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Resumo

A maioria dos avanços recentes nos modelos de língua neurais são avaliados em bench-

marks e tarefas primordialmente em uma língua, o inglês. Menos atenção é dada a mais

de sete mil outras línguas, faladas por aproximadamente 6.5 bilhões de pessoas ao redor

do mundo. Uma delas é o português: apesar de ser a sexta língua mais falada no mundo,

ainda existem muito menos recursos linguísticos para treinamento e avaliação de redes

neurais em português, em comparação com o inglês. Notavelmente, os usuários de lín-

gua portuguesa compõem um dos grupos mais ativos de usuários do Twitter; no entanto,

nenhum modelo de língua pré-treinado em tweets em português foi estudado extensiva-

mente na literatura. Além da língua, os modelos pré-treinados baseados em tweets devem

levar em conta aspectos culturais, o estilo linguístico informal, emprego de símbolos e o

número limitado de caracteres. Esta dissertação busca endereçar essa lacuna ao intro-

duzir o BERTweet.BR, o primeiro modelo pré-treinado em larga escala específico para

o domínio de tweets em português do Brasil. O modelo BERTweet.BR possui a mesma

arquitetura do BERTweetbase, tendo sido treinado do zero seguindo o procedimento de

pré-treinamento do modelo RoBERTa em um corpus de 100M de tweets em português.

Na tarefa de análise de sentimentos, os experimentos mostram que o BERTweet.BR supera

três modelos multilíngues baseados na arquitetura dos Transformers, além do BERTim-

bau, um modelo de Transformers genérico pré-treinado especificamente para o português

do Brasil. Desta forma, fica demonstrado que o modelo de língua BERTweet.BR pos-

sui grande potencial para fomentar novas pesquisas em tarefas analíticas para tweets em

Português.

Palavras-chave: análise de sentimento , twitter , modelos de linguagem , arquitetura de

transformers , extração de atributos de modelos , ajuste fino de modelos , adaptação de

domínio , pré-treinamento continuado.



Abstract

Most recent progress in neural language models predominantly focuses on one language,

English. Less attention is given to the more than seven thousand others, spoken by ap-

proximately 6.5 billion people around the world. One of these is Portuguese: despite

being the sixth most spoken language in the world, still has fewer neural-based linguistic

resources compared to English. Notably, Portuguese speakers compose one of the most

active groups of Twitter users; however, no pre-trained language model for Portuguese

tweets has been extensively studied in the literature. Besides the language, tweets-based

pre-trained models must account for the cultural code, informal linguistic style, code-

switching, and the limited number of characters. This manuscript addresses this gap

by introducing BERTweet.BR, the first publicly available large-scale pre-trained model

specifically for the Brazilian Portuguese tweets domain. BERTweet.BR has the same

architecture as BERTweetbase, a BERT-based model for English tweets, and was trained

from scratch following the RoBERTa pre-training procedure on a 100M Portuguese tweets

corpus. On the sentiment analysis task, experiments show that BERTweet.BR outper-

forms three multilingual Transformers and BERTimbau, a monolingual general-domain

Brazilian Portuguese language model. Thus, BERTweet.BR language model demonstrates

significant potential to foster new research in analytical tasks for Portuguese tweets.

Keywords: sentiment analysis , twitter , language model , transformer , feature-based ,

fine-tuning , domain adaptation , continued pre-training.
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1 Introduction

Vector Space Models (VSM) (salton; wong; yang, 1975) are one of the earliest and

most common strategies adopted and for many years remained the standard technique for

language representation in Natural Language Processing (NLP) tasks. Proposed in 2013,

Word2Vec (mikolov; sutskever, et al., 2013) was widely adopted for its efficiency and

ease of use. Since then, the model training pipeline for NLP tasks using word-embeddings

remained essentially unchanged: word embeddings pre-trained on large amounts of unla-

beled data through algorithms such as Word2Vec (mikolov; sutskever, et al., 2013),

GloVe (pennington; socher; manning, 2014) and FastText (mikolov; grave, et al.,

2018) were widely used to initialize the first layer of a predictive model. While pre-trained

word vectors have been immensely dominant and successfully applied to a variety of tasks,

they had two significant limitations: i) they are shallow approaches only incorporating

previous knowledge in the first layer of the model; ii) they are part of a group of static

methods that do not take multiple contexts into account when generating embeddings,

meaning that a single vector is generated to represent each word in the dictionary, ignoring

the different meanings a word can assume in that language.

The introduction of contextualized embeddings – which address polysemy by allowing

distinct embeddings for the same word, depending on the context it appears – opened

up a new era for deep learning-based models suited for NLP tasks (peters et al., 2018;

howard; ruder, 2018). Notably, the Transformers (vaswani et al., 2017), further ex-

plored in models like BERT (devlin et al., 2019) and GPT (radford et al., 2018),

demonstrated that pre-trained multi-layer language models based on attention mecha-

nisms could be easily embedded into a transfer learning strategy to obtain state-of-the-

art results in a wide range of downstream tasks1, even in scenarios with only a few la-
1In the context of NLP, downstream tasks are tasks that can be performed using a pre-trained language

representation model, such as BERTweet.BR. These tasks typically require a deeper understanding of
the text than the tasks used to pre-train the model. Some examples of downstream tasks include text
classification, natural language inference, named entity recognition (NER), question answering, machine
translation, and summarization. Downstream tasks are an important part of NLP because they allow
us to use pre-trained models to solve real-world problems. By fine-tuning a pre-trained model on a
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beled data. Following BERT, multiple contextualized language models have been trained

from heterogeneous and conventional text corpora extracted from sources such as books,

Wikipedia2, and news sites (zhuang et al., 2021; sanh et al., 2019; lan et al., 2020).

While those generic-domain representations have achieved remarkable performance

across many tasks with multiple datasets taken from a variety of sources (wang; singh,

et al., 2018; wang; pruksachatkun, et al., 2019), studies have shown that training

domain-specific language models can deliver significant gains when dealing with specific

textual contexts (gururangan et al., 2020; lee et al., 2020). BERTweet (nguyen;

vu; nguyen, 2020), for example, was trained exclusively from tweets in English to cap-

ture the informal characteristics present in short texts typical of the Twitter3 platform.

Experiments showed that BERTweet outperforms the baselines RoBERTabase (zhuang

et al., 2021) and XLM-Rbase (conneau et al., 2020) on three Twitter NLP tasks.

Regarding languages other than English, there is some effort on domain adapta-

tion of large-scale multilingual language models to tweets (barbieri; espinosa-anke;

camacho-collados, 2022). However, a question arises as to whether the performance of

monolingual models is better, given the specific particularities of tweets. This way, many

recent works have released large-scale language models adapted to the Twitter domain

in languages other than English, such as French (guo et al., 2021), Indonesian (koto;

lau; baldwin, 2021), Spanish (huertas-tato; martin; camacho, 2022; gonzález;

hurtado; pla, 2020), Arabic (abdelali et al., 2021), and Italian (polignano et al.,

2019).

On the other hand, several thousand other languages remain neglected. Portuguese,

for example, is the sixth most spoken language in the world, with 258 million Portuguese

speakers (eberhard; simons; fennig, 2023), and the fifth most used language on the

Internet (internet world stats, 2020). Brazil has the world’s largest population

of speakers from Portuguese-speaking countries: approximately 214 million people. Even

though only 70% of Brazilians have regular internet access, Brazilians spend more time on

the Internet than watching TV. Indeed, Brazil is responsible for 10% of the total time spent

on social media globally, positioned in second place, only behind the United States (data

reportal, 2021). Along with Spanish, Japanese, and Indonesian-speaking users, Por-

tuguese speakers are among the most active voices on Twitter (hong; convertino; chi,

2011), being the fifth country regarding the number of Twitter users (statista, 2021).

downstream task, we can improve its performance and make it more useful for practical applications. In
the context of NLP, the terms downstream task and final task are used interchangeably

2https://www.wikipedia.org/
3http://www.twitter.com

https://www.wikipedia.org/
http://www.twitter.com
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These numbers indicate the enormous potential and need for developing language

models specifically addressing Twitter-based NLP tasks in Portuguese. Although some

previous studies fine-tuned contextualized embeddings for Portuguese tweets (souza;

nogueira; lotufo, 2020), the question remains whether a model trained specifically for

Portuguese tweets performs better than adapting existing multilingual or formal language

models to tweets-based tasks. However, no pre-trained language model from a large-scale

corpus of tweets for Portuguese is extensively studied in the literature.

In Sentiment analysis in Portuguese tweets: an evaluation of diverse word represen-

tation models, Vianna et al. (2023) thoroughly examined the effectiveness of static em-

beddings and contextualized Transformers-based language models as feature extractors in

the context of Portuguese tweets sentiment classification. In this newly released research

that forms the foundation of this dissertation, we carried out experiments using the base

weights of pre-trained models along with three additional versions of these models that

were adapted through continued pre-training strategies. While the study explored differ-

ent pipelines, it was constrained by using existing language models only. Then, as a future

research direction, Vianna et al. (2023) proposed to investigate whether training a new

language model from scratch using Portuguese tweets could advance the research in NLP

analytical tasks for Portuguese tweets, given the unique characteristics of the language

and the informal and noisy nature of tweets.

In this context, we introduce BERTweet.BR, a public large-scale pre-trained model

specific to the Brazilian Portuguese tweets domain. BERTweet.BR has the same archi-

tecture of BERTweetbase (nguyen; vu; nguyen, 2020). Likewise, it was trained from

scratch following RoBERTa (zhuang et al., 2021) pre-training procedure on a corpus of

approximately 9 GB containing 100M Portuguese tweets.

To evaluate BERTweet.BR, we also follow (vianna et al., 2023) and selected the sen-

timent analysis task (liu, 2020) as the final task, given its broad application scenarios,

enabling companies and governments to gain valuable insights into people’s attitudes and

perceptions, from political opinion (santos; bernardini; paes, 2021) to stock mar-

ket (oliveira carosia; coelho; silva, 2020). The evaluation pipelines we employed

include the same collection of eight manually annotated datasets from Vianna et al. (2023),

five of which have three classes, while the rest are binary. We compared the performance

of BERTweet.BR to a broad set of contextualized transformer-based models containing

language-specific, multilingual, and Twitter-adapted models. To ascertain the adoption of

BERTweet.BR and show its predictive superiority on that task, we elicited two groups of
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experiments: (i.) adapting the language model that induces contextualized embeddings

and (ii.) training classifiers from ready-to-use or adapted embeddings coming from the

language models.

1.1 Research Questions

In this dissertation, we designed experiments to investigate the following research ques-

tions.

• RQ1: How does BERTweet.BR compare to adapting existing language models to the

tweets domain?

We follow the two approaches of (gururangan et al., 2020) to adapt pre-trained

language models and unfold this research question in the following two.

– RQ1.1: What is the predictive performance gain of the pre-trained BERTweet.BR

model, when compared to adapting existing generic monolingual and multilin-

gual models to the generic domain of tweets?

To answer this question, we adapted the most used Portuguese monolingual

model, BERTimbau (souza; nogueira; lotufo, 2020), and the multilingual

models mBERT (devlin et al., 2019) and XLM-R (conneau et al., 2020) to

the same dataset BERTweet.BR was pre-trained following the Domain Adap-

tative Pre-Training (DAPT) procedure (gururangan et al., 2020).

– RQ1.2: What is the predictive performance gain of the pre-trained BERTweet.BR

model, when compared to adapting existing generic monolingual and multilin-

gual models to sentiment-prone tweets?

To answer this question, we adapted the models mentioned in RQ1.1 to tweet

sentiment datasets following the Task Adaptative Pre-Training (TAPT) pro-

cedure (gururangan et al., 2020).

• RQ2: What is the difference in the predictive performance of fine-tuning to the

downstream tasks of the tweets-trained or adapted embeddings compared to using

them without fine-tuning?

This research question unfolds in the following two.

– RQ2.1 What is the predictive performance gain of extracting the embeddings

from BERTweet.BR, when compared to executing this same procedure in the

other contextualized models?
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We followed a feature-based approach to answer this question and trained a

logistic regression classifier with embeddings extracted from BERTweet.BR,

original and adapted BERTimbau, mBERT, and XLM-R. Additionally, we

elicited another model trained from multilingual tweets, namely, the XLM-

T(barbieri; espinosa-anke; camacho-collados, 2022) model.

– RQ2.2 What is the predictive performance gain of fine-tuning BERTweet.BR

to the downstream datasets, when compared to executing this same procedure

in the other contextualized models?

To answer this question, we fine-tuned the original and adapted contextualized

models mentioned in RQ2.1.

In addition to answer the research questions, we compare BERTweet.BR model’s

predictive performance to a fastText-based classifier (mikolov; grave, et al., 2018) as

a baseline result. Experiments showed that our model consistently outperforms mBERT,

BERTimbau, XLM-R, and XLM-T in most cases and the static word embeddings from

fastText (mikolov; grave, et al., 2018) in all the experiments.

1.2 Contributions

Brief, we highlight the main contributions of this work:

• A study titled Sentiment analysis in Portuguese tweets: an evaluation of diverse

word representation models where Vianna et al. (2023) thoroughly examined the

effectiveness of static embeddings and contextualized language models following a

feature-based approach in the context of sentiment classification. This forms the

bedrock of this dissertation and has been recently published in the Language Re-

sources and Evaluation (LREV)4, a Qualis-A1 publication devoted to the acquisi-

tion, creation, annotation, and use of language resources.

