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Abstra
t
In this thesis we study the soft real-time web 
luster ar
hite
ture needed to supporte-
ommer
e and related appli
ations, with the fundamental goal of optimizing the energye�
ien
y. The energy 
onsumed by a system and its Quality of Servi
e (QoS) are thetwo 
omponents of the tradeo� that rule the power optimization in su
h systems. In softreal-time systems like web servers, the QoS is usually de�ned as the fra
tion of requeststhat meet the deadlines. When this QoS is measured dire
tly, regardless of whether therequest missed the deadline by an small amount of time or by a large di�eren
e, the resultis always the same. For this reason, only 
ounting the number of missed requests in aperiod does not allow an adequate observation of the real state of the system. We givetheoreti
al propositions on how to 
ontrol the QoS, not measuring the QoS dire
tly, butbased on the probability distribution of the tardiness in the 
ompletion time of requests.We 
all this QoS metri
 Tardiness Quantile Metri
 (TQM). The proposed method provides�ne-grained 
ontrol over the QoS so that we 
an make a 
loser examination of the relationbetween QoS and energy e�
ien
y.To generalize the TQM idea, we propose the GTQM method that makes it possibleto measure the QoS of the system without any assumption on the workload. By usingan on line 
onvergent sequential pro
ess de�ned from a Markov 
hain, we derive quantileestimations that do not depend on the shape of the workload probability distribution.To use GTQM, we need a 
ontroller that will keep the system's QoS as de�ned by thestatisti
al inferen
e. We des
ribe a simpli�ed way to implement performan
e 
ontrolin a multi-tier 
omputing system designed for e-
ommer
e appli
ations. We show thatthe simpler SISO (Single Input Single Output) 
ontroller, rather than a more 
omplexdistributed or 
entralized MIMO (Multiple Input Multiple Output) 
ontroller, works well,regardless of the presen
e of multiple 
luster nodes and multiple exe
ution time deadlines.Our feedba
k 
ontrol loop a
ts on the speed of all server nodes 
apable of Dynami
 VoltageS
aling (DVS), with QoS, measured by means of GTQM, being the referen
e setpoint.We use a SISO PIDF 
ontrol loop implemented in the multi-tier 
luster.Besides QoS 
ontrol, we solve the dynami
 
on�guration optimization problem in aweb server 
luster. We model the problem of sele
ting the servers that will be on and�nding their speeds as mixed integer programming. For proof of 
on
ept, we implementedthis dynami
 
on�guration s
heme and the GTQM QoS 
ontrol in a web server 
lusterrunning Linux, and a layer of servers running a MySQL 
luster 
on�guration. The systemhas soft real-time requirements, in order to guarantee both energy-e�
ien
y and gooduser experien
e. Our testbed is based on an industry standard, whi
h de�nes a set of webintera
tions and database transa
tions with their deadlines, for generating real workloadand ben
hmarking e-
ommer
e appli
ations.
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Resumo
Esta tese aborda arquiteturas de tempo real não 
ríti
o ne
essárias para apli
ações de
omér
io eletr�ni
o e outras apli
ações web em 
lusters de 
omputadores, 
om o objetivofundamental de otimização do 
onsumo de energia. O 
ompromisso existente entre aenergia 
onsumida por um sistema e sua qualidade de serviço (QoS) rege a otimizaçãode potên
ia em tais sistemas. Em servidores web, QoS é normalmente de�nida 
omo afração de requisições que atende aos prazos de tempo real de�nidos. Entretanto, quandoessa QoS é medida diretamente, independentemente se o prazo foi des
umprido por umpequeno intervalo de tempo, ou por um intervalo muito grande, o resultado é sempre omesmo. Por isso, somente a 
ontagem do número de requisições 
om atendimento após oprazo não é su�
iente para permitir uma observação adequada do real estado do sistema.Esta tese apresenta proposições teóri
as de 
omo 
ontrolar QoS sem medi-la diretamente,
om base na distribuição de probabilidade da variável tardiness, que representa o quãotarde uma requisição termina em relação ao seu prazo. A nova métri
a de QoS propostafoi denominada Tardiness Quantile Metri
 (TQM). Esse método provê um 
ontrole �node QoS, que permite avaliar minu
iosamente o 
ompromisso entre QoS e a e�
iên
ia deenergia do sistema.Com o objetivo de generalizar a idéia do TQM, de modo a tornar o método inde-pendente da 
arga do sistema, esta tese ainda propõe o método GTQM, que permitemedir QoS sem qualquer suposição a respeito das 
ara
terísti
as estatísti
as do sistema.Utilizando um pro
esso sequen
ial 
onvergente de�nido a partir de uma 
adeia de Mar-kov, o método deriva estimadores de quantil independentes da função de distribuiçãode probabilidades da 
arga do sistema. Um método simpli�
ado de 
ontrole utilizandoGTQM é des
rito, para realizar 
ontrole de desempenho em um 
luster de 
omputadoresmulti
amadas projetado para apli
ações de 
omér
io eletr�ni
o. Demonstra-se que um
ontrolador simples do tipo SISO (Single Input Single Output), ao invés de um 
ontroladormais 
omplexo do tipo MIMO (Multiple Input Multiple Output), fun
iona bem, apesar dapresença de múltiplos nós do 
luster e também múltiplos prazos de exe
ução. O 
ontrolerealimentado apresentado atua na velo
idade dos nós do 
luster 
om fun
ionalidade deDVS (Dynami
 Voltage S
aling), utilizando-se 
omo referên
ia a QoS medida através dométodo GTQM.Além de 
ontrole de QoS, esta tese resolve o problema de otimização da 
on�guraçãodinâmi
a em um 
luster de servidores web. É modelado o problema da seleção de quaisnós do 
luster devem �
ar ligados e quais serão suas respe
tivas velo
idades, através de umproblema híbrido de programação linear e inteira. Para provar os 
on
eitos, a 
on�guraçãodinâmi
a e o 
ontrole GTQM de QoS são implementados em um 
luster de servidores webbaseado em Linux e MySQL. O ambiente de testes 
onstruído é baseado em um padrãoindustrial, que de�ne um 
onjunto de interações web 
om transações de ban
o de dadose seus respe
tivos prazos de tempo real, o que permite a geração de uma 
arga real de
omér
io eletr�ni
o.
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Chapter 1
Introdu
tion

To have a great idea, have a lot of them.

– Thomas A. Edison1.1 Introdu
tionRe
ently, it has been a strong 
on
ern to system design resear
hers the development ofenergy-e�
ient systems. This 
on
ern appeared preeminently for ubiquitous 
omputingsystems, be
ause of the need to in
rease lifetime of the batteries, given the pervasivenature of the appli
ations, where mobile devi
es depend on the batteries to work. Thenit be
ame ne
essary to redu
e energy 
onsumption, as the te
hnology for the batteriesdoesn't improve as fast as the need for power in
reases. Furthermore, batteries alwayshave weight and size that sometimes are restri
ted by the appli
ation. Another reason isthe 
ost redu
tion and improved reliability a
hieved by the lower heat dissipation.Ubiquitous 
omputing 
omprise also all time 
riti
al embedded appli
ations. Thesereal-time systems have time restri
tions, and need extra reliability. One way to in
reasedependability of real-time systems is by improving their energy e�
ien
y. However, toshow how this 
on
ern is new in the resear
h area, by the end of the last de
ade, theneed for energy-e�
ien
y was not predi
ted. In a survey on the dire
tions of the resear
hon real-time systems [94℄, in a 10-year predi
tion about the needs of the these systems,nothing is mentioned about energy 
onsumption.After a period of development of energy-e�
ient methods only for the design of mo-bile systems, the �rst work to present a 
ase for power management in web servers waspublished in 2002 [24℄, from the IBM resear
h group, breaking with the tradition thatfo
used power management resear
h only for portable and handheld devi
es, to fo
us on



1.1 Introdu
tion 2web servers. The work was motivated by the fa
t that web servers experien
e large peri-ods of low utilization, presenting an opportunity for using power management to redu
eenergy 
onsumption with minimal performan
e impa
t.Energy optimization in server 
lusters may be done in multiple subsystems, su
h asthe mi
ropro
essor, disks, memory, and memory 
a
he. The best result will be obtainedwhen all these subsystems are all deployed with some Power Management te
hniques.However, ea
h subsystem is a 
ompletely di�erent area of resear
h. People working with
a
he algorithms are proposing energy e�
ient algorithms, and also for disks or memory.One review that brie�y des
ribes some e�orts in ea
h subsystem is in [21℄. For example,in the memory resear
h area, there are problems su
h as properly laying out data a
rossthe memory banks and 
hips so that the server 
an use low-power states more extensively.There are also 
a
he repla
ement poli
ies that sele
tively keep blo
ks from 
ertain disksin the main memory 
a
he to in
rease their idle times, leaving the disks in low powermode for a longer period. Be
ause of this breadth of resear
h areas, in this thesis we willaddress lo
al and 
luster-wide energy management te
hniques for heterogeneous systems,attaining only to the pro
essor subsystem. Heterogeneity o�ers an extra opportunity toenergy minimization, be
ause it adds more variables to the problems, and real 
lustersmay be
ome heterogeneous very soon if newer 
omponents are added.This thesis aims at studying energy-e�
ient te
hniques for web servers. There are anumber of servi
es today that depend on the Internet, su
h as ele
troni
 
ommer
e, busi-ness to business (B2B) appli
ations, appli
ation and databases servers, et
. In Brazil, aresear
h made by the S
ien
e and Te
hnology Ministry, showed that the 
ountry is amongthe ten 
ountries that uses more the Internet [66℄. Servi
es like the Federal Revenue,banks, ele
troni
 government, and mostly ele
troni
 
ommer
e, are growing fast. Theseservi
es are globally 
onsidered essential for the growth of the so 
alled �new e
onomy�,that 
alls for lower 
osts, lower interest rates, and is very dependent on the information[26℄. For all these reasons, power redu
tion on data-
enters represents a new resear
h areathat is strategi
, as energy-e�
ient produ
ts will dominate the market. And it is evenmore strategi
 
onsidering the world wide e�ort of 
ompanies to be
ome more environ-mentally sustainable, be
ause this re�e
ts in the 
ompanies market value.E-
ommer
e, e-banking, and other related appli
ations involve high 
omplexity, withdatabases transa
tions and multi-tiered server 
lustering. These appli
ations are oftenmodeled with real-time 
hara
teristi
s, be
ause a minimum level of 
ustomer satisfa
tionmust be guaranteed for the su

ess and survival of the 
ompany. This is so 
ru
ial be
ause



1.2 Motivation 3today many enterprises rely only on the ele
troni
 means to sell their produ
ts. Manyworks have modeled e-appli
ations with real-time 
hara
teristi
s. For example, [31℄ showsthe real-time requirements of e-
ommer
e, addressing mainly the timeliness, among otheraspe
ts; [96℄ presents proto
ols that 
an be used to dete
t when real-time 
onstraints areviolated; and [39℄ des
ribes a real-time middleware to support e-
ommer
e appli
ations.In addition to real-time 
hara
teristi
s, large systems to host e-
ommer
e appli
ations
an show a huge ele
tri
ity 
onsumption [73℄, whi
h means high 
osts of ownership, makingpower management ne
essary. In [30℄, for example, the authors point out that data
enters operate at power densities of around 100 Watts per square feet. With all thereal-time and energy e�
ien
y issues in mind, ar
hite
tural 
hallenges arise when we tryto deploy ar
hite
tures to support e-appli
ations whi
h also need to satisfy Quality ofServi
e spe
i�
ations.A

ording to [57℄, the main premise of a power managed ar
hite
ture is to ensure thatthe system gets all the power it requires for full performan
e, and aggressively managesresour
es that are not in use to 
onsume less power. In real-time systems, however,hitting full performan
e means that the system is able to meet the prede�ned real-timespe
i�
ation, in
luding the QoS spe
i�
ations de�ned in the Servi
e Level Agreement(SLA). For this reason a real-time system generally o�er more room for power managementthan ordinary systems, be
ause the timing 
hara
teristi
s of the system are well-de�ned.Thus, one major aspe
t 
onsidered in this thesis is that the system must run with theminimal performan
e that still 
an keep the SLA agreement, so that we get the maximumenergy savings possible.1.2 MotivationThe reasons to study energy-e�
ient web 
lusters for e-
ommer
e appli
ations are three-fold. First, there is a need for a boost in e-
ommer
e web servers e�
ien
y, as the maingoals of the e-
ommer
e use in the enterprise are 
ost redu
tion and the 
reation of 
om-petitive advantage, and that is what makes energy-e�
ien
y mandatory. Se
ond, thenumber and variety of e-
ommer
e appli
ations are growing. An example is the inte-gration and 
ustomization of su
h appli
ations, su
h as the idea of web shopping malls,support for 
omparative shopping and business-to-business [42℄. As the 
omplexity ofappli
ations grow, 
lusters with more servers will be needed, and the power 
onsump-tion may be
ome prohibitive. The third reason is that the re
ent work on performan
e



1.2 Motivation 4evaluation for web server 
lusters, spe
ially for power-e�
ien
y and energy-e�
ien
y, has
lamored for more realisti
 test workloads. In this thesis we will propose new methodsthat 
an be independent of the workload, not using assumptions that does not hold inpra
ti
e, su
h as M/M/1 queueing models.Data-
enters usually adopt an ar
hite
ture made of a number of servers, regular 
om-puters, or blade servers [107℄, designed spe
i�
ally for the 
omposition of 
lusters forpro
essing or storage. Clusters ar
hite
ture must be �exible enough to support a range ofappli
ations. The question is: how 
an be attended all the availability and performan
erequisites fa
e to 
hanges in the demand and resour
es availability, with minimum energy
ost? The available servi
es in a data-
enter 
an vary with time, and thus the design mustbe �exible. Furthermore, it is not 
onvenient to design the system for the peak demandwith inadequate resour
e allo
ation.The work presented in [69℄ shows the ele
tri
ity demand in data-
enters, as part ofthe debate that took pla
e in the USA about the energy 
onsumption of the 
omputersystems that maintains the Internet. A

ording to that study, data-
enters have an energy
onsumption per area bigger than the 
onsumption presented in some industries, withinstalled powers of up to 400 W/ft2. However, although this 
learly suggests spa
e formore e�
ient proje
ts, the work also 
laim that it is di�
ult to �ll the gap between energye�
ien
y, and the reliability and fault toleran
e required by this industry. Designersstill rely on traditional te
hnologies and prefer not to test new energy-e�
ient options.In [47℄ it is exempli�ed that for many IT managers, to improve the energy-e�
ien
yimplies in redu
ing reliability. Today the market understands that ensuring the data-
enter reliability is asso
iated with high energy 
onsumptions. It is ne
essary to demystifythis fa
t, by means of good resear
h on energy-e�
ient and reliable ar
hite
tures.A re
ent report from EPA (U.S. Environmental Prote
tion Agen
y) [1℄ shows thatdata-
enters in the United States 
ould save up to $4 billion in annual ele
tri
ity 
osts ifmore energy e�
ient equipment and operations were applied, along with the use of bestmanagement pra
ti
es. The report pointed that data-
enters 
onsumed about 60 billionKWh in 2006, doubling in the past �ve years, with a tenden
y to double again in the next�ve year, 
osting about $7.4 billion annually. They estimated that existing te
hnologiesand strategies 
ould redu
e typi
al server energy use by an estimated 25 per
ent, withgreater energy savings possible with advan
ed te
hnologies.The energy 
onsumption of a server determines the operational 
osts of a data-
enter,be
ause the high power densities 
ause 
ooling and reliability problems. There is the



1.3 Thesis Overview 5need to use UPS (Uninterruptible Power Supply) units and ba
k-up generators. Besidesall problems, at least the generators present environmental issues, 
onsidering the mainenergy 
omes from 
lean sour
es. The 
ooling systems also represent high 
osts, be
auseof their 
omplexity. The Figure 1.1 shows the energy 
on�guration adopted in the data-
enter Cyber, in Brazil [25℄, owned by Brazil Tele
on. The �gure shows diesel generatorsand the ba
k-up unit for uninterruptible energy generation, in a high 
ost 
on�guration.

Figure 1.1: Energy delivery system for the Brazil Tele
om data-
enter. Legend: qd =distribution board, GMG = motor/generator set, S = ServerA

ording to [69℄, the total energy 
onsumption with servers in the USA is 
loseto 22 TWh, what 
osts about US$2 billion, 
onsidering the 
ost of US$100 per MWh.Talking about the environment, to generate this amount of energy results in 12 M tons ofnew CO2 thrown in the atmosphere. Therefore, the main motivation is multiobeje
tive,to minimize both �nan
ial 
osts and environmental impa
ts. The 
ost of ownership ofa data-
enter needs to be redu
ed to maximize the 
ompetitiveness of 
ompanies thatdepend on high dependable systems. It is ne
essary to develop new produ
ts that 
an beenergy-e�
ient, reliable, and also environmentally aware, to demystify that high reliabilitysystems need overdimensioned energy delivery systems.1.3 Thesis OverviewIn this work, we started with the need to spe
ify the system's QoS and then redu
ingthe system's performan
e to the minimum ne
essary to keep this QoS. In Chapter 3,



1.3 Thesis Overview 6we study the soft real-time web 
luster ar
hite
ture needed to support e-
ommer
e andrelated appli
ations. To meet this goal, we designed a testbed based on an industrystandard, whi
h de�nes a set of web intera
tions and database transa
tions with theirdeadlines, for generating a real workload and ben
hmarking e-
ommer
e appli
ations.The QoS is de�ned as the fra
tion of requests that meet the deadlines. We found outthat, in pra
ti
e, it is not so simple to measure the QoS. When the QoS is measureddire
tly, regardless of whether the request missed the deadline by a small amount of timeor by a large di�eren
e, the result is always the same. For this reason, only 
ountingthe number of missed requests in a period does not give good observations of the stateof the system. Then we made theoreti
al propositions of how to 
ontrol the QoS, notmeasuring the QoS dire
tly, but based on the probability distribution of the tardiness inthe 
ompletion time of the requests. We 
alled this new QoS metri
 Tardiness QuantileMetri
 (TQM). The proposed method provides �ne-grain 
ontrol over the QoS so thatwe 
an make a 
loser examination of the relation between QoS and energy e�
ien
y. Wevalidate the theoreti
al results showing experiments in a multi-tiered e-
ommer
e web
luster implemented using only open-sour
e software solutions.In Chapter 4, we des
ribe a simpli�ed way to implement performan
e 
ontrol in amulti-tier 
omputing system designed for e-
ommer
e appli
ations, so that the GTQMestimation 
an be put in pra
ti
e in the system. We show that the simpler SISO (SingleInput Single Output) 
ontroller, rather than a more 
omplex distributed or 
entralizedMIMO (Multiple Input Multiple Output) 
ontroller, works well, regardless of the presen
eof multiple 
luster nodes and multiple exe
ution time deadlines. Our feedba
k 
ontrolloop a
ts on the speed of all server nodes 
apable of DVS (Dynami
 Voltage S
aling),with QoS being the referen
e setpoint. By 
hanging the speed, we 
hange the positionof the p-quantile of the tardiness probability distribution. Then, the 
ontrol variable willbe the average tardiness provided by the GTQM method, and the setpoint the tardinessvalue that will position this p-quantile at 1.0, value at whi
h a request �nishes exa
tly atthe deadline. Doing so will guarantee that the QoS will be statisti
ally p. We test thismethod in a SISO PIDF 
ontrol loop implemented in a multi-tier 
luster. We use opensoftware, 
ommodity hardware, and a standardized e-
ommer
e appli
ation to generatea workload 
lose to the real world. The main 
ontribution of Chapter 4 is to empiri
allyshow the robustness of the SISO 
ontroller, presenting a sensibility analysis of the four
ontroller parameters: damping fa
tor zeta, derivative �lter fa
tor beta, integral gain ki,and zero time 
onstant tau.The TQM method proposed in Chapter 3, although e�e
tive, is not perfe
t, be
ause



1.3 Thesis Overview 7it is based on assumptions on the shape of the probability distribution fun
tion of theworkload. The �rst question that arise is: how 
an we generalize? We answer thisquestion in Chapter 5. To generalize this idea we propose the Generalized TardinessQuantile Metri
 (GTQM). By using an on line 
onvergent sequential pro
ess, de�nedfrom a Markov 
hain, we derive quantile estimations that do not depend on the shape ofthe workload probability distribution, so that the metri
 
an be used with any workload,that is, the QoS measure be
omes distribution free. To evaluate the new metri
, wealso show pra
ti
al results in a three-tier web 
luster with QoS 
ontrol in an e-
ommer
eenvironment.The Chapter 5 is a departure from other works, in that: (a) it presents a method ofquantifying the QoS using a metri
 that is used itself in QoS 
ontrol (other works useusually the number of deadlines missed [52, 85℄); (b) the method works for any kind ofprobability distribution presented by the workload, and thus we 
an expe
t good resultsfor real workloads; and, (
) the results are obtained from a real testbed (not simulations)
omposed of a three-tiered web server 
luster running Linux and TPC-W, a real, industry-standard, e-
ommer
e appli
ation.When dealing with soft real-time web 
lusters, the bigger the average relative tardi-ness, the lower is the resultant QoS. Tardiness 
an then be used as a 
ontrol variable,be
ause tardiness does not 
arry only boolean information about QoS (whether the dead-line was met or missed), but it is a 
ontinuous value possible to be 
al
ulated for ea
h webintera
tion. Tardiness values show how 
lose the exe
ution was to the deadline, whi
henables �ne-grain 
ontrol over server speeds, and 
onsequently higher energy savings.After providing a method to 
arefully estimate and 
ontrol the QoS, using the DVSas a me
hanism to vary the system's performan
e, a se
ond 
on
ern that we study in thisthesis is how to turn o� servers when they are not needed, and how to optimize the speedsele
tion of servers. Be
ause 
lusters are often heterogeneous, using di�erent DVS settingsin ea
h server produ
es better energy savings. In a preliminary work, we investigatedlo
al nodes adjusting their DVS settings based on a global o�-line optimization, and wea
hieved extra power redu
tion up to 10%. Then we in
orporated on/o� me
hanismsand an optimization model that results in the optimal 
ombination of servers to handle aspe
i�
 load.In Chapter 6 we use a mixed integer programming (MIP) model in the 
luster re
on-�guration. The QoS is guaranteed by the GTQM statisti
al quanti�
ation of the responsetime, 
ompared to the deadline of requests. If the system needs to in
rease its 
apa
ity,



1.4 Thesis Contributions 8to keep the QoS in a prede�ned level, the 
luster may be re
on�gured dynami
ally by se-le
ting the appropriate 
ombination of frequen
ies, and the best 
ombination of ma
hines.We present two di�erent MIP models, one 
onsidering the sele
tion of only existing fre-quen
ies, what means the use of the dis
rete frequen
y immediately higher to the exa
ttheoreti
al frequen
y needed for a given workload (if speeds were 
ontinuous), and theuse of a 
ombination of two frequen
ies to a
hieve the exa
t theoreti
al frequen
y needed.This well known 
ombination s
heme was proposed by [53℄. It 
onsists on swit
hing pe-riodi
ally between two adja
ent frequen
ies during the exe
ution of a task. As the DVSoverhead in modern CPUs is negligible, this se
ond solution presents some key advan-tages. Besides, re
ent works [23, 34℄ showed that swit
hing pro
essor frequen
y very fastdoes not 
ause any reliability problem. In fa
t, it in
reases the MTTF of the pro
essor,be
ause it redu
es the average devi
e temperature, and 
onsequently also redu
es thenumber of temperature-driven failures.Still in Chapter 6, we show how to integrate a single QoS 
ontroller to the MIP solu-tion. Finally, in order to investigate di�erent alternatives of implementation, we 
omparethe use of one single 
ontroller with the MIP optimization, against several independent
ontrollers that simpli�es the optimization needed, but looses in power redu
tion.1.4 Thesis ContributionsWith the proposal of the TQM method in Chapter 3, our obje
tive is to have a meansof exploring the trade-o� between energy and QoS in 
omplex web systems, and for thiswe need to have a �ne grain 
ontrol of the QoS. Instead of using a QoS measure basedon the 
ounting of missed deadlines, we use the on-line measurement of tardiness in the
ompletion time of the requests, be
ause we veri�ed in pra
ti
e that 
ounting misseddeadlines results in poor a

ura
y and broad 
on�den
e intervals. Our 
ontribution is thestatisti
al guarantee that we 
an a
hieve for the QoS based on approximations for theprobability density fun
tion of the tardiness random variable. We show that the averagetardiness is dire
tly related to the QoS. Previous works that are said QoS aware [85, 90℄ donot allow the maintenan
e of the QoS at a pre
ise user prede�ned value. Our work di�ersfrom these approa
hes be
ause we apply a statisti
al inferen
e solution to guarantee theexa
t desired QoS level, aside from the fa
t that our target environment is e-
ommer
e.In addition, most previous work dealt only with requests with a single deadline for allrequests, whi
h are not typi
ally representative of e-
ommer
e appli
ations.



1.4 Thesis Contributions 9Normally the workload of a web system is assumed to have a spe
i�
 probabilitydistribution, be
ause it simpli�es the modeling. For example, when queueing theory isapplied, the simplest M/M/1 queueing models are based on Markovian workloads. Themore 
omplex G/G/1 queueing models generally do not have 
losed formulas, and if aG/G/1 model is assumed, bounds based on the tail probabilities are also applied. With theGTQM method presented in Chapter 5, We use no su
h assumptions, obtaining a three-fold 
ontribution: 1) we present a method of quantifying the QoS so that this metri
is used in QoS 
ontrol; 2) the method works for any kind of probability distributionpresented by the workload, and thus we 
an expe
t a good result for a real workload; and,3) the results are not based on simulations. The algorith GTQM is based on sto
hasti
approximations, and was proven to be free of the probability distribution. This is themost derired 
hara
teristi
 in any system modeling, but almost never feasible.We have shown in a previous work [48℄ that it is possible to 
hoose the system settingsso that the power is minimized and at the same time the average response time, givenby queueing theory, is su
h that a prede�ned amount of deadlines are met. However, itis di�
ult to have a good queueing model for a real e-
ommer
e environment that allowssimple analyti
al formulation of the response time, without having many non realisti
assumptions about the workload generation and servi
e times. The approa
h we use inthis work is based on a real e-
ommer
e s
enario.In the system re
on�guration presented in Chapter 6 we 
ombine two te
hnologies:QoS 
ontrol by means of feedba
k 
ontrol theory, and operations resear
h. First, thefeedba
k 
ontrol dynami
ally adjusts the frequen
y/voltage of the 
luster nodes to 
ontrolthe fra
tion of deadlines met; frequen
ies are set proportionally to how late or how earlyrequests �nish. To 
hange speeds, we rely on the support of Dynami
 Voltage S
aling(DVS), present in most modern CPUs (allowing the dynami
 setting of the frequen
yand voltage of the CPU 
ore), whi
h allows for quadrati
 redu
tion in energy, and 
ubi
redu
tion in the power 
onsumption of the CPU [101℄.Se
ond, we show how operations resear
h is introdu
ed in the system to a
hieve op-timal dynami
 
on�guration of the web 
luster, that is, whi
h nodes are on and o�, andat whi
h frequen
y. We model the problem of assigning speeds to servers, in
luding zerospeed (server o�), as a mixed integer programming problem, whi
h is a linear program-ing problem where some variables are integers and some are real variables, and solve itusing traditional linear programming te
hniques. Then, the 
ontribution is fourfold: (a)a novel way of 
ombining 
ontrol theory and MIP solutions; (b) modeling the dynami
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on�guration problem (i.e., on/o� of nodes and speeds of a
tive nodes) through mixedinteger programming problems; (
) 
omparing the e�
ien
y of higher-than-needed dis-
rete speeds (interspersed with idle periods) and pseudo-
ontinuous speeds (based on thetwo-speed s
heme of [53℄); and, (d) 
omparing a 
entralized SISO (Single Input SingleOutput) 
ontroller with a distributed SIMO (Single Input Multiple Output) 
ontroller.By modeling the optimization problem allowing heterogeneous ma
hines, with dif-ferent set of frequen
ies, we 
an a
hieve high power redu
tions 
ompared to other DVSs
hemes that 
onsider equal frequen
ies for all ma
hines, and only a prede�ned sequen
eof ma
hines to turn on and o�. One su
h solution is adopted in [30℄, whi
h we simulatedto make a 
omparison. Our optimization solution redu
ed the power usage up to 40%.Finaly, one important 
ontribution of this thesis is that it presents solutions and resultsobtained and tested in a real system. Although we were not able to test for large numberof servers (our testbed has up to 10 servers), as far as we know there is no publishedwork for hundreds of servers without being based only in simulations. We based ourimplementation in a real three-tier e-
ommer
e ar
hite
ture, using Apa
he, PHP, MySQL
luster, and a real e-
ommer
e web store implementation, the TPC-W, that was designedfor ben
hmarking e-
ommer
e 
ommer
ial systems.



