
Fluminense Federal University

CARLOS ROBERTO DE OLIVEIRA JUNIOR

Experimentation with virtual machine migration

and replication mechanisms

NITEROI

2011

CARLOS ROBERTO DE OLIVEIRA JUNIOR

Experimentation with virtual machine migration

and replication mechanisms

Master thesis submitted to the Graduate
School of Computation of Fluminense Fed-
eral University as a partial requirement for
the degree of Master in Science. Topic Area:
Parallel and Distributed Computing.

Supervisor:

ORLANDO GOMES LOQUES FILHO

Fluminense Federal University

NITEROI

2011

Experimentation with virtual machine migration and replication

mechanisms

Carlos Roberto de Oliveira Junior

Master thesis submitted to the Graduate

School of Computation of Fluminense Fed-

eral University as a partial requirement for

the degree of Master in Science. Topic Area:

Parallel and Distributed Computing.

Approved by:

Prof. Orlando Gomes Loques Filho, Ph.D. / IC-UFF

Chair

Prof. Julius Cesar Barreto Leite, Ph.D. / IC-UFF

Prof. Alexandre Sztajnberg, Ph.D. / IME-UERJ

Niteroi, September 2011.

“Commit thy works unto the LORD, and thy thoughts shall be established.”

Proverbs 16:3

“It’s time to start living the life you’ve imagined.”

Henry James

Abstract

According to recent studies, 90% of the time an user is using a computer is spent on
the Internet. As a result, many Internet applications have been developed targeting this
public. Most part of these applications are multi-tier (e.g., e-commerce sites and social
networks), consisting of application and database tiers, and several of them cannot be
supported by a single physical machine.

In this work we use a typical virtualized server architecture to perform basic experi-
ments using migration and replication mechanisms. In this architecture is assumed that
both application and database tiers are implemented by virtual machines (VMs), which
can be configured (i.e., added, removed or even dimensioned) dynamically. The architec-
ture includes mechanisms for managing both application and database tiers, allowing the
experimentation of different configuration management policies. To manage the applica-
tions in our architecture, a layer of proxies is interposed between clients and servers to
intercept requests generated by clients. These proxies permit the load balancing in the
different tiers. As we replicate VMs, both application and database tiers can be supported
by different physical machines.

Using this architecture, we have carried out a set of experiments using the Rubis
benchmark tool, that simulates a typical multi-tier application, the eBay site. In our
experiments we evaluated the performance disruption incurred during the movement or
replication of VMs. We also show in our experiments that using VM replication is possible
to balance the workload among different servers in a cluster. Thus, the ability to dynam-
ically distribute server workloads in a virtualized server environment allows for using the
dynamic optimization model for power and performance management, proposed by our
group, in this multi-tier architecture.

Keywords: Virtualized web clusters, Virtual machine migration, Virtual ma-
chine replication.

Shorthands

API : Application Programming Interface

CPU : Central Processing Unit

DVFS : Dynamic Voltage and Frequency Scaling

HTML : HyperText Markup Language

HTTP : Hyper-Text Transfer Protocol

IT : Information Technology

NFS : Network File System

PC : Personal Computer

PHP : PHP: Hypertext Preprocessor

QOS : Quality of Service

RAM : Random Access Memory

SLA : Service Level Agreement

TCO : Total Cost of Ownership

VCPU : Virtual Central Processing Unit

VM : Virtual Machine

VMM : Virtual Machine Monitor

Contents

List of Figures viii

1 Introduction 1

2 Proposal 4

3 Architecture and Experiment Environment 8

3.1 Basic cluster architecture . 8

3.1.1 Testbed for experiments in the basic architecture 10

3.2 Multi-tier cluster architecture . 11

3.2.1 Testbed for multi-tier applications 11

3.3 Workload generation . 14

3.4 Summary . 16

4 Implementation Mechanisms 17

4.1 VM migration . 17

4.2 VM Replication . 18

4.3 Application-tier Replication . 19

4.4 Database-tier Replication . 19

4.4.1 MySQL Proxy . 21

4.5 Summary . 21

5 Experimental evaluation 22

5.1 Dynamic allocation’s costs . 22

Contents vii

5.1.1 Cold migration . 23

5.1.2 Live migration . 23

5.1.3 Replication . 25

5.1.4 Section Summary . 27

5.2 Management of multi-tier architecture . 28

5.2.1 Provisioning a multi-tier application 28

5.2.2 Replication mechanisms . 30

5.2.3 Keeping CPU utilization under a threshold 32

5.2.4 Improving energy efficiency in virtualized environments 35

5.2.5 Section Summary . 37

5.3 Summary . 37

6 Related work 38

7 Conclusion 42

7.1 Contributions . 42

7.2 Future Work . 43

References 44

Appendix A -- Xen hypervisor 50

Appendix B -- Response time measurement 52

Appendix C -- Physical machines configuration 53

List of Figures

2.1 Relationship among throughput, response time, and CPU utilization 5

3.1 Server cluster architecture . 9

3.2 Basic cluster testbed setup . 10

3.3 System architecture . 11

3.4 Cluster testbed setup . 12

3.5 System implementation . 13

3.6 Loop of control for client management . 15

4.1 Migration timeline . 18

5.1 Execution of the cold migration scenario: App1 (top) and App2 (bottom) . 24

5.2 Execution of the live migration scenario: App1 (top) and App2 (bottom) . 25

5.3 Execution of the replication scenario: App1 (top) and App2 (bottom) . . . 26

5.4 Resource provisioning . 29

5.5 Physical machines allocation . 31

5.6 Adding/Removing resources to keep CPU utilization 32

5.7 Keeping CPU utilization by relocating a VM 33

5.8 Reducing CPU utilization by increasing Application’s memory 34

5.9 Comparison between a server using DVFS and without using it 36

Chapter 1

Introduction

In recent years we have seen an increase in demand for web content and services.

According to Google [20], 90% of the time an user is using a computer is spent on the

Internet. As a result, several Internet applications have been developed targeting this

public. Most of these applications are multi-tier, consisting of application and database

tiers (e.g., e-commerce sites and social networks).

In this context, to respond to such high demand, web content and service providers are

building large data centers to support many different Internet applications and services.

A data center is a large-scale distributed system that consists of hundreds or thousands

of machines linked by a fast network. Servers in these data centers are used to store

content and to process user’s requests. The performance of a web server system plays an

important role in the success of Internet related companies. Long response delays would

frustrate users’ interest in the interaction with the web server and they may give up

browsing the web site. For e-commerce web sites, such degradation is especially harmful,

as it may lead to significant loss in revenue and decrement in customer visits.

The growth in the number and size of data centers creates, at least, two more problems

for enterprises: (1) it increases the Total Cost of Ownership (TCO) because more money

is spent to buy computers and to pay IT professionals salaries. Moreover, according to [3],

the costs associated with power and cooling could overtake hardware acquisition costs.

Thus, requiring major investigation of techniques to improve the energy efficiency of their

computing infrastructure [6, 18, 64]; (2) for many industries, data centers are one of the

largest sources of CO2 emissions. As a group, their overall emissions are significant, in-

scale with industries such as airlines. Data centers are expected to quadruple their CO2

emissions and to contribute to 30% of the world’s carbon-dioxide emissions by 2020. In

addition, it will surpass those CO2 emissions of the airline industry by 2020 [42]. Thus,

1 Introduction 2

achieving power-efficient in today’s Internet server systems is a fundamental concern.

Although there are high peak demands, the average server utilization remains low

(the average resource utilization in traditional data centers range between 5-20% [22]),

creating tremendous ”waste” in terms of capital employed and energy used [42]. To

increase resources utilization, server virtualization has been widely adopted in data centers

around the world. Virtualization allows servers to run multiple independent application

servers in a physical machine.

Instead of having a physical machine running a single application server. Each ap-

plication server runs on the top of a Virtual Machine (VM). A physical server runs one

or more VMs that dynamically share the underlying hardware resources leading to an

increased resource utilization, energy savings and reduced TCO. It is recognized that the

dynamic consolidation of application workloads based on virtualization techniques helps

to increase server utilization, allowing to reduce the use of computer resources and the as-

sociated power demands [16, 39, 68, 72, 83]. Specifically, the ability to dynamically move

application workloads around in a virtualized server environment enables some physical

machines to be turned off in periods of low activity, and when the demand increases, it

allows for bringing them up back and distributing the application workloads across them.

Moreover, this on/off mechanism can be combined with DVFS (Dynamic Voltage and

Frequency Scaling) - a technique that consists of varying the frequency and voltage of the

microprocessor at runtime according to processing needs - to provide even better power

and performance optimizations. This presents an efficient way of running a data center

from a power management point of view [57].

Several Virtual Machine Monitors (VMMs), also known as hypervisors, like Xen [2]

and VMware [21] have been developed to support server virtualization. They act as a

layer between the virtual machine and the actual hardware. Each VM is subject to man-

agement operations such as creation, deletion, and migration between physical machines,

as well as run-time resource allocation. These features enable resource sharing in arbi-

trary combinations between applications and physical servers and provide the means for

efficient server consolidation.

The work presented in this Master dissertation is part of a project that aims to re-

duce power consumption using a dynamic optimization model for power and performance

management of virtualized clusters [55, 58, 59, 60, 61]. However, in the scope of this

work, we contribute describing and evaluating, through experiments, mechanisms that

have been used by virtualized web clusters to increase resource utilization e.g., virtual

1 Introduction 3

machine migration and replication. To perform experiments in this work, we have used

an architecture that integrates mechanisms provided by Apache [75] and MySQL [47],

that allowed the experimentation with a multi-tier application.

The remainder of this Master dissertation is organized as follows: In Chapter 2 we

present the proposal of this work. In Chapter 3 we present a description of the testbed

we have used to carried out experiments. The mechanisms used to perform virtual ma-

chine migration and replication are described in Chapter 4. Experimental evaluation is

presented in Chapter 5. Related works are presented in Chapter 6. Finally, Chapter

7 presents conclusions and outlines directions for future work. In the Appendix A, we

briefly describe the Xen hypervisor used in this work. In the Appendix B it is presented

how the response time is measured in this work. We present the physical machines used

in our experiments in the Appendix C.

Chapter 2

Proposal

Our goal in this work is to describe and evaluate, through experiments, mechanisms

that allow applications to be supported by a virtualized environment. In the first phase of

our work we have carried out experiments aiming to evaluate the migration mechanisms

provided by VMMs and the VM replication in the application-tier. To perform these

experiments, we used the architecture presented in Section 3.1, that had already been used

by other researcher of our group. The results were published in [52] and are presented in

Section 5.1. The httperf tool [25] was used in this phase for generating workload for the

application.