• We introduce BERTweet.BR, a large-scale pre-trained language model for Brazilian

Portuguese tweets. We empirically show that it outperforms a large set of training

strategies and models in sentiment classification using datasets of distinct charac-

teristics and sizes, certifying the effectiveness of a domain-specific language model

pre-trained for Portuguese tweets.
4https://www.springer.com/journal/10579

https://www.springer.com/journal/10579
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• A set of experiments investigating how static and transformer-based word embed-

dings for Portuguese, trained on domains other than tweets, perform in the Twitter

sentiment analysis task.

• A munuscript called BERTweet.BR: A Pre-Trained Language Model for Tweets in

Portuguese which has recently been submitted to the Computational Linguistics5,

a Qualis-A1 journal sponsored by the Association for Computational Linguistics

(ACL)6.

• To facilitate future research on Portuguese tweets, we made BERTweet.BR publicly

available on Huggingface’s model hub7. Also, we open-sourced all the code and

documentation on Github8.

1.3 Organization

The rest of the dissertation is organized as follows. In Section 2, we introduce the concepts

necessary for understanding the architecture and pre-training approach of the proposed

language model BERTweet.BR as well as a description of related studies previously in-

vestigated in the literature. Section 3 outlines the architecture, dataset, and optimization

setup adopted to pre-train the BERTweet.BR language model. Section 4 presents the

workflow of the experiments carried out in this dissertation. In Section 5, we present the

experimental results achieved by responding to the research questions introduced in this

section. Next, in Section 6, we bring a qualitative analysis of the conducted experiments;

in Section 7, we present the conclusions of this study and future research directions. Fi-

nally, in Appendix A we describe the eight datasets employed to evaluate BERTweet.BR

on sentiment analysis.

5Computational Linguistics is the longest-running publication devoted exclusively to the computa-
tional and mathematical properties of language and the design and analysis of natural language pro-
cessing systems. This highly regarded quarterly offers university and industry linguists, computational
linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists,
and philosophers the latest information about the computational aspects of all the facets of language
research. https://cljournal.org/

6https://www.aclweb.org/
7https://huggingface.co/melll-uff/bertweetbr
8https://github.com/MeLLL-UFF/BERTweet.br

https://cljournal.org/
https://www.aclweb.org/
https://huggingface.co/melll-uff/bertweetbr
https://github.com/MeLLL-UFF/BERTweet.br


2 Key Concepts and Literature Review

This chapter introduces concepts necessary for understanding the architecture and pre-

training approach of the proposed language model BERTweet.BR, as well as the fun-

damental terms related to the benchmark models we used to evaluate and compare the

performance of BERTweet.BR. Also, it describes related studies previously investigated

in the literature.

2.1 Language Models

In the domain of computational linguistics, language models refer to a subset of prob-

abilistic models that are tasked with predicting the next or a masked word, given the

previous or the surrounding words in a sentence (jurafsky; martin, 2000). They are

designed to encapsulate the syntactical structure and semantic context of natural lan-

guages, aiming at enabling machines to generate human-like text. With the emergence

of deep learning techniques, particularly the introduction of the Transformers architec-

ture (vaswani et al., 2017), neural language models have become increasingly prominent

due to their enhanced ability to capture longer dependencies and model semantic rela-

tions more effectively. They are the backbone of several state-of-the-art NLP systems

today. More recent models, commonly called large language models (LLM) and powered

by billions of parameters, demonstrate an unprecedented capacity to generate human-like

text, comprehend complex textual contexts, and perform sophisticated language tasks.

Transformers models like BERT (devlin et al., 2019), RoBERTa (zhuang et al.,

2021), and BERTweet (nguyen; vu; nguyen, 2020) are trained as language models,

meaning they have been trained on large amounts of raw text in a self-supervised fashion.

Self-supervised learning leverages abundant unlabeled text data from sources like books

and the Internet and automatically generates labeled data from this unannotated corpus,

thereby eliminating humans’ need for manual data labeling. On top of this data, this

type of model develops a statistical and generic understanding of the language it has
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been trained on, but may not readily apply to specific practical tasks. Because of this,

the generic pre-trained model resulting from this first training stage then goes through

a process called transfer learning, as shown in Figure 1. During this process, the model

is now fine-tuned in a supervised way — using human-annotated labels — on a given

downstream task.

Static and Contextualized Language Models. There are two primary types

of language models:static and contextualized language models. Static language models

like Word2Vec (mikolov; sutskever, et al., 2013), GloVe (pennington; socher;

manning, 2014), and FastText (mikolov; grave, et al., 2018) are models that map

words to fixed-length vectors, representing their semantic meanings based on their co-

occurrence patterns in a text corpus. They are trained on a large corpus of text and

produce a fixed representation of each word independently of the context in which the

word appears. For example, the word “bank” can mean a financial institution or a river

bank. A static language model would produce the same representation for both meanings,

regardless of the context. Static models are relatively simple to train and can be used

for various tasks, such as text classification and question answering. While these models

have proven effective in various NLP tasks, they exhibit limitations in capturing polysemy,

assigning the same vector to a word regardless of its context. This can lead to problems

with tasks that require understanding the meaning of a word in a particular scenario,

such as sentiment analysis and machine translation. On the other hand, contextualized

language models such as BERT (devlin et al., 2019), GPT (radford et al., 2018),

ELMo (peters et al., 2018), and RoBERTa (zhuang et al., 2021) generate dynamic

word embeddings based on the surrounding context of a word in a given sentence. They

are trained on a very large corpus of text and represent each word that is dependent on

the context in which the word appears. This means the same word can have different

representations depending on the context. For example, the word “bank” might have a

different representation in the sentence “I went to the bank” than in the sentence “The river

bank was flooded”. Although they lead to better performance in various tasks, they are

more computationally expensive, slower to train, and require sophisticated architecture

and fine-tuning strategies compared to static models. This increased complexity can make

them more challenging to implement and optimize.



2.2 Training Pipelines 20

Figure 1: Transfer learning approach for language models: pre-training and fine-tuning.

2.2 Training Pipelines

In the standard transfer learning setup (Figure 1), a model is first pre-trained on large

amounts of unlabeled data using a language modeling loss such as casual language mod-

eling or masked language modeling (devlin et al., 2019). The pre-trained model is then

fine-tuned on labeled data of a downstream task using a standard cross-entropy loss.

In most cases, the pre-training step is called training a model from scratch. The model

weights are randomly initialized, and the training begins without prior knowledge. This

pre-training phase usually requires a significant amount of unannotated data. Training is

usually expensive and can take several weeks to complete.

Fine-tuning, on the other hand, is the training done after a model has been pre-

trained. To perform fine-tuning, you first acquire a pre-trained language model, then

perform additional training with a dataset specific to your task. Typically, the pre-trained

model was already trained on a dataset similar to the fine-tuning dataset. The fine-tuning

process can thus take advantage of the knowledge acquired by the initial model during

pre-training. Since the pre-trained model was already trained on lots of data, the fine-

tuning requires way less data to get decent results, and the amount of time and resources

needed to get good results are much lower.

For instance, a pre-trained model, initially trained on heterogeneous and general-

domain data from books and English Wikipedia, could be subsequently fine-tuned to

generate a specialized model designed explicitly for classifying emotions. Fine-tuning this
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pre-trained model necessitates a limited amount of data, as the acquired knowledge of the

pre-trained model is “transferred” to the target task, thereby demonstrating the principle

of transfer learning. Consequently, fine-tuning a model incurs lower temporal, data, finan-

cial, and environmental costs than training a model from scratch. This is a very similar

pipeline followed, for example, by the text classification model roberta-base-go_emotions1.

This is a fine-tuned model on top of RoBERTabase (zhuang et al., 2021) for multi-label

emotion classification task from GoEmotions (demszky et al., 2020)dataset2. In this

case, the RoBERTabase is the base language model which has been pre-trained on a large

corpus of books, the Wikipedia and news sites and made publicly available by authors.

Then, to create roberta-base-go_emotions a public annotated dataset containing 58 thou-

sand comments from Reddit3 platform was used to fine-tune a sequence classification

model for three epochs. The resulting model can now classify unseen comments text into

one or more of its 28 categories.

2.3 Domain Adaptation

Pre-trained language models such as BERT and RoBERTa have demonstrated remarkable

performance in capturing rich semantic representations by training on diverse text sources.

However, these models may exhibit suboptimal performance when applied to contexts

significantly differing from their source domain. As demonstrated by (gururangan et

al., 2020), the more distinct the target and source domains are, the greater the degradation

of generic models (source) when used in specific domains (target), and the higher will

be the potential of techniques for model language domain adaptation. Following this

procedure, a pre-trained LM undergoes additional pre-training steps to adapt it to a

desired target domain.

Specifically, one strategy involves continuing the pre-training of an LM like BERT

using specialized corpus from the context of the target domain (Figure 2). Following this

approach, legal documents and scientific papers, for example, were utilized to fine-tune the

weights of a BERT model to create adapted versions of this LM that captures the specific

jargon and nuances of these new contexts resulting in SciBERT (beltagy; lo; cohan,

2019) and LegalBERT (chalkidis et al., 2020) language models. Exposing the model to

domain-specific data during the continued pre-training phase can better understand the

target domain and enhance its performance on tasks within that domain. Note that this
1https://huggingface.co/SamLowe/roberta-base-go_emotions
2https://huggingface.co/datasets/go_emotions
3https://www.reddit.com/

https://huggingface.co/SamLowe/roberta-base-go_emotions
https://huggingface.co/datasets/go_emotions
https://www.reddit.com/
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Figure 2: Domain Adaptation.

adaptation involves fine-tuning the language model on additional data before task-specific

fine-tuning as done in the standard pipeline (Figure 1) and that the model is adjusted with

the pre-training objective, meaning the domain adaptation also requires only unlabeled

data.

Domain definition. Domain, in language model training, refers to a particular area

of knowledge, expertise, or industry with its own specialized vocabulary, terminology, and

conventions. In NLP, domain-specific models are trained on text corpora related to the

target domain, allowing them to understand and generate relevant and appropriate text

for the specific subject matter. Domains can vary widely, from general domains covering

everyday language and common topics to specific domains focusing on specialized fields

such as finance, medicine, law, or technology. A language model trained in the medical

domain would be adept at handling medical terminology and concepts. In contrast, a

model trained in the legal domain would be proficient in dealing with legal jargon and

contexts. The domain can also be defined by the specific languages and style the model

specializes in, like our BERTweet.BR, trained simultaneously for the domains of tweets

and Portuguese language. Here, both the language and the Twitter platform are domains.

Finally, the domain can also be defined by the tasks the model is being trained to perform,

such as question-answering or natural language inference. Domain adaptation is a critical

aspect of NLP, as it enables models to perform well in specialized areas and cater to the

unique requirements of various industries.
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2.4 Multi-Head Attention Mechanism

Transformer (vaswani et al., 2017) was the first transduction model relying entirely on

self-attention to compute representations of its input and output without using sequence-

aligned RNNs or convolution. The self-attention mechanism enables the model to focus

selectively on different parts of the input sequence during the encoding process. It ac-

complishes this by computing a weighted sum of the values of all the input tokens, where

a learned similarity function between each token and every other token in the sequence

determines the weights.

In particular, the “Scaled Dot-Product Attention”, the attention mechanism proposed

by Transformers as illustrated in Figure 3 (c) can be formulated as follows:

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V , (2.1)

where Q, K, and V are matrices composed of query, key, and value vectors, respectively.

The origin of such naming can be found in search engines, where a user’s query is matched

against the internal engine’s keys, and several values represent the result.

The goal is to have an attention mechanism in which any element in a sequence can

attend to any other while still being efficient to compute. The dot-product attention takes

as input a set of queries Q ∈ RT×dk , keys K ∈ RT×dk and values V ∈ RT×dv where T is the

sequence length, and dk and dv are the hidden dimensionality for queries/keys and values,

respectively. The attention value from element i to j is based on its similarity of the query

Qi and key Kj, using the dot product as the similarity metric. The matrix multiplication

QKT performs the dot product for every possible pair of queries and keys, resulting in a

matrix of the shape T ×T . Each row represents the attention logits for a specific element

i to all other elements in the sequence. On these, a softmax is applied and multiplied

with the value vector to obtain a weighted mean (the weights being determined by the

attention). Finally, the scaled dot-product attention introduces the scaling factor 1/
√
dk

to prevent the softmax function from giving values close to 1 for highly correlated vectors

and values close to 0 for non-correlated vectors, making gradients more reasonable for

back-propagation.

The attention mechanism from Transformers allows a network to attend over a se-

quence, but often, multiple aspects of a sequence element must be attended to. There-

fore, it was extended to multiple heads, where multiple query-key-value triplets are passed
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Figure 3: Transformers Architecture by Vaswani et al. (2017).

through the scaled dot product attention independently. The heads are then concatenated

and combined with a final weight matrix. For the original architecture of Transformers,

the authors employed h = 8 parallel attention layers or heads. The building blocks of

the multi-head attention are depicted in Figure 3 (b), and its operation can be expressed

mathematically as follows:

Multihead(Q,K,V ) = Concat(head1,...,headh)W
O (2.2)

where headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2.3)

The Transformer model has an encoder-decoder architecture, commonly used in many

Neural Machine Translation (NMT) models (bahdanau; cho; bengio, 2015). The en-

coder generates an attention-based representation to locate a specific piece of information

from a significant context. In its original version, the model consists of a stack of N = 6

identical encoder modules, each containing two sub-modules, a multi-head self-attention

layer and a fully connected feed-forward network as represented in Figure 3(a).

