n2) time with respect to the size of G[B] and 2SAT can be solved in
linear time (ASPVALL; PLASS; TARJAN, 1982), a near-bipartition (S,F) of G can be
found in O(n2) time (if any).

Recall that Near-Bipartiteness can be seen as the problem of determining whether
G admits an independent feedback vertex set S or an acyclic vertex cover F . In contrast
to the previous theorem, we show that the problems of finding a minimum independent
feedback vertex set and a minimum acyclic vertex cover are both NP-hard on graphs with
a dominating edge.

Theorem 3. Independent Feedback Vertex Set is NP-hard when restricted to
graphs having a dominating edge.

Proof. In Positive Min-Ones-2SAT we are given a 2SAT formula φ having only
positive literals and asked to decide whether there exists a satisfying assignment for φ
with at most k variables set to true. Note that Positive Min-Ones-2SAT is equivalent
to Minimum Vertex Cover, a well-known NP -complete problem.

4 Results obtained in graphs having a dominating edge 39

Given an instance φ of Positive Min-Ones-2SAT, we can construct a graph G by
applying the same construction as the Theorem 1 (disregarding negative literals). At this
point, variables xi set to true are equivalent to the vertices vxi

assigned to S. Therefore,
φ has a satisfying truth assignment with at most k trues if and only if G is partitionable
into a stable set S and a forest F such that |S| ≤ k + 4.

Theorem 4. Acyclic Vertex Cover is NP-hard when restricted to graphs having a
dominating edge.

Proof. First, we define a construction algorithm f that receives as input a CNF formula
φ and outputs a graph having a dominating edge, similar to that presented in Theorem 1.
The first six steps of this construction are the same as in Theorem 1. (to make it easier
for the reader, we repeat their description here)

From φ we construct G as follows:

1. first consider G = ({u,v},{uv});

2. add a cycle C of size 4 in G induced by {k1,k2,k3,k4}, and add edges from u for all
vertices in C;

3. add a cycle C ′ = l1,m,l2,n1,n2;

4. add the edges ul1, ul2, vm, vn1 and vn2;

5. for each variable xi of φ create vertices vxi
and vxi

and add edges vxi
vxi

, uvxi
and

uvxi
;

6. for each clause Cj of φ create a vertex cj in G and add the edge vcj;

Now, in Step 7, we present the necessary change for our reduction.

7. add an edge cjvxi
if the clause Cj contains the literal xi, and add an edge cjvxi

if
the clause Cj contains the literal xi; (Note that an edge between cj and vxi

is added
when Cj contains the literal xi)

8. Finally, for each vertex vxi
representing a positive literal, we replace it with n

copies v1x1
, v2x1

, . . . , vnx1
, having the same neighbors as vx1 , as can be seen in Figure 7

presented below.

By construction, each gadget gxi
is formed by the n copies of positive literals v1xi

, v2xi
, . . . , vnxi

,
along with the negated literal xi.

The Figure 7 illustrates a graph, denoted as G, constructed from the formula φ =
(x2+x3)·(x1+x3)·(x2+x4). Additionally, it showcases a near-bipartition (S,F) of G, which
is derived from the satisfying assignment A = "x1 = false", "x2 = true", "x3 = true",
"x4 = false" of φ. In the image, the white vertices represent the stable set, while the
black vertices induce the forest.

4 Results obtained in graphs having a dominating edge 40

Figure 7: Example of graph and Near-Bipartition representation from the formula
(x2 + x3) · (x1 + x3) · (x2 + x4).

Now, given an instance φ with n variables and m clauses of Positive Min-Ones-
2SAT, we denote by G = f(φ) the graph obtained by applying the construction f from
φ.

Suppose that φ has a satisfying assignment A with weight k. From A we construct a
near-bipartition of G as follows: for each variable xi of φ, if xi equals true in A, then the
vertices associated with the literal xi are in F , and if xi equals false in A, then the vertex
associated with the literal xi is in F . So, we can construct an near-bipartition (S,F) of
G by setting

F =
{
{k2, k4, l2,m, n1, n2, u}
∪ {v1xi

. . . vnxi
: “xi = true” ∈ A}

∪ {vxi
: “xi = false” ∈ A}

∪ {c1, c2, . . . , cm}
}
,

S =V \ F .

Note that |F| = m + k · n + (n − k) + 7, where m is the number of clause vertices,

4 Results obtained in graphs having a dominating edge 41

k · n is the number of vertices that represent positive literals (“xi = true” in A), n− k is
the number of vertices that represent negative literals (“xi = false” in A), and 7 is the
number of auxiliary vertices (k2, k4, l2, m, n1, n2, u) in F .