As the architecture presented in Section 3.1 has no mechanisms to support the database-

tier, in a second phase, we have integrated mechanisms to allow the experimentation with

multi-tier applications. Thus, the contribution of this master dissertation consists on the

integration of these mechanisms and the experiments we have carried out during this

work. In the second phase of our experiments we used the RuBiS benchmark tool [67] to

generate workload to the architecture presented in Section 3.2.

An important information for the experiments in this master dissertation is provided

in Figure 2.1. When the CPU utilization of an application is low, the average response

time is also low. This is expected since no time is spent queuing due to the presence of

other requests. On the other hand, when the utilization is high, the response time goes up

abruptly as the CPU utilization gets close to 400% (the maximum value for utilization is

400% because we are using quad-core machines and each core represents 100%). In order

to meet fair response time requirements, we shall perform VM migration or replication

before the machine saturates, dimensioned for playing safe as 300% of CPU utilization.

This leaves an amount of 100% CPU capacity available to be used by the VM management

2 Proposal 5

domain (Dom0) on the physical servers during the migration or replication activity, this

utilization threshold was found suitable (because it keeps the request response time low) in

our previous work [52], but other values could be used depending on specific performance

requirements.

Figure 2.1: Relationship among throughput, response time, and CPU utilization

We use the CPU utilization as a metric to perform VM migration or replication since

this is the metric used in the context of the project this master dissertation is inserted.

However, in a real system, other metrics can be used to evaluate if a machine is saturated.

As an example, authors in [29], use the response time. In addition, in a real system,

it would be interest for an optimization model to use both migration and replication

mechanisms. However, in this work we use no optimization model, thus we use migration

or replication mechanisms separately according to the experiment goal.

To collect the CPU utilization we used a script, termed Monitor 1 in this master

dissertation, that monitors the CPU utilization of the physical machines and VMs. The

Monitor runs in the front-end physical machine and uses XmlRpc to communicate with

the worker physical machines and collects the CPU utilization (for the Dom0 and the

VMs) measured in the Dom0 of each worker machine. The Monitor runs in a loop and

the CPU utilization is measured, using Xentop [27], each second.

1Implemented by Vinicius Petrucci in [56].

2 Proposal 6

To perform migration or replication activities when the CPU utilization achieves the

threshold of 300%, we used the OpenNebula toolkit [53] in the first phase of experiments.

For the experiments in the second phase of our work, we implemented a script, termed

Manager in this master dissertation, that runs in the front-end physical machine and uses

XmlRpc to communicate with the worker physical machines. The Manager uses the Xen

API to start or deallocate VMs in the cluster.

In the Manager, each worker is regarded as a data structure containing two boolean

values App and Db that are set as true when an application or database virtual machine

is started on the worker machine. The data structure also contains three real values,

CpuUtilization, CpuApp and CpuDb assigned with the CPU utilization of the physical

machine, CPU utilization of the application VM and CPU utilization of the database

VM, respectively, collected by the Monitor. These measures are constantly updated in a

loop. The Manager also uses an active list of the physical machines currently used to run

VMs.

To balance the workload across the Apache servers, the Manager uses a module, that

runs in the front-end machine, termed frontend module2. The frontend module is also

used to collect the response time and throughput from the Apache. The Manager acts as

follows. When a physical machine achieves 300% of CPU utilization, the Manager searchs

for other physical machine in the active list with CPU utilization below than 150% to start

a replica and balance the requests for the tier using more CPU cycles in the saturated

physical machine. If there is no active worker with less than 150% of CPU utilization, the

Manager searches for an active worker with less than 250% to balance requests. If there

is no worker with CPU utilization below than 250%, the Manager adds a new worker

machine to the active list and starts a VM replica in this new worker.

All application VMs start with the same weight in Apache. The load balancing is per-

formed by increasing in one unit the weight in Apache for the VM running in the physical

machine that has the lowest CPU utilization. Thus, weights are constantly adjusted in the

loop while there is a physical machine achieving the threshold of 300% of CPU utilization.

Note that the Manager only balance requests in the application-tier. For the load balanc-

ing in the database-tier, the MySQL Proxy balances read requests across slave databases

and write requests are sent to the master database. To avoid bottleneck due to the master

database, it is used a physical machine to run only the master database in our experi-

ments. The Manager also uses a variable termed CPUcluster that represents the sum of

2Implemented by Vinicius Petrucci in [56].

2 Proposal 7

the CPU utilization of all active worker machines. If (CPUcluster/active − 1) < 270%

the Manager shutdown the VMs running in the physical machine with lowest CPU uti-

lization and new requests are automatically send to the remaining worker machines. The

value of 270% leaves a headroom for oscillations in the CPU utilization before achieving

the threshold of 300%.

Manager algorithm

for (i = 1 to active)

if (worker[i].CpuUtilization >= 300) //worker is saturated

saturated = i // number of the saturated worker

//check what is the bottleneck-tier

if (worker[saturated]. App = true) and (worker[saturated]. Db = true)

if (worker[saturated].CpuApp > worker[saturated].CpuDb)

saturatedTier = 1

else

saturatedTier = 2

else

if (worker[saturated]. App = true)

saturatedTier = 1

else

saturatedTier = 2

for (k to active)

if (worker[k].CpuUtilization < 150) //start replica

start replica saturatedTier

if (saturatedTier = 1)

set weight for replica in Apache

worker[k].App = true

else

worker[k].Db = true

else

if (worker[k].CpuUtilization < 250) //balance requests

2 Proposal 8

lessCpuUtilization = worker[saturated].CpuUtilization

index = saturated

for (m to active) //find lowest CPU utilization

if (worker[m].App = true) //balances only the application-tier

if (worker[m].CpuUtilization < lessCpuUtilization)

lessCpuUtilization = worker[m].CpuUtilization

index = m

increase weight in 1 unit for replica in worker[index]

else

//add new physical machine

new = length (active) + 1

active <- worker[new]

start replica saturatedTier in worker[new]

if (saturatedTier = 1)

set weight for replica in Apache

for (j = 1 to active)

CPUcluster = CPUcluster + worker[j].CpuUtilization

if ((CPUcluster / (length(active) -1) < 270) //deallocation of physical machines

lessCpuUtilization = worker[saturated].CpuUtilization

index = saturated

for (m to active) //find lowest CPU utilization

if (worker[m].CpuUtilization < lessCpuUtilization)

lessCpuUtilization = worker[m].CpuUtilization

index = m

if (worker[index].App = true)

set as disable on Apache

shutdown App

if (worker[index].Db = true)

shutdown Db

takes worker[index] out of active

Chapter 3

Architecture and Experiment Envi-
ronment

We have used two different architectures in this work. In this Chapter, we present

the environment in which we have performed our experiments. The first architecture,

presented in Subsection 3.1, is a basic architecture in which we evaluated migration and

replication mechanisms. In a second phase, we have used the architecture presented in

Section 3.2 targeted for multi-tier Internet applications. We also present the benchmark

tool used for generating workload to the multi-tier architecture.

3.1 Basic cluster architecture

In previous works [55, 58, 59, 60, 61], our group have proposed an optimization so-

lution for power and performance management in virtualized server clusters. The opti-

mization deals with the problem of selecting at runtime a power-efficient configuration

and a corresponding mapping of the multiple applications running on top of virtual ma-

chines to physical servers. The optimization decision also includes selecting the best volt-

age/frequency combination for each physical server, which can be imposed using DVFS

(Dynamic Voltage and Frequency Scaling) support available in current processors. The

optimization approach was experimented through simulations driven by real workload

traces and achieved power savings of 47% compared to an uncontrolled system (used as

baseline). However, in practice, a problem that arises in this context is that migration and

replication activities in a virtualized environment may lead to disruption on the quality-

of-service provided by the applications. For example, live migration mechanisms allow

to make workload movements with a relatively short service downtime. However, the

quality-of-service of the running applications are likely to be negatively affected during

3.1 Basic cluster architecture 10

the migration activities [82].

In the basic architecture presented in this Subsection, we consider a real virtualized

cluster platform aimed at supporting the deployment of web applications. We used this

architecture to carry out a set of experiments with different test scenarios, presented in

Section 5.1, to evaluate the application behavior during the course of migration and repli-

cation actions. We also measure and analyze the disruption on the QoS (quality-of-service)

provided by the applications, by means of server-side response time and throughput, dur-

ing dynamic allocation operations of virtual machines in a server cluster. The response

time of the web applications in the cluster is adopted as our main QoS metric since it

is crucial for qualifying the end-user experience. In our experiments, we use Xen as the

virtual machine manager and Apache servers for running the web applications.

Our target architecture (shown in Figure 3.1) consists of a cluster of replicated web

servers. The cluster presents a single view to the clients through a front-end machine,

which distributes incoming requests among the actual servers that run VMs and process

the requests (also known as workers). These servers run CentOS Linux 5.4 [8] with Xen

hypervisor enabled to support the execution of virtual machines.

Figure 3.1: Server cluster architecture

The front-end machine is a key component in the architecture including three en-

tities: (a) VM manager, (b) Load balancer, and (c) Optimizer. The VM Manager is

3.1 Basic cluster architecture 11

implemented using the OpenNebula toolkit [53] which enables the management of the

VMs in the cluster, such as deployment, turning VMs on/off and monitoring. The Load

Balancer implements a weighted round-robin scheduler strategy provided by the Apache’s

mod proxy balancer module [75]. Finally, the Optimizer is designed to monitor and con-

figure the virtualized cluster. It consists of an external module implemented in Python [63]

that relies on the primitives provided by the VM Manager and Load Balancer modules.

The goal of the Optimizer is to dynamically configure the processors (using DVFS) and

allocate the applications over the processor’s cluster, in order to reduce power consump-

tion, while meeting the application’s performance requirements (see details of the overall

optimization scheme in [61]). Note that this architecture was implemented by other re-

searcher in our group. We use the architecture to perform the experiments presented in

Section 5.1 and, in these experiments, we do not use the DVFS support.

3.1.1 Testbed for experiments in the basic architecture

The testbed platform used in the experiments presented in Section 5.1 is described in

Figure 3.2. The web requests from the clients are redirected to the corresponding VMs

that run the web servers on physical machines called workers. Each VM has a copy of a

simple CPU-bound PHP script to characterize a web application. We define two different

applications in the cluster, named App1 and App2. To generate the workload for each

application, we use two machines with the httperf tool [25]. The load generator machines

Camburi and Cumulus are physically connected via a gigabit switch. The worker machines

Maxwell and Edison are connected via another gigabit switch. The front-end machine

Henry has two gigabit network interfaces, each one connected to one of the switches.

