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Abstract

In this thesis we study the soft real-time web cluster architecture needed to support
e-commerce and related applications, with the fundamental goal of optimizing the energy
efficiency. The energy consumed by a system and its Quality of Service (QoS) are the
two components of the tradeoff that rule the power optimization in such systems. In soft
real-time systems like web servers, the QoS is usually defined as the fraction of requests
that meet the deadlines. When this QoS is measured directly, regardless of whether the
request missed the deadline by an small amount of time or by a large difference, the result
is always the same. For this reason, only counting the number of missed requests in a
period does not allow an adequate observation of the real state of the system. We give
theoretical propositions on how to control the QoS, not measuring the QoS directly, but
based on the probability distribution of the tardiness in the completion time of requests.
We call this QoS metric Tardiness Quantile Metric (TQM). The proposed method provides
fine-grained control over the QoS so that we can make a closer examination of the relation
between QoS and energy efficiency.

To generalize the TQM idea, we propose the GTQM method that makes it possible
to measure the QoS of the system without any assumption on the workload. By using
an on line convergent sequential process defined from a Markov chain, we derive quantile
estimations that do not depend on the shape of the workload probability distribution.
To use GTQM, we need a controller that will keep the system’s QoS as defined by the
statistical inference. We describe a simplified way to implement performance control
in a multi-tier computing system designed for e-commerce applications. We show that
the simpler SISO (Single Input Single Output) controller, rather than a more complex
distributed or centralized MIMO (Multiple Input Multiple Output) controller, works well,
regardless of the presence of multiple cluster nodes and multiple execution time deadlines.
Our feedback control loop acts on the speed of all server nodes capable of Dynamic Voltage
Scaling (DVS), with QoS, measured by means of GTQM, being the reference setpoint.
We use a SISO PIDF control loop implemented in the multi-tier cluster.

Besides QoS control, we solve the dynamic configuration optimization problem in a
web server cluster. We model the problem of selecting the servers that will be on and
finding their speeds as mixed integer programming. For proof of concept, we implemented
this dynamic configuration scheme and the GTQM QoS control in a web server cluster
running Linux, and a layer of servers running a MySQL cluster configuration. The system
has soft real-time requirements, in order to guarantee both energy-efficiency and good
user experience. Our testbed is based on an industry standard, which defines a set of web
interactions and database transactions with their deadlines, for generating real workload
and benchmarking e-commerce applications.
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Resumo

Esta tese aborda arquiteturas de tempo real nao critico necessarias para aplicacoes de
comércio eletronico e outras aplicacoes web em clusters de computadores, com o objetivo
fundamental de otimizacao do consumo de energia. O compromisso existente entre a
energia consumida por um sistema e sua qualidade de servigo (QoS) rege a otimizacao
de poténcia em tais sistemas. Em servidores web, QoS é normalmente definida como a
fracao de requisicoes que atende aos prazos de tempo real definidos. Entretanto, quando
essa QoS é medida diretamente, independentemente se o prazo foi descumprido por um
pequeno intervalo de tempo, ou por um intervalo muito grande, o resultado é sempre o
mesmo. Por isso, somente a contagem do niimero de requisi¢oes com atendimento apos o
prazo nao é suficiente para permitir uma observacao adequada do real estado do sistema.
Esta tese apresenta proposicoes teoricas de como controlar QoS sem medi-la diretamente,
com base na distribuicao de probabilidade da variavel tardiness, que representa o quao
tarde uma requisi¢ao termina em relacao ao seu prazo. A nova métrica de QoS proposta
foi denominada Tardiness Quantile Metric (TQM). Esse método prové um controle fino
de QoS, que permite avaliar minuciosamente o compromisso entre QoS e a eficiéncia de
energia do sistema.

Com o objetivo de generalizar a idéia do TQM, de modo a tornar o método inde-
pendente da carga do sistema, esta tese ainda propoe o método GTQM, que permite
medir QoS sem qualquer suposicao a respeito das caracteristicas estatisticas do sistema.
Utilizando um processo sequencial convergente definido a partir de uma cadeia de Mar-
kov, o método deriva estimadores de quantil independentes da funcao de distribuicao
de probabilidades da carga do sistema. Um método simplificado de controle utilizando
GTQM é descrito, para realizar controle de desempenho em um cluster de computadores
multicamadas projetado para aplicacoes de comércio eletronico. Demonstra-se que um
controlador simples do tipo SISO (Single Input Single Output), ao invés de um controlador
mais complexo do tipo MIMO (Multiple Input Multiple Output), funciona bem, apesar da
presenca de multiplos nés do cluster e também miultiplos prazos de execucao. O controle
realimentado apresentado atua na velocidade dos nés do cluster com funcionalidade de
DVS (Dynamic Voltage Scaling), utilizando-se como referéncia a QoS medida através do
método GTQM.

Além de controle de QoS, esta tese resolve o problema de otimizagao da configuracao
dinamica em um cluster de servidores web. E modelado o problema da selecio de quais
noés do cluster devem ficar ligados e quais serao suas respectivas velocidades, através de um
problema hibrido de programacao linear e inteira. Para provar os conceitos, a configuracao
dinamica e o controle GTQM de QoS sao implementados em um cluster de servidores web
baseado em Linux e MySQL. O ambiente de testes construido é baseado em um padrao
industrial, que define um conjunto de interacoes web com transacoes de banco de dados
e seus respectivos prazos de tempo real, o que permite a geracao de uma carga real de
comércio eletronico.
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Chapter 1

Introduction

To have a great idea, have a lot of them.
— Thomas A. Edison

1.1 Introduction

Recently, it has been a strong concern to system design researchers the development of
energy-efficient systems. This concern appeared preeminently for ubiquitous computing
systems, because of the need to increase lifetime of the batteries, given the pervasive
nature of the applications, where mobile devices depend on the batteries to work. Then
it became necessary to reduce energy consumption, as the technology for the batteries
doesn’t improve as fast as the need for power increases. Furthermore, batteries always
have weight and size that sometimes are restricted by the application. Another reason is

the cost reduction and improved reliability achieved by the lower heat dissipation.

Ubiquitous computing comprise also all time critical embedded applications. These
real-time systems have time restrictions, and need extra reliability. One way to increase
dependability of real-time systems is by improving their energy efficiency. However, to
show how this concern is new in the research area, by the end of the last decade, the
need for energy-efficiency was not predicted. In a survey on the directions of the research
on real-time systems [94], in a 10-year prediction about the needs of the these systems,

nothing is mentioned about energy consumption.

After a period of development of energy-efficient methods only for the design of mo-
bile systems, the first work to present a case for power management in web servers was
published in 2002 [24], from the IBM research group, breaking with the tradition that

focused power management research only for portable and handheld devices, to focus on
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web servers. The work was motivated by the fact that web servers experience large peri-
ods of low utilization, presenting an opportunity for using power management to reduce

energy consumption with minimal performance impact.

Energy optimization in server clusters may be done in multiple subsystems, such as
the microprocessor, disks, memory, and memory cache. The best result will be obtained
when all these subsystems are all deployed with some Power Management techniques.
However, each subsystem is a completely different area of research. People working with
cache algorithms are proposing energy efficient algorithms, and also for disks or memory.
One review that briefly describes some efforts in each subsystem is in [21]. For example,
in the memory research area, there are problems such as properly laying out data across
the memory banks and chips so that the server can use low-power states more extensively.
There are also cache replacement policies that selectively keep blocks from certain disks
in the main memory cache to increase their idle times, leaving the disks in low power
mode for a longer period. Because of this breadth of research areas, in this thesis we will
address local and cluster-wide energy management techniques for heterogeneous systems,
attaining only to the processor subsystem. Heterogeneity offers an extra opportunity to
energy minimization, because it adds more variables to the problems, and real clusters

may become heterogeneous very soon if newer components are added.

This thesis aims at studying energy-efficient techniques for web servers. There are a
number of services today that depend on the Internet, such as electronic commerce, busi-
ness to business (B2B) applications, application and databases servers, etc. In Brazil, a
research made by the Science and Technology Ministry, showed that the country is among
the ten countries that uses more the Internet [66]. Services like the Federal Revenue,
banks, electronic government, and mostly electronic commerce, are growing fast. These
services are globally considered essential for the growth of the so called “new economy”,
that calls for lower costs, lower interest rates, and is very dependent on the information
[26]. For all these reasons, power reduction on data-centers represents a new research area
that is strategic, as energy-efficient products will dominate the market. And it is even
more strategic considering the world wide effort of companies to become more environ-

mentally sustainable, because this reflects in the companies market value.

E-commerce, e-banking, and other related applications involve high complexity, with
databases transactions and multi-tiered server clustering. These applications are often
modeled with real-time characteristics, because a minimum level of customer satisfaction

must be guaranteed for the success and survival of the company. This is so crucial because
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today many enterprises rely only on the electronic means to sell their products. Many
works have modeled e-applications with real-time characteristics. For example, [31] shows
the real-time requirements of e-commerce, addressing mainly the timeliness, among other
aspects; [96] presents protocols that can be used to detect when real-time constraints are

violated; and [39] describes a real-time middleware to support e-commerce applications.

In addition to real-time characteristics, large systems to host e-commerce applications
can show a huge electricity consumption [73|, which means high costs of ownership, making
power management necessary. In [30]|, for example, the authors point out that data
centers operate at power densities of around 100 Watts per square feet. With all the
real-time and energy efficiency issues in mind, architectural challenges arise when we try
to deploy architectures to support e-applications which also need to satisfy Quality of

Service specifications.

According to [57], the main premise of a power managed architecture is to ensure that
the system gets all the power it requires for full performance, and aggressively manages
resources that are not in use to consume less power. In real-time systems, however,
hitting full performance means that the system is able to meet the predefined real-time
specification, including the QoS specifications defined in the Service Level Agreement
(SLA). For this reason a real-time system generally offer more room for power management
than ordinary systems, because the timing characteristics of the system are well-defined.
Thus, one major aspect considered in this thesis is that the system must run with the
minimal performance that still can keep the SLA agreement, so that we get the maximum

energy savings possible.

1.2 Motivation

The reasons to study energy-efficient web clusters for e-commerce applications are three-
fold. First, there is a need for a boost in e-commerce web servers efficiency, as the main
goals of the e-commerce use in the enterprise are cost reduction and the creation of com-
petitive advantage, and that is what makes energy-efficiency mandatory. Second, the
number and variety of e-commerce applications are growing. An example is the inte-
gration and customization of such applications, such as the idea of web shopping malls,
support for comparative shopping and business-to-business [42]. As the complexity of
applications grow, clusters with more servers will be needed, and the power consump-

tion may become prohibitive. The third reason is that the recent work on performance
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evaluation for web server clusters, specially for power-efficiency and energy-efficiency, has
clamored for more realistic test workloads. In this thesis we will propose new methods
that can be independent of the workload, not using assumptions that does not hold in

practice, such as M/M/1 queueing models.

Data-centers usually adopt an architecture made of a number of servers, regular com-
puters, or blade servers [107], designed specifically for the composition of clusters for
processing or storage. Clusters architecture must be flexible enough to support a range of
applications. The question is: how can be attended all the availability and performance
requisites face to changes in the demand and resources availability, with minimum energy
cost? The available services in a data-center can vary with time, and thus the design must
be flexible. Furthermore, it is not convenient to design the system for the peak demand

with inadequate resource allocation.

The work presented in [69] shows the electricity demand in data-centers, as part of
the debate that took place in the USA about the energy consumption of the computer
systems that maintains the Internet. According to that study, data-centers have an energy
consumption per area bigger than the consumption presented in some industries, with
installed powers of up to 400 W/ ft*>. However, although this clearly suggests space for
more efficient projects, the work also claim that it is difficult to fill the gap between energy
efficiency, and the reliability and fault tolerance required by this industry. Designers
still rely on traditional technologies and prefer not to test new energy-efficient options.
In [47] it is exemplified that for many IT managers, to improve the energy-efficiency
implies in reducing reliability. Today the market understands that ensuring the data-
center reliability is associated with high energy consumptions. It is necessary to demystify

this fact, by means of good research on energy-efficient and reliable architectures.

A recent report from EPA (U.S. Environmental Protection Agency) [1] shows that
data-centers in the United States could save up to $4 billion in annual electricity costs if
more energy efficient equipment and operations were applied, along with the use of best
management practices. The report pointed that data-centers consumed about 60 billion
KWh in 2006, doubling in the past five years, with a tendency to double again in the next
five year, costing about $7.4 billion annually. They estimated that existing technologies
and strategies could reduce typical server energy use by an estimated 25 percent, with

greater energy savings possible with advanced technologies.

The energy consumption of a server determines the operational costs of a data-center,

because the high power densities cause cooling and reliability problems. There is the
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need to use UPS (Uninterruptible Power Supply) units and back-up generators. Besides
all problems, at least the generators present environmental issues, considering the main
energy comes from clean sources. The cooling systems also represent high costs, because
of their complexity. The Figure 1.1 shows the energy configuration adopted in the data-
center Cyber, in Brazil [25], owned by Brazil Telecon. The figure shows diesel generators

and the back-up unit for uninterruptible energy generation, in a high cost configuration.
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Figure 1.1: Energy delivery system for the Brazil Telecom data-center. Legend: qd —
distribution board, GMG = motor/generator set, S = Server

According to [69], the total energy consumption with servers in the USA is close
to 22 TWh, what costs about US$2 billion, considering the cost of US$100 per MW h.
Talking about the environment, to generate this amount of energy results in 12 M tons of
new C'Oy thrown in the atmosphere. Therefore, the main motivation is multiobejective,
to minimize both financial costs and environmental impacts. The cost of ownership of
a data-center needs to be reduced to maximize the competitiveness of companies that
depend on high dependable systems. It is necessary to develop new products that can be
energy-efficient, reliable, and also environmentally aware, to demystify that high reliability

systems need overdimensioned energy delivery systems.

1.3 Thesis Overview

In this work, we started with the need to specify the system’s QoS and then reducing

the system’s performance to the minimum necessary to keep this QoS. In Chapter 3,
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we study the soft real-time web cluster architecture needed to support e-commerce and
related applications. To meet this goal, we designed a testbed based on an industry
standard, which defines a set of web interactions and database transactions with their
deadlines, for generating a real workload and benchmarking e-commerce applications.
The QoS is defined as the fraction of requests that meet the deadlines. We found out
that, in practice, it is not so simple to measure the QoS. When the QoS is measured
directly, regardless of whether the request missed the deadline by a small amount of time
or by a large difference, the result is always the same. For this reason, only counting
the number of missed requests in a period does not give good observations of the state
of the system. Then we made theoretical propositions of how to control the QoS, not
measuring the QoS directly, but based on the probability distribution of the tardiness in
the completion time of the requests. We called this new QoS metric Tardiness Quantile
Metric (TQM). The proposed method provides fine-grain control over the QoS so that
we can make a closer examination of the relation between QoS and energy efficiency. We
validate the theoretical results showing experiments in a multi-tiered e-commerce web

cluster implemented using only open-source software solutions.

In Chapter 4, we describe a simplified way to implement performance control in a
multi-tier computing system designed for e-commerce applications, so that the GTQM
estimation can be put in practice in the system. We show that the simpler SISO (Single
Input Single Output) controller, rather than a more complex distributed or centralized
MIMO (Multiple Input Multiple Output) controller, works well, regardless of the presence
of multiple cluster nodes and multiple execution time deadlines. Our feedback control
loop acts on the speed of all server nodes capable of DVS (Dynamic Voltage Scaling),
with QoS being the reference setpoint. By changing the speed, we change the position
of the p-quantile of the tardiness probability distribution. Then, the control variable will
be the average tardiness provided by the GTQM method, and the setpoint the tardiness
value that will position this p-quantile at 1.0, value at which a request finishes exactly at
the deadline. Doing so will guarantee that the QoS will be statistically p. We test this
method in a SISO PIDF control loop implemented in a multi-tier cluster. We use open
software, commodity hardware, and a standardized e-commerce application to generate
a workload close to the real world. The main contribution of Chapter 4 is to empirically
show the robustness of the SISO controller, presenting a sensibility analysis of the four
controller parameters: damping factor zeta, derivative filter factor beta, integral gain ki,

and zero time constant tau.

The TQM method proposed in Chapter 3, although effective, is not perfect, because
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it is based on assumptions on the shape of the probability distribution function of the
workload. The first question that arise is: how can we generalize? We answer this
question in Chapter 5. To generalize this idea we propose the Generalized Tardiness
Quantile Metric (GTQM). By using an on line convergent sequential process, defined
from a Markov chain, we derive quantile estimations that do not depend on the shape of
the workload probability distribution, so that the metric can be used with any workload,
that is, the QoS measure becomes distribution free. To evaluate the new metric, we
also show practical results in a three-tier web cluster with QoS control in an e-commerce

environment.

The Chapter 5 is a departure from other works, in that: (a) it presents a method of
quantifying the QoS using a metric that is used itself in QoS control (other works use
usually the number of deadlines missed [52, 85]); (b) the method works for any kind of
probability distribution presented by the workload, and thus we can expect good results
for real workloads; and, (¢) the results are obtained from a real testbed (not simulations)
composed of a three-tiered web server cluster running Linux and TPC-W, a real, industry-

standard, e-commerce application.

When dealing with soft real-time web clusters, the bigger the average relative tardi-
ness, the lower is the resultant QoS. Tardiness can then be used as a control variable,
because tardiness does not carry only boolean information about QoS (whether the dead-
line was met or missed), but it is a continuous value possible to be calculated for each web
interaction. Tardiness values show how close the execution was to the deadline, which

enables fine-grain control over server speeds, and consequently higher energy savings.

After providing a method to carefully estimate and control the QoS, using the DVS
as a mechanism to vary the system’s performance, a second concern that we study in this
thesis is how to turn off servers when they are not needed, and how to optimize the speed
selection of servers. Because clusters are often heterogeneous, using different DV'S settings
in each server produces better energy savings. In a preliminary work, we investigated
local nodes adjusting their DVS settings based on a global off-line optimization, and we
achieved extra power reduction up to 10%. Then we incorporated on/off mechanisms
and an optimization model that results in the optimal combination of servers to handle a

specific load.

In Chapter 6 we use a mixed integer programming (MIP) model in the cluster recon-
figuration. The QoS is guaranteed by the GTQM statistical quantification of the response

time, compared to the deadline of requests. If the system needs to increase its capacity,
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to keep the QoS in a predefined level, the cluster may be reconfigured dynamically by se-
lecting the appropriate combination of frequencies, and the best combination of machines.
We present two different MIP models, one considering the selection of only existing fre-
quencies, what means the use of the discrete frequency immediately higher to the exact
theoretical frequency needed for a given workload (if speeds were continuous), and the
use of a combination of two frequencies to achieve the exact theoretical frequency needed.
This well known combination scheme was proposed by [53]. It consists on switching pe-
riodically between two adjacent frequencies during the execution of a task. As the DVS
overhead in modern CPUs is negligible, this second solution presents some key advan-
tages. Besides, recent works [23, 34| showed that switching processor frequency very fast
does not cause any reliability problem. In fact, it increases the MTTF of the processor,
because it reduces the average device temperature, and consequently also reduces the

number of temperature-driven failures.

Still in Chapter 6, we show how to integrate a single QoS controller to the MIP solu-
tion. Finally, in order to investigate different alternatives of implementation, we compare
the use of one single controller with the MIP optimization, against several independent

controllers that simplifies the optimization needed, but looses in power reduction.

1.4 Thesis Contributions

With the proposal of the TQM method in Chapter 3, our objective is to have a means
of exploring the trade-off between energy and QoS in complex web systems, and for this
we need to have a fine grain control of the QoS. Instead of using a QoS measure based
on the counting of missed deadlines, we use the on-line measurement of tardiness in the
completion time of the requests, because we verified in practice that counting missed
deadlines results in poor accuracy and broad confidence intervals. Our contribution is the
statistical guarantee that we can achieve for the QoS based on approximations for the
probability density function of the tardiness random variable. We show that the average
tardiness is directly related to the QoS. Previous works that are said QoS aware [85, 90| do
not allow the maintenance of the QoS at a precise user predefined value. Our work differs
from these approaches because we apply a statistical inference solution to guarantee the
exact desired QoS level, aside from the fact that our target environment is e-commerce.
In addition, most previous work dealt only with requests with a single deadline for all

requests, which are not typically representative of e-commerce applications.
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Normally the workload of a web system is assumed to have a specific probability
distribution, because it simplifies the modeling. For example, when queueing theory is
applied, the simplest M/M/1 queueing models are based on Markovian workloads. The
more complex G/G/1 queueing models generally do not have closed formulas, and if a
G/G/1 model is assumed, bounds based on the tail probabilities are also applied. With the
GTQM method presented in Chapter 5, We use no such assumptions, obtaining a three-
fold contribution: 1) we present a method of quantifying the QoS so that this metric
is used in QoS control; 2) the method works for any kind of probability distribution
presented by the workload, and thus we can expect a good result for a real workload; and,
3) the results are not based on simulations. The algorith GTQM is based on stochastic
approximations, and was proven to be free of the probability distribution. This is the

most derired characteristic in any system modeling, but almost never feasible.

We have shown in a previous work [48] that it is possible to choose the system settings
so that the power is minimized and at the same time the average response time, given
by queueing theory, is such that a predefined amount of deadlines are met. However, it
is difficult to have a good queueing model for a real e-commerce environment that allows
simple analytical formulation of the response time, without having many non realistic
assumptions about the workload generation and service times. The approach we use in

this work is based on a real e-commerce scenario.

In the system reconfiguration presented in Chapter 6 we combine two technologies:
QoS control by means of feedback control theory, and operations research. First, the
feedback control dynamically adjusts the frequency/voltage of the cluster nodes to control
the fraction of deadlines met; frequencies are set proportionally to how late or how early
requests finish. To change speeds, we rely on the support of Dynamic Voltage Scaling
(DVS), present in most modern CPUs (allowing the dynamic setting of the frequency
and voltage of the CPU core), which allows for quadratic reduction in energy, and cubic

reduction in the power consumption of the CPU [101].

Second, we show how operations research is introduced in the system to achieve op-
timal dynamic configuration of the web cluster, that is, which nodes are on and off, and
at which frequency. We model the problem of assigning speeds to servers, including zero
speed (server off), as a mixed integer programming problem, which is a linear program-
ing problem where some variables are integers and some are real variables, and solve it
using traditional linear programming techniques. Then, the contribution is fourfold: (a)

a novel way of combining control theory and MIP solutions; (b) modeling the dynamic
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configuration problem (i.e., on/off of nodes and speeds of active nodes) through mixed
integer programming problems; (¢) comparing the efficiency of higher-than-needed dis-
crete speeds (interspersed with idle periods) and pseudo-continuous speeds (based on the
two-speed scheme of [53]); and, (d) comparing a centralized SISO (Single Input Single
Output) controller with a distributed SIMO (Single Input Multiple Output) controller.

