MARCIO ANDRE RIBEIRO GUIMARAENS

CONJUNÇÃO DE MEDIDAS CONVENCIONAIS E FASORIAIS PARA PROCESSAMENTO DE ERROS GROSSEIROS NA ESTIMAÇÃO DE ESTADO EM SISTEMAS DE POTÊNCIA

Dissertação apresentada ao curso de Pós-Graduação em Computação da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre, Área de concentração: Computação Científica e Sistemas de Potência.

Orientadores: Prof. Milton Brown Do Coutto Filho Prof. Julio Cesar Stacchini de Souza

> Niterói 2011

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

G963	Guimaraens, Marcio Andre Ribeiro. Conjunção de medidas convencionais e fasoriais para processamento de erros grosseiros na estimação de estado em sistemas de potência / Marcio Andre Ribeiro Guimaraens – Niterói, RJ : [s.n.], 2011. 127 f.
	Dissertação (Mestrado em Computação) - Universidade Federal Fluminense, 2011. Orientadores: Milton Brown Do Coutto Filho, Julio Cesar Stacchini de Souza.
	 Estimação de estado (Energia elétrica). 2. Sistema elétrico de potência. 3. Medição fasorial. 4. Método dos mínimos quadrados.
	CDD 621.3191

MARCIO ANDRE RIBEIRO GUIMARAENS

CONJUNÇÃO DE MEDIDAS CONVENCIONAIS E FASORIAIS PARA PROCESSAMENTO DE ERROS GROSSEIROS NA ESTIMAÇÃO DE ESTADO EM SISTEMAS DE POTÊNCIA

Dissertação apresentada ao Curso de Pós Graduação em Computação da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre, Área de concentração: Computação Científica e Sistemas de Potência.

Aprovada em 26 de Outubro de 2011

BANCA EXAMINADORA

Prof. Julio Cesar Stacchini de Souza, D. Sc. – Orientador UFF – Universidade Federal Fluminense

Prof. Milton Brown Do Coutto Filho, D. Sc. - Orientador UFF – Universidade Federal Fluminense

Prof. José Henrique Carneiro de Araujo, D. Sc. UFF – Universidade Federal Fluminense

Profa. Tatiana Mariano Lessa de Assis, D. Sc. UFRJ – Universidade Federal do Rio de Janeiro

À minha família, Claudia, Julia e Gabriel, em especial à minha amada esposa Claudia, pelo apoio, incentivo e compreensão.

AGRADECIMENTOS

Agradeço a Deus, por estar sempre presente em minha vida, dando-me forças nas adversidades, tranquilidade na execução da tarefa e coragem para dedicar todo o tempo necessário a este projeto.

Aos meus orientadores, Professor Julio Cesar Stacchini de Souza e Professor Milton Brown Do Coutto Filho pelo acompanhamento constante, sempre com sugestões e críticas essenciais à elaboração desta Dissertação.

Aos amigos pelo apoio, sugestões, e pelas horas de descanso, quando me ajudavam a reduzir o stress.

Ao Professor Rui Menezes de Moraes que disponibilizou seu trabalho de Tese como base para o desenvolvimento desta Dissertação e sempre esteve pronto a prestar esclarecimentos.

À CAPES pela concessão de Bolsa de Estudos para realização do curso de mestrado.

A todos que direta ou indiretamente contribuíram e/ou colaboraram para a execução deste trabalho.

A utilização plena de unidades de medição fasorial (UMFs) em um sistema elétrico envolve interessantes aspectos, decorrentes principalmente: (i) do elevado número de dispositivos de medição; (ii) do grande volume de dados a ser tratado; (iii) da confiabilidade do sistema de comunicação de dados a longas distâncias; (iv) da oferta de diferentes fabricantes de UMFs; (v) da necessidade de atendimento a aplicações que estabelecem diferentes requisitos.

A função Estimação de Estado (EE) se constitui em um dos aplicativos básicos de Sistemas de Gerenciamento de Energia (SGEs). Usualmente atuando no processamento e consequente depuração de telemedidas (e.g., magnitudes de tensões, fluxos e injeções de potência ativa/reativa fornecidas por unidades terminais remotas - UTRs), a EE leva em conta as exatidões inerentes e eventuais erros de qualquer processo de medição, de forma a que o estado operativo mais provável do sistema seja obtido.

Diversos tópicos relacionados à EE têm sido intensamente estudados com o objetivo de melhorar a confiabilidade dos resultados do processo de estimação. Recentemente, o uso de medição sincronizada de fasores tem sido apontado como importante complemento à medição realizada por UTRs para fins de EE.

Esta Dissertação volta-se para a apresentação de vantagens e expectativas de aplicação prática de UMFs na EE de sistemas de energia elétrica, no que diz respeito a: aperfeiçoamento do processo de obtenção do estado; integração das medidas fasoriais sincronizadas; alteração da referência angular do processo de estimação; tratamento de medidas portadoras de erros grosseiros; redução da criticalidade do conjunto de medição. Considerando que o problema da EE é de natureza local, sem perda de generalidade, estudos foram realizados com sistemas de porte reduzido, vistos como uma parte de um sistema de maior dimensão. Assim, resultados de simulações com o sistema IEEE14_barras (considerado na literatura especializada como referência para estudos de EE) foram obtidos, de modo a evidenciar numericamente os diversos aspectos da utilização de UMFs na EE trazidos à luz no presente trabalho.

The full utilization of Phasor Measurement Units (PMUs) in power systems has interesting aspects, namely: large number of measurement points; impressive amount of data to be processed; reliability of the long distance system communication; variety of manufacturers; establishment of different application requirements.

The state estimation (SE) function is one of the basic applications of an Energy Management System (EMS). Processing and debugging available conventional measurements (e.g., voltage magnitude, real/reactive power flows and injections), SE takes account accuracy and eventually bad data, inherent to any metering system, to acquire the most likely operating state of the system.

Several topics related to SE have been intensively studied, so as to improve the reliability of the estimation process results. Recently, the use of PMUs has been indicated as an important complement of measurements to those done by Remote Terminal Units (RTUs) in SE.

This work comprises the study of advantages and expectations of PMU practical applications in power system SE, regarding: the process of obtaining the state; integration of PMUs in actual systems; angular reference definition of the estimation process; gross error treatment; the criticality of measurement set. Considering that the SE problem is of local nature, without generality loss, studies were done with reduced size power networks, seen as part of large scale systems. Results with simulations on the IEEE14 bus system (framework for SE studies) were obtained. These simulations achieved some interesting results, numerically speaking, which were brought to light in this work.

CAPÍTULO 1	
INTRODUÇÃO	1
1.1 Considerações Gerais	1
1.2 Objetivos	3
1.3 Estrutura da Dissertação	3
CAPÍTULO 2	
ESTIMAÇÃO DE ESTADO	5
2.1 Introdução	5
2.2 Etapas	6
2.3 Filtragem	7
2.4 Análise de Observabilidade	10
2.5 Análise de Resíduos	12
2.6 Modelagem	14
2.7 Conclusão	20
CAPÍTULO 3	
SINCROFASORES NA ESTIMAÇÃO DE ESTADO	21
3.1 Introdução	21
3.2 Considerações Iniciais	21
3.3 Medidas de Corrente na Estimação de Estado	22
3.4 Revisão da Literatura	
3.5 Conclusões	
CAPÍTULO 4	
METODOLOGIA	34
4.1 Introdução	34
4.2 Estimadores Utilizados	35
4.2.1 Estimador 1	35
4.2.2 Estimador 2	
4.2.3 Estimador 3	40
4.3 Considerações e Convenções	
4.4 Avaliação	50
4.5 Considerações Adicionais	51
4.6 Conclusões	53

CAPÍTULO 5

PROCESSAMENTO DE ERROS GROSSEIROS5	55
5.1 Introdução5	55
5.2 Descrição das Simulações5	55
5.3 Simulações Utilizando o SM15	56
5.3.1 Resultados considerando a ocorrência do Grupo EG15	57
5.3.2 Resultados considerando a ocorrência do Grupo EG25	59
5.4 Simulações utilizando o SM26	31
5.4.1 Resultados considerando a ocorrência do Grupo EG36	33
5.4.2 Resultados considerando a ocorrência do Grupo EG46	35
5.5 Simulações utilizando o SM36	36
5.5.1 Resultados considerando a ocorrência do Grupo EG56	38
5.5.2 Resultados considerando a ocorrência do Grupo EG67	71
5.6 Simulações adicionais7	74
5.7 Considerações Finais7	79
CAPÍTULO 6	
CONCLUSÕES8	31
Referências8	34
Bibliografia não Referenciada8	39
APÊNDICE A	
SISTEMAS DE MEDIÇÃO CONSIDERADOS9) 1
A.1 Sistema de Medição 1 (SM1) – Redundância Adequada9) 1
A.2 Sistema de Medição 2 (SM2) – Conjunto Crítico9	} 4
A.3 Sistema de Medição 3 (SM3) – Medidas Críticas9	96
APÊNDICE B	
RESULTADOS DAS SIMULAÇÕES9	99

Figura 2.1 –	Modelo Pi	14
Figura 2.2 –	Modelo de Transformador de tape variável	15
Figura 2.3 –	Modelo pi Equivalente de Transformador de tape variável	15
Figura 2.4 –	Modelo pi Equivalente	17
Figura 4.1 –	Fluxograma do Estimador 1	37
Figura 4.2 –	Fluxograma do Estimador 2	40
Figura 4.3 –	Rede Elétrica do Sistema IEEE14 Barras	42
Figura 4.4 –	EVT dos Estimadores para o SM1 sem EGs	47
Figura 4.5 –	EVT dos Estimadores para o SM2 sem EGs	48
Figura 4.6 –	EVT dos Estimadores para o SM3 sem EGs	49
Figura 4.7 –	Sistema de 3 Barras com medição convencional	52
Figura 5.1 –	EVT dos Estimadores para o SM1 na presença de EG1	57
Figura 5.2 –	EVT dos Estimadores para o SM1 na presença de EG2	60
Figura 5.3 –	EVT dos Estimadores para o SM2 na presença de EG3	6
Figura 5.4 –	EVT dos Estimadores para o SM2 na presença de EG4	65
Figura 5.5 –	EVT dos Estimadores para o SM3 na presença de EG5	69
Figura 5.6 –	EVT dos Estimadores para o SM3 na presença de EG6	7
Figura 5.7 –	Sistema de medição do SM 1 onde medidas convencionais	
	são instaladas para UTR256	_7
Figura 5.8 –	EVTs dos Estimadores para o sistema SM1 e UTR256 sem EGs	76
Figura 5.9 –	EVTs para o sistema SM1 e UTR256 na presença de EG1	76
Figura 5.10 –	EVTs para o sistema SM1 e UTR256 na presença de EG2	7
Figura A.1 –	Sistema de medição do SM1	9
Figura A.2 –	Sistema de medição do SM1 com as UMFs das barras	
	2, 5 e 6	94
Figura A.3 –	Sistema de medição do SM2	94
Figura A.4 –	Sistema de medição do SM2 com as UMFs das barras	
	2, 5 e 6	96
Figura A.5 –	Sistema de medição do SM3	96
Figura A.6 –	Sistema de medição do SM3 com as UMFs das barras	
	3, 5 e 9	98

Tabela 4.1 –	Tipos das barras, cargas e gerações Ativas (MW) e	
	Reativas (Mvar)	43
Tabela 4.2 –	Dados dos Ramos	43
Tabela 4.3 –	Convenção para identificação das medidas	44
Tabela 4.4 –	Valores de Referência (em pu) das Injeções e Tensões de barra_	44
Tabela 4.5 –	Valores de Referência (em pu) do Fluxo de Potência e Correntes	
	de Ramo	45
Tabela 5.1 –	Grupo EG1	56
Tabela 5.2 –	Grupo EG2	56
Tabela 5.3 –	Resíduos Normalizados e Ponderados para todos os estimadores	F
	na presença do grupo EG1 no SM1	58
Tabela 5.4 –	Grupo EG3	61
Tabela 5.5 –	Grupo EG4	61
Tabela 5.6 –	Resíduos Normalizados e Ponderados para todos os estimadores	i
	na presença do grupo EG2 no SM1	62
Tabela 5.7 –	Resíduos Normalizados e Ponderados para todos os estimadores	I
	na presença do grupo EG3 no SM2	64
Tabela 5.8 –	Resíduos Normalizados e Ponderados para todos os estimadores	;
	na presença do grupo EG4 no SM2	67
Tabela 5.9 –	Grupo EG5	68
Tabela 5.10 –	Grupo EG6	68
Tabela 5.11 –	Resíduos Normalizados e Ponderados para todos os estimadores	
	na presença do grupo EG5 no SM3	70
Tabela 5.12 –	Resíduos Normalizados e Ponderados para todos os estimadores	
	na presença do grupo EG6 no SM3	73
Tabela 5.13 –	Conjunto de medidas adicionais em SM1	74
Tabela 5.14 –	Grupo EG7	78
Tabela 5.15 –	EVT médio final para o Estimador 2 no SM1 na presença do	
	grupo EG7	79
Tabela A.1 –	Plano de medição proposto com medidas simuladas do SM 1	92
Tabela A.2 –	Conjunto de medidas UMFs instaladas nas barras 2, 5 e 6	93
Tabela A.3 –	Plano de medição proposto com medidas simuladas do SM 2	95
Tabela A.4 –	Plano de medição proposto com medidas simuladas do SM 3	97
Tabela A.5 –	Conjunto de medidas UMFs instaladas nas barras 3, 5 e 9	98

Tabela B.1 –	Estado gerado pelo estimador convencional com o Grupo EG1	99
Tabela B.2 –	Estado Estimado com o grupo EG1 e UMFs das barras 2, 5 e 6	
	Estimador 1	99
Tabela B.3 –	Estado Estimado com o grupo EG1 e UMFs das barras 2, 5 e 6	
	Estimador 2	100
Tabela B.4 –	Estado Estimado com o grupo EG1 e UMFs em todas as barras _	100
Tabela B.5 –	Estado gerado pelo estimador convencional com o Grupo EG2	101
Tabela B.6 –	Estado Estimado com grupo EG2 e UMFs das barras 2, 5 e 6	
	Estimador 1	101
Tabela B.7 –	Estado Estimado com grupo EG2 e UMFs das barras 2, 5 e 6	
	Estimador 2	102
Tabela B.8 –	Estado Estimado com grupo EG2 e UMFs em todas as barras	102
Tabela B.9 –	Estado gerado pelo estimador convencional com o Grupo EG3	103
Tabela B.10 -	Estado Estimado com o grupo EG3 e UMFs das barras 2, 5 e 6	
	Estimador 1	103
Tabela B.11 -	Estado Estimado com o grupo EG3 e UMFs das barras 2, 5 e 6	
	Estimador 2	104
Tabela B.12 -	Estado Estimado com o grupo EG3 e UMFs em todas as barras _	104
Tabela B.13 –	Estado gerado pelo estimador convencional com o Grupo EG4	105
Tabela B.14 –	Estado Estimado com grupo EG4 e UMFs das barras 2, 5 e 6	
	Estimador 1	105
Tabela B.15 –	Estado Estimado com grupo EG4 e UMFs das barras 2, 5 e 6	
	Estimador 2	106
Tabela B.16 –	Estado Estimado com grupo EG4 e UMFs em todas as barras	106
Tabela B.17 –	Estado gerado pelo estimador convencional com o Grupo EG5	107
Tabela B.18 –	Estado Estimado com o grupo EG5 e UMFs das barras 3, 5 e 9	
	Estimador 1	107
Tabela B.19 –	Estado Estimado com o grupo EG5 e UMFs das barras 3, 5 e 9	
	Estimador 2	108
Tabela B.20 –	Estado Estimado com o grupo EG5 e UMFs em todas as barras _	108
Tabela B.21 –	Estado gerado pelo estimador convencional com o Grupo EG6	109
Tabela B.22 –	Estado Estimado com grupo EG6 e UMFs das barras 3, 5 e 9	
	Estimador 1	109
Tabela B.23 –	Estado Estimado com grupo EG6 e UMFs das barras 3, 5 e 9	
	Estimador 2	110
Tabela B.24 –	Estado Estimado com grupo EG6 e UMFs em todas as barras	110

Tabela B.25 -	- Estado estimado com as medidas adicionais oriundas de	
	UTRs nas barras 2, 5 e 6 com SM1 sem EGs	111
Tabela B.26 –	- Estado estimado com as medidas adicionais oriundas de	
	UTRs nas barras 2, 5 e 6 com SM1 e grupo EG1	111
Tabela B.27 –	- Estado estimado com as medidas adicionais oriundas de	
	UTRs nas barras 2, 5 e 6 com SM1 e grupo EG2	112
Tabela B.28 –	- Estado estimado com as medidas adicionais oriundas de	
	UTRs nas barras 2, 5 e 6 com SM2 e grupos EG3 e EG4	112
Tabela B.29 -	- Estado estimado com as medidas adicionais oriundas de	
	UTRs nas barras 3, 5 e 9 com SM3 e grupos EG5 e EG6	113

PRINCIPAIS SÍMBOLOS E ABREVIATURAS

nb	Número de barras
z	vetor de medidas
x	vetor de estado
h	vetor das funções não lineares que relacionam x e z
R	Matriz de covariância das medidas
н	Matriz Jacobiano
G	Matriz de Ganho
r	Resíduo
ľN	Resíduo Normalizado
ľP	Resíduo Ponderado
SEE	Sistema de Energia Elétrica
COS	Centro de Operação do Sistema
SCSAD	Sistema de Controle Supervisório e Aquisição de Dados
SGE	Sistema de Gerenciamento de Energia
EG	Erro Grosseiro
EE	Estimação de Estado
UTR	Unidade Terminal Remota
GPS	Global Positioning System
UMF	Unidade de Medição Fasorial
EVT	Erro Vetorial Total

CAPÍTULO 1

1.1 Considerações Gerais

A sociedade atual criou uma dependência ao uso da energia elétrica de tal importância que se pode considerar um caos dela prescindir. Tal energia é gerada muitas vezes em locais distantes dos centros de consumo, sendo necessário um sistema que a transporte até estes.

O conjunto de equipamentos que operam de maneira coordenada de forma a gerar, transmitir e fornecer energia elétrica aos consumidores, mantendo o melhor padrão possível é chamado de Sistema de Energia Elétrica (SEE).

O Brasil se destaca, em relação às grandes potências mundiais, por ter uma capacidade energética de geração hidroelétrica considerável. O seu grande território demandou a construção de uma extensa rede de transmissão de energia elétrica. A operação deste sistema de forma econômica e segura necessita de informações precisas e confiáveis.

A aquisição destas informações cumpre diversos papéis. Serve, por exemplo, para diagnosticar sobrecargas e/ou sobretensões em determinadas regiões, levando à programação de investimentos para aliviar o sistema, assim como, entre outros objetivos, verificar se o padrão mínimo de qualidade exigido por órgão regulamentador está sendo mantido.

Os Centros de Operação do Sistema (COS) possuem ferramentas sofisticadas, tanto de software como de hardware, para que se possam alcançar os objetivos propostos. Como exemplos, podem ser citados os sistemas de Controle Supervisório e de Aquisição de Dados (SCSAD) e de Gerenciamento de Energia (SGE), que são vitais à operação. O SCSAD depende de dados fornecidos por medidores instalados no SEE para efetuar monitoramento. Valores medidos estão sujeitos a vários erros de pequena magnitude, assim como, à ocorrência de erros grosseiros (EGs). A origem de tais erros pode estar na falha do equipamento de medição; falha do sistema de aquisição de dados; falha do sistema de transmissão de dados, falha dos transformadores de instrumentos e seus circuitos secundários, etc.

Para lidar com o problema da disponibilidade de dados completa e confiável, Schweppe e outros em 1970 [SCH70] introduziram a Estimação de Estado (EE) em SEE. Basicamente, a EE atua como um filtro que detecta, identifica e remove inconsistências nos dados de medição, sendo considerada como ferramenta básica tanto do SCSAD quanto do SGE. Os resultados da função EE servem de entrada para os demais aplicativos do SGE, sendo importantes para tomada de decisões em tempo real pelos operadores do sistema [MOR09].

