

UNIVERSIDADE FEDERAL FLUMINENSE

Karen da Silva Figueiredo

MODELING AND VALIDATING NORMS IN

MULTI-AGENT SYSTEMS

Niterói, Rio de Janeiro, Brazil

2011

1

Karen da Silva Figueiredo

MODELING AND VALIDATING NORMS IN

MULTI-AGENT SYSTEMS

Dissertation presented to the Computer

Science Department of the

Universidade Federal Fluminense

(UFF) in partial fulfillment of the

requirements for the Master Degree.

Advisor:
Viviane Torres da Silva

Niterói, Rio de Janeiro, Brazil

2011

2

MODELING AND VALIDATING NORMS IN

MULTI-AGENT SYSTEMS

Dissertation presented to the Computer

Science Department of the

Universidade Federal Fluminense

(UFF) in partial fulfillment of the

requirements for the Master Degree.

Approved by:

Prof. DSc. Viviane Torres da Silva (Advisor) – IC/UFF

Prof. DSc. Christiano de Oliveira Braga – IC/UFF

Prof. DSc. Ricardo Choren Noya – IME

Prof. DSc. Leonardo Gresta Paulino Murta – IC/UFF

Niterói, Rio de Janeiro, Brazil

2011

3

ACKNOWLEDGEMENTS

To , the Supreme Creator and Director of the Universe, I thank You for

allowing me to achieve this one more stage of my life. To Him all my humble

obeisance!

To Pr bhupād , my Original Guru, I thank You for inspiring me trough Your

example. Every time I felt like "giving up" I remembered of Your story and how all of

this is just a tiny little grain of sand compared to it.

To my mother and grandmother, the sunshine of my life, I thanks for being so

kind, careful and adorable even when I couldn't correspond to you.

To all my friends, especially to Isabela, Leonardo, Lilia, Larissa and Caitanya,

for being there for me when “the rain started to pour".

To my boyfriend for being so understanding and lovely all the time. Thanks for

being part of my life so intensely.

To the teachers Viviane Silva (master advisor), Aline Vasconcelos (graduation

advisor), Leonardo Murta and Ana Cristina Bicharra for all the support and incentive

during this journey, especially to Viviane, for all the patience that you had with me.

Finally, to all the colleagues of course and friends that I met in Niterói for make

living here more easy and funny.

4

 m h p m

k y k y -vyavasthitau

j - i h nok

k m k um ih h i

“One should therefore understand what is duty and what is not duty by the norms of

the scriptures. Knowing such rules and regulations, one should act so that he may gradually

be elevated.” – , Bh g gī A I I (P bhup , 1968)

5

ABSTRACT

 The designers of open multiagent systems have to deal with the possibility that

agents may not behave as they are supposed to. Norms provide a means for

regulating agents’ behavior by describing their permissions, prohibitions and

obligations. In this dissertation we propose a normative modeling language called

NormML that makes possible the modeling of the main elements that compose the

norms. The dissertation presents not only the abstract syntax but also the concrete

syntax of NormML used by designers to model the norms of multi-agent systems.

 It is also the aim of this work to present a mechanism used to validate the

norms modeled at design time. The validation process has two steps. First, the

mechanism checks if the models respect the constraints defined by the normative

language and, then, checks for conflicts among the modeled norms. Two norms are

in conflict if, for instance, one states a permission and another a prohibition to a given

agent to execute the same action at the same time period.

 The modeling and the validation of the norms are supported by a tool called

NormML Tool Kit that offers a set of plugins to the Eclipse IDE platform with the aim

to make possible the creation and validation of the norms modeled with NormML.

Keywords: Norm, Multi-agent System, Modeling Language, Modeling, Metamodel,

Validation, Conflict.

6

LIST OF FIGURES

Figure 2.1 Example of metamodel and model representations adopted in this work

Figure 2.2 SecureUML metamodel

Figure 3.1 Conference management process of the local conference

Figure 4.1 The NormML metaclasses used to define the deontic concepts of a norm

Figure 4.2 The NormML metaclasses used to define the involved entities of a norm

Figure 4.3 The NormML metaclasses used to define the action of a norm

Figure 4.4 The NormML metaclasses used to define the resource of a norm

Figure 4.5 The NormML metaclasses used to define the activation constraints of a

norm

Figure 4.6 The NormML metaclasses used to define the operands of an If constraint

of a norm

Figure 4.7 The NormML metaclasses used to define the sanctions of a norm

Figure 4.8 The NormML metaclasses used to define the context of a norm

Figure 4.9 Norm N1

Figure 4.10 Norm N2

Figure 4.11 Norms N3 and N4

Figure 4.12 Web store norms graphical model

Figure 6.1 NormML graphical model of N1 and N2

Figure 6.2 NormML graphical model of N3, N7 and N8

Figure 6.3 NormML graphical model of N4, N5 and N6

Figure 6.4 NormML graphical model of N9, N10 and N11

Figure 7.1 The NormML Tool Kit process

Figure 7.2 The NormML Editor wizard

Figure 7.3 Eclipse perspective of the NormML Editor plugin

Figure 7.4 Creation and edition of N1 in the NormML Editor plugin

Figure 7.5 OCL invariant example in the Ecore editor

Figu 7.6 N1 iol ion of “No mCon x C nNo B Null” in i n

Figu 7.7 N1 iol ion of “No mCon x C nNo B Null” in i n ul

Figure 7.8 NormML Conflict Checker menu

Figure 7.9 Check for conflicts result of the NormML Conflict Checker plugin

Figure 7.10 NormML metamodel described as a class diagram with EOS

7

Figure 7.11 N1 abstract model described as an object diagram with EOS

Figure 7.12 XSL template that implements Rule1

Figure 7.13 Main OCL operation of the check for conflicts described with EOS

Figure A.1 Conserved elements of the SecureUML metamodel

Figure G.1 N1 and N2

Figure G.2 N3

Figure G.3 N4 and N5

Figure G.4 N4 and N6

Figure G.5 N7

Figure G.6 N8

Figure G.7 N9 and N10

Figure G.8 N9 and N11

8

LIST OF TABLES

Table 2.1 Resources and their actions

Table 4.1 Resources and their actions

Table 5.1 Main elements of a norm

Table 5.2 Checking for conflicts analysis

Table 6.1 Main elements of the norms of the local conference management system

Table B.1 NormML dialect action hierarchy

Table D.1 NormML semantically opposite actions

Table E.1 NormML graphical model stereotypes

9

LIST OF ABBREVIATIONS

AML – Agent Modeling Language

AORML – Agent-Object Relationship Modeling Language

API – Application Programming Interface

AUML – Agent Unified Modeling Language

DSL – Domain-specific Language

EMF – Eclipse Modeling Framework

EOS – Eye OCL Software

IDE – Integrated Development Environment

MAS – Multi-agent System

MAS-ML – Multi-agent System Modeling Language

MASQ – Multi-Agent System based on Quadrants

MOF – MetaObject Facility

NormML – Normative Modeling Language

OCL – Object Constraint Language

O-MASE – Organization-based Multiagent System Engineering

OMG – Object Management Group

PASSI – Process for Agent Societies Specification and Implementation

RBAC – Role-based Access Control

ST – Secure Tropos

UML – Unified Modeling Language

XML – Extensible Markup Language

XSLT – Extensible Stylesheet Language Transformations

10

SUMMARY

CHAPTER 1: INTRODUCTION .. 12

1.1 OBJECTIVES AND MAIN CONTRIBUTIONS ... 13
1.2 STRUCTURE ... 14

CHAPTER 2: BACKGROUND .. 16

2.1 AGENTS AND MULTI-AGENT SYSTEMS .. 16
2.2 MODELS, METAMODELS AND SYNTAXES ... 18
2.3 SECURE UML .. 20

CHAPTER 3: NORMML: A NORMATIVE MODELING LANGUAGE 23

3.1 MAIN ELEMENTS OF A NORM .. 24
3.2 THE NORMML METAMODEL .. 27

3.2.1 Deontic concept .. 30
3.2.2 Involved entities .. 30
3.2.3 Actions .. 32
3.2.4 Activation constraints .. 35
3.2.5 Sanctions .. 37
3.2.6 Context ... 37
3.2.7 Modeling norms with NormML .. 38

3.3 THE WELL-FORMEDNESS RULES OF NORMML METAMODEL 40
3.4 CHECKING FOR CONFLICTS ... 44

3.4.1 Context analysis ... 45
3.4.2 Involved entities analysis .. 46
3.4.3 Deontic concept analysis .. 47
3.4.4 Action analysis ... 47
3.4.5 Activation constraints analysis .. 48
3.4.6 Sanctions analysis .. 49

3.5 THE NORMML CONCRETE SYNTAX .. 50
3.5.1 Creating the graphical models .. 52
3.5.2 Mapping from concrete to abstract syntax .. 54

CHAPTER 4: RELATED WORK ... 58

4.1 MAIN ELEMENTS OF A NORM .. 58
4.2 CHECKING FOR CONFLICTS ... 63

4.2.1 Modeling languages, methodologies and organizational models 63
4.2.2 Other approaches that deal with norm conflicts .. 65

CHAPTER 5: EXAMPLE APPLICATION ... 67

5.1 CONFERECE MANAGEMENT SYSTEM ... 67

11

CHAPTER 6: EVALUATION ... 70

6.1 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

NORMML ... 70
6.2 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

AORML... 78
6.3 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

GAIA ... 79
6.4 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

OPERA ... 80
6.5 FINAL REMARKS ... 81

CHAPTER 7: THE NORMML TOOL KIT .. 82

7.1 MODELING NORMS .. 83
7.2 CHECKING (CONCRETE) MODELS .. 85
7.3 CHECKING FOR CONFLICTS ... 88

7.3.1 Transforming concrete to abstract models ... 89
7.3.2 Running operations to check the abstract models 92

CHAPTER 8: CONCLUSION AND FUTURE WORK ... 94

REFERENCES .. 96

APPENDIX A: THE NORMML EXTENSION OF SECUREUML 104

APPENDIX B: NORMML DIALECT ACTION HIERARCHY 107

APPENDIX C: THE WELL-FORMEDNESS RULES OF NORMML 109

APPENDIX D: SEMANTICALLY OPPOSITE ACTIONS .. 114

APPENDIX E: LIST OF THE GRAPHICAL MODEL STEREOTYPES OF THE
NORMML CONCRETE SYNTAX .. 115

APPENDIX F: FROM NORMML CONCRETE MODELS TO ABSTRACT MODELS
 .. 116

APPENDIX G: LOCAL CONFERENCE MANAGEMENT SYSTEM ABSTRACT
MODELS ... 120

APPENDIX H: CONFLICT CASES ... 128

CHAPTER 1: INTRODUCTION

Open multi-agent systems (MAS) are societies in which autonomous,

heterogeneous and independently designed agents can work towards similar or

different ends (López y López, 2003). In order to cope with the heterogeneity,

autonomy and diversity of interests among the different members, governance (or

law enforcement) systems have been defined. A governance systems define a set of

norms (or laws) that must be followed by the system entities.

According to Psychology and Sociology, norms are the rules that a society or

a group uses to define appropriate and inappropriate values, beliefs, attitudes and

behaviors (Deutch and Gerard, 1955). In MAS, Norms are used to regulate the

behavior of the agents by describing the actions that can be performed or states that

can be achieved (permissions), actions that must be performed or states that must be

achieved (obligations), and actions that cannot be performed or states that cannot be

achieved (prohibitions). They represent a way for agents to understand their

responsibilities and the responsibilities of the others. Norms are used to cope with the

autonomy, different interests and desires of the agents that cohabit the system.

Norms can be defined at design time together with the modeling of the system,

or created at runtime by agents that have the power to do so (López y López, 2003).

In this dissertation we focus on the description of norms at design time, thus; the

creation of norms at runtime is out of the scope of this work.

The modeling of norms is an important part of the specification of a system

and should be treated as an essential task of MAS design for two reasons:

I. Norms refer to actions, entities and resources that compose a system. So, the

refinement of the system may influence the norms and the definition of a new

norm will only be possible if the actions, entities and resources being

mentioned in the norm are being considered in the system design.

II. No m ’ onfli n u h ign of y m. During the specification

of the system norms conflicts may arise. Two norms are in conflict if, for

instance, one gives a permission and another a prohibition to an agent to

execute the same action at the same time period.

13

When norms are defined at design time some of those conflicts can be

detected and solved by, for instance, amending the conflicting norms, which

might c use the system’s redesign (by the inclusion of new actions and

agents, for example). By solving at least part of the conflicts at design time, it

is possible to reduce the time the agents will spend executing such task at

runtime.

Due to the interdependency between the modeling of norms and the modeling

of the elements of the system and the importance of finding out conflicts and solving

them at design time, it is important that the modeling languages and the notations

used by methodologies and organizational models to model MAS make possible the

modeling of the norms together with the modeling of the whole system and also

provide mechanism for solving the conflicts at design time.

Although there are many modeling languages and notations, proposed by

methodologies and organizational models, that provide support to the modeling of

norms, none of the analyzed approaches provide support to the modeling of all

elements that compose a norm identified during this work. Moreover, those

approaches also fail on providing support for the verification of conflicts among the

norms modeled at design time.

1.1 OBJECTIVES AND MAIN CONTRIBUTIONS

Given the foregoing, the goal of this work is to develop a modeling language

called NormML that is able to model the norms of a MAS and to check the conflicts

between these norms at design time. In order to do so, we first identify the main

elements that compose a norm, by analyzing the literature on specification and

implementation of norms, to guarantee that the proposed modeling language widely

supports the description of norms.

The novelty of our approach is threefold: (i) the modeling language itself, to

model norms and its main elements; (ii) a mechanism for checking for conflicts

between norms that considers the main elements that compose the norms; and (iii) a

tool to support the modeling of norms using NormML and can automatically validate

14

the models according to the metamodel of the language and check conflicts between

norms at design time.

This work also aims at comparing the proposed modeling language NormML

with related work to: (i) investigate if the elements that compose norms can also be

modeled by using the MAS modeling languages and notations provided by

methodologies and organizational models; and (ii) to explore the MAS languages,

methodologies and organizational models in order to find out if and how they give

support to the checking of conflicts at design time.

1.2 STRUCTURE

The dissertation is organized as follows: Chapter 2 provides some background

material for the rest of this work.

Chapter 3 presents the normative modeling language NormML and identifies

the main elements that compose a norm. The metamodel of the language is

described and the mechanism used to validate the models and check for conflicts

between the modeled norms is detailed. Also, a graphical notation for NormML

models is proposed together with a mapping between the graphical notation and the

abstract notation of the language.

Chapter 4 discusses the support given by the modeling languages and the

notations provided by the methodologies and organizational models analyzed to

model norms and to check norm conflicts. Also, other related approaches in norms

conflicts are addressed.

In Chapter 5 an example of application of norms in a MAS is presented. The

application is situated in the area of Conference Management and is used in Chapter

6 to evaluate the proposed modeling language.

In Chapter 6 we use NormML to model the application Conference

Management presented in Chapter 5 and to check for norms conflicts. A comparison

between NormML and some related MAS modeling approaches is traced to evaluate

our approach.

Chapter 7 presents the NormML Editor and the NormML Conflict Checker

plug-ins. They were developed to the Eclipse IDE (The Eclipse Foundation, 2011)

15

platform with the objective to support the modeling and validation of norms using

NormML and the checking for conflicts in NormML models. Chapter 8 concludes and

describes some future works.

CHAPTER 2: BACKGROUND

In this chapter we briefly provide background material for the rest of this work.

First, in Section 2.1 we introduce the terms agents and multi-agent systems since

they concern the scope of this work.

Section 2.2 introduces the notions of models, metamodels and syntaxes that

are necessary to understand the design of NormML.

In this dissertation we want to explore the modeling of norms using RBAC

concepts. So, in Section 2.3 we introduce SecureUML (Basin et al., 2006), a Domain-

specific Language (DSL) for modeling RBAC policies. The reasons why SecureUML

was chosen are: it has been applied successfully both in academic projects (Basin et

al., 2006) and industrial ones (Clavel et al., 2008); it has a well-defined syntax, given

by its metamodel; it has a formal semantics (Basin et al., 2009); and it is designed

specifically for RBAC modeling.

2.1 AGENTS AND MULTI-AGENT SYSTEMS

 A popul r definition for softw re gent is “ softw re progr m th t does

something, often on behalf of a person or other agent” possibly by: (i) involving

automated tasks; (ii) using some intelligence; (iii) communicating with the user or

other agents in a cooperative and coordinated manner; (iv) learning and changing its

behavior over time; and (v) operating on its own initiative (OMG Agent Platform

Special Interest Group, 2011). Bradshaw (1997) lists a set of properties that agents

have, proposed at first by Etzioni and Weld (1995) and Franklin and Graesser (1996),

which are commonly accepted by the researches of the area. Those properties are:

 Autonomy: the ability to execute its own tasks and to achieve its own goals

without necessarily requiring user influence;

17

 Collaborative behavior: the capability of working together with other agents

(by cooperating, negotiating, coordinating and delegating tasks) to achieve a

common goal, i.e., the goal of the system where they are interacting;

 Reactivity: the ability to sense real-time domain events and act triggered by

them;

 Communicability: the ability to communicate with humans, other agents,

legacy systems, and information sources;

 Personality: the capability of manifesting the believable attributes such as

emotions;

 Adaptability: the ability to learn and evolve based on their experiences, other

agents experiences and changes of the host place; and

 Mobility: the capability of moving from one host place to another.

 A system may contain one or more agents, in the latter case, we call it a multi-

agent system (MAS). A MAS consists of agents, objects and organizations.

Organizations can be understood from two perspectives: first as the process of

grouping a set of agents and other organizations (i.e. sub-organizations), and

second, as an entity with its own goals (Dignum, 2009). Agents, objects and

organizations are immersed in environments, i.e. a local host that provide resources

and offer services (Silva et al., 2003). Each agent stores information about the states

of the environment it inhabits and about other entities of the system. Those nested

inform tion re c lled the gent’s beliefs (Wooldridge, 1997).

 Agents are goal-oriented entities, i.e., they execute in order to achieve a set of

go ls th t represent the gent’s desires (R o nd George, 1995). Agents c n

execute a set of communicative actions (as the sending and receiving of messages

mentioned above) and non-communicative actions to achieve their goals. When a

set of actions are executed with the specific objective of achieving a certain goal, it is

called a plan.

18

 Due to its mobility, agents can move from an organization to another and from

an environment to another. When an agent enters an organization, it must commit to

(at least) one role described in the organization. A role restricts the behavior of an

agent in the organization, defining its social behavior (Silva et al., 2003). The

interactions between agents of an organization occur through the roles played by

them. Each role defines a set of protocols to regulate its interactions. Protocols are

composed of dialogue structures, i.e. messages that the agent playing the role can

send or receive.

2.2 MODELS, METAMODELS AND SYNTAXES

 A model is an abstraction of a phenomenon of the real world. A modeling

language provides a vocabulary (concepts and relations) for creating models. Such

vocabulary is described by the metamodel of the modeling language which elements

formalize the language concepts and their relationships.

 A metamodel may include constraints that associate semantic restrictions to

the elements of the metamodel. Those constraints specify additional properties that

the models must fulfill as instances of the metamodel, i.e. specify the well-

formedness conditions (or well-formedness rules) of the models with respect to its

metamodel and the consistency conditions between metamodel concepts. A model

always conform to a single metamodel.

 Meta-Object Facility (MOF) is a standard from the Object Management Group

(Object Management Group, 2011a) that states an abstract language for describing

structures of objects that can be represented in a given language, i.e. MOF specifies

a language for metamodels description. MOF corresponds to the top level (M3) of the

four layer architecture of metamodeling illustrated in Figure 2.1.

 Each model in a layer Mx is an instance of a model of Mx+1. Thus, in the layer

M2 languages metamodels can be described using MOF as metalanguage (i.e. the

language used to describe the metamodel vocabulary), e.g. the UML metamodel

(Object Management Group, 2011b) is an instance of the MOF meta-metamodel.

19

Figure 2.1 Example of the MOF architecture

 In the M1 layer, domain models can be defined according to the metamodel of

M2, e.g. an UML class diagram is an instance of the UML metamodel. And in the M0

layer instances of the elements of M1 can be described, e.g. an UML Object Diagram

is an instance of the UML Class Diagram.

 Another approach is to use UML as metalanguage in the top of the

metamodeling architecture. By chosing UML as metalanguage, a metamodel is

represented by a class diagram, its constraints are written in OCL (Object Constraint

Language) (Object Management Group, 2011c), and the models are represented by

object diagrams. This is the choice followed in this work as illustrated in Figure 2.2.

The elements described in the class diagram are metaclasses and metarelationships

and the elements described in the object diagram are classes and relationships

instances of the former elements. OCL is then used to describe restrictions over the

elements of the class diagram that are checked by queering the elements of the

object diagram in order to guarantee that the model represented in the diagram

complies with the metamodel represented in the class diagram.

Figure 2.2 Example of metamodel and model representations adopted in this work

20

 A modeling language specification may distinguish between abstract syntax

and notation (also called concrete syntax). The bstr ct synt x defines the

language primitives used to construct models as the vocabulary described by the

met model, where s the concrete synt x defines the gr phic l represent tion of

these primitives s icons, l bels, or figures. In this work we propose both a concrete

and an abstract syntax to the normative modeling language, and also a set of rules

that guides the translation from one to another.