On the other hand, the function of the decoder is to retrieve information from the

encoded representation. The architecture is quite similar to the encoder, except that the

decoder contains two multi-head attention sub-modules instead of one in each identical
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repeating module. The first multi-head attention sub-module is masked to prevent posi-

tions from attending to the future. The decoder also comprises a stack of N = 6 identical

layers in the standard Transformers architecture.

Since their introduction in 2017, Transformers have rapidly become the state-of-the-

art approach to tackle tasks in many domains such as Natural Language Processing,

speech recognition, and computer vision. Each of its parts can be used independently and

has been applied to different language models, depending on the task:

• Encoder-only models: Encoder-only models are a type of machine learning model

that uses the encoder portion of a Transformer to learn the meaning of a sequence

of text. The encoder in an encoder-only model is typically a stack of self-attention

layers that takes an input sequence of text and produces a fixed-length vector repre-

sentation of that text. This type of models are typically simpler and faster to train

than decoder-only models and are more suitable for tasks that require an under-

standing of the input, such as sentence classification and Named Entity Recognition

(NER) and extractive question answering. These models are often called auto-

encoding models. Examples of this family of models include BERT (devlin et al.,

2019), RoBERTa (zhuang et al., 2021) and DistilBERT (sanh et al., 2019).

• Decoder-only models: Decoder-only models are machine learning models that

use the decoder portion of a Transformer to generate text. The decoder takes a

sequence of input tokens and produces a sequence of output tokens. This is done

by iteratively attending to the input tokens and predicting the next output token.

Decoder-only models are typically used for generative tasks, such as text generation,

translation, and summarization. They are also used for tasks where the output text

is more important than the input text, such as machine translation. These models

are very effective for various generative tasks and are often used as the basis for

more complex models. These models are often called auto-regressive models. The

pre-training of decoder models usually revolves around predicting the next word in

the sentence. GPT (radford et al., 2018) is an example of this family of models.

• Encoder-decoder models: Encoder-decoder models (also known as sequence-to-

sequence models) use both parts of the Transformer architecture: the encoder and

the decoder. The encoder takes the input sequence and produces a fixed-length

vector representation of the text. The decoder then takes this vector representation

and produces a sequence of output tokens. Encoder-decoder models are typically

used for tasks that involve understanding and generating text, such as machine
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translation, text summarization, and question answering. They are also used for

tasks where the input and output sequences are of different lengths, such as speech

recognition and image captioning. Some examples of encoder-decoder models in-

clude the original Transformer model, BART (lewis et al., 2020) and T5 (raffel

et al., 2020).

2.5 BERT Language Model

BERT is basically a stack of Transformer-encoder layers designed by Devlin et al. (2019)

and pre-trained using a combination of Masked Language Model (MLM) and Next Sen-

tence Prediction (NSP) tasks on a large corpus comprising the BooksCorpus (zhu et al.,

2015) (800M words) and the English Wikipedia (2,500M words) corpora.

Devlin et al. (2019) released BERT models in two different sizes: BERTBase (110M

parameters) and BERTLarge (340M parameters). Both sizes have a larger number of en-

coder layers than the original Transformers –– 12 for the base version and 24 for the

large version. These also have larger feed-forward-networks (768 and 1024 hidden units,

respectively) and more attention heads (12 and 16, respectively) than the default con-

figuration in the reference implementation of the Transformer in the original paper (six

encoder layers, 512 hidden units, and eight attention heads).

BERT receives as input a single sentence (for single-sequence tasks like sentiment anal-

ysis) or a pair of sentences (for sequence-pair tasks like question-answering) represented

as a sequence of tokens. The WordPiece algorithm (wu et al., 2016), pre-trained with a

vocabulary of 30,000 tokens, tokenizes the input. Every sequence of tokens is supplied

with a special classification token, [CLS], which can be used for classification tasks. For

representing a pair of sentences (S1,S2), a unique token, [SEP], is placed between them,

and a learned embedding must be added to every token indicating whether it belongs to

the sentence S1 or S2.

Just like the vanilla encoder of the transformer, BERT takes a sequence of words as

input which keep flowing up the stack. Each layer applies self-attention, passes its results

through a feed-forward network, and then hands it off to the next encoder as represented

in Figure 4.

Devlin et al. (2019) also proposed a framework to fine-tune BERT pre-trained model

using labeled data for a specific downstream task to leverage and refine the knowledge

acquired during the pre-training process. In addition, they presented a feature-based ap-
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Figure 4: The BERTBase Flow.

proach, where fixed features are extracted from the pre-trained model to define embedding

representations for tokens. Next, those embeddings can serve as examples to train any

classification model.

2.6 BERTweet Language Model

Tweets exhibit a distinct and casual linguistic style, characterized by misspellings, slang,

hashtags, emoticons, and URL sharing. Consequently, previously existing language mod-

els trained on standard text corpora, such as Wikipedia, may not align well with tweets.

These models possess a conventional vocabulary that rarely matches the tweet vocabu-

lary. In Transformer-based architectures utilizing subwords-based tokenizers, the noisy

vocabulary of tweets can fragment words into numerous small pieces, ultimately distorting

the original sentence meaning.

To address this issue, Nguyen, Vu, and Nguyen (2020) developed BERTweet, a pub-

licly available, large-scale, pre-trained language model specifically for English tweets.

Its architecture is based on BERTBASE, featuring 12 layers and 12 heads in each layer.

BERTweet incorporates a byte-level Byte Pair Encoding (BPE) tokenizer, which allows

for better handling of out-of-vocabulary words frequently found in tweets. BERTweet

was trained using the RoBERTa(zhuang et al., 2021) pre-training procedure, which,
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in comparison to BERT, involves: extended training on more data with larger batches,

eliminating the next sentence prediction target task, training on longer sequences, and

dynamically altering the masking pattern applied to training data. The corpus utilized

for BERTweet’s training comprises 850M English tweets, containing 16 billion tokens and

occupying approximately 80GB of storage space. Of these 850M tweets, 845M were col-

lected from 01/2012 to 08/2019, while 5M pertain to the COVID-19 pandemic. BERTweet

models are publicly accessible via Huggingface(wolf et al., 2020).

BERTweet was evaluated on three NLP tasks for Twitter data in (nguyen; vu;

nguyen, 2020): Part-Of-Speech (POS) tagging, Named-Entity Recognition (NER), and

text classification. The results indicate that BERTweet surpasses previous state-of-the-art

models in all three tasks.

2.7 Literature Review

Natural Language Processing has seen rapid advancements in recent years mainly due

to the extensive use of transfer learning from deep contextualized pre-trained language

models. In sequential transfer learning, the source and target tasks are different, and

training is performed in two steps: pre-training and adaptation (ruder, 2019). The

general practice is to pre-train representations on a sizeable unlabeled text corpus (pre-

training phase) and then adapt these representations to a supervised target task using

labeled data (adaptation phase). To maximize the usefulness of sequential transfer learn-

ing, the pre-training task should produce a multipurpose representation of the language

that might be useful not for one specific but for several target tasks. Intuitively, one basic

approach to pursue such universal representations is to pre-train a language model (LM)

on a large general-domain corpus extracted from well-written sources readily available on

the Internet.

The embeddings of ELMo (peters et al., 2018), for example, are learned functions of

the internal states of a deep bidirectional language model (biLM), which was pre-trained

on a dataset of approximately 800M tokens of news crawl data (chelba et al., 2013).

Later, in the adaptation phase, the original pre-trained LM is preserved as ELMo follows

a feature-based strategy to provide pre-trained representations as the input to a separate

downstream model. Similarly, ULMFiT (howard; ruder, 2018) was trained on the

generic Wikitext-103 (merity et al., 2017) consisting of 28,595 preprocessed Wikipedia

articles. In addition to the language model, the authors of ULMFiT also proposed an
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effective transfer learning method inspired by computer vision that can be applied to any

NLP task. Unlike ELMo, in the adaptation phase, ULMFiT follows a fine-tuning approach

where the full language model is also updated. Both downstream and pre-trained language

models are fine-tuned to learn task-specific features.

Following this paradigm, (vaswani et al., 2017) introduced the Transformer architec-

ture with a novelty self-attention mechanism that entirely dispenses recurrence and convo-

lutions, denoting a great leap forward for NLP tasks with long-term dependencies. After

that, influential models have been proposed, including the auto-regressive GPT (rad-

ford et al., 2018) and auto-encoding BERT (devlin et al., 2019), either building upon

the decoder or the encoder component of the original Transformers work (vaswani et

al., 2017). GPT implements an unidirectional 12-layer decoder-only language model pre-

trained for 100 epochs on BooksCorpus (zhu et al., 2015), a dataset of 7,000 books.

BERT (devlin et al., 2019) overcomes the gaps of unidirectionality by introducing a

multi-layer bidirectional and encoder-only Transformer model. The model advanced the

state-of-the-art for both sentence-level and token-level NLP tasks after being pre-trained

on BooksCorpus (800M words) and English Wikipedia (2,500M words) using two unsu-

pervised tasks: the masked language model task (MLM) and next sentence prediction

(NSP). One of the relevant variations of BERT is RoBERTa (zhuang et al., 2021), which

achieved a significant performance gain by being trained on a corpus considerably larger

than BERT (devlin et al., 2019), discarding the next sentence prediction task (NSP) as

well as a longer pre-training phase with larger batches.

Parallel work on multilingual understanding extends these systems to more languages,

thus enabling the use of language models beyond English. For example, a multilingual ver-

sion (mBERT), pre-trained on the 100 largest languages in Wikipedia, was also released

along with the original BERT (devlin et al., 2019). Despite all the contributions of a

multilingual model, authors of BERT acknowledged that the “multilingual model is some-

what worse than a single-language model”. Then, specialized monolingual models have

been published, outperforming previous multilingual benchmarks as seen for French (le et

al., 2020; martin et al., 2020), Vietnamese (nguyen; nguyen, 2020), Spanish (cañete

et al., 2020), German (chan; schweter; möller, 2020) among others. For Portuguese,

(souza; nogueira; lotufo, 2020) replicated BERT’s architecture and pre-training pro-

cedures to yield BERTimbau, a language model for Brazilian Portuguese that achieved

state-of-the-art performances on three downstream NLP tasks after being pre-trained on

brWaC (wagner filho et al., 2018), a large and diverse corpus of web pages.
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All aforementioned language models were pre-trained from large volumes of conven-

tional text corpora from books, Wikipedia articles, and news sites. However, despite

being able to achieve robust performance across different downstream tasks in various

languages, when applied to specialized domains, such as biomedical, scientific, or legal

texts, the generic-domain representations have shown to under-perform in many target

domain tasks as shown in works like (lee et al., 2020; beltagy; lo; cohan, 2019;

chalkidis et al., 2020). As demonstrated by (gururangan et al., 2020), the more

distinct the target and source domains are, the greater the degradation of generic mod-

els (source) when used in specific domains (target), and the higher will be the potential

of techniques for model language domain adaptation. This is the case of the microblog

Twitter where users communicate with each other informally, using typical expressions

of social networks slang, and many times with lexicon-syntactic errors or adding special

tokens such as hashtags, user mentions, and emojis. Therefore, there is an apparent mis-

match between the domains of Twitter (target domain) and Wikipedia, books, and news

articles (source domain) – traditionally used for pre-training generic-domain language

models.

To fill that gap, (nguyen; vu; nguyen, 2020) proposed BERTweet, a domain-specific

language model trained from scratch on English tweets. Studies have demonstrated that

BERTweet outperforms baselines such as RoBERTabase (zhuang et al., 2021) and XLM-

Rbase (conneau et al., 2020) on three NLP tasks on tweets, thus demonstrating the

effectiveness of large-scale language model specially adapted for the specific domain of

tweets. Following similar procedures, (polignano et al., 2019), (gonzález; hurtado;

pla, 2020; huertas-tato; martin; camacho, 2022), and (abdelali et al., 2021)

introduced AlBERTo, TWilbert, Bertuit, and QARiB, respectively – pre-trained lan-

guage models trained from scratch on massive corpora of Italian, Spanish (two models),

and Arabic tweets. Later, XLM-T (barbieri; espinosa-anke; camacho-collados,

2022) was proposed following the DAPT procedure (gururangan et al., 2020; bar-

bieri; camacho-collados, et al., 2020) to adapt XLM-R (conneau et al., 2020) to

the Twitter domain, creating a multilingual model from a corpus containing 198M tweets

written in the 30 most represented languages in Twitter. (guo et al., 2021) continued

pre-training the generic-domain model CamemBERT (martin et al., 2020) to provide

BERTweetFR, a domain-specific model for French tweets. (koto; lau; baldwin, 2021)

trained five different versions of the IndoBERTweet model to compare the following ap-

proaches: pre-training from scratch based in IndoBERT (koto; rahimi, et al., 2020)

model along with other four adapted models resulting from the domain-adaptive pre-
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training procedure with distinct vocabulary adaptation strategies. The study reveals that

it is feasible to adapt an off-the-shelf pre-trained model very efficiently and obtain better

average performance than training from scratch.

Portuguese, one of the most active languages on Twitter, has been remarkably ne-

glected by this tendency of pre-training massive language-specific LM for tweets. That is

where the scope of this work applies to. We propose a replication of BERTweet aiming

to advance the research of NLP in Portuguese on top of a language model capable of

accurately inheriting leanings, nuances, and biases from Portuguese tweets, which can

later be usefully applied to any downstream task in Twitter and informal scenarios.



