Universidade Federal Fluminense Instituto de Computação

Um Estudo sobre a Influência das Famílias Wavelets na Compressão de Imagem

Marcello Santos da Fonseca

Niterói - RJ Março de 2004

Marcello Santos da Fonseca

Um Estudo sobre a Influência das Famílias Wavelets na Compressão de Imagem

Dissertação apresentada ao Curso de Mestrado em Computação da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre em Computação. Área de Concentração: Computação Visual.

Orientadora: Prof. Aura Conci

Niterói - RJ Março de 2004

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

F676 Fonseca, Marcello Santos da
Um estudo sobre a influência das famílias Wavelets na compressão de imagem / Marcello Santos da Fonseca. – Niterói : [s.n.], 2004.
136 f.
Orientador: Prof. Aura Conci. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal Fluminense, 2004.
1. Processamento de imagens – Técnicas digitais. 2. Compressão de imagem. 3. Wavelets (Matemática). 4. Teoria dos números. I. Título.
. CDD 001.64072

Marcello Santos da Fonseca

Um Estudo sobre a Influência das Famílias Wavelets na Compressão de Imagem

Dissertação apresentada ao Curso de Mestrado em Computação da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre. Área de Concentração: Computação Visual.

Aprovada em 30 de Março de 2004

BANCA EXAMINADORA

Prof^a Dr^a Aura Conci – Orientadora Universidade Federal Fluminense - IC-UFF ivena Prof Dr Antônio Alberto Fernandes de Oliveira Universidade Federal Rio de Janeiro – COPPE-UFRJ Jim Prof Dr José Manoel Balthazar Universidade Estadual Paulista - UNESP-RC

Niterói - RJ Março de 2004

DEDICATÓRIA

Dedico este Trabalho a Nossa Senhora à quem recorro nas horas mais difíceis.

Aos meus pais, Feliciano e Otávia, aos meus irmãos, Márcio Luís e Mauro.

Aos parentes e amigos que me incentivaram direta ou indiretamente para a conclusão deste trabalho.

AGRADECIMENTOS

- À Professora Aura Conci pela dedicação, incentivo e confiança.
- Ao Professor José Geraldo Franco Méxas, pelo material e aulas de Wavelets.
- Aos membros da Banca Examinadora, Professor Antonio Alberto Fernandes de Oliveira e Professor José Manoel Balthazar, por suas sugestões.
- Aos amigos Angela Gomes e Lobianco, pela ajuda no início do curso.
- A todos os colegas do IBGE, em especial, Arnaldo Lyrio e José Luiz que me deram liberdade para a conclusão deste trabalho.

Marcello Santos da Fonseca.

RESUMO

Dados de multimídia como gráficos, áudio e vídeo não comprimidos necessitam de uma considerável capacidade de armazenamento e banda de transmissão nos sistemas de telecomunicações. Apesar do desenvolvimento da tecnologia de armazenamento, alto desempenho dos processadores e dos sistemas de comunicação digital, a demanda por essas tecnologias é maior que a capacidade disponível.

O crescimento atual das aplicações WWW baseadas em multimídia precisam de formas mais eficientes de codificação de sinais e imagens. Assim a compressão de dados é importante para o armazenamento e a comunicação de informações. Uma das mais promissoras técnicas é a compressão Wavelet, atualmente já adotado no formato JPEG 2000.

Esse trabalho visa descrever a técnica de compressão de imagem por Wavelet. Veremos algumas famílias de bases Wavelet como as bases de Haar, Daubechies, Biorthogonal, Coiflets e Symlets. Elas são usadas para compressão de um conjunto de imagens. O alvo do trabalho é definir quais bases apresentam a melhor e a pior qualidade de compressão, através da avaliação qualitativa e quantitativa usando funções: Erro Médio Quadrático (RMSE), Relação Sinal Ruído (SNR) e da Relação Sinal Ruído de Pico (PSNR).

Palavras-chave:

Compressão de Imagem, Análise de Fourier, Análise de Wavelet, Transformada de Wavelet Discreta - DWT.

ABSTRACT

Uncompressed multimedia data as graphics, audio and video require a considerable storage capacity and transmission bandwidth on telecommunications systems. In despite of the development of the storage technology, high performance of processors and digital communication systems, the demand for these technologies is higher than the available capacity.

Nowadays, the growth of multimedia-based web applications need more efficient ways to encode signals and images. So data compression is important to storage and communication technology. One of the promissing techniques is the Wavelet compression, now used by the image format file JPEG 2000.

This work seeks to describe the Wavelet image compression technique. We will see some Wavelet family bases like Haar, Daubechies, Biorthogonal, Coiflets and Symlets. They are used to compress a group of images. The target of the work is to define which bases present the best and the worst compression quality, through qualitative and quantitative availation functions: Root Mean Square Error (RMSE), Sign Noise Ratio (SNR) and Peak Sign Noise Ratio (PSNR).

Key-words:

Image Compression, Fourier Analysis, Wavelet Analysis, Discrete Wavelet Transform - DWT.

SUMÁRIO

1. INTRODUÇÃO	1
1.1. Organização da Dissertação	2
1.2. Por que Precisamos de Compressão de Dados?	3
1.3. Métodos de Compressão de Imagem	4
1.4. Compressão Simétrica versus Assimétrica	4
1.5. Aplicação Simétrica versus Assimétrica	5
1.6. Medição do Desempenho de Compressão	5
1.7. Métodos de Compressão	5
1.8. Perpectiva Histórica	6
1.8.1. Pré-1930	6
1.8.2. Década de 30	7
1.8.3. 1960 - 1980	8
1.8.4. Após 1980	8
2. ANÁLISE DE FOURIER	9
2.1. Conceitos Básicos	9
2.1.1. Séries e Funções Periódicas	9
2.1.2. Séries de Fourier Trigonométricas	11
2.2. Transformada de Fourier	18
2.3. Interpretação da Transformada de Fourier	20
2.4. Teorema da Convolução	21
2.5. Transformada de Fourier em Imagens	23
2.6. Transformada Discreta de Fourier (DFT)	24
2.7. Transformada Rápida de Fourier (FFT)	25
2.8. Transformada do Cosseno Discreto (DCT)	25
2.9. Transformada de Fourier Janelada (WFT)	25
3. ANÁLISE DE WAVELET	27
3.1. Transformada de Wavelet Contínua	28
3.1.1. Parâmetro de Escala	29
3.1.2. Parâmetro de Posição ou Deslocamento	30
3.1.3. Cálculo da Transformada de Wavelet Contínua	30
3.1.4. Algoritmo para Cálculo da Transformada de Wavelet Contínua	33
3.2. A Escala da Natureza	34
3.3. Transformada de Wavelet Discreta (DWT)	34
3.4. Transformada de Fourier Versus Transformada de Wavelet	35
3.4.1. Semelhanças entre Transformada de Fourier e Wavelet	35
3.4.2. Diferenças entre Transformada de Fourier e Transformada de Wavelet	35
3.5. Wavelets Unidimensional	37
3.5.1. Transformada Wavelet de Haar Unidimensional	38
3.5.2. Funções bases de Wavelet de Haar Unidimensional	40
3.5.3. Ortogonalidade	43
3.5.4. Normalidade	44

3.5.5. Aplicação: Compressão 3.6. Wavelet Bidimensional	.44
3.6.1. Transformada de Wavelet de Haar Bidimensional	.45
4. ANÁLISE EM MULTIRESOLUÇÃO	.48
4.1. Aproximações e Detalhes	.48
4.2. Banco de Filtros	.49
4.3. Implementação do Algoritmo Wavelet para Decomposição e Reconstrução de	50
Imagem	. 50
4.4. As Fallillas wavelets	. 53
4.4.1 That	53
4.4.3. Bi-ortogonal	.54
4.4.4. Coiflets	. 55
4.4.5. Symlets	. 55
5. TESTES E RESULTADOS	. 56
5.1. Imagens de Teste	.59
5.2. Resultados Erro Médio Quadrático - RMSE	.61
5.3. Resultados Relação Sinal de Ruído rms – SNRrms	. 69
5.4. Resultados Relação Sinal Ruído de Pico - PSNR	.77
6. CONCLUSÕES	,85
6.1. Conclusões sobre os Resultados	. 85
6.2. Sugestões para Trabalhos Futuros	.95
7. ANEXO I	.96
7.1. Revisão de Conceitos:	.96
7.1.1. Números Complexos	.96
7.1.2. Espaço vetorial ou linear	. 99
8. ANEXO II	103
8.1. Código do programa teste no Matlab versão 1	103
8.2. Código do programa teste no Matlab versão 21	108
9. ANEXO III	118
10. BIBLIOGRAFIA	134

LISTA DE FIGURAS

Figura 1.1 - Diagrama de Compressão	6
Figura 2.1 - $Gráfico f(t) = \arctan(t)$. 10
Figura 2.2 - $Gráfico f(t) = cos(t)$. 12
Figura 2.3 - Gráfico $f(t) = sen(t)$. 12
Figura 2.4 - Gráfico c, versus w.	.17
Figura 2.5 - Gráfico nw ₀	. 18
Figura 2.6 - Transformada de Fourier de um sinal contínuo	. 19
Figura 2.7 - Transformada de Fourier Janelada ou Transformada de Gabor	. 26
Figura 3.1 - Transformada de Wavelet Contínua	. 28
Figura 3.2 - Fator de escala da função Seno	. 29
Figura 3.3 - Fator de escala de uma função Wavelet Ψ	. 30
Figura 3.4 - Fator de deslocamento, à direita função Wavelet $\Psi(t)$, à esquerda função	
Wavelet deslocada $\Psi(t-b)$. 30
Figura 3.5 - Comparação do sinal original com a wavelet	. 31
Figura 3.6 - Deslocamos a Wavelet para a direita para calcular novo C	.31
Figura 3.7 - Dilatamos a Wavelet e repetimos os passos (1) e (3)	.31
Figura 3.8 - Repetimos os passos de (1) até (4) para todas as escalas	. 32
Figura 3.9 - Representação do Escalograma em 3D.	. 32
Figura 3.10 - Algoritmo para Cálculo da Transformada de Wavelet Contínua	. 33
Figura 3.11 - Perfil da geografia lunar.	. 34
Figura 3.12 - Escalograma do perfil da geografia lunar.	. 34
Figura 3.13 - Funções base de Fourier descritas no plano Tempo x Freqüência	. 36
Figura 3.14 - Função base Wavelet de Daubechies descritas no plano Tempo x Freqüênc	cia.
	. 36
Figura 3.15 - Comparação entre Transformada de Fourier e Transformada de Wavelet.	. 37
Figura 3.16 - Seqüência de aproximação e coeficientes de detalhes	. 39
Figura 3.17 - A base quadrada para V^2	.41
Figura 3.18 - As Wavelets de Haar para W^1 .	. 42
Figura 3.19 - (a) Decomposição padrão, (b) Decomposição não padrão	.46
Figura 4.1 - Árvore de Decomposição Wavelet	.48
Figura 4.2 - Árvore de Decomposição Wavelet de um sinal	.49
Figura 4.3 - Banco de Filtros	. 50
Figura 4.4 - Imagem original de teste Lena com 128x128 pixeis	. 51
Figura 4.5 - Esquema de Decomposição não padrão	. 51
Figura 4.6 - Decomposição da imagem em um primeiro nível de resolução	. 52
Figura 4.7 - Decomposição da imagem em níveis de aproximação e detalhes	. 52
Figura 4.8 - Wavelet Haar, função Psi	. 53
Figura 4.9 - Wavelet Daubechies, função Psi.	. 53
Figura 4.10 - Wavelets Bi-ortogonal, função Psi	. 54
Figura 4.11 - Wavelets Coiflets, função Psi	. 55
Figura 4.12 - Wavelets Symlets, função Psi	. 55

Figura 5.1 - Tela do programa de teste	58
Figura 5.2 - Mensagem de ajuda	58
Figura 5.3 - Conjunto de imagens de teste	60
Figura 6.1 - Comparação da imagem Lena 128x128 obtida com base de Haar	94
Figura 6.2 - Comparação da Imagem Lena 128x128 obtida com base	94
Figura 7.1 - Gráfico de um número complexo representado por um ponto no plano	
complexo	96
Figura 7.2 - Gráfico do Plano Complexo com um ponto descrito na forma polar	97

LISTA DE GRÁFICOS

Gráfico 5.1 - RMSE da imagem Lena 128x128	63
Gráfico 5.2 - RMSE da imagem Lena 256x256	63
Gráfico 5.3 - RMSE da imagem Camera 128x128	64
Gráfico 5.4 - RMSE da imagem Camera 256x256	64
Gráfico 5.5 - RMSE da imagem Goldhill 128x128	65
Gráfico 5.6 - RMSE da imagem Goldhill 256x256	65
Gráfico 5.7 - RMSE da imagem Peppers 128x128	66
Gráfico 5.8 - RMSE da imagem Peppers 512x512	66
Gráfico 5.9 - RMSE da imagem Xadrez 256x256	67
Gráfico 5.10 - RMSE da imagem Círculo 256x256	67
Gráfico 5.11 - RMSE da imagem Senoidal 256x256	68
Gráfico 5.12 - RMSE da imagem Texto 256x256	68
Gráfico 5.13 - SNRrms da imagem Lena 128x128	71
Gráfico 5.14 - SNRrms da imagem Lena 256x256	71
Gráfico 5.15 - SNRrms da imagem Camera 128x128	72
Gráfico 5.16 - SNRrms da imagem Camera 256x256	72
Gráfico 5.17 - SNRrms da imagem Goldhill 128x128	73
Gráfico 5.18 - SNRrms da imagem Goldhill 256x256	73
Gráfico 5.19 - SNRrms da imagem Peppers 128x128	74
Gráfico 5.20 - SNRrms da imagem Peppers 512x512	74
Gráfico 5.21 - SNRrms da imagem Xadrez 256x256	75
Gráfico 5.22 - SNRrms da imagem Círculo 256x256	75
Gráfico 5.23 - SNRrms da imagem Senoidal 256x256	76
Gráfico 5.24 - SNRrms da imagem Texto 256x256	76
Gráfico 5.25 - PSNR da imagem Lena 128x128	79
Gráfico 5.26 - PSNR da imagem Lena 256x256	79
Gráfico 5.27 - PSNR da imagem Camera 128x128	80
Gráfico 5.28 - PSNR da imagem Camera 256x256	80
Gráfico 5.29 - PSNR da imagem Goldhill 128x128	81
Gráfico 5.30 - PSNR da imagem Goldhill 256x256	81
Gráfico 5.31 - PSNR da imagem Peppers 128x128	82
Gráfico 5.32 - PSNR da imagem Peppers 512x512	82
Gráfico 5.33 - PSNR da imagem Xadrez 256x256	83
Gráfico 5.34 - PSNR da imagem Círculo 256x256	83
Gráfico 5.35 - PSNR da imagem Senoidal 256x256	84
Gráfico 5.36 - PSNR da imagem Texto 256x256	84
Gráfico 6.1 - RMSE Fotográficas 128x128	86
Gráfico 6.2 - SNR rms Fotográficas 128x128	86
Gráfico 6.3 - PSNR Fotográficas 128x128	87
Gráfico 6.4 - RMSE Fotográficas 256x256	88
Gráfico 6.5 - SNR rms Fotográficas 256x256	88
Gráfico 6.6 - PSNR Fotográficas 256x256	89
Gráfico 6.7 - RMSE Sintéticas 256x256	90

Gráfico 6.8 - SNR rms Sintéticas 256x256	
Gráfico 6.9 - PSNR Sintéticas 256x256	
Gráfico 6.10 - RMSE Médio	
Gráfico 6.11 - SNR ms Médio	
Gráfico 6.12 - SNR rms Médio	
Gráfico 6.13 - PSNR Médio em decíbel	

LISTA DE TABELAS

Tabela 1.1 - Relação entre complexidade da informação, área de armazenamen	<i>ito e largura</i>
de banda de transmissão	
Tabela 2.1 - Propriedades da Transformada de Fourier	
Tabela 3.1 - Decomposição em coeficientes de aproximação e detalhes	

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

RMSE - Erro Médio Quadrático, do Inglês Root Mean Square Error. SNR - Relação Sinal Ruído, do Inglês Signal Noise Ratio. **PSNR** - Relação Sinal Ruído de Pico, do Inglês Peak Signal Noise Ratio. FT - Transformada de Fourier, do Inglês Fourier Transform. FFT - Transformada Rápida de Fourier, do Inglês Fast Fourier Transform. WFT - Transformada de Fourier de curta duração, do Inglês Windowed Fourier Transform. WT - Transformada Wavelet, do Inglês Wavelet Transform. CWT - Transformada Wavelet Contínua, do Inglês Continuous Wavelet Transform. DWT - Transformada Wavelet Discreta, do Inglês Discrete Wavelet Transform. DCT - Transformada do Cosseno Discreto, do Inglês Discrete Cosino Transform. IFS - Sistema Iterativo de Funções, do Inglês Iterated Function System. JPEG - Formato de Compressão de Imagem baseado na DCT, do Inglês Joint Photographic Experts Group. MPEG - Formato de Compressão de Vídeo, do Inglês Moving Pictures Expert Group. JPEG 2000 - Formato de Compressão de Imagem baseado na DWT, do Inglês Joint Photographic Experts Group 2000.

WWW – World Wide Web

1. INTRODUÇÃO

A sociedade atual vive a era da pós-industrialização, também conhecida como era da informação. Isso explica a necessidade cada vez maior de armazenamento e de troca de informações das mais diversas ordens, que são a base dos modernos sistemas de armazenamento e de telecomunicações.

Com o rápido crescimento da informatização, existe a necessidade de armazenamento e de sistemas de telecomunicações cada vez mais eficientes para tratar o grande volume de informação. Nesse ponto a técnica de Wavelet¹ para compressão de imagem surge como opção promissora para redução dos custos com sistemas de armazenamento e dos sistemas de transmissão.

A idéia fundamental por atrás das Wavelets é a análise em escala. Alguns pesquisadores desta área acham, que ao usar Wavelets, adotamos uma nova postura ou nova perspectiva em processamento de dados. Concordamos com eles, pois a sua utilização nos campos da matemática, física quântica, engenharia elétrica, geologia, processamento de sinais, entre outras cresceu rapidamente a partir da segunda metade da década de 80 [GRASP 1995].

Existem dois tipos de funções Wavelets, elas podem se reais ou complexas. Neste trabalho nos estudaremos as Wavelets reais. As Wavelets são funções que satisfazem certas exigências matemáticas, que veremos mais à frente, e são usadas para representar dados ou outras funções. Esta idéia não é nova. Aproximação que usa superposição de funções existe desde o inicio do século XIX, quando Joseph Fourier descobriu que podemos representar funções periódicas através de funções senos e cossenos. Porém, na análise de Wavelet, a escala que nós usamos para os dados representa um papel especial, pois os algoritmos de Wavelet processam dados em diferentes escalas ou resoluções.

Se olharmos um sinal através de uma escala grande, notaremos as características globais do sinal. Por outro lado, se olharmos o mesmo sinal por uma escala menor com uma lupa, notaremos os detalhes finos do sinal. De uma maneira figurada, podemos dizer que o resultado da análise de Wavelet é ver a floresta, as árvores e dependendo dos níveis de detalhe que se queira, até os galhos e as folhas.

Isto faz as Wavelets serem interessantes e úteis. Durante muitas décadas, cientistas pesquisaram funções mais apropriadas do que o seno e cosseno, usadas na Análise de Fourier para aproximar sinais descontínuos. Por sua definição as funções seno e cosseno não são locais, ou seja, têm período infinito ou contínua por partes. Por um lado a Análise de Fourier não representa bem funções com descontinuidades, por necessitar de um período infinito e a sua representação é limitada no domínio da freqüência. Já na Análise de

¹ Ondaleta ou "pequena onda".

Wavelet, podemos usar aproximações de funções que são contidas em domínio finito. As Wavelets são mais apropriadas para aproximar funções com descontinuidade.

O procedimento de Análise por Wavelet é adotar uma função Wavelet base, chamada Wavelet mãe. A análise temporal é executada com um contração de base Wavelet de alta freqüência, enquanto análise de freqüência é executada por uma dilatação da base Wavelet de baixa freqüência. Como o sinal original ou a função podem ser representadas em termos de uma expansão de Wavelet (usando coeficientes em uma combinação linear das funções Wavelet). As operações com os dados podem ser realizadas apenas com o uso dos coeficientes de Wavelet correspondentes. Podemos representar a informação de maneira esparsa, se escolhermos a base Wavelet gerando coeficientes próximos de zero. Podemos, também, truncar a informação abaixo de um limiar (*threshold*). A codificação esparsa faz das Wavelets uma ferramenta excelente para o campo de compressão de dados ou imagem, alvo deste trabalho.

As Wavelets são usadas em outros campos da pesquisa aplicada incluindo astronomia, acústica, engenharia nuclear, codificação em sub-bandas, neurofisiologia, música, ressonância magnético, reconhecimento de voz, ótica, fractais, turbulência, previsão de terremoto, radar, visão humana, equações diferencial parciais, processamento de sinais e imagem [GRASP 1995].

Antes porém, para melhor situação, veremos como a dissertação está organizada, em seguida, veremos os aspectos relativos à compressão e a perspectiva histórica.

1.1. Organização da Dissertação

Este trabalho pertence a linha de pesquisa de compressão de imagem. A linha de pesquisa em compressão de imagem, na UFF, foi iniciada em 1997 com o trabalho de Codicação Fractal [AQUINO 1998]. Ela foi retomada em 2003 com este trabalho, que visa comparar o desempenho das Bases Wavelets no processo de compressão e descompressão de imagem.

A dissertação está organizada em seis capítulos e três anexos. Apresentamos no primeiro capítulo uma breve introdução, os aspectos relativos à compressão de imagem e a perspectiva histórica para melhor situar a Análise de Wavelet, no ponto de vista matemático. No capítulo 2, são apresentados conceitos básicos referentes à Análise de Fourier. O capítulo 3 apresenta os conceitos relativos à Análise de Wavelet, Transformada de Wavelet Contínua, Transformada de Wavelet Discreta, Wavelets Unidimensionais e Bidimensionais, bem como, estabelecemos uma comparação entre a Análise de Fourier e Análise de Wavelets. Já no capítulo 4, introduzimos a Análise em Multiresolução, a decomposição em níveis de aproximação e detalhes, o banco de filtros para decomposição de imagem, a implementação do algoritmo de Wavelet para decomposição e reconstrução de imagem, assim como, as Famílias Wavelets de Haar, Daubechies, Biortogonal, Coiflets e Symlets, usadas nos testes de compressão em imagens com 256 tons de cinza nos

tamanhos de 128x128, 256x256 e 512x512 pixeis. No capítulo 5, apresentamos os testes e resultados, obtidos com um conjunto de imagens, segundo o Erro Médio Quadrático, a Relação Sinal Ruído e a Relação Sinal Ruído de Pico. Finalmente, no capítulo 6, apresentamos as conclusões sobre os resultados obtidos, destacando qual base fornece o melhor e pior resultado, e sugerimos trabalhos futuros.

1.2. Por que Precisamos de Compressão de Dados?

A Tabela 1.1 nos mostra uma comparação qualitativa de diferentes tipos de transmissão de informação, desde um simples texto no formato A4, passando por voz em telefonia, imagens de tipos variados, até o vídeo em movimento.

Dados em multimídia	Tamanho / duração	Bits / pixel ou Bits/amostra	Tamanho não comprimido em Bytes	Banda de transmissão em bits	Tempo de transmissão (usando um modem V.90)
Uma página de texto	formato A4	Resolução variada	4 - 8 KB	32 - 64 kbits/página	0,57 - 1,14 seg
Voz em telefonia	10 segundos	8 bps	80 KB	64 Kbits/seg	11,42 seg
Imagem em tons de cinza	512 x 512	8 bpp	262 KB	2,1 Mbits/imagem	37,43 seg
Imagem colorida	512 x 512	24 bpp	786 KB	6,29 Mbits/imagem	1 min 52 seg
Imagem médica	2048 x 1680	12 bpp	5,16 MB	41,3 Mbits/imagem	12 min 12 seg
Imagem de SHD	2048 x 2048	24 bpp	12,58 MB	100 Mbits/imagem	29 min 57 seg
Vídeo	640 x 480, 10 segundos	24 bpp	1,66 GB	2,21 Gbits/seg	2 dias 17 hs 52 min 23 seg

Tabela 1.1 - Relação entre complexidade da informação, área de armazenamento e largura de banda de transmissão.

Desta forma, podemos observar que um aumento na complexidade da informação gera uma maior necessidade de área de armazenamento e de banda de transmissão [SAHA 2000].

1.3. Métodos de Compressão de Imagem

Existem basicamente dois grandes métodos de compressão de imagem, conhecidas como: sem perda ou com perda. A compressão sem perda ou codificação de redundância é método que explora a redundância entre pixeis na codificação; nenhum dado é perdido durante o processo de compressão. Este método é denominado compressão com preservação da informação, pois preserva todas as informações que permitirão a reconstrução exata da imagem. São exemplos: a codificação RLE, LZW ou o algoritmo de Huffman (que são usadas nos formatos: PCX, GIF, TIFF).

Por outro lado, na compressão com perda, algum dado é perdido durante a compressão da imagem. A compressão com perda é mais eficiente em relação à capacidade de armazenamento devido sua razão de compressão ser maior que a sem perda. Contudo existem aplicações particulares onde a perda de informação da imagem provoca distorções não aceitáveis. Em aplicações de sinal de satélite ou dados de imagens médicas, entre outras muitas vezes não é permitido compressão com perda. Diferentes formas de compressão com perda causam visualmente diferentes degradações na imagem.

A compressão baseada na Transformada do Cosseno Discreto (DCT - Discrete Cosine Transform) usada no padrão JPEG (Joint Photographic Experts Group) ou MPEG (Moving Pictures Expert Group) para vídeo, produz borramento (blurring e pixelation) na imagem. O Sistema Iterativo de Funções (IFS - Iterated Function System) é usado no padrão FIF para compressão fractal. Já a Transformada Wavelet Discreta (DWT - Discrete Wavelet Transform), tema deste trabalho, são técnicas de compressão usada no formato JPEG 2000 [SAHA 2000].

1.4. Compressão Simétrica versus Assimétrica

Quanto ao tempo de compressão e descompressão, os métodos e aplicações podem ser simétrico e assimétrico. Como exemplo de compressão simétrica, podemos citar a DWT e DCT. Onde o tempo de compressão é igual ao de descompressão. Ela é adequada para aplicações em multimídia, em tempo real, que necessitam simetria nos tempos de transmissão e recepção.

A técnica de compressão fractal é assimétrica. O tempo de compressão é maior que o tempo de descompressão. A mesma pode ser adequada a muitos métodos de codificação

de vídeo, pois uma vez que é feito a codificação, o vídeo pode ser armazenado em servidores de vídeo e acessado sob demanda pelos usuários, com uma decodificação mais rápida [SAHA 2000].

