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Resumo 

A geometria fractal possui três medidas para caracterizar texturas: Dimensão 

Fractal (FD), Lacunaridade e Sucolaridade. A Dimensão Fractal é a mais conhecida e 

estudada. É também a que possui mais metodologias para o cálculo por imagens. Pode ser 

calculada para imagens em preto e branco bem como para imagens de satélite com várias 

bandas. A FD pode ser avaliada por diversos métodos, desde o simples método do “Box-

Dimension” a mais complexa dimensão de Hausdorff. O mesmo não acontece com as duas 

outras medidas. Embora cada vez mais trabalhos tenham explorado as características da 

Lacunaridade, a Sucolaridade, até então não tem sido calculada.  

Este trabalho apresenta um método para calcular a Sucolaridade. Demonstra a sua 

usabilidade em imagens reais, bem como as semelhanças e diferenças de cada medida 

fractal. A proposta de cálculo para esta medida se baseia no método “Box Counting” com 

adaptações para que este atenda as noções da Sucolaridade. O passo a passo de um 

exemplo simples explica a forma de cálculo proposta para imagens binárias e para objetos 

3D. Além disso, este trabalho apresenta uma abordagem para o cálculo da Lacunaridade 

de objetos 3D. Esta proposta inclui uma forma de calcular também a Lacunaridade de 

imagens em tons de cinza de duas formas distintas.  

O principal objetivo deste trabalho é mostrar que a Sucolaridade pode ser usada 

como uma nova característica em processos de reconhecimento de padrões, especialmente 

na identificação de texturas naturais. Além disso, esta medida, combinada com a 

Dimensão Fractal e a Lacunaridade, é muito útil para identificar diferentes tipos de 

texturas em imagens. 

 

Palavras chaves: Sucolaridade, Dimensão Fractal, Lacunaridade 3D, medidas fractais, 

análise binária, imagens preto e brancas. 
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Abstract 

Three aspects of texture are considered by the fractal geometry: Fractal Dimension 

(FD), Lacunarity and Succolarity. Fractal Dimension has been well studied; a great 

number of approaches have been presented to extract it from images. It can be computed 

from black-white to multi-band image. There are many approaches also, from the simple 

Box-Dimension to the most complex Hausdorff Dimension. The same does not happen 

with the other two measures. Although Lacunarity has been more and more used in works 

exploring its characteristics, Succolarity, until now, has not been computed.  

This work presents a method to compute Succolarity, as well as a demonstration of 

its applicability, differences and similarities of each fractal measure. The proposed method 

for this computation is based on the Box Counting approach adapted to the notions of 

Succolarity. A simple example is shown step by step to easily explain how to compute the 

Succolarity for binary images and for 3D objects. Moreover, this work presents a 

procedure to calculate the Lacunarity of 3D objects. This proposal is organized in a way 

that it could be used to evaluate also the Lacunarity of grey-scale images in two different 

manners.  

The main goal of the work is to show that the Succolarity can be used as a new 

feature in the pattern recognition process, especially for identification of natural textures. 

The combination of this measure with fractal dimension and Lacunarity is useful to 

identity different types of texture on images. 

 

 

Key words: Succolarity, Fractal Dimension, 3D Lacunarity, fractal measures, binary 

image analysis, black & white images. 
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1 INTRODUCTION 

Although the denomination Computer Graphics is dated from 1959, the use of 

computer graphics is directly connected to the MIT development (on 1950) of the first 

computer with graphic resources which enables the visualization of numeric data. This 

made possible the construction of the computer system SAGE, on 1955. This system 

converts information captured from the radar to images with the possibility of points under 

suspicion being pointed by the user through an optic pen. 

Despite being considered a novel area, the evolution on this field was enormous, as 

it can be easily seen by comparing old and new films. Tron, shown in Figure 1.1 (a) and 

(b) (LISBERGER, 1982), was one of the first films (from a major studio) that used 

computer effects extensively. The Polar Express (ZEMECKIS, 2004), figure 1.2 (a) and 

(b), presents real 3D character movements.  

 
(a) 

 
(b) 

Figure 1.1. Two images of the film Tron: (a) Using a real image and computer effects; (b) A scene 

100% generated by computer. 

 

The first film, Tron, illustrates some basic computer graphic techniques (figure 

1.1). In “The Polar Express” (figure 1.2), the actors made all the scenes in front of an 

empty screen, sensors of movement captured details of their motion. The data of these 

sensors were transmitted to computers and served as mold for the creation of the 

characters of the film. And because of these sensors, the characters created do not need to 

have the same body of the actor that play the role. This permitted Tom Hanks to play 5 

roles on this film, one of them as a kid. These two examples of movies show how fast is 

the evolution of the techniques of computer graphics. 
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(a) 

 
(b) 

Figure 1.2. Images of two of the five personages interpreted by Tom Hanks on the film Polar Express: 

(a) The conductor; (b) The kid. 

 

The ability to represent nature on computers attracts the attention of all the 

scientific community. The fractals are the best examples on how to produce images with a 

high degree of realism. This statement could be seen on a simple example of a fractal 

landscape generated by computer using FLG, a fractal landscape generator program 

(BROWN, 2005) in figure 1.3. These computer generated images are useful to show the 

incredible complexity of images generated with great simplicity through fractal equations.  

 
Figure 1.3. Fractal landscape to simulate the Arizona desert (BROWN, 2005). 

 

Computer graphics could be classified in three main areas of interest: image 

synthesis, image processing and image analysis. The image synthesis regards the synthetic 

creation of images; creating images by the computer is very useful to simulate a great 

number of phenomena. Image processing is used to enhance the characteristic of images 

and sometimes enables the visualization, perception of particularities that cannot be seen 
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on the image before the processing. The image analysis involves feature extraction from 

the image that is useful on the process of pattern recognition.  

 

1.1 MOTIVATION 

Nowadays computer graphics can be found on many important areas like movies 

(special effects), medicine (exams, diagnostics and treatments), engineering (solid/fluid 

mechanics and simulation), meteorology (weather prevision), public security (training and 

recognition), industry (quality control and product development), entertainment (games 

and cartoons) and others (AZEVEDO and CONCI, 2003). 

This dissertation is concerned with image processing and analysis. Image synthesis 

was used too, on the generation of synthetic images to validate some ideas presented here. 

The work presented here continues with the fractal line of research that produced several 

papers since 1995, beginning with CONCI&CAMPOS, 1995 through 2006, with MELO et 

al, 2006, MELO et al, 2006a, NUNES&CONCI, 2006-2007 and MELO& CONCI, 2007. 

A great number of applications treat the identification of characteristics using 

fractal dimension: BATTY and LONGLEY, 1994; BLOCK et al., 1990; BARROS FILHO 

and SOBREIRA, 2005 and MELO and CONCI, 2007, some use Lacunarity to this end, 

like FERNANDES and CONCI, 2004a; BARROS FILHO and SOBREIRA, 2005a and 

MELO et al, 2006. Nevertheless up to now, none has used Succolarity to characterize 

patterns through images. With the definition of Succolarity and its computational method 

here presented we intend to start a discussion on why not use this fractal characteristic to 

image processing. This work also shows that Succolarity presents good results on images 

that have flow characteristics. 

 

1.2 GOALS 

An important point of this work is to demonstrate to the readers the positive 

aspects of the Succolarity and to show that, despite the simplicity of the method proposed 

here, it attends to the notions of Succolarity (MANDELBROT, 1977) and preserves 

similar characteristics with the fractal measures already known. 

The computation of the Succolarity is organized to be a direct and simple natural 

evolution of the other fractal measures already known, like the box counting method 

(BLOCK et al., 1990) for Fractal Dimension estimation (that is the easiest way to calculate 
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it) and the gliding box method (ALLAIN and CLOITRE, 1991) to Lacunarity evaluation 

(that is an effective method to calculate its value). 

All fractal indices that are considered in this work could be used on pattern 

recognition processes, but it is not the idea of this dissertation to define a complete 

application to this purpose. Neural networks, nearest neighbor or any kind of decision 

method are out of the scope of this work. So, as seen in figure 1.4, which demonstrates a 

general pattern recognition model through images, one can notice that this work has some 

pre-processing methods, but the main idea of this dissertation stands for the feature 

extraction step of this model. 

 

 

Figure 1.4. General pattern recognition model by images. 

 

Finally, the main achievement of this work is that it could be used as a starting 

point to researchers and applications in this area. Moreover, new approaches could be 

proposed for this evaluation as well as this work could also be continued and improved in 

many ways. 

 

1.3 CONTRIBUTIONS 

One of the contributions is to present a text that explains the theory of fractal 

measures in an easy and understandable way. It explains the fractal measures of Fractal 

Dimension and Lacunarity, with the already known methods that calculate them, 

respectively, box counting and gliding box, through simple examples. The other fractal 

measure, Succolarity, is shown also, through simple examples, but now presenting a 

completely novel formal definition, as well as a totally new method. The only definition 

for this measure that has been known is a descriptive one presented by Mandelbrot. Here, 

a formal definition and an original method are both proposed. The method is based on the 

box counting approach but with adaptations to attend the notions of Succolarity. This text 

could then be a basic tutorial for people who would like to initiate their studies in this area. 

Moreover, the implemented techniques that could be seen as contributions are: the 

box counting method (to calculate the fractal dimension of binary images), the gliding box 
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method (to calculate the Lacunarity of binary images), a new approach to calculate the 

Lacunarity of 3D objects, two approaches for gray-scale images (based on the 3D method 

defined) and the completely new methods to calculate the binary Succolarity and the 

sucolarity of the 3D objects. All these techniques were developed on C++ with paradigms 

of object orientation. The development was done using CxImage (PIZZOLATO, 2003), an 

open source library for image processing and visualization. 

 

1.4 WORK ORGANIZATION 

This dissertation is organized as follows. The second chapter presents an 

introduction to the fractal geometry and describes the concepts of Fractal Dimension, 

Lacunarity (with a definition of computation for 3D objects, applied also to gray-scale 

images in two different approaches; it also explains two other approaches already made for 

gray-scale images) and Succolarity. The calculations of these measures are illustrated 

through their evaluation on synthetic images. With these examples, the characteristics of 

the methods to computed Fractal Dimension and Lacunarity are explored. On chapter 

three, the proposed methods to calculate the Succolarity for images and 3D objects or 

images are presented. Simple examples are used to easily explain the idea of the presented 

approaches. Chapter four explains the advantages of using more than one fractal measure 

on a pattern recognition process. On chapter five, the preparation of the images before 

submitting it to the three methods described in this work is considered. Then, all the 

methods described are demonstrated through their results on real images. Comparisons 

with other methods are made to validate and demonstrate their advantages or 

disadvantages. The results obtained show the usability of the method and the possibility of 

combinations of all these results on pattern recognition processes. Finally, chapter six 

presents the conclusions of this work and proposes future extensions that could be studied 

on the same subject. 
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2 FRACTAL GEOMETRY AND MEASURES 

Geometry is the mathematical language to describe, relate and manipulate shapes. 

Fractals are recent issues with respect to its uses on science; this potential was recognized 

only on the last thirty years.  

The Euclidean forms have only one or a few characteristics (side, radius, etc) that 

could be reduced or could change in scale and proportion. Fractal forms do not present 

characteristic parameters; they are independent of scale and are always self-similar. The 

Euclidian geometry shows a concise and adequate description to man made objects but 

this description is not appropriate for natural shapes like the fractal geometry. 

Euclidean forms have simple geometric formulas. Fractal forms are results of 

recursive algorithms and their construction and representation need computers. An 

example of fractal form is the von Koch Curve (KOCH, 1904). On figure 2.1 this fractal is 

represented to show the above commented differences. 

 

Figure 2.1. Construction of the von Koch Curve. 

 

To build the triadic von Koch Curve we have to execute the following steps:  

1 - Start with a line segment of length r; 

2 - Divide this line in 3 parts of the same size (each piece of length d is scaled from 

the original line by d=1/3×r);  
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3 - Remove the central piece and add two other pieces (the other two sides of an 

equilateral triangle) of the same size of the one that have been removed; 

4 - Repeat the process over and over. 

At each new stage, the corresponding drawing will be added by a piece that will be 

1/3 of the previous and we will have 4 of these new pieces. So, its length at each new step 

will increase 4/3 in relation with the previous step. 

This construction rule identifies the figure, not its formula as is common on the 

case of Euclidean forms. This curve has the same shape independence of the scale of 

observation (self-similarity). Any little detail, when magnified or "zoomed in", can be seen 

a copy of itself. At each new stage, the length of the curve will grow 4/3 with relation to 

the previous length. On the limit, this process yields the von Koch Curve, which will have 

an infinite length on a finite area of the plane without any intersection. Although its 

construction is simple, there is no equation to determine all its points. 

The occurrence of self-similarity on nature is easily found as illustrated in figure 2.2. 

 

 
(b) 

(a) 

 
(c) 

Figure 2.2. Example of a Romanesco broccoli (WALKER, 2007): a) The whole; b) first zoom; c) a 

deeper zoom. 
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The word “Self-similarity” needs no explanation, and at this point it is only an 

example of a natural structure with that property: a broccoli (figure 2.2). There are many 

others in nature. The broccoli contains branches or parts, which, when removed and 

compared with the whole, are very much the same, only smaller. These parts again can be 

decomposed into smaller parts, which again look very similar to the whole as well as to 

the first generation branches. After a certain number of stages, the structures became too 

small for a further dissection. In a mathematical idealization, the self-similarity property of 

a fractal may be continued through infinitely stages. This leads to new concepts such as 

Fractal Dimension which are also useful for natural structures that do not have exactly 

‘infinite condition’. 

 

2.1 FRACTAL DIMENSION 

There are many definitions of Fractal Dimension and, in this section we will see 

some of them, including: the similarity dimension (DS) (MANDELBROT, 1977); the 

Hausdorff dimension (DH) (GRASSBERGER, 1981 and FALCONER, 1990); the box 

counting dimension (DB) (BLOCK et al., 1990); the information dimension (DI) 

(FALCONER, 1990; ADDISON, 1997 and WEISSTEIN, 2006); the correlation 

dimension (DC) (ADDISON, 1997 and WEISSTEIN, 2006); the pointwise dimension (DP) 

(ADDISON, 1997); and the averaged pointwise dimension (DA) (ADDISON, 1997). 

 

2.1.1 SIMILARITY DIMENSION 

One of the most intuitive notions of dimension is associated with scale and self-

similarity. A 1D object (of dimension 1), a line for example, if divided in N parts, each 

part will be equal to the previous one scaled by the factor δ = 1/N, and N×δ1 will 

reconstruct the object. 

A 2D object (of dimension 2), a square, for example, could be divided in N equal 

parts, each will be equal to the previous one scaled by δ=√1/N= (1/N)0.5 and N×δ2 

reconstructs the object. 

A example in 3D, a cube for example, could be divided in N equal parts, each will 

be equal to the previous one scaled by δ=3√1/N= (1/N)1/3 and N×δ3 reconstructs the 

object. 
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The powers of δ in each case are the dimensions D of the objects. On fractals, D is 

fractional. This definition of dimension, denoted by DS, that is D with the subscript 'S' , is 

named similarity dimension. 

 

Figure 2.3. Example of line divided in 64 parts. If N=64 → δ=1/64 and N×δ1=1. 

 

 

Figure 2.4. Example of square divided in 64 parts. If N=64 → δ=1/√64=1/8 and N×δ2=1. 

 

 

Figure 2.5. Example of cube divided in 64 parts. If N=64 →δ=1/3√64=1/4 and N×δ3=1. 

 

So, the dimension DS should be (FALCONER, 1990 and WEISSTEIN, 2006): 

( ) 1=× SDN δ  (2.1) 
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)/1log(
NlogD s δ

=  
(2.3) 

 

where, N is the number of parts to reconstruct the original figure, and δ is the ratio 

between consecutive steps. 

For the von Koch curve (figure 2.1), the original figure is scaled by δ=1/3 and 4 

parts reconstruct the figure, so N=4, then: 

1,26
log3
log4

log1/δ
logNDs ≅==  

The same equation 2.3 can be used to calculate the dimension of all fractals that we 

know the rules of construction and are composed with parts of same proportion. Let’s see 

another example, now on 2D: Sierpinski Carpet (MANDELBROT, 1977) which 

construction scheme is represented in figure 2.6. 