2.3 SECURE UML

 SecureUML (Basin et al., 2006) provides a language for modeling Roles,

Permissions, Actions, Resources, and Authorization Constraints, along with the

relationships between permissions and roles, actions and permissions, resources

and actions, and constraints and permissions. SecureUML leaves open what the

protected resources are and which actions they offer to clients.

 ComponentUML (Basin et al., 2006) is a simple language for modeling

component-based systems that provides a subset of UML class models: entities can

be related by associations and may have attributes and methods. In Basin et al.

(2006), the elements of the ComponentUML class models are used as resources in

SecureUML. Therefore, Entity, Attribute, Method, Association and AssociationEnd

are the possible protected resources. The actions that can be used to restrict the

access to these resources can be either Atomic or Composite. The atomic actions

are intended to map directly onto actual operations of the modeled system (delete,

update, read, create and execute). The composite actions are used to hierarchically

group atomic ones. In Table 2.1 we describe the actions used to restrict the access to

the resources, where underlined actions are composite actions.

Resource Actions

Entity create, read, update, delete, full access

Attribute read, update, full access

Method Execute

AssociationEnd read, update, full access

Table 2.1 Resources and their actions

21

 The metamodel of SecureUML+ComponentUML is shown in Figure 2.2. By

using such SecureUML+ComponentUML metamodel (from now on referred as

SecureUML metamodel) it is possible, for instance, to specify the permissions a user

playing a given role must have to execute a method (or to update an attribute) of a

resource. In order to do so, it is necessary to instantiate the metaclasses User, Role,

Permission, Method (or Attribute) and AtomicExecute (or AtomicUpdate) from the

SecureUML metamodel.

22

Figure 2.2 SecureUML metamodel

CHAPTER 3: NORMML: A NORMATIVE MODELING LANGUAGE

 This chapter presents the normative modeling language called NormML, which

is the core of this work. The main goal of NormML is to support the modeling of the

norms of a MAS and ensure that there are no conflicts between the norms described.

The current version of NormML that is being presented in this work is an extension of

its preliminary versions (Figueiredo et al. 2011, Figueiredo and Silva, 2010a and

Silva et al., 2010).

NormML is a UML-based modeling language for the specification of norms.

The use of UML as metalanguage allows for an easy integration of NormML with

UML-based MAS modeling languages such as AUML (Odell et al., 2000), AML

(Danc, 2008) and MAS-ML (Silva et al., 2008). Moreover, we can use metamodel-

based validation techniques in the scope of norms specified in NormML.

Our modeling language was designed with the perception that norm

specification in MAS design and security policy specification in RBAC (Role Based

Access Control) (Ferraiolo and Kuhn, 1992) design are closely coupled issues. RBAC

security policies specify the permissions that a user has under a given role, while

trying to access system resources. In MAS we specify the norms that regulate the

behavior (or actions) of a role, an agent or an agent playing a given role, for instance.

Although we consider security policies and norms coupled issues, norms can be

violated since they only define how agents should behave.

 This chapter is organized as follows. In Section 3.1 we identify the main

elements that compose the norms and its characteristics in order to include these

elements in the normative modeling language. In Section 3.2 we present the NormML

metamodel and how it represents the main elements of the norms. Section 3.3

describes the well-formedness rules of the NormML metamodel and Section 3.4

details the mechanism used to check for conflicts between the modeled norms.

Finally, in Section 3.5 a concrete syntax for NormML is proposed.

24

3.1 MAIN ELEMENTS OF A NORM

 In this section we discuss the key static aspects of a norm, i.e., the main

elements that compose a norm: deontic concept, involved entities, actions, activation

constraints, sanctions and context. Such elements were found out after investigating

fourteen specification and implementation languages used to describe and

implement norms (Aldewereld et al., 2006, Cholvy, 1999, Cranefield, 2007, Fornara

and Colombetti, 2008, García-Camino et al., 2005, García-Camino et al., 2006,

Governatori and Rotolo, 2004, Lomuscio and Sergot, 2004, Lopes-Cardoso and

Oliveira, 2010, López y López et al., 2002, López y López, 2003, Silva, 2008,

Vasconcelos et al., 2007 and Vigano and Colombetti, 2008).

 Our objective while investigating those implementation and specification works

was not to do a critical analysis of each element mentioned in each work, but it was

to try to consider all elements mentioned in them in order to do a deep investigation

of the norms composition to develop a normative modeling language that could

contemplate all such concepts.

 In order to exemplify the elements presented below, consider some norms that

govern a simplified version of a web store. The web store is being modeled as an

organization that inhabits the market place environment and defines three roles to be

played by the agents: manager, seller or buyer. All norms are in the context of the

organization web store that inhabits the environment market place.

 N1: Sellers are permitted to update the price of the goods before receive the

open sales alert from the manager.

 N2: Sellers re obliged to delete the good’s dvertisement if the stock of the

good is empty.

 N3: Buyers are obliged to pay for the good that they have bought.

 N4 (Punishment for the violation of N3): Buyers are prohibited to buy

goods.

25

 The elements that compose a norm are based on the premise that norms

restrict the behavior of system entities during a period of time and define the

sanctions applied when they are violated or fulfilled.

 Deontic Concept: Deontic logic refers to the logic of requests, commands,

rules, laws, moral principles and judgments (Meyer and Wieringa, 1993). In

MAS, such concepts have been used to describe behavior restrictions for the

agents in the form of obligations (what the agent must execute), permissions

(what the agent can execute) and prohibitions (what the agent cannot

execute). Thus, one of the main elements of a norm is the identification of the

type of restriction being defined, i.e., the identification of the deontic concept

associated with the norm.

E.g.: Th on i on p of h no m N1 i “permission”.

 Involved Entities: Since norms are always defined to restrict the behavior of

entities, the identification of such entities whose behavior is being restricted is

essential. A norm may regulate the behavior of individuals (e.g., a given agent,

or an agent while playing a given role) or the behavior of a group of individuals

(e.g., all agents playing a given role, groups of agents, groups of agents

playing roles or all agents in the system).

E.g.: The entities involved in norm n1 are all the agents playing the role

“Seller”.

 Actions: Since a norm defines restriction over the execution of entities, it is

important to clearly represent the actions being regulated. Such actions can be

communicative ones, typically represented by the sending and receiving of a

message, or non-communicative actions (such as to access and modify a

resource, to enter in an organization, to move to another environment, etc.).

E.g.: The action of N1 is a non-communicative action that represents the

updating of the price of the good.

 Activation Constraints: Norms have a period during while they are active,

i.e., during while their restrictions must be fulfilled. Norms can be activated by

26

one constraint or a set of constraints that can be: the execution of actions, the

specification of time intervals (before, after, between), the achievement of

systems states or temporal aspects (such as dates), and also the fulfillment /

violation of another norm.

E.g.: N1 is activated before the seller receives the open for sales alert from the

manager.

 Figure 3.1 illustrates the life cycle of a norm. First, the norm is created in the

system. Eventually, the set of activation constraints of the norm becomes true (i.e.

the actions restricting the norm are executed, or the time intervals and states

restricting the norm are achieved, or another norm is violated or fulfilled) and the

norm is activated and must be fulfilled by the involved entities of the norm. If the

involved entities execute the action or achieve the states regulated by the norm while

the norm is activated, then the norm is fulfilled. Else, the norm is violated, i.e. the set

of activation constraints of the norm becomes false and the involved entities of the

norm did not execute the action or achieve the states regulated by the norm.

Figure 3.1 The life cycle of a norm

 Sanctions: When a norm is violated the entity that has violated this norm may

suffer a punishment. The punishments are used by the system to regulate the

behavior of the agents since they intend to discourage the agents to violate

27

the norms. In the same way, when a norm is fulfilled the entity who has

followed the norm may receive a reward. The rewards are so used to motivate

the agents to fulfill the norms. Such rewards and punishments are called

sanctions and should be described together with the norm specification. A

sanction is both part of a norm and is a norm itself.

E.g.: Norm N4 is a sanction that states a punishment if the norm N3 is

violated.

 Context: Norms are usually defined in a given context that determines the

area of their application. A norm can, for instance, be described in the context

of a given environment and should be fulfilled only by the agents executing in

the environment. A norm can also be defined in the context of an organization

and must be fulfilled only by the agents playing roles in the organization.

E.g.: All the norms presented are defined in the context of the organization

WebStore.

 NormML gives support to the modeling of all elements presented in this

section as shown in the next section.

3.2 THE NORMML METAMODEL

 As stated before, norms can be viewed as security policies. While in

SecureUML it is possible to define the permissions a user has, i.e., the constraints

that a user, in a given role, must fulfill to perform actions over the system resources,

in NormML we extend the SecureUML language to be possible to define the norms

an entity must obey, i.e., to be possible to describe the set of actions that the agents,

roles, agents playing roles or groups of agents in a given context (organization or

environment) are obliged, permitted or prohibited to execute conditioned by the

execution of other actions and the achievement of dates and states. The language

also makes possible the definition of sanctions, i.e., rewards and punishments, to be

applied in case of fulfillment or violation of the norms.

28

 The metamodel of the current version of NormML extends the SecureUML

metamodel by including the following new elements: (i) Norm (to model norms); (ii)

Agent (to represent agents whose behavior is being restricted by the norm); (iii)

Organization and Environment (to model contexts and groups of agents); (v)

NormConstraint, Before, After, Between, If, Date, Operand, and Value (to describe

activation constraints); (vi) AgentAction, Message, Protocol, Belief, Goal and Plan (to

represent new system’s resources whose access are controlled by the norms); (vii)

AtomicSend, AtomicReceive, AtomicAchieve, AtomicEnter, AtomicLeave,

AtomicCancel, AtomicCommit and a set of new composite actions (to model norms

that restrict the execution of actions that access the new resources); and (viii)

Sanction, Punishment and Reward (to model rewards and punishments).

 Note that the NormML metamodel is a non-conservative extension of the

SecureUML metamodel since (i) some metaclasses where redefined and

consequently some relationships where modified, (ii) some attributes of metaclasses

where eliminated because they were not being used and (iii) some invariants were

discarded since they were not applied to the metaclasses of the new metamodel. For

instance, the User metaclass and all the attributes of the metaclasses of SecureUML

were removed, and the Permission and the AutorizationConstraint metaclasses were

replaced by the Norm and NormConstraint metaclasses. Because of that, some

relationships were also changed, for example, the ConstraintAssigment relationship

between the Permission and the AutorizationConstraint metaclasses defined in

SecureUML was replaced by the NormConstraintAssignment relationship between

the Norm and NormConstraint metaclasses in NormML. Appendix A points out the

main differences between the metamodels.

 A norm corresponds to an instance of the NormML metamodel, i.e., it is

defined by instantiating several metaclasses and their relationships. Figure 3.2

presents an overview of the NormML metamodel and its main metaclasses. In the

next sections, we present the complete NormML metamodel by focusing on the

definition of the main elements that compose a norm.

29

Figure 3.2 The NormML main metaclasses of the NormML metamodel

30

3.2.1 Deontic concept

 A norm can be either an obligation (represented by the metaclass

NormObligation), a permission (represented by the metaclass NormPermission) or a

prohibition (represented by the metaclass NormProhibition), as illustrated in Figure

3.3. They correspond to the deontic operators that define the deontic concept of the

norm. Thus, to describe a prohibition to an entity, for instance, the NormProhibition

metaclass must be instantiated.

Figure 3.3 The NormML metaclasses used to define the deontic concepts of a norm

3.2.2 Involved entities

 A norm can be described to regulate the behavior of: (i) agents; (ii) all agents

that play a given role; (iii) a specific agent when it is playing a given role; or even (iv)

a group of agents that are part of an organization1 or an environment. Figure 3.4

depicts the part of the NormML metamodel to be used to define the entities whose

behavior is being regulated. Such part should be used as follows:

 To regulate the behavior of an agent it is necessary to instantiate the Agent

metaclass;

 To regulate the behavior of all agents that play a given role it is necessary to

instantiate the respective Role metaclass;

1 In our work, we do not make any distinction among the definition of group, team and organization.

31

 To regulate the behavior of a specific agent when it is playing a given role it is

necessary to instantiate the Agent and the Role metaclasses;

 To regulate the behavior of all agents that play roles in an organization it is

necessary to instantiate the Organization metaclass;

 To regulate the behavior of all agents that play roles in an sub-organization

while such sub-organization is playing a role in its super-organization it is

necessary to instantiate the Organization metaclass of the respective sub-

organization and the Role metaclass; and

 To regulate the behavior of all agents that inhabit an environment it is

necessary to instantiate the Environment metaclass.

Figure 3.4 The NormML metaclasses used to define the involved entities of a norm

32

 Thus, to model a norm that, for instance, states a prohibition to all agents that

play a given role, the NormProhibition metaclass, the Role metaclass and the

NormAssignmentRole relationship must be instantiated.

3.2.3 Actions

 NormML inherits four resource kinds from SecureUML: Attribute, Method,

Entity and AssociationEnd. It extends the set of resources with: Agent, Role,

Organization, Environment, AgentAction, Message, Protocol, Belief, Goal and Plan.

Figure 3.6 shows the NormML resources and its relations.

 As in SecureUML, each resource kind has a set of actions that can be used to

control the access to the resource as illustrated in Figure 3.5. In Table 3.1 we

describe which actions are used to restrict the access to each resource, where

underlined actions are composite actions.

Figure 3.5 The NormML metaclasses used to define the action of a norm

33

Figure 3.6 The NormML metaclasses used to define the resource of a norm

34

Resource Actions

Entity create, read, update, delete, full access

Attribute read, update, achieve, full access

Method execute

AssociationEnd read, update, full access

Agent create, delete, update, full access

Role create, delete, commit, cancel, update, full access

Organization create, delete, enter, leave, update, full access

Environment create, delete, enter, leave, update, full access

AgentAction execute

Message receive, send, full access

Protocol create, delete, receive, send, full access

Belief create, delete, update, full access

Goal achieve, commit, cancel, full access

Plan create, delete, update, execute, full access

Table 3.1 Resources and their actions

 The composite actions are composed of other atomic or composite actions,

according to the relations between the resources. In Appendix B a mapping between

the composite actions and its subordinate atomic actions is described.

 By instantiating the Norm, Action and Resource metaclasses and the

ActionAssignmentNorm and ResourceAssignment relationships, it is possible to

model norms that define different ways of restricting the access to different

resources. For instance, in the case of restrictions applied to the resource that

defines the actions of agents (AgentAction metaclass), the behavior that must be

used to restrict the access to such resource is the execution of the action

(AtomicExecute). Note that AgentAction is the resource and AtomicExecute is the

action being used to control or restrict the access to the resource. In other to provide

another example, consider the need for restricting the access to a given messages

(Message metaclass). In such case, three different access control can be defined:

control the access to (i) the sending of the message (AtomicSend), (ii) the receiving

of the message (AtomicReceive) or (iii) the full access (send+receive) of the

message (MessageFullAccess).

35

3.2.4 Activation constraints

 NormML allows for the specification of the time period that a norm is active

based on the execution of actions and based on the definition of dates and

predicates (i.e., values associated with attributes, beliefs and goals), as shown in

Figure 3.7. The activation period of a norm corresponds to the period when the agent

must fulfill the norm.

 The activation constraints are represented by the metaclass NormConstraint. If

a norm is conditioned by a Before clause, it means that the norm is active before the

execution of the action and/or the achievement of the date described in the Before

clause. If a norm is conditioned by an After clause, it means that the norm is active

only after the execution of the action and/or the achievement of the date described in

the After clause. In the case of a Between clause, the norm is only active during the

period delimited by two actions or dates.

Figure 3.7 The NormML metaclasses used to define the activation constraints of a norm

 The If constraint has an operator attribute that defines the range of values that

will activate the norm. The operator of the If constraint together with the date or

36

operands associated with the constraint compose the period when the norm is active.

Operands can be an Attribute, a Belief, a Goal or a Value (see Figure 3.8). The

ConditionalOperand relationship must be read from the firstOperand to the

secondOperand. Note that the operand Value can only be used as a

secondOperand.

Figure 3.8 The NormML metaclasses used to define the operands of an If constraint of a norm

 In the case of a norm conditioned by an If clause, the norm is activated when:

(i) the date described in the If clause is achieved; or (ii) the relation between the

operands described in the If clause becomes true, i.e. the attribute, belief or goal

described in the firstOperand compared with the attribute, belief, goal or value in the

secondOperand respects the operator described in the If clause.

 When an If constraint is associated with a date the content of the attribute

operator must be “equalTo”. The s me is v lid when the firstOperand is a Goal.

When an If constraint is associated with an Attribute or a Belief as its firstOperand,

any value of the Operator enumeration class can be assumed by the operator

attribute of the If constraint.

 As a result, to model a norm that, for instance, states a prohibition that is

activated when an attribute achieves a particular value, the NormProhibition, If,

Attribute and Value metaclasses, and the ConditionalOperand and the

NormConstraintAssignment relationships must be instantiated.

37

3.2.5 Sanctions

 NormML supports the description of sanctions (Sanction metaclass) for the

norms, as shown in Figure 3.9. A sanction may be a reward applied when the norm is

fulfilled (by instantiating the metaclass Reward) or a punishment applied when the

norm is violated (by instantiating the metaclass Punishment). A sanction activates

other norms (represented by the SanctionAppliesNorm relationship) to restrict the

behavior of an entity that can be the one that has fulfilled/violated the norm or

another entity that is the one responsible to apply the reward or punishment.

Figure 3.9 The NormML metaclasses used to define the sanctions of a norm

 For instance, in case an agent violates an obligation, another norm can be

activated to prohibit the agent from executing a particular action. In order to model

that, the Punishment, NormObligation and NormProhibition metaclasses must be

instantiated. A SanctionOfNorm relationship must exists between the NormObligation

and the Punishment instances and a SancionAppliesNorm relationship must be

represented between the Punishment and the NormProhibition instances.

3.2.6 Context

 NormML makes possible the definition of norms in two different contexts, as

illustrated in Figure 3.10: Organization and Environment. Organizations (and sub-

organizations) define roles played by agents or sub-organizations, and both

38

organizations and agents inhabit environments. Thus, to describe a prohibition in the

context of an organization (or an environment), the NormProhibition metaclass, the

Organization (or Environment) metaclass and the NormInContextOrganization (or

NormInContextEnvironment) relationship must be instantiated.

Figure 3.10 The NormML metaclasses used to define the context of a norm

3.2.7 Modeling norms with NormML

 In order to exemplify the use of NormML to model the norms of a MAS,

consider the norms that govern the simplified version of a web store presented in

Section 3.1.

 N1 (Figure 3.11) states a permission (deontic concept) to the sellers (involved

entities) of the organization WebStore (context) to update (action) the price of the

goods (resource of the action) before they receive from the manager the message of

opens for sale (activation constraint).

 Norm N2 (Figure 3.12) applies an obligation (deontic concept) to the sellers of

the org niz tion WebStore (s norm N1) to delete the good’s dvertisement (action)

if the stock of the good is empty (activation constraint).

39

Figure 3.11 Norm N1

Figure 3.12 Norm N2

40

Figure 3.13 Norms N3 and N4

 N3 also states an obligation (deontic concept) to the buyers of the organization

WebStore (involved entity) to pay for the good (action) after the given buyer buy it

(activation constraint). Norm N3 applies a punishment (sanction) that is another norm

too (norm N4). If a buyer violates N3, N4 states to the given buyer (involved entity) a

prohibition (deontic concept) to buy goods (action). Figure 3.13 shows the model of

norms N3 and N4.

3.3 THE WELL-FORMEDNESS RULES OF NORMML METAMODEL

 After modeling the norms of a MAS, they should be validated. The process of

validating a norm encompasses two steps. First, the norm, as an instance of the

NormML metamodel, is checked according to the invariants of the metamodel. Not all

the norms that can be instantiated from the metamodel are well-formed. The

41

invariants check if the norm is well-formed according to the restrictions of the

metamodel elements.

 The current version of NormML has a set of operations described in OCL to

check the invariants of the norms models. Below we describe some examples of well-

formedness rules of the NormML metamodel. Those were chosen since they

represent rules that are related to the specification of the norms themselves and

discuss some of the representations of the main elements of a norm.

 WFR1: A norm must restrict the behavior of an Agent, a Role, an Agent

playing a Role, an Organization, a Sub-organization playing a Role or an

Environment.

context Set(Norm)

inv InvolvedEntitiesNotNull:

self-> forAll(n:Norm|if(if((n.restrictAgentBehavior)->isEmpty()) then(((n.restrictRoleBehavior)-

>notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or ((n.restrictOrganization)-> notEmpty()) or

((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)-> notEmpty())) else

(if((n.restrictRoleBehavior)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or

((n.agentPlayingRole)->notEmpty()) or ((n.restrictOrganization)->notEmpty()) or

((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)->notEmpty()))

else(if((n.agentPlayingRole)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or

((n.restrictRoleBehavior)->notEmpty()) or ((n.restrictOrganization)->notEmpty()) or

((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)->notEmpty())) else

(if((n.restrictOrganization)-> isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or

((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or

((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)-> notEmpty())) else

(if((n.subOrgPlayingRole)-> isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or

((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or

((n.restrictOrganization)->notEmpty()) or ((n.restrictEnvironment)->notEmpty()))else

(if((n.restrictEnvironment)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or

((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or

((n.restrictOrganization)->notEmpty()) or ((n.subOrgPlayingRole)->notEmpty())))))))))

then(true)else(false)endif)endif)endif)endif)endif)endif)endif

 This rule concentrates on the relationships that define the involved entities of a

norm. A norm must restrict the behavior of at least one entity.