Figure 3.2: Basic cluster testbed setup

3.2 Multi-tier cluster architecture 12

3.2 Multi-tier cluster architecture

After the experiments in which we evaluated the VM migration and replication costs,

we have used the architecture, presented in Figure 3.3. In this architecture, each of the

tiers may involve multiple servers running on multiple processors. That is, a request can

be processed by one or more servers in each tier.

Figure 3.3: System architecture

Our architecture assumes that both application and database tiers are implemented

by virtual machines (VMs), that can be configured (i.e., added, removed or even dimen-

sioned) dynamically. Thus, resources can be allocated/deallocated for both application

and database tiers. Specifically, our architecture uses the following technologies: Apache

proxy [19] and MySQL proxy [46].

Apache is a freely available Web server that is distributed under an “open source”

license. Because the source code is freely available, anyone can adapt the server for specific

needs, and there is a large public library of Apache add-ons. MySQL is an open source

relational database management system. It is based on the structured query language

(SQL), which is used for adding, removing, and modifying information in the database.

MySQL can be used for a variety of applications, but is most commonly found on Web

servers [74]. A website that uses MySQL may include Web pages that access information

from a database. These pages are often referred to as “dynamic”, meaning the content of

each page is generated from a database as the page loads.

3.2.1 Testbed for multi-tier applications

In this multi-tier architecture, the requests generated by clients are intercepted by

the application proxy running in the front-end machine and redirected to an application

3.2 Multi-tier cluster architecture 13

server. Each application server runs on top of a VM containing a copy of a RuBiS PHP

version [67], that simulates an eBay site. An application server does not directly access

a database server. A MySQL Proxy is interposed between applications and databases

servers running on top of VMs. Each database server contains a copy of a MySQL

database that stores tables containing information about users and items available in the

web site. That is, the request is generated by the Client and received by the Front-

end that directs it to the Application proxy. Thus, the request is sent to an Application

server. The application server generates dynamic page content and query-language calls

the database. Nevertheless, the query-language calls are intercepted by the Database

proxy that redirects it to a Database server. Figure 3.4 presents the testbed used in our

experiments. Note that in our experiments, for simplicity, a physical machine can run

both application and database VMs. However, to optimize resources utilization, it would

be interest to run application and database tiers in different physical machines. The

physical machines configuration is presented in the Appendix C.

Figure 3.4: Cluster testbed setup

The front-end layer is not virtualized and performs low-latency functions such as

3.2 Multi-tier cluster architecture 14

request forwarding and load balancing. One front-end tier can typically route requests

to several servers of application and database tiers [40]. We assume that the physical

machine in this layer has enough resources to perform its role and will not fail, although

it could be replicated to scale and to achieve fault tolerance. In addition, the front-

end runs two modules. The first, termed Monitor, that constantly monitors the CPU

utilization of the worker machines and VMs. The second, termed Manager, that has a list

of physical machines and VMs, and uses the information about CPU utilization, collected

by the Monitor, to allocate/deallocate resources, i.e., to add or remove VMs, for both the

application and database tiers. The Manager also uses weights available at the Apache

Proxy to balance the amount of work to be done by the server in the application-tier.

In the database-tier, the MySQL Proxy sends the write requests to the master database

and the read requests are balanced between slaves databases, if there are more than one

slave. If there is no active slave, all requests are directed to the master database. Our

architecture is implemented in the physical machines as presented in Figure 3.5.

Figure 3.5: System implementation

3.3 Workload generation 15

3.3 Workload generation

To generate workload for our multi-tier architecture, we use the RuBiS benchmark tool

[67]. RuBiS simulates eBay, an online auction and shopping web site in which people and

businesses buy and sell a broad variety of goods and services worldwide [14]. Thus, clients

perform read-only interactions with the website, and read-write interactions that modify

the database. Several recent research works took advantage of the RuBiS benchmark,

among them [9, 29, 34, 54, 70, 71, 77] which used the tool to evaluate their proposals.

In the context of a web site, a client is a customer who accesses a web site similar to

eBay. For each customer, the client emulator opens a persistent HTTP connection to the

Web server and closes it at the end of the session. During the course of a session, the cus-

tomer makes some interactions, browsing the site. The auction site, simulated by RuBiS,

defines 26 interactions that can be performed by clients. Among the most important ones

are browsing items by category or region, bidding, buying or selling items, leaving com-

ments on other users, and consulting one’s own user page (known as myEbay on eBay).

Browsing items also includes consulting the bid history and the seller’s information.

The interactions a client does are determined by a state transition table that specifies

the probability the client has to go to each available page from the page the customer

is currently accessing. A think time between interactions and session time is generated

from a negative exponential probability distribution. The RuBis benchmark defines two

workload mixes: a browsing mix made up of pure read-only interactions and a bidding

mix that includes 15% read-write interactions. In this work we used the bidding mix

which is considered the most representative of an auction site workload. In the RuBis

benchmark, workload variations on a web server are considered by varying the number of

clients accessing the web site.

In the original RuBis benchmark tool, the number of clients is defined by the user

before the experiment starts. The user needs also to assign three time parameters: ramp

up, session run time and ramp down. The total time that will be taken to conduct the

experiment will be given by the sum of these three parameters. The load will increase

in the ramp up time until reaches the peak at the session run time. This peak will

be maintained during the session run time until the ramp down starts, when the load

decreases. The experiment finishes at the end of the ramp down time.

However, one can notice that Rubis is restricted to a semi-static number of clients

which can only be increased and decreased following a ramp up/down style during a

3.3 Workload generation 16

given experiment. In order to add flexibility, in this work we have extended the RuBiS

benchmark tool allowing it to produce arbitrary and more realistic benchmarks for server

systems. Unlike the original RuBis benchmark, our extended version [51] does not uses

the ramps values. The load variation occurs according to the number of clients and the

experiment duration will be the time specified to simulate the input trace.

Our extended benchmark tool works as presented in Figure 3.6. An input trace is

read and stored in a table. It is configured a period P, which is the time between the

increment or decrement of client sessions. The given trace determines the set of clients to

be simulated accessing the RuBis web site over the time. The extended benchmark starts

with the number of clients according to the target of clients read from the input trace.

After starting this number of clients the extended benchmark sleeps for a period P. The

already started clients continue to run while no more clients are created or removed until

the end of the period P. After each period P, we check how many clients are currently

active in the system, and then we calculate how many clients should be added or removed

to achieve the new target read from the input trace.

Figure 3.6: Loop of control for client management

3.4 Summary 17

3.4 Summary

In this Chapter we have presented the architectures used in the experiments described

in Chapter 5. The first architecture, presented in Section 3.1, is used in the experiments

presented in Section 5.1 and aims to provide a means to evaluate the disruption on the

quality-of-service provided by applications during migration and replication activities.

The second architecture, presented in Section 3.2, is used to perform basic experiments,

presented in Section 5.2, with a multi-tier application. It was also described in this

Chapter the benchmark tool used in our experiments.

Chapter 4

Implementation Mechanisms

In this Chapter we describe the live migration mechanism provided by VMMs, that is

used in the experiments presented in Section 4.1. We also describe the mechanisms used

in our experiments for VM replication both in the application and database tiers. We

also describe the mechanisms used for load balancing between replicated servers in both

application and database tiers.

4.1 VM migration

Migration of a virtual machine is simply moving the VM running on a physical machine

to another physical machine [62]. Current VMMs offer two kinds of migration: cold and

live migration. The difference between them is that the VM stops running during cold

migration. Otherwise, the VM keeps running most of the time during live migration;

actually, it stops only for a few milliseconds at Stage 3. The live migration stages are

presented in Figure 4.1 [12].

Notice that cold migration does not have the Stage 2 as in live migration. Notice

also that caches in hardware are not migrated [79], which can lead to cache misses in the

target machine and impact application’s performance when performing migrations. As

pointed out by [82], both source and destination machines need extra CPU cycles for the

pre-copying process during the migration activities. Moreover, an additional amount of

network bandwidth is consumed.

4.2 VM Replication 19

Figure 4.1: Migration timeline

4.2 VM Replication

VM replication would mean mirror the full state of a virtual machine real-time to

another running virtual machine [15]. To implement the replication mechanism it is

necessary to have a pool of servers able to provide the web-content. Server replication is

achieved by balancing the incoming requests between the servers.

The applicability of replication is two-fold: first, for load balancing across the servers

when an application cannot be supported by a single physical machine. In this case,

servers remain active continuously and the load is balanced between them. Second, for

moving a stateless server between physical machines avoiding the live migration mecha-

nism and its costs [52]. The goal, in this case, is to maintain the QoS while the server

is moved to the destination machine. In this case, the VM replication is achieved by

redirecting small quantities of incoming requests until complete the redirection of all re-

quests to the destination machine. It reduces the impact on the QoS due to cache misses

during the load balancing. That is, in a reduced amount of redirected requests there is

a reduced amount of cache misses when compared to a redirection of 100% of requests

at once. In this work VM replication is used both for load balancing and because of the

4.3 Application-tier Replication 20

reduced impact during replication activities.

4.3 Application-tier Replication

In our experiments an application has one or more VMs dedicated to the application-

tier, that is, the application can be contained at a single VM or it can be replicated on

top of more VMs. We used the Apache HTTP Server [75] for running the web application

servers. Apache has a module termed mod proxy balancer [19] that is an extension for

load balancing. The load-balancer runs in a front-end machine and redirects requests

between the pool of VMs that act as back-end servers.

Weights are attributed to each back-end server. To do this, Apache provides the

variable lbfactor that is how much traffic, in bytes, this worker will handle. This is

a normalized value representing their ”share” of the amount of work to be done, but

instead of simply counting the number of requests, it is taken into account the amount of

traffic this worker has seen. For example, if a balancer is configured as follows:

worker a b c

lbfactor 1 2 1

Then we mean that we want b to process twice the amount of bytes than a or c

should. It does not necessarily mean that b would handle twice as many requests, but it

would process twice the I/O. Thus, the size of the request is applied to the weighting and

selection algorithm.

When we need to replicate an application in a second back-end server, we start a VM

replica at this server. At the moment this replica is ready for processing clients requests,

its status on the load balancer manager is set up to enable and it is attributed a weight

for this VM replica. Note that the weight is incremented in a loop, in small units until it

reaches the target weight.

4.4 Database-tier Replication

There are several different database management systems. To simplify our task, we

use MySQL, it provides two replication mechanisms: (1) Asynchronous replication [43],

known as replication in MySQL, and (2) Synchronous replication, known as MySQL

Cluster [44].

4.4 Database-tier Replication 21

MySQL Cluster is a technology that enables clustering of in-memory databases in

a shared-nothing system. MySQL Cluster is designed not to have any single point of

failure. In a shared-nothing system, each component is expected to have its own memory

and disk, and the use of shared storage mechanisms such as NFS (Network File System)

is not supported [45]. We do not use MySQL Cluster because we use a NFS in our

experiments and it is not supported in MySQL Cluster [45].