Chapter 2
Related Work

A theory has only the alternative of being wrong. A model

has a third possibility - it might be right but irrelevant.

– Manfred EigenThis 
hapter presents a survey on energy e�
ient te
hniques and methodologies. Weare going to introdu
e with general energy e�
ient resear
h for real-time systems, andthen re�ning to the main goal, whi
h is to pay attention only to the works related tolo
al and 
luster-wide energy management te
hniques for heterogeneous server 
lusters,preferably with QoS awareness2.1 Energy-e�
ient SystemsEnergy 
onsumption optimization 
an take pla
e in any stage of a system's design, fromthe hardware and mi
roele
troni
s, the operating system, to the appli
ation level. Thisis a di�
ult task, be
ause there is always a tradeo� between energy and performan
e. Inreal-time systems, the problem is even harder, be
ause there is a timeliness 
onstraint tobe met. There are some surveys on the literature on this subje
t. For example, in [9℄power optimization te
hniques in all system levels are presented, 
onsidering that themajor energy 
onsumers are the CPU, memory, and 
ommuni
ation. In [55℄, a survey onenergy saving te
hniques for all 
ommuni
ation layers is presented. In [49℄ te
hniques forall layers are presented, but with fo
us on multimedia appli
ations and wireless networks.Also in [99℄, power redu
tion te
hniques are presented for the digital logi
, the 
ompiler,the operating system, and the network. At the OS level, they take into a

ount thepro
essor speed, input/output devi
es, measure of energy 
onsumption, quality of servi
e,and jitter.



2.1 Energy-e�
ient Systems 12Some energy-e�
ient related terminologies are important to note. The systems that
an redu
e their power 
onsumption during runtime are 
alled power-aware. There arealso the low-power systems, whi
h are di�erent. [20℄ de�nes power-aware systems as thosethat 
an minimize their energy 
onsumption by adapting to the 
hanges in its operatingpoint. On the other hand, low-power systems are those that had taken energy into a

ountin their design, aiming at a better energy 
onsumption without loss of performan
e.We presented a brief survey on pro
ess s
heduling for real-time systems with energyoptimization in [10℄. Pro
ess s
heduling is a well known optimization problem, and itsasso
iated de
ision problem, that is, wheather the task set is s
hedulable or not, evenwithout some power budget restri
tion to meet, belongs to the NP-
omplete 
lass. Thiswas proved in [45℄, by transforming from the 3-PARTITION problem, what makes theproblem belong to the NP-hard 
lass. The �rst paper to address this problem is [106℄.They introdu
ed a metri
 to evaluate the energy 
onsumption 
alled MIPJ, or milions ofinstru
tions per joule. They observed that in a ten years of evolution, the pro
essors thatimproved the performan
e from 1 MIPS to 200 MIPS, had an in
rease from 1 MIPJ toonly 5 MIPJ. That is, power 
onsumption in
reased 40 times. They present a te
hniquethat 
onsists in redu
ing the pro
essor frequen
y and voltage during the busy time, sothat the idle time is redu
ed to a minimum, as idleness means energy loss. Then severalother works appeared for pro
ess s
heduling. Some of them use EDF s
heduling, andsome use Sla
k Re
lamation te
hniques to try to redu
e idleness. A small list of papersin this area is: [6, 67, 68, 72, 77, 83, 110, 112℄Impre
ise 
omputation whi
h relates to reward based 
omputing is aimed at deliveringa breadth range of QoS for real-time appli
ations. They are usually multiple versionsoftware, ea
h with di�erent reward restri
tions. Some impre
ise 
omputation paperswith energy optimization appear in [5, 86, 87℄. Te
hniques for soft-real time systems
onsidering QoS for multimedia appli
ations in mobile systems appear in [111℄. In fa
t, inthe beginning, the resear
h on power-aware and low-power systems were mostly dire
tedto mobile systems, whi
h have the limitted battery lifetime problem. One example is thework in [17, 18℄, where data repli
ation is used in a mobile appli
ation, based on ad ho
networks, to avoid that the network be
ome disjoint at some time be
ause of shortageof energy from batteries. A Bayesian-Fuzzy de
ision model is used as a te
hnique toimplement the required de
ision making pro
ess, allowing to deal with the un
ertaintypresent in the ad ho
 network.The mentioned s
enario, where power management were only studied for handheld



2.2 Power Management in Web Servers 13and portable mobile systems, 
hanged after the paper [24℄, whi
h showed the importan
eto redu
e power 
onsumption also for web servers, be
ause web servers experien
e largeperiods of low utilization, presenting an opportunity for using power management toredu
e energy 
onsumption with minimal performan
e impa
t, but for a di�erent reason:redu
e 
osts and also environmental impa
ts asso
iated with energy waste.2.2 Power Management in Web ServersThe seminal papers addressing energy-e�
ient web server systems often 
onsidered ho-mogeneous systems or single servers to simplify, but they are important as they were theseed to the more 
omplex te
hniques developed later. They introdu
ed 
luster re
on�g-uration te
hniques and lo
al or global DVS poli
ies. In this se
tion we will look at themost important seminal work, paying attention on how their energy redu
tion algorithmswork.The paper [29℄ is the �rst to promote a resear
h agenda to improve the energy e�
ien
yof Internet server sites. They use the term JOP (Joules Per Operation) to quantify theenergy minimization needed to deliver a servi
e at a given level of request thoughput. Theproposal is an energy-
ons
ious re
on�guration te
hnique with all servers homogeneous.Ma
hines are turned on and o� based on the average utilization. For a threshold T , ifthe swit
h dete
ts that the average utilization has fallen below TN/(N − 1), where Nis the number of servers, then it sele
ts a server to be put in standby. With this simplealgorithm, the request tra�
 is 
on
entrated on the minimal set of servers that 
an handlethe load.In [28℄ they propose a resour
e management ar
hite
ture for hosting 
enters 
alledMuse. It de�nes poli
ies for adaptive resour
e provisioning in hosting 
enters using ane
onomy approa
h, 
onsidering energy as a resour
e. The e
onomy framework has a pri
e-setting algorithm that determines e�
ient resour
e assignments by �selling� the availableresour
es at a pro�t to the highest bidders. The system may 
hoose not to sell idle 
apa
itywhen it is e
onomi
ally preferable to step down that 
apa
ity to redu
e 
osts. This workfo
us on the framework for resour
e management, not spe
i�
ally on the algorithm toredu
e energy.In [79℄ is presented a re
on�guration algorithm for a 
luster of servers, with theonly purpose to turn on and o� servers. They 
onsider multiple resour
es, and for ea
hresour
e, they use an independent PID 
ontroller whi
h output is the ex
ess demand for



2.2 Power Management in Web Servers 14the resour
e. The 
ontroller with largest output is used to determine the ideal 
luster
on�guration at ea
h point in time. An early version of this paper appeared in [78℄, wherethe a
ronym VOVO (Vary-On Vary-O�) was 
oined to represent the method of turning(varying) on and o� the server nodes.In [40℄ the IVS (Independent Voltage S
aling) and the CVS (Coordinated VoltageS
aling) methods were introdu
ed. In the former, ea
h server node de
ides lo
ally its fre-quen
y value, while in the latter s
heme, all nodes operate 
lose to the average frequen
yfor the whole 
luster. For this, they use a 
entralized monitor that broad
asts the averagefrequen
y to all nodes. They 
onsider that pro
essors may vary its frequen
ies 
ontinu-ously in a range. They test �ve 
ombinations: IVS alone, CVS alone, VOVO alone, IVSwith VOVO, and CVS with VOVO. They use a simulation model of a web server 
lusterrunning workloads 
onstru
ted from the server a

ess logs 
onstru
ted from real websites.The pro
ess of turning servers on and o� with IVS is similar to the one in [29℄, based inthe utilization of ea
h node. For the CVS, they use the model P (f) = c0 + c1f
3, repre-senting stati
 and dynami
 powers by the 
onstants, and multiplying by the number n ofservers to a

ount for the power of the whole 
luster. Then they 
ompute this aggregatepower for n servers, for n−1, and for n+1, to obtain the best frequen
ies to vary on andto vary o� a node. Then, given the 
onstants c0, and c1, the optimum average frequen
yrange for the 
lusters with n servers is:

fvaryoff (n) ≤ CPU Frequen
y ≤ fvaryon(n)The IVS method showed a power redu
tion from 20% to 29%, and CVS a
hieved aslightly better redu
tion that may not justify the extra implementation 
omplexity. Upto 50% were a
hieved by adding VOVO, 
ompared to a not power managed system, thatmeans all ma
hines turned on running at the maximum frequen
y.The work in [41℄ is for single servers. They propose three te
hniques: the �rst te
h-nique is a task-based DVS poli
y with a feedba
k 
ontrol me
hanism. There is a responsetime goal to be met, and every quantum of time T , the algorithm steps up or down thefrequen
y depending on the measured response time. This DVS poli
y 
onserves the mostenergy for intermediate load intensities. The se
ond te
hnique uses request bat
hing to
onserve energy during periods of low load intensity. The network interfa
e pro
essor a
-
umulates in
oming requests in memory, while the server pro
essor remains in a low-powerstate. The server pro
essor awakens when an a

umulated request has been pending forlonger than a bat
hing timeout. Request bat
hing 
onserves the most energy for low load



2.3 DVS and Dynami
 Con�guration 15intensities. The third te
hnique uses both DVS and request bat
hing to redu
e pro
essorenergy usage over a wide range of load intensities.[80℄ employ Power-Aware Request Distribution (PARD) at the load-balan
ing front-end of a 
luster serving dynami
 web workloads. The load measure is based on the numberof 
onne
tions, and is used to 
al
ulate the number of ma
hines to be turned on. Thiste
hnique, like many others where the on/o� algorithm is based only in a number, 
annot�nd an optimal solution, be
ause it 
annot spe
ify whi
h parti
ular server will be turnedon, therefore is only useful for homogeneous servers. This di�ers 
ompletely from ourapproa
h that will be presented in Chapter 6, where we 
an 
hoose whi
h server will beon, without any prede�ned sequen
e.Our �rst work to preliminary address the problem of assigning frequen
ies to thenodes of a 
luster was shown in [11℄. In that work we used a pre
omputed table to de�neea
h frequen
y for the servers, normalized to the maximum speed, and 
ompared with the
ase where all ma
hines re
eive the same normalized speed. This work was motivated bythe work presented in [109℄, where they adopt the method of using o�-line optimizationto build a table for on-line look up, but there the intention was to determine the numberof a
tive nodes, in a on/o� dynami
 me
hanism.2.3 DVS and Dynami
 Con�gurationWe now look at the most re
ent works that used DVS and/or dynami
 
on�guration(VOVO) to redu
e power. We must pay attention to what level of QoS awareness ea
hmethod presents. Some works simply do not take into a

ount QoS, others have some kindof QoS guarantees, reserving resour
es for the worst 
ase load s
enario, but sometimesoverprovisioning the system. Our work tries to redu
e the QoS at the minimum levelspe
i�ed by the SLA, what will redu
e power 
onsumption more than the other methods.The work in [90℄ used a feedba
k loop to regulate the voltage and frequen
y as a meansof providing QoS awareness. Their 
ontroller uses utilization as the 
ontrol variable aimingto keep it around a derived utilization bound that was shown to be a su�
ient 
onditionof s
hedulability. As ex
eeding this bound does not ne
essarily imply in missed deadlines,having this utilization bound as a 
ontrol set-point a
hieves good results in guaranteeingthe QoS 
lose to 1.0. This bound guarantee is based on s
hedulability tests, making ittoo 
onservative, and the system overprovisioned.One paper that we used extensively as a basis of 
omparison was [85℄, whi
h presents
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 Con�guration 16a 
luster-wide QoS aware te
hnique based on lo
al DVS and 
luster re
on�guration. Inthat work, they use a lo
al interval-based DVS te
hnique without optimization, based onthe 
al
ulation per interval of the real-time utilization U =
∑

i
Ci

Di
. Ci is the average 
om-putation time and Di is the deadline, and they set the frequen
y to the lowest availabledis
rete frequen
y bigger than Ufmax, where fmax is the maximum frequen
y availablein the pro
essor. The dynami
 
on�guration te
hnique is done by de�ning a sequen
e ofservers to be turned on/o�, ordered by the energy-e�
ien
y of ea
h server. The short
om-ings are that it must abide by this ordering (to turn them on and o�), loosing optimality,and that the DVS s
heme is lo
al, making it potentially less power e�
ient.The same DVS te
hnique from [85℄ is used in [109℄, whi
h presents a te
hnique 
alledLAOVS (Load-Aware On-o� with independent Voltage S
ale), where the determination ofthe a
tive node number is made using a table 
omputed o�-line. For ea
h load value, thebest number of a
tive nodes is obtained 
onsidering homogeneous servers. Interval basedDVS te
hniques were studied in [88℄. This is an important work be
ause they evaluateDVS poli
ies for power management in systems with unpredi
table workloads, the 
ase forweb servers. The te
hnique used in [109℄, and [85℄, is the appli
ation-oblivious predi
tion,in whi
h the system real-time utilization U is monitored periodi
ally, and if the systemis fully utilized, the speed is in
reased to the next available dis
rete frequen
y, otherwisethe speed s is updated as the smallest dis
rete frequen
y higher than s.U . They also showmore 
omplex te
hniques whi
h attempts to predi
t performan
e needs by monitoring thearrival rate and CPU requirements of ea
h request, rather than simply observing resour
erequirements.Both works [85℄, and [90℄, do not allow the maintenan
e of the QoS at a pre
ise userprede�ned value. The TQM and GTQM methods presented in Chapter 3 and Chapter 5di�er from these two approa
hes be
ause we apply a statisti
al inferen
e solution to guar-antee the exa
t desired QoS level. The goal of TQM and GTQM is to maintain/
ontrolQoS at a 
ertain level. This 
an be done by 
ontrolling the QoS dire
tly, as in [64℄ and[91℄, but this turned out to be problemati
 be
ause with the QoS de�ned as a ratio ofdeadlines met to the total requests, a large number of requests is ne
essary to obtainnarrowed 
on�den
e intervals. Furthermore, the QoS will saturate at 1.0, 
ausing anasymmetry problem and instability, as shown in Chapter 3. In [64℄ and [91℄, however,they used a more 
ompli
ated 
ontrol, based on a se
ond 
ontrol loop for the utilization,that 
an solve the problem of deadline miss ratio saturation at 0, be
ause the saturation
ondition of both 
ontrollers are mutually ex
lusive. In 
ontrast, in this thesis we proposeto 
ontrol the QoS based on the average tardiness of the web intera
tions.



2.3 DVS and Dynami
 Con�guration 17In [2℄, feedba
k 
ontrol is used to a
hieve overload prote
tion, performan
e guarantee,and servi
e di�erentiation, based on the same 
on
ept of utilization bound presentedby [90℄, thus aiming to meet all deadlines. However, that work applies adaptation of QoSto server load 
onditions, where the 
ontroller a
tuator 
an o�er degraded servi
e levelsa

omplished by 
ontent adaptation. The web 
ontent (e.g., images) is prepro
essed andstored in multiple 
opies that di�er in quality and size. Hen
e, the approa
h is di�erent,besides the fa
t that their ar
hite
ture is primarily aimed for stati
 web 
ontent.Similarly, an autonomi
 system is des
ribed in [102℄ to allow administrators to setsystem properties like QoS. For this, they apply 
ontrol theory with 
omplex feedba
koptimization te
hniques where future environment inputs and the future 
onsequen
es ofthe 
ontrol a
tions are taken into a

ount during optimization, whi
h is multiobje
tivein
luding power optimization goals. The QoS is de�ned as response time and is useddire
tly as the 
ontroller set-point. However, the fo
us is more at the 
ontrol theory ratherthan the implementation of a real e-
ommer
e environment; the workload is derived froman Internet servi
e provider and they assume 
ontinuous DVS settings. For e-
ommer
eenvironments, an average response time goal alone 
annot tell mu
h about the ful�llmentof the real-time rules. In this sense, this work is 
omplementary, be
ause it may be appliedto our statisti
al inferen
e to a
hieve the desired QoS proportion.Work using queueing theory to model multi-tiered web ar
hite
tures [61℄, [62℄, and[100℄ is another possibility to 
ompute and 
ontrol the QoS probabilisti
ally. We haveshown in a previous work [48℄ that it is possible to 
hoose the system settings so that thepower is minimized and at the same time the average response time, given by queueingtheory, is su
h that a prede�ned amount of deadlines are met. However, it is di�
ultto have a good queueing model for a real e-
ommer
e environment that allows an easyanalyti
al formulation of the response time without having many non realisti
 assumptionsabout the workload generation and servi
e times. The approa
h we use in this thesis isbased on a real e-
ommer
e s
enario.A possible approa
h to dynami
 
on�guration of web servers is to use N M/M/1queues and formulate the optimization problem based on the probability distribution ofthe waiting time given by queueing theory. The problem is that the assumption of M/M/1queues is far from reality, and the queueing equations make the problem nonlinear, anddi�
ult to solve optimally. A re
on�guration te
hnique for a server 
luster based on a
M/M/m queueing model was used in [61℄ to de�ne the optimal number of a
tive serversanalyti
ally. The limitation is also that the pro
essors are homogeneous, and the solution
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 Con�guration 18is only the number of servers to be turned on, not an optimal 
ombination of heterogeneousservers like in our work.Another work related to data 
enter power optimization is [30℄, whi
h presents asolution to the problem of �nding a set of ma
hines to be turned on to run appli
ations ina hosting 
enter. They 
onsider multiple appli
ations sharing the data-
enter. They applyon/o� optimization to determine the number of servers (mi) allo
ated to ea
h appli
ation
i and their frequen
y (fi) at any instant, and all mi servers of appli
ation i run at thesame frequen
y fi. The limitation of that work is the fa
t of frequen
ies must be the samefor all servers, and all servers have the same power performan
e. Although we look onlyat one single appli
ation, our optimization 
onsider di�erent ma
hines, with di�erent setof available frequen
ies, and hen
e we 
an look for 
ombinations of servers/frequen
iesthat will redu
e power globally inside the 
luster. We will show in Se
tion 6.5.1 thatfor a given 
ombination of servers, we 
an redu
e up to 40% the power 
onsumption ofthe 
luster, 
ompared with [30℄, and up to 92% 
ompared with a s
heme that does onlyfrequen
y s
aling, without turning servers o�.In [50℄ the authors present the design of a server 
luster that 
an adjust its 
on�gura-tion and the s
heduling of requests to optimize the power/throughput ratio. They modelanalyti
ally the request distribution among servers and from 
lients, as well as the typesof nodes and types of resour
es. Intra-
luster 
ooperation is ne
essary in that 
ase, wherea 
ontent-oblivious load balan
er is used. The optimization problem is to �nd the requestdistribution from 
lients to servers, and among servers, in su
h a way that the demand forea
h resour
e is not higher than its 
apa
ity, and to minimize power/throughput. How-ever, the authors do not model DVS nor boot time for 
hanging 
on�gurations. Also,their solution is not optimal, as they use simulated annealing in the optimization.In [52℄, a multi-tier web system is 
onsidered for minimizing the total energy expen-diture of the multi-stage pipeline subje
t to soft end-to-end response-time 
onstraints.They use the average delay of a M/M/1 queue for the delay of ea
h stage, and model anoptimization problem that 
an be solved analyti
ally, where the end-to-end delay is 
om-puted as ∑N

i=1 DCPU
i +Dblock

i , where DCPU
i and Dblock

i are, respe
tively, the CPU fra
tionand the I/O fra
tion of the total delay. The summation is over ea
h tier i, and only onema
hine is 
onsidered for ea
h tier. The solution is applied for multiple homogeneousma
hines in ea
h layer. Our work di�ers be
ause we apply intra-layer optimization and
onsider heterogeneous servers.In [75℄ is presented a framework to support dynami
 adaptation of appli
ations, su
h
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luster infrastru
ture. The proposed method 
onsists of de�ning a reusableinfrastru
ture to monitor and adapt running appli
ations, and a 
ontra
t-based adap-tation language for the expression of high-level adaptation poli
ies. Adaptation s
riptsare used to represent the adaptation logi
 and a 
ontra
t manager interprets the powermanagement 
ontra
t. The main advantage is to provide high-level guidan
e from admin-istrators and developers to 
ontrol the energy/performan
e tradeo�, that is, to meet theadaptation requirements of the appli
ation.2.4 QoS ControlControl theory has been used many times, in the last de
ade, as the solution for perfor-man
e 
ontrol in 
omputing systems. A seminal work appears in [95℄, where the authors
hange the paradigm of s
heduling, applying 
ontrol theory to maintain the performan
eof the system stable. Moreover, as pointed out in [56℄, the 
omputing systems for today'sappli
ations will rely on 
ontrol theory to make systems that 
an a
hieve the desiredperforman
e obje
tives.In [63℄, di�erent 
lasses of requests are 
onsidered. The 
ontrol a
tuator does not useDVS, but enfor
es desired relative delays among 
lasses via dynami
 
onne
tion s
hedul-ing, that is, they use feedba
k 
ontrol theory to design an adaptive 
onne
tion s
heduler.They also apply pro
ess reallo
ation. The 
ontroller rea
t to load variation by allo
at-ing more pro
ess to one 
lass and deallo
ating pro
ess to another 
lass, with the goalof providing di�erentiated servi
es. That work shows 
learly the problem of having anunpredi
table variable in a 
ontrol system: the sampling period used was 30s, and thesettling time a
hieved was 270s, whi
h is the time for the Web server to enter steadystate.QoS 
ontrol 
an also be done by sensing QoS dire
tly [64℄, [91℄ rather than by a sta-tisti
al approa
h like ours. However, this may be problemati
, be
ause the QoS measurewill have a saturation point in 1.0 very 
lose to the desired setpoint. This asymmetry 
an
ause instability, as we will show in Chapter 3. In [64℄ and [91℄, they solved this prob-lem with a more 
ompli
ated 
ontrol, based on a se
ond 
ontrol loop for the utilization,and the saturation 
ondition of utilization and QoS was proved to be mutually ex
lusive.These works use a
tuators that 
hange the s
heduling of the system, performing admission
ontrol. They also do not apply DVS.In [90℄ the authors used a feedba
k loop to regulate the voltage and frequen
y as a



2.4 QoS Control 20means of providing QoS awareness. Their 
ontroller uses utilization as the 
ontrol variableaiming to keep it around a derived utilization bound. However, it di�ers from our workbe
ause their te
hnique is 
onservative, providing a QoS guarantee always 
lose to 1.0, not
ontrolling QoS at a �ne-grain setpoint. Computing systems with utilization 
ontrol haveusually a di�erent goal, whi
h is to enfor
e a 
ertain utilization by means of admission
ontrol, not DVS, to prevent overload 
onditions. Other re
ent works in this area are[44, 65, 103, 104℄.Control and queueing theories have been proved powerful tools for system modeling,and to be used together. In [65℄ a queueing model based on Poisson workload is used to
ompensate, with some predi
tability, the delayed response of 
ontroller metri
s 
ausedby averages. The authors 
laim that the di�eren
e between the workload assumption andthe real workload 
an be 
ompensated by the feedba
k 
ontroller. The use of a PIDF
ontroller for sto
hasti
 systems is proved to be a valid idea in [84℄, where the authorsintrodu
e the generalized PID for sto
hasti
 systems of �rst and se
ond orders, with �ltersadded to the transfer fun
tion of the 
ontroller.In [105℄ is presented a power-e�
ient 
ontrol theoreti
 ar
hite
ture for data-
entersbuilt up of virtual ma
hines (VMs). Knowing that hardware 
omponents subje
t topower management a�e
t all VMs, they use an upper level MIMO 
ontrol to �nd auniform performan
e level for all VMs. To 
ontrol the response time, they use a lowerlevel 
ontrol with a response time set-point Rs, with the 
ontrol variable being the averagerelative response time r(k). As it is based on average response time, it 
annot guaranteepre
isely a spe
i�
 QoS level. Our work is 
omplimentary, be
ause we o�er with the TQMand GTQM workload estimation methods a novel 
hoi
e of 
ontrol variable that 
an beused in any 
ontrol of 
omputing systems, and that allows the 
ontroller to follow witha

ura
y a prede�ned QoS setpoint.



Chapter 3
Tardiness Quantile Metri


Measure what is measurable, and

make measurable what is not so.