3 Building BERTweet.BR

This section outlines the architecture, dataset, and optimization setup adopted to pre-

train the BERTweet.BR language model.

3.1 Architecture

BERTweet.BR follows the same architecture and pre-training procedure as the BERTweet

model (nguyen; vu; nguyen, 2020), which replicates RoBERTa and pre-trains the

model based on Masked Language Model objective only. MLM was originally introduced

as a “Cloze task” by Taylor (1953) and enforces bidirectional learning from text by masking

(hiding) a word in a sentence at random and forcing the training model to bidirectionally

use the words on either side of the covered word to predict the masked word. As made

by Devlin et al. (2019), we let the training data generator chooses 15% of the token

positions at random for prediction.

We employed a multi-layer bidirectional Transformer architecture using the same con-

figuration as the base version of BERT (devlin et al., 2019) with 12 layers, 768 hidden

dimensions, and 12 attention heads, adding up to a total of approximately 135M param-

eters.

3.2 Tokenizer

We adapted the normalization step of the original BERTweet tokenizer (BERTweetTo-

kenizer) to deal with demojizer for Portuguese as the default language of the method

demojize from emoji library1 is set to English (Figure 5)2.
1https://pypi.org/project/emoji/
2In a loose translation to English, the three tweets provided as examples in Figure 5 would be:

i) "Looking for a love good for me...I will look for it and I go to the end" (An excerpt from a song
called Segredos https://www.letras.mus.br/frejat/64374/ by the Brazilian artist Roberto Frejat
https://pt.wikipedia.org/wiki/Frejat; ii) What a match yesterday @cristiano; iii) Demojizer for

https://pypi.org/project/emoji/
https://www.letras.mus.br/frejat/64374/
https://pt.wikipedia.org/wiki/Frejat
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Figure 5: Examples of emoji library method demojize for Portuguese Language (bold)
and normalization process to convert user mentions and web or url links into the special
tokens (red).

The BERTweet.BR tokenizer was trained to have a 64K token vocabulary and also

used fastBPE (sennrich; haddow; birch, 2016) to segment words into subword units.

Subword tokenization algorithms like fastBPE rely on the principle that frequently used

words should not be split into smaller subwords, but rare words should be decomposed

into meaningful subwords. Consequently, it allows the model to have a reasonable vo-

cabulary size while being able to learn meaningful context-independent representations.

In addition, subword tokenization enables the model to process words it has never seen

before, by decomposing them into known subwords. In particular, BPE tokenizer family

doesn’t aim at being linguistically correct, but rather at being a good compromise between

speed, correctness, and coverage.

Given the short-length nature of tweets, we set the maximum sequence length of the

tokenizer to 128 tokens, meaning sentences longer than that are truncated before passing

to the model.

3.3 Pre-training dataset

We downloaded tweets from the collection grabbed by the Archive Team3, containing

tweets streamed from the general Twitter stream from 2004 to 2020. We filtered Por-

tuguese tweets by setting the field lang to pt (“lang” = “pt”). We tokenized sentences

using the TweetTokenizer class from the NLTK library (bird, 2006) and used the demo-

jize method of the emoji library4 to translate emotion icons into text strings in Portuguese.

We also converted user mentions and web or url links into the special tokens @USER and

HTTPURL, respectively. The corpus preprocessing step is illustrated in Figure 5 with

Python is great and is available at ht tp s: // py pi .o rg /p ro je ct /e mo ji /
3https://archive.org/details/twitterstream
4https://pypi.org/project/emoji/

https://pypi.org/project/emoji/
https://archive.org/details/twitterstream
https://pypi.org/project/emoji/
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Figure 6: Examples of tweets after normalization and tokenization. For any given input
sequence, 15% of the tokens are chosen for possible replacement with <mask> token.

some examples of raw tweets after BERTweet.BR normalization.

Finally, we obtained a corpus of 100M unique tweets split into 90/10 percent propor-

tion for training and test sets, respectively. The resulting dataset is approximately 9 GB

large.

3.4 Pre-training

BERTweet.BR was pre-trained on the Masked Language Modeling (MLM) task. In any

given input sequence, 15% of the tokens were chosen for possible replacement so that

the model was subsequently trained to predict tokens replaced by <MASK> using cross-

entropy loss (Figure 6)5.

The cross-entropy loss is used to measure the distance between the distribution of

probability of the masked tokens and the distribution of probability of the model’s pre-

dictions. The model is then adjusted to minimize the cross-entropy loss, which means that

the model is learning to predict the masked tokens with the highest possible probability.

The cross-entropy loss is a powerful cost function that can be used to train a variety of

language models. It is an efficient and easy-to-optimize cost function, and it is able to

learn robust language representations.

The mathematical formulation of the cross-entropy loss used in the MLM task is as

follows:
5In a loose translation to English, the three tweets provided as examples in Figure 6 would be:

i) "Looking for a love good for me...I will look for it and I go to the end" (An excerpt from a song
called Segredos https://www.letras.mus.br/frejat/64374/ by the Brazilian artist Roberto Frejat
https://pt.wikipedia.org/wiki/Frejat; ii) What a match yesterday @cristiano; iii) Demojizer for
Python is great and is available at ht tp s: // py pi .o rg /p ro je ct /e mo ji /

https://www.letras.mus.br/frejat/64374/
https://pt.wikipedia.org/wiki/Frejat
https://pypi.org/project/emoji/
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L = −
N∑
i=1

yi log ŷi (3.1)

where:

• yi is the true label of token i

• ŷi is the model’s prediction for token i

• N is the number of tokens in the input

We leveraged the RoBERTa implementation of the Transformers library (wolf et

al., 2020) and followed the language model training script run_mlm.py6 with the Py-

Torch (paszke et al., 2019) distributed package in a Linux CentOS 7 server.

We optimized the model using Adam with a batch size of 96 across four GPUs

(NVIDIA Tesla V100-SXM2-32GB) and a peak learning rate of 0.0001. We pre-trained

BERTweet.BR for 30 epochs in about three weeks (the first 50K training steps were used

for warming up the learning rate). The model was evaluated every 50K steps during pre-

training as illustrated in Figure 7. We then named BERTweet.BR the very last checkpoint

as that was the best-performing version after approximately 7M training steps.

6https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-mod
eling/run_mlm.py

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
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Figure 7: Training and evaluation loss progress of BERTweet.BR model, trained from
scratch for 30 epochs.



4 Experiments Design

The experiments conducted in this section aim at answering the research questions in-

troduced in Section 1. To this end, we benchmark the performance of BERTweet.BR in

the sentiment analysis task in tweets using a set of different pipelines. The evaluation

includes static to contextualized embeddings, ranging from language specific to multilin-

gual models and Twitter-specialized options as shown in Figure 8 where we summarize all

the experiments. The former relies on fastText, the best-performing static option in this

context, as demonstrated by Vianna et al. (2023). The latter leverages transformer-based

architectures with a comprehensive list of four models: BERTimbau, mBERT (multi-

lingual version of BERT), XLM-R (multilingual version of RoBERTa), and XLM-T, an

adaptation of XLM-R for the Twitter domain.

When applicable, strategies for applying pre-trained language representations to down-

stream tasks encompass a feature-based and a fine-tuning procedure. Therefore, as de-

tailed in subsection 4.2, for all transformer-based models, we conduct both strategies,

while for the pre-trained word vector fastText, to which fine-tuning is not applicable, we

only employed the standard feature-based strategy.

We compare BERTweet.BR with up to three different benchmarks of each model as

shown in Table 1. First and foremost, we conducted the experiments on top of the off-

the-shelf publicly available pre-trained weights for all the benchmark language models.

These are the original pre-trained versions released by their authors, called here as original

checkpoints (column Original).

Then, we employ the continuous pre-training strategy to account for adapting the

original checkpoints to the tweets domain as per the research question RQ1.

To this end, we adopted the domain-adaptive pre-training (DAPT) and task-adaptive

pre-training (TAPT) procedures of (gururangan et al., 2020). Then, concerning RQ2,

the resulting models were used to perform the same set of experiments of sentiment

analysis using the feature-based and fine-tuning strategies again, now over these two ad-
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Table 1: Summary of experiment baselines of each model language and domain adapta-
tion procedures explored in this work.

Original TAPT DAPT

fastText ✓

mBERT ✓ ✓ ✓

XLM-R ✓ ✓ ✓

XLM-T ✓

BERTimbau ✓ ✓ ✓

BERTweet.BR ✓

ditional variations of language models (DAPT and TAPT). In summary, we compare

BERTweet.BR to a total of 11 different versions of language models (Table 1). As we

apply both feature-based and fine-tuning approaches to contextualized LM and only the

first of the methods to fastText, we reach 23 experiments in this study.

4.1 Sentiment Analysis Experiment

Sentiment analysis is a supervised sequence classification task in which we inspect a

given text and identify the prevailing opinion within it, typically to determine a writer’s

attitude as positive, negative, or neutral. In this work, given a specific tweet, the goal is

to determine whether it reveals a positive or negative opinion (binary mode) or expresses

a neutral, positive, or negative message (multiclass mode).

Sentiment analysis is a crucial task in natural language processing that enables gov-

ernments, organizations, and other entities to gain valuable insights into people’s attitudes

and perceptions toward various topics. This downstream task’s significance makes it a

natural choice when evaluating the benefits of language models.

The application of sentiment analysis has far-reaching implications across various

domains, including marketing, politics, and healthcare. For instance, sentiment analysis

can assist marketers in understanding consumer preferences and feedback, helping them

to tailor their campaigns and improve customer engagement. Similarly, sentiment analysis

can be leveraged in the political domain to gauge public opinion on governmental policies

and actions and monitor the spread of propaganda and misinformation. Also, during

crises such as pandemics or natural disasters, sentiment analysis can provide real-time

insights into the public’s sentiments, allowing policymakers to gauge public reactions and

implement measures accordingly.
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Table 2: Target datasets are grouped by the number of classes and ordered by the number
of tweets. Length is computed before normalization by splitting tweets in white space.

tweets positive negative neutral duplicated min max avg

bi
n
ar

y

covidbr 600 300 50.0% 300 50.0% - - 2 0.3% 5 53 28.0

sentbr 7769 4773 61.4% 2996 38.6% - - 9 0.1% 1 53 11.9

fiat 8827 4437 50.3% 4390 49.7% - - 0 0.0% 1 58 16.7

17196 9510 55.3% 7686 44.7% - - 11 0.1% 1 58

m
ul

ti
cl

as
s

narrpt 772 297 38.5% 213 27.6% 262 33.9% 8 1.0% 2 31 14.05

mining 2018 166 8.2% 1299 64.4% 553 27.4% 59 2.9% 2 31 14.81

compbr 2281 197 8.6% 407 17.8% 1677 73.5% 177 7.8% 1 47 16.44

tweemg 8199 3300 40.2% 2446 29.8% 2453 29.9% 2424 29.6% 1 32 16.14

unilex 12665 3715 29.3% 4197 33.1% 4753 37.5% 0 0.0% 1 62 14.30

25935 7675 29.6% 8562 33.0% 9698 37.4% 2668 10.3% 1 62

43131 17185 39.84% 16248 37.68% 9698 22.48% 2668 6.18% 1 62

Datasets. We retrieved a plural set of eight human-annotated datasets from various

domains for sentiment analysis. More details about each dataset of the collection can be

found in Appendix A. As described in Table 2, they are also varied in size and number

of classes, with three being binary datasets containing negative and positive classes. In

contrast, five others are ternary, having the additional neutral label. For each dataset,

Table 2 shows the total number of tweets (column tweets) and the number and percentage

of rows labeled with each of the three classes (columns positive, negative, and neutral).

Datasets are grouped by the number of classes (rows binary and multiclass) and ordered

by the number of tweets. Also, it is provided the number and percentage of duplicated

tweets (retweets – column duplicated) along with the minimum, maximum and average

length of tweets of each dataset (columns min, max, and avg, respectively). Length is

computed before normalization by splitting tweets in white space. These labeled datasets

can be downloaded from https://bityli.com/RvhFax. We also made the collection

available in the transformers datasets library1.

4.2 Evaluation

As proposed in research question RQ2, we apply feature-based and fine-tuning approaches

to sentiment analysis to assess the reliability of BERTweet.BR language model. We

evaluate the performance of models on each dataset following a 10-fold stratified cross-

validation strategy in which the sample distribution for each class is preserved in all

folds. The results are expressed by the average weighted F1-score across the ten folds on
1https://huggingface.co/melll-uff/

https://bityli.com/RvhFax
https://huggingface.co/melll-uff/
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the validation set. Datasets are shuffled before splitting. We ensure experiments across

models are comparable even in the fold level as a seed is set to control the randomness.

4.2.1 Feature-based Approach

In the feature-based approach, we use pre-trained representations as input features for

a downstream task without changing the original language models. We pass sentences

through the model that outputs embeddings which are then used to fit a classifier. In

this work, we adopted the Logistic Regression (LR) classification algorithm due to its

good performance in sentiment analysis as demonstrated by Vianna et al. (2023). Also

for its simplicity, efficiency, and interpretability. We used the LR implementation from

scikit-learn (pedregosa et al., 2011)2.

Static embeddings from fastText (mikolov; grave, et al., 2018) are obtained for

whole sentences after normalization. Given a tweet, we get a single vector representation

with get_sentence_vector method on top of the Portuguese pre-trained word vectors3

shared by the fastText team with the dimension of 300.