Deve-se destacar que a EE necessita condições ou requisitos para seu correto funcionamento, tais como: redundância capaz de suprir as rotinas de validação de dados; a configuração correta da rede elétrica atual do sistema; os valores de parâmetros dos ramos da rede devem ser conhecidos sem erros; e os dados devem ser adquiridos simultaneamente, apesar de sua origem remota em diversos pontos da rede supervisionada. Tais requisitos são grandes desafios já que: a redundância pode envolver altos investimentos; a correta configuração da rede bem como o perfeito conhecimento dos seus parâmetros elétricos nem sempre ocorrem; Unidades Terminais Remotas (UTRs) não fazem leituras simultâneas, mesmo sendo a velocidade de aquisição dos dados aceitável.

Na década de 1980, uma nova tecnologia de medição foi desenvolvida baseada nos Relés de Distância por Componentes Simétricas (Symmetrical Component Distance Relay – SCDR) [PHA02], com capacidade para medir o ângulo das grandezas fasoriais do sistema elétrico, sincronizadamente (com precisão de até 1 µs), através de um sistema de posicionamento global (Global Positional System - GPS).

O primeiro protótipo de uma Unidade de Medição Fasorial (UMF) foi montado na Universidade Virginia Tech, tendo sido comercializado pela empresa Macrodyne, em 1988. Atualmente, diversas empresas fabricam suas próprias UMFs [PHA02].

Pesquisas vêm sendo feitas de modo a aproveitar na EE medidas fornecidas por UMFs [MOR09], notadamente enfocando os estudos de observabilidade e processamento de erros grosseiros [PHA08].

2

A literatura mostra duas vertentes quanto à inclusão das UMFs na função EE. A primeira considera que UMFs teriam uma qualidade considerável e por isso, caso sistemas sejam observáveis apenas com UMFs, o problema seria linear [ZH06]. Consequentemente, a segunda vertente considera os Estimadores Híbridos, onde é constatada uma diferença na qualidade entre as medidas, porém se torna mais eficiente processar estas medidas fasoriais em conjunto com as medidas convencionais [PSE06].

1.2 Objetivos

Esta Dissertação busca analisar os efeitos da inclusão de medidas fornecidas por UMFs em processos de EE, mais especificamente no que tange à identificação de medidas portadoras de EGs, seguindo a vertente de inclusão de UMFs em Estimadores Híbridos.

Basicamente três modelos de estimadores foram testados utilizando dados de UMFs. O Estimador 1, em que todas as medidas (convencionais e de UMFs) ingressam simultaneamente no processo de EE. O Estimador 2, proposto por [ZHO06], em que as medidas convencionais servem como entrada de um estimador convencional e o estado gerado nesta etapa em conjunto com as medidas de UMFs passa a uma segunda etapa de estimação. Por fim, propõe-se o Estimador 3, análogo àquele encontrado em [COU01a] – Estimador FASE (Forecasting Aided State Estimator), em que adotam-se medidas de UMFs no lugar de previsões.

1.3 Estrutura da Dissertação

Esta Dissertação compreende seis capítulos, descritos a seguir:

O CAPÍTULO 2 apresenta os principais conceitos da EE em sistemas elétricos. São abordados também os requisitos necessários ao processo de estimação, tais como, redundância, observabilidade, detecção de erros grosseiros e identificação de criticalidades de medição.

O CAPÍTULO 3 descreve a inclusão de medidas de correntes e fasores no processo de EE, discorre sobre alguns aspectos relativos à utilização de UMFs no processo de EE, apresentando uma revisão bibliográfica sobre este campo de pesquisa.

3

O CAPÍTULO 4 discorre sobre os estimadores elaborados que utilizam medições fasoriais, a saber: de Estimador com Processamento Integrado de medidas convencionais adquiridas por UTRs e de medidas fasoriais oriundas de UMFs, Estimador 1; Estimador em Duas Etapas, Estimador 2; e Estimador FASE adaptado para receber medidas oriundas de UMFs no lugar das inovações [COU01a], Estimador 3. Resultados de simulações, são também apresentados, em que os três estimadores têm seu desempenho mostrado sob condições normais de operação, isto é, sem a presença de EGs e em diferentes condições de redundância.

O CAPÍTULO 5 é dedicado à apresentação dos resultados alcançados com os três estimadores descritos no capítulo anterior, agora sob a influência de alguns conjuntos de medidas portadoras de EGs e diferentes condições de redundância.

O CAPÍTULO 6 encerra este manuscrito destacando as conclusões obtidas e propondo estudos para continuação da pesquisa no tema aqui tratado.

O APÊNDICE A apresenta os três sistemas de medição onde foram realizadas as simulações. Um sistema com redundância adequada, outro com redundância baixa e contendo um conjunto crítico e o último com redundância baixa e contendo medidas críticas.

O APÊNDICE B mostra os valores obtidos pela EE em cada simulação descrita no Capítulo 5.

CAPÍTULO 2

ESTIMAÇÃO DE ESTADO

2.1 Introdução

Inicialmente, os SEEs eram monitorados apenas por sistemas de controle supervisórios. Mais tarde, estes sistemas incorporaram a função de aquisição de dados em tempo real, disponibilizando um gama de dados remotos, tais como o estado de chaves/disjuntores e leituras de valores de grandezas elétricas, através de medidores instalados no SEE (SCSAD). A partir destes dados algumas análises são realizadas, tais como: análise de contingências, correção de despachos de potência, etc.

Entretanto, nem sempre os dados recebidos pelo SCSAD são confiáveis, devido a erros de medição, falhas na telemetria, ruído na comunicação, etc. Seja qual for a ação a ser tomada, o conhecimento do estado operativo do sistema torna-se fundamental. Entende-se por estado operativo do sistema aquele caracterizado por grandezas elétricas referentes a uma determinada configuração de rede, ou seja, tensões de cada barra da rede elétrica (módulo e ângulo). Uma vez conhecido o estado, grandezas elétricas dele dependentes podem ser determinadas (correntes, fluxos e injeções de potência).

Schweppe [SCH70] foi pioneiro ao perceber a necessidade de uma análise adequada (com base estatística) sobre estes dados e introduziu em 1970 estudos sobre EE em sistemas de potência. Com o desenvolvimento deste campo de pesquisa, os SGEs modernos passaram então a especificar um estimador entre suas diversas funcionalidades.

Desde então, muitos trabalhos de pesquisa em EE foram realizados, encontrando-se em [MON99] e [ABU04] material consolidado sobre o assunto, a ser utilizado neste capítulo, que descreve sucintamente o processo de EE, suas etapas, e premissas para adequado funcionamento.

2.2 Etapas

Usualmente o processo de EE em sistemas de potência é composto por quatro etapas descritas a seguir:

a) Pré-Filtragem – Verificam-se os valores das grandezas medidas frente a limites, evitando assim que, valores maiores do que a capacidade operativa dos equipamentos de medição, sejam levados em consideração no restante do processo. Nesta etapa também é verificado o estado das chaves e disjuntores; pode-se comparar o valor medido com o valor nominal da grandeza; comparar o valor medido com valores anteriores; verificações de consistências pela lei de Kirchhoff; consistência de valores nos dois extremos da linha; consistência entre estados das chaves e disjuntores com os valores medidos.

b) Observabilidade – Avalia-se o conjunto de dados pré-filtrados no que diz respeito à sua capacidade de garantir a realização do processo de EE em toda rede ou se apenas em parte dela (ilhas observáveis). Neste último caso, são identificadas as medições (pseudomedidas) necessárias para tornar a rede completamente observável.

c) Filtragem – Estima-se o estado do sistema utilizando o conjunto de medidas
 e configuração atual da rede. Nesta etapa, adota-se normalmente o método dos
 Mínimos Quadrados Ponderados.

d) Análise de Resíduos – Através de análises estatísticas dos resíduos da estimação (diferença entre valores medidos e estimados), são identificados possíveis erros grosseiros nas grandezas medidas ou erros de configuração da rede, não eliminados nas etapas anteriores.

As informações utilizadas por este processo são adquiridas de bases de dados estáticas e dinâmicas. As bases estáticas contêm informações dos parâmetros elétricos de elementos da rede tais como, transformadores, elementos "shunt", linhas de transmissão. As bases dinâmicas contêm informações das unidades de medição, tais como, magnitude de tensão e corrente, injeções de potência, fluxos de potência, estados de chaves, disjuntores e tapes de transformadores e, atualmente, medições fasoriais de tensão e corrente.

6

2.3 Filtragem

A EE é executada efetivamente na etapa de filtragem, em que medidas com maior exatidão são mais influentes (considerando aquelas com menor exatidão), conforme a seguir descrito.

A relação entre medidas e estado do sistema é descrita pela seguinte equação:

$$z = h(x) + \varepsilon \tag{2.1}$$

Onde:

z – vetor de medidas do sistema, usualmente formado por medidas fornecidas por UTRs, tais como: fluxos de potência ativa e reativa nos ramos da rede; potências ativas e reativas injetadas nas barras; e módulo de tensão nas barras, de dimensão ($m \ge 1$), onde m é o número de medidas do sistema.

h(.) – vetor que relaciona o estado verdadeiro com medidas isentas de erros, através de funções não lineares (equações do problema de fluxo de potência).

x – vetor estado, representando módulo e ângulo das tensões nas barras, com dimensão ($n \ge 1$), onde n é o número de variáveis de estado, sendo n = 2nb -1 e nb é o número de barras do sistema.

 ε – vetor de erros associados à medição, descrito como variável aleatória de distribuição de probabilidades Normal, valor esperado zero e matriz de covariância *R*.

Representa-se a função objetivo da forma a seguir:

$$J(x) = \sum_{i=1}^{m} \varepsilon_i^2 \alpha_i = \sum_{i=1}^{m} \langle \langle a_i \rangle \rangle^2 \alpha_i$$
(2.2)

Onde:

J(x) – função objetivo α_i – peso atribuído à i-ésima medida Em notação matricial:

$$J(x) = \begin{bmatrix} -h(x)^T \end{bmatrix} W \begin{bmatrix} -h(x) \end{bmatrix}$$
(2.3)

Sendo $W = R^{-1}$, matriz de ponderação e $R = diag \{1/\alpha_1^2, 1/\alpha_2^2, ..., 1/\alpha_m^2\}$

O objetivo a ser alcançado consiste em se obter uma estimativa para o estado \hat{x} que minimize J(x), através de:

$$\frac{\partial J(x)}{\partial x}\Big|_{x=x}^{\circ} = 0$$
(2.4)

Aplicando a condição (2.4) em (2.3), obtém-se a seguinte equação:

$$g(x) = H^{t} W \left[z - h(x) \right]$$
(2.5)

Onde $H = \frac{\partial h(x)}{\partial x}$ denomina-se Matriz Jacobiano.

Utilizando o método de Newton Raphson para encontrar o estado estimado em (2.5), obtém-se o seguinte processo iterativo:

$$x^{(k+1)} = x^{(k)} + \left[H^{t}WH \right] H^{t}W = -h(x^{(k)})$$
(2.6)

Onde k é o contador de iterações.

Define-se matriz de ganho G como sendo (WH) e então reescreve-se a equação (2.6):

$$x^{(k+1)} = x^{(k)} + \left[F^{-1} H^{t} W^{(k)} \right] - h(x^{(k)})$$
(2.7)

A convergência do processo iterativo é avaliada verificando-se o módulo do vetor desvio $|\Delta x^{\leftarrow}] = |x^{\leftarrow+1} - x^{\leftarrow}]$ atende a uma determinada tolerância.

Para simplificar o problema, pode-se também considerar como linear a relação entre estado e medida [GRA94]:

$$z = Hx + \varepsilon \tag{2.8}$$

Onde H é a matriz Jacobiano obtida através da linearização das equações de fluxo de potência.

A função objetivo passa a ter a seguinte forma:

$$J(x) = \sum_{i=1}^{m} \varepsilon_i^2 \alpha_i = \sum_{i=1}^{m} \langle \langle a_i \rangle - Hx_i \rangle^2 \alpha_i$$
(2.9)

Matricialmente:

$$J(x) = \begin{bmatrix} -Hx^{T} \\ W \end{bmatrix} - Hx^{T}$$
(2.10)

O estado estimado passa a ser então:

$$\hat{x} = F^{-1}H^{T}W\overline{z}$$
(2.11)

Portanto, tem-se o vetor de medidas filtradas através de:

$$\hat{z} = H \hat{x}$$
(2.12)

O uso de estimadores lineares tem baixo custo computacional sendo útil na análise de observabilidade, identificação de medidas e conjuntos críticos, e problemas que podem ser enfocados sob o ponto de vista estrutural [COU01b], isto é, onde o interesse se volta para a interrelação de variáveis.

2.4 Análise de Observabilidade

Antes de se estimar o estado de um determinado sistema, deve-se avaliar se o mesmo é observável ou não. Para que um sistema seja observável deve haver uma quantidade suficiente de medidas (redundância), distribuídas adequadamente por toda a rede sob supervisão.

A análise de observabilidade consiste em:

- verificar a existência de medidas suficientes em toda a rede;

 identificar a existência de ilhas observáveis, caso a rede como um todo não seja observável;

 escolher um conjunto mínimo de pseudomedidas para tornar o sistema observável, sem comprometer o processo de estimação de estado das ilhas observáveis originalmente.

A utilização de pseudomedidas visa melhorar ou restaurar a observabilidade do sistema [COU99]. Tais dados são obtidos através de valores típicos, históricos, previsões, etc. usados como medidas fictícias em lugar de medidas portadoras de erros grosseiros ou em regiões da rede que apresentam deficiência de medição. A utilização de pseudomedidas pode trazer benefícios importantes na etapa de detecção e identificação de erros grosseiros [MOT10].

A análise de observabilidade pode ser feita através de métodos numéricos ou análises topológicas. A análise topológica (com base na teoria dos grafos) envolve métodos combinatórios complexos e procedimentos lógicos que não são influenciados por problemas numéricos. Os métodos numéricos baseiam-se em aritmética de ponto flutuante, como por exemplo, os que utilizam a fatoração da matriz Jacobiano ou matriz de ganho, já inserida no próprio processo de EE.

Os dois métodos citados para avaliação da observabilidade podem ser construídos de forma acoplada ou desacoplada. A primeira forma possui a desvantagem de não possuir solução única, de modo que a forma desacoplada é mais frequentemente adotada [ABU04]. O desacoplamento deve-se à alta sensibilidade do fluxo de potência ativa em relação ao ângulo fasorial da tensão (P - θ), tal como do fluxo de potência reativa em relação à magnitude de tensão (Q-V).

10

Desta forma, pode-se fazer a análise apenas pelo conjunto P - θ , adotando as seguintes simplificações:

R = U (Matriz Identidade)

 $b_{ik} = 1$ (parâmetro do ramo que liga as barras *i* e *k* da rede)

Elementos de H pertencentes a i-ésima medida:

Fluxo P_{ik} : $H(l,i) = -b_{ik}$ $H(l,k) = -b_{ik}$ Injeção Pi: $H(l,i) = \sum_{k} b_{ik}$, $i \neq k$ $H(l,k) = -b_{ik}$

Onde k é o índice das barras ligadas à barra i.

As colunas de H são correspondentes aos ângulos das barras, excluído aquele tomado como referência. Maiores detalhes podem ser observados em [COU01b]

A observabilidade de um sistema se dá quando a matriz de ganho é inversível, condição verificada através da ausência de pivôs nulos durante sua fatoração. Análise mais detalhada pode ser feita ao se verificar diferentes graus de observabilidade (criticalidades).

Níveis de criticalidade são verificados identificando-se medidas e conjuntos críticos. Uma medida é definida como crítica quando sua ausência do conjunto de medição disponível para processamento tornar o sistema não observável. Um conjunto de medidas não críticas é considerado conjunto crítico (Cconj), quando a ausência de qualquer elemento deste conjunto tornar os elementos nele remanescentes medidas críticas.

O processo de identificação de medidas críticas (Cmeds) e conjuntos críticos (Cconjs) aqui adotados é baseado nas propriedades numéricas dos resíduos da estimação [COU07].

O nível de criticalidade das medidas processadas está relacionado ao grau de confiabilidade do processo de estimação. Cmeds apresentam sempre resíduos nulos e sua matriz de covariância é nula, ou seja, tais medidas não se correlacionam com

qualquer outra medida. Se uma Cmed for portadora de EG, tal erro não será detectado/identificado.

Cconjs compõem-se de medidas com resíduos normalizados idênticos e máxima correlação entre si. Se alguma medida pertencente a um Cconj contiver EGs, este será detectado, porém não poderá ser identificado.

Desta forma, conclui-se que o nível de redundância das medidas disponíveis para processamento é fundamental para EE. Tal redundância pode ser avaliada quanto ao posicionamento, quantidade e tipo de medição, considerando:

- Alcançar a observabilidade da rede elétrica como um todo;
- Confiabilidade, no que tange a possibilidade de detectar, identificar e eliminar EGs;
- Qualidade do valor estimado (diminuição da incerteza em relação à medição);
- Robustez, para fazer frente à ausência de algumas medições, mantendo os requisitos de observabilidade, confiabilidade e qualidade preservados.

2.5 Análise de Resíduos

A EE permite suavizar os erros de baixa magnitude (estatisticamente esperados) contidos em qualquer processo de medição. Quando medidas apresentam valores muito distintos em relação ao que se espera diz-se que estas podem conter EGs [COU99].

Uma vez que o estado tenha sido estimado, este é utilizado para estimar medidas e realizar uma avaliação da consistência dos resultados alcançados. Tal procedimento é chamado de Análise de Resíduos. O objetivo principal é detectar a presença de erros estatisticamente elevados através da análise do vetor dos resíduos r da estimação:

$$r = z - \hat{z} \tag{2.13}$$

$$r = z - h(x) \tag{2.14}$$

onde z é valor medido

z é valor estimado

O vetor de resíduos pode ser interpretado como uma variável aleatória Normal, de valor esperado zero e matriz de covariância E, obtida por:

$$E = R - H(H^{t}WH)^{-1}H^{t}$$
(2.15)

O vetor de resíduos é normalizado e verifica-se a seguinte condição:

$$r_N(i) = \frac{\left|r(i)\right|}{\sqrt{E(i,i)}} \le \lambda \tag{2.16}$$

Onde o índice i indica i-ésima componente do vetor dos resíduos e λ é o limite de detecção. Na literatura pesquisada, o valor usualmente considerado é três.

Resíduos normalizados superiores ao limite estabelecido indicam a presença de EGs. Caso haja apenas uma medida portando EG em determinado sistema de medição, aquela que apresentar o maior resíduo normalizado será portadora de EG. Desta forma, este teste além de detectar a presença do EG é também capaz de identificar a(s) medida(s) espúria(s).

Uma vez identificado(s) o(s) EG(s) no conjunto de medidas, deve-se eliminálo(s) ou substituí-lo(s) por pseudomedida(s). Deve-se lembrar que a eliminação de medidas pode provocar perda de observabilidade do sistema ou o surgimento de Cmeds e/ou Cconjs, trazendo dificuldades para o processo de estimação.

No caso de perda da observabilidade, fica bem clara a incapacidade de se realizar o processo de estimação. Se surgirem Cmeds, os resíduos e suas respectivas covariâncias serão nulos. Na verdade, todas as linhas referentes a esta medida na matriz de covariância serão nulas, visto que esta medida não se relaciona com nenhuma outra.

A presença de um EG em uma Cmed torna-se indetectável pelo teste apresentado, devido justamente a sua falta de correlação com outras medidas.

Se surgirem Cconjs, os resíduos normalizados das medidas, que dele participam, serão idênticos em valor absoluto e os correspondentes coeficientes de correlação unitários.

A presença de um EG em uma medida de um Cconj pode até ser detectada, pois todo o Cconj violará o limite estabelecido. Porém ao ser retirada uma das medidas suspeitas na tentativa de identificar qual delas possui o EG, todas as outras medidas se tornarão críticas e, por conseguinte apresentarão resíduos nulos, impossibilitando a identificação do EG.

Apesar de existirem outros testes para avaliação dos resultados da estimação como, por exemplo, o teste da função objetivo J(x), neste trabalho será utilizado o teste dos resíduos normalizados por ser considerado na literatura como o mais confiável.

2.6 Modelagem

Esta seção apresenta as equações que relacionam o estado e medidas bem como as suas derivadas que compõem a matriz Jacobiano do sistema.

Representam-se os ramos da rede através de um modelo pi equivalente. A Figura 2.1 apresenta o referido modelo.