 

Figure 2.6. Construction of the Sierpinski Carpet. Start with a square and at each stage divide each 

remaining square into nine equal squares and cut out the middle one. 

 

To divide the square in nine equal squares we use a scale factor of δ=1/3. The 

number of pieces to reconstruct is eight (because we cut out only the middle one), so N=8. 

Then, the similarity dimension (DS) of the Sierpinski Carpet (figure 2.6) is: 

89,1
3log
8log

≅=sD  

A fractal dimension for a 3D figure, like a cube, can also be computed using this 

formula as we see on the next example for the fractal Menger’s Sponge (MANDELBROT, 

1977), also knew as Sierpinski Sponge, which construction is represented in figure 2.7. 



 

11 

 

 

Figure 2.7. Construction of the Menger’s sponge. Start with a cube and at each stage divide each 

remaining cube into twenty seven equal cubes and cut out the central one and all the other six that 

share faces with it. 

 

This example presents an idea similar to the Sierpisnki Carpet dividing the cubes 

with a scale factor of δ=1/3. But now, the number of pieces to reconstruct is twenty 

(because we cut out seven pieces: the middle one and other six), so N=20. Then, the 

dimension of the Menger’s Sponge (figure 2.7) is: 

73,2
3log
20log

≅=sD  

Although this way to measure the Fractal Dimension (FD) is extremely simple, it 

only could be applied when we know the rules of construction of the object (as observed 

earlier) and all parts have the same relations. This occurs only on the so called determinist 

fractals, like those showed until now. When more complex objects are under consideration 

as natural elements like: clouds, trees, neurons, dusts, tissues, wave frequency, color 

radiation, surfaces of the sea, etc; then we have lots of other ways to measure the fractal 

dimension experimentally as we will see next. 

The FD quantifies the density of fractals or any images on its metric space. The 

fractal dimensions are then an objective way to compare one fractal (or figure) to another. 

The relation: 

)/1log(
log

δ
NDs =  

 

leads to several important methods of estimating the fractal dimension D for a given set S 

as we present in figure 2.8. 
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Compass dimension length of coastlines 

)/1log(
log

δ
ND =  DN δ/1=  

 

for a ruler of size δ  
 

1/1 −=×= DNLength δδ  

Box dimension N(δ) 
 

 

Number of boxes (or spheres) of 
size r needed to cover the object 
 

DN δαδ /1)(  

Grid dimension  
 

 

N(δ) = number of squares 

containing a piece of the object  

Figure 2.8. Basic techniques for estimating fractal dimension from experimental images (BARNSLEY 

et al., 1988). 

 

2.1.2 HAUSDORFF DIMENSION 

The Hausdorff dimension, DH, (also called Hausdorff-Besicovitch dimension) is 

the oldest dimension, among the variety of fractal dimensions in use. It presents the 

advantage of being defined for any set. It is also mathematically convenient, as it is based 

on measures, which are relatively easy to manipulate. On the other hand, a problem with 

this dimension is how to calculate it by computational methods, which is hard in many 

cases. However, the comprehension of this dimension is essential to understand the 

mathematics of fractals. 

Let U be any non-empty subset of a n-dimensional Euclidean space, ℜn. The 

diameter of U is defined as |U|=sup{|x-y|: x, y∈U}, i.e. the greatest distance between any 

pair of points in U. Suppose that F is a subset of ℜn and s is a non-negative number. If {Ui} 
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is a countable (or finite) collection of sets of diameter at most δ that covers a set F, i.e. 

U
∞

=
⊂

1i iUF with δ≤< iU0 for each i, we say that { }iU is a δ-cover of F. 

For any δ>0 we define: 



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 −=Η ∑∞

=
FoferaisUUF i

s

i i
s cov}{:inf)(

1
δδ  (2.4) 

 

Thus, we look at all covers of F by sets of diameter at most δ and seek to minimize 

the sum of the sth powers of the diameters (figure 2.9). As δ decreases, the class of 

permissible covers of F in (2.4) is reduced. Therefore, the infimum )F(s
δΗ  increases, and 

so approaches a limit as δ → 0. We write 

)()( lim
0

FF ss
δ

δ

Η=Η
→

 (2.5) 

 

This limit exists for any subset F of ℜn, though the limiting value can be (and 

usually is) 0 or ∞. We call )F(sΗ  the s-dimensional Hausdorff measure of F. 

 

 

Figure 2.9. A set F and two possible δ-covers for F. The infimum of ∑|Ui|s over all such δ-covers {Ui} 

gives )(Fs
δΗ  
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On the equation 2.4 it is clear that for any given set F and δ<1, )F(s
δΗ  non-

increasing with s, so by 2.5 )F(sΗ  is also non-increasing. In fact, if t>s and {Ui} is a δ-

cover of F we have: 

 

s

i
i

sts
i

st

i
i

t

i
i UUUU ∑∑∑ −−

≤= δ  (2.6) 

 

So taking the infima, )F()F( sstt
δδ δ Η≤Η − . Letting 0→δ  we see that if ∞<Η )F(s  

then 0)F(t =Η  for t>s. A graph of )F(sΗ  jumps from ∞ to 0 on a value s. The critical 

value (that is the value of the jump) is called the Hausdorff dimension of F (DH(F)). 

 

 

Figure 2.10. Graph of )(FsΗ  against s for a set F. The Hausdorff dimension is the value of s at which 

the jump from ∞ to 0 occurs. 

 

Formally (FALCONER, 1990, WEISSTEIN, 2006): 

})(:sup{}0)(:inf{)( ∞=Η==Η= FsFsFD ss
H  (2.7) 
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If s = DH(F), the )(FsΗ  may be zero or infinite, or it presents any finite value that 

satisfies: 

∞<Η< )(0 Fs  

 

To show how to calculate the DH of a set, let U denote the Menger's sponge (figure 

2.7). This set is constructed from a cube by a sequence of repeatedly removing its middle 

third volume and other 6. Taking the obvious covering of U by (20)n cubes of side (1/3)n 

we get s
δΗ (U) ≤ (20/3s)n for the infimum in equation (2.4). As n→∞ so δ→0 giving 

Hs(U)=limn→∞(20/3s)n so the DH of U is s =ln 20/ ln 3 = 2.73. We get an estimate of Hs(U) 

by presenting an approximation of this set to the DBC-Differential-Box Counting 

(SARKAR and CHAUDHURI, 1994) or to the MDBC-Modified Differential-Box 

Counting (CONCI and PROENÇA, 1998). We consider an approximation of Menger's 

sponge with 729x729 pixels and 729 total gray levels (that is a box with 729x729x729 

space-intensity cells). Then DBC or MDBC algorithms present the results in table 2.1. 

Where Nr is the union of non-overlapping blanked (surface and thickness) boxes that 

intersect the set U on resolution r. Both algorithms consider Nr =∑ nr(i,j), where nr(i,j) = 

ur-br+1; ur and br are related with (blanket idea) the maximum and minimum gray level of 

the image in the grid (i,j) on box resolution r (figure 2.11) (CONCI and MONTEIRO, 

2000). 

 

r pixels in box |U|=1/(3r)p Nr(U)=20r Nr(U) |U| 
1 243x243x243 1/3 20 20/3 
2 81x81x81 1/9 400 (20/3)2 
3 27x27x27 1/27 8000 (20/3)3 
4 9x9x9 1/81 160000 (20/3)4 
5 3x3x3 1/243 3200000 (20/3)5 
Table 2.1. Fractal dimension approximation of Menger's sponge. 
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Figure 2.11. The blanket method idea (thickness). 

 

2.1.3 BOX COUNTING DIMENSION 

This is the approach used to calculate the fractal dimension that is used on sections 

4.2 and 5.2. 

To examine an object to compute its box counting dimension we cover the object 

with elements or 'boxes' of side length δ. The number of boxes, N, required to cover the 

object is related to δ through its box counting dimension, DB. The method for determining 

DB is illustrated in the example of figure 2.12, where a straight line (a one-dimensional 

object) of unit length is covered by cubes (3D objects) of side length δ. We require N 

cubes (volume δ3) to cover the line. If squares of side length δ (area δ2) or line segments 

(length δ1) are used, we would again have required N of them to cover the line. Equally, 

we could also have used 4D, 5D, or 6D elements to cover the line segment and still 

required just N of them (FALCONER, 1990). In fact, to cover the unit line segment, we 

may use any elements with dimension greater than or equal to the dimension of the line 
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itself, namely one. For simplicity, the line in figure 2.12 is specified as exactly one unit in 

length. The number of cubes, squares or line segments required to cover this line is then 

Nδ (= 1), hence N = 1/ δ1. 

0
)/1log(

)log(lim

→









=

δ
δ

NDB  (2.9) 

 

Note that the exponent of δ remains equal to one regardless of the dimension of the 

probable elements, and it is in fact the box counting dimension, DB, of the object under 

investigation. Note also that for the unit (straight) line DE= DB = DT (= 1), hence it is not a 

real fractal, as the fractal dimension, here given by DB, does not exceed the topological 

dimension, DT. DE is the Euclidean dimension (MANDELBROT, 1977). 

 

Figure 2.12. Considering a unit line (1D) using boxes/cubes (3D). Number of cubes required to cover 

the line: N=1/δ. 

As an experimental example of measuring the box counting dimension, consider 

the set F in figure 2.13. To measure it, we put this set onto a regular mesh with grid size δ, 

and simply count the number of grid boxes which contain some of the set. This gives a 

number, say N(δ), because as we could see by the two examples, this value depends of δ. 

Then we progressively change δ to smaller sizes and count the corresponding N(δ). Next 

we plot the measurements in a graph log(N(δ)) by log(1/δ). We then fit a straight line to 

the plotted points of the graph and measure its slope DB. This number is the box counting 

dimension. All of this process is illustrated in figure 2.13 where we use two measurements 

to find a slope, which is approximately DB=1,25. 
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Figure 2.13. The set F is box-counted using two grids. The slope of the line is log(69/29)/log2≈1,25 
(FALCONER, 1990).  

 
It is easy to note that in the plane a box counting dimension (DB) will never exceed 

2. The self similarity dimension (DS), however, can easily exceed 2 for a curve in the 

plane. For that, we only have to construct an example where the scale of the original figure 

(δ) is equal to 1/2 and the number of parts to reconstruct is equal to N(δ)>4. Then: 

2
)/1log(
)N(log

>=
δ
δ

sD  

This is because a curve generated with this rules of construction will have 

overlapping parts, which, by principle, are counted only once in the box counting method 

(which happens due to the impossibility of representation of this concept on images 
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because parts that match over other, on the same pixel, are counted only once), but with 

corresponding multiplicities in the computation of the self similarity dimension. An 

example of self similarity dimension in a plane with N(δ)=5 and δ=1/2 will result 

32,2
)2log(
)5log(

≈=sD  

An example of a fractal with similarity dimension exceeding 2 is in figure 2.14, 

where we starts with a line; divide using δ = 4 as factor; an use N(δ)=18 to reconstruct the 

step; the process is repeated over and over for all remaining lines. The similarity 

dimension of this example is: 

08,2
)4log(
)18log(

≈=sD  

 

 

Figure 2.14. Three first steps of generation of a fractal in a plane with similarity dimension greater 

than two. 

 

The box counting dimension is the most used one in all sciences. The reason for its 

dominance lies in the easy and automatic computability by machine. It is straightforward 

to count boxes and to maintain statistics allowing dimension calculation. The program can 

be carried out for shapes with and without self similarity. Moreover, the objects may be 

embedded in higher dimension spaces. For example, when considering objects in common 

three-dimensional space, the boxes are not flat but real three dimensional boxes with 

height, width and depth. But the concept also applies to fractals such as the Cantor set 

(figure 2.15) which is a subset of the unit interval, in which case the boxes are small 

intervals. 
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Figure 2.15. Cantor Set or Cantor Dust starts with a line segment of unit length. Recursively remove 

the middle thirds of the segments at each step. 

 

2.1.4 INFORMATION DIMENSION 

Another way to estimate the dimension is called the information dimension (DI). 

The idea is similar to the box counting dimension. The set is also covered with cubes of 

side length δ. But this measure takes into account how much of the set is contained within 

each cube instead of simply counting the cubes (FALCONER, 1990; ADDISON, 1997 

and WEISSTEIN, 2006). 

0
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Where I(δ) is given by Shannon’s entropy formula: 
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where Pi is the probability of part of the set occurring within the ith cube of side length δ. 

For a special case of a set with an even distribution of points, an identical probability, 

Pi=1/N, is associated with every box. Hence, I(δ)=log(N), and the equation 2.10 reduces 

to the box counting dimension equation (2.9). Thus, DB simply counts all cubes containing 

parts of the set, while DI measure how much of the set is within each cube. 
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2.1.5 CORRELATION DIMENSION 

An alternative to estimate the dimension that requires less computation time is the 

correlation dimension (DC). To define DC is necessary that we first define the correlation 

sum Cr, as follows (ADDISON, 1997 and WEISSTEIN, 2006): 
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θ  (2.12) 

 

where θ is the Heaviside function, r is the radius of an n-dimensional sphere centered on 

each sampled point on the trajectory of the set, Xi, i=1,2,3,...,N. Xi denotes the 

multidimensional vector that is the ith phase space coordinate of the set, i.e. for a set in 3D 

phase space with coordinates x, y and z, Xi=(xi,yi,zi). The Heaviside function counts the 

number of points of the set within the sphere centered on one point (that is not counted). 

For a system of n first-order ordinary differential equations, the 2 n-dimensional 

space consisting of the possible values of ( 1x ,
.

1x , 2x ,
.

2x ,..., nx , 
.

nx ) is known as its phase 

space (WEISSTEIN, 2006). 

The Heaviside function is equal to the unity if the value inside the brackets is 

positive and zero if the value is negative. Xi are the points on the reference trajectory and 

Xj are other points on the attractor in the vicinity of Xi. |Xi – Xj| is the separation distance 

between the two points. ( )ji XXr −−θ  return a value of unity if the distance between the 

two points is less than the sphere radius; otherwise a zero value is returned. 

“An attractor is a set of states (points in the phase space), invariant under the 

dynamics, towards which neighboring states in a given basin of attraction asymptotically 

approach in the course of dynamic evolution. An attractor is defined as the smallest unit 

which cannot be itself decomposed into two or more attractors with distinct basins of 

attraction. 

Basin of Attraction is the set of points in the space of system variables such that 

initial conditions chosen in this set dynamically evolve to a particular attractor” 

(WEISSTEIN, 2006). 
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The calculation of the correlation sum of equation (2.12) involves following the 

reference trajectory, stopping at each discrete point on this trajectory and counting the 

number of other set points within a sphere of radius r. The cumulative sum of all the 

counted points is then divided by N(N – 1) to give the correlation sum, Cr. The maximum 

value of Cr is unity. 

The correlation sum scales with the sphere radius according to a power law of the 

form: 

CD
r rC α  (2.13) 

 

where the exponent (DC) is the correlation dimension. Examining the set in the method 

described for many different sphere radii, DC is obtained from the slope of the scaling 

region of a log(r) x log(Cr) plot as shown in figure 2.16. In general, good estimates of DC 

require large number of data points, N; however, the computational time required to 

calculate Cr increases with N2. 

 

                           (a)                                                         (b) 

Figure 2.16. Determining the correlation dimension: (a) Probing sphere on the set. (b) The log(r) x 
log(Cr) plot. 

 
The correlation dimension, information dimension and box counting dimension are 

related. In fact, they are part of a generalized collection of dimensions, known as Renyi 

dimensions (BADII and POLITI, 1987). It can be shown that DC forms a lower bound to 

DI which in turn forms a lower bound to DB, 

BIC DDD ≤≤  (2.14) 
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In addition, DC and DI asymptotically approach the value of DB as the attracting set 

becomes more uniformly distributed in phase space. If the points on the attractor are 

uniformly distributed, then DC = DI = DB. In many practical cases DC gives a very close 

estimate of DB. 