When applied to transformer-based models, the feature-based approach is comprised

of extracting the contextualized embeddings from one or more layers without fine-tuning

any parameters. In this work, we sum the outputs of the last four hidden layers as de-

scribed by (devlin et al., 2019) when applying BERT with the feature-based approach.

We pass the normalized tweets as inputs and focus only on the first position of the hid-

den_states outputs generated by the pre-trained models, which is the output for the

special token used as the aggregate sequence for sentence classification tasks. The result-

ing contextualized embeddings are a vector of the same size as the pre-trained model’s

hidden_size. All transformer-based models used in this work have hidden_size of 768,

including BERTweet.BR.

The experiments described in this section are aimed at inquiries posed in RQ2.1.

4.2.2 Fine-tuning Approach

Following a fine-tuning approach is the standard pipeline when employing transformer-

based models into target downstream tasks. Fine-tuning is the training done after a

language model has been pre-trained, and, as opposed to feature-based, it involves ad-
2https://scikit-learn.org/
3https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.pt.300.bin.gz

https://scikit-learn.org/
https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.pt.300.bin.gz
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justing the pre-trained model’s weights on a specific task. Each downstream task has

its appropriate fine-tuned models with a task-specific head but initialized with the same

pre-trained parameters of language models.

Concerning RQ2.2, we employ the framework of transformers library (wolf et al.,

2020) to fine-tune our BERTweet.BR and other benchmarking models for the downstream

task with each of the eight datasets. To this end, for each dataset and each model, we in-

stantiate a AutoModelForSequenceClassification4 object which loads a task-specific archi-

tecture formed by the original transformer model initialized with the pre-trained weights

and an additional untrained sequence classification head on top. Then, using the labeled

data from downstream datasets shown in Table 2, all parameters of these combined mod-

els are adjusted for sentiment analysis for three epochs. We use AdamW (loshchilov;

hutter, 2019) with a fixed learning rate of 5e−5 and a batch size of 32 tweets, reporting

results of the last model checkpoint on the validation set.

4.3 Domain Adaptation

To tackle the issues raised in research question RQ1, we also conduct the experiments

described in Section 4.1 on top of adjusted models, resulting from a second phase of

the pre-training procedure from their original checkpoints (continued pre-training). The

objective of these experiments is to adapt the three originally general-domain language

models — mBERT, XLM-R, and BERTimbau — to the domain of tweets, the object of

this study, and then also compare our BERTweet.BR to these additional language models

fine-tuned to tweets in Portuguese. To this end, we follow both domain-adaptive pre-

training (DAPT) and task-adaptive pre-training (TAPT) procedures of (gururangan

et al., 2020). In this sense, we seek to verify if only employing a lower-resource pre-

training approach through domain adaptation of existing models would produce better

results than pre-training a new language model from scratch.

4.3.1 Domain adaptive pre-training (DAPT)

The procedure we follow for domain-adaptive pre-training (DAPT) is straightforward —

we continue pre-training the three target language models on the same unlabeled corpus of
4https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForS

equenceClassification

https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForSequenceClassification
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tweets we pre-trained BERTweet.BR. We also use the same training script run_mlm.py5

and set of hyper-parameters, running on the same hardware configuration, but this time

for three epochs. We keep the original tokenizers and their vocabularies. This second

phase of pre-training results in three domain-adapted LMs, which are then used in the

benchmark experiments of Section 4.1 to answer RQ1.1. In this work, we refer to these

models as <original-model-name>-DAPT as shown in Figure 8.

4.3.2 Task-adaptive pre-training (TAPT)

Task-adaptive pre-training (TAPT) refers to pre-training an LM on an unlabeled training

set initially curated for a supervised given task. TAPT is much less expensive because it

uses a far smaller corpus but can still produce competitive results for domain adaptation

(gururangan et al., 2020).

Instead of continuing pre-training LMs on each of the eight datasets individually, our

approach to TAPT considers the entire collection as one augmented dataset. It employs a

LOO (Leave One dataset Out) strategy for training. Specifically, we take each dataset once

as the target dataset while the tweets from the remaining seven datasets are combined

to tune the language model. Next, to answer RQ1.2, the resulting model is used to

evaluate the performance in the target dataset on the experiments described in section

4.1. Therefore, the procedure repeats eight times for each language model candidate for

TAPT: mBERT, XLM-R, and BERTimbau. Note that for the pre-training phase, which

is a self-supervised task, we omit the labels of the combined dataset. In contrast, labels

are preserved for the supervised sentiment analysis task on the target dataset. To this

end, we employ the transformers library (wolf et al., 2020) and customize the training

script run_mlm_no_trainer.py6 with its default hyper-parameter values to continue pre-

training models using a masked language modeling loss for 20 epochs. Similarly to DAPT,

we also keep the original tokenizers and their vocabularies. Finally, the last checkpoint

produced is then used in the benchmark experiments. In this work, we refer to these

models as <original-model-name>-TAPT as shown in Figure 8.

5https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-mod
eling/run_mlm.py

6https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-mod
eling/run_mlm_no_trainer.py

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_no_trainer.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_no_trainer.py


4.3 Domain Adaptation 43

Figure 8: The summary of experiments. BERTweet.BR was pre-trained from scratch on
the Masked Language Modeling task using RoBERTa architecture over 100 million tweets
for 30 epochs.



5 Experimental Results

This chapter presents the experimental results obtained from benchmarking BERTweet.BR

in the sentiment analysis task using the range of different pipelines described in Chapter 4.

We report and discuss the results with which we answer to inquiries about both research

questions RQ1 and RQ2.

Tables 3, 4, and 5 present results for our BERTweet.BR as well as model baselines

regarding both off-the-shelf checkpoints and domain-adapted language models resulting

from task-adaptive pre-training (TAPT) and domain-adaptive pre-training (DAPT), re-

spectively. In all result tables we report the weighted f1-score in the test set for each

of the eight datasets for sentiment analysis. The models are evaluated in a stratified

10-fold strategy using both feature-based (fb) and fine-tuning (ft) approaches. In bold, it

is indicated the best performance recorded for each dataset and separated by approach.

Then, for each group, the best performance previous to BERTweet.BR is also reported.

After the scores of BERTweet.BR in parentheses, it is reported the percentage gain (or

loss) of BERTweet.BR results compared to the previous best results. Here, the goal is

to highlight the BERTweet.BR performance in comparison to the scenario where there

wasn’t pre-trained specific models to tweets in Portuguese. The best previous perfor-

mance is then the highest score reported considering all benchmark models excluding

BERTweet.BR. Finally, the rightmost columns (wins and wins*) indicate the number of

datasets each language model got the best f1-score; respectively, in the scenarios where

our BERTweet.BR model is considered or not. Again, in the column wins* it is indicated

the number of datasets any given model obtained the best result in the scenario exclud-

ing BERTweet.BR. Note that for all three tables the fine-tuning approach gives the best

performance for all datasets.

BERTweet.BR reported the absolute best F1-score on 36 of the 48 experiments while

matching the previous best performances on two scenarios. Our new model, trained from

scratch, achieved the best scores in approximately 80% of all experiments. Taking into

consideration the overall results by dataset as shown in Table 6, the fine-tuning approach
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Table 3: The weighted f1-score in the test set for each of the eight datasets for sentiment
analysis on top of the original checkpoints of the models.

covidbr sentbr fiat narrpt mining compbr tweemg unilex wins wins*

O
R

IG
IN

A
L

C
H

E
C

K
P

O
IN

T
S

fe
at

ur
e-

ba
se

d

fasttext 0.770 0.828 0.815 0.776 0.776 0.781 0.945 0.661 0 0

bertimbau 0.805 0.842 0.826 0.804 0.784 0.821 0.954 0.668 2 2

mbert 0.716 0.738 0.774 0.651 0.706 0.752 0.927 0.602 0 0

xlmr 0.771 0.803 0.807 0.738 0.777 0.799 0.942 0.649 0 0

xlmt 0.768 0.851 0.826 0.838 0.802 0.834 0.949 0.672 0 6

previous 0.805 0.851 0.826 0.838 0.802 0.834 0.954 0.672 - -

BERTweet.BR 0.778 (-3.4) 0.881 (3.5) 0.827 (0.1) 0.843 (0.5) 0.824 (2.7) 0.848 (1.7) 0.954 (0.0) 0.679 (1.1) 7 -

fin
e-

tu
ni

ng

bertimbau 0.864 0.877 0.891 0.855 0.828 0.855 0.972 0.732 1 5

mbert 0.786 0.841 0.878 0.688 0.759 0.773 0.972 0.703 0 0

xlmr 0.768 0.825 0.862 0.742 0.732 0.742 0.967 0.715 0 0

xlmt 0.806 0.882 0.888 0.873 0.829 0.842 0.971 0.723 0 3

previous 0.864 0.882 0.891 0.873 0.829 0.855 0.972 0.732 - -

BERTweet.BR 0.828 (-4.2) 0.902 (2.2) 0.892 (0.1) 0.909 (4.2) 0.857(3.4) 0.874 (2.2) 0.973 (0.1) 0.733 (0.2) 7 -

bertimbau bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr - -
summary

0.864 0.902 0.892 0.909 0.857 0.874 0.973 0.733 - -

Table 4: The weighted f1-score in the test set for each of the eight datasets for senti-
ment analysis on top of adapted models resulting from task adaptive pre-trained (TAPT)
procedure.

covidbr sentbr fiat narrpt mining compbr tweemg unilex wins wins*

T
A

P
T

fe
at

ur
e-

ba
se

d

bertimbau ↓ 0.791 ↓ 0.824 ↓ 0.825 ↓ 0.797 0.789 0.826 ↓ 0.950 ↓ 0.654 0 0

mbert 0.743 0.767 0.792 0.690 0.721 0.768 0.932 0.634 0 0

xlmr 0.805 0.819 0.825 0.787 0.787 0.814 0.952 0.657 1 2

xlmt 0.768 0.851 0.826 0.838 0.802 0.834 0.949 0.672 0 6

previous 0.805 0.851 0.826 0.838 0.802 0.834 ↓ 0.952 0.672 - -

BERTweet.BR 0.778 (-3.4) 0.881 (3.5) 0.827 (0.1) 0.843 (0.5) 0.824 (4.5) 0.848 (1.7) 0.954 (0.2) 0.679 (1.1) 7

fin
e-

tu
ni

ng

bertimbau ↓ 0.853 ↓ 0.871 ↓ 0.889 0.872 0.834 0.856 0.974 ↓ 0.728 2 6

mbert ↓ 0.781 0.843 0.885 0.763 0.801 0.815 ↓ 0.969 ↓ 0.702 0 0

xlmr 0.799 0.856 0.884 0.786 0.792 0.810 0.971 ↓ 0.698 0 0

xlmt 0.806 0.882 0.888 0.873 0.829 0.842 0.971 0.723 0 2

previous ↓ 0.853 0.882 ↓ 0.889 0.873 0.834 0.856 0.974 ↓ 0.728 - -

BERTweet.BR 0.828 (-2.9) 0.902 (2.2) 0.892 (0.4) 0.909 (4.2) 0.857 (2.7) 0.874 (2.1) 0.973 (-0.1) 0.733 (0.7) 6 -

bertimbau bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertimbau bertweetbr - -
summary

0.853 0.902 0.892 0.909 0.857 0.874 0.974 0.733 - -

applying BERTweet.BR dominates the best scores, yielding the highest f1-scores for six

of the eight datasets. Analyzing the results per method, we observe that BERTweet.BR

registered the best scores in half of the datasets regarding the feature-based approach,

while for fine-tuning our model achieved the highest performances in 75% of the cases.

This overview reinforces the predictive effectiveness of BERTweet.BR and indicates a

positive response to the inquiries of both research questions RQ1 and RQ2.

