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Resumo
Visualização em tempo real de grandes massas de dados não estruturadas neessitamde grande poder omputaional e banda de memória. Muitas soluções de algoritmosparalelos foram propostas para lidar om a omplexidade omputaional dos álulos deinteressão elula-raio. Entretanto, a maioria não é apaz de prover taxas de renderizaçãopróprias para a interatividade, devido ao overhead gerado pela solução paralela. Estetrabalho estuda a fundo os omponentes do overhead de um algoritmo de renderizaçãoparalela, identi�ando os gargalos e sugerindo modi�ações no algoritmo a �m de seobter e�iênia e esalabilidade, até mesmo quando imagens de grande resolução sãoutilizadas. Nosso algoritmo é baseado no algoritmo de rayast om paralelização dosdados. Utilizamos uma deomposição adaptativa da tela em porções hamadas tiles eestrategia de distribuição dos mesmos, um método paralelo para se enontrar o ponto deentrada dos raios na massa de dados e odi�ação da imagem para a gravação/envio dassub-imagens. O algoritmo alançou ganhos signi�ativos em termos de balaneamentode arga e signi�ativa redução nos overheads da paralelização de imagens de granderesolução. Os resultados de speedup on�rmam o potenial do algoritmo para renderizare�ientemente grandes massas de dado.



Abstrat
Real-time visualization of large and unstrutured volume datasets demands high om-putational power and memory bandwidth. Many parallel solutions have been proposed todeal with the omputational omplexity of the ray-ell intersetion requirements. How-ever, most of them are not apable of providing interative frame rates for large datasetsdue to the overheads generated on the parallel solution. This work dissets the over-head omponents of a parallel rendering algorithm, identifying bottleneks and suggest-ing modi�ations to the algorithm in order to ahieve e�ieny and salability even whenthe images have high resolution. Our algorithm is built on the rayasting method witha data-parallel approah, it employs an adaptive deomposition of the sreen into por-tions alled tile and distribution strategy for those tiles, a parallel method for �ndingthe rays entry points and an enoding method for subimages saving/transmitting. Theresulting algorithm ahieved signi�ant gains in terms of load balaning, and signi�antredutions in the overheads of parallel rendering for big image resolution. The speedupresults on�rm the potential of the algorithm to e�iently rendering large-sale datasets.
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Chapter 1
Introdution

Sienti� visualization is the proess of graphially displaying real or simulated sien-ti� data. It is useful to turn masses of numbers into pitures on the sreen, and, therefore,is vital to many appliation areas suh as biology, hemistry, omputer siene, geology,engineering, or mediine. For three dimensional data, there are various tehniques, ol-letively known as volume rendering, for the diret visualization of the volumetri data.Volume Rendering omprises very powerful 3D visualization methods that onvey theinternal information of the 3D volume, providing semitransparent views of the spatialrelationships of the strutures. In ontrast, other visualization tehniques show only thesurfae of the volume, like raytraing, or a low de�nition omposition of the isosurfaesfrom the data.During the past deades, there has been remarkable advanes in volumetri dataaquisition. The evolution in sanners tehnology and numerial simulations enabled theprodution of large volumetri datasets in a broad range of domains. The visualization ofsuh datasets is ritial to analyze and omprehend the information ontained inside thedata and verify and validate the results of the simulations. Depending on the strutureand type of data, di�erent rendering methods an be applied to perform the visualizations.The struture and type of data rely upon the soure where volumetri data omes from.Equipment suh as Computed Tomography sanners and Magneti Resonane Imagingdevies usually produe data with regularity in positions, generating a retilinear or aregular grid. Numerial simulations, on the other hand, often produe data in arbitrarypositions, generating a urvilinear or even a unstrutured grid. Fully unstrutured volumedata is often onverted into a grid of tetrahedra. Tetrahedral grids an model omplexgeometries and are powerful in de�ning arbitrarily-shaped elements. However, renderingthis type of grid is partiularly hallenging for direting volume rendering algorithms sine



1 Introdution 14the irregular topology di�ults the traversal of the data.Diret volume rendering algorithms aptures the overall data domain, onsideringthe volume as medium in whih light an be absorbed, sattered or emitted as it passesthrough the volume. It produes high quality images without losing the details inside thedata, but the ost of all the omputations needed to determine what happens to light asit passes through the volume turns diret volume rendering a omputationally intensiveproblem. Furthermore, if the volume data is represented as an unstrutured or tetrahedralgrid, an additional di�ulty is inluded: the omputation of where the light intersetseah tetrahedron.The parallel proessing approah has been used to speed up the rendering task formany years, in di�erent ways. The �rst parallel volume rendering algorithms were pro-posed for expensive parallel mahines like SGI Power Challenge, IBM SP2, or SGI Origin2000 [25, 26℄. More reently, parallel algorithms are being designed to run on highlyparallel omputing devies suh as graphis proessing units (GPUs) [11, 29, 31, 37℄ oron massively parallel arhitetures suh as luster of omputers [32, 38, 43, 46, 47℄. Re-gardless of the parallel arhiteture in use, one ommon way to exploit parallelism involume rendering is to use a data-parallel approah, alled image deomposition. In thisapproah, the sreen spae is divided into non overlapping regions, alled tiles, whih areassigned, in groups, to the proessing elements. Sine the tiles do not overlap, they anbe omputed in parallel. Tile-based rendering, however, is usually suseptible to highload imbalane during exeution, due to the irregular nature of the datasets. Even if anequal number of tiles is assigned to eah proessing element, it is very likely that sometiles have di�erent amount of work, and an take longer to be proessed. When the tiledistribution is stati, it is very hard to ahieve an optimal load distribution for any givenframe. When the distribution is dynami, it inreases the algorithm omplexity and mayrequire ommuniation among the proessing elements. So, the load imbalane problemhas great impat on the overall performane and is still a hallenge to the implementationof a parallel rendering system.The main goals of our work are analyze the overheads inurred by a spei� parallelvolumetri render algorithm with unstrutured grid datasets mostly. Propose some teh-niques that would inrease the performane of this algorithm in terms of speedup andload balane, even when high resolution images needs to be rendered.The high omputational requirements of diret volume rendering for unstruturedgrids has been takled in di�erent ways in the literature: (i) reduing the omputational



1 Introdution 15omplexity of the rendering algorithm (e.g. [54, 10℄); (ii) generating approximate resultsby statially simplifying the grid (e.g. [16, 7℄); (iii) reduing the memory requirementsof the rendering algorithm (e.g. [42, 41℄); (iv) parallelizing the rendering algorithm (e.g.[39, 5℄). We fous our attention on the latter approah.Past researh in parallelizing diret volume rendering algorithms has onentratedon algorithm redesign to better explore the highly parallel arhiteture suh as graphisproessing units (GPUs) [12, 29, 31, 37℄, or solving the spei� inherent problem of theparallel solutions that is the partitioning problem, with the goals of maximizing load bal-ane and minimizing ommuniation [1, 34, 46, 47℄. In this work, we ontribute to paralleldiret volume rendering by disseting all the overhead omponents of the parallel algo-rithm, identifying bottleneks in the rendering proess and suggesting modi�ations to thealgorithm in order to ahieve e�ieny and salability. We perform a detailed evaluationof all the steps of the rendering proess, inluding the partitioning/load balaing problem,the ommuniation overhead, data loality and the use of memory hierarhy, and "faeprojetion", and propose a novel parallel rendering algorithm based on this study. Ouralgorithm is built on the rayasting method, uses a data-parallel approah, alled imagedeomposition, and employs a hybrid programming model that explores message passingand multithreading on a luster of multiore proessors.Although the solutions we propose here to minimize the parallel overheads are spei�to the algorithm and arhiteture, the lessons learned an possibly be extensively appliedto other parallel diret volume rendering approahes, inluding others arhitetures.The experimental results showed that the strategies inurred negligible overhead inthe rendering omputation and an provide signi�ant performane gains when omparedto a traditional data-parallel rayasting algorithm. It was ahieved less than 11% of loadimbalane and up to 45% of inrease in the rendering performane. The remainder of thework is organized as the following. The Setion 2 reviews the previous work in parallelrendering. Setion 3 presents the rayasting paradigm and data strutures used in thiswork. Setion 4 desribes the parallel rendering algorithm, the parallel struture and theparallel strategies used and proposed for eah step of the rendering pipeline. Setion 5reports the experimental results and overheads analysis. Finally, Setion 6 presents theonlusions and future researh plans.