1.5. Aplicação Simétrica versus Assimétrica

Aplicações simétricas são aquelas que têm o mesmo peso de processamento na codificação e decodificação. A aplicação simétrica é adequado para a Internet, pois ao recebermos pela Internet uma imagem armazenada por Wavelet não é preciso esperar todo o processo de descompressão para identificar a imagem.

Aplicações assimétricas são aquelas que não há inconveniência no uso da compressão assimétrica como as publicações eletrônicas CD-ROM ou vídeo (DVD), onde a compressão é feita apenas uma vez, sendo o tempo de descompressão relevante para o usuário [SAHA 2000].

1.6. Medição do Desempenho de Compressão

Além da aparência visual ou da qualidade da imagem é importante termos uma forma de qualificar os resultados para comparação numérica posterior.

Podemos avaliar a medida de desempenho segundo a taxa de compressão, que é a razão entre o tamanho do dado ou imagem original e o tamanho do dado após a compressão. No caso da técnica sem perda, quanto maior a taxa de compressão melhor é a técnica de compressão. Para técnicas de compressão com perda deve-se considerar também a qualidade do sinal ou dado restituído.

Uma outra forma de avaliação e a qualidade da mídia reconstituída, que é medida em SNR (Relação Sinal/Ruído), aplicável apenas para técnicas com perda. Para a escolha de uma técnica de compressão com perdas, devemos optar pelo compromisso entre uma alta taxa de compressão e a qualidade desejada para a aplicação em desenvolvimento.

Finalmente, a complexidade de implementação e velocidade de compressão são freqüentemente a complexidade da técnica e inversamente proporcional à velocidade de compressão. Isto é, quanto maior for a complexidade de implementação menor será a velocidade de compressão [SAHA 2000].

1.7. Métodos de Compressão

Conceitualmente, os métodos de compressão podem ser classificados como: Codificadores de forma de onda, onde a intensidade da imagem, ou uma simples diferença de intensidade entre dois pixeis consecutivos, é codificada. Codificadores transformadores, onde a imagem é transformada para outro domínio (FFT, DCT, DWT e IFS) e os coeficientes transformadores são codificados. E, finalmente, codificadores de modelo da imagem, onde a imagem, ou apenas uma porção dela é modelada e os parâmetros modeladores são codificados.

O diagrama de compressão dos métodos baseados em Transformadores consiste das três etapas mostradas na figura 1. Este trabalho está basicamente focado no processo de transformação, a quantização e codificação não serão abordadas, pois iremos analisar o desempenho das bases Wavelets no processo de compressão e descompressão de imagem [SAHA 2000].

1.8. Perpectiva Histórica

Segundo Amara Grasp em [GRASP 1995], na história da matemática, a Análise de Wavelet tem origem em diferentes áreas. Muito do trabalho foi executado nos anos trinta, e, nesta ocasião, os esforços não pareciam ser parte de uma teoria coerente.

1.8.1. Pré-1930

Antes de 1930, o principal ramo da matemática que conduz a Wavelets começou com Joseph Fourier (1807) com sua teoria da análise em freqüência, conhecida como Análise de Fourier. Ele demonstrou que uma função f(t), contínua por partes, com período 2π , pode ser reescrita como a soma dos termos da Série de Fourier Trigonométrica:

$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
(1.1)

Os coeficientes a_0, a_n, b_n são calculados por:

$$a_0 = \frac{2}{T} \int_0^{2\pi} f(t) dt$$
 (1.2)

$$a_{n} = \frac{2}{T} \int_{0}^{2\pi} f(t) \cos(nt) dt$$
 (1.3)

$$b_n = \frac{2}{T} \int_0^{2\pi} f(t) \operatorname{sen}(nt) dt$$
(1.4)

A demonstração de Fourier representa um papel essencial na evolução do pensamento matemático sobre como as funções podem ser vistas. Ele abriu as portas de um novo universo funcional.

Após 1807, a observação do significado das Séries de Fourier convergentes e dos sistemas ortogonais conduziram gradualmente os pesquisadores da noção de análise de freqüência para a noção de análise em escala. Isso é, podemos analisar uma função f(t) através da criação de estruturas matemáticas que variam em escala. Isso pode ser feito pela construção uma função deslocada e com escala modificada de uma certa quantidade, aplicada na aproximação de um sinal. Agora podemos repetir o mesmo processo de deslocamento e contração do sinal para obter uma nova aproximação. E assim por diante. Isso nos mostra que este tipo de análise em escala é menos sensível ao ruído, porque mede a variação média do sinal em diferentes escalas.

A primeira menção a Wavelet apareceu em um apêndice da tese do matemático alemão Alfred Haar em 1909. Uma das propriedades da Wavelet de Haar é ter *suporte compacto*, significando que, fora do intervalo da sua definição até infinito, a função tem valor zero. Infelizmente a Wavelet de Haar não é *continuamente diferenciável* que limita seu campo de aplicação.

1.8.2. Década de 30

Nos anos trinta, surgiram vários grupos que trabalhavam independentemente pesquisando a representação de funções através de funções base variando em escala. Entendendo os conceitos de funções base e funções base variando em escala, podemos compreender o que são Wavelets.

1.8.3. 1960 - 1980

Entre 1960 e 1980, os matemáticos Guido Weiss e Ronald R. Coifletfman estudaram os elementos mais simples de um espaço de função, chamados de átomos, com o objetivo de achar os átomos para uma função comum e as "regras de montagem" que permitam a reconstrução de todos os elementos do espaço de função que usa estes átomos. Em 1980, Grossman e Morlet, um físico e outro engenheiro, respectivamente, definiram completamente as Wavelets no contexto da física quântica. Estes dois pesquisadores criaram um modo de pensamento para Wavelets baseado na intuição física.

1.8.4. Após 1980

Em 1985, S. Mallat deu às Wavelets um impulso adicional com o seu trabalho em processamento digital de sinal. Ele descobriu algumas relações entre *filtros de quadratura conjugada* (QMF- Quadrature Mirror Filters), algoritmos de pirâmide, e base Wavelet ortonormal. Inspirado em parte por estes resultados, Yves Meyer construiu a primeira Wavelet não trivial. Diferente da Wavelet de Haar, as Wavelets de Meyer são continuamente diferenciáveis; porém elas não têm suporte compacto. Anos mais tarde, Ingrid Daubechies inspirada no trabalho de Mallat construiu um conjunto de funções Wavelets base ortonormal. Essas funções são talvez as mais elegantes, e se tornaram um divisor de água nas aplicações de Wavelet nos dias de hoje [GRASP 1995].

Nos próximos capítulos faremos uma revisão dos conceitos a cerca da Análise de Fourier, da Análise de Wavelets e traçaremos um paralelo entre elas.

2. ANÁLISE DE FOURIER

A representação das funções por eéries de Fourier trigonométricas através da expansão em senos e cossenos são importantes para a solução analítica e numérica de equações de diferencial, bem como, para a análise e processamento de sinais de comunicação nos campos das Telecomunicações.

A Análise de Fourier e a Análise de Wavelet têm alguns vínculos muito fortes. Apresentaremos neste capítulo uma breve revisão teórica para uma melhor compreensão da Análise de Fourier [HWEI 1970].

2.1. Conceitos Básicos

Aqui veremos alguns conceitos importantes para o entendimento da Análise de Fourier. Começando pelos números complexos revisados no Anexo I, passando por Séries e Funções Periódicas, Séries de Potência, Série de Fourier, Transformada de Fourier, Transformada Discreta de Fourier, Transformada Rápida de Fourier, Transformada Discreta de Cosseno até chegar em Transformada de Fourier Janelada.

2.1.1. Séries e Funções Periódicas

O número *e*, como vimos na seção anterior, é resultado de uma série. Uma classe de séries muito importante é a chamada de séries de potências, cuja forma geral é: $a_0 + a_1 x + a_2 x^2 + \dots a_n x^n$ ou de forma mais abreviada: $\sum_{i=1}^{\infty} a_n x^n$

As séries também podem ser de números complexos. Visto que um número real pode ser escrito como um complexo na forma de a + 0i, ou seja com a parte imaginária zero. Dependendo do valor de x, as séries podem ou não convergir. Quando uma série converge podemos associá-la a um círculo de convergência. Por exemplo a série:

$$1 + z + z^2 + z^3 + \dots$$
 onde $z = x + iy$

tem um círculo de convergência de raio 1. Isso é, se z (na forma $z = r(\cos\theta + i \sin\theta)$), tem r < 1 a série converge. Se r = 1 a série diverge. Podemos verificar que seus resultados para outros valores de z serão:

- 1. para $z = 1 \rightarrow 1 + 1 + 1 + \dots$ tende $a \propto \infty$
- 2. para $z = -1 \rightarrow 1 1 + 1 1 + \dots$ oscila entre 0 ou 1
- 3. para $z = i \rightarrow 1 + i 1 i + ...$ oscila entre 0, i, 1, (1+i)
- 4. para $z = -i \rightarrow 1 + 1 + 1 + ...$ oscila entre 0, 1, -i ou (1-i)

O matemático francês Augustine Louis-Cauchy (1785-1857) foi quem primeiro explicou completamente as séries infinitas, através desse tratamento do entendimento das séries por círculos de convergência. Desde então séries de potência passaram a ser uma ferramenta indispensável em todos os ramos da matemática. Em 1831, ele mostrou que qualquer função pode ser representada por séries infinitas.

Uma função periódica é aquela que se repete a cada período T, de modo que: f(t) = f(t+T) para todo o valor t em que é definida. Assim seu gráfico fica repetido a cada período T. A Figura 2.1 mostra um exemplo de uma função periódica.:

Figura 2.1 - Gráfico $f(t) = \arctan(t)$

2.1.2. Séries de Fourier Trigonométricas

Como já mencionamos na seção 1.8.1, todas as funções periódicas podem ser representadas por uma série senos e cossenos na forma:

$$f(t) = \frac{1}{2}a_0 + a_1\cos w_0 t + a_2\cos 2w_0 t + a_3\cos 3w_0 t + \dots + b_1\sin w_0 t + b_2\sin 2w_0 t + b_3\sin 3w_0 t + \dots$$

Onde a_0, a_n, b_n (Eq.(1.2) a (1.4)) são constantes representadas a partir da função f a ser representado. Essa expressão pode também ser rescrita de forma mais simples (eq. (1.1)): (Teorema de Fourier)

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nw_0 t + b_n \sin nw_0 t \right)$$
(2.1)

Sendo w_0 a freqüência angular representada por:

$$w_0 = \frac{2\pi}{T}$$

Essa representação é chamada série de Fourier trigonométrica. Podemos, também, escrevê-la só em função de senos e cossenos como:

$$f(t) = c_0 + \sum_{n=1}^{\infty} c_n \cos(nw_0 t + \theta_n)$$
(2.2)

onde as constantes c_0 , $c_n e \theta_n$ podem ser escritos em relação às constantes anteriores:

$$c_{0} = \frac{1}{2}a_{0}$$

$$c_{n} = \sqrt{a_{n}^{2} + b_{n}^{2}}$$

$$\theta_{n} = \arctan\frac{b_{n}}{a_{n}} \quad ou \quad \theta_{n} = \tan^{-1}\frac{b_{n}}{a_{n}}, \quad n = 1, 2, \dots$$

Nesta última forma, fica óbvio que as Séries de Fourier representam uma função trigonométrica, como uma soma de componentes senoidais (ou cossenoidais) de diferentes freqüências. A componente senoidal da freqüência $w_n = nw_0$ é denominado de n^{-ésimo} harmônico da função periódica. O primeiro harmônico é chamado de harmônico fundamental ou componente fundamental, porque tem o mesmo período da função, e

 $w_0 = 2\pi f_0 = \frac{2\pi}{T}$ é chamado de freqüência fundamental angular. O coeficiente c_n é chamado de amplitude harmônica e θ_n é denominado de ângulo de fase.

Não demostraremos que as expressões (2.1) e (2.2) são equivalentes. Mas podemos intuir com facilidade lembrando, que as funções seno e cosseno são essencialmente idênticas a menos de uma defasagem de $\frac{\pi}{2}$, no eixo horizontal como ilustrado mas figuras 2.2 e 2.3.

Figura 2.2 - Gráfico $f(t) = \cos(t)$

Uma propriedade importante das funções seno e cosseno é que elas são ortogonais. Um conjunto de funções $\{\phi_i\}$ é ortogonal em um intervalo a < t < b se qualquer duas funções do conjunto satisfazem a propriedade:

$$\int_{a}^{b} \phi_{1}(t) \phi_{j}(t) dt = \begin{cases} 0 & se \quad i \neq j \\ r & se \quad i = j \end{cases}$$

onde r é um número. Se r = 1, as funções são chamadas **ortonormais**.

Integrando numericamente ou usando regras de integração podemos observar que o conjunto

1, $\cos w_0 t$, $\cos 2w_0 t$, $\cos 3w_0 t$..., $\cos nw_0 t$, $\sin w_0 t$, $\sin 2w_0 t$..., $\sin nw_0 t$

é ortogonal no intervalo $-\frac{T}{2} < t < \frac{T}{2}$.

Considerando a série de Fourier na forma:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nw_0 t + b_n \sin nw_0 t)$$

Os coeficientes a_0 , a_n , b_n são fornecidos pelas expressões:

$$a_{0} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

ou seja, $\frac{a_0}{2}$ é o valor médio de f(t) no período T. (Em eletrônica ele é conhecido como nível DC do sinal)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(nw_0 t) dt \quad n=1, 2, ...$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(nw_0 t) dt$$

A integral nas expressões anteriores de $-\frac{T}{2}$ a $\frac{T}{2}$ não requer que as funções sejam simétricas na origem. Desta forma, apenas necessitamos integrar em um período completo pois:

$$\int_{-T/2}^{T/2} f(t) dt = \int_{a-T/2}^{a+T/2} f(t) dt$$

Por exemplo, podemos considerar a função abaixo

$$f(t) = \begin{cases} -1 & se & -T/2 < t < 0\\ 1 & se & 0 \le t < T/2 \end{cases} e \quad f(t+T) = f(t) \text{ (conhecida como onda quadrada).} \end{cases}$$

O coeficiente a_0 da Série de Fourier será dado por:

$$a_{0} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt = \frac{2}{T} \left[\int_{-T/2}^{0} -1 dt + \int_{0}^{T/2} 1 dt \right] = \frac{2}{T} \left[-t \Big|_{-T/2}^{0} + t \Big|_{0}^{T/2} \right] = \frac{2}{T} \left[-T/2 + T/2 \right] = 0$$

O valor médio de f(t) no período é nulo. A função é ímpar, com simetria em relação à origem.

Lembrando das integrais indefinidas;

$$\begin{cases} \int \cos u \, du = \sin u \\ \int \sin u \, du = -\cos u \end{cases} e \begin{cases} u = nw_0 t \\ du = nw_0 dt \end{cases}$$

e que:

$$\begin{cases} \operatorname{sen}(-\theta) = -\operatorname{sen}(\theta) & \operatorname{função}(\theta) \\ \cos(-\theta) = \cos(\theta) & \operatorname{função}(\theta) \end{cases}$$

Podemos resolver as integrais que definem, os demais coeficientes da série de Fourier:

$$a_{n} = \frac{2}{T} \left[\int_{-\frac{T}{2}}^{0} -\cos(nw_{0}t)dt + \int_{0}^{\frac{T}{2}} \cos(nw_{0}t)dt \right]$$

$$a_{n} = \frac{2}{nw_{0}T} \left[+\sin\left(nw_{0}\frac{-T}{2}\right) + \sin\left(nw_{0}\frac{T}{2}\right) \right] = 0$$

$$b_{n} = \frac{2}{T} \left[\int_{-\frac{T}{2}}^{0} -\sin(nw_{0}t)dt + \int_{0}^{\frac{T}{2}} \sin(nw_{0}t)dt \right]$$

$$b_{n} = \frac{2}{T} \left[\frac{1}{nw_{0}} \cos(nw_{0}t) \Big|_{-\frac{T}{2}}^{0} + \frac{-1}{nw_{0}} \cos(nw_{0}t) \Big|_{0}^{-\frac{T}{2}} \right]$$

$$b_n = \frac{2}{nw_0 T} \left[1 - \cos\left(n\frac{2\pi}{T}\frac{-T}{2}\right) - \cos\left(n\frac{2\pi}{T}\frac{T}{2}\right) + 1\right]$$
$$b_n = \frac{2}{nw_0 T} \left[1 - \cos\left(n\pi\right) + 1 - \cos\left(n\pi\right) \right]$$
$$b_n = \frac{2}{n2\pi} \left[2 - 2\cos\left(n\pi\right) \right] = \frac{2}{n\pi} \left[1 - \cos\left(n\pi\right) \right]$$

Como $\cos(0)=1, \cos(\pi)=-1, \cos(2\pi)=1...$ Isso é, $\cos(n\pi)$ tem valores de 1 ou -1 dependendo de n ser par ou ímpar respectivamente. Ou melhor!

$$\cos n\pi = (-1)^n$$
 $n = 0, 1, 2, ...$

Temos que:

$$b_n = \begin{cases} 0 & se \quad n = 0, 2, 4... (par) \\ \frac{4}{n\pi} & se \quad n = 1, 3, 5... (impar) \end{cases}$$

assim a representação dessa função onda quadrada por série de Fourier é:

$$f(t) = \frac{4}{\pi} \left(\operatorname{sen} w_0 t + \frac{1}{3} \operatorname{sen} 3w_0 t + \frac{1}{5} \operatorname{sen} 5w_0 t + \frac{1}{7} \operatorname{sen} 7w_0 t + \dots \right)$$

A representação de uma função por série de Fourier de infinitos termos pode, algumas vezes, ser aproximada por termos até, um certo número, o que é chamado de aproximação por séries finitas de Fourier.

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^k \left(a_n \cos nw_0 t + b_n \sin nw_0 t\right) + \varepsilon_k(t)$$

onde $\varepsilon_k(t) = f(t) - s_k(t)$ representa o erro ao usarmos apenas os primeiros 2k+1 termos.

A representação de uma função periódica por série de Fourier implica na determinação dos coeficientes da função. Em algumas aplicações é mais conveniente escrever a série de Fourier e termos de potência complexa $e^{\pm inw_0 t}$.

Essa forma pode ser facilmente obtida a partir da expressão (2.1) relembrando que $i^{-1} = -i$, pelo Teorema de Moivre (Anexo I):

$$i = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
$$i^{-1} = \cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right) = -i$$
$$\left\{\cos nw_0 t = \frac{1}{2}\left(e^{inw_0 t} + e^{-inw_0 t}\right)\right\}$$
$$\left\{\sin nw_0 t = \frac{1}{2i}\left(e^{inw_0 t} - e^{-inw_0 t}\right)\right\}$$

e que

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[\frac{1}{2}(a_n - ib_n)e^{inw_0t} + \frac{1}{2}(a_n + ib_n)e^{-inw_0t}\right]$$

ou

$$f(t) = c_0 + \sum_{n=1}^{\infty} \left[c_n e^{inw_0 t} + c_{-n} e^{-inw_0 t} \right] = c_0 + \sum_{n=1}^{\infty} \left[c_n e^{inw_0 t} \right] + \sum_{n=-1}^{\infty} \left[c_n e^{inw_0 t} \right] = \sum_{n=-\infty}^{\infty} \left[c_n e^{inw_0 t} \right]$$

onde

$$c_0 = \frac{a_0}{2}, \quad c_{-n} = \frac{(a_n - ib_n)}{2} \quad e \quad c_n = \frac{(a_n + ib_n)}{2}$$

sendo que
$$c_{-n}$$
 indica o complexo conjugado de c_{n} .

Assim a forma complexa de Fourier, mais usada pela sua maior simplicidade, é expressa pela (Eq. 2.3).

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{i n w_0 t}$$
(2.3)

Os coeficientes c_n da equação acima são obtidos a partir dos a_n e b_n anterior ou diretamente de:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt \ e^{-inw_0 t} dt \quad \text{com} \quad \mathbf{n} = 0, \pm 1, \pm 2, \dots$$
(2.4)

Por exemplo, a função:

$$f(t) = \begin{cases} A & se & -\frac{d}{2} < t < \frac{d}{2} \\ 0 & se & -\frac{d}{2} < t < T - \frac{d}{2} \end{cases}$$

tem $w_0 = \frac{2\pi}{T}$

$$c_{n} = \frac{1}{T} \int_{-T/2}^{T-T/2} f(t) e^{-inw_{0}t} dt$$

$$c_{n} = \frac{1}{T} \int_{-d/2}^{d/2} A e^{-inw_{0}t} dt$$

$$c_{n} = \frac{-A}{inw_{0}T} e^{-inw_{0}t} \Big|_{-d/2}^{d/2}$$

$$c_{n} = \frac{2A}{nw_{0}T} \frac{e^{inw_{0}d/2} - e^{-inw_{0}d/2}}{2j}$$

$$c_{n} = \frac{2A}{nw_{0}T} \frac{\operatorname{sen}(nw_{0}d/2)}{inw_{0}d/2}$$

$$c_{n} = \frac{Ad}{T} \left[\underbrace{\operatorname{sen}(nw_{0}d/2)}_{inw_{0}d/2} \right]_{j}$$

Chamamos o gráfico c_n versus w de espectro de amplitude da função f(t). O gráfico pode se visto na figura 2.4. Chamamos o gráfico de espectro da fase de f(t) de espectro de fase. A função assume apenas valores inteiros, os espectros de fase e de amplitude não são curvas contínuas.

Figura 2.4 - Gráfico c_n versus w.

Ao desenharmos o gráfico c_n versus nw_0 obtemos o espectro de amplitude, que tem valores apenas em freqüências discretas nw_0 . Desse modo o espectro de freqüência apenas existe nos pontos em que a freqüência assume os seguintes valores $w = 0, \pm \frac{2\pi}{T}, \pm \frac{4\pi}{T}, \dots$

Figura 2.5 - Gráfico nw₀

No próximo tópico veremos que as funções não periódicas podem ser representadas pelas funções de Fourier [Whei70].

2.2. Transformada de Fourier

A utilidade da Transformada de Fourier (TF) consiste em podermos fazer a análise de um sinal no domínio do tempo através do conteúdo da sua freqüência. A transformada funciona levando uma função do domínio do tempo ou espaço para o domínio da freqüência. O sinal pode ser analisado então pelo seu conteúdo em termos da freqüência, porque os coeficientes de Fourier da função transformada representam a contribuição de cada seno e cosseno a cada freqüência. Uma transformada inversa transforma a função do domínio de tempo.

Figura 2.6 - Transformada de Fourier de um sinal contínuo

A Transformada de Fourier (TF) pode ser usada para representar funções não periódicas. Se considerarmos que o período tende ao infinito. Desta forma, obtemos as equações 2.3 e 2.4 temos:

$$f(t) = \sum_{n=-\infty}^{\infty} \left(\frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-inw_0 x} dx \right) e^{-inw_0 t}$$

com $w_0 = \frac{2\pi}{T}$, se $T \to \infty$, $\begin{cases} w_0 = \Delta w \to dw \\ nw_0 = w_n \to w \end{cases}$, de modo que o somatório se

transforma em uma integral.

$$f(t) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} \left(\int_{-\infty}^{+\infty} f(t) e^{-iwt} dt \right) e^{iwt} dw$$
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(t) e^{-iw} dt \right] e^{iwt} dw$$
(2.5)

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{iwt} dw$$

onde

ou

$$F(w) = \int_{-\infty}^{+\infty} f(t) e^{-iwx} dt$$

Se f(t) for real o Teorema de Fourier estabelece que a função F(w) da expressão (2.5) é conhecida com Integral de Fourier ou Transformada de Fourier, também simbolizada por \Im , ou seja:

$$F(\omega) = \Im[f(t)] = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$
(2.6)

A equação (2.6) ilustra a Transformada Direta de Fourier de um sinal contínuo. A função inversa \mathfrak{I}^{-1} simbolizada a Transformação Inversa, ou seja, a obtenção de f(t) por intermédio de F(w).

$$f(t) = \Im^{-1}[F(w)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{i\omega t} dw$$
 (2.7)

Chamamos a equação 2.7 de Transformada Inversa de Fourier de F(w), as expressões 2.6 e 2.7 são conhecidas como pares de Transformadas de Fourier. A condição de existir a transformada é que $\int_{-\infty}^{+\infty} |f(t)| dt < \infty$, ou seja, a função seja integrável.

A função $F(w) = \Im[f(t)]$ é em geral complexa e pode ser escrita como $F(w) = R(w) + i I(w) = |f(w)| e^{i\phi(w)}$ onde chamamos a |f(w)| de espectro de magnitude e $\phi(w)$ de espectro de fase da f(t). Se f(t) é uma função real então suas partes reais e imaginárias são dadas por:

$$R(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt \qquad I(w) = -\int_{-\infty}^{\infty} f(t) \sin(wt) dt$$

R(w) é uma função par e I(w) uma função ímpar, ou seja, R(w) = R(-w) e I(w) = -I(-w). F(-w) é o complexo conjugado de F(w). Para f(t) real temos que o espectro de magnitude, |f(w)| é uma função par e o espectro de fase $\phi(w)$ é uma função ímpar (ambos definidos na seção anterior).

2.3. Interpretação da Transformada de Fourier

Vimos que se uma função f(t) for periódica com período T, então a função f(t) pode ser escrita como a

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{i n w_0 t}$$

onde,

$$w_0 = \frac{2\pi}{T} \quad e \quad c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-inw_0 t} dt$$
Se considerarmos o periódico tendendo ao infinito, $T \to \infty$, então $w_0 \to dw = \frac{2\pi}{T}$, $n \to \infty$, e passamos a ter representação de funções não periódicas como os pares de Fourier:

$$F(w) = \int_{-\infty}^{+\infty} f(t) e^{-iwt} dt$$
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{iwt} dw$$

O que nos permite dizer que a mesma função tem dois modos de representação, um no domínio do tempo $t \times f(t)$, e o outro no domínio da freqüência $w \times F(w)$.

2.4. Teorema da Convolução

A convolução entre duas funções f(t) e h(t) é uma operação matemática que podemos representar da seguinte forma:

$$g(t) = f(t) * h(t)$$
(2.8)
$$g(t) = \begin{cases} \int_{-\infty}^{+\infty} f(x) \cdot h(t-x) \, dx, & t > 0 \\ 0, & t < 0 \end{cases}$$

A convolução no domínio do tempo equivale à multiplicação no domínio da freqüência.

$$g(t) = f(t) * h(t) = \Im[f(t) * h(t)] = F(w) \cdot H(w)$$

Podemos levar esse mesmo pensamento para funções de duas variáveis, que é o caso de imagens. Neste caso g(x, y) é o resultado da convolução de uma função f(x, y) com a função de espalhamento h(x, y), isto é:

$$g(x, y) = \int_{-\infty-\infty}^{+\infty+\infty} f(\alpha, \beta) . h(x - \alpha, y - \beta) d\alpha \ d\beta$$

revertendo a ordem de integração, obtemos:

$$\mathfrak{I}[g(x,y)] \equiv G(w_x,w_y) = \int_{-\infty-\infty}^{+\infty+\infty} f(\alpha,\beta) \Biggl\{ \int_{-\infty-\infty}^{+\infty+\infty} h(x-\alpha,y-\beta) e^{[-i(xw_x+yw_y)]} dx \, dy \Biggr\} d\alpha \, d\beta$$

,

aplicando a propriedade de translação,

$$\Im[h(x-\alpha, y-\beta)] = H(w_x, w_y)e^{[-i(\alpha w_x + \beta w_y)]}$$

obtemos:

$$G(w_{x}, w_{y}) = \int_{-\infty-\infty}^{+\infty+\infty} f(\alpha, \beta) e^{[-i(\alpha w_{x} + \beta w_{y})]} d\alpha \ d\beta . H(w_{x}, w_{y}) = F(w_{x}, w_{y}) . H(w_{x}, w_{y})$$
(2.9)
$$g(x, y) = f(x, y) * h(x, y) = \Im[f(x, y) * h(x, y)] = F(w_{x}, w_{y}) . H(w_{x}, w_{y})$$

Esse conceito é muito aplicado em processamento de sinais, principalmente, na área de telecomunicações. Sua aplicação em imagens será discutida na próxima seção.