By modeling the optimization problem allowing heterogeneous machines, with dif-
ferent set of frequencies, we can achieve high power reductions compared to other DVS
schemes that consider equal frequencies for all machines, and only a predefined sequence
of machines to turn on and off. One such solution is adopted in [30], which we simulated

to make a comparison. Our optimization solution reduced the power usage up to 40%.

Finaly, one important contribution of this thesis is that it presents solutions and results
obtained and tested in a real system. Although we were not able to test for large number
of servers (our testbed has up to 10 servers), as far as we know there is no published
work for hundreds of servers without being based only in simulations. We based our
implementation in a real three-tier e-commerce architecture, using Apache, PHP, MySQL
cluster, and a real e-commerce web store implementation, the TPC-W, that was designed

for benchmarking e-commerce commercial systems.



Chapter 2

Related Work

A theory has only the alternative of being wrong. A model
has a third possibility - it might be right but irrelevant.
— Manfred Eigen

This chapter presents a survey on energy efficient techniques and methodologies. We
are going to introduce with general energy efficient research for real-time systems, and
then refining to the main goal, which is to pay attention only to the works related to
local and cluster-wide energy management techniques for heterogeneous server clusters,

preferably with QoS awareness

2.1 Energy-efficient Systems

Energy consumption optimization can take place in any stage of a system’s design, from
the hardware and microelectronics, the operating system, to the application level. This
is a difficult task, because there is always a tradeoff between energy and performance. In
real-time systems, the problem is even harder, because there is a timeliness constraint to
be met. There are some surveys on the literature on this subject. For example, in [9]
power optimization techniques in all system levels are presented, considering that the
major energy consumers are the CPU, memory, and communication. In [55], a survey on
energy saving techniques for all communication layers is presented. In [49] techniques for
all layers are presented, but with focus on multimedia applications and wireless networks.
Also in [99], power reduction techniques are presented for the digital logic, the compiler,
the operating system, and the network. At the OS level, they take into account the
processor speed, input/output devices, measure of energy consumption, quality of service,

and jitter.
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Some energy-efficient related terminologies are important to note. The systems that
can reduce their power consumption during runtime are called power-aware. There are
also the low-power systems, which are different. [20] defines power-aware systems as those
that can minimize their energy consumption by adapting to the changes in its operating
point. On the other hand, low-power systems are those that had taken energy into account

in their design, aiming at a better energy consumption without loss of performance.

We presented a brief survey on process scheduling for real-time systems with energy
optimization in [10]. Process scheduling is a well known optimization problem, and its
associated decision problem, that is, wheather the task set is schedulable or not, even
without some power budget restriction to meet, belongs to the N"P-complete class. This
was proved in [45], by transforming from the 3-PARTITION problem, what makes the
problem belong to the N'P-hard class. The first paper to address this problem is [106].
They introduced a metric to evaluate the energy consumption called MIPJ, or milions of
instructions per joule. They observed that in a ten years of evolution, the processors that
improved the performance from 1 MIPS to 200 MIPS, had an increase from 1 MIPJ to
only 5 MIPJ. That is, power consumption increased 40 times. They present a technique
that consists in reducing the processor frequency and voltage during the busy time, so
that the idle time is reduced to a minimum, as idleness means energy loss. Then several
other works appeared for process scheduling. Some of them use EDF scheduling, and
some use Slack Reclamation techniques to try to reduce idleness. A small list of papers

in this area is: [6, 67, 68, 72, 77, 83, 110, 112

Imprecise computation which relates to reward based computing is aimed at delivering
a breadth range of QoS for real-time applications. They are usually multiple version
software, each with different reward restrictions. Some imprecise computation papers
with energy optimization appear in [5, 86, 87]. Techniques for soft-real time systems
considering QoS for multimedia applications in mobile systems appear in [111]. In fact, in
the beginning, the research on power-aware and low-power systems were mostly directed
to mobile systems, which have the limitted battery lifetime problem. One example is the
work in [17, 18], where data replication is used in a mobile application, based on ad hoc
networks, to avoid that the network become disjoint at some time because of shortage
of energy from batteries. A Bayesian-Fuzzy decision model is used as a technique to
implement the required decision making process, allowing to deal with the uncertainty

present in the ad hoc network.

The mentioned scenario, where power management were only studied for handheld
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and portable mobile systems, changed after the paper [24], which showed the importance
to reduce power consumption also for web servers, because web servers experience large
periods of low utilization, presenting an opportunity for using power management to
reduce energy consumption with minimal performance impact, but for a different reason:

reduce costs and also environmental impacts associated with energy waste.

2.2 Power Management in Web Servers

The seminal papers addressing energy-efficient web server systems often considered ho-
mogeneous systems or single servers to simplify, but they are important as they were the
seed to the more complex techniques developed later. They introduced cluster reconfig-
uration techniques and local or global DVS policies. In this section we will look at the
most important seminal work, paying attention on how their energy reduction algorithms

work.

The paper [29] is the first to promote a research agenda to improve the energy efficiency
of Internet server sites. They use the term JOP (Joules Per Operation) to quantify the
energy minimization needed to deliver a service at a given level of request thoughput. The
proposal is an energy-conscious reconfiguration technique with all servers homogeneous.
Machines are turned on and off based on the average utilization. For a threshold T, if
the switch detects that the average utilization has fallen below TN/(N — 1), where N
is the number of servers, then it selects a server to be put in standby. With this simple
algorithm, the request traffic is concentrated on the minimal set of servers that can handle
the load.

In [28] they propose a resource management architecture for hosting centers called
Muse. Tt defines policies for adaptive resource provisioning in hosting centers using an
economy approach, considering energy as a resource. The economy framework has a price-
setting algorithm that determines efficient resource assignments by “selling” the available
resources at a profit to the highest bidders. The system may choose not to sell idle capacity
when it is economically preferable to step down that capacity to reduce costs. This work
focus on the framework for resource management, not specifically on the algorithm to

reduce energy.

In [79] is presented a reconfiguration algorithm for a cluster of servers, with the
only purpose to turn on and off servers. They consider multiple resources, and for each

resource, they use an independent PID controller which output is the excess demand for
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the resource. The controller with largest output is used to determine the ideal cluster
configuration at each point in time. An early version of this paper appeared in 78], where
the acronym VOVO (Vary-On Vary-Off) was coined to represent the method of turning

(varying) on and off the server nodes.

In [40] the IVS (Independent Voltage Scaling) and the CVS (Coordinated Voltage
Scaling) methods were introduced. In the former, each server node decides locally its fre-
quency value, while in the latter scheme, all nodes operate close to the average frequency
for the whole cluster. For this, they use a centralized monitor that broadcasts the average
frequency to all nodes. They consider that processors may vary its frequencies continu-
ously in a range. They test five combinations: IVS alone, CVS alone, VOVO alone, IVS
with VOVO, and CVS with VOVO. They use a simulation model of a web server cluster
running workloads constructed from the server access logs constructed from real websites.
The process of turning servers on and off with IVS is similar to the one in [29], based in
the utilization of each node. For the CVS, they use the model P(f) = ¢ + cif?, repre-
senting static and dynamic powers by the constants, and multiplying by the number n of
servers to account for the power of the whole cluster. Then they compute this aggregate
power for n servers, for n — 1, and for n+ 1, to obtain the best frequencies to vary on and
to vary off a node. Then, given the constants ¢y, and ¢, the optimum average frequency

range for the clusters with n servers is:

fvary@ff(n) S CPU Frequeﬂcy S fvaryon(n)

The IVS method showed a power reduction from 20% to 29%, and CVS achieved a
slightly better reduction that may not justify the extra implementation complexity. Up
to 50% were achieved by adding VOVO, compared to a not power managed system, that

means all machines turned on running at the maximum frequency.

The work in [41] is for single servers. They propose three techniques: the first tech-
nique is a task-based DVS policy with a feedback control mechanism. There is a response
time goal to be met, and every quantum of time 7', the algorithm steps up or down the
frequency depending on the measured response time. This DVS policy conserves the most
energy for intermediate load intensities. The second technique uses request batching to
conserve energy during periods of low load intensity. The network interface processor ac-
cumulates incoming requests in memory, while the server processor remains in a low-power
state. The server processor awakens when an accumulated request has been pending for

longer than a batching timeout. Request batching conserves the most energy for low load
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intensities. The third technique uses both DVS and request batching to reduce processor

energy usage over a wide range of load intensities.

[80] employ Power-Aware Request Distribution (PARD) at the load-balancing front-
end of a cluster serving dynamic web workloads. The load measure is based on the number
of connections, and is used to calculate the number of machines to be turned on. This
technique, like many others where the on/off algorithm is based only in a number, cannot
find an optimal solution, because it cannot specify which particular server will be turned
on, therefore is only useful for homogeneous servers. This differs completely from our
approach that will be presented in Chapter 6, where we can choose which server will be

on, without any predefined sequence.

Our first work to preliminary address the problem of assigning frequencies to the
nodes of a cluster was shown in [11]. In that work we used a precomputed table to define
each frequency for the servers, normalized to the maximum speed, and compared with the
case where all machines receive the same normalized speed. This work was motivated by
the work presented in [109], where they adopt the method of using off-line optimization
to build a table for on-line look up, but there the intention was to determine the number

of active nodes, in a on/off dynamic mechanism.

2.3 DYVS and Dynamic Configuration

We now look at the most recent works that used DVS and/or dynamic configuration
(VOVO) to reduce power. We must pay attention to what level of QoS awareness each
method presents. Some works simply do not take into account QoS, others have some kind
of QoS guarantees, reserving resources for the worst case load scenario, but sometimes
overprovisioning the system. Our work tries to reduce the QoS at the minimum level

specified by the SLA, what will reduce power consumption more than the other methods.

The work in [90] used a feedback loop to regulate the voltage and frequency as a means
of providing QoS awareness. Their controller uses utilization as the control variable aiming
to keep it around a derived utilization bound that was shown to be a sufficient condition
of schedulability. As exceeding this bound does not necessarily imply in missed deadlines,
having this utilization bound as a control set-point achieves good results in guaranteeing
the QoS close to 1.0. This bound guarantee is based on schedulability tests, making it

too conservative, and the system overprovisioned.

One paper that we used extensively as a basis of comparison was [85|, which presents
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a cluster-wide QoS aware technique based on local DVS and cluster reconfiguration. In
that work, they use a local interval-based DVS technique without optimization, based on
the calculation per interval of the real-time utilization U = ), % C; is the average com-
putation time and D; is the deadline, and they set the frequency to the lowest available
discrete frequency bigger than U f,,.., where f,,,. is the maximum frequency available
in the processor. The dynamic configuration technique is done by defining a sequence of
servers to be turned on/off, ordered by the energy-efficiency of each server. The shortcom-
ings are that it must abide by this ordering (to turn them on and off), loosing optimality,

and that the DVS scheme is local, making it potentially less power efficient.

The same DVS technique from [85] is used in [109], which presents a technique called
LAOVS (Load-Aware On-off with independent Voltage Scale), where the determination of
the active node number is made using a table computed off-line. For each load value, the
best number of active nodes is obtained considering homogeneous servers. Interval based
DVS techniques were studied in [88]. This is an important work because they evaluate
DVS policies for power management in systems with unpredictable workloads, the case for
web servers. The technique used in [109], and [85], is the application-oblivious prediction,
in which the system real-time utilization U is monitored periodically, and if the system
is fully utilized, the speed is increased to the next available discrete frequency, otherwise
the speed s is updated as the smallest discrete frequency higher than s.U. They also show
more complex techniques which attempts to predict performance needs by monitoring the
arrival rate and CPU requirements of each request, rather than simply observing resource

requirements.

Both works [85], and [90], do not allow the maintenance of the QoS at a precise user
predefined value. The TQM and GTQM methods presented in Chapter 3 and Chapter 5
differ from these two approaches because we apply a statistical inference solution to guar-
antee the exact desired QoS level. The goal of TQM and GTQM is to maintain/control
QoS at a certain level. This can be done by controlling the QoS directly, as in [64] and
[91], but this turned out to be problematic because with the QoS defined as a ratio of
deadlines met to the total requests, a large number of requests is necessary to obtain
narrowed confidence intervals. Furthermore, the QoS will saturate at 1.0, causing an
asymmetry problem and instability, as shown in Chapter 3. In [64] and [91], however,
they used a more complicated control, based on a second control loop for the utilization,
that can solve the problem of deadline miss ratio saturation at 0, because the saturation
condition of both controllers are mutually exclusive. In contrast, in this thesis we propose

to control the QoS based on the average tardiness of the web interactions.
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In [2], feedback control is used to achieve overload protection, performance guarantee,
and service differentiation, based on the same concept of utilization bound presented
by [90], thus aiming to meet all deadlines. However, that work applies adaptation of QoS
to server load conditions, where the controller actuator can offer degraded service levels
accomplished by content adaptation. The web content (e.g., images) is preprocessed and
stored in multiple copies that differ in quality and size. Hence, the approach is different,

besides the fact that their architecture is primarily aimed for static web content.

Similarly, an autonomic system is described in [102]| to allow administrators to set
system properties like QoS. For this, they apply control theory with complex feedback
optimization techniques where future environment inputs and the future consequences of
the control actions are taken into account during optimization, which is multiobjective
including power optimization goals. The QoS is defined as response time and is used
directly as the controller set-point. However, the focus is more at the control theory rather
than the implementation of a real e-commerce environment; the workload is derived from
an Internet service provider and they assume continuous DVS settings. For e-commerce
environments, an average response time goal alone cannot tell much about the fulfillment
of the real-time rules. In this sense, this work is complementary, because it may be applied

to our statistical inference to achieve the desired QoS proportion.

Work using queueing theory to model multi-tiered web architectures [61], [62], and
[100] is another possibility to compute and control the QoS probabilistically. We have
shown in a previous work [48] that it is possible to choose the system settings so that the
power is minimized and at the same time the average response time, given by queueing
theory, is such that a predefined amount of deadlines are met. However, it is difficult
to have a good queueing model for a real e-commerce environment that allows an easy
analytical formulation of the response time without having many non realistic assumptions
about the workload generation and service times. The approach we use in this thesis is

based on a real e-commerce scenario.

A possible approach to dynamic configuration of web servers is to use N M/M/1
queues and formulate the optimization problem based on the probability distribution of
the waiting time given by queueing theory. The problem is that the assumption of M /M/1
queues is far from reality, and the queueing equations make the problem nonlinear, and
difficult to solve optimally. A reconfiguration technique for a server cluster based on a
M /M /m queueing model was used in [61] to define the optimal number of active servers

analytically. The limitation is also that the processors are homogeneous, and the solution
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is only the number of servers to be turned on, not an optimal combination of heterogeneous

servers like in our work.

Another work related to data center power optimization is [30|, which presents a
solution to the problem of finding a set of machines to be turned on to run applications in
a hosting center. They consider multiple applications sharing the data-center. They apply
on/off optimization to determine the number of servers (m;) allocated to each application
i and their frequency (f;) at any instant, and all m; servers of application i run at the
same frequency f;. The limitation of that work is the fact of frequencies must be the same
for all servers, and all servers have the same power performance. Although we look only
at one single application, our optimization consider different machines, with different set
of available frequencies, and hence we can look for combinations of servers/frequencies
that will reduce power globally inside the cluster. We will show in Section 6.5.1 that
for a given combination of servers, we can reduce up to 40% the power consumption of
the cluster, compared with [30], and up to 92% compared with a scheme that does only

frequency scaling, without turning servers off.

In [50] the authors present the design of a server cluster that can adjust its configura-
tion and the scheduling of requests to optimize the power/throughput ratio. They model
analytically the request distribution among servers and from clients, as well as the types
of nodes and types of resources. Intra-cluster cooperation is necessary in that case, where
a content-oblivious load balancer is used. The optimization problem is to find the request
distribution from clients to servers, and among servers, in such a way that the demand for
each resource is not higher than its capacity, and to minimize power/throughput. How-
ever, the authors do not model DVS nor boot time for changing configurations. Also,

their solution is not optimal, as they use simulated annealing in the optimization.

In [52], a multi-tier web system is considered for minimizing the total energy expen-
diture of the multi-stage pipeline subject to soft end-to-end response-time constraints.
They use the average delay of a M/M/1 queue for the delay of each stage, and model an
optimization problem that can be solved analytically, where the end-to-end delay is com-
puted as SN | DEPV 4 DMk where DEPU and DYo°F are, respectively, the CPU fraction
and the I/O fraction of the total delay. The summation is over each tier i, and only one
machine is considered for each tier. The solution is applied for multiple homogeneous
machines in each layer. Our work differs because we apply intra-layer optimization and

consider heterogeneous servers.

In [75] is presented a framework to support dynamic adaptation of applications, such
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as a server cluster infrastructure. The proposed method consists of defining a reusable
infrastructure to monitor and adapt running applications, and a contract-based adap-
tation language for the expression of high-level adaptation policies. Adaptation scripts
are used to represent the adaptation logic and a contract manager interprets the power
management contract. The main advantage is to provide high-level guidance from admin-
istrators and developers to control the energy/performance tradeoff, that is, to meet the

adaptation requirements of the application.

2.4 QoS Control

Control theory has been used many times, in the last decade, as the solution for perfor-
mance control in computing systems. A seminal work appears in [95], where the authors
change the paradigm of scheduling, applying control theory to maintain the performance
of the system stable. Moreover, as pointed out in [56], the computing systems for today’s
applications will rely on control theory to make systems that can achieve the desired

performance objectives.

In [63], different classes of requests are considered. The control actuator does not use
DVS, but enforces desired relative delays among classes via dynamic connection schedul-
ing, that is, they use feedback control theory to design an adaptive connection scheduler.
They also apply process reallocation. The controller react to load variation by allocat-
ing more process to one class and deallocating process to another class, with the goal
of providing differentiated services. That work shows clearly the problem of having an
unpredictable variable in a control system: the sampling period used was 30s, and the
settling time achieved was 270s, which is the time for the Web server to enter steady

state.

QoS control can also be done by sensing QoS directly [64], [91] rather than by a sta-
tistical approach like ours. However, this may be problematic, because the QoS measure
will have a saturation point in 1.0 very close to the desired setpoint. This asymmetry can
cause instability, as we will show in Chapter 3. In [64] and [91], they solved this prob-
lem with a more complicated control, based on a second control loop for the utilization,
and the saturation condition of utilization and QoS was proved to be mutually exclusive.
These works use actuators that change the scheduling of the system, performing admission

control. They also do not apply DVS.

In [90] the authors used a feedback loop to regulate the voltage and frequency as a
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means of providing QoS awareness. Their controller uses utilization as the control variable
aiming to keep it around a derived utilization bound. However, it differs from our work
because their technique is conservative, providing a QoS guarantee always close to 1.0, not
controlling QoS at a fine-grain setpoint. Computing systems with utilization control have
usually a different goal, which is to enforce a certain utilization by means of admission
control, not DVS, to prevent overload conditions. Other recent works in this area are
[44, 65, 103, 104].

Control and queueing theories have been proved powerful tools for system modeling,
and to be used together. In [65] a queueing model based on Poisson workload is used to
compensate, with some predictability, the delayed response of controller metrics caused
by averages. The authors claim that the difference between the workload assumption and
the real workload can be compensated by the feedback controller. The use of a PIDF
controller for stochastic systems is proved to be a valid idea in [84], where the authors
introduce the generalized PID for stochastic systems of first and second orders, with filters

added to the transfer function of the controller.

In [105] is presented a power-efficient control theoretic architecture for data-centers
built up of virtual machines (VMs). Knowing that hardware components subject to
power management affect all VMs, they use an upper level MIMO control to find a
uniform performance level for all VMs. To control the response time, they use a lower
level control with a response time set-point R, with the control variable being the average
relative response time r(k). As it is based on average response time, it cannot guarantee
precisely a specific QoS level. Our work is complimentary, because we offer with the TQM
and GTQM workload estimation methods a novel choice of control variable that can be
used in any control of computing systems, and that allows the controller to follow with

accuracy a predefined QoS setpoint.



Chapter 3

Tardiness Quantile Metric

Measure what is measurable, and
make measurable what is not so.
— Galileo

In this chapter we introduce the Tardiness Quantile Metric (TQM) (published in [13])
to quantify QoS statistically. We make some theoretical propositions of how to control
the QoS, not measuring the QoS directly, but based on the probability distribution of
the tardiness in the completion time of the requests. The proposed method provides fine-
grained control over the QoS so that we can make a closer examination of the relation
between QoS and energy efficiency. We study the soft real-time web cluster architec-
ture needed to support e-commerce and related applications. Our testbed is based on
an industry standard, which defines a set of web interactions and database transactions
with their deadlines, for generating real workload and benchmarking e-commerce appli-
cations. In these soft real-time systems, the quality of service (QoS) is usually defined
as the fraction of requests that meet the deadlines. When this QoS is measured directly,
regardless of whether the request missed the deadline by a small amount of time or by a
large difference, the result is always the same. For this reason, only counting the number
of missed requests in a period avoids the observation of the real state of the system. We
validate the theoretical results showing experiments in a multi-tiered e-commerce web

cluster implemented using only open-source software solutions.

3.1 Introduction

Our objective with the TQM is to have a means of exploring the trade-off between energy

and QoS in complex web systems, and for this we need to have a fine grain control of
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the QoS. Instead of using a QoS measure based on the counting of missed deadlines, we
use the on-line measurement of tardiness in the completion time of the requests, because
we verified in practice that counting missed deadlines results in poor accuracy and broad
confidence intervals. Our contribution is the statistical guarantee that we can achieve for
the QoS based on approximations for the probability density function of the tardiness
random variable. We show that the average tardiness is directly related to the QoS.
To maintain the user specified QoS level, we used feedback control logic, based on a
PID controller!; the control variable used was the average tardiness instead of number of
missed deadlines. Thus, we can show the consequences to the system when the QoS is
maintained in a specified level, which is very important for the energy efficiency, because

a system maintained in a lower QoS level is generally associated with less resource usage.

We prove the correctness of the proposed theoretical relation between tardiness and
QoS. The performance evaluation we present is based on a real implementation of a web
store, using commodity hardware and open-source software. The workload is from an
industry standard transactional benchmark for e-commerce, the TPC-W (see Appendix

A, installed on a heterogeneous cluster running Linux.

3.2 Application and Web Cluster Model

Our cluster model is shown in Figure 3.1, with a front-end server acting as a reverse proxy.
The front-end is capable of SSL encryption/decryption, and will distribute the requests

to the web server nodes without encryption between front-end and web servers.

Our cluster has two layers after the front-end, with the application server and web
server running at the same machine, and a second layer for the databases. As the purpose
of this work is to focus on the power management of the web cluster, we replicate the web

store in many database servers to avoid bottlenecks at that layer.