42

 WFR2: An AtomicExecute action must be related to a Method or an

AgentAction resource.

context Action

inv AtomicExecuteCorrectAccess:

if((self.oclIsTypeOf(AtomicExecute)) and

((self.resource.oclIsTypeOf(Method)) or (self.resource.oclIsTypeOf(AgentAction))))

then(true)else(false)endif

 As explained in Section 3.2.3, each action can only be used to access a

specific group of resources. The WFR2 matches the AtomicExecute action to the

Method or the AgentAction resources.

 WFR3: The action to be executed by an entity that is defined in the before

clause of a Between cannot also be defined in the after clause of such

Between to be executed over the same resource.

context Between

inv BetweenDefinesPeriodOfTime:

if((self.beforeAction=self.afterAction) and

(self.beforeAction.resource=self.afterAction.resource))

then(false)else(true)endif

 This rule address the relationships between the Between and the Action

metaclasses, used to define one kind of activation constraint of a norm. If the actions

in the before of a Between and in the after of a Between are the same and are

related to the same resource, this situation does not constitute a time period, but a

moment in the time. So it is impossible to configure a period to the norm be active.

 WFR4: A Reward to an entity cannot apply a NormProhibition or a

NormObligation to the same entity.

context Sanction

inv CorrectReward:

if ((self.oclIsTypeOf(Reward) and

43

((self.appliedNorm.oclIsTypeOf(NormProhibition) or

self.appliedNorm.oclIsTypeOf(NormObligation)) and

(((self.appliedNorm.restrictAgentBehavior)-> intersection(self.isAssigned.restrictAgentBehavior))-

>NotEmpty()) and ((self.appliedNorm.restrictRoleBehavior)->

intersection(self.isAssigned.restrictRoleBehavior))->NotEmpty()) and

((self.appliedNorm.agentPlayingRole)-> intersection(self.isAssigned.agentPlayingRole))->NotEmpty())

and ((self.appliedNorm.restrictOrganization)-> intersection(self.isAssigned.restrictOrganization))-

>NotEmpty()) and ((self.appliedNorm.subOrgPlayingRole)->

intersection(self.isAssigned.suborgPlayingRole))->NotEmpty()) and

((self.appliedNorm.restrictEnvironment)-> intersection(self.isAssigned.restrictEnvironment))-

>NotEmpty())) then(false)else(true)endif

 This rule guarantees that if the sanction of a norm is a Reward, it cannot

define a prohibition or an obligation to the same entity because this situation does not

represent an incentive that is the main purpose of a reward.

 WFR5: A norm must be defined in the context of an Organization or an

Environment and cannot be defined in the scope of both at the same time.

context Set(Norm)

inv ContextNotNull:

self-> forAll(n:Norm|if(if((n.organizationalContext)->isEmpty())

then((n.environmentalContext)->notEmpty())

 else (if((n.environmentContext)->isEmpty())

 then ((n.organizationalContext)->notEmpty()))

then(true)else(false)endif)endif)endif

 This rule concentrates on the relationships that define the context of a norm.

Every norm must belong to one context (organization or environment).

 All the well-formedness rules of the NormML metamodel are described in

Appendix C.

44

3.4 CHECKING FOR CONFLICTS

 After verifying the well-formedness of the norms, the second step to validate

the norms is to check if there are conflicts among them. Our language provides a set

of operations described in OCL to check for conflicts between the norms in NormML.

The norms are checked in pairs by considering the situations presented in the

following subsections, if one of the cases analyzed in each item (or subsection)

returns “true”, so the n lyses continues to the next item (or subsection), see Figure

3.14 below.

Figure 3.14 NormMl check for conflicts analysis

As stated before, a norm in NormML is composed of the following elements:

deontic concept, involved entities, actions, activation constraints, sanctions and

context. The operations, as the analysis, follow a top-down approach since they start

by checking (i) if the norms are defined in the same or related context, (ii) if they

apply to the same or related entities, (iii) if they state related deontic concepts, (iv) if

they restrict the same or related actions and, finally, (v) if they are active in periods

that intersect. The operation below describes our approach calling the specific

operations that analyze the main elements of two norms.

45

context Set{Norm}:: checkingForConflicts(n1:Norm,n2:Norm):Boolean

body: if(n1.relatedContexts(n2))

 then(if(n1.relatedEntities(n2))

 then(if(n1.deonticConceptConflicts(n2))

 then(if(n1.relatedActions(n2))

 then(if(n1.activationConstraintsIntersects(n2))

 then(true)

 else(false)endif)

 else(false)endif)

 else(false)endif)

 else(false)endif)

 else(false)endif

 In order to exemplify the checking for conflicts in sections 3.4.1 to 3.4.6, let’s

consider norms N5 and N6 of the simplified web store case.

 N5: Buyers are prohibited, in the context of the organization WebStore that

inhabits the environment MarketPlace, to return a good it has bought.

 N6: Buyers are permitted, in the context of the organization WebStore that

inhabits the environment MarketPlace, to return a good it has bought between

the period of exchange (e.g. between 01/03/2011 and 31/03/2011).

3.4.1 Context analysis

 While checking for conflicts between two norms, the first element to be

analyzed is the context of the norms. If the contexts of the norms are not related,

there is no need to keep looking for conflicts because the norms defined in different

contexts are not related to each other, and thus cannot conflict. For instance, a given

agent can be prohibited to execute an action in a context and permitted to execute

the same action in another context. It is important to check for conflicts: (i) if the

norms are defined in the same context; (ii) if one norm is defined in the context of an

environment, and the other in the context of an organization that inhabits such an

46

environment; and (iii) if one norm is defined in the context of an organization and the

other in the same hierarchy of organizations.

 E.g. of case (i): Both N5 and N6 are defined in the context of the organization

WebStore that inhabits the environment MarketPlace. Therefore, it is important to

check if these norms are in conflict. The operation below is able to check if two norms

are in the same organizational context.

context Set{Norm}::sameOrganizationalContext(n1:Norm,n2:Norm):Boolean

body: n1.organizationalcontext = n2.organizationalcontext

3.4.2 Involved entities analysis

 The second element to be analyzed is the involved entities of the norms. If the

entities of the norms are not related, i.e., if they apply to different entities, they cannot

be in conflict. Thus, it is necessary to check for conflicts: (i) between norms applied to

the same entity; (ii) between a norm defined to a role and a norm defined to an agent

or a sub-organization that can play that role; (iii) between norms applied to different

roles played by the same agent or sub-organization; (iv) between norms applied to

roles in the same hierarchy of roles; and (v) between the norms of an organization

and norms of roles, agents and sub-organizations of this organization.

 E.g. of case (i): N5 and N6 are restricting the behavior of the same role (buyer)

of the organization WebStore. Since both norms are defined in same context and

applied to the same subject, these two norms can be in conflict. The operation below

can be used to check if two norms restrict the behavior of the same roles.

context Set{Norm}::restrictSameRoleBehavior(n1:Norm,n2:Norm):Boolean

body: (n1.restrictRoleBehavior->intersection(n2.restrictRoleBehavior))->notEmpty()

47

3.4.3 Deontic concept analysis

 After the verification of the involved entities, the next element to be

investigated is the deontic concept of the norms. Two norms may be in conflict if: (i)

one norm states a permission and another states a prohibition; (ii) one norm states

an obligation and another states a prohibition; and (iii) one norm states a permission

and another one states an obligation in the period the permission is not activated.

 Moreover, a special case needs to be considered when both norms state an

obligation or both norms state a prohibition to related actions, this fourth (iv) case will

be explained in more details in Section 3.4.4.

 E.g. of case (i): N5 states a prohibition and N6 states a permission applied to

the same subject executing in same contexts. The operation below checks if two

norms define deontic concepts that may characterize a conflict defined in cases (i),

(ii) and (iii) above.

context Set{Norm}::checkDeonticConcept(n1:Norm,n2:Norm):Boolean

body: if((n1.oclIsTypeOf(NormProhibition))and(n2.oclIsTypeOf(NormObligation)))

 then(true)

 else(if((n1.oclIsTypeOf(NormProhibition))and(n2.oclIsTypeOf(NormPermission)))

 then(true)

 else(if((n1.oclIsTypeOf(NormObligation))and(n2.oclIsTypeOf(NormPermission)))

 then (true)

 else (false) endif) endif) endif

3.4.4 Action analysis

 After the checking of the deontic concept, the next element to be examined is

the action of the norms. In case the deontic concepts of the norms are in one of the

situations (i), (ii) or (iii) of Section 3.4.3, it is important to check for conflicts if: (i) the

actions being regulated by the norms are of the same type on the same resource;

and (ii) if the actions being regulated by the norms are of related types (as defined in

the dialect action hierarchy) on related resources. In order to exemplify case (ii),

consider the case that one norm states an AgentUpdate or an AgentFullAccess to

one Agent and the other norm states one of the actions that can be associated with

the beliefs, goals, plans or agent actions of the same Agent, e.g. an AtomicAchieve

48

on one Goal of the Agent. Table B.1 of Appendix B describes the complete list of

related types of actions according to the dialect action hierarchy.

 Moreover, a special case needs to be considered when the situation (iv) of

Section 3.4.3 occurs. In this case it is important to verify if the actions being regulated

by the norms are semantically opposite and restrict the access of the same resource

(see Appendix D to the complete list of semantically opposite actions). An example of

this case occurs when, for instance, one norm defines an AtomicEnter and the other

an AtomicLeave to the same Organizations or Environment and the deontic concepts

associated with the norms are both an obligation or both a prohibition. If one norm

states an obligation to enter a particular organization or environment and another one

states an obligation to leave the same organization or environment, these norms may

be in conflict if the period for fulfilled the norms intersects. The same is valid to

prohibitions.

 E.g. of case (i): N5 and N6 regulate the execution of the same action (return

good). Both norms can be in conflict since they are applied to the same subject,

executing in same contexts and regulating the same action. The operation below

checks if two norms are regulating the same action over the same resource.

context Set{Norm}::regulateSameAction(n1:Norm,n2:Norm):Boolean

body: if((n1.access = n2.access) and (n1.access.resource = n2.access.resource))

 then(true) else(false) endif

3.4.5 Activation constraints analysis

 Finally, two norms may be in conflict: (i) if the periods established by actions

and dates of the invariants Before, After, Between and If intersect; (ii) in case of two If

conditions, if the values related to the same attribute or belief intersects (e.g.: x>10

and x=15); and (iii) in case of two If conditions, if the values related to the same goal

are equal.

 E.g. of case (i): N5 and N6 are defined in time periods that intersects since N5

is always activated, i.e., it is not restricted to any condition, and N6 is activated in a

49

period between two dates. The operation below checks if one of the norms is not

constrained by any period of time.

context Norm::isNotConstrained():Boolean

body: self.constraint->size()=0

 Consequently, N5 and N6 are in conflict because both norms are applied to

the same subject (buyer), executing in the same context (WebStore), regulating the

same action (return good) and defined in time periods that intersects.

 In Appendix H we illustrate all the NormML conflict cases implemented by the

check for conflicts operations.

3.4.6 Sanctions analysis

 The analyses of the norms that are used as sanctions are different from the

others norms. The top-down approach is followed in the same way, but they will be

only compared to norms that are applied as sanctions of the same norm and are of

the same type, i.e., all the rewards that a given norm applies will be checked together

two by two, and similarly, all the punishments will be verified two by two. That occurs

because the rewards will be activated when the norm is fulfilled and the punishments

will be activated when the norm is violated, so the period of activation between the

rewards and punishments will not intersect.

 The operation below returns all the rewards of a norm, so they can be

analyzed.

context Norm::getRewards():Bag(Sanction)

body: self.isAssigned->collect(s:Sanction|s.oclIsTypeOf(Reward))

 Note that there is no need to compare the norms applied as sanctions with the

other norms because we can only determine if a conflict between them will occur at

run time.

50

3.5 THE NORMML CONCRETE SYNTAX

 The previous sections presented the abstract syntax of the normative

modeling language NormML, by showing how norm can be modeled by instantiating

the metaclasses of the NormML metamodel and how to validate these models by

verifying their well-formedness and checking for conflicts between the norms.

 In this section we present a concrete syntax to NormML that was inspired on

the concrete syntax of SecureUML. The aim of the concrete syntax is to represent

the graphical models of NormML. Accordingly, it will be denoted by graphical models

the models M that the system designer sees and works with, and it will be denoted by

abstract models M the object diagrams that represent the models M as instances of

the NormML metamodel. As a result, each element of M is mapped to a set of

elements in M according to the semantics of its graphical representation. Of course,

the mapping must satisfy the following property: if M is a well-formed graphical

model, i.e., it satisfies all the invariants of the graphical model, then M is a well-

formed abstract model that satisfies all the invariants of the metamodel.

To illustrate the use of the concrete syntax of NormML to construct a graphical

model M, N1, N2, N3, N4, N5 and N6 presented in this chapter will be used. Such

graphical model is illustrated in Figure 3.15.

51

Figure 3.15 Web store norms graphical model

52

3.5.1 Creating the graphical models

 The NormML concrete syntax uses the representation of UML classes

adorned with stereotypes to model: agents, roles, environments, organizations,

entities and the norms themselves. The stereotypes used refers to the metaclasses

of the NormML metamodel used to model these elements. For instance, the role

Manager is represented by a UML class with a <<Role>> stereotype.

 The agent classes can have attributes to represent its beliefs, goals, plans and

actions, and the role classes can have attributes to represent its goals, protocols and

actions to be executed by the agents. For instance, the role Seller has a

deleteAdvertisement attribute of the type <<agentAction>> which means that

deleteAdvertisement is an agent action to be executed by agents that play the role

Seller.

 The entities classes may have attributes and methods in its respective

compartments, similar to the entity Good that owns a price and a quantity attributes.

 Norms also have stereotypes used to define their deontic concepts. For

instance, norm N1 is represented by a UML class with a <<Norm>> and a

<<Permission>> stereotypes. If a norm is a sanction, it also has a stereotype labeling

the sanction type: reward or punishment (see norm N4 in Figure 3.15).

 A norm has an attribute c lled “resource ction” th t indic tes the ction being

regulated and the resource accessed by such action. The action is identified by a

name and by a stereotype. The stereotype is used to restrict the kinds of actions that

can be used to manipulate the resource and the name of the action indicates the

specific kind in this set. For instance, consider N1 that regulates the updating of the

resource price of the entity Good. The stereotype <<attributeAction>> specifies that

the attribute refers to an action (read, update, achieve or full access) over an attribute

and the name of the action that is update indicates that the action being restricted is

the updating of something, in this case, the updating of the attribute price of the entity

Good, which is a resource. Note that it is important to specify the entity that has such

 ttribute before the dot “.” nd by the rel tionship RessourceAssignmentNorm, for

instance in N1 the entity is Good.

53

 Norms c n lso h ve “constraints” ttributes th t represent the activation

constraints of the norm. Such constr int c n be n “ ction constr int”, “condition l

constr int” or “d te constr int”.

 In c se of n “ ction constr int”, the ttribute is composed of one stereotype to

indicate the kind of the action constraint being defined (before, after or between)

followed by the constr int th t is “resource ction” ttribute. The stereotypes th t

can be used to indicate the kind of the action constraints are: <<beforeAction>>,

<<afterAction>>, <<beforeBetweenAction>> or <<afterBetweenAction>>. Norm N1 in

Figure 3.15 defines a <<beforeAction>> action constraint restricted by the receiving

of a message called openSalesAlert to be sent by the role Manager. Note that it is

important to specify the role that has such message before the dot “.” nd by using

the relationship ConstraintAssignmentNorm.

 In c se of “condition l constr int”, the ttribute is composed of stereotype

indicating the conditional constraint type followed by the name of an attribute, belief

or goal, the name of the operator and the name of another attribute, belief or goal, or

a value. Note that it is also important to specify and relate such attribute, belief or

goal to the entity that owes it. Norm N2 in Figure 3.15 illustrates a conditional

constraint attribute stating that the attribute quantity of Good must be equal to 0.

 In the c se of “d te constr int”, the ttribute is composed of stereotype

indicating the date constraint type followed by the date. Norm N6 in Figure 3.15

shows two date constraint attributes 01/03/2011 and 31/03/2011 labeled by the

stereotypes <<afterBetween>> and <<beforeBetween>> respectively, indicating that

N6 is active in the interval between these two dates.

 As occurs in the abstract models, agents and organizations must be related to

(i) the roles they play (by the relationships AgentPlayingRole and

SubOrgPlayingRole, respectively), (ii) the organizations they belong (by the

relationships AgentOfOrganization and OrganizationComposition, respectively), and

(iii) the environment they inhabit (by the relationships AgentInhabitEnvironment and

OrganizationInhabitEnvironment, respectively). Also, roles must be related to the

organizations they belong by the RoleOfOrganization relationship.

 A complete list of the graphical model stereotypes and what they represent is

described in Appendix E.

54

3.5.2 Mapping from concrete to abstract syntax

 As stated before, each element of M is mapped to a set of elements in M

according to the graphical representation semantics. The mapping of a model M to a

model M must occur in order to construct a well-formed model M that complies with

the abstract metamodel and its well-formedness rules. In Appendix F the complete

mapping between the graphical models M of the concrete syntax and the abstract

models M of the abstract syntax is traced.

 In order to exemplify the transformation of the concrete syntax of a norm to its

 bstr ct synt x, let’s consider the set of tr nsform tion rules below:

Rule1. For each Environment env of M, insert in M an object env of the class

Environment.

Rule2. For each Organization org of M, insert in M an object org of the class

Organization.

Rule3. For each OrganizationInhabitEnvironment relationship of M between env

and org, insert in M an OrganizationInhabitEnvironment link between env and

org .

Rule4. For each Entity e of M, insert in M an object e of the class Entity and,

for each Attribute a of an Entity e of M, insert in M (i) an object a of the class

Attribute and (ii) an EntityAttribute link between a and e .

Rule5. For each Role r of M, insert in M an object r of the class Role.

Rule6. For each Protocol pro of a Role r of M, insert in M (i) an object pro of

the class Protocol; (ii) a ProtocolOfRole link between pro and r ; (iii) an object

messof the class Message and a MessageSentByProtocol link between pro

and mess for e ch “sent mess ge” mess of pro; and (iv) an object mess of the

55

class Message and a MessageReceivedByProtocol link between pro and

mess for e ch “received mess ge” mess of pro.

Rule7. For each RoleOfOrganization relationship of M between org and r,

insert in M a RoleOfOrganization link between org and r .

Rule8. For each Norm n of M that states a permission, insert in M an object n

of the class NormPermission.

Rule9. For each resource action attribute res of Norm n of M that is an

“ ttributeAction” nd h s the ction type “upd te”, must be inserted in M (i)

an object act of the class AtomicUpdate; (ii) an ActionAssignmentNorm link

between act and n ; and (iii) a RessourceAssignement link between act and

the object a which name is equal to res.

Rule10. For each action constraint attribute acon of Norm n of M that is a

“beforeAction” nd h s res th t is “mess geAction” nd h s the ction type

“receive”, insert in M (i) an object act of the class AtomicReceive; (ii) an

object bef of the class Before; (iii) a BeforeAction link between act and the

object bef ; (iv) a NormConstraintAssignment link between n and the object

bef ; and (v) a RessourceAssignement link between act and the mess object

which name is equal to acon.

Rule11. For each NormInContextOrganization relationship of M between org

and n, insert in M a NormInContextOrganization link between org and n .

Rule12. For each NormAssignmentRole relationship of M between r and n,

insert in M a NormAssignmentRole link between r and n .

 Let’s t ke norm N1 from Figure 3.15 as an example of mapping with the

purpose of constructing the abstract model M of Figure 3.11. By using rules 1 and 2,

the objects of the Environment MarketPlace and the Organization WebStore are

56

created. Rule 3 defines the OrganizationInhabitEnvironment relationship between the

WebStore and the MarketPlace and ensures that an organization will always inhabit

an environment in M .

 By using rule 4 the Good instance of Entity and the price and quantity

instances of Attribute are created. Rule 4 also creates the relationship EntityAttribute

between Good and its attributes price and quantity to guarantees that the attribute

will belong to its entity in M .

 Rule 5 generates the Role instances Manager and Seller, and rule 7 assign

them to the Organization WebStore trough the relationship RoleOfOrganization. With

rule 7 it is ensured that each role will belong to an organization in M .

 Rule 6 guarantees that each message will belong to its protocol and each

protocol will belong to its role in M . Thus, with rule 6 the openSales Protocol is

created and related to its Message openSalesAlert (by the MessageSentByProtocol

relationship) and its owner Role (by the ProtocolOfRole relationship).

 Rule 8 gener tes the NormPermission’s inst nce N1 and by rule 9 its atomic

update action updatePrice is created and related to N1 (by the

ActionAssignmentNorm relationship) and to the Attribute price (by the

ResourceAssignment relationship). Then, rule 9 guarantees that the norm will restrict

the access of an action over a resource.