Now, let’s analyze the graph induced by the vertices in F . Every clause vertex is in
F . Also, if a clause vertex has degree two in the graph induced by F , by construction,
in the instance φ of Positive Min-Ones-2SAT, the corresponding clause has 2 false
literals, which contradicts the fact that A is an assignment that satisfies φ. So, the clause
vertices have degree at most 1, and do not belong to any cycle. At this point, it is easy
to see that F induces a forest with m + 7 + k · n + (n− k) vertices, and S = V \ F is a
stable set.

Conversely, suppose that G has a near-partition (S,F) where |F| = m + 7 + k ·
n + (n − k). First, let’s argue that at most k gadgets gxi

have vertices associated with
true (xi) in F . By construction, each gadget gxi

contains either one vertex representing
xi (vxi

) in F or n vertices representing xi in F (n · vxi
). So let’s suppose that k + 1

gadgets have n · (k + 1) vertices associated with true in F . So this implies that F has
at least m + 7 + (k + 1) · n vertices, which is bigger than the initially defined budget,
|F| = m + 7 + k · n + (n− k) ∼= m + 7 + (k + 1) · n− k. So, at most k gadgets gxi

have
vertices associated with true in F . With this, we will construct an assignment A to φ as
follows:

− for each gadget gxi
set xi = false if the vertex associated with xi (i.e., vxi

), belongs
to F and set xi = true otherwise.

Note that A has weight at most k. By the construction of G, each vertex associated
with the clause has degree at most 1 in F , given the property of the forest to be acyclic.
So, for each clause at least one of its literals is true. Therefore, A satisfies φ with weight
at most k.

5 Results obtained in P5-free graphs

In 2019, Bonamy, Dabrowski, Feghali, Johnson, and Paulusma (BONAMY et al., 2019)
showed that Near -Bipartiteness and Independent Feedback Vertex Set can
be solved in O(n16) time.

In 1990, Bacsó and Tuza (BACSÓ; TUZA, 1990) showed that any connected P5-
free graph has a dominating clique or a dominating P3. In 2016, Camby and Schaudt
(CAMBY; SCHAUDT, 2016) generalized this result and showed that such a dominating
set can be computed in polynomial time.

In this chapter, we will present, using the same approach as in Theorem 2, how
to handle Near-bipartiteness Problem on graphs having a dominating clique or
a dominating P3. Our results imply a faster algorithm to solve Near-bipartiteness
on P5-free graphs with a time complexity of O(n4). Interestingly, we can observe that
the same technique combined with Bacsó and Tuza’s result is not very useful to get a
more efficient algorithm for Independent Feedback Vertex Set on P5-free graphs,
due our Theorem 3 showing that this problem remains NP-complete on graphs having a
dominating edge.

Theorem 5. Given a graph G and a dominating triangle of G, one can determine in
O(n2) time whether G is a near-bipartite graph.

Proof. Let {u, v, z} ∈ V (G) be a dominating set of G that induces a triangle. Suppose
that G has a near-bipartition (S,F). Without loss of generality, we can assume that G has
no vertices of degree one, since these vertices can always be added to F without causing
any contradiction. Thus, let’s analyze the case where the vertices u, v of the dominating
triangle belong to F and only the vertex z of the dominating triangle belongs to S.

Since, z ∈ S, then N(z) ⊆ F . Thus, N(z) must induce a forest.

We can also observe that N(u) ∩ N(v) ∩ N(z) = ∅, because if there is at least one
vertex w neighboring all the dominating vertices, this can’t belong to either F or S, since
otherwise we will have cycles in F or edges in S.

At this point, only the vertices belonging to N(v) ∪N(u) \N [z] are unclassified.

Let B = N(v) ∪N(u) \ {u, v, z}.

Previously seen that G has a near-bipartition (S,F), then we have that G[B] must be
bipartite. So, we have that the vertices of G[B] can be partitioned into two sets (B1, B2)
such that B1 ⊆ S and B2 ⊆ F . Thus, we must find a bipartition of B that satisfies the
following conditions:

5 Results obtained in P5-free graphs 43

− N(u) ∩N(v) ⊆ B1, otherwise F will have cycles.

− N(z) ∩ (N(u) ∪N(v)) ⊆ B2, otherwise S will have edges.