3.3 QoS Control

The goal of the system is to maintain/control QoS at a certain level. This can be done
by controlling the QoS directly, as in [64] and [91], but it turned out to be problematic

because with the QoS defined as a ratio of deadlines met to the total requests, a reasonable

LA proportional-integral-derivative controller (PID controller) is a common feedback loop component
in industrial control systems.
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Figure 3.1: Cluster model

number of requests is necessary to obtain narrowed confidence intervals. Furthermore, the
QoS will saturate at 1.0, causing an asymmetry problem and instability, as will be shown
in Section 3.5. In [64] and [91]|, however, they used a more complicated control, based
on a second control loop for the utilization, that can solve the problem of deadline miss
ratio saturation at 0, because the saturation condition of both controllers are mutually
exclusive. In contrast, we propose to control the QoS based on the average tardiness
of the web interactions. For each web interaction ¢, we define tardiness by the ratio
web interaction response time (WIRT) to the respective deadline. That is, tardiness; =
—wirti _ A more detailed definition of WIRT will be given in Section 3.4.2. In this section

deadline;

we show the relation between QoS and the average tardiness.

The block diagram for the control logic is shown in Figure 3.2. As will be shown in
Section 3.3.1, the user specified level of QoS is applied to a statistical inference method
to obtain the necessary average tardiness for that QoS, and if the system is kept with this
average tardiness, the QoS is statistically guaranteed to be in the specified value. This

average tardiness value is the set-point to the controller.

QoS tardiness ;
setpoint | Statisticall setpoint error Control Web server
™| inference logic ™| system
average +
tardiness

Figure 3.2: QoS control logic block diagram

Described in Section 3.3.2, our PID controller outputs a single frequency scaling factor
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u to be used to control the DVS of all the servers. For each server, u specifies the
computing capacity. When u = 0, the server will run at the minimum frequency, and
when v = 1, at the maximum frequency. Any value in between will cause the server to
cycle periodically between two available discrete frequencies, so that the average frequency

is a value proportional to u (see Section 3.3.3 for more details).

3.3.1 Statistical Inference: Tardiness Quantile Metric (TQM)

In this section we show some statistical tests of goodness of fit between the data and
the chosen probability distributions. We study more than one distribution in order to
choose the best approximation. We also present the theoretical QoS formulation for each

distribution.

Using a large dataset, the authors in [35] showed that web traffic, such as response
time, can be modeled using heavy-tailed probability density functions, which have self-
similarity property, specially the Pareto distribution. We then verified in practice that
e-commerce traffic (i.e., WIRT and tardiness) do present a probability distribution close
to Pareto. Based on this distribution, we formulated the requirements for the system to

meet, the specified QoS.

We also propose the use of a second distribution, the Log-normal, which has two pa-
rameters that can be easily estimated on-line. The intuition behind using the Log-normal
distribution is the fact that the ratio execution time to the deadline has an unreachable
lower limit of 0, but has no upper limit, like some variables usually modeled by Log-normal

(e.g., personal incomes, tolerance to poison in animals, etc) [51].

The QoS and tardiness value are directly related. The bigger the average relative
tardiness, the lower is the resultant QoS. The reason we chose tardiness as a control
variable, aside from the problems mentioned earlier, is that tardiness does not carry only
a boolean information about QoS: whether the deadline was met or missed, but it is a
continuous value possible to be calculated for each web interaction, and its value shows
how close the execution was to the deadline. This is a good solution for the problem of
choosing the control variable, because the QoS directly does not show as much information
as the tardiness measure does. The QoS needs a big amount of web interactions to
be calculated with accuracy, making it inappropriate to use in the control, and each
interaction carries only a boolean information about QoS: whether its deadline was met
or missed. Our experiments show that the confidence interval of the QoS only becomes

small after a considerate amount of time. For example, even for a hundred requests, the
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confidence interval results in a high value. On the other hand, the tardiness is a continuous
value possible to be calculated for each web interaction, and its value shows how close
the execution was to the deadline. For this reason, the controller with the tardiness value
turns out to be more reactive and without dead-zones, i.e., the variable does not take a

long time to react after the actuation of the controller output.

Tho exemplify, supose the two scenarios (a) and (b) of Figure 3.3. In case (a), many
requests are finishing execution just a small amount of time before the deadline, and a
few are missing the deadline. In case (b), the group of many requests has also missed
the deadline. In case (a), the system will react first if using tardiness to quantify QoS,
because the tardiness will be with a bad value, while the real QoS will be acceptable,
because the requests didn’t miss the deadlines yet. On the other hand, using the count

of QoS misses, the system will only react in the situation depicted in case (b).

(a) (b)

Many Many

requests Few requests Few
— @" requests \\ Hf Fw“ requests

L .
. N\
deadline deadline

Figure 3.3: Benefit of using tardiness to quantify QoS

The relation between tardiness and QoS is obtained from the probability density
function for the tardiness value. We derive this relation from the p-quantile calculation,
that is, the tardiness value x such that P[X < z] = p. Based on the tardiness definition,
if the p-quantile is 1.0, then the QoS is p. Hence, we call this method of QoS measuring
Tardiness Quantile Metric (TQM). In the rest of this section we will show the QoS-

tardiness relationship for both Pareto and Log-normal distributions.

TQM with Pareto Distribution

In Figure 3.4, we show the p.d.f. obtained from an experiment run for 2,000 seconds
and 26,255 web interactions. There is a visual fit between the data and the Pareto
distribution, but the Kolmogorov-Smirnov goodness of fit test returns a maximum value
between the empirical cumulative distribution and the expected Pareto value of 0.08,
while the threshold necessary to accept the data as coming from a Pareto distribution

would be 0.01. Figure 3.4 shows that the first bar close to zero is smaller than the second
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bar, which does not happen in a Pareto distribution. However, as we will show later,

Pareto is still a good approximation to use.
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Figure 3.4: Tardiness p.d.f. and Pareto p.d.f.

The representation of a Pareto probability density function is given by f(x) = /{:;,i—fﬁl,

where the parameter k is related to the average p of the distribution by u = ’ZQJT"{, and x,,
is the necessarily positive minimum possible value of X. Note that the tardiness value has
a minimum value of 0. For this reason, we use x,, = 1 and the transformation 2’ = = — 1.

Then we obtain the following equation for the tardiness distribution:

k

f(x) = 1) (3.1)

where k = ’%1 Let p be the level of QoS desired, that is, 0 < p < 1 denotes the fraction

of deadlines that must be met. We can formulate the following theorem:

Theorem 3.1 (QoS based on Pareto) If the tardiness value, defined in Section 3.3, is

a random variable with Pareto distribution, a level p of QoS will be achieved, with a

c

confidence level of 1 — 5, where 1 —c is the confidence level for the sample mean p obtained

from the system, if the following relation holds:

o 1
n— Zc =
*VN logs (ﬁ)—l

(3.2)

where 1 s the average value for a set of N samples obtained for the tardiness, o is the

g

standard deviation for the same set, and z¢ N 15 the confidence limit for the mean with
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the desired significance level c.

Proof We will do the proof in two parts. First we show that the right side of the equation
represents the value of the real mean of the data that makes the p-quantile equals 1.0.
The web interactions with missed deadlines are those for which tardiness resulted bigger
than 1. To have p deadlines met, we need the probability of 0 < tardiness < 1 to be p.
Thus we need fol Wdz = p, resulting in 1 — 27% = p = k = log, (1%;)) As the
average [ in a Pareto distribution with minimum value positioned at z = 1 is given by
kkl, with the transformation 2’ = z — 1 we have "5 = p+1, giving k = ”+ . Solving for
1 the equation “H = logs ( ) and adding the conﬁdence limit, we obtam equation 3.2.

The second part is to consider the confidence level. The sample mean p obtained
does not represent the real mean of the data, but in half of the cases where the sample
mean is obtained, this value will fall below the real mean, and for the other half will fall
above. To guarantee the QoS, we need the real mean below or equal to the right side

of the equation. Thus, if the sample mean is controlled in the lower limit given by the

confidence interval, the unfavorable cases will happen only in 5 of the cases. This limit is

represented in the left side of equation 3.2 by the term z¢

ﬂ

TQM with Log-normal Distribution

Now we will show the same idea for another distribution, the Log-normal. A data has
Log-normal distribution if the natural logarithm of the data has a Normal distribution.
Figure 3.5 shows the histogram of the natural logarithm of the tardiness data and the
theoretical Normal distribution, and also shows the Quantile-Quantile plot (right side)
obtained using SPSS [93]. The @-Q plot is used to verify the deviation of a given data
to the normality. The normality of the data will cause a straight line in the @-@ plot.
The plot is showing that the data is very close to normal, with some variation on both
end tails. We also applied the Kolmogorov-Smirnov goodness of fit test in this case and
obtained a better fit, with 0.03 maximum difference between the measured and theoretical
cumulative distributions, against 0.08 for Pareto (same 0.01 threshold). Thus, we have

the following theorem:

Theorem 3.2 (QoS based on Log-normal) If the tardiness value, defined in Section 3.3,

is a random variable with Log-normal distribution, a level p of QoS will be achieved, with

[

a confidence level of 1 — 5, where 1 — c is the confidence level for the sample mean

obtained from the system, if:
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Figure 3.5: P.d.f. of In(tardiness) with the theoretical normal and the Q-Q plot
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where 1 and o are the average value and the standard deviation of the natural logarithm

of the tardiness value, considering N samples.

Proof Similarly to the Theorem 3.1, we have the p-quantile calculation and the addition
of the same confidence limit. The proof of the right side of the equation follows. Let f(x)
be a normal distribution with average 0 and standard deviation o. Let b be the value of

x that results in f_boo f(z)dx = p. We have to solve:

e 2a2da:—p

o\ 2w

which is solved using the square of this integral equation and the substitution 7% = 22+

2
f_b 6_20_22dl‘ fb e_%%dy = 2mo?p?
f f e 2%e 202 dxdy = 2mwo?p?

b2+b2
fo e 202 2rrdr = 2mo?p?

2
Using u = r2 and du = 2rdr, we obtain 1 — e = p?, resulting in b = o /In( ). This

result is for a normal distribution with ¢ = 0. In order to have p of the deadhnes met,
we need a shifted normal distribution so that b = 0, because the natural logarithm of the
tardiness will be less than 0 whenever the deadline is met. Thus, for this to happen, we
need the average of the natural logarithm of the tardiness to be p = —o /in(:=5 ) which

is equation 3.3 without the confidence limit. |
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Discussion

For the TPC-W specification, where p = 0.9, the tardiness average is p = 0.43068 us-
ing the Pareto distribution, and the ratio In(tardiness) average to the standard deviation
of In(tardiness) is £ = —1.28869. In the Pareto distribution, the on-line estimation of
the tardiness average has a simpler implementation than in the Log-normal, but both can
be done with a low complexity (O(1) for time and O(N) for space). We will show results
for many values of specified QoS in Section 3.5, where we used a confidence limit of %
to test both assumptions, yielding a confidence interval of 95.45% for the sample mean,
and consequently 97.725% confidence level that the QoS will be equal or higher than the

specified value.

3.3.2 Control Logic

We will make use of the classic z—transform methodology to derive the equations for the
control logic. The z—transform is used in signal processing to convert a discrete time
domain signal, which is a sequence of numbers, into a frequency domain representation.
To make this conversion, the z variable, in the definition of the z—transform showed in

sTs

equation 3.4, must be replaced by z = e®'s, where s is the complex parameter of the

Laplace transform and T} is the sampling interval.

X(z) = anz*” (3.4)

In equation 3.4, where z,, is the n'” sample of the signal z, the signal is composed by

1 and

the most up to date sample, multiplied by 2°, the previous sample, multiplied by 2~
so on. Thus, this definition can be used to discover the approximate frequency domain
representation of a sampled signal. This is used in control theory to build digital filters

with the same behavior of the equivalent analog filter.

We applied the z—transform to discretize the Laplace equation of a PID controller,
given by G(s) = Kp + % + Kps, where Kp, K;, and Kp are the proportional, integral,
and derivative PID constants, respectively. Using the simplest approximation? to find z
as a function of s, we obtained the following equation for the controller, which is O(1) in

time and space for implementation.

2Called the backward difference, which is given by z = ﬁ, and is obtained from a first order series
approximation to the z—transform
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Kp
T

outy = outy_1 + ( + Kp + TSKI) errory —

2K K
( TD + Kp) errory_1 + TD errory_o (3.5)

where outy, is the k™" sample for the output (i.e., the frequency factor u) of the controller,
and errory, is the k' sample for the error, which is the difference between the set-point
and the actual value of the output (see Figure 3.2). For implementing equation 3.5, it is

necessary only to keep in memory the two latest error values, errory_i, and errory_s.

The average and standard deviation were obtained by using a sliding window of size V.
The implementation is O(1) in time for both the average and the standard deviation. At
each sample, the average value is updated by the sum of the new value and the subtraction

of the oldest value. The space complexity is O(N) for both.

As the focus of this chapter is not the controller itself, we will not address it here. In
Chapter 4 we address the controller showing an analysis of sensitivity to the parameters,
and with improved control dynamics applying filters in the derivative part. Here, for the
proof of concept, we use values Kp = 0.02, K; = 0.05, and Kp = 0.02, and also the

number of samples N = 200 that resulted in good responsiveness and stability.

3.3.3 Speed Setting

We use a simple DVS scheme that consists in switching between the two discrete values
adjacent to the desired frequency [53]. This scheme is a good solution to the case of a
controller actuator, because it offers a continuous, rather than discrete, operating point,
so that the controller can have a continuous output. In this scheme, a high priority
daemon executes periodically with a duty cycle o with the exact width to stay in the

higher frequency, and the remaining of the period in the lower frequency.

As we mentioned earlier, the DVS overhead in modern CPUs is negligible, and switch-
ing frequency does not cause any reliability problem, it in fact increases the MTTF of
the processor, because it reduces the average device temperature, and consequently also

reduces the number of temperature-driven failures [34, 23].

The frequency scaling factor u output by the QoS controller is broadcast to each server
node and each server node i calculates the desired frequency f; given by f; = u(Fpa: —

Frin) 4 Foin. The duty cycle of the DVS mechanism is a, so that a|f;]| "+ (1—a)||fi||T =
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fi, where || f;||” is the highest available discrete frequency smaller than f;, and || f;||T is

the lowest available discrete frequency bigger than f;.

We will show in Appendix B that the efficacy of this switched DVS scheme is better

than using the lowest available discrete value higher than the necessary frequency.

3.4 Implementation Issues

We describe the system components used in the implementation of our web store on the
cluster, and show some implementation issues not directly related to the QoS control,
such as the request distribution mechanism, important time measurements, and servers

turn-on /turn-off policy.

3.4.1 Hardware and Software

The hardware used in the testbed, summarized in Table 3.1, is composed of the front-end,
four machines for the web server tier, and three machines for the database tier, besides
one machine to execute the emulated browsers, in the same configuration as Figure 3.1.
We chose this configuration so that we were able to focus on the web/application server
layer. This configuration puts a load, including SSL processing, of 64% on the front-end

and about 80% on the database servers, avoiding bottlenecks.

Table 3.1: Hardware used

| Node | Function | Freq. available (MHz) | Specifications |
yellow front-end Not applicable AMD Athlon 64 X2 Dual
Core 4200+ 2GB RAM
pml web 600, 800, 1000, 1200, Pentium M 1GB RAM
server 1400, 1600, 1800
black web 1000, 1800, 2000 AMD Athlon 64
server 3000+ 1GB RAM
silver web 1000, 1800, 2000, AMD Athlon 64
server 2200, 2400 3400+ 1GB RAM
green web 1000, 1800, 2000 AMD Athlon 64
server 3000+ 1GB RAM
antimony | database Not applicable 1 CPU Intel Xeon
3.80GHz 8GB RAM
oxygen database Not applicable 4 CPUs Intel Xeon
3.60GHz 4GB RAM
hydrogen | database Not applicable 4 CPUs Intel Xeon
3.60GHz 4GB RAM

The software used was the Apache web server, the PHP scripting language, and the
database PostgresSQL. For the TPC-W we used the specification compliant implemen-
tation available at the PgFoundry PostgreSQL development group [76]. The front-end
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works as a reverse proxy, with the load-balancing Apache module mod backhand [7],
which allows easy addition of new request distribution policies. For the database, it is
mandatory to have a distributed database solution in this architecture. In spite of that,
as our focus was to study the power management in the web server layer, we used multiple
databases without replication. In each database, we deployed an independent web store
with 10,000 items and 1,000 customers each. For example, for a load of 600 EBs, we
start 200 EBs accessing each independent web store. For the web servers it makes no
difference. That is, any request is treated equally, and any server is able to process any

request, regardless of what database server will respond to the queries.

3.4.2 Time Measurements

The main problem that makes the implementation in [85| inappropriate to the TPC-W
application is that we need to have a way to measure the web interaction response time
(WIRT) as a whole, and it is impossible to be made locally in one web server node. The
WIRT is defined by the TPC-W specification as the time from the sending of the PHP
request by the EB until the receiving of the last byte of the last image embedded in that
PHP request. The problem is that the requests to the embedded objects may be sent to

different web server nodes in the cluster.
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Figure 3.6: WIRT time components

We measure the approximate WIRT at the front-end, excluding only the local network

time between the EBs and the front-end. For this, we implemented a new Apache module
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that labels the requests before sending them to the server nodes, as shown in Figure 3.6.
When the PHP request arrives at the front-end (e.g., home.php), the module creates a
unique number and attaches it as a new parameter in the URI of the PHP request. When
the web server node receives the request, it gets the label and puts it, also as a parameter,
in every embedded object reference. Each subsequent request for every embedded object
will come with the label to which PHP request it belongs to. When the request for the
last object finishes, the front-end knows the time for the whole web interaction and can
compute the QoS and tardiness. We note that this solution does not modify the client
at all, and therefore is backward compatible with existing systems. In the case that the
application has a very dynamic behaviour, and the number of embedded objects varies
on time, the algorithm can still be used, by having the front-end count the number of

objects for every request.

Another implementation issue was that we needed to know the average CPU time
spent, in user space and kernel space, by each PHP request, for the load estimation in the
front-end. We attempted measuring them with direct measurements, but the precision is
very poor, because the minimum CPU time, given by a system call called from the PHP
script, had resolution of the same order than the execution time itself. Our solution was
to design microbenchmarks using functionality from the EBs implementation [76], namely
to have them generate specific interactions, in order to exercise each of the interactions

separately.

The methodology for the microbenchmarks works as follows. During a period of T
seconds, N, requests type r are issued and the CPU achieves an utilization U. This
way, the average CPU time t, for request r is []JV—T However, there is a restriction. The
TPC-W benchmark specifies a transition diagram with the possible set of transitions
allowed after one specific web interaction, and thus, it is not possible to generate all
kinds of interactions in isolation. For example, the request to display an order the client
has made cannot be issued before the customer actually asks for that order. Similarly,
the Buy Confirm interaction cannot happen before the Buy Request interaction. For the
cases with this type of precedence restriction, we used the average value of the precedent
interaction to calculate the average CPU time of the next interaction. In a sequence of n

interactions, the CPU time of interaction r;, say ¢;, is given by > " | Njt; = UT.

The average value measured by this methodology, with 7" = 20 minutes is shown in
Table 3.2. This resulted in about 10,000 interactions in each measurement. The scripts

admin__ confirm and admin_ request could not be determined with precision because they
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are not requested very often. In a 20-minute experiment, only 250 such interactions
occurred, along with 40,000 other precedent interactions. In fact these interactions are
not important, because typical customers do not change or administer the database.
Their CPU time, though, is approximately 4 ms, measured directly inside the script for
one execution. Again, this measurement is not precise because the granularity of the time

function used is 4 ms.

Table 3.2: Average CPU time (system + user) for each PHP script

PHP script avg. time (ms) || PHP script avg. time (ms)
admin_confirm - new _products 5.417
admin_request - order display 5.456
best _sellers 5.578 order inquiry 4.126
buy confirm 6.929 product _detail 4.643
buy request 6.039 search request 4.576
customer _reg 4.242 search result 5.406
home 5.012 shopping cart 5.336

3.4.3 Request Distribution

As the PHP application depends on the session ID that the server generates and writes in
the browser cookies, requests with the same session ID must go to the same server. This
is implemented by the mod backhand software, and is commonly called as a distribution
with sticky sessions. The web request distribution adopted is based on current load, that
is, the amount of work outstanding at the server. The web request is sent to the web
server with lowest load, providing that the sticky session rule is not violated. The front-
end estimates the load of each server as follows: for each web request, the average CPU
time is added to the load estimator when the request arrives at the front-end, and the

same value is subtracted after sending the response to the client.

3.4.4 On/Off Policy

The policy used to turn servers on and off affects the QoS control limiting the maximum
load of the system and determining the moment to turn a node on, as in [85]. The
difference is that we use suspend to RAM, and Wake on LAN and therefore we needed to
adopt new values of overhead of time and energy when turning a machine on and off. In

Figure 3.7 the activity line is the output of one parallel port pin measured by the same
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data acquisition system used to measure the power (in other words, clock skew is zero).
A process is started at the same time of the command to shut down the machine (¢t = 4),
switching this output. After that, any state different than switching (black part) means
that the machine is not operational. It can be seen in the plot that the time overhead to
turn off is the period between 7 and 10 seconds. Similarly, the time to turn on goes from

18 to 24 seconds.

80 T T T T T T T T T T T T 1 1600
» Activity
70 /1 Power ==----- < 1400
K] :Energy ........ .
B0 [t =mnvorrmsmmar R vavau,-zeried 1200
H S R >
. | 1 ] AL TR AN .t _ ]
S 50 b i . tooo
T 40 i i 4 800 =
E : A >
o 30 F “‘:, ................. :l - 600 8
LA : w
20 |- RO i < 400
10 F L i i 4 200
+* Isnamneumnunmwnd
okt HEENN 1, (], (N
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (s)

Figure 3.7: Overhead of time and energy for turning on/off the Pentium M server

3.5 Performance Evaluation

Before evaluating the proposed method, we will show empirical proofs for the impracti-
cality of controlling the QoS using a direct measure of the QoS. The plot on Figure 3.8
shows the QoS being measured in a sliding window of size sufficient to store 10 seconds of
web interactions information about whether it met or missed the deadline. This size was
the biggest size that showed not to compromise the responsiveness of the control. The
control set-point was set to 0.98, shown in the plot as a reference line. The plot also shows
the control output (u in Figure 3.2) for the two cases: based on the direct QoS measure

(sliding window), and based on the tardiness measure (with Pareto distribution).