Podemos destacar algumas propriedades da Transformada de Fourier na Tabela 2.1 [LATHI 1979]. É importante observar a simetria e a correspondência entre os domínios do tempo e da freqüência.

Operação	f(t)	F(w)
Linearidade	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(w) + a_2F_2(w)$
Escalonamento	f(at)	$\frac{1}{ a }F\left(\frac{w}{a}\right)$
Deslocamento no tempo	$f(t-t_0)$	$F(w)e^{-iwt_0}$
Deslocamento na freqüência	$f(t)e^{iw_0t}$	$F(w-w_0)$
Diferenciação no tempo	$\frac{d^n f}{dt^n}$	$(iw)^n F(w)$
Diferenciação na freqüência	$(-it)^n f(t)$	$\frac{d^{n}F}{dw^{n}}$
Integração no tempo	$\int_{-\infty}^{t} f(x) dx$	$\frac{1}{(iw)}F(w)$
Convolução no tempo	$f_1(t) * f_2(t)$	$F_1(w).F_2(w)$
Convolução na freqüência	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi} [F_1(w) * F_2(w)]$

Tabela 2.1 - Propriedades da Transformada de Fourier

2.5. Transformada de Fourier em Imagens

Vamos agora considerar a formação de imagens e as Transformadas de Fourier em duas dimensões. Quando uma função de duas variáveis independentes, como a intensidade de luz em um ponto é reproduzida como uma outra função de duas variáveis, temos uma imagem.

Uma imagem pode se perfeitamente descrita por uma distribuição de intensidade de (luz) iluminação I(x, y). Seja E(x, y) a imagem de um ponto fonte e O(x, y) a distribuição de um objeto a intensidade de distribuição em uma imagem obtida considerando a soma da intensidade individual produzida pela imagem dos vários pontos do objeto. Assim a distribuição I(x, y) é obtida da distribuição do objeto O(x, y) por convolução com E(x, y):

$$I(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} O(x', y') E(x - x', y - y') dx' dy' = O(x, y) * E(x, y)$$

Para usarmos a Teoria de Convolução em imagens, precisamos considerar as Transformadas de Fourier F(u,v) de uma função de duas variáveis (descrita por uma integral dupla):

$$F(u,v) = \int_{-\infty-\infty}^{\infty} f(x,y) e^{-i(ux,vy)} dx dy$$

assim f(x, y) pode ser encontrada da fórmula inversa:

$$f(x, y) = \frac{1}{(2\pi)^2} \int_{-\infty-\infty}^{\infty} F(u, v) e^{i(ux, vy)} du dv$$

Em algumas outras imagens como no caso da difração do raio X por cristais, devemos considerar a Transformada de Fourier em 3D; que é definida por :

$$F(u,v,w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y,z) e^{-i(ux,vy,wz)} dx dy dz$$

$$f(x, y, z) = \frac{1}{(2\pi)^3} \int_{-\infty-\infty-\infty}^{\infty} \int_{-\infty-\infty-\infty}^{\infty} F(u, v, w) e^{-i(ux, vy, wz)} du dv dw$$

e

2.6. Transformada Discreta de Fourier (DFT)

A Transformada Discreta de Fourier (DFT - *Discrete Fourier Transform*) pode ser estimada através de um conjunto de amostra finitas da função a ser transformada. A amostragem representa o sinal ao longo do tempo. O teorema da amostragem nos diz que a freqüência de amostragem é duas vezes maior que a freqüência máxima do sinal, representada pela inequação (2.10):

$$f_{amostragem} \ge 2f_{máxima} \tag{2.10}$$

Se tivermos uma seqüência discreta x(n), a função X(w) representa a amplitude associada ao expoente complexo e^{iwn} que é obtido como:

$$X(w) = \sum_{n_1 = -\infty}^{\infty} x(n) e^{-iwn}$$

e

$$x(n) = \frac{1}{(2\pi)} \int_{w=-\pi}^{\pi} x(w) e^{iwn} dw$$

Para funções de duas variáveis $x(n_1, n_2)$, a função $X(w_1, w_2)$ que representa a amplitude associada aos expoentes complexos $e^{iw_1n_1}$, $e^{iw_2n_2}$ pode ser obtida de $x(n_1, n_2)$ como:

$$X(w_1, w_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} x(n_1, n_2) e^{-iw_1 n_1} e^{-iw_2 n_2}$$

e

$$x(n_1, n_2) = \frac{1}{(2\pi)^2} \int_{w_1 = -\pi}^{\pi} \int_{w_2 = -\pi}^{\pi} x(w_1, w_2) e^{iw_1n_1} e^{iw_2n_2} dw_1 dw_2$$

a função $X(w_1, w_2)$ é chamada de Transformadas Direta de Fourier no Espaço Discreto . A seqüência $x(n_1, n_2)$ é chamada de Transformada Inversa de Fourier no Espaço Discreto.

A DFT tem propriedades de simetria quase exatamente igual à transformada de Fourier contínua. Além disso, a fórmula para a Transformada Discreta Inversa de Fourier é calculada usando uma das Transformada Discretas de Fourier, porque as duas fórmulas são quase idênticas.

2.7. Transformada Rápida de Fourier (FFT)

Para aproximar uma função através das amostras, e aproximar a Integral de Fourier pela Transformada Discreta de Fourier. Necessitamos aplicar uma matriz cuja ordem é o número n de amostra. Multiplicar uma matriz $n \times n$ por um vetor de ordem n emprega n^2 operações de aritmética.

O problema aumenta com o aumento no número de pontos da amostra. Porém, se as amostras são uniformemente espaçadas, então a matriz de Fourier pode ser fatorada em um produto de poucas matrizes esparsas. Os fatores resultantes podem ser aplicados a um vetor na ordem total de $n \log n$ operações aritmética, diminuindo bem a complexidade da operação. Esta é a idéia fundamental da Transformada Rápida de Fourier (FFT - *Fast Fourier Transform*).

2.8. Transformada do Cosseno Discreto (DCT)

É possível aumentar a compactação da DFT sem o sacrifício de suas outras caraterísticas, inclusive da eficiência computacional, usando a Transformada do Cosseno Discreta² (DCT). Esta transformada é aplicada à codificação de imagem usada no padrão JPEG, e é definida pela equação 2.11. A transformada inversa é definida pela equação 2.12:

$$F(k_1,k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} 4 \times f(n_1,n_2) \cos\left[(2n_1+1)k_1\frac{\pi}{2N_1}\right] \cos\left[(2n_2+1)k_2\frac{\pi}{2N_2}\right]$$
(2.11)

$$f(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} c_1(k_1) c_2(k_2) F(k_1, k_2) \cos\left[(2n_1+1)k_1 \frac{\pi}{2N_1}\right] \cos\left[(2n_2+1)k_2 \frac{\pi}{2N_2}\right]$$
(2.12)

onde

$$c_1(k) \quad e \quad c_2(k) = \begin{cases} \frac{1}{2} & se \quad k = 0\\ 1 & se \quad 1 \le k \le 0 \end{cases}$$

2.9. Transformada de Fourier Janelada (WFT)

Se f(t) é uma função não periódica, a adição das funções periódicas, seno e cosseno, não representa o sinal com precisão. Poderíamos estender artificialmente a função para fazê-la periódica, contudo precisamos que ela seja contínua ou por partes neste intervalo. A Transformada de Fourier Janelada (WFT - *Windowed Fourier Transform*) é uma solução

² Lembramos que a DCT é utilizada no padrão de compressão de imagem JPEG.

para problema de representação de sinais não periódicos. A WFT pode ser usada para dar simultaneamente informação sobre sinais no domínio de tempo e no domínio de freqüência.

Com a WFT, a função de entrada f(t) é segmentado em seções. Cada seção é analisada separadamente no conteúdo de freqüência. No sinal com componentes de alta freqüência, segmentamos a janela de entrada de dados, de tal forma que seções convirjam para zero no intervalos. Esta segmentação é realizada por uma função de peso que coloca menos ênfase perto dos extremos que no meio do intervalos. O efeito da janela é localizar o sinal no tempo.

Considerando j(t) a função que cumpre o papel de janela, podemos ilustrar a transformada de Fourier Janelada de um sinal contínuo f(t), na Figura 2.7 ou na equação (2.13) abaixo [TOOLBOX 2001].

Figura 2.7 - Transformada de Fourier Janelada ou Transformada de Gabor

$$F(u,b) = \int j(t-b)f(t)e^{-i2\pi u t} dt \qquad (2.13)$$

No próximo capítulo veremos os conceitos referentes à Análise de Wavelet, a teoria da Transformada de Wavelet, as suas aplicações, em especial, destacando a compressão de imagem alvo deste trabalho.

3. ANÁLISE DE WAVELET

Vimos na introdução que a Análise de Wavelet é uma ferramenta para decomposição em nível hierárquico em um conjunto de aproximações e detalhes. O nível hierárquico corresponde à Escala Diática³. Ela permite a descrição de uma função em termos globais, mais termos que variam de detalhes globais até detalhes finos, aumentando o nível de resolução. A função em questão pode ser uma imagem, uma curva ou uma superfície. As Wavelets oferecem uma técnica elegante para representar os níveis de detalhes presentes. [STOLLNITZ 1995-a, STOLLNITZ 1995-b, STOLLNITZ 1996 e WATT 1999].

Este capítulo visa fornecer ao leitor, alguma intuição do que são as Wavelets. Bem como, apresentar os fundamentos necessários para seu estudo e uso. Começaremos com a Transformada de Wavelet Contínua e Discreta, logo, apresentaremos a forma mais simples das Wavelets, a base de Haar. Veremos a Transformada de Wavelet Unidimensional, e mostraremos como estas ferramentas podem ser usadas para comprimir a representação de uma função discreta. Então, apresentaremos a generalização da base de Haar Bidimensional, bem como, demonstraremos como aplicar estas Wavelets para compressão de imagem. No próximo capítulo, apresentaremos a teoria matemática de Análise em Multiresolução.

Embora, as Wavelets tenham suas raízes na teoria da aproximação e processamento de sinais, elas foram aplicadas recentemente a muitos problemas na computação gráfica. Estas aplicações gráficas incluem edição de imagem, busca de imagem em banco de dados, controle automático por nível de detalhe para edição, construção de curvas e superfícies; reconstrução de superfícies de contornos, métodos rápidos por resolver problemas de simulação em animação, iluminação global e compressão de imagem, sendo o último item o alvo deste trabalho.

Uma revisão da álgebra linear, importantes para a Análise de Wavelet, é apresentada no Anexo I.

³ Escala Diática consiste em escala de potência dois.

3.1. Transformada de Wavelet Contínua

Podemos ilustrar a Transformada de Wavelet Contínua (CWT - Continuous Wavelet Transform de um sinal contínuo f(t) na Figura 3.1.

Figura 3.1 - Transformada de Wavelet Contínua

Podemos, também, definir a Tranformada de Wavelets Contínua pela equação 3.1, como a soma ao longo do tempo de um sinal multiplicado por uma escala, e deslocado por uma função Wavelet Ψ (Psi), também chamada wavelet mãe [TOOLBOX 2001].

$$C(escala, posição) = \int_{-\infty}^{\infty} f(t) \Psi(escala, posição, t) dt$$
(3.1)

O resultado da CWT são vários coeficientes C, que são funções da escala e da posição. Podemos definir a Transformada de Wavelets contínua em F(a,b) como:

$$F(a,b) = \int f(t) \Psi_{a,b}(t) dt$$
(3.2)

Onde as variáveis *a* e *b* são valores reais, (*a*) é um parâmetro de escala (contração ou dilatação) e (*b*) é um parâmetro de localização (deslocamento). A função $\Psi_{a,b}(t)$ é denominada wavelet e definida como:

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$
(3.3)

As funções Wavelets são derivadas a partir dos deslocamentos e contrações da wavelet mãe, segundo os critérios de admissibilidade:

$$C_{\Psi} = 2\pi \int |u|^{-1} |\hat{\Psi}(u)|^2 du < \infty$$
 (3.4)

Onde, $\hat{\Psi}(u)$ é igual a Transformada de Fourier de $\Psi(t)$. Se $\hat{\Psi}$ é uma função contínua, então C_{Ψ} pode ser finita, se e somente se, $\hat{\Psi}(0) = 0$ e a $\int \Psi(t) dt = 0$.

3.1.1. Parâmetro de Escala

Podemos observar, que a Análise de Wavelet produz um sinal no domínio tempoescala. Vamos ver o que significa o fator de escala aplicada a um sinal. Podemos observar na Figura 3.2 o fator escala *a* representa uma contração ou dilatação no sinal. Para a > 1 a função sofre uma dilatação, para a < 1 obtemos uma contração do sinal.

Figura 3.2 - Fator de escala da função Seno

Se pensarmos em termo da função wavelet, vamos obter o mesmo efeito de contração ou dilatação da função. Este efeito pode ser observado na Figura 3.3. Isto é, quanto menor for a escala, mais comprimida será a função Wavelet, e vice-versa.

Então, existe uma relação entre a escala e a freqüência revelada pela Análise de Wavelet:

- Baixa escala *a* => wavelet comprimida => Detalhes mudando rapidamente => Alta freqüência *w*.
- Alta escala *a* => wavelet dilatada => Características globais mudando lentamente => Baixa freqüência *w*.

Figura 3.3 - Fator de escala de uma função Wavelet Ψ

O outro fator presente na Análise de Wavelet é o fator de deslocamento.

3.1.2. Parâmetro de Posição ou Deslocamento

O fator de deslocamento da função na Análise de Wavelet é medido pela variável b, o deslocamento de uma função f(t) por b pode ser representado, matematicamente, pela equação f(t-b). Podemos observar o efeito de deslocamento na Figura 3.4.

Figura 3.4 - Fator de deslocamento, à direita função Wavelet $\Psi(t)$, à esquerda função Wavelet deslocada $\Psi(t-b)$

3.1.3. Cálculo da Transformada de Wavelet Contínua

A Transformada de Wavelet Contínua é a soma ao longo de todo tempo do sinal, multiplicado pela wavelet em certa escala e deslocada de certa quantidade. Este processo produz coeficientes wavelet que são funções da escala e da posição.

A Transformada pode ser obtida em um processo simples descrito abaixo por cinco passos [TOOBOX 2001]:

- 1. Devemos escolher a wavelet e fazer a comparação em uma parte inicial do sinal original.
- 2. Calculamos o número C, que representa a correlação da wavelet com a parte do sinal analisado (Figura 3.5).
- 3. Movemos a wavelet para a direita e repetimos os passos (1) e (2) até percorrer todo o sinal com a wavelet (Figura 3.6).
- 4. Dilatamos a wavelet e repetimos os passos (1), (2) e (3) (Figura 3.7).
- 5. Repetimos os passos de (1) até (4) em todas as escalas (Figura 3.8).

Figura 3.5 - Comparação do sinal original com a wavelet

Figura 3.6 - Deslocamos a Wavelet para a direita para calcular novo C

Figura 3.7 - Dilatamos a Wavelet e repetimos os passos (1) e (3)

Figura 3.8 - Repetimos os passos de (1) até (4) para todas as escalas (Escalograma).

O desenho dos coeficientes nos lembra uma superfície, se olharmos no sentido da menor para a maior escala veremos a representação 3D da Transformada de Wavelet descrita na Figura 3.9.

Figura 3.9 - Representação do Escalograma em 3D.

3.1.4. Algoritmo para Cálculo da Transformada de Wavelet Contínua

Figura 3.10 - Algoritmo para Cálculo da Transformada de Wavelet Contínua

3.2. A Escala da Natureza

É importante observar a natureza. Porque dessa observação detalhada podemos adquirir novos conceitos como no caso da geografia lunar, que possui aspectos fractais devido ao bombardeamento por meteoros ao longo do tempo.

Na Figura 3.11 temos o perfil da geografia lunar, se verificarmos a sua Transformada de Wavelet veremos, na Figura 3.12, que a análise em termo das escalas nos revela a existência da auto semelhança. Pois o perfil lunar tem comportamento fractal [TOOLBOX 2001].

Figura 3.11 - Perfil da geografia lunar.

Figura 3.12 - Escalograma do perfil da geografia lunar.

Cabe lembrar que este comportamento pode ser obervado no perfil das montanhas, nuvens ou das costas dos continentes.

3.3. Transformada de Wavelet Discreta (DWT)

A Equação da Transformada de wavelet discreta é representada pela equação 3.5.

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a = 2^j, b = k \ 2^j, \quad (j,k) \in \mathbb{Z}^2$$
(3.5)

3.4. Transformada de Fourier Versus Transformada de Wavelet

Nesta seção faremos comparações entre a Transformada de Fourier e Wavelet.

3.4.1. Semelhanças entre Transformada de Fourier e Wavelet

A Transformada Rápida de Fourier (FFT) e a Transformada Discreta de Wavelet (DWT) são ambas operações lineares que geram uma estrutura de dados que contém $\log_2 n$ segmentos de vários comprimentos, normalmente formadas por diferentes vetores de dados de comprimento 2^n , onde n é a dimensão.

As propriedades das matrizes envolvidas na transformada também são semelhantes. A transformada matricial inversa da FFT e da DWT é a transposta da original. Como resultado, as transformadas podem ser vistas como uma transformação no espaço de função, para um domínio diferente. Para a FFT, este novo domínio contém as funções de base que são seno e cosseno. Para a Transformada de Wavelet, este novo domínio contém funções de base mais complicadas chamadas de funções Wavelets ou Wavelets mãe.

As duas transformadas têm outras semelhanças. As funções base são localizadas no domínio da freqüência tornando-as poderosas ferramentas na Análise Espectral de potência. Podemos ver quanta potência está contida em um intervalo de freqüência. E o gráfico de escala é útil para selecionar as freqüências e calcular as distribuições de potência.

3.4.2. Diferenças entre Transformada de Fourier e Transformada de Wavelet

A diferença mais importante entre as Transformadas de Fourier e Transformada de Wavelet é que as funções individuais Wavelet são *localizadas no espaço*. Já as funções de Fourier, seno e cosseno não são. Esta característica de localidade, junto com localização em freqüência das Wavelets, fazem muitos operadores e funções usarem Wavelets *esparsas* quando transformados para o domínio de wavelet. Esta característica resulta em várias aplicações úteis como compressão de dados, detecção padrão em imagens e remoção de ruído de funções em sinais unidimensional ou bidimensional.

Um modo de ver as diferentes resoluções no espaço Tempo x Freqüência entre a transformada de Fourier e a transformada de Wavelet é olhar a função base como um plano Tempo x Freqüência. A Figura 3.13 nos mostra a Transformada de Fourier Janelada (WFT), onde a janela limita a largura do sinal. Truncando a função seno e cosseno para que fique contida no tamanho da janela. Como uma única janela é usada para todas as freqüências na WFT, a resolução da análise é a mesma em toda a localização no plano Tempo x Freqüência [GRASP 1995].

Figura 3.13 - Funções base de Fourier descritas no plano Tempo x Freqüência.

A vantagem da Transformada de Wavelet é que as janelas variam. Para isolar as descontinuidades, poderíamos ter algumas funções de base muito pequenas. Ao mesmo tempo para obter análise de freqüência detalhada, poderíamos ter algumas funções de base muito longas. Uma forma de alcançar isto é ter funções de base menor para alta freqüência, bem como, funções base maiores para baixas freqüências. Isto é o que acontece com Transformada de Wavelet. A Figura 3.13 nos mostra o plano Tempo x Freqüência da função Wavelet de Daubechies [GRASP 1995].

Devemos lembrar que a Transformada de Wavelet tem um conjunto muito grande de funções base, ao contrário da transformada Fourier que utiliza as funções seno e cosseno. Desta forma a Análise de Wavelet provê acesso imediato à informação que não pode ser evidenciada por outros métodos que usam Tempo x Freqüência como a análise de Fourier.

Figura 3.14 - Função base Wavelet de Daubechies descritas no plano Tempo x Freqüência.

Na Figura 3.15 podemos observar a comparação entre a análise espetral da Transformada de Fourier e da Transformada de Wavelet entre dois sinais. O sinal (a) tratase da superposição das freqüências (sen(10t) e sen(20t)), o sinal (b) trata-se da aplicação de (sen(10t))na primeira metade do sinal e de (sen(20t)) na segunda metade.

Podemos observar que os gráficos (c) e (d) representam os espectros de Fourier $|F(w)|^2 \times w$ (amplitude × freqüência) dos sinais obtidos pela Transformada de Fourier. Os gráficos (e) e (f) da Figura 3.15 representa a Transformada de Wavelet dos sinais (a) e (b) respectivamente. Desta forma, podemos notar a propriedade de *localização no tempo* da Transformada Wavelet [PROTÁZIO 2002].

Figura 3.15 - Comparação entre Transformada de Fourier e Transformada de Wavelet.

3.5. Wavelets Unidimensional

A base de Haar é a base wavelet mais simples. Veremos primeiro como podemos decompor uma função unidimensional, e então descrever a função como combinação de base Haar. Depois mostramos como usar a Wavelet de Haar para decomposição, que conduz a uma técnica direta para comprimir uma função unidimensional [STOLLNITZ 1995-a, STOLLNITZ 1995-b e STOLLNITZ 1996].

3.5.1. Transformada Wavelet de Haar Unidimensional

Para entender como as wavelets funcionam, vamos começar com um exemplo simples. Suponhamos uma seqüência uma dimensão com uma resolução de quatro pixeis, tendo valores.

Para entender como representar esta seqüência na base de Haar computando sua Transformada Wavelet. Para fazer isto, calculamos primeiro a média dos valores em pares, obtendo os novos valores de menor resolução da imagem,

[8 4]

Claramente, um pouco da informação foi perdida neste processo de cálculo da média. Para recuperar os valores dos pixeis originais a partir dos valores de média, precisamos armazenar alguns *coeficientes de detalhes*, que capturam a informação perdida. Em nosso exemplo, escolheremos 1 para o primeiro coeficiente de detalhe, como a média que computamos está 1 a menos que 9 e 1 a mais que 7. Este único número nos permite recuperar os primeiros dois pixeis de nossa imagem original de quatro pixeis. Semelhantemente, o segundo coeficiente de detalhe é -1, pois 4 + (-1) = 3 e 4 - (-1) = 5.

Assim, a imagem original foi decomposta em uma versão de resolução mais baixa (dois pixeis) e um par de coeficientes de detalhes. Repetindo este processo recursivamente até a decomposição completa conforme tabela 3.1:

Resolução	Média / Valores	Coeficientes de Detalhes
4	[9735]	
2	[84]	[1 -1]
1	[6]	[2]

Tabela 3.1 - Decomposição em coeficientes de aproximação e detalhes.

Assim definiremos a Transformada de Wavelet (também chamada de decomposição de wavelet) da imagem original de quatro pixeis com a simples representação da média global da imagem original, seguido pelos coeficientes de detalhe em ordem de resolução crescente. Para a base de Haar unidimensional, a transformada de wavelet da nossa imagem original de quatro pixeis é dada por:

O modo que computamos a Transformada Wavelet, recursivamente calculamos os coeficientes de aproximação e detalhes que é implementada com o uso de um Banco de Filtros passa-alta e passa-baixa. Vamos generalizar este processo, em parte, a outros tipos de wavelets. Podemos notar que nenhuma informação foi ganha ou perdida por este processo. A imagem original tinha quatro coeficientes, da mesma forma que a transformada. Também podemos notar que, dada a transformada, podemos reconstruir a imagem em qualquer nível de resolução, através da soma e subtração recursiva de coeficientes de detalhe dos níveis de menor resolução.

Armazenar a imagem wavelet transformada, em lugar da própria imagem, têm várias vantagens. Uma vantagem da Transformada Wavelet é que, freqüentemente, um grande número de coeficientes de detalhe se mostra a variação em magnitude do sinal ou imagem, como no exemplo de Figura 3.16. Truncando ou removendo estes coeficientes pequenos da representação introduzimos pequenos erros na imagem reconstruída, resultando em uma "compressão de imagem com perda". Discutiremos essa aplicação de wavelets na seção 3.5.5, após apresentarmos as funções de base Haar [STOLLNITZ 1995-a].

Figura 3.16 - Seqüência de aproximação e coeficientes de detalhes.

Observamos na Figura 3.16 que a seqüência de aproximação da função à esquerda tem resolução decrescente, à direita estão os coeficientes de detalhe necessários para obtenção de uma aproximação. Podemos notar que, em regiões onde a função real é plana,

a aproximação funciona bem, e os coeficientes de detalhes são relativamente pequenos. O eixo horizontal representa o tempo, já o eixo vertical representa a amplitude do sinal.

3.5.2. Funções bases de Wavelet de Haar Unidimensional

Mostramos como uma imagem unidimensional pode ser considerada como uma seqüência de coeficientes. Alternativamente, podemos pensar em imagens como funções de valores discretos no intervalo de aberto [0, 1). Desta forma, usaremos o conceito de um espaço vetorial. Uma imagem de um pixel é apenas uma função constante em todo o intervalo [0, 1). Considerando V^0 o vetor espaço de todas estas funções. Uma imagem de dois pixeis tem dois segmentos constantes nos intervalos [0, 1/2) e [1/2, 1). Chamando todo o espaço, contendo estas funções, de V^1 . Se continuarmos desta maneira, o V^j espaço incluirá todas as funções constantes definidas no intervalo [0, 1) com pedaços constantes em cada subintervalo igual de 2^j , onde j é o número de funções contidas do espaço.

Nós podemos pensar agora em toda imagem unidimensional com 2^{j} pixeis como um elemento, ou vetor, em V^j. Notemos que estes vetores são todos das funções definidas no intervalo unitário, todo vetor em V^j está contido em V^{j+1}. Por exemplo, podemos sempre descrever uma função digital a partir de dois intervalos, como uma combinação de funções constantes de quatro intervalos, com cada intervalo na primeira função correspondendo a um par de intervalos pelo segundo. Assim, os espaços que são aninhados em V^j; isso quer dizer:

$$V^0 \subset V^1 \subset V^2 \subset V^j$$

A teoria matemática de *Análise em Multiresolução* utiliza este conjunto de espaços aninhados V^j.