 

2.1.6 POINTWISE AND AVERAGED POINTWISE DIMENSION 

Another dimension estimator, closely related to the correlation dimension 

described above, is the pointwise dimension, Dp (ADDISON, 1997). Rather than looking 

at the scaling properties of the set as a whole, we turn our attention to localized scaling of 

the set at a specific point on the set, say at point Xi. To do this we count only the number 

of neighboring points, Pr, contained within the sphere at this location over a range of radii, 

r, more formally, 
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Pr has a power law dependence on the radius r, given by 

 

pD
r rP α  (2.16) 

 

where the exponent, Dp, is the point wise dimension. Dp may be computed at a specific 

location (point) on the set from a log(r) x log(Pr) curve in a manner analogous to the 

correlation dimension. The point wise dimension is a localized dimension estimate and in 

practice may vary over the entire set. To this end, an averaged point wise dimension, DA 

(ADDISON, 1997), may be defined as 
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Although it has been suggested by some authors that this dimension estimate, DA, 

is preferable to DC as a measure of the average fractal properties of strange attractors, the 

correlation dimension is more popular due to its computational speed and the wealth of 

background literature on its use. 

 

2.2 LACUNARITY 

When talking about fractals a intuitive definition about Lacunarity is that a fractal 

is to be called lacunar if its gaps tend to be large, in the sense that they include large 

intervals (discs, or balls) (MANDELBROT, 1977). Lacunarity is a counterpart to the 

fractal dimension that can improve the texture description of a fractal. It has to do with the 

size distribution of the holes. Roughly speaking, if a fractal has large gaps or holes, it has 

high Lacunarity; on the other hand, if a fractal is almost translational invariant, it has low 

Lacunarity. Different fractals can be constructed that present the same dimension but that 

look very different because they have different Lacunarity. There are applications of 

Lacunarity in image processing, ecology, medicine, and other fields (RAUCH, 2007). 

A low Lacunarity, generally, indicates homogeneity, while high Lacunarity 

indicates heterogeneity. The higher the Lacunarity, the bigger will be the variation of 

pixels distribution in an image. In other words, high Lacunarity means that pixels are 

grouped in a wide variety of sizes of island, surrounded by a widely variant emptiness, 

indicating heterogeneity of spatial pattern or texture (BARROS FILHO and SOBREIRA, 

2005). 

The approach presented on the next section to calculate the local Lacunarity is 

based on the gliding box algorithm, used to analyze the mass distribution on one-

dimensional generalized Cantor sets (ALLAIN and CLOITRE, 1991).  

It considers a box of side s, which glides in the object on all possible manners, 

computing the mass distribution, used for the Lacunarity measure. The notion of location 

is added to make it possible to distinguish among different parts of the same set. Figure 

2.17 shows a fractal used on the tests in this section. 
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Figure 2.17. Initial steps of the reproduction of a fractal object made as figure 2.7 of 20 parts each one 

scaled by 1/3, but grouped without gap. In this object the seven eliminated pieces are all on the same 

face where only two consecutive pieces kept their positions. 

 

The proposition to compute Local Lacunarity (LL) consists in the following steps 

(MELO et al., 2006): 

1 - Objects are first adjusted to a bounding box (BB) (see example in figure 2.18). 

The size of this box is a function of the object’s size: S, in a specific resolution. 

 

 

 

Figure 2.18. In dashed, the example of a bounding box (BB) for the third image in figure 2.17. 

 

2- The gliding box method is used to get the mass probabilities for the BB in all 

possible combination of parameters: gliding box size, s, object resolution, r, and size, S, 

thresholds levels, t, and position (i,j). Note that the gliding boxes may overlap. 

3- The probability obtained as a function of all parameters is used to define the 

Lacunarity associated with the local parameters of the object or image. 
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In step 1, if the object is an image, then it is equalized, to compensate for possible 

differences in acquisition conditions before the beginning of Local Lacunarity (LL) 

computation. Colour and grey scale information are important aspects on texture (CONCI 

and CASTRO, 2002) and must be considered if available. Lacunarity can be computed on 

2D grey-scaled images by: (1) threshold on a specific level to convert it to binary images 

or (2) the third coordinate can be used and the images can be seen as collection of voxels. 

In a specific resolution, each voxel can only be considered as empty or full. It is important 

to stress that the term "local" for Lacunarity is related to the BB position, (i,j), on the 

original image and to the BB resolution, r, but mainly to the threshold mass or grey value, 

t. 

In the step 2, the incremental analysis of each parameter is associated with the 

gliding box procedure. In this procedure the first voxel of an s x s x s voxels gliding box is 

initially placed on the corner at first voxel of the images. The computation is performed 

and then the first voxel of the box is positioned at the second voxel of the images and so 

on until it reaches the last possible position. Name N this last possible position. The box of 

s x s x s voxels glides over the entire image, registering each time, the number I of non 

void voxels related to that resolution, and its side, s. As s3 is the maximum possible 

number of voxels, for the box side s, the sequences of the number of non void voxels, {ni}, 

i ∈ {1,2,....N} can be organized to define the frequency of boxes of size s, with mass M: 

n(M, s). For 3D objects, the total number of boxes of size s, N(s), is also a function of the 

size of the object, S, that is: 

3)1()( +−= sSsN  (2.18) 

 

The frequency distribution of boxes of size s voxels with mass M, n(M, s), defines 

a probability function Q(M,s) by dividing it by the total number of boxes: 

)(
),(),(

sN
sMnsMQ =  (2.19) 

where Q(M,s) represents the probability that a gliding box (GB), with side s voxels, 

contains M non void voxels. In other words, it is easy to show that Q(M, s) satisfies all the 

axioms of probability (PAPOULIS, 1965). Local Lacunarity (for box side s) is defined as 

the ratio between the second moment and the first moment squared: 
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When considering all GB positions, (i,j,k), resolution, r, and possible threshold 

values, t, it is clear that the above expression is not only a function of the box side s, but 

related to a set of parameters (Λi,j,k(r,t,s)). Lacunarity is a function of the postion (i,j,k) for 

each GB (Local Lacunarity), the global result is only a function of (r,t,s). Although this 

method is easily implemented in section 2.2.1, we here consider some manual results in 

order to promptly interpret some aspects, resulting of this measure, that can be useful in 

many recognition applications. Highest value for a given image will always be found for a 

gliding box with size of one voxel, i.e. s=1. However, this computation need not be 

performed since at s=1, Q(1,1) represents the occupied ratio and Λ(1) is the inverse of this 

value. This value is: (i) only a function of the percentage of occupied sites; (ii) 

independent of the overall size of the image; and (iii) not related with details of the 

distribution. Local Lacunarity then must be computed by equation (2.20) for box side s 

ranging from 2 to r (or to a representative value). 

Differently from objects, 2D grey level images present no gaps, unless some 

thresholds are performed over these images. Once using digital images it is possible to 

identify constrains related to the limits of resolution. These limits are related in the lower 

bound to the pixel or voxel and in the upper bound to the image resolution, r, in 2D or 3D, 

that is, the number of pixels (r x r) or voxels (r x r x r) it contains. In other words, in the 

lower bound, Lacunarity reflects the degree of space occupancy similarly to the FD. On 

the opposite side, the larger possible value is the entire image and Lacunarity is similarly 

constrained at this limit.  

Considering equation (2.20), if the denominator (mean), goes to zero, the 

Lacunarity, Λ, goes to ∞. If the box size contains the entire image (s = r), then the variance 

of the masses in the box is zero and Λ( r)=1. Although, far from the limits that the values 

(measuring the texture) are realistic, hence, the above discussion of boundary limitation 

can be useful (e.g. for algorithm verification or as edge representation on graphical 

visualization of the results). The average mass increases with the box size, then the 

probability that box masses greatly differ from the average decreases as relative variance 

decreases. 
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Two approaches are proposed here to analyze grayscale images through the 

described 3D method. The first one, named 3D, considers all possible values for the pixels 

of the image (from 0 to 255) to the kth position of the BB. The second one, named 3D min-

max, considers only the existing values of pixels on the image. The second approach is 

intensity-invariant. This is useful on applications were this property is of interest. A 

comparison illustrating this property is shown in figures 2.19, 2.20 and 2.21. 

 

 
(a) 

 
(b) 

Figure 2.19. Synthetic images to illustrate the intensity-invariant approach, images with two distinct 

pixels values: (a) backgroung pixels = 1, foregroung square pixels = 192 named (1,192); (b) 

backgroung pixels = 51, foregroung square pixels = 242 named (51,242). 

 

Gray level = Proposed 3D
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Figure 2.20. Result of the Lacunarity of the proposed method 3D for the input images in figure 2.19. 

 

The only difference on the two images in figure 2.19 is that image on (b) is equal 

to image on (a) with an increase of 50 on the grey value for all the pixels on the image. 

After this, we expect to obtain in figure 2.21 the same result for the processing of the two 

images through the 3D min-max method, which does not happen on the 3D method.  
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Gray level = Proposed 3D min-max
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Figure 2.21. Result of the Lacunarity of the proposed method 3D min-max for the input images in 

figure 2.19. 

 

With the results in figure 2.20 and 2.21, we easily see that, for an application where 

the changes on illumination are not important or should not be considered (for any reason) 

is better use the 3D min-max method than the 3D one. 

 

2.2.1 COMPUTING THE MASS DISTRIBUTION (PROPOSED METHOD) 

Let us compute the mass distributions for the first object in figure 2.17, suppose it 

is represented by 3x3x3 boxes. The total number of boxes of size s=2 that can glide inside 

the object is 8. If the “gliding” process begins from the farthest to the nearest viewer 

position, the number of occupied voxels ni is:{8, 8, 6, 5, 8, 8, 4, 4}. Then n(M,s) for s=2 is 

defined in table 2.2.  

From table 2.2 and equation (2.20) we have: Λ(2)  ≈ 43.625/(6.375)2 ≈ 1.073. The 

positional parameters in this computation are not important and the threshold level is 

obviously at void voxel but the obtained result is related to the used BB resolution of r=3. 

That is, in fact, Λ(3, 0.5, 2) ≈ 1.073.  

Considering the first object in figure 2.7 and supposing that it is represented by 

3x3x3 voxels, for s=2, the number of occupied voxels ni registered for all positions of a 

gliding box is 4. Then n(M,2)=8 and Q(M,2)=0 for M≠4 and Q(4,2)=1. So we have: Λ(2) 

=1. That is, for the first iteration of this approximation of Sierpinski's Sponge 
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Λ1( 3,0.5,2)=1. Other results are Λ1(81,0.5,2)  ≈1.3449 and Λ1( 3,0.5,3) =1 considering both 

the first iteration on the object construction. For the same object but in another iteration, as 

the second, third and fourth objects in figure 2.7, we have respectively: Λ2(81, 0.5, 2)  ≈ 

1.7672, Λ3( 81, 0.5, 2) ≈ 2.1619 and Λ4(81, 0.5, 2)  ≈ 2.1577. 

 
mass: i frequency 

n(Mi,s) 
Probabiblity 

Q(Mi,s) 
MiQ(Mi,s) Mi

2Q(Mi,s) 

0 0 0 0 0 
1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 2 0.25 1 4 
5 1 0.125 0.625 3.125 
6 1 0.125 0.75 0 
7 0 0 0 4.5 
8 4 0.5 4 32 
Σ 8 1 6.375 43.625 

Table 2.2. Lacunarity computation for iteration 1 of figure 2.17 represented with 9 voxels, considering 

gliding box with s=2. 

 

Then, an additional point is that, for real fractals, as these in figures 2.7 and 2.17, 

the LL results change with the iteration. For the same object, but in other iteration, as the 

second, third and fourth object in these figures we have the values that can be seen on the 

graph in figure 2.20 and 2.21. Note: LL is a function of one more parameter, here 

represented by the index I: ΛI
i,j(r,t,s). 

Figures 2.20 and 2.21 show the results for all possible parameters of the objects in 

figures 2.7 and 2.17, that is ΛI(r , 0.5, s) for r=9,27,81; s = 2,3,4, ...,80,81 and I=1,2,3. The 

entire object is considered, so positional parameters (i,j) are irrelevant. 

It is interesting to note that all the objects in figures 2.7 and 2.17 will be real 

fractals only if the generation goes to infinity. As it is impossible for representation of 

digital objects or images, they are, mathematically, only approximations of real fractal 

objects. Its constructions are limited by the voxel, limit that is digitally or physically the 

lower limit of representation. 
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Figure 2.7 - step 1
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Figure 2.7 - step 2
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Figure 2.7 - step 3
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Figure 2.22. Ln x ln plot of Lacunarity versus box size for object of figure 2.7 from the first to the 

third step. Objects are described at resolution of 9, 27 and 81 voxels. 
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Figure 2.15 - step 1
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Figure 2.15 - step 2
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Figure 2.15 - step 3
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Figure 2.23. Ln x ln plot of Lacunarity versus box size for object of figure 2.17 from the first to the 

third step when described at resolution of 9, 27 and 81 voxels. 
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2.2.2 GAN DU PROPOSAL FOR GRAYSCALE IMAGES 

The Gan Du proposal to grayscale images (GAN DU and TAT SOON YEO, 2002) 

is presented here. This method was introduced as an extension to the method previously 

proposed by Dong (DONG, 2000). 

For each sxs gliding box, n(i,j) is counted differently from the method in (DONG, 

2000): let the maximum and minimum pixel values be g(i,j) and b(i,j), respectively; then: 

),(),(),( jibjigjin −=  (2.21) 

 

is the contribution of M in the (i,j)th gliding box. Taking contribution from all gliding 

boxes, we have: 
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where k is the coefficient of z coordinate modification, which is expressed as k = W/g, and 

g is the maximum pixel values within the WxW window. The W here stands for the 

dimension of the image, the same as the object size, S, for the previous section. Ceil[x] 

stands for the ceiling of x (the smallest integral value that is not less than x). Define n(M,s) 

to be the number of gliding boxes with size s and mass M. It is converted into the 

probability function Q(M,s) by dividing by the total number of boxes: 

2)1(
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sW
sMnrMQ  (2.23) 

 

The Lacunarity at scale s is defined by the equation 2.20. 

 

2.2.3 FERNANDES PROPOSAL FOR GRAYSCALE IMAGES 

The Fernades proposal (FERNANDES and CONCI, 2004a) to grayscale images 

could be seen as the simplest extension to the binary approach proposed by Alain and 

Cloitre (ALLAIN and CLOITRE, 1991). This work has not been published yet, but, as it 

presents another approach to calculate the Lacunarity of grayscale images, we include here 
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the definition and shown, on the results, the comparison over the other methods described 

in this section. 

In this approach, the mass, M, of each sxs gliding box, is calculated as the sum of 

all the gray values of the pixels values on the (i,j)th box: 

∑=
nm

nmimagevaluegrayM
,

)),((_  (2.24) 

 

This is done for each size s in the set of all possible sizes of boxes on an image with size S. 

The probability function Q(M,s) is defined as for the previous method (equation 2.23), 

with W equal to the image size S. The Lacunarity at scale s is also defined by equation 

2.20. 

 

2.3 SUCCOLARITY THEORY 

Mandelbrot, 1977 defines the Succolarity of a fractal considering that a succolating 

fractal is one that “nearly” includes the filaments that would have allowed percolation; 

since percolare means “to flow through”, succolare (sub-colare) seems the proper term for 

“to almost flow through”. However, Mandelbrot does not present measures of Succolarity 

in his book. An approach to compute it is the main discussions of this work. 

In mathematics, percolation theory describes the behavior of connected clusters in 

a random graph. Assume that we have some porous material and we put some liquid on 

top. The question is: Will the liquid be able to make its way from gap to gap and reach the 

bottom? (WIKIPEDIA, 2007). 

In chemistry and materials science, percolation concerns the movement or filtering 

of fluids through porous materials. In engineering, it refers to the slow flow of fluids 

through porous media, but in the mathematics and physics domains it generally refers to 

simplified regular or random lattice models of random systems, and the nature of the 

connectivity on them. An important different model of percolation, in a diverse class 

altogether, is directed percolation, where connectivity along a limit depends upon the 

direction of the flow (WIKIPEDIA, 2007). 
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3 CALCULATING SUCCOLARITY 

In this section, we present an approach to measure Succolarity. To explain the 

computation proposal for Succolarity, a very simple binary image is used as an input 

example of these calculations. First of all, if the image is not binary, a good threshold must 

be chosen by any automatic method. On this work (as will be explained in the section of 

results with real images) this step was chosen by heuristic trials. 