− For each component T of G[N(z)\N [u] ∪N [v]], which is a tree, holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T) induces a cycle);

• T has at most one neighbor in B2 (otherwise F has cycles);

Note that any bipartition (B1, B2) satisfying the above restrictions is sufficient to
form a near-bipartition such that B1 ∪ {z} = S. Now, we can reduce the problem of
finding such a bipartition of G[B] to the 2SAT problem by constructing a 2-CNF formula
φ, similarly as in Theorem 2. In order for the dissertation to be self-contained, we will
present the resolution again below. So, the rules are:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ N(u) ∩N(v) create the clause (xw);

3. for each vertex w ∈ N(z) ∩ (N(u) ∪N(v)) create the clause (xw);

4. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

5. for each vertex w ∈ B with at least two neighbors in the same component T of
G[N(z) \N [u] ∪N [v]], create a clause (xw);

6. For each component T of G[N(z)\N [u]∪N [v]], and for each pair of vertices w1, w2

in the neighborhood of T , create a clause (xw1 + xw2);

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ
can be constructed in O(n2) time with respect to the size of G[B] and 2SAT can be solved
in linear time (ASPVALL; PLASS; TARJAN, 1982), a near-bipartition (S,F) of G can
be found in O(n2) time (if any).

Theorem 6. Given a graph G and a dominating induced P3 of G, one can determine in
O(n4) time whether G is a near-bipartite graph.

Proof. Let uvz be a induced P3 of G such that {u,v,z} is a dominating set in G. Suppose
that G has a near-bipartition (S,F). Without loss of generality, we can assume that G
has no vertices of degree one, since these vertices could always be added to the partition
of F without generating any contradiction. At this point, we may analyze four cases:

Case 1. Suppose that the vertices {u, v} ∈ F and the vertex {z} ∈ S.

In this case, the proof is similar to that of Theorem 5. However, in order for the
dissertation to be self-contained, we will present the resolution again below. Additionally,

5 Results obtained in P5-free graphs 44

it is important to highlight that this proof also applies to the scenario where v, z ∈ F and
u ∈ S.

Since z ∈ S, then N(z) ⊆ F . Thus, N(z) must induce a forest.

We can also observe that N(u) ∩ N(v) ∩ N(z) = ∅, because if there is at least one
vertex w neighboring all the dominating vertices, this can’t belong to either F or S, since
otherwise we will have cycles in F or edges in S.

At this point, only the vertices belonging to N(v) ∪N(u) \N [z] are unclassified.

Let B = N(v) ∪N(u) \{u, v, z}.

Previously seen that G has a near-bipartition (S,F), then we have that G[B] must be
bipartite. So, we have that the vertices of G[B] can be partitioned into two sets (B1, B2)
such that B1 ⊆ S and B2 ⊆ F . Thus, we must find a bipartition of B that satisfies the
following conditions:

− N(u) ∩N(v) ⊆ B1, otherwise F will have the presence of cycles.

− N(z) ∩ (N(u) ∪N(v)) ⊆ B2, otherwise S will have edges.

− For each component T of G[N(z)\N [u] ∪N [v]], which is a tree, holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T) induces a cycle);

• T has at most one neighbor in B2 (otherwise F has cycles);

Note that any bipartition (B1, B2) satisfying the above restrictions is sufficient to
form a near-bipartition such that B1 ∪ {z} = S. Now, we can reduce the problem of
finding such a bipartition of G[B] to the 2SAT problem by constructing a 2-CNF formula
φ respecting the following rules:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ N(u) ∩N(v) create the clause (xw);

3. for each vertex w ∈ N(z) ∩ (N(u) ∪N(v)) create the clause (xw);

4. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

5. for each vertex w ∈ B with at least two neighbors in the same component T of
G[N(z) \N [u] ∪N [v]], create a clause (xw);

6. For each component T of G[N(z)\N [u]∪N [v]], and for each pair of vertices w1, w2

in the neighborhood of T , create a clause (xw1 + xw2);

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ
can be constructed in O(n2) time with respect to the size of G[B] and 2SAT can be solved
in linear time (ASPVALL; PLASS; TARJAN, 1982), a near-bipartition (S,F) of G can
be found in O(n2) time (if any).

5 Results obtained in P5-free graphs 45

Case 2: Suppose that only the vertex v ∈ F and the vertices {u, z} ∈ S.

In this case, N(u) ∪ N(z) ⊆ F , otherwise S has edges. Thus, N(u) ∪ N(z) must
induce a forest.

Also, G[N(u) ∪N(z)] must contain no path between two vertices of N(v) ∩ (N(v) ∪
N(z)), otherwise F has cycles.