Agora vamos definir uma base para cada vetor espacial V^j. A base funcional para os espaços V^j é chamada de *função escala*, e normalmente é denotada pelo símbolo ϕ . Uma base simples para V^j é determinada pelo conjunto de funções escala deslocadas:

$$\phi_i^j(x) := \phi(2^j x - i), \quad i = 0, ..., 2^j - 1$$
 (3.6)

onde

$$\phi(x) \coloneqq \begin{cases} 1 & se \ 0 \le x < 1 \\ 0 & se \ x < 0 \ ou \ x \ge 1 \end{cases}$$

Como um exemplo, a Figura 3.17 nos mostra as quatro funções quadradas que formam uma base para V^2 . O eixo horizontal representa o tempo ou posição e o eixo vertical a amplitude do sinal.

Figura 3.17 - A base quadrada para V^2 .

O próximo passo é escolher um produto interno definido no vetor espaço V^j. O "produto interno padrão" é definido por:

$$\langle f | g \rangle \coloneqq \int_{0}^{1} f(x) g(x) dx$$
 (3.7)

para dois elementos $f, g \in V^{j}$. Podemos definir um novo espaço vetorial W^{j} como o *complemento ortogonal* de V^{j} em V^{j+1} . Em outras palavras, considerando W^{j} o espaço de todas as funções em V^{j+1} , que são ortogonais a todas as funções em V^{j} sob o produto interno escolhido. Informalmente, podemos pensar na wavelets em W^{j} como os meios de representação por partes e uma função em V^{j+1} que não pode ser representado em V^{j} .

Wavelets são coleções de funções $\psi_i^j(x)$ linearmente independente que geram o espaço W^j . Estas funções de base têm as seguintes propriedades:

- 1. As wavelets ψ_i^j bases de W^j , juntamente com as funções base ϕ_i^j de V^j formam a base para V^{j+1} .
- 2. Toda a função base ψ_i^j de W^j são ortogonais a todas as bases ϕ_i^j de V^j sob um certo produto interno escolhido.

Assim, os "coeficientes de detalhes" da Seção 3.5 são realmente coeficientes das funções base de wavelet.

As Wavelets que correspondem à base quadrada são conhecidas como Wavelets de Haar, dadas por:

$$\psi_i^j(x) \coloneqq \psi(2^j x - i), \quad i = 0, ..., 2^j - 1$$
 (3.8)

onde

$$\psi(x) \coloneqq \begin{cases} 1 & se \ 0 \le x < \frac{1}{2} \\ -1 & se \ \frac{1}{2} \le x < 1 \\ 0 & se \ x < 0 \ ou \ x \ge 1 \end{cases}$$

A Figura 3.18 nos mostra as duas wavelets de Haar que geram o espaço W^1 .

Antes de seguirmos à frente, vamos ver novamente nosso exemplo da Seção 3.5.1, mas aplicando agora estas novas idéias.

Começamos expressando nossa imagem original I(x) como uma combinação linear das funções de base quadrada em V^2 :

$$I(x) = c_0^2 \phi_0^2(x) + c_1^2 \phi_1^2(x) + c_2^2 \phi_2^2(x) + c_3^2 \phi_3^2(x)$$
(3.9)

Figura 3.18 - As Wavelets de Haar para W^1 .

Uma representação gráfica esses quatros pixeis de média seriam descritos como:

Notemos que os coeficientes $c_0^2, ..., c_3^2$ são justamente os valores dos quatros pixeis originais [9 7 3 5].

Podemos reescrever a expressão para I(x) em termos das funções base em V^1 e W^1 , usando coeficientes de média e diferença:

Os quatros coeficientes descrevem a imagem original. Finalmente, podemos reescrever I(x) como uma soma de funções de base em V^0 , W^0 e W^1 :

 $I(x) = c_0^0 \phi_0^0(x) + d_0^0 \psi_0^0(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$

Uma vez mais, estes quatro coeficientes são a transformada wavelet de Haar da imagem original. As quatro funções mostradas acima constituem a base de Haar para V^2 . Em vez de usar as quatro funções quadradas habituais, podemos usar $\phi_0^0, \psi_0^0, \psi_0^1 e \psi_1^1$ para representar a média global, a aproximação, e os dois tipos de detalhes possíveis na função em V^2 . A base de Haar para V^j com j>2 incluem estas funções, bem como, as próximas translações de uma wavelet $\psi(x)$.

3.5.3. Ortogonalidade

Uma base ortogonal é aquela que todas as funções base, isto é, $\phi_0^0, \psi_0^0, \psi_0^1, \psi_1^1, \dots$, são ortogonais entre si. Podemos notar que a ortogonalidade é mais forte que a exigência mínima para wavelets do que a função wavelet mãe $\psi_i^j(x)$ seja ortogonal à todas as funções escala no nível de resolução J. A base de Haar possui uma propriedade importante conhecida como ortogonalidade, contudo essa propriedade nem sempre é encontrada em outras bases de wavelet.

3.5.4. Normalidade

Outra propriedade que é, às vezes, desejável é a normalização. Uma função base u(x) é normalizada se $\langle u | u \rangle = 1$. Podemos normalizar a base de Haar substituindo as equações 3.6 e 3.7 por:

$$\phi_i^{j}(x) \coloneqq 2^{j/2} \phi(2^{j} x - i), \quad i = 0, ..., 2^{j} - 1$$
(3.10)

$$\psi_i^j(x) \coloneqq 2^{j/2} \psi(2^j x - i), \quad i = 0, ..., 2^j - 1$$
(3.11)

Onde o fator constante $2^{\frac{j}{2}}$ é escolhido para satisfazer $\langle u | u \rangle = 1$ para o produto interno padrão. Com estas outras definições, os coeficientes normalizados novos são obtidos pela multiplicação por $2^{-\frac{j}{2}}$ cada coeficiente velho sobrescrito j. Assim, no exemplo da seção 3.5.2, os coeficientes não normalizados [6 2 1 -1] se tornam normalizados.

$$\begin{bmatrix} 6 & 2 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

3.5.5. Aplicação: Compressão

O objetivo da compressão é expressar um conjunto inicial de dados usando outro conjunto menor de dados, com ou sem perda de informação. Por exemplo, suponha que é a função f(x) dada é expressa pela soma de funções base $u_1(x), \dots, u_m(x)$:

$$f(x) = \sum_{i=1}^{m} c_i u_i(x)$$
(3.12)

O conjunto de dados neste caso consiste de coeficientes $c_1, ..., c_m$. Gostaríamos de achar uma função que aproxima f(x), mas com menos coeficientes, talvez usando uma base diferente. Isto é, considerando uma tolerância determinada pelo usuário. Procuramos por:

$$\widetilde{f}(x) = \sum_{i=1}^{\widetilde{m}} \widetilde{c}_i \, \widetilde{u}_i(x) \cong f(x)$$
(3.13)

3.6. Wavelet Bidimensional

Precisamos generalizar a Wavelets de Haar para duas dimensões, para entender a compressão de imagem. Primeiro, vamos considerar como executar uma decomposição de Wavelet do pixel estimado em uma imagem bidimensional. Então descrevemos as funções de escalar e de Wavelets que formam as bases de wavelet bidimensionais.

3.6.1. Transformada de Wavelet de Haar Bidimensional

Há dois modos que podemos usar Wavelets para transformar os valores de pixeis de uma imagem. Os modos são conhecidos como decomposição padrão e não padrão. Cada uma é a generalização da Wavelet Unidimensional, como descrito na seção 3.5, aplicada nas duas dimensões. Desta forma, podemos obter a decomposição padrão de uma imagem vista na figura 3.19-(a), aplicamos primeiro a Wavelet Unidimensional transformando cada linha da imagem. Esta operação nos dá os coeficientes de aproximação junto com coeficientes de detalhes para cada linha. Logo, tratamos estas linhas transformadas como se elas fossem uma imagem e aplicamos a transformada unidimensional a cada coluna. Os valores resultantes são todos os coeficientes de detalhe com exceção de um único coeficiente de média global. O algoritmo calcula a decomposição padrão. A figura 3.19-(a) ilustra cada passo da operação.

O segundo tipo de Transformação Wavelet Bidimensional, se chama de decomposição não padrão. Ela alterna as operações nas linhas e colunas. Primeiro, executamos um passo na horizontal, calculando a média e diferenciando os valores dos pixeis em cada linha da imagem. Em seguida, aplicamos na vertical calculando a média e diferenciando os valores dos pixeis a cada coluna. Repetimos, recursivamente, o processo no quadrante que contém as médias em ambas as direções até completar a transformação. A figura 3.19-(b) mostra todos os passos envolvidos no procedimento de decomposição não padrão [STOLLNITZ 1995-a].

Figura 3.19 - (a) Decomposição padrão, (b) Decomposição não padrão.

Podemos destacar que a decomposição wavelet não padrão tem menos peso computacional que a decomposição padrão. Usaremos a decomposição não padrão na implementação dos testes de avaliação das bases.

Em outras palavras, a decomposição padrão consiste em aplicar a transformada 1-D de Wavelet em cada linha de valores dos pixeis. Esta operação produz um valor médio mais coeficientes de detalhes de cada linha. Em seguida tratamos essas linhas transformadas como se elas fossem uma imagem e aplicamos a transformada 1-D em cada coluna. Os valores são todos coeficiente de detalhes, exceto um que é a média global ou coeficiente de aproximação.

A decomposição não padrão realiza uma passagem em cada linha da imagem determinando a média e as diferenças para cada um dos valores dos pixeis . Em seguida, aplicamos a média e a diferença para cada coluna do resultado anterior. O processo é aplicado recursivamente somente nos quadrantes contendo as médias, ou seja, contendo os coeficientes de aproximação em ambas as direções.

Esta decomposição é também conhecida como decomposição Piramidal da imagem.

3.6.1.1. Vantagens e Desvantagens

A decomposição padrão de uma imagem é de mais fácil implementação atrativa por que simplesmente só precisa realizar transformada 1-D em todas as linhas e depois em todas as colunas.

Por outro lado, a decomposição não padrão é um pouco mais eficiente porque requer somente 8/3 (m*m-1) operações, enquanto a padrão requer 4(m*m-m).

Outra consideração é o suporte de cada função base, ou seja, a porção de cada domínio, onde a função é diferente de zero. As funções de Haar não padrão tem suportes quadrados. Enquanto as funções base padrão tem suporte não quadrados. Dependendo do caso, uma escolha pode ser preferível a outra.

3.6.1.2. Características das Wavelets

As Wavelets têm localização no tempo e na freqüência, essa propriedade permite a compressão a informação. A compressão wavelet reduz a informação de um sinal em coeficientes de aproximação e coeficientes de detalhes.

Numa imagem, a informação em áreas de cor aproximadamente constante é reduzida a um componente médio e componentes de diferença perto de zero. Se as diferenças são muito pequenas podemos despreza-las, logo toda a informação fica contida na média.

A Transformada Rápida de Wavelets (FWT - Fast Wavelet Transform) permite a compressão de dados digitais para o domínio de wavelet num tempo extremamente curto. Ela é ideal para aplicações que exigem reordenamento da informação digital. Isto facilita a transmissão digital de uma imagem, através de um link de dados digital. O usuário pode definir a ordem de decomposição sem custo adicional. O tempo que se leva para descomprimir uma parte da imagem é o mesmo para toda a imagem.

Há um número infinito de Wavelets em qualquer dimensão 1-D, 2-D, 3-D, ..., N-D. Para uso prático, apenas 1-D para análise de sinais de som, 2-D para compressão de imagens e 3-D para compressão de vídeo [KOORNWINDER 1993].

Essa variação da base de definição é também conhecida como multiresolução ou piramidal. No capítulo 4 veremos os conceitos referentes à Análise em Multiresolução.

4. ANÁLISE EM MULTIRESOLUÇÃO

4.1. Aproximações e Detalhes

Segundo vimos na introdução, podemos olhar um sinal através de uma escala grande, onde notaremos as características globais do sinal. Por outro lado, se olharmos o mesmo sinal por uma escala menor, como por uma lupa, notaremos os detalhes finos do sinal. De uma maneira figurada, podemos dizer que o resultado da Análise de Wavelet é ver a floresta, as árvores e dependendo dos níveis de detalhes que se queira, até os galhos e as folhas.

Em Análise Wavelet, um sinal **S** é decomposto em coeficientes de aproximação A_1 e coeficientes de detalhes D_1 do nível 1. A aproximação do nível 1 A_1 é, também, decomposta em coeficientes de aproximação A_2 e coeficientes de detalhes D_2 do nível 2. Este processo ocorre, de forma recursiva, até o n-ésima nível de decomposição. A Figura 4.1 nos mostra a Árvore de Decomposição Wavelet até o terceiro nível.

Figura 4.1 - Árvore de Decomposição Wavelet

Podemos observar, na Figura 4.2, a mesma decomposição de um sinal contínuo S e seus diversos níveis de decomposição de aproximação e detalhes, representados pelos coeficiente **cA** e **cD** respectivamente [TOOLBOX 2001].

Figura 4.2 - Árvore de Decomposição Wavelet de um sinal

A Análise de Wavelet consiste em aproximações e detalhes. As aproximações representam os componentes de baixa freqüência do sinal. Os detalhes são as componentes de alta freqüência do sinal. A Análise de Wavelet aplicada à filtragem de imagens pode ser implementada a partir de um Banco de Filtros, chamados de Filtros em Quadratura Conjugada ou (QMF – *Quadrature Mirror Filters*).

4.2. Banco de Filtros QMF

Implementamos o Algoritmo de Wavelet por intermédio do Banco de Filtros em Quadratura Conjugado (QMF). Os coeficientes do filtro passa alta (H) são determinados pela função Wavelet Ψ ou função mãe, já os coeficientes do filtro passa baixa (L) são determinados pela função Φ ou função escala.

De forma resumida, podemos entender que o processo de decomposição em multiresolução consiste em separar um sinal original em duas partes. Uma parte contém as componentes de grande escala do sinal, a outra contém as componentes de pequena escala representadas no diagrama da Figura 4.3.

O diagrama consiste de um conjunto de filtro de Análise e Síntese responsáveis pela decomposição e recontrução da imagem. A letra **H** representa o filtro passa-alta e a letra **L** representa o filtro passa-baixa. Eles são seguidos por um estágio de sub-amostragem para geração dos coeficiente de aproximação e de detalhes horizontais, verticais e diagonais.

Processo inverso, isto é, o processo de reconstrução da imagem ou do sinal, a partir dos coeficientes de aproximação **cA** e detalhes **cD**, é obtido após o estágio de super amostragem, seguidos por filtros passa-alta **H**' e passa-baixa **L**' de síntese.

Figura 4.3 - Banco de Filtros

O processo de decomposição é recursivo, isto é aplicamos, tantas vezes quanto necessário, para obter os coeficientes de aproximação e detalhe de um sinal ou imagem, se pensarmos em duas dimensões.

Podemos observar na seção 4.3 o resultado gráficos da implementação do Algoritmo de Wavelet em uma imagem de teste.

4.3. Implementação do Algoritmo Wavelet para Decomposição e Reconstrução de Imagem

O Algoritmo de Wavelet consiste em decompor a imagem em multiníveis. Considerando uma imagem da Lena, com 256 tons de cinza e tamanho 128x128 pixeis mostrada na Figura 4.4, que podemos decompor segundo a Base de Haar (na seção 4.4 teremos uma descrição das Bases Wavelets usadas nos testes). O resultado da implementação foi obtido com o programa para teste das Famílias feito no Matlab.

Figura 4.4 - Imagem original de teste Lena com 128x128 pixeis

No caso bidimensional, a decomposição não padrão é aplicada separadamente na direção horizontal e vertical. Isso produz uma divisão da imagem em quatro sub-bandas conhecidas como "LL", "LH", "HL" e "HH". Conceitualmente, a imagem pode ser representada por um nível de aproximação da imagem original, seguido por nível de detalhe horizontal, vertical e diagonal. Esquematicamente, essa decomposição está representada na Figura 4.5.

LL	HL	HL	
LH	HH		
L	H	НН	

Figura 4.5 - Esquema de Decomposição não padrão

Na Figura 4.6 observamos a decomposição da imagem Lena 128x128 em um nível de aproximação (A1) e detalhe horizontal (H1), vertical (V1) e diagonal (D1). Esta figura representa apenas o primeiro nível de resolução.

Figura 4.6 - Decomposição da imagem em um primeiro nível de resolução

Na Figura 4.7 podemos ver a mesma decomposição da Figura 4.6. com mais um nível de resolução aproximação.

Figura 4.7 - Decomposição da imagem em níveis de aproximação e detalhes.

4.4. As Famílias Wavelets

Existem diferentes tipos de Famílias Wavelets. Veremos os tipos de bases Wavelets usadas no trabalho que são as Wavelets: Haar, Daubecheis, Biortogonal, Coiflets e Symlets. Existem, também, outros tipos de Wavelets com Mexican Hat, Mayer, entre outras, mas não usaremos nestes trabalho. O eixo horizontal representa o tempo ou posição e o eixo vertical a amplitude das Wavelets.

4.4.1. Haar

A base de Haar é a primeira e mais simples das bases. Ela é descontinua, se parece com a função degrau e, também, representa a Wavelet de Daubechies db1 [TOOLBOX 2001].

Figura 4.8 - Wavelet Haar, função Psi

4.4.2. Daubechies

A família de bases wavelet de Daubechies, leva o sobrenome de Ingrid Daubecheis, uma das mais importantes pesquisadoras na campo das wavelets. Ela descobriu as wavelets ortonormais com suporte compacto. O que tornou a nálise discreta das wavelets possível.

Figura 4.9 - Wavelet Daubechies, função Psi.

O nome da Família Wavelet Daubechies é geralmente escrito por três caracteres como dbN, onde db é uma indicação de seu sobrenome (Daubecheis) e N é o número de sua ordem.

4.4.3. Bi-ortogonal

Essa Família Wavelet é denominada por biorNr.Nd, onde bior represenata seu nome e Nr e Nd são a ordem dos filtros síntese e análise, respectivamente. Esta família apresenta a propriedade de fase linear, que é necessária na reconstrução de sinal ou imagem.

Usamos duas Wavelets, uma para decomposição (à esquerda) e outra para reconstrução (à direita) ao invés de apenas uma, desta forma são derivadas importantes propriedades para a análise wavelet.

Figura 4.10 - Wavelets Bi-ortogonal, função Psi

4.4.4. Coiflets

A Wavelet de Coiflets é denominada pelo nome CoifN, onde Coif descreve seu nome N é o número de sua ordem.

As Coiflets têm função Wavelet mãe, ou seja, Psi com 2N momentos iguais a 0 (zero) e função escala, Phi com 2N-1 momentos iguais a 0 (zero). Ambas funções têm suporte com comprimento 6N-1.

Figura 4.11 - Wavelets Coiflets, função Psi

4.4.5. Symlets

SymN denomina a Família Wavelet Symlets, onde Sym é o nome e N é a ordem. As Symlets são próximas das wavelets simétricas propostas por Daubechies, como uma modificação da família db. Ela apresenta as mesmas propriedades da família db.

Figura 4.12 - Wavelets Symlets, função Psi

5. TESTES E RESULTADOS

Para verificar as possibilidades das diferentes bases e identificar suas características na compressão e imagens. Cada Família Wavelet foi testada em um grupo de imagem. Os resultados completos dos testes serão apresentados no (Anexo II) com todos os valores obtidos. Como podemos observar nas Figuras 6.1 e 6.2, aparentemente, não há grande diferença visual na imagem processada. Desta forma, para melhor quantificar os testes realizados implementamos funções de avaliação utilizando a Raiz Quadrada do Quadrado da Média dos Erros (*Root Mean Square Error* - RMSE), a Relação Sinal Ruído (*Signal to Noise Ratio - SNRms*), a Relação Sinal Ruído rms (*Signal to Noise Ratio - SNRms*), e a Relação Sinal Ruído de Pico (*Peak Signal to Noise Ratio - PSNR*) em decibel [CONCI 1998 e AQUINO 1998]. Considerando *M* e *N* o número de pixeis das imagens nas direções verticais e horizontais, F(x,y) a imagem original e G(x,y) a imagem reconstruída temos que as funções de avaliação de erro podem ser expressas a partir da diferença em cada pixel (*x*, *y*) por:

$$RMSE = \sqrt{\left[\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}\left[G(x,y) - F(x,y)\right]^2\right]}$$
(5.1)

$$SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} G(x, y)^2}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[G(x, y) - F(x, y) \right]^2}$$
(5.2)

$$SNR_{rms} = \sqrt{SNR_{ms}}$$
 (5.3)

$$PSNR = 20 \log_{10} \left(\frac{2^n - 1}{RMSE} \right)$$
(5.4)

Na seção 5.1 vemos as imagens originais usadas para teste, bem como, a informação do seu tamanho em pixeis.

Mostramos, na seção 5.2, os gráficos de barra do Erro Médio Quadrático (RMSE), na seção 5.3, o gráficos de barra da Relação Sinal Ruído rms, finalmente, na seção 5.4, mostamos o gráficos de barra da Relação Sinal Ruído de Pico (PSNR) em decíbel para visualizar todos os resultados obtidos com cada base wavelet para cada imagem de teste.
Desta forma, podemos ver o desempenho de cada base no processo de compressão e descompressão segundo as medidas de desempenho: RMSE, SNR $_{rms}$ e PSNR separadamente.

A compressão é feita segundo o mesmo processo para cada uma das bases. Adotamos o mesmo limiar (*threshold*), segundo o qual os valores dos coeficientes de detalhes são zerados.

Na conclusão, apresentamos o resumo das médias dos resultados segundo o Erro Médio Quadrático (RMSE), Relação Sinal Ruído rms (SNR rms) e a Relação Sinal Ruído de Pico em decibel (PSNR). São mostrados quantitativamente em forma de gráfico de barra os melhores e piores resultados. A comparação qualitativa das melhores e piores bases será apresentada em colunas da seguinte forma: na primeira coluna mostraremos a imagem original. Na segunda coluna exporemos a imagem comprimida, isto é, a imagem reconstruída a partir do processo de compressão e descompressão. Na terceira coluna mostraremos o erro absoluto multiplicado por um "Fator de Aumento de Contraste", descrito abaixo, para melhor visualização do erro. Na quarta e última coluna mostraremos a imagem que representa o erro relativo, que eqüivale ao erro absoluto deslocado de 127 pixeis.

A imagem de erro absoluto é representado pela seguinte equação:

• Abs (Imagem original – Imagem comprimida) x Fator de Aumento de Contraste

A imagem de erro relativo é representado pela seguinte equação:

• (Abs (Imagem original – Imagem comprimida) x Fator de Aumento de Contraste) + 127

onde:

Fator de Aumento de Contraste = 256 / (valor máximo do erro – valor mínimo do erro)

Cabe ressaltar que o "Fator de Aumento de Contraste" é uma forma de calcular, automaticamente, a correção para ajuste da imagem. Fazemos uma ampliação entre o valor mínimo e máximo do erro obtido na imagem, mapeando nos 256 níveis possíveis.

Os testes de avaliação de desempenho das bases Wavelets foram realizados a partir do programa (ver Figuras 5.1 e 5.2.) implementado por meio da **Toolbox Wavelet** da linguagem de programação **MATLAB** © da empresa **Mathworks** [TOOLBOX 2001].

Usamos as fórmulas das (Eq. 5.1 a 5.4) com critério quantitativo de comparação das imagens originais e comprimidas.

📣 Untitled		
Menu		
Abrir Imagem	Analisar	Ajuda
Base Wavelet haar _	Decompor	
	Cascate	
	Filtros QMF	

Programa de Teste

Figura 5.1 - Tela do programa de teste.

Figura 5.2 - Mensagem de ajuda

5.1. Imagens de Teste

A Figura 5.3 na próxima página nos mostra o conjunto de imagens de teste em preto e branco com 256 níveis de cinza. Escolhemos basicamente 12 imagens, que achamos representativa, para realização dos testes. As imagens são divididas em três grupos de acordo com seu conteúdo: naturais ou fotográficas, sintéticas e de texto.

Inicialmente, temos oito imagens fotográficas, sendo as quatro primeiras de pessoas: "Lena" e "Cameraman", com dimensões de 128x128 e 256x256 pixeis. As quatro seguintes são de paisagem: "Goldhill", com dimensões de 128x128 e 256x256 pixeis, e de pimentões "Peppers", com dimensões de 128x128 e 512x512 pixeis. As três imagens seguintes são sintéticas: "Círculo", "Xadrez", "Senoidal" e a última imagem é de texto: "Texto" todas com resolução de 256x256 pixeis.

Lena 128x128

Lena 256x256

Xadrez 256x256

Camera 128x128

Goldhill 128x128

Peppers 128x128

Camera 256x256

Goldhill 256x256

Peppers 512x512

Figura 5.3 - Conjunto de imagens de teste

Círculo 256x256

Senoidal 256x256

Acrobat 3.0 is the fast publish any docume.

Take the PDF file you're lookin Adobe PageMaker" software a with fonts, formatting, colors, a Then, hypertext links, form fiel Acrobat 3.0 software to make i optimized the file, making it oc on any platform—Macintosh."

Texto 256x256

5.2. Resultados Erro Médio Quadrático - RMSE

Nesta seção veremos os dados da comparação entre a imagem original e a imagem reconstruída, após o processo de compressão e descompressão, segundo o Erro Médio Quadrático (RMSE) para cada imagem de teste. O gráfico RMSE nos diz que quanto maior o valor obtido, pior será o desempenho da base Wavelet, pois maior será o Erro Médio Quadrático. Consequentemente, quanto menor o Erro, melhor será o desempenho da base. Destacamos nos gráficos em barra, o menor valor de todos com a cor preta, e o maior valor de todos com a cor branca.

Podemos observar no **Gráfico 5.1**, referente à imagem "Lena 128x128", o valor mínimo RMSE de 0,9362 obtido com a base db10, o valor máximo de 1,5227 foi obtido com a base bior3.1.O gráfico nos mostra que a base de db10 alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.2** referente à imagem da "Lena 256x256" observamos que: o valor mínimo de 2,4030 é obtido com a base bior1.3, o valor máximo de 3,8324 é obtido com a base bior3.1. O gráfico nos mostra que a base bior1.3 alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior1.3 obteve o maior valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.3**, referente à imagem "Camera 128x128" podemos observar que: o valor mínimo de 0,7692 é obtido com a base Haar, o valor máximo de 1,2251 é obtido com a base bior3.1. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

Podemos observar no **Gráfico5.4**, referente à imagem "Camera 256x256", o valor mínimo RMSE de 2,1337 obtido com a base Haar, o valor máximo de 3,4989 foi obtido com a base bior3.1.O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.5** referente à imagem da "Goldhill 128x128" observamos que: o valor mínimo de 1,4689 é obtido com a base bior5.5, o valor máximo de 2,4779 é obtido com a base bior3.1. O gráfico nos mostra que a base bior5.5 alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior3.1 obteve o maior valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.6** referente à imagem da "Goldhill 256x256" observamos que: o valor mínimo de 1,7124 é obtido com a base bior5.5, o valor máximo de 2,8454 é obtido com a base bior3.1. O gráfico nos mostra que a base bior5.5 alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior3.1 obteve o maior valor e, consequentemente, o pior desempenho para esta imagem.

