
Universidade Federal Fluminense

Raphael Pereira de Oliveira Guerra

Improving Response Time and Energy Efficiency in

Server Clusters

NITERÓI

2006

Universidade Federal Fluminense

Raphael Pereira de Oliveira Guerra

Improving Response Time and Energy Efficiency in

Server Clusters

A dissertation submitted to the Post-
Graduate Program in Computing of Univer-
sidade Federal Fluminense in partial fulfill-
ment of the requirements for the degree of
Master in Computing. Field: Parallel and
Distributed Computing.

Supervisor:

Prof. Julius C. B. Leite, Ph.D.

NITERÓI

2006

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Com-

putação da UFF

G934 Guerra, Raphael Pereira de Oliveira.
Improving response time and energy efficiency in server clusters

/ Raphael Pereira de Oliveira Guerra. - Niterói, RJ : [s.n.], 2006.
90 f.

Orientador: Julius C. B. Leite.
Dissertação (Mestrado em Computação) - Universidade Federal

Fluminense, 2006.

1. Cluster de servidores. 2. Energia - Consumo. 3. Sistemas
em tempo real. 4. Dinâmica de voltagem - Regulagem. 5.
Qualidade de Serviço. I. Título.

CDD 004.35

Improving Response Time and Energy Efficiency in Server Clusters

Raphael Pereira de Oliveira Guerra

A dissertation submitted to the Post-

Graduate Program in Computing of Univer-

sidade Federal Fluminense in partial fulfill-

ment of the requirements for the degree of

Master in Computing. Field: Parallel and

Distributed Computing.

Approved by Dissertation Examining Committee:

Prof. Julius C. B. Leite, Ph.D. / IC-UFF (Supervisor)

Prof. Orlando Loques, Ph.D. / IC-UFF

Prof. Gerhard Fohler, Dipl.-Ing.Dr. / Technische Universität

Kaiserslautern, Germany

Niterói, September 2006.

To my grandparents and friends.

Acknowledgements

This is a very important moment in my life. The period I was writing this dissertation

was a very tough time, but I knew it would repay my effort, and that is the thought that

kept me on my way all this time. In these moments when we reach our goals it is like

time freezes and we just stare high above all battles we have been through, the victories,

the defeats and the lessons we take from everything.

For this victory, I would like to special thank my grandparents, who raised me up

and made it possible for me to reach this point in my life. However, through a lifetime

people come and go and make the difference. So I would like to specially thank Professor

Julius Leite and Professor Gerhard Fohler, who trusted in me and my potential and gave

me the opportunity to succeed in my career. Without their influence I would have quit

university long ago.

For his prime importance to the work conducted here, I can not forget to thank

Luciano Bertini. He is a PhD student at Universidade Federal Fluminense, whose contri-

bution propelled this work.

Friends are also very important in our lives, because they are always there with us

sharing the important moments. My roommates, my classmates, people I hang out with,

I thank all of them. However, I would like to specially thank two: Felipe Carone and

Cristiane Ferreira. I thank Cristiane because she was a very important person during my

writing period, coming to my laboratory every day to support me and give me strength

to hold on. She was there when I needed someone the most. And I thank Felipe for the

wise advices, for sharing good and bad moments and specially for turning bad moments

into good moments.

Thank you all.

Resumo

O desenvolvimento de servidores web energeticamente eficientes requer não só o estudo de
políticas de despacho a serem aplicadas pelo nó central, como também o uso de técnicas
de hardware que permitam um melhor uso dos recursos. Contudo, essa eficiência não
pode ser obtida em detrimento do atendimento aos prazos de execução das requisições. O
trabalho apresentado aqui descreve uma técnica que tenta balancear consumo de energia
e tempos de resposta adequados para aplicações de tempo real não críticas em clusters
de servidores. A validação deste trabalho foi feita através de sua implementado em um
simulador.

Abstract

The development of energy-efficient server clusters requires the study of different request
dispatch policies applied by the central access point of the cluster, and the application
of hardware techniques that provide for the best usage of server resources. However,
energy efficiency should not be attained at the expense of a poor quality of service.
The work proposed here describes a technique that tries to balance energy consumption
and adequate application response times in heterogeneous server clusters. This proposal
was evaluated through simulation and showed results that outperform state-of-the-art
techniques.

Keywords

1. Energy-Efficiency;

2. Server Clusters;

3. Quality of Service;

4. Soft Real-Time Systems.

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Structure . 5

2 Web Server Architectures 6

2.1 Locally Distributed Web System Architectures 8

2.1.1 Cluster-Based Web Systems . 9

2.1.2 Virtual Web Clusters . 10

2.1.3 Distributed Web Clusters . 10

2.2 Request Routing Mechanisms . 12

2.2.1 Content-Blind . 12

2.2.2 Content-Aware . 14

2.3 Dispatching Algorithms . 15

2.3.1 Content-Blind . 16

2.3.2 Content-Aware . 18

2.4 Placement of Web Content and Services . 19

2.4.1 Static Content . 19

2.4.2 Dynamic Content . 20

3 Power Management Techniques 22

Contents x

3.1 Power Management Importance . 24

3.2 Power Management Taxonomy . 26

3.2.1 Static Power Management - SPM . 27

3.2.1.1 Low-level Approaches . 27

3.2.1.2 High-level Approaches . 30

3.2.2 Dynamic Power Management - DPM 30

3.2.2.1 Low-level Approaches . 30

3.2.2.2 High-level Approaches . 32

3.3 The Cluster Case . 33

4 Related Works 38

5 System Model 42

5.1 Model . 42

5.1.1 Cluster Features . 43

5.1.2 Simulation Environment . 46

5.2 Problem Definition . 49

5.3 Solution . 49

5.3.1 Dealing with the Incoming Workload 50

5.3.2 Meeting the QoS Constraint . 51

5.3.2.1 Off-line Approach . 51

5.3.2.2 On-line Approach . 53

5.3.3 Applying the Solution . 54

6 Results 56

6.1 Scenario 1 . 57

6.2 Scenario 2 . 61

Contents xi

7 Conclusion and Future Work 70

Bibliography 72

References 72

List of Figures

2.1 Cluster-based Web server architecture. 10

2.2 Virtual Web server architecture. 11

2.3 Distributed Web server architecture. 11

5.1 Cluster model. 48

6.1 Cluster aggregate power for different QoS requirements, with β = 0.8. . . . 59

6.2 Power consumption versus load. 60

6.3 Power consumption of the server cluster as a function of β, for different

workloads, with deadline 0.05s. 60

6.4 Actual fraction of QoS restrictions met, as a function of β, for different

workloads, with deadline 0.05s. 61

6.5 Web traffic following an Exponential distribution with mean inter-arrival

time 0.02s and deadline 0.01s. Figure 6.5(a) is the behavior without I/O

and Figure 6.5(b) with 5% of probability of requesting I/O operation. . . . 63

6.6 Web traffic following an Exponential distribution with mean inter-arrival

time 0.03s and deadline 0.01s. Figure 6.6(a) is the behavior without I/O

and Figure 6.6(b) with 5% of probability of requesting I/O operation. . . . 64

6.7 Web traffic following a Pareto distribution with mean inter-arrival time

0.02s and deadline 0.01s. Figure 6.7(a) is the behavior without I/O and

Figure 6.7(b) with 5% of probability of requesting I/O operation. 64

6.8 Web traffic following a Pareto distribution with mean inter-arrival time

0.03s and deadline 0.01s. Figure 6.8(a) is the behavior without I/O and

Figure 6.8(b) with 5% of probability of requesting I/O operation. 65

6.9 Web traffic following a Pareto distribution with mean inter-arrival time

0.04s and deadline 0.01s. Figure 6.9(a) is the behavior without I/O and

Figure 6.9(b) with 5% of probability of requesting I/O operation. 65

List of Figures xiii

6.10 Energy consumption of the system assuming that there is no I/O operation.

Figure 6.10(a) assumes a Web traffic with mean inter-arrival time 0.02s and

deadline 0.01s. Figure 6.10(b) assumes a Web traffic with mean inter-arrival

time 0.03s and deadline 0.01s. 66

6.11 Web traffic following a Pareto distribution with mean inter-arrival time

0.02s and deadline 0.01s. Figure 6.11(a) is the behavior without I/O and

Figure 6.11(b) with 5% of probability of requesting I/O operation. 66

6.12 Web traffic following a Pareto distribution with mean inter-arrival time

0.04s and deadline 0.02s. Figure 6.12(a) is the behavior without I/O and

Figure 6.12(b) with 5% of probability of requesting I/O operation. 67

6.13 Energy consumption of the system assuming that there is no I/O operation.

Figure 6.13(a) assumes a Web traffic following a Pareto distribution with

mean inter-arrival time 0.02s and deadline 0.01s. Figure 6.13(b) assumes

a Web traffic following a Pareto distribution with mean inter-arrival time

0.04s and deadline 0.02s. 67

6.14 Web traffic following a Pareto distribution. Figure 6.14(a) with mean inter-

arrival time 0.03s, deadline 0.02s and 40% of probability of requesting I/O;

Figure 6.14(b) with mean inter-arrival time 0.05s, deadline 0.02s and 40% of

probability of requesting I/O; Figure 6.14(c) with mean inter-arrival time

0.05s, deadline 0.05s and 40% of probability of requesting I/O; and finally,

Figure 6.14(d) with mean inter-arrival time 0.03s, deadline 0.02s and 25% of

probability of requesting I/O. 68

List of Tables

6.1 Processors specifications. 58

Chapter 1

Introduction

Power management (PM) has been extensively studied for applications running on battery-

powered devices. These devices have gone through an ever growing processing power

increase in order to deal with the demands of the even more sophisticated applications

designed to run on them. As long as these devices are not connected to the electrical power

grid, energy becomes a critical resource and the trade-off between processing power and

energy saving comes to be a main concern. This trend represents the original concept that

PM had to address, that is, the device availability, by maximizing the battery lifetime.

On the other hand, performance and reliability have traditionally been the most

important design and evaluation factors on desktop machines. As they have continuous

energy supply, higher performance has been achieved at the expense of great energy

consumption. The problem is that along with the energy consumption increase comes a

higher energy dissipation in the form of heat. A way to achieve performance improvement

on a single processor is by making its components smaller, so that more of them can be

inserted onto the die. Because transistors using today’s technology are so small, even

when they are supposed to be in the off state, infinitesimal currents still leak through

them. This leakage warms them constantly, and with the extra heat generated when

transistors switch on or off, it produces a microfurnace on a chip [26].

In the quest for performance improvement, there is a growing industry trend to “out-

source” computing services to large server clusters. Typical server clusters deploy hun-

dreds or thousands of computers (like Google servers [6]), usually located in the same

room. These densely packed systems demand a great amount of energy per unit of vol-

ume, thus overheating it. As a result, the need for a complex and expensive cooling

infrastructure to ensure the proper operation of the servers becomes even more challeng-

ing: fans driving the cooling system may consume up to 50 % of the total system power in

some commercial servers, and manufacturers are facing the problem of building powerful

1 Introduction 2

systems without introducing additional techniques such as liquid cooling [22]. The power

issue came to the extent of worrying the american government to the point of having a

energy-efficient server incentive law approved by the Congress [37].

With the growing of the Internet, cluster systems have been widely designed for file

distribution, web servers and database transactions aiming to handle peak loads condi-

tions, thus providing an acceptable quality of service (QoS) to the final users even in

the worst case. This practice, however, leads to poor system’s infrastructure resource

utilization since such systems are typically underutilized. In fact, their loads often vary

significantly depending on the time of the day or other external factors. Therefore the

average processor use of such systems may be even less than 50% with respect to their

peak capacity [31].

The report [1] identified that if it was possible to have the clusters “rightsized” to

incur only the infrastructure cost that was actually required at a given time, a potential

reduction of 60% on the total cost of the system could be attained. Nonetheless, not

all resources that compose the cluster infrastructure can be employed in a modular and

scalable way (e.g., physical room, machines, network and cooling equipment, . . .). Even

so, it is shown that when modular and scalable technology is used to the extent which is

currently practical, approximately 50% of the theoretical savings from rightsizing can be

obtained. Electricity, cooling equipment and power equipment altogether comprise 44%

of a data center expense. These expenses can be reduced by PM. Recent improvements

on hardware to support energy control make this feature scalable, and taking advantage

of the long inactive periods due to high utilization fluctuation on Web servers provides

a potential economy on server overall expenses. Besides, excess power consumption not

only hurts the operator economically, but it also limits the number of servers per unit of

volume (in the machine room) due to heat dissipation considerations, thus limiting the

cluster operation.

The cooling system is of major importance particularly because the microprocessor’s

overheat leads to intermittent system failures and crashes. It strongly impacts on system

reliability and performance [12], which have traditionally been considered the most im-

portant design and evaluation factors on desktop machines. As a result, researchers have

moved their focus from cooling infrastructures to PM schemes these days. This approach

exploits the underutilization condition experienced by the server clusters most of the time

and it is capable of addressing the following critical issues:

• Energy consumption – It reduces the energy consumption of the server cluster, thus

1 Introduction 3

reducing the energy leakage as well. Furthermore, less leakage implies less heat

dissipation, and hence, less demanding from the cooling system. As a result,

PM is capable of reducing energy consumption in both cooling system and

server cluster operations.

• Reliability – As it reduces the heat dissipation, there will be less failures and crashes.

• Costs – Money is saved both in energy consumption (energy is not free), cooling

systems and hardware replacement due to crashes.

There is a wide variety of PM techniques. These techniques, primarily developed for

mobile and energy-restricted devices, basically comprise turning off idle components like

the monitor, the network interface and so forth. A prospect alternative that has been

exploited lately is to set the CPU to operate in lower frequencies. Although operating

the CPU in a lower frequency implies longer processing time, the vast majority of mi-

croprocessors today use CMOS logic circuits, which has a voltage-dependent maximum

operating frequency. So when used at a reduced frequency, the processor can operate at

a lower supply voltage. Since the energy dissipated per cycle with CMOS circuitry scales

quadratically to the supply voltage (E ∝ V 2 – already taking into account the longer

processing), a potential energy saving approach arises. Therefore, PM is equally impor-

tant for server environments, where high performance and reliability have traditionally

been the most important design and evaluation factors. This position breaks with tradi-

tion and argues for considering energy consumption on the same footing. The PM topic

will be further discussed in Chapter 3.

However, the Web environment is QoS-aware and CPU operating frequency manage-

ment cannot be done carelessly. Online banking, reservations, stock trading, product

merchandising, to name a few, are services that are being offered via Web. As this trend

continues into the 21st century, QoS considerations are expected to gain tremendous im-

portance. For instance, dropped connections and slow responses from a Web site frustrate

users and result in lost revenues for the Web site operator. Performance is a fundamental

issue in the Web environment because final users do not want to wait indefinitely for a

response.

Many works in the energy saving research field do not take into account the QoS fea-

ture of Web servers. Their target is usually to save as much energy as possible by running

the server in a totally saturated configuration (using only the necessary computational

power required to keep up with the incoming workload without cumulating requests in

1 Introduction 4

the queue). In fact, it leads to a constant worst case QoS condition. In this work, we

specifically target the research issues in incorporating PM in QoS-aware Web servers and

the systems issues that arise in designing and implementing such Web servers with energy

saving schemes.

Real world Web server clusters are a really complex structure. They must handle a

wide variety of requests, like static and dynamic content, located in a single server or spread

out among any number of machines and so on. The server cluster is most likely to be

composed of heterogeneous machines (both in hardware configuration and information).

A new category of machines named blade servers [41] arise as a novel solution for server

cluster construction, as long as they are optimized for consuming a lot less power and

take up a lot less room. Another relevant issue is the way the pieces can be gathered

together, namely the cluster architecture. These structural matters and their features

will be explained in more detail in Chapter 2.

By now, it is only relevant to mention that in this work we assume a 2-layer content-

blind architecture: the server layer, comprised of the machines that will handle the users

requests, called servers; and the front-end layer, constituted of a single machine, called

front-end, which is responsible for balancing the load among the machines comprising

the server layer. This architecture is called blind because the front-end has no access

to the request’s content when performing the dispatching policy. Therefore, all servers

must contain the same information (in other words, should be able to handle any kind of

requests).

Despite the simplicity, our scheme represents real life. Most Web server clusters

nowadays use their servers to replicate data for QoS purposes. Highly accessed Web sites

with static content, such as pictures or multimedia files, always replicate their data among

several servers to avoid congestion. Therefore, the assumption of a server cluster where

all servers contain the same data covers real life situations. Our method aims to provide

QoS-aware PM in the environment described before based on queuing theory. We point

out that, in spite of adopting the Web server context as our model, our methodology and

the algorithms proposed apply to any kind of cluster. The next section describes how this

dissertation is structured.

1.1 Structure 5

1.1 Structure

This work is structured in seven chapters, including this introduction. The next two

chapters present the background of this work, covering some important concepts about

Web cluster architectures and PM policies. The following two chapters account for the

system model description and for a discussion of the obtained results. Finally, the last

two chapters outline the related works and their contributions, point out future works and

draw the conclusions. A brief description of the content of each chapter is shown below:

• Chapter 1 – Presents an overview of the work and its motivation. It corresponds to

this current chapter.

• Chapter 2 – Presents the state-of-art in server cluster architectures. It covers the

system’s infrastructure and operation.