Furthermore, N(v)\(N(u)∪N(z)) must induce a bipartite graph. Also, for a vertex w
belonging to N(v)\(N(u)∪N(z)) if it has a neighbor p ̸= v that reaches v in G[N(u)∪N(z)]
then p must be in S.

At this point, similarly as in Theorem 2, we can use a 2SAT formula to decide which
unclassified vertices of N(v) \ (N(u) ∪ N(z)) must be in F and S. To ensure the self-
contained of the dissertation, we will also provide this part of the mathematical proof for
this particular case.

Let B = N(v) \ {u,v,z}.

As seen previously, G[B] must be bipartite. So, its vertices can be partitioned into
two sets (B1, B2) such that B1 ⊆ S and B2 ⊆ F . Thus, we must find a bipartition of B
that satisfies the following conditions:

− N(v) ∩ (N(u) ∪N(z)) ⊆ B2, otherwise S will have edges.

− for each component T of G[(N [u] ∪N [v]) \N(z)] (which is a tree) holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T) induces a cycle);

• T has at most one neighbor in B2 if T ̸⊇ {v} (otherwise F has cycles);

• T has no neighbor in B2 if T ⊇ {v} (otherwise F has cycles);

Note that any bipartition (B1, B2) satisfying the above restrictions is sufficient to form
a near-bipartition such that B1 ∪ {u, z} = S. Now, we can reduce the problem of finding
such a bipartition of G[B] to the 2SAT problem by building a 2-CNF formula φ as follows:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ N(v) ∩ (N(u) ∪N(z)) create a clause (xw);

3. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

4. for each vertex w ∈ B with at least two neighbors in the same component T of
G[(N [u] ∪N [v]) \N(z)] that do not contains the vertex v, create a clause (xw);

5. For each component T of G[(N [u] ∪N [v]) \N(z)], and for each pair of vertices w1,
w2 in the neighborhood of T , create a clause (xw1 + xw2);

6. For each component T of G[(N [u] ∪ N [v]) \ N(z)] that contains the vertex v, for
each vertex w1 ∈ V (T), create a clause (xw1);

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ

5 Results obtained in P5-free graphs 46

can be built in O(n2) time with respect to the size of G[B] and 2SAT can be solved in
linear time (ASPVALL; PLASS; TARJAN, 1982), a near-bipartition (S,F) of G can be
found in O(n2) time (if any).

Case 3: Suppose that {u, v, z} ⊆ F .

In this case, any vertex with at least two neighbors in {u, v, z} must be in S.

Note that

(N(v) \ (N(u) ∪N(z))) ∪ (N(z) \ (N(u) ∪N(v))) ∪ (N(u) \ (N(v) ∪N(z)))

must induce a bipartite graph B.

Furthermore, for a remaining vertex w belonging to B:

If it has a neighbor that must be in S then it must belong to F ; On the other hand,
if w has a neighbor p /∈ {u,v,z} that must be in F , then w must belong to S, otherwise,
there is a cycle in F .

Thus, by checking if (N(v) ∩ N(z)) ∪ (N(u) ∩ N(v)) ∪ (N(u) ∩ N(z)) is a stable set
and then successively applying the classification process previously described (a 2-coloring
into S and F) from (N(v) ∩N(z)) ∪ (N(u) ∩N(v)) ∪ (N(u) ∩N(z)), in linear time, we
can either conclude that such a near-bipartition of G with {v, u, z} ∈ F does not exist, or
we construct a partition (S ′, F ′, U) of V (G) such that S ′ is stable, F ′ ⊇ {v, u, z} induces
a forest, and U is the set of unclassified vertices. Note that, by construction, no vertex in
U has neighbors in S ′ ∪ F ′ \ {v, u, z}.

Since any pair of adjacent vertices together with u, v and z induces a cycle, G has a
near-bipartition (S,F) with {v, u, z} ⊆ F if and only if G[U] has an independent vertex
cover, which is equivalent to U inducing a bipartite graph (see Lemma 2), which can also
be checked in linear time.

Next, we discuss the most intriguing case where the vertices of the dominating set
that must be in the forest do not induce a connected component.

Case 4: Suppose that {u, z} ⊆ F and v ∈ S. Recall that N(v) ⊆ F .

In the following, we consider two cases to be analyzed, either u and z are in the same
tree of F or they are in distinct trees.

Case A - u and z are in the same tree of F . Thus, there is a path P between them
in F . Such a path contains exactly one neighbor of u and exactly one neighbor of z,
otherwise V (P) induces a cycle in F .