The Succolarity measures the percolation degree of an image (how much a given 

fluid can flow through this image). To obtain this, we simulate the draining or percolation 

capacity of a fluid through the image. From the image to be analyzed (figure 3.1) we 

obtain, depending on the directions to be considered (figure 3.2), two or more images 

(figure 3.3). On the example in figures 3.1 to 3.3, four images were obtained, the original 

image was analyzed horizontally (left to right and right to left) and vertically (top to 

bottom and bottom to top). Other directions can be applied to the method to generate 

different images. 

 

Figure 3.1. Original image (9x9 pixels) to demonstrate the Succolarity. 

 

 

Figure 3.2. Example of four directions that a fluid can try to flood the image. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3. Images obtained after the first step of the Succolarity. In blue, the pixels of the flood area; 

directions: (a) Top to bottom (t2b); (b) Bottom to top (b2t); (c) Left to right (l2r); (d) Right to left 

(r2l). 

 

The idea of pressure applied to a box is demonstrated in figure 3.4. The pressure 

grows from left to right on the horizontal case (directions: Letf to right (l2r); and right to 

left (r2l)) and from top to bottom on the vertical case (directions: Top to bottom (t2b); and 

bottom to top (b2t)) as can be seen on the figure. 

 

 
(a) 

 
(b) 

Figure 3.4. Indication of the order of pressure over the boxes: (a) Example of pressure over 1x1 boxes 

for figure 3.3 (c); (b) Example of pressure over 3x3 boxes for figure 3.3 (a) 

 

3.1 DESCRIBING THE METHOD THROUGH STEP BY STEP ANALYSIS OF 

AN IMAGE 

The method to calculate Succolarity can be described by the four next steps 

explained: 

1 - Coming from the top of the original binary, image all the boundary pixels are 

considered. If the pixel is empty on the image (in our case we consider black as the 

absence in the pixel position), it means that a fluild can pass and flood this area. The 
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existing material pixels (white on the example) are considered as obstacles to the fluid. All 

the flood areas from a boundary have their neighbors (4 neighbors for each pixels: Top; 

Bottom; Left and Right) considered on the next step and this process is recursively 

executed. 

2 - The next step is then to divide these flood area of each image (figure 3.3) in 

equal box sizes (BS(n), where n is the number of possible divisions of an image in boxes) 

like the box counting method. After that the occupation percentage (OP) is measured in 

each box size of each image. 

3 - For each box size, k, then the sum of the multiplications of the OP(BS(k)), 

where k is a number from 1 to n, by the pressure PR(BS(k),pc), where pc is the position on 

x or y of the centroid of the box on the scale of pressure) applied to the box are calculated. 

The pressure varies with the box size because it is applied on the centroid of the box. It 

also depends on the position of the box to correctly indicate the amount of pressure over it. 

The pressure (figure 3.4) is over the centroid of the box, on the horizontal case the 

x position of the centroid while on the vertical case the y position is considered. 

4 - To make the Succolarity value dimensionless like FD and Lacunarity we divide 

the value, obtained in equation 3.1, by PR, but now considering that the image was totally 

flooded by the fluid (as if the input image were totally black). The calculation is indicated 

by the equation 3.1. 

∑
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There are two ways to divide the image of figure 1 in equal sized boxes. With a 

dividing factor, d, of 9 obtaining boxes of 1x1 pixels and by d = 3 obtaining boxes of 3x3 

pixels (only considering integer divisions and without considering the dividing factor of 1 

of course). These two examples are in figure 3.5. 
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(a) 

 
(b) 

Figure 3.5. Dividing the intermediate images of figure 3.3 in boxes of two different sizes: (a) Figure 3.3 

(c) with d =9, producing boxes of size 1x1 pixels; (b) Figure 3.3 (d) with d = 3, producing boxes of 3x3. 

 

The same method could be applied on 3D images or objects considering 3D boxes to 

measure the Succolarity values. A synthetic 3D image is used in section 3.3.1 to illustrate 

numerically this computation. 

 

3.2 EXAMPLE OF THE CALCULUS OF SUCCOLARITY 

This section computes, step by step, the results of two directions of the Succolarity 

for the image considered as input on previous section. 

3.2.1 BOX SIZE EQUAL TO 1 PIXEL – DIRECTION LEFT TO RIGHT 

On figure 3.5 (a), each box corresponds to a pixel, the occupation percentage then 

could be only 0 (pixel without fluid) or 100% (pixel with fluid). On this figure we can 

easily note that 14 boxes have 100% of occupation and the others 67 boxes have 0%. The 

x positions of the centroid are the same for all of the boxes on the same column in the case 

of the horizontal percolation (the same occurs with the lines on the vertical percolation). 

The x value of the centroid is then 0.5 for the boxes on the first column and 1.5 for the 

second (considering the pressure distribution like the figure 3.4 (a)). Figure 3.5 (a) 

presents 7 boxes on the first column and 7 more on the second. We have then using the 

numerator of equation (3.1) obtained the results 7x0.5+7x1.5=14. To compute the 

Succolarity we then divide this value by the denominator of equation (3.1). This calculus 

results in 364.5 (= 9x(0.5+1.5+2.5+3.5+4.5+5.5+6.5+7.5+8.5), as the 9 columns suffer 

pressures between 0.5 to 8.5 and there are 9 boxes on each column. The Succolarity value 

for the box size 1x1 is then σ (1x1;l2r)=14/364.5≈0.0384.  
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3.2.2 BOX SIZE EQUAL TO 9 PIXELS (3X3) – DIRECTION TOP TO BOTTOM 

On figure 3.5 (b) each box correspond to 3x3 pixels; to calculate the percentage of 

presence of each box is necessary to divide the number of filled pixels on the box by the 

area of that box (9 in this case). Figure 3.5 (b) shows 7 boxes with some percentage of 

occupation and 2 with 0%. The upper left box has 6 pixels, the percentage of that boxes is 

then 6/9≈0.67. The percentages of occupied boxes of the top of the image respectively 

from left to right are 0.67, 0.67 and 0.56 (≈5/9), that is, a total of 1.90; on the middle 

boxes this percentages are 0.11 (≈1/9), 0.56 and 0.89 (≈8/9), a total of 1.56; and on the 

bottom boxes there are 0, 0 and 0.11. Considering the pressure like in figure 3.4 (b), the y 

position of the centroid is 1.5 on the three boxes of the top, 4.5 on the three middle boxes 

and 7.5 on the 3 boxes on bottom of the image. The maximum value possible by a 9x9 

image with 3x3 boxes completely flooded is (1.5+1.5+1.5+4.5+4.5+4.5+7.5+7.5+7.5) = 

40.5. This value can be seen as the sum of the maximum “pressure” applied to each box. 

The Succolarity value is then easily determined by the simple application of 

equation (3.1). σ (3x3,t2b) ≈ (1.5x1.90)+(4.5x1.56)+(7.5x0.11)/40.5 ≈ 0.2634.  

All the results of the Succolarity of figure 3.1 are shown in table 3.1. 

 

  Succolarity (σ) 
d BS b2t t2b l2r r2l 
9 (1x1) 0.3429 0.2387 0.0384 0.4829 
3 (3x3) 0.3292 0.2634 0.0576 0.4691 
Table 3.1. Results of the Succolarity of figure 3.1. 

 

These results are shown in the ln x ln plot in figure 3.6. As it can be seen on the y 

axis (Succolarity logarithm), the value of the Succolarity is multiplied by a factor of 100 

before the application of the logarithm. This was made so that the values of the logarithm 

became positive numbers instead of negative, as the range values of Succolarity varies 

from 0 to 1. 
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Figure 3.6. Ln x ln plot of Succolarity values for figure 3.1 (described in table 3.1). 

 

3.3 CONSIDERING THE PROPERTIES OF SUCCOLARITY THROUGHOUT 

IMAGES 

This section computes the results of the Succolarity for some synthetic images in 

order to illustrate characteristics and properties of this measure. 

The Succolarity property commented on the beginning of this chapter are 

demonstrated through the use of the synthetic images in figure 3.7 and its result shown in 

figures 3.8 and 3.9 (figure 3.7 (b) is equal to figure 3.7 (a) scaled by a multiplied factor of 

2). The image in figure 3.7 (a) was tested considering boxes with 1x1, 2x2, 4x4, 5x5, 8x8, 

10x10 and 20x20 pixels. Image of figure 3.7 (b) uses boxes with 1x1, 2x2, 4x4, 5x5, 8x8, 

10x10, 16x16, 20x20 and 40x40 pixels. 

 
(a) 

 
(b) 

Figure 3.7. Synthetic images to illustrate the dimensionless property of the Sucolarity, named 

“image_50%B_50%W”: (a) image half-black an half-white with 40x40 pixels; (b) image with the same 

characteristic and 80x80 pixels. 
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Sucolarity - image_50%B_50%W - 40x40 pixels
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Figure 3.8. Linear X log plot of the result of the Succolarity for the input image in figure 3.7 (a). 

 

By the results in figure 3.8 it is easy to note that the values of Succolarity for the 

right-to-left (r2l) direction matches the left-to-right (l2r) direction. This is expected as the 

fluid can flow for half of the image completely on the image of figure 3.7 (a). 

The plot for the image in figure 3.7 (b) is shown next, in figure 3.9. 

 

Sucolarity - image_50%B_50%W - 80x80 pixels
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Figure 3.9. Linear X log plot of the result of the Succolarity for the input image in figure 3.7 (b). 

 



 

42 

The Succolarity resulting plot in figure 3.9 is the same as in figure 3.8, adding two 

more points which correspond to the new possibilities of division for the new input image. 

The only point, on both plots, that make the curve different from a line occurs on the top-

to-bottom analysis of the Succolarity. This is easily explained by the analysis of the 

difference of those points. As it can be seen in tables 3.2 and 3.3, the factor of division that 

corresponds to these points is the same on both results, equal to 5 (marked on tables). 

Looking at the matching box size and visualizing the box in the images one can easily note 

that this sizes of boxes are the only that implie on boxes not completely full or empty on 

the middle of the image. To all the other boxes-sizes the grid formed has only full or 

empty boxes. 

  Succolarity (σ) 
d BS b2t t2b l2r r2l medium 
40 (1x1) 0 0.25 0.5 0.5 0.3125 
20 (2x2) 0 0.25 0.5 0.5 0.3125 
10 (4x4) 0 0.25 0.5 0.5 0.3125 
8 (5x5) 0 0.25 0.5 0.5 0.3125 
5 (8x8) 0 0.26 0.5 0.5 0.315 
4 (10x10) 0 0.25 0.5 0.5 0.3125 
2 (20x20) 0 0.25 0.5 0.5 0.3125 

Table 3.2. Numerical results of Succolarity for the input image in figure 3.7 (a). 

 

  Succolarity (σ) 
d BS b2t t2b l2r r2l medium 
80 (1x1) 0 0.25 0.5 0.5 0.3125 
40 (2x2) 0 0.25 0.5 0.5 0.3125 
20 (4x4) 0 0.25 0.5 0.5 0.3125 
16 (5x5) 0 0.25 0.5 0.5 0.3125 
10 (8x8)  0 0.25 0.5 0.5 0.3125 
8 (10x10) 0 0.25 0.5 0.5 0.3125 
5 (16x16) 0 0.26 0.5 0.5 0.315 
4 (20x20) 0 0.25 0.5 0.5 0.3125 
2 (40x40) 0 0.25 0.5 0.5 0.3125 

Table 3.3. Numerical results of Succolarity for the input image in figure 3.7 (b). 

 

Other important characteristics to extract from the results shown on the tables is that 

the image was half flooded by the fluid on the horizontal directions, which implies in a 

Succolarity result of 0.5 on left-to-right and right-to-left evaluation. The null value (0) of 

the bottom-to-top analysis occurs because the fluid could not flood from the bottom of the 

image, as it is totally occluded. The almost linear values of 0.25 for the top-to-bottom 

analysis indicates the pressure component of the Succolarity once the fluid for this case 
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also floods half the image, but now the fluid only floods through the areas where the 

acting pressures is low. As the Sucolarity varies from 0 to 1, one can notice that the 

contribution of the Succolarity for the non flooded area in this case, if evaluated, will be of 

0.75. 

Another synthetic image tested is in figure 3.10. 

 

Figure 3.10. Synthetic image to illustrate characteristics of the Sucolarity, named 

“image_25%B_25%W_25%B” with 40x40 pixels; 
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Figure 3.11. Linear X log plot of the result of the Succolarity for the input image in figure 3.10. 

 

Characteristics that could be understood by this plot are that the values for the 

horizontal analysis are still the same and that the values from the vertical analysis have 

similar behavior. The horizontal aspect does not change because, on the new image, the 

fluid can still flood 50% of the image. The differences on the vertical analysis occur 

because of the associated pressure, which causes, as could be seen by the figure 3.11, 

greater values for the bottom-to-top analysis over the top-to-bottom, as the pressure grows 

from top to bottom (for the vertical case). 
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3.4 EXAMPLE OF THE 3D APPROACH 

Figure 3.12 shows the 3D synthetic image used to illustrate the approach of measuring 

the Succolarity of 3D images or objects. In this image, the voxels are represented as cubes: 

yellow cubes (including the transparent ones) represent the obstacles to the fluid while the 

blue cubes already represent the areas where the fluid percolates the image. Figure 3.13 

shows the 2D slices that forms the 3D synthetic image in figure 3.12. In these images 

(figure 3.13), the black squares represent the empty voxels corresponding to the paths that 

the fluid can flow from the top to the bottom slice of the image. The white squares 

represent the voxels in the image that corresponds to the obstacles to the fluid flow 

through the image. 

 

 

Figure 3.12. 3D Synthetic image used already with the representation of the percolation of fluid (in 

blue). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.13. Representation through slices of the 3D synthetic image used as input for the 3D 

approach of the Succolarity: From the upper slice on (a) z = 5 to the bottom slice on (f) z = 0. 

 

The pressure field through the new axis (z) grows from top to bottom, as represented 

on figure 3.12, then the pressure over the first slice (figure 3.13 (a), z = 5) is smaller than 

the pressure on the second slice (figure 3.13 (b), z = 4) and so on to the greater pressure 

that is applied on the last slice (figure 3.13 (f), z = 0). 
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The dimension of the image represented by the slices in figure 3.12 is 6x6x6: 6 pixels 

of width; 6 pixels of height and 6 pixels depth. This image has then three possibilities of 

division: factor of division 2, 3 or 6, having respectively boxes sizes of: 3x3x3; 2x2x2 and 

1x1x1 pixels. 

For the box of size 1x1x1 we have pressure values through the slices from 0.5 to 5.5. 

Considering “slice n” as the slice where the value of z = n; the pressure is 5.5 on slice 0. 

Then we have 2 boxes with pressure 0.5 (slice 5); 6 boxes with pressure 1.5 (slice 4); 4 

boxes with pressure 2.5 (slice 3); 10 slices with pressure 3.5 (slice 2); 6 boxes with 

pressure 4.5 (slice 1); and 9 boxes with pressure 5.5 (slice 0). Considering equation 3.1 

and that with boxes of 1x1x1 the boxes are 0 or 100% occupied, the result of Succolarity 

for box size 1x1x1 is σ (1x1x1,t2b) ≈131.5/648≈0.2029. 

For the box size 2x2x2 we have pressure through slices from 1 (slice 4 and 5) to 5 

(slice 0 and 1). On slices 4 and 5 we have 2 boxes partially occupied: one with occupation 

of 75% and the other with 25%. Slices 2 and 3 (with pressure 3 over them) have 5 boxes 

with some occupation: 2 with 12.5%; 2 with 25% and 1 with 100% of occupation. Slices 0 

and 1 have 4 boxes partially occupied: 1 with 12.5%; 1 with 25%; 1 with 50% and 1 with 

100% of occupation. Considering the equation 3.1 and the pressure and occupations 

measured we have the result of Succolarity for this box size of σ (2x2x2,t2b) 

≈15.625/81≈0.1929. 

With the box size 3x3x3 we have pressure through slices from 1.5 (slices 3, 4 and 5) 

and 4.5 (slice 0, 1 and 2). On slices 3, 4 and 5 we have 4 boxes partially occupied: 2 with 

occupation of 3.7% and the two other with 18.5%. Slices 0, 1 and 2 have also 4 boxes with 

some occupation: 1 with 14.8%; 1 with 22.2%; 1 with 25.9% and 1 with 29.6% 

occupation. Considering equation 3.1 and the pressure and occupations measured, we have 

the Succolarity for this box size as σ (3x3x3,t2b) ≈4.8285/24≈0.2012. 