Chapter 2
Related Work

Several parallel diret volume rendering algorithms have been proposed throughoutthe years. They were lassi�ed by Molnar et al. [33℄, aording to the division of the ren-dering task among the various rendering threads, as: sort-�rst, sort-middle and sort-last.In sort-�rst parallel renderering, the sreen spae is divided into tiles and eah proessoris assigned a set of tiles. This approah usually has smaller ommuniation requirements,but they are very suseptible to load imbalane. Therefore, a number of works foused onthe spei� overhead aused by the load imbalane in sort-�rst approahes for unstru-tured grids.Some works uses the work stealing paradigm for load balane. In work stealingparadigm a omputational node without pixels to render, requests (or steals) pixels fromits neighbors therefore this paradigm dynamially balane the load within a frame. Ourwork uses di�erent paradigm for balaning the load. It uses a �xed tile distribution withina frame. Whitman [55℄ introdued work stealing in parallel rendering for shared-memoryarhiteture, and Nieh and Levoy [39℄ for distributed-shared memory arhitetures. Thework by Coelho et al. [8℄ and Farias et al. [13℄ proposed some work stealing algorithmsfor a distributed environment as a luster of PCs. Balaning the load among the threadsdynamially, however, requires either global information about the load of the renderingthreads or inurs in ommuniation overhead. Another path to inrease load balaning,also used in this work, is to provide a good distribution of the rendering task before theatual omputation begins. Muller [35, 36℄ desribes di�erent algorithms to reursivelydivide the sreen aording to estimated workloads. The work by Abraham et al. [1℄resizes the tiles in order to promote the same amount of work for all tiles, Our worktries a similar approah of tile division. Kutlua et al. [20℄ presented a omparison oftwelve adaptive IS deomposition algorithms. In a preliminary work [21℄ we proposed



2 Related Work 17another sreen partition algorithm that is adaptive and based on a quadtree division, thisalgorithm will be explained and deeply analyzed throughout this work.In sort-last parallel rendering eah rendering thread is responsible for rendering partof the sene. It has been widely used in di�erent works. The works [27, 37, 56℄ fousedon the load balaning overhead by dividing the volume into briks, and reassigning briksto less overloaded nodes. Aykanat et al. [4℄ proposed a graph partition sheme to thedeomposition problem. Another important issue in sort-last algorithms is the �nal imageompositing stage. This stage an potentially beome a bottlenek, sine it demands alarge amount of message exhange. The works by Yu et al. [57℄ and Lee et al. [23℄ fousedon reduing this overhead. Yu et al. introdued a new image ompositing algorithm, alled2-3 swap. Lee et al. introdued a parallel pipeline method whih avoids link ontention.Childs et al. [6℄ foused on the salability of the parallel solution and proposed a hybridapproah that parallelizes over both elements of the input data and over the pixels of theoutput image.Another ommon way of speeding up volume rendering is by taking advantage ofmodern arhitetures, suh as GPUs or Cell proessor. In [52℄ Weiler et al. implementeda GPU-based rayasting algorithm that was further extended by Espinha and Celes [12℄.Bernardon et al. [5℄ also proposed a GPU-based algorithm based on rayasting that rendersnon-onvex irregular grids. Ruijters et al. [45℄ pointed out some of the bottleneks of GPU-aelerated rayasting, but their work fouses on regular grids. Some attempts have beenmade to deal with the problem of the memory limitation of the GPU. Weiler et al. [53℄and Fout and Ma [15℄ used data ompression. Maximo et al. [31℄ implemented a newsheme for storing fae data. Lately, there are some works on GPU lusters[18, 3, 28, 37℄.The power of the Cell proessor has been explored in [9℄ for rayasting of unstruteredgrids and in [19℄ for regular grids. The work by Smelyanskiy et al. [49℄ proposed athread- and data-parallel implementation of ray-asting that explores the arhiteturaltrends of multi-ore and GPUs, and an upoming many-ore proessor. They takledthe ommuniation overheads using ompression and analyzed the ahe behavior of theirapprohes; They used, however, a sort-last approah for regular grids. The work byMarhesin et al. [28℄ also proposed a sort-last approah for regular grids, but that runs onmultiple GPUs. They also analyzed the time breakup of their approah in order to identifythe bottleneks.The sort-middle sheme redistributes the middle result of the renderingpipeline. It is seldom implemented in software parallel renders, sine its salability islimited by the ommuniation overhead generated. Our approah here is to fous onall overheads of a sort-�rst parallel rayasting algorithm for unstrutured grids entirely



2 Related Work 18implemented on software.



Chapter 3
Rayasting Algorithm Overview

Our parallel rendering algorithm is based on the rayasting paradigm proposed byRoth [44℄. In the rayasting paradigm, a ray is ast from the viewpoint through eahpixel of the image. As the ray moves forward in the data volume, it intersets a numberof spatial strutures alled voxels in it. Every pair of intersetions is used to ompute thevoxels ontribution for the pixel olor and opaity and this ontribution is proportional tothe path that a ray travels within a voxel. The ray stops when it reahes full opaity orwhen it leaves the volume. Figure 3.1 shows a 2D example of a single ray. As an be seen,in a) the ray enters the dataset through a visible external fae. As the ray moves throughthe dataset, as seen in b), the olor and opaity is alulated aording to the path theray travels inside the voxel. The next voxels are fethed and the proess ontinues. Forthis example, the proess ends as seen in ), when the rays leaves the dataset.This work is based on the sequential rayasting algorithm ME-Ray proposed in [41℄.The data strutures and the rendering pipeline are presented next.3.1 Data StrutureThe volumetri data is omposed of a loud of points, eah point with an salar value
α assoiated to it. The α value is result of simulation or measured by sensors and anrepresent any salar �eld, for instane density inside a volume. This loud of pointsare organized in struture alled voxels. The algorithm assumes an unstrutured volumedataset in the form of onneted tetrahedral voxels. The faes of the tetrahedra are eithershared between two adjaent neighbor tetrahedra (inner faes) or they belong to theboundary of the tetrahedral grid (external faes). For the algorithm to ompute the raytraversal from one tetrahedron to the next, the following four data struture are employed:



3.2 Preproessing 20

Figure 3.1: Example of the renderization proessarray of points, array of voxels, array of external faes and array of visible faes. Eahelement in the array of points holds the X, Y and Z oordinates of the vertex, the salarvalue α and an array with the index of the voxels that the vertex belongs to. The arrayof voxels stores the tetrahedra. The voxel struture ontains the indies of the neighborvoxels and the indies of its verties in the array of points. The array of external faesstores the indies of the voxels and its faes that are in boundary of the dataset. Thearray of visible faes is a sub group of the array of external faes. The array of visiblefaes has the indies of the voxels and its faes that are in the boundary of the datasetand are visible for a given point of view. With these strutures, the algorithm an easilyknow the next fae the ray will interset, and onsequently, what the voxels in the raypath are.3.2 PreproessingIn a preproessing phase, the tetrahedral grid is read, and the array of points and thearray of voxels are alloated in memory. After that, the array of external faes is alsoalulated. The preproessing step is exeuted only one for eah dataset, independentlyof the visualization angle hosen.



3.3 Pre-render 213.3 Pre-renderThe pre-render phase is the �rst phase of the rendering pipeline, and has to be exeutedfor eah new visualization angle. It is divided into two distint steps: rotation and faeprojetion.3.3.1 RotationThe rendering from a ertain point of view starts by exeuting the operations to rotatethe data in the axis x, y, and z, by an angle degree of β, γ and δ respetively, aordingto the angle of visualization. Eah vertex P is multiplied by the rotating matrix Rx, Ryand Rz given by (3.1), (3.2) and (3.3), respetively. The new oordinates of the point
Pnew is given by the equation (3.4). The amount of work performed in the rotation stepis independent of the resolution of the rendered image.

Rx(θ) =









1 0 0

0 cos θ − sin θ

0 sin θ cos θ









(3.1)
Ry(θ) =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









(3.2)
Rz(θ) =









cos θ − sin θ 0

sin θ cos θ 0

0 0 1









(3.3)
Pnew = P · Rx(β) · Ry(γ) · Rz(δ) (3.4)3.3.2 Fae projetionAfter the data is rotated, the array of external faes is traversed to determine the faesthat are visible in the hosen point of view. The visible faes are the external faes whosenormals make angles greater than 90o with the viewing diretion. Figure 3.2 shows anexample of a tetrahedron where one visible fae and one invisible fae are shown. The faewith Normal 1 is visible, beause the normal makes an angle with the viewing diretion
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viewing direction

Normal 1
Normal 2

Figure 3.2: Example of the angles made between the viewing diretion and the normal ofa visible and invisible faesgreater than 90o degrees. The Fae with Normal 2 is invisible, beause the normal makesan angle with the viewing diretion smaller than 90o.The visible faes are stored in the array of visible faes. Having omputed all thevisible faes, the algorithm projets them on the sreen. To projet the visible faes, thearray of visible faes is ordered in suh a way that the faes loser to the viewer are the�rst faes in the array, and the faes distant from the viewer are the last in the orderedarray of visible faes. For eah pixel, all the visible faes are heked for intersetions,if the pixel falls into a ertain visible fae, this fae is stored in a list of intersetionsbelonging to this pixel. This list of intersetions is used as the entry point for the rays.3.4 RenderingFor eah ray r that orresponds to a pixel s, the algorithm has to ompute the nextintersetion of the ray by inspeting all other faes of the urrent voxel, or by inspetingthe neighboring voxels. As the ray intersets the voxels, its entry point (ein) and exitpoint (enext) in eah voxel are determined using a ray-plane intersetion omputation.Every time a new fae is traversed, its oe�ients are saved in a fae bu�er, and thelighting integral from ein to enext is omputed, using an optial model. This omputationalulates the ontribution of the voxel in the olor and opaity of pixel s.When the exit fae of a voxel is an external fae, the ray leaves the dataset. If no moreexternal faes are in the ray path, the olor of the pixel has been omputed. Otherwise,the ray re-enters the dataset in another voxel, and the proess ontinues until the rayleaves the volume. One the ray left the dataset it an re-enter the dataset if the datasetis not onvex or has holes inside it. The proess of traveling through the array of voxelsalulating the olor and opaity of the pixels is alled rendering proess.