The asynchronous replication, used in our experiments, enables data from one MySQL

database server (the master) to be replicated to one or more MySQL database servers

(the slaves). Replication is based on the master server keeping track of all changes to

its databases (updates, deletes, and so on) in its binary log. The binary log serves as

a written record of all events that modify the database from the moment the server

was started. Each slave that connects to the master requests a copy of the binary log.

That is, it pulls the data from the master, rather than the master pushing the data to

the slave. The slave also replays the events from the binary log that it receives. Thus,

tables are created or their structure modified, and data is inserted, deleted, and updated

according to the changes that were originally made on the master [49]. This has the effect

of repeating the original changes just as they were made on the master. Note that before

the experiment starts, it is created a snapshot of the data in the master database, using

the mysqldump tool [48], a backup program that can be used to dump a database for

backup or transfer to another MySQL server. We then import this data into the slaves

before starting the experiment. Thus, when the slave connects to the master it needs only

to read the binary log from the master and to execute the events in the binary log on the

slave’s local database.

Because each slave is independent, the replaying of the changes from the master’s

binary log occurs independently of each slave that is connected to the master. In addition,

because each slave receives a copy of the binary log only by requesting it from the master,

the slave is able to read and update the copy of the database at its own pace and can

start and stop the replication process at will without affecting the ability to update to the

latest database status on either the master or slave side. In this environment, all writes

and updates must take place on the master server. Reads, however, may take place on

one or more slaves. This model can improve the performance of writes (since the master

is dedicated to updates), while increasing read speed across the slaves.

4.5 Summary 22

4.4.1 MySQL Proxy

In our multi-tier architecture, each application has a master database to handle the

write queries and one or more slaves to handle the read queries. The load balancing in

the database layer uses the MySQL Proxy [46], that is a module provided by MySQL

that communicates over the network using the MySQL network protocol and provides

communication between one or more MySQL servers and one or more MySQL clients.

Thus, it makes possible to direct applications requests to the proxy that schedules them

between a pool of available application databases. It avoids the effort for changing the

application’s code.

MySQL Proxy interposes itself between the server and clients, passing queries from the

clients to the MySQL Server and returning the responses from the MySQL Server to the

appropriate client. MySQL Proxy should be populated with the list of available MySQL

servers to use when distributing work. The MySQL Proxy distributes connections from

clients to each server. Distribution is handled by a count for the number of connections

distributed to each server. New connections are automatically sent to the server with the

lowest count. If MySQL Proxy identifies that the slave is lagging behind the master for

its replication threads, then the slave is automatically taken out of the list of available

servers. Work will therefore be distributed to other MySQL servers within the slave

replication group. If the replication delay decreases to an acceptable level, then the slave

will be brought back in to the list of available MySQL servers [50].

In addition to the basic pass-through configuration, the MySQL Proxy is also capable

of monitoring and altering the communication between the client and the server. Ad-

ditional decisions about the routing of incoming connections to MySQL servers can be

made based on the replication status.

4.5 Summary

The mechanisms described in this Chapter will be used in the experiments to allow

the application replication and load balancing in the different tiers.

Chapter 5

Experimental evaluation

In this Chapter we present a set of experiments that we have performed in our testbed

(described in Chapter 3). The experiments performed in Section 5.1 aim to evaluate the

migration mechanisms provided by VMMs and the replication mechanism. Thus, we mea-

sure and analyze the disruption on the QoS (quality-of-service) provided by the applica-

tions, in terms of server-side response time and throughput, during dynamic allocation of

virtual machines in a server cluster. Section 5.2 consists of those experiments performed

in the multi-tier architecture. The goal is to use the mechanisms described in Chapter 4

to perform basic experiments using a three-tier (front-end/application/database) appli-

cation. The response time is measured in our experiments as described in the Appendix

B.

5.1 Dynamic allocation’s costs

We performed a set of experiments in our testbed (described in Chapter 3) aiming to

evaluate the application behavior during the course of migration and replication actions.

We measure and analyze the disruptive impact on the QoS (quality-of-service) provided by

the applications, by means of server-side response time and throughput, during dynamic

allocation operations of virtual machines in a server cluster. In the first step, we used

the Apache Benchmark (ab) [75] to measure the maximum number of requests per second

that our physical machines can handle. We found that our worker machines (maxwell and

edison) achieved a maximum of 1145 requests/sec for a typical PHP script web request

with an average processing time of 6 milliseconds.

In the next step, we allocated two virtual machines (VMs) to run on the maxwell

machine. Each VM had 256 MB of RAM, running an Apache 2.2 over Debian 4.0.

5.1 Dynamic allocation’s costs 24

Since our applications are CPU-bound, this memory capacity was found suitable in our

experiments in [52]. Note that the quantity of memory a VM is using may impact on how

much time is needed to complete a migration [23], thus requiring major investigation in

a future work.

The first VM runs the application App1 and it uses 120% of the total CPU resources

(considering a quad-core machine). The second VM, which runs the application App2,

starts using 40% of the CPU resources. Then, we increase the App2 workload demand

until both VMs for App1 and App2 (along with Dom0) are using 300% of the physical

CPU resources. After such a condition occurs we perform the actions described in the

following experimental scenarios in order to maintain quality-of-service requirements. We

ran experiments with three different scenarios: (a) cold migration, (b) live migration, and

(c) replication. Each of the experiments showed similar results for repeated executions.

5.1.1 Cold migration

In this scenario, the cold migration mechanism is applied to move the App2 VM to a

physical machine with spare capacity (that is, from maxwell machine to edison machine).

We observe that in the cold migration, the App2 VM stops during the migration. Figure 5.1

shows the throughput, response time and CPU utilization for both App1 and App2 VMs

during the course of the experiment. The experiments have approximately 10 minutes in

duration.

We show that this kind of migration cannot be used in a soft real-time system because

the VM being migrated stops during the course of migration. This is explicitly shown

at the throughput curve of the application App2, which was migrated and then stopped

for approximately 10 seconds. During the course of this kind of migration, the slowdown

in the service was 100% because the execution of App2 had been completely suspended

and both response time and throughput measurements dropped to zero. In all scenarios,

the drop in the throughput shows the instant in which the VM movement was performed.

After the migration phase, the response time varied considerably reaching up to 8 seconds.

5.1.2 Live migration

In this scenario, we use live migration to move a VM to a new server machine without

service interruption [12]. Besides not stopping the service during migration, we still need

to maintain an acceptable quality-of-service in terms of application’s response time. The

5.1 Dynamic allocation’s costs 25

Figure 5.1: Execution of the cold migration scenario: App1 (top) and App2 (bottom)

goal of the experiment (shown in Figure 5.2) was to evaluate the impact of applying the

live migration mechanism.

As would be expected, unlike cold migration, we observe that in live migration the

VM is not paused during the migration. In Figure 5.2, the application App2 was migrated

with no noticeable interruption to the service. However, we noticed that the response time

for App2 increased substantially during the course of migration. For instance, the response

time measured for App2 raised from 11 milliseconds to 300 milliseconds on average for a

period of 3 seconds. The throughput measurement was also affected by the migration. We

also notice that App1 was slightly affected when migration was performed. The slowdown

in the App2 throughput was 61.5% (from 414.1 req/s to 159.5 req/s). We can note that

5.1 Dynamic allocation’s costs 26

Figure 5.2: Execution of the live migration scenario: App1 (top) and App2 (bottom)

the disruptions observed when performing dynamic changes through live migration last a

short time and are basically unavoidable.

5.1.3 Replication

We also have investigated an alternative approach using replication to help minimize

these disruptive impacts in the QoS of the applications. In this scenario, we consider

creating and deploying a new VM replica for the application App2 on the destination

server. At the moment the new replica is ready for processing the client requests, we start

redirecting the requests to this new replica.

5.1 Dynamic allocation’s costs 27

The goal of the experiment for this scenario (see Figure 5.3) is to evaluate the response

time impact compared to the live migration scenario. Specifically, we have measured

the response time (and throughput) during the replication process to identify potential

practical issues such as the time delay to boot a new VM and the stabilization time of

the load balancer when transferring requests to the new replica.

Figure 5.3: Execution of the replication scenario: App1 (top) and App2 (bottom)

The use of replication shows improvements compared to the live migration, for exam-

ple, by analyzing the decrease observed in the throughput in Figure 5.3, contrasting it to

Figure 5.2. Specifically, the execution behavior of both applications App1 and App2 was

found more stable when using replication in comparison to live migration. For example,

the response time observed for App2, which was replicated in another server machine,

5.1 Dynamic allocation’s costs 28

increased from 10 milliseconds to 22 milliseconds. In addition, the throughput observed

had a very slightly drop from 473 req/s to 467 req/s. We can also observe that App1 was

less affected when replication was performed instead of migration.

The basic steps for replication consists of (1) booting a new VM replica and (2)

redirecting the requests to the new replica. According to our experiments, in Section 5.1,

the time needed to boot a VM is in between 25 and 40 seconds1, which may be a bit

longer than 10 seconds, on average, observed in the live migration in Scenario 2. In this

experiment, when the physical machine Maxwell achieves 300% of CPU utilization, we

boot the new VM replica in the physical machine Edison.

The phase of redirecting requests for the new replica raised an implementation is-

sue that needs to be addressed. We have observed that if all the current requests were

abruptly redirected to the new VM replica it would take a long time to get both through-

put and response time stable. The sticking point is that Apache has a single control

process responsible for launching child processes (daemons) which listen for connections

and serve their requests when they arrive. To tackle this redirecting bottleneck, we used

a configurable mechanism termed “spare servers” [75]; setting the Apache configuration

to maintain a suitable set of idle server daemons, which standby ready to serve incoming

requests2. In this way, clients do not need to wait a long time for a new child processes

to be forked before their requests can be served. Moreover, redirecting the requests at a

slower rate we achieved further reduction of the server settling time. In our experiments,

we redirected 10% of the requests each time, until 100% of the requests were redirected

to the VM replica.

5.1.4 Section Summary

In this Section, we have presented a virtualized server environment targeted for dy-

namic deployment and allocation of VMs to physical machines. Our goal was to carry out

experiments to evaluate the performance impact in terms of response time and throughput

of applications during the course of VM migration and replication.

The replication steps involved starting a VM replica in the target host and redirect-

ing requests to the new VM replica. Our results showed that by using replication we

can minimize some performance disruption in the response time and throughput incurred

1For the experiments performed in Section 5.2 we use the Ubuntu Linux 10.04 that boots in 10s.
2This can increase power consumption but in this experiment we are interested in maintaining the

QoS metrics only.