The numerical results of Succolarity are shown next on table 3.4. 

 

  Succolarity (σ) 
d BS t2b 
6 (1x1x1) 0.2029 
3 (2x2x2) 0.1929 
2 (3x3x3) 0.2012 

Table 3.4. Numerical results of the Succolarity for the 3D synthetic image represented by in figure 

3.12. 
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4 WHY USE THREE DIFFERENT MEASURES? 

The main idea of this section, is to illustrate, through examples, the necessity of 

using, not just one, but a combination of fractal measures, to help the identification of 

texture patterns on images. The three characteristics presented in this work explore 

different aspects of the images in a way that an image could present the same Fractal 

Dimension for a different Lacunarity; the same Lacunarity for a different Succolarity; and 

any other combination of results. 

The Fractal Dimension (FD) is a measure that characterizes how much an object 

occupies the space that contains it. FD is a measure that does not change with scale neither 

with translation nor rotation. Through examples in figures 4.1 and 4.2 some of these 

aspects can be observed. Lacunarity measures the size and frequency of gaps on the 

image. Succolarity measures the degree of percolation of an image. 

 

 

Figure 4.1. Comparison of Fractal Dimension of Sierpinski’s carpet with different resolutions: 

243x243, 81x81 and 27x27 pixels. FD = log(8)/log(3) ≈1,89. Fractal Dimension does not change with 

scale. 

 

 

Figure 4.2. Comparison of FD of a fractal with the same Fractal Dimension of Sierpinski’s carpet 

rotated ninety degrees clockwise. Fractal Dimension does not change with rotation. 
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4.1 FRACTALS WITH THE SAME FRACTAL DIMENSION AND DIFFERENT 

LACUNARITY AND SUCCOLARITY 

This section demonstrates that Fractal Dimension in some cases is not enough to 

differentiate texture of images. The Fractal Dimensions of the two fractals in figure 4.3 are 

equal. Nevertheless, it is easily shown by its definitions, that the Lacunarity and 

Succolarity of those images are different. This is shown in figures 4.4 through 4.7. 

 

Figure 4.3. Two fractals with the same FD. Sierpinski carpet and another fractal with the same rule of 

construction: 8 parts with a scale factor of 1/3. 

 

Figures 4.4 and 4.5 illustrates that the fractals in figure 4.3 have different values of 

Lacunarity. 

 

Figure 4.4. Ln x ln plot result of Lacunarity of Sierpinski carpet. 

 

The differences can be better seen after the ln of box size (X axis) is higher than 2 

where, in figure 4.4, the ln of Lacunarity is between 0.6 and 0.8, while in figure 4.5, this 

value is between 0.8 and 1.0. 
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Figure 4.5. Ln x ln plot result of Lacunarity of a fractal with the same FD of the Sierpinski carpet. 

 

In figures 4.6 and 4.7, the difference on the results of Succolarity is easily shown 

by the ln x ln plots, since the Sierpinski carpet (in figure 4.6) is a totally symmetric fractal, 

producing equal results in the four directions of analysis of the Succolarity. 

 

 

Figure 4.6. Succolarity of Sierpinski carpet. 

 

The fractal in figure 4.7 is only half symmetric, as it can be seen in the ln x ln plot 

in this figure and by the results in table 4.1. 
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Figure 4.7. Sucolarity of a fractal with the same FD of the Sierpinski carpet. 

 

ln(d) ln(100xσ) 
 b2t t2b l2r r2l 

4,9053 4,1236 4,1236 4,3655 4,3655 
3,8067 4,1241 4,1241 4,3651 4,3651 
3,2958 4,1236 4,1236 4,3655 4,3655 
2,7081 4,1249 4,1249 4,3644 4,3644 
2,1972 4,1340 4,1340 4,3572 4,3572 
1,6094 4,1270 4,1270 4,3627 4,3627 
1,0986 4,1648 4,1648 4,3319 4,3319 

Table 4.1. Numerical results of the ln x ln Succolarity plot for figure 4.7.  

 

Table 4.1 shows in the first column the logarithm of the dividing factor of the boxes 

and on the second column the logarithm of the Succolarity times 100. The sub-columns 

illustrate respectively the results for the directions: bottom to top (b2t); top to bottom 

(t2b); left to right (l2r) and right to left (r2l). The results in this table made clear that the 

Succolarity for this image does not change by reversing the direction through the same 

axis. 

 

4.2 FRACTALS WITH THE SAME FRACTAL DIMENSION AND 

LACUNARITY AND DIFFERENT SUCCOLARITY 

This section illustrates that there are cases where Fractal Dimension and 

Lacunarity do not differentiate images. Some of these cases could be treated with the 

Succolarity definition presented here as we can see by the examples of the figures 4.8 

through 4.11. 



 

50 

Figure 4.8 illustrates through a synthetic image that Fractal Dimension does not 

vary with a 90º rotation. This was already observed in figure 4.2. 

 

Figure 4.8. Ln x ln plot result of FD by box couting method to a given synthetic image. X axis presents 

the logarithm of the division factor and Y axis presents the logarithm of the number of occupied 

boxes. These results show that the FD does not change with rotation. 

 

Figure 4.9 illustrates through the same synthetic image of figure 4.8 that 

Lacunarity does not vary with rotation as it could be easily expected by its characteristics. 

 

 

Figure 4.9. Ln x ln plot result of Lacunarity by the gliding box method illustrating that it does not 

change with rotation. 

 

The results in figures 4.10 and 4.11, also using the same image of figure 4.8, show 

that Succolarity varies with rotation (on images that were not totally symmetric, of 

course), and that there are images that have the same FD and Lacunarity and different 

Succolarity values. 

 



 

51 

 

Figure 4.10. Ln x ln plot result of Succolarity of the first image of figure 4.8 by the proposed method. 

 

Figure 4.11. Ln  x ln plot result of Succolarity of the second image of figure 4.8 by the proposed 

method. 
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5  RESULTS ON REAL IMAGES  

In this section, the approaches described in the previous sections are used to 

characterize patterns on real images. 

5.1 PREPARING THE IMAGES 

This section explains how real images, used in this work, were pre-processed to 

satisfy the necessities of the implemented methods: Fractal Dimension, Lacunarity and 

Succolarity. The step for preparing an image consists on using techniques to process it in a 

way that the result will be better than the original image for use in a specific method. 

The pre-processing is useful to increase the quality of the images emphasizing some 

characteristics that are interesting to a particular method. Three methods implemented here 

require binary images as input. The medical images of mammograms and carotid artery 

used here employ a supervised approach to generate the binary version of the images. This 

was done to guarantee that the binary images resemble the particular features on the 

original image. 

For the Fractal Dimension evaluation, after the threshold, the image edges are also 

detected before being used in the method. Mathematical morphology was used to find the 

contour of these images. The binary image, named BI, was eroded by a structuring 

element in the form of a cross and then, the contour image was the result of the difference 

of the BI image by the output image of the erosion process (SERRA, 1982 and SOILLE, 

1998). 

The aerial images of cities used were sent by the author of the paper from which the 

results are compared on the section 5.3.1. The binary versions of these images were 

obtained using an unsupervised approach. As it can be seen on section 5.4.1 we adopted a 

supervised approach in order to classify appropriately the input images as built and non-

built areas. The wrong representation of this aspect in the input binary images may lead 

the method to yield results not corresponding to the results expected. 

 

5.2 RESULTS OF FRACTAL DIMENSION 

The method used to calculate the Fractal Dimension for the real images illustrated 

here was the box counting defined on section 2.1.3. 
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The real images used here (figures 5.1 (a) and (b)), to illustrate the calculus of the 

Fractal Dimension implemented, are images from the mammogram database established 

on a previous work of this research group (CONCI et al., 1999). 

 

 
(a) 

 
(b) 

Figure 5.1. Gray-scale images of tumors (200x230 pixels): (a) ben3 – benign, (b) mal13 - malign. 

 

The images in figure 5.1 were chosen because they represent two types of tumors: 

one benign and other malign. The benign (figure 5.1 (a)) presents small masses and with 

more circular shape than the malign case (figure 5.1 (b)). This is more easily seen after the 

threshold process. 

 

 
(a) 

 
(b) 

Figure 5.2. Binary version of images in figure 5.1: (a) threshold = 220, (b) threshold =170. 

 

In the approach used to calculate the Fractal Dimension for the mammograms 

images on MELO and CONCI, 2007, after the threshold step, the boundaries of the binary 

images must be obtained. The method to obtain the contour used is the internal contour of 

mathematical morphology, also named morphological gradient (SOILLE, 1998). 
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(a) 

 
(b) 

Figure 5.3. Edges of images in figure 5.2 obtained through mathematical morphology. 
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Figure 5.4. Result of the Fractal Dimension of the image of figure 5.3 (a). 

 

For the image in the figure 5.3 (a) the observed result in figure 5.4 was 1.2798 and 

corresponds to the analysis of benign tumors. 
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Fractal Dimension - mal13 - FD implemented
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Figure 5.5. Result of the Fractal Dimension of the image of the figure 5.3 (b). 

 

The result observed for the image of the figure 5.3 (b) presents DF = 1.2920, as can 

be seen in figure 5.5 and corresponds to malign tumors. The value of the Fractal 

Dimension to the benign tumors is smaller than the result for the malign tumors. This is 

because figure 5.3 (b) presents more complex edges distributed through the image, causing 

a bigger occurrence of occupied boxes for this image. Although figure 5.3 (a) presents 

more mass, they are smaller, simpler and closer to each other than those on the other 

image. 

In order to validate the implementation of the Fractal Dimension here used, the 

next figures (figures 5.6 and 5.7) illustrate through graphs the results calculated by the 

method implemented against the results of the FRACLAC (KARPERIEN, 2004), which is 

a plug-in of IMAGEJ (RASBAND, 1997), a public domain Java image processing 

program. 
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Figure 5.6. Results of Fractal Dimension of the implemented method against the result of FRACLAC 

corresponding to the benign tumor. 

 

In the results of figure 5.6 one could note that the FRACLAC method computes 

more box sizes than the method implemented in this work. This is because the approach 

implemented only considers integer divisions to the windows on the box counting method. 

As the results for the box sizes that are calculated by the two methods match, the results 

for the Fractal Dimension obtained for each method are almost the same. As the 

implemented method considers only integer divisions for the sizes of the boxes, it executes 

faster than the method implemented in FRACLAC. 

The implementation difference to FRACLAC is that the used input images (figure 

5.3 (a) and (b)) have to be inverted (each black pixel on the original image becomes white 

while the white ones become black after the inversion of the image) before entering the 

other method so that the two methods analyze the same data. 
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Figure 5.7. Results of Fractal Dimension of the implemented method versus FRACLAC result for 

malign tumor. 

 

As expected, all the observations made to the results for the benign tumor (figure 

5.6) could be observed in figure 5.7. 

 

5.3 RESULTS OF LACUNARITY 

The method used to compute the Lacunarity for real images illustrated here was 

based on the gliding box method, described on section 2.2. 

 

5.3.1 COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER 

EXISTING METHODS THROUGH BINARY IMAGES 

This section illustrates the results obtained by the Lacunarity calculation 

implemented on the FRACLAC plug-in (KARPERIEN, 2004) and the method by 

FERNANDES and CONCI, 2004a compared to the proposed method to calculate 

Lacunarity. As here, we only compare the Lacunarity, giving as input, black and white 

images, we expect to obtain the same results, in order to validate the method. 

To better illustrate the results, the images used here were already used and discussed 

on previous works (BARROS FILHO and SOBREIRA, 2005 and BARROS FILHO and 

SOBREIRA, 2005a). These papers use Lacunarity to distinguish the spatial configuration 
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of slums from formal constructed areas as well as from other informal areas to contribute 

for the development of alternative and complementary classifications of these settlements. 

The goal is to generate complementary mapping and classifications for urban poverty 

through satellite images. 

The images used here (including their binary versions) have been gently provided by 

Mauro Barros Filho (figures 5.8 and 5.9), one of the authors of the paper BARROS 

FILHO and SOBREIRA, 2005, to make sure that the results match for the same images. 

These satellite images were originally captured by the IKONOS (SPACE IMAGING 

BRAZIL, 2004) and could be freely downloaded through the internet for non-profit 

research and evaluation purposes. 

Four images were used for this analysis(figure 5.8), three from the city of Campinas, 

SP, Brazil: two regular (orthogonal geometry) samples and one irregular (slum) sample 

and one image, with an irregular sample, from the city of Rio de Janeiro, Brazil. All 

images have 270x270 pixels. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.8. Satellite images from IKONOS: (a) and (b) two regular samples of occupation from 
Campinas: formal 1 (left) and fomal 2 (right); (c) informal 1: slum of Campinas; (d) informal 2: slum 

from Rio de Janeiro. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9. Binary version of images in figure 5.8. 

 

The FRACLAC plug-in enables some configurations before the calculus of the 

Lacunarity. Some parameters were set to force the two methods work similarly. These 

parameters are shown in table 5.1. 

Parameter Value 

Background color white 

Sizes per series: (0 calculates automatically) 0 

Minimum size for scaled, relative and linear series 2 pixels 

Maximum box size 25% of the image 

Number of pixels to slide boxes (X axis)  1 

Number of pixels to slide boxes (Y axis)  1 

Table 5.1. Parameters of FRACLAC to calculate the Lacunarity based on the same procedure as the 

proposed method. 
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Lacunarity - FRACLAC
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Figure 5.10. Results of Lacunarity obtained from FRACLAC using as input the images of Campinas 

in figure 5.9. 
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Figure 5.11. Results of Lacunarity obtained from the proposed method using as input the images of 

Campinas in figure 5.9. 
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Lacunarity - FERNANDES
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Figure 5.12. Results of Lacunarity obtained from the method on FERNANDES and CONCI, 2004a 

using as input the images of Campinas in figure 5.9. 

 

As we can see in figures 5.10 to 5.12, the results are the same (regarding some 

values that diverges on the order of 10-4), as expected. It is important to note that, for 

particularities of implementations, the images in figure 5.9 were inverted considering its 

colors (black pixels became white and white pixels became black) before the processing at 

the FRACLAC application. 

The results in figure 5.10 to 5.12 show that the Lacunarity values of the images 

formal 1 and formal 2, are practically the same, while the values from informal 1 diverges. 

Lacunarity permits to distinguish two groups of configuration and texture. The regular 

(orthogonal) areas present, in average, higher values of Lacunarity, probably a 

consequence of the outstanding emptiness of spaces, associated to large and regular 

avenues, and overall low density. On the other hand, when analyzing the slums, the result 

is low Lacunarity, indicating low permeability, resulting from typical feature of such 

urban structures: highly dense occupation and tortuous alleys (BARROS FILHO and 

SOBREIRA, 2005a). 

Other comparison made using the results of the slum images (figures 5.8 (c) and 

(d)) are shown next in figures 5.13 to 5.15. 
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0,5

1

1,5

2

2,5

1 10 100

Box Sizes (s)

La
cu

na
rit

y 
( Λ

)

informal 1 informal 2
 

Figure 5.13. Results of Lacunarity obtained from FRACLAC using as input the images of slums in 

figure 5.7: (c) informal 1 and (d) informal 2. 
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Figure 5.14. Results of Lacunarity obtained from the proposed approach using as input the images of 

slums in figure 5.9: (c) informal 1 and (d) informal 2. 
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Lacunarity - FERNANDES
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Figure 5.15. Results of Lacunarity obtained from the method on FERNANDES and CONCI, 2004a 

using as input the images of slums in figure 5.9: (c) informal 1 and (d) informal 2. 

 

The results on the plots of figures 5.13 to 5.15 are the same, as expected, as 

observed before in figures 5.10 to 5.12 (neglecting some values that diverge on the order 

of 10-4). 