– GalileoIn this 
hapter we introdu
e the Tardiness Quantile Metri
 (TQM) (published in [13℄)to quantify QoS statisti
ally. We make some theoreti
al propositions of how to 
ontrolthe QoS, not measuring the QoS dire
tly, but based on the probability distribution ofthe tardiness in the 
ompletion time of the requests. The proposed method provides �ne-grained 
ontrol over the QoS so that we 
an make a 
loser examination of the relationbetween QoS and energy e�
ien
y. We study the soft real-time web 
luster ar
hite
-ture needed to support e-
ommer
e and related appli
ations. Our testbed is based onan industry standard, whi
h de�nes a set of web intera
tions and database transa
tionswith their deadlines, for generating real workload and ben
hmarking e-
ommer
e appli-
ations. In these soft real-time systems, the quality of servi
e (QoS) is usually de�nedas the fra
tion of requests that meet the deadlines. When this QoS is measured dire
tly,regardless of whether the request missed the deadline by a small amount of time or by alarge di�eren
e, the result is always the same. For this reason, only 
ounting the numberof missed requests in a period avoids the observation of the real state of the system. Wevalidate the theoreti
al results showing experiments in a multi-tiered e-
ommer
e web
luster implemented using only open-sour
e software solutions.3.1 Introdu
tionOur obje
tive with the TQM is to have a means of exploring the trade-o� between energyand QoS in 
omplex web systems, and for this we need to have a �ne grain 
ontrol of



3.2 Appli
ation and Web Cluster Model 22the QoS. Instead of using a QoS measure based on the 
ounting of missed deadlines, weuse the on-line measurement of tardiness in the 
ompletion time of the requests, be
ausewe veri�ed in pra
ti
e that 
ounting missed deadlines results in poor a

ura
y and broad
on�den
e intervals. Our 
ontribution is the statisti
al guarantee that we 
an a
hieve forthe QoS based on approximations for the probability density fun
tion of the tardinessrandom variable. We show that the average tardiness is dire
tly related to the QoS.To maintain the user spe
i�ed QoS level, we used feedba
k 
ontrol logi
, based on aPID 
ontroller1; the 
ontrol variable used was the average tardiness instead of number ofmissed deadlines. Thus, we 
an show the 
onsequen
es to the system when the QoS ismaintained in a spe
i�ed level, whi
h is very important for the energy e�
ien
y, be
ausea system maintained in a lower QoS level is generally asso
iated with less resour
e usage.We prove the 
orre
tness of the proposed theoreti
al relation between tardiness andQoS. The performan
e evaluation we present is based on a real implementation of a webstore, using 
ommodity hardware and open-sour
e software. The workload is from anindustry standard transa
tional ben
hmark for e-
ommer
e, the TPC-W (see AppendixA, installed on a heterogeneous 
luster running Linux.3.2 Appli
ation and Web Cluster ModelOur 
luster model is shown in Figure 3.1, with a front-end server a
ting as a reverse proxy.The front-end is 
apable of SSL en
ryption/de
ryption, and will distribute the requeststo the web server nodes without en
ryption between front-end and web servers.Our 
luster has two layers after the front-end, with the appli
ation server and webserver running at the same ma
hine, and a se
ond layer for the databases. As the purposeof this work is to fo
us on the power management of the web 
luster, we repli
ate the webstore in many database servers to avoid bottlene
ks at that layer.3.3 QoS ControlThe goal of the system is to maintain/
ontrol QoS at a 
ertain level. This 
an be doneby 
ontrolling the QoS dire
tly, as in [64℄ and [91℄, but it turned out to be problemati
be
ause with the QoS de�ned as a ratio of deadlines met to the total requests, a reasonable1A proportional-integral-derivative 
ontroller (PID 
ontroller) is a 
ommon feedba
k loop 
omponentin industrial 
ontrol systems.



3.3 QoS Control 23
Internet

Front−end
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Database
servers

Web users

Server nodes

Figure 3.1: Cluster modelnumber of requests is ne
essary to obtain narrowed 
on�den
e intervals. Furthermore, theQoS will saturate at 1.0, 
ausing an asymmetry problem and instability, as will be shownin Se
tion 3.5. In [64℄ and [91℄, however, they used a more 
ompli
ated 
ontrol, basedon a se
ond 
ontrol loop for the utilization, that 
an solve the problem of deadline missratio saturation at 0, be
ause the saturation 
ondition of both 
ontrollers are mutuallyex
lusive. In 
ontrast, we propose to 
ontrol the QoS based on the average tardinessof the web intera
tions. For ea
h web intera
tion i, we de�ne tardiness by the ratioweb intera
tion response time (WIRT) to the respe
tive deadline. That is, tardinessi =
wirti

deadlinei
. A more detailed de�nition of WIRT will be given in Se
tion 3.4.2. In this se
tionwe show the relation between QoS and the average tardiness.The blo
k diagram for the 
ontrol logi
 is shown in Figure 3.2. As will be shown inSe
tion 3.3.1, the user spe
i�ed level of QoS is applied to a statisti
al inferen
e methodto obtain the ne
essary average tardiness for that QoS, and if the system is kept with thisaverage tardiness, the QoS is statisti
ally guaranteed to be in the spe
i�ed value. Thisaverage tardiness value is the set-point to the 
ontroller.

Statistical
inference

Control
logic system

Web server
QoS

setpoint

average
tardiness

tardiness
setpoint ferror

−
+

Figure 3.2: QoS 
ontrol logi
 blo
k diagramDes
ribed in Se
tion 3.3.2, our PID 
ontroller outputs a single frequen
y s
aling fa
tor
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u to be used to 
ontrol the DVS of all the servers. For ea
h server, u spe
i�es the
omputing 
apa
ity. When u = 0, the server will run at the minimum frequen
y, andwhen u = 1, at the maximum frequen
y. Any value in between will 
ause the server to
y
le periodi
ally between two available dis
rete frequen
ies, so that the average frequen
yis a value proportional to u (see Se
tion 3.3.3 for more details).3.3.1 Statisti
al Inferen
e: Tardiness Quantile Metri
 (TQM)In this se
tion we show some statisti
al tests of goodness of �t between the data andthe 
hosen probability distributions. We study more than one distribution in order to
hoose the best approximation. We also present the theoreti
al QoS formulation for ea
hdistribution.Using a large dataset, the authors in [35℄ showed that web tra�
, su
h as responsetime, 
an be modeled using heavy-tailed probability density fun
tions, whi
h have self-similarity property, spe
ially the Pareto distribution. We then veri�ed in pra
ti
e thate-
ommer
e tra�
 (i.e., WIRT and tardiness) do present a probability distribution 
loseto Pareto. Based on this distribution, we formulated the requirements for the system tomeet the spe
i�ed QoS.We also propose the use of a se
ond distribution, the Log-normal, whi
h has two pa-rameters that 
an be easily estimated on-line. The intuition behind using the Log-normaldistribution is the fa
t that the ratio exe
ution time to the deadline has an unrea
hablelower limit of 0, but has no upper limit, like some variables usually modeled by Log-normal(e.g., personal in
omes, toleran
e to poison in animals, et
) [51℄.The QoS and tardiness value are dire
tly related. The bigger the average relativetardiness, the lower is the resultant QoS. The reason we 
hose tardiness as a 
ontrolvariable, aside from the problems mentioned earlier, is that tardiness does not 
arry onlya boolean information about QoS: whether the deadline was met or missed, but it is a
ontinuous value possible to be 
al
ulated for ea
h web intera
tion, and its value showshow 
lose the exe
ution was to the deadline. This is a good solution for the problem of
hoosing the 
ontrol variable, be
ause the QoS dire
tly does not show as mu
h informationas the tardiness measure does. The QoS needs a big amount of web intera
tions tobe 
al
ulated with a

ura
y, making it inappropriate to use in the 
ontrol, and ea
hintera
tion 
arries only a boolean information about QoS: whether its deadline was metor missed. Our experiments show that the 
on�den
e interval of the QoS only be
omessmall after a 
onsiderate amount of time. For example, even for a hundred requests, the
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on�den
e interval results in a high value. On the other hand, the tardiness is a 
ontinuousvalue possible to be 
al
ulated for ea
h web intera
tion, and its value shows how 
losethe exe
ution was to the deadline. For this reason, the 
ontroller with the tardiness valueturns out to be more rea
tive and without dead-zones, i.e., the variable does not take along time to rea
t after the a
tuation of the 
ontroller output.Tho exemplify, supose the two s
enarios (a) and (b) of Figure 3.3. In 
ase (a), manyrequests are �nishing exe
ution just a small amount of time before the deadline, and afew are missing the deadline. In 
ase (b), the group of many requests has also missedthe deadline. In 
ase (a), the system will rea
t �rst if using tardiness to quantify QoS,be
ause the tardiness will be with a bad value, while the real QoS will be a

eptable,be
ause the requests didn't miss the deadlines yet. On the other hand, using the 
ountof QoS misses, the system will only rea
t in the situation depi
ted in 
ase (b).
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Figure 3.3: Bene�t of using tardiness to quantify QoSThe relation between tardiness and QoS is obtained from the probability densityfun
tion for the tardiness value. We derive this relation from the p-quantile 
al
ulation,that is, the tardiness value x su
h that P [X ≤ x] = p. Based on the tardiness de�nition,if the p-quantile is 1.0, then the QoS is p. Hen
e, we 
all this method of QoS measuringTardiness Quantile Metri
 (TQM). In the rest of this se
tion we will show the QoS-tardiness relationship for both Pareto and Log-normal distributions.TQM with Pareto DistributionIn Figure 3.4, we show the p.d.f. obtained from an experiment run for 2, 000 se
ondsand 26, 255 web intera
tions. There is a visual �t between the data and the Paretodistribution, but the Kolmogorov-Smirnov goodness of �t test returns a maximum valuebetween the empiri
al 
umulative distribution and the expe
ted Pareto value of 0.08,while the threshold ne
essary to a

ept the data as 
oming from a Pareto distributionwould be 0.01. Figure 3.4 shows that the �rst bar 
lose to zero is smaller than the se
ond
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h does not happen in a Pareto distribution. However, as we will show later,Pareto is still a good approximation to use.
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Figure 3.4: Tardiness p.d.f. and Pareto p.d.f.The representation of a Pareto probability density fun
tion is given by f(x) = k xk
m

xk+1 ,where the parameter k is related to the average µ of the distribution by µ = kxm

k−1
, and xmis the ne
essarily positive minimum possible value of X. Note that the tardiness value hasa minimum value of 0. For this reason, we use xm = 1 and the transformation x′ = x− 1.Then we obtain the following equation for the tardiness distribution:

f(x) =
k

(x′ + 1)(k+1)
(3.1)where k = µ+1

µ
. Let p be the level of QoS desired, that is, 0 ≤ p ≤ 1 denotes the fra
tionof deadlines that must be met. We 
an formulate the following theorem:Theorem 3.1 (QoS based on Pareto) If the tardiness value, de�ned in Se
tion 3.3, isa random variable with Pareto distribution, a level p of QoS will be a
hieved, with a
on�den
e level of 1− c

2
, where 1−c is the 
on�den
e level for the sample mean µ obtainedfrom the system, if the following relation holds:

µ − z c
2

σ√
N

=
1

log2

(

1
1−p

)

− 1
(3.2)where µ is the average value for a set of N samples obtained for the tardiness, σ is thestandard deviation for the same set, and z c

2

σ√
N

is the 
on�den
e limit for the mean with



3.3 QoS Control 27the desired signi�
an
e level c.Proof We will do the proof in two parts. First we show that the right side of the equationrepresents the value of the real mean of the data that makes the p-quantile equals 1.0.The web intera
tions with missed deadlines are those for whi
h tardiness resulted biggerthan 1. To have p deadlines met, we need the probability of 0 < tardiness < 1 to be p.Thus we need ∫ 1

0
k

(x′+1)(k+1) dx = p, resulting in 1 − 2−k = p ⇒ k = log2

(

1
1−p

). As theaverage µ in a Pareto distribution with minimum value positioned at x = 1 is given by
k

k−1
, with the transformation x′ = x− 1 we have k

k−1
= µ + 1, giving k = µ+1

µ
. Solving for

µ the equation µ+1
µ

= log2

(

1
1−p

), and adding the 
on�den
e limit, we obtain equation 3.2.The se
ond part is to 
onsider the 
on�den
e level. The sample mean µ obtaineddoes not represent the real mean of the data, but in half of the 
ases where the samplemean is obtained, this value will fall below the real mean, and for the other half will fallabove. To guarantee the QoS, we need the real mean below or equal to the right sideof the equation. Thus, if the sample mean is 
ontrolled in the lower limit given by the
on�den
e interval, the unfavorable 
ases will happen only in c
2
of the 
ases. This limit isrepresented in the left side of equation 3.2 by the term z c

2

σ√
N
.TQM with Log-normal DistributionNow we will show the same idea for another distribution, the Log-normal. A data hasLog-normal distribution if the natural logarithm of the data has a Normal distribution.Figure 3.5 shows the histogram of the natural logarithm of the tardiness data and thetheoreti
al Normal distribution, and also shows the Quantile-Quantile plot (right side)obtained using SPSS [93℄. The Q-Q plot is used to verify the deviation of a given datato the normality. The normality of the data will 
ause a straight line in the Q-Q plot.The plot is showing that the data is very 
lose to normal, with some variation on bothend tails. We also applied the Kolmogorov-Smirnov goodness of �t test in this 
ase andobtained a better �t, with 0.03 maximum di�eren
e between the measured and theoreti
al
umulative distributions, against 0.08 for Pareto (same 0.01 threshold). Thus, we havethe following theorem:Theorem 3.2 (QoS based on Log-normal) If the tardiness value, de�ned in Se
tion 3.3,is a random variable with Log-normal distribution, a level p of QoS will be a
hieved, witha 
on�den
e level of 1 − c

2
, where 1 − c is the 
on�den
e level for the sample mean µobtained from the system, if:
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Figure 3.5: P.d.f. of ln(tardiness) with the theoreti
al normal and the Q-Q plot
µ − z c

2

σ√
N

σ
= −

√

ln

(

1

1 − p2

) (3.3)where µ and σ are the average value and the standard deviation of the natural logarithmof the tardiness value, 
onsidering N samples.Proof Similarly to the Theorem 3.1, we have the p-quantile 
al
ulation and the additionof the same 
on�den
e limit. The proof of the right side of the equation follows. Let f(x)be a normal distribution with average 0 and standard deviation σ. Let b be the value of
x that results in ∫ b

−∞ f(x)dx = p. We have to solve:
1

σ
√

2π

∫ b

−∞
e−

x2

2σ2 dx = pwhi
h is solved using the square of this integral equation and the substitution r2 = x2+y2:
∫ b

−∞ e−
x2

2σ2 dx
∫ b

−∞ e−
y2

2σ2 dy = 2πσ2p2

∫ b

−∞

∫ b

−∞ e−
x2

2σ2 e−
y2

2σ2 dxdy = 2πσ2p2

∫

√
b2+b2

0
e−

r2

2σ2 2πrdr = 2πσ2p2Using u = r2 and du = 2rdr, we obtain 1− e−
b2

σ2 = p2, resulting in b = σ
√

ln( 1
1−p2 ). Thisresult is for a normal distribution with µ = 0. In order to have p of the deadlines met,we need a shifted normal distribution so that b = 0, be
ause the natural logarithm of thetardiness will be less than 0 whenever the deadline is met. Thus, for this to happen, weneed the average of the natural logarithm of the tardiness to be µ = −σ

√

ln( 1
1−p2 ), whi
his equation 3.3 without the 
on�den
e limit.
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ussionFor the TPC-W spe
i�
ation, where p = 0.9, the tardiness average is µ = 0.43068 us-ing the Pareto distribution, and the ratio ln(tardiness) average to the standard deviationof ln(tardiness) is µ

σ
= −1.28869. In the Pareto distribution, the on-line estimation ofthe tardiness average has a simpler implementation than in the Log-normal, but both 
anbe done with a low 
omplexity (O(1) for time and O(N) for spa
e). We will show resultsfor many values of spe
i�ed QoS in Se
tion 3.5, where we used a 
on�den
e limit of 2σ√

Nto test both assumptions, yielding a 
on�den
e interval of 95.45% for the sample mean,and 
onsequently 97.725% 
on�den
e level that the QoS will be equal or higher than thespe
i�ed value.3.3.2 Control Logi
We will make use of the 
lassi
 z−transform methodology to derive the equations for the
ontrol logi
. The z−transform is used in signal pro
essing to 
onvert a dis
rete timedomain signal, whi
h is a sequen
e of numbers, into a frequen
y domain representation.To make this 
onversion, the z variable, in the de�nition of the z−transform showed inequation 3.4, must be repla
ed by z = esTs , where s is the 
omplex parameter of theLapla
e transform and Ts is the sampling interval.
X(z) =

∞
∑

n=0

xnz−n (3.4)In equation 3.4, where xn is the nth sample of the signal x, the signal is 
omposed bythe most up to date sample, multiplied by z0, the previous sample, multiplied by z−1, andso on. Thus, this de�nition 
an be used to dis
over the approximate frequen
y domainrepresentation of a sampled signal. This is used in 
ontrol theory to build digital �lterswith the same behavior of the equivalent analog �lter.We applied the z−transform to dis
retize the Lapla
e equation of a PID 
ontroller,given by G(s) = KP + KI

s
+ KDs, where KP , KI , and KD are the proportional, integral,and derivative PID 
onstants, respe
tively. Using the simplest approximation2 to �nd zas a fun
tion of s, we obtained the following equation for the 
ontroller, whi
h is O(1) intime and spa
e for implementation.2Called the ba
kward di�eren
e, whi
h is given by z =

1

1−sTs

, and is obtained from a �rst order seriesapproximation to the z−transform
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outk = outk−1 +

(

KD

Ts

+ KP + TsKI

)

errork −
(

2KD

Ts

+ KP

)

errork−1 +
KD

Ts

errork−2 (3.5)where outk is the kth sample for the output (i.e., the frequen
y fa
tor u) of the 
ontroller,and errork is the kth sample for the error, whi
h is the di�eren
e between the set-pointand the a
tual value of the output (see Figure 3.2). For implementing equation 3.5, it isne
essary only to keep in memory the two latest error values, errork−1, and errork−2.The average and standard deviation were obtained by using a sliding window of size N .The implementation is O(1) in time for both the average and the standard deviation. Atea
h sample, the average value is updated by the sum of the new value and the subtra
tionof the oldest value. The spa
e 
omplexity is O(N) for both.As the fo
us of this 
hapter is not the 
ontroller itself, we will not address it here. InChapter 4 we address the 
ontroller showing an analysis of sensitivity to the parameters,and with improved 
ontrol dynami
s applying �lters in the derivative part. Here, for theproof of 
on
ept, we use values KP = 0.02, KI = 0.05, and KD = 0.02, and also thenumber of samples N = 200 that resulted in good responsiveness and stability.3.3.3 Speed SettingWe use a simple DVS s
heme that 
onsists in swit
hing between the two dis
rete valuesadja
ent to the desired frequen
y [53℄. This s
heme is a good solution to the 
ase of a
ontroller a
tuator, be
ause it o�ers a 
ontinuous, rather than dis
rete, operating point,so that the 
ontroller 
an have a 
ontinuous output. In this s
heme, a high prioritydaemon exe
utes periodi
ally with a duty 
y
le α with the exa
t width to stay in thehigher frequen
y, and the remaining of the period in the lower frequen
y.As we mentioned earlier, the DVS overhead in modern CPUs is negligible, and swit
h-ing frequen
y does not 
ause any reliability problem, it in fa
t in
reases the MTTF ofthe pro
essor, be
ause it redu
es the average devi
e temperature, and 
onsequently alsoredu
es the number of temperature-driven failures [34, 23℄.The frequen
y s
aling fa
tor u output by the QoS 
ontroller is broad
ast to ea
h servernode and ea
h server node i 
al
ulates the desired frequen
y fi given by fi = u(Fmax −
Fmin)+Fmin. The duty 
y
le of the DVS me
hanism is α, so that α||fi||−+(1−α)||fi||+ =
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fi, where ||fi||− is the highest available dis
rete frequen
y smaller than fi, and ||fi||+ isthe lowest available dis
rete frequen
y bigger than fi.We will show in Appendix B that the e�
a
y of this swit
hed DVS s
heme is betterthan using the lowest available dis
rete value higher than the ne
essary frequen
y.3.4 Implementation IssuesWe des
ribe the system 
omponents used in the implementation of our web store on the
luster, and show some implementation issues not dire
tly related to the QoS 
ontrol,su
h as the request distribution me
hanism, important time measurements, and serversturn-on/turn-o� poli
y.3.4.1 Hardware and SoftwareThe hardware used in the testbed, summarized in Table 3.1, is 
omposed of the front-end,four ma
hines for the web server tier, and three ma
hines for the database tier, besidesone ma
hine to exe
ute the emulated browsers, in the same 
on�guration as Figure 3.1.We 
hose this 
on�guration so that we were able to fo
us on the web/appli
ation serverlayer. This 
on�guration puts a load, in
luding SSL pro
essing, of 64% on the front-endand about 80% on the database servers, avoiding bottlene
ks.Table 3.1: Hardware usedNode Fun
tion Freq. available (MHz) Spe
i�
ationsyellow front-end Not appli
able AMD Athlon 64 X2 DualCore 4200+ 2GB RAMpm1 web 600, 800, 1000, 1200, Pentium M 1GB RAMserver 1400, 1600, 1800bla
k web 1000, 1800, 2000 AMD Athlon 64server 3000+ 1GB RAMsilver web 1000, 1800, 2000, AMD Athlon 64server 2200, 2400 3400+ 1GB RAMgreen web 1000, 1800, 2000 AMD Athlon 64server 3000+ 1GB RAMantimony database Not appli
able 1 CPU Intel Xeon3.80GHz 8GB RAMoxygen database Not appli
able 4 CPUs Intel Xeon3.60GHz 4GB RAMhydrogen database Not appli
able 4 CPUs Intel Xeon3.60GHz 4GB RAMThe software used was the Apa
he web server, the PHP s
ripting language, and thedatabase PostgresSQL. For the TPC-W we used the spe
i�
ation 
ompliant implemen-tation available at the PgFoundry PostgreSQL development group [76℄. The front-end



3.4 Implementation Issues 32works as a reverse proxy, with the load-balan
ing Apa
he module mod_ba
khand [7℄,whi
h allows easy addition of new request distribution poli
ies. For the database, it ismandatory to have a distributed database solution in this ar
hite
ture. In spite of that,as our fo
us was to study the power management in the web server layer, we used multipledatabases without repli
ation. In ea
h database, we deployed an independent web storewith 10, 000 items and 1, 000 
ustomers ea
h. For example, for a load of 600 EBs, westart 200 EBs a

essing ea
h independent web store. For the web servers it makes nodi�eren
e. That is, any request is treated equally, and any server is able to pro
ess anyrequest, regardless of what database server will respond to the queries.3.4.2 Time MeasurementsThe main problem that makes the implementation in [85℄ inappropriate to the TPC-Wappli
ation is that we need to have a way to measure the web intera
tion response time(WIRT) as a whole, and it is impossible to be made lo
ally in one web server node. TheWIRT is de�ned by the TPC-W spe
i�
ation as the time from the sending of the PHPrequest by the EB until the re
eiving of the last byte of the last image embedded in thatPHP request. The problem is that the requests to the embedded obje
ts may be sent todi�erent web server nodes in the 
luster.
accesses

DB

HTML response page
with embeded objects

to any
server

PHP request
proxy

Client Front−end Server node DB server

Embeded objects requests

Requested objects

W
eb

 in
te

ra
ct

io
n 

re
sp

. t
im

e

server write 1234 
in each object ref.

home.php home.php?REQ=1234

image,jpg?1234

Figure 3.6: WIRT time 
omponentsWe measure the approximate WIRT at the front-end, ex
luding only the lo
al networktime between the EBs and the front-end. For this, we implemented a new Apa
he module



3.4 Implementation Issues 33that labels the requests before sending them to the server nodes, as shown in Figure 3.6.When the PHP request arrives at the front-end (e.g., home.php), the module 
reates aunique number and atta
hes it as a new parameter in the URI of the PHP request. Whenthe web server node re
eives the request, it gets the label and puts it, also as a parameter,in every embedded obje
t referen
e. Ea
h subsequent request for every embedded obje
twill 
ome with the label to whi
h PHP request it belongs to. When the request for thelast obje
t �nishes, the front-end knows the time for the whole web intera
tion and 
an
ompute the QoS and tardiness. We note that this solution does not modify the 
lientat all, and therefore is ba
kward 
ompatible with existing systems. In the 
ase that theappli
ation has a very dynami
 behaviour, and the number of embedded obje
ts varieson time, the algorithm 
an still be used, by having the front-end 
ount the number ofobje
ts for every request.Another implementation issue was that we needed to know the average CPU timespent, in user spa
e and kernel spa
e, by ea
h PHP request, for the load estimation in thefront-end. We attempted measuring them with dire
t measurements, but the pre
ision isvery poor, be
ause the minimum CPU time, given by a system 
all 
alled from the PHPs
ript, had resolution of the same order than the exe
ution time itself. Our solution wasto design mi
roben
hmarks using fun
tionality from the EBs implementation [76℄, namelyto have them generate spe
i�
 intera
tions, in order to exer
ise ea
h of the intera
tionsseparately.The methodology for the mi
roben
hmarks works as follows. During a period of Tse
onds, Nr requests type r are issued and the CPU a
hieves an utilization U . Thisway, the average CPU time tr for request r is UT
Nr
. However, there is a restri
tion. TheTPC-W ben
hmark spe
i�es a transition diagram with the possible set of transitionsallowed after one spe
i�
 web intera
tion, and thus, it is not possible to generate allkinds of intera
tions in isolation. For example, the request to display an order the 
lienthas made 
annot be issued before the 
ustomer a
tually asks for that order. Similarly,the Buy Con�rm intera
tion 
annot happen before the Buy Request intera
tion. For the
ases with this type of pre
eden
e restri
tion, we used the average value of the pre
edentintera
tion to 
al
ulate the average CPU time of the next intera
tion. In a sequen
e of nintera
tions, the CPU time of intera
tion ri, say ti, is given by ∑n

i=1 Niti = UT .The average value measured by this methodology, with T = 20 minutes is shown inTable 3.2. This resulted in about 10, 000 intera
tions in ea
h measurement. The s
riptsadmin_
on�rm and admin_request 
ould not be determined with pre
ision be
ause they



3.4 Implementation Issues 34are not requested very often. In a 20-minute experiment, only 250 su
h intera
tionso

urred, along with 40, 000 other pre
edent intera
tions. In fa
t these intera
tions arenot important, be
ause typi
al 
ustomers do not 
hange or administer the database.Their CPU time, though, is approximately 4 ms, measured dire
tly inside the s
ript forone exe
ution. Again, this measurement is not pre
ise be
ause the granularity of the timefun
tion used is 4 ms.Table 3.2: Average CPU time (system + user) for ea
h PHP s
riptPHP s
ript avg. time (ms) PHP s
ript avg. time (ms)admin_
on�rm � new_produ
ts 5.417admin_request � order_display 5.456best_sellers 5.578 order_inquiry 4.126buy_
on�rm 6.929 produ
t_detail 4.643buy_request 6.039 sear
h_request 4.576
ustomer_reg 4.242 sear
h_result 5.406home 5.012 shopping_
art 5.336

3.4.3 Request DistributionAs the PHP appli
ation depends on the session ID that the server generates and writes inthe browser 
ookies, requests with the same session ID must go to the same server. Thisis implemented by the mod_ba
khand software, and is 
ommonly 
alled as a distributionwith sti
ky sessions. The web request distribution adopted is based on 
urrent load, thatis, the amount of work outstanding at the server. The web request is sent to the webserver with lowest load, providing that the sti
ky session rule is not violated. The front-end estimates the load of ea
h server as follows: for ea
h web request, the average CPUtime is added to the load estimator when the request arrives at the front-end, and thesame value is subtra
ted after sending the response to the 
lient.3.4.4 On/O� Poli
yThe poli
y used to turn servers on and o� a�e
ts the QoS 
ontrol limiting the maximumload of the system and determining the moment to turn a node on, as in [85℄. Thedi�eren
e is that we use suspend to RAM, and Wake on LAN and therefore we needed toadopt new values of overhead of time and energy when turning a ma
hine on and o�. InFigure 3.7 the a
tivity line is the output of one parallel port pin measured by the same