• Chapter 3 – Presents the importance of PM relatively to performance and reliability

issues and gives insights into some usual PM techniques, ranging from device

level to cluster-wide application level approaches.

• Chapter 4 – Describes our model and the assumptions we made, defines the problem

to be dealt with and describes the given solution. Some implementation details

are discussed.

• Chapter 5 – Details the experiments performed and the obtained results.

• Chapters 6 – Discusses the related works and other major contributions in the en-

ergy saving research field.

• Chapters 7 – Discusses the future works and draws the conclusions.

As a final remark, it should be pointed out that as a result of this work two scientific

papers were produced. The first one [17] was presented at the Workshop de Tempo Real

(WTR, Curitiba, Brazil, 2006) and the other one [18] at the Conferencia Latinoamericana

de Informática (CLEI, Santiago, Chile, 2006).

Chapter 2

Web Server Architectures

The World Wide Web became widespread in the mid 1990’s, but its beginning can ac-

tually be traced back to 1980 when Tim Berners-Lee, a software consultant at CERN

(Organisation Européenne pour la Recherche Nucléaire, in english European Organiza-

tion for Nuclear Research) wrote a program for his personal use, called Enquire, which

he called a “memory substitute” to help to keep connections between various people and

projects at the laboratories. However, researchers outside CERN contributing to the

CERN researches also wanted to share documents, but using different kinds of computers

and software because it would be unfeasible to make their work conform to the CERN

system. So Berners-Lee thought, “it would be so much easier if everybody asking me

questions all the time could just read my database, and it would be so much nicer if I

could find out what these guys are doing by jumping into a similar database of infor-

mation for them” [42]. In 1990, he wrote the Hypertext Transfer Protocol (HTTP), the

language computers would use to communicate hypertext documents over the Internet

and designed a scheme to give documents addresses on the Internet. Berners-Lee called

this address a Universal Resource Identifier (URI), which is now usually known as Uniform

Resource Locator (URL). By the end of the year he had also written a client program

(browser) to retrieve and view hypertext documents. He called this client “World Wide

Web”. Hypertext pages were formatted using the Hypertext Markup Language (HTML)

that Berners-Lee had written.

In this environment, a user issues one request at a time for a Web page. There are many

types of Web pages, but in the old days of the Web, a Web page was a multipart document

consisting of a collection of static objects (a static object is simply a file in a specific format,

e.g. JPEG). An object could be provided by the first contacted Web site or even by another

site. Back then, a Web page consisted of a base HTML file describing the page layout and a

number of static objects referenced by the base HTML file using URLs that indicate where

2 Web Server Architectures 7

they were hosted. A URL has two main components: the symbolic name of the server that

houses the object (e.g., www.uff.br) and the object’s path name (e.g., /pub/index.html). To

retrieve all the Web objects composing a Web page, a browser (client program that interacts

with the Web server and displays the Web page to the end user) issues multiple requests to

the Web server. We refer to a Web transaction as the complete interaction that starts when

the user sends a request to a Web site and ends when his client receives the last object

related to the requested URL. A session is a sequence of Web transactions issued by the

same user during an entire visit to a Web site. The HTTP is the protocol that rules this

client-server interaction.

As we can see, the Web has been primarily designed for information sharing only.

However, nowadays the Web is changing from a simple communication and browsing in-

frastructure for getting static information to a complex medium for conducting personal

and commercial transactions that require dynamic computation and secure communica-

tions with multiple servers through middleware and application software. Furthermore,

the proliferation of heterogeneous client devices, the need of data personalization, client

authentication, and system security of corporate data centers and e-commerce sites place

additional computational load on Web servers, incurring a significant performance penalty.

Because of the complexity of the Web infrastructure, performance problems may arise

in many points during an interaction with Web-based systems. For instance, they may

occur in the network due to congested Internet routers or poor quality network links, as

well as at the Web and database server, either because of underprovisioned capacity or

unexpected surge of requests. Although, in recent years, both network and server capacity

have improved and new architectural solutions have been deployed, network bandwidth is

increasing about twice as faster than the server capacity and the increased percentage of

dynamic content of Web-based systems makes the server side likely to be the main future

bottleneck.

In order to handle this ever increasing server capacity demanding of Web applications,

Web-site administrators constantly face the need to increase server capacity. The server

ability to support large numbers of accesses and resources while still providing adequate

performance is called scalability. Scalable Web systems can be divided into the following

categories:

• Hardware scale-up – It consists of upgrading the system by adding more powerful

resources, like CPU, disk, additional whole machines and so on.

2.1 Locally Distributed Web System Architectures 8

• Software scale-up – It consists of upgrading the system at software or infrastructural

level. This category involves improving the operating system, building more

efficient Web servers, implementing different scheduling policies and cluster

design.

The number of on-line users is growing at about 90% per annum [9], thus making the

single server approach unfeasible. The solution to keep up with ever increasing request

load and provide scalable Web-based services is to deploy a distributed Web system com-

posed by multiple server nodes that can also exploit scale-up advancements. The server

cluster, like any other distributed system, must be designed to be scalable (additional

nodes cannot decrease the system performance), reliable (node failures cannot compro-

mise the whole system) and to provide performance enhancement. For these reasons, a

lot of effort has been spent in new distributed server architectures. The paper [9] is a

survey on distributed Web servers that extensively discusses these system’s infrastructure

and implementation aspects. As our goal is to attain energy saving in such servers, we

considered it important to present to the reader some relevant features about their design.

So, the rest of this chapter will be dedicated to point out the aspects exploited on this

survey that allow for a better understanding of our work and to discuss them in further

detail. Any additional information that the reader might miss here can be found in the

original document, which presents a broader view on it.

2.1 Locally Distributed Web System Architectures

Servers based on clusters of workstations are the most popular configuration used to meet

the growing traffic demands imposed by the World Wide Web. It has been observed

that Web servers contribute to about 40% of the overall delay of Web transactions and

this delay is likely to grow with the increasing use of dynamic Web contents. In view

of this, distributed Web servers are envisioned to answer most of the requirements in

a cost-effective manner. A cluster of servers, arranged to act as a single unit, provides

incremental scalability, as it has the ability to grow gradually with demand, reliability,

as it is not vulnerable to single node failures, and performance improvement, as all nodes

join their computational power to work as a single one.

Depending on the way the servers are organized, they can be classified in: cluster-

based Web systems, virtual Web clusters and distributed Web clusters. These archi-

tectures are mainly composed by the server nodes, which are responsible for serving the

2.1 Locally Distributed Web System Architectures 9

requests, and the back-end nodes, which are responsible for providing services to the server

nodes, like databases. These architectures differentiate from one another in the way that

the server nodes that compose the cluster are accessed by the outside world. The first

one, the cluster-based approach, is the only one among them that uses a central entity

that coordinates any action in the cluster. Both centralization and decentralization have

their advantages and drawbacks. In short, we can say that the former is able to perform

more efficiently while the latter removes the single point of failure. In other words, the

former is better from a performance standpoint and the latter is better from a reliability

standpoint. As long as PM actions must be carried out by some entity, the cluster-based

architecture seems to be most suitable to implement PM and we chose it, since it already

has a central entity to be exploited, thus adding another advantage to it. These architec-

tures will be discussed in more detail in the following sections, but thereafter only aspects

pertaining to the cluster-based approach will be covered, as this is the relevant design to

our work.

2.1.1 Cluster-Based Web Systems

A cluster-based Web server is a Web system architecture that consists of multiple server

nodes distributed on a local area and interconnected through a high-speed network. The

Web server presents a single system view to the clients through a front-end, which dis-

tributes the requests among the nodes. Each node in the cluster has its own disk and

a complete operating system. Cluster nodes work collectively as a single computing re-

source.

Although a Web cluster may consist of tens of nodes, it is publicized with one site

name (e.g., www.uff.br) and one virtual IP (VIP) address (e.g., 200.20.15.238). Thus, the DNS

server performs a one-to-one mapping by translating the site name into the VIP address,

which corresponds to the IP address of a dedicated front-end node(s). It interfaces the

rest of the Web-cluster nodes with the Internet, thus making the distributed nature of

the site architecture completely transparent to both the user and the client application.

The front-end node receives all inbound packets that clients send to the VIP address and

routes them to some Web-server node. In such a way, it acts as the centralized dispatcher

of a distributed system with fine-grained control on client requests assignments. Figure

2.1 depicts this architecture.

2.1 Locally Distributed Web System Architectures 10

Figure 2.1: Cluster-based Web server architecture.

2.1.2 Virtual Web Clusters

The architecture of a virtual Web cluster is based on a fully distributed system design that

does not use a front-end. Similarly to the previously described Web cluster architecture,

a virtual Web cluster presents a single system image to the outside world through the

use of a single VIP address. The main difference is that this address is not assigned to a

centralized front-end node that receives all incoming client requests and distributes them

to a target server. In a virtual Web cluster, the VIP address is shared by all the server

nodes in the cluster so that each node receives all inbound packets and filters them to

decide whether to accept or discard them. It is worth to note that this system removes

the single point of failure and the potential bottleneck represented by the front-end. See

Figure 2.2.

2.1.3 Distributed Web Clusters

A distributed Web system consists of locally distributed server nodes, whose multiple IP

addresses may be visible to client applications (see Figure 2.3). An authoritative DNS is

included into the system box because this component plays a key role in request routing

for distributed Web systems: it maps the site name directly to the IP address of the

server responsible for handling the request, thus making different mappings every time it

is consulted in order to distribute the workload. As long as the client request assignment

to a target Web server is carried out during the address resolution phase (look-up phase)

2.1 Locally Distributed Web System Architectures 11

Figure 2.2: Virtual Web server architecture.

by the DNS mechanism, the Web system must have control over it. Unlike the cluster-

based Web system, and similarly to the virtual Web cluster architecture, a distributed

Web system does not rely on a front-end to perform the dispatching task. In some systems,

there is also a second level routing that is typically carried out through some re-routing

mechanism activated by a Web server that cannot fulfill a received request.

Figure 2.3: Distributed Web server architecture.

2.2 Request Routing Mechanisms 12

2.2 Request Routing Mechanisms

One of the main components of a typical multinode Web system is the routing mechanism,

responsible for directing the request to the target Web server node. Although a server

can be compound of several computers (sometimes in the magnitude of thousands), the

client is not aware of it and this mechanism is responsible for presenting the cluster as

a single entity to the outside world. Based on the way this mechanism works, it can be

mainly classified into two categories: content-blind and content-aware. The following sections

detail them.

2.2.1 Content-Blind

The routing mechanisms belonging to this category operate at network layer-4 (TCP/IP).

They are called content-blind because at TPC/IP level the front-end can not know the

request content when taking the routing decision. The association between client and

server is made through TCP/IP mapping by the front-end (binding table). New TCP

connections are directed to a node based on a given dispatching policy (see Section 2.3)

while packets belonging to a previously established connection will be directed to the

proper node by looking up the binding table.

Layer-4 Web clusters can be classified on the basis of the mechanism used to route

inbound packets to the target server and outbound packets back to the client. The main

difference is in the server-to-client way. In two-way architectures, both inbound and

outbound packets pass through the front-end, whereas, in one-way architectures, only

inbound packets flow through the front-end.

• Two-way architecture – The front-end works as a broker in this approach. The client

send requests to the front-end, which routes the packets to the proper server

(the front-end sees only TCP/IP packets as it works in network layer-4), and

whenever the server needs to send a reply back to the client, the outbound

packets must also pass back through the front-end. The front-end role in

this approach is, thus, rewrite the TCP/IP header and keep the binding table

to take the right routing decisions. The TCP/IP header rewriting is done on

inbound packets (when the front-end sends a packet from a client to the selected

server the source of the message is no more the client, but the front-end) and

on outbound packets (when the front-end sends the packet from the server

that handled the request to the client the source is no more the server, but

2.2 Request Routing Mechanisms 13

the front-end). For this reason, it is also called double-rewriting. It is worth to

point out that the header rewriting incurs in checksum recalculation overhead

(front-end processing).

• One-way architecture – In one-way architectures inbound packets pass through the

front-end, while outbound packets flow directly from the servers. It reduces the

processing burden of the front-end, relieving the potential bottleneck capability

of the front-end. Routing to the target server can be done by means of several

mechanisms, like:

1. Packet single-rewriting — Inbound packets are handled as in the two-way

method. The difference is in the modification of the source address of

outbound packets. The Web server, before sending the response packets

to the client, does the job of the front-end in the two-way method by replac-

ing its IP address with the VIP address of the front-end and recalculating

the IP and TCP header checksum.

2. Packet tunneling — The effect of IP tunneling is simply to transform the old

headers and data into the payload of a new packet. The front-end sends

to the Web servers a message containing the incoming packet received

from the client. The Web server is liable for extracting the content of this

messages and building the original request of the client by itself. When the

server replies directly to the client, it uses the VIP address of the front-end

as the source address.

3. Packet forwarding — In this mechanism, front-end and server nodes share

the same VIP address and the front-end directs the inbound packets to

the proper server nodes by changing the MAC address of the packets.

The premise that the front-end and the server nodes share the same LAN

segment must hold. As servers and front-end share the same VIP address,

each server recognize itself as a destination and can reply directly to the

client without any modification in the TCP/IP header. Although front-

end and server nodes share the same VIP address, inbounding packets

reach only the front-end because the Address Resolution Protocol (ARP)

is disabled on the server nodes.

2.2 Request Routing Mechanisms 14

2.2.2 Content-Aware

The routing mechanisms belonging to this category operate at network layer-7 (applica-

tion level, also named network layer-5 in some literatures). They are called content-aware

because, as long as the front-end routing mechanism operates at layer-7, it is able to know

the content of the incoming request and take fine-grained routing decision based on server

nodes information availability. In other words, the premise that any server node should be

able to handle any request does not need to hold anymore because, based on the request

content, the front-end can direct it to the proper server. Nonetheless, selecting a server to

handle the request is a dispatching algorithm task and the request mechanisms presented

here only constitute the background requirements that allow these dispatching algorithms

to work.

Here once again, as in layer-4 Web cluster approach, the request routing mechanisms

can be classified on the basis of how they route inbound packets to the target server and

outbound packets back to the client as two-way architectures and one-way architectures.

• Two-way architectures – A common way of implementing request routing in this

architecture is by the technique called TCP gateway. In this mechanism the front-

end keeps a TCP persistent connection with each server node and whenever a

client request arrives it is sent to the selected server through its TCP persistent

connection. When the response arrives from the server, the proxy forwards

it to the client through the client-front-end connection. A drawback of this

mechanism is the fact that whenever a packet arrives at the front-end it has

to flow up to the application layer. An alternative would be to do it just at

the connection establishment and the following packets belonging to the same

connection would be redirected immediately from the network layer. It is done

by a technique called TCP splicing and incurs less communication overhead but

demands operating system modification.

• One-way architectures – In order to allow the server node handling the request to

reply directly to the client, a technique called TCP hand-off moves the endpoint

of the TCP connection from the front-end to the selected server node as soon

as the connection is established. The TCP hand-off mechanism remains trans-

parent to the client, as packets sent by the servers appear to be coming from

the front-end. Incoming traffic on already established connections arrive at the

front-end and are redirected to the proper server node.

2.3 Dispatching Algorithms 15

2.3 Dispatching Algorithms

Besides the request routing mechanism, another crucial component in a typical Web

system is the dispatching algorithm. Unlike the request routing mechanism, which is

liable for directing the request to the node that will handle it, the dispatching algorithm

is the component responsible for selecting the best suited server to respond. Of course,

this task must be carried out by some entity, henceforth named dispatcher. The dispatching

policy influences not only the performance experienced by the end user but also the system

scalability.

Dispatching algorithms can be classified into several ways: centralized vs decentralized,

static vs dynamic and content-blind vs content-aware.

• Centralized vs decentralized – It evaluates whether the decision is taken in common

agree with all entities that comprise the dispatcher or not. In other words, in

centralized techniques the decision process is done through a common agree-

ment among the entities that comprise the dispatcher, whereas in decentralized

techniques the decision is taken locally. For instance, in virtual Web servers,

each machine receives all incoming requests but decide to accept it or not based

on a hash function applied locally on the client IP and port information (all

servers, besides handling requests, comprise the dispatcher). As long as the

hash function is free of ambiguity, only one server will obtain a positive result

and handle the request. On the other hand, in cluster-based Web servers, the

decision is taken by the front-end (taking charge of the dispatcher task). In

the former case we have a decentralized approach, whereas in the latter case

we have a centralized approach.

• Static vs dynamic – The scheduling policies made without considering any dynamic

state information, and hence fast, are named static. Most commercial products

prefer these simple algorithms for doing server selection. Random and Round

Robin (RR) are examples of static algorithms. In dynamic policies some kind

of run-time system state information is used by the policy to allow a more

accurate decision. Such information can be the server capacity, load, number

of active connections, content and so on. Depending on the kind of information

used, dynamic policies can be further classified into:

1. Client state aware — The dispatcher dispatches requests based on client in-

formation. For example, a dispatcher working at application layer can

2.3 Dispatching Algorithms 16

examine the entire HTTP request and take decisions on the basis of more

detailed information about the client. On the other hand, layer-4 routing

mechanisms can provide up to network layer client information.

2. Server state aware — The dispatcher assigns requests on the basis of some

server state information, such as current and past load condition, latency

time, and availability.