3.4 Rendering 23It must be lear in the above explanation that the algorithm uses the orthographiprojetion view for the rendered image. The perspetive projetion an be ahieved with-out signi�ant hanges in the algorithm. Instead of asting rays in a inlined diretion,from the point of view through out eah pixel of the image, the points an be trans-formed in suh a way that the orthogonal projetion will produe the same �nal image inperspetive.the physial illumination model we used is the one desribed in Max [30℄ where thesemi-transparent substane in the volume absorbs and irradiates energy as the ray passesthrough.



Chapter 4
Parallel Algorithm

Parallelizing rayasting is relatively simple. Every ast ray an be traed through thevolume independently from every other ray. Our parallel algorithm adopts the sort-�rstapproah to divide the work among the proessing elements. The algorithm divides thesreen into tiles that are assigned to the parallel proessing elements. A tile onsists of aunique set of pixels that form a losed area with in the sreen, eah pixel of this tile will betraversed by a ray. The tile subdivision is not only useful to the assignment problem, butit is also important for improving ahe performane, sine nearby rays usually traversea similar group of voxels of the volume.Our parallel algorithm was designed to take advantage of reent heterogeneous arhi-tetures of multiore lusters, omposed of shared memory omputer nodes, onneted bya messaging network. An example of the logial ommuniation sheme of the algorithmfor three omputer nodes is illustrated in Figure 4.1. Eah proessor/ore is alled arendering thread, and is responsible for rendering a set of tiles of the image an store thosetiles in a loal bu�er. Eah shared memory omputer node is alled a team of threads,and has a speial rendering thread, alled leader thread, that is responsible for reatingthe shared data strutures for the team like the image bu�er, dataset and list of visiblefaes. The whole system has one master rendering thread, that is responsible for workdistribution and the �nal image onstrution. Remark that the leader thread is a ren-dering thread that also exeutes two additional tasks: struture alloation and messageexhange. The master is a leader thread that exeutes also the tile distribution aiming ata good load balane among the rendering threads. For the sake of simpliity Figure 4.1does not shown for the master thread a image bu�er, but the master thread do have aimage bu�er, sine it an also at as a rendering thread.
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Decomposition
Tile

Subimages
Reception

Pre−render

Rendering

Pre−render

Image

master thread

Rendering

Pre−render

RenderingRendering

Pre−render

Rendering

Pre−render

Merge

rendering thread

Subimage

Transmission
Encoding/

leader thread

rendering thread

Subimage
Encoding/

Transmission

leader thread

image buffer

point/cell arrays

shared area

external faces list 

image buffer

point/cell arrays

shared area

external faces list Figure 4.1: An example of our parallel algorithm.The algorithm starts in a preproessing step when all the leader threads read the entiredataset, and reate the array of points, the array of voxels and the array of external faesin the shared memory.The rendering of eah point of view follows �ve steps: tile deomposition and dis-tribution, pre-rendering, rendering, subimages sending and image merging. The masterdeomposes the sreen into tiles and assigns the tiles to the rendering threads. Afterthat, the master sends eah leader thread the set of tiles to be omputed by its team. Ineah team, eah thread is responsible for the pre-rendering and rendering phases. Aftereah team �nishes the rendering of its tiles, the leader sends to the master the generatedsubimages. The master reeives the subimages and merge them to form the �nal image.4.1 Tile Deomposition and DistributionThe �rst step is to deompose the sreen in tiles in order to divide the rendering workand, after that, the tiles have to be distributed among the rendering threads.4.1.1 DeompositionFor a sort-�rst rayasting algorithm the tile division an be done by the master in twopossible ways. The traditional one is a regular division where all tiles are squares with
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Figure 4.2: Example of a regular Division of tilesthe same size. This tile division is straightforward. The sreen just has to be divided intothe same amount of rows and olumns, and the total number of tiles will be the produtof the numbers of rows and olumns. Figure 4.2 shows an example of a rendered datasetwith this tile division. The image generated is divided into 16 olumns and 16 rows witha total of 256 tiles.The problem with this naive division is that it ould generate tiles with very di�erentomputational osts. There are tiles that are more ostly to render than others. As anbe seen in Figure 4.2 the tiles at the orners of the image have lower omputational ostthan the ones at the enter of the image.Another option of division is an irregular tile division. An example of this divisionan be seen in Figure 4.3. The areas that require greater omputing time to be renderedan be more divided, while areas that require less omputing time an be less divided,generating tiles with nearly the same omputing time requirements. By omparing Fig-ures 4.3 and 4.2, it an be observed that the orners of Figure 4.3 has muh less divisions,sine there is no data to be rendered in those areas.One problem is that, in traditional rayast algorithms, the omputational ost of apixel is not known until the pixels are atually rendered. Therefore the total ost of thetile is not known until the tiles are ompletely rendered.In order to implement suh tehnique, it is required to estimate the omputationalost of the areas of the sreen and to divide the tiles aording to those estimated osts.The tile deomposition sheme employed by the parallel algorithm is based on ourwork [21℄ that uses irregular tile division. The idea is to estimate the rendering ost of
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Figure 4.3: Example of a irregular division of tileseah pixel and use this estimation to adaptively divide the sreen into tiles. The pixel ostestimation exploits frame-to-frame oherene and use the total length of the path thatthe ray travels inside the volume (that re�ets the �nal ost of the illumination integral),in the last frame generation, to estimate the ost of the pixel in the urrent frame. Withthe estimated ost of eah pixel on the sreen, the sreen is adaptively divided until aneven subdivision of tiles based on rendering loads is ahieved. In other words, our goal isto have tiles with low standard deviation of osts among them.This deomposition sheme uses a dynami tile division that is alled Adaptive tiledeomposition. The main idea of the adaptive tile deomposition is to store all the tiles ina hierarhial struture of a quadtree that an be rearranged several times through thequadtree rearrangement algorithm until a ritial value is found, guaranteeing that a gooddivision has been ahieved.A quadtree is a struture that was initially proposed by Finkel [14℄ and has beenbroadly used in image proessing, enoding and ompression. Eah leaf, that is a nodewithout hildren nodes, in the quadtree orresponds to one tile in the sreen. Eah internalnode has four hildren nodes. Eah node stores the estimated omputing ost of the tileit represents, in the ase of a leaf node, or the total ost of its sub-quadtrees in the otherases. Figure 4.4 shows an example of the representation of a quadtree and the equivalentdivision of the sreen. As shown in Figure 4.4, the tiles in the sreen in a ounterlokwiseway, starting at the lower left orner orrespond to the tiles stored in the quadtree fromleft to right.For the �rst quadtree no ost an be estimated, sine no frame has been rendered yet.Thus, the �rst quadtree is onstruted initially as a full quadtree of a ertain length. The
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Inner nodeFigure 4.4: Example of a quadtree.quadtree is guaranteed to always have at least one tile per rendering proessor. This isdone by evaluating if the number of leaf nodes in the quadtree is at least equal to thenumber of rendering proessors. If there is not at least one tile per rendering thread, allleaves of the quadtree are split in four new nodes until there is at least a single tile foreah proessor. This �rst quadtree has a tile division similar to a traditional one. Thetiles, for this �rst quadtree, are also distributed in a traditional way, as it is not possibleto estimate the ost of the tiles. After that, for the rendering of the next frames, thequadtree of the past rendered frames is used and a rearrangement algorithm is employedto provide an adaptive division.The quadtree rearrangement algorithm is a reursive algorithm that only ends whenthe Rule 1, de�ned next, is satis�ed.Rule 1 Given a limit ost W , no internal node of the quadtree has a total ost lower than
W and no leaf node has ost greater than W .The quadtree rearrangement algorithm performs two operations named split and joinin the quadtree in order to guarantee that Rule 1 is satis�ed. For a given limit ost W ,for every node ni of the quadtree with assoiated ost Ci the following two ations maybe performed:



4.1 Tile Deomposition and Distribution 291. If ni is a leaf node and Ci > W , then a split operation is applied. In the splitoperation the leaf node is split in four new tiles eah with ost equal to Ci