Contrary to expectations, the two irregular areas diverge considerably in their 

Lacunarity patterns. If one observes the results and at the same time analyze the spatial 

configuration, one will understand that differences result from morphological and social 

particularities of each community. Informal 2 (figure 5.9 (d)) presents higher Lacunarity 

values than informal 1 (figure 5.9 (c)) due to the presence of some green areas that 

elevates its Lacunarity values as it could affect the process of threshold (BARROS FILHO 

and SOBREIRA, 2005a). 

 

5.3.2 COMPARISON BETWEEN BINARY AND GRAYSCALE APPROACHES 

TO CALCULATE THE LACUNARITY OF MAMMOGRAMS 

This section illustrates the results obtained by the Lacunarity evaluation. The three 

approaches to analyze gray-scaled images described on the section 2.2 and 2.2.1 were 

compared with the approaches in sections 2.2.2 and 2.2.3. The input images used are the 

images of figure 5.1 modified to have the width equal to height (figure 5.16). To modify 

the images, parts that do not represent important information (like tummors) were 
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excluded from new images in figure 5.16. The thresholds used were represented in figure 

5.17, other thresholds used are observed next, in figure 5.18. 

 

 
(a) 

 
(b) 

Figure 5.16. Gray-scale images of tumors (figure 5.1) rescaled to (200x200 pixels): (a) ben3 – benign, 

(b) mal13 - malign 

 

 
(a) 

 
(b) 

Figure 5.17. Binary version of images in figure 5.16: (a) threshold = 220, (b) threshold =180. 

 

 
(a) 

Figure 5.18. Another binary version of image in figure 5.16: (a) threshold = 240. 
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Results of all approaches are shown next in ln x ln plots (figures 5.19 to 5.26). 

Threshold 1 - ben3 = 220, mal13 = 180
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Figure 5.19. Result of the binary version of the Lacunarity for the input images in figure 5.17. 

 

The Lacunarity plots (figures 5.19; 5.20 and 5.21) show important features to 

notice: (1) the Lacunarity values reflect the degree gaps; (2) the Lacunarity curves is 

closer to a straight line as more self-similar is the image; and (3) the Lacunarity values 

reveals the aspects of gaps distribution over the entire image, enabling the detection of the 

presence of hierarchical structures, homogeneity in gaps distribution, random or self-

similar behavior. 
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Threshold 2 - ben3 = 240, mal13 = 180
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Figure 5.20. Result of the binary version of the Lacunarity for the input images in figure 5.18. 

 

Next, in figures 5.21 and 5.22, the plots for the 3D proposed methods are shown 

over the same scale of the plots for the binary Lacunarity (figures 5.19 and 5.20) to better 

compare the results. 
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Figure 5.21. Result of the gray-scale version of the 3D approach Lacunarity for the input images in 

figure 5.16 through the scale on y from 0 to 4. 
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Gray level - Proposed 3D min-max
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Figure 5.22. Result of the gray-scale version of the 3D min-max approach Lacunarity for the input 

images in figure 5.16 through the scale on y from 0 to 4. 

 

Figures 5.21 and 5.22 present similar results; as the intensity levels on the images 

change almost from 0 to 255 on both images. These figures (5.21 and 5.22) also show that 

the Lacunarity plots generated by the gray-scale versions of the Lacunarity (3D and 3D 

min-max) could be better or worst separated in comparison with the results of the binary 

version of the Lacunarity (figures 5.19 and 5.20), depending on the threshold values used. 

This single comparison shows that the gray-scale method is better to characterize the 

type of tumor in these images than the binary method. The main reason is that on the gray-

scale method more data is considered on the processing of the Lacunarity, and there is no 

risk of information loss. The extra amount of data processed on this method implies in a 

higher processing cost, turning this method more time consuming. 

Other approaches developed to gray-scale images and defined in section 2.2 have 

their results demonstrated through the plots in figures 5.25 and 5.26. The results of the 

proposed methods (3D and 3D min-max) are again represented in figures 5.23 and 5.24 

using a more appropriated scale to compare the results with the plots in figure 5.25 and 

5.26 (all plots with the same scale). 
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Gray level - Proposed 3D
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Figure 5.23. Result of the gray-scale version of the 3D approach Lacunarity for the input images in 

figure 5.16 through the scale on y from 0 to 1.2. 
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Figure 5.24. Result of the gray-scale version of the 3D min-max approach Lacunarity for the input 

images in figure 5.16 through the scale on y from 0 to 1.2 
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Gray level - Gan Du
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Figure 5.25. Result of the gray-scale version of the Gan Du approach Lacunarity for the input images 

in figure 5.16 through the scale on y from 0 to 1.2. 

 

Considering the plots, one could easily see that the Gan Du approach (plot in figure 

5.25) has similar results to the Fernandes approach (plot in figure 5.26). The Fernandes 

approach is a little better separated than the Gan Du approach to greater boxes as it can be 

seen if one looks carefully at the values of the Lacunarity when the logarithm of the box 

size (ln(s)) goes from 3 to 4. 
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Figure 5.26. Result of the gray-scale version of the Fernandes approach Lacunarity for the input 

images in figure 5.16 through the scale on y from 0 to 1.2. 
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Comparing figures 5.23 through 5.26 one thing that could be noticed is that the 

obtained values by the proposed methods (figure 5.23 and 5.24) are bigger than for the 

other approaches. Another important fact is that the plots for the proposed approaches are 

better separated than for the other approaches. These differences are probably due to the 

occurrence of empty 3D gliding boxes in the method proposed when the gliding process 

reaches a height greater than the most pixel values of the image. 

 

5.4 SUCCOLARITY RESULTS 

 

5.4.1 SUCOLARITY AS A COMPLEMENTARY MEASURE TO LACUNARITY 

CHARACTERIZATION OF SOCIAL ASPECTS OF CITIES 

Considering that cities are systems with fractal features because they are the result 

of a non-linear logic, whose patterns cannot be measured by usual concepts and tools from 

classical geometry (BATTY and LONGLEY, 1994; FRANKHAUSER, 1997; SOBREIRA 

and GOMES, 2000). We use here these types of images as input to the new proposed 

fractal measure, called Sucolarity. The idea of this section is to demonstrate the results of 

Succolarity as a complementary measure to Lacunarity, as Lacunarity is complementary to 

Fractal Dimension. 

The particular problem of characterizing social aspects of cities and differentiate 

informal and formal areas fit very well to the concepts of Succolarity. Normally a great 

difference between formal and informal areas lies on the width of the streets, bigger on the 

formal area. Also, quite often the alleys that exist on informal areas do not communicate 

with neighboring streets. This could be better explained if one could imagine that is not as 

easy for a car to drive through all the parts of an informal area like it is in a formal area. 

With this in mind, together with the concepts on sections 2.3 and chapter 3, the 

images used in this section are the same of the section 5.3.1. The image in figure 5.9 (c) 

were inverted to be used in the method because in Succolarity the black pixels represent 

the possibility of percolation (the streets) and the white ones represent the obstacles (the 

constructions). The inverted version represents better this idea (figure 5.27). 
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(a) 

 
(b) 

Figure 5.27. Better binary representation of the satellite image from Campinas SP (informal) (a) 

original image; (b) Binary version of (a). 

 

Figure 5.28 shows a plot with the average result of the Succolarity (this average is 

a simple sum of the four directions of Succolarity analysis: left to right, right to left, top to 

bottom and bottom to top divided by four) for the same sample used to compare the 

Lacunarity on previous section. The three images from Campinas are here evaluated. 

 

Sucolarity

0

0,1

0,2

0,3

0,4

0,5

1 10 100 1000

Factor of division

Av
er

ag
e 

of
 S

uc
co

la
rit

y

formal 1 formal 2 informal 1
 

Figure 5.28. Results of Succolarity average obtained from the proposed method using as input the 

images of Campinas in figure 5.9 (a) – formal 1 and (b) – formal 2 and the image in figure 5.27 (b) – 

informal 1. 
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Figure 5.29 illustrates the advantages of using the Succolarity over the Lacunarity 

for this example. The informal areas, seen through the results, produce graphs better 

separated, showing that Succolarity is a good measure to characterize this kind of pattern. 
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Figure 5.29. Results of Succolarity average obtained from the proposed method using as input the 

images of Campinas in figure 5.27 (b) – informal 1 and the image in figure 5.9 (d) – informal 2. 

 

Another important point is that these results are the average results of Succolarity 

in a way that, for a specific application, as we will see on the next section, only one or a 

particular number of directions could be measured, as considered useful for the problem to 

be solved. 

On graphs of figures 5.30 to 5.33 one can see that, through other type of analysis, 

the results of Succolarity could be used to distinguish formal from informal areas. 
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Figure 5.30. Results of Succolarity of the image in figure 5.9 (a). 

 

Next results, figure 5.30 to 5.33, illustrate the results of Succolarity considering 

four directions that a fluid can flood the original image: bottom to top (b2t); top to bottom 

(t2b); left to right (l2r); right to left (r2l). Figures 5.30 and 5.31 demonstrate that, on 

formal areas, the results do not vary considerably with the direction. This is easily 

explained when we think that formal areas usually have a great number of large streets that 

go from lots of points to others including points where some streets cross others. 
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Figure 5.31. Results of Succolarity of the image in figure 5.9 (b). 
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Sucolarity - informal 1
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Figure 5.32. Results of Succolarity of the image in figure 5.27 (b). 

 

Figures 5.32 and 5.33, which are results of Succolarity of informal areas, 

demonstrate that, in this kind of occupation, the direction used on the evaluation presents 

great impact on the results. While, for the analyzed formal areas, the difference in the 

values is on hundredths for Succolarity; for the informal areas, this difference is in 

decimals. 
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Figure 5.33. Results of Succolarity of the image in figure 5.9 (d). 

 

The numerical values of Succolarity in the plots of this section are represented in 

tables 5.2 through 5.5 to better illustrate the differences on the results. 
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Succolarity  Factor of 
division b2t t2b l2r r2l Average 

270 0,3489 0,3023 0,3330 0,3415 0,3314 
135 0,3489 0,3023 0,3330 0,3415 0,3314 
90 0,3489 0,3023 0,3330 0,3415 0,3314 
54 0,3489 0,3023 0,3330 0,3415 0,3314 
45 0,3489 0,3023 0,3330 0,3415 0,3314 
30 0,3489 0,3024 0,3330 0,3415 0,3315 
27 0,3488 0,3023 0,3330 0,3415 0,3314 
18 0,3489 0,3026 0,3330 0,3413 0,3314 
15 0,3487 0,3024 0,3330 0,3413 0,3314 
10 0,3486 0,3028 0,3331 0,3407 0,3313 
9 0,3489 0,3033 0,3339 0,3414 0,3319 
6 0,3482 0,3035 0,3339 0,3412 0,3317 
5 0,3473 0,3035 0,3313 0,3380 0,3300 
3 0,3487 0,3075 0,3357 0,3384 0,3326 
2 0,3430 0,3085 0,3400 0,3354 0,3317 

Table 5.2. Numerical results of Sucolarity of formal 1: figures 5.30 and 5.28. 

 

Succolarity Factor of 
division b2t t2b l2r r2l Average 

270 0,3432 0,3364 0,2752 0,3152 0,3175 
135 0,3432 0,3364 0,2752 0,3152 0,3175 
90 0,3432 0,3364 0,2752 0,3152 0,3175 
54 0,3432 0,3364 0,2752 0,3152 0,3175 
45 0,3432 0,3364 0,2751 0,3152 0,3175 
30 0,3431 0,3364 0,2753 0,3152 0,3175 
27 0,3432 0,3364 0,2752 0,3151 0,3175 
18 0,3431 0,3364 0,2753 0,3151 0,3175 
15 0,3428 0,3362 0,2754 0,3152 0,3174 
10 0,3424 0,3361 0,2754 0,3147 0,3172 
9 0,3415 0,3354 0,2756 0,3148 0,3168 
6 0,3410 0,3355 0,2758 0,3145 0,3167 
5 0,3408 0,3358 0,2755 0,3139 0,3165 
3 0,3326 0,3294 0,2783 0,3121 0,3131 
2 0,3295 0,3286 0,2847 0,3113 0,3135 

Table 5.3. Numerical results of Sucolarity of formal 2: figures 5.31 and 5.28. 
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Succolarity Factor of 
division b2t t2b l2r r2l Average 

270 0,2870 0,0543 0,0317 0,3113 0,1711 
135 0,2870 0,0543 0,0317 0,3113 0,1711 
90 0,2870 0,0543 0,0317 0,3113 0,1711 
54 0,2870 0,0543 0,0318 0,3113 0,1711 
45 0,2870 0,0543 0,0317 0,3113 0,1711 
30 0,2869 0,0543 0,0318 0,3113 0,1711 
27 0,2869 0,0544 0,0319 0,3112 0,1711 
18 0,2868 0,0546 0,0321 0,3111 0,1711 
15 0,2866 0,0547 0,0322 0,3112 0,1712 
10 0,2861 0,0553 0,0327 0,3103 0,1711 
9 0,2862 0,0556 0,0333 0,3104 0,1714 
6 0,2845 0,0568 0,0350 0,3086 0,1712 
5 0,2828 0,0574 0,0358 0,3107 0,1717 
3 0,2765 0,0645 0,0424 0,3030 0,1716 
2 0,2595 0,0823 0,0637 0,2867 0,1730 

Table 5.4. Numerical results of Succolarity of informal 1: figures 5.32; 5.28 and 5.29. 

 

Succolarity Factor of 
division b2t t2b l2r r2l Average 

270 0,1768 0,0189 0,0332 0,0469 0,0690 
135 0,1768 0,0189 0,0332 0,0469 0,0690 
90 0,1768 0,0189 0,0332 0,0469 0,0690 
54 0,1768 0,0190 0,0332 0,0469 0,0690 
45 0,1768 0,0190 0,0333 0,0468 0,0690 
30 0,1767 0,0190 0,0333 0,0468 0,0690 
27 0,1767 0,0191 0,0333 0,0468 0,0690 
18 0,1765 0,0190 0,0334 0,0467 0,0689 
15 0,1764 0,0193 0,0336 0,0466 0,0690 
10 0,1757 0,0195 0,0336 0,0463 0,0688 
9 0,1757 0,0199 0,0334 0,0461 0,0688 
6 0,1742 0,0207 0,0349 0,0453 0,0688 
5 0,1723 0,0217 0,0358 0,0448 0,0686 
3 0,1600 0,0234 0,0373 0,0414 0,0655 
2 0,1440 0,0287 0,0470 0,0373 0,0642 

Table 5.5. Numerical results of Sucolarity of informal 2: figures 5.33 and 5.29. 

 

5.4.2 APLICATION OF SUCCOLARITY TO MEDICAL IMAGES 

To demonstrate that Succolarity, like the other fractal measures, is a powerful 

method to characterize real images, an application of the Succolarity to vascular diagnosis 

is shown in this section. The two examples of images (SIZE and DUNCAN, 2006) 

demonstrate a carotid with and without occlusion. On first image named H53022B, figure 

5.34, there is an internal carotid artery plaque, on the second H53031B, figure 5.35, there 
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is an internal carotid artery occlusion. Parts of the original image that contains only textual 

information were removed from the two images. The result images are both 480x240 

pixels. 

 

 

Figure 5.34. H53022B of the vascular-web database (SIZE and DUNCAN, 2006). Internal carotid 

artery plaque. 

 

 

Figure 5.35. H53031B of the vascular-web database (SIZE and DUNCAN, 2006). Internal carotid 

artery occlusion. 

 

In figures 5.34 and 5.35 it is not easy to visualize the occlusion that occurs in 

figure 5.35 and does not occur in figure 5.34. These images were submitted to heuristic 

tests to determine good values of threshold. The results of the threshold of these images 

are shown in figures 5.36 and 5.37. 

 

 

Figure 5.36. Threshold of the image in figure 5.34. Value of threshold heuristically chosen was 18. 
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Figure 5.37. Threshold of the image in figure 5.35. Value of threshold heuristically chosen was 15. 

 

After the threshold, it is easier to note that figure 5.37 has a complete occlusion and 

figure 5.36 has a partial obstruction. The next two images (5.38 and 5.39) show the 

intermediate images generated during the executing of the method proposed to calculate 

the Succolarity of the input image in figure 5.36. 

 

Figure 5.38. Intermediate image for the direction left to right (l2r) for the input image 5.36. 

 

 

Figure 5.39. Intermediate image for the direction right to left (r2l) for the input image 5.36. 