 By using rule 10 the beforeOpenSalesAlert instance of Before and the

receiveOpenSalesAlert instance of AtomicReceive are created. The

beforeOpenSalesAlert is related to N1 by the NormConstraintAssignment relationship

and the receiveOpenSalesAlert is related to openSalesAlert by the

ResourceAssignment relationship. Rule 10 ensures that the before constraint will be

related to an action as stated in the WFR56 (see Appendix C).

 Finally, rule 11 defines the organizational context of the WebStore to N1 by

the NormInContextOrganization relationship and rule 12 assigns N1 to the Role

Seller by the NormAssignmentRole relationship. Rules 11 and 12 comply with the

WFR1 and WFR6 respectively (see Appendix C). As a result, the well-formed model

M of N1 is created as it was illustrated before in Figure 3.11. The creation of a well-

formed model M of N1 is possible because the transformation rules follow all the

restrictions of the abstract metamodel and the well-formedness rules as stated

above. The same is valid for all the transformation rules of Appendix F.

57

 Note that, the model M of N1 is a well-formed concrete model. When a given

model M is not correct according to the concrete syntax, then a not well-formed

model M will be create. E.g. Rule 3 ensures that the organization WebStore will

inhabit the environment MarketPlace in M , but that is only possible because the

OrganizationInhabitEnvironment relationship between the WebStore and the

MarketPlace is described in M.

 Recall that, in our approach, the checking for conflicts between norms using

OCL depends on the mapping from graphical models to abstract models (see

Appendix F). This is because the operations will not be evaluated on the graphical

models, but rather on the corresponding abstract models.

CHAPTER 4: RELATED WORK

Although there are some works, such as the MAS modeling languages AUML,

MAS-ML and ANote (Noya and Lucena, 2005) and the MAS methodology MESSAGE

(Caire et al., 2002) that do not support the modeling of norms, there are already

many others that make possible the modeling of several elements of a norm. From

the set of two MAS modeling languages (Danc, 2008, and Wagner, 2003), seven

MAS methodologies (Cossentino, 2005, Garcia-Ojeda et al., 2008, Giorgini et al.,

2006, Juan et al., 2002, Omicini, 2001, Padgham and Winikoff, 2004, and Zambonelli

et al., 2003) and three MAS organization models (Dignum, 2004, Ferber et al., 2009,

and Hübner et al., 2002) analyzed, no one is able to model all the properties of the

main elements that compose a norm and being described in Section 3.1.

In this chapter we discuss those modeling languages, methodologies and

organization models showing how they represent the concepts related to the norms

and employ these elements when the designers are modeling the norms (Section

4.1).

In addition to the elements of the norm, another interesting characteristic to be

considered when analyzing the modeling languages, methodologies and

organizational models is the ability to detect conflicts between the norms of the

system at design phase. Thus, Section 4.2 presents an investigation about the

support to the checking for conflicts between norms in those works. We compare

such works with NormML, the modeling language being proposed in this work.

4.1 MAIN ELEMENTS OF A NORM

 Deontic concept: Most modeling languages and methodologies make

available the deontic concept of obligation in order to describe the actions that

agents must execute. Methodologies such as Secure Tropos (ST) (Giorgini et

al., 2006), SODA (Omicini, 2001), Prometheus (Padgham and Winikoff, 2004)

and the organization model proposed in MOISE+ (Hübner et al., 2002) only

offer the concepts of obligation and permission since they consider that

59

everything that is not permitted is automatically prohibited. In the ST

methodology the concept of obligation can be represented by the delegation

relationship and the concept of permission by the ownership and trust

relationships. NormML, different from the majority, includes all the three

deontic concepts (obligation, permission and prohibition) in the modeling of

norms.

 Involved entities: All works analyzed propose a way to describe the entities

to which the norm applies (elements checked in Table 4.1). The majority

provides support to describe a norm for a particular role while others provide

support to also describe a norm for other entities. Some works (Cossentino,

2005, Hübner et al., 2002, Juan et al., 2002, and Zambonelli et al., 2003) do

not allow the description of norms that apply to a group of individuals. This fact

does not imply that the works analyzed do not support the modeling of such

entities, however they do not provide ways to apply norms to them. The ST

methodology also allows the designer to describe the system itself as an entity

and to define norms that can be applied to the system as a whole. By using

NormML it is possible to describe norms to individuals, groups of individuals or

all the entities of the system.

 Actions: All the modeling languages, methodologies and models analyzed

provide a way to restrict non-communicative actions. But, the same is not true

about communicative actions. In (Hübner et al., 2002, Juan et al., 2002,

Omicini, 2001, and Wagner, 2003) the restriction of communicative actions is

not available. In ROADMAP (Juan et al., 2002), that is one of the proposed

extensions for Gaia, the designer can only restrict the access to objects, roles

and protocols of the system. NormML supports the modeling of both kinds of

actions, communicative and non-communicative over a large set of resources.

 Activation constraints: The works analyzed present several ways to

describe the period during while a norm is active, i.e., to describe the

restrictions for their activation and deactivation (see more details in Table 4.1).

In the MASQ and OperA organizational models it is possible to define the

activation of a second norm by the violation or fulfillment of the first norm. The

60

ST methodology is the only one that does not provide any kind of activation

constraint representation since their norms are always active. According to

(Molesini et al., 2009), the SODA formalism is still being developed so we

cannot affirm the types of restrictions that such methodology will support. By

using NormML all the activation constraints of the Table 4.1 can be modeled.

 Sanctions: A small number of languages and methodologies consider that

norms can be violated, and only a few of them provide a way for describing

sanctions. The AORML (Wagner, 2003) language assumes that commitments

(or obligations) between entities of the system can be violated, and, as

consequence, a sanction should be applied. But the language does not offer a

way to describe this sanction. The organizational models OperA (Dignum,

2004), MASQ (Ferber et al., 2009) and MOISE+ consider that norms can be

violated, and, excluding MOISE+, they have mechanisms to describe

punishments.

 The O-MaSE (Garcia-Ojeda et al., 2008) methodology groups norms

into two kinds of policies: law policies and guidance policies. Only the

guidance policies can be violated but there is not a way to define sanctions for

such violations. The Gaia (Zambonelli et al., 2003) and PASSI (Cossentino,

2005) methodologies express norms as organization rules that cannot be

violated, and so there is no need to define a sanction mechanism. None of the

analyzed languages or methodologies allows the description of rewards in

case of the fulfillment of a norm. However, NormML supports the definition of

both punishments and rewards.

 Context: All languages, methodologies and organizational models define the

norms in an organizational context. The AORML language also offers support

to express obligations between two agents (as commitments) in the

context of an interaction. Besides AORML, methodologies such as PASSI,

Prometheus, Gaia and the organizational model OperA also allow the

description of norms in such a context. Moreover, in OperA and Gaia it is

possible to describe a norm in a context that represents the transition of

scenes. Besides describing norms in an organizational context, NormML also

provides the environmental context.

61

 Recall that the main elements that compose a norm were found out after

investigating fourteen implementation and specification languages used to describe

and implement norms (Aldewereld et al., 2006, Cholvy, 1999, Cranefield, 2007,

Fornara and Colombetti, 2008, García-Camino et al., 2005, García-Camino et al.,

2006, Governatori and Rotolo, 2004, Lomuscio and Sergot, 2004, Lopes-Cardoso

and Oliveira, 2010, López y López et al., 2002, López y López, 2003, Silva, 2008,

Vasconcelos et al., 2007 and Vigano and Colombetti, 2008).

 Our objective while investigating those implementation and specification works

was to try to consider all mentioned elements mentioned in order to do a deep

investigation of the norms composition to develop a complete normative modeling

language. We understand that none of the works presented in this section have as

the main purpose of modeling norms as NormML does, what justifies the absence of

some elements in their proposals.

 Thus, Table 4.1 just summarizes the discussion about the modeling of the

main elements of a norm by the related work studied and our proposed modeling

language: NormML.

62

 A
M

L

A
O

R
M

L

G
a
ia

O
-M

a
S

E

P
A

S
S

I

P
ro

m
e
th

e
u

s

R
O

A
D

M
A

P

S
T

S
O

D
A

M
A

S
Q

M
O

IS
E

+

O
p

e
rA

N
o

rm
M

L

D
e
o

n
ti

c
 C

o
n

c
e
p

t Permission • • • • • • • • • • •

Prohibition • • • • • • •

Obligation • • • • • • • • • • • •

In
v
o

lv
e
d

 E
n

ti
ti

e
s

Agent • • • • • • •

Role • • • • • • • • • • •

Agent playing role • • • •

Groups of individuals • • • • • • • • •

All in the system • • • • • •

A
c
ti

o
n

s

Communicative
Actions

• • • • • • • • •

Non-communicative
Actions

• • • • • • • • • • • • •

A
c
ti

v
a
ti

o
n

 C
o

n
s
tr

a
in

ts
 Execution of actions • • • • • • • •

Time intervals • • • • • • • • •

Achievement of
states

• • • • • • • •

Temporal aspects • • • • • • • • • •

Fulfillment and
violation of a norm

 • • •

S
a
n

c
ti

o
n

s
 Punishment • • •

Reward •

C
o

n
te

x
t Environment •

Organization • • • • • • • • • • • • •

Interaction • • • • •

Transition of scene • •

 Table 4.1 Main elements of a norm

63

4.2 CHECKING FOR CONFLICTS

 In this section we investigate about the support provided by the analyzed

approaches for checking conflicts among norms is presented. First, in Section 4.2.1

we point out how the MAS modeling languages, methodologies and organizational

models deal with the norms conflicts, and then, in Section 4.2.2 other approaches are

discussed.

4.2.1 Modeling languages, methodologies and organizational models

 From works exposed previously, only the AORML modeling language, the ST

methodology and the OperA organizational model consider norm conflicts. Table 4.2

compares the analysis done at the verification for conflicts of these approaches to

NormML.

 The AORML language assumes that there is a normative inconsistency when

there is at the same time a permission and a prohibition, or a prohibition and an

obligation to the same action. It considers that obligations already have a permission

embedded, so there is no conflict in this sense. Although the language considers that

conflicts can occur, it does not have an automatic mechanism to detect these

conflicts.

 The ST methodology defines eight properties to be used for the verification of

conflicts in its models, including two for the validation of conflicts between the

system’s oblig tions nd permissions. The n lysis is done only between norms of

the same entity when they are defined in the same context. Although norms can be

defined in different but related contexts, they do not check conflicts between them.

For instance, it is important to check for conflicts between norms defined in the

context of an interaction of roles and norms defined in the context of the organization

where these roles are being played. In this case the contexts organization and

interaction are related and conflicts between norms must be checked. Moreover,

since all the norms have no activation constraints, they do not take this characteristic

into account when checking for conflicts. The ST methodology has a tool to graphical

64

model norms (SecTro, 2011), but the tool do not support the automatic verification of

their properties.

 AORML ST OperA NormML

Context analysis •
In

v
o

lv
e
d

E
n

ti
ti

e
s

Same entity
analysis

• • • •

Other entities
relations analysis

 •

D
e
o

n
ti

c

c
o

n
c
e
p

t

Oposite deontic
concepts analysis

• • • •

Same deontic
concept analysis

 •

A
c
ti

o
n

s

Same action
analysis

• • • •

Other actions
relations analysis

 •

Activation constraints
analysis

• •

Sanctions analysis •

Automatic analysis
(by tool)

 • •

Table 4.2 Checking for conflicts analysis

 The OperA organizational model allows the automatic verification of conflicts

between the norms that apply to a given entity. However, such mechanism does not

give support to the checking of conflicts between norms applied to different entity

types, i.e., between the norms applied to a group and the norms applied to roles to

be played in the group or agents that are executing in such group. In addition, it also

does not give support for checking conflicts among norms defined in different

contexts and considering different activation conditions.

 As shown in Table 4.2 and detailed in Section 3.4, NormML has a set of

operations for conflicts verification in a top-down approach that considers the

possibility of conflicts between the norms by analyzing each main element that

compose the norms, including context and sanctions that are not considered by the

65

works presented. In Chapter 7, a tool for automatic execution of this verification is

presented.

4.2.2 Other approaches that deal with norm conflicts

 Cholvy (1999) addresses the problem of norms consistency and the need for

its verification. In Cholvy (1999) a SOL-resolution (Inoue, 1992) was proposed to

prove that conflicts exist and identify them. The deontic concept analysis includes

both opposite deontic operators checking (contradictions) , e.g. if one norm states a

permission to perform an action and another norm states a prohibition to perform it,

and same deontic operator checking (dilemmas) , e.g. if one norm states a obligation

to perform an action and another norm states a obligation to not perform it. Different

roles played by the same entity and values of predicates are considered during the

analysis.

 In Oren et al. (2008) the authors point out that there are conflicts between

obligations and prohibitions, and permissions and prohibitions to the same agent or

role to execute actions over the same states. They also consider that there are

conflicts between obligations related to states that are mutually exclusive. The norms

analyzed in this work do not have any kind of activation constraint.

 In Gaertner et al. (2007), García-Camino et al. (2006), Kagal and Finin (2005),

Kollingbaum et al. (2008) and Vasconcelos et al. (2007) the authors consider that

there is a normative conflict when one norm states an obligation or a permission and

the other norm states a prohibition on the same agent or role to execute the same

action at time intervals that intersect. In Gaertner et al. (2007) and Kollingbaum et al.

(2008) they extend the analysis to actions that are of the same domain. In Kagal and

Finin (2005) only communicative actions are mentioned.

 In Kollingbaum et al. (2007) and Kollingbaum and Norman (2006) the authors

point out that there are conflicts between permissions and prohibitions, and

inconsistencies between obligations and prohibitions to the same role to execute the

same action. They also consider that there are inconsistencies between obligations

related to the execution of actions at the same time but they do not emphasize it. The

66

norms analyzed in this work can have a set of states as activation constraints but

they do not consider this in its conflict detection.

 None of the works reviewed considers the special case of conflicts between

obligations and permissions that may occur when an agent is obliged to execute an

action when it has not a permission to do so. Also, none of them consider all the main

elements of the norm while checking for conflicts as NormML does.

 There are research in the area of norm conflicts that investigate conflicts

between the norms and other elements of the system as goals of the system (Modgil

and Luck, 2009) or conflicts between deadlines of the norms (Lopes-Cardoso and

Oliveira, 2008, Lopes-Cardoso and Oliveira, 2010), but these questions are out of the

scope of our work.

CHAPTER 5: EXAMPLE APPLICATION

In this chapter we provide an example of an application in the area of

Conference Management to illustrate the use of norms in a MAS. This example was

chosen since it has been used by several authors, such as Zambonelli et al. (2001),

Dignum (2004) and Harmon et al. (2008), to illustrate their approaches.

5.1 CONFERECE MANAGEMENT SYSTEM

In order to exemplify our approach, we describe a simplified version of a

conference management system of a local conference. The local conference is being

represented as an organization that inhabits the conference society environment.

Consider the following conference management process illustrated in Figure 5.1.

Figure 5.1 Conference management process of the local conference

The local conference defines the following roles to be played by the agents:

organizer, conference chair, website manager, reviewer, author and speaker. The

roles conference chair, website manager and reviewer are sub-roles of the role

organizer.

The conference chair runs the conference and is responsible for the

coordination of the review and publication processes. During the paper submission

period, authors can submit papers, and after that the reviewers must review the

papers received until the notification deadline. Then, the conference chair

communicates the authors about the status of their papers: accepted or rejected.

68

Authors who had their papers accepted must register on the conference.

When registered, the authors guarantee that their accepted papers will be published

in the conference proceedings and they can present the paper as speakers in the

conference.

Taking into account what was exposed, we describe a set of eleven norms

that govern the simplified version of the local conference management system. For

some of the norms we have specified the sanctions (punishments or rewards) the

agent should receive if it violates or fulfills the norm. Note that those sanctions are

also norms that are activated when the related norm is violated or fulfilled. All norms

are defined in the context of the organization LocalConference that inhabits the

environment ConferenceSociety.

 N1: Organizers are prohibited to submit papers.

 N2: Reviewers are allowed to submit papers.

 N3: The conference chair has the permission to extend the submission

deadline at the submission deadline if the number of papers received < 50.

 N4: Reviewers are prohibited to review their own papers.

 N5 (Punishment for the violation of N4): Reviewers have their role

canceled.

 N6 (Punishment for the violation of N4): The conference chair is obliged to

discard the paper.

 N7: Reviewers are obliged to review the papers before the notification

deadline.

 N8: The conference chair is obliged to send an author notification to the

authors at the notification deadline.

 N9: Authors are obliged to register at the conference before the registration

deadline if the paper was accepted.

69

 N10 (Punishment for the violation of N9): The conference chair is obliged to

exclude the paper from the list of publication.

 N11 (Reward for the fulfillment of N9): Authors are permitted to commit as

speakers.

In Section 6.1, we show how to use the modeling language NormML to model

those norms and verify if there are any conflicts between them. Also in sections 6.2,

6.3 and 6.4 this application is used to compare NormML with the most relevant MAS

modeling language, methodology and organizational model.

CHAPTER 6: EVALUATION

In the previous chapters, we presented the normative modeling language

NormML that allows the modeling and validating of the norms of a MAS and the

checking for conflicts between them (Chapter 3). We have also discussed how the

modeling of norms and the checking for conflicts are represent in the MAS modeling

languages, methodologies and organization models (Chapter 4).

In this chapter we use the norms described in Chapter 5 that are used to

govern a simplified version of a conference management system of a local

conference with the aim to validate the approach presented in this dissertation.

In Section 6.1 we show how to use the modeling language NormML to model

those norms and verify if there are any conflicts between them. In the following

section, the example is used to compare NormML with the AORML modeling

language (Section 6.2), the Gaia methodology (Section 6.3) and the OperA

organizational model (Section 6.4). The three of them were chosen because they are

the modeling language, methodology and organizational model with more items

checked in Table 4.1 of Chapter 4. Thus, the final remarks are addressed in Section

6.5.

6.1 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

NORMML

 The local conference management system defines a set of eleven norms

inserted in the context of the organization LocalConference to restrict the behavior of

entities playing different kinds of roles. From this set of norms: (i) six norms are

obligations, two are prohibitions and three are permissions; (ii) one restricts a

communicative action; (iii) five are activated by the achievement of systems states

and two are activated by dates; and (iv) four are sanctions. Table 6.1 presents the

main elements of the norms of the local conference management system with more

details.

71

Norm Deontic
concept

Involved
entities

Action Activation
constraints

Sanctions Context

N1 Prohibition All agents
playing the role
Organizer

Non-
communicative
 ction “submit
p per”

- - The organization
Local
Conference

N2 Permission All agents
playing the role
Reviewer

Non-
communicative
 ction “submit
p per”

- - The organization
Local
Conference

N3 Permission All agents
playing the role
Conference
Chair

Non-
communicative
 ction “extend the
submission
de dline”

If number of
papers received
< 50

- The organization
Local
Conference

N4 Prohibition All agents
playing the role
Reviewer

Non-
communicative
 ction “review
p per”

If author of
paper = name
of Reviewer

Punishment
N5 and
punishment
N6

The organization
Local
Conference

N5 Obligation All agents
playing the role
Reviewer

Non-
communicative
 ction “c ncel role
Reviewer”

Violation of N4 - The organization
Local
Conference

N6 Obligation All agents
playing the role
Conference
Chair

Non-
communicative
 ction “disc rd
p per”

Violation of N4
and

If author of
paper = name
of Reviewer that
violates N4

- The organization
Local
Conference

N7 Obligation All agents
playing the role
Reviewer

Non-
communicative
 ction “review
p pers”

Before the
notification
deadline (e.g.
31/03/2011)

- The organization
Local
Conference

N8 Obligation All agents
playing the role
Conference
Chair

Communicative
action of sending
 n “ uthor
notific tion”

If notification
deadline (e.g.
31/03/2011)

- The organization
Local
Conference

N9 Obligation All agents
playing the role
Author

Non-
communicative
 ction “register t
the conference”

Before the
registration
deadline (e.g.
31/04/2011)
and if author
have paper
accepted

Punishment
N10 and
reward N11

The organization
Local
Conference

N10 Obligation All agents
playing the role
Conference
Chair

Non-
communicative
 ction “exclude the
p per”

Violation of N9
and if author of
paper = name
of author that
violates N9

- The organization
Local
Conference

N11 Permission All agents
playing the role
Author

Non-
communicative
 ction “commit role
Speaker”

Fulfillment of N9 - The organization
Local
Conference

Table 6.1 Main elements of the norms of the local conference management system

72

 Considering the information of the main elements that composes the norms of

Table 6.1, the NormML graphical model of the local conference management system

was created. Due to the available space, the graphical model of the local conference

management system will be presented in pieces. Figure 6.1 shows the graphical

model of the norms N1 and N2.

Figure 6.1 NormML graphical model of N1 and N2

 The LocalConference organization is represented as an UML class with the

stereotype <<Organization>> and the ConferenceSociety environment is represented

as an UML class with the stereotype <<Environment>>. The LocalConference

organization belongs to the ConferenceSociety environment as represented by the

relationship OrganizationInhabitEnvironment. LocalConference is composed of the

role Organizer (roles are also represented as an UML class with the <<Role>>

stereotype) that is extended by the role Reviewer and ConferenceChair (represented

by the generalization relationship). As a result, Reviewer and ConferenceChair

implicitly inherit the agent action submitPaper defined in Organizer (represented as

an attribute of the type agentAction).