5.2 Management of multi-tier architecture 29

during migration. Finally, the evaluation described in this Section will help with the im-

plementation of the dynamic optimization model and strategy for power and performance

management of virtualized web clusters [61], proposed by other researcher in our group.

5.2 Management of multi-tier architecture

In this Section, we use the architecture described in Section 3.2 to perform experiments

using a multi-tier application. Our goal is to carry out basic experiments using the

replication mechanisms for both application and database tiers. The capability to replicate

both application and database tiers will facilitate the use of the dynamic optimization

model for power and performance management, proposed by our group in [55, 58, 59, 60,

61]3. In these experiments, we also aim to use the replication mechanisms to keep the

CPU utilization under a given threshold.

In Subsection 5.2.1 we briefly relate approaches employed by several authors con-

cerned to resource provisioning and an experiment is performed to evaluate one of these

approaches. In Subsection 5.2.2, it is evaluated the CPU utilization maintenance during

an experiment that uses the replication mechanisms described in Chapter 4. We also aim

to show in this experiment that is possible to balance the workload among the servers in

the cluster, thus allowing the use of the dynamic optimization model for power and perfor-

mance management, proposed by our group. In Subsection 5.2.3 it is suggested to control

the memory (in addition to the CPU) during experiments. In Subsection 5.2.4 we provide

a brief description of how to improve energy-efficiency in a system using DFVS and a

simple experiment is performed aiming to evaluate the difference in power consumption

between a server using DFVS and without using it.

5.2.1 Provisioning a multi-tier application

Dynamic provisioning of resources, allocation and deallocation of servers, for repli-

cated applications has been studied by many researchers in the context of single-tier

applications, of which clustered servers are the most common example.

As observed in [77], most authors focus only on the common bottlenecked tier, allocat-

ing new resources only for the most compute-intensive tier of the application [80]. In the

web site implemented by RuBiS, the application-tier is the most compute intensive tier.

3Currently this optimization model is used, by other researcher in our group, in the architecture
described in Section 3.1.

5.2 Management of multi-tier architecture 30

Aiming to evaluate the application behavior, we performed the experiment, presented in

Figure 5.4, in which we only use the replication mechanisms to allocate new resources

for the application-tier. Our goal is to evaluate if a fixed resource allocation for one of

the tiers can cause disruptions to the application. In the experiment, we used one load

generator machine (Xingo) and three physical machines (Itaipu, Tucurui and Maxwell)

each of them running a VM (Application, Database and App Replica, respectively).

Figure 5.4: Resource provisioning

In this experiment, the number of clients increases and at the moment the physical

machine (Itaipu) running the application server reaches 300% of CPU utilization, an

application replica was started in another physical machine (Maxwell). Even though

plenty of capacity was available at the database-tier, the increasing of newly arriving

sessions cause the physical machine (Tucurui) running the database to reach 300% of

CPU utilization. As shown in Figure 5.4, the database-tier gets overloaded while the

application-tier consisting of two servers has free CPU cycles. Thus, focusing only on the

the commonly bottlenecked tier is not adequate, since the bottleneck will eventually shift

to other tiers.

A straightforward extension is to employ single-tier provisioning methods at each

tier of the multi-tier application. This enables VM provisioning decisions to be made

5.2 Management of multi-tier architecture 31

independently at each tier based on local observations. The idea is to provision additional

servers at a tier when the CPU utilization reaches a given threshold. Thus, we use the

replication mechanisms for both application and database tiers, preventing degradation

due to bottleneck in specific tiers.

5.2.2 Replication mechanisms

In this Subsection we perform an experiment in which we use the replication mecha-

nisms, described in Chapter 4. Our goal is to maintain the CPU utilization of the physical

machines under the threshold of 300% of CPU utilization. To do this, in the experiment,

we vary the number of accesses to the web site leading to the necessity to use VM replicas

in both tiers. In the experiment, we increased the workload in steps, thus resources were

allocated to handle the incoming user requests. After the allocation of our four worker

machines (Itaipu, Tucurui, Maxwell and Edison), the workload decreased in steps and

resources were deallocated. It is shown, in Figure 5.5, the allocation of the physical ma-

chines, the number of clients and the response time during the experiment. The virtual

machines allocation/deallocation is presented in Figure 5.6.

The experiment starts with one load generator machine (Xingo), one application VM

(running on Itaipu) and one master database VM (running on Tucurui). At time=60s, the

workload increased. Thus, a new worker machine (Maxwell) was added to the cluster4 and

the Application VM2 was started on it. The increase in requests saturated the database-

tier, and Tucurui (database master along with Dom0) achieved the threshold of 300% of

CPU utilization. To handle the increase in the amount of user requests, a database slave

(Slave1) was started at time=200s. As Maxwell had free CPU cycles, the database Slave1

was started on it. At this moment, all read requests were sent to the database Slave1

while the write requests were sent to the Master database, reducing the CPU utilization

on the Master database.

To provide a new workload increase, at time=250s, we used a second load generator

machine (Farad) and a new worker machine (Edison) was added to the cluster. A third

application VM, Application VM3, was started on it aiming to generate more user requests

to the web site. At time=300s, Maxwell, that was running the database Slave1 (and thus

handling the read requests) achieved the threshold of 300% of CPU utilization. To increase

the capacity to handle read requests, the database Slave2 was started on Edison. At this

4In this text, ”added to the cluster” does not means turn the physical machine on. Actually, all
physical machines remain turned on during all the experiment. Thus, ”added to the cluster” means start
using the physical machine to run one or more VMs.

5.2 Management of multi-tier architecture 32

Figure 5.5: Physical machines allocation

moment, read requests were balanced between Slave1 and Slave2.

After the workload reach a peak of 52 clients at time around 320s, the workload de-

creased and the first virtual machine (Slave2) is deallocated at time=400s. At time=425s

Application VM3 was deallocated and Edison was removed from the cluster5. As the

workload continued to decrease, the database Slave1 was deallocated at time around 500s

and the Application VM2 was deallocated at time=550s. Thus, Maxwell was removed

from the cluster at time=550s and the experiment finished at time=600s.

We observed in this experiment that resources can be allocated/deallocated in our

architecture for both the application and the database tiers by using the replication

mechanisms. Using these mechanisms, we maintained the CPU utilization under a given

threshold (300%) during the experiment. In addition, the replication mechanisms allow

the optimization model for power and performance management of virtualized clusters,

5In this text, ”removed from the cluster” means that the physical machine is no longer used during
the rest of the experiment.

5.2 Management of multi-tier architecture 33

Figure 5.6: Adding/Removing resources to keep CPU utilization

proposed by our group, to be used in this architecture. Note that for a large system, a

single master can became a bottleneck. Thus, would be interesting to change the MySQL

Master-Slave replication to another database replication policy that supports multiple

master databases.

5.2.3 Keeping CPU utilization under a threshold

In order to meet fair response time requirements, it is important to keep the CPU

utilization under a given threshold, as presented in Figure 2.1. The experiments in this

Subsection aim to show that is possible to keep the CPU utilization under a given threshold

by using different mechanisms. We focus on CPU utilization in this work since CPU is

often the key resource in determining the performance of multi-tier applications [9]. As

described in previous researches, guarantying the CPU utilization under a certain level,

one can guarantee the response time of applications.

5.2 Management of multi-tier architecture 34

Figure 5.7: Keeping CPU utilization by relocating a VM

To maintain the CPU utilization under the threshold of 300% in the experiment

presented in Figure 5.7, we used the live migration mechanism to migrate a VM to another

physical machine when the CPU utilization on the first physical machine achieved the

given threshold. In this simple experiment, both application and database VMs start

running in the same physical machine (Itaipu) and when the physical machine is almost

overloaded, the database VM was live migrated to another physical machine (Tucurui) and

the CPU utilization in the first physical machine (Itaipu) decreased. In the experiment

presented in Figure 5.7, the Application VM had 256Mb of RAM, that was found suitable

for our experiments since our application is CPU-bound, and the database VM had 512

Mb of RAM.

However, in addition to the live migration mechanism used in this experiment, and

the replication mechanism described in this work, other approaches can be required to

maintain CPU utilization under a given threshold, thus, preventing resource relocations.

It is known that, when the memory capacity increases, it is possible to store more data in

the buffer preventing accesses to the disk. We were interested in evaluating if increasing

the memory capacity for the individual VMs (application or database) it would be possible

to decrease the CPU utilization.

We repeated the experiment presented in Figure 5.7, increasing the memory available

5.2 Management of multi-tier architecture 35

for the application VM to 1 Gb of RAM. The database VM had 512 Mb of RAM. In this

memory configuration, the physical machine has not achieved the given threshold and was

not necessary to relocate a VM to another physical machine.

As shown in Figure 5.8, Itaipu supported both application and database VMs under

the CPU threshold and Tucurui remained unused during the experiment. Thus, we found

that using RuBiS, if we increase the memory available for the application-tier, the ap-

plication will achieve more cache hits and it will allow the application to handle client’s

requests with a small amount of accesses to the database. In our experiments, it was

not possible to reduce the CPU utilization by increasing the memory available for the

database.

Figure 5.8: Reducing CPU utilization by increasing Application’s memory

As observed in [22], runtime re-allocation of memory among multiple VMs has not

been widely studied. They found that as the memory allocation becomes smaller, the

total CPU consumption goes up, mainly due to the extra paging activities by the guest

OS. They found that the mean response time increases sharply as the memory utilization

goes beyond 90% because when memory utilization is high, the guest operating system

experiences significant memory pressure and starts reclaiming memory by paging a portion

of the application memory to disk [7]. This will lead to a higher number of page faults

when the application tries to access the main memory, resulting in higher latency for the

5.2 Management of multi-tier architecture 36

application. Thus, the investigation on how to dynamically allocate memory resources,

poses a great challenge for future research.

5.2.4 Improving energy efficiency in virtualized environments

As briefly described in Chapter 1, the virtualization technology leads to an increased

resource utilization and energy savings. However, to improve energy efficiency in our

virtualized multi-tier architecture, we intend to use the dynamic frequency and voltage

scaling (DVFS) [30] technique, that is a technique whereby the frequency of a micropro-

cessor can be automatically adjusted ”on-the-fly”, either to conserve power or to reduce

the amount of heat generated by the chip [84]. It can be used to decrease energy and

cooling costs for lightly loaded machines.

Current processor architectures provide the DVFS capability. Both Intel and AMD

have their supports for DVFS technologies, SpeedStep [28] and PowerNow! [1], respec-

tively. DVFS reduces the number of instructions a processor can issue in a given amount

of time, thus reducing performance.