Therefore, we enumerate each pair au,az (au = az is allowed) such that au ̸= v and
it is neighbor of u, az ̸= v and it is neighbor of z, and {au,az} ∪ N(v) induces a forest
having a tree containing u and z.

Observe that we have O(n2) pairs au,az, and in O(m) time we can check if {au,az} ∪
N(v) induces a forest having a tree containing u and z.

Now, for each enumerated pair au,az, we check if there is a near-bipartition having

5 Results obtained in P5-free graphs 47

{au,az} ∪N(v) ⊆ F as follows.

• (N(u) ∪N(z)) \ ({au,az} ∪N [v]) must induce a bipartite graph B, otherwise there
is no near-bipartition having {au,az} ∪N(v) ⊆ F .

Thus, it is enough to decide if B has a bipartition V (B) = B1 ∪ B2 satisfying the
following:

Let T be the tree of G[{au,az} ∪N(v)] containing u and z.

– Each vertex of B having at least two neighbors in a tree of G[{au,az} ∪N(v)]
must be in B1.

– Each tree of G[{au,az} ∪ N(v)] distinct from T has at most one neighbor in
B2.

If B has such a bipartition then B1 ∪ {v} = S and B2 ∪ {au,az} ∪ N(v) = F form
a near-bipartition of G. Again, such a bipartition, if any, can be found using a 2SAT
formula respectiing the following rules:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ B with at least two neighbors in a tree of G[{au,az} ∪ N(v)],
create a clause (xw);

4. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

3. For each tree of G[{au,az}∪N(v)] distinct from T , and for each pair of vertices w1,
w2 in the neighborhood of T , create a clause (xw1 + xw2);

The overall running time for this case is O(n4), because we consider O(n2) pairs and
for each one the described procedure can be performed in O(n2) time.

Case B - u and z are disconnected in F .

In this situation there is no path between vertices u and z in F .

Therefore, N(u)∩N(z) ⊆ S, G[N(u)∪N(z)] is bipartite, and the vertices of (N(u)∪
N(z))∩V (F) is a stable set, otherwise the vertices u and z are connected in F . Besides
that, N(v) ⊆ F .

At this point, analogously to the previous cases, we can use 2SAT to find an appro-
priated classification of the vertices of N(z) ∪N(u) into S and F (if any).

Let B = N(u) ∪N(z) \ {u,v,z}.

Previously seen that G has a near-bipartition (S,F), then we have that G[B] must be
bipartite. So, we have that the vertices of G[B] can be partitioned into two sets (B1, B2)
such that B1 ⊆ S and B2 ⊆ F . Thus, we must find a bipartition of B that satisfies the
following conditions:

− N(v) ∩ (N(u) ∪N(z)) ⊆ B2, otherwise S will have edges.

5 Results obtained in P5-free graphs 48

− N(u) ∩N(z) ⊆ B1, otherwise there is a path between vertices u and z in F .

− for each component T of G[N [v] \ (N [u] ∪N [z])] (which is a tree) holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T) induces a cycle);

• T has at most one neighbor in B2 (otherwise F has cycles);

Note that any bipartition (B1, B2) satisfying the above restrictions is sufficient to form
a near-bipartition such that B1 ∪ {v} = S. Now, we can reduce the problem of finding
such a bipartition of G[B] to the 2SAT problem by building a 2-CNF formula φ as follows:

1. for each vertex w ∈ B create a variable xw;

2. for each vertex w ∈ N(v) ∩ (N(u) ∪N(z)) create a clause (xw);

3. for each vertex w ∈ N(u) ∩N(z) create a clause (xw);

4. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 + xw2) and (xw1 + xw2);

5. for each vertex w ∈ B with at least two neighbors in the same component T of
G[N [v] \ (N [u] ∪N [z])], create a clause (xw);

6. For each component T of G[N [v] \ (N [u] ∪N [z])], and for each pair of vertices w1,
w2 in the neighborhood of T , create a clause (xw1 + xw2);

At this point, it is easy to see that φ is satisfied if and only if G[B] has a partition
(B1, B2) as requested (variables equal to true correspond to the vertices of B2). Since φ
can be built in O(n2) time with respect to the size of G[B] and 2SAT can be solved in
linear time (ASPVALL; PLASS; TARJAN, 1982), a near-bipartition (S,F) of G can be
found in O(n2) time (if any).

Since all the cases can be performed in O(n4) time, we conclude the proof.

Next, we improve the Bonamy, Dabrowski, Feghali, Johnson, and Paulusma’s re-
sult (BONAMY et al., 2019) concerning Near-Bipartiteness on P5-free graphs.