3. Client and server state aware — To use only client information can lead to

server misutilization, while using only server information do not enable

the request dispatching to take advantage of some legacy technologies used

to improve server performance, like caching. Client information is often

combined with some server state information to provide the so called client

affinity taking into account server availability.

• Content-blind vs content-aware – Content-blind policies comprise the set of policies

that do not take into account the client’s request content, working at the

TCP/IP layer. They are best suited for layer-4 request routing policies because

the only reason why it makes sense to use layer-7 request routing mechanisms is

to allow the implementation of content-aware dispatching algorithms, so that

it can take more accurate decisions by exploiting possibilities like improved

cache hit ratio and content partitioning.

Besides the wide variety of classifications, dispatching algorithms for Web servers are

broadly classified into content-blind and content-aware because of the importance of this

factor in the overall system infrastructure. Remember that request routing mechanisms

are closely related to the dispatching policies (as long as dispatching policy implementation

requires request routing mechanisms support) and that request routing are classified into

content-blind and content-aware. The following sections will discuss some content-blind

and content-aware policies.

2.3.1 Content-Blind

Both static and dynamic policies fit into content-blind dispatching policies. However, the

range of information that can be provided to the dynamic policies are not so wide as

in the content-aware approach. As a content-blind premise, any server must be able to

handle any request.

2.3 Dispatching Algorithms 17

Random and RR are two examples of static algorithms that use content-blind dis-

patching. In Random algorithm any server in the Web server system can be picked for

request processing with the same probability. RR algorithms select servers in a cyclic

manner, that is, the servers are organized in a specific order and the request is always

handled by the next one. This approach requires only the knowledge of the last server

that responded a request and the number of servers. As static algorithms do not con-

sider the current state information, they have the disadvantage of possibly selecting faulty

servers. An extra effort to improve this set of algorithms is the use of weights. A mod-

ified version of Random and RR algorithms are the Static Weighted Random (SWR),

where servers can have different probabilities of receiving a incoming request, and Static

Weighted Round Robin (SWRR) algorithms, where an weight is assigned to servers in-

dicating their capacity. SWRR still works in a cyclic manner, but a integer greater than

0 is assigned to each server to indicate how many requests it has to receive in one round

of the algorithm. This improvement is able to handle heterogeneity in the server but, as

long as it is still a static algorithm, it can deal only with off-line given information, like

server capacity. It can provide reasonable performance in case the request do not differ

very much from one another in resource consumption.

In client-state-aware dynamic policies the dispatcher uses the client’s source IP address

and TCP port number for server selection. Servers are statically partitioned and the same

clients are assigned to the same servers based on a hash function, which is applied to the

client’s address. Assigning clients to the same servers can better exploit some client affinity

issues, like Secure Socket Layer (SSL). In the SSL case, server and client can use the same

keys previously negotiated, avoiding the initial negotiation overhead. However, the lack

of server state information and uncoordinated client usage of the server (at a given time

only clients with a range IP addresses handled by a specific server might be accessing the

Web server) can lead to load unbalancing.

Server-state-aware policies often use Least Loaded and Dynamic Weighted Round

Robin (DWRR) algorithms as their routing approach. Algorithms like Least Connections

(LC) and Fastest Response Time (FRT) fit into the least loaded approach. In LC new

requests are assigned to the servers with the fewest active connections, while in FRT

Web servers with smallest latency time in the last observation interval are assigned a new

connection, as they respond faster. In the DWRR and DWR algorithms, each server is

assigned a dynamic weight to, which is proportional to the server load state. They still

logically work as their static versions. The dispatcher gathers load information periodi-

cally from the Web servers and the dynamic weights are computed. However, client affinity

2.3 Dispatching Algorithms 18

is not tackled.

The client-server-state-aware policies set has been proposed to exploit client affinity yet

taking into account server state information. As long as the content-blind approach only

permits up to network layer information access, a very coarse client affinity can be obtained

and server load information allows a more accurate dispatching decision. For instance,

any of the server-state-aware policies previously discussed could be implemented with a

buffer storing the last clients that accessed the Web server in a recent past, so that any

new incoming request coming from one of these clients can be routed to the same server

it interacted with.

2.3.2 Content-Aware

The complexity of layer-7 front-end that can examine the HTTP request motivates the

use of more sophisticated content-aware distribution policies. Potential features to be

tackled are:

1. improving reference locality in the server caches so to reduce disk accesses (cache

affinity).

2. using specialized server nodes to provide different Web-based services (specialized

servers), such as streaming content, dynamic content, and to partition the Web

content among the servers, for increasing secondary storage scalability.

3. increasing load sharing among the server nodes (load sharing).

4. when HTTP/1.1 persistent connections are used, a layer-7 front-end can assign

requests traveling on the same TCP connection to different servers, thus achieving

a finer granularity control

.

Content-aware dispatching rely on content-aware request routing mechanisms and use

of dynamic policies. It does not mean that static algorithms are not supported, but it

just makes no sense to use a more complex routing mechanism if their advantages are

not exploited. Cache Affinity, Specialized Servers, Load Sharing, and Client Affinity

algorithms fall under client-state-aware policies. Cache Affinity algorithms partition the

file space among servers using a hash function applied to each URL. Some Web sites

provide heterogeneous services and their Web servers can be partitioned according to the

2.4 Placement of Web Content and Services 19

services they handle. These specialized servers are employed to manage certain types of

requests like dynamic content, multimedia files, and streaming video. This content-aware

dispatching algorithm is referred as Service Partitioning that comes under the specialized

server category. Size Interval Task Assignment with Equal load (SITA-E) and Client-

Aware-Policy (CAP) support load sharing. SITA-E algorithm deals with assigning tasks

of certain size range to individual servers. The advantages of using the SITA-E is that

it limits the range of task sizes assigned to each server and reduces the waiting time of

the tasks. A popular content-aware algorithm is the Locality-Aware Request Distribution

(LARD), which considers both client and server information for its server selection. In

LARD the incoming requests are directed to the same servers from the same clients until

a given load threshold is reached. When the threshold is exceeded requests are redirected

to the least loaded server or the server with the fewest connections.

2.4 Placement of Web Content and Services

The scalability of a Web cluster depends also on the methods used to organize and access

information within the site. Content-aware dispatching algorithms are tightly coupled

with data location as the best suited server decision will surely rely on both data location

and server’s availability information. Data popularity (term used to designate how often

the data is required), size and temporal locality (term used to express that, once the

data has been accessed, the probability of being accessed again in a foreseeable future

increases), among other factors, must be considered in order to allow improved load bal-

ancing and performance. For instance, storing all most popular data into just a group

of servers and all unpopular data into another group of servers would incur more request

routing to the first group, unevenly balancing the load and degrading responsiveness. Sev-

eral strategies aiming to tackle this problem are under research, being basically classified

accordingly to the data category: static content and dynamic content. The following sections

present an insight into these strategies.

2.4.1 Static Content

When we consider locally distributed Web systems that do not use a content-aware dis-

patching mechanism, any server node should be able to respond to any request, unless

they employ internal rerouting (see section 2.2). It means that either all servers have the

same stored data (replication) or they have access to the same data storage.

2.4 Placement of Web Content and Services 20

The first technique, named replication, implies that each server maintains a local copy

of the data on its disk. The main advantages of this approach is that access to data can

be done with no extra communication overhead and it is fault tolerant. However, some

drawbacks arise, like data consistency (it requires any content update to be propagated

to all the nodes in short periods of time) and storage overhead (maintaining a copy of the

data on each server wastes a lot of disk room). Taking into account that the majority of

Web requests are for read-only access, where maintenance of consistency is not crucial,

and that for very popular data replication becomes essential to prevent disk from being

the system bottleneck, this technique is highly employed under these circumstances.

The other technique consists of having all servers sharing the same information through

a distributed file system such as the Network File System (NFS) [36]. It avoids the consis-

tency problem, as all servers access the same data, and the waste of disk room necessary

to store the data copies. However, it incurs extra communication overhead to retrieve the

data, thus increasing the response time experienced by the end user, and in case of highly

accessed data it becomes the system bottleneck. Each technique has its benefits and draw-

backs. The choice of the best solution is highly dependent on the system characteristics

and a hybrid implementation of both techniques can also be exploited to minimize each

other’s drawback. For instance, using both replication and data sharing we can minimize

the storage overhead and the potential system bottleneck, as data is replicated only at

a level enough to keep an acceptable system performance. However the consistency and

communication overhead still hold.

Web clusters that do use content-aware dispatching mechanisms can use the same two

strategies presented previously and they can also use a third alternative by partitioning

the content tree among the Web server nodes. This technique has two main advantages:

it increases secondary storage scalability without the overhead due to a distributed file

system; and it allows the use of specialized server nodes to improve responses for different

file types, such as streaming content, CPU-intensive requests, and disk-intensive requests.

However, content partitioning can lead to load imbalance produced by the uneven distri-

bution of Web document popularity. Techniques to improve features like responsiveness,

data consistency maintenance and content partitioning are still a growing research area.

2.4.2 Dynamic Content

The Web has changed from a place for static content storage and sharing to a place that

provides personalized services for clients, bearing security, commercial transaction, client

2.4 Placement of Web Content and Services 21

usage control by server administrators (with this information it is possible to tailor the

content served to a client according to his most recent needs and expectations) and so

on. These activities usually demand a little server processing, besides the data retrieval,

requiring orders of magnitude higher service time. New technologies supporting this

innovation in Web-based services must take into account the inherited Web legacy and

take place harmoniously with them. Dynamic Web-based services, databases and other

(legacy) applications are typically hosted on a set of servers behind the Web server nodes,

forming a multitiered system. Typically, requests for dynamic content are forwarded to

servers of other layers that run the software that executes the business logic, and interacts

with database servers or other legacy applications.

Furthermore, a multitier system require request routing and dispatching to be im-

plemented at different levels, from the front-end to the Web server layer to the Web

application server layer. Moreover, dynamic request serving must be aware of traditional

problems like load balancing, bottleneck effect, responsiveness, reliability, and so on, in

order to avoid hindering the overall system behavior. Similarly to previously analyzed

techniques, here we can also make use of traditional techniques like partitioning, repli-

cation and so on, taking into account their advantages, drawbacks and analyzing the

trade-off. As long as dynamic content providing is very important nowadays in the Web

context, there are a lot of commercial solutions under utilization. However, for simplicity,

all products prefer to use fast development solutions, implementing very simple algo-

rithms, typically round-robin and least loaded [9]. The techniques and challenges in this

field goes beyond the scope of this work and will not be further exploited.

Chapter 3

Power Management Techniques

Computing systems, ranging from small portable systems to more complex general pur-

pose systems, are designed to satisfy various computational demands in some acceptable

time. Concerns with portability, performance and economical issues are the reasons why

the main goals of different architectural studies have long been speed, size and price,

driving technological innovations to the development of faster, smaller and cheaper com-

puter systems.

Computer systems are mainly composed of digital logical circuits. As long as digital

logical circuits are composed of transistors, the search for smaller and faster computers has

made it possible to incorporate millions of these devices on a very small die, and to clock

these transistors at very high speeds. To pack more transistors together and enable them

to operate at higher speeds, chipmakers have shrunk them to once unthinkable sizes. For

example, using its newest 0.13 micron manufacturing process, Intel now makes transistors

as small as 0.06 microns. By comparison, a human hair is about 50 microns wide [28].

Nonetheless, while these innovations and trends have helped to provide tremendous

performance improvements over the years, they have at the same time created new prob-

lems that demand immediate consideration. One of the major obstacles in designing

smaller transistors is how to prevent electricity from seeping out of components, which

becomes a bigger problem as the parts are made ever smaller. Within a transistor, an

element called gate controls the electrical flow through it, and as transistors continue to

shrink, it becomes more difficult to effectively control switching. Historically, the primary

source of energy dissipation in transistor devices has been the so called dynamic energy,

which is consequence of charging/discharging load capacitances when a device switches.

When the circuits were not active the current was extremely low relative to switching

the gates, and thus, the energy consumed, called static energy, was negligible. In order to

3 Power Management Techniques 23

improve performance, chip designers have relied on scaling down the transistor supply

voltage in subsequent generations to reduce the dynamic energy dissipation, which become

too high as a much larger number of transistors are set on a die. However, if chip makers

had continued on their old path, by the year 2015, microprocessors would be dissipating

more watts per square millimeter than the surface of the sun [26]. In order to maintain

high transistor switching speeds, scaling down transistor threshold voltage along with the

supply voltage was required, thus giving rise to a significant amount of static energy leakage

due to an exponential increase in subthreshold leakage current even when the transistor

is not switching [14].

These aspects presented so far about transistor design refer to the CMOS transistor

family. The vast majority of nowadays microprocessors are based on this technology.

CMOS (Complementary Metal-Oxide Semiconductor) refers to both a particular style of

digital circuitry design and the family of processes used to implement that circuitry on

integrated circuits (chips). The central characteristic of this technology is that it only

uses significant power when its transistors are switching between on and off states, unlike

other forms of logic implementation. The word complementary refers to the fact that the

design uses pairs of transistors for logic functions, only one of which is switched on at any

time. The phrase metal-oxide-semiconductor is a reference to the nature of the fabrication

process originally used to build CMOS chips. To address the thermal issue, research has

moved toward utilizing new transistor designs and materials that permit further shrinkage

and other improvements, but CMOS technology still remains widely employed in most

circuitry systems, like microprocessors, Static Random Access Memory (SRAM) and other

digital logic circuits, despite some innovations.

The settling time for a gate in a CMOS circuitry is proportional to the signal and the

lower the voltage drop across the gate, the longer the gate takes to stabilize. Therefore,

to lower the voltage and still operate correctly, the cycle time must be lowered first. As

performance remained the main efficiency factor in some computer systems, the transistor

shrinkage was followed by an increasing cooling research effort to remove heat from these

new generation processors highly packed with shrunk transistors, or else it would be

unfeasible to build such processors. Since CMOS circuitries are used in several digital

logic circuits that compound a computer system, they come to be of main concern in

thermal issues.

In this chapter we will discuss the motivation for PM research (Section 3.1), a taxon-

omy of PM techniques (Section 3.2) and some recent investigations on PM that has been

3.1 Power Management Importance 24

conducted in clusters of servers (Section 3.3), which is the focus of this work.

3.1 Power Management Importance

From portable battery-operated computing systems to server farms in data centers, power

consumption is rapidly becoming the key design issue. Portable devices usage has in-

creased a lot these days, as users call upon them to manage their schedules, check their

e-mail, maintain their address books, and carry out their everyday work tasks. Along

with the increasing wireless network development, it moves toward a vision of completely

cooperative intelligent mobile devices with instant access to spread information and clev-

erly embedded into everyday user life, the so called pervasive computing. However, resource

limitations of these devices will have a great effect on available services, and power supply

was identified as a critical issue ever since the beginning of mobile computing research.

As long as these devices are not connected to the electrical power grid, energy becomes a

critical resource and the trade off between processing power and energy saving comes to

be a main concern. These devices must have computational power to support the com-

plex applications envisioned to run on them in the pervasive computing world, yet taking

into account the power issue to maximize the device lifetime.

The desktop computer systems, such as data centers, mainframes and so on, lived

another reality. The growing necessity of more processing power to support complex ap-

plications propelled researches in this field toward performance and reliability directions.

It urged the development of distributed systems and processor improvements. In the

quest for higher performance, the cluster solution appeared, grouping a bunch of faster

machines to work together to achieve a common goal. The appearance of blade servers

in the cluster context totally reflected the seek for faster, smaller and cheaper computer

systems goal. Blade servers are self-contained computer servers designed for high density,

having many components removed for space, power and other considerations while still

having all the functional components to be considered a computer (memory, CPU and I/O

devices). However, this large amount of computers fitted into a single room turned power

supply into a main concern. In spite of having constant power supply provided by the

the electrical power grid, energy is not free and its cost represents a major contribution

in the overall system expense.

Besides the financial cost issue, which represents a important motivation toward en-

ergy saving research in the real world, researchers have recognized that thermal issues

3.1 Power Management Importance 25

merit a thorough investigation, that is, more than just an extension of power-aware meth-

ods. Overheating deserves special attention because it negatively impacts on important

factors, like:

• hardware failures, thus compromising reliability;

• considerably reduction of system components lifetime, incuring more expenses with

their replacement;

• energy dissipation, that is, electrical power waste;

• and, very complex and efficient cooling system demanding, which in its turn also

consumes energy to operate and result in extra expense.

Fundamentally, since temperature is a consequence of power dissipation, power-aware

design and the emerging field of temperature-aware design are intrinsically related, but

they also have significant differences. Although generally consistent with each other, the

two goals are not identical. Some PM techniques address both goals, but most techniques

focus on only one. Temperature is proportional to power density, not just power, so methods

to reduce thermal effects can either reduce power, increase area, or both. The common

use of heat spreaders in modern high-performance microprocessors provides one example

of increasing area to reduce power density and to deal with thermal effects. Power density

has come to be of main concern lately specially because of the development of even more

compact computer systems, thus concentrating more power to operate these devices in

ever less room, and hence increasing power density.