4
.2. If ni is an internal node and Ci < W , then a join operation is applied to thisnode. In the join operation, all the sub-quadtrees of this node are dealloated andthe internal node beomes a leaf node.If Ci is equal to W , no operation is exeuted in this node. The split and join operationsare reursively applied to the quadtree until the Rule 1 is satis�ed. At this point oneexeution of quadtree rearrangement algorithm �nishes.The quadtree rearrangement algorithm is exeuted several times, for di�erent valuesof W . For eah exeution j, there is a limit ost Wj assoiated with it. Suh ost Wjis deremented at eah exeution until a value Wcritical is found, meaning that a goodtile division was ahieved. This limit ost adjustment is performed by the ritial valueadjustment algorithm proposed by Aguilar [2℄, and it is also responsible for alulatingthe �rst W parameter (W0).The ritial value adjustment uses the onept of information entropy or Shannonentropy [48℄ that was �rst used in data mining �eld by [51℄ and generalized by [2℄ todivide areas of equal load or weight in suh a way that the standard deviation betweenall the areas were as small as possible and keeping the ompromise of having as few areasas possible. This algorithm mathematially ensures that the division obtained is the bestpossible in terms of load balane and, at the same time, generates a small number of tiles,whih will result in a low overhead due to the tile management.Some parameters need to be aquired from the quadtree in order to alulate theritial value adjustment. From Rule 1, it is lear that the given limit ost W at the jthexeution, alled Wj , represents a measure of work. Considering that the initial quadtreehas L leaves, eah one with a ost assoiated to it Cn, by Aguilar [2℄ a value suitable for

W0 (Initial value) is the average ost of all leaf nodes given by equation (4.1).For the �rstquadtree of the algorithm, the full quadtree at the �rst frame, all the Cn an have thesame random value. The value used for the �rst frame in this work is ∀n, Cn = 1

W0 =

L
∑

n=1

Cn

L
(4.1)One the �rst W parameter (W0) has been alulated, the quadtree rearrangement
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Figure 4.5: Every new level of tiles divide the minimum area of the tile by a fator offour.algorithm an be applied, joining and splitting nodes when it is neessary. By Rule 1, notile will have estimated ost greater than Wj , at the end of the jth iteration. Here it isneessary to de�ne the maximum density of work Dmax, whih represents the maximumwork ost per area of tile that an exist in the given quadtree. The maximum density ofwork Dmax an be given by equation (4.2), where Amin is the minimum area among allthe tiles.
Dmax =

Wj

Amin

(4.2)Knowing that the total area of the image is given by Aimage, every time that one levelis added to the quadtree the smallest possible tile area is divided by a fator of four asseen in Figure 4.5.Thus, the minimum possible area of a tile is given by equation (4.3) where h is theheight of the quadtree. Combining equations (4.2) and (4.3), the equation (4.4) is obtainedas the maximum density of work.
Amin =

Aimage

4h
(4.3)

Dmax =
Wj4

h

Aimage

(4.4)The loser to the root a tile is in a quadtree, the greater is its area. On the other hand,
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{g=2

g    =1

g    =3

First

Last Figure 4.6: Example of the ∆g alulation.the deeper this tile is, the smaller is its area. Knowing that the leaf with smaller depth ina quadtree given by gF irst and the leaf with greater depth is given by gLast, it is assuredthat all other leaf nodes have their depths between gF irst and gLast. Beause the depth ofthe leaves are disrete by de�nition, all possible depths are given by equation (4.5) andthis also represents all possible values for area of the tiles, sine the area of a given tileis diretly proportional to its depth within the quadtree. In Aguilar [2℄, the ∆g value isalled generational di�erene, sine it represents the di�erene of the �rst generation, orless divided regions of the dataset, and the last generation or most divided regions of thedataset. One example of the alulation of ∆g for a quadtree an be seen in Figure 4.6.For this example the leaves with smaller depth are at level 1 and leaves with greater depthare at level 3. Consequently, the ∆g value is 2.
∆g = gLast − gF irst

Number of possible areas = ∆g + 1 (4.5)Eah tile i within a quadtree an have ost W that varies from 0 (empty tile) to Wjwhih is the greatest possible value for the jth iteration of the quadtree rearrangementalgorithm. The amount of possible osts values for the quadtree is given by (4.6).
∆W = Wmax − Wmin

∆W = Wj − 0

Number of possible cost values = [0, Wj] = Wj + 1 (4.6)Considering that eah tile an have ∆g + 1 possible sizes for its area and eah tile



4.1 Tile Deomposition and Distribution 32an have one of the ∆W + 1 possible osts assoiated with it, the interval given by
(∆g + 1)(Wj + 1) represents the amount of possibilities for tile density. In an iteration
j the density of work of a tile is inside the interval given by [0, Dmax]. The width ofthose intervals are alled disrete density of work displaement and is given by ∆D.Thus, to obtain ∆D, one must divide the maximum possible value of work density Dmaxby all possible intervals of density given by (∆g + 1)(Wj + 1). The result is given byequation (4.7).

∆D =
Dmax

(∆g + 1)(Wj + 1)

∆D =
Wj4

h

(∆g + 1)(Wj + 1)Aimage

(4.7)Must be point out that ∆D is an statistial entity de�ned by [2℄ and has no diretrelation to the width of the artesian produt of the ∆g and Wj real values. The followexample will illustrate this di�erene. Lets have a ∆g equals 1 and Wj equals 2. Letsname G the set of all possible areas for the tile and C the set of all possible osts for thetile. Equation (4.8) shows those two sets, and the artesian produt between them. Aswe an see, we end up with only 4 possible values for the tile density with di�erent widthsbetween them.
G = {1, 2}

C = {0, 1, 2}

C × G = {{0, 1}, {0, 2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}}

C × G = {0, 1, 2, 4} = 4 (4.8)This value is not the one we are looking for. The value de�ned by [2℄ would be simply
(∆g + 1)(Wj + 1) = 6, and the distane between eah of those values is onsidered to bethe same.Figure 4.7 graphially shows the displaement values within the interval of density ofwork ost for a given quadtree. In this example, the total area of the image is given by
Aimage. This quadtree has 2 levels of tiles whih leads to a ∆g = 1. The ost Wj is equalto 6, so ∆W is also equal to 6 by equation (4.6). This situation will lead to 14 possibilitiesfor tile density that are represented by the line below the quadtree. The displaementbetween those possibilities of tile density is the disrete density of work displaement that
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jFigure 4.7: Example of the ritial value adjustment.is pointed out as been ∆D = 6.85
Aimage

.Aguilar has mathematially shown in [2℄ that when the value of disrete density ofwork displaement hanges its order of magnitude from one iteration j − 1 to the next jthe ritial value Wj is ahieved and the algorithms terminate.In this work, the hange in the order of magnitude of the disrete density of workdisplaement ∆Dj is found when the value of ∆Dj−1 in the j − 1 iteration, is p timesgreater than ∆Dj in the urrent iteration j. The ritial value is found if the inequalitygiven by (4.9) holds true in a given iteration of the ritial value adjustment algorithm.As an be seen in the inequality 4.9 the omparison between the ∆Dj−1 and ∆Dj isindependent of total area of the image Aimage sine this term is aneled in both sides ofthe inequality. It is not neessary to measure, by any means, the value of the total areaof the image in order to apply the ritial value adjustment algorithm.
∆Dj ≥ p∆Dj−1

Wj4
hj

(∆gj + 1)(Wj + 1)Aimage

≥ p
Wj−14

hj−1

(∆gj−1 + 1)(Wj−1 + 1)Aimage

Wj4
hj

(∆gj + 1)(Wj + 1)
≥ p

Wj−14
hj−1

(∆gj−1 + 1)(Wj−1 + 1)
(4.9)The value p is hosen in a preproessing step. A study of the determination of p willbe disussed in Chapter 5 Setion 5.3.



4.1 Tile Deomposition and Distribution 34In summary, the idea of the ritial value adjustment algorithm to �nd the best tiledivision is:
j = 0 //First iteration
Wj = Avg(leaves) //Equation (4.1)Repeat until ritial value found //equation (4.9)quadtree rearrangement algorithm(Wj); //rearrange quadtreeif ritial value for Wj is found breakelse

Wj = Wj − 1;
j = j + 1;end repeatThe list below summarizes the parameters that need to be aquired from the quadtreein order to apply the ritial value adjustment algorithm.