Podemos observar no **Gráfico5.7**, referente à imagem "Peppers 128x128", o valor mínimo RMSE de 0,9617 obtido com a base bior1.3, o valor máximo de 1,4857 foi obtido

com a base bior3.1. O gráfico nos mostra que a base de bior1.3 alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.8** referente à imagem da "Peppers 512x512" observamos que: o valor mínimo de 1,1043 é obtido com a base db10, o valor máximo de 1,7974 é obtido com a base bior3.1. O gráfico nos mostra que a base db10 alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior3.1 obteve o maior valor e, consequentemente, o pior desempenho para este tipo de imagem.

Podemos observar no **Gráfico 5.9**, referente à imagem "Xadrez 256x256", o valor mínimo RMSE de $4,4249x10^{-14}$ obtido com a base Haar, o valor máximo de 1,4306 foi obtido com a base sym8. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base sym8 obteve o pior desempenho para esta imagem.

Analisando o **Gráfico 5.10** referente à imagem da "Círculo 256x256" observamos que: o valor mínimo de 0,2114 é obtido com a base Haar, o valor máximo de 1,5481 é obtido com a base db10. O gráfico nos mostra que a base Haar alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base db10 obteve o maior valor e, consequentemente, o pior desempenho para esta imagem.

No **Gráfico 5.11** referente à imagem da "Seniodal 256x256" observamos que: o valor mínimo de 3,9338 é obtido com a base sym4, o valor máximo de 5,2610 é obtido com a base bior3.1. O gráfico nos mostra que a base sym4 alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior3.1 obteve o maior valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.12** referente à imagem da "Texto 256x256" observamos que: o valor mínimo de 2,6615 é obtido com a base Haar, o valor máximo de 5,3333 é obtido com a base bior3.1. O gráfico nos mostra que a base Haar alcançou o menor de Erro Médio Quadrático, no extremo oposto, a base bior3.1 obteve o maior valor e, consequentemente, o pior desempenho para esta de imagem.

Na próxima seção 5.3 veremos os resultados referentes à Relação Sinal Ruído rms para o conjunto de imagens de teste.

Gráfico 5.1 - RMSE da imagem Lena 128x128

Gráfico 5.2 - RMSE da imagem Lena 256x256

Gráfico 5.3 - RMSE da imagem Camera 128x128

Gráfico 5.4 - RMSE da imagem Camera 256x256

Goldhill 128x128

Gráfico 5.5 - RMSE da imagem Goldhill 128x128

Goldhill 256x256

Gráfico 5.6 - RMSE da imagem Goldhill 256x256

Peppers 128x128

Gráfico 5.7 - RMSE da imagem Peppers 128x128

Peppers 512x512

Gráfico 5.8 - RMSE da imagem Peppers 512x512

Xadrez 256x256

Gráfico 5.9 - RMSE da imagem Xadrez 256x256

Círculo 256x256

Gráfico 5.10 - RMSE da imagem Círculo 256x256

Gráfico 5.11 - RMSE da imagem Senoidal 256x256

Texto 256x256

Gráfico 5.12 - RMSE da imagem Texto 256x256

5.3. Resultados Relação Sinal de Ruído rms – SNRrms

Nesta seção veremos os dados da comparação entre a imagem original e a imagem reconstruído, após o processo de compressão e descompressão. Segundo a Relação Sinal de Ruído rms (SNRrms) para cada imagem de teste. O gráfico SNR rms nos diz que quanto maior o valor obtido, melhor será o desempenho da base Wavelet. Consequentemente, quanto menor a Relação Sinal Ruído, pior será o desempenho da base. Destacamos nos gráficos em barra, o menor valor de todos com a cor preta, e o maior valor de todos com a cor branca.

Podemos observar no **Gráfico 5.13**, referente à imagem "Lena 128x128", o valor máximo SNR rms de 143,2367 é obtido com a base db10, o valor mínimo de 88,0680 é obtido com a base bior3.1.O gráfico nos mostra que a base de db10 alcançou melhor o desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.14** referente à imagem da "Lena 256x256" observamos que: o valor máximo de 56,0982 obtido com a base bior1.3, o valor mínimo de 35,1847 é obtido com a base bior3.1. O gráfico nos mostra que a base bior1.3 alcançou a maior Relação Sinal Ruído, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.15**, referente à imagem "Camera 128x128" podemos observar que: o valor máximo de 175,6640 é obtido com a base Haar, o valor mínimo de 110,2955 é obtido com a base bior3.1. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

Podemos observar no **Gráfico 5.16**, referente à imagem "Camera 256x256", o valor máximo SNR rms de 63,1282 é obtido com a base Haar, o valor mínimo de 38,5093 foi obtido com a base bior3.1. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.17** referente à imagem da "Goldhill 128x128" observamos que: o valor máximo de 84,2552 é obtido com a base bior5.5, o valor mínimo de 49,9447 é obtido com a base bior3.1. O gráfico nos mostra que a base bior5.5 alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.18** referente à imagem da "Goldhill 256x256" observamos que: o valor máximo de 73,1679 é obtido com a base bior5.5, o valor mínimo de 44,0380 é obtido com a base bior3.1. O gráfico nos mostra que a base bior5.5 alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Podemos observar no **Gráfico 5.19**, referente à imagem "Peppers 128x128", o valor máximo SNR rms de 154,9865 obtido com a base bior1.3, o valor mínimo de 100,3168 foi obtido com a base biort3.1. O gráfico nos mostra que a base de bior1.3 alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.20** referente à imagem da "Peppers 512x512" observamos que: o valor máximo de 134,5508 é obtido com a base db10, o valor mínimo de 82,6709 é obtido com a base biort3.1. O gráfico nos mostra que a base db10 alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Podemos observar no **Gráfico 5.21**, referente à imagem "Xadrez 256x256", o valor máximo SNR rms de $3,9636 \times 10^{15}$ obtido com a base Haar, o valor mínimo de 122,5949 foi obtido com a base sym8.O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base sym8 obteve o pior desempenho para esta imagem. Contudo excluímos o valor SNR rms= $3,9636 \times 10^{15}$, da base Haar, para melhor visualização dos demais valores.

Analisando o **Gráfico 5.22** referente à imagem da "Círculo 256x256" observamos que: o valor máximo de 940,0245 é obtido com a base Haar, o valor mínimo de 128,3621 é obtido com a base db10. O gráfico nos mostra que a base Haar alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base db10 obteve o menor valor e, consequentemente, o pior desempenho para este tipo de imagem.

No **Gráfico 5.23** referente à imagem da "Seniodal 256x256" observamos que: o valor máximo de 37,1577 é obtido com a base sym4, o valor mínimo de 27,8048 é obtido com a base bior3.1. O gráfico nos mostra que a base sym4 alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para este tipo de imagem.

Analisando o **Gráfico 5.24** referente à imagem da "Texto 256x256" observamos que: o valor máximo de 86,9397 é obtido com a base Haar, o valor mínimo de 43,3937 é obtido com a base bior3.1. O gráfico nos mostra que a base Haar alcançou a maior Relação Sinal Ruído rms, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para este tipo de imagem.

Na próxima seção 5.6 veremos os resultados referentes à Relação Sinal Ruído de Pico em decibel para o conjunto de imagens de teste.

Gráfico 5.13 - SNRrms da imagem Lena 128x128

Gráfico 5.14 - SNRrms da imagem Lena 256x256

Camera 128x128

Gráfico 5.15 - SNRrms da imagem Camera 128x128

Camera 256x256

Gráfico 5.16 - SNRrms da imagem Camera 256x256

Goldhill 128x128

Gráfico 5.17 - SNRrms da imagem Goldhill 128x128

Goldhill 256x256

Gráfico 5.18 - SNRrms da imagem Goldhill 256x256

Gráfico 5.19 - SNRrms da imagem Peppers 128x128

Peppers 512x512

Gráfico 5.20 - SNRrms da imagem Peppers 512x512

Gráfico 5.21 - SNRrms da imagem Xadrez 256x256

Excluímos o valor de $3,9636 \times 10^{15}$, referente à base Haar, do Gráfico 5.21 para melhor visualização dos valores obtidos.

Círculo 256x256

Gráfico 5.22 - SNRrms da imagem Círculo 256x256

Seniodal 256x256

Gráfico 5.23 - SNRrms da imagem Senoidal 256x256

texto 256x256

Gráfico 5.24 - SNRrms da imagem Texto 256x256

5.4. Resultados Relação Sinal Ruído de Pico - PSNR

Nesta seção veremos os dados da comparação entre a imagem original e a imagem reconstruído, após o processo de compressão e descompressão. Segundo a Relação Sinal de Ruído de Pico (PSNR) para cada imagem de teste. O gráfico PSNR em decíbel nos diz que quanto maior o valor obtido, melhor será o desempenho da base Wavelet. Consequentemente, quanto menor a Relação Sinal Ruído de Pico, pior será o desempenho da base. Destacamos nos gráficos em barra, o menor valor de todos com a cor preta, e o maior valor de todos com a cor branca. Lembramos que os resultados completos estão nas Tabelas do Anexo III.

Podemos observar no **Gráfico 5.25**, referente à imagem "Lena 128x128", o valor máximo PSNR de 48,7037 é obtido com a base db10, o valor mínimo de 44,4788 é obtido com a base bior3.1.O gráfico nos mostra que a base de db10 alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.26** referente à imagem da "Lena 256x256" observamos que: o valor máximo de 40,5158 obtido com a base bior1.3, o valor mínimo de 36,4613 é obtido com a base bior3.1. O gráfico nos mostra que a base bior1.3 alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para este tipo de imagem.

Analisando o **Gráfico 5.27**, referente à imagem "Camera 128x128" podemos observar que: o valor máximo de 50,4103 é obtido com a base Haar, o valor mínimo de 46,3677 é obtido com a base bior3.1. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

Podemos observar no **Gráfico 5.28**, referente à imagem "Camera 256x256", o valor máximo PSNR de 41,5480 é obtido com a base Haar, o valor mínimo de 37,2522 é obtido com a base bior3.1. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.29** referente à imagem da "Goldhill 128x128" observamos que: o valor máximo de 44,7908 é obtido com a base bior5.5, o valor mínimo de 40,2491 é obtido com a base bior3.1. O gráfico nos mostra que a base bior5.5 alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.30** referente à imagem da "Goldhill 256x256" observamos que: o valor máximo de 43,4586 é obtido com a base db10, o valor mínimo de 39,0480 é obtido com a base bior3.1. O gráfico nos mostra que a base db10 alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Podemos observar no **Gráfico 5.31**, referente à imagem "Peppers 128x128", o valor máximo PSNR de 48,4703 obtido com a base bior1.3, o valor mínimo de 44,6922 é obtido com a base bior3.1. O gráfico nos mostra que a base de bior1.3 alcançou o melhor desempenho, por outro lado, a base bior3.1 obteve o pior desempenho para esta imagem.

No **Gráfico 5.32** referente à imagem da "Peppers 512x512" observamos que: o valor máximo de 47,2691 é obtido com a base db10, o valor mínimo de 43,0380 é obtido com a base bior3.1. O gráfico nos mostra que a base db10 alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para este tipo de imagem.

Podemos observar no **Gráfico 5.33**, referente à imagem "Xadrez 256x256", o valor máximo PSNR de 315,2128 obtido com a base Haar, o valor mínimo de 45,0206 foi obtido com a base sym8. O gráfico nos mostra que a base de Haar alcançou o melhor desempenho, por outro lado, a base sym8 obteve o pior desempenho para esta imagem.

Analisando o **Gráfico 5.34** referente à imagem da "Círculo 256x256" observamos que: o valor máximo de 61,6285 é obtido com a base Haar, o valor mínimo de 44,3347 é obtido com a base db10. O gráfico nos mostra que a base Haar alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base db10 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

No **Gráfico 5.35** referente à imagem da "Seniodal 256x256" observamos que: o valor máximo de 36,2345 é obtido com a base sym4, o valor mínimo de 33,7095 é obtido com a base bior3.1. O gráfico nos mostra que a base sym4 alcançou a maior Relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

Analisando o **Gráfico 5.36** referente à imagem da "Texto 256x256" observamos que: o valor máximo de 39,6282 é obtido com a base Haar, o valor mínimo de 33,5909 é obtido com a base bior3.1. O gráfico nos mostra que a base Haar alcançou a maior relação Sinal Ruído de Pico, no extremo oposto, a base bior3.1 obteve o menor valor e, consequentemente, o pior desempenho para esta imagem.

No próximo capítulo vamos apresentar a conclusão, com algumas considerações a cerca dos valores obtidos.

Gráfico 5.25 - PSNR da imagem Lena 128x128

Gráfico 5.26 - PSNR da imagem Lena 256x256

Gráfico 5.27 - PSNR da imagem Camera 128x128

Camera 256x256

Gráfico 5.28 - PSNR da imagem Camera 256x256

Goldhill 128x128

Gráfico 5.29 - PSNR da imagem Goldhill 128x128

Goldhill 256x256

Gráfico 5.30 - PSNR da imagem Goldhill 256x256

Gráfico 5.31 - PSNR da imagem Peppers 128x128

Peppers 512x512

Gráfico 5.32 - PSNR da imagem Peppers 512x512

Xadrez 256x256

Gráfico 5.33 - PSNR da imagem Xadrez 256x256

Círculo 256x256

Gráfico 5.34 - PSNR da imagem Círculo 256x256

Seniodal256x256

Gráfico 5.35 - PSNR da imagem Senoidal 256x256

Texto 256x256

Gráfico 5.36 - PSNR da imagem Texto 256x256

6. CONCLUSÕES

Neste capítulo vamos considerar o conjunto dos testes realizados com todas as Bases Wavelets apresentamos os gráficos com os valores médios do Erro Médio Quadrático (RMSE), Relação Sinal Ruído rms (SNR rms) e Relação Sinal Ruído de Pico em decíbel (PSNR) dos grupos de imagens separadas e juntas.

Os algoritmos foram escritos na linguagem de programação do Matlab. Eles foram executados em um computador Pentium 4 de 2,4 Mhz, com 512 Mbytes de memória RAM, 512 Kbytes de memória cache e com placa gráfica AGP 8X com 128Mbytes.

6.1. Conclusões sobre os Resultados

Vamos agrupar e combinar os resultados usando os critérios: de tamanho da imagem, o tipo da imagem, isto é, se fotográficas ou sintéticas. Os resultados estão divididos em três quesitos. Nos gráficos em barra, destacamos o maior valor com a cor branca e a menor com a cor preta, deixando os valores intermediários na cor cinza

Agrupamos os imagens "Lena 128x128", "Camera 128x128", "Goldhill 128x128" e "Peppers 128X128" na tabela "Valores Médios das Imagens Fotográficas 128x128" (vide Anexo III). Podemos observar nos **Gráficos 6.1, 6.2 e 6.1**, que a Base Wavelet bior1.3 apresenta o melhor desempenho com valores médios: RMSE=1,0488, SNR rms=136,8582 e PSNR 47,9469. Por outro lado, a base bior3.1 apresentou o pior desempenho com valores RMSE=1,6778, SNR rms=87,1562 e PSNR 43,9469.

No **Gráficos 6.1** podemos ver que as Wavelets de Haar, as Famílias Daubechies, Coiflets e Symlets têm valores muito próximos. Contudo a Família Biortogonal apresenta um pico na Base bior3.1. de pior desempenho. Se compararmos os **Gráficos 6.2** com **Gráficos 6.3** podemos perceber visualmente que os gráficos têm praticamente mesmo perfil.

RMSE Fotográficas 128x128

Gráfico 6.1 - RMSE Fotográficas 128x128

Fotográficas 128x128

Gráfico 6.2 - SNR rms Fotográficas 128x128

Fotográficas 128X128

Gráfico 6.3 - PSNR Fotográficas 128x128

Agrupamos, também, as imagens "Lena 256x256", "Camera 256x256" e "Goldhill 256x256" na tabela "Valores Médios das Imagens Fotográficas 256x256" (vide Anexo III). Podemos observar nos **Gráficos 6.4, 6.5** e **6.6**, que a Base Wavelet bior1.3, com valores médios: RMSE=2,1019, SNR rms=63,4340 e PSNR=41,7532. Seguida de perto pela Base de Haar, com valores médios: RMSE=2,1051, SNR rms=63,2780 e PSNR=41,7355, apresentam o melhor desempenho. Em contra partida, a Base bior3.1 apresentou o pior desempenho em comparação com as outras Bases.

No **Gráficos 6.4** podemos ver que as Wavelet de Haar, Família Daubechies, Coiflets e Symlets têm valores muito próximos. Contudo para a Família Biortogonal apresenta um pico para a Base bior3.1 que verificamos como Base de pior desempenho. Se compararmos os **Gráficos 6.2** com **Gráficos 6.3** podemos perceber visualmente os gráficos têm praticamente mesmo perfil.

Se compararmos as imagens "Fotográficas 128x128" com "Fotográficas 256x256", podemos notar a mesma tendência, dos **Gráficos 6.1, 6.2, 6.3** com os **Gráficos 6.4, 6.5**, **6.6**, respectivamente. Isto é compreensível, pois todas as imagens são fotográficas, mas podemos verificar que o tamanho não interferiu no resultado final.

Fotográficas 256x256

Gráfico 6.5 - SNR rms Fotográficas 256x256

Fotográficas 256x256

Gráfico 6.6 - PSNR Fotográficas 256x256

Agrupamos as imagens "Circulo 256x256", "Xadrez 256x256", por tamanho 256x256 e por tipo sintéticas, na Tabela de Testes com Valores Médios das Imagens Sintéticas 256x256 presente no (Anexo III).

Podemos observar nos **Gráficos 6.7, 6.8 e 6.9**, que a Base Wavelet de Haar apresenta o melhor desempenho com valores médios RMSE=0,1057, SNR rms= $1,9818\times10^{15}$ e PSNR 45,0483. Em contra partida, a base db10 apresentou o pior desempenho com valores médios RMSE=1,4308, SNR rms=130,9407 e PSNR 45,0483.

Notamos que a Wavelet de Haar tem um excelente desempenho no processo de compressão e descompressão de imagens sintéticas em relação às imagens fotográficas. Principalmente na imagem "Xadrez 256x256" que superou as demais resultados em comparação com qualquer outra imagem. A Base de Haar obteve valor extramamente alto se analisarmos separadamente. Concluir que imagens binárias, com bordas retas, são bem comprimidas com a Base de Haar.

Se comparamos as imagens "Sintéticas 256x256" com as "Fotográficas 128x128" e "Fotográficas 256x256" podemos verificar que os perfis dos gráficos não são idênticos, pois as imagens são de natureza diferentes.

Sintéticas 256x256

Gráfico 6.8 - SNR rms Sintéticas 256x256

Excluímos o valor da Base Haar de $1,9818 \times 10^{15}$ do **Gráfico 6.8** para melhor visualização dos valores obtidos.

Sintéticas 256X256

Gráfico 6.9 - PSNR Sintéticas 256x256

Ressaltamos que embora a imagem "Senoidal 256x256" tenha sido gerada de forma artificial, ela tem comportamento fotográfico, porque é composta por muitos tons. Por esse motivo, não a incluímos no grupo de imagens sintéticas, para não mascarar o resultado.

Por fim, agrupamos todas a imagens "Lena 128x128", "Camera 128x128", "Goldhill 128x128", "Peppers 128x128", "Lena 256x256", "Camera 256x256", "Goldhill 256x256", "Peppers 512x512", "Xadrez 256x256", "Senoidal 256x256", "Texto 256x256", na tabela "Valores Médios das Imagens" (vide Anexo III).

Podemos observar no **Gráfico 6.10** que a Wavelet de Haar apresenta o menor valor do Erro Médio Quadrático, seguida pelas Bases bior1.3. No outro extremo, temos a Wavelet Biortogonal (bior 3.1). Desta forma concluímos que a Wavelet de Haar apresenta o melhor desempenho em termo do Erro. Já a Base bior3.1 apresenta o pior resultado em comparação com as demais Bases.

RMSE Médio

Gráfico 6.10 - RMSE Médio

SNR ms Médio

Gráfico 6.11 - SNR ms Médio
Nos Gráficos 6.11 e 6.12 decidimos retirar o valor relativo à Wavelet de Haar, cujo valores são de $1,3092 \times 10^{30}$ e $3,3030 \times 10^{14}$, para melhor visualização dos outros valores. Notamos que a Wavelet de Haar tem um excelente desempenho no processo de compressão e descompressão de imagens sintéticas em relação às imagens fotográficas.

SNRrms Médio

Gráfico 6.12 - SNR rms Médio

Gráfico 6.13 - PSNR Médio em decíbel

Como exemplo apresentamos a comparação qualitativa nas Figuras 6.1. e 6.2.

Figura 6.1 - Comparação da imagem Lena 128x128 obtida com base de Haar

Figura 6.2 - Comparação da Imagem Lena 128x128 obtida com base biortogonal 3.1

Visualmente não há diferença entre a imagem original e a comprimida. A diferença pode ser melhor observada em termos quantitativos. O objetivo deste trabalho foi plenamente alcançado, pois verificamos que a Base de Haar tem o melhor desempenho. No extremo oposto, constatamos que a Base bior3.1, da Família Biortogonal, apresentou o pior desempenho em comparação com as Famílias estudadas.

Finalmente, baseado nos resultados deste trabalho. Podemos dizer que para aplicação em compressão de imagens usando a Transformada de Wavelet. Devemos escolher a Base de Haar, pois ela demonstrou melhor desempenho global, com menor degradação em relação às outras Famílias testadas.

6.2. Sugestões para Trabalhos Futuros

Poderíamos dar continuidade a essa linha de pesquisa com a investigação de outras Famílias de Bases Wavelets, como as Wavelets complexas, pois esse trabalho apenas abordou um pequeno conjunto de Bases.

Seria interessante usar a versão mais atual do Toolbox do Matlab para realização dos testes de avaliação das Famílias Wavelets. Os testes foram feitos no Matlab usando dois níveis de decomposição. Poderíamos implementar mais níveis de decomposição e verificar de que forma isso interfere no processo de compressão, bem como, na qualidade da imagem reconstruída.

Poderíamos desenvolver o programa de teste em outras linguagens com C++, ou optar pelo uso de software livre, como o SCILAB equivalente ao Matlab.

Seria interessante realizar mais testes, com outros tipos de imagens, como imagens fractais, de tamanhos diferentes, para verificar a validade dos resultados obtidos.

Poderíamos realizar esses testes em imagens coloridas para isso, devemos fazer os testes em relação a cada canal RGB. Podemos também realizar uma mudança para o espaço YIQ e faz os testes em relação a cada canal.

Seria também interessante propor e desenvolver novas Famílias de Funções Wavelets, considerando a estabilidade númerica e as Bases de dimensão infinita, para comparação com a Base de Haar que apresentou melhor desempenho neste trabalho.

7. ANEXO I

7.1. Revisão de Conceitos:

Neste anexo mencionamos alguns dos conceitos de números complexos e da álgebra linear fundamentais para o estudo e entendimento de Wavelets [SILVA 2000].

7.1.1. Números Complexos

Podem ser entendidos, como números complexos, aqueles que têm uma parte real e outra imaginária, na forma de: z = a + bi, onde a e b são números reais e $i = \sqrt{-1}$ ou $i^2 = -1$. Os números complexos tem as operações de soma, subtração e multiplicação descritas por:

Adição:
$$z_1 + z_2 = (a + bi) + (c + di) = (a + c) + (b + d)i$$

Subtração: $z_1 - z_2 = (a + bi) - (c + di) = (a - c) + (b - d)i$
Mutiplicação: $z_1 \cdot z_2 = (a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$

Graficamente podemos representar um número complexo pelo Diagrama de Argand-Gauss no Plano Complexo ou Plano Gaussiano como mostrado na Figura 7.1.

Figura 7.1 - Gráfico de um número complexo representado por um ponto no plano complexo

Os números complexos também podem ser representados na forma polar, pelo seu raio r e ângulo θ , a figura 2 mostra essa descrição.

Figura 7.2 - Gráfico do Plano Complexo com um ponto descrito na forma polar

O raio r equivale ao módulo do número complexo. θ é ângulo formado entre o raio r e o Eixo Real. Neste caso, o raio e o ângulo θ podem ser matematicamente representados pelas partes reais e complexas do número.

$$r = \sqrt{a^{2} + b^{2}} \rightarrow m \delta du lo \ do \ n u mero$$

$$\theta = amplitude \quad \theta = arctg\left(\frac{b}{a}\right)$$

$$\begin{cases} a = r \cos \theta \\ b = r \sin \theta \end{cases}$$

A vantagem da representação de um número complexo na forma polar reside no fato dela ser mais adequada às operações de multiplicação, divisão e potenciação. Lembrando que:

$$\int \cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$
$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

A multiplicação pode ser escrita como:

$$z_1 \cdot z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) \cdot r_2 (\cos \theta_2 + i \sin \theta_2) = r_1 r_2 (\cos (\theta_1 + \theta_2)) \cdot (i \sin (\theta_1 + \theta_2))$$

A divisão fica:

$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$$

Um número complexo z com mesmo módulo de outro número, mas com o ângulo negativo deste é conhecido com complexo conjugado deste número. O complexo conjugado de um número z é representado por: $z^* = a - bi$.

Elevar um número complexo a uma potência real é descrito na forma polar pelo Teorema de Moivre que diz que: Se p é real então:

$$z^{p} = \left[r(\cos\theta + i \sin\theta) \right]^{p}$$

Podemos ampliar a expressão anterior para descrever as raizes de um número, chamado de $p = \frac{1}{n}$ e lembrando que $\theta = \theta + 2k\pi$ onde k = 0, 1, 2, ..., n-1

$$z^{\frac{1}{n}} = \left[r(\cos\theta + i\sin\theta)\right]^{\frac{1}{n}} = r^{\frac{1}{n}} \left(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta + 2k\pi}{n}\right)$$

Considerando *e* como a base dos logaritmos naturais ou Neperianos, definidos como $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 2,71828$ (os logaritmos comuns têm base 10). Temos pelas identidades abaixo e pela relação de Euler que: $e^{i\pi} = -1$ e $i^2 = -1$

$$\begin{cases} e^{i\theta} = \cos\theta + i\sin\theta\\ e^{-i\theta} = \cos\theta - i\sin\theta \end{cases}$$

de modo que:

$$sen \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \qquad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

e a forma polar dos números complexos podem ser reescritos como

$$a + bi = r(\cos\theta + i \sin\theta) = re^{-i\theta}$$

essa última forma dos números facilita a representação das operações com números complexos, pela facilidade que as propriedades de potência introduzem nas expressões anteriores das operações de produto, divisão, potenciação e radiciação:

$$z_{1} \cdot z_{2} = r_{1}e^{i\theta_{1}} \cdot r_{2}e^{i\theta_{2}} = r_{1} \cdot r_{2}e^{i(\theta_{1}+\theta_{2})} \qquad pois \qquad x^{p} \cdot x^{q} = x^{p+q}$$

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}e^{i\theta_{1}}}{r_{2}e^{i\theta_{2}}} = \frac{r_{1}}{r_{2}}e^{i(\theta_{1}-\theta_{2})} \qquad pois \qquad \frac{x^{p}}{x^{q}} = x^{p-q}$$

$$z^{p} = (re^{i\theta})^{p} = r^{p}e^{ip\theta} \qquad pois \qquad (x^{p})^{q} = x^{p-q}$$

$$z^{\frac{1}{n}} = (re^{i\theta})^{\frac{1}{n}} = [re^{i(\theta+2k\pi)}]^{\frac{1}{n}} = r^{\frac{1}{n}}e^{\frac{i(\theta+2k\pi)}{n}} \qquad pois \qquad (\sqrt[n]{x}) = x^{\frac{1}{n}}$$

Considerando agora os logaritmos dos números complexos. Por convenção se a base x for 10, escrevemos simplesmente log. Assim $\log_{10} 100 = 2$. Pois $10^2 = 100$. Também, por convenção, para os logaritmos Neperiano usamos ln de modo que: $\ln N = \log_e N$ ln e = 1.