Figura 2.1 – Modelo Pi

sendo:

 $y_{ik} = g_{ik} + jb_{ik}$, admitância série do ramo entre as barras *i* e *k*.

 B'_{ik} é a metade da susceptância em paralelo do ramo

Considere agora, um ramo i-k, correspondente a um transformador de tape variável, que opere com uma relação de transformação (1:t) diferente da relação nominal. Pode-se representar tal transformador através do modelo da Figura 2.2:

Figura 2.2 – Modelo de Transformador de tape variável

O modelo pi equivalente desta modelagem pode ser visto na Figura 2.3:

Figura 2.3 – Modelo pi Equivalente de Transformador de tape variável

onde:

$$A = \left(\frac{t-1}{t}\right) y_{ik} \tag{2.17}$$

$$B = \left(\frac{1-t}{t^2}\right) y_{ik} \tag{2.18}$$

$$C = \left(\frac{1}{t}\right) y_{ik} \tag{2.19}$$

A matriz admitâncias de barra é obtida através da Lei dos Nós aplicada ao sistema, desconsiderando o acoplamento mútuo entre os ramos:

Corrente de um nó do sistema é obtida por:

$$I_{i} = \sum_{1 \neq i}^{m} I_{im} = \sum_{1 \neq i}^{m} \langle \!\!\!\! \langle \!\!\! \langle -V_{m} \rangle \!\!\!\! \rangle_{im} = V_{i} \sum_{1 \neq i}^{m} y_{im} + \sum_{1 \neq i}^{m} V_{m} \langle \!\!\!\! \langle -V_{m} \rangle \!\!\!\! \rangle_{im}$$
(2.20)

sendo:

i índice do nó

m índice dos nós conectados a i

 y_{im} é a admitância do ramo que liga nó i ao nó m

Se
$$\sum_{1 \neq i}^{m} y_{im} = Y_{ii}$$
 e $-y_{im} = Y_{im}$ então:
 $I_{i} = V_{i}Y_{ii} + \sum_{1 \neq i}^{m} V_{m}Y_{im} = \sum_{1}^{m} V_{m}Y_{im}$ (2.21)

Matricialmente:

$$I_{barra} = Y_{barra} V_{barra}$$

$$\begin{bmatrix} I_{1} \\ I_{2} \\ \vdots \\ I_{i} \\ \vdots \\ I_{n} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & \cdots & Y_{1i} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & \cdots & Y_{2i} & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{i1} & Y_{i2} & \cdots & Y_{ii} & \cdots & Y_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{n1} & Y_{n2} & \cdots & Y_{ni} & \cdots & Y_{nn} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ \vdots \\ V_{i} \\ \vdots \\ V_{i} \end{bmatrix}$$
(2.22)

Onde *n* é o número de nós do sistema.

Incluindo um transformador de tape variável entre os nós i e n, segundo modelo da Figura 2.3, na construção da matriz admitâncias de barra, chega-se a [GRA94]:

$$Y_{barra_nova} = \begin{bmatrix} Y_{11} & Y_{12} & \cdots & Y_{1i} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & \cdots & Y_{2i} & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{i1} & Y_{i2} & \cdots & Y_{ii} & \cdots & -Y_{in}/t \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{n1} & Y_{n2} & \cdots & -\frac{Y_{ni}}{t} & \cdots & Y_{nn} + y_{in} \cdot \Psi_{t^{2}} \end{bmatrix}$$
(2.23)

Repete-se o procedimento para todo ramo que represente um transformador.

Re-escrevendo as equações (2.17), (2.18) e (2.19) utilizando elementos da matriz admitâncias de barra, tem-se:

$$A = \left(-t\right)_{ik} \tag{2.24}$$

$$B = \left(-\frac{1}{t} \right)_{ik}$$
(2.25)

$$C = -Y_{ik} \tag{2.26}$$

Juntando-se ao modelo pi equivalente do transformador com tap variável uma susceptância de elemento em derivação jB_{in} em determinados ramos da rede, tem-se uma nova matriz admitâncias de barra mostrada na equação (2.27):

$$Y'_{barra_nova} = \begin{bmatrix} Y_{11} & Y_{12} & \cdots & Y_{1i} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & \cdots & Y_{2i} & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{i1} & Y_{i2} & \cdots & Y_{ii} + jB'_{in} & \cdots & -\frac{y_{in}}{t} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ Y_{n1} & Y_{n2} & \cdots & -\frac{y_{ni}}{t} & \cdots & Y_{nn} + y_{in} \cdot \bigvee_{t^2} \downarrow jB'_{in} \end{bmatrix}$$
(2.27)

Repete-se o procedimento para todos os ramos com susceptância.

Com estas considerações chega-se ao modelo abaixo:

Figura 2.4 – Modelo pi Equivalente

Onde:

$$Y_{ik} = G_{ik} + jB_{ik}$$

$$y_{si} = \langle g_{si} + jb_{si} \rangle = \langle f - t \rangle G_{ik} + j \langle f - t \rangle B_{ik} + B_{ik}^{\dagger} \rangle$$

$$y_{sk} = \langle g_{sk} + jb_{sk} \rangle = \langle f - 1/t \rangle G_{ik} + j \langle f - 1/t \rangle B_{ik} + B_{ik}^{\dagger} \rangle$$

Utilizando o modelo da Figura 2.4, as equações de fluxo de potência correspondem a:

$$S_{ik} = P_{ik} + jQ_{ik}$$

$$P_{ik} = \langle \boldsymbol{\xi}_{si} - \boldsymbol{G}_{ik} \rangle \boldsymbol{\tilde{y}}_{i}^{2} + V_{i}V_{k} \langle \boldsymbol{G}_{ik} \cos(\theta_{ik}) + \boldsymbol{B}_{ik} \operatorname{sen}(\theta_{ik}) \rangle$$
(2.28)

$$Q_{ik} = \left(b_{si} + B_{ik} \right)_{i}^{2} + V_{i}V_{k} \left(c_{ik} sen(\theta_{ik}) - B_{ik} \cos(\theta_{ik}) \right)$$
(2.29)

Onde $\theta_{ik} = \theta_i - \theta_k$

As equações de injeção são obtidas somando-se os fluxos que deixam cada nó da rede em direção aos seus vizinhos:

$$P_{i} = \sum_{j=1 \neq i}^{m} \left[\sum_{si}^{m} - G_{ij} \sum_{i}^{2} + V_{i} V_{j} \left(G_{ij} \cos(\theta_{ij}) + B_{ij} \sin(\theta_{ij}) \right) \right]$$

$$P_{i} = V_{i} \sum_{j=1}^{m} V_{j} \left(G_{ij} \cos(\theta_{ij}) + B_{ij} \sin(\theta_{ij}) \right)$$
(2.30)

$$Q_{i} = \sum_{j=1\neq i}^{m} \bigvee_{j} b_{si} - B_{ij} \underbrace{V_{i}}^{2} + V_{i} V_{j} \underbrace{G_{ij} sen(\theta_{ij}) - B_{ij} \cos(\theta_{ij})}_{ij}$$

$$Q_{i} = V_{i} \sum_{j=1}^{m} V_{j} \underbrace{G_{ij} sen(\theta_{ij}) - B_{ij} \cos(\theta_{ij})}_{ij}$$
(2.31)

Usualmente, os medidores são de fluxos/injeções de potência ativa e reativa e de magnitudes de tensão. A partir das equações anteriores, os elementos da matriz Jacobiano são obtidos de acordo com as expressões a seguir:

Fluxo de Potência:

$$\frac{\partial P_{ik}}{\partial \theta_k} = V_i V_k \left(\mathbf{G}_{ik} sen(\theta_{ik}) - B_{ik} \cos(\theta_{ik}) \right)^2$$
(2.33)

$$\frac{\partial P_{ik}}{\partial V_i} = -2V_i \, \mathbf{G}_{ik} + g_{si} \, \mathbf{F}_k \, \mathbf{G}_{ik} \cos(\theta_{ik}) + B_{ik} \, sen(\theta_{ik}) \, \mathbf{F}_{ik} \, \mathbf{F}_{$$

$$\frac{\partial P_{ik}}{\partial V_k} = V_i \mathbf{G}_{ik} \cos(\theta_{ik}) + B_{ik} \sin(\theta_{ik})^{-1}$$
(2.35)

$$\frac{\partial Q_{ik}}{\partial \theta_i} = V_i V_k \left(\mathbf{G}_{ik} \cos(\theta_{ik}) + B_{ik} \sin(\theta_{ik}) \right)^2$$
(2.36)

$$\frac{\partial Q_{ik}}{\partial \theta_k} = V_i V_k \langle \boldsymbol{\xi} G_{ik} \cos(\theta_{ik}) - B_{ik} \operatorname{sen}(\theta_{ik}) \rangle$$
(2.37)

$$\frac{\partial Q_{ik}}{\partial V_i} = 2V_i \, \mathbf{\Theta}_{ik} - b_{si} \, \mathbf{\Theta}_{ik} \, sen(\theta_{ik}) - B_{ik} \, \cos(\theta_{ik}) \, \mathbf{O}_{ik} \, \mathbf{O}$$

$$\frac{\partial Q_{ik}}{\partial V_k} = V_i \left(\mathbf{G}_{ik} sen(\theta_{ik}) - B_{ik} \cos(\theta_{ik}) \right)^2$$
(2.39)

Injeções de Potência:

$$\frac{\partial P_i}{\partial \theta_i} = V_i \sum_{j=1 \neq i}^m V_j \left(G_{ij} sen(\theta_{ij}) + B_{ij} \cos(\theta_{ij}) \right)$$
(2.40)

$$\frac{\partial P_i}{\partial \theta_j} = V_i V_j \left(\mathbf{G}_{ij} sen(\theta_{ij}) - B_{ij} \cos(\theta_{ij}) \right)$$
(2.41)

$$\frac{\partial P_i}{\partial V_i} = 2G_{ii}V_i + \sum_{j=1\neq i}^m V_j \left(G_{ij} \cos(\theta_{ij}) + B_{ij} \sin(\theta_{ij}) \right)$$
(2.42)

$$\frac{\partial P_i}{\partial V_j} = V_i \left(\mathbf{G}_{ij} \cos(\theta_{ij}) + B_{ij} \sin(\theta_{ij}) \right)$$
(2.43)

$$\frac{\partial Q_i}{\partial \theta_i} = V_i \sum_{j=1 \neq i}^m V_j \left(\mathbf{G}_{ij} \cos(\theta_{ij}) + B_{ij} \sin(\theta_{ij}) \right)$$
(2.44)

$$\frac{\partial Q_i}{\partial \theta_j} = V_i V_j \left(G_{ij} \cos(\theta_{ij}) - B_{ij} sen(\theta_{ij}) \right)$$
(2.45)

$$\frac{\partial Q_i}{\partial V_i} = -2B_{ii}V_i + \sum_{j=1\neq i}^m V_j \left(\mathbf{G}_{ij} sen(\theta_{ij}) - B_{ij} \cos(\theta_{ij}) \right)^2$$
(2.46)

$$\frac{\partial Q_i}{\partial V_j} = V_i \left(\mathbf{G}_{ij} sen(\theta_{ij}) - B_{ij} \cos(\theta_{ij}) \right)$$
(2.47)

Magnitude de Tensão:

$$\frac{\partial V_i}{\partial \theta_i} = \frac{\partial V_i}{\partial \theta_j} = \frac{\partial V_i}{\partial V_j} = 0$$
(2.48)

$$\frac{\partial V_i}{\partial V_i} = 1 \tag{2.49}$$

A estrutura da matriz Jacobiano será:

∂P_{ik}	∂P_{ik}	∂P_{ik}	∂P_{ik}
$\partial \theta_i$	$\partial heta_k$	∂V_i	∂V_k
∂P_i	∂P_i	∂P_i	∂P_i
$\overline{\partial \theta_i}$	$\overline{\partial heta_k}$	$\overline{\partial V_i}$	$\overline{\partial V_k}$
∂Q_{ik}	∂Q_{ik}	∂Q_{ik}	∂Q_{ik}
$\partial \theta_i$	$\overline{\partial \theta_k}$	∂V_i	∂V_k
∂Q_i	∂Q_i	∂Q_i	∂Q_i
$\overline{\partial \theta_i}$	$\overline{\partial heta_k}$	$\overline{\partial V_i}$	$\overline{\partial V_k}$
∂V_i	∂V_i	∂V_i	∂V_i
$\overline{\partial \theta_i}$	$\overline{\partial \theta_k}$	$\overline{\partial V_i}$	$\overline{\partial V_k}$

Também podem ser utilizados medidores de corrente, conforme será visto no próximo capítulo.

2.7 Conclusão

Este capítulo apresentou resumidamente os principais elementos constitutivos de um processo clássico de EE em sistemas de potência.

As referências [MON99] e [ABU04] detalham o desenvolvimento de tais elementos aqui omitidos para simplificar a apresentação do presente texto.

CAPÍTULO 3

SINCROFASORES NA ESTIMAÇÃO DE ESTADO

3.1 Introdução

Dentre as principais aplicações de medidas oriundas de UMFs (sincrofasores) encontra-se a função EE, que tem despertado o interesse de diversos pesquisadores, devido a sua importância para a operação de sistemas elétricos de grande porte. Notadamente, tal interesse se revela não apenas pelo maior grau de exatidão de sincrofasores (disponíveis em taxas de aquisição mais elevados do que aquelas associadas ao sistema SCSAD), mas pela medição dos ângulos de fases das tensões nodais/fasores de correntes dos ramos da rede elétrica sob supervisão. Em [MOR09], encontra-se uma revisão sobre os fundamentos da medição fasorial.

Neste capítulo, abordam-se aspectos relativos à utilização de sincrofasores no processo de EE, apresentando-se também uma revisão dos trabalhos encontrados na literatura sobre o tema.

3.2 Considerações Iniciais

As medidas das UMFs possuem características próprias, distintas daquelas fornecidas por UTRs convencionais, requerendo para sua inclusão no processo de EE criteriosa análise. Os pontos mais relevantes a serem considerados nesta análise dizem respeito a:

- Os sistemas de medição sincronizada de fasores (por envolverem requisitos de instalação, comunicação, investimento de vulto, etc.) serão implementados gradativamente [YAN11];
- Medidas providas por UMFs serão usualmente consideradas como adicionais, sempre beneficiando os processos de EE atuais;

- As UMFs fornecem dados de ângulo de fase das tensões nodais mais precisos do que aqueles obtidos indiretamente por meio de processos de EE convencionais;
- Sincrofasores possuem taxas de amostragem mais elevadas do que aquelas oriundas de UTRs convencionais e a sua incorporação à EE convencional deve considerar tal fato;
- O módulo e ângulo das tensões nodais (estado do sistema) serão observados diretamente nas barras onde existam UMFs instaladas. Da mesma forma, considerando-se como corretos os valores de parâmetros dos ramos da rede, sabe-se que o estado de barras vizinhas será observado, se tais UMFs medirem as correntes dos ramos incidentes na barra onde a UMF está instalada;
- A confiabilidade da EE convencional figura em primeiro plano, já que seus resultados (livres de inconsistências, em especial de EGs) devam servir de base para as decisões de operação nos Centros de Controle;
- O estado do sistema será aquele que caracteriza a operação em regime quase permanente, isto é, não serão considerados estados típicos de estudos de Estabilidade.

3.3 Medidas de Corrente na Estimação de Estado

Medidas de magnitude de corrente são comumente utilizadas em subestações e sua função básica é suprir relés de proteção, não sendo habitual seu processamento pela EE nos centros de controle do sistema. A utilização de medidas de corrente na EE traz algumas dificuldades que serão apontadas a seguir, bem como formas de transpor tais dificuldades.

Considerando medidas convencionais de corrente pode-se usar a expressão a seguir para representar as correntes de ramo [ABU04]:

$$I_{ik} = \sqrt{\frac{P_{ik}^2 + Q_{ik}^2}{V_i}}$$
(3.1)
Onde:

 I_{ik} é a corrente entre no ramo entre as barras $i \in k$;

 P_{ik} é o fluxo de potência ativa no ramo entre as barras i e k;

 Q_{ik} é o fluxo de potência reativa no ramo entre as barras i e k;

 V_i é a tensão da barra i.

Em função das variáveis de estado pode-se utilizar a expressão seguinte (ramo sem derivação):

$$I_{ik} = \sqrt{(g_{ik}^2 + b_{ik}^2)(V_i^2 + V_k^2 - 2V_iV_k\cos(\theta_{ik}))}$$
(3.2)
Onde:

 g_{ik} é a condutância do ramo entre as barras $i \in k$;

 b_{ik} é a susceptância do ramo entre as barras $i \in k$;

Vind é a tensão da barra;

 θ_{ik} é a diferença entre os ângulos da tensão das barras i e j respectivamente

Os elementos da matriz Jacobiano referente às medidas de corrente seriam:

$$\frac{\partial I_{ik}}{\partial \theta_i} = \frac{g_{ik}^2 + b_{ik}^2}{I_{ik}} V_i V_k \sin(\theta_{ik})$$
(3.3)

$$\frac{\partial I_{ik}}{\partial \theta_k} = -\frac{g_{ik}^2 + b_{ik}^2}{I_{ik}} V_i V_k \sin(\theta_{ik})$$
(3.4)

$$\frac{\partial I_{ik}}{\partial V_i} = \frac{g_{ik}^2 + b_{ik}^2}{I_{ik}} \left(\mathbf{V}_i - V_k \cos(\theta_{ik}) \right)$$
(3.5)

$$\frac{\partial I_{ik}}{\partial V_k} = \frac{g_{ik}^2 + b_{ik}^2}{I_{ik}} \left(\mathbf{V}_k - V_i \cos(\theta_{ik}) \right)$$
(3.6)

Pelas expressões das derivadas de corrente de ramo, nota-se que para $V_i \approx V_k$ e $\theta_{ik} \approx 0$ ambas as derivadas não são definidas o que pode acarretar problemas na convergência ou problemas numéricos. Podem-se utilizar as expressões de corrente elevadas ao quadrado para se tentar eliminar este problema. As expressões ficam da seguinte forma:

$$\frac{\partial I_{ik}^2}{\partial V_i} = 2(g_{ik}^2 + b_{ik}^2) \cdot \left((-V_j \cos(\theta_{ik})) \right)$$
(3.7)

$$\frac{\partial I_{ik}^2}{\partial V_k} = 2(g_{ik}^2 + b_{ik}^2) \cdot \langle \langle Q_k - V_i \cos(\theta_{ik}) \rangle$$
(3.8)

$$\frac{\partial I_{ik}^2}{\partial \theta_i} = 2(g_{ik}^2 + b_{ik}^2) V_i V_k sen(\theta_{ik})$$
(3.9)

$$\frac{\partial I_{ik}^2}{\partial \theta_k} = -2(g_{ik}^2 + b_{ik}^2) N_i V_k sen(\theta_{ik})$$
(3.10)

A estrutura da nova matriz Jacobiano seria:

$\begin{vmatrix} \frac{\partial \mathcal{Q}_{ik}}{\partial \theta_i} & \frac{\partial \mathcal{Q}_{ik}}{\partial \theta_k} & \frac{\partial \mathcal{Q}_{ik}}{\partial V_i} & \frac{\partial \mathcal{Q}_{ik}}{\partial V_k} \\ \frac{\partial \mathcal{Q}_i}{\partial \theta_i} & \frac{\partial \mathcal{Q}_i}{\partial \theta_k} & \frac{\partial \mathcal{Q}_i}{\partial V_i} & \frac{\partial \mathcal{Q}_i}{\partial V_k} \end{vmatrix}$	$ \begin{vmatrix} \frac{\partial \mathcal{Q}_{ik}}{\partial \theta_i} & \frac{\partial \mathcal{Q}_{ik}}{\partial \theta_k} & \frac{\partial \mathcal{Q}_{ik}}{\partial V_i} & \frac{\partial \mathcal{Q}_{ik}}{\partial V_k} \\ \frac{\partial \mathcal{Q}_i}{\partial \theta_i} & \frac{\partial \mathcal{Q}_i}{\partial \theta_k} & \frac{\partial \mathcal{Q}_i}{\partial V_i} & \frac{\partial \mathcal{Q}_i}{\partial V_k} \\ \frac{\partial V_i}{\partial \theta_i} & \frac{\partial V_i}{\partial \theta_k} & \frac{\partial V_i}{\partial V_i} & \frac{\partial V_i}{\partial V_k} \end{vmatrix} $	$\begin{bmatrix} \frac{\partial P_{ik}}{\partial \theta_i} \\ \frac{\partial P_i}{\partial \theta_i} \end{bmatrix}$	$rac{\partial P_{ik}}{\partial heta_k} \ rac{\partial P_i}{\partial heta_k} \ rac{\partial P_i}{\partial heta_k}$	$\frac{\frac{\partial P_{ik}}{\partial V_i}}{\frac{\partial P_i}{\partial V_i}}$	$\frac{\partial P_{ik}}{\partial V_k} \\ \frac{\partial P_i}{\partial V_k} \\ \partial P_i$
	$\left \begin{array}{ccc} \frac{\partial V_i}{\partial \theta_i} & \frac{\partial V_i}{\partial \theta_k} & \frac{\partial V_i}{\partial V_i} & \frac{\partial V_i}{\partial V_k} \end{array} \right $	$\begin{array}{c c} \frac{\partial Q_{ik}}{\partial \theta_i} \\ \frac{\partial Q_i}{\partial \theta_i} \end{array}$	$rac{\partial Q_{ik}}{\partial heta_k} \ rac{\partial Q_i}{\partial heta_k}$	$\frac{\partial Q_{ik}}{\partial V_i} \\ \frac{\partial Q_i}{\partial V_i}$	$rac{\partial Q_{ik}}{\partial V_k} \ rac{\partial Q_i}{\partial V_k}$

Com isso os valores das derivadas em $V_i \approx V_k$ e $\theta_{ik} \approx 0$ tendem a zero. Entretanto, ao elevar as expressões de I_{ij} ao quadrado as covariâncias das medidas duplicam. Nota-se também que as medidas de corrente não podem ser acopladas nem com o subproblema ativo e reativo a priori, pois as correntes se acoplarão somente quando $V_i - V_j$ for grande suficiente.