• Dmax - Maximum density work.
• ∆g - Range for all possible tile depths in the quadtree.
• ∆W - Range for all possible osts in the quadtree.
• ∆D - Width of the disrete density of work displaement.4.1.2 DistributionAfter the sreen has been adaptively divided into tiles, the tile assignment is doneby using a 2-optimal algorithm, alled Makespan Redution heuristi, proposed by R.L.Graham in [17℄ for proessor sheduling. In this heuristi, at �rst a list of tiles L is reatedin dereasing order of their osts, and one tile in the list is assigned to eah renderingthread within a list R. After that, the list R of rendering threads are ordered by their



4.1 Tile Deomposition and Distribution 35loads in an inreasing order. Then, eah tile in L is assigned to the rendering threadwith the lowest load, the rendering threads are ontinually reordered by their inreasingloads, and the assignments go on, until there are no more tiles in the list L. The lowerthe standard deviation of the tile osts is, the loser the heuristi gets to the optimumsolution.The algorithm for this rearrangement is:
Create L and RSort dereasing L //L sorted in a deeasing order of loadFor eah rendering thread in R doTake out the �st tile in L and assign to a thread in RRepeat until L is emptySort inreasing R //R sorted in an inreasing order of total load.Give the �rst tile in L to the �rst rendering thread in the list Rend repeatDespite the fat that a 2-optimal heuristi an give good results, the overall resultmay still be poor if the tile division is not a good one. The granularity of the tiles will havegreat in�uene in the overall e�ieny of the algorithm. Course grain tiles will produehigh load unbalane; On the other hand �ner grain division will lead to high overhead tomanage and distribute all those tiles. Figure 4.8 shows an example of Makespan redutionheuristis working upon a divided image. The numbers in the tiles represent the estimatedost of eah tile. In step 1, the list L is reated. The tiles in the list L are ordered indereasing order of its ost. In step 2, the list R is reated. There are two elements inthe list R named R1 and R2. For eah phase of step 2, the list R is ordered aordingto its total tile load and one tile from L is assigned to the �rst element in R. In step 3all the tiles in L have been assigned to a rendering thread in R. As it is seen, Makespanredution heuristi gives the distributions of total osts 17 for R1 and 13 for R2.
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Figure 4.8: Example of Makespan heuristi with 7 tiles and two elements in the R list.



4.2 Prerendering 374.2 PrerenderingOne the rendering work is distributed to all threads of the system, the prerenderingproess takes plae. At �rst, the data is rotated aording to the point of view. This isaomplished by performing the rotation of the dataset, as explained in Setion 3.3, ineah shared memory omputer node. In this ase, the verties to be rotated are evenlydivided among the rendering threads, so that eah thread applies the rotation matrix inits subset of verties.After that, the threads ompute the list of visible faes, and start the visible faeprojetion proess. Parallel rayasting algorithms do not parallelize this proess, sinethe amount of time spent in fae projeting is usually muh smaller than the amount oftime spent in the rendering proess. However, as the image resolution inreases, the faeprojetion phase annot be underestimate, otherwise it will limit the speedup inrease.So, here we propose two shemes for parallelizing this phase alled Faes-per-tile andFaes-per-quadtree.4.2.1 Faes-per-tileIn this tehnique it is assumed that the master thread sends eah rendering thread alist of tiles omputed in the tile distribution step. In this parallel fae projetion sheme,eah rendering thread projets only the visible faes that are within the tiles that wereassigned to it. The thread traverses the list of visible faes, and heks for eah fae if itbelongs to one of its assigned tiles. The faes that do not belong to the tiles are ignored.For the faes that belong to a tile, the thread projets only the pixels inside the tile. Thisis done to avoid double projetion of pixels when the fae is within more than one tile.This sheme an generate load imbalane, sine the tile division takes the ost ofrendering the pixels into aount, but not the number of pixels inside eah tile. So, somethreads an be assigned with more pixels than others, generating a high fae projetionost. Another important issue in using this parallel sheme is that, for images with smallresolutions, and onsequently a small number of pixels, the overhead of heking if thevisible faes are within the tiles an outpae the parallelization gains.Consider that the number of tiles is n, and the number of external visible faes is
m. For eah fae to be projeted, all the tiles in the list of tiles have to be tested forintersetions, this will lead to a omplexity for this searh of O(mn) asymptotially. Thisomplexity will be used as a omparison parameter with the next tehnique.
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Figure 4.9: Example of the distribution of sub-quadtree4.2.2 Faes-per-quadtreeIn this tehnique, it is assumed that the master thread sends eah rendering thread asub-quadtree with the tiles alulated in the tile distribution step. The Faes-per-quadtreeprojetion shemes, addresses the overhead of heking whih visible faes fall under theassigned tiles. The idea is to redue the number of heks by taking advantage of thequadtree struture reated by the tile deomposition phase. Eah internal node in thequadtree represents a quadrant of the sreen. When we hek if a ertain visible fae fallsunder an internal node of the quadtree, we are heking whether its pixels fall under thequadrant represented by that nodes.To aomplish this sheme, the master thread no longer sends the list of tiles to therendering threads, but the sub-quadtree that holds all the rendering threads tiles. Sinethe quadtree is usually small, this transfer an be negligible in the overall fae projetionoverhead. Figure 4.9 shows the master sending the sub-quadtree to two di�erent renderingthreads. The dashed leaves of the sub-quadtree are tiles that were assigned to otherrendering threads. Remark that all the leaves of original quadtree have to be assignedto one, and only one rendering thread. In the example the tile 2 of the master threadquadtree was assigned to the rendering thread R1.So, eah rendering thread stores loally only the portion of the quadtree that repre-



4.3 Parallel Rendering 39sented the tiles that were assigned to it. For eah visible fae, the rendering thread hekswhether the fae falls under the root node of its loal quadtree. If it does, the same test isdone with its hildren nodes, and so on, until a leaf node is reahed; In this ase the faeis projeted in the same way as fae-per-tile, in whih only the pixels inside the leaf nodeis projeted. If the fae does not fall under a quadtree node, no further heks are madeto the desendants of that node. In this way, not all the visible faes are ompared to alltiles assigned to this rendering thread. A great number of visible faes are ompared onlywith the loal quadtree root node, and soon disarded.Considering that the number of tiles is n, and the number of external visible faes is
m. This hierarhial struture inreases performane beause one element of the quadtreean be �nd on O(log4(n)) as shown by Finkel [14℄. Therefore the searh for all externalvisible faes an be done in O(mlog4(n)) asymptotially, whih is lower than the O(mn)omplexity of the fae-per-quadtree sheme. It is expeted that fae-per-quadtree mightlead to a better result in ases of higher resolution than fae-per-tile.This tehnique still has the same load imbalane problems due to fae distribution thatfae-per-tile has. This work does not address any tehnique to avoid or redue this loadimbalane, sine this is not the most expensive omputation in the whole visualizationproess.4.3 Parallel RenderingAfter eah rendering thread has the list of pixels to be omputed and the entry pointfor eah pixel omputed in the fae projetion phase, the rayasting algorithm starts. Thealgorithm used is exatly the same as the algorithm desribed in Setion 3.4, where foreah ray, the intersetions are found and the illumination integral omputed.4.4 Subimages TransmissionAfter rendered, eah pixel has its �nal olor stored in a three byte struture alled
CRGB. The three bytes of CRGB stores the Red, Green and Blue values of the pixels, alsoknown as the RGB olor of the pixels. The CRGB of all rendered pixels are stored in anone dimensional array alled raster. The raster is a struture that an be easily mappedonto a two dimensional sreen. Initially all the RGB values of all CRGB are set to zeroindiating a non rendered pixel.
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Pixel 1 Pixel 2 Pixel 3    1     3     9      2 Pixel 4 Pixel 5Coded Image Figure 4.10: Example of image enondigEah rendering thread has its own raster array, that has the same size as the �nalimage. At the end of the rendering step eah rendering thread has a unique set of renderedpixels in its own raster array, those rendered pixels are within the tile areas that wereoriginally assigned to this rendering thread at the tile distribution phase. The renderingthread has to send its subimage bak to master thread, but sending the whole raster arraywould be ostly.So, in order to redue the size of the sending struture, we proposed an image en-oding sheme. All the subimages generated by a rendering thread are sent in a singlemessage, that is omposed by an array of pixels struture. This array ontains a num-ber of ontinuous pixels struture, alled Cp. Eah Cp is a variable struture that hastwo ontrol integers followed by a number of CRGB. The �rst ontrol integer points to aposition in raster array where there is a ontinuous number of pixels that are not blak.The seond ontrol integer ontains the number of CRGB, and eah CRGB represents aRGB olor of a rendered pixel. When the subimage has one or more blak pixels, a new
Cp is added to the array. Sine it is more likely to have groups of olored pixels togetherthan many interleaved olored and blak pixels, it is expeted that the array of Cp isalmost the same size as an array of pixels. Figure 4.10 shows an example of a raster arraymapped to a message with two Cps. Remark that the enoded image is smaller than theoriginal raster array, and there are only four ontrol integers of overhead more than thea single list of CRGB would have.Although the subimages send phase omprises only the transmission of theraster arrayfrom eah rendering thread to the master. This phase timing is highly suseptible to theload imbalane intrinsi to the work division. Here we use a formula proposed by [25℄ asthe measure for load imbalane.
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LoadImbalance = 1 −

Avg

Max
(4.10)Where Avg is the average timing among all rendering threads and Max is the maxi-mum timing of all rendering threads.4.5 Image MergingAs soon as the Master reeives a message from a team of thread it deodes the subim-ages reeived and save them in the �nal Raster. The assembly of the �nal image isa straightforward phase, sine it involves only the transfer of eah Cp inluded in themessage to the orret position in the image.After that, if there are more frames to be rendered, all the steps of the renderingpipeline, with exeption of the preprossesing phase, are repeated, otherwise the algorithm�nishes.