3.5 Performan
e Evaluation 35data a
quisition system used to measure the power (in other words, 
lo
k skew is zero).A pro
ess is started at the same time of the 
ommand to shut down the ma
hine (t = 4),swit
hing this output. After that, any state di�erent than swit
hing (bla
k part) meansthat the ma
hine is not operational. It 
an be seen in the plot that the time overhead toturn o� is the period between 7 and 10 se
onds. Similarly, the time to turn on goes from
18 to 24 se
onds.
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Figure 3.7: Overhead of time and energy for turning on/o� the Pentium M server3.5 Performan
e EvaluationBefore evaluating the proposed method, we will show empiri
al proofs for the impra
ti-
ality of 
ontrolling the QoS using a dire
t measure of the QoS. The plot on Figure 3.8shows the QoS being measured in a sliding window of size su�
ient to store 10 se
onds ofweb intera
tions information about whether it met or missed the deadline. This size wasthe biggest size that showed not to 
ompromise the responsiveness of the 
ontrol. The
ontrol set-point was set to 0.98, shown in the plot as a referen
e line. The plot also showsthe 
ontrol output (u in Figure 3.2) for the two 
ases: based on the dire
t QoS measure(sliding window), and based on the tardiness measure (with Pareto distribution).The �rst of two problems of measuring the QoS is the broad 
on�den
e interval. The
on�den
e interval in this experiment, not shown in the plot, resulted in values up to 0.06.For 0.98, for example, the 
on�den
e interval is 0.04, meaning that the real mean will laybetween 0.96 and 1.0. For this reason, as 
an be observed in the plot, more often than notthe QoS measure assumes the value 1.0 (for example, between t = 370 and t = 470), even
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e Evaluation 36though the real mean value (not the sample average) is something di�erent, resulting ininstability.The se
ond problem is that the maximum value of QoS is 1.0. The plot shows severalintervals (e.g., 370 < t < 470 and t > 550) where the measured QoS is bigger thanthe set-point 0.98, giving an error limited to 0.02, resulting in a long de
reasing output,be
ause 0.02 is too small. After this period, in most 
ases the output rea
hed a positionthat 
aused an error mu
h larger than 0.02 (e.g., t = 250, t = 350, and t = 530), resultingin a fast in
reasing of the output. On the other hand, the 
urve for the output basedon tardiness shows a more 
onstant behavior, and there is no asymmetry related to theset-point. Furthermore, the QoS measured in a sliding window during the 
ontrol withtardiness is more 
onstant, although higher than 0.98, be
ause of the broad 
on�den
einterval. As a result, the 
ontrol based on the dire
t QoS measure gives periods of highprobability of meeting the deadline, followed by periods where it is more likely of missingthe deadline than the previous period. Even though the �nal a

umulated QoS for thewhole experiment were 
orre
t for the two 
ases (
lose to 0.98), what is expe
ted is thatevery web intera
tion have the same probability of meeting its deadline, uniformly, andthe use of tardiness a
hieves this goal. The energy 
onsumption is higher in the 
ase of
ontrolling the QoS without tardiness, be
ause of the higher variability of the output u.
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Figure 3.8: Control using dire
t QoS measureThe most important evaluation we made is to prove the 
orre
tness of Theorems 3.1and 3.2, for the Pareto and Log-normal distributions. We exe
uted the tests with 360EBs, a number that represents half of full load and requires 4 servers turned on, dividedequally into the three database servers and monitored the QoS obtained for ea
h value of
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e Evaluation 37spe
i�ed QoS. The obtained QoS (a

umulated) was measured by the ratio missed deadlines
total requestsfor ea
h 
lass of web intera
tion, and the tardiness values were from the web intera
tion
lass with the minimumQoS. In other words, the 
ontroller is dire
ted to 
ontrol the worstQoS among all 
lasses of web intera
tions. Although 
onservative, this is to guaranteethat all web intera
tions will stay with a QoS above the spe
i�ed limit, as it is stated inthe TPC-W spe
i�
ation.
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Figure 3.9: Evaluation of the Pareto distributionThe plots in Figure 3.9 and Figure 3.10 show average power and the minimum QoSobtained by our s
heme as a fun
tion of the spe
i�ed QoS when using Pareto distributionand Log-normal distribution, respe
tively. The 
on�den
e interval plotted is obtained inea
h measure by the 
on�den
e interval for a proportion, given by ±1.96
√

p(1−p)
N

, for a
95% interval, where p is the proportion, or the QoS measured.The Pareto distribution showed very a

urate results for QoS values not 
lose to 1.0.The Log-normal showed an error approximately 
onstant of 0.02, and was 
onsistentlyworse for all values. This is be
ause the Pareto distribution has a better goodness of �tfor the tail, whi
h 
ontains most of the requests with missed deadlines. On the otherhand, the log-normal distribution had the worse �t exa
tly in both tails.Both models, based on Pareto and on Log-normal, have some di�
ulty to be 
orre
tfor QoS 
lose to 1.0, as it 
an be expe
ted examining the theorems. The points in bothplots (Figures 3.9 and 3.10) 
lose to 1.0 were a
tually user spe
i�ed QoS of 0.999. Thishappens be
ause in the 
ase of QoS 1.0 the distributions will have no tail at all.The TPC-W spe
i�es 0.90 for QoS. Normally, when using the TPC-W to measure an
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Figure 3.10: Evaluation of the Log-normal distributione-
ommer
e system performan
e, the number of items in the database must be s
aled upuntil the server has minimum QoS of 0.90, and it is found the maximum s
aling fa
torthat the system under test 
an sustain. Thus, to get TPC-W results the system mustbe in full load. Our system, when not at full load, will slow down to stay in a similar
ondition of load with the a

urate QoS of 0.90, and 
onsequently will redu
e the energy
ost.We 
ompared the results, with QoS 
ontrol based on Pareto, with the implementationin [85℄. We made some few modi�
ations in that implementation to a

ommodate thenew real-time model and to support the bigger number of request types. The �rst result isshown in Figure 3.11, where the TPC-W test was exe
uted for 30 minutes, with a load of
400 EBs. The QoS in the proposed s
heme was set to 0.95 ([85℄ also had a target QoS of
95%). The QoS for [85℄ is not plotted, be
ause, for this load, the QoS remained very 
loseto 1.0 for all requests. The average power for the s
heme proposed in [85℄ was 320.9 W ,while it was 303.2 W for our s
heme. This shows that our s
heme 
an a

urately spe
ifyQoS in a �ne-grain manner.It is important to note that the QoS does not have a value far from the spe
i�
ationat the beginning of the experiment, as it may be wrongly 
on
luded from the plot inFigure 3.11. In the beginning, the measured value does not 
orrespond to the real value,be
ause there is not enough information for a pre
ise measurement. Note that for the�rst 100 se
onds the QoS measured is 1.0, and right after that, the value is not 
lose tothe real 0.95 value to whi
h there is a 
onvergen
e at the end of the experiment, and also,there is a large 
on�den
e interval at this point. These are the eviden
es we mentioned
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Figure 3.11: QoS and power in the TPC-W testearlier that the QoS 
annot be used as a 
ontrol variable dire
tly. Be
ause the value has alarge error, the 
ontrol simply 
ould not work. To make the the dire
t 
ontrol by the QoSvalue work, one 
ould argue that the resulting deadzone 
aused 
ould be made negligibleby lowering the frequen
y to whi
h the CPU frequen
y and voltage are adjusted. Thissolution would not help, be
ause the time ne
essary to wait for a good measure is toohigh, as the plot shows. Thus, the QoS has to be measured in a long experiment, withthe number of requests ne
essary for a
hieving a narrowed 
on�den
e interval. We alsonote that the QoS 
hanges in some points. This is be
ause we are plotting the minimumQoS, and sometimes the 
lass of web intera
tion responsible for the minimum QoS gets abigger value and the minimum 
omes from another web intera
tion.We also 
ompared the new s
heme with [85℄ for several di�erent loads (see Figure 3.12),using the spe
i�ed QoS of 0.95, the same as in [85℄. The experiments show that we 
ansave power by having an a

urate 
ontrol of QoS.In Figure 3.13 we show that, even though we are fo
using on the web server layer, theenergy 
onsumption of the web servers depends on the load of the database layer. Weexe
uted the same load in two di�erent s
enarios. In the �rst, all 
lients were dire
ted toonly one database, and in the se
ond the 
lients were distributed to the three availabledatabases. In the �rst s
enario the database showed almost full utilization, against about
30 per
ent in the other option. When the load at the databases is higher, the web serverlayer has to speed up to 
ompensate the response time in
rease at the database layer.Thus, the question arises on how to 
leverly integrate the power management among thedi�erent tiers in a multi-tiered ar
hite
ture. Figure 3.13 also shows the QoS obtained for
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Figure 3.12: Evaluation of the proposed s
hemeboth s
enarios. We omitted the 
on�den
e intervals for better 
larity, be
ause they weresuperposed. It is important to note that both stayed 
lose and above the QoS spe
i�edat 0.95.We noti
ed also in the experiment of Figure 3.11 that the QoS always stays above andvery 
lose to the spe
i�ed. This happens be
ause we used the 
on�den
e limit as statedin theorems 3.1 and 3.2.
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Figure 3.13: QoS and energy 
onsumption for two s
enarios with di�erent database loadThe re
omended performan
e metri
 by TPC-W is WIPS, whi
h we measured forour proposed s
heme and for the s
heme proposed in [85℄. For the experiment shown



3.6 Con
lusions 41in Figure 3.11, the averages were 49.79 and 54.99 WIPS for our proposed and for [85℄,respe
tively. We had 10.4% less performan
e, but with a 
ontrolled quality of servi
ein a value that attends the minimum level spe
i�ed by TPC-W for a
hieving 
ustomersatisfa
tion. We used 95% in this experiment, but we 
an a
hieve even more powersavings with the TPC-W requirement of 90%. The s
heme proposed in [85℄ a
hievedbetter performan
e be
ause of overprovisioning the system with respe
t to the real-timespe
i�
ations.3.6 Con
lusionsIn this 
hapter we presented a s
heme to relate QoS to tardiness in a multi-tiered envi-ronment designed for e-
ommer
e, based on the statisti
al distribution of the tardiness ofweb intera
tions. This QoS metri
 was shown to be very useful be
ause some pra
ti
aldi�
ulties arose when we tried to use the measured QoS in the 
ontrol. On the otherhand, tardiness is a 
ontinuous value that 
an be 
al
ulated for ea
h web intera
tion, andits value depi
ts how 
lose the exe
ution was to the deadline.We proposed two approa
hes, based on the probability density fun
tion adopted torepresent the tardiness data: using the Pareto distribution and using the Log-normaldistribution. We showed that the Pareto distribution a
hieves better results in the a
-
ura
y of the resultant system QoS, for values of user de�ned QoS not 
lose to 1.0, andLog-normal showed to have a 
onstant error due to di�eren
es in the �t of the data tothe distribution. Our proposed s
heme using Pareto was shown to be better than exist-ing s
hemes like [85℄ and [90℄, be
ause it meets with pre
ision the real-time spe
i�
ation,not overprovisioning the system, and thus saving energy. Although easy to implement,be
ause there is a 
losed formula to express the QoS, a short
oming of our approa
h iswhen the goal is to meet all deadlines, the tardiness would have an upper bound of 1, andthus the assumption on the tail distribution does not hold. In this 
ase, whi
h is not thegoal of our method, the 
ited existing s
hemes would be more pre
ise.The major drawba
k of the TQM presented is that it is based on predeterminedprobability distributions: Pareto and Log-normal. The approximations showed to begood, but the �rst questions that arise are: what if the workload is not Pareto and notLog-normal? Is it possible to generalize? Fortunately the answer is yes, we 
an generalize,by using sto
hasti
 approximation algorithms that 
an measure some 
hara
teristi
s of arandom variable regardless of its probability distribution fun
tion. Then we 
ame up with
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lusions 42the Generalized Tardiness Quantile Metri
 (GTQM), whi
h we present in the Chapter 5.Before presenting the GTQM, in the next 
hapter we show more details of the 
ontrollogi
 used by the QoS 
ontroller. We show the implementation of a feedba
k 
ontrol loopthat a
ts on the speed of all server nodes 
apable of dynami
 voltage s
aling, with QoSmeasured using TQM being 
ompared to the QoS setpoint.



Chapter 4
QoS Control

A penny saved is a penny earned.

– Benjamin FranklinIn this 
hapter we des
ribe a simpli�ed way to implement performan
e 
ontrol in amulti-tier 
omputing system designed for e-
ommer
e appli
ations. A paper was publishedin [12℄. We show that the simpler SISO (Single Input Single Output) 
ontroller, ratherthan a more 
omplex distributed or 
entralized MIMO (Multiple Input Multiple Output)
ontroller, works well, regardless of the presen
e of multiple 
luster nodes and multipleexe
ution time deadlines. By 
hanging the speed, we 
hange the position of the p-quantileof the tardiness probability distribution, a variable that enables to measure QoS indire
tly.Then, the 
ontrol variable will be the average tardiness, and the setpoint the tardinessvalue that will position this p-quantile at 1.0, value at whi
h a request �nishes exa
tly atthe deadline. Doing so will guarantee that the QoS will be statisti
ally p. We test this newTardiness Quantile Metri
 (TQM) in a SISO PIDF 
ontrol loop implemented in a multi-tier 
luster. We use open software, 
ommodity hardware, and a standardized e-
ommer
eappli
ation to generate a workload 
lose to the real world. The main 
ontribution is toempiri
ally show the robustness of the SISO 
ontroller, presenting a sensibility analysis ofthe four 
ontroller parameters: damping fa
tor zeta, derivative �lter fa
tor beta, integralgain ki, and zero time 
onstant tau.4.1 Introdu
tionAs people in
rease their trust on Internet means for servi
es like banking and 
ommer
e,ele
troni
 appli
ations be
ome everyday more popular and widespread. The 
omplexity



4.1 Introdu
tion 44of the 
omputing systems for these appli
ations are in
reasing fast, both for well estab-lished popular kind of appli
ations su
h as e-banking and e-
ommer
e, and also for lessknown business-to-business appli
ations, su
h as e-sour
ing, where businesses au
tion thewillingness to pur
hase from the seller who 
an o�er lowest pri
es and best 
ontra
ts. Dueto the needed 
omplexity and size, 
omputing systems are be
oming 
ompli
ated, dense,and of high 
ost of ownership. As pointed out in [56℄, be
ause of this growing 
omplexity,the 
omputing systems for today's appli
ations need to be able to do self-
on�gurationand self-optimization, and a
t in an autonomi
 way, su
h that it 
an optimize itself seam-lessly to the desired performan
e obje
tives. With the motivation that 
ontrol theorywill play a 
ru
ial role in the development of 
omplex and large s
ale 
omputing systems,we present in this 
hapter a pra
ti
al use of 
ontrol theory for multi-tier 
lusters to hoste-
ommer
e and related appli
ations.Following the work in [38℄, where the authors dis
ussed the s
aling aspe
ts of 
ontrolproblems that arise in large 
omputer systems, our 
ontrol borrows some 
hara
teristi
sfrom the 
entralized MIMO (Multiple Input Multiple Output) models. They used as atarget ar
hite
ture a multi-tier e-
ommer
e system 
omposed of multiple layers of web
lusters, ea
h layer used to pro
ess a di�erent part of the web request, namely, requestdistribution (layer 1), stati
 and dynami
 requests (layer 2), and database a

ess (layer3). In their 
lassi�
ation, for any performan
e 
ontrol, an e-
ommer
e system has tobe either MIMO 
entralized, where there is a 
entralized 
ontroller with multiple a
tu-ators and multiple sensors, or MIMO distributed, with several distributed independent
ontrollers. The authors 
laim that the 
ontroller for an e-
ommer
e system has to beMIMO by ne
essity, for example, be
ause of the existen
e of multiple web request typeswith di�erent response time obje
tives. However, in our pra
ti
al implementation of amulti-tier e-
ommer
e web 
luster, the industry standard e-
ommer
e appli
ation usedpresented some restri
tions that make it impra
ti
able to read the 
ontrol metri
 fromthe multiple servers. The reason is that the information, or 
ontrol metri
, is distributeda
ross the 
luster, and the only way to measure it is at the front-end server where the
ontroller runs. This prompted us to build a SISO Single Input Single Output 
ontroller,using a normalized response time among 
lasses of requests to obtain a single 
ontrolmetri
 that normalizes the several di�erent time 
onstraints.We based our implementation on open sour
e software and industry standard work-loads. Open-sour
e software o�ers a huge advantage for 
ontrolled 
omputing systems,be
ause virtually any metri
 or measurement 
an be derived from the system, as we havetotal a

ess to the sour
e 
ode, from the 
ore kernel level to the appli
ation user level.



4.2 Ba
kground 45Our obje
tive is to a

omplish energy 
onsumption minimization and QoS (Quality ofServi
e) guarantee. We build a feedba
k 
ontrol loop that regulates the performan
e ofall dynami
 voltage s
aling (DVS) 
apable server nodes (i.e., layers 2 and 3), with QoSbeing the referen
e 
ontrol obje
tive. But rather than sensing the QoS dire
tly, whi
h ismeasured as a ratio of number of requests that exe
uted within their deadlines to the totalnumber of requests, we use a new metri
 of QoS based on the tardiness of the 
ompletionof web requests proposed in Chapter 3, where tardiness, the 
ontrol variable, is de�nedas the ratio of web request response time to the deadline. This metri
 is based on theprobability distribution of tardiness, and be
ause it presents more information about the
ompletion of tasks than the QoS, it o�ers a better metri
 for using in a feedba
k 
ontrolloop.We will apply the theory of a PIDF 
ontroller, whi
h is basi
ally a proportional-integral-derivative (PID) 
ontroller augmented with a low pass �lter (F) in the derivativepart. The workload of a web system is a 
omposition of random variables, and 
onse-quently, present the random �u
tuations that is 
hara
teristi
 of any sto
hasti
 pro
ess.We 
onsider the unpredi
tability of the workload as being similar to sensor noise. Withthe low pass �lter, the pro
ess disturban
e 
aused by random os
illation will be reje
tedby the 
ontroller. In su
h a web system, it is desirable to have the derivative 
omponent,be
ause as the plant dynami
 presents a dead time delay, it is important to have thepredi
tive 
hara
teristi
 given by the derivative part. Besides, we need also to in
ludeaverages in the 
ontrol variable to handle the intrinsi
 randomness. We will measure theplant dynami
s after the in
lusion of the averages and apply some tuning rules for the
ontroller.The 
ontribution of this 
hapter is the pra
ti
al implementation and robustness evalu-ation of the 
ontrol loop for a real e-
ommer
e web server 
luster, with sensitivity analysisto the parameters of the PIDF 
ontroller. The goal was to have a means of proving the
on
ept of TQM and GTQM, by having a 
ontrol loop implemented in the 
luster 
om-puting system.4.2 Ba
kgroundIn this se
tion we des
ribe brie�y the 
luster model used and give some basi
 
on
epts of
ontrol theory.



4.2 Ba
kground 464.2.1 Cluster ModelThe 
luster ar
hite
ture is 
omposed of a 
entral web server that serves as a front-end tothe whole system (layer L1), a layer L2 of servers to pro
ess dynami
 and stati
 requests,and the L3 layer to exe
ute a distributed database that will store all the informationrelated to the appli
ation. The front-end node implements a request distribution poli
ybased on the amount of work that ea
h se
ond-tier server has. The front-end server a
tsas a reverse proxy, that is, it redire
ts requests to other servers and also returns theserver's response to the 
lient. The front-end is 
apable of SSL en
ryption/de
ryptionas required for the e-
ommer
e appli
ation. The load distribution among the databaseservers is done stati
ally. We repli
ate the web store in many independent databaseservers to avoid bottlene
ks, and the total load is divided equally to ea
h database. Toimplement this ar
hite
ture we used in layer L1 the Apa
he web server with the moduleba
khand [7℄ for load balan
ing and a new module to implement the 
ontroller, in layerL2 we have Apa
he with PHP s
ripting language support for the dynami
 pages, and inL3, PostgreSQL for the databases. The workload generation used is based on TPC-W.4.2.2 PID ControlThe PID 
ontrol is the most used 
ontrol te
hnique in industry. The �rst PID 
ontrollerappeared in the 1930s [58℄, and is still used and resear
hed be
ause of its operationalsimpli
ity, and be
ause it provides generi
 and e�
ient solutions to 
ontrol problems. APID 
ontroller 
omputes the error between the 
ontrolled variable measured in the plant,and the desired setpoint value, and a

ording to this error signal, it generated a signalsent to the a
tuator that will eliminate this error. The a
tuator is part of the system that
an produ
e a 
hange in the 
ontrolled variable. For example, in a 
omputing systemwhere we want to 
ontrol the system's performan
e, the a
tuator may be the DVS speedor frequen
y. If we 
hange the DVS frequen
y of the pro
essor, it will show a faster orslower average response time. The response time in this 
ase would be the 
ontrol variable.The setpoint would be a prede�ned response time that we desire the system a
hieves inthe average. Thus, the PID 
ontroller will 
ompare the measured response time with thesetpoint and adjust the DVS frequen
y in su
h a way that the measured response timerea
hes the setpoint in steady-state. The settling time is the time it takes to rea
h thissteady-state.The PID 
ontroller has three 
omponents: proportional (P), integral (I), and deriva-tive (I). The 
omputed signal u sent to the system's a
tuator is a 
ombination of these
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kground 47fa
tors. The proportional term provides a 
ontrol a
tion proportional to the error signal,and the goal is to be able to instantly 
al
ulate an output that is independent on theinitial 
onditions of the system. The proportional a
tion alone is unable to eliminate theerror in steady-state. The integral term redu
es steady-state errors, be
ause the outputin
reases as a 
al
ulation of the integral of the error signal. The derivative term improvestransient response with some predi
tive 
apability. The 
lassi
 PID 
ontroller is thengiven by:
u(t) = kP e(t) +

kP

kI

∫

e(t)dt + kPkD

d

dt
e(t) + u0 (4.1)This is 
alled the parallel PID 
ontroller, be
ause all 
omponents are 
omputed inparallel and then summed. The proportional fa
tor kP is multiplied in all 
omponents.

TI and TD are the integral and derivative fa
tors respe
tively. TI and TD have time units,and normally the integral and derivative 
onstants used are kI and kD, where kI = 1
TIand kD = TD, what we adopt in this work.4.2.3 Implementation in a Dis
rete SystemIn a 
omputing system, time is dis
retized. Any dynami
 system 
an be represented in adis
rete system by using the z−transform. After representing the system in the frequen
ydomain, that is, applying the Lapla
e transform, the dis
rete equivalent system is derivedby substituting the Lapla
e variable s by the variable z using a fun
tion s = f(z). Thevariable s 
an be related to the z variable by the expression:

z = esT (4.2)where T is the dis
retization time, or sampling period, that is, the interval between valuesof a dis
retized signal. The Figure 4.1 shows a signal whi
h value is known only every Tse
onds. We have a sequen
e of samples, and the last sample is the k-th sample.If we take z−1 from Equation 4.2, we will get z−1 = e−sT , what is the known Lapla
eformula for a delay of T se
onds. That is, if a signal is multiplied by e−sT in the frequen
ydomain, the signal will be delayed by T se
onds in the time domain. Then, the dis
retizedsignal X of Figure 4.1 
an be represented by:
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T

kk−1

signal

timeFigure 4.1: Dis
retized Signal
X(z) =

∞
∑

n=0

x(n)z−n (4.3)where n is an integer, and the signal is supposed to be de�ned only for t ≥ 0.The z−transform 
an be used to represent a signal in the dis
rete domain, or evenbe used to represent a formula of a 
ontroller or a �lter in order to be implemented in adis
rete system. The ba
kward di�eren
e, given by 1− sT = z−1, that is obtained from a�rst order series approximation to the z−transform, is the most used approximation forthe Equation 4.2. One way to see this relation from Figure 4.1 is by the approximated
al
ulation of the derivative of the signal between points k − 1 and k. The derivative
d
dt

x is x(k)−x(k−1)
T

. In the frequen
y domain, the derivative is represented by the Lapla
evariable s. Then, sx = z0x−z−1x
T

, or s = 1−z−1

T
. What gives 1 − sT = z−1.When the lapla
e formula of the 
ontroller is transformed by 1− sT = z−1, the resultis a re
urren
e formula that implements the dynami
 behavior of the original formula.This will be shown in the next se
tion when applying this idea to our PID 
ontroller.4.3 Control Logi
The 
ontrol logi
 uses the TQM 
ontrol input metri
 as des
ribed in Chapter 3, that is,based on the probability distribution of tardinessi = wirti

deadlinei
, for all web intera
tion i.The DVS A
tuator me
hanism is the same as de�ned in Se
tion 3.3.3.
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 49Figure 4.2 shows the 
ontrol logi
 blo
k diagram adopted. As suggested in [58℄, wemodel the noise as the input signal w(t); in our model, noise is present in the measurebe
ause of the sto
hasti
 nature of the workload v(t) (the pro
ess disturban
e), whi
hwill 
ause the randomness present in the tardiness measure. The 
ontroller output is u(t),and the transfer fun
tion K(s) of the 
ontroller has a minus be
ause it has to invert theoutput related to the input error. When the error is negative, the p-quantile for the QoS pis bigger than 1.0, and the deadline miss ratio is bigger than 1−p, and therefore the servermust in
rease the speed. G(s) is the unknown plant transfer fun
tion; we will measure itsdynami
s in Se
tion 4.4.2. A(s) represents the averaging in
luded in the 
ontrol variable.
QoS 

setpoint

A(s)

+

++
K(s) G(s)

Statistical
Inference

+

tardiness setpoint

average tardiness
w(t)

v(t)

y(t)
u(t)

Figure 4.2: Control logi
 blo
k diagramWe have used in Chapter 3 a simple PID 
ontroller given by K(s) = kP + ki

s
+kDs. Toimprove it, as suggested in [43℄, we insert a lowpass �lter in the derivative part to makeit redu
e the noise, and we 
hange the parameterization of the 
ontroller as proposedin [43℄. With only the lowpass �lter, the 
ontroller be
omes: K(s) = kP + ki

s
+ kDs

1+sTf
. Thenew parameterization will use the four parameters: dumping fa
tor (ζ), derivative �lterfa
tor (β), integral gain (ki), and zero time 
onstant (τ). The advantage of using theseparameters is better stability, be
ause it redu
es the freedom of the traditional parametersin a way that the 
ontroller is easily kept in a stable region. This parameterization alsomakes the 
ontroller tuning pro
edure easier. The resultant 
ontroller is:

K(s) = ki

1 + 2ζτs + τ 2s2

s
(

1 + s τ
β

) (4.4)where β = k∞

τki
, and k∞ = lim

s→∞
K(s).The damping fa
tor ζ di
tates the responsiveness of the 
ontroller. With a in
reased
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ζ , the system be
omes slower to a
hieve steady-state, and with a small ζ , the overshootin
reases. The zero time 
onstant τ is dependent on the plant dynami
s. In [58℄ a verysimple method of tuning the 
ontroller is to make τ = T

3
, where T is the time 
onstant ofthe plant (for a �rst order plant, the time the output takes to a
hieve 63.2% of the inputin the step response). The �lter fa
tor β is related to the high-frequen
y gain, or 
ontrola
tivity, k∞ = βτki. If β is small, the system may lose 
ontrol a
tivity and perform as ifin a positive retro�t (see Se
tion 4.4). In
reasing ki will in
rease the performan
e of the
ontroller.In the dis
rete domain, the 
ontroller equation relating the dis
rete output uk to thedis
rete error ek be
omes:

K(z) = ki

Ts + 2ζτ + τ2

Ts
−

(

2τ2

Ts
+ 2ζτ

)

z−1 +
(

τ2

Ts

)

z−2

Ts + τ
β
−

(

Ts + 2 τ
β

)

z−1 +
(

τ2

Ts

)

z−2
(4.5)The dis
rete equation obtained by straightforward manipulation of Equation 4.5 is inthe re
urren
e formula in Equation 4.6.

uk =
(βTs + 2τ) uk−1

βTs + τ
− τ 2ki (uk−2 − ek−2)