The first of two problems of measuring the QoS is the broad confidence interval. The
confidence interval in this experiment, not shown in the plot, resulted in values up to 0.06.
For 0.98, for example, the confidence interval is 0.04, meaning that the real mean will lay
between 0.96 and 1.0. For this reason, as can be observed in the plot, more often than not

the QoS measure assumes the value 1.0 (for example, between ¢t = 370 and ¢ = 470), even
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though the real mean value (not the sample average) is something different, resulting in

instability.

The second problem is that the maximum value of QoS is 1.0. The plot shows several
intervals (e.g., 370 < t < 470 and ¢t > 550) where the measured QoS is bigger than
the set-point 0.98, giving an error limited to 0.02, resulting in a long decreasing output,
because 0.02 is too small. After this period, in most cases the output reached a position
that caused an error much larger than 0.02 (e.g., t = 250, t = 350, and t = 530), resulting
in a fast increasing of the output. On the other hand, the curve for the output based
on tardiness shows a more constant behavior, and there is no asymmetry related to the
set-point. Furthermore, the QoS measured in a sliding window during the control with
tardiness is more constant, although higher than 0.98, because of the broad confidence
interval. As a result, the control based on the direct QoS measure gives periods of high
probability of meeting the deadline, followed by periods where it is more likely of missing
the deadline than the previous period. Even though the final accumulated QoS for the
whole experiment were correct for the two cases (close to 0.98), what is expected is that
every web interaction have the same probability of meeting its deadline, uniformly, and
the use of tardiness achieves this goal. The energy consumption is higher in the case of

controlling the QoS without tardiness, because of the higher variability of the output w.
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Figure 3.8: Control using direct QoS measure

The most important evaluation we made is to prove the correctness of Theorems 3.1
and 3.2, for the Pareto and Log-normal distributions. We executed the tests with 360
EBs, a number that represents half of full load and requires 4 servers turned on, divided

equally into the three database servers and monitored the QoS obtained for each value of
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missed_deadlines
total requests

specified QoS. The obtained QoS (accumulated) was measured by the ratio
for each class of web interaction, and the tardiness values were from the web interaction
class with the minimum QoS. In other words, the controller is directed to control the worst
QoS among all classes of web interactions. Although conservative, this is to guarantee
that all web interactions will stay with a QoS above the specified limit, as it is stated in

the TPC-W specification.
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Figure 3.9: Evaluation of the Pareto distribution

The plots in Figure 3.9 and Figure 3.10 show average power and the minimum QoS
obtained by our scheme as a function of the specified QoS when using Pareto distribution
and Log-normal distribution, respectively. The confidence interval plotted is obtained in
each measure by the confidence interval for a proportion, given by +1.96 z%, for a

95% interval, where p is the proportion, or the QoS measured.

The Pareto distribution showed very accurate results for QoS values not close to 1.0.
The Log-normal showed an error approximately constant of 0.02, and was consistently
worse for all values. This is because the Pareto distribution has a better goodness of fit
for the tail, which contains most of the requests with missed deadlines. On the other

hand, the log-normal distribution had the worse fit exactly in both tails.

Both models, based on Pareto and on Log-normal, have some difficulty to be correct
for QoS close to 1.0, as it can be expected examining the theorems. The points in both
plots (Figures 3.9 and 3.10) close to 1.0 were actually user specified QoS of 0.999. This

happens because in the case of QoS 1.0 the distributions will have no tail at all.

The TPC-W specifies 0.90 for QoS. Normally, when using the TPC-W to measure an
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Figure 3.10: Evaluation of the Log-normal distribution

e-commerce system performance, the number of items in the database must be scaled up
until the server has minimum QoS of 0.90, and it is found the maximum scaling factor
that the system under test can sustain. Thus, to get TPC-W results the system must
be in full load. Our system, when not at full load, will slow down to stay in a similar
condition of load with the accurate QoS of 0.90, and consequently will reduce the energy

cost.

We compared the results, with QoS control based on Pareto, with the implementation
in [85]. We made some few modifications in that implementation to accommodate the
new real-time model and to support the bigger number of request types. The first result is
shown in Figure 3.11, where the TPC-W test was executed for 30 minutes, with a load of
400 EBs. The QoS in the proposed scheme was set to 0.95 ([|85] also had a target QoS of
95%). The QoS for [85] is not plotted, because, for this load, the QoS remained very close
to 1.0 for all requests. The average power for the scheme proposed in [85] was 320.9 W,
while it was 303.2 W for our scheme. This shows that our scheme can accurately specify

QoS in a fine-grain manner.

It is important to note that the QoS does not have a value far from the specification
at the beginning of the experiment, as it may be wrongly concluded from the plot in
Figure 3.11. In the beginning, the measured value does not correspond to the real value,
because there is not enough information for a precise measurement. Note that for the
first 100 seconds the QoS measured is 1.0, and right after that, the value is not close to
the real 0.95 value to which there is a convergence at the end of the experiment, and also,

there is a large confidence interval at this point. These are the evidences we mentioned
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Figure 3.11: QoS and power in the TPC-W test

earlier that the QoS cannot be used as a control variable directly. Because the value has a
large error, the control simply could not work. To make the the direct control by the QoS
value work, one could argue that the resulting deadzone caused could be made negligible
by lowering the frequency to which the CPU frequency and voltage are adjusted. This
solution would not help, because the time necessary to wait for a good measure is too
high, as the plot shows. Thus, the QoS has to be measured in a long experiment, with
the number of requests necessary for achieving a narrowed confidence interval. We also
note that the QoS changes in some points. This is because we are plotting the minimum
QoS, and sometimes the class of web interaction responsible for the minimum QoS gets a

bigger value and the minimum comes from another web interaction.

We also compared the new scheme with [85] for several different loads (see Figure 3.12),
using the specified QoS of 0.95, the same as in [85]. The experiments show that we can

save power by having an accurate control of QoS.

In Figure 3.13 we show that, even though we are focusing on the web server layer, the
energy consumption of the web servers depends on the load of the database layer. We
executed the same load in two different scenarios. In the first, all clients were directed to
only one database, and in the second the clients were distributed to the three available
databases. In the first scenario the database showed almost full utilization, against about
30 percent in the other option. When the load at the databases is higher, the web server
layer has to speed up to compensate the response time increase at the database layer.
Thus, the question arises on how to cleverly integrate the power management among the

different tiers in a multi-tiered architecture. Figure 3.13 also shows the QoS obtained for
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Figure 3.12: Evaluation of the proposed scheme

both scenarios. We omitted the confidence intervals for better clarity, because they were

superposed. It is important to note that both stayed close and above the QoS specified

at 0.95.

We noticed also in the experiment of Figure 3.11 that the QoS always stays above and

very close to the specified. This happens because we used the confidence limit as stated

in theorems 3.1 and 3.2.

210
- 180
[}
S 150
3
2 120
> 90
2
5 60
30
0

! ! ! ! !
""""""""" """"" ey 1
,,,,,,,,,,,,,,, 0.95
rrrrrrrrrrrrrrr e 109
rrrrrrrrrrrrrrr Y L s X
rrrrrrrrrrrrrrr -~ I K
rrrrrrrrrrrrrrr R — ‘ 4 075
R Energy 1 DB - 0.7
,,,,,,,,,,,,,,, . Eneigy3DBs —e— |

0 100 200 300 400 500 600

Time (s)

Minimum QoS

Figure 3.13: QoS and energy consumption for two scenarios with different database load

The recomended performance metric by TPC-W is WIPS, which we measured for

our proposed scheme and for the scheme proposed in [85]. For the experiment shown
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in Figure 3.11, the averages were 49.79 and 54.99 WIPS for our proposed and for [85],
respectively. We had 10.4% less performance, but with a controlled quality of service
in a value that attends the minimum level specified by TPC-W for achieving customer
satisfaction. We used 95% in this experiment, but we can achieve even more power
savings with the TPC-W requirement of 90%. The scheme proposed in [85] achieved
better performance because of overprovisioning the system with respect to the real-time

specifications.

3.6 Conclusions

In this chapter we presented a scheme to relate QoS to tardiness in a multi-tiered envi-
ronment designed for e-commerce, based on the statistical distribution of the tardiness of
web interactions. This QoS metric was shown to be very useful because some practical
difficulties arose when we tried to use the measured QoS in the control. On the other
hand, tardiness is a continuous value that can be calculated for each web interaction, and

its value depicts how close the execution was to the deadline.

We proposed two approaches, based on the probability density function adopted to
represent the tardiness data: using the Pareto distribution and using the Log-normal
distribution. We showed that the Pareto distribution achieves better results in the ac-
curacy of the resultant system QoS, for values of user defined QoS not close to 1.0, and
Log-normal showed to have a constant error due to differences in the fit of the data to
the distribution. Our proposed scheme using Pareto was shown to be better than exist-
ing schemes like [85] and [90], because it meets with precision the real-time specification,
not overprovisioning the system, and thus saving energy. Although easy to implement,
because there is a closed formula to express the QoS, a shortcoming of our approach is
when the goal is to meet all deadlines, the tardiness would have an upper bound of 1, and
thus the assumption on the tail distribution does not hold. In this case, which is not the

goal of our method, the cited existing schemes would be more precise.

The major drawback of the TQM presented is that it is based on predetermined
probability distributions: Pareto and Log-normal. The approximations showed to be
good, but the first questions that arise are: what if the workload is not Pareto and not
Log-normal? Ts it possible to generalize? Fortunately the answer is yes, we can generalize,
by using stochastic approximation algorithms that can measure some characteristics of a

random variable regardless of its probability distribution function. Then we came up with
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the Generalized Tardiness Quantile Metric (GTQM), which we present in the Chapter 5.

Before presenting the GTQM, in the next chapter we show more details of the control
logic used by the QoS controller. We show the implementation of a feedback control loop
that acts on the speed of all server nodes capable of dynamic voltage scaling, with QoS

measured using TQM being compared to the QoS setpoint.



Chapter 4

QoS Control

A penny saved is a penny earned.
— Benjamin Franklin

In this chapter we describe a simplified way to implement performance control in a
multi-tier computing system designed for e-commerce applications. A paper was published
in [12]. We show that the simpler SISO (Single Input Single Output) controller, rather
than a more complex distributed or centralized MIMO (Multiple Input Multiple Output)
controller, works well, regardless of the presence of multiple cluster nodes and multiple
execution time deadlines. By changing the speed, we change the position of the p-quantile
of the tardiness probability distribution, a variable that enables to measure QoS indirectly.
Then, the control variable will be the average tardiness, and the setpoint the tardiness
value that will position this p-quantile at 1.0, value at which a request finishes exactly at
the deadline. Doing so will guarantee that the QoS will be statistically p. We test this new
Tardiness Quantile Metric (TQM) in a SISO PIDF control loop implemented in a multi-
tier cluster. We use open software, commodity hardware, and a standardized e-commerce
application to generate a workload close to the real world. The main contribution is to
empirically show the robustness of the SISO controller, presenting a sensibility analysis of
the four controller parameters: damping factor zeta, derivative filter factor beta, integral

gain ki, and zero time constant tau.

4.1 Introduction

As people increase their trust on Internet means for services like banking and commerce,

electronic applications become everyday more popular and widespread. The complexity
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of the computing systems for these applications are increasing fast, both for well estab-
lished popular kind of applications such as e-banking and e-commerce, and also for less
known business-to-business applications, such as e-sourcing, where businesses auction the
willingness to purchase from the seller who can offer lowest prices and best contracts. Due
to the needed complexity and size, computing systems are becoming complicated, dense,
and of high cost of ownership. As pointed out in [56|, because of this growing complexity,
the computing systems for today’s applications need to be able to do self-configuration
and self-optimization, and act in an autonomic way, such that it can optimize itself seam-
lessly to the desired performance objectives. With the motivation that control theory
will play a crucial role in the development of complex and large scale computing systems,
we present in this chapter a practical use of control theory for multi-tier clusters to host

e-commerce and related applications.

Following the work in [38|, where the authors discussed the scaling aspects of control
problems that arise in large computer systems, our control borrows some characteristics
from the centralized MIMO (Multiple Input Multiple Output) models. They used as a
target architecture a multi-tier e-commerce system composed of multiple layers of web
clusters, each layer used to process a different part of the web request, namely, request
distribution (layer 1), static and dynamic requests (layer 2), and database access (layer
3). In their classification, for any performance control, an e-commerce system has to
be either MIMO centralized, where there is a centralized controller with multiple actu-
ators and multiple sensors, or MIMO distributed, with several distributed independent
controllers. The authors claim that the controller for an e-commerce system has to be
MIMO by necessity, for example, because of the existence of multiple web request types
with different response time objectives. However, in our practical implementation of a
multi-tier e-commerce web cluster, the industry standard e-commerce application used
presented some restrictions that make it impracticable to read the control metric from
the multiple servers. The reason is that the information, or control metric, is distributed
across the cluster, and the only way to measure it is at the front-end server where the
controller runs. This prompted us to build a SISO Single Input Single Output controller,
using a normalized response time among classes of requests to obtain a single control

metric that normalizes the several different time constraints.

We based our implementation on open source software and industry standard work-
loads. Open-source software offers a huge advantage for controlled computing systems,
because virtually any metric or measurement can be derived from the system, as we have

total access to the source code, from the core kernel level to the application user level.
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Our objective is to accomplish energy consumption minimization and QoS (Quality of
Service) guarantee. We build a feedback control loop that regulates the performance of
all dynamic voltage scaling (DVS) capable server nodes (i.e., layers 2 and 3), with QoS
being the reference control objective. But rather than sensing the QoS directly, which is
measured as a ratio of number of requests that executed within their deadlines to the total
number of requests, we use a new metric of QoS based on the tardiness of the completion
of web requests proposed in Chapter 3, where tardiness, the control variable, is defined
as the ratio of web request response time to the deadline. This metric is based on the
probability distribution of tardiness, and because it presents more information about the
completion of tasks than the QQoS, it offers a better metric for using in a feedback control

loop.

We will apply the theory of a PIDF controller, which is basically a proportional-
integral-derivative (PID) controller augmented with a low pass filter (F) in the derivative
part. The workload of a web system is a composition of random variables, and conse-
quently, present the random fluctuations that is characteristic of any stochastic process.
We consider the unpredictability of the workload as being similar to sensor noise. With
the low pass filter, the process disturbance caused by random oscillation will be rejected
by the controller. In such a web system, it is desirable to have the derivative component,
because as the plant dynamic presents a dead time delay, it is important to have the
predictive characteristic given by the derivative part. Besides, we need also to include
averages in the control variable to handle the intrinsic randomness. We will measure the
plant dynamics after the inclusion of the averages and apply some tuning rules for the

controller.

The contribution of this chapter is the practical implementation and robustness evalu-
ation of the control loop for a real e-commerce web server cluster, with sensitivity analysis
to the parameters of the PIDF controller. The goal was to have a means of proving the
concept of TQM and GTQM, by having a control loop implemented in the cluster com-

puting system.

4.2 Background

In this section we describe briefly the cluster model used and give some basic concepts of

control theory.
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4.2.1 Cluster Model

The cluster architecture is composed of a central web server that serves as a front-end to
the whole system (layer L.1), a layer L2 of servers to process dynamic and static requests,
and the L3 layer to execute a distributed database that will store all the information
related to the application. The front-end node implements a request distribution policy
based on the amount of work that each second-tier server has. The front-end server acts
as a reverse proxy, that is, it redirects requests to other servers and also returns the
server’s response to the client. The front-end is capable of SSL encryption/decryption
as required for the e-commerce application. The load distribution among the database
servers is done statically. We replicate the web store in many independent database
servers to avoid bottlenecks, and the total load is divided equally to each database. To
implement this architecture we used in layer L1 the Apache web server with the module
backhand |7] for load balancing and a new module to implement the controller, in layer
L2 we have Apache with PHP scripting language support for the dynamic pages, and in
L3, PostgreSQL for the databases. The workload generation used is based on TPC-W.

4.2.2 PID Control

The PID control is the most used control technique in industry. The first PID controller
appeared in the 1930s [58], and is still used and researched because of its operational
simplicity, and because it provides generic and efficient solutions to control problems. A
PID controller computes the error between the controlled variable measured in the plant,
and the desired setpoint value, and according to this error signal, it generated a signal
sent, to the actuator that will eliminate this error. The actuator is part of the system that
can produce a change in the controlled variable. For example, in a computing system
where we want to control the system’s performance, the actuator may be the DVS speed
or frequency. If we change the DVS frequency of the processor, it will show a faster or
slower average response time. The response time in this case would be the control variable.
The setpoint would be a predefined response time that we desire the system achieves in
the average. Thus, the PID controller will compare the measured response time with the
setpoint and adjust the DVS frequency in such a way that the measured response time
reaches the setpoint in steady-state. The settling time is the time it takes to reach this

steady-state.

The PID controller has three components: proportional (P), integral (I), and deriva-

tive (I). The computed signal u sent to the system’s actuator is a combination of these
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factors. The proportional term provides a control action proportional to the error signal,
and the goal is to be able to instantly calculate an output that is independent on the
initial conditions of the system. The proportional action alone is unable to eliminate the
error in steady-state. The integral term reduces steady-state errors, because the output
increases as a calculation of the integral of the error signal. The derivative term improves
transient response with some predictive capability. The classic PID controller is then

given by:

u(t) = kpe(t) + Z—]; /e(t)dt + k:ka%e(t) + ug (4.1)

This is called the parallel PID controller, because all components are computed in
parallel and then summed. The proportional factor kp is multiplied in all components.
Tr and Tp are the integral and derivative factors respectively. 17 and T have time units,

1

and normally the integral and derivative constants used are k; and kp, where k; = T

and kp = Tp, what we adopt in this work.

4.2.3 Implementation in a Discrete System

In a computing system, time is discretized. Any dynamic system can be represented in a
discrete system by using the z—transform. After representing the system in the frequency
domain, that is, applying the Laplace transform, the discrete equivalent system is derived
by substituting the Laplace variable s by the variable z using a function s = f(z). The

variable s can be related to the z variable by the expression:

z=eT (4.2)

where 7' is the discretization time, or sampling period, that is, the interval between values
of a discretized signal. The Figure 4.1 shows a signal which value is known only every T’

seconds. We have a sequence of samples, and the last sample is the k-th sample.

1

If we take z~! from Equation 4.2, we will get z~! = e~*T, what is the known Laplace

T in the frequency

formula for a delay of T seconds. That is, if a signal is multiplied by e~
domain, the signal will be delayed by 7" seconds in the time domain. Then, the discretized

signal X of Figure 4.1 can be represented by:
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A

signal

time

Figure 4.1: Discretized Signal

X(z) = Z:p(n)z*" (4.3)

n=0
where n is an integer, and the signal is supposed to be defined only for ¢ > 0.

The z—transform can be used to represent a signal in the discrete domain, or even
be used to represent a formula of a controller or a filter in order to be implemented in a
discrete system. The backward difference, given by 1 — sT = 27!, that is obtained from a
first order series approximation to the z—transform, is the most used approximation for
the Equation 4.2. One way to see this relation from Figure 4.1 is by the approximated

calculation of the derivative of the signal between points k£ — 1 and k. The derivative

d z(k)—x(k—1)
T

ST s . In the frequency domain, the derivative is represented by the Laplace

22—z 1z

variable s. Then, sz = =

,or s = 122 What gives 1 — sT = 2z~

When the laplace formula of the controller is transformed by 1 — sT' = 2!, the result
is a recurrence formula that implements the dynamic behavior of the original formula.

This will be shown in the next section when applying this idea to our PID controller.

4.3 Control Logic

The control logic uses the TQM control input metric as described in Chapter 3, that is,

based on the probability distribution of tardiness; = de%gée_, for all web interaction 1.

The DVS Actuator mechanism is the same as defined in Section 3.3.3.
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Figure 4.2 shows the control logic block diagram adopted. As suggested in [58], we
model the noise as the input signal w(t); in our model, noise is present in the measure
because of the stochastic nature of the workload v(¢) (the process disturbance), which
will cause the randomness present in the tardiness measure. The controller output is u(t),
and the transfer function K (s) of the controller has a minus because it has to invert the
output related to the input error. When the error is negative, the p-quantile for the QoS p
is bigger than 1.0, and the deadline miss ratio is bigger than 1 —p, and therefore the server
must increase the speed. G(s) is the unknown plant transfer function; we will measure its

dynamics in Section 4.4.2. A(s) represents the averaging included in the control variable.

tardiness setpoint Statistical QoS
Inference setpoint

v it)

O+ «© WO o6 )

+
average tardiness A9 ‘—04—10(15)

Figure 4.2: Control logic block diagram

We have used in Chapter 3 a simple PID controller given by K(s) = kp+ % +kps. To
improve it, as suggested in [43], we insert a lowpass filter in the derivative part to make
it reduce the noise, and we change the parameterization of the controller as proposed

in [43]. With only the lowpass filter, the controller becomes: K(s) = kp+ % + 1_’?’;’%. The

new parameterization will use the four parameters: dumping factor (¢), derivative filter
factor (), integral gain (k;), and zero time constant (7). The advantage of using these
parameters is better stability, because it reduces the freedom of the traditional parameters
in a way that the controller is easily kept in a stable region. This parameterization also

makes the controller tuning procedure easier. The resultant controller is:

1+ 2(1s+ 7252

s(1+3%>

K(s)=k

where 3 = %‘j, and ko, = lim K (s).

S§—00

The damping factor ¢ dictates the responsiveness of the controller. With a increased
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¢, the system becomes slower to achieve steady-state, and with a small (, the overshoot

increases. The zero time constant 7 is dependent on the plant dynamics. In [58] a very
T
3 )
the plant (for a first order plant, the time the output takes to achieve 63.2% of the input

simple method of tuning the controller is to make 7 = %, where T is the time constant of
in the step response). The filter factor [ is related to the high-frequency gain, or control
activity, ko = O7k;. If ( is small, the system may lose control activity and perform as if
in a positive retrofit (see Section 4.4). Increasing k; will increase the performance of the

controller.

In the discrete domain, the controller equation relating the discrete output uy to the

discrete error e, becomes:

2

T, +2¢T + % - (% + 2CT> z 14 <;—S) z72

T, 4% - (TS v 2%) 1y (;—) 22

(4.5)

The discrete equation obtained by straightforward manipulation of Equation 4.5 is in

the recurrence formula in Equation 4.6.

(BT +27)up—1  72ki (up_2 — ex_2)

U = —
k ﬁTs +T Ts <Ts + %>
<Ts -+ 2CT -+ %) kiek <% + 2CT> /{Ziek,1
_ 4.6
T+ 5 T, + 5 (46)

4.4 Evaluation and Sensitivity Analysis

In this section we present a set of experiments with the controller. The first step is to
measure the process dynamics in open loop and then tune the controller accordingly. We
adopted the tuning procedure given by Equation 11 of [58|. For the closed loop, all tests
use a QoS setpoint of 0.95.