 

The two following images (figures 5.40 and 5.41) show the intermediate images 

generated during the executing of the method proposed to calculate the Succolarity for the 

input image in figure 5.37. 
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Figure 5.40. Intermediate image for the direction left to right (l2r) for the input image 5.37. 

 

 

Figure 5.41. Intermediate image for the direction right to left (r2l) for the input image 5.37. 

 

The ln x ln plots of the Succolarity are shown in figure 5.42 and 5.43. 
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Figure 5.42. Ln x ln plot of the Succolarity for figure 5.36. 

 

Table 5.6 shows the Succolarity numerical values for the image H53022B (figure 

5.36). Table 5.7 shows the Succolarity numerical values for the image H53031B (figure 

5.37). 
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  Succolarity (σ) 
d BS l2r r2l 

120 (4x2) 0.4575 0.4727 
60 (8x4) 0.4575 0.4727 
40 (12x6) 0.4575 0.4727 
30 (16x8) 0.4574 0.4726 
24 (20x10) 0.4574 0.4726 
20 (24x12) 0.4575 0.4726 
15 (32x16) 0.4574 0.4725 
12 (40x20) 0.4572 0.4723 
10 (48x24) 0.4572 0.4723 
8 (60x30) 0.4570 0.4720 
6 (80x40) 0.4573 0.4720 
5 (96x48) 0.4565 0.4709 
4 (120x60) 0.4547 0.4687 
3 (160x80) 0.4569 0.4702 
2 (240x120) 0.4446 0.4566 

Table 5.6. Numerical values of Succolarity of the threshold H53022B. d is the factor of division. BS the 

box size (width x height). 
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Figure 5.43. Ln x ln plot of the Succolarity for figure 5.37. 
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  Succolarity (σ) 
d BS l2r r2l 

120 (4x2) 0.0307 0.3869 
60 (8x4) 0.0307 0.3869 
40 (12x6) 0.0308 0.3869 
30 (16x8) 0.0308 0.3868 
24 (20x10) 0.0310 0.3868 
20 (24x12) 0.0310 0.3867 
15 (32x16) 0.0313 0.3865 
12 (40x20) 0.0317 0.3864 
10 (48x24) 0.0315 0.3862 
8 (60x30) 0.0323 0.3858 
6 (80x40) 0.0343 0.3845 
5 (96x48) 0.0347 0.3848 
4 (120x60) 0.0369 0.3828 
3 (160x80) 0.0470 0.3743 
2 (240x120) 0.0705 0.3654 

Table 5.7. Numerical values of Succolarity of the threshold H53031B. d is the factor of division. BS  

the box size (width x height). 

The direction considered on the results was only horizontal because the vessels on 

the images are on this direction.  

In the non occluded image the results on the curve to l2r and r2l almost match as 

we can see by the figure 5.42. But when an obstacle is present on the analyzed image, the 

l2r and r2l curves differs significantly as could be seen in figure 5.43. 
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6 CONCLUSIONS AND FUTURE WORKS 

This chapter describes the conclusions about the fractal measures implemented and 

proposed as well as the directions to future works. 

 

6.1 CONCLUSION 

Throughout the results of the three types of fractal measures: Fractal Dimension; 

Lacunarity and Succolarity for all the real images used here we see, that fractal measures 

are very good to characterize a variety of kinds of images. Like many other works we 

continue here demonstrating the usability of fractal measures on medical diagnosis. The 

proposed measure, Succolarity, is also evaluated using medical images as input. 

 

6.1.1 FRACTAL DIMENSION 

The Fractal Dimension is already largely used to characterize patterns on a great 

number and kinds of application. The use on this work of the box counting method is only 

to confirm the idea that FD is a very good approach for texture analysis. The same type of 

images, mammograms, where used in this work to illustrate FD and Lacunarity uses. In 

both cases, we could say that fractal measures are very useful in the characterization of 

mammograms. Both methods could be used to compose a feature vector that, on a decision 

step, could help in the identification of the occurrence or not of malign tumors by 

mammograms. 

The results from the implemented method against the results from FRACLAC 

validate the results obtained with the implementations. 

 

6.1.2 LACUNARITY 

The use of Lacunarity for texture identification in objects or image analysis is also 

considered in this work. Lacunarity has several practical advantages over other indices of 

texture analysis: its computation is simple to implement; it exhaustively samples the image 

to quantify changes and self-similarity with scale and it can be used for analysis of natural 

or synthetic images. 
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This work presents a method for estimation of LL of any kind of 3D object or 

image. It is not a simple extension of the usual Lacunarity characterization of 1D sets 

because it considers many local aspects as: resolution, generation and box size in images 

representation. Moreover, image now is an element of the 3D space, which means that its 

gaps distribution may consider the grey level representing the z coordinate.  

The proposed approach is used for Lacunarity computation of an approximation of 

fractal objects and real images. The experimental results show the characteristics of 

texture recognition obtained using the Lacunarity as a feature extracted from an image. 

Although single value can be used for characterizations aspects of an area like a filter, the 

use of Lacunarity values combined as log x log (ln x ln) or even linear x log graphs are 

much more representative for the characterization of the texture of all images. It is the 

change of the Lacunarity values over different gliding box sizes that yields greater amount 

of information. The combination of these values captures pattern over the entire range of 

scales from the minimum grid to a given percentage of the entire image, or a 

representative percentage of the image. 

The use of a single value of Lacunarity extracted from a single box size is of 

limited value and meaningless as a basis for comparing different images. The more useful 

feature of Lacunarity is the amount of information gained by computing it over a range of 

box sizes. It is especially interesting if resolution, r, also change. For each object, the 

Lacunarity representation can be calculated for box (cubes) sizes ranging from s=2 to r 

incrementing one voxel at the box size each time. 

The plots that compare the results obtained from our approach versus the 

FRACLAC to calculate the Lacunarity show that the values match on the simple case, that 

is, the binary version of Lacunarity. 

The plots compare the results of the Lacunarity for the gray-scale images 

illustrating that the proposed methods characterizes better the differences on the 

mammograms tested against the method proposed by Fernandes (not published yet) and 

the one proposed by Gan Du (GAN DU and TAT SOON YEO, 2002). The disadvantage 

of the proposed methods is that they are more computationally expensive than the others. 
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6.1.3 SUCCOLARITY 

The results of the experiments on real images show that the method is very useful 

as a new feature to integrate other characteristics on pattern recognition processes. The 

notions of Succolarity described on MANDELBROT, 1977 were respected and the 

measure could be seen as a natural evolution of the FD and Lacunarity. The other 

advantage of the method is to be simple, easy and fast to be calculated.  

Analyzing the Succolarity results for the city pictures, it is easy to notice that, 

depending on the intention of the classification, the method is better suited than the 

Lacunarity. The main gain of the Succolarity is that the method enables not one, but lots of 

ways to analyze the results, once the user knows something about what kind of 

information he wants to extract from the image, more he can take advantage of the 

representation of the result. The user could use different directions, combining it or not, 

depending on the problem in question. These were illustrated by the cities results of 

Succolarity, which uses four directions, and the vascular medical images results, that use 

only two directions. 

Like the Lacunarity, our proposal to Succolarity computation considers the use of 

log x log (ln x ln) or linear x log plots instead of a single value. The Succolarity values 

over different box sizes gives essential information useful to the pattern recognition 

process. 

Succolarity is a great measure, that is very useful, not only for the type of images 

used here, but to generic images, that present some information associated with direction 

or flow. Among the applications are the study of percolation of petroleum and natural gas 

through semi-porous rock; where the theory can help to predict and improve the 

productivity of natural gas and oil (WIKIPEDIA, 2007). 

 

6.2 FUTURE WORKS 

This section talks about the possible continuation works and new ways to calculate 

the Lacunarity and Succolarity to enhance the results obtained so far. 
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6.2.1 LACUNARITY 

The method proposed here to calculate the Lacunarity of gray-scale images was the 

same method used to calculate the Lacunarity of 3D objects. This method presents good 

results but is computationally expensive, and because of that it is not useful to real time 

texture segmentation applications. A future work then is to develop an algorithm that 

makes use of all the information in the gray-scale image, like was used here, that could be 

used on automatic identification needs. 

 

6.2.2 SUCCOLARITY 

As future work, it is suggested modeling of a gray scale version of the .Succolarity, 

which will avoid the threshold step on 8 bit images. The initial intention is to keep the 

method easy to understand and implement as well as keep it faster to execute like the 

binary version described here. 

An idea is also to consider the use of the Succolarity results obtained as texture 

filters as coefficients (as the Hurst coefficient). 

Another application for the Succolarity method, beyond the ones described in this 

work, is on the study or prevention of the reservoir induced earthquakes (induced 

seismicity). Some evidence exists to link the development of larger dams with the 

occurrence of seismic events. In seismically active areas, a reservoir may advance the 

occurrence of earth tremors (possibly resulting in more frequent but smaller magnitude 

events). The relationship between water percolation, seismic events and the mechanisms 

by which a reservoir could causes earthquakes are not wholly understood and there is 

considerable debate on the subject (WORLD BANK, 2007). 

 



 

86 

REFERENCES 

 

(ADDISON, 1997) ADDISON, P. S., Fractals and Chaos: An Illustrated Course, 

Napier University, Edinburgh; Institute of Physics Publishing, Publishing Ltd; London, 

1997.  

 

(ALLAIN and CLOITRE, 1991) ALLAIN, C., CLOITRE, M., Characterizing the 

lacunarity of random and deterministic fractal sets, Physical Review A, 44, pp. 3552-

3558, 1991. 

 

(AMORIN et al, 2001) AMORIN, H. P., VELLASCO, M. M., CONCI, A., LEVY, A. F. 

S., Reconhecimento de Defeitos em Equipamentos Elétricos de Alta Tensão 

Utilizando a Teoria Fractal e as Redes Neurais Artificiais, XVI SNPTEE, Seminário 

Nacional de Produção e Transmissão de Energia Elétrica, CTEEP, EPTE., 2001. 

 

(AQUINO and CONCI, 1998) AQUINO, F. R. and CONCI, A., Fractal Image Coding 

by Multi-Scale Selection Based on Block Complexity, Proceedings of 8th International 

Conference on Engineering Design Graphics and Descriptive Geometry - ICECGDG - 

Austin, Texas, USA, July 31-August 3, vol. 2 , pp. 495-499, Edited by ISCG-International 

Society for Geometry and Graphics, 1998. 

 

(AZEVEDO and CONCI, 2003) AZEVEDO, E. and CONCI, A., Computação Gráfica – 

Teoria e Prática, 1ª. ed. Elsevier Ltda., Rio de Janeiro, 2003.  

 

(BADII and POLITI, 1987) BADII, R. and POLITI, A., Renyi dimensions from local 

expansion rates, Physical Review, 35-3, pp. 1288-1293, Fecbruary 1987. 

 

(BARABÁSI and STANLEY, 1995) BARABÁSI, A. L., STANLEY, H. E., Fractal 

Concepts in Surface Growth, Cambridge University Press, New York, USA, 1995. 



 

87 

 

(BARNSLEY et al., 1988) BARNSLEY, M. F., DEVANEY, R. L., MANDELBROT, B. 

B., PEITGEN, H. O., SAUPE, D., The Science of Fractals Images, Springer-Verlag, 

New York, 1988. 

 

(BARROS FILHO and SOBREIRA, 2005) BARROS FILHO, M. N. M. and SOBREIRA, 

F. A., Assessing texture pattern in slums across scales: an unsupervised approach. 

In: CASA Working Paper, Centre for Advanced Spatial Analysis, University College 

London, London, n. 87, 2005. Link: 

http://www.casa.ucl.ac.uk/working_papers/paper87.pdf. 

 

(BARROS FILHO and SOBREIRA, 2005a) BARROS FILHO; M. N. M.; SOBREIRA, F. 

A. J. Analysing spatial patterns in slums: a multiscale approach. In: CONGRESSO 

INTERNACIONAL DE PLANEJAMENTO URBANO REGIONAL INTEGRADO E 

SUSTENTÁVEL, São Carlos (SP). São Carlos: PLURIS, 2005. 

 

(BATTY and LONGLEY, 1994) BATTY, M., LONGLEY, P. Fractal Cities: Geometry 

of Form and Function. 1 ed. London: Academic Press, 1994. 

 

(BLOCK et al., 1990) BLOCK, VON BLOH, W. and SCHELLNHUBER, H. J., Efficient 

box-counting determination of generalized fractal dimensions, Physical Review A, 42, 

4, pp. 1869-1874, 1990. 

 

(BROWN, 2005) BROWN, A., Fractal landscapes, Link: http://www.fractal-

landscapes.co.uk, 2005 

 

(CHA, 1992) CHA, K. L., Fractal-based texture analysis, ICCS/ISITA Conference 

Proceedings - Communications on the Move, Singapore, pp. 102–106, Nov. 1992. 

 

http://www.casa.ucl.ac.uk/working_papers/paper87.pdf
http://www.fractal


 

88 

(CHEN et al., 1989) CHEN, C. C., DAPONTE, J. S. and FOX, M. D., Fractal feature 

analysis and classification in medical imaging, IEEE Transactions on Medical Imaging, 

vol. 8, pp. 133–142, June 1989. 

 

(COELHO and CONCI, 2000) COELHO, F. F. S., CONCI, A., Investigation of 

Meteorological Satellite Images Using Multifractal Analysis, Abstracts do CILAMCE 

2000, 21st Iberian Latin American Congress on Computational Methods in Engineering , 

IMPA, Rio de Janeiro, Edited by Luiz Eloy Vaz, ISBN 85-901717-1-x , p. 148. Trabalho 

completo em CD of XXI CILAMCE - CILAMCE'2000, December 2000. 

 

(COELHO and CONCI, 2001) COELHO, F. S. and CONCI, A., An Efficient Approach 

to Compute the Hausdorff dimension of images, IEEE - EURASIP Workshop on 

Nonlinear Signal and Image Processing, Hyatt Regency Baltimore, Baltimore, Maryland 

USA, June 2001. 

 

(CONCI, 1999) CONCI, A., Texture Classification of Lansat Images Using Fractal 

Dimension and Bands, Anais do GisBrasil99 - V Congresso e Feira para Usuários de 

Geoprocessamento da América Latina Salvador, Bahia, Brasil, CD Módulo de Tecnologia- 

Coleta de Dados- Sensoriamento Remoto, July 1999. 

 

(CONCI et al., 1996) CONCI, A. , CAMPOS, C. F. J. , PROENÇA, C. B., Using Fractal 

Dimension to Identify Texture Variation, proceedings of Second International 

Conference on Non-linear Dynamics, Chaos, Control and Their Applications in 

Engineering Science ICONNE'96, in Chap. 2 Chaotic Phemomena of Nonlinear 

Dynamics, Chaos Control and Their Applications to Engineering Science- ISBN – 65-

900351-1-5, edited by J. M. Balthazar, D./T. Mook & J. M. Rosario, São Pedro , SP, pp. 

174-178, August 1996. 

 

(CONCI et al., 1997) CONCI, A., CAMPOS, C.F.J. and PROENÇA, C. B., Using Fractal 

Dimension to Identify Texture Variation in Chap. 2 Chaotic Phenomena of Nonlinear 

Dynamics, Chaos Control and Their Applications to Engineering Science - ISBN – 65-



 

89 

900351-1-5, edited by J. M. Balthazar, D./T. Mook & J. M. Rosario , AAM/RBCM pp. 

174-178, 1997. 

 

(CONCI et al., 1999) CONCI, A., SOARES, L. M., VIANNA, A. D., Identification of 

Benign and Malignant Lesion by Feature Extraction on Mammographic Images, 

Applied Mechanics in Americas, v. 6, pp. 53-56, 1999. 

 

(CONCI and AQUINO, 1999) CONCI A. and AQUINO, F., Fractal Image Coding 

Based on Block Complexity, Journal for Geometry and Graphics , Heldermann Verlag, 

Germany, ISSN 1433-8158, v. 3, pp. 57-64, 1999. 

 

(CONCI and AQUINO, 1999a) CONCI A., and AQUINO, F., Using Adaptive 

Contraction for Fractal Image Coding Based in Local Fractal Dimension, proceedings 

of SIBGRAPI'99, Edited by IEEE Computer Society, ISBN: 0-7695-0481-7/99 Technical 

Session, pp. 231-239, 1999. 