With respect to RQ1.1, Table 5 shows that BERTweet.BR outperforms DAPT-adapted

models in about 70% of the experiments (11 out of 16). When compared to TAPT models,

responding to RQ1.2, our model goes beyond, demonstrating gains in over 80% (13 out

of 16) of the scenarios, as reported in Table 4. Regarding RQ2.1, we isolate the results
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Table 5: Weighted f1-score in the test set for each of the eight datasets for sentiment
analysis on top of adapted models resulting from domain adaptive pre-trained (DAPT)
procedure.

covidbr sentbr fiat narrpt mining compbr tweemg unilex wins wins*

D
A

P
T

fe
at

ur
e-

ba
se

d

bertimbau ↓ 0.781 0.863 0.830 0.840 0.816 0.834 0.955 0.674 2 3

mbert 0.773 0.861 0.821 0.848 0.809 0.830 0.956 0.673 0 0

xlmr ↓ 0.766 0.867 0.824 0.861 0.821 0.831 0.961 0.675 2 5

xlmt 0.768 0.851 0.826 0.838 0.802 0.834 0.949 0.672 0 0

previous ↓ 0.781 0.867 0.830 0.861 0.821 0.834 0.961 0.675 - -

BERTweet.BR 0.778 (-0.4) 0.881 (1.7) 0.827 (-0.4) 0.843 (-2.2) 0.824 (0.4) 0.848 (1.7) 0.954 (-0.6) 0.679 (0.7) 4 -

fin
e-

tu
ni

ng

bertimbau ↓ 0.824 0.890 ↓ 0.889 0.887 0.852 0.864 0.972 0.735 1 2

mbert 0.826 0.885 0.888 0.882 0.848 0.866 0.973 0.734 1 2

xlmr 0.823 0.894 0.890 0.889 0.849 0.869 0.972 0.731 0 4

xlmt 0.806 0.882 0.888 0.873 0.829 0.842 0.971 0.723 0 0

previous ↓ 0.826 0.894 ↓ 0.890 0.889 0.852 0.869 0.973 0.735 - -

BERTweet.BR 0.828 (0.2) 0.902 (0.8) 0.892 (0.3) 0.909 (2.2) 0.857 (0.5) 0.874 (0.5) 0.973 (0.0) 0.733 (-0.3) 7 -

bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertimbau - -
summary

0.828 0.902 0.892 0.909 0.857 0.874 0.974 0.733 - -

Table 6: Summary of the best results by dataset and approaches feature-based and fine-
tuning. The scores are provided as weighted f1-score in the test set for each of the eight
datasets for sentiment analysis.

covidbr sentbr fiat narrpt mining compbr tweemg unilex

feature-based
bertimbau bertweetbr bertimbau-dapt bertimbau-dapt bertweetbr bertweetbr xlmr-dapt bertweetbr

0.805 0.881 0.830 0.861 0.824 0.848 0.961 0.679

fine-tuning

bertimbau bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertimbau-tapt bertweetbr

mbert-dapt

bertimbau-dapt

0.864 0.902 0.892 0.909 0.857 0.874 0.974 0.735

bertimbau bertweetbr bertweetbr bertweetbr bertweetbr bertweetbr bertimbau-tapt bertweetbr

mbert-dapt

bertimbau-dapt
best

0.864 0.902 0.892 0.909 0.857 0.874 0.974 0.735
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of the feature-based approach from Tables 3, 4 and 5 to highlight that BERTweet.BR

achieved the highest scores in 18 out of the 24 cases (75%). Now, shifting the focus to the

fine-tuning approach and responding to RQ2.2, we highlight that BERTweet.BR obtained

the best predictive performance in 20 out of the 24 experiments (83%).

Conversely, the results indicate that BERTweet.BR did not perform so well when

applied to the opcovidbr dataset. Although our model yielded competitive results across

all datasets, it failed to obtain the highest score in any of the experiments with opcovidbr

dataset, with the sole exception of the fine-tuning after DAPT (Table 5). However, this

only victory of our model in opcovidbr was due to an atypical decrease in performance

of BERTimbau in this very specific scenario. One probable explanation for this sub-

optimal performance of BERTweet.BR in opcovidbr is that the corpus used to pre-train

our model only includes tweets from 2004 to 2020. This may have resulted in a lack of

knowledge for this particular domain related to the COVID-19 pandemic, as the debate

on the COVID-19 crisis has been mostly made after 2020.

It is worth noting that regardless of not following state-of-the-art architectures based

on Transformers (vaswani et al., 2017), the feature-based approach with fastText (mikolov;

grave, et al., 2018) achieved competitive scores and even delivered performances some-

what better than the multilingual models mBERT (devlin et al., 2019) and XLM-

R (conneau et al., 2020). In this sense, we can highlight and suggest that in scenarios

of low computational resources and restrictions of time, it is reasonable adopting the

fastText model in a sentence classification pipeline and still get adequate accuracy in

downstream tasks. Therefore, in scenarios where there is a lack of language-specific pre-

trained transformer models, using pre-trained static word embeddings can still be a good

choice.

Disregarding our BERTweet.BR, Portuguese-native BERTimbau and Twitter-native

multilingual XLM-T ranked the highest among the best-performing models, followed by

the generic multi-lingual XLM-R and mBERT. In this setting, without BERTweet.BR,

BERTimbau and XLM-T accounted for 75% of the best scores in the experiments. In

particular, BERTimbau achieved the best results when the fine-tuning method was ap-

plied, whereas XLM-T performed better in most cases when a feature-based approach

was applied. This is shown by the rightmost column wins* of Tables 3, 4, and 5 and is

consistent with previous conclusions that off-the-shelf general-domain pre-trained models

are suboptimal for domain-specific tasks.

In addition, we grouped the results by approach, consolidating the highest scores for
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each method and dataset, as shown in Table 6. Concerning the two existing strategies

for applying language models to downstream tasks, feature-based and fine-tuning, we

observed that fine-tuning is indeed the best approach when working with transformer-

based models as it outperformed feature-based in all scenarios in this study, yielding a 5%

boost on average and up to 9% gain over feature-based, as reported in DAPT for the Unilex

dataset. Regarding the feature-based approach in the context of RQ2.1, BERTweet.BR

achieved the highest scores in 50% of the cases, more than all the other benchmark

models. Concerning the fine-tuning approach under RQ2.2, our model achieved the top

performance for six out of the eight datasets in this study.

Regarding the domain adaptation strategy, the results show that TAPT and DAPT

both led to performance gains as originally proposed by (gururangan et al., 2020).

Specifically, the average enhancements observed for TAPT and DAPT over the original

checkpoints amounted to 1.8% and 6.3%, respectively. However, these procedures do

not always provide benefits. For example, as indicated in Table 4, when applied to

Portuguese-native BERTimbau and multilingual mBERT models, TAPT resulted in a

loss of performance or null gains in a few cases. We found that DAPT consistently boosts

the performance of the original models, yielding a gain of up to 10%. Simultaneously,

the method also reported a loss in very few cases of a specific dataset, as indicated by

the ↓ symbol in Table 5. Additionally, DAPT showed an average gain of more than 4%

compared with TAPT, and up to approximately 9% as we see with mBERT with the

feature-based approach. Overall, applying the fine-tuning approach over DAPT models

proved to be the best pipeline among all the different versions of the language models

considered in this study, from the original checkpoints to adapted models through TAPT

and DAPT. This is demonstrated when we examine models individually and scores by

dataset, as shown in Table 6.

Although we confirmed that continued pre-training strategies confer essential addi-

tional knowledge to language models, as observed mainly with DAPT, experiments re-

vealed that such enhancements are still suboptimal compared to training from scratch,

as our BERTweet.BR provides better results for the majority of the scenarios in this

study, whether we apply the feature-based or fine-tuning approach. These findings ad-

dress research question RQ1, as we have demonstrated the effectiveness of training a

completely new model for tweets. Compared with the previous best results per method,

BERTweet.BR delivered gains of up to 4.5% in feature-based and up to 4.2% in the fine-

tuning approach.



5 Experimental Results 49

In summary, the results presented in this section highlight the potential of models

crafted for a specific language and domain as being more suited to handle social media

tasks. In particular, BERTweet.BR fills the gap in the domain of Portuguese tweets, as

it substantially outperforms the baselines in most scenarios.



6 Qualitative Analysis

Upon examining the results reported in this study, it is noteworthy that all studied mod-

els reported their highest and lowest performances in two particular datasets: tweemg, as

the one with the top f1-scores, and unilex with nearly all the lowest scores, as depicted in

Table 7. There, it is shown the performance ranking of benchmark models, listing in as-

cending order the datasets according to the weighted f1-score obtained by each model when

applied feature-based and fine-tuning approaches on top of the original checkpoints of the

models and adapted versions resulting from domain adaptive pre-trained (DAPT) proce-

dure. In fact, the evaluation of this table discloses a notable similarity in the performance

rankings across the models, despite their distinct domains and pre-training procedures.

For instance, besides tweetmg, all models ranked sentbr and comput datasets within the

top four highest performances when following the feature-based approach. Likewise, the

models also placed mining and covidbr datasets within their four lowest-performing lists,

along with unilex. Moreover, BERTweet.BR and XLM-T, which are the sole models ini-

tially pre-trained for tweets, appear to concur on the degree of difficulty across datasets.

They reported an identical order in their rankings following fine-tuning and exhibited

only one discrepancy concerning feature-based approach. The other remaining models,

pre-trained for generic-domain, also share most of their rankings as they reported identical

lists of the top four highest and bottom four performance, independently of the approach.

More precisely, when fine-tuning is applied they all positioned covidbr, sentbr, fiat and

tweemg datasets as top performers in ascending order. Lastly, we highlight that generic-

domain models display a higher degree of congruence after domain adaptive pre-training.

As illustrated by the DAPT rankings in the latter half of Table 7, the three adapted

models now exhibit a perfect match across rankings when implementing the feature-based

method and only a single difference when fine-tuning is applied. As previously generic

models become adapted to tweets, their results increasingly resemble those of XLM-T and

BERTweet.BR, which confirms the effectiveness of adaptation methods. As a result, these

models now share the lists of the top four and bottom four performances with XLM-T

and BERTweet.BR, although the exact order varies.
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Table 7: Performance ranking of benchmark models, listing in ascending order the
datasets according to the weighted f1-score obtained by each model.

fasttext bertimbau mbert xlmr xlmt bertweetbr

O
R

IG
IN

A
L

C
H

E
C

K
P

O
IN

T
S

fe
at

ur
e-

ba
se

d

unilex 0.661 unilex 0.668 unilex 0.602 unilex 0.649 unilex 0.672 unilex 0.679

covidbr 0.770 mining 0.784 narrpt 0.651 narrpt 0.738 covidbr 0.768 covidbr 0.778

narrpt 0.776 narrpt 0.804 mining 0.706 covidbr 0.771 mining 0.802 mining 0.824

mining 0.776 covidbr 0.805 covidbr 0.716 mining 0.777 fiat 0.826 fiat 0.827

comput 0.781 comput 0.821 sentbr 0.738 comput 0.799 comput 0.834 narrpt 0.843

fiat 0.815 fiat 0.826 comput 0.752 sentbr 0.803 narrpt 0.838 comput 0.848

sentbr 0.828 sentbr 0.842 fiat 0.774 fiat 0.807 sentbr 0.851 sentbr 0.881

tweemg 0.945 tweemg 0.954 tweemg 0.927 tweemg 0.942 tweemg 0.949 tweemg 0.954

fin
e-

tu
ni

ng

unilex 0.732 narrpt 0.688 unilex 0.715 unilex 0.723 unilex 0.733

mining 0.828 unilex 0.703 mining 0.732 covidbr 0.806 covidbr 0.828

narrpt 0.855 mining 0.759 comput 0.742 mining 0.829 mining 0.857

comput 0.855 comput 0.773 narrpt 0.742 comput 0.842 comput 0.874

covidbr 0.864 covidbr 0.786 covidbr 0.768 narrpt 0.873 fiat 0.892

sentbr 0.877 sentbr 0.841 sentbr 0.825 sentbr 0.882 sentbr 0.902

fiat 0.891 fiat 0.878 fiat 0.862 fiat 0.888 narrpt 0.909

tweemg 0.972 tweemg 0.972 tweemg 0.967 tweemg 0.971 tweemg 0.973

bertimbau mbert xlmr

D
A

P
T

fe
at

ur
e-

ba
se

d

unilex 0.674 unilex 0.673 unilex 0.675

covidbr 0.781 covidbr 0.773 covidbr 0.766

mining 0.816 mining 0.809 mining 0.821

fiat 0.830 fiat 0.821 fiat 0.824

comput 0.834 comput 0.830 comput 0.831

narrpt 0.840 narrpt 0.848 narrpt 0.861

sentbr 0.863 sentbr 0.861 sentbr 0.867

tweemg 0.955 tweemg 0.956 tweemg 0.961

fin
e-

tu
ni

ng

unilex 0.735 unilex 0.735 unilex 0.731

covidbr 0.824 covidbr 0.826 covidbr 0.823

mining 0.852 mining 0.848 mining 0.849

comput 0.864 comput 0.866 comput 0.869

narrpt 0.887 narrpt 0.882 narrpt 0.889

fiat 0.889 sentbr 0.885 fiat 0.890

sentbr 0.890 fiat 0.888 sentbr 0.894

tweemg 0.972 tweemg 0.973 tweemg 0.972

What we observe from the aforementioned findings is that despite the variation in

weighted F1-scores across different models and datasets, there exists a discernible pattern

of performance clusters, grouping datasets into levels of difficulty and their corresponding

compatibility with models. This motivated the examination of two datasets of the clusters

to clarify potential factors accounting for the highest and lowest performances of the

collection: unilex and tweetmg.
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6.1 Unilex Dataset

The unilex dataset presents the most significant challenge among the collection, as evi-

denced by weighted f1-scores ranging between 0.602 and 0.735. While these scores may

not be deemed low, they underscore that the unilex dataset does pose the most difficulty

for all of the models.

First, the topic of politics is a subjective matter in which opinions diverge among

individuals based on their personal experiences, values, and cultural backgrounds. This

is particularly evident in recent contexts, marked by heightened polarization in political

views, made even more intense by the popularity of social networks. In this regard,

determining whether a tweet carries a positive or negative opinion out of this subjectivity is

indeed a more difficult task. To illustrate, when we extract the list of most frequent words

in positive and negative tweets of unilex, on average three-fifths of them are presented in

both lists. Also, more than 40% of the most frequent words are present in all subsets of

positive, negative, and neutral tweets. This evidences the subjectivity of the matter of

politics and how challenging it is to spot the sentiment present in its tweets.

Particularly, when we look at the twenty most frequent words in tweets of unilex

that are labeled as positive and negative as shown in Table 8, we see that words like

#brasil, #dilma, #lula, #pcdob, #pmdb, #psdb, #pt1, brasil, dilma2 and governo3 exists

in both subsets, emphasizing the absence of a discernible pattern to distinguish sentiment.

In Table 8, words in bold indicate that they appear concomitantly in all three subsets.

Underlined words appear in both positive and negative subsets. In italic, words that

appear in both positive and neutral subsets. Double-underlined words appear in both

negative and neutral subsets.