As we can see, so far performance and energy-aware computing design have tra-

ditionally led to opposite directions. The former targets miniaturization, packing and

more power to reduce clock. The latter targets to increase the area, reduce voltage (hence

power) to reduce energy dissipation and save electrical power for financial purposes. How-

ever, understanding and exploiting thermal effects is also critical because of their impact

on packaging, reliability issues, performance, and leakage power. Electromigration, aging

of the thin oxide, mechanical failure due to thermal gradients, and expansion coefficients

are the main factors that result in increased failure rates under thermal stress [38]. Perfor-

mance is lower and leakage power exponentially higher at high temperatures [35], which

suggests that effectively dealing with thermal issues can increase performance and reduce

power consumption simultaneously. For this reason, researchers are investigating active

cooling and PM techniques to control temperature, which may become a requirement in

a foreseeable future. Henceforth, we will only investigate the PM approach.

3.2 Power Management Taxonomy 26

3.2 Power Management Taxonomy

Most energy management techniques consist of one or more mechanisms that determine

the power consumption of system hardware components and a policy that determines the

best use of these mechanisms. Although developers can implement some energy man-

agement techniques either in hardware or in software, combining software policy with

hardware support is the most beneficial. Placing the policy in software allows for easier

modification and adaptation, as well as more natural interfaces for users and administra-

tors.

Despite being designed for high performance, the full potential of a machine is not

fully utilized all the time. Most computing systems have at least two modes of operation:

• an active mode, in which the processor or device continues to operate, but possibly

with reduced performance and power consumption. Processors might have a range

of active states with different frequency and power characteristics;

• and an idle mode, in which the processor or device is not operating. Idle states vary

in power consumption and in latency for returning the component to an active state.

It is acceptable to have higher power consumption in the active mode as a trade-off

to increased performance, but any power consumed when the system is idle is a complete

waste and ideally should be avoided by turning the system off. Most often, PM techniques

aim to exploit this characteristic by transitioning hardware components back and forth

between high and low-power states or modes in order to tune performance accordingly to

the computational power demand of the system.

There is an open industry specification, called ACPI (Advanced Configuration and

Power Interface) [3], co-developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and

Toshiba to standardize interfaces for OS-directed configuration and PM. In ACPI, the

BIOS provides the OS with methods for directly controlling the details of the hardware,

so that it has nearly complete control over the power savings. It allows more accurate

energy savings than could be obtained when the BIOS was in charge of this task, since

the OS has control over all elements of the system and their on-line state.

Power reduction techniques can be classified as static and dynamic. Static Power Man-

agement (SPM) techniques, such as synthesis and compilation for low power, are applied

at design time (off-line) and target both hardware and software. In contrast, dynamic

3.2 Power Management Taxonomy 27

techniques use runtime (on-line) behavior to reduce power when systems are serving light

workloads or are idle. These techniques are known as Dynamic Power Management (DPM).

The latter is more flexible, but the results achieved are worse than in the former ap-

proach [12]. The following sections discuss them in more detail.

3.2.1 Static Power Management - SPM

Power dissipation limits have emerged as a major constraint in the design of microproces-

sors because of its imposed constraints on implementation feasibility, performance and

reliability. For these reasons, power optimization requires careful design at several levels

of the system architecture. These studies can be divided mainly into two areas. The

first one is a low-level approach targeting the architectural level by investigating power

consumption at both cycle and instruction levels. The second approach is a high-level ap-

proach targeting different or all system components. These approaches will be discussed

in the following sections.

3.2.1.1 Low-level Approaches

Modern computer architecture designers face the new reality of trading off between per-

formance and power dissipation. Historically, designers have concentrated their effort on

high performance attainment by shrinking transistor’s size, decreasing their gate stabi-

lization time, executing more instruction per CPU cycle, optimizing memory data access

and so on. Performance improvement generally comes along with computational resource

waste. For instance, waste of computational resources occurs when redundancy is applied

at instruction level to predict a execution flow or a memory data access, and hence, useless

work leads to useless energy consumption.

Power consumed by the CPU is significant, followed by main memory and hard disk.

For instance, a mid-range server with dual 1.4-GHz Pentium III processors draws about

90 W of DC power under load: roughly 55 W for the two CPUs, 10 W for a disk drive,

and 25 W to power DRAM and other elements. With a typical efficiency of about 75

percent for an ATX power supply, this translates into 120 W of AC power per server [6].

That is why these are the main target components to investigate power aware strategies.

Some off-line strategies targeting these components are:

• Transistor design – Originally, transistor design headed to ever more shrunk and

faster directions. However, overheating due to energy leaking made it un-

3.2 Power Management Taxonomy 28

feasible, denying Moore’s law that predicted a transistor density duplication

every 18 months on semiconductor chips. Nowadays, researchers seek another

means to improve performance rather than shrinkage. A promissory trend is

to find new materials to compose the transistors, specially the gate, which due

to shrinking is the main responsible for energy leakage. Instead of metal, as

designed originally, recently gate electrodes have been almost always made of

a different material, usually polysilicon. However, Intel investigated a new ma-

terial called High-K/Metal and claims that found the perfect composition of

this material that avoids the leakage drawback on very small gates, yet provid-

ing performance accordingly to Moore’s law [4]. Moreover, Silicon On Insulator

(SOI) technology is a layered structure that replaces the traditional silicon as a

semiconducting material on chip design. This material yields reduction in the

amount of electrical charge that the transistor has to move during a switching

operation, thus increasing speed (up to 15%) and reducing switching energy

(up to 30%) [34]. New transistor design features, like channel width, are also

investigated.

• Multi-core processor – Processor architecture, traditionally designed to exploit per-

formance improvement, face a new reality. Transistor shrinkage turned power

dissipation into a main concern due to energy leakage increase. The new design-

ing trend was shifted from maximizing performance to maximizing performance

per watt, mainly by putting more than one microprocessor on a single chip and

running them all well below their top speed. Because the transistors are switch-

ing less frequently, the processors generate less heat. And because there are at

least two hot spots on each chip, the heat is spread more evenly over it, so it

is less damaging to the circuitry and easier to get rid of fans and heat sinks.

This approach targets power dissipation distribution over the chip in order to

tackle the power density constraint and has been broadly investigated [26].

• Gating pipeline registers – The selective gated pipeline register optimization focuses

on reducing the power consumption by using the control signals of the datapath

for selectively gating subsets of the pipeline registers. It was observed that 23-

36% energy reduction is possible in the datapath, 50% in the pipeline registers

and 46% in the register file [12].

• Bus power optimization – It consists of reducing the switching activity on the in-

struction caches (i-caches) data bus by relabeling the register fields of the compiler-

3.2 Power Management Taxonomy 29

generated instructions. Up to 12% reduction in the total energy reduction

in the i-cache data bus using the register relabeling optimization can be ob-

tained [12].

• Memory hierarchy optimization – Unlike dynamic energy which depends on the num-

ber of actively switching transistors, static energy is a function of the number

of on-chip transistors, independently of their switching activity. As the gap be-

tween static and dynamic energy diminishes, caches account for a large (if not

dominant) component of energy dissipation due to leakage in recent computer

system designs, and will continue to do so in the future. Several strategies

have been proposed to reduce energy leakage in all levels of memory hierarchy,

like data duplication, standby leakage mode, cache decay mechanisms and so

forth [24].

Memory has a huge internal bandwidth compared to its external bus band-

width. To exploit the wide internal bus, cached DRAM (CDRAM) adds an

SRAM cache to the DRAM array on the memory chip that acts as an extra

memory hierarchy level. It potentially improves system performance, but the

work presented in [5] exploits the benefit of having on-memory cache with

respect to its energy consumption by powering off DRAM after the data is

transfered to CDRAM.

• Instruction level optimization – Instruction level issues impact on:

– switching effects;

– reducing pipeline stalls;

– instruction packing;

– and, instruction’s energy consumption.

These features are now being studied from a performance/power-aware

trade-off standpoint rather than from a purely performance one. It is well

known that a high level instruction can be mapped to several low level

instructions that result in the same logical operation. OS and compiler

optimization can attempt to minimize energy consumption by generating a

optimum energy-aware set of instructions. This instruction set choice tries

to reduce switchings, pipeline stalls and choose the less energy hungry ones.

Meeting these constraints is not straightforward but undertakes significant

energy saving.

3.2 Power Management Taxonomy 30

3.2.1.2 High-level Approaches

There is little benefit in optimizing only at the device level if other elements participate

or sometimes even dominate the power consumption and dissipation. To effectively op-

timize system energy, it is necessary to consider all the critical components and their

relationship. Several strategies investigate the power consumption on different system

levels, targeting both hardware and software on different levels of abstraction. However,

high-level approaches are more common in dynamic PM because it can take advantage of

application and system information to perform on-line adaptations.

A simple PM strategy used in server clusters is the newly blade server [41]. This

server basically consists of a case that provides power, cooling and other general purpose

components to a set of mainboards connected to it. Yet, the main components that

compound a computer must still be present on each mainboard (CPU, memory and I/O

devices). A blade server carries only the absolute essentials: a small motherboard with

processor, memory, and networking circuitry, and maybe a hard drive. Because they share

power supplies and have fewer functional chips and other components, blades consume

less electricity and generate less heat, addressing both energy saving and dissipation.

3.2.2 Dynamic Power Management - DPM

Dynamic power reduction techniques use runtime behavior to reduce power when systems

are serving light workloads or are idle. These techniques are often implemented in software

with hardware support, where the software captures system dynamic behavior to perform

more flexible PM adaptation on hardware level. DPM can be achieved in different ways.

For example, Dynamic Voltage Scaling changes processor supply voltage at runtime as a

method of PM. DPM can also be used for shutting down unused I/O devices or unused

nodes of server clusters. Alike SPM, DPM can also be deployed at low and high levels.

The following sections describe, respectively, the low-level and high-level approaches.

3.2.2.1 Low-level Approaches

CMOS circuits in modern microprocessors consume power in direct proportion to their

frequency and to the square of their operating voltage. However, voltage and frequency

are not independent of each other: A CPU can safely operate at a lower voltage only

when it runs at a low enough frequency. Thus, reducing frequency and voltage together

reduces energy per operation quadratically, but only decreases performance linearly.

3.2 Power Management Taxonomy 31

A mechanism named Dynamic Voltage Scaling (DVS) aims to save power by dynamically

changing the voltage supply to the processor. The intuition behind the power savings

comes from the basic theoretical result that energy is proportional to the cubic of the

voltage while frequency is directly proportional to voltage. Therefore, voltage scale-down

provides quadratic energy savings (E
clock

∝ V 2) [40]. Nonetheless, for a real chip it may not

be possible to reduce the voltage linearly with the clock reduction due to external factors,

like thermal effects. However, if it is possible to reduce the voltage at all by running

slower, then there will be a net energy saving per cycle. DVS techniques attempt to

minimize the time the processor spends running the operating system idle loop, but DVS

is not a free operation by time and energy standpoints and accurate high level knowledge

of system behavior collaborates to apply DVS efficiently. These aspects can be exploited

to attain energy savings in many other digital logic circuits, like memories.

Memories are also based on CMOS circuitry to store data. Some new memory types

have different activity states to exploit energy saving opportunities. For instance, the

Double-Data Rate Synchronous Dynamic Random Access Memory DDR-SDRAM, has two low

power modes: power-down and self-refresh. In the deep power-down mode, the memory array’s

power is eliminated to further reduce power, thus not retaining data. In self-refresh mode

energy is saved by allowing only data retainment and disabling read/write operations.

Switching to power-down mode or back to active mode takes only one memory cycle and

can reduce idle DRAM power consumption by more than 80% [22]. Self-refresh mode

might achieve even greater power savings, but it currently requires several hundred cycles

to return to active mode. Thus, realizing these mode’s potential benefits requires more

sophisticated techniques.

Reducing overhead due to cache coherence traffic can also improve energy efficiency.

Shared-memory servers often use invalidation protocols to maintain cache coherency. The

cache controllers of all processors in the server share a bus to memory and the other

caches. Each cache controller arrives at the appropriate coherence action to maintain

consistency between the caches based on its ability to observe memory traffic to and from

all caches, and to snoop remote caches. Snoop accesses from other processors greatly

increase L2 cache power consumption [22].

Hard Disks (HDs) are a non-volatile data storage device that, unlike DRAM memory

family that are based on logic circuitry, store data on a magnetic surface layered onto

hard disk platters. A HD uses parallel rotating platters (disks) to store data through

a mechanical arm equipped with a read/write head that applies a magnetic field onto

3.2 Power Management Taxonomy 32

the platters. This data storage technology provides two opportunities to save energy

when active: reducing the platters rotation by applying a lower voltage and save energy

based on the quadratic energy saving due to the voltage scaling; and minimizing the

need of the mechanical arms movement [23]. Minimizing the need of mechanical arm

movement requires higher level knowledge of data storage, but rotating platters slowlier

is a hardware support that enables higher level strategies to work. Obviously, reducing

the platters rotation speed decreases data throughput, thus cannot be done carelessly.

These and others high-level approaches will be discussed next.

3.2.2.2 High-level Approaches

As we could see in the previous section, CPU, memory and HD have different active states.

Several components in most computer systems have this capability and in all of them

state transitions are not cost free. General purpose algorithms like time-out policies and

predictive policies perform poorly and consider only active-inactive-active transitions, thus

state transition must be strongly dependent on system behavior and target component in

order to be more flexible and offer better saving.

Much of the recent work in DVS has sought to develop prediction heuristics, but

application specific approaches can better exploit this feature. The bottom line is to

use workload information to apply DVS and avoid idle CPU cycles. Possible approaches

include slowing down frequency and taking longer to serve the workload, working in batch

and so on. Of course, the kind of application must be taken into account. For instance,

real-time applications cannot benefit from batching approaches and frequency scaling

must be done carefully, since this applications must respond within a given time.

Multiprocessor systems can use processor packing to save energy in high performance

systems, since in these systems power dissipation in active and idle states are similar

because as transistors shrink ever more static and dynamic energy dissipation get closer

to each other. Processor packing consists of concentrating the load onto a smallest number

of processors turning the remaining processors off, because since in these high performance

processors idle cycles consume almost as much energy as busy cycles it is better to keep

as many of them as possible inactive and the others running at full power. CPU can also

benefit from parallelism to improve utilization and energy consumption by replacing high-

performance processors with a larger number of slower but more energy-efficient processors

providing the same throughput. Of course not all kind of applications can easily benefit

from parallelism, since dependency chains can stall other parts of the system [22].

3.3 The Cluster Case 33

Similarly, HDs can save energy by scaling down platters rotation speed but it results in

less throughput. Systems with intensive I/O operations can benefit from it in moments of

low workload, while general systems can exploit caching on HDs to minimize the necessity

of accessing it. Efficient data placement strategies can aim to pack data together using

some knowledge over them in order to minimize HDs’s arm movement [23]. In server

clusters, where data replication is crucial for performance purposes, data placement can be

exploited to turn off some parts of the storage facility during periods of low workload [21].

The Operating System (OS) can change components’ state based on its activity. Any

component that is not performing any task is consuming energy uselessly, and hence

should be turned off. However, just because a component is idle now does not mean that

it will not be required in the near future. Moreover, state transition is not a free operation,

resulting in time and energy overhead. As a matter of fact, the more saving a state is

producing from a power standpoint, more expensive is in time and energy overhead to

bring it to the active state. The number of activity states is a component dependent

information. For instance, some mobile devices’ displays have a backlight to light the

screen. Whenever the OS detects a large period without user interaction with the system,

first it turns off the backlight and then, if the inactivity holds, the whole display is turned

off. This period is usually a user configuration.

OS can also exploit PM at process level. Multithreading is a common feature in most

computer systems to improve system’s responsiveness. However, process scheduling is a

complex activity because state saving can involve complex data management, which is

power expensive. For instance, caching takes advantage of code locality, like loop codes in

the program that causes a small set of instructions to be executed repeatedly, justifying

its translation to a small and faster memory (cache). During a process preemption, its

information stored in cache might be deleted due to lack of space and it will have to be

reloaded later on. It is a expensive task from a performance and power-aware standpoint

that must be addressed at OS level. Another research direction involves reordering the

program’s instruction execution to optimize it from a energy efficient point of view, aiming

to minimize data transfer necessity [12].

3.3 The Cluster Case

Power consumption is rapidly becoming a key design issue for servers deployed in large

data centers and Web hosting facilities. These centers typically host clusters of hun-

3.3 The Cluster Case 34

dreds and sometimes thousands of servers, such as Web and application servers running

on off-the-shelf hardware. These installations are designed to handle peak load, hence

leading to a seek for performance. However, as transistor density and demand for com-

puting resources have rapidly increased, even high-end systems face energy-consumption

constraints.

All the power a system consumes eventually dissipates and transforms into heat. The

power dissipation and related thermal issues affect performance, packaging (remember

that temperature is proportional to power density), reliability, has environmental impact,

and heat removal costs; the power and energy consumption affect power delivery costs

because high power consumption demands proper power delivery infrastructure, which,

in its turn, limits the number of nodes that can be fitted into a room, thus compromising

performance.

Systems with high peak power demands require complex and expensive cooling con-

figurations to efficiently move heat away. Providing proper cooling becomes ever more

challenging as increasing performance demands have been leading to higher power densi-

ties. High peak power requirements also translate into large and expensive constant power

supplies and backup power generators, which are necessary in case of a power outage [41].

Reduced-power servers are attractive for large-scale clusters, but some aspects have

to be taken into account. First, reduced power is desirable, but, it must come without

a corresponding performance penalty: what counts is watts per unit of performance, not

watts alone. Second, the lower-power server must not be considerably more expensive,

because the cost of depreciation typically outweighs the cost of power. Realistically, a

server will not last beyond two or three years, because of its disparity in performance

when compared to newer machines [6].