We present in this Subsection an experiment in which we aim to evaluate the difference

in power consumption between a server using DFVS and without using it. Thus, we

measured the CPU frequency during an experiment in which we increase the number

of clients accessing the web site running on the physical machine Itaipu. We have also

measured the CPU utilization during the experiment. Note that the CPU utilization

measured accounts for the sum of utilization of all virtual machines running in the physical

server. We performed the experiment in two scenarios. A scenario in which the DVFS is

used, and a second scenario in which the DVFS is not used.

In the experiment presented in Figure 5.9, we use the DVFS according to an on-

demand policy. That is, the CPU frequency increases or decreases scaling the CPU

capacity to handle the current workload. To do this, we used the On-demand Governor

[26] available in the Linux operating system.

As observed in Figure 5.9, to support until 10 clients, the physical server achieved

a higher CPU utilization in the scenario in which we used the DVFS. It was due to

the frequencies used by the DVFS that tries to use the lowest possible CPU frequency

to handle client requests. When the machine was overloaded (from 11 to 20 clients)

the highest CPU frequency was used in both scenarios. The power consumption can be

expressed as P ≈ f.V 2, where f is the CPU frequency and V is the CPU voltage. Thus,

5.2 Management of multi-tier architecture 37

Figure 5.9: Comparison between a server using DVFS and without using it

the scenario in which the DVFS was not used, achieved a higher power consumption as it

used the highest CPU frequency during the experiment. Hence, encouraging the use of the

DVFS technique that has been shown to reduce energy consumption by about 10%-30%

[24, 35, 65].

Moreover, the investigation on how to apply a cluster-level scheme to turn off unneeded

servers poses a great challenge for future research as it can increase power savings to

40%-80% [4, 31]. One should note that the process to turn on a server can take a few

minutes. Consequently, when using schemes to turn servers on/off, it is worthwhile to use

a forecasting algorithm to predict the workload like in [69].

Thus, as a future work, we aim to adopt the dynamic optimization model for power

and performance management of virtualized clusters presented in [55, 58, 59, 60, 61] in our

multi-tier architecture. Currently, the optimization model is used, by other researcher in

our group, only in the basic cluster architecture presented in this work. The optimization

model deals with the problem of determining the most power efficient configuration (i.e.,

which servers must be active and their respective CPU frequencies) that can handle a

certain set of application workloads [55].

5.3 Summary 38

5.2.5 Section Summary

In this Section, we have performed experiments using the mechanisms described in

Chapter 4. Using these mechanisms the workload can be balanced among the servers in the

cluster. Thus, helping the use of the optimization model [55, 58, 59, 60, 61], proposed by

our group, that determines the most power efficient configuration (i.e., which servers must

be active and their respective CPU frequencies) that can handle time-varying workloads

for different applications in the cluster. It is also possible to keep the CPU utilization

under a given threshold, thus maintaining the QoS metrics.

5.3 Summary

In this Chapter, we have performed experiments in which we evaluated the migration

mechanisms provided by VMMs and the replication mechanism. The results showed that

by using replication we can minimize some performance disruption in the response time

and throughput incurred during migration. We have also performed basic experiments

using a typical multi-tier architecture. Our goal was to provide an architecture in which

both application and database tiers can be replicated, facilitating the use of the dynamic

optimization model for power and performance management proposed by our group [55,

58, 59, 60, 61].

Chapter 6

Related work

Virtualization has achieved renewed interest in the last years. This technology has

some features that can bring benefits in many areas, e.g., it can be applied aiming to

achieve energy savings, to reduce the TCO, to isolate applications, etc. In this Chapter,

we present some works in which authors apply virtual machine migration and replication

mechanisms to support the execution of applications in virtualized environments. Note

that, different from these works, we do not have an optimization model to dynamically

allocate resources. Thus, we are not interested in compete with these works.

Authors in [29] aim to maintain the response time for multi-tier applications. To

achieve this goal, they use VM replication in both application and database tiers, like

us. However, there are two basic differences between our work and their work. (1)

They dynamically manage resources based on response time requirements. When the

response time indicates saturation, the system scales the application-tier or the database-

tier, according to the bottlenecked tier. We differ from them, as we perform resource

allocations when physical machines achieve a CPU utilization threshold.

Authors in [9] use an analytical model to capture the relationship between the ap-

plication’s high level goals (e.g., application’s response time) and lower level goals (e.g.,

CPU share assigned to application and database tiers). For example, a component profile

captures the relationship between an Apache web server’s mean service rate and the CPU

share allocated to it. Their static resource allocation takes into account the change in the

number of users only, and assumes a fixed transaction mix. However, a more practical

approach must handle workload changes in both the number of users and transaction mix.

As pointed out in [13], a guideline regarding resource utilization for practitioners in real

world is to keep peak utilization of resources, such as CPU, under a given threshold. As

shown in [73], service times remain relatively stable when the CPU is not saturated.

6 Related work 40

Unlike [9], authors in [85] use a dynamic resource allocation. They apply a regression-

based approach to provide a solution for capacity planning and resource provisioning of

multi-tier applications under changing workloads conditions. They use a framework to

approximate CPU demands of transactions on a given hardware. To capture the site

behavior across time, they collect the application server access log observing a number of

different transactions over monitoring windows of fixed length T. They use these obser-

vations over the current monitoring window to allocate resources for the next monitoring

window. A limitation in their approach is that the resource allocation for the next moni-

toring window should not be applied to a very different workload mix compared to the mix

it was derived from. They also observed in their experiments that the approximation of

CPU demands at the application-tier is of higher accuracy than that at the database-tier.

This reflects a higher variance in the CPU service time at the database-tier for the same

transaction type.

To both track the CPU utilization of virtualized servers and to guide their resource

allocations, authors in [33, 34] implemented a resource management scheme that integrates

the Kalman filter [32] into feedback controllers to dynamically allocate CPU resources to

multi-tier virtualized applications. The allocation problem was formulated as a CPU

utilization tracking problem where a controller aims to track and maintain the CPU

allocation under a given threshold. Their system has 3 controllers: The first controller

dynamically allocates CPU resources to individual VMs. A second controller adjusts the

allocations of all the VMs of a multi-tier application. The third controller collectively

allocates CPU resources to all VMs of an application and it self-configures its parameters

and self-adapts to diverse workload conditions. Each controller allocates CPU resources

to VMs based solely on resource utilization observations and the application performance

model. Each VM is regarded as a black-box which can host an application tier or a whole

application. To ensure that no VM can use any more CPU time that it has been allocated,

they used the cap mechanism [10] provided by Xen’s CPU scheduler [11]. An important

contribution of [33, 34] is that they developed a zero-configuration mechanism to detect

and adapt to workload conditions without any advance information.

Authors in [38, 39] use a different approach for resource allocation. They use two

different services, termed gold and silver. The revenue generated by each service is speci-

fied via a pricing scheme or SLA that relates the achieved response time to a dollar value

that the client is willing to pay. Thus, resources are allocated for both services aiming to

maximize the profit generated by this system by minimizing both the power consumption

and SLA violations. To achieve this objective, a controller decides the number of physical

6 Related work 41

and virtual machines to allocate to each service where the VMs and their hosts are turned

on or off according to the workload demand, and the CPU share to allocate to each VM.

Based on the assumption that Internet applications tend to see dynamically varying

workloads that contain long-term variations such as time-of-day effects as well as short-

term fluctuations due to flash crowds, authors in [77] use a queuing model to determine

how much resources to allocate to each tier of the application and a combination of

predictive and reactive methods that determine when to provision these resources, both

at large and small time scales.

It is presented in [5] a proposal that aims to address the problem of resources allocation

in data centers that run VMs from different customers. In this work it is used a dynamic

provisioning technique for a cluster-based virtualized multi-tier application to satisfy the

requirement of given response time for customers. They employ a hybrid queuing model

to determine the number of virtual machines at each tier in a virtualized application.

They adopted an optimization model aiming to minimize the total number of VMs while

satisfying the customer average response time constraint.

Authors in [78] emphasize the importance of taking migration cost into account dur-

ing consolidation actions. They proposed pMapper, an application placement controller

that dynamically places application servers aiming to minimize power consumption while

meeting performance guarantees. A Migration Manager estimates the cost of moving a

VM from a given placement to a new placement. They observed that the impact of mi-

gration depends on the VM characteristics. Hence, the cost of each live migration can

be computed a priori. The migration cost is determined by estimating the impact of

migration on application throughput and consequent revenue loss, computed as per the

SLA. When possible pMapper resizes the VM to reduce its migration costs.

Aiming to avoid what they referred to as “server and storage sprawl”, i.e., many un-

derutilized servers with heterogeneous storage elements, authors in [37] perform resource

allocation according to a proposed algorithm for migrating VMs. During the run time,

if requirements like response time and throughput of an application are violated, it is

often because of factors such as high CPU utilization and high memory usage of the

server where it is hosted. To detect and resolve application performance problems in a

data center, they collect measurements for each server and when the workload increases

or when demand is low, they use live migration of VMs to maximize performance or to

consolidate servers. If any of the VMs report a SLA violation (e.g., high response time)

it is performed a dynamic re-allocation of VM(s) from the hosting physical machine to

6 Related work 42

another physical machine such that the SLA is restored.

The results of the experiments performed in this work can be applied, in the context of

the works related in this Chapter, to manage resources in a virtualized server environment.

Chapter 7

Conclusion

In this Master dissertation we have described and evaluated migration and replication

mechanisms that have been used in virtualized datacenters. These mechanisms helps

datacenters to increase resources utilization, reduce the power consumption and the TCO.

In this work we have used these mechanisms separately, however, they can be combined

aiming to optimize resources utilization. In this work we have also integrated these

mechanisms in an architecture that permits the execution of multi-tier applications. This

architecture was used to perform part of the experiments presented in this work and can

be used in future experiments by other researchers in our group.

7.1 Contributions

The contribution of this Master dissertation consists in the description and integration

of mechanisms that permit virtual machine migration and replication. These mechanisms

can be applied in web clusters since they permit an application to be supported by dif-

ferent physical machines and also permit the load balancing in the different tiers. We

have combined these mechanisms in an architecture that we have used to perform experi-

ments using a multi-tier application. This architecture can be used in future experiments.

Moreover, we have adapted the RUBiS benchmark tool to simulate different load varia-

tions when compared to the original RUBiS benchmark tool that simulates only a ramp

up/down. This adapted benchmark tool can also be used in future experiments.

7.2 Future Work 44

7.2 Future Work

• For future experiments, we recommend the use of more applications in the system

e.g., the RUBBoS benchmark tool [66]. RUBBoS is a bulletin board benchmark

modeled after an online news forum like Slashdot. As RUBBoS places high load

on the database-tier [41], several recent research works which aim to stress the

database-tier took advantage of the RUBBoS benchmark tool, among them [38,

41, 77]. In this case, would be interest to adopt the response time as a metric

to perform migration or replication activities. We also recommend to aggregate

different workload generators in a single tool aiming to automate experiments.