Ts

(

Ts + τ
β

) +

(

Ts + 2ζτ + τ2

Ts

)

kiek

Ts + τ
β

−

(

2τ2

Ts
+ 2ζτ

)

kiek−1

Ts + τ
β

(4.6)4.4 Evaluation and Sensitivity AnalysisIn this se
tion we present a set of experiments with the 
ontroller. The �rst step is tomeasure the pro
ess dynami
s in open loop and then tune the 
ontroller a

ordingly. Weadopted the tuning pro
edure given by Equation 11 of [58℄. For the 
losed loop, all testsuse a QoS setpoint of 0.95.4.4.1 Pro
ess Dynami
sWe adopt the �rst order plant with delay of Equation 4.7, where Ld is the lag delay, or thetime it takes for the output to 
hange after a step response, and T is the time 
onstant.
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Figure 4.3: Step response in open loop, for 10s average with Tf = 10 s and 30s averagewith Tf = 30

G(s) = k
e−sLd

1 + sT
(4.7)We will show results (how the pro
ess dynami
s 
hange) for two di�erent time windowsfor 
omputing average tardiness (whi
h are also the sampling period Ts). We will use anaverage of 10 se
onds plus an additional �lter with 
onstant Tf = 10s, and to test biggeraverages, we use window average of 30 se
onds plus an additional �lter with 
onstant

Tf = 30s (a sampling period and average of 30 se
onds was also used in [63℄). This lowpass�lter in the measurement is required for smoothing and improving the measurement ofthe 
ontrol variable. With this averaging s
heme implemented, we measured the stepresponse for both 
ases, and the result is in Figure 4.3. We will use this �gure in the nextse
tion for �tting with the plant model adopted.4.4.2 TuningWe did 
urve �tting from the results in Figure 4.3 to extra
t the parameters of the plantmodel. We obtained Ld = 10s, T = 12s, and k = 0.35 for the 10s 
ase and Ld = 30s,
T = 36s, and k = 0.33 for the 30s 
ase. Applying these values to the tuning rule des
ribedby Equation 11 of [58℄, we obtain ζ = 0.83, τ = 6.52, ki = 0.29, and β = 3.91, for 10s
ase, and ζ = 0.83, τ = 19.56, ki = 0.10, and β = 3.68, for the 30s 
ase. The study in [58℄
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TardinessFigure 4.4: Control performan
e with 10s averageshowed that these values yield 
losed-loop behavior 
lose to optimal, for �rst order plantswith moderate time delay. In our 
ase, with 10s delay resulted in good stability, but a

30s delay was too large and did not yield good results (see Se
tion 4.4.3).4.4.3 ResultsIn all experiments, the 
ontrol variable used is not only the average tardiness, but theaverage tardiness added to the 
on�den
e limit 
al
ulated every sampling interval. Forexample, if in one given sampling interval the average tardiness measured with its 
on�-den
e interval is 0.30 ± 0.05, the 
ontrol variable will be 0.35 rather than 0.30. This isto guarantee, with the 
on�den
e level adopted (95%), that the QoS will lay above thespe
i�ed value.In Figure 4.4, the tuning rules resulted in stable operation of the 
ontroller with 10saverage. The QoS measured every interval remained above, in most 
ases, the spe
i�edvalue of 0.95, as expe
ted, be
ause we 
ontrolled by the 
on�den
e limit. The points 
loseto t = 240s, t = 380s, and t = 510s with low QoS were 
aused by load imbalan
ing thatis di�
ult to avoid when all servers run almost with full utilization.Figure 4.5 shows the 30s 
ase. As the lag delay was too big, the tuning rules failed.With a too small β, the integral part is not su�
ient to re
over from a negative error. Thee�e
t is of a positive retro�tted system. We solved this by in
reasing β and in
reasing
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ki, for better performan
e and better 
ontrol a
tivity. The result is in Figure 4.6, whi
halso shows the in
rease in 
ontrol a
tivity with higher β. For the remaining experiments,one parameter will be 
hanged, while the others will remain the same given by the tuningrules.In Figure 4.7, we show that in
reasing the integral gain ki, the performan
e in
reases.The 
urve with ki = 0.1 is mu
h slower than with ki = 0.3. However, ki = 1.0 is too big,and resulted in instability.Figure 4.8 shows the e�e
t of varying the damping fa
tor ζ . As was expe
ted, anin
rease in ζ lowers the overshoot of the system, but in
reases the time to rea
h thesetpoint.In Figure 4.9 we show the e�e
t of the parameter τ . The zero 
onstant must be tunedwith the plant dynami
s. The value τ = 6.5 was the value returned by the tuning rule.We also experimented with τ = 3, whi
h was too small and did not allow the system to
orre
t the positive error, and τ = 12, whi
h 
aused di�
ulty in 
orre
ting a negativeerror.
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e with 30s averageIn this 
hapter we have not shown any energy measurement be
ause we fo
used morein the stability analysis and sensitivity to parameters, issues that we 
ould not assess inChapter 3, where we 
ompared the energy 
onsumption with other interval based DVSme
hanisms and we showed that extra energy savings 
an be a
hieved with the �ne-grain
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Figure 4.6: Control performan
e with 30s average: 
hanging tuning parametersQoS 
ontrol proposed. We did not evaluate, however, the energy-e�
ien
y of the systemduring the settling time, whi
h will depend on the tuning rules. This is not an importantissue be
ause the settling time of 150 se
onds, observed in Fig 4.4, about half the settlingtime obtained in [63℄, is su�
iently small to a

ommodate the workload variation.4.5 Dis
ussionIn this work we followed the general framework for des
ribing 
ontrol problems presentedin [38℄. They use a multi-tier e-
ommer
e system as illustration and 
lassify the possible
ontrol ar
hite
tures, in
luding SISO, MISO, and MIMO, whi
h refer to the number ofinputs and outputs of the 
ontroller (S = single, M = multiple). MIMO, in parti
ular,
an be further divided in 
entralized and distributed. The authors argue that e-
ommer
esystems are MIMO by ne
essity, be
ause the target system must have multiple inputs inorder to a
hieve multiple obje
tives, and must have multiple outputs in order to measurethe multiple obje
tives (see Fig. 4.10a).However, although this 
lassi�
ation is very reasonable, there are pra
ti
al issues toimplement the e-
ommer
e web system, and it turns out that it is possible to use asimpler SISO ar
hite
ture, as shown in Figure 4.10b. As the 
hosen metri
 to be usedin the 
ontroller was the tardiness of web intera
tions, and be
ause of the de�nition of
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Figure 4.8: Experimentation with parameter ζweb intera
tion given by the TPC-W standard, the MIMO model is not 
onvenient. Thereason is that the TPC-W standard de�nes a web intera
tion as a sequen
e of severalHTTP requests, and the real-time requirements in this standard determine that a 
ertainlevel of QoS must be a
hieved for the end-to-end servi
e time of ea
h web intera
tion.Sin
e the metri
 must a

ount for the whole web intera
tion, and sin
e ea
h of the HTTPsubrequests may be servi
ed by di�erent L2 server nodes with a 
ertain level of parallelism,it is impossible to obtain the response time at the server nodes. In our implementation,the 
entralized 
ontroller runs in the front-end server, where all requests and responsesgo through and the end-to-end time is measured.
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(b)(a)Figure 4.10: Comparison with the 
lassi�
ation in [38℄. (a) The expe
ted MIMO-C 
on-troller for QoS 
ontrol. (b) The simpli�ed SISO 
ontroller implemented4.6 Con
lusionIn this 
hapter we showed a pra
ti
al implementation of a feedba
k 
ontrol loop in a multi-tier web server system for e-
ommer
e. We used DVS to adjust the system performan
eto save energy, but with the QoS spe
i�
ation being guaranteed by the 
ontrol loop. Weshowed pra
ti
al issues that arise in the implementation of a 
ontroller in a real web 
lusterappli
ation. The experiments showed that the parameterized 
ontroller is easy to tune,be
ause tuning has a limited degree of freedom, whi
h helps stability. Our experimentsshowed an analysis of sensitivity to the 
ontroller parameters that 
an help in a
hievingthe best performan
e for the 
ontrolled system. The �ne-grain QoS 
ontrol showed in thiswork is useful in a
hieving extra energy savings for interval based DVS s
hemes wherethe goal is to meet all deadlines, avoiding overprovisioning the system a

ording to thereal-time spe
i�
ations.The next 
hapter introdu
es the Generalized Tardiness Quantile Metri
 (GTQM)
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lusion 57to be used instead of assuming a spe
i�
 probability distribution. We will show what
an be the loss of energy by using the 
losed formulas derived for the QoS, whi
h areapproximations, instead of the GTQM that is distribution independent.



Chapter 5
Generalized Tardiness Quantile Metri


Insanity: doing the same thing over and over

again and expecting different results.

– Albert EinsteinPerforming QoS 
ontrol in large 
omputing systems requires an on line metri
 thatis representative of the real state of the system. The Tardiness Quantile Metri
 (TQM)presented in the Chaper 3 allows 
ontrol of QoS by measuring e�
iently how 
lose to thespe
i�ed QoS the system is, assuming spe
i�
 distributions. In this 
hapter we generalizethis idea and propose the Generalized Tardiness Quantile Metri
 (GTQM). By using anonline 
onvergent sequential pro
ess, de�ned from a Markov 
hain, we derive quantileestimations that do not depend on the shape of the workload probability distribution.We then use GTQM to keep QoS 
ontrolled in a �ne grain manner, saving energy insoft real-time web 
lusters. To evaluate the new metri
, we show pra
ti
al results in areal web 
luster running Linux, Apa
he, and MySQL, with QoS 
ontrol, and for both adeterministi
 workload and an e-
ommer
e workload. The results show that the GTQMmethod has ex
ellent workload probability estimation 
apabilities, whi
h immediatelytranslates in more a

urate QoS 
ontrol, allowing for slower speeds and larger energysavings than the state-of-the-art in soft real-time web 
luster systems. This generalizedmethod will be published as a regular paper in [16℄.5.1 Introdu
tionLarge soft real-time 
omputing systems, like a web server 
luster, servi
e thousands ofweb intera
tions per se
ond and requires that a 
ertain per
entage of requests be servi
edwithin their spe
i�ed deadlines, the workload being built based on several aggregated
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tion 59random variables. Probabilisti
 measures of su

ess are the norm in su
h systems andthus deterministi
 tools, su
h as simple real-time s
heduling are not appropriate to e�-
iently deal with su
h workloads. On the other hand, approximate methods and sto
hasti
modeling te
hniques su
h as Markov 
hains, queueing theory, or sto
hasti
 estimation al-gorithms are powerful tools for system modeling. These tools o�er a way to �nd someregularity, su
h as 
onvergent estimations and steady state analysis, in the nondetermin-ism of the random phenomena. Newer versions of these tools, su
h as real-time queueingtheory [60℄, make strides towards transforming su
h theories deadline aware.We show in this 
hapter an appli
ation of a sto
hasti
 approximation to solving the
lassi
 problem of �nding θ in the equation Pr [X < θ] = p. If some performan
e metri
in a 
omputing system is a random variable, this 
an be used as a means of statisti
allyguarantee the system QoS. The di�
ulty, however, is that generally one does not knowthe distribution of the random variable, and it 
annot usually �t to any known probabilityfun
tion. One solution is to use generi
 bounds that depend only on the �rst k momentsof the data, so that the moments 
an be observed and the limits applied regardless of theprobability distribution shape. Finding bounds for this problem was �rst introdu
ed byChebyshev in 1874 and proved later by Markov [19℄.Prin
iples like Markov's Inequality, Chebyshev's Inequality, and Cherno�'s Inequalitygive upper bounds of the type Pr [X > θ] < p. For example, they 
an be used to estimatesystem resour
es without breaking a 
ertain level of agreed-upon QoS. One example ofan appli
ation of these statisti
al inequalities for tail distributions appears in [22℄, forthe performan
e measure of telephone tra�
. In a web server, we are also interestedin the tail distribution of a random variable, namely the workload represented by thetardiness. However, bounds are generally not tight enough, usually be
ause web tra�

an be di�
ult to predi
t [8℄. In parti
ular, bounds are not tight when it is ne
essary tohave not only a 
onservative poli
y, but a pre
ise measure of the tail probability.While bounds are not exa
t, we noti
e that there are sto
hasti
 estimators that 
an beused to give a value of a spe
i�
 probability 
hara
teristi
 (su
h as the quantiles or even themean). We will use the 1951 Robbins-Monro algorithm for sto
hasti
 approximations [82℄.We 
hose this method be
ause it is based on a simple Markov 
hain and appropriate foronline 
omputations. The method allows for transition probabilities that 
hange duringthe estimation pro
ess, while allowing for the p-quantile of an unknown distribution tobe estimated with reasonable a

ura
y. The Robbins-Monro algorithm is a re
ursivealgorithm that 
an be used to �nd the root of an unknown fun
tion g(θ), from noisy
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tion 60observations of θ [59℄. The interesting aspe
t of doing this is that the result is independentof the distribution shape, and hen
e, the system will rea
h the spe
i�ed QoS for any kindof workload.The di�eren
e with the TQMmethod presented in Chapter 3 is that we apply Robbins-Monro to �nd a spe
i�
 quantile of an indire
t representation of the workload (tardiness),so that it 
an be used to 
ontrol the QoS. This p-quantile estimation will serve as theguide to the frequen
y settings of a 
omplex multi-tier web server 
luster, su
h that theprobability of servi
ing web requests within their deadlines (i.e., the QoS) is maintainedat a spe
i�ed value. Another important goal is to make the system QoS adaptive underworkload variations.The appli
ation we give to the quantile estimation method is to serve as the guide tothe performan
e operating point of a 
omplex multi-tier web server 
luster, a
tuating inthe speed of the pro
essors, su
h that the probability of servi
ing web requests on time ismaintained at a spe
i�ed value and the QoS of the system is some desired value, and alsoto make the system QoS adaptive under workload variations. Changing speed is possiblewhen the pro
essors have support to dynami
 voltage and frequen
y s
aling. The voltages
aling is tied with the frequen
y, and the voltage setting is done automati
ally by theoperating system when the user sets a di�erent operating frequen
y. Our motivation is toallow an energy-e�
ient ar
hite
ture to work in the best 
on�guration possible withoutoverprovisioning the system, and therefore spending not more energy than the ne
essaryto attend the QoS level agreed. In systems without a �ne grain QoS 
ontrol, if one
ontra
ted a QoS level of 90%, and the system provides 98%, the servi
e provider isgiving a produ
t that was not paid for, and thus money is being wasted. This is what is
alled quality give away.Normally the workload of a web system is assumed to have a spe
i�
 probabilitydistribution, be
ause it simpli�es the modeling. For example, when queueing theory isapplied, the simplest queueing models M/M/1 are based on Markovian workloads. Themore 
omplex queueing models for G/G/1 queues generally do not have 
losed formulas,and if G/G/1 model is assumed, bounds based on the tail probabilities are also applied.We use no su
h assumptions, obtaining a three-fold 
ontribution: 1) we present a methodof quantifying the QoS so that this metri
 is used in QoS 
ontrol; 2) the method works forany kind of probability distribution presented by the workload, and thus we 
an expe
t agood result for the real workload; and, 3) the results are not based on simulations.



5.2 Cluster Model 615.2 Cluster ModelOur 
luster model is shown in Figure 5.1, with a front-end server a
ting as a reverse proxy.The front-end is 
apable of SSL en
ryption/de
ryption, but we for
e it to distribute therequests to the web server nodes without en
ryption between front-end and web servers,in order to de
rease the load on all servers. We also use the MySQL 
luster ar
hite
ture
ombined with Apa
he reverse proxying to put in the same appli
ation layer all the CPUintensive tasks present in a multi-tier ar
hite
ture. As shown in Figure 5.1, the PHPprograms used for building the dynami
 pages are exe
uted at the same server that runsthe MySQL server, responsible for pro
essing the database queries. Our intention is todo Power Management only at the appli
ation level, and this 
luster ar
hite
ture is thebest 
hoi
e be
ause the more CPU intensive are the tasks, the better is the energy savingobtained with DVS.
Apache +

Proxy Load Balancer
NDB

Management

DB
servers

App.
servers

Frontend
server

NDB Server NDB Server NDB Server NDB Server

MySQL Server MySQL Server MySQL Server MySQL Server

Apache + PHP Apache + PHP Apache + PHP Apache + PHP

Figure 5.1: Cluster modelFigure 5.1 shows elements of a typi
al MySQL 
luster setup, 
omposed of the men-tioned MySQL servers and the Network Database (NDB) nodes, whi
h are the storageengines. When data is stored in the NDB nodes, this data is dire
tly a

essible fromall other MySQL servers in the 
luster. Thus, if one appli
ation updates some data, allother MySQL servers that query this data 
an see this 
hange immediately. There is alsoa pro
ess for the 
luster management running in the front-end, the NDB management.The role of this pro
ess is to manage the nodes within the MySQL 
luster, providing
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on�guration data, starting and stopping nodes, running ba
kup, et
. Our fo
us is on
ontrolling the appli
ation layer DVS.5.2.1 Adaptive QoS ControlThe 
luster front-end has an internal 
ontrol loop that was built using 
ontrol theory. Itis a PIDF 
ontroller, a very 
ommon 
ontroller found on many industrial plants. ThePIDF is a Proportional-Integral-Derivative (PID) 
ontroller augmented with a low-pass�lter in the derivative part. In industrial plants, this �lter is needed to eliminate the noisepresent in the sensing pro
ess. In the e-
ommer
e web 
luster, the variable we will senseis the tardiness, a random variable, and be
ause it is sto
hasti
, presents variations thatare very similar to noise.For the QoS 
ontrol with the assumption of a spe
i�
 distribution (e.g., TQM), theQoS 
ontroller maintains the average tardiness around the values expressed by Equa-tions 3.2 or 3.3. When using our proposed quantile estimator (GTQM), that is indepen-dent of the workload distribution, the referen
e of the 
ontroller will be to maintain the
p-quantile 
ontrolled in 1.0. In other words, the tardiness will have an average of zero,guaranteeing statisti
ally a QoS of p.The a
tuator of the 
ontrol system is based on dynami
 voltage s
aling (DVS). Chang-ing the voltage and frequen
y of all servers we 
an slow down the system, resulting ina greater average tardiness and greater energy savings, or it 
an speed up the servers,pushing the average tardiness to values 
loser to zero at the expense of higher energy
onsumption.5.3 Tardiness and QoSTardiness is de�ned as the ratio of web intera
tion end-to-end response time to the spe
-i�ed deadline for that web intera
tion request. The advantage of using this de�nitionis that tardiness gives more detailed information about the 
ompletion of web intera
-tions, rather than simply 
ounting how many intera
tions �nished by the deadline anddividing by the total. In other words, this is the same as answering yes or no whetherthe intera
tion �nished on time, or answering how 
lose to the deadline the intera
tion
ompleted.The tardiness in a web server will depend on several system fa
tors, su
h as the



5.4 Robbins-Monro Algorithm 63workload, the speed of the pro
essors, the time to a

ess resour
es, et
1. The tardinessratio 
an, thus, represent the workload of the system and is, therefore, a random variable.The QoS metri
 
an be obtained as a fun
tion of statisti
al 
hara
teristi
s of the randomvariable tardiness, su
h as the average, the p-quantile, or expressions relating both.A p-quantile, or Q(p), is the value θ of a random variable for whi
h Pr [X ≤ θ] = p.It may also be de�ned in terms of the inverse of the 
umulative distribution fun
tion ofthe random variable:
Q(p) = F−1(p) = inf {x : F (x) ≥ p} , 0 < p < 1 (5.1)where F (x) in the 
umulative distribution fun
tion of the random variable X.For spe
i�
 probability distributions, the relation between the tardiness and the QoS
an be obtained analyti
ally, su
h as the expressions for Pareto and Lognormal distribu-tions (Equations 3.2 and 3.3).5.4 Robbins-Monro AlgorithmThe Robbins-Monro sto
hasti
 estimation method was originally presented in [82℄, andmore re
ent works present appli
ations to signal pro
essing, 
ommuni
ations, 
ontrolsystems, and analysis of 
onvergen
e [59℄. The simpler appli
ation is to �nd θ̄, whi
h isthe root of the equation m(θ) = m̄, where m(θ) =

∫

yG(dy, θ), or the mean of a randomvariable. For ea
h parameter θ, G(dy, θ) is the unknown probability distribution fun
tionof the random variable. In our instantiation of a real system, the random variable 
anbe the response time of the web requests given an internal parameter θ (in our 
ase,the unknown load arriving at the front-end). The experimenter 
an get noise-
orruptedobservations for spe
i�
 values of θ. The algorithm 
onsists of estimating θ by the re
ursiveformula θn+1 = θn + ǫn(m̄ − Yn), where Yn is the observation taken at time n. Be
ause
θ is a parameter of the system, as the estimation θn 
hanges, the observed value Yn
hanges altogether, and θn will 
onverge to the desired value, that is, the θ whi
h makesthe system to give an average response time m̄. The ǫn 
an be set in two ways, as ade
reasing value, with some restri
tions to guarantee the 
onvergen
e, or a �xed value ǫ.The original work of Robbins-Monro 
hooses an appropriate sequen
e satisfying: ǫn > 0,
ǫn → 0, ∑

n ǫn = ∞. The ǫn value is in fa
t a step value, and the 
hoi
e of sequen
e {ǫn}1The bottlene
k is the CPU, as usual when there are many third tier ma
hines, large memories andfast networks.
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entral to the e�e
tiveness of the algorithm. A small and 
onstant ǫn will be our 
hoi
e,be
ause it allows tra
king of the system if its probabilisti
 properties 
hange. More onthis will be explained in Se
tion 5.5.The method is straightforward to be appli
able to a 
omputing system for whi
h wewant to set its DVS 
lo
k frequen
y, so that it yields the desired average response time.To illustrate this, we made the following experiment. We want to sort a �xed size set ofrandom numbers using the qui
ksort algorithm. As expe
ted, the exe
ution time varies,depending on the input. We used a CPU that 
an set any frequen
y between 1000MHzand 2600MHz. Then we wanted to use the re
ursive sto
hasti
 algorithm to �nd thebest frequen
y (parameter θ) so that the average exe
ution time to sort 10, 000 random
10-digit numbers was 300ms. At the minimum frequen
y, the measured average exe
utiontime was 578.7ms, and at the maximum frequen
y, the measured average exe
ution timewas 221.4ms. The result is shown in Figure 5.2.
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Figure 5.2: Qui
ksort: Frequen
y estimation for a given response timeAt every 1s the sorting algorithm is exe
uted and the exe
ution time is stored. Thetop part of Figure 5.2 (Probability Density) shows the 
omputed histogram for the exe-
ution times at the maximum frequen
y, at the minimum frequen
y, and at the estimatedfrequen
y to a
hieve the desired average. The bottom part of Figure 5.2 (EstimatedFrequen
y) shows the evolution of the estimation. The result was that the frequen
ya
hieved a value around 1800MHz, whi
h made the average exe
ution time to be 300ms.The 
on�den
e interval with 95% of 
on�den
e was 1.5ms. In this experiment, the re-
ursive algorithm was freqn+1 = freqn − 200 ∗ (0.300 − timen). The value timen is themeasured exe
ution time at time n, and ǫ = −200. The negative value is be
ause we needto in
rease the frequen
y, if we want to redu
e the exe
ution time, and vi
e-versa.



5.5 Generalized Tardiness Quantile Method 655.5 Generalized Tardiness Quantile MethodTo quantify the p-quantile and use it in the system to statisti
ally guarantee a QoS withprobability p, we propose the use of a quantile estimator based on the Robbins-Monromethod, explained in Se
tion 5.4, The estimation method 
onsists of a sequen
e of realnumbers {xn}, proved to 
onverge to θ, as the solution to the problem Pr [X ≤ θ] = α.The 
onvergent pro
ess is obtained from a non-homogeneous (transition probabilitiesdepend on time) Markov 
hain {xn} de�ned by:
xn+1 = xn + ǫn (α − yn) (5.2)where {ǫn} is a �xed sequen
e of positive 
onstants, and {yn} are values from a randomvariable Y = Y (x) that depends on the random variable X. This dependen
e is expressedas follows:
yn =

{

1 ifzn ≤ xn

0 otherwise
(5.3)where zn is an out
ome of the experiment, or, in the 
ase of the web server system, znis one single measure of time delay or tardiness. From Equation 5.3 we 
an derive thetransitions probabilities as Pr [yn = 1|xn] = F (xn), and Pr [yn = 0|xn] = 1 − F (xn) (seeFigure 5.3).

1 − F (xn) F (xn)
yn = 1yn = 0

F (xn)

1 − F (xn)

Figure 5.3: Markov transition diagramFor ea
h out
ome zn of the experiment with unknown probability distribution, anew xn value is determined by Equation 5.2, making the transition probability vary ontime, until the 
onvergen
e to θ o

urs. The rationale behind this algorithm is that if
xn is already at the p-quantile of the distribution, the probability that xn will in
reaseby ǫn(α − 0) is α/(1 − α) times the probability that xn will be de
rease by ǫn(1 − α).For example, if we are estimating the 0.9-quantile, the probability that yn = 0 is 10%,and 90% for yn = 1. But when yn = 1, the estimator is de
reased by a size that is 9times smaller (e.g., 0.9 − 1) than when yn = 0 (e.g., 0.9 − 0). This makes the estimator
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ally 
onverge to the p-quantile. Additional analysis of the 
onvergen
e is givenin Se
tion 5.5.1.The proof des
ribed in [82℄ is made by showing that, independently of the initialvalue of x, namely x1, the limit of E [xn − θ]2 will tend to zero as n tend to in�nity. Thishappens for an appropriate sequen
e of positive 
onstants {ǫn}, su
h that c′

n
≤ ǫn ≤ c′′

n
, fortwo positive 
onstants c′ and c′′. The 
ommon 
hoi
e is the sequen
e {ǫn} = 1

n
. However,if this parameter is �xed in a relatively small value, the estimation 
an be run inde�nitely,and we obtain a tra
king system in whi
h the probability distributions of the system 
an
hange during time, and the estimator will still work. This is obviously important for aweb system, be
ause the QoS measure 
an be done for di�erent load s
enarios. In thetra
king estimation, the stri
tly nonzero step size ǫ generates a 
y
li
ally updated valuewith an added noise that does not go to zero as n → ∞, as in the other 
ase, witha de
reasing step ǫn. This tra
king algorithm makes it possible to follow 
hanges in theprobabilisti
 properties of the system, and has been used in other appli
ations for tra
kingtime varying parameters in radar systems and networks, su
h as wireless 
ommuni
ationswith varying 
hannels [59℄.5.5.1 Test of Convergen
eThe estimation method just des
ribed is very simple to implement and 
an be run in
onstant time (that is, with insigni�
ant overhead in pra
ti
e). Before applying to thereal web server system, we wanted to test the independen
e of the method to the shapeof the probability density fun
tion of the workload. We tested the estimation 
apabilityand 
onvergen
e response with several known distributions, so that we 
ould validate themethod by 
omparing the results obtained with the theoreti
al given by the distributionequations.To evaluate the p-quantile estimator in terms of a

ura
y and 
onvergen
e time,we used a random number generator to generate 6 di�erent distributions: Exponential,Pareto, Lognormal, 1-Erlang, 2-Erlang, and 3-Erlang. Figure 5.4 shows the inverse of the
umulative distribution fun
tion, both the theoreti
al (T) and the obtained by the estima-tor (E). The plots show ex
ellent a

ura
y for all probability range. For ea
h distribution,we plot 40 points, equally distributed between 0.10 and 0.98. Ea
h point 
onsists of anaverage of 20 runs, with a 
on�den
e interval of 95% (given by ±2.086 σ√

N
). Although the
on�den
e interval is larger for very high probabilities (i.e., 
lose to the tail), the methodis 
learly 
apable of providing an unbiased quantile estimation.