Server clusters are particularly attractive for applying PM techniques because, al-

though they are designed to handle high peak workload, the system is not under this

condition most of the time. It means that often computational resources are being wasted

in a typical data center, and so is energy. Moreover, as explained earlier, often energy

efficient servers are very expensive and the energy saving might not keep up for the ini-

tial outlay due to their fast depreciation. Therefore, data centers are often composed of

energy inefficient machines that are underutilized most of the time, a perfect background

for PM application.

Several data placement techniques have been proposed in the literature for both mem-

ory and disk [22]. Data partitioning was first mentioned in Section 2.4 with performance

3.3 The Cluster Case 35

purposes, but energy-aware approaches are also being investigated. Since memory and

disk greatly contribute for energy consumption, new hardwares are equipped with power

control mechanisms that allow them to operated at different power consumption states.

Data partitioning techniques attempt to save energy by transitioning memory and disk

states, yet keeping up with the incoming workload. It is obvious that the less power-

hungry a state is, the worst is its performance, if it is active at all.

In these systems, memory, disk and processor are the major contributors in energy

consumption. Energy consumed by the cooling system is bothering as well, but as long

as reduction in energy consumption comes along with less energy dissipation, solving the

former we indirectly tackle the thermal issue.

Processors are one of the most power-hungry component in a server cluster. They are

the target of this work and the PM techniques dealing with them will be discussed in the

sequel. Paper [16] states that processor PM for server clusters can be mainly classified

into five categories:

• Independent Voltage Scaling (IVS) – In this policy each node independently man-

ages its own power consumption through DVS. This policy performs the intra-

node PM, so all the nodes in the cluster stay in the active state even during

periods of low workload. Each node may operate at different frequencies and

voltage due to the workload variation and the difference in the computational

demands of individual requests. However, since the request distribution mech-

anism balances the workload across all nodes, on average, each node will op-

erate under the same load but possibly in different frequencies due to different

processor capacities (heterogeneity). IVS requires that the cluster nodes have

processors and infrastructure that support DVS and nothing else.

• Coordinated Voltage Scaling (CVS) – This policy uses DVS in a coordinated man-

ner to reduce cluster power consumption. In contrast to IVS, the cluster co-

ordinate their voltage scaling actions through a centralized monitor that pe-

riodically computes system load and energy consumption, decides the cluster

configuration and reports to each node what frequency they have to operate at.

As in IVS policy, there is no inter-node PM. Hence, all the nodes in the cluster

are active even during periods of very low workload. The CVS is expected to

save more energy than IVS because it can better handle frequency and energy

consumption heterogeneity among the cluster nodes. Since the monitor has

full knowledge of cluster nodes features, it can properly distribute the load and

3.3 The Cluster Case 36

set each node’s frequency operation so that they can handle its part of the

load. To implement CVS it is necessary the same support for IVS, that is,

processors and infrastructure that support DVS, plus a central facility liable

for performing the monitoring task and software infrastructure to allow this

central facility to remotely coordinate the DVS adaptation.

• Vary-On Vary-Off (VOVO) – This policy turns off server nodes so that only the

minimum number of servers required to support the currently incoming work-

load are kept active. Nodes are brought on-line as and when required. VOVO

does not use any intra-node PM and hence can be implemented in a cluster

that uses standard high-performance processor without DVS. Besides, as al-

ready explained in the beginning of this chapter, high performance processors

tend to dissipate as much static energy as dynamic energy, which makes idle

moments extremely inefficient and it is totally worth to keep only the mini-

mum required number of nodes active at a time. To implement VOVO some

hardware support, such as a Wake-On-LAN network interface, is needed to

signal a server to transit from inactive to active state. Wake-On-LAN network

interfaces allow a “sleeping” computer to be brought up to full power remotely

over a network and the computer, while in this low-power state, spends little

energy only supplying the network interface to keep it active. VOVO can be

implemented as a software service running on one of the cluster nodes (or a

separate support server) to determine whether nodes must be taken off-line or

brought on-line and requires software probes running on each of the cluster

nodes to provide information on the utilization of that node. The load distri-

bution mechanism must be aware of the state of the servers in the cluster so

that it does not direct requests to inactive nodes, or to nodes that have been

selected for vary-off and have not yet completed all received requests.

• Combined Policy (VOVO-IVS) – This policy is a combination of the VOVO policy

to reduce the number of active servers and the IVS policy to reduce power

consumption on individual nodes. VOVO-IVS complexity is similar to that of

VOVO.

• Combined Policy (VOVO-CVS) – Conceptually, this policy is a combination of the

VOVO policy to use the fewest number of active servers and the CVS policy to

reduce the power consumption of individual active nodes. However, in this pol-

icy the PM actions of the two policies are integrated to use the most effective

3.3 The Cluster Case 37

mechanism whenever the maximum cluster capacity is not needed. In particu-

lar, VOVO-CVS places a larger emphasis on voltage scaling than VOVO-IVS,

since DVS provides a quadratic benefit whereas node vary-off provides only a

linear benefit. Besides, the overhead to bring a server on is much higher than

the one due to voltage scaling. Approaches for this policy may consider apply-

ing CVS as much as possible and only then apply VOVO; apply VOVO and

use CVS to individually adjust each processor to tightly keep up with the in-

coming workload by avoiding idle cycles; or, monitor the workload and energy

consumption to decide the most suitable cluster configuration at a time based

on some algorithm. The last approach is more flexible, since it can balance

the number of VOVO and DVS adaptation to provide more accurate energy

savings. Operationally, this policy achieves this integration by constraining the

range of frequency and voltage scaling based on the number of active nodes. It

is more complicated to implement than VOVO-IVS and all the other policies

previously described. The voltage scaling part requires processor with DVS

support, the VOVO part needs hardware support to remotely awake comput-

ers in sleeping mode and both DVS and VOVO parts need a central monitor

and software infrastructure to coordinate the cluster configuration. However,

in case an algorithm is used to set up the cluster configuration based on the

incoming workload, this technique might become too complex to make it up

for little energy saving benefit.

Chapter 4

Related Works

Designing mechanisms for energy-efficient systems requires a good knowledge of the several

power reduction techniques in several levels of the system, as presented in Chapter 3. In

the context of Web server systems, the work presented in [7] identifies memory, storage

device and processor as the most power hungry elements and describes some techniques to

save energy in these components in a Web environment. This work also identifies not only

energy consumption but also energy dissipation as a critical element when designing such

systems. Moreover, it discusses the heterogeneous nature of Web server systems, feature

often disregarded by early researches on this field. Heterogeneity is a key issue, since

crashes are very frequent in these systems and replacement is rarely done by the same

element due to the fast depreciation of them in the market (computer systems rapidly

become obsolete). Several techniques have been proposed in the last decade to tackle these

elements, like DVS for processors, self-refresh mode for memories and platters spin-down

for HDs. Two recent works [39, 12], survey the “state of the art” in these techniques for

reducing the total power consumed by a microprocessor system over time, giving insights

into all levels and elements of the system.

The work in [21] aims to save energy in storage level through a request distribution

mechanism named PLARD (Power and Locality Aware Request Distribution). Basically,

it consists of partitioning the data and applying local techniques (multi-speed disks and

pin-down memory) and dispatching request accordingly to server and data availability

(cluster-wide decision). However, the majority of the researches on energy saving ap-

proaches for Web servers aims the processor. The work presented in [40] is one of the first

attempts to exploit idle CPU cycles to use DVS, but did not take into account application

level information. In paper [32] more accurate prediction methods are explored to detect

idle moments (like making use of IA and stochastic algorithms), including the idea of

using application level information.

4 Related Works 39

In [8] the authors applied DVS to a single server based on processor utilization to

change frequency. Also for single servers, the technique of DVS with delaying requests

are presented in [15]. The work in [16] presents a brief classification of energy saving ap-

proaches for clustered Web servers at processor level. Energy saving approaches aiming to

the processor can utilize VOVO and/or DVS. VOVO must be performed by a coordinator,

but DVS can be done independently (locally) or coordinately (cluster-wide). It gives rise

to 5 categories: IVS (uses DVS locally), CVS (uses DVS coordinately), VOVO, VOVO-

IVS and VOVO-CVS. These categories are explained more extensively in Section 3.3.

This work also presents a VOVO-CVS approach that can better exploit energy saving

opportunities, but it considers that frequency can be continuously tunned in a processor,

which is not true in real life, thus impracticable. Moreover, it assumes all machines have

the same configuration, and even the given solution set all the active machines to the same

configuration. A good point is that it uses different threshold values to perform upgrad-

ing and downgrading reconfigurations in order to avoid constant cluster reconfiguration

due to load variability. Its goal is to define different threshold values for upgrading and

downgrade reconfigurations. For instance, suppose that the incoming workload increases

over a threshold x that demands an upgrade in the cluster configuration. The cluster

configuration will not change to the previous one as soon as the incoming workload de-

creases below x. Another value y (y < x) is defined for the downgrading reconfiguration.

Important works for clustered servers [11, 10, 27, 29] presented similar ways of applying

DVS and cluster reconfiguration, using threshold values, based on the utilization or the

system load, to define the transition points and keep the processor frequencies as low as

possible, with the fewer possible number of active nodes. All these works are summarized

in the survey presented in [7].

The work in [32] evaluates DVS policies for power management in systems with un-

predictable workloads. One simple technique, used in [43], is the application-oblivious

prediction, based on periodical utilization monitoring. However, a good result is ob-

tained because of the Web traffic behavior nature, since although the Web traffic presents

high instantaneous fluctuation, it becomes constant as we increase the observation win-

dow. Therefore, by choosing the appropriate observation window the monitoring tends

to present low fluctuation. The work in [43] gives a step further because they consider

machines with discrete voltage scaling and the given solution allows the servers to operate

at different frequencies. However, the homogeneous cluster assumption still holds. They

propose the use of tables built off-line so that the application can consult it on-line to

chose a cluster configuration based on the incoming workload monitored. It consumes

4 Related Works 40

more memory but minimizes the processing overhead needed to make the maths on-line.

They also show more complex techniques which attempt to predict performance needs by

monitoring the arrival rate and CPU requirements of each request. Despite supporting

more than one kind of request, all servers must be able to handle any of them, thus not

supporting data partitioning.

The work in [27], besides combining DVS techniques with VOVO to save energy

at processor level, analyzes other system’s resources utilization and demand to perform

VOVO reconfiguration. For instance, HD and memory demand are pondered when decid-

ing whether to turn machines on or off. This work is particularly important because for

the first time in the literature energy saving strategies for Web servers takes into account

QoS constraints, which is fundamental in this environment as long as it characterizes

a soft real time system. It also proposes the usage of Proportional-Integral-Differential

(PID) feedback controller, a well-known tool of control theory that takes into account

past history and speed of changes in demands. In this work, only continuous frequencies

are considered.

The work in [33] considers DVS in QoS enabled Web server clusters, assuming load

balancing in the nodes, which makes the power management problem symmetric across

the cluster. Besides, the problem is modeled as a task scheduling, with a computation

time and a deadline assigned to each request type. As long as the computation time can

not be known in advance, the mean computational time is utilized, but the Web traffic’s

high variation is not taken into account. In [25] is presented a simple reconfiguration

technique for a server cluster. Their model assumes a M/M/m queue and the energy

consumption is calculated using the system expected waiting time. However, they do not

consider heterogeneity, QoS constraints, nor the DVS capability.

In [19], a technique for the dynamic reconfiguration of the cluster is presented. It is

based on a predefined metric, especially for energy/throughput. They use off-line tech-

niques (simulated annealing) to obtain tables for each load level, to help in the dynamic

reconfiguration of the cluster. Their model consider different types of requests and their

approximate resource usage, including processor, network, disk, and software resources.

In their model both requests and machines can differentiate from one another in all kind

of resources. Therefore, a machine can have a faster processor and slower HD access and

vice-versa. Similarly, a request type can be processor intensive and another request type

I/O intensive. They model these characteristics about request and machines in matrices

and solve the maths using optimization techniques due to their complexity. They use a

4 Related Works 41

content-blind distribution with intra-cluster cooperation, so that different requests types

can be directed to the most appropriate server to handle them.

Finally, the papers [43] and [31] are the most relevant to our work. The former propose

the technique LAOVS (Load-Aware On-off with independent Voltage Scale), where the

determination of the numbe of active nodes is made using a table calculated off-line, with

a load discretization. For each load value, the best number of active nodes is obtained.

The local power management is based on DVS using the same techniques presented in [32].

Since they assume that the servers are homogeneous, the local power management tends

to stabilize having all servers operating at approximately the same frequency through

simply distributing the incoming workload evenly among the active nodes. They do not

consider heterogeneity.

In [31] they include heterogeneity and QoS restrictions. In this work the machines are

sorted off-line accordingly to a policy and they are always brought on and off as needed in

the same order. It avoids constant switching of the nodes, which is a expensive operation

from both time and energy standpoints, and minimizes the complexity of the method. In

order to determine when a node must be brought on or off they analyze off-line the cutoff

point where it is more efficient to have more machines running slower than a few machines

running faster. They show through experiments that once this point is crossed, having

more machines will most often be the best option from this point on. The quadratic

energy consumption increase with the frequency increase accounts for this behavior, thus

reaching a point where it is more energy efficient to have more machines working slower.

Paper [17] was our first work in this field. In this work we also addressed both

heterogeneity and QoS constraints, as the work presented in [31]. We modeled our system

as N M/M/1 servers, where N is the number of server nodes. However, in our previous

work we assumed only one kind of request and the Web traffic generation and service

time followed a Exponential distribution. Now we consider a case where the Web traffic

generation follows a Pareto distribution and more than one kind of request arrive at

the cluster, but all of them having the same QoS constraint yet. Nonetheless, the PM

technique still assumes the Exponential distribution of the Web traffic and we analyze

the impact of it.

Chapter 5

System Model

In this chapter we will describe our work. The previous sections presented the background

necessary to conduct it. Chapter 2 presented the state-of-art for Web servers architectures

and Chapter 3 a PM overview. Basically, our work consists of saving energy in Web

servers while meeting the QoS constraints of the application. Section 5.1 describes the

Web server model that we adopted in our work; Section 5.2 formally presents the problem

to be tackled; and finally, Section 5.3 describes the proposed solution.

5.1 Model

As explained in Chapter 2, there are several ways to build a server cluster. It is a

complex infrastructure comprised of many machines, yet looking to the outside world as

a single entity. The main functional concerns in such infrastructure were identified as

being the request routing (see Section 2.2), request dispatching (see Section 2.3) and data

placement (see Section 2.4). Furthermore, the service that the server cluster provides rules

the architectural design deployed. For instance, a server that utilizes data partitioning to

improve performance (service issue) must use content-aware request dispatching or allow

request rerouting at server node level (architectural issue). The PM mechanism developed

in this work targets a specific server cluster design that will be detailed in Section 5.1.1.

Finally, in order to validate the proposed mechanism we built a server cluster simulator

and implemented the mechanism on it. For the sake of simplicity, the simulator does

not reproduce a real life server with fidelity and some simplifying assumptions done are

detailed in Section 5.1.2.

5.1 Model 43

5.1.1 Cluster Features

In our work we adopt the cluster-based approach rather than the other architectures due to

the presence of a central element which has total knowledge of the whole system, the front-

end. In this architecture, the front-end is responsible for redirecting the incoming requests

to the server nodes and we believe that this architecture is best suited to incorporate

PM techniques because we can exploit the front-end knowledge of the whole system to

coordinate the PM actions, thus providing better opportunities for overall system energy

saving. Furthermore, as discussed in Chapter 2, the other architectures lack of efficient

request routing mechanisms, and hence dispatching mechanisms, which are very important

when performing PM control. Besides, local adaptations cannot fully exploit cluster

heterogeneity when taking cluster-wide decisions, like bringing servers on and off, hence

making the cluster-based approach the most reasonable option to take.

The cluster-based server architecture described in Section 2.1.1 (see Figure 2.1) is

comprised of a front-end, a server layer and a back-end server layer, like database or

application specific servers. However, here we consider only the front-end and server

layers, disregarding the other layers. We do it because our goal is to save energy at the

server layer and the front-end is present in the model only because of its crucial importance

to the server operation.

We have also made an assumption about the service that the server will provide. We

assume that all servers can handle any request, hence relieving the dispatching policy

of content awareness. Requests are characterized by a probability of requesting I/O op-

eration, a mean inter-arrival time, a mean service time for the CPU execution, a mean

service time for the I/O execution and a deadline (QoS constraint). Although deadline

specification is not a default requirement for request in the Web environment, a popular

transactional Web e-Commerce benchmark called TPC-W [2] defines it as a server pa-

rameter to ensure QoS to the final user. As long as user’s comfort comes to be of main

concern nowadays, we adopt it in our model. However, we consider the response time

as the interval between the arrival of a request at the cluster and its departure from the

cluster. Nonetheless, the most adequate would be to consider the response time from the

client standpoint. In this work we disregard any client-server communication overhead,

focusing only on the server behavior.

We demand that at least a fraction β of the incoming requests must meet their dead-

lines, since a small delay in the response time will not compromise the system. We call β

the reliability factor. And finally, there can be any number of requests that the server must

5.1 Model 44

deal with, each of them having their own particular features, but all of them subject to

the same QoS constraint and probability of requesting I/O nevertheless.