As medidas de corrente costumam trazer vários problemas que deterioram o desempenho do EE além da não linearidade da função derivada já mencionada anteriormente. Um deles é a inicialização destas medidas, pois os elementos da matriz Jacobiano não são definidos quando os valores adotados são os I_{ij} , e são nulos quando os valores adotados são são I^{2}_{ij} . Uma solução seria adicionar um elemento "shunt"

artificial nos elementos somente na primeira iteração ou iniciar as variáveis com uma pequena perturbação randômica.

Em [ALV99] o problema de fluxo de potência foi resolvido com uma implementação em MATLAB. O fluxo de corrente é calculado através das seguintes expressões:

$$I_d = Y_d V_{barra}$$
 (3.12)
e
 $I_p = Y_p V_{barra}$ (3.13)

Onde:

 Y_d é matriz admitâncias relacionando tensões de barra com as correntes nos terminais DE, tem dimensão número de barras da rede (nb) por número de ramos da rede (nr).

 Y_p é matriz admitâncias relacionando tensões de barra com as correntes nos terminais PARA, tem dimensão (*nb*) por (*nr*).

Considerando as derivadas parciais de tensão a seguir:

$$\frac{\partial V_{barra}}{\partial |V_{barra}|} = diag \left(V_{barra} \, . \, / |V_{barra}| \right) \tag{3.14}$$

$$\frac{\partial V_{barra}}{\partial \theta_{barra}} = j \quad diag(V_{barra})$$
(3.15)

Onde o operador ./ significa divisão termo a termo dos elementos de V_{barra} e o operador diag significa dispô-los em uma matriz diagonal e $j = \sqrt{-1}$.

Então as expressões abaixo compõem os elementos da matriz Jacobiano:

$$\frac{\partial I_d}{\partial |V_{barra}|} = Y_d \frac{\partial V_{barra}}{\partial |V_{barra}|} = Y_d diag (V_{barra} . / |V_{barra}|)$$
(3.16)

$$\frac{\partial I_d}{\partial \theta_{barra}} = Y_d \frac{\partial V_{barra}}{\partial \theta_{barra}} = Y_d j \quad diag(V_{barra})$$
(3.17)

$$\frac{\partial I_p}{\partial |V_{barra}|} = Y_p \frac{\partial V_{barra}}{\partial |V_{barra}|} = Y_p diag \left(V_{barra} . / |V_{barra}| \right)$$
(3.18)

$$\frac{\partial I_p}{\partial \theta_{barra}} = Y_p \frac{\partial V_{barra}}{\partial \theta_{barra}} = Y_p j \quad diag(V_{barra})$$
(3.19)

As injeções de corrente podem ser calculadas através da seguinte expressão e são necessárias para compor as expressões de injeção de potência como será visto a seguir:

Novamente considerando (3.14) e (3.15) obtém-se então:

$$\frac{\partial I_{barra}}{\partial |V_{barra}|} = Y_{barra} diag \left(V_{barra} . / |V_{barra}| \right)$$
(3.21)

$$\frac{\partial I_{barra}}{\partial \theta_{barra}} = Y_{barra} j \quad diag(V_{barra})$$
(3.22)

Entretanto, com a consideração na forma cartesiana das medidas de corrente, as medidas de injeção e fluxo de potência têm de acompanhar essas mudanças. A seguir têm-se as expressões de fluxo de potência:

$$S_{d} = diag(I_{d}^{*})V_{d} = diag(V_{d})I_{d}^{*}$$
(3.23)
e

$$S_{p} = diag(I_{p}^{*})V_{p} = diag(V_{p})I_{p}^{*}$$
(3.24)

As derivadas que comporão a matriz Jacobiano, relativa aos fluxos de potência, já considerando (3.14) a (3.19), serão:

$$\frac{\partial S_d}{\partial |V_{barra}|} = diag(V_d)(Y_d diag(V_{barra}./|V_{barra}|))^* + diag(I_d^*)diag(V_d./|V_d|)$$
(3.25)

$$\frac{\partial S_p}{\partial |V_{barra}|} = diag(V_p)(Y_p diag(V_{barra}./|V_{barra}|))^* + diag(I_p^*)diag(V_p./|V_p|)$$
(3.26)

$$\frac{\partial S_d}{\partial \theta_{barra}} = diag(V_d)(Y_d j \quad diag(V_{barra}))^* + diag(I_d^*) j \quad diag(V_d)$$
(3.27)

$$\frac{\partial S_p}{\partial \theta_{barra}} = diag(V_p)(Y_p j \quad diag(V_{barra}))^* + diag(I_p^*) j \quad diag(V_p)$$
(3.28)

As medidas de injeção têm a seguinte expressão:

$$S_{barra} = diag (V_{barra}) I_{barra}^{*}$$
(3.29)

As derivadas parciais que compõem a matriz Jacobiano são obtidas através das expressões a seguir utilizando (3.24) e (3.25):

$$\frac{\partial S_{barra}}{\partial |V_{barra}|} = diag (V_{barra}) (Y_{barra} diag (V_{barra} ./|V_{barra}|))^{*} + diag (I_{barra}^{*}) diag (V_{barra} ./|V_{barra}|)$$
(3.30)

$$\frac{\partial S_{barra}}{\partial \theta_{barra}} = diag(V_{barra})(Y_{barra} j \quad diag(V_{barra}))^* + diag(I_{barra}^*) j \quad diag(V_{barra})$$
(3.31)

A estrutura da matriz Jacobiano, mostrada a seguir em (3.32), está montada apenas com medidas convencionais de tensão, fluxo de corrente, fluxo de potência e injeção de potência. Entretanto esta formulação apresentada por [ALV99] é relevante para inserção de medidas fasoriais no estimador como pode ser visto em [MOR09].

Em [ZHU07] é apresentado um tratamento das medidas de corrente na forma polar, porém como é uma aplicação elaborada para utilização de unidades de medição fasorial, será descrita na seção seguinte deste capítulo.

$$\begin{bmatrix} real\left(\frac{\partial S_{ik}}{\partial \theta_{i}}\right) & real\left(\frac{\partial S_{ik}}{\partial \theta_{k}}\right) & real\left(\frac{\partial S_{ik}}{\partial V_{i}}\right) & real\left(\frac{\partial S_{ik}}{\partial V_{k}}\right) \\ real\left(\frac{\partial S_{i}}{\partial \theta_{i}}\right) & real\left(\frac{\partial S_{i}}{\partial \theta_{k}}\right) & real\left(\frac{\partial S_{i}}{\partial V_{i}}\right) & real\left(\frac{\partial S_{i}}{\partial V_{ki}}\right) \\ real\left(\frac{\partial I_{ik}}{\partial \theta_{i}}\right) & real\left(\frac{\partial I_{ik}}{\partial \theta_{k}}\right) & real\left(\frac{\partial I_{ik}}{\partial V_{i}}\right) & real\left(\frac{\partial I_{ik}}{\partial V_{k}}\right) \\ 0 & 0 & 1 & 0 \\ imag\left(\frac{\partial S_{ik}}{\partial \theta_{i}}\right) & imag\left(\frac{\partial S_{ik}}{\partial \theta_{k}}\right) & imag\left(\frac{\partial S_{ik}}{\partial V_{i}}\right) & imag\left(\frac{\partial S_{ik}}{\partial V_{k}}\right) \\ imag\left(\frac{\partial S_{i}}{\partial \theta_{i}}\right) & imag\left(\frac{\partial S_{i}}{\partial \theta_{k}}\right) & imag\left(\frac{\partial S_{i}}{\partial V_{i}}\right) & imag\left(\frac{\partial S_{i}}{\partial V_{k}}\right) \\ imag\left(\frac{\partial I_{ik}}{\partial \theta_{i}}\right) & imag\left(\frac{\partial I_{ik}}{\partial \theta_{k}}\right) & imag\left(\frac{\partial I_{ik}}{\partial V_{i}}\right) & imag\left(\frac{\partial I_{ik}}{\partial V_{k}}\right) \\ imag\left(\frac{\partial I_{ik}}{\partial \theta_{i}}\right) & imag\left(\frac{\partial I_{ik}}{\partial \theta_{k}}\right) & imag\left(\frac{\partial I_{ik}}{\partial V_{i}}\right) & imag\left(\frac{\partial I_{ik}}{\partial V_{k}}\right) \end{bmatrix} \end{bmatrix}$$

3.4 Revisão da Literatura

Desde o surgimento dos Sincrofasores, alguns estudos foram realizados no intuito de inserir estas medidas na função EE.

Allemong, em 1982, foi quem incluiu fasores no processo de EE na forma polar [ALL82]. Desta forma, era possível incluir medidas fasoriais e ainda manter o desacoplamento do estimador no método, conforme abaixo indicado:

$$\begin{bmatrix} \Delta \theta_i \\ \Delta V_i \end{bmatrix} = \begin{bmatrix} G_{AA} & G_{AR} \\ G_{AR} & G_{RR} \end{bmatrix}^{-1} \begin{bmatrix} H_{AA} & H_{AR} \\ H_{AR} & H_{RR} \end{bmatrix}^{t} R^{-1} \begin{bmatrix} -h(V,\theta) \end{bmatrix}^{-1}$$
(3.33)

Onde o vetor z deve ter a seguinte sequência de medidas: P_{ij} , P_i , θ_i , Q_{ij} , Q_i e V_i para a correta solução dos sub-sistemas.

Thorp et al. foram pioneiros [THO85] na análise dos benefícios da utilização de UMFs na EE. Em seu trabalho foi avaliado o impacto da inclusão de medidas de ângulo bem precisas (desvio padrão inferior a 2%) em paralelo com as medidas convencionais de fluxo e magnitude de tensão e também foi constatado um leve aumento na taxa de convergência da estimação.

Baldwin et al. [BAL93] propuseram um método de otimização da instalação de UMFs em sistemas elétricos baseado na obtenção de um critério mínimo, o de observabilidade, usando um algoritmo duplo de "Bisecting Search" Modificado e "Simulated Annealing". Primeiro o algoritmo de "Bisecting Search" fixa o número de UMFs a ser utilizado e depois o algoritmo de "Simulated Annealing" otimiza este número, garantindo a observabilidade do sistema. Uma limitação da proposta é o uso do modelo linear devido a limitações computacionais da época.

Baldwin propõe um limite na quantidade de UMFs necessárias, ν_{LS} , de forma a garantir a observabilidade do sistema. A indicação baseia-se em uma análise topológica da rede, partindo de um modelo de construção gulosa, onde se instalam UMFs em barras com maiores quantidades de conexões.

$$v_{LS} = \frac{N + \frac{k}{2}}{3}$$
(3.34)

Onde: N é o número de barras do sistema k é número de medidas de fluxo de potência desconhecidos

Este trabalho determinou que o número mínimo de UMFs que garante a observabilidade de um sistema está entre 1/5 e 1/4 do número de barras do referido sistema.

Zivanovic em 1996 faz uma análise entre duas abordagens para a inclusão de UMFs na EE [ZIV96]. A primeira abordagem seria incluir apenas as medidas de ângulo das UMFs [THO85]. Desta forma, os estimadores de estado modelados com desacoplamento poderiam ter a implementação das medidas de ângulo muito simplificadamente. Em suas simulações, percebeu-se que uma medida de ângulo diminuía os desvios padrões dos estados estimados, mas não tanto como uma medida de fluxo ou injeção de potência. Ou seja, ainda era mais vantajoso ter uma medida de potência do que uma medida de ângulo. Uma segunda abordagem (em duas etapas) foi implementada por [PHA86], onde estimadores não lineares convencionais atuariam inicialmente para depois o estado estimado ser inserido em um outro estimador (desta vez linear) juntamente com as medidas completas fornecidas pelas UMFs. Como as UMFs eram relativamente recentes para a época, e muito caras (geralmente o sistema

elétrico possuía medidas convencionais em maior número), os resultados deste novo estimador deveria ganhar confiança à medida que seu uso fosse feito.

Denegri [DEN02] apresentou técnicas de posicionamento de UMFs visando à otimização de instalação destas unidades. As técnicas propostas visavam apenas uma quantidade mínima de UMFs de forma a obter a observabilidade.

Xu et al. sugeriram uma metodologia, em 2005, para otimizar a instalação de Sincrofasores bem como sua melhor localização em um determinado circuito avaliando critérios de observabilidade. Neste estudo, são analisados diversos cenários, a saber: não há nenhuma medição convencional instalada; há medidas de injeção de potência; há medidas de fluxo de potência [XU05]. Xu também propôs outra metodologia chamada de Procedimento Baseado na Topologia onde uma avaliação do circuito é feita manualmente e identificam-se ilhas observáveis e instala-se UMFs em suas fronteiras. Esta proposta, traz benefícios claros na instalação de novas unidades de medição fasorial em sistemas já observados por medidas convencionais.

Enquanto algumas pesquisas se concentravam na obtenção de metodologias para instalação de UMFs, outras visavam incluir sincrofasores no processo de EE. Como já existiam estimadores em funcionamento, era clara a necessidade de se encontrar formas alternativas de inclusão destas medidas aos estimadores, sem que houvesse a necessidade de grandes modificações nos códigos computacionais já desenvolvidos.

Ainda em 2005, Zhao propôs um método de inclusão de Sincrofasores no estimador de estado em duas etapas para sistemas de grande porte. O sistema seria subdividido em várias áreas e cada uma delas teria seu próprio estimador. Os estados estimados de cada área são a entrada de um estimador que leva em conta os sincrofasores do sistema e faz a EE do sistema por completo [ZHA05].

Chen verificou em 2006 a possibilidade de otimizar a inclusão de sincrofasores em sistemas de medições convencionais visando reduzir o número de medidas críticas. O método de Peter-Wilkinson foi utilizado na identificação destas medidas críticas e uma matriz de incidência indicava a inclusão de sincrofasores na(s) barras necessária(s) [CHE06]. Zhou, em 2006, apresentou uma alternativa de inclusão dos sincrofasores em que o estimador existente forneceria o estado do sistema e outro estimador usaria estes dados como entrada juntamente com as medidas dos sincrofasores [ZHO06]. Apesar de muito semelhante ao procedimento de Zhao [ZHA05], diferem na implementação.

Zhao propôs uma abordagem com o uso de sincrofasores em 2006. As medidas de tensão provenientes de UMFs seriam consideradas como estado efetivo bem como calculado o estado de suas barras vizinhas, diminuindo consideravelmente a escala do problema [ZH06]. Esta abordagem aumenta a velocidade de convergência do EE, mas a precisão do estimador é comprometida devido ao erro das medidas das UMFs. Assim sendo Zhao propõe um modelo EE duplo, onde primeiramente o estado é alcançado com um estimador não linear, considerando as medidas de tensão provenientes das UMFs, como sendo constantes nas iterações (incluindo as tensões calculadas das barras vizinhas) e, numa segunda etapa, um estimador linear utiliza o estado da primeira etapa e novamente as medidas de UMFs para produzir o estado final. Esta abordagem diminui a influência da redução da precisão e mantém a velocidade da convergência.

Em 2007, Zhu focalizou a escolha do ângulo de referência para o problema de EE. Com a participação de sincrofasores, tal escolha fica definida pelo ângulo da barra que possui um sincrofasor. Entretanto quando existem poucos sincrofasores, um EG na medida do ângulo pode comprometer a confiabilidade da EE. Zhu propõe um método que elimina este problema, onde o ângulo de referência não seja mais escolhido, compondo-se com todos os ângulos o vetor de estado [ZHU07].

Um estimador de estado reduzido foi proposto em [CHN08] onde as barras com UMF instalada teriam seu estado considerado como valores verdadeiros do estado e o estimador faria a estimação apenas das barras onde não existisse UMF e usaria apenas as medidas convencionais destas barras.

Abassy e Ismail montaram um método unificado para otimização de alocação de UMFs levando-se em consideração medidas convencionais pré-existentes no sistema [ABA09], tomando por base a proposta de [XU05] nos casos onde existem medidas de injeção ou de fluxo de potência.

31

Mazlumi et al. [MAZ10] elaboraram uma heurística, denominada Bacterial Foraging, com o propósito de achar alocação ótima de UMFs em sistemas elétricos. Mazlumi encontrou as mesmas configurações de UMFs para o sistema IEEE14 barras encontradas por [XU05] e [ABA09].

Moraes alcançou resultados importantes [MOR09], como a constatação de que a inclusão de duas medidas de ângulo em determinado conjunto de medidas oferece melhoras significativas na estimação considerando o indicador de Erro Vetorial Total (EVT). Como a inclusão de uma medida de ângulo significa a inserção de uma medida crítica e a inclusão de duas medidas de ângulo significa a inserção de um conjunto crítico, Moraes sugere a inclusão de pelo menos três medidas de ângulo para que o conjunto de medição possua ausência de medidas e conjuntos críticos.

Além disto, no caso da presença de duas medidas de ângulo formando conjunto crítico, e não estando disponível outra medida de ângulo, podem-se adotar medidas de corrente nas UMFs já existentes, pois estas têm o efeito de desfazer o conjunto crítico formado pelas medidas de ângulo.

Moraes propõe ainda um uso diferente das medidas provenientes de UMFs. Como a utilização de UMFs se dá hoje em dia em conjunto com UTRs, e a UMF é capaz de prover 60 leituras por segundo, cogitou-se a possibilidade de considerar essa multiplicidade de leituras como sendo pseudomedidas no processo de estimação. Entretanto, não foi registrada melhora significativa na EE com tal uso.

Moraes constatou que a utilização de UMFs na EE reduz o espalhamento de EGs e evidencia mais a medida portadora de EG. No próximo capítulo desta Dissertação este efeito será também demonstrado.

Baltensperger et al. [BAT10] implementaram um estimador não linear convencional processando medidas oriundas de UTRs. O estado fornecido pelo estimador convencional é agrupado com as medidas de UMFs formando um conjunto de medidas para um novo estimador desta vez linear.

Recentemente Valverde et al. desenvolveram alternativas para a inclusão de UMFs na EE [VAL11]. Em sua primeira proposta tem-se a alteração do vetor de estados, para que se incluam as medidas de corrente dos ramos da rede provenientes de UMFs. Desta forma, algumas restrições seriam incluídas no processo de estimação

32

e o estimador teria seu resultado considerando mais informações de UMFs. Em sua segunda proposta, tem-se um estimador em que juntam-se às medidas de UMF de magnitudes e ângulos de tensão, as medidas convencionais, sendo que as medidas de corrente provenientes das UMFs são transformadas em pseudo-medidas de magnitude e ângulo de tensão possibilitando que o estimador aproveite mais informações também.