Corollary 1. Near-bipartiteness on P5-free graphs can be solved in O(n2 · m) time.

Proof. Near-bipartite graphs are K4-free and K4’s can be found in O(m2) time. Also,
near-bipartite P5-free graphs have either a dominating triangle or a dominating P3 due to
Bacsó and Tuza’s result (BACSÓ; TUZA, 1990). Hence, it is enough to apply Theorem 5
and Theorem 6. In addition, if G is P5-free then Case 4A of Theorem 6 can be performed
in O(n2 ·m) time, since either au = az or auaz is an edge of G.

In the light of previous demonstrations, the reader may be realizing that we are able to
extend our approach to deal with Near-Bipartiteness parameterized the domination
number. Actually, we can proceed as follows.

5.1 Summary of Cases 49

Theorem 7. Given a graph G and a dominating set D of G with size k, one can determine
whether G is near-bipartite in O(2k · n2k) time.

Proof. Given G and D we can “guess” the vertices of D in S and in F in O(2k) time.
For the vertices of D ∩ V (F) there are at most 2k− 2 neighbors used to connect some of
them in the forest F (at most one pair au,az for a pair u,z ∈ D). We can “guess” such
a vertices in O(n2k−2) time. Then we can procede in O(n2) time using 2SAT as in the
previous results.

5.1 Summary of Cases

Below are the results obtained in the study of the 6 cases analyzed in this work in chapter
4, Results obtained in graphs having a dominating edge, and chapter 5, Results obtained
in P5-free graphs.

Table 1: Time complexity obtained of cases analyzed in this study

Problem Analyzed Time Complexity
Partitioning problem in S, T in graphs with dominating edge
(Connected Near-Bipartiteness)

NP-Complete

Near-Bipartiteness problem in graphs with dominating edge O(n2)

Near-Bipartiteness problem for graphs with dominating edge being
|S| minimum (Independent Feedback Vertex Set) NP-hard

Near-Bipartiteness problem for graphs with dominating edge being
|F| minimum (Acyclic Vertex Cover) NP-hard

Near-Bipartiteness problem for graphs with dominating K3 O(n2)

Near-Bipartiteness problem for graphs with dominating P3 O(n4)

In addition, we will also present in Figure 8 a flowchart that visually illustrates the
verification process to determine whether a given graph G, free of P5, admits a near-
bipartition. The primary objective of this flowchart is to facilitate the comprehension of
this process, making it easier to follow the steps involved in this analysis.

5.1 Summary of Cases 50

YES

NO

Does this graph have a
K4 subgraph?

This graph is not
near-bipartite.

Does this graph have a
K3 subgraph?

YES

NO

Execute the algorithm
described in Theorem 5

Does this graph have a
P3 subgraph?

YES

NO

Execute the algorithm
described in Theorem 6

Does this graph have a
dominating edge?

Since the graph is P5-free, it implies that it
admits a dominating set that induces either a
clique or a P3 (Bacsó & Tuza, 1990).

YES

NO

Execute the Theorems
described in Chapter 4

In this case, the graph
has a universal vertex.

In this scenario, the graph has a diameter of 2.
Therefore, it is solvable in polynomial time.
(YANG; YUAN, 2006)

Figure 8: Flowchart: Verification of whether a P5-free graph admits a near-bipartition.

6 Conclusion

In this dissertation, we focused on the study of the Near-Bipartition problem and its
variants in graphs with dominating edges. Near-Bipartition is a fundamental problem
in graph theory, which involves determining if a graph can be partitioned into two sets:
a stable set and a forest.

The primary focus of this work was to analyze the Near-Bipartition in specific
instances of graphs that have a dominating edge, as well as in the context of P5-free
graphs.

Regarding graphs that have a dominating edge, we presented a polynomial-time algo-
rithm for Near-Bipartiteness and proved that Connected Near-Bipartiteness,
the variant where the forest must be connected, is NP-complete. Furthermore, we showed
that Independent Feedback Vertex Set, the problem of finding a near-bipartition
(S,F) minimizing |S|, and Acyclic Vertex Cover, the problem of finding a near-
bipartition (S,F) minimizing |F|, are both NP-hard when restricted to this class of
graphs.