The front-end has total knowledge of the servers that comprise the cluster and their

features. The front-end tasks are:

• to monitor the system workload;

• to compute the system utilization and energy consumption;

• to set up the cluster configuration, that is, to decide which servers must be active

at a time and their operating frequencies;

• and, to act as a dispatcher for the dispatching policy.

First of all, let’s differentiate load from utilization. Although both are related to the

workload the system is handling, load is related to the amount of work it can handle at

full power, whereas utilization is related to the amount of work it can handle in the actual

configuration. For instance, suppose a server S that can handle 4 requests per second

(rps) at full power but it is currently running at half-power (hence it can handle 2 rps).

If the actual workload is 1 rps, the server load is said to be 25% (since it can handle 4 rps

at full power) but the server utilization is 50% (since in the actual configuration it can

only handle 2 rps).

There are several ways of calculating the utilization or load of a system. Since they

cannot be calculated instantaneously, the solution is to calculate them in a recent past and

consider that it will barely change for a while or to use some kind of prediction strategy.

Usually prediction strategies are based on stochastic processes, exponential averaging or

specific application level information, and their goal is to predict the future based on past

information and some knowledge over the domain.

In our cluster we calculate them using the recent past result because the Web traffic

presents low long-term fluctuation and the past behavior might be a good guessing for

the future if the range of time we look into is big enough. Every server node computes

its own utilization and reports it to the front-end, and since the front-end knows each

server’s actual configuration, it can locally compute the load for each server and for the

overall system as well.

Let ρi be the utilization of server i, fopi the current operating frequency of this server

and max_freqi its maximum operating frequency. Then, the normalized load for this

server is computed as follows:

5.1 Model 45

loadi =
ρi × fopi

max_freqi

(5.1)

And the normalized system load is:

load =

∑N
i=1 ρi × fopi

∑N
i=1 max_freqi

(5.2)

Furthermore, we calculate the system load as a moving average. Moving averages are

used to smooth out short-term fluctuations, thus highlighting longer-term trends. In other

words, the load calculation does not rely only on the last obtained result, but also take into

account its behavior over a longer past. Since the Web traffic presents high instantaneous

fluctuations but tends to stabilize over the time, the use of moving averages seems to be

very suitable.

The determination of the best cluster configuration at a given time is the problem to

be solved and will be discussed in Section 5.3. However, as soon as this decision has been

made, it is the front-end role to send it to every server node, so that they can perform

the necessary reconfigurations, if needed. The front-end informs to each server whether

they must be on or off, and, in case they must be on, the operating frequency. Of course,

servers chosen to be turned off must deal with its pending requests before and no further

requests can be dispatched to them.

The dispatching algorithm adopted is the DWR policy (Dynamic Weighted Random).

This policy randomly chooses a server to handle an incoming request upon its arrival, but

the probability of any of the servers being selected to handle the request are not the same.

Each server is assigned a weight that is linearly proportional to its operating frequency.

Therefore, the faster a machine is, the more requests it can serve, and hence, the higher

its weight will be. The weight of a server i (qi) is computed as follows:

qi =
fopi

∑N
j=1 fopj

(5.3)

However, the time a machine spends to serve a request is not only a function of its

processor speed. Processor’s architectural issues (like Cycles Per Instruction (CPI)) and

memory (cache size, data access policy and so on) are some examples of factors that

affects request serving. For this reason, the most appropriate approach would be to run

benchmarks for each type of request on each server for each frequency that the server

supports and extract a efficiency factor for the servers based on how fast they can execute

5.1 Model 46

it. Furthermore, in the presence of more than one kind of request a machine can have

different efficiency factor for each request type. It results from two factors:

• different requests have a different set of instructions;

• and, different architectures are likely to have different CPI for each type of instruc-

tion.

So, a reasonable efficiency factor should take into account this heterogeneity by con-

sidering the benchmark result and the percentage that a particular request contributes

for the overall incoming workload. Let R be the number of request types in the system,

pr the percentage that request r contributes in the overall incoming workload and efrif

the efficiency factor of server i operating at frequency f . Then, a server weight could be

defined as:

qi =

R
∑

r=1

pr ∗ efrif (5.4)

This expression is simply a weighted average that assigns higher weights to servers that

are able to, on average, execute requests faster. However, as long as we only performed

simulations, we were unable to obtain the benchmark results. That is why we use the

processor speed as the only parameter to determine the machine efficiency. Nonetheless,

it is the way we use this machine efficiency factor and not the way we obtain it that is

the main concern in this work. So, henceforth we will consider the server’s operating

frequency as its efficiency factor, hence using Equation 5.3 to determine qi.

5.1.2 Simulation Environment

In the previous section we described our target environment. The implementation of the

work proposed here was done in a simulator that models this environment, rather than

implemented in a real environment. The simulated server cluster is composed of only

two layers: the front-end layer and the server layer. As mentioned earlier, our focus is

on saving energy at server layer and the front-end layer is present in the model only

because its crucial. However, as long as we are only interested in its functionality and

not in its behavior, the front-end in our simulation is comprised of a single node that can

perform any operation without any overhead. It is responsible for taking the traditional

dispatching and routing decisions tasks, besides the newly PM tasks. In other words, for

5.1 Model 47

the sake of simplicity, we assume that the front-end is composed of a single node that

consumes no power and executes any task instantaneously. We assume this because our

focus is on the server layer and taking into account front-end layer details would only

complicate the model.

Real life machines take up some time to turn on and to shut down. There is also an

inherent energy overhead, which makes this event even more important. In the simulator

a node is assumed to shut down instantaneously and without any overhead, but to be

brought on its time and energy overhead are computed. Neither the energy overhead nor

the time overhead of this activity are negligible as they impact on energy saving and QoS

provisioning, respectively. That is why VOVO must be applied wisely.

We characterize a server by two features: its processor speed and its energy con-

sumption. Each node has a different energy consumption assigned to every operating

frequency it supports and a energy consumption when idle. We assume that the energy

consumption of a server during idle cycles is the same energy consumption of this server

when operating at its lowest frequency. This is the same assumption done by [30], the

first paper we based our work on, and we did it for comparison purpose.

Besides the cluster environment, there is another vital component to finalize the sys-

tem: the Web traffic. The utilization of a real life trace would be more realistic, but in

the current phase we simulated it as well. A request type r is characterized by a mean

execution time 1
µr

, a mean inter-arrival time 1
λr

and a probability αr of a incoming request

being of this type. Nonetheless, we only have as system input parameter a inter-arrival

rate λ and R probabilities αr, where
∑R

r=1 αr = 1. Upon arrival of a request, it will be

of type r with αr probability, and it is a well-known result that in this case we obtain R

random variables with λr = λ∗αr mean rate. The mean execution time parameter assumes

that the request will be executed on the fastest machine at full power (max_freq).

The inter-arrival and execution times are random variables that could follow any

distribution. At first, we adopted the Exponential distribution due to its well-known

results and simple analytic treatment. However, it was identified that the Web traffic

follows a Pareto distribution rather than Exponential one [13]. As detailed in this work,

factors like client thinking time when accessing a Web page, data popularity, bursty

request arrival (even when a client requests a single page, it may be composed of a lot

of objects and any of them are retrieved in the same request), network delay between

the time a client sends a request and the time it arrives at the cluster impact on the

distribution characteristic of the inter-arrival time. A Pareto random variable, unlike

5.1 Model 48

a Exponential one, has the property of representing the burstiness effect. Moreover, it

presents a property called self-similarity, which means that a distribution shows the same

statistical properties at many scales, and the same property is observed by empirical

analysis of Web traffic traces. Therefore, for the inter-arrival time we adopted the Pareto

distribution.

The requests are assumed to be CPU-bounded, which accounts for the PM targeting

the processor. However, in order to investigate the I/O impact on QoS provisioning,

requests can demand I/O operations with a given probability. In case a request needs to

be I/O served, it releases the CPU and goes to another queue to wait for I/O service.

Every request type has a mean I/O execution time 1
µIO

and the time it will spend on

I/O follows a Exponential distribution, like that for the CPU execution time. After

being served it goes to the CPU again to finish any further processing. However, in the

simulator, a request, after being I/O served, takes up the processor even though it spends

no time there. We do it so because drawing another CPU execution time would imply

more processing from requests that demand I/O operation than from the ones that do

not. It would jeopardize our goal of analyzing the impact of the I/O and queueing time

on requests that require I/O. Moreover, since we are interested only in the time overhead

when considering I/O operation, the energy consumed by the I/O device is disregarded.

front end

I/O queue

I/O queue

I/O queue

CPU queue

CPU queue

CPU queue

I/O probability

I/O probability

I/O probability server 1

server N

server 2λ
µ2

µ1

µN

λ1

λ2

λN

Figure 5.1: Cluster model.

5.2 Problem Definition 49

5.2 Problem Definition

The problem to be solved is to establish, for each processor, whether it will be on or off

and, in the former case, its operating frequency, subject to energy and timing restrictions.

The solution to the problem is a vector {fop1, fop2, . . . , fopN}, where fopi is the operating

frequency of processor i. fopi is set to zero if the processor i must be inactive.

As system input parameters, we inform the desired response time for the requests and

the fraction β of requests that must be served meeting this deadline. The power consump-

tion of a server i running at frequency fj is represented as pi(fj) (f0 represent that processor

i is turned off, and consumes no energy). With these assumptions, considering only the

active servers, the aggregated power of the cluster is P =
∑N

i=1 [ρipi(fopi) + (1 − ρi)pi(idle)],

where pi(idle) is the power consumption of processor i when idle, and ρi is the utilization

of this processor.

Our goal is to find a solution vector that minimizes the system’s overall energy con-

sumption while avoiding overflow in any of the system queues (in other words, a cluster

configuration that is able to deal with the incoming workload) and that meets all QoS con-

straints. However, we must also be aware of the number of VOVO adaptations, because

bringing a server on and off is a high cost operation and should not be done carelessly.

Therefore, it is also part of the problem to minimize the server switching over time.

5.3 Solution

Basically, our goal is to save energy as much as possible. However, if we only desired to

save energy we could simply shut down all servers. The point is that we desire to save

energy, yet under two constraints:

• deal with the incoming workload;

• and, meet the QoS constraint.

Furthermore, the steps the cluster needs to take to satisfy these constraints demand

processing, which is a critical resource under heavy load conditions. For this reason, we

tackle this problem in the same way as proposed in the work [30]. That is, we build tables

off-line whose entries are the workload that the system must handle and the content of

each entry is the proper cluster configuration.

5.3 Solution 50

As we will see in the sequel, only with servers’ processor specification it is possible to

know how much workload the cluster can handle. Since the servers’ processor specification

is a information we have off-line, we can have it computed and stored into tables before

the system runs. However, in order to meet the deadlines of the requests we might need

to process them faster, but how fast we have to do it is the key point. Here is the point

where we come up with two solutions: an on-line and an off-line approach. The off-line

approach assumes that the Web traffic follows a Poisson process and makes the maths

off-line based on the analytic treatment for M/M/1 servers. And the on-line approach

monitors how fast requests are being served during execution time and make the decisions

of cluster reconfiguration based on this monitoring.

In order to come up with a final solution, we attack each of the constraints individually.

The next three sections describes how the items listed above are dealt with and jointly

considered into a final solution.

5.3.1 Dealing with the Incoming Workload

First of all, the most important is that the solution deals with the workload. To solve

this problem we implemented a backtracked algorithm that explores all possible cluster

configurations and returns the one that minimizes the energy consumption while dealing

with the workload. There are many mechanisms to tackle this problem, like Linear Pro-

gramming (LP), Tabu Search, GRASP and so on, but we are not concerned about how

the solution is found here, hence doing it the simplest way possible. Our problem can be

mathematically defined as:

Minimize:

P =

N
∑

i=1

[ρpi(fopi) + (1 − ρ)pi(idle)] (5.5)

Subject to:

x =

∑N
i=1 fopi

∑N
i=1 max_freqi

≥ workload (5.6)

Where,

ρ =
workload

x
(5.7)

5.3 Solution 51

Of course, equation 5.5 assumes that the utilization of the system (ρ) is perfectly

balanced among all active nodes. Although it is not true all the time, on average DWR

policy tends to balance the utilization among the servers due to the way we assign weights

to the servers. It means that every active server will tend to be under the same utilization

as the system (ρi = ρ for every server i). That is why we do not use ρi in this equation.

5.3.2 Meeting the QoS Constraint

Although we can deal with the incoming workload, we still must guarantee that the time

restriction is met. The time restriction imposes that at least a fraction β of the requests’

response time have to satisfy their deadlines. Even when the cluster is able to deal with

the incoming requests the speed at which the requests are dispatched might not be enough.

However, how fast we have to go to provide the desired response time is the question to

be answered. If we do it too fast we meet the deadlines but we waste energy, since we

are providing more QoS than needed. On the other hand, if we do it too slow we do not

meet the deadlines and compromise the system functionality.

In order to determine how fast or slow we have to operate is not a trivial issue. Unlike

the previous case, where we could define the cluster configuration based only on the mon-

itored system load, here only this information is not enough. If we wish to provide service

with QoS, we must either monitor the response times on-line or assume some kind of dis-

tribution of the inter-arrival and response times to control. In the light of this situation,

we propose two solutions. The former is an off-line approach that consists of assuming

that the inter-arrival times and execution times follow an Exponential distribution. Al-

though it is known that an Exponential distribution does not characterize a Web traffic,

we adopt it because of its simplicity and due to the fact that closed expressions can be

obtained for several system’s characteristics. Nonetheless, as we have more than one kind

of requests and they differ in mean execution time and arrival rate, depending on its type,

it characterizes a Hyper-exponential distribution. The latter is a on-line approach that

adjust the cluster configuration based on runtime load and QoS monitoring.

The next two sections will discuss these approaches in further detail.

5.3.2.1 Off-line Approach

Assuming that the requests’ inter-arrival and service times on each server follow an Expo-

nential distribution, they can be modeled as N M/M/1 servers. In this model, the response

5.3 Solution 52

time distribution follows an Exponential distribution with c.d.f. F (t) = 1 − e(µ−λ)t.

Nonetheless, in our case there are R different request types in the system with µr mean

service rates and λr mean request arrival rates, which characterizes a Hyper-exponential

distribution. However, when the random variables for the inter-arrival and service times

of a server follow a Hyper-exponential distribution, the response time distribution can

not be treated analytically anymore. As a Hyper-exponential distribution is obtained as

a weighted average of different Exponential distributions [20], our proposed solution is

to assume that the c.d.f. for the response time in this case follows a Hyper-exponential

distribution whose c.d.f. is obtained as an weighted average of the c.d.f. of the response

times of each request type.

F (t) =

R
∑

r=1

αr ∗ (1 − e−(µr−λr)t) (5.8)

As we can see in Expression 5.8, when R = 1 we obtain the same expression as for

the case of M/M/1 servers, as it should be. Moreover, as mentioned earlier, µr is defined

based on the fastest processor and λr is the mean request arrival rate of request of type r

in the system and not in a specific server. For a server i, the service rate is related to its

current processor speed and the mean request arrival rate is related to the weight of the

server in the dispatching policy:

µri =
µr ∗ fopi

max_freq
(5.9)

λri = λr ∗ qi (5.10)

Therefore, the percentage of requests whose response time is below t at server i (Wi(t))

is:

Wi(t) =

R
∑

r=1

αr ∗ (1 − e−(µri−λri)t) (5.11)

And the percentage of requests whose response time is below t in the system (W (t)) is

calculated as an weighted average of Expression 5.11 for each server i that comprise the

cluster.

5.3 Solution 53

W (t) =

N
∑

i=1

(

qi ×

R
∑

r=1

αr × (1 − e−(µri−λri)t)

)

(5.12)

We must find a cluster configuration that asserts that W (t) ≥ β and apply this re-

striction along with Equations 5.5 and 5.6 as a second constraint. This solution assumes

the Hyper-exponential nature of the incoming workload and approximately calculates the

mean response time of the system. λri is obtained though incoming workload monitoring,

t is the server parameter that represents the deadline of the requests, αr is a parameter

defined in Section 5.1.2 and qi is informed by the dispatching policy. Therefore, we adjust

the servers’ operating frequency to change the µri values and find a configuration that

minimizes the overall energy consumption and asserts that W (t) ≥ β.

Finally, as in this model a serve configuration obtained by Equation 5.12 is for an

specific deadline t and reliability factor β, we must have a different table for each QoS

constraint we want to establish.

5.3.2.2 On-line Approach

Alternatively, instead of determining an equation for the cumulative density function of

the response times, we can monitor them on-line. Then, we can increase or decrease the

the computational power of the system based on the monitoring result. If the fraction of

request that meet their deadlines is below the reliability factor β, we must increase the

computational power of the system; on the other hand, if it is too high, we must decrease

the computational power.

Nonetheless, since we are dealing with a soft real-time system, a small number of

deadline misses will not jeopardize the system operation and can be tolerated. On the

other hand, meeting more deadlines than established should not be a problem. However,

in this case it means that the system is running faster than needed, and hence wasting

energy. Therefore, we tolerate it only if the fraction of deadlines met is barely over β.

We increase or decrease the computational power of the system by multiplying it by a

fix factors, which may be different when performing increasing or decreasing adjustments.