Chapter 5
Experimental Results
5.1 MethodologyOur experimental environment onsists of a luster with SMP nodes alled Netuno.The luster is loated on the Rio de Janeiro Federal university. This luster was top 138in June of 2008 in the top 500 [50℄. Eah node of this luster is omposed of IBM bladeboards. where eah node onsists of 2 Intel Xeon 2.66 GHz quad-ore proessors that sharea 16GB RAM. The nodes are onneted via Gigabit Ethernet network. All the 2048 oresrun Linux CentOS 4.2.3. The parallel algorithm was developed in C, using MPI for theommuniation between the leaders and the master, and pthreads for the parallelizationand ommuniation of the rendering nodes inside a team. Table 5.1 summarizes some ofthe harateristis of this luster.Operational System CentOSKernel Version 2.6.18-53-el5CPU Intel Xeon E5430 (Duo-Quad ore) 2.66GHzCahe Size 6144KBMemory RAM 16GBMPI Version Intel 3.2.0.011C++ Compiler Intel 11.0.074Table 5.1: Cluster NetunoWe used �ve well-known representative tetrahedral datasets: in Figure 5.1 we an seeSPX from Lawrene Livermore National Lab, Liquid Oxygen Post shown in Figure 5.2,in Figure 5.4 and Figure 5.3 we see Delta Wing and Fighter from NASA respetively,and �nally in Figure 5.5 we see Torso from University of Utah. SPX is a very irregulardataset that ontains a hole in the grid, bringing extra di�ulties to the renderer. Fighter



5.1 Methodology 43is based on an airraft plane that has thin and thik regions. Delta Wing, Liquid OxygenPost, and Torso are tetrahedralized versions of regular datasets. Liquid Oxygen Post,in partiular, is a thin ylinder that presents di�erent rendering omplexity aording toviewing diretion. Table 5.2 shows the number of verties, tetrahedra voxels and externalfaes for eah dataset.Dataset # Verties # Tetrahedra voxels # Number of External FaesSPX 149 K 827 K 44160Post 109 K 513 K 27676Delta 211 K 1.0 M 41468Fighter 256 K 1.4 M 83504Torso 168 K 1.0 M 6118Table 5.2: Dataset sizes.

Figure 5.1: SPX dataset.

Figure 5.2: Post dataset.

Figure 5.3: Fighter dataset.

Figure 5.4: Delta dataset.The resolution hosen to render the data set is also an important fator to be takeninto onsideration. The resolution measured in this work is always in terms of pixels thatthe image has. We an imagine the image as a matrix of pixels. Even though the numberof olumns and rows in this matrix an be di�erent in size, in this work they are alwaysthe same size. For the sake of simpliity an image that has 1024 olumns and 1024 rowsin the pixel matrix is alled an image with a 1G pixel resolution. An image with 2048
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Figure 5.5: Torso dataset.olumns and 2048 rows is an image with 2G pixel resolution and so on. We used a 4Gpixel resolution image and eah dataset was rendered from di�erent points of view. Forall these datasets, an animation path was de�ned. We onsidered that the point of viewstarts at 0o, and was onstantly rotated using a �xed stride of 2 degree angle.The parallel rayasting algorithm proposed is alled PRay. This algorithm uses thetehniques tile deomposition and distribution for load balaning and the fae-per-quadtreefor fae projetion. This version is ompared with the traditional parallel rayast. Thetraditional parallel rayast divides the sreen equally into 32 × 32 tiles and distributesthe tiles randomly aross the rendering threads. This tile division was determined in aprevious experiment where di�erent tile divisions were evaluated to �nd the best one forall datasets.5.2 Parallel Rendering OverheadsBefore start our analyzes of the overhead, we present in Table 5.3 the total appliationtime of the sequential algorithm and the PRay algorithm. Those data were aquired with4G pixels images and 64 ores for the parallel algorithm PRay, the total time is presentsin milliseonds. Datasets Sequential(ms) PRay(ms)SPX 176235.03 4211.99Delta 196235.08 4524.09Fighter 153251.76 4412.00Post 328853.07 6381.46Torso 188054.98 4489.75Table 5.3: Total appliation time for 4G pixel resolution.As we an see, great improvement has been ahieved. Next we will present the and



5.2 Parallel Rendering Overheads 45analyzes the the reason for suh improvement starting with the overhear.In Figure 5.6 we show the timing breakdown of our parallel algorithm, PRay, for eahdataset, when running on 64 rendering threads. The breakdown was divided into fourphases: Tile Deomposition and Distribution, Pre-render, Subimages transmission, andImage Merging. This overhead was measured exlusively in the master thread were all theload balane poliies are applied and the �nal image is merged. Time measuring funtionswere started before the exeution of eah part of the overhead breakdown and stopped atthe end of those parts instrumenting this way the whole exeution of the master thread.
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Figure 5.6: Timing breakdown of our parallel algorithm.As we an observe in Figure 5.6, the Pre-render and Subimages Send omponentsdominate the total overhead. The total overhead remains around 40% of the total exeu-tion time. The smallest dataset, Post, was the one that generated the smallest overhead,and as the dataset size inreases, the total overhead also inreases, mainly due to theinrease in the Pre-render omponent of the overhead. This omponent is related tothe number of external faes of a dataset, and this omponent is higher in the �ghterdataset, whih is the one with most external faes. For experiments with larger imageresolutions, we obtained inreasing in the total overhead. Following, we will analyze eahof the overhead omponents and the rendering behavior in detail.



5.3 Tile Deomposition and Distribution 465.3 Tile Deomposition and DistributionOur study, at this point, has to investigate how well our tile deomposition strategy isin dividing the sreen into tiles. Before we analyze the tile deomposition results, we havedone some experiments in order to de�ne the best value for the p parameter of the adaptivetile deomposition. This value de�nes when ∆D hanges by an order of magnitude. Wevaried p from 1.1 to 4.0 and obtained similar results for all datasets. Figure 5.7 showsan example of these results for SPX. Inreasing the value of p, shown in the x axis, anprodue a signi�ant redution in the total exeution time presented in the y axis, untilp reahes a value near 3.0. After that, further inreases in p would have great impatin the exeution time. So, we deided to set p = 2.9 for the next experiments. Thisexperiment uses 64 rendering threads, but the usage of more or less threads should makeno di�erene in the �nal result (�nding the best value of p), sine this results dependsonly in the dataset geometry.
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Figure 5.7: Variation of p parameter for SPX dataset.Having alibrated the p parameter, our seond study investigates the auray ofour load estimation strategy. After the rendering of eah point of view, we ompute thedi�erene between the estimated ost of eah pixel and its atual ost. We used SPX as anexample for this analysis, sine SPX is more irregular than the other datasets. Figures 5.8
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Figure 5.8: Auray of load estimation for SPX with a stride of 2o.to 5.10 show the average perentage di�erene between estimated and atual ost for allpixels in the sreen for SPX, when the point of view varies from 0o to 360o. Figure 5.8shows this di�erene when the point of view varies by 2o. Figure 5.9 shows for a 10ovariation and Figure 5.10 for a 40o variation. As we an observe in these �gures, for asmall stride, our estimated ost is very lose to the atual ost, the di�erene betweenthe estimated and atual ost stays near 5% and remains almost onstant for all points ofview. For a 10o of stride, the di�erene stays near 10%. For a 40o of stride, the estimateis in the average 50% di�erent than the atual ost. Big angle strides, however, are notthe usual requests of the users. Usually, the user does not desire an abrupt hange in theangle of view of the data. Based on these results, on the other experiments, we rotatedthe data for 20 di�erent point of views, using the stride of 2o.In order to evaluate the sreen division generated by our tile deomposition strategy,we measured the standard deviation of ost of the tiles, and ompared to the standarddeviation generated by a �xed 32 × 32 tile subdivision. We normalized the standarddeviation of the two strategies in order to ompare them. Table 5.4 shows the omparisonof the standard deviation of our strategy with the �xed division. The numbers showthe perentage of the standard deviation generated by our strategy, onsidering that thestandard deviation of the �xed division is 100%. As we an observe in this table, ourdeomposition provides a standard deviation always smaller than the �xed division. Forsmaller strides, our deomposition generates tiles with a standard deviation that is less
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Figure 5.9: Auray of load estimation for SPX with a stride of 10o.
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Figure 5.10: Auray of load estimation for SPX with a stride of 40o.