5.6 Experiments 67In these tests, we used {ǫn} = 1
n
. The in
onvenien
e of 
hoosing the 1

n
value is that weneed to wait until a 
onvergen
e is a
hieved. That is, we 
annot have an estimation everytime, like a moving average, as we 
an when we use the tra
king algorithm. We 
an onlyhave a single estimation after a de�ned time window. As mentioned, an alternative wayis to �x the step size ǫn = ǫ with a relative small size so that we 
an tra
k the estimatedvalue. We show in Figure 5.5 the 
onvergen
e of the estimator for the 0.90-quantile, using

ǫn = 0.02 and ǫn = 0.002, to give a sense of how this parameter a�e
ts the method. InSe
tion 5.6 we will show a better sensitivity analysis for this parameter. In Figure 5.5,before iteration 25, 000, the input data has 0.98-quantile = 1.0, and 0.90-quantile = 0.504.After iteration 25, 000, the distribution 
hanges to 0.90-quantile = 1.0. We note that thereis a tradeo� between time to 
onverge and the error in steady state.5.6 ExperimentsIn this se
tion we show experiments performed on a real web 
luster implemented asdes
ribed in Se
tion 5.2, where we measured QoS and 
ompared it to the user-spe
i�edvalue. The experiments used both TPC-W and a deterministi
 workload, as des
ribednext.Table 5.1 shows the frequen
ies available for DVS for the pro
essors in the 
luster,and the respe
tive power 
onsumptions for the four ma
hines in the appli
ation layer (seemodel in Se
tion 5.2), where we apply DVS: 
oulomb, hertz, ohm, and joule.Table 5.1: Frequen
ies, power busy and idle, and performan
e for the appli
ation serversNode Frequen
ies frequen
y (MHz), idle power (W), busy power (W), performan
e (req/s)
oulomb 5 1000 67.40 75.20 53.80; 1800 70.90 89.00 95.40; 2000 72.40 94.50 104.80;2200 73.80 100.90 113.60; 2400 75.20 107.70 122.30hertz 5 1000 63.90 71.60 53.60; 1800 67.20 85.50 92.90; 2000 68.70 90.70 103.40;2200 69.90 96.50 112.40; 2400 71.60 103.20 122.80ohm 6 1000 65.80 82.50 99.40; 1800 68.50 99.20 177.40; 2000 70.60 107.30 197.20;2200 72.30 116.60 218.00; 2400 74.30 127.20 234.60; 2600 76.90 140.10 255.20joule 4 1000 66.60 74.70 51.20; 1800 73.80 95.70 91.20;2000 76.90 103.10 101.40; 2200 80.00 110.60 111.405.6.1 Deterministi
 WorkloadThe deterministi
 workload is a 
onstant stream of web requests to a web server 
luster,for whi
h the average exe
ution time is 20ms, and with a �xed deadline of 200ms. This



5.6 Experiments 68type of workload is 
hara
teristi
 of servers that servi
e mostly stati
 webpages, or serverswith large internal memory that 
an 
a
he (in memory) most of their information. Theintent is to show that the 
orrelation of the expe
ted QoS with the observed QoS does notdepend on the workload. The observed QoS was measured 
ounting deadline misses in
40-se
ond intervals. We 
hanged the QoS setpoint every 10 minutes to ensure our GTQMwould adapt to new values.5.6.2 Results for the Deterministi
 WorkloadThe experiment shown in Figure 5.6 
ompares the GTQM against the TQM with Paretodistribution. We 
an 
learly see the e�e
t of approximating the real tardiness distributionby a known distribution. The Pareto-TQM line is the p−quantile equation derived inChapter 3 (Equation 3.2). For example, say that we need a QoS of 0.95. Then, usingPareto-TQM, the system will 
ontrol the tardiness around 0.3. Following the horizontalline of 0.3, in the GTQM line, this 
orresponds to a QoS value between 0.97 and 0.98.This means that the Pareto-TQM is more 
onservative and that the 
ontrolled web serverwill thus 
onsume more energy. For the QoS of 0.95, the tardiness 
ould be 
ontrolled
lose to 0.45 with GTQM, making the system slower while still observing the 
ontra
tedQoS, but saving more energy.The plot in Figure 5.7 shows the obtained QoS for ea
h spe
i�ed QoS value, usingthe deterministi
 workload. The 
orresponden
e is an almost perfe
t mat
h even for highQoS values (e.g., 0.99). As shown in Chapter 3, although QoS 
ontrol based on TQMmethod (assuming Pareto distributions) is the best among the tested methods, it doesnot perform so well for QoS levels 
lose to 1.0. We see from Figure 5.7 that with GTQMthis problem is pra
ti
ally eliminated.Figure 5.8 shows a more detailed experiment, again for the deterministi
 workload.As the overhead to obtain a p−quantile is minimal, we estimated a range of p−quantilevalues, with a 0.1 step, that allowed us to see online the shape of the exe
ution timedistribution (
df). We plotted the random variable Exe
ution Time for every p−quantile,and for all desired QoS values from 0.90 to 0.99, with a 0.01 step. The point between 0.9and 1.0, for Pr[X < x], is the set QoS value for ea
h 
urve. Note that all are aligned atan exe
ution time of 200ms, whi
h is the deadline for the requests. The alignment of thelast point with the 200ms value shows the pre
ision of the estimator for any QoS value.We 
arried out sensitivity analysis on the an fa
tor in the Robbins-Monro equationand on the parameter ki of the 
ontroller. We experimented with values 0.01, 0.05, 0.1,
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0.3, and 0.5 for an, and values 0.01, 0.05, 0.1, and 0.3 for ki. As shown in Figure 5.9, thesmall values of an showed better performan
e, attaining an ex
ellent mat
h between the
0.95 QoS setpoint and the observed value. A small value of an makes the system slower,be
ause the estimation needs more time to rea
h the steady state value. As for the valueof ki, greater values of this parameter provided better approximations, spe
ially when anis small. However, the sensitivity to the ki parameter is smaller.The last experiment using the deterministi
 workload is a 
omparison of the powerand QoS of GTQM with the method presented in [85℄. In that work, the QoS 
ontrol isnot done in a �ne-grain manner, keeping the QoS 
lose to 1.0. Figure 5.10 shows thatGTQM maintains the system pre
isely at the spe
i�ed QoS level. In this experiment, thespe
i�ed QoS was 0.95, and only one ma
hine was turned on.Figure 5.11 shows the power 
onsumed by the system during a period of 1.8h. TheGTQM method redu
ed the average power as shown in the plot, and redu
ed the energy
onsumed from 173Wh to 164Wh, an energy saving of 5.2%. Considering that this savingsis relative to an already power managed system, this amounts to signi�
ant savings. Wenote that su
h saving is bigger than that a
hieved by the daylight savings time in Brazil,reportedly around 4%.5.6.3 Results for TPC-WIn Figure 5.12 we again show the relation between measured QoS and the setpoint, butnow for the TPC-W workload. In this 
ase the obtained QoS is slightly higher than theexpe
ted for the lower range. This happens be
ause although the system is set as slowas possible, these minimum resour
es in our test 
luster are still too high, and, thus, it isnot possible to further redu
e the QoS. The results prove again the ability of GTQM toestimate the system state and to adjust the 
ontroller to the exa
t expe
ted QoS.To be able to examine the long term behavior of GTQM, we 
arried out a 
ontinuoustime experiment, assuming the TPC-W workload, where we leave the system running forover 1600 se
onds (see Figure 5.13). We measured QoS every 40s, for three setpoints:QoS = 0.91, QoS = 0.95, and QoS = 0.99. As 
an be seen, the variability is smaller forQoS values 
lose to 1.0. This happens be
ause the 
on�den
e interval for a proportionis given by ±1.96

√

p(1−p)
N

[54℄, and if the deadlinesmet/numreqs proportion is 1.0 the
on�den
e interval is zero. The observed variability of the QoS value was within 1% ofthe requested QoS, whi
h is a very good result for the random pro
ess we want to 
ontrol.



5.7 Con
lusion 70Finally, in Figure 5.14 we show the trade-o� of power and QoS, assuming the TPC-Wgenerated workload. As the need for a better QoS in
reases, the power needed in
reasesin a exponential way. This 
learly shows the bene�t of our me
hanism to keep the systemwith the QoS spe
i�ed in the SLA, avoiding overprovisioning the system (due to thea
hievable �ne-grain 
ontrol) and the 
onsequent energy/power waste.5.7 Con
lusionIn this 
hapter we presented GTQM, a generalized method for the Tardiness QualityMetri
 presented in Chapter 3. By using the online 
onvergent sequential pro
ess proposedin [82℄, de�ned from a Markov 
hain, we derived quantile estimations that do not dependon the shape of the workload probability distribution, so that the metri
 
an be used inany workload. To evaluate this new approa
h, we showed pra
ti
al results in a real web
luster with QoS 
ontrol in an e-
ommer
e environment. We used the tardiness to 
ontrolthe speed of the servers, and showed that GTQM performs better than TQM: it allows for�ner-grain 
ontrol of the requests, making it possible to further redu
e the speeds when
omparing to an already optimized te
hnique.In the next 
hapter, we show how operations resear
h is introdu
ed in the system toa
hieve optimal dynami
 
on�guration of the web 
luster, that is, whi
h nodes need to beon and o�, and at whi
h frequen
y. We model the problem of assigning speeds to servers
ombining linear programming and integer programming, and solve it using traditionallinear programming te
hniques. This will 
omplete the goal of the thesis, addressing the
luster-wide energy management te
hnique for heterogeneous systems based on 
lusterre
on�guration, again based on a real implementation.
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Chapter 6
Dynami
 Con�guration

There can be no economy where there is no efficiency.

– Benjamin DisraeliTo redu
e the environmental impa
t, it is essential to make data 
enters green, byturning o� servers and tuning their speeds for the instantaneous load o�ered, that is,determining the dynami
 
on�guration in web server 
lusters. We model the problemof sele
ting the servers that will be on and �nding their speeds through mixed integerprogramming; we also show how to 
ombine su
h solutions with 
ontrol theory. For proofof 
on
ept, we implemented this dynami
 
on�guration s
heme in a web server 
lusterrunning Linux, with soft real-time requirements and QoS 
ontrol, in order to guaranteeboth energy-e�
ien
y and good user experien
e. In this 
hapter, we show the performan
eof our s
heme 
ompared to other s
hemes, a 
omparison of a 
entralized and a distributedapproa
h for QoS 
ontrol, and a 
omparison of s
hemes for 
hoosing speeds of servers.Some partial results of this 
hapter was published as a WiP paper [14℄.6.1 Introdu
tionEnergy 
onsumption is a real 
on
ern in these times of global warming and related envi-ronmental threats. In many parts of the world, initiatives for deploying green data 
entershave already appeared. One initiative in development in Germany [32, 33℄ will save 25%of energy, what will 
orrespond to 16, 000MWh per year, putting annually in the atmo-sphere up to 11, 000 tons less 
arbon dioxide than 
onventional data 
enters of the samesize. Another example is the 247, 000-square-foot Urbana Te
hnology Center that wasthe �rst data 
enter in the USA 
erti�ed by standards for environmentally sustainable
onstru
tion [97℄. In that proje
t, as an example on how every saving opportunity 
ounts,



6.1 Introdu
tion 79even the lighting is redu
ed by 50%. In light of this, why should a web server node beturned on when it is not needed?The energy 
ost of a web server 
luster 
an be redu
ed by sizing the system appro-priately. As an example, in a 5-ma
hine 
luster with a very low workload, 
lose to 77% ofpower redu
tion is possible if the 
orre
t 
on�guration of only one server is used. From[81℄ we 
an have an idea on what is the energy expenditure of a real data 
enter: a typi
al
ost of US$0.12 per KWh, a

ording to that paper, during the 10-year life of a data 
en-ter, translates to approximately US$10, 000 per KW. In a data 
enter, half of the energy
ost is due to the IT equipment itself, and the other half 
omes from the Network-Criti
alPhysi
al Infrastru
ture (NCPI), whi
h is the underpinning for the IT equipment to fun
-tion, su
h as ba
kup power, 
ooling, physi
al housing, se
urity, �re prote
tion, et
. Thismakes a 200KW data 
enter have a 10-year ele
tri
ity bill of 4 million dollars.This 
hapter aims at studying the dynami
 resizing of web server 
lusters as well assetting the speeds of the servers that will be turned on. Servers that 
ompose the 
lustermay be heterogeneous, that is, they may have di�erent set of frequen
ies and may performdi�erently in ea
h frequen
y. The goal is to enable the server 
luster to 
on�gure itselfa

ording to the load, while providing the same user experien
e of a high performan
eoversized server. To a
hieve this goal we 
onsider the 
luster as a soft real-time system.This is a 
onvenient approa
h, be
ause with the spe
i�
ation of deadlines (i.e., the timelimit for exe
uting ea
h web intera
tion) we impose limits for the minimization of energy
onsumption, without 
ompromising the expe
ted quality of the user experien
e. In fa
t,standards for ben
hmarking e-
ommer
e web servers su
h as the TPC-W 
hara
terize theappli
ation as soft real-time, be
ause in addition to de�ning the deadlines, they spe
ifyalso a fra
tion of the web intera
tions that statisti
ally have to 
omplete before the dead-line. We expe
t sto
hasti
 systems to perform well on average and save energy, ratherthan model it for the worst 
ase exe
ution, 
ausing overprovisioning and 
onsuming moreenergy than needed. For su
h systems, our metri
 of interest will be Quality of Servi
e(QoS), de�ned as the per
entage of web intera
tions that 
an exe
ute before its deadline.We 
ombine two te
hnologies: QoS 
ontrol by means of feedba
k 
ontrol theory, andoperations resear
h. First, the feedba
k 
ontrol dynami
ally adjusts the frequen
y/voltageof the 
luster nodes to 
ontrol the fra
tion of deadlines met; frequen
ies are set propor-tionally to how late or how early requests �nish. To 
hange speeds, we rely on the supportof Dynami
 Voltage S
aling, present in most modern CPUs (allowing the dynami
 settingof the frequen
y and voltage of the CPU 
ore), whi
h allows for quadrati
 redu
tion in
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ubi
 redu
tion in the power 
onsumption of the CPU [101℄.Se
ond, we show how operations resear
h is introdu
ed in the system to a
hieve op-timal dynami
 
on�guration of the web 
luster, that is, whi
h nodes are on and o�, andat whi
h frequen
y. We model the problem of assigning speeds, in
luding zero speed(server o�), to servers as a mixed integer programming (MIP) problem, whi
h is a linearprograming problem where some variables are integers and some are real variables, andsolve it using traditional linear programming te
hniques.The 
ontribution is fourfold: (a) a novel way of 
ombining 
ontrol theory and MIPsolutions; (b) modeling the dynami
 
on�guration problem (i.e., on/o� of nodes andspeeds of a
tive nodes) through mixed integer programming problems; (
) 
omparingthe e�
ien
y of higher-than-needed dis
rete speeds (interspersed with idle periods) andpseudo-
ontinuous speeds (based on the two-speed s
heme of [53℄); and (d) 
omparing a
entralized SISO (Single Input Single Output) 
ontroller with a distributed SIMO (SingleInput Multiple Output) 
ontroller.By modeling the optimization problem allowing heterogeneous ma
hines, with dif-ferent set of frequen
ies, we 
an a
hieve high power redu
tions 
ompared to other DVSs
hemes that 
onsider equal frequen
ies for all ma
hines, and only a prede�ned sequen
eof ma
hines to turn on and o�. One su
h solution is adopted in [30℄, and our solutionredu
ed the power usage up to 40%.6.2 Optimization ProblemsWe present a s
heme to �nd the best 
on�guration for the 
luster of N nodes and onefront-end. This is a 
luster-wide optimization for both the on/o� and the DVS, unlikewhat is done in [85℄, where the DVS is lo
al to ea
h node, and the on/o� is 
lusterwide. We will 
ompare two possible models for the problem, the traditional DVS s
hemeand the swit
hed DVS s
heme. The former allows tasks to use only one of the availabledis
rete pro
essor speeds at a time, and thus the solution will 
hoose the dis
rete frequen
yimmediately higher than the exa
t theoreti
al frequen
y needed for a given workload (ifspeeds were 
ontinuous). In the swit
hed DVS, based on [53℄, the solution allows the CPUto swit
h between the two dis
rete values adja
ent to the exa
t theoreti
al frequen
y. Thelatter is 
onvenient for building a feedba
k 
ontrol with the CPU frequen
ies being the�nal 
ontrol element, be
ause it simulates a CPU with 
ontinuous frequen
ies (the outputof the 
ontroller 
an be immediately fed to the DVS module). Although both use dis
rete
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ies, from now on we will 
all, inter
hangeably, the �rst �dis
rete� or �traditional�DVS, and the se
ond �
ontinuous� or �swit
hed� DVS.6.2.1 Swit
hed DVSWe adopted a 
ombination model for pie
ewise problems similar to what is done in [37℄.A server i with Si frequen
ies has Si − 1 frequen
y ranges. For any range s, we havetwo endpoint frequen
ies F s
i and F s+1

i . We need to �nd the range s that 
ombininglinearly the frequen
ies F s
i and F s+1

i will result in the optimal frequen
y fi for ea
h server
i, allowing this 
ombination be zero, that will represent the server turned o�. Let usdenote the power when busy at frequen
ies F s

i and F s+1
i as P i,s

busy and P i,s+1
busy , respe
tively.Similarly, for the power when idle: P i,s

idle and P i,s+1
idle . In the same way, Hs

i and Hs+1
i arethe maximum load attained in ea
h server for ea
h frequen
y endpoint. The amount ofrequests per se
ond the 
luster has to pro
ess is represented by Hbase. The problem ismodeled as follows:

Minimize: N
∑

i=1

Si−1
∑

s=1

{

αs
iP

i,s
busy + βs

i P
i,s+1
busy

} (6.1)subje
t to: N
∑

i=1

Si−1
∑

s=1

{

αs
iH

s
i + βs

i H
s+1
i

}

= Hbase (6.2)
αs

i + βs
i − ys

i = 0, ∀i ∈ {1 . . .N} , ∀s ∈ {1 . . . Si − 1} (6.3)
Si−1
∑

s=1

ys
i ≤ 1, ∀i ∈ {1 . . .N} (6.4)

ys
i ∈ {0, 1} , ∀i ∈ {1 . . . N} , ∀s ∈ {1 . . . Si − 1} (6.5)This is a pie
ewise optimization problem be
ause the obje
tive fun
tion is a sum ofseveral dis
ontinuous line segments. The main variables, αs

i and βs
i , mean how mu
h ofthe frequen
y end points F s

i and F s+1
i , in a given range s at the server i, we will 
ombineto obtain the desired frequen
y fi for that server. After solving the problem and obtaining

αs
i and βs

i , the ne
essary frequen
y value fi for ea
h server i is given by:
fi =

Si−1
∑

s=1

αs
i F

s
i + βs

i F
s+1
i (6.6)With this 
onvenient modeling, we 
an solve the problem using traditional linear
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hniques, and the solution also in
ludes the re
on�guration of servers(on/o�). The problem is 
lassi�ed as MIP be
ause y (see Equation 6.5) is an integervariable. This variable allows the identi�
ation of the ele
ted frequen
y range, and allowsthe solver to sear
h for any 
ombination, in
luding turning a server o�, what is representedby y = 0. When ys
i = 0, the frequen
y for that segment on a given server is set to zero.Restri
tion (6.4) ensures that at most one y is 1 for ea
h server i. If ys

i = 0, ∀s, then server
i is turned o�. In this solution, the utilization is ideally always 1.0, be
ause we 
ombinetwo frequen
ies in su
h a way that it is just enough to handle the load. An ex
eptionis when there is only one server working at its lowest frequen
y; in this 
ase there is nooptimization to do.We solved this problem using the free software Gnu Linear Programming Kit (GLPK) [46℄.For small 
lusters it 
an be exe
uted online, with exe
ution times of tens of millise
onds.However, we run it o�ine building a table that 
an be looked up online. We will usethis formulation also for optimizing the 
ontrol output, with a simpli�ed version of theproblem to allow only a subset of nodes always turned on. We run this modi�ed versiononline in the 
ontroller, be
ause the o�ine version would need a large number of tables.For up to 30 nodes we measured the exe
ution time, and in the worst 
ase it fell below
100ms. This 
hange is made on restri
tion (6.4) and will be des
ribed in more details inSe
tion 6.2.4.6.2.2 Traditional DVSThe problem with dis
rete frequen
ies is slightly di�erent. Let us 
onsider s not as afrequen
y range, but one of the available dis
rete frequen
ies between 1, . . . , Si. Thepower 
onsumption will be the 
ombination of the idle power P s,i

idle and the busy power
P s,i

busy, for the sele
ted frequen
y. Here we also have the main variables αs
i and βs

i , and
βs

i , in
identally, is the resulting utilization, be
ause it is the part representing the busypower. Di�erently from the previous formulation, here the 
luster may be 
on�gured witha 
apa
ity bigger than the load demand Hbase. The optimal frequen
y fi is the frequen
y
s for whi
h the binary variable ys

i is non zero. Mathemati
ally, fi =
∑Si

s=1 ys
i F

s
i . Theproblem for dis
rete frequen
ies is:
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Minimize: N

∑

i=1

Si
∑

s=1

{

αs
iP

i,s
idle + βs

i P
i,s
busy

} (6.7)subje
t to: N
∑

i=1

Si
∑

s=1

βs
i H

s
i ≥ Hbase (6.8)

αs
i + βs

i − ys
i = 0, ∀i ∈ {1 . . . N} , ∀s ∈ {1 . . . Si} (6.9)
Si

∑

s=1

ys
i ≤ 1, ∀i ∈ {1 . . .N} (6.10)

Si
∑

s=1

βs
i y

s
i =

Sj
∑

s=1

βs
j y

s
j , ∀i ∈ {1 . . . N − 1} , j = i + 1 (6.11)

ys
i ∈ {0, 1} , ∀i ∈ {1 . . . N} , ∀s ∈ {1 . . . Si} (6.12)The additional restri
tion (6.11) has to do with load distribution. It is present toenfor
e equal utilization values βs

i for all servers i that are turned on1. In our implemen-tation, we dynami
ally assign weights proportional to the measured performan
e that isreported ba
k to the front-end, by ea
h server, periodi
ally. In this way, for a given load,and at any 
ombination of frequen
ies for the servers, the utilization of every server tendto have all the same value.Although restri
tion 6.11 makes the problem nonlinear, we were still able to devise anelegant solution to solve it as a MIP using GLPK. This solution requires an approximation,and uses GLPK twi
e, on
e to determine the set L of a
tive servers, and the se
ond timeusing only the restri
tion without the produ
t with yi. The restri
tion 6.11 then be
omes:
Si

∑

s=1

βs
i =

Sj
∑

s=1

βs
j , ∀i, j ∈ L, j = i + 1 (6.13)This slightly modi�ed optimization problem produ
es di�erent results. For example,with 10 servers, say that there is a load that would �ll roughly 80% of ea
h server inthe load balan
ed version. In the optimal version without load balan
ing, the optimizerwill �ll up the most power e�
ient servers �rst and then the last server would be witha lower load. This fa
t says that an unbalan
ed load distribution method 
ould be morepower e�
ient than using load balan
ing. This di�eren
e would be more evident if, for1Apa
he and other web servers implement this type of restri
tion, by distributing the fra
tion of thetotal work proportional to the server performan
e, measured in terms of their 
urrent frequen
y settings,needed due to 
luster heterogeneity. This is guaranteed by our modi�
ation in the Apa
he load balan
ermodule making it dynami
.



6.2 Optimization Problems 84example, we did not allow for turning on/o� nodes, that is, in the 
ase that all serversmust be turned on, and for low loads, be
ause in a low utilization s
enario, it results thatone server re
eives 0% utilization and hen
e it is turned o�.It turned out that in pra
ti
e there is a very small di�eren
e in power for the unbal-an
ed versus the balan
ed load optimization, even when all ma
hines must be turned on.The plot in Figure 6.1 shows the evaluation of the obje
tive fun
tion for the optimizationwith 10 servers. The result is the expe
ted average power 
onsumption that 
omes fromthe 
ombination of average powers for idle and busy at ea
h frequen
y. As expe
ted, thebigger power di�eren
e is for small loads, with a peak of 0.4%, whi
h 
orresponded to
3W . This happens be
ause the solution is a 
ombination of frequen
ies that is minimalto handle ea
h load. A 
onsiderable di�eren
e would appear if the 
ombination of fre-quen
ies were mu
h larger than the ne
essary for the a
tual load. This does not happenbe
ause the optimizer �nds frequen
ies very 
lose to the total amount of 
y
les ne
essaryto handle the load.
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e in power 
onsumption between load balan
ed and load unbalan
edoptimizations; note that load balan
ing is not signi�
ant6.2.3 Considering Boot TimeWe designed an algorithm based on the MIP problem de�ned in Se
tion 6.2.1 where forea
h load demand (Hbase), dis
retized in a small bin, we know whi
h ma
hines have tobe turned on and at whi
h frequen
y. However, pra
ti
al issues arise. One is 
on
erninghow to handle the boot time of the ma
hines. In [85℄, in the worst 
ase, if the load isin
reasing at a de�ned maximum rate max_load_in
rease, a new ma
hine is turned onearlier, so that when the load rea
hes the spe
i�
 point where it is optimal to have onemore ma
hine, the new ma
hine is already booted and a
tive.
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ause we 
onsider an optimization problem that may turn ma
hines o� even if theload in
reases, the above solution will not work. We improved on this idea based on thefollowing observation: it is possible that the point at whi
h it is optimal to have one morema
hine does not 
oin
ide with the point at whi
h the 
urrently-on ma
hines are at fullspeed. In the 
ase where the ma
hines that are already on have more room to in
reasetheir frequen
ies, we 
an make the system more deterministi
2 by turning on the newma
hine 
loser to the optimal point, or exa
tly at the optimal point. In the latter 
ase,the already turned on ma
hines have to have room to in
rease their frequen
ies up to thepoint the load 
an rea
h at the worst 
ase rate from the optimal point.6.2.4 Hysteresis AlgorithmAnother pra
ti
al issue is the way servers os
illate between the on/o� states 
aused bysmall �u
tuations of the workload. We implemented a hysteresis to de�ne the turn-on andturn-o� points. Hysteresis 
onsists of building a state ma
hine that de�nes two di�erentpoints for a state transition, with a lag between turning on and o�. We want to turn aserver on at a spe
i�
 load, say A, and turn o� at the lower load A − h, where h is thehysteresis lag. In the range between A−h and A, the system may be found with k or k−1a
tive servers. Thus, we need to optimize in two situations, for k and k − 1 servers. Asthe optimization is done o�ine, we need to have two tables that will show the optimumfrequen
ies for ea
h server in the two situations.To obtain these two tables we need a slightly di�erent MIP problem, whi
h takes asinput whi
h ma
hines will be on and whi
h will be o�. This is done by 
hanging therestri
tion (6.4). Letting Son be the set of ma
hines that are to stay on,
Si−1
∑

s=1

ys
i = 1, ∀i ∈ Son (6.14)Letting Soff be the set of ma
hines that are to stay o�,

Si−1
∑

s=1

ys
i = 0, ∀i ∈ Soff (6.15)We use the above modi�ed version of the minimization problem of Equation 6.2 tooptimize the output of the 
ontroller for the ma
hines that are on. The algorithm will2More deterministi
 be
ause we redu
e one random variable, whi
h is whether the a
tual load rate isat the max_load_in
rease or not.