If we must increase the computational power of the system, we multiply it by an up_factor;

on the other hand, if we must decrease the computational power of the system, we mul-

tiply it by an down_factor. Additionally, the values that the up_factor and down_factor

parameters assume might be constant or variable. In case we change it over time, we call

it a mobile fix factors. The only policy we implemented to the mobile fix factors is that the

5.3 Solution 54

value they assume is based on how far we are from the desired QoS level. For example,

if we wish a reliability of 70% but obtain 60%, we increase the server capacity in 10
60 by

making up_factor = 1 + 10
60 ; or else, if we wished a reliability of 60% but obtained 70%, we

would deacrease the server capacity in 10
70 by making down_factor = 1 − 10

70 . This strategy

aims to converge quicker to the goal (β), as it assigns high values to the up_factor and

down_factor parameters when we are far from the goal and low values as we get closer to

it.

It is a simple approach nevertheless, and more complex approaches, like the usage

of PID controllers, may be investigated. However, here we are only interested in show

an alternative solution to the off-line approach that presents no assumption on the Web

traffic nature.

Finally, whenever we wish to increase or decrease the computational power of the

system we do it by looking up the table built off-line based on Equations 5.5 and 5.6,

since it provides the most energy-efficient configuration for every computational power we

want to get.

5.3.3 Applying the Solution

So far, for a given load condition, we have the tools in hand to determine which config-

uration to set up the system. However, we must keep in mind that although the Web

traffic tends to present long-term stability, it presents high short-term fluctuations that

must be filtered in order to avoid intermittent cluster reconfigurations. These intermittent

reconfigurations are not desired because they are not for free from both time and energy

standpoints. We can smooth it out, for example, by increasing the load monitoring peri-

odicity or its moving average window. In this work, we choose to tackle it by demanding

that the decision to increase or decrease the current cluster capacity must be taken a

given number of times in a row before consummating it. Although the decision must be

always to increase or decrease, they do not need to be the same decision.

Finally, our last consideration pertain to how to use the solution presented here. Using

the expressions to compute it on-line consumes much time that might compromise the

the cluster service. Furthermore, these calculation must be done by the front-end, which

can become a bottleneck under high load condition, where processing speed is critical.

In order to avoid this processing overhead, we build a table off-line whose entries are the

normalized discrete system load (that is, ranging from 0 to 1 in granularity steps) and

the content of each entry is the cluster configuration to handle the respective load. The

5.3 Solution 55

granularity parameter must be chosen carefully, since low values incurs big tables that

consume a lot of memory (a table has
⌈

1
granularity

⌉

+ 1 entries) and high values lead to

coarse-granularity control. Furthermore, if we adopt the off-line QoS solution, the time

restriction is defined during table building phase, hence demanding a table for each pair

of desirable response time t and reliability factor β.

Chapter 6

Results

In this chapter we describe the experiments we made in order to analyze the behavior of

our PM mechanism. We considered two scenarios and through the experiments we adjust

several configuration parameters to see how they impact on cluster performance. The

configurable parameters in our PM mechanism are:

• Load Periodicity – Defines how often we calculate system load.

• Load Moving Average Window – Besides being calculated periodically, the load we

attribute to the system at a given time is calculated as an average of the last

system load values obtained through monitoring. We do it so because although

the Web traffic presents high sudden fluctuations, it tends to stabilize over time.

Therefore, we use this average to filter out these fluctuations, yet taking it into

account. This parameter defines the number of elements we use in this average,

or else, how long we look into the past.

• Utilization Periodicity – Defines how far in the past we have to look at when calcu-

lating the server utilization. As explained in Chapter 5, the server utilization

is calculated as the fraction of the observation time that this server has been

busy. The utilization periodicity defines both, how long is this observation

time and how often we do the calculation.

• Table Granularity – For a given system load, we look up a table to obtain the proper

system configuration. However, the system load is a continuous variable, hence

being impossible to have an entry in the table for every value that the system

load can assume; therefore, we discreteze the system load. The table granu-

larity impacts on the table size, hence memory consumption, and on cluster

reconfiguration due to the loss of accuracy.

6.1 Scenario 1 57

• Histogram Granularity – A histogram is used only when performing on-line QoS

monitoring and adaptation. The on-line approach utilizes a histogram to mon-

itor the percentage of requests that miss their deadlines. Hence, we have to

discreteze the time in order to make a histogram of the request’s response time.

When the time intervals are small, the histogram takes longer to compute; when

it is larger we loose accuracy.

• Request’s Features – Request’s features encompasses the probability of requesting

I/O operation, the mean inter-arrival time, the mean service time for CPU ex-

ecution, the mean service time for I/O execution, the probability of requesting

I/O and the deadline. Moreover, as the Web environment is a soft real-time

system, it is not necessary to meet the deadlines of all requests. For this rea-

son, the system is provided with a percentage β that defines how many of

the requests must meet their deadline. These parameters impact on system

load behavior and adjusting them provides several opportunities to analyze

the cluster behavior under different load and constraint situations.

Given it is impossible to analyze all the combinations of the system parameters, we

focus on the ones we judge the most important and watch their influence by varying them

and fixing the other parameters. Nonetheless, these parameters and their behaviors are

interconnected and the relationship among them should be further explored. The next

sections describe the two scenarios we created, the experiments and the obtained results.

6.1 Scenario 1

For the experiments in the first scenario we assumed a server cluster with 8 machines,

two of each type shown in table 6.1. This scenario is a simple version of the possible

scenarios that the simulator can run. However, for the sake of simplicity, we exploit it to

analyze the impact of some of the parameters presented above. So we only use the off-line

approach here. We assume only one type of request, whose inter-arrival and execution

times follow an Exponential distribution. The average inter-arrival time is dependent on

the desired workload and the average execution time of each request is 0.01s (if executed

at the highest frequency of the fastest processor). In each experiment, a total of 8 × 105

requests were simulated. The tables were built with a discrete load of granularity 0.01. The

QoS requirement and reliability factor are set up accordingly to the specific experiment.

Moreover, we used only the off-line approach to deal with the QoS restriction. Also, it

6.1 Scenario 1 58

is assumed that load measurements are made every 1s, that changes in the configuration

are done after 5 consecutive load increases (decreases), and that the utilization ρi of each

server is computed every 1s in the simulation. The moving average window for the load

calculation has size 4. Finally, it should be mentioned that, in the simulator, the effect of

switching on a server is taken into account. For the experiments described, switching on

a server implies a 33s penalty and an additional 190J of energy consumption, as done in

work [30].

Table 6.1: Processors specifications.

Frequencies Respective power consumption
Processor (MHz) (Watts)

XScale idle, 150.0, 400.0, 0.355, 0.355, 0.445,

600.0, 800.0, 1000.0 0.675, 1.175, 1.875

Power PC 750 idle, 4.125, 8.25, 16.5, 1.150, 1.150, 1.369, 1.811,

33, 99, 115.5, 132 2.661, 4.763, 5.269, 6.533

Power PC 1GHz 750GX idle, 533, 600, 667, 733, 7.63, 7.63, 7.8, 7.97, 8.13,

800, 867, 933, 1000 8.30, 10.35, 12, 12.25

Power PC 405 GP idle, 66, 133, 200, 266 0.74, 0.74, 1.09, 1.36, 1.58

To assess our method, we compared it to the one proposed in [31]. Figure 6.1 shows

average power consumption of our method, for different QoS parameters and constant

reliability factor equal to 0.8. For the method presented in [31] we only consider the case

without QoS restriction because we want to compare both methods in the most energy

efficient situation. For this comparison, we use a QoS parameter of 1s in our method

because this value is high enough for the great majority of requests to be executed in

time, resulting in the best energy efficiency. As we can see in the Figures, our method

presents better results, even in some cases where there is a more tight response time

restriction (see curves QoS = 0.05s and QoS = 0.07s for workload lower than 0.3). The

reason for this is that in our method, the search algorithm finds the best configuration for

each load level, while the method presented in [31] uses a predefined sequence of machines

to be turned on and off, and this limits the optimization process. As expected, the smaller

the QoS requirement, or the higher the workload, the processors will have to work faster

to respond to the requests within the specified deadline, thus consuming more power.

This behavior can be clearly seen in the figure. All curves, at some point, meet in the

same line because the QoS constraint becomes so tight that the system must operate at

full power whenever it is over a certain load. For example, for workloads greater than 0.7

in Figure 6.1, all the configurations with QoS response times of 0.02, 0.05, and 0.07 seconds

6.1 Scenario 1 59

achieve the same power consumption, since the cluster operates at full power.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

P
ow

er
 (

W
at

ts
)

Normalized workload

Rusu2006
QoS = 0.02s
QoS = 0.05s
QoS = 0.07s
QoS = 1.00s

Figure 6.1: Cluster aggregate power for different QoS requirements, with β = 0.8.

Figure 6.2 shows the effect the workload granularity representation has on the energy

saving method. As expected, fine granularities provide more energy saving than coarse

ones, but at the expense of bigger tables and more sensitivity to cluster reconfiguration

under unstable load (as usual in real life). This result was produced without taking into

account QoS restrictions (simply setting the reliability factor to 0), as not to hinder the

impact of the granularity factor. As we can see in this Figure, the impact of coarse

granularities are hard. The greatest power consumption variation in percentage is 43%,

when the load is 0.21 and the greatest variation in amount is 13.47 Watts, when the load

is 0.91. Thus we decided to assume a table granularity of 0.01 throughout the experiments

we performed.

Figure 6.3 shows the cluster power consumption considering different workloads. In

this experiment, the QoS requirement was kept constant at 0.05s. As it can be seen,

the effect on power consumption of imposing a higher reliability factor is greater as the

workload increases. In this situation, the system becomes rapidly saturated and starts

to work at full power (best effort approach). For example, the curve for workload 0.8

becomes saturated for reliability 0.6, and the curve for workload 0.6 becomes saturated

only for reliability 0.8.

Finally, Figure 6.4 shows the actual fraction of requests that have their time demands

6.1 Scenario 1 60

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Load

granularity=0.01
granularity=0.1

Figure 6.2: Power consumption versus load.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ow

er
 (

W
at

ts
)

Reliability factor

workload=0.2
workload=0.4
workload=0.6
workload=0.8

Figure 6.3: Power consumption of the server cluster as a function of β, for different
workloads, with deadline 0.05s.

satisfied, for different β and workloads. The previous Figures presenting the cluster aggre-

gate power consumption were built using information generated during the table building

phase, but this Figure was produced from results of the actual simulation process. Ideally,

6.2 Scenario 2 61

this curve should follow the identity line (the identity line represents the situation where

the actual percentage of deadlines met is exactly the same we impose with the parameter

β), but it is easy to note that, as the workload increases, it is harder to ensure a high

percentage of met deadlines (or even impossible, due to cluster saturation). As can be

seen, with β increasing, the curves depart from the identity line, and, eventually, saturate

(meaning that the system cannot satisfy the QoS requirement at the specified reliability

level, shown as points below the identity line). Additionally, due to the discrete frequen-

cies of the processors, as the workload and factor β decrease, the curves will bend upward.

This is because the processors have a minimum operating frequency and the requests are

being processed at a higher frequency than necessary. This can be clearly seen in the

step-like curve for workload 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
bt

ai
ne

d
fr

ac
tio

n
of

 m
et

 Q
oS

 r
eq

ui
re

m
en

ts

Reliability factor

workload=0.20
workload=0.55
workload=0.71

identity

Figure 6.4: Actual fraction of QoS restrictions met, as a function of β, for different
workloads, with deadline 0.05s.

6.2 Scenario 2

For the second scenario we assumed a server cluster with 6 machines, three XScale and

three Power PC 1GHz 750GX (see table 6.1). We consider only these machine types

because the four machines presented in table 6.1 are too heterogeneous among them,

what has a negative effect on the system behavior. For example, note that machine

Power PC 405 GP is much slower than the other machines. Therefore, at the point where

6.2 Scenario 2 62

the servers of this type must be brought on a small increase in the workload might imply

another server of other type to be brought on, since the Power PC 405 GP machines can

not deal with much load. Hence, the VOVO negatively impacts on the system behavior.

This disparity in machine’s performance also impacts on QoS provisioning. Additionally,

we increase the scenario complexity with I/O operations, Web traffic following other type

of distribution than the Exponential and more request types. Therefore, now we have a

more unstable workload and cluster reconfigurations will be needed more often than in

the previous scenario.

We assume two types of requests this time, a and b , whose execution times follow

an Exponential distribution and inter-arrival times are experiment dependent. Each one

comprises 50% of the total incoming workload of the system. The average inter-arrival

time is dependent on the desired workload and the mean execution time of the requests

a and b are respectively 0.01s and 0.005s when executed at the highest frequency of the

fastest processor. The I/O mean execution time for them are 0.1s and 0.05s, respectively.

Each experiment simulates two hours of cluster operation. The tables were built with a

discrete load of granularity 0.01 and the histogram with granularity of 0.001s. The QoS

requirement, reliability factor and probability of requesting I/O are set up accordingly

to the specific experiment. The I/O intensity is always low because our method targets

the CPU and we assumed from the scratch only CPU-bounded requests for this reason.

Nonetheless, it is reasonable to assume that a request might need some local information

to complete its execution and that this information can be cached. So we use a small

I/O probability to simulate the cache miss ratio behavior and analyze the impact of it

on the system. It simply makes no sense to assume high I/O demand as we have control

only over the CPU. Moreover, we use both on-line and off-line approaches to deal with

the QoS restriction, comparing their performance. The QoS restriction is always kept too

loose in the experiments because otherwise only setting up the cluster to deal with the

incoming workload would allow a great number of requests to meet their deadlines, hence

spoiling the evaluational purpose of the experiments done. Additionally, it is assumed

that load measurements are made every 4s, that changes in the configuration are done

after 10 consecutive load increases (decreases), and that the utilization ρi of each server is

computed every 1s in the simulation. The moving average window for the load calculation

has size 4. The effect of switching on a server remains the same as before. And finally,

unlike in the previous scenario, all figures presented in this scenario were obtained from

simulation results computed as an average of 10 experiments.

Figures 6.5 and 6.6 show the actual fraction of requests that have their time demands

6.2 Scenario 2 63

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

Figure 6.5: Web traffic following an Exponential distribution with mean inter-arrival time
0.02s and deadline 0.01s. Figure 6.5(a) is the behavior without I/O and Figure 6.5(b)
with 5% of probability of requesting I/O operation.

satisfied, for different β and workloads. Figure 6.5 depicts an environment where the Web

traffic has inter-arrival time 0.02s and Figure 6.6 an environment with inter-arrival time

0.03s. Therefore, the former is under a heavier load than the latter. The effect is clearly

seen in the earlier bend upward in the base of the curves of Figure 6.6 because the load is

too low and the active processors are already operating at their lowest frequency. As we

can see in Figure 6.6, when the system load is low at least 40% of the deadlines are met,

even for lower reliability factors. On the other hand, as we can see in Figure 6.5, when

the system is under a heavier load the fraction of requests that meet their deadlines keeps

decreasing as β decreases below 40%, which demonstrates that the system is decreasing its

capacity, and hence saving energy. The energy consumption of the experiments depicted

in Figures 6.5(a) and 6.6(a) is shown in Figures 6.10(a) and 6.10(b), respectively, in the

curves labeled on-line exponential and off-line exponential in both graphics. We can see that

lower load provides better savings, but the saving looks small because the set of machines

that are turned on are very economic (see the processor’s specification for the machines

used in this scenario in Table 6.1).

In both Figures 6.5 and 6.6 we show on the left side of the Figures an execution of the

experiment assuming no I/O operation and on the right side an execution of the experi-

ment assuming 5% of probability that an incoming request demands an I/O operation. As

we can see in both cases, when assuming I/O the off-line curve only shifts downward, while

the on-line curve reacts to the overhead imposed by the I/O activity and tries to keep

up with the QoS (compare, for example, the on-line curve on Figures 6.5(a) and 6.5(b)

when β = 0.6). However, as the I/O probability is too low, it is not able to jeopardize

6.2 Scenario 2 64

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

Figure 6.6: Web traffic following an Exponential distribution with mean inter-arrival time
0.03s and deadline 0.01s. Figure 6.6(a) is the behavior without I/O and Figure 6.6(b)
with 5% of probability of requesting I/O operation.

the obtained result. As we can see in the Figures, the off-line curve is always very close

to the identity line. Nonetheless, the off-line approach presents good results because the

model assumes an Exponential distribution for the inter-arrival times and that is exactly

the same distribution that we are using in the Web traffic generator in these experiments.

Yet, this result validates the assumptions and simplifications that we have made when

building the expressions that enabled us to treat this problem analytically. However, it is

well-known that it is not true in real life. Therefore, in the next experiments we analyze

how the system behaves assuming that the Web traffic follows a Pareto distribution.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

Figure 6.7: Web traffic following a Pareto distribution with mean inter-arrival time 0.02s

and deadline 0.01s. Figure 6.7(a) is the behavior without I/O and Figure 6.7(b) with 5%

of probability of requesting I/O operation.