Lembrando de algumas propriedades dos logaritmos que seguem:

$$\log_x MN = \log_x M + \log_x N$$
$$\log_x \frac{M}{N} = \log_x M - \log_x N$$
$$\log_x M^P = p \log_x M$$

Temos que o logaritmo de um número complexo $\ln (re^{i\theta}) = \ln r + i\theta + 2k\pi i$, onde k é um número inteiro, pois se $x^p = N$ e $x \neq o$, então $p = \log_x N$ é chamado de logaritmo de N na base X. O número $N = x^p$ é chamado de anti-logaritmo de p na base x.

7.1.2. Espaço vetorial ou linear

Um espaço vetorial sobre os campos dos números reais, \Re , é um conjunto V de elementos, onde:

- Para todo $a, b \in \Re$ e para todo $u, v \in V$, $au + bv \in V$.
- Existe um único elemento $0 \in V$ tal que:
- para todo $u \in V$, 0u = 0;
- para todo $u \in V$, 0 + u = u;

Os elementos de um espaço vetorial V são chamados vetores, o elemento zero, descrito no lado direito da segunda expressão acima, é chamado de vetor nulo. Os vetores podem ser vetores genéricos, ou podem ser funções, como é o caso das Wavelets.

1. Bases e dimensões

Um conjunto de vetores $\{u_1, u_2, \cdots\}$ em um espaço vetorial V são ditos linearmente independentes se: $c_1 u_1 + c_2 u_2 + \cdots = 0$ se e somente se $c_1 = c_2 = \cdots = 0$.

Um conjunto $\{u_1, u_2, \dots\} \in V$ de vetores linearmente independentes formam uma base para V e todo $v \in V$ pode ser escrito como:

$$v = \sum_{i} c_{i} u_{i} \tag{2}$$

para quaisquer números reais c_1, c_2, \cdots

Se uma base para V tem um número finito de elementos $\{u_1, u_2, \dots, u_m\}$ então V é de dimensão finita, e sua dimensão é m, caso contrário V é de dimensão infinita.

Exemplo:

 \Re^3 é um espaço tridimensional.

Os vetores: $e^1 = (1,0,0)$, $e^2 = (0,1,0)$, $e^3 = (0,0,1)$, formam uma base para \Re^3 , ou seja, qualquer elemento de \Re^3 pode ser escrito em função de e^1 , $e^2 e e^3$.

2. Corpo

Um conjunto $F \neq 0$ corpo comutativo se existem mapeamentos de $F \times F \to F : (\alpha, \beta) \to \alpha + \beta$ e de $F \times F \to F : (\alpha, \beta) \to \alpha\beta$, denominamos adição e multiplicação, respectivamente. Ou seja, um corpo é um conjunto munido de algumas operações sobre seus elementos, as quais se comportam como a adição, subtração, multiplicação e divisão, usuais de números, no sentido de que elas obedecem certas propriedades:

- $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ (associatividade de adição)
- $\alpha + \beta = \beta + \alpha$ (comutatividade da adição)
- $0 \in F$ tal que $\alpha + 0 = \alpha$ (elemento neutro)
- $-\alpha \in V$ para o qual $\alpha + (-\alpha) = 0$ (elemento inverso aditivo
- $\alpha\beta = \beta\alpha$ (comutatividade da mutiplicação)
- $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ (associatividade da multiplicação)
- $1 \in F / \{0\}$ tal que $\alpha 1 = \alpha$ (neutro multiplicador)
- $\alpha^{-1} \in F/(0)$ tal que $\alpha \alpha^{-1} = 1$ (inverso multiplicador)
- $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ (distribuição da adição em relação à soma)

3. Produto interno e Ortogonalidade

Seja *K* o corpo nos números reais ou complexos e *V* um espaço vetorial sobre *K*. Um produto interno sobre *V* é um mapeamento representado pelo símbolo \langle , \rangle : $V \times V \rightarrow K : (u, v) \langle u, v \rangle$. Denominamos o par (V, \langle , \rangle) de espaço com produto interno (ou espaço pré-Hilbert) sobre *K* se as seguintes propriedades são observadas. Para todo $u, v, w \in V$ e $\alpha \in K$ devemos ter:

- $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ (distribuição do produto interno)
- $\langle \alpha \, u, w \rangle = \alpha \langle u, w \rangle$ (associatividade do produto interno)
- $\langle u, v \rangle = \langle v, u \rangle$ (comutatividade do produto interno)
- $\langle u, u \rangle \ge 0$ (positividade do produto interno)
- $\langle u, u \rangle = 0 \Rightarrow u = 0$ (unicidade do elemento neutro)

Um dos usos mais importantes do produto interno é para formalizar a idéia de ortogonalidade. Dois vetores u e v são ditos ortogonais se $\langle u, v \rangle = 0$, o produto interno é igual a zero.

Uma base ortogonal é uma base que consiste de vetores ortogonais entre si.

Exemplo:

O produto interno no \Re^3 é definido por:

$$(u_1.v_1 + u_2.v_2 + u_3.v_3)$$

onde u_1, u_2, u_3 são os elementos de *u* na base usada e v_1, v_2, v_3 são os elementos de que descreve na base usada *v* na base usada.

4. Normas e normalização

Uma norma é uma função que mede o tamanho de um vetor. Em um espaço vetorial de dimensão finita, freqüentemente usa-se a norma-2

$$\left\|U\right\|_{2} = \left\langle U, U \right\rangle^{1/2} \tag{3}$$

Um vetor $u \operatorname{com} ||u||=1$ é dito normalizado. Se temos uma base ortogonal composta de vetores normalizados, a base é chamada ortonormal.

Exemplo:

Os vetores e^1 , $e^2 e e^3$ do exemplo anterior formam uma base ortonormal para o espaço \Re^3 ;[3].

5. Funções Base

Podemos explicar uma função base se formos do mundo analógico para o mundo digital. Cada dimensão do vetor (x,y) é uma combinação dos vetores (1,0) e (0,1). Estes

dois vetores são vetores base de (x,y), ao multiplicarmos x por (1,0) obtemos (x,0) e se multiplicarmos y com (0,1) obtemos (0,y) a soma será (x,y)

Os vetores base são perpendiculares ou ortogonais, pois o produto interno é nulo.

8. ANEXO II

8.1. Código do programa teste no Matlab versão 1

abrir_imagem.m

function abrir_imagem()
[Nome, Caminho] = uigetfile({'*.tif'}, 'Abrir Imagem');
if ~ischar(Nome) % Verifica se algum dado foi fornecido
warndlg('Nome de arquivo nao fornecido.');
else
Arquivo=fullfile(Caminho,Nome); % Compoe nome do arquivo
Xrgb=0.2990*A(:,:,1)+0.5870*A(:,:,2)+0.1140*A(:,:,3);
Nbcolors=256;
X=wcodemat(Xrgb,Nbcolors);
map=gray(Nbcolors);
for val=0.35
switch val
case 0
wname='db1';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 1
wname='db2';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 2
wname='db3';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 3
wname='db4';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 4
wname='db5';testa_1magem(X,map,Caminho,Nome,Arquivo,wname);
case 5
whame-ubo, testa_imagem(Λ , imap, Caminino, Nome, Arquivo, whame),
wname-'db7':testa_imagem(X_man Caminho Nome Arquivo wname):
case 7
wname='db8':testa_imagem(X.map.Caminho.Nome.Arquivo.wname):
case 8
wname='db9';testa imagem(X,map,Caminho,Nome,Arquivo,wname);
case 9
wname='db10';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 10
wname='bior1.3';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 11
wname='bior1.5';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 12

wname='bior2.2';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 13
wname='bior2.4';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 14
wname='bior2.6';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 15
wname='bior2.8';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 16
wname='bior3.1';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 17
wname='bior3.3';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 18
wname=bior3.5;testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 19 manual line 2.7 literate imagene (V. man Caminha Nama Anonina mana)
whame= blors./;testa_imagem(x,map,Caminno,Nome,Arquivo,whame);
wname-'hior3 0':testa imagem(X man Caminho Nome Arquivo wname):
case 21
wname='bior4 4':testa_imagem(X map Caminho Nome Arquivo wname):
case 22
wname='bior5.5':testa imagem(X.map.Caminho.Nome.Arquivo.wname):
case 23
wname='bior6.8';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 24
wname='coif1';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 25
wname='coif2';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 26
wname='coif3';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 27
wname='coif4';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 28
wname= coir5;testa_imagem(X,map,Caminno,Nome,Arquivo,wname);
case 29 wnome_'evm2':teste_imegem(V_men Ceminhe Nome Arquive wnome);
whathe – sym2, testa_intageni(A,inap,Caninino,Noine,Arquivo,whathe),
wname-'sym3':testa_imagem(X_man Caminho Nome Arquiyo wname):
case 31
wname='sym4':testa_imagem(X.map.Caminho.Nome.Arquiyo.wname):
case 32
wname='sym5':testa imagem(X,map,Caminho,Nome,Arquivo,wname);
case 33
wname='sym6';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 34
wname='sym7';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
case 35
wname='sym8';testa_imagem(X,map,Caminho,Nome,Arquivo,wname);

```
end
end
  if (exist('X') & exist('map')) % Verifica se as variaveis existem
    testar_imagem(X,map,Caminho,Nome,Arquivo);
    shg;
  else
    errordlg('Variaveis X e map nao definidas.');
  end
end
function testar_imagem(X,map,Caminho,Nome,Arquivo,wname);
%Importação da imagem original
erms=0;
snrms=0;
snrrms=0;
psnr=0;
Linicial=0;
Cinicial=0;
n=size(X);
i=n(1,1);
i2=2*i;
j=n(1,2);
j2=2*j;
    % Exibir imagem original
    figure;
    image(X);colormap(map);colorbar
    title('Imagem original')
    %Transformada direta de Wavelet
    [cA1,cH1,cV1,cD1]=dwt2(X,wname);
    A1=upcoef2('a',cA1,wname,1);
    H1=upcoef2('h',cH1,wname,1);
    V1=upcoef2('v',cV1,wname,1);
    D1=upcoef2('d',cD1,wname,1);
    [cA1,cH1,cV1,cD1]=dwt2(X,wname);
    % Exibir imagem
    figure;
    colormap(map);
    subplot(2,2,1);image(wcodemat(A1,i2));
    title('Aproximaçao A1')
    subplot(2,2,2);image(wcodemat(H1,i2));
    title('Detalhes Horizontal H1')
```

subplot(2,2,3);image(wcodemat(V1,i2)); title('Detalhes Verticais V1') subplot(2,2,4);image(wcodemat(D1,i2)); title('Detalhes Diagonais D1')

%Transformada inversa de Wavelet Xsyn = idwt2(cA1,cH1,cV1,cD1,wname); [C,S]=wavedec2(X,2,wname); cA2=appcoef2(C,S,wname,2); [cH2,cV2,cD2]=detcoef2('all',C,S,2); [cH1,cV1,cD1]=detcoef2('all',C,S,1); A2=wrcoef2('a',C,S,wname,2); H1=wrcoef2('h',C,S,wname,1); V1=wrcoef2('d',C,S,wname,1); H2=wrcoef2('h',C,S,wname,2); V2=wrcoef2('v',C,S,wname,2); D2=wrcoef2('d',C,S,wname,2);

% Exibir resultado grafico imagem figure; colormap(map); subplot(2,4,1);image(wcodemat(A1,i2)); title('Aproximaçao A1') subplot(2,4,2);image(wcodemat(H1,i2)); title('Detalhes Horizontais H1') subplot(2,4,3);image(wcodemat(V1,i2)); title('Detalhes Verticais V1') subplot(2,4,4);image(wcodemat(D1,i2)); title('Detalhes diagonais D1') subplot(2,4,5);image(wcodemat(A2,i2)); title('Aproximaçao A2') subplot(2,4,6);image(wcodemat(H2,i2)); title('Detalhes Horizontais H2') subplot(2,4,7);image(wcodemat(V2,i2)); title('Detalhes Verticais V2') subplot(2,4,8);image(wcodemat(D2,i2)); title('Detalhes Diagonais D2')

%Comprimir e descomprimir a imagem para gerar a imagem comprimida X0=waverec2(C,S,wname); [thr,sorh,keepapp]=ddencmp('cmp','wv',X);

[Xcomp,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',C,S,wname,2,thr,sorh,keepapp);

% Exibir resultado grafico imagem

```
fator=256/(max(max(Xcomp-X))-min(min(Xcomp-X)));
    figure;
    colormap(map);
    subplot(141);image(X);title('Imagem Original');
    axis square
    subplot(142);image(Xcomp);title('Imagem Comprimida');
    axis square
    subplot(143);image(round((Xcomp-X)*fator));title('Erro Absoluto');
    axis square
    subplot(144);image(round((127+(Xcomp-X).*(fator/2))));title('Erro Relativo');
    axis square
    erms=(sum(sum(abs(Xcomp-X))))/(i*j);
    snrms=(sum(sum(Xcomp.^2)))/sum(sum(((X-Xcomp).^2)));
    snrrms=sqrt(snrms);
    psnr=20*(log(255/erms))/log(10);
    %s=(['Imagem= camer128', 'Base= ',wname 'Erms= ',num2str(erms) 'SNRms=
',num2str(snrms) ' SNRrms= ',num2str(snrrms) ' PSNR= ',num2str(psnr)]);
    s=([Nome ' ', wname ' ',num2str(erms) ' ',num2str(snrms) ' ',num2str(snrrms) '
`,num2str(psnr)]);
    display(s);
    m=([erms,snrms,snrrms,psnr]);
    %p=[m;n];
    wk1write(strcat(Nome,wname),m,0,0);
close all;
end
```

8.2. Código do programa teste no Matlab versão 2

principal.m

```
function varargout = principal(varargin)
% PRINCIPAL Application M-file for principal.fig
%
   FIG = PRINCIPAL launch principal GUI.
    PRINCIPAL('callback_name', ...) invoke the named callback.
%
% Last Modified by GUIDE v2.0 07-April-2004 02:19:17
if nargin == 0 % LAUNCH GUI
       fig = openfig(mfilename,'reuse');
       % Use system color scheme for figure:
       set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));
       % Generate a structure of handles to pass to callbacks, and store it.
       Handles = guihandles(fig);
       guidata(fig, handles);
       if nargout > 0
             varargout\{1\} = fig;
       end
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK
       try
             [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
       catch
             disp(lasterr);
       end
end
% ABOUT CALLBACKS:
% GUIDE automatically appends subfunction prototypes to this file, and
% sets objects' callback properties to call them through the FEVAL
% | switchyard above. This comment describes that mechanism.
%
% Each callback subfunction declaration has the following form:
% <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%
%| The subfunction name is composed using the object's Tag and the
% | callback type separated by '_', e.g. 'slider2_Callback',
```

% | 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.

%

% | H is the callback object's handle (obtained using GCBO).

%

% EVENTDATA is empty, but reserved for future use.

%|

% | HANDLES is a structure containing handles of components in GUI using

%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This

%| structure is created at GUI startup using GUIHANDLES and stored in

%| the figure's application data using GUIDATA. A copy of the structure

%| is passed to each callback. You can store additional information in

% | this structure at GUI startup, and you can change the structure

% | during callbacks. Call guidata(h, handles) after changing your

% | copy to replace the stored original so that subsequent callbacks see

% the updates. Type "help guihandles" and "help guidata" for more

% information.

%

%| VARARGIN contains any extra arguments you have passed to the

% callback. Specify the extra arguments by editing the callback

% property in the inspector. By default, GUIDE sets the property to:

% % ('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))

% Add any extra arguments after the last argument, before the final

% | closing parenthesis.

ajuda.m

function ajuda()mensagem='Marcello Santos da Fonseca => e-mail: marsanfon@yahoo.com.brEngenheiro de Telecomunicaçoes (UFF)Mestrando em Ciencia daComputaçao (UFF)helpdlg(mensagem,'Ajuda');

end

analisar.m

```
function analisar()
[Nome, Caminho] = uigetfile({ '*.tif'}, 'Abrir Imagem');
if ~ischar(Nome) % Verifica se algum dado foi fornecido
  warndlg('Nome de arquivo não fornecido.');
else
  Arquivo=fullfile(Caminho,Nome); % Compoe nome do arquivo
  A=double(imread(Arquivo));% Carrega arquivo
  Xrgb=0.2990*A(:,:,1)+0.5870*A(:,:,2)+0.1140*A(:,:,3);
  Nbcolors=256;
  X=wcodemat(Xrgb,Nbcolors);
  map=gray(Nbcolors);
end
if (exist('X') & exist('map')) % Verifica se as variaveis existem
  obj = findobj(gcf, 'Tag', 'popupmenu1'); %Parametro Base Wavelet
  opcoes = get(obj,'String');
  indice = get(obj,'Value');
  wname=opcoes{indice};
  display(wname);
  testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
else
  errordlg('Variaveis X e map não definidas.');
end
%Importação da imagem original
function testa_imagem(X,map,Caminho,Nome,Arquivo,wname);
erms=0;
snrms=0:
snrrms=0;
psnr=0;
Linicial=0:
Cinicial=0;
n=size(X);
i=n(1,1);
i2=2*i:
j=n(1,2);
j2=2*j;
display(i);
display(j);
% Exibir imagem original
figure;
image(X);colormap(map);colorbar
```

title('Imagem original')

%Transformada direta de Wavelet [cA1,cH1,cV1,cD1]=dwt2(X,wname); A1=upcoef2('a',cA1,wname,1); H1=upcoef2('h',cH1,wname,1); V1=upcoef2('v',cV1,wname,1); D1=upcoef2('d',cD1,wname,1); [cA1,cH1,cV1,cD1]=dwt2(X,wname);

% Exibir imagem figure; colormap(map); subplot(2,2,1);image(wcodemat(A1,i2)); title('Aproximaçao A1') subplot(2,2,2);image(wcodemat(H1,i2)); title('Detalhes Horizontal H1') subplot(2,2,3);image(wcodemat(V1,i2)); title('Detalhes Verticais V1') subplot(2,2,4);image(wcodemat(D1,i2)); title('Detalhes Diagonais D1')

```
%Transformada inversa de Wavelet

Xsyn = idwt2(cA1,cH1,cV1,cD1,wname);

[C,S]=wavedec2(X,2,wname);

cA2=appcoef2(C,S,wname,2);

[cH2,cV2,cD2]=detcoef2('all',C,S,2);

[cH1,cV1,cD1]=detcoef2('all',C,S,1);

A2=wrcoef2('a',C,S,wname,2);

H1=wrcoef2('h',C,S,wname,1);

V1=wrcoef2('d',C,S,wname,1);

H2=wrcoef2('h',C,S,wname,2);

V2=wrcoef2('v',C,S,wname,2);

D2=wrcoef2('d',C,S,wname,2);
```

```
% Exibir resultado grafico imagem
figure;
colormap(map);
subplot(2,4,1);image(wcodemat(A1,i2));
title('Aproximaçao A1')
subplot(2,4,2);image(wcodemat(H1,i2));
title('Detalhes Horizontais H1')
subplot(2,4,3);image(wcodemat(V1,i2));
title('Detalhes Verticais V1')
subplot(2,4,4);image(wcodemat(D1,i2));
title('Detalhes diagonais D1')
```

```
subplot(2,4,5);image(wcodemat(A2,i2));
title('Aproximaçao A2')
subplot(2,4,6);image(wcodemat(H2,i2));
title('Detalhes Horizontais H2')
subplot(2,4,7);image(wcodemat(V2,i2));
title('Detalhes Verticais V2')
subplot(2,4,8);image(wcodemat(D2,i2));
title('Detalhes Diagonais D2')
% comprimir e descomprimir a imagem para gerar a imagem comprimida
X0=waverec2(C,S,wname);
[thr,sorh,keepapp]=ddencmp('cmp','wv',X);
[Xcomp,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',C,S,wname,2,thr,sorh,keepapp);
% Exibir resultado grafico imagem
fator=256/(max(max(Xcomp-X))-min(min(Xcomp-X)));
figure;
colormap(map);
subplot(141);image(X);title('Imagem Original');ylabel(wname);
axis square
subplot(142);image(Xcomp);title('Imagem Comprimida');
axis square
subplot(143);image(round((Xcomp-X)*fator));title('Erro Absoluto');
axis square
subplot(144);image(round((127+(Xcomp-X).*(fator/2))));title('Erro Relativo');
axis square
% Resultados numericos
erms=0:
snrms=0;
snrrms=0:
psnr=0;
erms=(sqrt((sum(sum(((X-Xcomp).^2))))/(i*j)));
snrms=((sum(sum(Xcomp.^2)))/(sum(sum(((X-Xcomp).^2)))));
snrrms=sqrt(snrms);
psnr=20*(log10(255/erms));
s=([Nome ' ', wname ' ',num2str(erms) ' ',num2str(snrms) ' ',num2str(snrms)
',num2str(psnr)]);
display(s);
t=([num2str(erms) ' ',num2str(snrms) ' ',num2str(snrrms) ' ',num2str(psnr)]);
m=([erms,snrms,snrrms,psnr]);
% Salvar os resultdos numericos
wk1write(strcat(Nome,wname),m,0,0);
end
```

cascate.m

```
% Algotritmo da Cascate
% Calcula as aproximações das funções Wavelets: PSI e PHI,
% usando o algoritmo de cascade.
Function cascate()
obj = findobj(gcf, 'Tag', 'popupmenu1'); %Parametro Base Wavelet.
Opcoes = get(obj,'String');
indice = get(obj,'Value');
wname=opcoes{indice};
display(wname);
iter = 15;
figure;
for i = 1:iter
  [phi,psi,xval] = wavefun(wname,i);
  subplot(2,1,1)
  plot(xval,psi);ylabel('PSI');title(wname);
  pause (.01);
  drawnow
  subplot(2,1,2)
  plot(xval,phi);ylabel('PHI');
  pause (.01);
  drawnow
end
end
```