Extending our polynomial-time approach to deal with Near-Bipartiteness in graphs
that have bounded dominating sets, we obtain an O(n2 · m)-time algorithm to solve it
on P5-free graphs. Additionally, it is mentioned in (BACSÓ; TUZA, 1990) that every
connected P5-free graph admits a dominating set that induces either a clique or a P3.
Therefore, for a connected graph without P5, the goal is to determine if it admits Near-
Bipartiteness, and this can be achieved by following these steps:

1. Check the existence of a dominating K4 in O(n4) time.

2. Check the existence of a dominating P3 or K3 in O(n3) time.

3. Execute the algorithm described in Theorem 5 or Theorem 6, which was presented
in Chapter 5 of this work, in O(m.n2) ∼= O(n4) time.

Thus, the study aims to demonstrate that the Near-Bipartiteness problem can be
solved in O(n4) time for a graph without P5, improving upon the existing result in the
literature of O(n16) (BONAMY et al., 2019).

Regarding the topics covered, throughout the first four chapters, we provided a sum-
mary of the subjects and main concepts that we studied and utilized for the development
of this dissertation, with the objective of presenting the concepts in an understandable
manner for the reader. Finally, in Chapter 4 and Chapter 5, we presented all the mathe-
matical proofs in graphs with a dominating edge and P5-free graphs, respectively.

6.1 Future works 52

Given the above, the findings presented in this work aim to contribute to a deeper
understanding of the Near-Bipartition problem and its variants in graphs with domi-
nating edges and those that are P5-free.

Next, we will list some open problems in the context of this Master’s thesis work.

6.1 Future works

This research opens avenues for further exploration in the field of graph theory and can
potentially lead to the development of more efficient algorithms.

As an extension to this work, we propose:

• Continue the study of Near-Bipartiteness problem in graphs with dominating
edges and P5-free graphs, however, by parameterizing the problem, establishing the
dominating set as the parameter. Our goal is to explore the possibility of obtaining
an Fixed-Parameter Tractable (FPT) algorithm based on Theorem 7, which provides
an XP algorithm. In other words, we aim to determine if it is possible to efficiently
verify, given a graph G and a dominating set D of G with size k, whether G is near-
bipartite, without resorting to a brute force approach (O(n2k) runtime complexity).

REFERÊNCIAS

ACHLIOPTAS, Demetrios. The complexity of G-free colourability. Discrete
Mathematics, v. 165-166, p. 21–30, 1997. ISSN 0012-365X.

AGRAWAL, Akanksha et al. Improved algorithms and combinatorial bounds for
independent feedback vertex set. In: SCHLOSS DAGSTUHL-LEIBNIZ-ZENTRUM
FUER INFORMATIK. 11TH International Symposium on Parameterized and Exact
Computation (IPEC 2016). [S.l.: s.n.], 2017.

ASPVALL, Bengt; PLASS, Michael F.; TARJAN, Robert Endre. A linear-time
algorithm for testing the truth of certain quantified Boolean formulas. English (US).
Information Processing Letters, Elsevier, v. 14, n. 4, 1982. ISSN 0020-0190. DOI:
10.1016/0020-0190(82)90036-9.

BACSÓ, Gabor; TUZA, Zsolt. Dominating cliques in P5-free graphs. Periodica
Mathematica Hungarica, Springer, v. 21, n. 4, p. 303–308, 1990.

BANG-JENSEN, Jørgen; BESSY, Stéphane. Degree-constrained 2-partitions of graphs.
Theoretical Computer Science, v. 776, p. 64–74, 2019. ISSN 0304-3975.

BONAMY, Marthe et al. Independent Feedback Vertex Set for P5-Free Graphs.
Algorithmica, Springer, v. 81, n. 4, p. 1342–1369, 2019.

BONAMY, Marthe et al. Independent feedback vertex sets for graphs of bounded
diameter. Information Processing Letters, v. 131, p. 26–32, July 2018. DOI:
10.1016/j.ipl.2017.11.004.

BONAMY, Marthe et al. Recognizing graphs close to bipartite graphs. In: SCHLOSS
DAGSTUHL-LEIBNIZ-ZENTRUM FUER INFORMATIK. 42ND International
Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
[S.l.: s.n.], 2017.

BONDY, John Adrian; MURTY, Uppaluri Siva Ramachandra, et al. Graph theory
with applications. [S.l.]: Macmillan London, 1976. v. 290.

BORODIN, O.V.; KOSTOCHKA, A.; YANCEY, M. On 1-improper 2-coloring of sparse
graphs. Discrete Math., v. 313, n. 22, p. 2638–2649, 2013.

BRANDSTÄDT, Andreas; BRITO, Synara, et al. Cycle transversals in perfect graphs
and cographs. Theoretical Computer Science, Elsevier, v. 469, p. 15–23, 2013.