As we can see in Figure 6.7, now that we assume a Pareto distribution of the inter-

arrival times the off-line curve is not so close to the identity line anymore. However, it

6.2 Scenario 2 65

still presents a good behavior, since it is not so far from it and, besides, it is over the

identity line, which means that we are not missing more deadlines than we are supposed

too. Furthermore, when we assume I/O demand the downward shift of the curve indicates

a better result. Furthermore, as we can see in Figure 6.10(a) in the curves on-line pareto

and off-line pareto, the off-line approach consumes slightly more energy but postpones the

energy peak when compared to the on-line approach. The only difference among the

environments depicted in Figures 6.7, 6.8 and 6.9 is the load intensity. We consider these

three situations to demonstrate that the behavior shown is not an isolated case, remaining

the same even under different workload conditions.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

Figure 6.8: Web traffic following a Pareto distribution with mean inter-arrival time 0.03s

and deadline 0.01s. Figure 6.8(a) is the behavior without I/O and Figure 6.8(b) with 5%

of probability of requesting I/O operation.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

Figure 6.9: Web traffic following a Pareto distribution with mean inter-arrival time 0.04s

and deadline 0.01s. Figure 6.9(a) is the behavior without I/O and Figure 6.9(b) with 5%

of probability of requesting I/O operation.

6.2 Scenario 2 66

 0

 50000

 100000

 150000

 200000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

(J
ou

le
s)

Reliability factor

on-line pareto
off-line pareto

on-line exponential
off-line exponential

(a)

 0

 50000

 100000

 150000

 200000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

(J
ou

le
s)

Reliability factor

on-line pareto
off-line pareto

on-line exponential
off-line exponential

(b)

Figure 6.10: Energy consumption of the system assuming that there is no I/O operation.
Figure 6.10(a) assumes a Web traffic with mean inter-arrival time 0.02s and deadline 0.01s.
Figure 6.10(b) assumes a Web traffic with mean inter-arrival time 0.03s and deadline 0.01s.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

identity function

(b)

Figure 6.11: Web traffic following a Pareto distribution with mean inter-arrival time 0.02s

and deadline 0.01s. Figure 6.11(a) is the behavior without I/O and Figure 6.11(b) with
5% of probability of requesting I/O operation.

In the sequel, we analyze the influence of the fix factors parameters in the on-line ap-

proach. Figure 6.11 shows the curves for different values of up_factor and down_factor pa-

rameter and a curve for the mobile fix factors using the policy we presented in Section 5.3.2.2.

As we can see analyzing this Figure and Figure 6.13(a), the mobile approach far outper-

forms the other techniques because it saves more energy and its curve for deadlines met

in Figure 6.11 is very close to the identity line. However, it is not how it behaves always.

During our experiments we also observed situations like the one depicted in Figure 6.12.

Here the mobile approach does not perform so bad but loses to the constant approach with

fix factors 0.7 and 1.4. Actually, when taking only the constant approaches into account,

this option behaves better, even though one could think that high values would generate

6.2 Scenario 2 67

instability as they try to adjust the server capacity in coarse-grained steps. Nonetheless,

as we can see in Figure 6.13(b), the mobile approach still postpones the energy peak, but

it slightly consumes more energy than all the other approaches for β ≤ 0.6.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

identity function

(b)

Figure 6.12: Web traffic following a Pareto distribution with mean inter-arrival time 0.04s

and deadline 0.02s. Figure 6.12(a) is the behavior without I/O and Figure 6.12(b) with
5% of probability of requesting I/O operation.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

(J
ou

le
s)

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

(a)

 0

 2000

 4000

 6000

 8000

 10000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

(J
ou

le
s)

Reliability factor

fix_factors: 0.7;1.4
fix_factors: 0.8;1.3
fix_factors: 0.9;1.1
mobile fix_factors

(b)

Figure 6.13: Energy consumption of the system assuming that there is no I/O operation.
Figure 6.13(a) assumes a Web traffic following a Pareto distribution with mean inter-
arrival time 0.02s and deadline 0.01s. Figure 6.13(b) assumes a Web traffic following a
Pareto distribution with mean inter-arrival time 0.04s and deadline 0.02s.

So far we have assumed only I/O with 5% of probability because we judged it a

reasonable cache miss ratio. Keep in mind that we are managing energy at server level,

where it is more reasonable to assume a more intensive processing than data retrieving.

If a request depends on massive data retrieving it should be delegated to another cluster

level responsible for it. However, we investigated the impact of a heavier I/O demand on

our methods and it is depicted in Figure 6.14. We analyzed situations of 25% and 40% of

6.2 Scenario 2 68

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(b)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(c)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
bt

ai
ne

d
re

lia
bi

lit
y

Reliability factor

on-line
off-line

identity function

(d)

Figure 6.14: Web traffic following a Pareto distribution. Figure 6.14(a) with mean inter-
arrival time 0.03s, deadline 0.02s and 40% of probability of requesting I/O; Figure 6.14(b)
with mean inter-arrival time 0.05s, deadline 0.02s and 40% of probability of requesting
I/O; Figure 6.14(c) with mean inter-arrival time 0.05s, deadline 0.05s and 40% of prob-
ability of requesting I/O; and finally, Figure 6.14(d) with mean inter-arrival time 0.03s,
deadline 0.02s and 25% of probability of requesting I/O.

probability of I/O demand, since higher than this is beyond the control of our methods.

We can only speed up processing to try to make up for the I/O serving, but as long as

the I/O time is much larger than the processing time and the demand increases too much

there is nothing left to do.

As we can see in the four graphics in Figure 6.14, when using the on-line approach

the method is able to react and meet the QoS constraint. The four experiments vary in

load intensity, deadline and I/O intensity. All curves are a straight line when β is low

because the load is to low and the active machines are already running in the lowest

frequency. But having a very low workload is the only way that the processing speed up

can make up for the I/O delay, hence meeting the imposed deadline. However, notice that

in graphics 6.14(a) and 6.14(b) the deadlines cannot be met for β > 0.6) even though the

6.2 Scenario 2 69

workload is very low, reflecting that this kind of environment is beyond the control of a

pure CPU aware PM strategy.

Chapter 7

Conclusion and Future Work

In this work we presented a technique to achieve minimization of energy consumption and

adequate response times for soft real-time applications in Web server clusters. During

system operation, accordingly to the offered load, to the QoS restriction (response times)

and to the predefined proportion of requests that should have their deadlines met (soft

real-time criterion), processors are switched on and off, and the ones active are set to an

optimal frequency of operation. In our simulations and comparison to other proposals,

the technique here described showed promising results.

We presented a solution based on analytic treatment for queueing system assuming

that the inter-arrival and service time of the requests follow an Exponential distribution,

because of the closed results that can be obtained for this model. Although the pattern

for Web server requests does not follows a Poisson process, we show that it is a good

approximation even though its simplicity. The Web traffic in our simulations comes from

a generator we built rather than from real Web traces. In a first moment we generated

a Web traffic following a Poisson process in order to validate the simulator, obtaining

the expected results. Then, we extended the Web traffic generator, respecting the self-

similarity nature of the requests arrival distribution by generating inter-arrival times that

follow a Pareto distribution. Only the execution time remains following an Exponen-

tial distribution. For this latter case, the Exponential assumption seems to be a good

approximation as we obtain good results in our experiments.

Nonetheless, we derive the analytic expressions used in our model through approxi-

mation, because when we have more than one type of requests the model cannot be easily

treated analytically. Therefore, as the number of kinds of requests increases the quality

of the result might degrade and this behavior must be analyzed more extensively.

In order to solve the optimization problem we used a dynamic programming approach

7 Conclusion and Future Work 71

that scan all possibilities to look for the best result. However, this approach becomes

unfeasible as the number of nodes increases because the execution time increases expo-

nentially. Nonetheless, it is not hard to realize that a heuristic for this problem can be

easily obtained, but we did not explored it because we focused on analyzing the feasibility

of our analytic treatment to save energy yet providing QoS. We also compare the analytic

treatment with an on-line approach for providing QoS and we notice that the analytic

treatment presents a good performance. Of course, our on-line mechanism is very simple

and more sophisticated mechanisms, like the use of, for example, PID controllers, might

provide good results and should be further investigated.

Furthermore, we investigated how I/O operation due to cache miss ratio may impact

on the system performance, concluding that it does not negatively impact on system be-

havior. We simulate the cache miss ratio in our experiments by using low I/O demand

rates, but we compute only the time overhead of this operation, disregarding the energy

onervhead. However, as the I/O demand increases, there is nothing our method can

do as we operate only at CPU level. Under this situation, other mechanisms must be

investigated. Nonetheless, the system must be tested more extensively in order to deter-

mine whether the Poisson assumption is really a good approximation or not. These tests

should take into account different machine types, clusters of different sizes and analyze

the system behavior as we vary the parameter presented in the beginning of Chapter 6.

Although we only targets the CPU, a typical Web server is comprised of other energy

critical elements, like storage devices, memories and other network components that might

provide energy savings and contribute to attain a better overall energy saving. Besides,

although we apply this PM mechanism to a Web server cluster, it is reasonable to think

about small adjustments to adapt it to other types of clusters, like the GRID environment.

However, when considering other types of clusters we must have their features properly

analyzed in order to exploit energy savings capabilities.

Finally, the model presented was only assessed by simulation. Implementing it on a

real cluster, would provide more realistic results about the mechanism efficiency. However,

our work clearly shows the improvements in the reduction of energy consumption that

can be obtained even using simplifying assumptions.

References

[1] Determining total cost of ownership for data center and network room infrastruc-
ture. http://www.apcmedia.com/salestools/CMRP-5T9PQG_R3_EN.pdf. Ameri-
can Power Conversion, APC White Paper #6.

[2] Transaction processing performance council. http://www.tpc.org/tpcw/.

[3] Advanced configuration and power interface specification.
http://www.teleport.com/acpi/, August 2003. Compaq Computer Corpora-
tion, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd. and
Toshiba Corporation’s report, White Paper.

[4] Intel’s high-k/metal announcement. http://www.intel.com/technology/silicon/power
/transistor.htm#Section3, June 2003.

[5] Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé, and Rami Melhem. En-
ergy conservation in memory hierarchies using power-aware cached-dram. Univer-
sity of Pittsburgh, Department of Computer Science, Technical Report: TR-05-123,
http://www.cs.pitt.edu/ñevine/papers/TR-PACDRAM.pdf.

[6] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet: The
Google cluster architecture. IEEE Micro, pages 22–28, March-April 2003.

[7] Ricardo Bianchini and Ramakrishnan Rajamony. Power and energy management for
server systems. IEEE Computer, 37(11):68–74, 2004.

[8] Pat Bohrer, Mootaz Elnozahy, Mike Kistler, Charles Lefurgy, Chandler McDowell,
and Ramakrishnan Rajamony. The case for power management in web servers. In
Robert Graybill and Rami Melhem, editors, Power Aware Computing, pages 261–289.
Kluwer Academic Publishers, 2002.

[9] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip S. Yu. The
state of the art in locally distributed web-server systems. ACM Computing Surveys,
34(2):263–311, 2002.

[10] Jeff Chase, Darrell Anderson, Prachi Thakur, and Amin Vahdat. Managing energy
and server resources in hosting centers. In Proceedings of the 18th Symposium on
Operating Systems Principles, pages 103–116, Banff, Alberta, Canada, October 2001.

[11] Jeff Chase and Ron Doyle. Balance of power: Energy management for server clusters.
In Eighth Workshop on Hot Topics in Operating Systems, page 165. IEEE Computer
Society, May 2001.

References 73

[12] Wissam Chedid and Chansu Yu. Survey on power management techniques for energy
efficient computer systems. Department of Eletrical and Computer Engineering,
Cleveland State University, 2121 Euclid Avenue, SH 332, Cleveland, OH 44115.

[13] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web traffic:
Evidence and possible causes. IEEE/ACM Transaction on Networking, 5(6):835–
846, December 1997.

[14] Steven Dropsho, Volkan Kursun, David H. Albonesi, Sandhya Dwarkadas, and Eby G.
Friedman. Managing static leakage energy in microprocessor functional units. In
Proceedings of the 35th annual ACM/IEEE international symposium on Microarchi-
tecture, pages 321–332, Istanbul, Turkey, 2002. IEEE Computer Society Press.

[15] Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy conserva-
tion policies for web servers. In 4th USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, USA, March 2003.

[16] Mootaz Elnozahy, Mike Kistler, and Ram Rajamony. Energy-efficient server clus-
ters. In Second Workshop on Power Aware Computing Systems, pages 179–196,
Cambridge, MA, USA, February 2002.

[17] Raphael Guerra, Luciano Bertini, and J.C.B. Leite. Improving response time and
energy efficiency in server clusters. In VIII Workshop de Tempo Real, pages 45–52,
Curitiba, PR, Brazil, May 2006.

[18] Raphael Guerra, Luciano Bertini, and J.C.B. Leite. Managing energy and quality of
service in heterogeneous server clusters. In XXXII Conferencia Latinoamericana de
Informática, Santiago, Chile, August 2006.

[19] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira Jr., and Ricardo
Bianchini. Energy conservation in heterogeneous server clusters. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pages 186–
195, Chicago, IL, USA, June 2005.

[20] Leonard Kleinrock. Queueing Systems, volume 1. John Wiley and Sons, 1975.

[21] Heungki Lee, Gopinath Vageesan, and Eun Jung Kim. Power and locality aware
request distribution. Technical report, Texas A&M University, Texas, USA, July
2004.

[22] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler,
and Tom W. Keller. Energy management for commercial servers. IEEE Computer,
36(12):39–48, December 2003.

[23] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A quan-
titative analysis of disk drive power management in portable comput-
ers. Computer Science Division, University of California, Technical Report,
http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/CSD-93-779.pdf, 1994.

[24] L. Li, I. Kadayif, Y-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and A. Siva-
subramaniam. Leakage energy management in cache hierarchies. In Proceedings of
the 2002 International Conference on Parallel Architectures and Compilation Tech-
niques, pages 131–140. IEEE Computer Society, 2002.

References 74

[25] Chia-Hung Lien, Ying-Wen Bai, Ming-Bo Lin, and Po-An Chen. The saving of energy
in web server clusters by utilizing dynamic server management. In 12th IEEE In-
ternational Conference on Networks, volume 1, pages 253–257, Singapore, November
2004.

[26] Samuel K. Moore. Winner multimedia monster. IEEE Spectrum, 1(20):18–21, Jan-
uary 2006.

[27] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic cluster reconfig-
uration for power and performance. In Compilers and Operating Systems for Low
Power, pages 75–93. Kluwer Academic Publishers, 2003.

[28] Ken Popovich. New Intel technology may clear way for faster chips.
http://www.eweek.com, November 2001.

[29] Karthick Rajamani and Charles Lefurgy. On evaluating request-distribution schemes
for saving energy in server clusters. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, pages 111–122, Austin, Texas, USA, March
2003.

[30] Dakai Zhu Daniel Mossé Ruibin Xu, Cosmin Rusu and Rami Melhem. Practical
energy-efficient policies for server clusters. In 6th Brazilian Workshop on Real-Time
Systems, Gramado, Rio Grande do Sul, Brazil, May 2004.

[31] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, Aaron Watson, Rami Melhem,
and Daniel Mossé. Energy-efficient real-time heterogeneous server clusters. In IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 418–428,
2006.

[32] Cosmin Rusu, Ruibin Xu, Rami Melhem, and Daniel Mossé. Energy-efficient policies
for request-driven soft real-time systems. In 16th Euromicro Conference on Real-
Time Systems, pages 175–183, Catania, Italy, July 2004.

[33] Vivek Sharma, Arun Thomas, Tarek F. Abdelzaher, Kevin Skadron, and Zhijian Lu.
Power-aware QoS management in web servers. In 24th IEEE Real-Time Systems
Symposium, pages 63–72, Cancun, Mexico, December 2003.

[34] Piia Simonen, Aarne Heinonen, Mika Kuulusa, and Jari Nurmi. Comparison of bulk
and SOI CMOS technologies in a DSP processor circuit implementation. In The 13th
International Conference on Microelectronics, pages 107–110, October 2001. Digital
and Computer Systems Laboratory, Tampere University of Technology, Finland.

[35] Mircea R. Stan and Kevin Skadron. Power-aware computing. IEEE Computer,
36(12):35–38, December 2003.

[36] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, England, 1992.

[37] Patrick Thibodeau. Congress begins push for energy-efficient servers.
http://www.computerworld.com/action/article.do?command=viewArticleBasic&arti
cleId=9001753, July 2006. ComputerWorld Government.

[38] Arman Vassighi and Manoj Sachdev. Thermal and Power Management of Integrated
Circuits. Springer, 2006.

References 75

[39] Vasanth Venkatachalam and Michael Fran. Power reduction techniques for micro-
processor systems. ACM Computing Surveys, 37(3):195–237, September 2005.

[40] Mark Weiser, Brent Welch, and Scott Shenker. Scheduling for reduced cpu energy.
In Operating Systems Design and Implementation, pages 13–23, 1994.

[41] Jane Wright. Blades have the edge: Superslim machines are fomenting a quiet revo-
lution in the server room. IEEE Spectrum, pages 25–29, April 2005.

[42] R. Wright. The man who invented the Web: Tim Berners-Lee started a revolution,
but it didn’t go exactly as planned. In Time, pages 64–69. May 1997.

[43] Ruibin Xu, Dakai Zhu, Cosmin Rusu, Rami Melhem, and Daniel Mossé. Energy-
efficient policies for embedded clusters. SIGPLAN Notices, 40(7):1–10, 2005.