Em 2011, Simões et al. apresentaram um estimador de duas etapas utilizando medidas convencionais e UMFs em conjunto [SIM11]. Na primeira etapa o estimador convencional fornece o estado com seus respectivos erros. Na segunda etapa, os valores deste estado são processados como informações obtidas a priori, e os dados provenientes de UMFs formam o vetor de medidas do processo de EE, semelhante ao Estimador FASE proposto por [COU89], porém difere em sua implementação.

Finalmente em [EXP11], encontra-se um panorama sobre o uso de UMFs na EE em sistemas de potência.

3.5 Conclusões

Conforme o levantamento apresentado na seção anterior sobre os trabalhos de pesquisa referente à utilização de UMFs no processo de EE, verifica-se que estes, em sua maioria, se direcionam para a proposição de modificações de estimadores já instalados para que se tornassem capazes de também processar medidas provenientes de UMFs. Inicialmente, a preocupação maior foi sobre a otimização de planos de medição (minimamente observáveis) que contivessem UMFs. Em seguida, aspectos tais como precisão de estimativas e taxa de convergência de algoritmos de estimação, bem como diversos tipos de erros (grosseiros, topológicos e de parâmetros) foram focalizados.

A presente Dissertação volta-se para a utilização de medidas oriundas de UMFs em benefício do processo de detecção/identificação de medidas de UTRs contaminadas por EGs. A incorporação de medidas de UMFs será realizada de diferentes formas: em um lote só, compondo-se com as medidas de UTRs; após o processamento das medidas de UTRs, em uma segunda etapa do processo de EE; introduzidas como dados a priori, tal como em estimadores com capacidade de previsão. Os diferentes estimadores resultantes destas formas de incorporação de UMFs serão apresentados no capítulo que se segue.

CAPÍTULO 4

4.1 Introdução

Segundo Moraes [MOR09], há uma tendência de pesquisa para o desenvolvimento de Estimadores de Estado que processam apenas medidas fasoriais. Entretanto, a utilização destas medidas juntamente com medidas convencionais provenientes de UTRs ainda é amplamente estudada. Este trabalho busca evidenciar os benefícios do uso de UMFs na etapa de depuração de dados, notadamente, na identificação de EGs. O processamento de medidas provenientes de UMFs foi tratado de três formas diferentes na EE, por meio dos seguintes estimadores:

Estimador 1 – As medidas de UMFs são inseridas juntamente com as medidas convencionais como entrada para o estimador conforme [MOR09].

Estimador 2 – Em uma primeira etapa, estima-se o estado somente com as medidas convencionais empregando-se um estimador não linear convencional e em uma segunda etapa, as medidas de UMFs são inseridas juntamente com o estado estimado pelas medidas convencionais representando pseudomedidas de magnitude e ângulo de tensão, conforme [ZHO06].

Estimador 3 – As medidas de UMFs são inseridas no estimador como sendo dados a priori de forma semelhante àquela adotada por estimadores com capacidade de previsão. Neste estimador, além das medidas convencionais provenientes das UTRs, considera-se que esteja disponível uma UMF em cada barra, coletando medidas de fasores de tensão.

Moraes [MOR09] desenvolveu um estimador de estado com capacidade de processar medidas de UMFs, no qual o processo de estimação convencional é alterado em dois aspectos:

1 – Inclusão de medidas de ângulo de tensão, de correntes injetadas nas barras e de fluxos de corrente nas linhas.

2 – A estimação de todos os ângulos de fase das tensões de barra, ou seja, não se faz mais necessário escolher um ângulo de referência.

Estas alterações demandaram modificações na matriz Jacobiano, mencionadas no Capítulo 3. Este estimador foi desenvolvido numa linguagem de interpretação (MATLAB) e será usado neste trabalho como Estimador 1. Caso não haja medidas de UMFs, o Estimador 1 comporta-se como um estimador convencional em que todos os módulos de tensão são estimados e todos os ângulos de tensão também, exceto o ângulo de referência.

O Estimador 2 foi implementado também em MATLAB e utiliza, na etapa 1, o aplicativo computacional desenvolvido por Moraes, porém sem considerar UMFs para gerar a entrada de dados para a etapa 2. Foram implementadas rotinas para um estimador não linear, na etapa 2, com utilização de UMFs em conjunto com o estado gerado na etapa 1.

O Estimador 3 foi desenvolvido a partir do Estimador 1 sendo as medidas convencionais de UTRs usadas como entrada para o estimador convencional e as medidas de UMFs consideradas adicionalmente como dados a priori.

A seguir, os três estimadores empregados nesta Dissertação serão detalhados e apresentados os resultados da EE em três casos distintos, sem a utilização de UMFs, permitindo que se tenha uma referência a ser utilizada mais adiante na comparação dos resultados da EE com a utilização de UMFs.

4.2 Estimadores Utilizados

Os estimadores utilizados neste trabalho são detalhados a seguir.

4.2.1 Estimador 1

Em seu trabalho, Moraes [MOR09] explorou a possibilidade de uso de apenas medidas de ângulo das UMFs, mostrando que o uso de uma ou duas destas medidas resulta na inclusão de medida crítica, ou conjunto crítico, respectivamente. Além disso também testou o uso de medidas de corrente de ramo e fasores de tensão (magnitude e ângulo de fase).

As avaliações de Moraes foram realizadas por um estimador aqui denominado "Estimador 1" cujo algoritmo/implementação foi aqui utilizado para a execução de simulações realizadas na presente Dissertação. Este estimador é baseado no Método dos Mínimos Quadrados Ponderados, onde se procurou incluir medidas sincronizadas de tal forma a trazer pequenas modificações ao processo de estimação convencional, adotando-se a formulação de [ALV99], já mostrada no Capítulo 3 através das equações de (3.12) a (3.31).

No Estimador 1 a matriz Jacobiano apresenta o número de linhas igual ao número de medidas utilizadas no processo e o número de colunas é igual ao dobro da dimensão do estado da rede (uma coluna a mais que a EE convencional). Isto ocorre porque pelo menos uma medida de ângulo de fase é incluída, e todos os ângulos de fase das barras são estimados [ZHU07].

A inclusão de medidas de corrente em estimadores convencionais é pouco utilizada, conforme dito no capítulo anterior. Por esta razão, o Estimador 1 também teve de ser preparado para receber medidas de correntes provenientes das UMFs inseridas no processo. Com esta alteração, a matriz Jacobiano deve incluir também as derivadas parciais das equações de injeção e fluxo de corrente.

A seguir, descreve-se o algoritmo deste estimador.

1 - Coletam-se os dados de entrada

(Conjunto de Medição e Topologia do Sistema)

- 2 Monta-se a matriz de admitâncias de barra
- 3 Calculam-se os desvios correspondentes aos erros de medição conforme equações (4.7) e (4.8) apresentadas mais adiante.
- 4 Vetor do estado iniciado com "flat start" e escolhida a barra de referência.
- 5 Calculam-se os elementos da matriz de ganho $\mathbf{G} = H^{T}R^{-1}H^{T}$.
- 6 Se G não for inversível interromper o processamento.
- 7 Calculam-se os incrementos do vetor de estado

 $x_k = G^{-1}H^t R^{-1}[z - h(x_k)]$

8 – Efetuam-se os testes de convergência $|\Delta x| \le e^{\frac{3}{2}}$

9 – Se convergência não alcançada então calcula-se $\mathbf{e}_{k+1} = x_k + \Delta x_k$,

Incrementa-se o contador de iterações e retorna-se ao passo 5, caso contrário, prosseguir.

10 – Efetua-se Cálculo Residual Normalizado.

11 – Se algum resíduo normalizado violar restrição 2.16, então eliminar a medida com EG e ir para o passo 4; caso contrário finalizar o processo e exibir o estado alcançado.

O fluxograma simplificado do Estimador 1 encontra-se a seguir na Figura 4.1:

Figura 4.1 - Fluxograma do Estimador 1

4.2.2 Estimador 2

Zhou [ZHO06] propôs o uso de medidas convencionais em uma primeira etapa e o estado nela estimado utilizado em conjunto com as medições de UMFs em uma segunda etapa para a obtenção do estado estimado final.

A seguir, são descritas as etapas para o desenvolvimento deste estimador.

ETAPA A – Estimador Não Linear

$$x_{a}^{(k+1)} = x_{a}^{(k)} + \left[H^{t} . W . H^{-} \right] . H^{t} . W^{-} \right]^{k} . \left[a - h(x_{a}^{(k)}) \right]$$
(4.1)

Onde

 x_a – Vetor de estado, produzido pelo estimador convencional.

 z_a – Vetor de medidas provenientes de UTRs.

ETAPA B – Estimador Não Linear com processamento de medidas fasoriais

$$x_{b}^{(k+1)} = x_{b}^{(k)} + \left[H^{t} . W_{b} . H^{-} \right] . H^{t} . W_{b}^{(k)} . L_{b} - h(x_{b}^{(k)}) \right]$$
(4.2)

Onde

 x_b – Vetor de estado final

 z_b – Vetor de medidas composto de x_a e z_{umf} na forma $\begin{bmatrix} x_a \\ z_{umf} \end{bmatrix}$

zumf – Vetor de medidas provenientes de UMFs

$$W_b$$
 – Matriz de covariância $\begin{bmatrix} rac{1}{\sqrt{G_a(i,i)}} & 0 \ 0 & rac{1}{\sigma_{umf}^2(i)} \end{bmatrix}$

 $G_a(i,i)$ o i-ésimo elemento da diagonal da matriz de ganho da Etapa A $\sigma_{umf}(i)$ – Desvio da i-ésima medida obtida por uma UMF

Para efeito de comparação com os resultados obtidos com o Estimador 1, de posse do vetor de estado final x_b , as medidas oriundas de UTRs podem ser também estimadas. Neste caso, para evitar esforço computacional adicional, os resíduos da estimação de tais medidas foram avaliados através do teste de resíduos ponderados.

Tal teste consiste em se dividir o valor absoluto do resíduo da estimação, diferença entre o valor estimado e o valor medido, pelo desvio padrão da medida em questão [MON99].

$$r_{P_i} = \frac{\left|z_i^{med} - z_i^{est}\right|}{\sigma_i} \tag{4.3}$$

O algoritmo do Estimador 2 é apresentado a seguir:

1 - Coletam-se os dados de entrada

(Conjunto de Medição e Topologia do Sistema)

2 - Monta-se a matriz de admitâncias de barra

 3 – Calculam-se os desvios correspondentes aos erros de medição conforme equações (4.7) e (4.8) apresentadas mais adiante.

4 – Vetor do estado iniciado com "flat start" e escolhida a barra de referência.

5 – Iniciam-se as iterações da etapa A.

6 – Calculam-se os elementos da matriz de ganho $\mathbf{G} = H^t R^{-1} H$.

7 - Se G não for inversível interromper processamento.

8 - Calculam-se os incrementos do vetor de estado

 $x_k = G^{-1}H^t R^{-1}[z - h(x_k)]$.

9 – Efetuam-se os testes de convergência $|| \le e^{\frac{3}{2}}$

10 – Se convergência não alcançada então calcula-se $\mathbf{e}_{k+1} = x_k + \Delta x_k$

Incrementa-se o contador de iterações e retorna-se ao passo 6, caso contrário, prosseguir.

11 – Se etapa A, juntam-se as medidas de UMFs ao estado estimado na etapa

A formando novo vetor de medidas z' para a etapa B. Ir para passo 3

12 – Se etapa B, efetua-se o cálculo do resíduo ponderado.

13 - Se resíduo ponderado violar os limites, eliminar a medida com

EG, ir para o passo 4; caso contrário, finalizar processo.

O Fluxograma do Estimador 2 é apresentado na Figura 4.2.

Figura 4.2 – Fluxograma do Estimador 2

4.2.3 Estimador 3

Do Coutto Filho et al. em 1989 propuseram um processo de estimação com capacidade de previsão, denominado FASE (Forecasting Aided State Estimation). Nele se constrói um modelo capaz de descrever a evolução do estado no tempo.

A função objetivo deste estimador é [COU09]:

$$J(x) = [z - h(x)]^{t} R^{-1} [z - h(x)] + [x - x]^{t} M^{-1} [x - x]$$
(4.4)

Onde x é o estado previsto e M é a matriz de covariância de erros das previsões.

Pode-se reescrever a equação (4.4) da seguinte forma:

$$J(x) = [z'-h'(x)]^{t} (R')^{-1} [z'-h'(x)]$$
(4.5)

Onde
$$z' = \begin{bmatrix} z \\ x \end{bmatrix}$$
; $h'(x) = \begin{bmatrix} h(x) \\ x \end{bmatrix}$; $R' = \begin{bmatrix} R & 0 \\ 0 & M \end{bmatrix}$

40

Minimizando a função J(x) e fazendo algumas manipulações matriciais, obtémse o seguinte processo iterativo:

$$x^{(k+1)} = x^{(k)} + [H^{t}R^{-1}H + M^{-1}]^{-1} \{H^{t}R^{-1}[z - h(x^{(k)})] + M^{-1}[\tilde{x} - x^{(k)}]\}$$
(4.6)

Analisando este estimador, pode-se utilizá-lo de uma forma alternativa, considerando-se, por exemplo, as previsões como sendo pseudo-medidas de UMFs, ponderadas pela matriz Me a matriz M.

Obviamente, esta é uma utilização muito custosa, pois seria necessária uma quantidade, de UMFs, idêntica ao número de barras do sistema, o que ainda não é viável hoje em dia. Porém, o FASE pode ser empregado em sub-redes que já estejam mais bem instrumentadas.

A seguir é apresentado o algoritmo do Estimador 3.

1 - Coletam-se os dados de entrada

(Conjunto de Medição e Topologia do Sistema)

2 – Monta-se a matriz de admitâncias de barra

3 – Calculam-se os desvios correspondentes aos erros de medição conforme equações (4.7) e (4.8) apresentadas mais adiante.

 4 – Vetor do estado iniciado com "flat start", não é necessário escolha da barra de referência conforme proposto por [ZHU07].

5 – Iniciam-se as iterações.

6 – Calculam-se os elementos da matriz de ganho $\mathbf{G} = H^t R^{-1} H + M$

onde M é a matriz de covariância de medidas das UMFs.

7 – Se G não for inversível, interromper processamento.

8 - Calculam-se os incrementos do vetor de estado

$$x_k = G^{-1} H^t R^{-1} \{ z - h(x_k) \} + M \{ z_{unf} - h(x_k) \} .$$

9 – Efetuam-se os testes de convergência $|\Delta x| \le e^{\frac{3}{2}}$

10 – Se convergência não alcançada, então calcula-se $\mathbf{x}_{k+1} = x_k + \Delta x_k$

Incrementa-se contador de iterações e retorna-se ao passo 6; caso contrário, prosseguir.

11 – Efetua-se o Cálculo Residual Normalizado.

12 – Se resíduo normalizado violar limites da equação (2.16), então eliminar a medida com EG. Ir para o passo 5; caso contrário, interromper processo.

O fluxograma deste estimador é idêntico ao do Estimador 1, porém os cálculos da Matriz G e dos incrementos têm a parcela das inovações que neste caso são consideradas como sendo as medidas de magnitude e ângulo de tensão.

4.3 Considerações e Convenções

Tendo em vista que o problema da EE é de natureza local, sem perda de generalidade, estudos podem ser realizados em sistemas de pequeno porte. Desta forma, utilizou-se o sistema IEEE14 barras, cuja rede elétrica é mostrada na Figura 4.3.

Este sistema é considerado na literatura como referência para diversos estudos de análise de redes, estando seus parâmetros apresentados nas Tabelas 4.1 e 4.2.

Figura 4.3 – Rede elétrica do sistema IEEE14 Barras

		CA	ARGA	GER	AÇÃO
DAKKA	ПРО	ATIVA	REATIVA	ATIVA	REATIVA
1	REFERÊNCIA	-	-	232,40	-16,90
2	TENSÃO CONTROLADA	21,70	12,70	40,00	42,40
3	TENSÃO CONTROLADA	94,20	19,00	-	23,40
4	CARGA	47,80	-3,90	-	-
5	CARGA	7,60	1,60	-	-
6	TENSÃO CONTROLADA	11,20	7,50	-	12,20
7	CARGA	-	-	-	-
8	TENSÃO CONTROLADA	-	-	-	17,40
9	CARGA	29,50	16,60	-	-
10	CARGA	9,00	5,80	-	-
11	CARGA	3,50	1,80	-	-
12	CARGA	6,10	1,60	-	-
13	CARGA	13,50	5,80	-	-
14	CARGA	14,90	5,00	-	-

Tabela 4.1 – Tipos das barras, cargas e gerações ATIVAS(MW) e REATIVAS (Mvar).

Tabela 4.2 – Dados dos Ramos com R, X e B (em pu) valores nas Bases: V= 132kV nas barras de 1 a 5; V=33kV nas barras 6 e de 9 a 14; V=11kV na barra 8; V=1kV na barra 7 e S=100 MVA.

RAMO	DE	PARA	R	Х	В	TAPE
1	1	2	0,01938	0,05917	0,05280	-
2	1	5	0,05403	0,22304	0,04920	-
3	2	3	0,04699	0,19797	0,04380	-
4	2	4	0,05811	0,17632	0,03400	-
5	2	5	0,05695	0,17388	0,03460	-
6	3	4	0,06701	0,17103	0,01280	-
7	4	5	0,01335	0,04211	-	-
8	4	7	-	0,20912	-	0,97800
9	4	9	-	0,55618	-	0,96900
10	5	6	-	0,25202	-	0,93200
11	6	11	0,09498	0,19890	-	-
12	6	12	0,12291	0,25581	-	-
13	6	13	0,06615	0,13027	-	-
14	7	8	-	0,17615	-	-
15	7	9	-	0,11001	-	-
16	9	10	0,03181	0,08450	-	-
17	9	14	0,12711	0,27038	-	-
18	10	11	0,08205	0,19207	-	-
19	12	13	0,22092	0,19988	-	-
20	13	14	0,17093	0,34802	-	-

Seguem algumas convenções, para identificação das grandezas medidas utilizadas nesta Dissertação.