• In order to optimize resources utilization, we recommend to use an optimization

model, like the proposed by our group [55, 58, 59, 60, 61], to combine migration

and replication activities. This would lead to energy savings while maintaining QoS

metrics.

• Although we have used the MySQL proxy as a mechanism for load balancing between

replicated databases, the load balancing in our experiments was performed according

to an algorithm in which write requests are sent to the master database and read

requests are distributed between slaves databases. However, in a large-scale system,

this policy can impose a limitation as the capacity of the entire system will be

limited by a single master database. Thus, in a large system we recommend to

replicate the master database and to use different load balancing algorithms.

• As observed in [22], runtime re-allocation of memory among multiple VMs has not

been widely studied. Thus, the investigation on how to dynamically allocate memory

resources, poses a great challenge for future research.

References

[1] AMD. Amd powernow! technology. http://www.amd.com/us/products/

technologies/amd-powernow-technology/Pages/amd-powernow-technology.

aspx, 2010.

[2] Paul Barham et al. Xen and the art of virtualization. In SOSP’03, pp. 164–177.
ACM, 2003.

[3] Luiz André Barroso. The price of performance. ACM Queue, 3(7):48–53, 2005.

[4] Luciano Bertini, Julius C. B. Leite e Daniel Mossé. Power optimization for dynamic
configuration in heterogeneous web server clusters. J. Syst. Softw., 83:585–598, April
2010.

[5] Jing Bi, Zhiliang Zhu, Ruixiong Tian e Qingbo Wang. Dynamic provisioning mod-
eling for virtualized multi-tier applications in cloud data center. Cloud Computing,
IEEE International Conference on, 0:370–377, 2010.

[6] Ricardo Bianchini e Ram Rajamony. Power and energy management for server sys-
tems. Computer, 37(11):68–74, 2004.

[7] Daniel P. Bovet e Marco Cesati Ph. Understanding the Linux Kernel, Third Edition.
O’Reilly Media, 3 edio, November 2005.

[8] CentOS Project. The community enterprise operating system. http://www.centos.
org/, 2010.

[9] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic e Akhil Sahai. Translating service
level objectives to lower level policies for multi-tier services. Cluster Computing,
11(3):299–311, 2008.

[10] Citrix Systems. Credit-based cpu scheduler. http://wiki.xensource.com/

xenwiki/CreditScheduler, 2010.

[11] Citrix Systems. Xen scheduling. http://wiki.xensource.com/xenwiki/

Scheduling, 2010.

[12] Christopher Clark et al. Live migration of virtual machines. In Proceedings of the
2nd conference on Symposium on Networked Systems Design and Implementation,
pp. 273–286, 2005.

[13] Adrian Cockcroft e Walker. Capacity Planning for Internet Services. Prentice Hall
Professional Technical Reference, 2001.

[14] eBay. ebay. http://www.ebay.com/, 2010.

References 46

[15] Egon Bianchet. Virtual machine replication. http://www.krisbuytaert.be/blog/
node/478, 2010.

[16] E. N. Elnozahy, Michael Kistler e Ramakrishnan Rajamony. Energy-efficient server
clusters. In Proceedings of the 2nd international conference on Power-aware computer
systems, PACS’02, pp. 179–197, Berlin, Heidelberg, 2003. Springer-Verlag.

[17] Engineeting Statistics Handbook. Single exponential smoothing. http://www.itl.

nist.gov/div898/handbook/pmc/section4/pmc431.htm, 2010.

[18] Xiaobo Fan, Wolf-Dietrich Weber e Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual international
symposium on Computer architecture, pp. 13–23, New York, NY, USA, 2007. ACM.

[19] The Apache Software Foundation. Apache module mod proxy balancer. http://

httpd.apache.org/docs/2.1/mod/mod_proxy_balancer.html, 2010.

[20] Google. Introducing the google chrome os. http://googleblog.blogspot.com/

2009/07/introducing-google-chrome-os.html, 2010.

[21] Edward L. Haletky. VMware ESX Server in the Enterprise: Planning and Securing
Virtualization Servers.

[22] Jin Heo, Xiaoyun Zhu, Pradeep Padala e Zhikui Wang. Memory overbooking and
dynamic control of xen virtual machines in consolidated environments. In Proceedings
of the 11th IFIP/IEEE international conference on Symposium on Integrated Network
Management, IM’09, pp. 630–637, Piscataway, NJ, USA, 2009. IEEE Press.

[23] Fabien Hermenier et al. Cluster-wide context switch of virtualized jobs. Technical
Report 6929, INRIA, 2009.

[24] Tibor Horvath, Tarek Abdelzaher, Kevin Skadron e Xue Liu. Dynamic voltage scaling
in multitier web servers with end-to-end delay control. IEEE Trans. Comput., 56:444–
458, April 2007.

[25] HP Labs. Httperf homepage. http://www.hpl.hp.com/research/linux/httperf/,
2010.

[26] IBM. The ondemand governor. http://publib.boulder.ibm.com/infocenter/

lnxinfo/v3r0m0/topic/liaai/cpufreq/TheOndemandGovernor.htm, 2010.

[27] IBM. xentop(1) - linux man page. http://linux.die.net/man/1/xentop, 2010.

[28] Intel. Enhanced intel speedstep technology. http://www.intel.com/cd/channel/

reseller/asmo-na/eng/203838.htm, 2010.

[29] Waheed Iqbal, Matthew N. Dailey, David Carrera e Paul Janecek. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future Generation
Computer Systems, November 2010.

[30] iwebdevel. Define notions: What is cpu throt-
tling/processor throttling? http://iwebdevel.com/2009/09/05/

define-notions-what-is-cpu-throttling-processor-throttling-shared-hosting/,
2010.

References 47

[31] X.Liu T.Abdelzaher J.Heo, D.Henriksson. Integrating adaptive components: An
emerging challenge in performance-adaptive systems and a server farm case-study.
In Proceedings of the 28th IEEE International Real-Time Systems Symposium, RTSS
’07, pp. 227–238, Washington, DC, USA, 2007. IEEE Computer Society.

[32] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[33] Evangelia Kalyvianaki. Resource provisioning for virtualized server applications. PhD
thesis, Cambridge University, 2008.

[34] Evangelia Kalyvianaki, Themistoklis Charalambous e Steven Hand. Self-adaptive
and self-configured cpu resource provisioning for virtualized servers using kalman
filters. In ICAC ’09: Proceedings of the 6th international conference on Autonomic
computing, pp. 117–126, New York, NY, USA, 2009. ACM.

[35] Jeffrey O. Kephart, Hoi Chan, Rajarshi Das, David W. Levine, Gerald Tesauro,
Freeman Rawson e Charles Lefurgy. Coordinating multiple autonomic managers to
achieve specified power-performance tradeoffs. In Proceedings of the Fourth Interna-
tional Conference on Autonomic Computing, pp. 24–, Washington, DC, USA, 2007.
IEEE Computer Society.

[36] Nick Kew. The Apache Modules Book: Application Development with Apache. Pren-
tice Hall, 2007.

[37] G. Khanna, K. Beaty, G. Kar e A. Kochut. Application performance management
in virtualized server environments. pp. 373 –381, apr. 2006.

[38] Dara Kusic. Combined power and performance management of virtualized computing
environments using limited lookahead control. PhD thesis, Drexel University, 2008.

[39] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy e Guofei
Jiang. Power and performance management of virtualized computing environments
via lookahead control. Cluster Computing, 12(1):1–15, 2009.

[40] Julius C.B. Leite, Dara M. Kusic, Daniel Mossé e Luciano Bertini. Stochastic ap-
proximation control of power and tardiness in a three-tier web-hosting cluster. In
Proceeding of the 7th international conference on Autonomic computing, ICAC ’10,
pp. 41–50, New York, NY, USA, 2010. ACM.

[41] Simon Malkowski, Deepal Jayasinghe, Markus Hedwig, Junhee Park, Yasuhiko Kane-
masa e Calton Pu. Empirical analysis of database server scalability using an n-tier
benchmark with read-intensive workload. In Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, SAC ’10, pp. 1680–1687, New York, NY, USA, 2010.
ACM.

[42] McKinsey, Company. Revolutionizing data center energy efficiency. http://

uptimeinstitute.org, 2010.

[43] MySQL. Mysql 5.1 reference manual: Chapter 16. replication. http://dev.mysql.

com/doc/refman/5.1/en/replication.html, 2010.

References 48

[44] MySQL. Mysql 5.1 reference manual: Chapter 17. mysql cluster ndb 6.x/7.x. http:
//dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html, 2010.

[45] MySQL. Mysql cluster overview. http://dev.mysql.com/doc/refman/5.1/en/

mysql-cluster-overview.html, 2010.

[46] MySQL. Mysql proxy. http://dev.mysql.com/doc/refman/5.0/en/mysql-proxy.
html, 2010.

[47] MySQL. Mysql: The world’s most popular open source database. http://www.

mysql.com/?bydis_dis_index=1, 2010.

[48] MySQL. mysqldump a database backup program. http://dev.mysql.com/doc/

refman/5.0/en/mysqldump.html, 2010.

[49] MySQL. Replication implementation. http://dev.mysql.com/doc/refman/5.1/

en/replication-implementation.html, 2010.

[50] MySQL AB. A mysql load balancer.

[51] Carlos Oliveira et al. Leveraging real-world web traces for server benchmarking.
Technical report, UFF, 2010.

[52] Carlos Oliveira, Vinicius Petrucci e Orlando Loques. Impact of server dynamic al-
location on the response time for energy-efficient virtualized web clusters. In WTR
2010, may 2010.

[53] OpenNebula. The open source toolkit for cloud computing. http://opennebula.org/,
2010.

[54] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G. Shin, Pradeep
Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal e Kang G. Shin. Performance
evaluation of virtualization technologies for server consolidation. Technical report,
2007.

[55] V. Petrucci, E. V. Carrera, O. Loques, J. Leite e D. Mossé. Optimized manage-
ment of power and performance for virtualized heterogeneous server clusters. In
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid (CCGrid’11),
2011.

[56] Vinicius Petrucci. A framework for supporting dynamic adaptation of power-aware
web server clusters, 2008.

[57] Vinicius Petrucci. Dynamic optimization of power and performance for virtualized
server clusters. Technical report, UFF, 2010.

[58] Vinicius Petrucci et al. Dynamic optimization of power and performance for virtu-
alized server clusters. Technical Report RT-05/09, UFF, 2009.