4.4.1 Process Dynamics

We adopt the first order plant with delay of Equation 4.7, where L, is the lag delay, or the

time it takes for the output to change after a step response, and 7T is the time constant.
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Figure 4.3: Step response in open loop, for 10s average with 7y = 10 s and 30s average
with T = 30

e—SLd

G(s) = k;l T (4.7)

We will show results (how the process dynamics change) for two different time windows
for computing average tardiness (which are also the sampling period T,). We will use an
average of 10 seconds plus an additional filter with constant 7 = 10s, and to test bigger
averages, we use window average of 30 seconds plus an additional filter with constant
Ty = 30s (a sampling period and average of 30 seconds was also used in [63]). This lowpass
filter in the measurement is required for smoothing and improving the measurement of
the control variable. With this averaging scheme implemented, we measured the step
response for both cases, and the result is in Figure 4.3. We will use this figure in the next

section for fitting with the plant model adopted.

4.4.2 Tuning

We did curve fitting from the results in Figure 4.3 to extract the parameters of the plant
model. We obtained Ly = 10s, T' = 12s, and k£ = 0.35 for the 10s case and L; = 30s,
T = 36s, and k = 0.33 for the 30s case. Applying these values to the tuning rule described
by Equation 11 of [58], we obtain ( = 0.83, 7 = 6.52, k; = 0.29, and § = 3.91, for 10s
case, and ¢ = 0.83, 7 = 19.56, k; = 0.10, and 3 = 3.68, for the 30s case. The study in [58|
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Figure 4.4: Control performance with 10s average

showed that these values yield closed-loop behavior close to optimal, for first order plants
with moderate time delay. In our case, with 10s delay resulted in good stability, but a

30s delay was too large and did not yield good results (see Section 4.4.3).

4.4.3 Results

In all experiments, the control variable used is not only the average tardiness, but the
average tardiness added to the confidence limit calculated every sampling interval. For
example, if in one given sampling interval the average tardiness measured with its confi-
dence interval is 0.30 + 0.05, the control variable will be 0.35 rather than 0.30. This is
to guarantee, with the confidence level adopted (95%), that the QoS will lay above the

specified value.

In Figure 4.4, the tuning rules resulted in stable operation of the controller with 10s
average. The QoS measured every interval remained above, in most cases, the specified
value of 0.95, as expected, because we controlled by the confidence limit. The points close
to t = 240s, t = 380s, and t = 510s with low QoS were caused by load imbalancing that

is difficult to avoid when all servers run almost with full utilization.

Figure 4.5 shows the 30s case. As the lag delay was too big, the tuning rules failed.
With a too small 3, the integral part is not sufficient to recover from a negative error. The

effect is of a positive retrofitted system. We solved this by increasing (8 and increasing
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k;, for better performance and better control activity. The result is in Figure 4.6, which
also shows the increase in control activity with higher 5. For the remaining experiments,
one parameter will be changed, while the others will remain the same given by the tuning

rules.

In Figure 4.7, we show that increasing the integral gain k;, the performance increases.
The curve with k; = 0.1 is much slower than with k; = 0.3. However, k; = 1.0 is too big,

and resulted in instability.

Figure 4.8 shows the effect of varying the damping factor (. As was expected, an
increase in ( lowers the overshoot of the system, but increases the time to reach the

setpoint.

In Figure 4.9 we show the effect of the parameter 7. The zero constant must be tuned
with the plant dynamics. The value 7 = 6.5 was the value returned by the tuning rule.
We also experimented with 7 = 3, which was too small and did not allow the system to

correct the positive error, and 7 = 12, which caused difficulty in correcting a negative

error.
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Figure 4.5: Control performance with 30s average

In this chapter we have not shown any energy measurement because we focused more
in the stability analysis and sensitivity to parameters, issues that we could not assess in
Chapter 3, where we compared the energy consumption with other interval based DVS

mechanisms and we showed that extra energy savings can be achieved with the fine-grain
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Figure 4.6: Control performance with 30s average: changing tuning parameters

QoS control proposed. We did not evaluate, however, the energy-efficiency of the system
during the settling time, which will depend on the tuning rules. This is not an important
issue because the settling time of 150 seconds, observed in Fig 4.4, about half the settling

time obtained in [63], is sufficiently small to accommodate the workload variation.

4.5 Discussion

In this work we followed the general framework for describing control problems presented
in [38]. They use a multi-tier e-commerce system as illustration and classify the possible
control architectures, including SISO, MISO, and MIMQO, which refer to the number of
inputs and outputs of the controller (S = single, M = multiple). MIMO, in particular,
can be further divided in centralized and distributed. The authors argue that e-commerce
systems are MIMO by necessity, because the target system must have multiple inputs in
order to achieve multiple objectives, and must have multiple outputs in order to measure

the multiple objectives (see Fig. 4.10a).

However, although this classification is very reasonable, there are practical issues to
implement the e-commerce web system, and it turns out that it is possible to use a
simpler SISO architecture, as shown in Figure 4.10b. As the chosen metric to be used

in the controller was the tardiness of web interactions, and because of the definition of
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web interaction given by the TPC-W standard, the MIMO model is not convenient. The
reason is that the TPC-W standard defines a web interaction as a sequence of several
HTTP requests, and the real-time requirements in this standard determine that a certain
level of QoS must be achieved for the end-to-end service time of each web interaction.
Since the metric must account for the whole web interaction, and since each of the HT'TP
subrequests may be serviced by different .2 server nodes with a certain level of parallelism,
it is impossible to obtain the response time at the server nodes. In our implementation,

the centralized controller runs in the front-end server, where all requests and responses

go through and the end-to-end time is measured.
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Figure 4.10: Comparison with the classification in [38]. (a) The expected MIMO-C con-
troller for QoS control. (b) The simplified SISO controller implemented

4.6 Conclusion

In this chapter we showed a practical implementation of a feedback control loop in a multi-
tier web server system for e-commerce. We used DVS to adjust the system performance
to save energy, but with the QoS specification being guaranteed by the control loop. We
showed practical issues that arise in the implementation of a controller in a real web cluster
application. The experiments showed that the parameterized controller is easy to tune,
because tuning has a limited degree of freedom, which helps stability. Our experiments
showed an analysis of sensitivity to the controller parameters that can help in achieving
the best performance for the controlled system. The fine-grain QoS control showed in this
work is useful in achieving extra energy savings for interval based DVS schemes where
the goal is to meet all deadlines, avoiding overprovisioning the system according to the

real-time specifications.

The next chapter introduces the Generalized Tardiness Quantile Metric (GTQM)
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to be used instead of assuming a specific probability distribution. We will show what
can be the loss of energy by using the closed formulas derived for the QoS, which are

approximations, instead of the GTQM that is distribution independent.



Chapter 5

Generalized Tardiness Quantile Metric

Insanity: doing the same thing over and over
again and expecting different results.
— Albert Einstein

Performing QoS control in large computing systems requires an on line metric that
is representative of the real state of the system. The Tardiness Quantile Metric (TQM)
presented in the Chaper 3 allows control of QoS by measuring efficiently how close to the
specified QoS the system is, assuming specific distributions. In this chapter we generalize
this idea and propose the Generalized Tardiness Quantile Metric (GTQM). By using an
online convergent sequential process, defined from a Markov chain, we derive quantile
estimations that do not depend on the shape of the workload probability distribution.
We then use GTQM to keep QoS controlled in a fine grain manner, saving energy in
soft real-time web clusters. To evaluate the new metric, we show practical results in a
real web cluster running Linux, Apache, and MySQL, with QoS control, and for both a
deterministic workload and an e-commerce workload. The results show that the GTQM
method has excellent workload probability estimation capabilities, which immediately
translates in more accurate QoS control, allowing for slower speeds and larger energy
savings than the state-of-the-art in soft real-time web cluster systems. This generalized

method will be published as a regular paper in [16].

5.1 Introduction

Large soft real-time computing systems, like a web server cluster, service thousands of
web interactions per second and requires that a certain percentage of requests be serviced

within their specified deadlines, the workload being built based on several aggregated
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random variables. Probabilistic measures of success are the norm in such systems and
thus deterministic tools, such as simple real-time scheduling are not appropriate to effi-
ciently deal with such workloads. On the other hand, approximate methods and stochastic
modeling techniques such as Markov chains, queueing theory, or stochastic estimation al-
gorithms are powerful tools for system modeling. These tools offer a way to find some
regularity, such as convergent estimations and steady state analysis, in the nondetermin-
ism of the random phenomena. Newer versions of these tools, such as real-time queueing

theory [60], make strides towards transforming such theories deadline aware.

We show in this chapter an application of a stochastic approximation to solving the
classic problem of finding € in the equation Pr[X < 6] = p. If some performance metric
in a computing system is a random variable, this can be used as a means of statistically
guarantee the system QoS. The difficulty, however, is that generally one does not know
the distribution of the random variable, and it cannot usually fit to any known probability
function. One solution is to use generic bounds that depend only on the first £ moments
of the data, so that the moments can be observed and the limits applied regardless of the
probability distribution shape. Finding bounds for this problem was first introduced by
Chebyshev in 1874 and proved later by Markov [19].

Principles like Markov’s Inequality, Chebyshev’s Inequality, and Chernoff’s Inequality
give upper bounds of the type Pr[X > 0] < p. For example, they can be used to estimate
system resources without breaking a certain level of agreed-upon QoS. One example of
an application of these statistical inequalities for tail distributions appears in [22], for
the performance measure of telephone traffic. In a web server, we are also interested
in the tail distribution of a random variable, namely the workload represented by the
tardiness. However, bounds are generally not tight enough, usually because web traffic
can be difficult to predict [8]. In particular, bounds are not tight when it is necessary to

have not only a conservative policy, but a precise measure of the tail probability.

While bounds are not exact, we notice that there are stochastic estimators that can be
used to give a value of a specific probability characteristic (such as the quantiles or even the
mean). We will use the 1951 Robbins-Monro algorithm for stochastic approximations [82].
We chose this method because it is based on a simple Markov chain and appropriate for
online computations. The method allows for transition probabilities that change during
the estimation process, while allowing for the p-quantile of an unknown distribution to
be estimated with reasonable accuracy. The Robbins-Monro algorithm is a recursive

algorithm that can be used to find the root of an unknown function ¢(#), from noisy
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observations of # [59]. The interesting aspect of doing this is that the result is independent
of the distribution shape, and hence, the system will reach the specified QoS for any kind

of workload.

The difference with the TQM method presented in Chapter 3 is that we apply Robbins-
Monro to find a specific quantile of an indirect representation of the workload (tardiness),
so that it can be used to control the QoS. This p-quantile estimation will serve as the
guide to the frequency settings of a complex multi-tier web server cluster, such that the
probability of servicing web requests within their deadlines (i.e., the QoS) is maintained
at a specified value. Another important goal is to make the system QoS adaptive under

workload variations.

The application we give to the quantile estimation method is to serve as the guide to
the performance operating point of a complex multi-tier web server cluster, actuating in
the speed of the processors, such that the probability of servicing web requests on time is
maintained at a specified value and the QoS of the system is some desired value, and also
to make the system QoS adaptive under workload variations. Changing speed is possible
when the processors have support to dynamic voltage and frequency scaling. The voltage
scaling is tied with the frequency, and the voltage setting is done automatically by the
operating system when the user sets a different operating frequency. Our motivation is to
allow an energy-efficient architecture to work in the best configuration possible without
overprovisioning the system, and therefore spending not more energy than the necessary
to attend the QoS level agreed. In systems without a fine grain QoS control, if one
contracted a QoS level of 90%, and the system provides 98%, the service provider is
giving a product that was not paid for, and thus money is being wasted. This is what is

called quality give away.

Normally the workload of a web system is assumed to have a specific probability
distribution, because it simplifies the modeling. For example, when queueing theory is
applied, the simplest queueing models M/M/1 are based on Markovian workloads. The
more complex queueing models for G/G/1 queues generally do not have closed formulas,
and if G/G/1 model is assumed, bounds based on the tail probabilities are also applied.
We use no such assumptions, obtaining a three-fold contribution: 1) we present a method
of quantifying the QoS so that this metric is used in QoS control; 2) the method works for
any kind of probability distribution presented by the workload, and thus we can expect a

good result for the real workload; and, 3) the results are not based on simulations.
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5.2 Cluster Model

Our cluster model is shown in Figure 5.1, with a front-end server acting as a reverse proxy.
The front-end is capable of SSL encryption/decryption, but we force it to distribute the
requests to the web server nodes without encryption between front-end and web servers,
in order to decrease the load on all servers. We also use the MySQL cluster architecture
combined with Apache reverse proxying to put in the same application layer all the CPU
intensive tasks present in a multi-tier architecture. As shown in Figure 5.1, the PHP
programs used for building the dynamic pages are executed at the same server that runs
the MySQL server, responsible for processing the database queries. Our intention is to
do Power Management only at the application level, and this cluster architecture is the
best choice because the more CPU intensive are the tasks, the better is the energy saving
obtained with DVS.

Frontend P fpa;rée |+ M NDB
server ro% anagement
e v S T
Apache + PHP Apache + PHP Apache + PHP Apache + PHP
App.
servers v v v v
MySQL Server ySQL Server MySQL Server ySQL Server

NDB Server NDB Server NDB Server NDB Server

Figure 5.1: Cluster model

Figure 5.1 shows elements of a typical MySQL cluster setup, composed of the men-
tioned MySQL servers and the Network Database (NDB) nodes, which are the storage
engines. When data is stored in the NDB nodes, this data is directly accessible from
all other MySQL servers in the cluster. Thus, if one application updates some data, all
other MySQL servers that query this data can see this change immediately. There is also
a process for the cluster management running in the front-end, the NDB management.

The role of this process is to manage the nodes within the MySQL cluster, providing
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configuration data, starting and stopping nodes, running backup, etc. Our focus is on

controlling the application layer DVS.

5.2.1 Adaptive QoS Control

The cluster front-end has an internal control loop that was built using control theory. It
is a PIDF controller, a very common controller found on many industrial plants. The
PIDF is a Proportional-Integral-Derivative (PID) controller augmented with a low-pass
filter in the derivative part. In industrial plants, this filter is needed to eliminate the noise
present in the sensing process. In the e-commerce web cluster, the variable we will sense
is the tardiness, a random variable, and because it is stochastic, presents variations that

are very similar to noise.

For the QoS control with the assumption of a specific distribution (e.g., TQM), the
QoS controller maintains the average tardiness around the values expressed by Equa-
tions 3.2 or 3.3. When using our proposed quantile estimator (GTQM), that is indepen-
dent of the workload distribution, the reference of the controller will be to maintain the
p-quantile controlled in 1.0. In other words, the tardiness will have an average of zero,

guaranteeing statistically a QoS of p.

The actuator of the control system is based on dynamic voltage scaling (DVS). Chang-
ing the voltage and frequency of all servers we can slow down the system, resulting in
a greater average tardiness and greater energy savings, or it can speed up the servers,
pushing the average tardiness to values closer to zero at the expense of higher energy

consumption.

5.3 Tardiness and QoS

Tardiness is defined as the ratio of web interaction end-to-end response time to the spec-
ified deadline for that web interaction request. The advantage of using this definition
is that tardiness gives more detailed information about the completion of web interac-
tions, rather than simply counting how many interactions finished by the deadline and
dividing by the total. In other words, this is the same as answering yes or no whether
the interaction finished on time, or answering how close to the deadline the interaction

completed.

The tardiness in a web server will depend on several system factors, such as the
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workload, the speed of the processors, the time to access resources, etc!. The tardiness
ratio can, thus, represent the workload of the system and is, therefore, a random variable.
The QoS metric can be obtained as a function of statistical characteristics of the random

variable tardiness, such as the average, the p-quantile, or expressions relating both.

A p-quantile, or Q(p), is the value 6 of a random variable for which Pr[X < 6] = p.
It may also be defined in terms of the inverse of the cumulative distribution function of

the random variable:

Qp)=F Yp)=inf{z: F(z)>p}, 0<p<l (5.1)

where F'(z) in the cumulative distribution function of the random variable X.

For specific probability distributions, the relation between the tardiness and the QoS
can be obtained analytically, such as the expressions for Pareto and Lognormal distribu-

tions (Equations 3.2 and 3.3).

5.4 Robbins-Monro Algorithm

The Robbins-Monro stochastic estimation method was originally presented in [82], and
more recent works present applications to signal processing, communications, control
systems, and analysis of convergence [59]. The simpler application is to find , which is
the root of the equation m(#) = m, where m(0) = [ yG(dy,0), or the mean of a random
variable. For each parameter 6, G(dy, ) is the unknown probability distribution function
of the random variable. In our instantiation of a real system, the random variable can
be the response time of the web requests given an internal parameter 6 (in our case,
the unknown load arriving at the front-end). The experimenter can get noise-corrupted
observations for specific values of . The algorithm consists of estimating 6 by the recursive
formula 60,,,1 = 6,, + €,(m — Y,,), where Y,, is the observation taken at time n. Because
0 is a parameter of the system, as the estimation 6, changes, the observed value Y,
changes altogether, and 6,, will converge to the desired value, that is, the § which makes
the system to give an average response time m. The ¢, can be set in two ways, as a
decreasing value, with some restrictions to guarantee the convergence, or a fixed value e.
The original work of Robbins-Monro chooses an appropriate sequence satisfying: €, > 0,

en — 0, Y €, = 00. The ¢, value is in fact a step value, and the choice of sequence {e, }

'The bottleneck is the CPU, as usual when there are many third tier machines, large memories and
fast networks.
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is central to the effectiveness of the algorithm. A small and constant ¢, will be our choice,
because it allows tracking of the system if its probabilistic properties change. More on

this will be explained in Section 5.5.

The method is straightforward to be applicable to a computing system for which we
want to set its DVS clock frequency, so that it yields the desired average response time.
To illustrate this, we made the following experiment. We want to sort a fixed size set of
random numbers using the quicksort algorithm. As expected, the execution time varies,
depending on the input. We used a CPU that can set any frequency between 1000MHz
and 2600MHz. Then we wanted to use the recursive stochastic algorithm to find the
best frequency (parameter #) so that the average execution time to sort 10,000 random
10-digit numbers was 300ms. At the minimum frequency, the measured average execution
time was 578.7ms, and at the maximum frequency, the measured average execution time

was 221.4ms. The result is shown in Figure 5.2.

Max. freq. Estimated Frequency (MHz)
average = 0.2214 TN

- 1800

G Robbins-Monro

S average = 0.300021 1600

el conf. interval = 0.001541

2

= / Min. freq. 1400

< average = 0.5787

< 1200 1

n- L -

0T 02 03 04 05 06 o o0s 1990155200 300 400 500 600 700 800 9001

Execution Time (s) Time (s)

Figure 5.2: Quicksort: Frequency estimation for a given response time

At every 1s the sorting algorithm is executed and the execution time is stored. The
top part of Figure 5.2 (Probability Density) shows the computed histogram for the exe-
cution times at the maximum frequency, at the minimum frequency, and at the estimated
frequency to achieve the desired average. The bottom part of Figure 5.2 (Estimated
Frequency) shows the evolution of the estimation. The result was that the frequency
achieved a value around 1800MHz, which made the average execution time to be 300ms.
The confidence interval with 95% of confidence was 1.5ms. In this experiment, the re-
cursive algorithm was freq,.1 = freq, — 200 *x (0.300 — time,,). The value time,, is the
measured execution time at time n, and € = —200. The negative value is because we need

to increase the frequency, if we want to reduce the execution time, and vice-versa.
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5.5 Generalized Tardiness Quantile Method

To quantify the p-quantile and use it in the system to statistically guarantee a QoS with
probability p, we propose the use of a quantile estimator based on the Robbins-Monro
method, explained in Section 5.4, The estimation method consists of a sequence of real
numbers {x,}, proved to converge to #, as the solution to the problem Pr[X < 6] = «.
The convergent process is obtained from a non-homogeneous (transition probabilities

depend on time) Markov chain {z,} defined by:

Tpt1 = Ty + € (0 —yp) (5.2)

where {¢,} is a fixed sequence of positive constants, and {y,} are values from a random
variable Y =Y (x) that depends on the random variable X. This dependence is expressed

as follows:

0 otherwise

1 ifz, <z,

where z, is an outcome of the experiment, or, in the case of the web server system, z,
is one single measure of time delay or tardiness. From Equation 5.3 we can derive the
transitions probabilities as Pr [y, = 1|z,| = F (z,), and Pr [y, = 0|z,] =1 — F (x,) (see
Figure 5.3).

1 — F(z,)
L= F (o) C’<>'QF (@)
n =20 < ) Yn =

F(z,
Figure 5.3: Markov transition diagram

For each outcome z, of the experiment with unknown probability distribution, a
new x, value is determined by Equation 5.2, making the transition probability vary on
time, until the convergence to # occurs. The rationale behind this algorithm is that if
x, is already at the p-quantile of the distribution, the probability that x, will increase
by €,(a — 0) is a/(1 — a) times the probability that z,, will be decrease by €,(1 — «).
For example, if we are estimating the 0.9-quantile, the probability that y, = 0 is 10%,
and 90% for y, = 1. But when y, = 1, the estimator is decreased by a size that is 9
times smaller (e.g., 0.9 — 1) than when y,, = 0 (e.g., 0.9 — 0). This makes the estimator
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asymptotically converge to the p-quantile. Additional analysis of the convergence is given

in Section 5.5.1.

The proof described in [82] is made by showing that, independently of the initial
value of x, namely z1, the limit of F [z, — 0]2 will tend to zero as n tend to infinity. This
happens for an appropriate sequence of positive constants {¢, }, such that % <e, < %/, for
two positive constants ¢ and ¢”. The common choice is the sequence {¢,} = % However,
if this parameter is fixed in a relatively small value, the estimation can be run indefinitely,
and we obtain a tracking system in which the probability distributions of the system can
change during time, and the estimator will still work. This is obviously important for a
web system, because the QoS measure can be done for different load scenarios. In the
tracking estimation, the strictly nonzero step size € generates a cyclically updated value
with an added noise that does not go to zero as n — oo, as in the other case, with
a decreasing step ¢,. This tracking algorithm makes it possible to follow changes in the
probabilistic properties of the system, and has been used in other applications for tracking

time varying parameters in radar systems and networks, such as wireless communications

with varying channels [59].

5.5.1 Test of Convergence

The estimation method just described is very simple to implement and can be run in
constant time (that is, with insignificant overhead in practice). Before applying to the
real web server system, we wanted to test the independence of the method to the shape
of the probability density function of the workload. We tested the estimation capability
and convergence response with several known distributions, so that we could validate the
method by comparing the results obtained with the theoretical given by the distribution

equations.