6.3 Testbed 86�nd the best instant to turn a node on, 
onsidering how far the set of turned on ma
hines
an sustain the load. Re
all that a node may be turned on when the 
urrently-on still
an sustain the load in 
ases that a new 
ombination of servers is more power-e�
ient. Ifthe 
urrently-on 
an sustain the load in
luding the max_load_in
rease, a new ma
hine isturned on only at the optimal point given by the solution of the MIP problem de�ned inEquations (6.1) to (6.5). Otherwise, if the turned on ma
hines 
annot sustain the load,the new ma
hine is turned on earlier 
onsidering a worst 
ase assumption on the loadin
rease, as in [85℄. The state ma
hine that builds the hysteresis and the algorithm aredetailed in [15℄.6.3 TestbedBased on open sour
e software and 
ommodity hardware, we implemented a web server
luster with the network topology shown in Figure 6.2.

Web
servers

Web
front−end

coulomb hertz ohm joule ampere

emulated
browsers

watt

Figure 6.2: Network topologyTable 6.1 shows the hardware used to build the 
luster. The ma
hines have the samear
hite
ture but are heterogeneous in terms of maximum performan
e and number offrequen
ies.We use ma
hines that 
an suspend the exe
ution to RAM. The power 
onsumptionwhen suspended to RAM is about 5.5 Watts, only 1 Watt bigger than a ma
hine that iso�. Even when turned o� there is power 
onsumption be
ause the system maintains themotherboard powered on, with some parts a
tivated (e.g., for the wake on LAN feature).This 1 Watt di�eren
e is only to maintain the memory refreshed, and it is worth spendingit, be
ause the boot time de
reases from 30s (from when the server is o�) to 3s (from



6.4 Web Cluster Model 87Table 6.1: Spe
i�
ation of web 
luster nodes used in testbedNode Freq. (GHz) Spe
i�
ations (AMD Athlon 64)watt 2.0 3200+, 2GB RAM
oulomb 1.0, 1.8, 2.0, 2.2, 2.4 3800+, 2GB RAMhertz 1.0, 1.8, 2.0, 2.2, 2.4 3800+, 2GB RAMohm 1.0, 1.8, 2.0, 2.2, 2.4, 2.6 5000+ (dual 
ore), 2GB RAMjoule 1.0, 1.8, 2.0, 2.2 3500+, 2GB RAMampere 1.0, 1.8, 2.0 3800+ (dual 
ore), 2GB RAMsuspend to RAM).6.4 Web Cluster ModelOur web server model is a 
luster of N heterogeneous servers 
apable of Dynami
 VoltageS
aling (DVS) and a front-end. The front-end is a server a
ting as a reverse proxy andserving as a gateway to the a
tual web servers that pro
ess the requests. This is a 
ommonar
hite
ture used in data 
enters, although to a
hieve bigger systems, data 
enters mayuse several 
lusters. A review of web server 
lusters ar
hite
tures is very well presentedin [27℄. As in [85℄, we 
onsider CPU-bound dynami
 requests. The front-end assigns afrequen
y fi to ea
h server i, based on performan
e information that is reported ba
kby the servers. We allow for turning o� a server by making fi to be zero. The power
onsumption of a server, for ea
h available dis
rete frequen
y, is linear in relation to theCPU utilization, and we 
onsider di�erent idle and busy powers for ea
h frequen
y. Thelinearity 
omes from the weighted averaging of idle and busy powers resulted when awhole duty 
y
le is observed, for a given utilization.With the web server Apa
he, requests arrive at the front-end and are redire
ted inFIFO order to the web servers using a load distribution me
hanism, whi
h is similar toweighted round robin. The weights are set dynami
ally a

ording to the frequen
y andperforman
e of ea
h web server, and disabled (i.e., weight = 0) if the server is turned o�.We modi�ed Apa
he to in
lude the QoS 
ontrol module and to make the weights of theload distribution dynami
.



6.4 Web Cluster Model 886.4.1 Power MeasurementWe have built a data a
quisition system for power measurement and data logging. Using adata a
quisition board (USB6009 from National Instruments [74℄) 
apable of 48K samplesper se
ond, we 
on�gured 2 
hannels to measure voltage and 
urrent for the 
omposite
luster, using voltage and 
urrent transformers. The power measures are taken from theAC power, and are given by P = 1
T

∫ T

0
v(t)i(t)dt, where T, v and i are time of experiment,voltage, and 
urrent, respe
tively. This sampling rate is more than enough to measurepower at a one 60Hz 
y
le granularity.We used the LabVIEW graphi
al environment to automate the logging of data and tobuild online a power versus load plot. We used a TCP 
onne
tion from the LabVIEW tothe front-end server, and the load information is sent to LabVIEW every 500ms. Poweris a
quired during this period and enqueued. For ea
h load information that arrives, theaverage power for the last 500ms is obtained. Besides the load data, the front-end alsosends other data su
h as utilization, frequen
y, QoS, and the fra
tion of time remainingto the deadline, what we 
all tardiness. A high level view of this implementation is shownin Figure 6.3.
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PowerFigure 6.3: Power a
quisition system using Labview6.4.2 Load Balan
ing AlgorithmThe appli
ation layer is built based on Apa
he 2.2 and its proxy load balan
er module. Ithas a request 
ounting algorithm that 
an distribute evenly the requests based on weights(lbfa
tors). Our early experien
e in this proje
t showed that the load distribution algo-rithm that sends requests to the servers with lowest load or servers with lowest utilizationdoes not work well, be
ause it results in bursts that 
an overload the servers. Instead,a better algorithm is one that 
an 
ontrol the �ow of requests based on some parameterthat 
an be proportional to the server's performan
e. It works as if the load balan
er had



6.4 Web Cluster Model 89a �knob� through whi
h it 
ould redu
e or in
rease the �ow of requests, rather than onlyturning the �ow on and o�. The algorithm present in the Apa
he 2 distribution does this.It has a lbfa
tor that de�nes the work quota given to a spe
i�
 server, and a lbstatus, thatshows how fast a server has to work to ful�ll its quota. Details on how this algorithmworks 
an be found in [3℄.Although lbfa
tors are stati
ally de�ned in Apa
he 2, in our implementation servers
hange their frequen
ies dynami
ally, and we need a me
hanism to alter the lbfa
tordynami
ally. We modi�ed the Apa
he load balan
e module to implement this idea. Ea
hserver periodi
ally sends information to the front-end, in
luding the average frequen
ythat the server ran during the last measurement window. A time window of 4s is bigenough to make the overhead negligible, and small enough for the granularity needed,sin
e the load in a web server vary slowly. For example, in [63℄, a feedba
k 
ontrolled webserver shows good performan
e even with a settling time of 270s, and the settling timemust be small if the system is to rea
t fast to the load.Our method is independent of the DVS algorithm being used, be
ause we read thefrequen
y from the statisti
s �le provided by the Linux kernel, des
ribing the amount oftime ea
h frequen
y was used (time_in_state). The lbfa
tor of a server i is then 
al
ulatedby:
lbfactori = 100

Kifreqi

maxj {Kjfreqj}We used the frequen
y as a measure of performan
e, multiplied by a fa
tor Ki to 
on-sider ma
hines with heterogeneous ar
hite
tures. Ki 
an be determined by ben
hmarkingthe server. We used Ki = 2 for the dual 
ore pro
essors, and Ki = 1 for single 
ore CPUs,be
ause our servers have the same performan
e for a given frequen
y, although they areheterogeneous with di�erent number of frequen
ies and maximum frequen
y. The abovenormalization limits the maximum lbfa
tor in 100, as required by Apa
he.This setting of the lbfa
tors, proportional to the server's performan
e, showed goodresults, guaranteeing full utilization of all servers without overload. However, it alsoshowed some problems in pra
ti
e. When a new ma
hine enters the 
luster, and re
eivesa lbfa
tor value, as soon as this server is enabled in the load balan
er, a massive loadis dire
ted to it at on
e. Apa
he 
reates 
hildren pro
esses as the load in
reases, andthe overhead to do this 
aused what we 
alled a balloon e�e
t, showed in the upperplot of Figure 6.4. This plot shows an experiment where tra�
 is an in
reasing workload



6.4 Web Cluster Model 90generated by the httperf tool [71℄. Load refers to the number of requests a
tually pro
essedper se
ond. If the server has enough performan
e, the ramp is determined by httperf, butthe load 
an de
rease if the server is not fast enough. When a new server is just added tothe 
luster (see every dis
ontinuity at Load = 75, 220, 270, and 315), the �gure shows theload de
reasing be
ause Apa
he is 
reating threads to attend the demand. The new server
annot handle the instantaneous workload that appeared. As soon as new threads are
reated, they start pro
essing requests and this makes the load and power 
onsumptionin
rease. The balloons happen in the 
lo
k-wise dire
tion, be
ause while new threads arebeing 
reated, the server 
annot servi
e requests, and the load goes down. When all newthreads are ready to servi
e requests, power in
reases as long as the load is normalized.As the plot in Figure 6.4 is power × load, this appears as a 
ir
le or balloon. When theballoon is over, the load and power 
ontinue to in
rease normally.
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Load (req/s)Figure 6.4: Transient e�e
t 
aused in the addition of a new server. Balloon e�e
t at topand no balloon e�e
t at the bottom, showing the slowly in
reasing load at new serverWe found two solutions for the balloon e�e
t problem. The �rst is to in
rease theparameter StartServers in the Apa
he 
on�guration, so that when a server is turned on,before re
eiving requests, a larger number of threads is already 
reated. The problemwith this solution is an in
rease of the power 
onsumption be
ause the number of 
ontextswit
hes in
rease. This is signi�
ant, and we measured a loss of about 0.5 Watt per server.We show an experiment relating power 
onsumption and 
ontext swit
h a
tivities in [15℄.The se
ond solution is more power-e�
ient and 
onsists in enfor
ing that the load



6.5 Evaluation 91will be transferred to the new server slowly. When we determine the lbfa
tor, we applyan exponential �lter. The result is showed in the bottom plot of Figure 6.4, applying onlythe exponential �lter. As 
an be seen, a small o

urren
e of the problem persisted in one
ase, around Load = 270. We solved it 
ompletely by 
ombining both solutions.6.5 EvaluationIn this se
tion we will show some optimization results and 
ompare our 
luster imple-mentation with a baseline implementation and show some 
omparative results of the twoapproa
hes for QoS 
ontrol.6.5.1 Simulation ResultsWe �rst show by simulation an evaluation of the optimization te
hnique itself, without thereal 
luster implementation, whi
h will be shown in Se
tion 6.5.2. We 
ited in Se
tion 2.3the work by Chen et al. [30℄, whi
h presents a solution to the problem of �nding aset of ma
hines to be turned on to run appli
ations in a 
luster of servers of a hosting
enter. For a given set of ma
hines, we will show that our approa
h 
an a
hieve almost40% of power redu
tion 
ompared to their work. This happens be
ause our approa
hhas a broader degree of freedom for assigning frequen
ies to servers. In [30℄ all serversare 
onsidered identi
al, and what they determine is the number of servers mi allo
atedto ea
h appli
ation i, and their frequen
y fi at any instant. Thus, all mi servers ofappli
ation i run at the same frequen
y fi. We 
an do better be
ause we 
an 
hoose,for any load situation, the best 
ombination of servers that must be turned on, and ea
hserver j running at a di�erent frequen
y fj , 
onsidering the result for one appli
ation.Be
ause servers are 
onsidered heterogeneous, the possibility to spe
ify whi
h server mustbe on, and with whi
h frequen
y, makes a sizeable di�eren
e. In the sense of 
hoosing thebest 
ombination of frequen
ies and servers, the method in [30℄ is unoptimized.Figures 6.5.a and 6.5.b show the gain we obtain 
ompared to the method in [30℄.We used the real data from 10 servers, whi
h are shown in Table 6.2. Figure 6.5.a showthe power 
onsumption for ea
h number of servers turned on, and all using the samenormalized frequen
y. That is, f = 1 represents the maximum speed for all servers. We
ompare the two optimizations by �nding a di�erent 
ombination of servers and frequen
ythat will a
hieve the same 
luster 
apa
ity given by the method in [30℄. The dotted lines inFigure 6.5.a represent the power of servers if they were not turned o�. As load in
reases,



6.5 Evaluation 92Table 6.2: Frequen
ies, power busy and idle, and performan
e for 10 serversNumber of frequen
y (MHz), idle power (W),Node frequen
ies busy power (W), performan
e (req/s)
oulomb 5 1000 67.40 75.20 53.80; 1800 70.90 89.00 95.40;2000 72.40 94.50 104.80; 2200 73.80 100.90 113.60;2400 75.20 107.70 122.30hertz 5 1000 63.90 71.60 53.60; 1800 67.20 85.50 92.90;2000 68.70 90.70 103.40; 2200 69.90 96.50 112.40;2400 71.60 103.20 122.80ohm 6 1000 65.80 82.50 99.40; 1800 68.50 99.20 177.40;2000 70.60 107.30 197.20; 2200 72.30 116.60 218.00;2400 74.30 127.20 234.60; 2600 76.90 140.10 255.20joule 4 1000 66.60 74.70 51.20; 1800 73.80 95.70 91.20;2000 76.90 103.10 101.40; 2200 80.00 110.60 111.40ampere 3 1000 66.30 81.50 99.80; 1800 70.50 101.80 179.60;2000 72.70 109.80 199.60pentium-M 7 600 42.00 44.00 37.30; 800 43.00 45.00 50.00;1000 43.00 47.00 62.40; 1200 44.00 49.00 74.40;1400 45.00 51.00 88.40; 1600 47.00 55.00 97.60;1800 49.00 60.00 111.40silver-athlon 5 1000 68.00 77.00 55.30; 1800 70.00 89.00 96.90;2000 74.00 100.00 107.00; 2200 79.00 115.00 115.80;2400 85.00 136.00 124.60bla
k-athlon 3 1000 69.00 78.00 56.90; 1800 73.00 101.00 98.90;2000 76.00 112.00 108.90green-athlon 3 1000 65.00 72.00 55.50; 1800 75.00 105.00 96.30;2000 84.00 124.00 108.60blue-athlon 3 1000 64.00 73.00 54.30; 1800 74.00 108.00 96.40;2000 81.00 124.00 107.90nodes are turned on, and our method is better be
ause the best 
ombination of ma
hinesand frequen
ies are 
hosen.6.5.2 Baseline ComparisonNow we show results of our real 
luster implementation. From now on, in all experiments,for the sake of 
omparison, the deadline and average exe
ution time of a request are thesame as in [85℄, 200ms and 24.5ms respe
tively. The workload is a ramp of dynami
requests, starting from zero load until it rea
hes the full load of the system. This isne
essary be
ause we need to see the power redu
tion that will be obtained for everyload level. In [85℄ this is done exe
uting di�erent experiments with a 
onstant load atsome load points, and using the ramp is equivalent of testing for the whole 
ontinuousrange. We adopted a deterministi
 workload, using httperf, in order to make 
ontrolled
omparisons with other dynami
 
on�guration s
hemes. To generate the ramp, we sethttperf to a

ess the 24.5ms s
ript and set the session parameter (wsess=N1,N2,X), andrate of 
alls (rate=r). These parameters have the following meaning: N1 sessions willbe 
reated, ea
h 
onsisting of N2 
alls with intervals of X. The 
reation of sessions isnot done at on
e, but following the rate r. For our experiments, X = 0.1s, and N1
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(b)Figure 6.5: Comparison of the swit
hed DVS s
heme with an unoptimized method. (a)absolute values, and (b) relative 
omparison for 10 ma
hinesand N2 are large enough, so that we rea
h the maximum load, and the workload doesnot �nish before the end of the time of the experiment (400s in our experiments). Therate parameter will de�ne the ramp length, and we used a 3s interval. To reprodu
e theexperiments, these parameters do not need to be exa
tly the same, they must be adjustedto a
hieve the maximum load on the desired time.We also 
ompared our DVS poli
y given by the QoS 
ontrol with the ondemand LinuxDVS governor, but in a single server only. This is done to evaluate how our real-time-awareDVS method di�ers in performan
e to the Linux built-in DVS governor. Our experimentsshowed that for some load values, the Linux governor 
annot keep the QoS within thespe
i�ed, and for other load values it overprovisions the server a
hieving a QoS 
loseto 1.0, but with higher energy 
onsumption. For la
k of spa
e, the details of this lastexperiment are des
ribed in a te
hni
al report [15℄.We 
ompared our on/o� MIP optimization with the work presented in [85℄ whi
h



6.5 Evaluation 94uses a real-time utilization to determine the DVS poli
y, and on/o� is done based on aprede�ned sequen
e of ma
hines. That work 
ompared with, and improved on, the workpublished in [90℄. The work in [85℄ de�ned a real-time utilization U =
∑

i
Ci

Di

omputedbased on the deadline Di, and re
ent utilization Urecent, whi
h is given by the number ofrequests times the average exe
ution time Ci, divided by a re
ent time period. Then thefrequen
y used is max

(

U, Urecent

0.8

)

×fmax [85℄, where fmax is the maximum CPU frequen
y,and the fa
tor 0.8 is a target maximum CPU utilization.Figures 6.6 and 6.7 show a 
omparison of no power management (i.e., a regular 
lusterof ma
hines, without DVS and no on/o�), only on/o�, and QoS 
ontrol (that is, ourapproa
h that 
ombines on/o� and DVS with the QoS 
ontrol). This experiment, andthe next, uses the ramp workload to exer
ise the whole load range. For 5 ma
hines,and very low load, the power de
reases from 390 to 90 Watts, redu
ing up to 77% the
onsumption, and up to 15% of energy saving by using DVS with QOS 
ontrol 
omparedwith using just on/o�.
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Figure 6.6: Comparing power management with no power managementFigure 6.8 
ompares our method with the method of on/o� and DVS presented in[85℄, where the ma
hines are turned on in order, from the more power e�
ient to the lesspower e�
ient, and the DVS is done lo
ally at ea
h server, using the real-time utilizationmethod mentioned, and thus without global optimization. Furthermore, this DVS s
hemeis not able to 
ontrol the QoS in a �ne grain manner, and most of the time results in
100% QoS (see Figure 6.9). The redu
tion in peak power that 
an be observed is about
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entage ofpower savings
15%. This represents a good improvement, 
onsidering that the baseline [85℄ is already apower managed system.The two up-and-down steps of power around 50 req/s in Figures 6.6 and 6.8 are dueto the 
hange of 
on�guration where one server has to be turned o� for another server tobe turned on in our s
heme, as determined by the solution to the MIP optimization. Itis worth doing this swit
h depending on the trend analysis of the workload.Figure 6.9 shows the QoS and tardiness for both s
hemes, but now we use a �xedload workload, not the ramp, be
ause we want to show how the QoS is maintained duringa larger period of time. There is also a QoS referen
e line of 95% plotted that is thetarget QoS for both 
ases. It is interesting to note that when a ma
hine is turned on(e.g., at time t = 1000 in this �gure), the two s
hemes have opposite QoS behavior. OurQoS 
ontroller goes to 100% QoS be
ause the 
ontroller output is too high for the new
on�guration. This is a transient e�e
t that disappears as soon as the 
ontroller �ndsa new 
ontrol output to satisfy the QoS in the new 
on�guration. In the baseline 
asethe QoS de
reases, be
ause the QoS awareness of the method is based on turning a nodeon just before the old 
on�guration 
annot handle a QoS of 95%, a

ounting for thepredi
tion on the load given by the max_load_in
rease parameter. In this experiment,the s
heme Rusu 2006 shows a tardiness 
urve that stays usually below that in our methodbe
ause it runs more overprovisioned most of the time.
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6.5 Evaluation 97Another observation we made from our experiments is that the DVS overhead is notdue to 
hanging the frequen
y, but due to the s
heduling of the DVS task. If a period of
10ms is used (like in the original work [85℄), it results in 300 
ontext swit
hes per se
ond(
s/s), and 70W power when idle. When the period is in
reased to 50ms, we get 100
s/sand 68W. Again, for la
k of spa
e, we fo
us only on showing 
omparison results of ourmethod with [85℄; the details of the e�e
t on the period 
an be seen in [15℄.6.5.3 Dis
rete Versus Continuous Frequen
yTo see the advantages of the two DVS assignment poli
ies des
ribed by the MIP problemsin Se
tions 6.2.1 and 6.2.2, namely the swit
hed and the traditional DVS poli
ies, we gen-erated a ramp workload for both 
ases. The �rst advantage of the 
ontinuous 
ase over thedis
rete 
ase is be
ause it is more appropriate for a feedba
k 
ontroller that relies on the
ontinuity of the a
tuator to 
ompute the output. The experiment shown in Figure 6.10
onsists of only doing DVS for the 5 servers (without the on/o� 
apability). The prob-lem of not having a 
ontinuous a
tuator in the dis
rete 
ase appears as instabilities (i.e.,power goes up and down). This happens be
ause as the frequen
ies are dis
rete, whenthe tardiness (see also Figure 6.11) rea
hes a value that 
auses the output to in
rease, thefrequen
y will in some 
ases in
rease one step higher than the needed frequen
y, makingthe system a
t too fast. The tardiness value then drops and this will be the beginning ofthe instability.
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Figure 6.10: Power 
omparison for the 
ontinuous and dis
rete frequen
iesThe top part of Figure 6.11 shows also how the aggregate frequen
y vary in both
ases. The frequen
y indi
ated is the sum of all frequen
ies of the servers, showing the
apa
ity of the 
luster in 
y
les per se
ond.
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Figure 6.11: Frequen
y and tardiness 
omparison for 
ontinuous and dis
rete frequen
iesA disadvantage of the dis
rete frequen
ies was observed during the on/o� optimiza-tion. The 
ontinuous 
ase will make fewer 
hanges in the set of a
tive servers, minimizingthe o

urren
e of turning on/o� servers. This happens be
ause the 
ontinuous 
ase o�ersmore �exibility to the MIP solver. In a situation that, say, only one 
y
le per se
ond isneeded in addition to a given 
on�guration, the 
ontinuous 
ase will be able to attendusing the same 
on�guration, by just in
reasing this one 
y
le. On the other hand, thedis
rete 
ase will need to 
hoose a di�erent frequen
y, and it is more likely that a 
on�g-uration with a di�erent set of servers will outperform the original set of servers in termsof power 
onsumption. For this reason, the dis
rete 
ase will 
hange 
on�guration moreoften.We show this di�eren
e between the two 
ases in Figure 6.12. The bars show thefrequen
ies assigned to the servers. It is su�
ient to look at the �rst 3 servers in a 10-node system to see the di�eren
e. If a region has no bar, it means that another server(from 4 to 10) is running at a nonzero frequen
y for that load value. Consequently,there will be more online swapping of servers (i.e., a server turning on and another serverturning o� at the same load value), resulting in smaller power e�
ien
y. Note that server
3 is always on in the 
ontinuous 
ase, while the same server had to be turned o� 4 timesafter it had been turned on for the �rst time in the dis
rete frequen
y 
ase.
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ies with dis
ontinuities: pro
essors swit
hon and o� more often6.6 QoS Control EvaluationQoS is 
ontrolled by a PIDF 
ontroller with a parameterization that eases the tuningpro
ess. It is very simple and shows a good response for a sto
hasti
 system su
h as a
omputing system, due to the �lter 
omponent added in the derivative part of the PID
ontroller. The implementation of it inside the Apa
he server is done in the same Apa
hemodule that 
ontrols the DVS. Re
ursive equations are straightforward to obtain, by usingthe Z-transform to 
onvert from the Lapla
e domain to the dis
rete domain (more detailsin [12℄).The QoS 
ontrol is done indire
tly by 
ontrolling the tardiness of 
ompletion of webrequests, de�ned as the ratio of response time to the deadline. The rationale of measuringand 
ontrolling QoS by measuring tardiness is des
ribed in [13℄. here it is only importantto know that the 
ontrolled variable is the ratio of exe
ution time to the deadlines, andthis variable is 
ontrolled by the manipulated variable frequen
y of the servers. Theidea is, to a
hieve a QoS of, say, 95%, that the probability distribution of the exe
utiontime has its 0.95-quantile exa
tly at the deadline. In other words this means that theprobability of meeting the deadline is 0.95. A statisti
al inferen
e, based on 
al
ulationsof the quantile, relates the average tardiness to the desired QoS value, whi
h is de�nedas a fra
tion of deadlines met. The 
ontroller output will be a normalized performan
efa
tor that will be used as an input to the MIP solver, to de�ne the Hbase load demand.The use of the QoS 
ontroller 
an be done through di�erent topologies. We will analyze
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ompare two here: a SISO topology (Single Input Single Output) where there is onlyone 
entralized 
ontroller, with a single output, and a SIMO 
ontroller (Single InputMultiple Output), where the same input is sent to N independent 
ontrollers, thereforegenerating multiple independent outputs.6.6.1 Centralized SISO ControllerThe SISO 
ontroller takes a single measure of tardiness, the ratio exe
ution time by thedeadline, at the front-end and 
omputes one single output that is used as an input to theMIP optimization pro
ess. Figure 6.13a gives an illustration, where K(s) is the transferfun
tion of the PIDF 
ontroller.6.6.2 Distributed SIMO ControllerOne disadvantage of the SISO 
ontroller presented in Se
tion 6.6.1 is the added work ofpre
omputing the o�ine tables, for optimizing the 
ontroller output, for a large number ofservers (e.g., bigger than 30). Instead of just using the SISO ar
hite
ture for the 
ontroller,we are going to also 
ompare it to a distributed SIMO 
ontrol ar
hite
ture that wins insimpli
ity at a 
ost of loosing optimality.Figure 6.13b shows an alternative s
heme that runs without optimization, with Nindependent 
ontrollers. This s
heme rea
hes the same QoS and does not need tablesfor the DVS. It simpli�es the implementation be
ause there is no need to run the MIPoptimization for the 
ontroller, only for de�ning the points to turn servers on/o�. Whenthe system stabilizes, however, it will operate in a suboptimal point (i.e., higher power
onsumption), as shown in Figure 6.14. Note that this �gure is divided in two plots forbetter 
larity of the results.6.6.3 Distributed Versus Centralized ControlEa
h method has advantages and disadvantages, but in terms of energy 
onsumption theSISO 
ontroller is better. The SIMO 
ontroller showed to be more stable (using the sameparameters) for in
reasing number of servers. Be
ause the 
ontrollers are independent,ea
h one shows a performan
e similar to the SISO 
ontroller for one server. The gain ofthe SISO over the SIMO was up to 10%, as 
an be seen in Figure 6.14. We observedsome load �u
tuations for the SISO model, but above the QoS setpoint, that is, thesystem load �u
tuates in a permitted zone where the QoS is still satis�ed. Thus, both
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on�gurations a
hieve a QoS within the spe
i�
ation (in this experiment, 95%). The QoSfor this experiment 
an be seen in the right y-axis of Figure 6.15 and Figure 6.16. Besidesbeing more power e�
ient, the 
entralized s
heme with optimization a
hieved a slightlybetter QoS.Plots in Figure 6.15 and Figure 6.16 also show the utilization and frequen
y resultantof the two 
ases: SISO and SIMO. Note that in both 
ases there is a tenden
y of theaverage utilization to rea
h 100%. The 
loser to this maximum, the more harmonious isthe synergy between the load balan
er and the DVS algorithms. These plots also show animportant di�eren
e in both implementations. The variations in frequen
y and utilizationsu
h as the one that happens at time t = 1000s are smaller in the SIMO than in the SISOs
heme. This is due to the initialization of the 
ontroller. In the SIMO 
ase, when a newserver is turned on, its 
ontroller output is initialized to zero, and then in
reases until
ontrol is a
hieved. In the SISO 
ase, when a new server is turned on, be
ause thereis a single output the initial value is the value with whi
h the 
ontroller was operatingbefore the new server 
omes in. It results in an overprovision of the system. The QoSgoes to 100% until the system stabilizes again. The SISO 
ase is more 
onservative, andthe SIMO 
ase 
an result in a underprovisioned system, as happened just after t = 500sin Figure 6.15, where a short QoS drop to 80% 
an be seen. The more 
onservative
ase is preferred, and the SIMO 
ase 
an be modi�ed to 
opy this behavior. It is onlyne
essary to de�ne what are the 
ontour 
onditions of the 
ontroller equation. The most
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ontroller
onservative way is to set it as 1.0, whi
h means that a new server starts at the maximumfrequen
y, and de
reases to some steady state point.6.6.4 A Real Workload S
enarioThe experiments shown so far were all based on a well-behaved ramp workload generatedby the httperf tool. We also experimented with tra�
 that mimi
s the shape of a realworkload. We used the well-known and available workload for the 1998 So

er WorldCup (SWC98) web site [4℄. We only mimi
 the workload shape be
ause the replay of thereal workload would not �t to our appli
ation. Too many stati
 requests would makethe system I/O bound, and thus the DVS would not make a big e�e
t. Furthermore,our server is mu
h smaller than the SWC98 server, in addition to our request being CPUbound. We then map the maximum load of the SWC98 to our maximum sustainable load,and adjust dynami
ally the interval between 
alls of httperf (the X parameter of wsess).As the load is generated, we look up the SWC98 load and then generate the proportionalload to our server.The plot in Figure 6.17 shows the rate of requests for the original SWC98 workloadbetween the days 64 and 66 of the event. The plot in Figure 6.18 shows the load generatedby httperf. We translated the maximum load from the original workload to the limits ofour 
luster, and modify the httperf user think time to shape the rate of requests. We also
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ompressed the time tenfold to result in a smaller time window of about 6 hours.
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up web site workload
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tion of the SWC98 workload with httperfThe next plots show the power and QoS results of the proposed method, namely QoSControl, 
ompared to the sequential on/o� method proposed in [85℄. Figure 6.19 shows thepower expenditure for the whole experiment in ea
h method, and the value of the integralof the 
urves for the interval, that is, the energy 
onsumed. At t = 2h, our optimizationde
ides that a di�erent ma
hine is better for handling the load, that in
reases a little after
t = 2h. As Rusu's method 
annot do this, it starts with the ma
hine named ohm and goeswith it until after t = 4h. In our method, the system starts using the server hertz andthen, at t = 2h, 
hanges to ohm. The spike of power at t = 2h 
orresponds to the power
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hines turned on. The whole experiment resulted in an energy 
onsumptionof about 587Wh for our QoS Control method, against 624Wh for Rusu's method (6.3%higher).
 0