SÍMBOLO	DESCRIÇÃO	ORIGEM
Pij	Fluxo de Potência Ativa (barra i para barra j)	UTR
Qij	Fluxo de Potência Reativa (barra i para barra j)	UTR
Pi	Injeção de Potência Ativa (barra i)	UTR
Qi	Injeção de Potência Reativa (barra i)	UTR
Vi	Magnitude de Tensão (barra i)	UTR/UMF
θί	Ângulo de fase na barra i	UMF
lij	Fasor Corrente no Ramo i – j	UMF
Irij	Parte Real da Corrente no Ramo i – j	UMF
limag-ij	Parte Imaginária da Corrente no Ramo i – j	UMF
li	Fasor Corrente (barra i)	UMF
Ir i	Parte Real da Injeção de Corrente (barra i)	UMF
limag-i	Parte Imaginária da Injeção de Corrente (barra i)	UMF

Tabela 4.3 - Convenção para identificação das medidas

Elaborou-se um programa em linguagem SCILAB [SCL08], para encontrar o estado, fluxos de potências e corrente, injeções de potência e corrente. Este programa utilizou o Método de Newton-Raphson com a consideração do desacoplamento e a modelagem apresentada no Capítulo 2 desta Dissertação. Nas Tabelas seguintes são apresentados os valores de referência (considerados sem erro) para o carregamento mostrado na Tabela 4.1:

	Tens	ão		Inje	ção	
Barra	Modulo (pu)	Ângulo º	P (pu)	Q (pu)	Ir (pu)	limag (pu)
1	1,0600	0,0000	2,3226	-0,1675	2,1912	0,1580
2	1,0450	-4,9800	0,1832	0,3037	0,1494	-0,3048
3	1,0100	-12,7200	-0,9441	0,0597	-0,9248	0,1482
4	1,0180	-10,3300	-0,4773	0,0388	-0,4681	0,0466
5	1,0200	-8,7800	-0,0724	-0,0060	-0,0692	0,0166
6	1,0700	-14,2200	-0,1102	0,0524	-0,1119	-0,0222
7	1,0620	-13,3700	-0,0002	0,0076	-0,0018	-0,0070
8	1,0900	-13,3600	0,0000	0,1733	-0,0367	-0,1547
9	1,0560	-14,9400	-0,2960	-0,1712	-0,2290	0,2289
10	1,0510	-15,1000	-0,0909	-0,0587	-0,0689	0,0765
11	1,0570	-14,7900	-0,0344	-0,0173	-0,0273	0,0242
12	1,0550	-15,0700	-0,0612	-0,0160	-0,0520	0,0297
13	1,0500	-15,1600	-0,1386	-0,0626	-0,1118	0,0920
14	1,0360	-16,0400	-0,1469	-0,0470	-0,1237	0,0828

Tabela 4.4 – Valores de Referência (em pu) das Injeções e Tensões de barra

RAMO	DE	PARA	Fluxo Potência De-Para		Fluxo Po Para-	tência De	Corrente De-Pa	Corrente Ramo Corr De-Para		e Ramo a-De
			Pij	Qij	Pji	Qji	Ir	limag	Ir	limag
1	1	2	1,5681	-0,2039	-1,5251	0,2765	1,4793	0,1923	-1,4769	-0,1369
2	1	5	0,7546	0,0363	-0,7270	0,0243	0,7119	-0,0343	-0,7080	0,0853
3	2	3	0,7331	0,0355	-0,7098	0,0163	0,6959	-0,0948	-0,6891	0,1390
4	2	4	0,5609	-0,0173	-0,5441	0,0319	0,5361	-0,0301	-0,5315	0,0650
5	2	5	0,4144	0,0091	-0,4054	-0,0185	0,3943	-0,0431	-0,3900	0,0786
6	3	4	-0,2343	0,0434	0,2381	-0,0469	-0,2357	0,0092	0,2383	0,0034
7	4	5	-0,6135	0,1551	0,6187	-0,1388	-0,6202	-0,0418	0,6202	0,0419
8	4	7	0,2813	-0,0975	-0,2813	0,1146	0,2890	0,0447	-0,2826	-0,0438
9	4	9	0,1610	-0,0038	-0,1610	0,0168	0,1563	-0,0247	-0,1514	0,0239
10	5	6	0,4413	0,1271	-0,4413	-0,0827	0,4086	-0,1891	-0,3808	0,1762
11	6	11	0,0734	0,0352	-0,0728	-0,0340	0,0584	-0,0487	-0,0584	0,0487
12	6	12	0,0785	0,0255	-0,0778	-0,0240	0,0653	-0,0411	-0,0653	0,0411
13	6	13	0,1793	0,0744	-0,1771	-0,0701	0,1453	-0,1086	-0,1453	0,1086
14	7	8	0,0000	-0,1688	0,0000	0,1733	0,0368	0,1546	-0,0367	-0,1547
15	7	9	0,2811	0,0618	-0,2811	-0,0537	0,2440	-0,1178	-0,2441	0,1178
16	9	10	0,0528	0,0427	-0,0526	-0,0423	0,0378	-0,0519	-0,0378	0,0519
17	9	14	0,0934	0,0349	-0,0923	-0,0325	0,0769	-0,0548	-0,0769	0,0548
18	10	11	-0,0383	-0,0164	0,0384	0,0167	-0,0311	0,0245	0,0311	-0,0245
19	12	13	0,0166	0,0080	-0,0166	-0,0080	0,0132	-0,0114	-0,0132	0,0114
20	13	14	0,0551	0,0155	-0,0546	-0,0145	0,0468	-0,0280	-0,0468	0,0280

Tabela 4.5 – Valores de Referência (em pu) do Fluxo de Potência e Correntes de Ramo

Diversas propostas são encontradas na literatura, para representar as incertezas das medidas recebidas do sistema SCSAD [ABU04]. Nesta Dissertação serão utilizadas a seguintes formulações.

Medidas de Injeção e Fluxo de Potência:

$$dp = \frac{1}{3} \left\{ x \cdot |z| + 0,0052.fs \right\}$$
(4.7)

Onde

dp é o desvio padrão

ex é a exatidão do medidor

z valor da medida

fs é o fundo de escala

Medidas de Tensão Convencionais e Medidas de UMF:

$$dp = \frac{1}{3} \left(x.z \right)$$
(4.8)

Uma forma de avaliar as medidas de sincrofasores é definida na norma IEEE C37.118 [IEE06] pelo Erro Vetorial Total, sendo expressa por:

$$EVT = \sqrt{\frac{\langle \langle x_r(n) - x_r \rangle^2 + \langle \langle x_i(n) - x_i \rangle^2}{x_r^2 + x_i^2}}$$
(4.9)

Onde:

 $x_r(n) \in x_i(n)$ são as partes real e imaginária do estado estimado $x_r \in x_i$ são as partes real e imaginária de referência

O EVT do estado estimado é calculado com a média dos EVTs de cada fasor. Na análise residual normalizada, o limite para detecção de EGs de valor igual a 3, sendo este um limiar amplamente adotado na literatura [ABU04].

No Apêndice A encontra-se a descrição de três sistemas de medição empregados para fins de EE no sistema IEEE 14-barras: um com redundância adequada denominado de SM1; outro com redundância baixa, contendo conjunto crítico denominado de SM2; e um terceiro com redundância também baixa, contendo medidas críticas, denominado SM3.

As medidas disponíveis das UMFs podem ser utilizadas de três formas distintas:

a - Utilizando apenas medidas de magnitude de tensão e ângulo.

 b – Utilizando medidas de (a) acrescentando-se medidas de injeção de corrente.

c – Utilizando medidas de (b) acrescentando-se medidas de fluxo de corrente.

Instalando UMFs nas barras 2, 5 e 6 e avaliando o EVT do Estimador 1 em relação ao estimador convencional, nota-se uma melhora bem significativa no que diz respeito ao EVT. Porém ao se comparar os EVTs entre as estimações, dependendo da quantidade de medidas utilizadas, o estado alcançado apresenta diferença menos significativa. Pode-se perceber que o uso apenas de magnitude e ângulo de tensões leva a um EVT mais baixo. Será utilizado como referência o EVT da EE com o SM1 sem a presença de EGs.

Na Figura 4.4, tem-se os EVTs alcançados pelos estimadores, considerando o SM1 sem a presença de EGs:

Pode-se verificar que há uma melhora no EVT, de pouca relevância quando comparado o Estimador 2 ao estimador convencional com as 39 medições. Um custo é observado na quantidade de iterações, pois 3 iterações referem-se ao estado estimado na etapa 1 e o restante na etapa 2, quando as medidas provenientes das UMFs são processadas em paralelo ao estado previamente estimado. Entretanto, o EVT alcançado pelo Estimador 1 ainda é melhor neste ponto.

Considerando o EVT do estimador convencional, percebe-se que há uma melhora considerável por parte do Estimador 3. Porém o Estimador 1 ainda apresenta resultados melhores. O Estimador 2 apresenta resultados mais modestos neste aspecto.

A análise residual do Estimador 1 não destaca nenhuma medida com resíduo normalizado acima do limite. No Estimador 2, nota-se que, o teste dos resíduos ponderados demonstra bons resultados.

Executando-se a análise residual no Estimador 3, consegue-se perceber que o teste do resíduo normalizado também foi realizado com sucesso (ausência de EGs).

Utilizando-se o sistema de medição SM2, o comportamento dos estimadores é semelhante ao comportamento no SM1, tendo o Estimador 1 alcançado melhor EVT em relação aos outros três.

Na Figura 4.5 tem-se os EVTs alcançados em cada um dos estimadores, considerando o SM2 sem a presença de EGs:

O nível de redundância do sistema de medição afeta muito o desempenho do Estimador 2, no que diz respeito à etapa de análise residual ponderada, pois apesar de não haver nenhuma medida portadora de EG, o teste dos resíduos ponderados apontou quatro medidas com o limite aceitável violado, apontado medidas confiáveis.

O Estimador 3 apresenta todos os resíduos normalizados dentro do limite aceitável, exceto para a medida de fluxo de potência reativa Q9-14(3,1320), embora esta esteja bem próxima do limite adotado.

Na Figura 4.6 tem-se os EVTs alcançados em cada um dos estimadores considerando o SM3 sem a presença de EGs:

Neste caso, a presença das UMFs nas barras 2, 5 e 6 não levou a nenhuma diferença significativa com relação ao estimador convencional. Porém, se as UMFs forem deslocadas para as barras 3, 5 e 9, então o processo de EE tem novamente ganho de qualidade.

O conjunto de UMFs nas barras 3, 5 e 9 não elimina todas as medidas críticas, permanecendo nesta condição as medidas P7-8 e Q7-8. Porém, no próximo capítulo, será verificado que este conjunto pode ajudar bastante na identificação de EGs.

O comportamento não foi diferente do esperado para o Estimador 2 e o estado alcançado é ligeiramente melhor que o resultado do estimador convencional. Ainda assim, a existência de seis medidas críticas no conjunto traz alguma dificuldade na análise residual do Estimador 2, pois as medidas P9-10 e P10, quando se usam apenas os fasores de tensão de medidas de UMFs, são erroneamente destacadas como sendo portadoras de EGs. A medida P7-8 é apontada como EG quando utilizam-se fasores de tensão e injeção de corrente, e as medidas P7-8 e Q6, quando se utilizam todas as medidas disponíveis.

O resultado do Estimador 3 alcança um EVT médio de 0,1762 quase se equiparando ao do Estimador 1.

Os resíduos, tanto normalizados quanto ponderados, ficaram todos dentro do limite aceitável.

Com estes resultados tem-se agora uma referência para se poder comparar estes estimadores, quando na presença de medidas portadoras de EGs nas mesmas condições. As simulações efetuadas neste sentido podem ser vistas no próximo capítulo.

4.4 Avaliação

Acredita-se que o uso de UMFs na estimação traga boas vantagens na identificação de EGs em medidas convencionais. Portanto, serão feitas avaliações destes estimadores sob os seguintes aspectos:

 i – Efeito de espalhamento de um EG em medidas sadias, revelado através de resíduos normalizados superiores a limites aceitáveis.

 ii – Existência de um destaque das medidas portadoras de EGs quando se comparam seus resíduos normalizados aos das medidas contaminadas pelo efeito de espalhamento.

iii – EVT do estado alcançado.

Apesar da avaliação focalizar a identificação de EGs, o nível do EVT também precisa ser avaliado, pois o estimador pode ser capaz de identificar as medidas portadoras de EGs, mas o estado estimado não ser de boa qualidade.

4.5 Considerações Adicionais

Outros estimadores que processem medidas provenientes de UMFs foram implementados, mas seus resultados na identificação de EGs não obtiveram o sucesso esperado, e por este motivo seus resultados não foram incluídos neste trabalho. A seguir, faz-se menção a estes estimadores:

a) Assume-se que o estado da barra onde se tenha UMF instalada seja por esta fornecido sem erro. Desta forma então, as variáveis de estado de tais barras seriam retiradas do processo de EE, dando lugar a um estimador denominado de estado reduzido.

b) Assume-se que o estado da barra com UMF seja perfeitamente conhecido. Assim o estado medido por uma UMF substituiu o estado estimado, a cada iteração do processo de filtragem.

Apesar destes estimadores não possuírem uma capacidade de identificação destacada para medidas portadoras de EGs, os seus EVTs são bem promissores quando comparados aos do estimador que emprega apenas medidas convencionais.

Zhao et al. [ZH06] propuseram que se o estado do sistema pode ser medido ou calculado diretamente por uma UMF, não seria necessário estimá-lo, o que resultaria numa mudança revolucionária na supervisão em tempo real do sistema [PSE06]. Elaborou-se então um estimador em que as barras possuidoras de UMFs seriam retiradas da estimação, e a EE seria feita somente com as barras restantes.

Com o intuito de explicar melhor esta idéia, considere um sistema simplificado de três barras, com medições instaladas segundo a Figura 4.7:

o Medidor de fluxo de potência ativa e reativa Figura 4.7 – Sistema de três Barras com medição convencional

Para se estimar o estado deste sistema utilizando um estimador convencional e utilizando a barra 1 como referência, deve-se resolver iterativamente a seguinte equação:

$$\begin{bmatrix} x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix}_{i} = \begin{bmatrix} x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix}_{i-1} + G^{-1} \cdot H^{t} \cdot R^{-1} \cdot \left[\begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \\ z_{5} \\ z_{6} \\ z_{7} \\ z_{8} \\ z_{9} \end{bmatrix} - \begin{bmatrix} h(x)_{1} \\ h(x)_{2} \\ h(x)_{3} \\ h(x)_{4} \\ h(x)_{4} \\ h(x)_{5} \\ h(x)_{6} \\ h(x)_{7} \\ h(x)_{8} \\ h(x)_{9} \end{bmatrix}_{i-1} \right]$$
(4.10)

Sendo *i* – contador de iterações

Ao se instalar uma UMF na barra 3, o estado seria estimado iterativamente através da seguinte equação:

$$\begin{bmatrix} x_{2} \\ x_{4} \\ x_{5} \end{bmatrix}_{i} = \begin{bmatrix} x_{2} \\ x_{4} \\ x_{5} \end{bmatrix}_{i-1} + G^{-1} \cdot H^{t} \cdot R^{-1} \cdot \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \\ z_{5} \\ z_{6} \\ z_{7} \\ z_{8} \\ z_{9} \end{bmatrix} - \begin{bmatrix} h(x)_{1} \\ h(x)_{2} \\ h(x)_{3} \\ h(x)_{4} \\ h(x)_{5} \\ h(x)_{6} \\ h(x)_{7} \\ h(x)_{8} \\ h(x)_{9} \end{bmatrix}_{i-1}$$
(4.11)

Os valores de x₃ e x₆ seriam os da medição instalada. A dimensão da matriz H reduz de 9x5 para 9x3 onde saem exatamente as colunas 2 e 5 referentes aos estados x₃ e x₆. É importante salientar que em caso de instalação de duas UMFs em barras conectadas, as medidas de fluxos entre estas barras são retiradas da estimação.

Desta forma, foi estimado o estado do sistema IEEE14 barras com o sistema de medição de 39 medidores utilizando o estimador de estado reduzido das duas formas. Sendo que ao utilizar fasores de tensão e corrente injetada, é necessário retirar as medidas 6 e 26 (P5-2 e Q5-2), visto que estão instaladas UMFs nas barras 2, 5 e 6.

Outra alternativa é manter a equação (4.5) como o processo iterativo da EE, mas a cada iteração os valores de x₃ e x₆ são atualizados para o mesmo valor da medida da UMF. Em termos de EVT, pode-se perceber que a utilização do estimador mantendo-se magnitude e ângulo de tensões das UMFs constantes durantes as iterações, produz resultados melhores que os do estimador onde se retiram as barras da EE. Vale lembrar que, foram utilizadas apenas medidas de V e θ das UMFs, visto que o estado das barras estava sendo considerado como o valor medido.

Os EVTs destes dois estimadores alcançam níveis adequados quando comparados ao do estimador convencional e ao do Estimador 2. Porém, a análise residual mostrou que mesmo sem EGs, muitas medidas têm seus resíduos superiores ao limite aceitável e por esta razão não são capazes de ajudar na identificação de medidas portadoras de EGs.

4.6 Conclusões

Os Estimadores 1, 2 e 3 apresentados neste capítulo utilizam dados oriundos de UMFs de formas diferentes entre si: o Estimador 1 as utiliza em conjunto; o Estimador 2 as utiliza em uma fase posterior ao processamento das medidas convencionais; e o Estimador 3 as utiliza como dados a priori.

Foram apresentados resultados destes estimadores em situações de redundância diferentes (planos de medição descritos no Apêndice A) e sem a presença de EGs. No que tange a precisão do estado estimado todos os estimadores produziram bons resultados.

No próximo capítulo, será considerada nas simulações a ocorrência de EGs nas medidas convencionais dos sistemas de medição, de forma a verificar a capacidade de detecção e identificação das medidas portadoras de tais erros pelos estimadores propostos.

CAPÍTULO 5

PROCESSAMENTO DE ERROS GROSSEIROS

5.1 Introdução

Conforme visto no capítulo anterior, os três estimadores estudados se comportaram adequadamente com relação à precisão do estado alcançado através do cálculo de EVTs. Como o objetivo desta Dissertação é avaliar a capacidade de detecção e identificação de medidas portadoras de EGs, foram elaboradas algumas simulações com a presença de tais erros.

Neste capítulo, primeiramente mostrar-se-á o comportamento do estimador convencional quando da ocorrência dos EGs, para em seguida mostrar-se o comportamento de estimadores que processem medidas fasoriais frente a estes erros (simples e múltiplos). Cada estimador será testado nestas condições com os três sistemas de medição apresentados anteriormente.

Com o intuito de avaliar se o aumento da redundância do sistema com medidas convencionais produz o mesmo efeito do uso de UMFs, simula-se, ao fim do capítulo, a substituição das UMFs por medidas convencionais de forma a que se tenha todas as medidas possíveis na barra onde se encontrava a UMF. Entende-se que se forem alcançados resultados semelhantes com esta configuração, o uso de UMFs não seria mais eficaz que o aumento da redundância com medidas convencionais no processo de EE.

5.2 Descrição das Simulações

Os testes descritos a seguir foram executados em um computador com processador Dual Core, 2GHz, 2Gb de memória RAM, sistema operacional Windows XP SP3 e utilizando o MatLab v2006a. As tabelas apresentadas são, basicamente, de resíduos das medições e EVTs (estado estimado).

Os dados serão apresentados por sistema de medição (Sistemas SM1, SM2 e SM3) e os estimadores terão seus resultados para cada caso com a aplicação dos

grupos de EGs a serem apresentados. Nos SM1 e SM2 as medidas de UMFs serão colocadas nas barras 2, 5 e 6, porém no SM3 as UMFs serão instaladas nas barras 3, 5 e 9. Esta mudança ocorre para se observar o comportamento da EE quando as UMFs estão instaladas na vizinhança dos EGs.

5.3 Simulações Utilizando o SM1

Nesta seção são apresentados os resultados quando se considerou o sistema de medição SM1 e a presença dos erros grosseiros dos grupos EG1 e EG2. O estimador de estado convencional e os Estimadores 1, 2 e 3 são testados para estas situações. Em todos os casos, utilizou-se como critério de parada o número máximo de iterações e a tolerância para convergência, sendo estes valores iguais a 20 e 10^{-5} , respectivamente.

Como as medidas são tomadas aos pares (ativa e reativa), considera-se que um EG proveniente de um dado medidor afetará o par de medidas. As Tabelas 5.1 e 5.2 apresentam os dois conjuntos de EGs simulados (denominados EG1 e EG2) e processados pelos três estimadores empregados. Nelas são apresentados os valores (em pu): de referência (considerados como verdadeiros); corretos (com erro usual de medição); com erro (espúrios).

	Tabela 3.1 -	Grupo EG I	
MEDIDA	Referência	Correto	Erro
P ₁₋₅	0,75460	0,74333	0,84333
Q 1-5	0,03634	0,03370	-0,03370
	Tabela 5.2 –	Grupo EG2	
MEDIDA	Referência	Correto	Erro
P 1-5	0,75460	0,74333	0,84333
Q1-5	0,03634	0,03370	-0,03370
P6-12	0,07850	0,07841	-0,07841
Q 6-12	0,02552	0,02249	0,12249
P ₃	-0,94406	-0,94516	-0,84516
Q ₃	0,05965	0,06240	-0,06240
P13	-0,13855	-0,13880	0,13880
Q 13	-0,06255	-0,06259	-0,16259

Tabela 5.1 – Grupo EG1

Cabe ressaltar ainda, que estes grupos de EGs foram escolhidos aleatoriamente.

5.3.1 Resultados considerando a ocorrência do Grupo EG1

A Figura 5.1 apresenta os EVTs obtidos para cada estimador na presença do Grupo EG1.

Pode-se observar da Figura 5.1 que a ocorrência dos EGs tem pouca influência no EVT quando da utilização dos Estimadores 1 e 3. Já o Estimador 2 apresenta desempenho similar ao estimador convencional, independente de quais medidas das UMFs nas barras 2, 5 e 6 sejam utilizadas no processamento. Maiores detalhes sobre esses resultados são apresentados nas Tabelas B.1, B.2, B.3 e B.4 do Apêndice B, para os estimadores convencional, Estimador 1, Estimador 2 e Estimador 3, respectivamente. Com relação à capacidade de identificação de EGs verificou-se que o estimador convencional não foi capaz de acusar uma medida portadora de EG como a mais suspeita (maior resíduo normalizado associado). Isto não ocorreu com os Estimadores 1, 2 e 3, os quais indicaram como mais suspeita uma medida portadora de EG. Tais observações podem ser extraídas da Tabela 5.3.