decompor.m

% Analise Wavelet 2D.
function decompor()
% Carrega uma imagen de teste.
% A imagem no Matlab e´ composta de uma matriz X, de uma palete map, que mapeia
cada valor da matriz X`a cor,
[Nome, Caminho] = uigetfile({'*.tif'}, 'Escolha um arquivo');
if ~ischar(Nome) % Verifica se algum dado foi fornecido
warndlg('Nome de arquivo nao fornecido.','Cuidado');
else
Arquivo=fullfile(Caminho,Nome); % Compoe nome do arquivo
A=double(imread(Arquivo));% Carrega arquivo
Xrgb=0.2990*A(:,:,1)+0.5870*A(:,:,2)+0.1140*A(:,:,3);
Nbcolors=256;
X=wcodemat(Xrgb,Nbcolors);
man=grav(Nbcolors);

```
if (exist('X') & exist('map')) % Verifica se as variaveis existem
  figure;
  image(X);colormap(map);colorbar
  axis image; set(gca,'XTick',[],'YTick',[]);title('Imagem original')
  % Usaremos os filtros 9/7 com extensao simetrica nas bordas.
  dwtmode('sym')
  wname = 'bior4.4'
  % Desenha a estrutura do banco de filtro de dois niveis.
  t = wtree(X, 2, wname);
  plot(t)
  % Calcula os dois niveis de decomposição da imagem usando os filtros 9/7.
  [wc,s] = wavedec2(X,2,wname);
  % Extrai os coeficiente do primeiro nivel.
  a1 = appcoef2(wc,s,wname,1);
  h1 = detcoef2('h',wc,s,1);
  v1 = detcoef2('v',wc,s,1);
  d1 = detcoef2('d',wc,s,1);
  % Extrai os coeficiente do segundo nivel.
  a2 = appcoef2(wc,s,wname,2);
  h2 = detcoef2('h',wc,s,2);
  v2 = detcoef2('v',wc,s,2);
  d2 = detcoef2('d',wc,s,2);
  % mostra a decomposição acima do nivel 1 apenas.
  ncolors = size(map,1); % numero de cores.
  sz = size(X);
  cod_a1 = wcodemat(a1, ncolors); cod_a1 = wkeep(cod_a1, sz/2);
  cod_h1 = wcodemat(h1, ncolors); cod_h1 = wkeep(cod_h1, sz/2);
  cod v1 = wcodemat(v1,ncolors); cod v1 = wkeep(cod v1, sz/2);
  cod_d1 = wcodemat(d1, ncolors); cod_d1 = wkeep(cod_d1, sz/2);
  axis
  image;
  set(gca,'XTick',[],'YTick',[]);
  title('Primeiro estagio de decomposiçao')
  colormap(map)
  % mostra a decomposição acima do nivel 2 apenas.
  figure;
  cod a2 = wcodemat(a2, ncolors); cod a2 = wkeep(cod a2, sz/4);
  cod_h2 = wcodemat(h2, ncolors); cod_h2 = wkeep(cod_h2, sz/4);
  cod_v2 = wcodemat(v2, ncolors); cod_v2 = wkeep(cod_v2, sz/4);
  cod_d2 = wcodemat(d2, ncolors); cod_d2 = wkeep(cod_d2, sz/4);
```

```
image([[cod_a2,cod_h2;cod_v2,cod_d2],cod_h1;cod_v1,cod_d1]);
    axis
    image;
    set(gca,'XTick',[],'YTick',[]);
    title('Segunda estagio de decomposiçao')
    colormap(map)
    % Recontrução da arvore
    ra2 = wrcoef2('a', wc, s, wname, 2);
    rh2 = wrcoef2('h',wc,s,wname,2);
    rv2 = wrcoef2('v',wc,s,wname,2);
    rd2 = wrcoef2('d',wc,s,wname,2);
    ra1 = wrcoef2('a',wc,s,wname,1);
    rh1 = wrcoef2('h', wc, s, wname, 1);
    rv1 = wrcoef2('v', wc, s, wname, 1);
    rd1 = wrcoef2('d',wc,s,wname,1);
    cod ra2 = wcodemat(ra2, ncolors);
    cod_rh2 = wcodemat(rh2,ncolors);
    cod rv2 = wcodemat(rv2,ncolors);
    cod rd2 = wcodemat(rd2,ncolors);
    cod_ra1 = wcodemat(ra1,ncolors);
    cod rh1 = wcodemat(rh1,ncolors);
    cod_rv1 = wcodemat(rv1,ncolors);
    cod rd1 = wcodemat(rd1,ncolors);
    subplot(3,4,1); image(X); axis image; set(gca,'XTick',[],'YTick',[]); title('Imagem
Original')
    subplot(3,4,5); image(cod ra1); axis image; set(gca, 'XTick',[],'YTick',[]); title('ra1')
    subplot(3,4,6); image(cod_rh1); axis image; set(gca,'XTick',[],'YTick',[]); title('rh1')
    subplot(3,4,7); image(cod_rv1); axis image; set(gca,'XTick',[],'YTick',[]); title('rv1')
    subplot(3,4,8); image(cod_rd1); axis image; set(gca,'XTick',[],'YTick',[]); title('rd1')
    subplot(3,4,9); image(cod ra2); axis image; set(gca, 'XTick',[], 'YTick',[]); title('ra2')
     subplot(3,4,10); image(cod_rh2); axis image; set(gca,'XTick',[],'YTick',[]); title('rh2')
    subplot(3,4,11); image(cod_rv2); axis image; set(gca,'XTick',[],'YTick',[]); title('rv2')
    subplot(3,4,12); image(cod_rd2); axis image; set(gca,'XTick',[],'YTick',[]); title('rd2')
     % Soma os valores do nivel 2 de aproximação e detalhe para reconstrucão da imagem
     Xhat = ra2 + rh2 + rv2 + rd2 + rh1 + rv1 + rd1;
    sprintf('Erro de Reconstruçao (usando wrcoef2) = %g', max(max(abs(X-Xhat))))
     % Outra forma de reconstruir a imagem.
    XXhat = waverec2(wc,s,wname);
    sprintf('Erro de Reconstruçao (usando waverec2) = %g', max(max(abs(X-XXhat))))
     % A compressao pode ser alcançada atraves de um limiar para os
     % coeficientes Wavelet. wdencmp is a funçao que faz isso.
```

```
% 'h' significa o uso de hard thresholding. O ultimo argumento = 1 significa que nao
ha´
     % threshold para os coeficientes de aproximação.
        perfL2 = energy recovery = 100 * ||wc_comp||^2 / ||wc||^2.
     %
               ||.|| e´ o L2 vetor normal.
     %
     % perf0 = desempenho da compressao = Percentagem de zeros em wc_comp.
     thr = 20;
     [X_comp,wc_comp,s_comp,perf0,perfL2] = wdencmp('gbl',wc,s,wname,2,thr,'h',1);
     figure;
     subplot(1,2,1); image(X); axis image; set(gca,'XTick',[],'YTick',[]);
     title('Original')
     cod_X_comp = wcodemat(X_comp,ncolors);
     subplot(1,2,2); image(cod X comp); axis image; set(gca, 'XTick',[], 'YTick',[]);
     title('Compressao usando variavel global hard threshold ')
     xlabel(sprintf('Energia retida = \%2.1f\%\% \n Coeficientes nulos =
%2.1f%%',perfL2,perf0))
     % Uma melhor compressao pode ser obtida com diferentes limiares
     % para diferentes subbandas.
     thr h = [21 \ 17];
                         % threshold horizontal.
                         % threshold diagonal.
     thr d = [23 \ 19];
                         % threshold vertical.
     thr_v = [21 \ 17];
     thr = [thr h; thr d; thr v];
     [X_comp,wc_comp,s_comp,perf0,perfL2] = wdencmp('lvd',X,wname,2,thr,'h');
     figure;
     subplot(1,2,1); image(X); axis image; set(gca,'XTick',[],'YTick',[]);
     title('Original')
     cod X comp = wcodemat(X comp.ncolors);
     subplot(1,2,2); image(cod_X_comp); axis image; set(gca, 'XTick',[],'YTick',[]);
     title('Compressao usando variavel global hard threshold')
     xlabel(sprintf('Energia retida = \%2.1f\%\% \n Coeficientes nulos =
%2.1f%%',perfL2,perf0))
     % Retorna valores padrao.
     dwtmode('zpd')
     shg;
  else
     errordlg('Variaveis X e map nao definidas.','Mensagem de Erro');
  end
end
end
```

```
function FiltrosQMF( )
load db2; w=db2;
figure;
subplot(421);
aw='db2';
stem(w); title(aw)
display(aw);
display(w);
% Exibir filtro OMF
ylabel('Filtro Escala Original');% Calcula os quatro filtros.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423);
stem(Lo_D);ylabel('Lo{\_}D'); %Filtro Passa-Baixo Decomposiçao
subplot(424);
stem(Hi_D);ylabel('Hi{\_}D'); %Filtro Passa-Alta Decomposiçao
subplot(425);
stem(Lo_R); ylabel('Lo{\_}R'); %Filtro Passa-Baixo Reconstruçao
subplot(426);
stem(Hi_R);ylabel('Hi\{\] R'); Filtro Passa-Alta Reconstrução
% Exibir a baixa e alta frequencia.
n = length(Hi D);
freqfft = (0:n-1)/n;
nn = 1:n;
N = 10*n;
for k=1:N
  lambda(k) = (k-1)/N;
  XLo_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Lo_D';
  XHi_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Hi_D';
end
fftld = fft(Lo_D);
ffthd = fft(Hi D);
subplot(427); plot(lambda,abs(XLo_D),freqfft,abs(fftld),'o');
%Modulo Transf: Passa-Baixo
ylabel('(Lo{\ B') ou Lo{\ R')
subplot(428); plot(lambda,abs(XHi_D),freqfft,abs(ffthd),'o');
%Modulo Transf: Passa-Alta
ylabel('(Hi{\_}D ou Hi{\_}R')
end
```

9. ANEXO III

Os resultados obtidos após a compressão e descompressão do conjunto de imagens de teste, utilizando as Famílias de Bases Wavelets estão listados abaixo em forma de tabela para cada imagem de teste.

Tabela de Teste - Lena 128x128:

Bases		Lena 12	28x128	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	0,9639	19355,4852	139,1240	48,4505
db2	0,9628	19400,2072	139,2846	48,4605
db3	0,9706	19085,7137	138,1511	48,3898
db4	0,9621	19426,4767	139,3789	48,4665
db5	0,9650	19310,9487	138,9638	48,4405
db6	0,9746	18930,5189	137,5882	48,3541
db7	0,9641	19344,3257	139,0839	48,4481
db8	0,9538	19767,7893	140,5980	48,5420
db9	0,9574	19616,6017	140,0593	48,5088
db10	0,9362	20516,7526	143,2367	48,7037
bior1.3	0,9461	20089,4853	141,7374	48,6120
bior1.5	0,9472	20044,1409	141,5773	48,6022
bior2.2	1,0831	15328,3853	123,8079	47,4376
bior2.4	1,0641	15882,0723	126,0241	47,5915
bior2.6	1,0580	16063,3308	126,7412	47,6409
bior2.8	1,0623	15935,8617	126,2373	47,6061
bior3.1	1,5227	7755,9711	88,0680	44,4788
bior3.3	1,3521	9834,9756	99,1714	45,5105
bior3.5	1,3168	10369,3697	101,8301	45,7402
bior3.7	1,2925	10763,6744	103,7481	45,9022
bior3.9	1,2896	10811,8207	103,9799	45,9216
bior4.4	0,9951	18157,9594	134,7515	48,1731
bior5.5	0,9713	19060,0057	138,0580	48,3837
bior6.8	0,9926	18250,5125	135,0945	48,1952
coif1	0,9620	19432,0218	139,3988	48,4676
coif2	0,9529	19802,6206	140,7218	48,5496
coif3	0,9737	18966,8948	137,7203	48,3624
coif4	0,9785	18780,6025	137,0423	48,3196
coif5	0,9796	18738,7003	136,8894	48,3098
sym2	0,9628	19400,2072	139,2846	48,4605
sym3	0,9706	19085,7137	138,1511	48,3898
sym4	0,9551	19713,1357	140,4035	48,5300
sym5	0,9794	18746,7937	136,9189	48,3118
sym6	0,9659	19274,3851	138,8322	48,4321
sym7	0,9697	19122,2460	138,2832	48,3980
sym8	0,9759	18880,4256	137,4061	48,3426
Mínimo	0,9362	7.755,9711	88,0680	44,4788
Médio	1,0314	17.584,6148	131,8708	47,9287
Máximo	1,5227	20.516,7526	143,2367	48,7037

Tabela de Teste - Lena 256x256:

Bases		Lena 2	56x256	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	2,4128	3121,0609	55,8665	40,4805
db2	2,5754	2739,0259	52,3357	39,9137
db3	2,5951	2697,5689	51,9381	39,8478
db4	2,5733	2743,6160	52,3795	39,9211
db5	2,6009	2685,6502	51,8233	39,8283
db6	2,6213	2644,0061	51,4199	39,7606
db7	2,6447	2597,4871	50,9655	39,6834
db8	2,6311	2624,5053	51,2299	39,7282
db9	2,6391	2608,4836	51,0733	39,7017
db10	2,6295	2627,5529	51,2597	39,7333
bior1.3	2,4030	3147,0052	56,0982	40,5158
bior1.5	2,4838	2945,7141	54,2744	40,2286
bior2.2	2,8108	2299,8667	47,9569	39,1543
bior2.4	2,7766	2357,0879	48,5498	39,2607
bior2.6	2,7798	2351,4510	48,4918	39,2504
bior2.8	2,7892	2335,8451	48,3306	39,2213
bior3.1	3,8324	1237,9633	35,1847	36,4613
bior3.3	3,3532	1616,6980	40,2082	37,6215
bior3.5	3,2586	1711,8134	41,3741	37,8702
bior3.7	3,2435	1727,8504	41,5674	37,9106
bior3.9	3,2320	1740,0857	41,7143	37,9413
bior4.4	2,6435	2599,9513	50,9897	39,6873
bior5.5	2,6636	2560,6053	50,6024	39,6213
bior6.8	2,6349	2616,8682	51,1553	39,7155
coif1	2,5934	2701,1167	51,9723	39,8533
coif2	2,6108	2665,3106	51,6266	39,7954
coif3	2,6160	2654,8101	51,5248	39,7782
coif4	2,6216	2643,3170	51,4132	39,7594
coif5	2,6240	2638,4778	51,3661	39,7514
sym2	2,5754	2739,0259	52,3357	39,9137
sym3	2,5951	2697,5689	51,9381	39,8478
sym4	2,6081	2670,7975	51,6798	39,8042
sym5	2,5881	2712,2599	52,0794	39,8711
sym6	2,6062	2674,9134	51,7196	39,8108
sym7	2,5994	2688,6949	51,8526	39,8332
sym8	2,6295	2627,6258	51,2604	39,7335
Mínimo	2,4030	1.237,9633	35,1847	36,4613
Médio	2,7249	2.512,5467	49,9322	39,4670
Máximo	3,8324	3.147,0052	56,0982	40,5158

Tabela de Teste - Camera 128x128:

Bases		Camera	128x128	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	0,7692	30.857,8402	175,6640	50,4103
db2	0,8321	26.370,0790	162,3887	49,7277
db3	0,8218	27.036,1930	164,4269	49,8360
db4	0,8110	27.760,5918	166,6151	49,9509
db5	0,8151	27.479,7357	165,7701	49,9068
db6	0,8109	27.764,2783	166,6262	49,9515
db7	0,8011	28.445,4945	168,6579	50,0568
db8	0,7979	28.680,2531	169,3525	50,0923
db9	0,8042	28.227,4338	168,0102	50,0233
db10	0,7972	28.723,2775	169,4794	50,0990
bior1.3	0,8091	27.886,8497	166,9936	49,9706
bior1.5	0,8203	27.131,4172	164,7162	49,8513
bior2.2	0,9271	21.239,6949	145,7384	48,7883
bior2.4	0,9164	21.737,2742	147,4357	48,8887
bior2.6	0,9166	21.730,3304	147,4121	48,8875
bior2.8	0,9153	21.789,0964	147,6113	48,8991
bior3.1	1,2251	12.165,0933	110,2955	46,3677
bior3.3	1,0923	15.302,9153	123,7050	47,3643
bior3.5	1,0565	16.357,4765	127,8964	47,6538
bior3.7	1,0465	16.670,7673	129,1153	47,7362
bior3.9	1,0391	16.909,2387	130,0355	47,7979
bior4.4	0,8417	25.767,7006	160,5232	49,6275
bior5.5	0,8112	27.740,6554	166,5553	49,9478
bior6.8	0,8371	26.050,7865	161,4026	49,6750
coif1	0,8395	25.906,2769	160,9543	49,6508
coif2	0,8274	26.664,6403	163,2931	49,7761
coif3	0,8238	26.900,8439	164,0148	49,8143
coif4	0,8158	27.428,8575	165,6166	49,8987
coif5	0,8130	27.618,7528	166,1889	49,9287
sym2	0,8321	26.370,0790	162,3887	49,7277
sym3	0,8218	27.036,1930	164,4269	49,8360
sym4	0,8316	26.397,0010	162,4715	49,7324
sym5	0,8157	27.436,1804	165,6387	49,8999
sym6	0,8262	26.746,1421	163,5425	49,7894
sym7	0,8128	27.632,9993	166,2318	49,9310
sym8	0,8253	26.803,5713	163,7180	49,7986
Mínimo	0,7692	12.165,0933	110,2955	46,3677
Médio	0,8667	25.076,8336	157,6365	49,4248
Máximo	1,2251	30.857,8402	175,6640	50,4103

Tabela de Teste - Camera 256x256:

Bases		Camera 2	256x256	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	2,1337	3.985,1645	63,1282	41,5480
db2	2,3314	3.337,5709	57,7717	40,7783
db3	2,3482	3.290,2372	57,3606	40,7162
db4	2,3080	3.406,0316	58,3612	40,8662
db5	2,3261	3.353,0475	57,9055	40,7983
db6	2,3629	3.249,3638	57,0032	40,6620
db7	2,3682	3.234,8993	56,8762	40,6425
db8	2,3640	3.246,4734	56,9778	40,6580
db9	2,3491	3.287,5485	57,3371	40,7126
db10	2,3635	3.247,8334	56,9898	40,6597
bior1.3	2,1551	3.906,8936	62,5051	41,4615
bior1.5	2,2150	3.698,4437	60,8148	41,2233
bior2.2	2,7066	2.476,7764	49,7672	39,4824
bior2.4	2,6308	2.621,6246	51,2018	39,7292
bior2.6	2,6363	2.610,6649	51,0947	39,7110
bior2.8	2,6469	2.589,7203	50,8893	39,6759
bior3.1	3,4989	1.482,9677	38,5093	37,2522
bior3.3	3,0607	1.937,6006	44,0182	38,4145
bior3.5	2,9772	2.047,6364	45,2508	38,6547
bior3.7	2,9548	2.078,7740	45,5936	38,7203
bior3.9	2,9515	2.083,3335	45,6435	38,7300
bior4.4	2,3802	3.202,5256	56,5909	40,5986
bior5.5	2,3644	3.245,3175	56,9677	40,6562
bior6.8	2,4011	3.147,0332	56,0984	40,5227
coif1	2,3506	3.283,7235	57,3038	40,7074
coif2	2,3629	3.249,4066	57,0036	40,6619
coif3	2,3669	3.238,4657	56,9075	40,6472
coif4	2,3654	3.242,7023	56,9447	40,6529
coif5	2,3740	3.219,1977	56,7380	40,6213
sym2	2,3314	3.337,5709	57,7717	40,7783
sym3	2,3482	3.290,2372	57,3606	40,7162
sym4	2,3634	3.248,1404	56,9925	40,6600
sym5	2,3200	3.370,8987	58,0594	40,8212
sym6	2,3630	3.249,1389	57,0012	40,6616
sym7	2,3362	3.324,0326	57,6544	40,7604
sym8	2,3685	3.234,2644	56,8706	40,6415
Mínimo	2,1337	1.482,9677	38,5093	37,2522
Médio	2,4746	3.057,0906	55,0351	40,3112
Máximo	3,4989	3.985,1645	63,1282	41,5480

Tabela de Teste - Goldhill 128x128:

Bases		Goldhill	128x128	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	1,4750	7.040,0250	83,9049	44,7548
db2	1,5115	6.704,2165	81,8793	44,5427
db3	1,5065	6.748,2660	82,1478	44,5713
db4	1,4977	6.827,9728	82,6315	44,6221
db5	1,5085	6.730,4938	82,0396	44,5598
db6	1,5112	6.706,3410	81,8923	44,5443
db7	1,5228	6.605,5058	81,2743	44,4781
db8	1,5255	6.582,4946	81,1326	44,4627
db9	1,5097	6.720,7800	81,9804	44,5529
db10	1,5050	6.762,5691	82,2348	44,5800
bior1.3	1,4784	7.008,2289	83,7152	44,7347
bior1.5	1,4951	6.853,0123	82,7829	44,6374
bior2.2	1,8245	4.600,6480	67,8281	42,9078
bior2.4	1,7888	4.786,5403	69,1848	43,0796
bior2.6	1,7867	4.797,4489	69,2636	43,0896
bior2.8	1,7939	4.759,6171	68,9900	43,0550
bior3.1	2,4779	2.494,4762	49,9447	40,2491
bior3.3	2,1790	3.225,4735	56,7933	41,3655
bior3.5	2,0978	3.479,8626	58,9904	41,6953
bior3.7	2,0745	3.558,7292	59,6551	41,7924
bior3.9	2,0723	3.566,2370	59,7180	41,8017
bior4.4	1,5771	6.158,7793	78,4779	44,1737
bior5.5	1,4689	7.098,9368	84,2552	44,7908
bior6.8	1,5797	6.137,7633	78,3439	44,1593
coif1	1,5125	6.695,6972	81,8272	44,5372
coif2	1,5181	6.646,6479	81,5270	44,5050
coif3	1,5106	6.712,3194	81,9287	44,5480
coif4	1,5155	6.668,7906	81,6627	44,5197
coif5	1,5220	6.612,0254	81,3144	44,4825
sym2	1,5115	6.704,2165	81,8793	44,5427
sym3	1,5065	6.748,2660	82,1478	44,5713
sym4	1,5177	6.650,1169	81,5482	44,5072
sym5	1,5214	6.616,9840	81,3448	44,4860
sym6	1,5196	6.634,1912	81,4505	44,4964
sym7	1,5313	6.532,0230	80,8209	44,4294
sym8	1,5164	6.661,2779	81,6167	44,5145
Mínimo	1,4689	2.494,4762	49,9447	40,2491
Médio	1,6381	5.995,4715	76,8925	43,9261
Máximo	2,4779	7.098,9368	84,2552	44,7908

Tabela de Teste - Goldhill 256x256:

Bases		Goldhill	256x256	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	1,7687	5.018,2087	70,8393	43,1778
db2	1,7222	5.292,9635	72,7528	43,4092
db3	1,7402	5.183,9190	71,9994	43,3188
db4	1,7286	5.253,6539	72,4821	43,3769
db5	1,7206	5.302,3308	72,8171	43,4170
db6	1,7312	5.237,6963	72,3719	43,3637
db7	1,7212	5.299,0332	72,7945	43,4141
db8	1,7267	5.265,1224	72,5612	43,3864
db9	1,7173	5.322,8784	72,9581	43,4338
db10	1,7127	5.351,7563	73,1557	43,4572
bior1.3	1,7476	5.140,6921	71,6986	43,2821
bior1.5	1,7690	5.017,0138	70,8309	43,1762
bior2.2	2,0573	3.708,7458	60,8995	41,8649
bior2.4	2,0235	3.833,5723	61,9158	42,0086
bior2.6	2,0244	3.830,3306	61,8897	42,0048
bior2.8	2,0308	3.806,2007	61,6944	41,9773
bior3.1	2,8454	1.939,3460	44,0380	39,0480
bior3.3	2,4862	2.539,6369	50,3948	40,2200
bior3.5	2,4110	2.700,4321	51,9657	40,4867
bior3.7	2,3888	2.750,8370	52,4484	40,5670
bior3.9	2,3837	2.762,6421	52,5608	40,5857
bior4.4	1,7827	4.939,4344	70,2811	43,1092
bior5.5	1,7124	5.353,5370	73,1679	43,4586
bior6.8	1,7890	4.904,5296	70,0323	43,0785
coif1	1,7287	5.253,3078	72,4797	43,3766
coif2	1,7378	5.198,0699	72,0976	43,3307
coif3	1,7400	5.185,2964	72,0090	43,3200
coif4	1,7402	5.184,0946	72,0007	43,3190
coif5	1,7329	5.227,5173	72,3016	43,3552
sym2	1,7222	5.292,9635	72,7528	43,4092
sym3	1,7402	5.183,9190	71,9994	43,3188
sym4	1,7384	5.194,6573	72,0740	43,3278
sym5	1,7335	5.223,8578	72,2763	43,3522
sym6	1,7350	5.214,9473	72,2146	43,3449
sym7	1,7346	5.217,1017	72,2295	43,3467
sym8	1,7407	5.180,9659	71,9789	43,3163
Mínimo	1,7124	1.939,3460	44,0380	39,0480
Médio	1,8768	4.675,3114	67,9157	42,7428
Máximo	2,8454	5.353,5370	73,1679	43,4586

Tabela de Teste - Peppers 128x128:

Bases		Peppers	128x128	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	0,9979	22.309,3869	149,3633	48,1495
db2	0,9781	23.220,5489	152,3829	48,3233
db3	0,9913	22.604,5427	150,3481	48,2066
db4	0,9962	22.381,7261	149,6052	48,1636
db5	0,9840	22.940,7816	151,4621	48,2707
db6	0,9888	22.718,5774	150,7268	48,2285
db7	0,9733	23.447,9813	153,1273	48,3657
db8	0,9857	22.861,5076	151,2002	48,2557
db9	0,9841	22.935,8678	151,4459	48,2697
db10	0,9801	23.125,0500	152,0692	48,3055
bior1.3	0,9617	24.020,8147	154,9865	48,4703
bior1.5	0,9725	23.488,1306	153,2584	48,3729
bior2.2	1,1394	17.110,9397	130,8088	46,9976
bior2.4	1,1149	17.870,8842	133,6820	47,1862
bior2.6	1,1105	18.011,7599	134,2079	47,2202
bior2.8	1,1095	18.044,3986	134,3294	47,2280
bior3.1	1,4857	10.063,4586	100,3168	44,6922
bior3.3	1,3255	12.642,1528	112,4373	45,6830
bior3.5	1,2840	13.473,9049	116,0772	45,9597
bior3.7	1,2711	13.748,9485	117,2559	46,0474
bior3.9	1,2650	13.881,0824	117,8180	46,0890
bior4.4	1,0341	20.770,5196	144,1198	47,8392
bior5.5	0,9706	23.579,4047	153,5559	48,3899
bior6.8	1,0272	21.051,6838	145,0920	47,8976
coif1	0,9810	23.083,7779	151,9335	48,2977
coif2	0,9918	22.581,8009	150,2724	48,2022
coif3	0,9985	22.279,9438	149,2647	48,1438
coif4	0,9941	22.478,0418	149,9268	48,1822
coif5	0,9865	22.826,3361	151,0839	48,2490
sym2	0,9781	23.220,5489	152,3829	48,3233
sym3	0,9913	22.604,5427	150,3481	48,2066
sym4	1,0015	22.146,0776	148,8156	48,1176
sym5	0,9871	22.798,1113	150,9904	48,2436
sym6	0,9976	22.318,4197	149,3935	48,1513
sym7	0,9981	22.300,4050	149,3332	48,1478
sym8	1,0024	22.107,5859	148,6862	48,1100
Mínimo	0,9617	10.063,4586	100,3168	44,6922
Médio	1,0511	20.751,3790	143,3919	47,7496
Máximo	1,4857	24.020,8147	154,9865	48,4703

Tabela de Teste - Peppers 512x512:

Bases		Peppers	512x512	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	1,1618	16.357,0454	127,8947	46,8285
db2	1,1134	17.809,2788	133,4514	47,1979
db3	1,1184	17.650,5468	132,8554	47,1590
db4	1,1157	17.736,7393	133,1794	47,1802
db5	1,1155	17.741,5659	133,1975	47,1813
db6	1,1140	17.791,1924	133,3836	47,1935
db7	1,1155	17.741,7840	133,1983	47,1814
db8	1,1090	17.950,4375	133,9792	47,2322
db9	1,1076	17.995,2177	134,1463	47,2430
db10	1,1043	18.103,9300	134,5508	47,2691
bior1.3	1,1304	17.278,1918	131,4465	47,0663
bior1.5	1,1417	16.936,1331	130,1389	46,9794
bior2.2	1,2982	13.099,4075	114,4526	45,8639
bior2.4	1,2755	13.569,4589	116,4880	46,0170
bior2.6	1,2766	13.547,4151	116,3934	46,0099
bior2.8	1,2811	13.452,3437	115,9842	45,9794
bior3.1	1,7974	6.834,4708	82,6709	43,0380
bior3.3	1,5875	8.760,1084	93,5955	44,1163
bior3.5	1,5424	9.280,7430	96,3366	44,3671
bior3.7	1,5278	9.458,9317	97,2570	44,4497
bior3.9	1,5240	9.505,7965	97,4977	44,4712
bior4.4	1,1345	17.153,3239	130,9707	47,0349
bior5.5	1,1257	17.423,0560	131,9964	47,1026
bior6.8	1,1409	16.961,3005	130,2356	46,9860
coif1	1,1112	17.879,9620	133,7160	47,2151
coif2	1,1194	17.619,5152	132,7385	47,1514
coif3	1,1189	17.633,0905	132,7896	47,1547
coif4	1,1172	17.689,4437	133,0017	47,1686
coif5	1,1161	17.721,2678	133,1213	47,1764
sym2	1,1134	17.809,2788	133,4514	47,1979
sym3	1,1184	17.650,5468	132,8554	47,1590
sym4	1,1202	17.594,8670	132,6456	47,1453
sym5	1,1198	17.607,4128	132,6929	47,1484
sym6	1,1214	17.554,1821	132,4922	47,1352
sym7	1,1170	17.694,4310	133,0204	47,1698
sym8	1,1187	17.639,3359	132,8132	47,1562
Mínimo	1,1043	6.834,4708	82,6709	43,0380
Médio	1,2047	15.895,3265	125,2955	46,5868
Máximo	1,7974	18.103,9300	134,5508	47,2691

Tabela de Teste - Xadrez 256x256:

Bases	Xadrez 256x256			
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	4,4249E-14	1,5710E+31	3,9636E+15	315,2128
db2	0,1291	1846879,3810	1358,9994	65,9153
db3	0,9893	31428,8518	177,2818	48,2243
db4	0,7963	48514,6756	220,2605	50,1097
db5	0,8234	45369,2574	213,0006	49,8186
db6	0,7667	52334,2864	228,7669	50,4388
db7	1,0548	27648,0704	166,2771	47,6677
db8	0,9940	31132,8998	176,4452	48,1832
db9	0,9651	33026,9031	181,7331	48,4397
db10	1,3135	17827,3965	133,5193	45,7620
bior1.3	0,0772	5158976,0660	2271,3379	70,3765
bior1.5	0,2938	356258,3546	596,8738	58,7684
bior2.2	0,0769	5200546,6810	2280,4707	70,4113
bior2.4	0,3518	248515,2890	498,5131	57,2041
bior2.6	0,6990	62944,1441	250,8867	51,2407
bior2.8	0,2231	617956,0330	786,1018	61,1603
bior3.1	0,2533	479401,6171	692,3883	60,0578
bior3.3	0,5619	97439,2446	312,1526	53,1377
bior3.5	0,6244	78885,4532	280,8655	52,2209
bior3.7	0,3696	225224,8085	474,5786	56,7770
bior3.9	0,4803	133330,7700	365,1449	54,5000
bior4.4	0,9506	34045,1062	184,5132	48,5712
bior5.5	1,1868	21842,3698	147,7916	46,6435
bior6.8	0,7633	52795,6995	229,7731	50,4771
coif1	0,6015	85011,9533	291,5681	52,5457
coif2	0,7170	59838,0140	244,6181	51,0207
coif3	1,1257	24274,5109	155,8028	47,1025
coif4	1,3033	18107,8359	134,5654	45,8298
coif5	0,9843	31746,1117	178,1744	48,2679
sym2	0,1291	1846879,3810	1358,9994	65,9153
sym3	0,9893	31428,8518	177,2818	48,2243
sym4	0,9562	33641,6433	183,4166	48,5198
sym5	1,0473	28043,5829	167,4622	47,7294
sym6	1,3115	17881,3753	133,7213	45,7751
sym7	1,0070	30330,4797	174,1565	48,0698
sym8	1,4306	15029,5206	122,5949	45,0206
Mínimo	4,4249E-14	15.029,5206	122,5949	45,0206
Médio	0,7319	4,3640E+29	1,1010E+14	59,8705
Máximo	1,4306	1,5710E+31	3,9636E+15	315,2128

Tabela de Teste - Círculo 256x256:

Bases	Círculo 256x256				
	RMSE	SNRms	SNRrms	PSNR (dB)	
Haar	0,2114	883.646,0826	940,0245	61,6285	
db2	0,7283	74.459,1427	272,8720	50,8850	
db3	1,0093	38.763,1506	196,8836	48,0500	
db4	1,0815	33.762,9862	183,7471	47,4503	
db5	1,2429	25.565,5586	159,8923	46,2424	
db6	1,3005	23.348,1002	152,8009	45,8484	
db7	1,3857	20.565,7076	143,4075	45,2974	
db8	1,3607	21.329,1899	146,0452	45,4557	
db9	1,4703	18.268,1843	135,1598	44,7829	
db10	1,5481	16.476,8297	128,3621	44,3347	
bior1.3	0,5966	110.938,4225	333,0742	52,6166	
bior1.5	0,5960	111.175,4978	333,4299	52,6258	
bior2.2	0,4491	195.779,1006	442,4693	55,0834	
bior2.4	0,7642	67.621,7890	260,0419	50,4665	
bior2.6	0,8218	58.483,6257	241,8339	49,8360	
bior2.8	0,9358	45.096,0267	212,3583	48,7070	
bior3.1	1,0638	34.895,2411	186,8027	47,5933	
bior3.3	1,1214	31.406,0081	177,2174	47,1355	
bior3.5	1,0954	32.915,7733	181,4270	47,3394	
bior3.7	1,1084	32.147,4517	179,2971	47,2369	
bior3.9	1,1686	28.918,6087	170,0547	46,7772	
bior4.4	1,0378	36.669,0769	191,4917	47,8088	
bior5.5	1,2104	26.955,6770	164,1818	46,4721	
bior6.8	1,2461	25.430,5976	159,4697	46,2195	
coif1	0,8823	50.728,7423	225,2304	49,2183	
coif2	1,0484	35.930,8322	189,5543	47,7205	
coif3	1,2584	24.936,4399	157,9128	46,1342	
coif4	1,3567	21.455,6864	146,4776	45,4813	
coif5	1,3793	20.757,1213	144,0733	45,3376	
sym2	0,7283	74.459,1427	272,8720	50,8850	
sym3	1,0093	38.763,1506	196,8836	48,0500	
sym4	1,1489	29.917,7365	172,9674	46,9251	
sym5	1,1990	27.469,2696	165,7386	46,5543	
sym6	1,2796	24.116,5251	155,2950	45,9890	
sym7	1,3060	23.154,5640	152,1662	45,8123	
sym8	1,3289	22.361,2845	149,5369	45,6609	
Mínimo	0,2114	16.476,8297	128,3621	44,3347	
Médio	1,0689	66.351,8979	217,2515	48,0462	
Máximo	1,5481	883.646,0826	940,0245	61,6285	

Tabela de Teste - Seniodal 256x256:

Bases	Seniodal 256x256				
	RMSE	SNRms	SNRrms	PSNR (dB)	
Haar	4,0461	1.305,0486	36,1255	35,9901	
db2	4,1003	1.270,7604	35,6477	35,8744	
db3	4,1813	1.221,7756	34,9539	35,7045	
db4	4,0624	1.294,4811	35,9789	35,9551	
db5	4,0228	1.320,0467	36,3324	36,0402	
db6	4,0180	1.323,3731	36,3782	36,0506	
db7	4,0845	1.280,5576	35,7849	35,9081	
db8	4,0436	1.306,6026	36,1470	35,9955	
db9	4,0269	1.317,5777	36,2985	36,0314	
db10	4,1226	1.257,0270	35,4546	35,8273	
bior1.3	3,9708	1.355,1649	36,8126	36,1532	
bior1.5	4,0280	1.317,0581	36,2913	36,0290	
bior2.2	4,2838	1.164,6362	34,1268	35,4943	
bior2.4	4,2763	1.168,6675	34,1858	35,5095	
bior2.6	4,3258	1.142,1083	33,7951	35,4096	
bior2.8	4,3426	1.133,3217	33,6648	35,3759	
bior3.1	5,2610	773,1060	27,8048	33,7095	
bior3.3	4,7216	959,4347	30,9747	34,6490	
bior3.5	4,6244	1.000,0960	31,6243	34,8297	
bior3.7	4,5664	1.025,6674	32,0260	34,9394	
bior3.9	4,5628	1.027,1777	32,0496	34,9461	
bior4.4	4,1428	1.244,8801	35,2829	35,7850	
bior5.5	4,1014	1.270,0606	35,6379	35,8721	
bior6.8	4,1866	1.219,0330	34,9147	35,6937	
coif1	4,0185	1.322,9494	36,3724	36,0496	
coif2	4,1531	1.238,6214	35,1941	35,7633	
coif3	4,1448	1.243,6143	35,2649	35,7807	
coif4	4,1323	1.251,1261	35,3713	35,8069	
coif5	4,1604	1.234,2815	35,1323	35,7481	
sym2	4,1003	1.270,7604	35,6477	35,8744	
sym3	4,1813	1.221,7756	34,9539	35,7045	
sym4	3,9338	1.380,6932	37,1577	36,2345	
sym5	4,0939	1.274,6412	35,7021	35,8880	
sym6	3,9761	1.351,4255	36,7617	36,1416	
sym7	4,0811	1.282,5888	35,8132	35,9153	
sym8	4,0483	1.303,6868	36,1066	35,9854	
Mínimo	3,9338	773,1060	27,8048	33,7095	
Médio	4,1980	1,2243E+03	3,4938E+01	35,6851	
Máximo	5,2610	1,3807E+03	3,7158E+01	36,2345	
Tabela de Teste - Texto 256x256:

Bases	Texto 256x256			
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	2,6615	7.558,5088	86,9397	39,6282
db2	3,2767	4.986,5956	70,6158	37,8222
db3	3,4648	4.459,7477	66,7813	37,3373
db4	3,5316	4.292,5803	65,5178	37,1714
db5	3,6160	4.094,5023	63,9883	36,9663
db6	3,6881	3.935,8732	62,7365	36,7948
db7	3,6884	3.935,1911	62,7311	36,7940
db8	3,7625	3.781,7434	61,4959	36,6213
db9	3,7560	3.794,8453	61,6023	36,6364
db10	3,7666	3.773,4405	61,4283	36,6117
bior1.3	3,1292	5.468,4310	73,9488	38,2221
bior1.5	3,2518	5.063,9567	71,1615	37,8884
bior2.2	3,6908	3.930,0502	62,6901	36,7885
bior2.4	3,7174	3.874,2783	62,2437	36,7261
bior2.6	3,7274	3.853,6898	62,0781	36,7027
bior2.8	3,7577	3.791,6445	61,5763	36,6323
bior3.1	5,3333	1.883,0125	43,3937	33,5909
bior3.3	4,7298	2.393,5540	48,9240	34,6339
bior3.5	4,6069	2.522,6968	50,2265	34,8626
bior3.7	4,5549	2.580,7178	50,8008	34,9613
bior3.9	4,5227	2.617,4297	51,1608	35,0229
bior4.4	3,6997	3.911,3333	62,5407	36,7674
bior5.5	3,6330	4.057,1154	63,6955	36,9254
bior6.8	3,7640	3.778,4632	61,4692	36,6179
coif1	3,2454	5.083,0740	71,2957	37,9054
coif2	3,6362	4.049,1339	63,6328	36,9179
coif3	3,6670	3.981,2384	63,0971	36,8445
coif4	3,7512	3.804,4286	61,6800	36,6474
coif5	3,8054	3.696,8138	60,8014	36,5227
sym2	3,2767	4.986,5956	70,6158	37,8222
sym3	3,4648	4.459,7477	66,7813	37,3373
sym4	3,6642	3.987,3526	63,1455	36,8511
sym5	3,6797	3.953,7302	62,8787	36,8146
sym6	3,7400	3.827,3496	61,8656	36,6734
sym7	3,7493	3.808,4533	61,7127	36,6519
sym8	3,8191	3.670,3590	60,5835	36,4916
Mínimo	2,6615	1.883,0125	43,3937	33,5909
Médio	3,7453	3,9902E+03	6,2718E+01	36,7279
Máximo	5,3333	7,5585E+03	8,6940E+01	39,6282

Bases	Valores	Médios Imagen	s Fotográficas 12	28x128
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	1,0515	19890,6843	137,0140	47,9413
db2	1,0711	18923,7629	133,9839	47,7636
db3	1,0726	18868,6789	133,7685	47,7509
db4	1,0668	19099,1919	134,5577	47,8008
db5	1,0682	19115,4900	134,5589	47,7944
db6	1,0714	19029,9289	134,2084	47,7696
db7	1,0653	19460,8268	135,5359	47,8371
db8	1,0657	19473,0112	135,5708	47,8382
db9	1,0639	19375,1708	135,3739	47,8387
db10	1,0546	19781,9123	136,7551	47,9220
bior1.3	1,0488	19751,3446	136,8582	47,9469
bior1.5	1,0588	19379,1752	135,5837	47,8659
bior2.2	1,2435	14569,9169	117,0458	46,5328
bior2.4	1,2210	15069,1928	119,0817	46,6865
bior2.6	1,2180	15150,7175	119,4062	46,7095
bior2.8	1,2203	15132,2435	119,2920	46,6970
bior3.1	1,6778	8119,7498	87,1562	43,9469
bior3.3	1,4872	10251,3793	98,0267	44,9808
bior3.5	1,4388	10920,1535	101,1985	45,2623
bior3.7	1,4211	11185,5298	102,4436	45,3696
bior3.9	1,4165	11292,0947	102,8879	45,4026
bior4.4	1,1120	17713,7397	129,4681	47,4534
bior5.5	1,0555	19369,7506	135,6061	47,8780
bior6.8	1,1092	17872,6866	129,9832	47,4818
coif1	1,0737	18779,4435	133,5284	47,7383
coif2	1,0726	18923,9274	133,9536	47,7582
coif3	1,0766	18715,0005	133,2321	47,7171
coif4	1,0760	18839,0731	133,5621	47,7300
coif5	1,0753	18948,9536	133,8691	47,7425
sym2	1,0711	18923,7629	133,9839	47,7636
sym3	1,0726	18868,6789	133,7685	47,7509
sym4	1,0765	18726,5828	133,3097	47,7218
sym5	1,0759	18899,5174	133,7232	47,7353
sym6	1,0773	18743,2846	133,3047	47,7173
sym7	1,0780	18896,9183	133,6673	47,7265
sym8	1,0800	18613,2152	132,8567	47,6914

Tabela de Teste - Valores Médios das Imagens Fotográficas 128x128:

Bases	Valores Médios Imagens Fotográficas 256x256			
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	2,1051	4041,4780	63,2780	41,7355
db2	2,2097	3789,8534	60,9534	41,3671
db3	2,2278	3723,9084	60,4327	41,2943
db4	2,2033	3801,1005	61,0743	41,3881
db5	2,2159	3780,3428	60,8486	41,3479
db6	2,2385	3710,3554	60,2650	41,2621
db7	2,2447	3710,4732	60,2121	41,2467
db8	2,2406	3712,0337	60,2563	41,2575
db9	2,2352	3739,6368	60,4562	41,2827
db10	2,2352	3742,3809	60,4684	41,2834
bior1.3	2,1019	4064,8636	63,4340	41,7532
bior1.5	2,1559	3887,0572	61,9734	41,5427
bior2.2	2,5249	2828,4630	52,8745	40,1672
bior2.4	2,4769	2937,4283	53,8892	40,3328
bior2.6	2,4802	2930,8155	53,8254	40,3221
bior2.8	2,4890	2910,5887	53,6381	40,2915
bior3.1	3,3922	1553,4257	39,2440	37,5872
bior3.3	2,9667	2031,3119	44,8737	38,7520
bior3.5	2,8823	2153,2940	46,1969	39,0039
bior3.7	2,8624	2185,8205	46,5365	39,0660
bior3.9	2,8557	2195,3538	46,6396	39,0857
bior4.4	2,2688	3580,6371	59,2872	41,1317
bior5.5	2,2468	3719,8199	60,2460	41,2454
bior6.8	2,2750	3556,1437	59,0954	41,1056
coif1	2,2242	3746,0493	60,5853	41,3124
coif2	2,2372	3704,2624	60,2426	41,2627
coif3	2,2409	3692,8574	60,1471	41,2485
coif4	2,2424	3690,0380	60,1195	41,2437
coif5	2,2436	3695,0643	60,1352	41,2426
sym2	2,2097	3789,8534	60,9534	41,3671
sym3	2,2278	3723,9084	60,4327	41,2943
sym4	2,2366	3704,5318	60,2487	41,2640
sym5	2,2139	3769,0055	60,8050	41,3482
sym6	2,2347	3712,9999	60,3118	41,2724
sym7	2,2234	3743,2764	60,5789	41,3134
sym8	2,2462	3680,9520	60,0366	41,2304

Tabela de Teste - Valores Médios das Imagens Fotográficas 256x256:

Bases	Valores Médios Imagens Sintéticas 256x256			
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	0,1057	7,8552E+30	1,9818E+15	188,4206
db2	0,4287	960669,2619	815,9357	58,4001
db3	0,9993	35096,0012	187,0827	48,1372
db4	0,9389	41138,8309	202,0038	48,7800
db5	1,0331	35467,4080	186,4465	48,0305
db6	1,0336	37841,1933	190,7839	48,1436
db7	1,2202	24106,8890	154,8423	46,4825
db8	1,1773	26231,0448	161,2452	46,8194
db9	1,2177	25647,5437	158,4465	46,6113
db10	1,4308	17152,1131	130,9407	45,0483
bior1.3	0,3369	2634957,2443	1302,2061	61,4965
bior1.5	0,4449	233716,9262	465,1519	55,6971
bior2.2	0,2630	2698162,8908	1361,4700	62,7474
bior2.4	0,5580	158068,5390	379,2775	53,8353
bior2.6	0,7604	60713,8849	246,3603	50,5384
bior2.8	0,5795	331526,0299	499,2300	54,9337
bior3.1	0,6586	257148,4291	439,5955	53,8256
bior3.3	0,8417	64422,6263	244,6850	50,1366
bior3.5	0,8599	55900,6133	231,1463	49,7802
bior3.7	0,7390	128686,1301	326,9378	52,0069
bior3.9	0,8245	81124,6894	267,5998	50,6386
bior4.4	0,9942	35357,0916	188,0024	48,1900
bior5.5	1,1986	24399,0234	155,9867	46,5578
bior6.8	1,0047	39113,1486	194,6214	48,3483
coif1	0,7419	67870,3478	258,3993	50,8820
coif2	0,8827	47884,4231	217,0862	49,3706
coif3	1,1921	24605,4754	156,8578	46,6184
coif4	1,3300	19781,7611	140,5215	45,6556
coif5	1,1818	26251,6165	161,1239	46,8028
sym2	0,4287	960669,2619	815,9357	58,4001
sym3	0,9993	35096,0012	187,0827	48,1372
sym4	1,0526	31779,6899	178,1920	47,7225
sym5	1,1232	27756,4263	166,6004	47,1418
sym6	1,2956	20998,9502	144,5081	45,8821
sym7	1,1565	26742,5218	163,1614	46,9410
sym8	1,3797	18695,4025	136,0659	45,3407

Tabela de Teste - Valores Médios das Imagens Sintéticas 256x256:

Bases		Valores Médios	Imagens Teste	
	RMSE	SNRms	SNRrms	PSNR (dB)
Haar	1,5502	1,3092E+30	3,3030E+14	68,0216
db2	1,6884	169372,4809	215,8652	46,0709
db3	1,8114	15014,2094	110,4273	44,2801
db4	1,7887	16116,7943	113,3448	44,4362
db5	1,8117	15157,8266	110,5994	44,2892
db6	1,8240	15498,6339	110,9745	44,2659
db7	1,8604	13345,5031	105,3482	43,9948
db8	1,8545	13710,7516	106,4304	44,0511
db9	1,8572	13593,5268	105,9837	44,0280
db10	1,8983	12316,1180	101,8117	43,7786
bior1.3	1,6171	448768,0205	298,6962	46,7901
bior1.5	1,6679	48327,4061	158,0125	45,6986
bior2.2	1,8623	456773,7443	296,7514	45,8562
bior2.4	1,8917	33653,2115	134,1222	44,4723
bior2.6	1,9302	17447,1916	112,0073	43,9169
bior2.8	1,9074	62557,5091	153,9806	44,6265
bior3.1	2,5497	46743,8936	124,9514	42,2116
bior3.3	2,2976	15671,4835	99,1327	42,4876
bior3.5	2,2413	14562,1048	98,6554	42,6400
bior3.7	2,1999	26811,4298	115,2786	43,0867
bior3.9	2,2076	18929,5186	105,6148	42,8820
bior4.4	1,8516	14551,7159	108,3778	44,0980
bior5.5	1,8517	13348,8951	105,5388	44,0220
bior6.8	1,8635	15195,3559	109,4234	44,1032
coif1	1,7355	20531,8836	122,8377	44,8187
coif2	1,8063	17123,7178	115,1900	44,4496
coif3	1,8620	13167,2890	104,8531	43,9692
coif4	1,8910	12394,5772	102,1419	43,7988
coif5	1,8731	13503,0503	105,5987	43,9792
sym2	1,6884	169372,4809	215,8652	46,0709
sym3	1,8114	15014,2094	110,4273	44,2801
sym4	1,8199	14378,5183	108,6098	44,1963
sym5	1,8404	13771,1436	106,8152	44,0934
sym6	1,8702	12570,2496	102,8575	43,8667
sym7	1,8535	13590,6683	106,1062	44,0388
svm8	1.9004	12124.9920	101.0977	43.7310

Tabela de Teste - Valores Médios das Imagens:

10. BIBLIOGRAFIA

[HWEI 1970] - HWEI P. Hsu, "Fourier Analysis", Simon and Schuster, New York, 1970.

[LATHI 1979] - LATHI, B.P., "Sistemas de Comunicação", Guanabara Dois, Rio de Janeiro, 1979.

[LIM 1990] - LIM, J. S., "Two-dimensional Signal and Image Processing", Prentice Hall Signal Processing Series.

[DAUBECHIES 1992] - DAUBECHIES. I., "Ten Lectures on Wavelets", Society for Industrial and Applied Mathematics, Philadelaphia, Pennsylvania, 1992.

[KOORNWINDER 1993] - KOORNWINDER. T. H., "Wavelets: An Elementary Treatment of Theory and Applications", Vol. 1, University of Amsterdam, 1993.

[STRANG 1993] - STRANG, G., "Wavelet Transforms Versus Fourier Transforms", American Mathematical Society, Volume 28, Number 2, April 1993, pages 288-305

[DAUBECHIES 1994] - DAUBECHIES. I., "Where do Wavelets Come From? – A personalpointo View", Departamente of Mathematics and Program Im Applied and ComputationalMathematics, Princeton University, Princeton, NJ, 1994.

[STRANG 1994] - STRANG, G., "Wavelets", Appendix 1, American Scientist 82, 250-255, April 1994.

[STRANG 1994] - SRANG, G., "Creating and Comparing Wavelets", Departament of Mathematics, MIT - Massachusetts Institute of Technology.

[GRASP 1995] - GRASP, A., "An Introduction to Wavelets", IEEE Computational Science and Engineering, Summer 1995. Vol 2, num. 2.

[STOLLNITZ 1995-a] - STOLLNITZ, E. J., DEROSE, T. D., SALESIAN D. H., Wavelets for Computer Graphics: A primer, part 1. IEEE Computer Graphics and Applications, 15(3):76-84, May 1995.

[STOLLNITZ 1995-b] - STOLLNITZ, E. J., DEROSE, T. D., SALESIAN D. H., Wavelets for Computer Graphics: A primer, part 2. IEEE Computer Graphics and Applications, 15(4):75-85, July 1995.

[VILLASENOR 1995] - VILLASENOR, J. D., BELSERr, B., LIAO, J., "Wavelet Filter Evaluatio for Image Compression", IEEE Transactions on Image processing, University of California, Los Angeles, August 1995.

[MONRO 1996] - MONRO, D. M., BASSIL, B. E., DIKSON, G. J., "Orthonormal Wavelets with Balanced Uncertainty", School of Electronic and Electrical Engeneering, University of Bath Claverton Down, England, URL: <u>http://dmsun4.bath.ac.uk</u>.

[STOLLNITZ 1996] - STOLLNITZ, E. J., DeROSE, T. D., SALESIAN D. H., Wavelets for Computer Graphics: Theory and Applications, Morgan Kaufmann Publishers, San Francisco, California, 1996.

[GOMES 1997] - GOMES, J., VELHO, L. GOLDENSTEIN, S., "Wavelets: Teoria, Software e Aplicação", 21º Colóquio Brasileiro de Matemática, IMPA, 21-25 julho,1997.

[XIONG 1997] - XIONG, Z., RAMCHANDRAN, K., ORCHARD, M. T., "Space-Frequency Quantization for Wavelet Image Coding", IEEE Transaction on Image Processing, Vol. 6. No. 5, May 1997.

[AQUINO 1998] - AQUINO, F. R., "Um Estudo sobre Metodologias de Codificação Fractal", Tese de Mestrado, UFF, 1998.

[CONCI 1998] - CONCI, A., "Codificação Fractal", http://www.ic.uff.br/~aconci/compressao/fractal.htm, 1998.

[RABBANI 1998] - RABBANI, M., "JPEG-2000: Background, Score and technical Description", Estman Kodak Research Labratories, Rochester, NY, December 1998.

[WATT 1999] - WATT, A., POLICARPO, F., The Computer Image, ACM Press, New York, 1998.

[SAHA 1999] - SAHA, S., VEMURI, R., "Adaptive Wavelet Coding of Multimedia Images", University of California Davis, Lawrence Livermore National Laboratory, 1999

[MÉXAS 1999] - MÉXAS, JOSÉ GERALDO F., "Aplicações de Wavelets Bidimensionais não Separáveis ao Processo de Imagens", Exame de Qualificação, Coppe, UFRJ, março 1999.

[PORTILLA 2000] - PORTILLA, J., SIMONCELLI, E. P., "Image Denoising Via Adjustment os Wavelet Coeficient Magnitude Correlation", IEEE Computer Society, Proceeding of the 7th International Conference on Image Processing Vancouver, BC, Canada, September 2000.

[SAHA 2000] - SAHA, S., "Image Compression - from DCT to Wavelets : A Review", URL: <u>http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html</u>.

[SILVA 2000] - SILVA, A. V. da, J. Eyng, "Wavelets e Wavelet Packets", URL: <u>http://www.inf.ufsc.br/~visao/2000/Wavelets/</u>

[WALKER 2000] - WALKER, J. S., NGUYEN, T. Q., "Adaptive Scanning Methods for Wavelets Difference Reduction in Lossy Image Compression", ICIP2000, September 10-13, 2000, Vancouver, Canada.

[ABOUFADEL 2001] - ABOUFADEL, E., "JPEG 2000: The Next Compression Standard Using Wavelet Technology", Grand Valey State University, December 2001.

[MÉXAS 2001] - MEXÁS, JOSÉ GERALDO F., "Aplicações de B-Wavelets, Semi-Ortogonais sobre Intervalos, em Modelagem Geométrica, Filtragem em Reconstrução de Imagens em Multiresolução", Tese de Doutorado, Coppe, UFRJ, maio 2001.

[MATSUMOTO 2001] - MATSUMOTO, Élia Y., "Matlab 6 - Fundamentos de Programação", Érica, São Paulo, 2001.

[NEBBELINK 2001] - NEBBELINK, M., REMENAK, B., "The Use of Wavelets in JPEG 2000 Compression", Grand Valley State University, MTH 380, Wavelets Research Paper, December 2001.

[TOOLBOX 2001] - MISITI, M., MISITI, Y., OPPENHEIM, G., POGGI, Jean-Michel, M. "Wavelet Toolbox: User's Guide", Version 2.1, MathWorks Inc., 2001.

[PROTÁZIO 2002] - PROTÁZIO, J. M. BRAZÃO, "Análise Wavelet Aplicada a Sinais Geofísicos", UNICAMP, Tese de Mestrado, 2001.

[FONSECA 2003] - FONSECA, M. S. da, CONCI, A., "A Influência das Bases na Compressão de Imagem por Wavelets", São José do Rio Preto, SP. 8 a 11 de setembro - IBILCE- UNESP, livro 2, p. 591.

[SPRLJAN 2003] - SPRLJAN, N., GRGIC, S., GRGIC, M., "Selection of Biorthogonal Filters for Wavelets Image Compression", University of Zagreb, Faculty of Electronic Engineering and Computing, Zagreb, Croatia, 2003.

[WIRASZKA 2003] - WIRASZKA, D., "Two-Stage Image Compression Using Wavelet and Piecewise-Linea Transforms", Kielce University of Technology, Kielce, Poland, 2003.