Names of Brazilian politicians and political parties as well as words such as brasil

and governo — which are more likely to convey a neutral connotation — are consistently

found in both positive and negative tweets. Additionally, when analyzing the twenty most

frequent words in neutral tweets, an almost identical list of intersecting terms emerges:

#brasil, #dilma, #pcdob, #pmdb, #psdb, #pt and governo. Thereby reaffirming the

lack of a pattern for identifying sentiment as the same words are frequent in tweets with
1PT, PSDB, PMDB and PCdoB are Brazilian political parties. https://en.wikipedia.org/wiki/

List_of_political_parties_in_Brazil
2Dilma Rouseff, a politician who served as the 36th president of Brazil, holding the position from 2011

until her impeachment and removal from office on 31 August 2016. https://en.wikipedia.org/wiki/
Dilma_Rousseff

3government in Portuguese

https://en.wikipedia.org/wiki/List_of_political_parties_in_Brazil
https://en.wikipedia.org/wiki/List_of_political_parties_in_Brazil
https://en.wikipedia.org/wiki/Dilma_Rousseff
https://en.wikipedia.org/wiki/Dilma_Rousseff
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three different sentiments. The absence of #lula4 in this neutral list of frequent words

implies that the name of the former president is associated with either positive or negative

sentiment, but not neutral, a fact that once more exemplifies the politically polarized

climate in Brazil.

Table 8: The twenty most frequent words in Unilex dataset and their absolute frequency
within each subset of tweets labeled as positive, negative, and neutral sentiments.

word pos neg neu
#pt 1521 2568 1354

#psdb 508 453 183
#brasil 238 350 416
#pmdb 171 388 412
#pcdob 154 268 488

#psd 137 - 368
brasil 183 256 -
#pp 128 - 339
#pr 253 - 256

#dilma 140 270 131
governo 136 269 -
#novo 129 - 361
golpe - 270 -

psd - - 351
#mst - - 228
#rede 134 - 141
#pdt - - 230

contra - 212 -
#golpe - 176 131

#lula 106 192 -

In fact, a comprehensive examination of the dataset vocabularies and their intersec-

tions, as illustrated in Table 9, demonstrates that covidbr, mining and fiat compose the

group of datasets that exhibit the highest degree of similarity relative to unilex among

the entire collection. In this table, it is presented the vocabulary similarity matrix, which

represents the lexical congruence among various datasets, considering the top 1,000 most

frequent words within each dataset, after excluding stopwords in the NLTK Portuguese

dictionary. The degree of similarity is quantified by the proportion of shared terms present
4Luis Inacio Lula da Silva, also known as Lula da Silva or simply Lula, is Brazil’s 39th and current

president. https://en.wikipedia.org/wiki/Luiz_In%C3%A1cio_Lula_da_Silva

https://en.wikipedia.org/wiki/Luiz_In%C3%A1cio_Lula_da_Silva
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in both vocabularies, with a maximum of 100. The five highest similarities are emphasized

in bold, while the five lowest percentage similarities are underlined.

Remarkably, these four datasets covidbr, mining, fiat and unilex correspond to the

same set of the four most challenging datasets for the Twitter-domain models, as shown

in Table 7. This finding implies that vocabularies do play a crucial role in influencing

the performance of models in the sentiment classification tasks, as corroborated by the

feature-based scores of Twitter models in the form of original checkpoints (BERTweet.BR

and XLM-T) or after adaptation of mBERT, BERTimbau, and XLM-R.

Table 9: The Vocabulary similarity matrix represents the lexical congruence among
various datasets, considering the top 1,000 most frequent words within each dataset, after
excluding stopwords in the NLTK Portuguese dictionary.

covidbr sentbr fiat narrpt mining compbr tweemg unilex
covidbr x 28.6 31.0 25.3 33.1 24.9 28.3 42.8
sentbr 28.6 x 38.9 35.9 39.2 33.5 17.6 39.7

fiat 31.0 38.9 x 36.7 41.2 38.7 25.4 42.4
narrpt 25.3 35.9 36.7 x 37.9 38.0 18.8 35.0
mining 33.1 39.2 41.2 37.9 x 42.3 24.1 43.0
compbr 24.9 33.5 38.7 38.0 42.3 x 17.8 33.4
tweemg 28.3 17.6 25.4 18.8 24.1 17.8 x 32.1
unilex 42.8 39.7 42.4 35.0 43.0 33.4 32.1 x

To conclude, an additional challenging aspect of unilex is the high presence of very

short tweets, with approximately 25% of its messages comprising fewer than ten words.

Although a substantial proportion of tweets of unilex does contain hashtags (90%), there

is a relatively low incidence of user mentions (about 20% of tweets) and minimal inclusion

of emoticons and emojis (less than 10%). The presence of URLs and email addresses is

virtually absent. Given that tweets are typically characterized by concise sentences that

frequently rely on user mentions, hashtags, and emoticons, it can be suggested that unilex

does not accurately adhere to a conventional tweet-like dataset, resulting in decreased

compatibility with models specifically designed for the tweets domain. As a result, this

gap makes applying pre-trained Twitter models like BERTweet.BR and XLM-T more

challenging. Finally, we also observed that this difficulty applies to the Twitter-adapted

versions of models such as mBERT, BERTimbau, and XLM-R.
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6.2 TweetsMG Dataset

The tweemg dataset emerges as the best-performing dataset for all models analyzed

in this study, achieving a minimum score of 0.927. It boasts the highest number of

retweets (29.6%) by a significant margin and presents the highest proportion of emoticons

(83.92%), followed by covidbr (70.83%). Additionally, it has the highest proportion of

URLs (82.23%), with covidbr trailing at 69.00%. Regarding user mentions, tweemg holds

the second place with a proportion of 49.20%, only surpassed by mining at 68.29%. The

attributes above illustrate a notable distinction between tweetmg and unilex with regards

to their adherence to tweet-like datasets and the impact of it on their average scores.

What we observed is that the degree of alignment between a dataset and the standard

tweet positively impacts the performance of the model, as evidenced by the strong results

obtained with tweemg in contrast to the relatively low average scores of unilex.

Tweemg integrates intrinsic features that facilitate the clustering of its tweets, thereby

simplifying the text classification process. First, it follows a balanced distribution in terms

of classes. Then, we observed that, on average, positive tweets in tweemg tend to exhibit

shorter lengths than negative ones. Furthermore, in contrast to unilex, vocabularies of

tweemg display low intersection rates (averaging less than 15%) when evaluating the most

frequent words within the groups of positive, negative, and neutral tweets. Mainly, when

analyzing the twenty most common words in tweemg by sentiment, only three appear

concurrently in both positive and negative subsets. This suggests the presence of virtually

independent vocabularies for each sentiment category, unlike what we observe with unilex,

where we encounter three times as many the number of shared words among all distinct

groups. This indicates the lack of a discernible pattern to differentiate classes in the

most challenging dataset in the collection, positioning unilex and tweemg in opposite

directions. Objectively, the relative independence of vocabularies of the tweemg dataset

results in reduced entropy, which subsequently facilitates the job of machine learning

algorithms in splitting tweets into groups of different sentiments.

This specific ability of tweemg is further evidenced when we plot the embeddings ex-

tracted from pre-trained models after dimensionality reduction using t-SNE (van der

maaten, 2014) as shown in Figure 9. In the presented figures, distinct colors represent

different labels. Each point corresponds to an individual tweet in the dataset, with 768-

dimension embeddings derived from pre-trained models BERTweet.BR and BERTimbau.

Dimensionality reduction was performed using t-SNE. The color scheme denotes the three

sentiment labels: red for negative sentiment, blue for positive sentiment, and orange for



6.3 The Effect of specific Tokenizer 56

neutral sentiment. Distinct sentiment clusters are discernible, highlighting the similar-

ity among tweets sharing the same label and potentially indicating the ease of detecting

sentiments within the tweemg dataset. Embeddings generated by BERTweet.BR and

BERTimbau suggest that groups of tweets with the same labels in the tweemg dataset

also possess similar semantic meanings, as illustrated by the proximity of their vector

representations in the two-dimensional space. Groups of tweets with the same label ap-

pear clustered together while distant from tweets of other sentiments. Consequently, it

becomes easier to infer the sentiment of a given tweet visually. In fact, this is an intrin-

sic characteristic of this dataset as, regardless of the pre-trained model used to generate

the embeddings, tweets from the tweemg dataset prove to be reasonably distinguishable

when visualized in the plots. Precisely, samples from the tweemg dataset are more readily

identifiable using t-SNE technique compared to all other datasets in the collection. For

instance, samples with different labels in unilex dataset are virtually indistinguishable,

as depicted in Figure 10. That is, in contrast to the tweemg dataset, this plot visually

illustrates the inherent challenge in discerning sentiment within unilex, as it is virtually

impossible to identify a clear semantic separation among the different labels of the tweets.

Figure 9: Visualization of embeddings for the tweemg dataset. Each point corresponds
to an individual tweet in the dataset, with 768-dimension embeddings derived from pre-
trained models BERTweet.BR and BERTimbau.

6.3 The Effect of specific Tokenizer

Although training a specific vocabulary on tweets cannot guarantee the absence of out-

of-vocabulary tokens, it does provide a more concise way of representing sentences, as

demonstrated in Table 10 where we show various statistics of each dataset after nor-

malization and tokenization. For each dataset is indicated the minimum, maximum,
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Figure 10: Visualization of embeddings for the unilex dataset. Each point corresponds
to an individual tweet in the dataset, with 768-dimension embeddings derived from pre-
trained models BERTweet.BR and BERTimbau.

and average length in tokens after each model tokenizer. In out-of-vocabulary (OOV),

it is provided the number of rows, the total number of occurrences, and the quantity

of unique OOV found in each dataset and after each particular tokenizer (#has, #total

and #unique respectively). The unique max column indicates the maximum number of

occurrences of one OOV token in the same tweet. Finally, it is presented the three most

frequent out-of-vocabulary tokens along with their frequency in each of the datasets. Note

that for XLM-R and XLM-T, models with the largest vocabularies, tokenizers were able

to decode the whole dataset.

As illustrated in the table, on average, BERTweet.BR tokenizer generates the short-

est decoded sentences across all datasets, demonstrating that our model’s tokenizer has

successfully learned highly specific tokens for a corpus of Portuguese tweets, enabling it

to generate concise representations. Comparatively, using the plain Portuguese tokenizer

of BERTimbau on the same datasets resulted in decoded sentences 33% longer.

The XLM-R and XLM-T multilingual tokenizers possess the largest vocabulary among

all models, encompassing 250,002 entries. This is over double the size of the second-

largest vocabulary, which contains 119,547 entries and belongs to the mBERT model. As

expected, the vocabulary size influences the number of out-of-vocabulary (OOV) instances.

The only dataset in which XLM-R and XLM-T tokenizers exhibit OOV occurrences is

unilex. It can be expected that a low frequency of OOV tokens may contribute to improved

results, as evidenced by the XLM-T model, which has virtually no OOV tokens across

all datasets. However, it is also observed that models such as BERTimbau, which has

the smallest vocabulary size and the highest frequency of OOV in all datasets, as shown

in Table 10, recorded significant results trailing only behind BERTweet.BR in several

instances.
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Table 10: Statistics of each dataset after normalization and tokenization. (*) Based on
classical TwitterTokenizer from NLTK package.

Tokens Out-of-Vocabulary

min avg max #has #total #unique unique max most freq.

co
vi

db
r

fasttext* 6 32.9 68 514 1456 484 22 covid (75); #coronavírus (57); #coronavirus (45)
bertimbau 13 52.6 138 31 41 16 2 q (22); 2ª (3); 25 (2)

mbert 14 54.2 146 31 55 10 2 “ (20); ” (19); ‘ (6)
xlmr 11 52.6 164 0 0 0 0 -
xlmt 11 52.6 164 0 0 0 0 -

BERTweet.BR 8 39.9 85 18 49 19 2 (8); antónio (2); (2)

se
n
tb

r

fasttext* 2 13.6 47 7769 12532 1354 11 #masterchefbr (2761); #encontro (1091); #videoshowaovivo (960)
bertimbau 6 24.3 82 454 568 43 6 q (424); ñ (33); ♡ (28)

mbert 7 24.8 97 8 15 11 6 ” (2); ‘ (2); — (1)
xlmr 7 24.0 124 0 0 0 0 -
xlmt 7 24.0 124 0 0 0 0 -

BERTweet.BR 4 18.1 56 29 44 20 6 (11); \u200d ♀(5); (4)

fi
at

fasttext* 2 19.1 43 6946 11831 2295 11 #fiat (140); #cartolafc (116); 1507 (71)
bertimbau 7 30.9 111 387 471 72 3 q (280); ¬ (34); ñ (16)

mbert 7 30.4 72 5 5 3 1 ´ (3); ¤(1); ‘ (1)
xlmr 6 29.3 70 0 0 0 0 -
xlmt 6 29.3 70 0 0 0 0 -

BERTweet.BR 4 24.3 63 244 247 13 2 \x97 (226);\x99 (3); ariquemes (3)

n
ar

rp
t

fasttext* 2 16.6 38 504 929 353 6 :d (13); #sorteio (12); #promoção (10)
bertimbau 5 27.5 59 53 69 17 2 q (33); ¬ (11); qe (16)

mbert 6 27.4 54 16 22 7 2 “ (8), ” (6), — (4)
xlmr 4 24.9 50 0 0 0 0 -
xlmt 4 24.9 50 0 0 0 0 -