5.3 Tile Deomposition and Distribution 49

Figure 5.11: Example of tile deomposition for the Delta dataset.than 21% of the standard deviation of the �xed division. The inreasing in the perentageshown for 18o is due to the inreasing in the error of the tile load estimation measure. Aninreasing in suh measure degrade the deomposition e�etiveness.Datasets Angle stride2 6 10 14 18SPX 16.7% 18.3% 20.3% 24.4% 41.2%Post 12.6% 18.0% 24.3% 38.0% 65.8%Delta 16.5% 17.4% 18.6% 20.6% 33.1%Fighter 20.1% 21.1% 25.1% 27.2% 40.0%Torso 18.1% 19.9% 21.5% 25.3% 53.7%Table 5.4: Standard deviation omparison with the �xed division.Figure 5.11 illustrates an example of the tile deomposition for the Delta dataset. Itan be seen that our adaptive strategy performs more subdivision in the middle of thesreen where there is more data to be omputed.Table 5.5 depits, for eah dataset, the perentage of time that the parallel algorithmspent in the omputation of tile deomposition and distribution step. This time mea-surement is done in the same way as the overhead breakdown. As we an observe, theoverhead for this step is very small, under 3.6% of the total rendering time, for most ofthe datasets, exept for Fighter, that obtained 6.6% of tile deomposition and distribution



5.4 Pre-render 50overhead. Fighter is the dataset that has the smallest number of empty tiles, and thebiggest number of the rendered tiles, as its image uses up all the spae in the sreen. Inaddition, for Fighter the tiles osts are more homegeneous than for the other datasets,and, in this ase, the tree rearrangement algorithm takes more time to �nd the ritialvalue. For the other datasets, the overhead slightly inreases with the inrease in thedataset. It is important to notie that, in terms of memory onsumption, the quadtreeused only around 25 Kbytes for the biggest dataset, whih is less than 0.1% of the memoryneeded for the rendering. Dataset OverheadPost 1.7%SPX 2.5%Delta 3.6%Torso 2.8%Fighter 6.6%Table 5.5: Overheads inurred by tile deomposition and distribution strategies.To analyze the tile distribution, we ompared the load imbalane generated by theuse of Makespan ompared to the load imbalane generated when the tiles are randomlyassigned to the rendering threads in a round-robin fashion. The load imbalane wasomputed using equation (4.10) and the Makespan heuristi provided improvements from35% to 75% in the load imbalane, when ompared to the Random tile distribution sheme.5.4 Pre-renderAs an be observed in Figure 5.6, the overhead of the pre-render step is signi�ant,about 15% of the total rendering time. Following, we analyze eah of the omponents ofthis overhead, data rotation and fae projetion, in detail.5.4.1 Data RotationThe data rotation phase represents only a small part of the pre-render omputation.It is independent of the image resolution and the geometry of the data, it depends only onthe number of verties of the data. In Table 5.6, we show the time spent in data rotationand the perentage that this time represents on the overall exeution time. As we anobserve, this phase imposes only a negligible overhead in the parallel rendering.



5.4 Pre-render 515.4.2 Fae ProjetionThe fae projetion phase, on the other hand, aounts for most of the overheadof the pre-render step. This is a neessary phase in any rayasting algorithm, whoseperformane impliations are often negleted by parallel rendering systems, mainly whenthe image generated has high resolution. Tables 5.8, 5.7 and 5.9 show the time taken forprojeting the visible faes in the sreen, when the image generated has the resolutionof 8G pixels, 4G Pixels and 1G pixels, respetively. The tables show the fae projetiontime and the perentage of this time in the overall exeution time for the parallel shemesproposed here, faes-per-tile and faes-per-quadtree, and for a traditional sheme, whereall the visible faes are projeted. This traditional sheme is simpler and avoids the needof searhing for the visible faes that projet inside the tiles assigned to eah thread.However, the results show that, when the image has high resolution, the unneessaryprojetions turn the projetion from 20 to 70 times slower for a 4G pixel resolution, andfrom 50 to 800 times slower for a 8G pixel resolution. The gains get smaller for lowresolution images as seem in Table 5.9. That is why many of the parallel renders whihhandles low resolution images never parallelize this step of the pipeline. The fae-per-tiletehnique has even had worse projetion time when ompared to the traditional parallelalgorithm in a 1G pixel resolution, but the faes-per-quadtree has always had the lowerprojetion time when ompared to the other two approahes even for suh small imageresolution.When we ompare the two parallel approahes, faes-per-tile and faes-per-quadtree,we observe that the faes-per-quadtree is faster than the faes-per-tile sheme for alldatasets, exept Torso. For a 4G pixel resolution, the fae-per-quadtree is about 26%faster for Fighter dataset. However, when the number of pixels quadrupliates, we observehuge gains for the faes-per-quadtree sheme. It is about 46% faster for Fighter datasetthan faes-per-tile. Figther is the dataset where fae-per-quadtree presents the greatestgains, sine this dataset is the one that has the least number of non-rendered pixels inthe sreen. Torso, on the other hand, has the greatest number of non-rendered pixels andDatasets Rotation time(ms) % Total TimePost 5.79 0.09%SPX 9.15 0.22%Delta 13.33 0.29%Torso 10.71 0.24%Fighter 16.11 0.37%Table 5.6: Rotation timing.



5.5 Rendering 52the least number of visible faes to be projeted.Datasets Faes-per-quadtree Faes-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 15.67% 660.02 18.49% 807.98 55.59% 13287.95Delta 14.65% 662.78 14.98% 682.59 53.86% 24492.57Fighter 16.07% 709.01 33.63% 1881.24 48.24% 49629.69Post 10.36% 661.12 11.17% 720.18 66.5% 40311.76Torso 14.44% 648.32 14.26% 640.5 50.98% 19804.27Table 5.7: Fae projetion timing for 4G pixel resolution.Datasets Faes-per-quadtree Faes-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 7.63% 1439.93 13.06% 2619.23 46.84% 84782.84Delta 13.24% 2551.59 13.68% 2639.26 47.4% 1676786.92Fighter 16.73% 3066.68 41.72% 10863.52 49.14% 2460465.88Post 5.14% 1333.73 9.7% 2643.3 43.84% 82034.43Torso 14.32% 2945.72 12.78% 2583.58 38.23% 167853.85Table 5.8: Fae projetion timing for 8G pixel resolution.Datasets Faes-per-quadtree Faes-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 4.23% 57.53 35.12% 302 16.58% 98.75Delta 13.26% 60.64 14.6% 68.71 18.15% 112.85Fighter 13.86% 98.44 42.17% 396.41 30.91% 259.71Post 7.79% 50.39 11.09% 92.01 15.87% 134.29Torso 6.89% 46.15 7.38% 49.47 11.66% 88.56Table 5.9: Fae projetion timing for 1G pixel resolution.5.5 RenderingThe rendering proess in eah rendering thread follows the same omputation asproposed in [41℄. In the rendering algorithm, as a ray traverses the dataset, three om-putations take plae: Find Next Fae, Compute α, and Update Light. Find Next Fae,disovers whih the next fae to be interseted is, and the intersetion point of the rayin this next fae. It generates the z oordinate of this point. Compute α alulates thesalar value of the intersetion point. The salar value, α, is omputed by the interpola-tion of the salar values of the next fae verties. Update Light omputes the illuminationintegral from the urrent position to the next intersetion, using the values of z and αomputed previously. Table 5.10 shows the proportion of these three omputations inthe overall rendering time. Find Next Fae is the most expensive part of the rendering



5.6 Subimages Transmission 53proess, aounting for 66.4% of the rendering time. This is due to the update oe�ientomputation that alulates the oe�ient of the plane de�ned by the three verties of atriangular fae. Update Light aounts for 29% of the rendering, due to the illuminationintegral omputation and Compute α aounts for only the other 4.6%.Computation % of Rendering TimeFind Next Fae 66.4%Compute α 4.6%Update Light 29%Table 5.10: The ontribution of eah part of the rendering in the rendering time.In the parallel algorithm, however, the tile division an a�et the ahe behavior ofthe rendering proess. So, we ompared the ahe utilization of the parallel algorithmwith the ahe utilization of the sequential algorithm. The ahe utilization was measuredusing PAPI [40℄ and Perftr library to aess the hardware ounters.Table 5.11 shows L1 ahe miss rate of eah of the three omputations performedduring the rendering step, for the parallel and the sequential algorithm. Eah ore of theluster has 32K of L1 ahe. As we an observe in this table, the adaptive tile deomposi-tion strategy enhanes the ahe utilization. This ours beause our tile deompositionstrategy divides the omputation evenly among the tiles and nearby rays that lie insidethe tiles tend to interset the same faes, so that the faes data an be reused in theahe. When we ompare the three main funtions of the rendering, we observe thatUpdate Light is the one that generated the highest ahe miss rate. This is due to theneed of reading a olor table, in order to insert in the integral the range of the olor valuesfor the α omputed. The Find Next Fae and Compute α funtion, on the other hand,had bene�ted from the reuse of fae data.Computation Cahe Miss RateParallel Algorithm Sequential AlgorithmFind Next Fae 0.24% 1.15%Compute α 0.14% 1.33%Update Light 1.16% 1.21%Table 5.11: Cahe miss rate of rendering for the parallel and sequential algorithm.5.6 Subimages TransmissionThe subimages send overhead is the time the master spent in waiting for the subimagesto arrive before merging them into the �nal image. The master has to wait for the