 100

 200

 300

 400

 500

 0  1  2  3  4  5

P
ow

er
 (

W
)

Time (hours)

Energy = 624 Wh

Rusu 2006

 0

 100

 200

 300

 400

 500

 0  1  2  3  4  5

P
ow

er
 (

W
)

Time (hours)

Energy = 587 Wh

QoS Control

Figure 6.19: Power 
omparison: full experimentThe plot in Figure 6.20 shows the same data for the interval before t = 2h. Theenergy is redu
ed from about 192Wh to 182Wh, an expenditure of 5.5% higher for Rusu'smethod, against our QoS Control method. We observed that the overhead of power forswit
hing ma
hines, if not done too frequently as in this 
ase, is negligible.We also took a 
loser look at the experiment where 4 ma
hines of the 
luster are turnedon to handle the peak load. This is shown in Figure 6.21. The energy redu
tion was fromabout 170Wh to 163Wh, a redu
tion of 4.1% by our QoS Control method. Note that forhigh loads the energy savings is smaller be
ause there is less room for optimization.We are 
ontrolling the QoS at 0.95 for this experiment. The plots in Figure 6.22 andFigure 6.23 show the average value of the QoS measured in a time window of 40s. Wealso show the 
on�den
e interval obtained for ea
h window using the 
on�den
e intervalof a proportion. The 
urves are plotted with an exponential smoothing average for better
larity. For high loads our algorithm resulted in a small drop of QoS, but this is a

eptable.The exa
t QoS value is impossible to maintain, and even to measure with a narrow
on�den
e interval. This variability must be in
luded in the Servi
e Level Agreement(SLA), so that QoS is spe
i�ed as a small range, and not as a single value. Rusu's method,
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6.7 Con
lusions 107on the other hand, showed a smaller drop of QoS for the same load. This happens be
auseRusu's method overprovisions the system and spends more energy.
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Figure 6.22: QoS for our methodIn Figure 6.22, for the period before t = 3h, the QoS stays 
lose to the setpoint,with a disturban
e at t = 2h, when the �rst server swit
h o

urs. Between t = 3h and
t = 4h, the QoS stays above the setpoint, be
ause the performan
e of the new sele
tedma
hine is too high, and even at the minimum frequen
y the server is faster than needed.Then, after t = 4h, during the peak load, there is a drop in the QoS 
aused by all thema
hine swit
hing o

urring in this interval, but note that this drop is 
lose to 0.02. Thissmall drop 
an be tolerated, due to the very sto
hasti
 nature of the system, and 
an bein
luded in the QoS spe
i�
ation in the SLA.Figure 6.23 shows the QoS for the running of Rusu's method. As expe
ted the QoSstays very 
lose to 1.0 be
ause although it is QoS aware, it 
annot 
ontrol the QoS in a�ne grain manner.6.7 Con
lusionsIn this 
hapter we 
ontributed to the state-of-the-art on dynami
 
luster 
on�gurationby presenting an optimal solution to the 
luster 
on�guration, that is, by solving theproblem of �nding the 
ombination of servers to be turned on/o� and their speeds. We
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Figure 6.23: QoS for Rusu 2006 method
ompared the te
hnique with the work in [30℄ and for 10 ma
hines it was shown that we 
anobtain power redu
tions of up to 40%. Our experiments show that the pseudo-
ontinuousfrequen
y approa
h is better than using only one dis
rete frequen
y per interval, withoutin
urring in additional overhead. The former also allows for the use of a 
ontinuousa
tuator me
hanism ne
essary for using feedba
k 
ontrol theory. On the other hand, thedis
rete frequen
y method showed to be improper to be used as an a
tuator me
hanism,be
ause it does not provide proportionality between the 
ontrol output and a
tuation inthe system, generating instabilities from the 
ontrol perspe
tive.When 
omparing the distributed 
ontrol against the 
entralized with optimization,we a
hieved best QoS with lower power 
onsumption in the latter 
ase. The advantageof the distributed approa
h is the simpli
ity of the implementation and better s
alability,be
ause less tables are needed. However, s
alability will not be an issue, be
ause for upto 30 nodes the optimization 
an be done online, and beyond this 
luster size it 
an bedone o�ine.We showed that, when using a real-life workload, our method 
hooses and 
hangesservers with an overhead that is negligible. The experiment that run for 2h with one ma-
hine (Figure 6.20), and after that 
ontinued with one di�erent ma
hine, showed exa
tlythe 
ase when this 
hange of 
on�guration is desirable. If the system stays at a given loadfor a long period of time, and then the load in
reases to a value where there is a better
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hine to handle the new load, and stays there for another long period, the advantageis 
lear. In this 
ase, the �xed server sequen
ing proposed by earlier works 
annot 
hangeservers.



Chapter 7
Con
lusions and Future Dire
tions

The direction in which education starts,

a man will determine his future life.

– PlatoOur premises for the development of this Thesis were based on the 
ourse of resear
hrelated to power management in real-time systems. Initially, energy-aware systems weredesigned only for embedded appli
ations, be
ause lifetime of embedded devi
es is limitedby its battery. Sin
e the publi
ation of the work in [24℄, showing the importan
e to re-du
e power 
onsumption for web servers, energy-aware resear
h is being dire
ted also tohigh-end systems, motivated by the goal of redu
ing the 
ost of ownership and redu
-ing environmental impa
ts. We then noti
ed that in data-
enters and 
ompanies thatdepend on high-end servers, there is still a la
k of 
on�den
e of systems administratorson energy-aware systems, be
ause, intuitively, energy redu
tion is related to performan
eredu
tion. Thus, there is a need to develop dependable systems that move from the max-imum performan
e approa
h to approa
hes that are able to tradeo� between energy andperforman
e, and in this Thesis we 
ontributed in this aspe
t to the state-of-the-art.In this thesis we investigated lo
al and 
luster-wide energy management te
hniquesfor heterogeneous web server systems, addressing only the pro
essor subsystem. We hadin mind that heterogeneity is important, be
ause systems be
ome heterogeneous afterthey are deployed, either be
ause of server repla
ement, or be
ause of system s
ale up.Heterogeneity o�ers an extra opportunity to energy minimization, be
ause it adds morevariables to the problems, but it be
omes more di�
ult to model and solve the opti-mization problems. Be
ause of this additional level of 
omplexity, the �rst papers onenergy-aware server 
lusters, some of them quite re
ent, were all based on simpli�edmodels for homogeneous systems, like in [29, 30, 52, 61, 80, 109℄.
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tions 111We based our study on a sto
hasti
 approa
h for modelling web servers performan
e.A web server is best modeled as a soft real-time system be
ause the timeliness of thesystem is only related to the user satisfa
tion. The user satisfa
tion, in turn, is asso
iatedwith the response time of the system, and if a single request is not exe
uted before theexpe
ted response time, the user will not feel a poor response. A poor response will onlyhappen if, statisti
ally, the system shows a high response time. The better way to builda system that shows good response time in the average, is to measure some statisti
al
hara
teristi
s of the system, and try to 
ontrol them.Following this reasoning, we �rst presented a s
heme to relate QoS to tardiness in ahigh-end system given by a multi-tiered e-
ommer
e environment, based on the statisti
aldistribution of the tardiness of web intera
tions. This QoS metri
 was shown to be veryuseful be
ause some pra
ti
al di�
ulties arose when we tried to use in the 
ontrol of thesystem, the measured QoS by 
ounting deadline misses. On the other hand, tardiness isa 
ontinuous value that 
an be 
al
ulated for ea
h web intera
tion, and its value depi
tshow 
lose the exe
ution was to the deadline.We proved that measuring QoS by 
al
ulating tardiness is better than by 
ountingdeadline misses. One way to see the di�eren
e is by 
omparing two 
ases: if a requestis �nished after the deadline, and before the deadline, both with a very small di�eren
e,that is, right before or right after the deadline. In the se
ond 
ase, there will be one moredeadline miss, while in the �rst 
ase, the tardiness value will not 
hange signi�
antlyfrom that value of the se
ond 
ase. This shows that our QoS measure based on tardinessis more representative of the real state of the system. In the se
ond 
ase, by 
ountingdeadline misses, the same QoS would be reported if the request had �nished after a longinterval from the deadline, but tardiness would show a bigger value.Our proposed TQM s
heme, 
onsidering that tardiness has a Pareto probability dis-tribution, was shown to be better than existing s
hemes like [85℄ and [90℄, be
ause it meetswith pre
ision the real-time spe
i�
ation, not overprovisioning the system, and thus sav-ing energy. The method in [85℄ is QoS aware, be
ause it turns new ma
hines on whenthe system is showing a QoS below the spe
i�ed value, but 
annot redu
e energy 
on-sumption generally, for example when the load is lower than the needed value to swit
ha new ma
hine. In this 
ase, the QoS will be 
lose to 1.0. The TQM improved the QoSawareness by providing a QoS metri
 that, together with the 
ontrol 
losed loop, 
an putthe QoS in the spe
i�ed value in a mu
h broader range of the load spe
trum.A short
oming of the TQM approa
h is when the goal is to meet all deadlines. The
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tions 112tardiness would have an upper bound of 1.0, and thus the assumption on the tail distri-bution, where we measure the area below the probability distribution 
urve and greaterthan 1.0, would not hold. If all deadlines are met, the real distribution 
annot be ap-proximated to a tail distribution, and the tardiness value will have no meaning. However,if the goal were to meet all deadlines, like in a hard real-time system for example, thenother algorithms would be re
ommended, su
h as earliest deadline �rst.Although e�
ient, the major drawba
k of the TQM method is that it is based onpredetermined probability distributions: Pareto and Log-normal. The approximationsshowed to be good, but the �rst questions that arise are: what if the workload is notshaped as Pareto and not Log-normal? Is it possible to generalize? In Chapter 5 weanswered this by using a sto
hasti
 approximation algorithm that 
an measure some
hara
teristi
s of the random variable tardiness regardless of its probability distributionfun
tion. This means that the method will work for any kind of workload, with noassumptions.We then built the Generalized TQMmethod by using the on line 
onvergent sequentialpro
ess proposed in [82℄ that is de�ned from a Markov 
hain. We derived quantile estima-tions that does not depend on the shape of the tardiness probability distribution, so thatthe metri
 
an be used in any workload. To evaluate the new metri
, we showed pra
ti
alresults in a three-tier web 
luster with QoS 
ontrol in an e-
ommer
e environment.The GTQM results showed a good response even for QoS values 
loser to 1.0, wherethe TQM were not so e�e
tive. The results also showed a very good pre
ision betweenthe setpoint of QoS and the observed value, for two kinds of workload. The deterministi
and repetitive maid up of a �xed exe
ution time and a �xed deadline, and also for thereal-world workload given by TPC-W. Note that although the �rst workload were madeof �xed exe
ution time, �xed period, and �xed deadline, the 
omplex exe
ution of therequests inside the several server pro
ess make this also a nondeterministi
 pro
ess, witha tail probability distribution of tardiness.We also showed a pra
ti
al implementation of a feedba
k 
ontrol loop in a multi-tierweb server system for e-
ommer
e. Pra
ti
al issues that arise in the implementation ofa 
ontroller in a real web 
luster appli
ation were dis
ussed. The experiments showedthat the parameterized 
ontroller is easy to tune, be
ause tuning has a limited degree offreedom, whi
h helps stability. Our experiments showed an analysis of sensitivity to the
ontroller parameters that 
an help in a
hieving the best performan
e for the 
ontrolledsystem. The �ne-grain QoS 
ontrol showed in this work is useful in a
hieving extra energy
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tions 113savings for interval based DVS s
hemes, where the goal is to meet all deadlines, avoidingoverprovisioning the system a

ording to the real-time spe
i�
ations.In Chapter 6 we 
ontributed to the state-of-the-art on dynami
 
luster 
on�gurationby presenting an optimal solution to the 
luster 
on�guration, that is, by solving theproblem of �nding the 
ombination of servers to be turned on/o� and their speeds. We
ompared the te
hnique with the work in [30℄ and for 10 ma
hines we 
an obtain powerredu
tions of up to 40%.Our experiments showed that the pseudo-
ontinuous frequen
y approa
h is betterthan the use of only one dis
rete frequen
y per interval, without in
urring in additionaloverhead. We proved in Appendix B that energy 
onsumption is smaller, 
onsidering thatonly e�
ient frequen
ies are used. We also showed that pseudo-
ontinuous frequen
y ismore appropriate for using with the 
ontrol loop, be
ause the 
ontrol logi
 relies on a
ontinuous a
tuator to work well. The overhead of swit
hing DVS is in fa
t smaller thanin other works. For example, [85℄ uses a 10ms period to 
hange frequen
y, and we showedthat 10 times this value is still small to provide a �ne grain result.When 
omparing the distributed 
ontrol against the 
entralized with optimization,we a
hieved best QoS with lower power 
onsumption in the latter 
ase. The advantageof the distributed approa
h is the simpli
ity of the implementation and better s
alability,be
ause less tables are needed. However, s
alability will not be an issue, be
ause for upto 30 nodes the optimization 
an be done online, and beyond this 
luster size it 
an bedone o�ine.The studies on 
luster re
on�guration with the MySQL 
luster implementation al-lowed us to identify that the performan
e s
alability and the CPU boundness of theappli
ation are the two most important fa
tors ne
essary for e�e
tive energy savings, re-spe
tively for dynami
 re
on�guration, and for applying DVS. The former, performan
es
alability, is important be
ause as ma
hines are turned on, we need to s
ale up the 
lus-ter 
apa
ity. Using one front-end, for example, is a limiting fa
tor for the performan
es
alability, be
ause it 
annot handle an in�nite load. Network bandwith may also be
omea limiting fa
tor. The latter, CPU boundness, is important to provide the maximumenergy saving from the DVS te
hniques, as redu
ing energy from disks are mu
h moredi�
ult. Te
hniques of spinning down idle disks, or and using lower rotating speeds thanthe maximum speed, are being 
onsidered [92℄.For future work, workload fore
asting is a 
hallenging bran
h of resear
h that wemust further investigate. We have a preliminary work [89℄ where we apply DVS 
ontrol
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tions 114through the fore
ast of the future system state, and then prepare the system to delivera spe
i�ed quality of servi
e (QoS) that redu
es the energy 
onsumption. In that work,the predi
tion was based on the Holt's linear method of fore
asting. A good fore
astingwould allow, for example, the de
ision on whether to 
hange or not the 
on�guration ofthe 
luster, taking into a

ount the energy overhead of turning nodes on and o�.Another future dire
tion is to study how to optimize the 
luster power if we 
onsiderfurther means of redu
ing energy in the database ma
hines. This is a di�
ult pra
ti
alproblem be
ause turning on and o� databases is not simple, as there are 
onsisten
yissues. We have to deal with long boot times 
aused by the resyn
hronizations of thedatabases, and thus it has to be done in a mu
h bigger time granularity. The MySQL
luster ar
hite
ture is a good referen
e to 
onsider for this implementation, be
ause ofsome of its desirable properties. As it is designed for high availability with no singlepoint of failure, the solution is already designed to a�ord a ma
hine being turned of. Adatabase 
luster node automati
ally restart, re
over, and 
on�gure itself in 
ase of failure(or an intentional turning o� a
tion). Furthermore, it 
an run only in main memory,providing the high performan
e that we need to apply DVS and expe
t high energysavings. However, performan
e s
alability, and availability of memory are still unsolvedissues.Virtualization is also a promising resear
h area for future attention. We are seeingnow a tenden
y on aggregating and virtualizing of servers whi
h 
an help in solvingthe energy problem, by allowing a better use of CPU resour
es, avoiding underutilizedma
hines. Power-e�
ient 
ontrol for data-
enters built up of virtual ma
hines has tobe multivariable, be
ause hardware 
omponents subje
t to power management a�e
t allVMs [105℄. Transparent and energy-e�
ient live migration from one VM to anothermay be a good solution for implementing dynami
 
on�guration in server 
lusters. Theproblem of how to do power management in a system with several VMs is still an openquestion.The EPA report [1℄ mentioned in Chapter 1 gives some dire
tions of resear
h, someof them are not in the s
ope of this thesis, for example resear
h related to energy-e�
ient
ooling systems and e�
ient heat removal. Some others we have addressed in this Thesis.The relevant future work 
ited in that report are:
• Improve energy performan
e of hardware-based virtualization te
hnologies (redu
evirtualization overhead).



7 Con
lusions and Future Dire
tions 115
• Develop, validate, and demonstrate the e�e
tiveness of virtualization software-basedsystem power management.
• Improve software development tools and te
hniques to allow software to more e�-
iently use 
hip-level multipro
essing (improved parallelization).
• Develop lower power states for use at lower utilization levels.
• Improve power management for storage systems, to allow many disks to remain o�most of the time with little impa
t on performan
e; investigate impa
t of storagelaten
y.
• Investigate appli
ation of solid-state (non-me
hani
al) storage te
hnologies to data
enters.
• Develop improved 
omputing 
ontrol strategies (su
h as statisti
al ma
hine learningor 
ontrol theory) to allow better power management of IT equipment at the system,
luster, and data 
enter level.
• Develop a
tive power management strategies for high-performan
e 
omputing sys-tems, e.g., taking advantage of workload imbalan
es to redu
e the power of lightlyloaded system 
omponents.
• Develop standard 
ommuni
ation proto
ols to allow 
ontinuous energy monitoringand interoperability among IT equipment and data 
enter infrastru
ture produ
ts.
• Develop best pra
ti
es for improving energy e�
ien
y through storage optimizationand server virtualization.Virtualization is indeed being 
onsidered in the EPA report for investigation, and alsoseveral resear
h needs related to the development of better hardware to redu
e overheadand in
rease parallelism. But note that one item is related to the development of improved
omputing 
ontrol strategies with statisti
al ma
hine learning or 
ontrol theory, whi
h wasthe fo
us of this Thesis.
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APPENDIX A -- TPC-W Ben
hmark

Experience is the teacher of all things.

– Julius CaesarTPC-W is a transa
tional web ben
hmark, produ
ed by the Transa
tion Pro
ess-ing Performan
e Coun
il [98℄, where the workload is performed in a 
ontrolled Internet
ommer
e environment. The workload tests several system 
omponents asso
iated withthis environments, su
h as multiple on-line browser sessions, dynami
 page generation,se
ure 
onne
tions, and a database 
onsisting of many tables with a wide variety of sizes,attributes, and relationships.A possible environment for the TPC-W is depi
ted in Figure A.1. The workloadis generated by the remote browser emulator, responsible for managing the emulatedbrowsers (EB) and the emulated sessions. The EBs a

ess the web server using HTTPand HTTPS 
onne
tions. The system under test is 
omposed of three 
omponents, theweb server for stati
 pages, the appli
ation server for the exe
ution of the appli
ation(e.g., using PHP), and the database server.
HTTP
HTTPS

EB

EB

EB Web Server
(Apache)

Appl. Server
(Apache + PHP)

DB
Server

(PgSQL)Figure A.1: TPC-W environmentThe performan
e metri
 reported by TPC-W is the number of web intera
tions perse
ond (WIPS). TPC-W spe
i�es 14 di�erent intera
tions ne
essary to simulate the a
tiv-ity of a retail store, and ea
h intera
tion is subje
t to a deadline that must be met with a
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i�ed QoS (as a per
entage of deadlines met). There are three di�erent pro�les for thetest, with a mix of intera
tions for shopping, browsing and ordering. The primary metri
(WIPS) is intended to re�e
t an average shopping s
enario with a mix of 80% of browsingintera
tions and 20% of ordering intera
tions (for a review about the TPC-W ben
hmarksee [36℄). Besides the primary metri
 WIPS, there is also a spe
i�
ation for the asso
iatedpri
e per WIPS ($/WIPS), and the availability date of the pri
ed 
on�gurationOne aspe
t of the TPC-W spe
i�
ation is that one web intera
tion is not 
omposed ofa single request, but of a request to a dynami
 page followed by several stati
 requests forthe embedded obje
ts that are part of the dynami
 generated page. The web intera
tionresponse time (WIRT) is de�ned by the time elapsed between sending the dynami
 requestuntil re
eiving the last byte of the last embedded obje
t. This spe
i�
ation makes itimpossible to measure the QoS lo
ally in one server node, be
ause ea
h embedded obje
trequest may be sent to di�erent nodes.In the TPC-W real-time spe
i�
ation, ea
h 
lass of web intera
tion has a di�erentdeadline, as shown in Figure A.2, with a minimum deadline hit ratio de�ned by thestandard as 90% for all 
lasses. Although it is not spe
i�ed in the standard, a systemshould not a priori dis
ard 10% of the requests just be
ause the goal is to servi
e 90%, butrather it should attempt to servi
e all requests and provide for all an equal probability ofmeeting the deadline. Also, it is worth to note that these values for the deadlines in
ludeonly lo
al area a

ess, a

ording to the TPC-W spe
i�
ation, so that the Internet a

ess
an be disregarded.
20 3 5 5 3 3 3 5 3 3 3 3 10 390% WIRT Constraint

(deadline in seconds)

A
dm

in
 R

eq
ue

st

B
es

t S
el

le
rs

B
uy

 C
on

fir
m

B
uy

 R
eq

ue
st

H
om

e

N
ew

 P
ro

du
ct

s

O
rd

er
 D

is
pl

ay

O
rd

er
 In

qu
iry

P
ro

du
ct

 D
et

ai
l

S
ea

rc
h 

R
eq

ue
st

S
ho

pp
in

g 
C

ar
t

S
ea

rc
h 

R
es

ul
ts

A
dm

in
 C

on
fir

m

C
us

to
m

er
 R

eg
is

t.

Figure A.2: Deadlines as de�ned by TPC-WThe TPC-W was approved in February 2000, and a new standard, the TPC-App wasreleased in April 2005, as a more general appli
ation server and web servi
es ben
hmark.The new TPC-App ben
hmark fo
uses on 
ommer
ial appli
ation server environmentsset in a B2B Web servi
es workload. In addition to the di�eren
es between both, some
omplaints was reported about TPC-W that it was �awed with respe
t to being able to
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a
he too mu
h of the data. In despite of that, TPC-W �ts very well for the purposeof this work, and has the advantage of bigger availability of open sour
e implementations.
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APPENDIX B -- E�
a
y of the Swit
hed DVSS
heme

Restlessness and discontent are the first

necessities of progress.

– Thomas A. EdisonWe will show that the e�
a
y of this swit
hed DVS s
heme is better than using thelowest available dis
rete value higher than the ne
essary frequen
y. Pi
ture B.1 show thepower 
onsumption for both s
hemes. The dashed line is the s
heme that swit
hes to thelowest available frequen
y higher than the load. The 
ontinuous line shows the swit
hingDVS s
heme.
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Figure B.1: Power 
onsumption for the Pentium M pro
essor using two di�erent DVSs
hemes.However, the bene�t shown in Figure B.1 only happen for a pro
essor that satis�es the
riteria of having only e�
ient frequen
ies, and it does not 
onsider the DVS overhead.The de�nition of ine�
ient frequen
ies were given in [70℄, and the 
on
ept was extendedfor di�erent frequen
ies with di�erent idle power in [108℄. A frequen
y f1 is ine�
ientwith respe
t to a higher frequen
y f2 if running any task at f1 
onsumes more energythan running in f2. In that te
hni
al report [108℄, the authors showed that the 
onditionfor this to happen is given by:
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P (f1) − I(f2)

f1
≥ P (f2) − I(f2)

f2
(B.1)We 
an now formulate this simple theorem about the swit
hing DVS te
hnique.Theorem B.1 (Swit
hing DVS) Given a load of s 
y
les per se
ond, the te
hnique ofswit
hing between the frequen
ies ||s||− and ||s||+, with a duty 
y
le α so that α||s||+ +

(1 − α)||s||− = s, is more power e�
ient than using always ||s||+, if and only if thepro
essor has only e�
ient frequen
ies.Proof Let f1 be the lower frequen
y ||s||− and f2 be the higher frequen
y ||s||+. Thepower 
onsumption of the swit
hing DVS at a load of f1 
y
les per se
ond will be exa
tlythe power 
onsumption at full load in frequen
y f1 (α = 0). Let this value be P (f1).The same for f2, but with α = 1, and the power 
onsumption will be P (f2). In 
ontrast,the power 
onsumption of the DVS s
heme with always ||s||+, at a load f1 + ε, will havea power 
onsumption given by f1

f2
P (f2) +

(

1 − f1

f2

)

I(f2), where I(f2) is the idle power
onsumption in f2. The better s
heme will be the one with lower power 
onsumption atthe load f1 
y
les per se
ond. Thus, we need:
P (f1) <

f1

f2
P (f2) +

(

1 − f1

f2

)

I(f2)rearranging this inequation, we obtain inequation B.1.
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