 

(CONCI and AQUINO, 2002) CONCI, A., AQUINO, F. R., Codificação Fractal de 

Imagens, Chapter 16 in Anais do I Congresso de Dinâmica, Controle e Aplicações. 

Editado por J. M. Balthazar, M. Boaventura, G. N. Silva e M. Tsuchida . Sociedade 

Brasileira de Matemática Aplicada e Computacional - SBMAC - palestra convidada do I 

DINCON - ISBN- 85-86883-05-0. 1ª. Escola Temática de Dinâmica e Controle, São José 

do Rio Preto, SP, v. 1, pp. 365-402, July 2002 

 

(CONCI and AQUINO, 2005) CONCI, A., AQUINO, F. R., Fractal Coding Based on 

Image Local Fractal Dimension. Computational & Applied Mathematics (CAM), ISSN: 

0101-8205, SBMAC, Special Issue on Dynamics, Control and Their Applications - Guest 

Editors: J M Balthazar and G N Silva, pp. 26-40, January 2005. 

 

(CONCI and CAMPOS, 1996) CONCI, A. CAMPOS,C. F. J., An Efficient Box-

Counting Fractal Dimension Approach for Experimental Image Variation 



 

90 

Characterization, Processing IWISP’96 - 3rd International Workshop on Image and 

Signal Processing - Ed. by B.G. Mertzios & P. Liatsis ISBN 0444825878 - Elsevier 

Science B.V., Manchester, UK, pp. 665-668 , November 1996. 

 

(CONCI and CASTRO, 2002) CONCI, A, and CASTRO, E. M. M. M., Image mining by 

content, Journal of Expert Systems with Application, Devon, UK, Ref.: ESWA 1003, 

Elsevier Science, UK, v. 23, Issue 4, pp. 377-383, 2002 

 

(CONCI and MONTEIRO, 2000) CONCI, A. and MONTEIRO, L. H., Multifractal 

Characterization of Texture-Based Segmentation, IEEE - ICIP 2000, Proceedings of 

the International Conference on Image Processing on paper and CD-ROM - ISBN 0 7803 

6300 0, Vancover, Canada, pp. 792-795, September 2000. 

 

(CONCI and MONTEIRO, 2000a) CONCI, A. and MONTEIRO, L. H., An Approach to 

Estimate the Hausdorff Dimension of Textures, ICONNE 2000, Proceedings of the 

Third International Conference on Nonlinear Dynamics, Chaos Control and Their 

Applications to Engineering Science- ISBN – 65-900351-1-5, edited by J. M. Balthazar, 

D./T. Mook & J. M. Rosario , ABCM & AAM, Campos do Jordão, SP, vol. 1, pp. 100-

112, July 2000. 

 

(CONCI and MONTEIRO, 2002) CONCI, A. and MONTEIRO, L. H., An Approach to 

Estimate the Hausdorff Dimension of Textures, Chapter 4: Aplicon - Applications, in: 

Nonlinear Dynamics, Chaos Control and Their Applications to Engineering Science: 

Applications of Nonlinear Phenomena - ISBN: 85-900351-6-6, edited by J. M. Balthazar, 

P. B. Goncalves, R. M. F. R. F. Brasil, I. L. Caldas, F. B. Rizatto, Publised by ABCM, 

AAM, SBMAC, SIMAI, v. 6, pp. 307-316, 2002. 

 

(CONCI and NUNES, 2001) CONCI, A. and NUNES, E.O., Multi-bands image analysis 

using local fractal dimension, proceedings of SIBGRAPI 2001, Florianopolis, SC, pp. 

91-98, 2001. 



 

91 

 

(CONCI and PROENÇA, 1997) CONCI, A. and PROENÇA, C. B., A Box-Counting 

Approach to Color Image Segmentation, ICIP'97- IEEE 4th International Conference on 

Image Processing, Santa Barbara, California, USA, v. I, pp. 228-230, October 1997. 

 

(CONCI and PROENÇA, 1997a) CONCI, A. and PROENÇA, C. B., Fractal Image 

Analysis for the Textile Industry, Proceedings of EDUGRAPHICS'97 - Third 

International Conference on Graphics Education - COMPUGRAPHICS'97 - Sixth 

International Conference on Computational Graphics and Visualization Techniques, 

Vilamoura, Algarve, Portugal, pp. 137-144, December 1997. 

 

(CONCI and PROENÇA, 1998) CONCI, A. and PROENÇA, C. B., A Fractal Image 

Analysis System for Fabric Inspection Based on Box-Counting Method, Computer 

Netwoks and ISDN Systems, v. 30, Issue 20-21, pp. 1887-1895 Edited by Elsevier 

Science, November 1998. 

 

(DONG, 2000) DONG, P., Test of a new lacunarity estimation method for image 

texture analysis, International Journal of Remote Sensing, v. 21, Issue 17, pp. 3369–3373, 

Nov. 2000. 

 

(EINSTEIN et al., 1998) EINSTEIN, J., Hai-Shan Wu, Gil, J., Self-affinity and 

lacunarity of chromatin textures in benign and malign breast epithelial cell nuclei, 

Physical Review Letters, 80, pp. 397-400, 1998. 

 

(FALCONER, 1990) FALCONER, K. J., Fractal Geometry: Mathematical 

Foundations and Applications, University of Bristol; John Wiley & Sons Ltd; England, 

1990. 

 

(FERNANDES and CONCI, 2004) FERNANDES, J. L., CONCI, A., A Lacunaridade na 

Caracterização Espacial de Padrões, proceedings of III Congresso Temático de 



 

92 

Dinâmica e Controle da SBMAC, Dincon-2004, UNESP/Campus de Ilha Solteira, ABCM, 

Tec Art Editora, Ilha Solteira, SP, Brazil, pp. 1432-1492, May 2004. 

 

(FERNANDES and CONCI, 2004a) FERNANDES, J. L., CONCI, A., Uso da 

lacunaridade no controle de qualidade visual de padrões industriais, proceedings of 

III NATIONAL CONGRESS OF MECHANICAL ENGINEERING, Belém, PA, Brazil, 

August 2004. 

 

(FOLEY et al., 1990) FOLEY, J.D., DAM, A.V., FEINER, S.K. and HUGHES, J.F., 

Computer Graphics – Principles and Practice, 2ª. ed. Addison Wesley, Reading, 1990. 

 

(FRANKHAUSER, 1997) FRANKHAUSER, P. Fractal analysis of urban structures, 

In: HOLM, E. (Edit). Modelling space and networks: Progress in theoretical and 

quantitative geography. Umea: Gerum Kulturgeografi, pp. 145-181, 1997. 

 

(FRAZER et al., 2005) FRAZER, G. W., WULDER, M. A., NIEMANN, K. O., 

Simulation and quantification of the fine-scale spatial pattern and heterogeneity of 

forest canopy structure: A lacunarity-based method designed for analysis of 

continuous canopy heights, Forest Ecology and Management, v. 214, pp. 65-90, 2005. 

 

(GAN DU and TAT SOON YEO, 2002) GAN DU and TAT SOON YEO, A novel 

lacunarity estimation method applied to SAR image segmentation, IEEE Transactions 

on Geoscience and Remote Sensing, v. 40 – 12, pp. 2687-2691, 2002 

 

(GONZALEZ and WOODS, 2000) GONZALEZ, R. C. and WOODS, R. E., 

Processamento de Imagens Digitais, 1ª. ed. Edgard Blücher Ltda, São Paulo, Brazil, 

2000. 

 

(GRASSBERGER, 1981) GRASSBERGER, P., On the Hausdorff dimension of fractal 

attractors, Journal of Statistical Physics, v. 26 – 1, pp. 173-179, 1981. 



 

93 

 

(KARPERIEN, 2004) KARPERIEN, A., FRACLAC, Link: 

http://www.geocities.com/akarpe@sbcglobal.net/box.html.Charles Sturt University, 

Australia, 2004. 

 

(KELLER et al., 1989) KELLER, J. CROWNOVER, R. CHEN, S., Texture description 

and segmentation through fractal geometry, Computer Vision, Graphics, and Image 

Processing, v. 45, pp. 150-166, 1989. 

 

(KOCH, 1904) KOCH, H. von, Sur une courbe continue sans tangente, obtenue par 

une construction geometrique elementaire, Arkiv for Matematik 1, 6810704, 1904. 

 

(LISBERGER, 1982) LISBERGER, S., Tron, Disney, USA/Taiwan, California, USA, 

1982. 

 

(MANDELBROT and VAN NESS, 1968) MANDELBROT, B.B., VAN NESS, J., 

Fractional Brownian motion, fractional noise and applications, SIAM Review, 10, 

1968. 

 

(MANDELBROT, 1977) MANDELBROT, B., The fractal geometry of nature, W. H. 

Freeman and Company., San Francisco, 1977. 

 

(MCINTYRE and WIENS, 2000) MCINTYRE, N. E. and WIENS, J. A., A novel use of 

the lacunarity index to discern landscape function, Landscape Ecology, 15, pp. 313-

321, Springer Netherlands, 2000. 

 

(MELO et al., 2006) MELO, R. H. C.; VIEIRA, E. A.; CONCI, A., Characterizing the 

lacunarity of objects and image sets and its use as a technique for the analysis of 

textural patterns on Advanced Concepts for Intelligent Vision Systems - ACIVS 2006 – 

http://www.geocities.com/akarpe@sbcglobal.net/box.html.Charles


 

94 

Lecture Notes in Computer Science, Publisher Springer Berlin / Heidelberg, IEEE 

Benelux Signal Processing Chapter, v. 4179, pp. 208-219, Antwerp, Belgium, September 

2006. 

 

(MELO et al., 2006a) MELO, R. H. C.; VIEIRA, E. A.; CONCI, A., Comparing two 

approaches to compute lacunarity of mammograms on proceedings of 13th 

International Conference on Systems, Signals and Image Processing - IWSSIP'06, Co-

organised by the Budapest University of Technology and Economics, Hungary and 

Technical University of Kosice, Slovak Republic, in cooperation with IEEE, IEEE Region 

8, IEE, IEEE Hungarian Section, EURASIP, ISBN: 80-89082-09-2, pp. 299-302, 

Budapest, Hungary, 2006. 

 

(MELO and CONCI, 2007) MELO, R. H. C., CONCI, A., Identificação de tumores dos 

seios pela análise de suas imagens on I Encontro Nacional de Engenharia Biomecânica - 

ENEBI 2007. organized by: ABCM, UFMG and IME. 

 

(MÜSSIGMANN, 1992) MÜSSIGMANN, U., Texture Analysis by Fractal Dimension. 

In: J.L.Encarnação, PEITGEN, H. O., SAKAS, G., ENGLERT, G. (eds.): Fractal 

geometry and Computer Graphics. Springer-Verlag, Berlin, pp. 217-230, 1992. 

 

(NUNES and CONCI, 2001) NUNES, E.O. and CONCI, A., Determinação da Dimensão 

Fractal de Conjuntos de Pontos à Imagens de Satélites, Applicon 2001, Proceedings of 

Applicon, Sao Carlos, SP, Brazil, July 2001 

 

(PAPOULIS, 1965) PAPOULIS, A., Probability, Random Variables, and Stochastic 

Processes, In: McGraw-Hill Series in Systems Science, McGraw-Hill, New York, 1965. 

 

(PEITGEN et al., 1992) PEITGEN, H. O., JÜRGENS, H., SAUPE, D., Chaos and 

Fractals: New Frontiers of Science. Springer-Verlag, New York, 1992. 

 



 

95 

(PENTLAN, 1984) PENTLAN, A., Fractal-based description of nature scenes, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, v. 10, pp. 661–674, May 

1984. 

 

(PIZZOLATO, 2003) PIZZOLATO, D. CxImage, Link: 

http://www.codeproject.com/bitmap/cximage.asp?target=CxImage, 2003. 

 

(PLOTNICK et al., 1993) PLOTNICK, R.E., GARDNER, R.H., O'NEILL, R.V., 

Lacunarity indices as measures of landscape texture, Landscape Ecology, Springer 

Netherlands, v. 8, pp. 201-211, 1993. 

 

(PROENÇA et al, 1999) PROENÇA, C. B. CONCI, A., SEGENREICH, S., Comparação 

de Técnicas de Segmentação e de Dimensão Fractal visando a Detecção Automática 

de Falhas Têxteis, Applied Mechanics in Americas, Proceedings of VI Pan American 

Congress of Applied Mechanics - PACAM and 8th International Conference on Dynamic 

Problems in Mechanics, v. 6, pp. 381-384, Rio de Janeiro, Brazil, January 1999. 

 

(RASBAND, 1997) RASBAND, W., ImageJ. Link: http://rsb.info.nih.gov/ij/, National 

Institute of Mental Health, Bethesda, Maryland, USA, 1997. 

 

(RAUCH, 2007) RAUCH, E., Introduction to Lacunarity. Link: http://www-

swiss.ai.mit.edu/~rauch/lacunarity/lacunarity.html. 

 

(SARKAR and CHAUDHURI, 1992) SARKAR, N. and CHAUDHURI, B. B., An 

efficient approach to estimate fractal dimension of textural images, Pattern 

Recognition, 25, pp. 1035-1041, 1992. 

 

(SARKAR and CHAUDHURI, 1994) SARKAR, N. and CHAUDHURI, B. B.  An 

efficient differential box-counting approach to compute fractal Dimension of Image, 

IEEE Trans. Syst. Man and Cybernetic, v. 24, 1, pp. 115-120, 1994. 

http://www.codeproject.com/bitmap/cximage.asp?target=CxImage
http://rsb.info.nih.gov/ij/


 

96 

 

(SERRA, 1982) SERRA, J., Image Analysis and Mathematical Morphology, Academic 

Press Inc., Orlando, ISBN 0-12-637240-3, 1982. 

 

(SIZE and DUNCAN, 2006) SIZE, G. P., DUNCAN, R. K., Vascular-Web, Link: 

http://www.vascular-web.com, 2006. 

 

(SOBREIRA and GOMES, 2000) SOBREIRA, F., GOMES, M., The Geometry of 

Slums, Working Paper Series, CASA – Centre for Advanced Spatial Analysis – 

University College London, London, n. 30, 2000. 

 

(SOILLE, 1998) SOILLE, P., Morphological Image Analysis, Springer – Verlag Inc., 

Berlin, ISBN 3-540-65671-5, 1998. 

 

(SPACE IMAGING BRAZIL, 2004) Space Imaging do Brasil, Link: 

http://www.spaceimaging.com.br/, 2004. 

 

(VIEIRA AND MELO, 2004) VIEIRA, E. A., MELO, R. H. C., Granulometria: Uma 

Aplicação para Contagem e Medição de Grãos em Imagens Digitais, Monografia Dep. 

de Ciência da Computação - Universidade Federal Fluminense para Obtenção do Grau de 

Bacharel, 2004. 

 

(WALKER, 2007) WALKER, J., Fractal Food: Self-Similarity on the Supermarket 

Shelf, Link: http://www.fourmilab.ch/images/Romanesco/, 2007. 

 

(WATT and POLICARPO, 1998) WATT, A.H. and POLICARPO, F., The Computer 

Image, Addison-Wesley, ISBN 0-201-42298-0, 1998. 

 

http://www.vascular-web.com
http://www.spaceimaging.com.br/
http://www.fourmilab.ch/images/Romanesco/


 

97 

(WEISSTEIN, 2006) WEISSTEIN, E. W., Mathworld: The Web's Most Extensive 

Mathematics Resource, Link: http://mathworld.wolfram.com/, 2006. 

 

(WIKIPEDIA, 2007) WIKIPEDIA, Percolation, Percolation theory and Percolation 

thresholds , 2007 

 

(WORLD BANK, 2007) WORLD BANK, Hydro Power: Reservoir Induced 

Earthquakes (Induced Seismicity), Link: 

http://www.worldbank.org/html/fpd/em/hydro/rie.stm, 2007. 

 

(ZEMECKIS, 2004) ZEMECKIS, R., The Polar Express: An IMAX 3D Experience 

(USA) (IMAX version), Warner Bros, California, USA, 2004. 

http://mathworld.wolfram.com/
http://www.worldbank.org/html/fpd/em/hydro/rie.stm