73

 The Reviewer role has an agent action called reviewPaper, a belief called

name and a goal called reviewPapers. Beliefs and goals are represented as

attributes of the type belief or goal respectively (see the Reviewer class in Figure

6.1).

 Norms are represented as UML classes with the stereotype <<Norm>>, a

second stereotype describing its deontic concept (e.g. <<Prohibition>>,

<<Permission>> or <<Obligation>>), and third stereotype describing its sanction type

only used if the norm is a sanction (e.g. <<Punishment>> or <<Reward>>). All norms

are in the context of the LocalConference organization (represented by the

relationship NormInContextOrganization).

 N1 restricts the behavior of the role Organizer (represented by the relationship

NormAssignmentRole) stating a prohibition to the execution of the action

submitPaper (represented as an attribute with the stereotype <<agentActionAction>>

and the type execute). N2 restricts the behavior of the role Reviewer stating a

permission to the execution of the same action.

 The Conference is modeled in Figure 6.2 as an Entity and has the attribute

numberOfPapers of the type int. The papers of the conference are modeled as an

Entity called Paper and it has the attribute author of the type String. Entities are

represented as UML classes with the stereotype <<Entity>> and their attributes are

represented by attributes in the attribute compartment of the classes.

 The ConferenceChair role has an agent action called

extendSubmissionDeadline and a protocol called authorNotificationProtocol which

contains the message authorNotification. Protocols are represented as an attribute of

the type protocol that has a constraint indicating its messages (see the

ConferenceChair class in Figure 6.2). N3 in Figure 6.2 restricts the behavior of the

role ConferenceChair by stating a permission to the execution of the action

extendSubmissionDeadline if the number of papers of the conference is < 50

(represented as an attribute with the stereotype <<conditionalAttribute>>, the type

lessThan, and the initial value 50) and if it is 28/02/2011 that is the date of the

submission deadline (represented as an attribute with the stereotype <<if>>).

74

Figure 6.2 NormML graphical model of N3, N7 and N8

75

Figure 6.3 NormML graphical model of N4, N5 and N6

76

 Figure 6.3 shows the graphical model of the norms N4, N5 and N6. N4

restricts the behavior of the role Reviewer stating a prohibition to the execution of the

action reviewPaper if the author of the paper is equal to its name (represented as an

attribute with the stereotype <<conditionalBelief>>, the type equalTo and the initial

value referring to the name belief of the Reviewer role).

 N5 restricts the behavior of the role Reviewer by stating an obligation to cancel

the role Reviewer (represented as an attribute with the stereotype <<roleAction>>

and the type cancel) as a punishment for the violation of the norm N4. N6 restricts

the behavior of the role ConferenceChair by stating an obligation to delete the paper

(represented as an attribute with the stereotype <<entityAction>> and the type

delete) if the author of the paper is equal to the name of the reviewer (represented as

an attribute with the stereotype <<conditionalBelief>>, the type equalTo and the initial

value referring to the name belief of the Reviewer role). N6 is defined as a

punishment for the violation of the norm N4. Both N5 and N6 are sanctions of N4 and

for this reason their classes have a SanctionOfNorm relationship with N4.

 N7 in Figure 6.2 restricts the behavior of the role Reviewer by stating an

obligation to the achievement of the goal reviewPapers (represented as an attribute

with the stereotype <<goalAction>> and the type achieve) before the date

31/03/2011 that is the date of the notification deadline (represented as an attribute

with the stereotype <<before>>). And, N8 also in Figure 6.2 restricts the behavior of

the role ConferenceChair by stating an obligation to send the message

authorNotification (represented as an attribute with the stereotype

<<messageAction>> and the type send) if it is 31/03/2011 (represented as an

attribute with the stereotype <<if>>).

 Figure 6.4 shows the graphical model of the norms N9, N10 and N11.

LocalConference is also composed of the roles Author and Speaker. The Author role

has an agent action called registerAtConference, a belief called name and a goal

called havePaperAccepted. The norm N9 restricts the behavior of the role Author by

stating an obligation to the execution of the action registerAtConference before the

date 31/04/2011 (date of the registration deadline) if the Author achieved its goal

havePaperAccepted (represented as an attribute with the stereotype

<<conditionalGoal>, the type equalTo and the initial value true).

77

Figure 6.4 NormML graphical model of N9, N10 and N11

78

 In case of violation of N9, N10 states a punishment by restricting the behavior

of the role ConferenceChair as an obligation to delete the paper if the author of the

paper is the name of the author that violated N9.

 In case of fulfillment of N9, N11 states a reward by describing a permission to

the role Author to commit with the role Speaker (represented as an attribute with the

stereotype <<roleAction>> and the type commit).

 In Appendix G all the abstract models of the norms of the local conference

management system are illustrated.

 NormML also offers a check for conflicts mechanism (previously detailed in

Section 3.4) that is capable of verifying all the norms two by two with the aim of

finding out conflicts between them. By applying such mechanism in the norms of the

local conference management system, it detected that norms N1 and N2 are in

conflicts because they are both in the same context (the LocalConference

organization), restricting the behavior of related entities (the role Organizer is super-

role of the role Reviewer), with opposite deontic concept operators (prohibition and

permission), to execute the same action (submitPaper) in periods of time that

intersects since both have no activation constraints, i.e. they are always active.

6.2 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

AORML

 AORML is a modeling language to the modeling of organizations and

organizational systems. In AORML there are no distinctions between agents and

roles, and organizations are modeled as institutional agents.

 In AORML the agents have three kinds of obligations. Two are represented by

the commitment/claim relationship and describe a compromise between two agents.

The last one is represented by the hasDutyTo relationship between agents and

actions or messages, which means that the agent must execute such action or

send/receive such message. In the same way permissions and prohibitions can be

modeled respectively by the hasRightTo and hasNoRightTo relationships.

 The commitment/claim relationship can be seen as an obligation in the context

of an interaction, and the hasDutyTo, hasRightTo and hasNoRightTo relationships as

79

norms of an organizational context. In the commitment/claim relationship a

deadline can be described as activation constraint. But in the hasDutyTo, hasRightTo

and hasNoRightTo relationships there is no way to describe any kind of activation

constraint.

 Taking into account such characteristics, the norms N3, N4, N5, N6, N9, N10

and N11 of the local conference management system could not be fully modeled with

AORML because of their activation constraints. And the norms N7 and N8 could only

be modeled if they are represented as commitments in an interaction context which

was not the context defined by the application.

 In AORML, the violation of a norm is only considered when an agent does not

fulfill a commitment but the language does not provide ways to describe sanctions.

Thus, none of the sanctions of the example can be modeled with AORML.

 The AORML language assumes that there is a normative inconsistency when

there is at the same time a permission and a prohibition (which is the case of norms

N1 and N2), or a prohibition and an obligation, to the same action. Although the

language considers that such kind of conflicts can occur, it does not have a

mechanism to detect these conflicts as NormML does.

6.3 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

GAIA

 Gaia is a methodology to the analyses and design of MAS that is basically

represented as an organization with a set of roles interacting. In Gaia it is possible to

describe organizational rules to the roles of an organization. Those organizational

rules can be viewed as obligations, when they describe things that a role must do

(liveness rules) or guarantees (safety rules), or they can be viewed as prohibitions,

when they describe things a role must not do (liveness rules).

 Expressions based on temporal logic (Manna and Pnueli, 1992 and Manna

and Pnueli, 1995) can be described as organizational rules, including communicative

and non-communicative actions and the achievement of states. Each organizational

rule can have one activation and one deactivation condition.

80

 In Gaia, only static permissions can be described to the reading and modifying

of objects of the system. The static permissions, and the obligations and prohibitions

of the organizational rules cannot be violated by the roles, thus the language do not

address the question of punishments or any kind of sanction.

 After analyzing the example of the local conference management system, we

have found out that norms N5, N6, N10 and N11 could not be modeled in Gaia

because they are activated by the violation/fulfillment of other norms. Norms N2, N3

and N11 could not be described too because they state permissions over the

execution of actions, and by using Gaia it is not possible to describe permissions.

 Assuming hypothetically that norm N2 could be modeled by the methodology,

the conflict between the norms N1 and N2 could not be found by this methodology

because it does not have a mechanism to detect norms conflicts.

6.4 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH

OPERA

 OperA is an organizational model that prescribes a formal structure for

organizational processes, including normative issues. With OperA obligations,

permissions and prohibitions can be described to agents, roles, agents playing roles,

groups of agents and all agents of the system in the context of an organization, an

interaction scene or a transition of scene.

 The norms restrict the execution of communicative and non-communicative

actions and can be activated by one or more events as an activation condition, a

maintenance condition, an expiration condition or a deadline. The events can refer to

actions, time expressions, changes of system states and the fulfillment/violation of

another norm. Punishments can also be described to a norm that was violated.

 Given the foregoing, only the norm N11 of the local conference management

system could not be modeled with OperA because it is a reward of norm N9 and by

using the organizational model it is only possible to model punishments.

 The OperA organizational model allows the automatic verification of conflicts

between the norms that apply to a given entity. However, such mechanism does not

give support to the checking of conflicts between norms applied to different entity

81

types, i.e., between norms applied to related entities. For instance, the mechanism

does not give support to the checking of conflicts between norms applied to roles in

the same hierarchy as it is the case of norms N1 and N2.

6.5 FINAL REMARKS

 In this chapter we showed that NormML is able to model different kinds of

norms, as the norms of the local conference management system, encompassing all

the main elements that compose the norms, and after all, checking for conflicts

between them.

 The same is not possible when we try to execute such task with the MAS

modeling languages, notations of methodologies and organizational models

available, because, as presented before in Chapter 4, they do not support all the

main elements of the norms or they do not offer a mechanism to detect norms

conflicts. Even considering the works that model more elements, following Table 4.1

of Chapter 4, we demonstrated that they fail. The AORML modeling language and

the Gaia methodology failed in modeling a set of elements. Although the OperA

organizational model is more complete while describing norms and checking for

conflicts, it does not provide a graphical representation to the norms.

 Differently from the related work analyzed, NormML was designed specifically

with the aim to model the norms of MAS and check for conflicts between them.

CHAPTER 7: THE NORMML TOOL KIT

In this chapter we present the NormML Tool Kit that allows the creation of

NormML models, the automatic validation of them and the checking for norms

conflicts.

The NormML Tool Kit is composed of two plugins: NormML Editor and

NormML Conflict Checker. They both were developed as plugins to the Eclipse

framework (The Eclipse Foundation, 2011). The Eclipse IDE (Integrated

Development Environment) has quickly grown in the developing software community

over the last few years becoming a popular IDE for software development, especially

for Java based applications. The Eclipse IDE is open source and its framework is

easily extensible, therefore the building of plugins for this IDE became a common

practice.

Each plugin used in the NormML Tool Kit has a set of features to cover all the

steps of the design of the MAS norms. Figure 7.1 illustrates the process used by the

NormML Tool Kit by showing the activity and identifying the plugins used in each one.

Figure 7.1 The NormML Tool Kit process

The NormML Editor plugin is used to model the norms following the concrete

syntax proposed by the NormML modeling language described in Section 3.5. Such

editor also gives support to the checking of such concrete models in order to

guarantee its syntactical correctness. It checks if the models are well-formed

according to the metamodel that represents the concrete syntax (see Section 7.2).

83

After checking the concrete models, the norm designer can use the NormML

Conflict Checker plugin to check the conflicts among the norms modeled. In order to

do so, the plugin transforms the concrete models into abstract models and validates

the abstract models. Such validation is done by checking the well-formedness of

such models according to the NormML metamodel. If all the norms could be

validated, the operations for checking the conflicts are executed.

The validation of the abstract models could be skipped if the user would

always do the checking of the concrete models since the transforming of concrete to

abstract models is correct. Another reason to maintain the validation of the abstract

models apart of the checking of the concrete models is to allow the user to check for

conflicts between the norms independently of the use of the NormML Editor to

construct the models. Thus, the user could use any editor to construct the norms

models, for instance a simple text editor, and still use the NormML Conflict Checker

plugin.

 The next sections detail each feature of the NormML Tool Kit discussing the

technology used and the support given by its activity. The norms of Chapter 5 are

used to illustrate the applicability of the tool.

7.1 MODELING NORMS

 The modeling of norms can be done in the NormML Editor plugin developed

by using the Eclipse Modeling Framework Project (EMF) (Eclipse Modeling

Framework Project, 2011). EMF is a modeling framework and a code generation

provider for the building of modeling tools and other applications based on a

structured data model. EMF consists of three elementary parts: EMF(core), EMF.Edit

and EMF.Codegen. EMF(core) has a metamodel (Ecore) for describing models that

was used in the development of the NormML Editor to define the NormML concrete

metamodel.

 EMF.Edit provides generic reusable classes for building editors from EMF

models and EMF.Codegen provides the generation of everything needed to build a

complete editor from an EMF model by using the editor interfaces. Both of them were

employed to generate the NormML Editor from the NormML concrete metamodel

84

described in Ecore. The NormML Editor has a wizard to assist the creation of norms

diagram that are saved as a *.normml file (Figure 7.2).

Figure 7.2 The NormML Editor wizard

Figure 7.3 Eclipse perspective of the NormML Editor plugin

 Figure 7.3 shows the Eclipse perspective when the *.normml file (selected in

item 1 of Figure 7.3) is opened with the NormML Editor window (highlighted by item 2

of Figure 7.3) and its menu (stressed by item 3 of Figure 7.3).

85

 The NormML model is represented as a tree of nodes. The entities of the

NormML model (agents, roles, organizations, environments, entities and norms) are

created as nested nodes of the Norms Diagram element and their properties and

relationships can be edited in the Eclipse Properties View. Figure 7.4 illustrates the

creation of norm N1 of Chapter 5 in the Norms Diagram (highlighted by item 1 of

Figure 7.4) and the assignment of the norm to the role Organizer in the Properties

View (item 2 of Figure 7.4).

Figure 7.4 Creation and edition of N1 in the NormML Editor plugin

7.2 CHECKING (CONCRETE) MODELS

 The checking (or validation) of the concrete models is also done by using the

NormML Editor plugin. Such validation uses the automatic support provided by EMF

to validate models following the constraints of the defined metamodel. Constraints

such as OCL invariants can be defined by the creation of the EAnnotation element of

the Ecore editor.

86

 Figure 7.5 shows an OCL invariant example called

“NormContextCanNotBeNull” written by using the EAnnot tion element. Since such

invariant applies to norm, it was included in the Norm class of the concrete syntax

metamodel. The invariant guarantees that each Norm will be in one context

(organizational or environmental context).

Figure 7.5 OCL invariant example in the Ecore editor

 Supposes that N1 from Chapter 5 were modeled without inform its context (the

LocalConference organization) as indicated in item 1 of Figure 7.6. By selecting the

“Validate” item t the NormML Editor menu (see item 2 of Figure 7.6), n lert

mess ge would ppe r informing th t the “NormContextCanNotBeNull” inv ri nt w s

violated (see Figure 7.7).

87

Figu 7.6 N1 iol ion of “No mCon x C nNo B Null” in i n

Figu 7.7 N1 iol ion of “No mCon x C nNo B Null” in i n ul

88

7.3 CHECKING FOR CONFLICTS

 Finished the modeling and validating of the NormML concrete models in the

NormML Editor plugin, the norm designer can use the NormML Conflict Checker

plugin to check the conflicts among the norms modeled. In order to do so, the plugin

transforms the concrete models into abstract models and checks (or validates) the

abstract models.

 By selecting the “Check for Conflicts” item t the NormML Conflict Checker

menu (highlighted in Figure 7.8) the transformation will be executed (see Section

7.3.1), and after it, well-formedness rules operations. If the model is well-formed, then

the check for conflicts operations will be executed. Both well-formedness rules

operations and check for conflicts operations were implemented with EOS (Eye OCL

Software) (The EOS Component, 2011) as demonstrated in Section 7.3.2.

Figure 7.8 NormML Conflict Checker menu

 If there are any conflicts between the norms of the model, an alert message

will be shown as illustrated in Figure 7.9 to the local conference management system

model verification.

89

Figure 7.9 Check for conflicts result of the NormML Conflict Checker plugin

7.3.1 Transforming concrete to abstract models

 While the concrete models are described in XML (Extensible Markup

Language) as *.normml files, the abstract models are described by using EOS in

*.java files. EOS is a Java API (Application Programming Interface) that allows the

description of class and object diagrams, the implementation of operations in OCL

and their execution over object diagrams. In our case, a class diagram is used to

model the NormML metamodel and object diagrams are used to describe the

abstract models of NormML, which are composed of elements that are instances of

the metaclases of the NormML metamodel.

 Figure 7.10 shows a piece of the NormML metamodel as a class diagram

implemented in EOS and Figure 7.11 illustrates the abstract model of norm N1 as an

object diagram also described in EOS.

 The metaclasses of the NormML metamodel are included in the class diagram

 s cl sses by using the “insertCl ss” method nd by informing the cl ss n me s

parameter. Line 10 in Figure 7.10 illustrates the creation of the Norm metaclass. The

association relationships between the metaclasses of the NormML metamodel are

included in the cl ss di gr m by using the “insertAssoci tion” method nd informing

90

the classes names, association ends names and multiplicities as parameters. Line 19

in Figure 7.10 depicts the creation of the NormInContextOrganization relationship.

Figure 7.10 NormML metamodel described as a class diagram with EOS

 The generalization relationships between the metaclasses of the NormML

met model re included in the cl ss di gr m by using the “insertGener liz tion”

method and informing the sub-class and super-class names. Line 16 in Figure 7.10

shows the generalization between the NormProhibition and Norm metaclasses.

 The instances of the metaclasses of the NormML metamodel are included in

the object di gr m s objects by using the “insertObject” method nd by informing

the object name and the class name as parameter. The creation of the

LocalConference instance in line 10 of Figure 7.11 is an example. The relationships

between the instances of the model are included in the object diagram as links by

using the “insertLink” method nd by informing the cl sses n mes, object n mes nd

association ends names as parameters. The creation of the

OrganizationInhabitEnvironment relationship between the LocalConference

organization and the ConferenceSociety environment described in line 12 of Figure

7.11 is an example.

91

Figure 7.11 N1 abstract model described as an object diagram with EOS

 A transformer developed in XSLT (Extensible Stylesheet Language

Transformations) (W3Schools, 2011a) was implemented to automatically transform

the NormML concrete models into NormML abstract models. XSLT is a XML-based

language used for the transformation of XML documents into new documents of any

kind, based on the content of the XML documents. In the transformation process,

XSLT uses XPath (W3Schools, 2011b) to define parts of the source document that

should match one or more predefined templates in the transformation file. When a

template is applied, XSLT will transform the matching part of the source document

into the result document according to the template.

 In our context, the XSLT transformer receives as source document the

*.normml file of the concrete model described in XML and creates as a result

document a *.java file with the abstract model described following the EOS syntax.

The XSLT transformer executes a set of XSL transformation rules presented in

Appendix F.

 For instance, Figure 7.12 illustrates the code in XSL of the implementation of

Rule 1. The templ te se rches the source document for n “environment” element

and creates on the result document the EOS command line to create an instance of

92

the Environment class, replacing the name of the instance by the name of the

environment in the source document (see line 21 of Figure 7.12).

Rule1. For each Environment env of M, insert in M an object env of the class

Environment.

Figure 7.12 XSL template that implements Rule1

7.3.2 Running operations to check the abstract models

 With the abstract models described with EOS the user can check for conflicts

between the norms of the models in the NormML Conflict Checker plugin. The check

for conflicts OCL operations were implemented in EOS in order to evaluate the object

diagrams.

 Also, the well-formedness rules described in OCL were implemented with EOS

to execute a last verification in the models before the checking for conflicts

operations to assure that the abstract models are well-formed. Figure 7.13 shows an

example of OCL operation described with EOS.

Figure 7.13 Main OCL operation of the check for conflicts described with EOS

 The method “insertOper tion” is used to cre te n OCL oper tion with EOS

and it receives as parameters the context of the operation, the name of the operation,

93

the type of the element to be returned, the operation itself and a list of parameters to

be used in the operation.

 Figure 7.13 illustrates the creation of the OCL operation

“checkinfForConflictsM in” th t h s set of Norm elements s context nd

Boolean value as return type. This operation calls, for each two different norms of the

set, nother oper tion (“checkinfForConflicts”) th t will check for conflicts between

them.

 In the NormML Conflict Checker we reuse some of the check for conflicts

operations and well-formedness rules implemented with EOS by Alcântara and

Marinho (2010). They developed a tool to create NormML models and check for

conflicts using EOS according to the preliminary version of NormML presented in

(Figueiredo and Silva, 2010b).

CHAPTER 8: CONCLUSION AND FUTURE WORK

In this dissertation we have presented a modeling language called NormML

that is able to model the norms of a MAS and to check the conflicts between these

norms at design time.

We have pointed out the main elements that compose a norm and discussed

how several MAS modeling languages and the notations provide by methodologies

and organizational models give support to the modeling of these elements and to the

checking of conflicts between norms. We have also emphasized the contributions of

the normative modeling language NormML when compared with other modeling

languages and notations used by methodologies and organization models in

chapters 5 and 6.