To evaluate the p-quantile estimator in terms of accuracy and convergence time,
we used a random number generator to generate 6 different distributions: Exponential,
Pareto, Lognormal, 1-Erlang, 2-FErlang, and 3-Erlang. Figure 5.4 shows the inverse of the
cumulative distribution function, both the theoretical (T) and the obtained by the estima-
tor (E). The plots show excellent accuracy for all probability range. For each distribution,
we plot 40 points, equally distributed between 0.10 and 0.98. Each point consists of an
average of 20 runs, with a confidence interval of 95% (given by j:2.086\/LN). Although the
confidence interval is larger for very high probabilities (i.e., close to the tail), the method

is clearly capable of providing an unbiased quantile estimation.
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In these tests, we used {€,} = L. The inconvenience of choosing the < value is that we
need to wait until a convergence is achieved. That is, we cannot have an estimation every
time, like a moving average, as we can when we use the tracking algorithm. We can only
have a single estimation after a defined time window. As mentioned, an alternative way
is to fix the step size €, = € with a relative small size so that we can track the estimated
value. We show in Figure 5.5 the convergence of the estimator for the 0.90-quantile, using
e, = 0.02 and ¢, = 0.002, to give a sense of how this parameter affects the method. In
Section 5.6 we will show a better sensitivity analysis for this parameter. In Figure 5.5,
before iteration 25, 000, the input data has 0.98-quantile = 1.0, and 0.90-quantile = 0.504.
After iteration 25, 000, the distribution changes to 0.90-quantile — 1.0. We note that there

is a tradeoff between time to converge and the error in steady state.

5.6 Experiments

In this section we show experiments performed on a real web cluster implemented as
described in Section 5.2, where we measured QoS and compared it to the user-specified
value. The experiments used both TPC-W and a deterministic workload, as described

next.

Table 5.1 shows the frequencies available for DVS for the processors in the cluster,
and the respective power consumptions for the four machines in the application layer (see

model in Section 5.2), where we apply DVS: coulomb, hertz, ohm, and joule.

Table 5.1: Frequencies, power busy and idle, and performance for the application servers

| Node | Frequencies | frequency (MHz), idle power (W), busy power (W), performance (req/s)

coulomb ) 1000 67.40 75.20 53.80; 1800 70.90 89.00 95.40; 2000 72.40 94.50 104.80;
2200 73.80 100.90 113.60; 2400 75.20 107.70 122.30

hertz ) 1000 63.90 71.60 53.60; 1800 67.20 85.50 92.90; 2000 68.70 90.70 103.40;
2200 69.90 96.50 112.40; 2400 71.60 103.20 122.80

ohm 6 1000 65.80 82.50 99.40; 1800 68.50 99.20 177.40; 2000 70.60 107.30 197.20;
2200 72.30 116.60 218.00; 2400 74.30 127.20 234.60; 2600 76.90 140.10 255.20

joule 4 1000 66.60 74.70 51.20; 1800 73.80 95.70 91.20;
2000 76.90 103.10 101.40; 2200 80.00 110.60 111.40

5.6.1 Deterministic Workload

The deterministic workload is a constant stream of web requests to a web server cluster,

for which the average execution time is 20ms, and with a fixed deadline of 200ms. This
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type of workload is characteristic of servers that service mostly static webpages, or servers
with large internal memory that can cache (in memory) most of their information. The
intent is to show that the correlation of the expected QoS with the observed QoS does not
depend on the workload. The observed QoS was measured counting deadline misses in
40-second intervals. We changed the QoS setpoint every 10 minutes to ensure our GTQM

would adapt to new values.

5.6.2 Results for the Deterministic Workload

The experiment shown in Figure 5.6 compares the GTQM against the TQM with Pareto
distribution. We can clearly see the effect of approximating the real tardiness distribution
by a known distribution. The Pareto-TQM line is the p—quantile equation derived in
Chapter 3 (Equation 3.2). For example, say that we need a QoS of 0.95. Then, using
Pareto-TQM, the system will control the tardiness around 0.3. Following the horizontal
line of 0.3, in the GTQM line, this corresponds to a QoS value between 0.97 and 0.98.
This means that the Pareto-TQM is more conservative and that the controlled web server
will thus consume more energy. For the QoS of 0.95, the tardiness could be controlled
close to 0.45 with GTQM, making the system slower while still observing the contracted

QoS, but saving more energy.

The plot in Figure 5.7 shows the obtained QoS for each specified QoS value, using
the deterministic workload. The correspondence is an almost perfect match even for high
QoS values (e.g., 0.99). As shown in Chapter 3, although QoS control based on TQM
method (assuming Pareto distributions) is the best among the tested methods, it does
not perform so well for QoS levels close to 1.0. We see from Figure 5.7 that with GTQM

this problem is practically eliminated.

Figure 5.8 shows a more detailed experiment, again for the deterministic workload.
As the overhead to obtain a p—quantile is minimal, we estimated a range of p—quantile
values, with a 0.1 step, that allowed us to see online the shape of the execution time
distribution (cdf). We plotted the random variable Execution Time for every p—quantile,
and for all desired QoS values from 0.90 to 0.99, with a 0.01 step. The point between 0.9
and 1.0, for Pr[X < z], is the set QoS value for each curve. Note that all are aligned at
an execution time of 200ms, which is the deadline for the requests. The alignment of the

last point with the 200ms value shows the precision of the estimator for any QoS value.

We carried out sensitivity analysis on the a, factor in the Robbins-Monro equation

and on the parameter k; of the controller. We experimented with values 0.01, 0.05, 0.1,
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0.3, and 0.5 for a,, and values 0.01, 0.05, 0.1, and 0.3 for k;. As shown in Figure 5.9, the
small values of a,, showed better performance, attaining an excellent match between the
0.95 QoS setpoint and the observed value. A small value of a,, makes the system slower,
because the estimation needs more time to reach the steady state value. As for the value
of k;, greater values of this parameter provided better approximations, specially when a,,

is small. However, the sensitivity to the k; parameter is smaller.

The last experiment using the deterministic workload is a comparison of the power
and QoS of GTQM with the method presented in [85]. In that work, the QoS control is
not done in a fine-grain manner, keeping the QoS close to 1.0. Figure 5.10 shows that
GTQM maintains the system precisely at the specified QoS level. In this experiment, the

specified QoS was 0.95, and only one machine was turned on.

Figure 5.11 shows the power consumed by the system during a period of 1.8h. The
GTQM method reduced the average power as shown in the plot, and reduced the energy
consumed from 173Wh to 164Wh, an energy saving of 5.2%. Considering that this savings
is relative to an already power managed system, this amounts to significant savings. We
note that such saving is bigger than that achieved by the daylight savings time in Brazil,
reportedly around 4%.

5.6.3 Results for TPC-W

In Figure 5.12 we again show the relation between measured QoS and the setpoint, but
now for the TPC-W workload. In this case the obtained QoS is slightly higher than the
expected for the lower range. This happens because although the system is set as slow
as possible, these minimum resources in our test cluster are still too high, and, thus, it is
not possible to further reduce the QoS. The results prove again the ability of GTQM to

estimate the system state and to adjust the controller to the exact expected QoS.

To be able to examine the long term behavior of GTQM, we carried out a continuous
time experiment, assuming the TPC-W workload, where we leave the system running for
over 1600 seconds (see Figure 5.13). We measured QoS every 40s, for three setpoints:
QoS = 0.91, QoS = 0.95, and QoS = 0.99. As can be seen, the variability is smaller for
QoS values close to 1.0. This happens because the confidence interval for a proportion
is given by +1.96 % [54], and if the deadlineset/numyq,s proportion is 1.0 the
confidence interval is zero. The observed variability of the QoS value was within 1% of

the requested QoS, which is a very good result for the random process we want to control.
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Finally, in Figure 5.14 we show the trade-off of power and QoS, assuming the TPC-W
generated workload. As the need for a better QoS increases, the power needed increases
in a exponential way. This clearly shows the benefit of our mechanism to keep the system
with the QoS specified in the SLA, avoiding overprovisioning the system (due to the

achievable fine-grain control) and the consequent energy/power waste.

5.7 Conclusion

In this chapter we presented GTQM, a generalized method for the Tardiness Quality
Metric presented in Chapter 3. By using the online convergent sequential process proposed
in [82], defined from a Markov chain, we derived quantile estimations that do not depend
on the shape of the workload probability distribution, so that the metric can be used in
any workload. To evaluate this new approach, we showed practical results in a real web
cluster with QoS control in an e-commerce environment. We used the tardiness to control
the speed of the servers, and showed that GTQM performs better than TQM: it allows for
finer-grain control of the requests, making it possible to further reduce the speeds when

comparing to an already optimized technique.

In the next chapter, we show how operations research is introduced in the system to
achieve optimal dynamic configuration of the web cluster, that is, which nodes need to be
on and off, and at which frequency. We model the problem of assigning speeds to servers
combining linear programming and integer programming, and solve it using traditional
linear programming techniques. This will complete the goal of the thesis, addressing the
cluster-wide energy management technique for heterogeneous systems based on cluster

reconfiguration, again based on a real implementation.
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Chapter 6

Dynamic Configuration

There can be no economy where there is no efficiency.
— Benjamin Disraeli

To reduce the environmental impact, it is essential to make data centers green, by
turning off servers and tuning their speeds for the instantaneous load offered, that is,
determining the dynamic configuration in web server clusters. We model the problem
of selecting the servers that will be on and finding their speeds through mixed integer
programming; we also show how to combine such solutions with control theory. For proof
of concept, we implemented this dynamic configuration scheme in a web server cluster
running Linux, with soft real-time requirements and QoS control, in order to guarantee
both energy-efficiency and good user experience. In this chapter, we show the performance
of our scheme compared to other schemes, a comparison of a centralized and a distributed
approach for QoS control, and a comparison of schemes for choosing speeds of servers.

Some partial results of this chapter was published as a WiP paper [14].

6.1 Introduction

Energy consumption is a real concern in these times of global warming and related envi-
ronmental threats. In many parts of the world, initiatives for deploying green data centers
have already appeared. One initiative in development in Germany [32, 33| will save 25%
of energy, what will correspond to 16,000MWh per year, putting annually in the atmo-
sphere up to 11,000 tons less carbon dioxide than conventional data centers of the same
size. Another example is the 247, 000-square-foot Urbana Technology Center that was
the first data center in the USA certified by standards for environmentally sustainable

construction [97]. In that project, as an example on how every saving opportunity counts,
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even the lighting is reduced by 50%. In light of this, why should a web server node be

turned on when it is not needed?

The energy cost of a web server cluster can be reduced by sizing the system appro-
priately. As an example, in a 5-machine cluster with a very low workload, close to 77% of
power reduction is possible if the correct configuration of only one server is used. From
[81] we can have an idea on what is the energy expenditure of a real data center: a typical
cost of US$0.12 per KWh, according to that paper, during the 10-year life of a data cen-
ter, translates to approximately US$10,000 per KW. In a data center, half of the energy
cost is due to the I'T equipment itself, and the other half comes from the Network-Critical
Physical Infrastructure (NCPI), which is the underpinning for the IT equipment to func-
tion, such as backup power, cooling, physical housing, security, fire protection, etc. This

makes a 200KW data center have a 10-year electricity bill of 4 million dollars.

This chapter aims at studying the dynamic resizing of web server clusters as well as
setting the speeds of the servers that will be turned on. Servers that compose the cluster
may be heterogeneous, that is, they may have different set of frequencies and may perform
differently in each frequency. The goal is to enable the server cluster to configure itself
according to the load, while providing the same user experience of a high performance
oversized server. To achieve this goal we consider the cluster as a soft real-time system.
This is a convenient approach, because with the specification of deadlines (i.e., the time
limit for executing each web interaction) we impose limits for the minimization of energy
consumption, without compromising the expected quality of the user experience. In fact,
standards for benchmarking e-commerce web servers such as the TPC-W characterize the
application as soft real-time, because in addition to defining the deadlines, they specify
also a fraction of the web interactions that statistically have to complete before the dead-
line. We expect stochastic systems to perform well on average and save energy, rather
than model it for the worst case execution, causing overprovisioning and consuming more
energy than needed. For such systems, our metric of interest will be Quality of Service

(QoS), defined as the percentage of web interactions that can execute before its deadline.

We combine two technologies: QoS control by means of feedback control theory, and
operations research. First, the feedback control dynamically adjusts the frequency/voltage
of the cluster nodes to control the fraction of deadlines met; frequencies are set propor-
tionally to how late or how early requests finish. To change speeds, we rely on the support
of Dynamic Voltage Scaling, present in most modern CPUs (allowing the dynamic setting

of the frequency and voltage of the CPU core), which allows for quadratic reduction in
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energy, and cubic reduction in the power consumption of the CPU [101].

Second, we show how operations research is introduced in the system to achieve op-
timal dynamic configuration of the web cluster, that is, which nodes are on and off, and
at which frequency. We model the problem of assigning speeds, including zero speed
(server off), to servers as a mixed integer programming (MIP) problem, which is a linear
programing problem where some variables are integers and some are real variables, and

solve it using traditional linear programming techniques.

The contribution is fourfold: (a) a novel way of combining control theory and MIP
solutions; (b) modeling the dynamic configuration problem (i.e., on/off of nodes and
speeds of active nodes) through mixed integer programming problems; (c¢) comparing
the efficiency of higher-than-needed discrete speeds (interspersed with idle periods) and
pseudo-continuous speeds (based on the two-speed scheme of [53]); and (d) comparing a
centralized SISO (Single Input Single Output) controller with a distributed SIMO (Single
Input Multiple Output) controller.

By modeling the optimization problem allowing heterogeneous machines, with dif-
ferent set of frequencies, we can achieve high power reductions compared to other DVS
schemes that consider equal frequencies for all machines, and only a predefined sequence
of machines to turn on and off. One such solution is adopted in [30], and our solution

reduced the power usage up to 40%.

6.2 Optimization Problems

We present a scheme to find the best configuration for the cluster of N nodes and one
front-end. This is a cluster-wide optimization for both the on/off and the DVS, unlike
what is done in [85], where the DVS is local to each node, and the on/off is cluster
wide. We will compare two possible models for the problem, the traditional DVS scheme
and the switched DVS scheme. The former allows tasks to use only one of the available
discrete processor speeds at a time, and thus the solution will choose the discrete frequency
immediately higher than the exact theoretical frequency needed for a given workload (if
speeds were continuous). In the switched DVS, based on [53], the solution allows the CPU
to switch between the two discrete values adjacent to the exact theoretical frequency. The
latter is convenient for building a feedback control with the CPU frequencies being the
final control element, because it simulates a CPU with continuous frequencies (the output

of the controller can be immediately fed to the DVS module). Although both use discrete
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frequencies, from now on we will call, interchangeably, the first “discrete” or “traditional”

DVS, and the second “continuous” or “switched” DVS.

6.2.1 Switched DVS

We adopted a combination model for piecewise problems similar to what is done in [37].
A server ¢ with S; frequencies has S; — 1 frequency ranges. For any range s, we have
two endpoint frequencies F and F*'. We need to find the range s that combining
linearly the frequencies F® and F*! will result in the optimal frequency f; for each server
i, allowing this combination be zero, that will represent the server turned off. Let us
denote the power when busy at frequencies F’ and Ff“ as Pli’;y and Pg&izl, respectively.
Similarly, for the power when idle: Pfdfe and Pfdf:l In the same way, H and H; ™ are
the maximum load attained in each server for each frequency endpoint. The amount of

requests per second the cluster has to process is represented by Hj,s. The problem is

modeled as follows:

N S;—1
Minimize: Z Z {oszgjsy + ﬁngu‘izl} (6.1)
i=1 s=1
N Si—1
subject to: Z Z {afo + ﬁfoH} = Hpse (6.2)
i=1 s=1
By =0, Vie{l.. N} ¥se{l.. S —1} (6.3)
Si—1
dyr<1, Vie{l...N} (6.4)
s=1
v el01), Vie{l..N},Vse{l...S—1} (6.5)

This is a piecewise optimization problem because the objective function is a sum of
several discontinuous line segments. The main variables, o and 37, mean how much of
the frequency end points F’ and Ff“, in a given range s at the server i, we will combine
to obtain the desired frequency f; for that server. After solving the problem and obtaining

a; and (37, the necessary frequency value f; for each server ¢ is given by:

S;—1
fi=Y_oiF+ g F (6.6)
s=1

With this convenient modeling, we can solve the problem using traditional linear
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programming techniques, and the solution also includes the reconfiguration of servers
(on/off). The problem is classified as MIP because y (see Equation 6.5) is an integer
variable. This variable allows the identification of the elected frequency range, and allows
the solver to search for any combination, including turning a server off, what is represented
by y = 0. When y; = 0, the frequency for that segment on a given server is set to zero.
Restriction (6.4) ensures that at most one y is 1 for each server i. If y7 = 0, Vs, then server
¢ is turned off. In this solution, the utilization is ideally always 1.0, because we combine
two frequencies in such a way that it is just enough to handle the load. An exception
is when there is only one server working at its lowest frequency; in this case there is no

optimization to do.

We solved this problem using the free software Gnu Linear Programming Kit (GLPK) [46].
For small clusters it can be executed online, with execution times of tens of milliseconds.
However, we run it offline building a table that can be looked up online. We will use
this formulation also for optimizing the control output, with a simplified version of the
problem to allow only a subset of nodes always turned on. We run this modified version
online in the controller, because the offline version would need a large number of tables.
For up to 30 nodes we measured the execution time, and in the worst case it fell below
100ms. This change is made on restriction (6.4) and will be described in more details in
Section 6.2.4.

6.2.2 Traditional DVS

The problem with discrete frequencies is slightly different. Let us consider s not as a
frequency range, but one of the available discrete frequencies between 1,....5;. The
power consumption will be the combination of the idle power Pfd;e and the busy power

PS,i

sy’ for the selected frequency. Here we also have the main variables o and 3/, and

S
79

incidentally, is the resulting utilization, because it is the part representing the busy
power. Differently from the previous formulation, here the cluster may be configured with
a capacity bigger than the load demand Hy,,.. The optimal frequency f; is the frequency
s for which the binary variable y is non zero. Mathematically, f; = 25:1 y; F?. The

problem for discrete frequencies is:
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Minimize: Z Z {asP;dfe + ﬁsP,fusSy} (6.7)
i=1 s=1
N S
subject to: Z Zﬁles > Hbase (68)
i=1 s=1
o+ 6 —y; =0, Vie{l...N},¥se{l...5;} (6.9)
S;
dyr<1, Vie{l...N} (6.10)
-1
S; S;
d Byr=>) By, Vie{l..N-1} j=i+1 (6.11)
s=1 s=1
v e{0,1}, Vie{l...N},¥se{l...S} (6.12)

The additional restriction (6.11) has to do with load distribution. It is present to
enforce equal utilization values (3 for all servers i that are turned on'. In our implemen-
tation, we dynamically assign weights proportional to the measured performance that is
reported back to the front-end, by each server, periodically. In this way, for a given load,
and at any combination of frequencies for the servers, the utilization of every server tend

to have all the same value.

Although restriction 6.11 makes the problem nonlinear, we were still able to devise an
elegant solution to solve it as a MIP using GLPK. This solution requires an approximation,
and uses GLPK twice, once to determine the set L of active servers, and the second time

using only the restriction without the product with y;. The restriction 6.11 then becomes:

S

Zﬁs Zﬁj, Vi,jeL,j=i+1 (6.13)

This slightly modified optimization problem produces different results. For example,
with 10 servers, say that there is a load that would fill roughly 80% of each server in
the load balanced version. In the optimal version without load balancing, the optimizer
will fill up the most power efficient servers first and then the last server would be with
a lower load. This fact says that an unbalanced load distribution method could be more

power efficient than using load balancing. This difference would be more evident if, for

L Apache and other web servers implement this type of restriction, by distributing the fraction of the
total work proportional to the server performance, measured in terms of their current frequency settings,
needed due to cluster heterogeneity. This is guaranteed by our modification in the Apache load balancer
module making it dynamic.
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example, we did not allow for turning on/off nodes, that is, in the case that all servers
must be turned on, and for low loads, because in a low utilization scenario, it results that

one server receives 0% utilization and hence it is turned off.

It turned out that in practice there is a very small difference in power for the unbal-
anced versus the balanced load optimization, even when all machines must be turned on.
The plot in Figure 6.1 shows the evaluation of the objective function for the optimization
with 10 servers. The result is the expected average power consumption that comes from
the combination of average powers for idle and busy at each frequency. As expected, the
bigger power difference is for small loads, with a peak of 0.4%, which corresponded to
3W. This happens because the solution is a combination of frequencies that is minimal
to handle each load. A considerable difference would appear if the combination of fre-
quencies were much larger than the necessary for the actual load. This does not happen
because the optimizer finds frequencies very close to the total amount of cycles necessary

to handle the load.
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Figure 6.1: Difference in power consumption between load balanced and load unbalanced
optimizations; note that load balancing is not significant

6.2.3 Considering Boot Time

We designed an algorithm based on the MIP problem defined in Section 6.2.1 where for
each load demand (Hy.), discretized in a small bin, we know which machines have to
be turned on and at which frequency. However, practical issues arise. One is concerning
how to handle the boot time of the machines. In [85], in the worst case, if the load is
increasing at a defined maximum rate maz_load_increase, a new machine is turned on
earlier, so that when the load reaches the specific point where it is optimal to have one

more machine, the new machine is already booted and active.
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Because we consider an optimization problem that may turn machines off even if the
load increases, the above solution will not work. We improved on this idea based on the
following observation: it is possible that the point at which it is optimal to have one more
machine does not coincide with the point at which the currently-on machines are at full
speed. In the case where the machines that are already on have more room to increase
their frequencies, we can make the system more deterministic? by turning on the new
machine closer to the optimal point, or exactly at the optimal point. In the latter case,
the already turned on machines have to have room to increase their frequencies up to the

point the load can reach at the worst case rate from the optimal point.

6.2.4 Hysteresis Algorithm

Another practical issue is the way servers oscillate between the on/off states caused by
small fluctuations of the workload. We implemented a hysteresis to define the turn-on and
turn-off points. Hysteresis consists of building a state machine that defines two different
points for a state transition, with a lag between turning on and off. We want to turn a
server on at a specific load, say A, and turn off at the lower load A — h, where h is the
hysteresis lag. In the range between A—h and A, the system may be found with k£ or k£ —1
active servers. Thus, we need to optimize in two situations, for k& and k — 1 servers. As
the optimization is done offline, we need to have two tables that will show the optimum

frequencies for each server in the two situations.