Convenci	ional (rv)			Estimad	or 1 (rv)					Estimado	or 2 (rP)			Estimado	or 3 (rN)	UTR	56
		۷,	θ	V, 6	el	V, 8 ,	, li	Ve	θ	V, 8	el	V, 8 ,	, l _i	Ve	θ		
Q1-2	26,394	Q1-5	26,875	Q1-5	29,116	Q1-5	35,663	P6	23,479	Q1-5	22,625	Q1-5	33,708	Q1-5	26,399	Q1-5	33,701
Q1-5	26,389	Q1-2	26,829	Q1-2	19,622	P1-5	12,063	Q1-5	17,773	ő	21,542	P1-5	11,148	Q1-2	23,596	P1-5	13,073
Q5-2	25,149	Q5-2	24,314	P1-5	12,860			Q5-2	17,768	Q1-2	16,008	ə	8,142	Q5-2	23,394	Q1-2	7,515
P1-5	15,299	P1-5	13,418	Q5-2	8,917			ő	12,811	P1-5	10,469	P10	6,243	P1-5	13,281	P5	6,470
۲1	9,069	ő	4,932	ő	8,156			P13	10,644	P4-7	8,851	P4-7	5,947	06	4,851	Q2-5	6,227
ő	7,316	Q2-3	4,315	Ъ	5,735			P6-13	9,984	Q5-2	6,880	۷1	5,154	Q6-11	3,944	P5-6	5,641
Q2-3	7,232	ő	4,296	Q2-3	4,031			P1-5	9,571	Q4-7	6,616	Q10	4,902	Q6-13	3,385	Q5-6	5,025
ő	7,125	Q6-tt	3,804					Q6-13	9,556	P10	6,072	Q1-2	4,601	ő	3,000	Q2-1	4,929
Q6-11	5,877	Q6-13	3,226					Q1-2	8,522	Q10	5,602	P12-13	3,368			Q2-4	4,756
P5-2	5,128	Q4-7	3,084					P6-11	8,080	P13	4,852					ő	4,140
Q9-10	4,391	ð	3,070					Q6-11	7,407	۷1	4,509					P5-1	3,875
Q6-13	4,087							P6-12	7,270	P6-13	4,464					V6	3,808
P1-2	3,688							Q13	6,045	Q6-13	4,393					V1	3,760
Q10	3,658							Q6-12	4,938	Q4-9	3,736					Q2-3	3,641
å	3,540							۷1	4,528	Q12-13	3,676					P6-5	3,538
Q4-7	3,447							P1-2	3,489	Ъ	3,342					Q5-1	3,239
ő	3,437									P4-9	3,267						
Q9-14	3,068																
As medida	ns em vern	nelho são n	nedidas ad	licionais for	necida por	UTRs nas	barras 2,	5 e 6									
As medida	is em fund	lo amarelo	são medid	as portado	ras de EG												

2
25
Ц.
0
3
6
응
99
Sec.
S
Die
œ
5
ĕ
8
g
ţ,
Se
8
Ś
응
5
B
B.
8
20
e
8
2
Ð
8
20
Ň.
g
E
ž
8
- 특
S,
Re
5.3
œ
e
e
Nos testes realizados com o Estimador 1, foi possível observar que o efeito de espalhamento provocado pelos EGs se reduz à medida que mais medidas das UMFs são processadas. Ao se utilizar apenas as medidas de magnitudes e ângulos de tensão, o espalhamento ocorre em nove medidas (as quais possuem resíduos normalizados elevados, além das portadoras de EG). Ao se utilizar também as medidas de injeção de corrente, o espalhamento atinge cinco medidas, enquanto tal efeito é eliminado quando todas as medidas das UMFs são processadas (sendo acusados resíduos normalizados elevados apenas para as medidas com EG).

Nos testes com o Estimador 2, que emprega o teste dos resíduos ponderados em vez dos resíduos normalizados, notou-se que ao se utilizar mais medidas de UMFs (além do estado medido), os maiores resíduos ponderados indicam uma medida portadora de EG como a mais suspeita, como mostra a Tabela 5.3. Observa-se também que quando se empregam todas as medidas das UMFs as duas medidas portadoras de EG figuram como as mais suspeitas.

Comparando-se os resultados produzidos pelos Estimadores 1 e 2, verificou-se que o primeiro leva a um menor espalhamento de medidas, o que pode ser considerado uma vantagem. No que diz respeito ao Estimador 3, este indica uma medida portadora de EG como a mais suspeita, porém a segunda medida com maior suspeição não possui EG. Apenas o Estimador 1 foi capaz de destacar as duas medidas com EG como as mais suspeitas dentre todas, o que pode ser um benefício em estratégias que utilizam a eliminação em bloco de medidas suspeitas.

Efetuando-se a análise residual, percebe-se que o efeito espalhamento é reduzido quanto mais medidas de UMFs forem utilizadas no processo de estimação.

5.3.2 Resultados considerando a ocorrência do Grupo EG2

A Figura 5.2 apresenta os EVTs obtidos com cada estimador na presença do Grupo EG2.

Apesar da grande quantidade de EGs do grupo EG2, pode-se observar da Figura 5.2 que o estado estimado pelos Estimadores 1 e 3 apresenta EVT bem inferior ao obtido pelo estimador convencional. Nota-se também que o EVT diminui à medida que mais medidas de UMFs são consideradas. O Estimador 2, tal como ocorreu quando se considerou o Grupo EG1, não apresenta redução significativa do EVT em relação ao estimador convencional. Os valores obtidos de EVT em cada estimador podem ser vistos nas Tabelas B.5, B.6, B.7 e B.8, no Apêndice B desta Dissertação.

No que diz respeito ao efeito de espalhamento dos EGs, foi observado que, mesmo com a elevada quantidade de EGs, houve redução da contaminação de medidas sadias em relação ao verificado para o estimador convencional. Neste estimador, foram observadas 32 medidas com resíduo normalizado elevado. Já para o Estimador 1 este número cai para 30 quando se empregam apenas as medidas de magnitude e ângulo da tensão nas UMFs e para 22 quando todas as medidas das UMFs são consideradas. Quanto à capacidade de identificação das medidas portadoras de EGs, observou-se no estimador convencional que apenas três medidas errôneas estão entre as oito mais suspeitas (que apresentam os oito maiores resíduos normalizados). Já o Estimador 1, por exemplo, apresenta mais medidas errôneas como suspeitas e esta capacidade de identificação aumenta com a quantidade de medidas de UMFs sendo processadas, chegando a listar sete medidas errôneas entre as oito mais suspeitas quando todas as medidas de UMFs são processadas. Além disso, a medida apontada pelo estimador convencional como a mais suspeita não é portadora de EG, o que não ocorreu para o Estimador 1. Tais resultados podem ser observados na Tabela B.10. Resultados semelhantes foram encontrados com os Estimadores 2 e 3. Entre as oito medidas mais suspeitas, cinco medidas com EGs são listadas pelo Estimador 2 e seis medidas com EG são apontadas pelo Estimador 3, como mostra a Tabela 5.6.

5.4 Simulações utilizando o SM2

Os resultados dos Estimadores 1, 2, 3 e estimador de estado convencional contidos nesta seção consideram o sistema de medição SM2 e a presença de EGs dos grupos EG3 e EG4. As UMFs consideradas pelos Estimadores 1 e 2 são ainda as mesmas utilizadas na simulação utilizando o SM1 (barras 2, 5 e 6). As Tabelas 5.4 e 5.5 contêm os grupos de EGs que serão aplicados:

	Tabela 3.4 –	Grupo LOS	
MEDIDA	Referência	Correto	Erro
P ₉₋₁₄	0,09340	0,09201	-0,09201
Q 9-14	0,03494	0,03654	0,13654

- . . - . .

	Tabela 5.5 – (Grupo EG4.	
MEDIDA	Referência	Correto	Erro
P ₉₋₁₄	0,09340	0,09201	-0,09201
Q 9-14	0,03494	0,03654	0,13654
P 13-14	0,05509	0,05502	-0,05502
Q 13-14	0,01554	0,01327	0,11327
P ₉	-0,29595	-0,29200	-0,39200
Q ₉	-0,17115	-0,17388	0,17388
P 13	-0,13855	-0,13880	0,13880
Q 13	-0,06255	-0,06259	-0,16259

Convenci	onal (ru)		labe	ela 0.0 - Ke Fetimad	siduos ivor	malizados	e Ponaera	dos para to	dos os esi	Ectimado	na presenç	ca do grupo	E 62 no 3	SM1 Ectimado	vr 3 (m)	1 ITD	56
		^	8 e			8 7	_	٩٧	8			8 2	_				8
P ₆₋₁₃	54,349	P ₆₋₁₂	57,912	P6-12	65,740	P ₁₃	76,595	P3	175,994	P6-13	55.918	P6-12	66,312	P13	91,080	P6-12	52,895
P ₆₋₁₂	44,421	P6-11	53,158	P.ª	63,010	P3-14	73,119	P6-12	100,931	0 3	52,900	P13	57,284	P6-12	74,410	P13	48,147
P13	41,302	P.ª	52,199	P ₃₋₁₄	58,927	P ₆₋₁₂	69,755	ő	95,794	P4-7	50,867	Q6-12	35,373	Q13	52,704	P9-14	42,320
° L	40,088	P ₃₋₁₄	46,042	P ₆₋₁₁	48,210	ð	43,603	Q6-12	57,971	P6-12	45,301	Q1-5	30,490	Q6-12	34,816	P6-13	39,815
P ₃₋₁₀	39,118	ď	43,673	Q6-12	31,575	Q6-12	38,088	P10	46,151	P10	36,346	P4-7	26,194	å	30,481	P6-11	37,401
P ₆₋₁₁	36,869	° L	40,258	P ₆₋₁₃	27,413	Q1-5	35,166	P5-2	38,661	Q1-2	35,548	P6-13	22,251	Q5-2	27,605	å	33,925
P₃₄	34,535	P ₃₋₁₀	37,973	Q1-5	26,134	å	30,629	Q4-9	23,619	Q6-13	29,348	4	19,667	Q1-5	23,757	Q6-12	32,062
Q6-12	29,565	P ₆₋₁₃	33,104	Q=	24,417	Q13	27,759	Q10	18,528	Q6-12	27,255	ő	16,796	ő	23,374	Q1-5	30,225
Q5-2	28,271	Q 6-12	29,897	Q6-11	23,614	Q 9-14	21,607	P13	18,331	P4-9	23,947	P10	16,291	P12-13	22,038	Q13	25,781
4	26,095	å	28,116	Q 9-10	20,225	P ₃₋₁₀	21,530	Q5-2	17,081	P6-11	23,795	P1-5	14,085	Q2-3	20,454	P10	23,786
0 ⁰	26,041	Q5-2	28,004	å	20,010	ď	19,408	P1-5	16,828	02-3	20,664	P9-10	14,079	Q1-2	19,367	Q9-14	21,379
Q6-13	23,747	Q9-10	25,620	ď	19,077	P4:7	19,106	Q9-14	15,150	å	19,294	P12-13	13,204	ő	17,925	Q6-11	20,704
Q1-2	23,366	Q6-11	25,121	P4:7	18,138	P1-5	13,588	Q1-2	14, 198	Q5-2	19,231	Q6-13	12,545	P6-13	17,692	P6-5	19,178
Q3-10	23,304	Q1-5	25,001	P1-5	16,281	P₄₃	11,136	P8-7	14,079	P3	18,621	P4-9	12,027	P1-5	15,043	P9-10	19,125
Q12-13	22,632	Q+2	24,737	Q9-14	16,030	å	9,562	Q13	11,571	4	18, 189	P9-14	11,378	B	14,975	ő	18,677
Q1-5	22,483	Q:	21,083	Q+2	15,636	P ₂₋₃	8,615	۷1	11,536	P12-13	15,716	Q9-10	11,197	Q9-10	10,725	P5-6	17,967
Q6-11	21,835	Q6-13	20,260	Q ⁶⁻¹³	14,632	Q 9-10	8,615	P9-10	11,378	P2-3	14,398	Q4-7	10,984	Q10	7,800	Q6-13	17,085
Q13	21,067	Q 12-13	20,087	ð	14,555	Q4-7	4,066	Q8-7	11,197	P9-10	14,079	Q13	10,506	Q12-13	7,321	ö	17,080
Å	18,566	0 2:3	19,885	Q 12-13	14,475	P ₁₂₋₁₃	4,044	å	10,134	Q6-11	13,756	å	10.245	Q4-7	5.762	<u>0</u> 2-3	15.229
P ₂₋₃	16,681	ð	19,744	0223	14,285	Q4-9	3,837	P4-9	9,817	010	12,418	Q1-2	9,657	ő	5,708	P1-5	14,990
Q3-14	15,989	ð	16.542	Q5-2	13,372	P ₆₋₁₃	3,499	P6-11	8.245	P9-14	11.378	P2-3	8.618	Q4-9	5,252	Q12-13	14,656
03	15,449	Q9-14	15,735	Q4-7	10,982	P ₁₂	3,498	ő	7,423	Q9-10	11,197	02-3	7,679	P10	4,472	Q10	10,009
Q2-3	14,554	P1-5	14,267	P ₁₂₋₁₃	10,433			Q1-5	6,012	P1-5	8,130	Q5-2	7,530	P6-11	4,056	P2-3	9,129
P1-5	13,681	Ŀ,	8,234	P4-3	10,222			Q6-11	5,529	Pe Be	7,908	Q12-13	7,074	P2-3	3,007	Q2-5	8,985
ð	12,096	Q4:	5,797	ð	9,563			Q9-10	5,514	P5-2	7,817	Q9-14	5,514			Q2-4	8,162
P3	9,897	ð	5,759	P ₂₋₃	8,703			P9-14	4,277	Q13	7,418	Q4-9	5,038			P5-4	7,700
P.4-7	8,565	Q4-7	5,554	Q4-9	8,457			P2-3	3,375	Q12-13	6,517	P1-2	3,991			Q9-10	7,603
å	8,084	P4-7	4,066	P ₁₋₂	5,756			P1-2	3,059	Q4-7	6,277					۷1	7,086
P ¹²⁻¹³	6,176	P ₁₋₂	3,414	P.	4,975					Q9-14	5,514					Q1-2	6,978
ő	4,456	P,	3,316	P.	4,760					ő	4,494					Q5	6,899
Q4-7	4,090			۲,	4,468					Q1-5	3,933					Q5-4	6,422
P ₁₋₂	3,287									Q4-9	3,453					P2-1	6,363
																٧6	5,679
																V1	5,580
																V2	5,511
																Q5-1	5,214
																P2	5,113
																Ps	4,719
																P4-7	4,324
																P1-2	4,238
																Б	4,162
																V5	4,089
																Q5-2	3,503
																P4-9	3,397
As medida	ns em vern	nelho são r	nedidas ad	licionais for	necida por	UTRs nas	barras 2,	5 e 6									
As medida	ts em fund	to amarelo	são medida	as portado	as de EG												

5.4.1 Resultados considerando a ocorrência do Grupo EG3

Observa-se na Figura 5.3 que, devido à baixa redundância do SM2, a ocorrência de EGs trouxe uma perturbação considerável aos estimadores quanto ao EVT médio alcançado, exceto pelo Estimador 3 e pelo Estimador 1 quando utilizam todas as medidas disponíveis provenientes da UMF.

Apesar da formação do grande conjunto crítico composto pelas 29 medidas, os EVTs alcançados pelos dois estimadores mencionados ainda apresentaram valores razoáveis. Tais valores podem ser vistos com maior detalhe nas Tabelas B.9, B.10, B.11 e B.12.

Quanto à identificação de EGs, pode-se observar que estes se espalharam por todas as outras medidas do conjunto crítico quando utilizou-se o estimador de estado convencional, impedindo assim a correta identificação das medidas portadoras dos EGs. Já o Estimador 1 foi capaz de identificar uma das medidas portadoras de EG (**P**9-14) com maior resíduo normalizado. O Estimador 2 não foi capaz de identificar nenhuma das medidas portadoras dos EGs com resíduos ponderados destacados e o Estimador 3 foi capaz de identificar as duas medidas espúrias com os dois maiores resíduos normalizados. Na Tabela 5.7 são apresentados maiores detalhes sobre os resíduos calculados.

Convenc	ional (rv)			Estimad	lor 1 (rN)					Estimad	or 2 (rP)			Estimad	dor 3 (rN)	UTR	256
		~	θ	۷,	9el	V, 8,	I, I _{ii}	V.	в₿	۷, ۵	el	V, 8,	I, Ii	٨	eθ		
P ₁₀₋₁₁	46,588	P3-14	47,474	P3-14	47,728	P3-14	59,748	P¢	56,772	P ₁₃₋₁₄	30,857	P ₁₃₋₁₄	40,143	P3-14	81,042	P9-14	51,492
P ₆₋₁₂	46,528	å	39,999	å	38,426	å	33,790	P ₁₃	30,655	P,	25,924	Q13-14	30,022	Q3-14	53,008	P13-14	37,152
P ₇₋₈	44,797	P ₇₋₈	37,361	P13-14	35,641	Q3-14	33,080	P ₆₋₁₂	29,255	Q4	21,884	P,	26,439	ĥ	6,858	P3	33,029
Ŀ,	44,796	Ŀ,	37,361	P ₇₋₈	32,457	P ₁₃₋₁₄	32,925	ő	26,482	P3-14	21,776	P3-14	21,776	0 ¹⁰	3,815	Q9-14	30,799
å	44,624	P ₁₃₋₁₄	35,394	Ŀ,	32,457	P ₇₋₈	25,989	P 13-14	26,333	Q13-14	19,813	ð	21,236	Р ₁₀	3,192	P7.8	30,055
Pe	44,581	P ₁₀	30,564	P ₁₀	29,625	Ъ,	25,989	P3-14	21,776	P ₁₃	17,302	Q3-14	16,608	Q 13-14	3,118	P ₇	30,055
P ₁₀	42,732	Q13-14	28,831	Q3-14	29,321	₽ tt	19,910	P4	20,195	Q3-14	16,608	Q10-11	14,202			Q13-14	23,848
P3-14	41,767	Q3-14	28,200	Q13-14	25,154	Q13-14	17,251	õ	19,587	a ₽	16,228	P ₁₃	12,224			P ₆₋₁₃	17,648
P ₁₃₋₁₄	39,803	0 13	23,676	P ₁₃	20,604	ő	13,607	Q13	19,436	P ₁₀₋₁₁	12,930	Q13	11,857			P ₁₀	15,013
P54	39,621	P ₁₃	21,534	0 13	17,781	P ₁₀	11,702	Q4	19,043	P ₁₀	10,433	0 10	11,064			ő	14,697
P,	39,185	P ₆₋₁₂	19,151	P ₆₋₁₂	15,848	0 13	10,642	P5	18,970	P ₆₋₁₂	9,309	Pa	9,239			P ₆₋₁₁	13,442
P4-3	38,220	P ₁₀₋₁₁	15,755	P ₁₀₋₁₁	15,688	P ₁₀₋₁₁	9,580	Q13-14	17,563	P3	9,049	P ₁₀₋₁₁	7,973			Q7-8	11,108
P.	38,219	ő	13,078	ő	14,817	0 ¹⁰	8,258	Q3-14	16,608	Q10-11	6,606	P ₁₀	7,055			Q7	11,108
р ₁₅	38,098	Q6-12	11,630	Q7-8	13,667	Q7-8	7,869	Q6-12	12,319	Q5-1	5,560	Å	5,191			P4	9,456
Q5-1	31,446	<mark>0</mark> 7-8	11,382	Ģ	13,667	ą	7,869	P3	9,294	0 10	4,622	ő	4,218			0 ¹⁰	9,362
0 4	29,029	å	11,382	0 ⁰	12,603			0°	3,941	ő	3,872	Q4-3	4,102			P ₆₋₅	9,046
Q4-3	29,024	P.4-3	10,790	å	11,889			P ₁₀₋₁₁	3,271	P ₇₋₈	3,054	P ₇₋₈	3,054			Q6-13	8,455
Q13-14	28,876	P,	10,789	Q4-3	11,739			P ₁₀	3,121							P ₅₋₆	7,714
0 13	28,709	0 ⁰	10,162	Q5-1	9,586			P,	3,108							P ₁₀₋₁₁	5,059
ő	27,921	ő	9,160	Q10-11	7,810			P ₇₋₈	3,054							P4-3	5,056
Q3-14	26,862	۶	8,603	Q6-12	6,130											P ₆	4,149
-	26,437	Q4-3	8,435	P4-3	3,729											Q6-11	3,537
0 ¹⁰	25,108	ð	8,433													Q6-5	3,346
ő	21,130															P ₆₋₁₂	3,127
Q7-8	20,731																
ģ	20,731																
ő	18,908																
Q6-12	15,435																
Q10-11	11,601			_													
Ac modida	e em verme	dho cão m	indae adiri	ionaic forno	cida nor LIT	Je nae han	rae 2 Fa 6										
As medida	s em fundo	amarelo s	ão medidas	portadoras	de EG		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										

 $^{-1}$ Dosidius Normalizados a Dandonados ana tados os astimadones a amenara da anua EC3 $^{+1}$

O Estimador 1 apresentou 23 medidas violando os limites da equação (2.16) quando utilizou apenas medidas de magnitudes e ângulos de tensão oriundas das UMFs. Entretanto quando utilizaram-se mais medidas o espalhamento reduziu-se para 15 violações. Deve-se destacar que a outra medida contaminada com EG (**Q**9-14) ficou com o terceiro maior resíduo normalizado.