As showed in Chapter 3, by using NormML it is possible (i) to model norms

associated with different contexts; (ii) to regulate the behavior of individual and

groups of individuals (or organizations); (iii) to define norms that restrict the execution

of actions (including dialogical actions) and the achievement of states; (iv) to define

activation constraints based on the definition of periods between actions, periods of

time and predicates (values associated with attributes, beliefs and goals); (v) to

define sanctions associated with the norms; (vi) to validate the models according to

the well-formedness rules of the language; and (vii) to check for conflicts among the

norms of a model.

In order to support the language we have developed a set of plugins to the

Eclipse IDE called NormML Tool Kit that allows the user to construct norms models

and validate them by executing the well-formedness rules and the check for conflicts

operations over such models.

During the development of this work, preliminary versions of the NormML

modeling language were presented in Figueiredo et al. (2011) and Figueiredo and

Silva (2011), Figueiredo and Silva (2010a), Figueiredo and Silva (2010b) and Silva et

al. (2010).

The mains contributions of this dissertation are:

 The investigation of the main elements that compose the norms;

95

 The review of the MAS modeling languages, methodologies, organizational

models nd other ppro ches th t propose solutions for indentifying norms’

conflicts;

 The NormML modeling language itself, to model norms and its main elements;

 The set of well-formedness rules for the validation of the models of the

language;

 The set of operations to check for conflicts between norms that consider the

main elements that compose the norms;

 The elaboration of a concrete syntax to the language that allows the user to

create the norms’ models;

 The set of transformations rules used to transform the concrete into abstract

models;

 The tool used to (i) model and validate norms using NormML; (ii) check for

conflicts between norms models; and (iii) automatically transform concrete

models in abstract models.

In this work we focus on the modeling of the static aspects of the norms, i.e.

the elements related to its composition. However, it is our intension to define a

sequence diagram for NormML to describe the sequence of the executed actions and

states achieved. By using such diagram it will be possible to: (i) represent dynamic

aspects as the creation, cancellation and delegation of a norm; (ii) define norms in an

inter ction context; (iii) check norms’ conflicts th t depend on the sequence of the

executed actions and states achieved; and (iv) identify the norms that are active and

the ones that were violated or fulfilled. It is also our aim to develop a tool for modeling

norms using the graphical representation of NormML.

REFERENCES

ALDEWERELD, H., DIGNUM, F., GARCIA-CAMINO, A., NORIEGA, P.,

RODRIGUEZ-AGUILAR, J. and SIERRA, C. Operationalisation of norms for usage in

electronic institutions. In: Proceedings of the 5th International Conference on

Autonomous Agents and Multiagent Systems, 2006. p. 223–225.

BASIN, D., CLAVEL, M., DOSER, J. and EGEA, M. Automated analysis of

security-design models. Information and Software Technology, Volume 51, Issue 5,

May 2009. p. 815–831.

BASIN, D., DOSER, J. and LODDERSTEDT, T. Model driven security: from

UML models to access control infrastructures. ACM Transactions on Software

Engineering and Methodology (TOSEM), Volume 15, Issue 1, January 2006. p. 39–

91.

BRADSHAW, J. M. Software Agents. MIT Press Cambridge, MA, USA, 1997.

CAIRE, G., COULIER, W., GARIJO, F., GOMEZ, J., PAVON, J., LEAL, F.,

CHAINHO, P., KEARNEY, P., STARK, J., EVANS, R. and MASSONET, P. Agent

Oriented Analysis Using Message/UML. In: Proceedings AOSE '01 Revised Papers

and Invited Contributions from the Second International Workshop on Agent-Oriented

Software Engineering II, Springer-Verlag London, UK, 2002. p. 119–135.

CHOLVY, L. Checking regulation consistency by using SOL-resolution. In:

ICAIL '99 Proceedings of the 7th international conference on Artificial intelligence and

law, ACM New York, NY, USA, 1999.

CLAVEL, M., SILVA, V., BRAGA, C. and EGEA, M. Model-driven security in

practice: an industrial experience. In: ECMDA-FA '08 Proceedings of the 4th

European conference on Model Driven Architecture: Foundations and Applications,

Springer-Verlag Berlin, Heidelberg, 2008. p. 326–337.

COSSENTINO, M. From requirements to code with the PASSI methodology.

In: Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors),

Idea Group Inc., Hershey, PA, USA, 2005. p. 79–106.

CRANEFIELD, S. Modeling and monitoring social expectations in multi-agent

systems. In: Coordination, Organizations, Institutions, and Norms in Agent Systems

II, Springer-Verlag Berlin, Heidelberg, 2007. p. 308–321.

http://mitpress.mit.edu/catalog/author/default.asp?aid=4184

97

DANC, J. Formal specification of AML. Department of Computer Science

Faculty of Mathematics, Physics and Informatics Comenius University Formal

Specification of AML Master's Thesis, Ján Danc, Advisor: Mgr. Bratislava, 2008.

DEUTCH, M. and GERARD, H. B. A study of normative and informational

social influence upon judgment. Journal of Abnormal and Social Psychology, 51,

1955. p. 629-636.

DIGNUM, V. A model for organizational interaction: based on agents, founded

in logic. PhD dissertation, Universiteit Utrecht, SIKS dissertation series 2004-1, 2004.

DIGNUM, V. The Role of Organization in Agent Systems. In: Handbook of

Research on Multi-Agent Systems: Semantics and Dynamics of Organizational

Models, Author(s)/Editor(s): Virginia Dignum (Utrecht University, The Netherlands),

2009. p. 1-16.

ECLIPSE MODELING FRAMEWORK PROJECT. Eclipse Modeling

Framework Project. http://www.eclipse.org/modeling/emf/, Accessed: Jan. 31, 2011.

EOS. The EOS Component. http://www.bm1software.com/eos/, Accessed:

Jan. 31, 2011.

ETZIONI, O. and WELD, D. S. In llig n g n on h In n : F , fi ion,

and forecast. IEEE Expert: Intelligent Systems and Their Applications archive,

Volume 10, Issue 4, August 1995. p. 44-49.

FERBER, J., STRATULAT, T. and TRANIER, J. Towards an integral approach

of organizations: the MASQ approach in multi-agent systems. In: Handbook of

Research on Multi-Agent Systems: Semantics and Dynamics of Organizational

Models, Author(s)/Editor(s): Virginia Dignum (Utrecht University, The Netherlands),

2009. p. 51-75.

FERRAIOLO, D.F. and KUHN, D.R. Role-Based Access Control. In: 15th

National Computer Security Conference, 1992. p. 554–563.

FIGUEIREDO, K. and SILVA, V. Modeling and Validating Norms in Multi-agent

Systems. In: Workshop of Theses and Dissertations in Software Engineering (WTES)

at Brazilian Conference on Software: Theory and Practice (CBSoft 2010), Salvador,

2010a. p. 49-54.

FIGUEIREDO, K. and SILVA, V. NormML: A Modeling Language to Model

Norms. In: AutoSoft - Autonomous Software Systems (Workshop) at Brazilian

Conference on Software: Theory and Practice (CBSoft 2010), Salvador, 2010b. p.11-

20.

http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf

98

FIGUEIREDO, K. and SILVA, V. NormML: A Modeling Language to Model

Norms. In: III International Conference on Agents and Artificial Intelligence (ICAART

2011), Rome, 2011.

FIGUEIREDO, K., SILVA, V. and BRAGA, C. A Modeling Language to Model

Norms. M. De Vos, N. Fornara, J. Pitt and G. Vouros (Edts.) Coordination,

Organizations, Institutions, and Norms in Agent Systems VI, (COIN@AAMAS 2010

post-proceedings), LNAI 6541, Springer-Verlag, 2011.

FØLLESDAL, D., HILPINEN, R. Deontic Logic: An Introduction. In: HILPINEN,

R. (Ed.). Deontic Logic: Introductory and Systematic Readings. Dordrecht: D. Reidel

Publishing Company, 1971. p. 1-38.

FORNARA, N. and COLOMBETTI, M. Specifying and enforcing norms in

artificial institutions. In: Proceedings of the 4th European Workshop on Multi-Agent

Systems Coordination, Organizations, Institutions, and Norms in Agent Systems III

Lecture Notes in Computer Science, Volume 4870/2008, 2008. p. 316-329.

FRANKLIN, S. and GRAESSER, A. Is It an Agent or Just a Program? A

Taxonomy for Autonomous Agents. In: Proceedings of the Third International

Workshop on Agent Theories, Architectures, and Languages, New York, Springer-

Verlag, 1996.

GAERTNER, D., GARCIA-CAMINO, A. and VASCONCELOS, W. Distributed

Norm Management in regulated Multi-Agent Systems. In: Proceedings of the 6th

international joint conference on Autonomous agents and multiagent systems, ACM

New York, NY, USA, 2007.

GARCIA-CAMINO, A., NORIEGA, P. and RODRIGUEZ-AGUILAR, J.

Implementing norms in electronic institutions. In: Proceedings of the fourth

international joint conference on Autonomous agents and multiagent systems, ACM

New York, NY, USA, 2005. p. 667–673.

GARCIA-CAMINO, A., NORIEGA, P. and RODRIGUEZ-AGUILAR, J. A. An

Algorithm for Confict Resolution in Regulated Compound Activities. In: ESAW'06

Proceedings of the 7th international conference on Engineering societies in the

agents world VII, Springer-Verlag Berlin, Heidelberg, 2007.

GARCIA-OJEDA, J., DELOACH, S., ROBBY, O. and VALENZUELA, J. O-

MaSE: a customizable approach to developing multiagent development processes.

In: Michael Luck (eds.), Agent-Oriented Software Engineering VIII: The 8th

http://www.springerlink.com/content/978-3-540-79002-0/
http://www.springerlink.com/content/0302-9743/

99

International Workshop on Agent Oriented Software Engineering, LNCS 4951,

Springer: Berlin, 2008. p. 1–15.

GIORGINI, P., MOURATIDIS, H. and ZANNONE, N. Modelling security and

trust with Secure Tropos. In: Integrating Security and Software Engineering:

Advances and Future Vision, 2006. p. 160-189.

GOVERNATORI, G. and ROTOLO, A. Defeasible logic: agency, intention and

obligation. In: Deontic Logic in Computer Science, 7th Internacional Workshop on

Deontic Logic in Computer Science, LNAI 3065, Springer, 2004. p. 114–128.

HARMON, S. J. and DELOACH, S. A. Trace-b Sp ifi ion of L w n

Guidance Policies for Multiagent Systems. Engineering Societies in the Agents World

VIII, Springer-Verlag Berlin, Heidelberg, 2008.

HÜBNER, J. F., SICHMAN, J. S. and OLIVIER, B. A model for the structural,

functional and deontic specification of organizations in multiagent systems. In:

SBIA '02 Proceedings of the 16th Brazilian Symposium on Artificial Intelligence:

Advances in Artificial Intelligence, Springer-Verlag London, UK, 2002.

INOUE, K. Linear resolution for consequence finding. Journal of Artificial

Intelligence, Volume 56, Issue 2-3, Aug. 1992. p. 301-353.

JUAN, T., PIERCE, A. and STERLING, L. ROADMAP: extending the Gaia

methodology for complex open systems. In: AAMAS '02 Proceedings of the first

international joint conference on Autonomous agents and multiagent systems: part 1,

ACM New York, NY, USA, 2002. p. 3–10.

KAGAL, L. and FININ, T. Modeling Conversation Policies using Permissions

and Obligations. In: van Eijk, R., Huget, M., Dignum, F., eds.: Developments in Agent

Communication Volume 3396 of LNCS., Springer, 2005. p. 123–133.

KOLLINGBAUM, M. and NORMAN, T. J. Informed Deliberation During Norm-

Governed Practical Reasoning. In: Boissier, O and Padget, J and Dignum, V and

Lindemann, G, Eds. Coordination, Organizations, Institutions, and Norms in Multi-

Agent Systems, Springer-Verlag, 2006.

KOLLINGBAUM, M., NORMAN, T. J., PREECE, A. and SLEEMAN, D. Norm

Conflicts and Inconsistencies in Virtual Organisations. In: Coordination,

Organizations, Institutions, and Norms in Agent Systems II, Springer-Verlag, 2007.

KOLLINGBAUM, M., VASCONCELOS, W., GARCIA-CAMINO, A. and

NORMAN, T. J. Conflict Resolution in Norm-regulated Environments via Unification

100

and Constraints. In: Proceedings of the 5th international conference on Declarative

agent languages and technologies V, 2008.

LOMUSCIO, A. and SERGOT, M. A formalization of violation, error recovery,

and enforcement in the bit transmission problem. Journal of Applied Logic, Volume 2,

Number 1, 2004. p. 93–116.

LOPES-CARDOSO, H. and OLIVEIRA E. C. A Context-based Institutional

Normative Environment. In: Coordination, Organizations, Institutions and Norms in

Agent Systems IV, Springer-Verlag Berlin, Heidelberg, 2008.

LOPES-CARDOSO, H. and OLIVEIRA E. C. Monitoring Directed Obligations

with Flexible Deadlines: a Rule-based Approach. In: Declarative Agent Languages

and Technologies VII, 2010. p. 51-67.

LÓPEZ y LÓPEZ, F. Social power and norms: impact on agent behavior. PhD

thesis, University. of Southampton, Department of Electronics and Computer

Science, 2003.

LÓPEZ y LÓPEZ, F., LUCK, M. and D’INVERNO, M. Constraining autonomy

through norms. In: AAMAS '02 Proceedings of the first international joint conference

on Autonomous agents and multiagent systems: part 2, ACM New York, NY, USA,

2002. p. 674–681.

MANNA, Z. and PNUELI, A. (1992) The Temporal Logic of Reactive and

Concurrent Systems. The temporal logic of reactive and concurrent systems,

Springer-Verlag New York, Inc. New York, NY, USA, 1992.

MANNA, Z. and PNUELI, A. Temporal Verification of reactive Systems –

Safety. Temporal verification of reactive systems: safety, Springer-Verlag New York,

Inc. New York, NY, USA,1995.

MEYER, J. J. and WIERINGA, R. J. Deontic logic in computer science:

normative system specification. Deontic logic in computer science: normative system

specification, John Wiley and Sons Ltd. Chichester, UK, 1993.

MODGIL, S. and LUCK, M. Argumentation Based Resolution of Conflicts

between Desires and Normative Goals. In: Argumentation in Multi-Agent Systems,

Springer-Verlag Berlin, Heidelberg, 2009.

MOLESINI, A., DENTI, E. and OMICINI, A. RBAC-MAS & SODA:

experimenting RBAC in AOSE engineering societies in the agents world. In:

Engineering Societies in the Agents World IX, Springer-Verlag Berlin, Heidelberg,

2009.

http://www.fe.up.pt/si/publs_pesquisa.FormView?P_ID=24847&P_TIPO=Livro
http://www.fe.up.pt/si/publs_pesquisa.FormView?P_ID=24847&P_TIPO=Livro

101

NOYA, R. C. and LUCENA, C. J. P. The ANote Modeling Language for Agent-

Oriented Specification. In: Software Engineering for Multi-Agent Systems III, Lecture

Notes in Computer Science, 2005, Volume 3390/2005, 2005. p. 198–212.

OBJECT MANAGEMENT GROUP. Unified Modeling Language.

http://www.uml.org/, Accessed: Jan. 31, 2011. 2001a.

OBJECT MANAGEMENT GROUP. OCL Specification. http://www.omg.org/

docs/ptc/03-10-14.pdf, Accessed: Jan. 31, 2011. 2011b.

ODELL, J., PARUNAK, H. and BAUER, B. Extending UML for agents. In:

Proceedings of of the Agent-Oriented Information Systems, Workshop at the 17th

National conference on Artificial Intelligence, 2000. p. 3–17.

OMG AGENT PLATFORM SPECIAL INTEREST GROUP. Agent Technology

Glossary. http://www.objs.com/agent/agent-glossary-v02.html, Accessed: Jan. 31,

2011.

OMICINI, A. SODA: societies and infrastructures in the analysis and design of

agent-based systems. In: First international workshop, AOSE 2000 on Agent-oriented

software engineering, Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2001.

OREN, N., LUCK, M., MILES, S. and NORMAN, T. J. An argumentation

inspired heuristic for resolving normative onfli . In: Proceedings of the International

Workshop on Coordination, Organisations, Institutions and Norms in Agent Systems

(COIN@AAMAS 2008), Estoril, Portugal, 2008. p. 41–56.

PADGHAM, L. and WINIKOFF, M. Developing intelligent agent systems: a

practical guide. John Wiley and Sons, 2004. 225 pages.

PRABHUPADA, A. C. B. S. Bh g gī A I I . Ed. Bhaktivedanta Book

Trust, 1968.

RAO, A. S. and GEORGEFF, M. P. BDI agents: From theory to practice. In:

Proceedings of the First Intl. Conference on Multiagent Systems ICMAS95, 1995.

SECTRO. SecTro Tool, Secure Tropos. http://sectro.securetropos.org/,

Accessed: Jan. 31, 2011.

SILVA, V. From the specification to the implementation of norms: an automatic

approach to generate rules from norms to govern the behaviour of agents. In:

Autonomous Agents and Multi-Agent Systems, Volume 17, Issue 1, August 2008. p.

113–155.

SILVA, V., BRAGA, C. and FFIGUEIREDO, K. A Modeling Language to Model

Norms. In: Workshop on Coordination, Organization, Institutions and Norms in agent

http://www.objs.com/agent/agent-glossary-v02.html
http://sectro.securetropos.org/

102

systems at International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS10), Toronto, 2010. p. 25-32.

SILVA, V., CHOREN R. and LUCENA, C. MAS-ML: a multi-agent system

modelling language. In: International Journal of Agent-Oriented Software

Engineering, Special Issue on Modeling Languages for Agent Systems, Inderscience

Publishers, vol.2, no.4, 2008. p. 382-421.

SILVA, V., DURAN, F., GUEDES, J. and LUCENA, C. Governing Multi-Agent

Systems. In: Journal of Brazilian Computer Society, Special Issue in Software

Engineering for Multi-Agent Systems, volume 13, number 2, 2007.

SILVA, V., GARCIA, A., BRANDAO, A., CHAVEZ, C., LUCENA, C.,

ALENCAR, P. Taming Agents and Objects in Software Engineering. In: Garcia, A.;

Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J. (Eds.), Software Engineering for

Large-Scale Multi-Agent Systems, Springer-Verlag, LNCS 2603, 2003. p. 1-26.

THE ECLIPSE FOUNDATION. Eclipse. http://www.eclipse.org/, Accessed:

Jan. 31, 2011.

VASCONCELOS, W., KOLLINGBAUM, M. and NORMAN, T. Resolving

conflict and inconsistency in norm-regulated virtual organizations. In: AAMAS '07

Proceedings of the 6th international joint conference on Autonomous agents and

multiagent systems, ACM New York, NY, USA, 2007.

VIGANÒ, F. and COLOMBETTI, M. Model checking norms and sanctions in

institutions. In: COIN'07 Proceedings of the 2007 international conference on

Coordination, organizations, institutions, and norms in agent systems III, Springer-

Verlag Berlin, Heidelberg, 2008.

VON WRIGHT, G.H. Deontic Logic. Mind, volume 60, 1951. 1–5.

W3SCHOOLS. XSLT Tutorial. http://www.w3schools.com/xsl/, Accessed: Jan.

31, 2011. 2011a.

W3SCHOOLS. XPath Tutorial. http://www.w3schools.com/xpath/ default.asp

xpath tutorial 2011, Accessed: Jan. 31, 2011. 2011b.

WAGNER, G. The Agent-Object-Relationship meta-model: towards a unified

view of state and behavior. Information Systems, Volume 28 Issue 5, July 2003. p.

475–504.

WOOLDRIDGE, M. Agent-based software engineering. IEE Proceedings –

Software, 144(1), 1997. p. 26-37.

http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s144.html#Wooldridge97
http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s144.html#Wooldridge97

103

ZAMBONELLI, F., JENNINGS, N. R. and WOOLDRIDGE, M. J. Developing

multiagent systems: the Gaia methodology. In: ACM Transactions on Software

Engineering and Methodology (TOSEM), Volume 12, Issue 3, July 2003. p. 417–470.

ZAMBONELLI, F., JENNINGS, N. R. and WOOLDRIDGE, M. J. Organisational

Rules as an Abstraction for the Analysis and Design of Multi-Agent Systems. In:

International Journal of Software Engineering and Knowledge Engineering, Volume

11, Number 3, 2001. p. 303-328.

APPENDIX A: The NormML extension of SecureUML

 NormML is a non-conservative extension of the SecureUML language, and, for

this reason, not all elements of SecureUML were maintained in the extension. In the

following we present the main differences between the two modeling languages.

The metamodel extension

 Figure A.1 shows the elements from the SecureUML metamodel highlighting

the ones which were preserved in the NormML metamodel. The gray colored

metaclasses and the relationships illustrated by a continuous line are still part of the

NormML metamodel. The white colored classes and the relationships illustrated by a

traced line were excluded during the NormML extension.