[59] Vinicius Petrucci, Orlando Loques e Daniel Mossé. A dynamic configuration model
for power-efficient virtualized server clusters. In 11th Brazillian Workshop on Real-
Time and Embedded Systems (WTR), 2009.

References 49

[60] Vinicius Petrucci, Orlando Loques e Daniel Mossé. A framework for dynamic adap-
tation of power-aware server clusters. In SAC ’09: Proceedings of the 24th ACM
Symposium on Applied Computing. ACM, 2009.

[61] Vinicius Petrucci, Orlando Loques e Daniel Mossé. A dynamic optimization model
for power and performance management of virtualized clusters. In 1st Int’l Conf. on
Energy-Efficient Computing and Networking. In cooperation with SIGCOMM. ACM,
2010.

[62] Pradeep Padala’s blog. Understanding live migration
of virtual machines. http://ppadala.net/blog/2010/06/

understanding-live-migration-of-virtual-machines/, 2010.

[63] Python Software Foundation. Python programming language. http://www.python.
org/, 2010.

[64] Parthasarathy Ranganathan. Recipe for efficiency: principles of power-aware com-
puting. Commun. ACM, 53(4):60–67, 2010.

[65] Parthasarathy Ranganathan, Phil Leech, David Irwin e Jeffrey Chase. Ensemble-level
power management for dense blade servers. In Proceedings of the 33rd annual inter-
national symposium on Computer Architecture, ISCA ’06, pp. 66–77, Washington,
DC, USA, 2006. IEEE Computer Society.

[66] RUBBOS. Rubbos: Bulletin board benchmark. http://jmob.ow2.org/rubbos.

html, 2010.

[67] RUBiS. Rubis: Rice university bidding system. http://rubis.ow2.org/, 2010.

[68] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino e Aaron Watson. Energy-efficient
real-time heterogeneous server clusters. In Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 418–428, Washington,
DC, USA, 2006. IEEE Computer Society.

[69] Carlos Santana, J. C. B. Leite e Daniel Mossé. Load forecasting applied to soft real-
time web clusters. In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 346–350, New York, NY, USA, 2010. ACM.

[70] Saeed Sharifian, Seyed A. Motamedi e Mohammad K. Akbari. A content-based load
balancing algorithm with admission control for cluster web servers. Future Generation
Computer Systems, 24(8):775 – 787, 2008.

[71] Gokul Soundararajan, Cristiana Amza e Ashvin Goel. Database replication poli-
cies for dynamic content applications. In EuroSys ’06: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, pp. 89–102, New
York, NY, USA, 2006. ACM.

[72] Shekhar Srikantaiah, Aman Kansal e Feng Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power aware computing
and systems, HotPower’08, pp. 10–10, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

References 50

[73] Christopher Stewart, Terence Kelly e Alex Zhang. Exploiting nonstationarity for
performance prediction. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pp. 31–44, New York, NY,
USA, 2007. ACM.

[74] TechTerms.com. Mysql. http://www.techterms.com/definition/mysql, 2010.

[75] The Apache Software Foundation. Apache HTTP server version 2.2. http://httpd.
apache.org/docs/2.2/, 2010.

[76] Tim Abels, Puneet Dhawan and Balasubramanian Chandrasekaran. An
overview of xen virtualization. http://www.dell.com/downloads/global/power/

ps3q05-20050191-Abels.pdf, 2010.

[77] B. Urgaonkar, P. Shenoy, A. Chandra e P. Goyal. Dynamic provisioning of multi-
tier internet applications. In Autonomic Computing, 2005. ICAC 2005. Proceedings.
Second International Conference on, pp. 217 –228, 2005.

[78] Akshat Verma, Puneet Ahuja e Anindya Neogi. pmapper: power and migration cost
aware application placement in virtualized systems. In Middleware ’08: Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware, pp. 243–
264, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[79] Akshat Verma et al. pMapper: power and migration cost aware application placement
in virtualized systems. In Middleware’08, pp. 243–264, 2008.

[80] Daniel Villela, Prashant Pradhan e Dan Rubenstein. Provisioning servers in the
application tier for e-commerce systems. ACM Trans. Internet Technol., 7, February
2007.

[81] VMware. A performance comparison of hypervisors. www.cc.iitd.ernet.in/misc/
cloud/hypervisor_performance.pdf, 2010.

[82] William Voorsluys, James Broberg, Srikumar Venugopal e Rajkumar Buyya. Cost
of virtual machine live migration in clouds: A performance evaluation. In CloudCom
’09: Proceedings of the 1st International Conference on Cloud Computing, pp. 254–
265, Berlin, Heidelberg, 2009. Springer-Verlag.

[83] Yefu Wang, Xiaorui Wang, Ming Chen e Xiaoyun Zhu. Power-efficient response time
guarantees for virtualized enterprise servers. In Proceedings of the 2008 Real-Time
Systems Symposium, pp. 303–312, Washington, DC, USA, 2008. IEEE Computer
Society.

[84] Wikipedia. Dynamic frequency scaling. http://en.wikipedia.org/wiki/Dynamic\
_frequency_scaling, 2010.

[85] Qi Zhang, Ludmila Cherkasova, Ningfang Mi e Evgenia Smirni. A regression-based
analytic model for capacity planning of multi-tier applications. Cluster Computing,
11(3):197–211, 2008.

51

APPENDIX A -- Xen hypervisor

Virtualization allows servers to run multiple independent application servers in a

physical machine. Instead of having a physical machine running a single application

server. There are different approaches to implement virtualization, between them full

virtualization and para-virtualization. Full virtualization is designed to provide total

abstraction of the underlying physical system and creates a complete virtual system in

which the guest operating systems (OS) can execute. No modification is required in

the guest OS or application; the guest OS or application is not aware of the virtualized

environment so they have the capability to execute on the VM just as they would on a

physical machine.

However, full virtualization may incur a performance penalty. The VMM must provide

the VM with an image of an entire system, including virtual BIOS, virtual memory space,

and virtual devices [76]. The VMM also must create and maintain data structures for

the virtual components, such as a shadow memory page table. These data structures

must be updated for every corresponding access by the VMs [76]. In contrast, para-

virtualization requires modifications to the guest OSs that are running on the VMs. As a

result, the guest OSs are aware that they are executing on a VM, allowing for near-native

performance.

To support server virtualization in our system we have used the Xen VMM (also

known as hypervisor). It provides the basic layer of interaction between running operating

systems and hardware resources. Based on x86 para-virtualization, it creates different

execution environments, the VMs or domains in Xen terminology. A VMM provides a low-

overhead virtualization platform [81] and supports execution of heterogeneous operating

systems with minimal modifications required within the operating system kernel [33].

In a virtualized environment, CPU, memory, and I/O components need to be virtu-

alized. Xen is designed to enable para-virtualization of all three hardware components.

Specifically for the CPU, focused in this work, the Intel x86 architecture provides four

Appendix A -- Xen hypervisor 52

levels of privilege modes. These modes, or rings, are numbered 0 to 3, with 0 being the

most privileged. In a non-virtualized system, the OS executes at ring 0 and the appli-

cations at ring 3. Rings 1 and 2 are typically not used. In Xen para-virtualization, the

VMM executes at ring 0, the guest OS at ring 1, and the applications at ring 3. This

approach helps to ensure that the VMM possesses the highest privilege, while the guest

OS executes in a higher privileged mode than the applications and is isolated from the

applications. Privileged instructions issued by the guest OS are verified and executed by

the VMM.

In a Xen system, the Domain0 or Dom0 is the first domain launched when the system

is booted. The management tools for controlling the Xen virtualization platform reside in

dom0. It can be used to create, delete, migrate and pause all other regular guest domains.

In addition, access to resources and permission settings on VMs are administered through

dom0. A regular guest domain is called a DomU or unprivileged domain. Dom0 is scheduled

like DomUs. If a domain has only one VCPU, it can be executed in one processor or core

at a time. Each domain may have one or more virtual CPUs (VCPUs) which run on

physical CPUs. In our experiments, each VM has four VCPUs since our worker machines

are quad-core. Xen has another feature termed “cap” [10] that can be used to control the

maximum percentage of CPU a domain can use, even if there are free CPU cycles. This

mechanism is used by several authors, among them [22, 34], and allows better performance

isolation among multiple VMs, preventing an application from draining the CPU capacity.

53

APPENDIX B -- Response time measurement

The response time considered in the experiments in Chapter 5 is related to the server

side. Thus, the response time is defined by the difference between the time a response is

generated and the moment the server has accepted the associated request. To obtain the

response time for the web applications we have implemented a new Apache module that

collects the time information between these two moments using pre-defined hooks provided

by the Apache Module API [36]. The hooks used to measure the response time are:

post read request and log transaction. The post read request phase allows our

module to store the moment a request was accepted by Apache and the log transaction

phase allows it to store the moment a response was sent back to the client. The difference

between these values gives the response time.

To smooth out high short-term fluctuations in measurements readings, we have in-

tegrated a filter procedure in our Apache module based on a single exponential moving

average [17]. Specifically, the filter computes the next value, St, by summing the product

of the smoothing constant α (0 < α < 1) with the new value (Xt), and the product of

(1 − α) times the previous average, as follows: St = α ∗ Xt + (1 − α) ∗ St−1. Values of

α close to 1.0 have less smoothing effect and give greater weight to recent changes in the

data, while values of α close to 0.0 have a greater smoothing effect and are less responsive

to recent changes. Some techniques may be used to optimize the value of α, such as using

the Marquardt procedure to find the value of α that minimizes the mean of the squared

errors (MSE) [17]. In the filter module, we have used α = 0.5 as the default smoothing

factor; based on our experiments this value was found suitable.

54

APPENDIX C -- Physical machines configuration

We present in Table 1 the physical machines used in the experiments. All machines

share a NFS (Network File System) storage mounted in the front-end to store the VM

images. The NFS does not causes disruption to the proxies running in the front-end since

the NFS is not CPU-bound.

Henry AMD Athlon 64 3500+ 3GB RAM Front-end
Camburi Intel Pentium 4 2.80GHz 1GB RAM Load generator
Cumulus Intel Pentium 4 2.80GHz 1GB RAM Load generator

Xingo Intel Core i7 CPU 2.67GHz 8GB RAM Load generator
Farad Intel Core2 Duo CPU 3.00GHz 6GB RAM Load generator
Itaipu Intel Core i5 CPU 2.67GHz 8GB RAM Worker

Tucurui Intel Core i5 CPU 2.67GHz 8GB RAM Worker
Maxwell Intel Core i5 CPU 2.67GHz 8GB RAM Worker
Edison Intel Core i7 CPU 2.67GHz 8GB RAM Worker

Table C.1: Physical Machines Configuration