BERTweet.BR 4 20.7 43 0 0 0 0 -

m
in

in
g

fasttext* 2 16.9 44 2018 4846 753 12 #claro (104); #bradesco (91); #vivoemrede (85)
bertimbau 6 28.5 83 156 196 19 2 q (138); ¬ (14); ñ (10)

mbert 7 29.4 56 0 0 0 0 -
xlmr 6 28.2 53 0 0 0 0 -
xlmt 6 28.2 53 0 0 0 0 -

BERTweet.BR 4 21.3 46 64 64 5 1 #bancodobrasil (57); #bancocentralbr (2); #bancodobradesco (2)

co
m

pb
r

fasttext* 1 19.1 55 1647 3197 673 11 #dell (75); #notebook (32); v14t (22)
bertimbau 5 33.1 89 107 134 27 3 q (81); 5ª (7); ñ (6)

mbert 6 31.0 95 28 33 7 2 - (13); ” (9); —– (4)
xlmr 4 27.9 92 0 0 0 0 -
xlmt 4 27.9 92 0 0 0 0 -

BERTweet.BR 4 24.9 72 4 4 4 1 (1); \x99 (1); aspect (1)

tw
ee

m
g

fasttext* 1 18.2 38 8038 16885 847 10 #timbeta (206); #globo (130); #operacaobetalab (121)
bertimbau 6 31.2 62 471 1100 49 3 q (676); ñ (312); 16ª (15)

mbert 5 31.1 58 101 121 6 2 – (37); ‘ (28); “ (19)
xlmr 4 29.2 62 0 0 0 0 -
xlmt 4 29.2 62 0 0 0 0 -

BERTweet.BR 3 22.3 51 102 107 11 2 #raynniere (75); timóteo (13); (4)

u
n
il
ex

fasttext* 1 17.2 73 11632 43693 9531 27 #pt ( 5444); #psdb (1144); #brasil (1004)
bertimbau 3 32.3 176 792 1123 147 7 q (469); ñ (105); • (47)

mbert 4 33.3 202 288 483 51 7 “ (147); ”, (133); – (43)

xlmr 3 32.4 205 62 179 80 10 (13); (12); (8)

xlmt 3 32.4 205 62 179 80 10 (13); (12); (8)
BERTweet.BR 3 24.3 72 480 1208 169 7 (85); #dilmarousseff (79); paschoal (38)



7 Conclusion and Future Work

In this work, we presented the first public large-scale pre-trained model specific to the

Brazilian Portuguese tweet domain. To assess our model, we explored several pipelines,

applying both feature-based and fine-tuning approaches on top of off-the-shelf language

models as well as adjusted models to the context of Twitter in Portuguese. We found that

BERTWeet.BR, trained from scratch, performed better than its competitors in most sce-

narios of sentiment classification with datasets of varying sizes. BERTweet.BR achieved

the absolute best F1-score on 36 out of 48 experiments while matching the previous best

performances on two scenarios, which certifies the effectiveness of a domain-specific lan-

guage model pre-trained for Portuguese tweets. This clearly provides a positive response

to inquiries about both research questions RQ1 and RQ2.

In this regard, our work proved to be a relevant step forward in the field of natural

language processing in Portuguese, in which we release model and code from the trans-

formers library1 and Github2 with the aim of advancing future research in analytical tasks

for Portuguese. However, it is essential to acknowledge potential limitations, such as the

model’s ability to capture more recent linguistic trends and its generalization to other task

types. Additionally, the rapidly evolving NLP landscape, especially with the emergence of

Large Language Model (LLM), may impact performance benchmarks and future research

directions.

The corpus utilized for pre-training our model encompasses data spanning from 2004

to 2020. Due to the dynamic nature of debates on the Twitter platform, one natural

next step is to incorporate new knowledge into our model with the latest tweets from

2020 onwards. In particular, our findings showed that BERTWeet.BR did not do so well

with the opcovidbr dataset, as the debate on the COVID-19 crisis has been mostly made

after 2020. Thus, acquiring data after that point and retraining the models could lead

to different results. With more new data, we would also adopt a longer training process
1https://huggingface.co/melll-uff/bertweetbr
2https://github.com/MeLLL-UFF/BERTweet.br

https://huggingface.co/melll-uff/bertweetbr
https://github.com/MeLLL-UFF/BERTweet.br
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and also release a large version of the model — BERTweet (nguyen; vu; nguyen,

2020), for example, was pretrained for ten more epochs in a corpus eight times larger

than BERTweet.BR. On the other hand, a lighter and cheaper version of BERTweet.BR

following the training procedures of DistilBERT (sanh et al., 2019) would result in an

alternative model, more viable for production, especially in scenarios with costs and low

latency constraints.

The model’s performance is evaluated on a collection of eight datasets for sentiment

analysis. While this provides a comprehensive evaluation, it is still possible that the

model’s performance may vary when applied to other tasks, domains, or datasets that

were not part of the evaluation process. For this reason, we are also planning to extend

this study evaluating our model on different downstream tasks, specifically token-level

classification tasks like Named Entity Recognition (NER) and Part-of-Speech (PoS) tag-

ging. We would like to investigate BERTWeet.BR performance on other classification and

sequence-based tweets tasks.

Finally, in light of the significant recent advancements in NLP related to large lan-

guage models (LLMs) like GPT-4 (openai, 2023), LLaMA (touvron et al., 2023), and

BLOOM (workshop et al., 2023), next we plan to follow in-context learning apply-

ing the few/one/zero-shot approaches (brown et al., 2020) to LLMs and compare these

performances to BERTWeet.BR, a scenario we did not explore in this study.

Ethics Statement

Datasets. All datasets considered in this manuscript were gathered from previous

work that made them publicly available. Although we have not directly collected any

tweets, we are aware that using data collected from the Twitter platform should raise

ethical reflections. Even though Twitter users assume their posts are not private, they

are usually not explicitly informed that what they write can be used for scientific – our

case – or commercial – not our case – purposes. Besides, they might usually assume that

their tweets are ephemeral whilst they, in fact, can be collected and stored by anyone

anywhere. We tried our best not to include sensitive content in our examples and not

disclose the identity of their authors.

Language model. Given that this work strongly relies on large-scale language mod-

els and datasets composed of social media texts, despite the best intentions, we anticipate

possible ethical and social risks by perpetuating social biases and providing false or mis-

leading information. In the case of language models, these risks usually spring from the

chosen training corpora used to pre-train such large models. If your intent is to use
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our pre-trained model or a fine-tuned version in production, please be aware that, while

BERTweet.BR like many other models is a powerful tool, it comes with limitations. To

enable pre-training on large amounts of data, we scrape all the content we could find from

Twitter until the year 2020, taking the best as well as the worst of what was available on

this social media.
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APPENDIX A -- Datasets

Despite Portuguese being among the top ten languages utilized on the Internet as of Jan-

uary 20201, there remains a scarcity of resources for sentiment analysis in this language.

Motivated by the necessity to assemble a comprehensive Portuguese corpus, we explored

the literature for annotated resources pertaining to sentiment analysis and successfully ac-

quired eight datasets by contacting authors. These datasets, comprising human-annotated

tweets, exhibit diversity in subject matter, with three being binary and five being mul-

ticlass. The labeled datasets can be accessed at https://bityli.com/RvhFax, and we

have also made the collection available in the transformers datasets library2.

A.1 OPCovid-BR

The OPCovid-BR dataset consists of 600 manually labeled tweets about the Covid-19

pandemic posted by Brazilian Twitter users. This is the smallest dataset in our col-

lection but also the one with the longest tweets (approximately 28 words on average,

almost double the second dataset in this regard). The authors developed a Twitter API

to extract tweets using the key term search: “coronavirus”. The OPCovid-BR were an-

notated by three annotators, with concordance among annotators equal to 82,77%. It is

annotated with the binary document polarity (positive and negative) and fine-grained

opinion (explicit aspects) for each tweet. There are 300 tweets with positive labels

and 300 tweets with negative labels. For simplicity, in this paper, we refer to this

dataset as covidbr. This dataset is available in the transformers datasets library at

https://huggingface.co/datasets/melll-uff/opcovidbr.
1https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-t

he-internet/
2https://huggingface.co/melll-uff/

https://bityli.com/RvhFax
https://huggingface.co/datasets/melll-uff/opcovidbr
https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet/
https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet/
https://huggingface.co/melll-uff/
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A.2 TweetSentBR

The dataset TweetSentBR was created in 2017 by (brum; graças volpe nunes, 2018)

and is a corpus of tweets in Brazilian Portuguese in the domain of TV shows. This is

a reasonably unbalanced dataset that contains the shortest tweets on average (approx-

imately 11 words in each), and more than 40% of the rows have less than 10 words.

Virtually all tweets have at least one occurrence of hashtags. TweetSentBR is also the

dataset with the highest frequency of emojis (22.56%). The dataset was labeled by sev-

eral annotators following steps established in the literature to improve the reliability of

the Sentiment Analysis task and each tweet was annotated as either positive or neg-

ative. Several annotators labeled each tweet as positive or negative following an an-

notation process of eight steps. The final label for each tweet was determined based

on a major voting strategy. While some tweets were labeled by only one annotator,

others were annotated by three or seven. For simplicity, we refer to this dataset as

sentbr in this manuscript. This dataset is available in the transformers datasets library

at https://huggingface.co/datasets/melll-uff/tweetsentbr.

A.3 FIAT-UFMG

FIAT-UFMG is composed of tweets related to the “FIAT” brand, manually labeled as

positive or negative. This is the second-largest dataset in our collection. Tweets were

extracted by (martins; pereira; benevenuto, 2015) using the Twitter API filtering

the year 2012 and messages related to the “Fiat” brand. For simplicity, we refer to this

dataset as fiat in this study. This dataset is available in the transformers datasets library

at https://huggingface.co/datasets/melll-uff/fiat-ufmg.

A.4 narr-PT

The dataset narr-PT contains tweets that have been human-annotated with sentiment

labels by three Mechanical Turk workers with the aim to create a multilingual senti-

ment dataset for the languages English, German, French, and Portuguese. Originally,

in this dataset, there are 12,597 positive, neutral, and negative tweets. Particularly for

Portuguese, there are 772 tweets. This balanced dataset is the smallest one in the collec-

tion we used in this study among the three-classes datasets. For simplicity, we refer to

this dataset as narrpt in this manuscript. This dataset is available in the transformers

https://huggingface.co/datasets/melll-uff/tweetsentbr
https://huggingface.co/datasets/melll-uff/fiat-ufmg
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datasets library at https://huggingface.co/datasets/melll-uff/narrpt.

A.5 MiningBR

This dataset contains tweets of the companies with the most number of complaints in

the Brazilian Consumer Protection and Defense Program agency (PROCON). At least

two annotators manually labeled the tweets from this collection as neutral, positive, or

negative according to their sentiment polarity. Because of the nature of its source, this

is a highly unbalanced dataset with nearly 65% of the tweets belonging to the negative

class and only 9% being positive. For simplicity, we refer to this dataset as mining in

this manuscript. This dataset is available in the transformers datasets library at https:

//huggingface.co/datasets/melll-uff/miningbr.

A.6 Computer-BR

This corpus consists of 2,281 tweets extracted in the period from January to September

2015. To build it, (moraes et al., 2016) used keywords related to computers, such as

notebook, analysis, and testing, among others. In the annotation process, four human

annotators have defined the polarity of the tweets, three of them participating in the

whole process and the fourth deciding the final polarity in cases of disagreement only. It

is worth mentioning that three annotators were from the Computer Science area and one of

them was from the Linguistics area. To reduce noise, the dataset was normalized prior to

publication: they removed (or treated) special characters and hashtags, turned emoticons

and hyperlinks into text, and replaced abbreviations and slang with usual expressions,

such as “vc” into “você” (you) and “novis” into “novidade” (news). This dataset is also

highly unbalanced, having its dominant class neutral with approximately 75% of all tweets.

For simplicity, we refer to this dataset as comput in this manuscript. This dataset is

available in the transformers datasets library at https://huggingface.co/datasets/

melll-uff/computerbr.

A.7 TweetsMG

TweetsMG is a multiclass dataset collected and labeled by the IT staff of Prodemge MG.

It belongs to the domain of Education and Politics in the context of the Brazilian State of

https://huggingface.co/datasets/melll-uff/narrpt
https://huggingface.co/datasets/melll-uff/miningbr
https://huggingface.co/datasets/melll-uff/miningbr
https://huggingface.co/datasets/melll-uff/computerbr
https://huggingface.co/datasets/melll-uff/computerbr
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Minas Gerais. This dataset contains lots of duplicated tweets (retweets). For simplicity,

we refer to this dataset as tweemg in this manuscript. This dataset is available in

transformers datasets library at https://huggingface.co/datasets/melll-uff/twe

etsmg.

A.8 UniLex

The dataset UniLex, created by (souza; pereira; dalip, 2017), contains most of the

tweets belonging to the domain of politics. Labeling was performed by four annotators,

each one labeling approximately 3,500 tweets. Tweets with dates, user mentions, and

hashtags were considered neutral. This is the largest dataset of the collection used in this

study. For simplicity, we refer to this dataset as unilex in this manuscript. This dataset

is available in the transformers datasets library at https://huggingface.co/datasets/

melll-uff/unilex.

https://huggingface.co/datasets/melll-uff/tweetsmg
https://huggingface.co/datasets/melll-uff/tweetsmg
https://huggingface.co/datasets/melll-uff/unilex
https://huggingface.co/datasets/melll-uff/unilex
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