 The User metaclass and all the attributes of the metaclasses of SecureUML

were removed, and the Permission and the AutorizationConstraint metaclasses of

SecureUML were replaced by the Norm and NormConstraint metaclasses of

NormML. Because of that some relationships were also modified:

 The ConstraintAssigment relationship between the Permission and the

AutorizationConstraint metaclasses defined in SecureUML was replaced by

the NormConstraintAssignment relationship between the Norm and

NormConstraint metaclasses in NormML;

 The PermissionAssigment relationship between the Permission and the Role

metaclasses defined in SecureUML was replaced by the

NormAssignmentRole relationship between the Norm and Role metaclasses in

NormML; and

 The UserAssignment relationship between the Role and the User metaclasses

defined in SecureUML was replaced by the AgentPlayingRole relationship

between the Agent and Role metaclasses and the

105

SubOrganizationPlayingRole relationship between the Organization and Role

metaclasses in NormML.

Figure A.1 Conserved elements of the SecureUML metamodel

106

The well-formedness rules extension

 As a non-conserv tive extension of the SecureUML, the inv ri nts “Def ult

role” nd “Def ult permission” of the SecureUML l ngu ge (B sin et al., 2006) were

discarded in the NormML language since they cannot be applied in the metaclasses

and relationships of the NormML metamodel.

 The “Role hier rchy” inv ri nt th t gu r ntees n cyclic role hier rchy w s

m int ined without ch nges (see WRF07 in Appendix C), nd the “Resource ction

 ssoci tion” inv ri nts were extended to ttend the new types of resources and

actions of the NormML metamodel (see WFR16 to WFR48 in Appendix C and Table

3.1 in Chapter 3). For instance, an AtomicCreate action must be related to an Entity

in SecureUML. In NormML, an AtomicCreate action must be related to an Entity, an

Agent, a Role, a Plan, a Belief, a Protocol, an Organization or an Environment

resource as described below.

context AtomicCreate

inv atomicCreateTargetsCorrectResource:

if((self.resource.oclIsTypeOf(Entity) or (self.resource.oclIsTypeOf(Agent) or

(self.resource.oclIsTypeOf(Role) or (self.resource.oclIsTypeOf(Plan) or

(self.resource.oclIsTypeOf(Belief) or (self.resource.oclIsTypeOf(Protocol) or

(self.resource.oclIsTypeOf(Organization) or (self.resource.oclIsTypeOf(Environment))

then(true)else(false)endif

 The “Action hier rchy” inv ri nts were lso extended to ttend the new types

of composite and atomic actions of the NormML metamodel (see Table B.1 in

Appendix B). For instance, the following invariant was added to guarantee that the

new composite action MessageFullAccess of NormML metamodel are composed of

the correct subordinated actions (AtomicSend and AtomicReceive).

context MessageFullAccess

inv containsSubactions:

 self.subordinatedactions = self.resource.action−>select(a|a.oclIsTypeOf(AtomicSend))

 −>union(self.resource.action−>select(a|a.oclIsTypeOf(AtomicReceive)))

APPENDIX B: NormML dialect action hierarchy

 In the NormML metamodel each resource kind has a set of actions that can be

used to control the access to the resource. Those actions can be atomic or

composite actions and they are connected by using hierarchies. The composite

actions are composed by other atomic or composite actions, according to the

relations between the resources. In Table B.1 a mapping between the composite

actions and its subordinate actions is described.

Composite action type Subordinated actions

EntityRead read for all attributes and association ends of the entity, and

execute for all side-effect free methods of the entity.

EntityUpdate update for all attributes of the entity,

update for all association ends of the entity, and

execute for all non-side-effect free methods of the entity

EntityFullAccess create, read, update, and delete of the entity.

AttributeFullAccess read, update and achieve of the attribute.

AssociationEndFullAccess read and update of the association end.

EnvironmentUpdate full access for all organizations of the environment, and

full access for all agents of the environment.

EnvironmentFullAccess create, delete, enter, leave and update of the environment.

OrganizationUpdate full access for all sub-organizations of the organization, and

full access for all roles of the organization.

OrganizationFullAccess create, delete, enter, leave and update of the organization.

AgentUpdate full access for all beliefs of the agent,

full access for all goals of the agent,

full access for all agent actions of the agent, and

full access for all plans of the agent.

AgentFullAccess create, delete and update of the agent.

PlanExecute execute for all agent actions of the plan.

PlanFullAccess create, delete, update and execute of the plan.

BeliefFullAccess create, delete and update of the belief.

GoalFullAccess achieve, commit and cancel of the goal.

RoleUpdate full access for all protocols of the role,

full access for all belief of the role,

full access for all goals of the role, and

full access for all agent actions of the role.

108

Composite action type Subordinated actions

RoleFullAccess create, delete, commit, cancel and update of the role.

MessageFullAccess receive and send of the message.

ProtocolSend send for all messages of the protocol.

ProtocolReceive receive for all messages of the protocol.

ProtocolFullAccess create, delete, send and receive of the protocol.

Table B.1 NormML dialect action hierarchy

APPENDIX C: The well-formedness rules of NormML

WFR1: A norm must be in the context of an Organization or an Environment
and cannot be defined in the scope of both at the same time.
The context of a norm determines the scope where the norm is applied, thus,

a norm can have only one context that can be an environment or an organization
(see Figure 3.10).

WFR2: An Agent can only play a Role in the Organization that owns such Role,

i.e., that has defined such Role.
To play a role, an agent must belong to the organization that owns such role

by the relationship AgentOfOrganization (see Figure 3.10).

WFR3: Only Suborganizations play Roles.
Organizations must belong to another organization to play its roles, thus only

sub-organizations can play roles in their super-organizations.

WFR4: A SubOrganization can only play a Role in the Organization that owns
such Role, i.e., that has defined such Role.
To play a role, a sub-organization must belong to a super-organization that

owns such role by the relationship OrganizationComposition (see Figures 3.2 and
3.9).

WFR5: A SubOrganization must inhabit the same Environment of its super-

organization.
If an organization is a sub-organization then it cannot inhabit an environment

different of its super-org niz tion’s environment, bec use the sub-organization is part
of the super-organization.

WFR6: A norm must restrict the behavior of an Agent, a Role, an Agent playing

a Role, an Organization, a SubOrganization playing a Role or an Environment.
A norm must restrict the behavior of an entities, and, according to the NormML

metamodel, these are the possible involved entities of the norm (see Section 3.2.2).

WFR7: The subRole of a RoleHierarchy cannot be the superRole of the same
RoleHierarchy.
This rule is necessary to avoid cycles in the role hierarchy.

WFR8: The norms applied to an Agent restrict the actions of such Agent.
A norm must restrict the behavior of the entity involved in the norm, so a norm

cannot regulate the access of an agent action that is not one of the actions of the
agent itself.

WFR9: The norms applied to a Role restrict the actions of the Agents playing

such Role.
A norm must restrict the behavior of the entity involved in the norm, so the

behavior of the agents that play the role will be regulated by the norms applied to the
role they are playing. .

110

WFR10: The norms applied to an Agent playing a Role restrict the actions

defined by the Agent when playing such Role.
A norm must restrict the behavior of the entity involved in the norm, so the

behavior of the agent will only be regulated by such norm when it is playing such role.
Note that it will occur to the agents identified in the norm.

WFR11: The norms applied to an Organization restrict the actions of all Agents

that play Roles in such Organization and its SubOrganizations.
A norm must restrict the behavior of the entity involved in the norm, so at least

one agent that plays roles in such organization or its sub-organizations must have the
action regulated by the norm.

WFR12: The norms applied to an Environment restrict the actions of all the

Agents of such Environment.
A norm must restrict the behavior of the entity involved in the norm, so at least

one agent that inhabits such environment must have the action regulated by the
norm.

WFR13: The norms applied to an Environment must be defined in the context of

such Environment.
If a norm regulates the behavior of the agents that inhabits an environment, it

cannot be defined in the context of an organization or of another environment
because it will be regulating the behavior of entities in a reduced scope or out of its
appropriated scope.

WFR14: The norms applied to an Organization must be defined in the context of

such Organization, in the context of its organization hierarchy, or in the context
of the Environment inhabited by the Organization.
If a norm regulates the behavior of the agents that play roles in an

organization, it cannot be defined in the context of another organization out of its
organization hierarchy or in the context of an environment different of the
organiz tion’s environment bec use it will be regul ting the beh vior of entities of out
of its scope.

WFR15: The subOrganization of an OrganizationComposition cannot be the

superOrganization of the same OrganizationComposition.
This rule is necessary to avoid cycles in the organization composition.

WFR16: An AtomicCreate action must be related to an Entity, an Agent, a Role,
a Plan, a Belief, a Protocol, an Organization or an Environment resource.

WFR17: An AtomicUpdate action must be related to an Attribute, an
AssociationEnd, a Plan or a Belief resource.

WFR18: An AtomicDelete action must be related to an Entity, an Agent, a Role,
a Plan, a Belief, a Protocol, an Organization or an Environment resource.

WFR19: An AtomicRead action must be related to an Attribute or an
AssociationEnd resource.

WFR20: An AtomicExecute action must be related to a Method or an
AgentAction resource.

WFR21: An AtomicReceive action must be related to a Message resource.

111

WFR22: An AtomicSend action must be related to a Message resource.
WFR23: An AtomicAchieve action must be related to an Attribute or a Goal

resource.
WFR24: An AtomicEnter action must be related to an Organization or an

Environment resource.
WFR25: An AtomicLeave action must be related to an Organization or an

Environment resource.
WFR26: An AtomicCommit action must be related to a Role or a Goal resource.
WFR27: An AtomicCancel action must be related to a Role or a Goal resource.
WFR28: An EntityRead action must be related to an Entity resource.
WFR29: An EntityUpdate action must be related to an Entity resource.
WFR30: An EntityFullAccess action must be related to an Entity resource.
WFR31: An AttributeFullAccess action must be related to an Attribute resource.
WFR32: An AssociationEndFullAccess action must be related to an

AssociationEnd resource.
WFR33: A MessageFullAccess action must be related to a Message resource.
WFR34: An AgentUpdate action must be related to an Agent resource.
WFR35: An AgentFullAccess action must be related to an Agent resource.
WFR36: A RoleUpdate action must be related to a Role resource.
WFR37: A RoleFullAccess action must be related to a Role resource.
WFR38: An OrganizationUpdate action must be related to an Organization

resource.
WFR39: An OrganizationFullAccess action must be related to an Organization

resource.
WFR40: An EnvironmentUpdate action must be related to an Environment

resource.
WFR41: An EnvironmentFullAccess action must be related to an Environment

resource.
WFR42: A PlanExecute action must be related to a Plan resource.
WFR43: A PlanFullAccess action must be related to a Plan resource.
WFR44: A ProtocolReceive action must be related to a Protocol resource.
WFR45: A ProtocolSend action must be related to a Protocol resource.
WFR46: A ProtocolFullAccess action must be related to a Protocol resource.
WFR47: A BeliefFullAccess action must be related to a Belief resource.
WFR48: A GoalFullAccess action must be related to a Goal resource.

The rules WFR16 to WFR28 match the actions to their correct resources (see
Section 3.2.3, Table 3.1 and Appendix A for more details).

WFR49: The subAgentAction of an AgentActionHierarchy cannot be the

superAgentAction of the same AgentActionHierarchy.
This rule is necessary to avoid cycles in the agent action hierarchy.

WFR50: The subordinateAgentAction of an AgentActionComposition cannot be
the compositeAgentAction of the same AgentActionComposition.
This rule is necessary to avoid cycles in the agent action composition.

WFR51: A Message must belong to a Protocol as MessageReceivedByProtocol
or MessageSentByProtocol.
A message cannot be apart from an interaction protocol (see Figure 3.6).

112

WFR52: A Goal is the goal of an Agent or a Role.
A goal must belong to an entity. Such entity can be an agent identified by the

GoalOfAgent relationship or a role identified by the GoalOfRole relationship (see
Figure 3.6).

WFR53: A Belief is the belief of an Agent or a Role.

A belief must belong to an entity. Such entity can be an agent identified by the
BeliefOfAgent relationship or a role identified by the BeliefOfRole relationship (see
Figure 3.6).

WFR54: An AgentAction is the action of an Agent or an action of a Role being

played.
A goal must belong to an entity. Such entity can be an agent identified by the

ActionOfAgent relationship or a role identified by the ActionOfRoleBeingPlayed
relationship (see Figure 3.6).

WFR55: A norm cannot have more than one Before, After, Between and If

constraints.
A norm can only have one norm constraint of each type to avoid duplications.

In case of more than one clause need to be described to a norm constraint type, it
can be associated with the same norm constraint.

WFR56: A Before or an After constraint must be related to one Date or Action.

The before and after of a norm are time constraints, thus they need to be
associated with a date or with the execution of an action (see Figure 3.7).

WFR57: The before and the after of a Between constraint must be related to one

Date or Action.
The between of a norm is a time constraint, thus it need to be associated with

two dates or with the execution of two actions in order to define a time interval (see
Figure 3.7).

WFR58: The Action of an entity in the before of a Between constraint cannot be

in the after of the same Between to the same entity in the same context, and
vice-versa.
If the action in the before of the between is equal to the action in the after of

the same between to the same entity in the same context, then the between does not
constitute a valid time interval.

WFR59: The Date in the before of a Between constraint cannot be equal or

superior to the Date in the after of the same Between.
If the date in the before of the between is equal or superior to the date in the

after of the same between, then the between does not constitute a valid time interval.

WFR60: A If constraint must be related to one Date or two Operands.
The if constraint is a time constraint and also a conditional constraint, thus it

needs to be associated with a date or with a clause with values (see Section 3.2.4).

WFR61: If a Norm has an Attribute related to its If constraint, then the entity of
the norm must have permission to read this Attribute.

113

If the entity of the norm does not have permission to read the attribute, it will
not know when to fulfill the norm.

WFR62: A Norm that regulates the execution of a given Action cannot be

conditioned by the execution of the same Action by the same entity.
This rule is necessary to avoid cycles in the norm constitution.

WFR63: The value and the operator attributes of a Value and a If cannot be null.
This rule is necessary to make mandatory the attributes above, thus the norm

can be read.

WFR64: A Norm described in a Sanction cannot be the same Norm that has the
Sanction.
This rule is necess ry to void cycles in the norm’s s nctions constitution.

WFR65: A Reward to an entity cannot apply a NormProhibition or a
NormObligation to the same entity.
A reward must be a prize to the entity that fulfilled the norm, thus it does not

make sense to apply a prohibition or an obligation to the same entity.

WFR66: A Punishment to an entity cannot apply a NormPermission to the same
entity.
A punishment must be a penalty to the entity that violated the norm, thus it

does not make sense to apply a permission to the same entity.

APPENDIX D: Semantically opposite actions

 In the NormML metamodel each resource kind has a set of actions that can be

used to restrict the access to the resource. Some of those actions are semantically

opposite actions. In Table E.1 a mapping between semantically opposite actions and

the resources they control is described.

Semantically opposite actions Resources

AtomicCreate and AtomicDelete Entity, Agent, Role, Plan, Belief, Protocol, Organization and
Environment

AtomicEnter and AtomicLeave Organization and Environment

AtomicCommit and
AtomicCancel

Role and Goal

AtomicSend and AtomicReceive Message

ProtocolSend and
ProtocolReceive

Protocol

Table D.1 NormML semantically opposite actions

APPENDIX E: List of the graphical model stereotypes of the NormML concrete
syntax

 In Table E.1 a mapping between graphical model stereotypes and what they

represent is described.

Stereotype Represents

<<Environment>> An Environment
element

<<Organization>> An Organization
element

<<Agent>> An Agent element

<<Role>> A Role element

<<Entity>> An Entity element

<<Norm>> A Norm element

<<Permission>>, <<Prohibition>> and <<Obligation>> The type (or deontic
concept) of a Norm

element

<<Reward>> and <<Punishment>> The sanction type of
a Norm element

<<agentAction>>, <<agentActionAction>>, <<beliefAction>>, <<goalAction>>,
<<planAction>>, <<roleAction>>, <<messageAction>>, <<protocolAction>>,

<<environmentAction>>, <<organizationAction>>, <<entityAction>>,
<<attributeAction>>, <<methodAction>> and <<associationEndAction>>

The resource type
being accessed by a

Norm element

<<beforeAction>>, <<afterAction>>, <<betweenBeforeAction>> and
<<afterBetweenAction>>

An action constraint
attribute of a Norm

element

<<conditionalAttribute>>, <<conditionalGoal>> and <<conditionalBelief>> A conditional
constraint attribute
of a Norm element

<<before>>, <<after>>, <<between>> and <<if>> A date constraint
attribute of a Norm

element

Table E.1 NormML graphical model stereotypes

APPENDIX F: From NormML concrete models to abstract models

 For each Environment env of M, insert in M an object env of the class
Environment.

 For each Organization org of M, insert in M an object org of the class

Organization.
 For each OrganizationInhabitEnvironment relationship of M between env and

org, insert in M an OrganizationInhabitEnvironment link between env and org .

 For each composition relationship between two organizations org ¹

(suborganization) and org ² of M, insert in M an OrganizationComposition link

between org ¹ (suborganization) and org ².

 For each Entity e of M, insert in M an object e of the class Entity and, for each

Attribute a of an Entity e of M, insert in M (i) an object a of the class Attribute

and (ii) an EntityAttribute link between a and e . Also, for each Method m of an

Entity e of M, insert in M (i) an object m of the class Method and (ii) an

EntityMethod link between m and e .

 For each Association relationship ass of M between e¹ and e², insert in M (i) an

object assof the class Association; (ii) two objects endass ¹ and endass ²

of the class AssociationEnd; (iii) an AssocEndAssoc link between endass ¹

and ass ; (iv) an AssocEndAssoc link between endass ² and ass ; (v) an

EntityAssocEnd link between endass ¹ and e ¹; and (vi) an EntityAssocEnd

link between endass ² and e ².

 For each Agent ag of M, insert in M an object ag of the class Agent.

 For each AgentOfOrganization relationship of M between org and ag, insert in

M an AgentOfOrganization link between org and ag .

 For each AgentInhabitEnvironment relationship of M between env and ag,

insert in M an AgentInhabitEnvironment link between env and ag .

 For each Belief b of an Agent ag of M, insert in M (i) an object b of the class

Belief and (ii) a BeliefOfAgent link between b and ag .

 For each Goal g of an Agent ag of M, insert in M (i) an object g of the class

Goal and (ii) a GoalOfAgent link between g and ag .

 For each AgentAction ag-act of an Agent ag of M, insert in M (i) an object

actag of the class AgentAction and (ii) an ActionOfAgent link between

actag and ag .

 For each Plan p of an Agent ag of M, insert in M (i) an object p of the class

Plan; (ii) a PlanOfAgent link between p and ag ; (iii) a ActionOfPlan link

between p and actag for each agent action ag-act of p; and (iv) a

GoalOfPlan link between p and g for each goal g of p.

117

 For each Role r of M, insert in M an object r of the class Role.

 For each RoleOfOrganization relationship of M between org and r, insert in M

a RoleOfOrganization link between org and r .

 For each inheritance relationship between two roles r ¹ (subrole) and r ² of M,

insert in M a RoleHierarchy link between r ¹ (subrole) and r ².

 For each Protocol pro of a Role r of M, insert in M (i) an object pro of the

class Protocol; (ii) a ProtocolOfRole link between pro and r ; (iii) an object

messof the class Message and a MessageSentByProtocol link between pro

and mess for e ch “sent mess ge” mess of pro; and (iv) an object mess of the

class Message and a MessageReceivedByProtocol link between pro and

mess for e ch “received mess ge” mess of pro.

 For each Belief b of a Role r of M, insert in M (i) an object b of the class

Belief and (ii) a BeliefOfRole link between b and r .

 For each Goal g of a Role r of M, insert in M (i) an object g of the class Goal

and (ii) a GoalOfRole link between g and r .

 For each AgentAction ag-act of a Role r of M, insert in M (i) an object

actag of the class AgentAction and (ii) an ActionOfRoleBeingPlayed link

between actag and r .

 For each AgentPlayingRole relationship of M between ag and r, insert in M an

AgentPlayingRole link between ag and r .

 For each SubOrgPlayingRole relationship of M between org and r, insert in M

an SubOrgPlayingRole link between org and r .

 For each Norm n of M that states a permission, insert in M an object n of the
class NormPermission.

 For each Norm n of M that states a prohibition, insert in M an object n of the
class NormProhibition.

 For each Norm n of M that states an obligation, insert in M an object n of the
class NormObligation.

 For each NormInContextOrganization relationship of M between org and n,

insert in M a NormInContextOrganization link between org and n .

 For each NormInContextEnvironment relationship of M between env and n,

insert in M a NormInContextEnvironment link between env and n .
 For each NormAssignmentAgent relationship of M between ag and n, insert in

M a NormAssignmentAgent link between ag and n .

 For each NormAssignmentRole relationship of M between r and n, insert in M

a NormAssignmentRole link between r and n .
 For each NormAssignmentOrganization relationship of M between org and n,

insert in M a NormAssignmentRole link between org and n .

 For each NormAssignmentEnvironment relationship of M between env and n,

insert in M a NormAssignmentRole link between env and n .

118

 For each NormAssignmentAgentPlayingRole relationship of M between r, ag

and n, insert in M a NormAssignmentAgentPlayingRole link between r , ag

and n .
 For each NormAssignmentSubOrgPlayingRole relationship of M between r,

org and n, insert in M a NormAssignmentSubOrgPlayingRole link between r ,

org and n .