BRANDSTÄDT, Andreas; LE, Van Bang; SZYMCZAK, Thomas. The complexity of
some problems related to Graph 3-colorability. Discrete Applied Mathematics,
v. 89, n. 1, p. 59–73, 1998. ISSN 0166-218X.

CAMBY, Eglantine; SCHAUDT, Oliver. A new characterization of Pk-free graphs.
Algorithmica, Springer, v. 75, n. 1, p. 205–217, 2016.

CORMEN, Thomas H. et al. Introduction to Algorithms. 3rd. Cambridge, MA:
MIT Press, 2009. ISBN 978-0262033848.

REFERÊNCIAS 54

COWEN, Lenore; GODDARD, Wayne; JESURUM, C. Esther. Defective coloring
revisited. J. Graph Theory, v. 24, n. 3, p. 205–219, 1997.

DASGUPTA, Sanjoy; PAPADIMITRIOU, Christos H.; VAZIRANI, Umesh.
Algorithms. 1st. Boston, MA: McGraw-Hill Education, 2006. ISBN 978-0073523408.

DROSS, François; MONTASSIER, Mickael; PINLOU, Alexandre. Partitioning a
triangle-free planar graph into a forest and a forest of bounded degree. European
Journal of Combinatorics, Elsevier, v. 66, p. 81–94, 2017.

GAREY, Michael R; JOHNSON, David S. Computers and intractability: A Guide
to the Theory of NP-completeness. [S.l.]: freeman San Francisco, 1979. v. 174.

GOLOVACH, Petr; HEGGERNES, Pinar. Choosability of P5-Free Graphs. In: v. 5734,
p. 382–391. ISBN 978-3-642-03815-0. DOI: 10.1007/978-3-642-03816-7_33.

GRÖTSCHEL, Martin; LOVÁSZ, László; SCHRIJVER, Alexander. Polynomial
algorithms for perfect graphs. Ann. Discrete Math, v. 21, p. 325–356, 1984.

HOANG, Chinh et al. Deciding k-Colorability of P5-Free Graphs in Polynomial Time.
Algorithmica, v. 57, p. 74–81, May 2010. DOI: 10.1007/s00453-008-9197-8.

KARP, Richard M. Reducibility among combinatorial problems. In: COMPLEXITY of
computer computations. [S.l.]: Springer, 1972. P. 85–103.

LI, Shaohua; PILIPCZUK, Marcin. An improved FPT algorithm for independent
feedback vertex set. Theory of Computing Systems, Springer, v. 64, n. 8,
p. 1317–1330, 2020.

LIMA, Carlos V.G.C. et al. Decycling with a matching. Infor. Proc. Letters, v. 124,
p. 26–29, 2017.

LIMA, Carlos Vinicius et al. On the computational complexity of the bipartizing
matching problem. Annals of Operations Research, Springer, 2021.

LOKSHTANOV, D.; VATSHELLE, Martin; VILLANGER, Yngve. Independent Set in
P5-Free Graphs in Polynomial Time. Proceedings of SODA, p. 570–581, Jan. 2014.
DOI: 10.1137/1.9781611973402.43.

MISRA, Neeldhara; NARAYANASWAMY, N.S., et al. Solving min ones 2-sat as fast as
vertex cover. Theoretical Computer Science, v. 506, p. 115–121, 2013. ISSN
0304-3975. DOI: https://doi.org/10.1016/j.tcs.2013.07.019. Available from:
<https://www.sciencedirect.com/science/article/pii/S0304397513005355>.

MISRA, Neeldhara; PHILIP, Geevarghese, et al. On parameterized independent
feedback vertex set. Theoretical Computer Science, Elsevier, v. 461, p. 65–75, 2012.

PROTTI, Fábio; SOUZA, Uéverton S. Decycling a graph by the removal of a matching:
new algorithmic and structural aspects in some classes of graphs. Discrete
Mathematics & Theoretical Computer Science, v. 20, n. 2, 2018.

SCHAEFER, Thomas J. The complexity of satisfiability problems. In: PROCEEDINGS
of the tenth annual ACM Symposium on Theory of Computing. [S.l.: s.n.], 1978.
P. 216–226.

SZWARCFITER, J. L. Grafos e algoritmos computacionais. Rio de Janeiro:
Campus, 1988.

REFERÊNCIAS 55

YANG, Aifeng; YUAN, Jinjiang. Partition the vertices of a graph into one independent
set and one acyclic set. Discrete Mathematics, v. 306, n. 12, p. 1207–1216, 2006.
ISSN 0012-365X.