5.6 Subimages Transmission 54rendering threads to �nish their work, and for the messages to arrive. So, this overhead isdue not only to the network message exhanging, but also to the load imbalaning e�et.Following we disuss both overheads in detail.5.6.1 Message ExhangingTable 5.12 shows the time spent with message exhanging and the perentage oftime that the message exhanging represents in the subimages send overhead. As wean observe in this table, the time spent in message exhanging is negligible in the to-tal subimages transmission overhead. For Torso, the message exhange overhead is thesmallest, even being bigger than Post and SPX. This is primarily due to the fat thatTorso is a regular dataset. As our algorithm an also deal with hexahedral voxels, weonsidered eah ubi voxel of Torso as an hexahedral voxel. Due to the regular natureof Torso, some voxels have no ontribution for the �nal olor of the pixels. Nevertheless,the image generated by Torso uses up the smallest sreen spae, ompared to the otherdatasets. Fighter has the greater network overhead, this fat is due to the nature ofFighter dataset. Fighter has the greater number of external fae, and the faes oupyalmost all the image. Dataset % of Message exhange OverheadSPX 9.75%Post 13.03%Delta 8.07%Fighter 7.73%Torso 6.62%Table 5.12: Message exhanging perentual time.We also ompared the message exhanging measured time with the theoretial prop-agation time, when there is no delay in the network. The theoretial propagation timeis alulated using the message size and the network bandwidth. In this experiment,we observed that the di�erene between the measured and the theoretial is very small,under 4%. This result on�rms that the network is not imposing delays in the messageexhange, and the ommuniation with the master does not generate bottleneks.5.6.2 Load ImbalaningTable 5.13 shows the perentage of load imbalane generated by our algorithm usingequation (4.10). As we an observe in this table, for most of the datasets, our algorithm



5.6 Subimages Transmission 55generated less than 10% of load imbalane. For Fighter, the load imbalane is 7.81%. Allthese results, for suh a big image resolution (4G pixels), are very good, sine aordingto Mueller[35℄, a load imbalane is reasonable if it is below 33%.Dataset Load ImbalaneSPX 8.00%Post 3.09%Delta 5.28%Fighter 4.21%Torso 7.90%Table 5.13: Load imbalane of our algorithm, aording to equation (4.10).In order to put our load imbalane results in perspetive, we ompared our parallelalgorithm results with a plain parallel version. This plain parallel version divides thesreen equally into 32 × 32 tiles and distributes the tiles randomly aross the renderingthreads. Table 5.14 shows the perentage of gains in the load imbalane obtained byour algorithm. As we an observe in these tables, our algorithm obtained signi�antredutions in the load imbalane, when ompared to the plain tile division and distributionThese results on�rm that the load imbalane problem has great impat on the overallperformane of a parallel rendering algorithm.Dataset % of GainsSPX 83.37%Post 85.92%Delta 84.97%Fighter 81.86%Torso 85.61%Table 5.14: Gains in load imbalane of our algorithm, when ompared to a plain parallelrendering algorithm.Another important result observed in our parallel algorithm is that the load imbalanedoes not inrease signi�antly with the inrease in the number of ores, while the oppositeours for the plain parallel version. In our algorithm, the adaptive tile deompositionensures a good number of tiles to be distributed to the ores. For the plain algorithm, onthe other hand, the tile deomposition is �xed. So, as the number of ores inreases, lesstiles are given to eah ore, inreasing the hanes of having unbalaned load. Figures 5.12to 5.16 show the omparison of the loadimbalane for all the datasets for PRay andtraditional parallel rayast. Even though the Fighter dataset, shown in Figure 5.14, hadthe best load balane performane for traditional parallel rayast, this result is not evennear the worst load balane performane of PRay algorithm shown in Figure 5.12 for SPX



5.7 Image Merge 56

 0

 10

 20

 30

 40

 50

 60

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

SPX

 PRay
 Traditional

Figure 5.12: Overhead of PRay and traditional rayast for SPX dataset.dataset.5.7 Image MergeThe image merge overhead inludes the time spent for the rendering threads to enodetheir subimages and for the Master to deode the subimages reeived and save them inthe �nal Raster. Table 5.15 depits, for eah dataset, the perentage of time that theparallel algorithm spent in the omputation of enoding and deoding the subimages. Aswe an observe in this table, the time spent due to image merging is always lower than1.15% of the total exeution time for all datasets. This is the smallest overhead of theparallel omputation. Datasets OverheadPost 0.83%SPX 1.12%Delta 1.15%Torso 1.04%Fighter 1.3%Table 5.15: Overhead of image merging
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Figure 5.13: Overhead of PRay and traditional rayast for Delta dataset.
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Figure 5.14: Overhead of PRay and traditional rayast for Fighter dataset.
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Figure 5.15: Overhead of PRay and traditional rayast for Post dataset.
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Figure 5.16: Overhead of PRay and traditional rayast for Torso dataset.



5.8 Speedup Results 595.8 Speedup ResultsThe speedup is a metri used to measure the algorithm is de�ned by Equation (5.1)where S is the speedup, TParallel is the time of the parallel algorithm, T1 is the time spentby the sequential algorithm. The time T1 was alulated using the sequential algorithmME-Ray. The PRay was ompared with the traditional parallel rayast in the same waythat was done in setion 5.6.2.
S = 1 −

T1

TParallel

(5.1)Equation (5.2) shown the metri used to measure the e�ieny of the parallel algo-rithm. F is the e�ieny. S is the speedup and C is the number of ores used to obtainthe speedup S.
F =

100 ∗ S

C
(5.2)Figs. 5.17 to 5.21 show the speedup obtained by PRay and traditional parallel rayastfor eah dataset as the number of rendering threads inreases. We an observe in these�gures that the speedups obtained by PRay are quite high, and always greater than thespeedups obtained by PRay. The dataset whih ahieved the best result was the Postdataset with a speed up of almost 51, whih results in a e�ieny of 79% for the parallelalgorithm. For the same dataset, traditional parallel rayast only ahieved an e�ienyof 42%. Fighter dataset ahieved the worse speedup among all the datasets, a speedupof 34.5 for PRay and 24.5 for the traditional parallel rayast. This performane an beeasily explained by the pre-render and subimage sending overheads already disussed.
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Figure 5.17: Speedup of PRay and traditional rayast for SPX dataset.

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

Delta

 PRay
 Traditional

Figure 5.18: Speedup of PRay and traditional rayast for Delta dataset.
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Figure 5.19: Speedup of PRay and traditional rayast for Fighter dataset.
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Figure 5.20: Speedup of PRay and traditional rayast for Post dataset.
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Figure 5.21: Speedup of PRay and traditional rayast for Torso dataset.



Chapter 6
Conluding Remarks

In this work, we propose a new parallel rayasting for unstrutured grids that isbased on sort-�rst division of the rendering task and was designed to explore the reentarhiteture of lusters of multiores. We disseted all the overhead omponents of theparallel rendering algorithm, identifying bottleneks and suggesting modi�ations in orderto handle images with high-resolutions. Our evaluation inluded all the parallel aspetsof the rendering proess, inluding deomposition/load balaning, fae projetion, dataloality during the dataset traversal, and ommuniation overhead.We divided the parallel omputation into �ve steps: tile deomposition and distribu-tion, pre-render, rendering, subimages send, and image merge. For eah of these steps,we applied di�erent tehniques to improve performane. In the tile deomposition anddistribution step, we applied an adaptive tile deomposition strategy that hierarhiallysubdivides the sreen using a quadtree struture and uses the the onept of entropy asthe stopping riteria. The tile distribution is done using the Makespan heuristi. For thepre-render step, where the data is rotated and the entry point of the rays are found byvisible faes projetions, we applied a parallel fae projetion sheme that took advantageof the quadtree struture built in the tile deomposition step. For the rendering step, weused a memory-e�ient sequential algorithm that bene�ted from an even tile division andprovided better ahe behavior. For the subimages transmission and image merge steps,we applied an image enoding sheme in order to redue message sizes.Our parallel rendering algorithm obtained signi�ant performane gains when om-pared to a plain parallel rayasting algorithm for a 4G pixel resolution image. Tile de-omposition and distribution shemes inluded negligible overhead and improved the loadbalaning in at most 86%. The parallel fae projetion sheme proved to be indispensable



6 Conluding Remarks 64for high-resolution image rendering, sine it provides gains of up to 26% and up to 46%for 8G pixel resolution. The sequential rendering in eah thread improved the ahe hit inabout 89%, due to the tile division. Considering the whole rendering proess, we obtainedspeedup gains of up to 51%.One important aspet of our study is that, although the solutions proposed to redueparallel overheads are employed in our spei� algorithm, the lessons learned an bepossibly extensively applied to other parallel diret volume rendering approahes, suh asGPGPU versions of rayast.
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