 For each resource action attribute res of Norm n of M, must be inserted in M

(i) an object act of the class Action related to the action type of res; (ii) an

ActionAssignmentNorm link between act and n ; and (iii) a

RessourceAssignement link between act and the object of the type defined in
the stereotype of res which name is equal to res.

E.g.: For each resource action attribute res of Norm n of M that is an

“ ttributeAction” nd h s the ction type “upd te”, insert in M (i) an

object act of the class AtomicUpdate; (ii) an ActionAssignmentNorm

link between act and n ; and (iii) a RessourceAssignement link

between act and the object a which name is equal to res.
 For each action constraint attribute acon of Norm n of M that has a res, must be

inserted in M (i) an object act of the class Action related to the action type of
res; (ii) a norm constraint object of the type defined in the stereotype of acon;

(iii) the correct link between act and the norm constraint object; (iv) a

NormConstraintAssignment link between n and the norm constraint object;

and (v) a RessourceAssignement link between act and the object of the type
defined in the stereotype of res which name is equal to res.

E.g.: For each action constraint attribute acon of Norm n of M that is a
“beforeAction” nd h s res th t is “mess geAction” nd h s the

 ction type “receive”, insert in M (i) an object act of the class

AtomicReceive; (ii) an object bef of the class Before; (iii) a

BeforeAction link between act and the object bef ; (iv) a

NormConstraintAssignment link between n and bef ; and (v) a

RessourceAssignement link between act and the mess object which
name is equal to acon.

 For each conditional constraint attribute ccon of Norm n of M, must be inserted

in M (i) an object v of the class Value if ccon has a value v defined as its

initial value; (ii) an object if of the class If ; (iii) a NormConstraintAssignment

link between if and the object n ; (iv) a ConditionalOperand link between n

,the object of the type defined in the stereotype of ccon which name is equal to
ccon and the object which name is equal to the initial value of ccon; and (v) the

value of the type of ccon as the value of the operator attribute of the object if .

E.g.: For each conditional constraint attribute ccon of Norm n of M that is
 “conditionalAttribute” nd h s value v defined as its initial value,

insert in M (i) an object v of the class Value; (ii) an object if of the

class If; (iii) a NormConstraintAssignment link between if and n ; (iv) a

119

ConditionalOperand link between n , v and the object a which name is

equal to ccon; and (v) the value of the type of ccon as the value of the

operator attribute of the object if .

 For each date constraint attribute dcon of Norm n of M, must be inserted in M
(i) a norm constraint object of the type defined in the stereotype of dcon; (ii) an

object d of the class Date; (iii) the correct link between d and the norm

constraint object; and (iv) a NormConstraintAssignment link between n and

the norm constraint object.
E.g.: For each date constraint attribute dcon of Norm n of M that is a

“before”, insert in M (i) a bef object of the class Before; (ii) an object d

of the class Date; (iii) a BeforeDate link between d and bef ; and (iv) a

NormConstraintAssignment link between n and bef .

 For each Norm n¹ of M that states a reward, insert in M (i) a new object rew of

the class Reward; (ii) a SanctionAppliesNorm link between n ¹ and rew ; and

(iii) a SanctionOfNorm link between n ² and rew where n² comes from the
SanctionOfNorm relationship of M between n¹ and n².

 For each Norm n¹ of M that states a punishment, insert in M (i) a new object

pun of the class Punishment; (ii) a SanctionAppliesNorm link between n ¹ and

pun ; and (iii) a SanctionOfNorm link between n ² and pun where n² comes

from the SanctionOfNorm relationship of M between n¹ and n².

APPENDIX G: Local conference management system abstract models

 In the following we illustrate all the NormML abstract models of the norms of

the local conference management system. This example application was presented

before in Chapter 5 and modeled in Chapter 6.

Figure G.1 N1 and N2

121

Figure G.2 N3

122

Figure G.3 N4 and N5

123

Figure G.4 N4 and N6

124

Figure G.5 N7

125

Figure G.6 N8

126

Figure G.7 N9 and N10

127

Figure G.8 N9 and N11

128

APPENDIX H: Conflict Cases

 In the following we illustrate all the NormML conflict cases implemented by the

check for conflicts operations. The check for conflicts of NormML was presented

before in Section 3.4.

Context

 Let’s consider the conflict c ses of the context analysis. It is important to

check for conflicts: (i) if the norms are defined in the same context; (ii) if one norm is

defined in the context of an environment, and the other in the context of an

organization that inhabits such an environment; and (iii) if one norm is defined in the

context of an organization and the other in the same hierarchy of organizations.

 The context of a norm determines the scope where the norm is applied, i.e.,

the scope where the agents must fulfill the norm. According to the NormML

metamodel (see Figure 3.10), a norm can be defined in the context of an

environment or in the context of an organization. Organizations inhabit environments

and might be composed of sub-organizations. Thus, let’s consider the set of possible

context relations between two norms.

Possible
cases

First norm
context

Second norm context

(a) An environment X An environment X

(b) An environment X An environment Y

(c) An organization a An organization a

(d) An organization a An organization b

(e) An organization a An organization c that is sub-organization of the organization
a

(f) An organization a An organization c that is sub-organization of the organization
b

(g) An environment X An organization a that inhabits the environment X

(h) An environment X An organization a that inhabits the environment Y

Table H.1 Possible context relations between two norms

 When analyzing the contexts of two norms we need to observe if their contexts

are related, i.e. if the scope of their application intersects. If the contexts of the norms

129

are not related, there is no need to keep looking for conflicts because the norms

defined in not related contexts are not related to each other, and thus cannot conflict.

 The cases (a), (c), (e) and (g) of Table H.1 may result in conflicts because the

scope of application of the two norms intersects: the cases (a) and (c) are covered by

item (i); the case (g) is covered by item (ii); and the case (e) is covered by item (iii).

The cases (b), (d), (f) and (h) cannot result in conflicts because the scope of the first

norm will never intersect with the scope of the second norm, so the norms contexts

are not related.

Involved Entities

 Let’s consider the conflict c ses of the involved entities of the norms. The

involved entities of a norm are the entities whose behavior is being restricted by the

norm. As illustrated in Figure 3.4 of chapter XXXX, a norm in NormML can regulate

the behavior of: an agent, a role (i.e. all agents that play a given role), a specific

agent when it is playing a given role, an organization (i.e. all agents that play roles in

an organization), an sub-organization when it is playing a role (i.e. all agents that play

roles in an sub-organization while such sub-organization is playing a role in its super-

organization) and, an environment (i.e. all agents that inhabit an environment).

Therefore, It is necessary to check for conflicts: (i) between norms applied to

the same entity; (ii) between a norm defined to a role and a norm defined to an agent

or a sub-organization that can play that role; (iii) between norms applied to different

roles played by the same agent or sub-organization; (iv) between norms applied to

roles in the same hierarchy of roles; (v) between the norms of an organization and

norms of roles, agents and sub-organizations of this organization; and (vi) between

the norms of an environment and norms of agents and organizations of this

environment. Table H.2 illustrates the set relationships between the involved entities

of two norms.

Possible
cases

First norm involved entity Second norm involved entity

(a) An agent ag1 An agent ag1

(’) An agent ag1 An agent ag2

(b) A role r1 A role r1

130

Possible
cases

First norm involved entity Second norm involved entity

(b’) A role r1 A role r2

(c) A role r1 A role r3 that is sub-role of the role r1

(c’) A role r1 A role r3 that is sub-role of the role r2

(d) A role r1 An agent ag1 that can play the role r1

(d’) A role r2 An agent ag1 that cannot play the role r2

(e) A role r1 A sub-organization s1 that can play the role r1

(e’) A role r2 A sub-organization s1 that cannot play the role
r2

(f) A role r2 that can be played by an
agent ag1

A role r3 that can also be played by the agent
ag1

(f’) A role r2 that can be played by an
agent ag1

A role r1 that cannot be played by the agent
ag1

(g) A role r2 that can be played by a
sub-organization s1

A role r3 that can also be played by the sub-
organization s1

(g’) A role r2 that can be played by a
sub-organization s1

A role r1 that cannot be played by the sub-
organization s1

(h) An agent ag1 while playing a given
role r1

An agent ag1 while playing the same given
role r1

(h’) An agent ag1 while playing a given
role r1

An agent ag1 while playing a given role r2

(h’’) An agent ag1 while playing a given
role r1

An agent ag2 while playing the same given
role r1

(i) A sub-organization s1 while playing
a given role r1

A sub-organization s1 while playing the same
given role r1

(i’) A sub-organization s1 while playing
a given role r1

A sub-organization s1 while playing a given
role r2

(i’’) A sub-organization s1 while playing
a given role r1

A sub-organization s2 while playing the same
given role r1

(j) An organization org1 An organization org1

(j’) An organization org1 An organization org2

(k) An organization org1 An agent ag1 of the organization org1

(k’) An organization org1 An agent ag1 of the organization org2

(l) An organization org1 A role r1 of the organization org1

(l’) An organization org1 A role r1 of the organization org2

(m) An organization org1 An organization org3 that is sub-organization
of the organization org1

(m’) An organization org1 An organization org3 that is sub-organization
of the organization org2

(n) An environment env1 An environment env1

(n’) An environment env1 An environment env2

(o) An environment env1 An agent ag1 that inhabits the environment
env1

(o’) An environment env1 An agent ag1 that inhabits the environment
env2

(p) An environment env1 An organization org1 that inhabits the
environment env1

(p’) An environment env1 An organization org1 that inhabits the
environment env2

Table H.2 Possible involved entities relations between two norms

 When analyzing the involved entities of two norms we need to observe if their

involved entities are the same or if their involved entities are related, i.e. if there are

any relations between entities whose behavior are being regulated by the norms.

131

These relations are defined by the relationships AgentPlayingRole,

AgentOfOrganization, AgentInhabitsEnvironment, SubOrgPlayingRole,

OrganizationComposition, RoleHierarchy, RoleOfOrganization and

OrganizationInhabitEnvironment of the NormML metamodel (see Figures 3.3 and 3.9

in chapter XXX). If the entities of the norms are not related, i.e., if they apply to

entities that are not related to each other, the norms are not in conflict.

 The cases (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), (m), (n), (o) and (p) of

Table H.2 may result in conflicts because the involved entities of the two norms are

related to each other: the cases (a), (b), (h), (i), (j) and (n) are covered by item (i); the

cases (d) and (e) are covered by item (ii); the cases (f) and (g) are covered by item

(iii); the case (c) is covered by item (iv); the cases (k), (l) and (m) are covered by item

(v) and; the cases (o) and (p) are covered by item (vi).

 The c ses (’), (b’), (c’), (d’), (e’), (f’), (g’), (h’), (h’’), (i’), (i’’), (j’), (k’), (l’), (m’),

(n’), (o’) nd (p’) c nnot result in conflicts bec use the involved entity of the first norm

are not related to the involved entity of the second norm by any way.

Deontic Concept

 In 1951, Georg Henrik von Wright published a pioneer plausible system of

deontic logic (von Wright, 1951). His work was discussed and refined by various

researchers, resulting in the so-called standard deontic logic (Føllesdal and Hilpinen,

1971).

 The standard deontic logic has three operators O, P and F that represent

respectively the deontic concepts of obligation, permission and prohibition. According

to the standard deontic logic there is a deontic inconsistency when there is a O(p)

and a F(p) or a P(p) and a F(p). Also each O(p) implies in a P(p). Another important

point to consider about deontic logic is: if there is a O(p) and a O(~p) it is said that

they are mutually contradictory obligations, and the same is valid to prohibitions.

 With NormML it is possible to describe norms using the three deontic

concepts: obligation, permission and prohibition (see Figure 3.3). Considering the

conflict cases of the deontic concept analysis based on the standard deontic logic,

two norms may be in conflict if: (i) one norm states a permission and another states a

132

prohibition; (ii) one norm states an obligation and another states a prohibition; and

(iii) one norm states a permission and another one states an obligation in the period

the permission is not activated; and (iv) both norms state an obligation or both norms

state a prohibition to do opposite actions. Thus, let’s consider the set of possible

deontic concepts relations between two norms.

Possible cases First norm deontic concept Second norm deontic concept

(a) Obligation Obligation

(b) Prohibition Prohibition

(c) Permission Permission

(d) Obligation Prohibition

(e) Obligation Permission

(f) Prohibition Permission

Table H.3 Possible deontic concepts relations between two norms

 The cases (a), (b), (d), (e) and (f) of Table H.3 may result in conflicts: the case

(f) is covered by item (i); the case (d) is covered by item (ii); the case (e) is covered

by item (iii); and the cases (a) and (b) are covered by item (iv). The case (c) is the

only that cannot result in conflicts because a permission do not affect the influence of

another permission.

Action

 After the checking of the deontic concept, the next element to be examined is

the action of the norms. Let’s consider the three conflict c ses of the action analysis.

If one of the cases (d), (e) or (f) of the deontic concept analysis is true, it is important

to check if the actions being regulated by the norms are of: (i) the same type on the

same resource; or (ii) related types on the same or related resources (as defined in

the dialect action hierarchy, see Appendix B).

 If one of the cases (a) or (b) of the deontic concept analysis is true, so, it is

important to check if the actions of the norms are (iii) semantically opposite and

restrict the access of the same resource (see Appendix D to the complete list of

semantically opposite actions). Actions of that kind are analyzed because they are

mutually contradictory when they refer to the same resource.

133

 Thus, let’s consider the set of possible ctions rel tions between two norms

based on the relations of the actions dialect of NormML.

Possible
cases

First norm action Second norm action

(a) An action act1 on a
resource res1

An action act1 on a resource res1

(b) An action act1 on a
resource res1

An action act1 on a resource res2

(c) An action act1 on a
resource res1

An action act2 related to the action act1 on a resource res1

(d) An action act1 on a
resource res1

An action act2 related to the action act1 on a resource res2
related to the resource res1

(e) An action act1 on a
resource res1

An action act2 related to the action act1 on a resource res2
not related to the resource res1

(f) An action act1 on a
resource res1

An action act2 not related to the action act1 on a resource
res1

(g) An action act1 on a
resource res1

An action act2 semantically opposite to the action act1

on a resource res1

(h) An action act1 on a
resource res1

An action act2 semantically opposite to the action act1

on a resource res2

Table H.4 Possible actions relations between two norms

 The cases (a), (c), (d) and (g) of Table H.4 may result in conflicts because the

actions of the norms are related to each other according to the actions dialect of

NormML: the case (a) is covered by item (i); the cases (c) and (d) are covered by

item (ii); and the case (g) is covered by item (iii). The cases (b), (e), (f) and (h) cannot

result in conflicts because the norms actions are not related to each other or because

they apply to different resources.

Activation Constraints

 Finally, let’s reflect on the conflict c ses of the activation constraints analysis.

Two norms may be in conflict: (i) if one norm is not constrained by any period of time;

(ii) if the periods established by actions and dates of the invariants Before, After,

Between and If intersect; (iii) in case of two If conditions, if the values related to the

same attribute or belief intersects (e.g.: x>10 and x=15); and (iv) in case of two If

conditions, if the values related to the same goal are equal.

134

 Norms have a period during while they are active, i.e., during while their

restrictions must be fulfilled. To describe this activation period of a norm one can

define constraints to it. Norms can be activated by one constraint or a set of

constraints. NormML has four kinds of norm constraint: before, after, between and if

(see Figure 3.7). The before, after and between constraints can be associated with

actions or dates, and the if constraint can be associated with a date, a belief, a goal

or an attribute. In Section 3.2.4 it is explained in details how each norm constraint of

NormML can be used to describe the activation period of a norm. Thus, let’s

consider the set of possible activation constraints relations between two norms

illustrated in Table H.5.

Possible
cases

First norm activation constraint Second norm activation constraint

(a) None None

(b) None A before, after, between or if constraint

(c) A before constraint associated with an
action a

A before constraint associated with an action a

(c’) A before constraint associated with an
action a

A before constraint associated with an action b

(d) An after constraint associated with an
action a

An after constraint associated with an action a

(d’) An after constraint associated with an
action a

An after constraint associated with an action b

(e) A before constraint An after constraint

(f) A between constraint associated with
a before action a and an after action b

A between constraint associated with a before
action a and an after action b

(f’) A between constraint associated with
a before action a and an after action b

A between constraint associated with a before
action a and an after action c

(f’’) A between constraint associated with
a before action a and an after action b

A between constraint associated with a before
action c and an after action b

(f’’’) A between constraint associated with
a before action a and an after action b

A between constraint associated with a before
action c and an after action d

(g) A between constraint associated with
a before action a and an after action b

A before constraint associated with an action a

(g’) A between constraint associated with
a before action a and an after action b

A before constraint associated with an action b
or c

(h) A between constraint associated with
a before action a and an after action b

An after constraint associated with an action b

(h’) A between constraint associated with
a before action a and an after action b

An after constraint associated with an action a
or c

(i) A before, after or between constraint
associated with actions

A before, after or between constraint
associated with dates

(j) A before, after or between constraint
associated with actions

An if constraint

(k) A before, after, between or if
constraint associated with dates

An if constraint associated with beliefs,
attributes, goals or values

(l) A before constraint associated with a
date a

A before constraint associated with a date b ≤

date a

(l’) A before constraint associated with a
date a

A before constraint associated with a date b >

date a

(m) An after constraint associated with a An after constraint associated with a date b ≥

135

Possible
cases

First norm activation constraint Second norm activation constraint

date a date a

(m’) An after constraint associated with a
date a

An after constraint associated with a date b <

date a

(n) A before constraint associated with a
date a

An after constraint associated with a date b <

date a

(n’) A before constraint associated with a
date a

An after constraint associated with a date b ≥

date a

(o) A between constraint associated with
a before date a and an after date b

A between constraint associated with a before
action c and an after action d ≤ a

(o’) A between constraint associated with
a before date a and an after date b

A between constraint associated with a before
action c and an after action d > a

(p) A between constraint associated with
a before date a and an after date b

A before constraint associated with a date c >
b

(p’) A between constraint associated with
a before date a and an after date b

A before constraint associated with a date c ≤
b

(q) A between constraint associated with
a before date a and an after date b

An after constraint associated with a date c < a

(q’) A between constraint associated with
a before date a and an after date b

An after constraint associated with a date c ≥ a

(r) An if constraint associated with a date
a

An if constraint associated with a date a

(r’) An if constraint associated with a date
a

An if constraint associated with a date b

(s) An if constraint associated with a date
a

A before constraint associated with a date b >
a

(s’) An if constraint associated with a date
a

A before constraint associated with a date b ≤
a

(t) An if constraint associated with a date
a

An after constraint associated with a date b < a

(t’) An if constraint associated with a date
a

An after constraint associated with a date b ≥ a

(u) An if constraint associated with a date
a

A between constraint associated with a before
action b and an after action c, where c < a < b

(u’) An if constraint associated with a date
a

A between constraint associated with a before
action b and an after action c, where c ≤ a or a

≥ b

(v) An if constraint associated with an
attribute a with a value v

An if constraint associated with an attribute a
with a value ’ that intersects v

(v’) An if constraint associated with an
attribute a with a value v

An if constraint associated with an attribute a
with a value ’ that does not intersect v

(v’’) An if constraint associated with an
attribute a

An if constraint associated with an attribute b

(x) An if constraint associated with a
belief a with a value v

An if constraint associated with a belief a with
a value ’ that intersects v

(x’) An if constraint associated with a
belief a with a value v

An if constraint associated with a belief a with
a value ’ that does not intersect v

(x’’) An if constraint associated with a
belief a

An if constraint associated with a belief b

(w) An if constraint associated with a goal
a with a value v

An if constraint associated with a goal a with a
value ’ = v

(w’) An if constraint associated with a goal
a with a value v

An if constraint associated with a goal a with a
value ’ <> v

(w’’) An if constraint associated with a goal
a

An if constraint associated with a goal b

(y) An if constraint associated with an
attribute

An if constraint associated with a belief

(y’) An if constraint associated with an An if constraint associated with a goal

136

Possible
cases

First norm activation constraint Second norm activation constraint

attribute

(z) An if constraint associated with a
belief

An if constraint associated with a goal

Table H.5 Possible activation constraints relations between two norms

 The activation period of a norm corresponds to the period when the entities of

the norm must fulfill the norm. When analyzing the activation constraints of two

norms we need to observe if they can be active at the same time. If they cannot be

active at the same time they cannot conflict because the entities of the norm will be

able to fulfill the two norms separately.

 The cases (a), (b), (c), (d), (f), (f’), (f’’), (g), (h), (e), (m), (n), (o), (p), (q), (r), (s),

(t), (u), (v), (x) and (w) of Table H.5 will result in conflicts because the two norms will

be active at the same time interval: the cases (a) and (b) are covered by item (i); the

cases (c), (d), (f), (f’), (f’’), (g), (h), (e), (m), (n), (o), (p), (q), (r), (s), (t) and (u) are

covered by item (ii); the cases (v) and (x) are covered by item (iii); and the case (w) is

covered by item (iv).

 The c ses (l’), (m’), (n’), (o’), (p’), (q’), (r’), (s’), (t’), (u’), (v’), (x’) nd (w’) c nnot

result in conflicts because the two norms will never be active at the same time. Our

 ppro ch ssumes th t the c ses (c’), (d’), (e), (f’’’), (g’), (h’), (i), (j), (k), (v’’), (x’’),

(w’’), (y’), (y’’) nd (z) re lso not in conflicts bec use these c ses c nnot be

analyzed at design time.