To obtain these two tables we need a slightly different MIP problem, which takes as
input which machines will be on and which will be off. This is done by changing the

restriction (6.4). Letting S,, be the set of machines that are to stay on,

Si—1
d yi=1, VieS, (6.14)
s=1

Letting S,¢¢ be the set of machines that are to stay off,

S;i—1
d yr=0, Vi€ Sy (6.15)
s=1

We use the above modified version of the minimization problem of Equation 6.2 to

optimize the output of the controller for the machines that are on. The algorithm will

2 More deterministic because we reduce one random variable, which is whether the actual load rate is
at the maz_load_ increase or not.
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find the best instant to turn a node on, considering how far the set of turned on machines
can sustain the load. Recall that a node may be turned on when the currently-on still
can sustain the load in cases that a new combination of servers is more power-efficient. If
the currently-on can sustain the load including the maz_load_increase, a new machine is
turned on only at the optimal point given by the solution of the MIP problem defined in
Equations (6.1) to (6.5). Otherwise, if the turned on machines cannot sustain the load,
the new machine is turned on earlier considering a worst case assumption on the load
increase, as in [85]. The state machine that builds the hysteresis and the algorithm are

detailed in [15].

6.3 Testbed

Based on open source software and commodity hardware, we implemented a web server

cluster with the network topology shown in Figure 6.2.

watt

Web
front—end

emulated =38
browsers ||

Web
servers

coulomb hertz ohm joule  ampere

Figure 6.2: Network topology

Table 6.1 shows the hardware used to build the cluster. The machines have the same
architecture but are heterogeneous in terms of maximum performance and number of

frequencies.

We use machines that can suspend the execution to RAM. The power consumption
when suspended to RAM is about 5.5 Watts, only 1 Watt bigger than a machine that is
off. Even when turned off there is power consumption because the system maintains the
motherboard powered on, with some parts activated (e.g., for the wake on LAN feature).
This 1 Watt difference is only to maintain the memory refreshed, and it is worth spending

it, because the boot time decreases from 30s (from when the server is off) to 3s (from
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Table 6.1: Specification of web cluster nodes used in testbed

| Node | Freq. (GHz) | Specifications (AMD Athlon 64) |
watt 2.0 3200+, 2GB RAM
coulomb | 1.0, 1.8, 2.0, 2.2, 2.4 3800+, 2GB RAM
hertz | 1.0, 1.8, 2.0, 2.2, 2.4 38001, 2GB RAM
ohm 1.0, 1.8, 2.0, 2.2, 2.4, 2.6 | 5000+ (dual core), 2GB RAM
joule 10,18, 20, 2.2 3500, 2GB RAM
ampere | 1.0, 1.8, 2.0 3800+ (dual core), 2GB RAM

suspend to RAM).

6.4 Web Cluster Model

Our web server model is a cluster of N heterogeneous servers capable of Dynamic Voltage
Scaling (DVS) and a front-end. The front-end is a server acting as a reverse proxy and
serving as a gateway to the actual web servers that process the requests. This is a common
architecture used in data centers, although to achieve bigger systems, data centers may
use several clusters. A review of web server clusters architectures is very well presented
in [27]. As in [85], we consider CPU-bound dynamic requests. The front-end assigns a
frequency f; to each server ¢, based on performance information that is reported back
by the servers. We allow for turning off a server by making f; to be zero. The power
consumption of a server, for each available discrete frequency, is linear in relation to the
CPU utilization, and we consider different idle and busy powers for each frequency. The
linearity comes from the weighted averaging of idle and busy powers resulted when a

whole duty cycle is observed, for a given utilization.

With the web server Apache, requests arrive at the front-end and are redirected in
FIFO order to the web servers using a load distribution mechanism, which is similar to
weighted round robin. The weights are set dynamically according to the frequency and
performance of each web server, and disabled (i.e., weight = 0) if the server is turned off.
We modified Apache to include the QoS control module and to make the weights of the

load distribution dynamic.
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6.4.1 Power Measurement

We have built a data acquisition system for power measurement and data logging. Using a
data acquisition board (USB6009 from National Instruments [74]) capable of 48K samples
per second, we configured 2 channels to measure voltage and current for the composite
cluster, using voltage and current transformers. The power measures are taken from the
AC power, and are given by P = % fOT v(t)i(t)dt, where T, v and i are time of experiment,
voltage, and current, respectively. This sampling rate is more than enough to measure

power at a one 60Hz cycle granularity.

We used the LabVIEW graphical environment to automate the logging of data and to
build online a power versus load plot. We used a TCP connection from the LabVIEW to
the front-end server, and the load information is sent to LabVIEW every 500ms. Power
is acquired during this period and enqueued. For each load information that arrives, the
average power for the last 500ms is obtained. Besides the load data, the front-end also
sends other data such as utilization, frequency, QoS, and the fraction of time remaining
to the deadline, what we call tardiness. A high level view of this implementation is shown

in Figure 6.3.

Cluster

Data (Load, etc.) Pov)\(/er LabVIEW
| TCP Data Load :
Connection Online graphs
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other E
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; —m-  Data Power 1
Acquisition -

AC Power

Figure 6.3: Power acquisition system using Labview

6.4.2 Load Balancing Algorithm

The application layer is built based on Apache 2.2 and its proxy load balancer module. Tt
has a request counting algorithm that can distribute evenly the requests based on weights
(Ibfactors). Our early experience in this project showed that the load distribution algo-
rithm that sends requests to the servers with lowest load or servers with lowest utilization
does not work well, because it results in bursts that can overload the servers. Instead,
a better algorithm is one that can control the flow of requests based on some parameter

that can be proportional to the server’s performance. It works as if the load balancer had
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a “knob” through which it could reduce or increase the flow of requests, rather than only
turning the flow on and off. The algorithm present in the Apache 2 distribution does this.
It has a Ibfactor that defines the work quota given to a specific server, and a [bstatus, that
shows how fast a server has to work to fulfill its quota. Details on how this algorithm

works can be found in [3].

Although Ibfactors are statically defined in Apache 2, in our implementation servers
change their frequencies dynamically, and we need a mechanism to alter the [bfactor
dynamically. We modified the Apache load balance module to implement this idea. Each
server periodically sends information to the front-end, including the average frequency
that the server ran during the last measurement window. A time window of 4s is big
enough to make the overhead negligible, and small enough for the granularity needed,
since the load in a web server vary slowly. For example, in [63], a feedback controlled web
server shows good performance even with a settling time of 270s, and the settling time

must be small if the system is to react fast to the load.

Our method is independent of the DVS algorithm being used, because we read the
frequency from the statistics file provided by the Linux kernel, describing the amount of

time each frequency was used (time_in_ state). The [bfactor of a server i is then calculated
by:

K freg;
mazx; {K; freq;}

Ibfactor; =100

We used the frequency as a measure of performance, multiplied by a factor K; to con-
sider machines with heterogeneous architectures. K; can be determined by benchmarking
the server. We used K; = 2 for the dual core processors, and K; = 1 for single core CPUs,
because our servers have the same performance for a given frequency, although they are
heterogeneous with different number of frequencies and maximum frequency. The above

normalization limits the maximum [bfactor in 100, as required by Apache.

This setting of the Ibfactors, proportional to the server’s performance, showed good
results, guaranteeing full utilization of all servers without overload. However, it also
showed some problems in practice. When a new machine enters the cluster, and receives
a [bfactor value, as soon as this server is enabled in the load balancer, a massive load
is directed to it at once. Apache creates children processes as the load increases, and
the overhead to do this caused what we called a balloon effect, showed in the upper

plot of Figure 6.4. This plot shows an experiment where traffic is an increasing workload
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generated by the httperftool [71]|. Load refers to the number of requests actually processed
per second. If the server has enough performance, the ramp is determined by httperf, but
the load can decrease if the server is not fast enough. When a new server is just added to
the cluster (see every discontinuity at Load = 75,220,270, and 315), the figure shows the
load decreasing because Apache is creating threads to attend the demand. The new server
cannot handle the instantaneous workload that appeared. As soon as new threads are
created, they start processing requests and this makes the load and power consumption
increase. The balloons happen in the clock-wise direction, because while new threads are
being created, the server cannot service requests, and the load goes down. When all new
threads are ready to service requests, power increases as long as the load is normalized.
As the plot in Figure 6.4 is power x load, this appears as a circle or balloon. When the

balloon is over, the load and power continue to increase normally.
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Figure 6.4: Transient effect caused in the addition of a new server. Balloon effect at top
and no balloon effect at the bottom, showing the slowly increasing load at new server

We found two solutions for the balloon effect problem. The first is to increase the
parameter StartServers in the Apache configuration, so that when a server is turned on,
before receiving requests, a larger number of threads is already created. The problem
with this solution is an increase of the power consumption because the number of context
switches increase. This is significant, and we measured a loss of about 0.5 Watt per server.

We show an experiment relating power consumption and context switch activities in [15].

The second solution is more power-efficient and consists in enforcing that the load
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will be transferred to the new server slowly. When we determine the [bfactor, we apply
an exponential filter. The result is showed in the bottom plot of Figure 6.4, applying only
the exponential filter. As can be seen, a small occurrence of the problem persisted in one

case, around Load = 270. We solved it completely by combining both solutions.

6.5 Evaluation

In this section we will show some optimization results and compare our cluster imple-
mentation with a baseline implementation and show some comparative results of the two

approaches for QoS control.

6.5.1 Simulation Results

We first show by simulation an evaluation of the optimization technique itself, without the
real cluster implementation, which will be shown in Section 6.5.2. We cited in Section 2.3
the work by Chen et al. [30], which presents a solution to the problem of finding a
set. of machines to be turned on to run applications in a cluster of servers of a hosting
center. For a given set of machines, we will show that our approach can achieve almost
40% of power reduction compared to their work. This happens because our approach
has a broader degree of freedom for assigning frequencies to servers. In [30] all servers
are considered identical, and what they determine is the number of servers m; allocated
to each application i, and their frequency f; at any instant. Thus, all m; servers of
application ¢ run at the same frequency f;. We can do better because we can choose,
for any load situation, the best combination of servers that must be turned on, and each
server j running at a different frequency f;, considering the result for one application.
Because servers are considered heterogeneous, the possibility to specify which server must
be on, and with which frequency, makes a sizeable difference. In the sense of choosing the

best combination of frequencies and servers, the method in [30] is unoptimized.

Figures 6.5.a and 6.5.b show the gain we obtain compared to the method in [30].
We used the real data from 10 servers, which are shown in Table 6.2. Figure 6.5.a show
the power consumption for each number of servers turned on, and all using the same
normalized frequency. That is, f = 1 represents the maximum speed for all servers. We
compare the two optimizations by finding a different combination of servers and frequency
that will achieve the same cluster capacity given by the method in [30]. The dotted lines in

Figure 6.5.a represent the power of servers if they were not turned off. As load increases,
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Table 6.2: Frequencies, power busy and idle, and performance for 10 servers

Number of | frequency (MHz), idle power (W),
Node frequencies busy power (W), performance (req/s)

coulomb 5 1000 67.40 75.20 53.80; 1800 70.90 89.00 95.40;
2000 72.40 94.50 104.80; 2200 73.80 100.90 113.60;
2400 75.20 107.70 122.30

hertz 5 1000 63.90 71.60 53.60; 1800 67.20 85.50 92.90;
2000 68.70 90.70 103.40; 2200 69.90 96.50 112.40;
2400 71.60 103.20 122.80

ohm 6 1000 65.80 82.50 99.40; 1800 68.50 99.20 177.40;
2000 70.60 107.30 197.20; 2200 72.30 116.60 218.00;
2400 74.30 127.20 234.60; 2600 76.90 140.10 255.20

joule 4 1000 66.60 74.70 51.20; 1800 73.80 95.70 91.20;
2000 76.90 103.10 101.40; 2200 80.00 110.60 111.40

ampere 3 1000 66.30 81.50 99.80; 1800 70.50 101.80 179.60;
2000 72.70 109.80 199.60

pentium-M 7 600 42.00 44.00 37.30; 800 43.00 45.00 50.00;

1000 43.00 47.00 62.40; 1200 44.00 49.00 74.40;
1400 45.00 51.00 88.40; 1600 47.00 55.00 97.60;
1800 49.00 60.00 111.40

silver-athlon 5 1000 68.00 77.00 55.30; 1800 70.00 89.00 96.90;
2000 74.00 100.00 107.00; 2200 79.00 115.00 115.80;
2400 85.00 136.00 124.60

black-athlon 3 1000 69.00 78.00 56.90; 1800 73.00 101.00 98.90;
2000 76.00 112.00 108.90

green-athlon 3 1000 65.00 72.00 55.50; 1800 75.00 105.00 96.30;
2000 84.00 124.00 108.60

blue-athlon 3 1000 64.00 73.00 54.30; 1800 74.00 108.00 96.40;

2000 81.00 124.00 107.90

nodes are turned on, and our method is better because the best combination of machines

and frequencies are chosen.

6.5.2 Baseline Comparison

Now we show results of our real cluster implementation. From now on, in all experiments,
for the sake of comparison, the deadline and average execution time of a request are the
same as in [85], 200ms and 24.5ms respectively. The workload is a ramp of dynamic
requests, starting from zero load until it reaches the full load of the system. This is
necessary because we need to see the power reduction that will be obtained for every
load level. In [85] this is done executing different experiments with a constant load at
some load points, and using the ramp is equivalent of testing for the whole continuous
range. We adopted a deterministic workload, using httperf, in order to make controlled
comparisons with other dynamic configuration schemes. To generate the ramp, we set
hitperf to access the 24.5ms script and set the session parameter (wsess=N1,N2,X), and
rate of calls (rate=r). These parameters have the following meaning: N1 sessions will
be created, each consisting of N2 calls with intervals of X. The creation of sessions is

not done at once, but following the rate r. For our experiments, X = 0.1s, and N1
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Figure 6.5: Comparison of the switched DVS scheme with an unoptimized method. (a)
absolute values, and (b) relative comparison for 10 machines

and N2 are large enough, so that we reach the maximum load, and the workload does
not finish before the end of the time of the experiment (400s in our experiments). The
rate parameter will define the ramp length, and we used a 3s interval. To reproduce the
experiments, these parameters do not need to be exactly the same, they must be adjusted

to achieve the maximum load on the desired time.

We also compared our DVS policy given by the QoS control with the ondemand Linux
DVS governor, but in a single server only. This is done to evaluate how our real-time-aware
DVS method differs in performance to the Linux built-in DVS governor. Our experiments
showed that for some load values, the Linux governor cannot keep the QoS within the
specified, and for other load values it overprovisions the server achieving a QoS close
to 1.0, but with higher energy consumption. For lack of space, the details of this last

experiment are described in a technical report [15].

We compared our on/off MIP optimization with the work presented in [85] which
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uses a real-time utilization to determine the DVS policy, and on/off is done based on a
predefined sequence of machines. That work compared with, and improved on, the work
published in [90]. The work in [85] defined a real-time utilization U = ), % computed
based on the deadline D;, and recent utilization U,.ccent, Which is given by the number of
requests times the average execution time Cj;, divided by a recent time period. Then the
frequency used is max (U \ %) X fmaz [85], where fi4. is the maximum CPU frequency,

and the factor 0.8 is a target maximum CPU utilization.

Figures 6.6 and 6.7 show a comparison of no power management (i.e., a regular cluster
of machines, without DVS and no on/off), only on/off, and QoS control (that is, our
approach that combines on/off and DVS with the QoS control). This experiment, and
the next, uses the ramp workload to exercise the whole load range. For 5 machines,
and very low load, the power decreases from 390 to 90 Watts, reducing up to 77% the
consumption, and up to 15% of energy saving by using DVS with QOS control compared

with using just on/off.
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Figure 6.6: Comparing power management with no power management

Figure 6.8 compares our method with the method of on/off and DVS presented in
[85], where the machines are turned on in order, from the more power efficient to the less
power efficient, and the DVS is done locally at each server, using the real-time utilization
method mentioned, and thus without global optimization. Furthermore, this DVS scheme
is not able to control the QoS in a fine grain manner, and most of the time results in

100% QoS (see Figure 6.9). The reduction in peak power that can be observed is about
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15%. This represents a good improvement, considering that the baseline [85] is already a

power managed system.

The two up-and-down steps of power around 50 req/s in Figures 6.6 and 6.8 are due
to the change of configuration where one server has to be turned off for another server to
be turned on in our scheme, as determined by the solution to the MIP optimization. It

is worth doing this switch depending on the trend analysis of the workload.

Figure 6.9 shows the QoS and tardiness for both schemes, but now we use a fixed
load workload, not the ramp, because we want to show how the QoS is maintained during
a larger period of time. There is also a QoS reference line of 95% plotted that is the
target QoS for both cases. It is interesting to note that when a machine is turned on
(e.g., at time ¢ = 1000 in this figure), the two schemes have opposite QoS behavior. Our
QoS controller goes to 100% QoS because the controller output is too high for the new
configuration. This is a transient effect that disappears as soon as the controller finds
a new control output to satisfy the QoS in the new configuration. In the baseline case
the QoS decreases, because the QoS awareness of the method is based on turning a node
on just before the old configuration cannot handle a QoS of 95%, accounting for the
prediction on the load given by the max_ load_increase parameter. In this experiment,
the scheme Rusu 2006 shows a tardiness curve that stays usually below that in our method

because it runs more overprovisioned most of the time.
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Another observation we made from our experiments is that the DVS overhead is not
due to changing the frequency, but due to the scheduling of the DVS task. If a period of
10ms is used (like in the original work [85]), it results in 300 context switches per second
(cs/s), and 7T0W power when idle. When the period is increased to 50ms, we get 100cs/s
and 68W. Again, for lack of space, we focus only on showing comparison results of our

method with [85]; the details of the effect on the period can be seen in [15].

6.5.3 Discrete Versus Continuous Frequency

To see the advantages of the two DVS assignment policies described by the MIP problems
in Sections 6.2.1 and 6.2.2, namely the switched and the traditional DVS policies, we gen-
erated a ramp workload for both cases. The first advantage of the continuous case over the
discrete case is because it is more appropriate for a feedback controller that relies on the
continuity of the actuator to compute the output. The experiment shown in Figure 6.10
consists of only doing DVS for the 5 servers (without the on/off capability). The prob-
lem of not having a continuous actuator in the discrete case appears as instabilities (i.e.,
power goes up and down). This happens because as the frequencies are discrete, when
the tardiness (see also Figure 6.11) reaches a value that causes the output to increase, the
frequency will in some cases increase one step higher than the needed frequency, making
the system act too fast. The tardiness value then drops and this will be the beginning of
the instability.
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Figure 6.10: Power comparison for the continuous and discrete frequencies
The top part of Figure 6.11 shows also how the aggregate frequency vary in both

cases. The frequency indicated is the sum of all frequencies of the servers, showing the

capacity of the cluster in cycles per second.
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A disadvantage of the discrete frequencies was observed during the on/off optimiza-
tion. The continuous case will make fewer changes in the set of active servers, minimizing
the occurrence of turning on/off servers. This happens because the continuous case offers
more flexibility to the MIP solver. In a situation that, say, only one cycle per second is
needed in addition to a given configuration, the continuous case will be able to attend
using the same configuration, by just increasing this one cycle. On the other hand, the
discrete case will need to choose a different frequency, and it is more likely that a config-
uration with a different set of servers will outperform the original set of servers in terms
of power consumption. For this reason, the discrete case will change configuration more

often.

We show this difference between the two cases in Figure 6.12. The bars show the
frequencies assigned to the servers. It is sufficient to look at the first 3 servers in a 10-
node system to see the difference. If a region has no bar, it means that another server
(from 4 to 10) is running at a nonzero frequency for that load value. Consequently,
there will be more online swapping of servers (i.e., a server turning on and another server
turning off at the same load value), resulting in smaller power efficiency. Note that server
3 is always on in the continuous case, while the same server had to be turned off 4 times

after it had been turned on for the first time in the discrete frequency case.
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6.6 QoS Control Evaluation

QoS is controlled by a PIDF controller with a parameterization that eases the tuning
process. It is very simple and shows a good response for a stochastic system such as a
computing system, due to the filter component added in the derivative part of the PID
controller. The implementation of it inside the Apache server is done in the same Apache
module that controls the DVS. Recursive equations are straightforward to obtain, by using
the Z-transform to convert from the Laplace domain to the discrete domain (more details

in [12]).

The QoS control is done indirectly by controlling the tardiness of completion of web
requests, defined as the ratio of response time to the deadline. The rationale of measuring
and controlling QoS by measuring tardiness is described in [13|. here it is only important
to know that the controlled variable is the ratio of execution time to the deadlines, and
this variable is controlled by the manipulated variable frequency of the servers. The
idea is, to achieve a QoS of, say, 95%, that the probability distribution of the execution
time has its 0.95-quantile exactly at the deadline. In other words this means that the
probability of meeting the deadline is 0.95. A statistical inference, based on calculations
of the quantile, relates the average tardiness to the desired QoS value, which is defined
as a fraction of deadlines met. The controller output will be a normalized performance

factor that will be used as an input to the MIP solver, to define the Hp,s load demand.

The use of the QoS controller can be done through different topologies. We will analyze
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and compare two here: a SISO topology (Single Input Single Output) where there is only
one centralized controller, with a single output, and a SIMO controller (Single Input
Multiple Output), where the same input is sent to N independent controllers, therefore

generating multiple independent outputs.

6.6.1 Centralized SISO Controller

The SISO controller takes a single measure of tardiness, the ratio execution time by the
deadline, at the front-end and computes one single output that is used as an input to the
MIP optimization process. Figure 6.13a gives an illustration, where K (s) is the transfer

function of the PIDF controller.

6.6.2 Distributed SIMO Controller

One disadvantage of the SISO controller presented in Section 6.6.1 is the added work of
precomputing the offline tables, for optimizing the controller output, for a large number of
servers (e.g., bigger than 30). Instead of just using the SISO architecture for the controller,
we are going to also compare it to a distributed SIMO control architecture that wins in

simplicity at a cost of loosing optimality.

Figure 6.13b shows an alternative scheme that runs without optimization, with N
independent controllers. This scheme reaches the same QoS and does not need tables
for the DVS. It simplifies the implementation because there is no need to run the MIP
optimization for the controller, only for defining the points to turn servers on/off. When
the system stabilizes, however, it will operate in a suboptimal point (i.e., higher power
consumption), as shown in Figure 6.14. Note that this figure is divided in two plots for

better clarity of the results.

6.6.3 Distributed Versus Centralized Control

Each method has advantages and disadvantages, but in terms of energy consumption the
SISO controller is better. The SIMO controller showed to be more stable (using the same
parameters) for increasing number of servers. Because the controllers are independent,
each one shows a performance similar to the SISO controller for one server. The gain of
the SISO over the SIMO was up to 10%, as can be seen in Figure 6.14. We observed
some load fluctuations for the SISO model, but above the QoS setpoint, that is, the

system load fluctuates in a permitted zone where the QoS is still satisfied. Thus, both
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Figure 6.13: (a) one centralized SISO controller. (b) N distributed SISO controllers
building one SIMO controller.

configurations achieve a QoS within the specification (in this experiment, 95%). The QoS
for this experiment can be seen in the right y-axis of Figure 6.15 and Figure 6.16. Besides
being more power efficient, the centralized scheme with optimization achieved a slightly
better QoS.

Plots in Figure 6.15 and Figure 6.16 also show the utilization and frequency resultant
of the two cases: SISO and SIMO. Note that in both cases there is a tendency of the
average utilization to reach 100%. The closer to this maximum, the more harmonious is
the synergy between the load balancer and the DVS algorithms. These plots also show an
important difference in both implementations. The variations in frequency and utilization
such as the one that happens at time ¢ = 1000s are smaller in the SIMO than in the SISO
scheme. This is due to the initialization of the controller. In the SIMO case, when a new
server is turned on, its controller output is initialized to zero, and then increases until
control is achieved. In the SISO case, when a new server is turned on, because there
is a single output the initial value is the value with which the controller was operating
before the new server comes in. It results in an overprovision of the system. The QoS
goes to 100% until the system stabilizes again. The SISO case is more conservative, and
the SIMO case can result in a underprovisioned system, as happened just after ¢ = 500s
in Figure 6.15, where a short QoS drop to 80% can be seen. The more conservative
case is preferred, and the SIMO case can be modified to copy this behavior. It is only

necessary to define what are the contour conditions of the controller equation. The most
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Figure 6.16: Utilization and frequency x QoS for the SISO controller

conservative way is to set it as 1.0, which means that a new server starts at the maximum

frequency, and decreases to some steady state point.

6.6.4 A Real Workload Scenario

The experiments shown so far were all based on a well-behaved ramp workload generated
by the httperf tool. We also experimented with traffic that mimics the shape of a real
workload. We used the well-known and available workload for the 1998 Soccer World
Cup (SWC98) web site [4]. We only mimic the workload shape because the replay of the
real workload would not fit to our application. Too many static requests would make
the system I/O bound, and thus the DVS would not make a big effect. Furthermore,
our server is much smaller than the SW(C98 server, in addition to our request being CPU
bound. We then map the maximum load of the SW(C98 to our maximum sustainable load,
and adjust dynamically the interval between calls of httperf (the X parameter of wsess).
As the load is generated, we look up the SW(C98 load and then generate the proportional

load to our server.

The plot in Figure 6.17 shows the rate of requests for the original SW(C98 workload
between the days 64 and 66 of the event. The plot in Figure 6.18 shows the load generated
by httperf. We translated the maximum load from the original workload to the limits of

our cluster, and modify the httperf user think time to shape the rate of requests. We also
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compressed the time tenfold to result in a smaller time window of about 6 hours.
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Figure 6.17: 1998 world cup web site workload
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Figure 6.18: Reproduction of the SWC98 workload with httperf

The next plots show the power and QoS results of the proposed method, namely QoS
Control, compared to the sequential on/off method proposed in [85]. Figure 6.19 shows the
power expenditure for the whole experiment in each method, and the value of the integral
of the curves for the interval, that is, the energy consumed. At ¢ = 2h, our optimization
decides that a different machine is better for handling the load, that increases a little after
t = 2h. As Rusu’s method cannot do this, it starts with the machine named ohm and goes
with it until after ¢ = 4h. In our method, the system starts using the server hertz and

then, at ¢ = 2h, changes to ohm. The spike of power at t = 2h corresponds to the power
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of both machines turned on. The whole experiment resulted in an energy consumption
of about 587Wh for our QoS Control method, against 624 h for Rusu’s method (6.3%
higher).
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Figure 6.19: Power comparison: full experiment

The plot in Figure 6.20 shows the same data for the interval before ¢t = 2h. The
energy is reduced from about 192Wh to 182Wh, an expenditure of 5.5% higher for Rusu’s
method, against our QoS Control method. We observed that the overhead of power for

switching machines, if not done too frequently as in this case, is negligible.

We also took a closer look at the experiment where 4 machines of the cluster are turned
on to handle the peak load. This is shown in Figure 6.21. The energy reduction was from
about 170Wh to 163W h, a reduction of 4.1% by our QoS Control method. Note that for

high loads the energy savings is smaller because there is less room for optimization.

We are controlling the QoS at 0.95 for this experiment. The plots in Figure 6.22 and
Figure 6.23 show the average value of the QoS measured in a time window of 40s. We
also show the confidence interval obtained for each window using the confidence interval
of a proportion. The curves are plotted with an exponential smoothing average for better
clarity. For high loads our algorithm resulted in a small drop of QoS, but this is acceptable.
The exact QoS value is impossible to maintain, and even to measure with a narrow
confidence interval. This variability must be included in the Service Level Agreement

(SLA), so that QoS is specified as a small range, and not as a single value. Rusu’s method,
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on the other hand, showed a smaller drop of QoS for the same load. This happens because

Rusu’s method overprovisions the system and spends more energy.
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Figure 6.22: QoS for our method

In Figure 6.22, for the period before ¢ = 3h, the QoS stays close to the setpoint,
with a disturbance at t = 2h, when the first server switch occurs. Between ¢ = 3h and
t = 4h, the QoS stays above the setpoint, because the performance of the new selected
machine is too high, and even at the minimum frequency the server is faster than needed.
Then, after ¢t = 4h, during the peak load, there is a drop in the QoS caused by all the
machine switching occurring in this interval, but note that this drop is close to 0.02. This
small drop can be tolerated, due to the very stochastic nature of the system, and can be

included in the QoS specification in the SLA.

Figure 6.23 shows the QoS for the running of Rusu’s method. As expected the QoS
stays very close to 1.0 because although it is QoS aware, it cannot control the QoS in a

fine grain manner.

6.7 Conclusions

In this chapter we contributed to the state-of-the-art on dynamic cluster configuration
by presenting an optimal solution to the cluster configuration, that is, by solving the

problem of finding the combination of servers to be turned on/off and their speeds. We
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Figure 6.23: QoS for Rusu 2006 method

compared the technique with the work in [30] and for 10 machines it was shown that we can
obtain power reductions of up to 40%. Our experiments show that the pseudo-continuous
frequency approach is better than using only one discrete frequency per interval, without
incurring in additional overhead. The former also allows for the use of a continuous
actuator mechanism necessary for using feedback control theory. On the other hand, the
discrete frequency method showed to be improper to be used as an actuator mechanism,
because it does not provide proportionality between the control output and actuation in

the system, generating instabilities from the control perspective.

When comparing the distributed control against the centralized with optimization,
we achieved best QoS with lower power consumption in the latter case. The advantage
of the distributed approach is the simplicity of the implementation and better scalability,
because less tables are needed. However, scalability will not be an issue, because for up
to 30 nodes the optimization can be done online, and beyond this cluster size it can be

done offline.

We showed that, when using a real-life workload, our method chooses and changes
servers with an overhead that is negligible. The experiment that run for 2h with one ma-
chine (Figure 6.20), and after that continued with one different machine, showed exactly
the case when this change of configuration is desirable. If the system stays at a given load

for a long period of time, and then the load increases to a value where there is a better
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machine to handle the new load, and stays there for another long period, the advantage
is clear. In this case, the fixed server sequencing proposed by earlier works cannot change

servers.



Chapter 7

Conclusions and Future Directions

The direction in which education starts,
a man will determine his future life.
— Plato

Our premises for the development of this Thesis were based on the course of research
related to power management in real-time systems. Initially, energy-aware systems were
designed only for embedded applications, because lifetime of embedded devices is limited
by its battery. Since the publication of the work in [24], showing the importance to re-
duce power consumption for web servers, energy-aware research is being directed also to
high-end systems, motivated by the goal of reducing the cost of ownership and reduc-
ing environmental impacts. We then noticed that in data-centers and companies that
depend on high-end servers, there is still a lack of confidence of systems administrators
on energy-aware systems, because, intuitively, energy reduction is related to performance
reduction. Thus, there is a need to develop dependable systems that move from the max-
imum performance approach to approaches that are able to tradeoff between energy and

performance, and in this Thesis we contributed in this aspect to the state-of-the-art.

In this thesis we investigated local and cluster-wide energy management techniques
for heterogeneous web server systems, addressing only the processor subsystem. We had
in mind that heterogeneity is important, because systems become heterogeneous after
they are deployed, either because of server replacement, or because of system scale up.
Heterogeneity offers an extra opportunity to energy minimization, because it adds more
variables to the problems, but it becomes more difficult to model and solve the opti-
mization problems. Because of this additional level of complexity, the first papers on
energy-aware server clusters, some of them quite recent, were all based on simplified

models for homogeneous systems, like in [29, 30, 52, 61, 80, 109].
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We based our study on a stochastic approach for modelling web servers performance.
A web server is best modeled as a soft real-time system because the timeliness of the
system is only related to the user satisfaction. The user satisfaction, in turn, is associated
with the response time of the system, and if a single request is not executed before the
expected response time, the user will not feel a poor response. A poor response will only
happen if, statistically, the system shows a high response time. The better way to build
a system that shows good response time in the average, is to measure some statistical

characteristics of the system, and try to control them.

Following this reasoning, we first presented a scheme to relate QoS to tardiness in a
high-end system given by a multi-tiered e-commerce environment, based on the statistical
distribution of the tardiness of web interactions. This QoS metric was shown to be very
useful because some practical difficulties arose when we tried to use in the control of the
system, the measured QoS by counting deadline misses. On the other hand, tardiness is
a continuous value that can be calculated for each web interaction, and its value depicts

how close the execution was to the deadline.

We proved that measuring QoS by calculating tardiness is better than by counting
deadline misses. One way to see the difference is by comparing two cases: if a request
is finished after the deadline, and before the deadline, both with a very small difference,
that is, right before or right after the deadline. In the second case, there will be one more
deadline miss, while in the first case, the tardiness value will not change significantly
from that value of the second case. This shows that our QoS measure based on tardiness
is more representative of the real state of the system. In the second case, by counting
deadline misses, the same QoS would be reported if the request had finished after a long

interval from the deadline, but tardiness would show a bigger value.

Our proposed TQM scheme, considering that tardiness has a Pareto probability dis-
tribution, was shown to be better than existing schemes like [85] and [90], because it meets
with precision the real-time specification, not overprovisioning the system, and thus sav-
ing energy. The method in [85] is QoS aware, because it turns new machines on when
the system is showing a QoS below the specified value, but cannot reduce energy con-
sumption generally, for example when the load is lower than the needed value to switch
a new machine. In this case, the QoS will be close to 1.0. The TQM improved the QoS
awareness by providing a QoS metric that, together with the control closed loop, can put

the QoS in the specified value in a much broader range of the load spectrum.

A shortcoming of the TQM approach is when the goal is to meet all deadlines. The
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tardiness would have an upper bound of 1.0, and thus the assumption on the tail distri-
bution, where we measure the area below the probability distribution curve and greater
than 1.0, would not hold. If all deadlines are met, the real distribution cannot be ap-
proximated to a tail distribution, and the tardiness value will have no meaning. However,
if the goal were to meet all deadlines, like in a hard real-time system for example, then

other algorithms would be recommended, such as earliest deadline first.

Although efficient, the major drawback of the TQM method is that it is based on
predetermined probability distributions: Pareto and Log-normal. The approximations
showed to be good, but the first questions that arise are: what if the workload is not
shaped as Pareto and not Log-normal? Is it possible to generalize? In Chapter 5 we
answered this by using a stochastic approximation algorithm that can measure some
characteristics of the random variable tardiness regardless of its probability distribution
function. This means that the method will work for any kind of workload, with no

assumptions.

We then built the Generalized TQM method by using the on line convergent sequential
process proposed in [82] that is defined from a Markov chain. We derived quantile estima-
tions that does not depend on the shape of the tardiness probability distribution, so that
the metric can be used in any workload. To evaluate the new metric, we showed practical

results in a three-tier web cluster with QoS control in an e-commerce environment.

The GTQM results showed a good response even for QoS values closer to 1.0, where
the TQM were not so effective. The results also showed a very good precision between
the setpoint of QoS and the observed value, for two kinds of workload. The deterministic
and repetitive maid up of a fixed execution time and a fixed deadline, and also for the
real-world workload given by TPC-W. Note that although the first workload were made
of fixed execution time, fixed period, and fixed deadline, the complex execution of the
requests inside the several server process make this also a nondeterministic process, with

a tail probability distribution of tardiness.

We also showed a practical implementation of a feedback control loop in a multi-tier
web server system for e-commerce. Practical issues that arise in the implementation of
a controller in a real web cluster application were discussed. The experiments showed
that the parameterized controller is easy to tune, because tuning has a limited degree of
freedom, which helps stability. Our experiments showed an analysis of sensitivity to the
controller parameters that can help in achieving the best performance for the controlled

system. The fine-grain QoS control showed in this work is useful in achieving extra energy
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savings for interval based DVS schemes, where the goal is to meet all deadlines, avoiding

overprovisioning the system according to the real-time specifications.

In Chapter 6 we contributed to the state-of-the-art on dynamic cluster configuration
by presenting an optimal solution to the cluster configuration, that is, by solving the
problem of finding the combination of servers to be turned on/off and their speeds. We
compared the technique with the work in [30] and for 10 machines we can obtain power

reductions of up to 40%.

Our experiments showed that the pseudo-continuous frequency approach is better
than the use of only one discrete frequency per interval, without incurring in additional
overhead. We proved in Appendix B that energy consumption is smaller, considering that
only efficient frequencies are used. We also showed that pseudo-continuous frequency is
more appropriate for using with the control loop, because the control logic relies on a
continuous actuator to work well. The overhead of switching DVS is in fact smaller than
in other works. For example, [85] uses a 10ms period to change frequency, and we showed

that 10 times this value is still small to provide a fine grain result.

When comparing the distributed control against the centralized with optimization,
we achieved best QoS with lower power consumption in the latter case. The advantage
of the distributed approach is the simplicity of the implementation and better scalability,
because less tables are needed. However, scalability will not be an issue, because for up
to 30 nodes the optimization can be done online, and beyond this cluster size it can be

done offline.

The studies on cluster reconfiguration with the MySQL cluster implementation al-
lowed us to identify that the performance scalability and the CPU boundness of the
application are the two most important factors necessary for effective energy savings, re-
spectively for dynamic reconfiguration, and for applying DVS. The former, performance
scalability, is important because as machines are turned on, we need to scale up the clus-
ter capacity. Using one front-end, for example, is a limiting factor for the performance
scalability, because it cannot handle an infinite load. Network bandwith may also become
a limiting factor. The latter, CPU boundness, is important to provide the maximum
energy saving from the DVS techniques, as reducing energy from disks are much more
difficult. Techniques of spinning down idle disks, or and using lower rotating speeds than

the maximum speed, are being considered [92].

For future work, workload forecasting is a challenging branch of research that we

must further investigate. We have a preliminary work [89] where we apply DVS control
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through the forecast of the future system state, and then prepare the system to deliver
a specified quality of service (QoS) that reduces the energy consumption. In that work,
the prediction was based on the Holt’s linear method of forecasting. A good forecasting
would allow, for example, the decision on whether to change or not the configuration of

the cluster, taking into account the energy overhead of turning nodes on and off.

Another future direction is to study how to optimize the cluster power if we consider
further means of reducing energy in the database machines. This is a difficult practical
problem because turning on and off databases is not simple, as there are consistency
issues. We have to deal with long boot times caused by the resynchronizations of the
databases, and thus it has to be done in a much bigger time granularity. The MySQL
cluster architecture is a good reference to consider for this implementation, because of
some of its desirable properties. As it is designed for high availability with no single
point of failure, the solution is already designed to afford a machine being turned of. A
database cluster node automatically restart, recover, and configure itself in case of failure
(or an intentional turning off action). Furthermore, it can run only in main memory,
providing the high performance that we need to apply DVS and expect high energy
savings. However, performance scalability, and availability of memory are still unsolved

issues.

Virtualization is also a promising research area for future attention. We are seeing
now a tendency on aggregating and virtualizing of servers which can help in solving
the energy problem, by allowing a better use of CPU resources, avoiding underutilized
machines. Power-efficient control for data-centers built up of virtual machines has to
be multivariable, because hardware components subject to power management affect all
VMs [105]. Transparent and energy-efficient live migration from one VM to another
may be a good solution for implementing dynamic configuration in server clusters. The
problem of how to do power management in a system with several VMs is still an open

question.

The EPA report [1] mentioned in Chapter 1 gives some directions of research, some
of them are not in the scope of this thesis, for example research related to energy-efficient
cooling systems and efficient heat removal. Some others we have addressed in this Thesis.

The relevant future work cited in that report are:

e Improve energy performance of hardware-based virtualization technologies (reduce

virtualization overhead).
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e Develop, validate, and demonstrate the effectiveness of virtualization software-based

system power management.

e Improve software development tools and techniques to allow software to more effi-

ciently use chip-level multiprocessing (improved parallelization).
e Develop lower power states for use at lower utilization levels.

e Improve power management for storage systems, to allow many disks to remain off
most of the time with little impact on performance; investigate impact of storage

latency.

e Investigate application of solid-state (non-mechanical) storage technologies to data

centers.

e Develop improved computing control strategies (such as statistical machine learning
or control theory) to allow better power management of IT equipment at the system,

cluster, and data center level.

e Develop active power management strategies for high-performance computing sys-
tems, e.g., taking advantage of workload imbalances to reduce the power of lightly

loaded system components.

e Develop standard communication protocols to allow continuous energy monitoring

and interoperability among I'T equipment and data center infrastructure products.

e Develop best practices for improving energy efficiency through storage optimization

and server virtualization.

Virtualization is indeed being considered in the EPA report for investigation, and also
several research needs related to the development of better hardware to reduce overhead
and increase parallelism. But note that one item is related to the development of improved
computing control strategies with statistical machine learning or control theory, which was

the focus of this Thesis.
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APPENDIX A - TPC-W Benchmark

Experience is the teacher of all things.
— Julius Caesar

TPC-W is a transactional web benchmark, produced by the Transaction Process-
ing Performance Council [98], where the workload is performed in a controlled Internet
commerce environment. The workload tests several system components associated with
this environments, such as multiple on-line browser sessions, dynamic page generation,
secure connections, and a database consisting of many tables with a wide variety of sizes,

attributes, and relationships.

A possible environment for the TPC-W is depicted in Figure A.1. The workload
is generated by the remote browser emulator, responsible for managing the emulated
browsers (EB) and the emulated sessions. The EBs access the web server using HTTP
and HTTPS connections. The system under test is composed of three components, the
web server for static pages, the application server for the execution of the application

(e.g., using PHP), and the database server.

EB |l HTTP N Web Server
HTTPS (Apache)

EB I

°ee Appl. Server
EB (Apache + PHP)

DB
Server

(PgSQL)

Figure A.1: TPC-W environment

The performance metric reported by TPC-W is the number of web interactions per
second (WIPS). TPC-W specifies 14 different interactions necessary to simulate the activ-

ity of a retail store, and each interaction is subject to a deadline that must be met with a
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specified QoS (as a percentage of deadlines met). There are three different profiles for the
test, with a mix of interactions for shopping, browsing and ordering. The primary metric
(WIPS) is intended to reflect an average shopping scenario with a mix of 80% of browsing
interactions and 20% of ordering interactions (for a review about the TPC-W benchmark
see [36]). Besides the primary metric WIPS, there is also a specification for the associated

price per WIPS ($/WIPS), and the availability date of the priced configuration

One aspect of the TPC-W specification is that one web interaction is not composed of
a single request, but of a request to a dynamic page followed by several static requests for
the embedded objects that are part of the dynamic generated page. The web interaction
response time (WIRT) is defined by the time elapsed between sending the dynamic request
until receiving the last byte of the last embedded object. This specification makes it
impossible to measure the QoS locally in one server node, because each embedded object

request may be sent to different nodes.

In the TPC-W real-time specification, each class of web interaction has a different
deadline, as shown in Figure A.2, with a minimum deadline hit ratio defined by the
standard as 90% for all classes. Although it is not specified in the standard, a system
should not a priori discard 10% of the requests just because the goal is to service 90%, but
rather it should attempt to service all requests and provide for all an equal probability of
meeting the deadline. Also, it is worth to note that these values for the deadlines include
only local area access, according to the TPC-W specification, so that the Internet access

can be disregarded.
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Figure A.2: Deadlines as defined by TPC-W

The TPC-W was approved in February 2000, and a new standard, the TPC-App was
released in April 2005, as a more general application server and web services benchmark.
The new TPC-App benchmark focuses on commercial application server environments
set in a B2B Web services workload. In addition to the differences between both, some

complaints was reported about TPC-W that it was flawed with respect to being able to
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web cache too much of the data. In despite of that, TPC-W fits very well for the purpose

of this work, and has the advantage of bigger availability of open source implementations.
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APPENDIX B - Efficacy of the Switched DVS

Scheme

Restlessness and discontent are the first
necessities of progress.
— Thomas A. Edison

We will show that the efficacy of this switched DVS scheme is better than using the
lowest available discrete value higher than the necessary frequency. Picture B.1 show the
power consumption for both schemes. The dashed line is the scheme that switches to the

lowest, available frequency higher than the load. The continuous line shows the switching
DVS scheme.
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Figure B.1: Power consumption for the Pentium M processor using two different DVS
schemes.

However, the benefit shown in Figure B.1 only happen for a processor that satisfies the
criteria of having only efficient frequencies, and it does not consider the DVS overhead.
The definition of inefficient frequencies were given in [70], and the concept was extended
for different frequencies with different idle power in [108]. A frequency f; is inefficient
with respect to a higher frequency f, if running any task at f1 consumes more energy
than running in f2. In that technical report [108], the authors showed that the condition
for this to happen is given by:
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P — I(f) _ P(f) — I(f2)
2T g (B.1)

We can now formulate this simple theorem about the switching DVS technique.

Theorem B.1 (Switching DVS) Given a load of s cycles per second, the technique of
switching between the frequencies ||s||™ and ||s||", with a duty cycle o so that ol|s||t +
(1 — a)|ls||” = s, is more power efficient than using always ||s||t, if and only if the

processor has only efficient frequencies.

Proof Let f; be the lower frequency ||s||” and f; be the higher frequency [|s||T. The
power consumption of the switching DVS at a load of f; cycles per second will be exactly
the power consumption at full load in frequency f; (o = 0). Let this value be P(f1).
The same for fy, but with a = 1, and the power consumption will be P(f5). In contrast,
the power consumption of the DVS scheme with always ||s||", at a load f; + ¢, will have
a power consumption given by %P(fz) + ( - %) I(f>), where I(f5) is the idle power
consumption in fy. The better scheme will be the one with lower power consumption at

the load f; cycles per second. Thus, we need:

fi fi
P(f1) < EPUQ) + (1 - E) I(f2)

rearranging this inequation, we obtain inequation B.1. |
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