O Estimador 3 não só conseguiu identificar as medidas portadoras dos EGs, como reduziu o espalhamento para apenas 6 medidas das 29 medidas convencionais disponíveis.

5.4.2 Resultados considerando a ocorrência do Grupo EG4

Nesta simulação, tem-se a ocorrência de oito EGs, conforme indica Tabela 5.4, no SM2. Na Figura 5.4 encontram-se os EVTs médios para a ocorrência dos EGs, mostrando o prejuízo trazido à EE pela ocorrência de grande número de EGs. Entretanto, mesmo com a ocorrência massiva de EGs, o EVT médio do Estimador 3 não se distanciou tanto do estado correto como os outros estimadores. Os valores dos EVTs desta simulação podem ser encontrados nas Tabelas B.13, B.14, B.15 e B.16.

Figura 5.4 – EVT dos Estimadores para o SM2 na presença do grupo EG4.

No que se refere à identificação das medidas portadoras de EGs, o espalhamento é muito acentuado, porém uma característica interessante pode ser percebida. Quando se verifica o bloco dos oito maiores resíduos normalizados com o estimador convencional, dois destes resíduos são efetivamente pertencentes ao conjunto de medidas portadoras de EGs, (P9-14) e (P9). No Estimador 1, com medidas de magnitude e ângulo de tensão, esse efeito foi mais significativo e identificou quatro medidas portadoras de EGs, (P9-14), (P13-14), (Q13-14) e (P9). Acrescentando-se as medidas de injeção de corrente nas barras, este efeito se manteve, apenas indicando a medida (Q13) no lugar da medida (P9-14), mantendo suspeição das outras medidas. E por fim, utilizando todas as medidas disponíveis, a indicação aumenta para cinco medidas: (P9-14), (P13-14), (P13-14), (P9) e (P13).

A simulação efetuada pelo Estimador 2 destaca apenas duas medidas espúrias entre os oito maiores resíduos ponderados: (P13) e (Q13). Neste caso utilizam-se apenas magnitudes e ângulos de tensão. Acrescentando medidas de injeção de corrente nas barras oriundas da UMFs, então o Estimador 2 passa a destacar quatro medidas portadoras de EGs corretamente: (P13-14), (Q13-14), (P13) e (Q13). A utilização de todas as medidas disponíveis provenientes das UMFs mantém quatro indicações corretas, trocando a indicação de (Q13-14) por (P9-14).

O resultado alcançado pelo Estimador 3 identifica todas as medidas portadoras de EGs no bloco dos oito maiores resíduos normalizados. Tais observações foram constatadas na Tabela 5.8.

5.5 Simulações utilizando o SM3

Nesta seção são considerados o sistema de medição SM3 e a presença dos EGs denominados EG5 e EG6. Estes grupos de EGs são, exatamente, as medidas críticas deste sistema de medição. Os pares de medidas críticas e seus respectivos Grupos de EGs são apresentados nas Tabelas 5.9 e 5.10.

1 ITR266		Pa-14 121 919	P ₉ 114,966	P ₇₋₈ 107,225	P7 107,225	P ₁₀ 85,159	P13-14 60,638	Q13-14 56,935	P4 43,512	P ₁₀₋₁₁ 41,682	Q13 34,530	P ₆₋₁₃ 32,994	Q9-14 30,765	Q6-12 25,979	P4-3 25,201	Pe-5 24,519	P5.6 23,352	P5 16,182	0.00 10,433		P13 11,940	11,402 0-	U7 11,462	10/°E 9'/01	P2-4 9,203	P2-1 0,364	P5-2 7,911	Q5 (,/13	P ₆₋₁₂ 7,662	P5-1 7,272	Pe 6,591	U6-5 0,535	0,1/4	0,100	P> 5,530	Q2-5 5.513	Q2-4 5,219	Q10 4,986	V5 4,558	Q2-3 4,204	Qen 4,159	Q4-3 4,051	Q5-1 3,707	Ve 3,461	
ador 3 (rN)		иес 93.877	88,252	84,278	56,153	55,594	49,924	45,410	40,487	38,926	34,416	30,022	29,806	29,365	25,064	20,358	20,052	15,867	11,414	11,3/0	11,4/1	3,401	0,9/0	00/1	4,938	4,400	3,8/7	3,388																	
MZ Fetim		P ₁₃	P3-14	Q13	P13-14	Q13-14	ð	ð	ð	07.8	Q3-14	Å	Q6-12	ð	Q ¹⁰⁻¹¹	e G	⊥ี้ เ	á (ő	3	ĩ			24 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	i ĉ	Ξ 2 1	ç d	ч _{7.8}																	
E 04 N0 2	-	3, 1, 1i 145, 298	128,424	120,795	100,771	58,680	51,396	41,717	40,440	33,699	29,433	17,364	16,342	11,685	9,973	7,176	0,/80	6,549	CU/,C	4,001	4,6/3	41 C, 4	3,9/2	107'0	3,235																				
a do grupo	>	P _{10.4}	P,	P ₁₀	P13-14	Q13	ð	P ₁₃	P3-14	Q13-14	Q3-14	Р,	P,	Pst	P ₆₋₁₂	P4:3	ő,	ð	[°]	2	U 6-12	F-0-7	ĩ	5	۶Ŋ																				
na presenç tor 2 (ro)		7 e l 122 180	91,874	78,470	74,770	61,787	57,889	57,631	40,779	40,440	29,433	25,486	24,909	19,748	18,403	16,603	11,/88	8,760	1,00/	7 524	1,534 5 705	CO / CO	4,881																						
Fetimar		- > 4	ð	P13-14	P ₁₀₋₁₁	Ъ,	Q13	P ₁₃	Q13-14	P3-14	Q3-14	Q10-11	Q4-3	0 9	Psi	P.	5	ő c	ű c	5	۲ ۲	°L C	4 78																						
todos os es	а с	е с 262 125	135,743	126,052	85,949	74,887	73,465	67,514	66,052	63,651	63,560	43,221	40,440	32,053	29,433	17,690	0,930	5,877	5,014	5,703 7	189,6	4,001	3,268																						
ados para	~	> 4	P ₁₃	ð	P ₆₋₁₂	P,	P,	Q13	ð	P13-14	ð	Q6-12	P3-14	Q13-14	Q3-14	å,	n	Р ₁₀₋ н	ĩď		e 1	2	6																						
s e ronaer	-	і, ії 135.892	120,133	99,595	99,595	77,612	62,138	55,760	42,217	38,430	24,187	18,145	17,105	13,527	13,527	10,944	10,390	10,261	4,112 2 EEO	20010																									
ormalizado	а //	P 0	ь. 6-	P ₇₋₈	á	Ъ,	Q13-14	P ₁₃	P13-14	Q13	P ₁₀₋₁₁	Q3-14	P4	Q7-8	ð	ð	C 10-1	ő >	1	ž																									
residuos IV		e I 86.876	82,437	78,116	78,115	77,851	58,284	53,487	40,561	40,285	33,438	30,942	26,955	21,267	15,303	11,337	9,1/6	8,431	0,13/ 7 064	100'1	6,426	1,202	4,562	4,523																					
Dela 0.0 - I Fetimad		D, <	P3-14	ć.	P ₇₋₈	P ₁₀	P ₁₀₋₁₁	Q13-14	Q13	Q3-14	P13-14	Q6-12	P4-3	P	Q10-11	6 <u>5</u>	C 43	ð	2°	5 0	ž	22	5	16-12 51-52																					
19	a	125.980	122,335	113,680	113,680	107,960	80,449	67,768	58,038	48,770	42,332	33,677	33,677	23,737	23,686	17,430	11,119	9,415	0,960	0,300	6,606	0,403	5,819	5,029	5,029	5,5/9																			
	10	P.a. 4	ь. 6-	P ₇₋₈	ų	Р ₁₀	P ₁₀₋₁₁	P13-14	Q13-14	Q3-14	Q13	P4:3	P₄	Å	Q6-12	P ₁₃	: د	- <		3 c	10-H	5 0	5	2°	5	Т 6																			
nnal (ru)		97 441	96,621	94,695	93,761	93,761	93,578	91,612	88,240	82,995	81,099	78,723	78,341	76,313	76,312	59,299	59,281	59,281	000,10	04,100	008'7C	160,14	45,821	40,441	40,441	38,833	38,681	31,221	30,678	22,270															
Convencio	CONCERCIO	P _{10.4}	P6-12	P3	P _{7.8}	ų.	å	P ₁₀	P3-14	P13-14	P ₁₃	P54	Ŀ,	P4-3	P,	6	C 43	ð	3	ŝ	C13-14	11-67	5	°19	ð d	5		ő	Q6-12	Q10-11															

CIVINO CIVINO ŝ 4 Ċ 1 q 0 A P

Tabel	a 5.9 –	Grupo	EG5

MEDIDA	Referência	Correto	Erro
P4-7	0,28126	0,28230	-0,28230
Q4-7	-0,09754	-0,09367	-0,19367

Tabela 5.10	– Grupo EG6
	0.0.00 -000

MEDIDA	Referência	Correto	Erro
P4-7	0,28126	0,28230	-0,28230
Q4-7	-0,09754	-0,09367	-0,19367
P7-8	0,00000	0,00030	0,10030
Q7-8	-0,16881	-0,16718	0,16718
P ₉₋₁₄	0,09340	0,09201	-0,09201
Q 9-14	0,03494	0,03654	0,13654

5.5.1 Resultados considerando a ocorrência do Grupo EG5

Nesta simulação, os EGs são inseridos em medidas críticas, e como estas não se correlacionam com nenhuma outra medida do sistema de medição SM3, o processo de EE não consegue identificá-las. Utilizando UMFs nas barras 2, 5 e 6 ocorrerá a mesma impossibilidade de detecção. Assim, as UMFs das barras 2 e 6 foram instaladas nas barras 3 e 9, respectivamente.

Na Figura 5.5 encontram-se os EVTs médios alcançados pelo processo de EE dos Estimadores 1, 2, 3 e estimador de estado convencional no sistema de medição SM3 e UMFs localizadas nas barras 3, 5 e 9.

Pode-se observar que o EVT médio de todos os estimadores indicam resultados não confiáveis. As Tabelas B.17, B.18, B.19 e B.20 mostram com mais detalhes os EVTs obtidos pelos estimadores.

O estimador convencional não identificou nem destacou nenhuma medida portadora de EG. O Estimador 1, utilizando apenas medidas de magnitude e ângulo de tensão, também não foi capaz de identificar nenhuma medida espúria. Entretanto, conforme utilizam-se mais medidas oriundas das UMFs, o Estimador 1 consegue identificá-las e destacá-las. Se forem inseridas medidas de injeção de corrente conjuntamente às medidas de magnitudes e ângulos de tensão, a medida (**P**4-7) passa a violar o limite aceitável e alcança o segundo maior resíduo normalizado. Um total de 29 medidas violam este limite, entre estas 27 são medidas sem a presença de EGs. Destaca-se que o Estimador 1 consegue identificar as duas medidas portadoras de EGs, de um total de 11 violações, com os dois maiores resíduos normalizados, se utilizar todas as medidas disponíveis provenientes das UMFs.

O Estimador 2 indica uma das medidas espúrias corretamente com o segundo maior resíduo ponderado, e a outra medida fica com a terceira colocação, mas somente quando utiliza todas as medidas disponíveis oriundas das UMFs, pois caso use menos informações não consegue identificar claramente nenhuma das medidas portadoras de EGs. As medidas indicadas como portadoras de EGs são ao todo cinco.

O Estimador 3 identifica as duas medidas espúrias com os dois maiores resíduos normalizados e também indica um total de 11 violações, tal como o Estimador 1. Tais informações podem ser extraídas da Tabela 5.11.

•	Louitav					Estima	aor 2 (rP)			Estimac	lor 3 (rN)	1I)	256
V, 8e		V, 8,	, I , I _ï	۸	е 8	۷,	8el	V, 6	3, 1, 1 _i	>	еθ		
P ₃₋₁₄	120,323	P.4-7	150,016	P ₃₋₁₀	3,627	P ₇₋₈	218,863	P ₇₋₈	380,446	P.4-7	151,099	P4-7	98,523
P4-7	119,701	04-1	34,797	P ₁₀	3,121	P ₃₋₁₄	87,699	P.4-7	148,009	Q4-7	25,360	P9-7	52,578
P ₃₋₁₀	57,494	P ₆₋₁₁	8,602			P ₁₀	86,331	01-10	31,805	Q2-3	13,491	P ₁₀	47,189
P ₅₋₂	23,144	P ₁₀	8,357			P ₃₋₁₀	84,235	Q7-8	25,421	Q4-3	12,300	P3-4	39,352
P2-5	22,630	ĥ	5,471			P.4-7	83,008	P ₁₀	8,381	ő	12,147	P6-11	38,914
Q4-7	21,012	۷1	4,964			Q3-14	15,632			P ₇₋₈	9,399	P4-9	38,537
P4-3	19,433	P4-3	4,346			Q3-10	13,219			P3	6,983	P ₃₋₁₀	34,084
P ₁₅	17,324	P ₂₋₃	4,139			0 ¹⁰	10,644			0 10	4,623	P ₅₋₆	24,489
P,	16,969	P ₁₂	3,738			Q4-3	7,359			Q3-10	4,504	Q4-7	21,348
Q3-10	16,170	Q1-2	3,448			P4-3	5,457			P ₁₋₂	3,255	P ₆	17,674
Q5-2	15,943	Q15	3,180			Q ₇₋₈	4,389			P4-3	3,051	P5-4	13,688
Q1-2	14,816					Q5-2	3,630					P6-13	11,897
0 ¹⁰	14,520					Q15	3,371					Q4-9	11,057
۷ı	13,703											0 ⁰	10,497
P ₁₋₂	13, 131											Q6-11	8,121
Q15	12,859											Q9-7	6,800
Р ₁₀	12,792											Q3-10	5,828
P3	12,517											P ₉₋₁₄	5,263
Q3-14	11,890											å	5,263
P ₆₋₁₃	10,650											Q3-4	5,176
Q4-3	9,672											P ₆₋₁₂	4,675
Q6-11	5,791											Q5-6	3,887
ő	5,178											P12-13	3,779
P ₆₋₁₂	4,109											P ₁₂	3,649
P ₆₋₁₁	4,097											<mark>Q</mark> 9-14	3,161
<mark>0</mark> 2-3	4,021											ð	3,161
P ₂₋₃	3,437												
P ₁₂₋₁₃	3,394												
P ₁₂	3,331												

2
65
d odn
b
8
presença
Пa
estimadores
S
todos
para
onderados
9
Normalizados i
Residuos
-
-
Tabela 5.

5.5.2 Resultados considerando a ocorrência do Grupo EG6

A Figura 5.6 apresenta os EVTs médios obtidos com cada estimador na presença do grupo EG6.

Os EVTs médios nesta simulação também foram muito comprometidos. As Tabelas B.21, B.22, B.23 e B.24 apresentam mais detalhes sobre os EVTs alcançados pelo processo de EE nesta situação.

Todavia, a identificação das medidas portadoras de EGs foi positiva. O Estimador 1 identifica duas medidas espúrias, (**P**9-14) e (**P**4-7), com os dois maiores resíduos normalizados, utilizando-se de medidas de magnitudes e ângulos de tensão, conjuntamente com injeção de corrente nas barras. A análise residual indica 30 medidas violando os limites aceitáveis, das quais três apenas são verdadeiramente portadoras de EGs (**Q**4-7 na décima nona colocação). Se o Estimador 1 utilizar todas as medidas disponíveis provenientes das UMFs então o espalhamento se reduz para 14 violações; os quatro maiores resíduos normalizados são corretamente indicadores de medidas portadoras de EGs: (**P**4-7), (**P**9-14), (**Q**9-14) e (**Q**4-7).

O Estimador 2 não consegue identificar corretamente nenhuma medida portadora de EG indicando 2 medidas erroneamente, ao utilizar apenas medidas de magnitudes e ângulos de tensão. Porém, ao se acrescentar as medidas de injeção de corrente nas barras, oriundas das UMFs, passa a indicar corretamente as medidas (**P**7-8) e (**P**9-14) com os dois maiores resíduos ponderados e (**P**4-7) com o quarto maior resíduo ponderado de um total de oito violações. Ao utilizar todas as medidas disponíveis provenientes das UMFs alcançou um excelente resultado, indicando sete medidas espúrias, sendo que os seis maiores resíduos ponderados são efetivamente as medidas espúrias, sendo que os seis maiores resíduos ponderados são efetivamente as medidas portadoras de EGs.

O Estimador 3 se equiparou ao Estimador 2, quando indicou 12 medidas espúrias, das quais os seis maiores resíduos também são as medidas efetivamente portadoras dos EGs.

Tais resultados podem ser verificados com mais detalhes na Tabela 5.12.

V V		Estimado	or 1 (rN)				Estima	dor 2 (rP)			Estimad	lor 3 (rN)	UTF	256
Pixet 140,554 Pixet 140,554 Pixet 140,554 Pixet 140,554 Pixet 140,554 Pixet 140,554 Pixet 140,556 Pixet 145,377 Pixet 56,337 Pixet 34,375 Pixet 34,376 Pixet 34,376 Pixet 34,376 Pixet 34,376 Pixet 36,373 Pixet 36,376 Pixet 34,376 Pixet 34,366 Pixet 34,366 Pixet 34,366 Pixet 34,367 Pixet 34,367 Pixet 34,367 Pixet 34,366 Pixet 34,366 Pixet 34,366 Pixet 34,366 Pixet 34,366	۷, ۱	9el	V, 0	, , _i	۷e	8	۷,	8el	V, 8	l, li	>	e 8		
Print 140,351 Print 3,171 Print 3,173 Print 3,173 Print 6,103 Print 6,173 Print 1,1734 Print	P3-14	140,554	P.4-7	149,522	P ₃₋₁₀	3,627	P ₇₋₈	178,893	P ₇₋₈	260,575	P.4-7	149,587	P4-7	96,327
Page 6588 Qati 33.31 Page 98.432 Page 78.452 Qati 33.03 Page 41.641 Page 25.720 Qati 34.982 Page 98.138 Qati 33.031 Page 41.641 Page 25.720 Qati 34.982 Page 98.136 Qati 31.002 Page 41.641 Page 25.766 Page 8.936 Qati 33.001 Qati 31.001 Page 33.013 Page 19.305 Page 0.443 Qati 17.001 Page 24.564 Qati 15.030 Qati 3.3201 Page 3.3201 Page 24.368 Qati 15.030 Qati 3.3201 Qati 7.224 Qati 7.234 Qati 15.030 Qati 3.3201 Qati 7.224 Qati 7.324 Qati 15.030 Qati 15.030 Qati 7.243 Qati 7.324	P.1-7	140,351	P3-14	77,383	P ₁₀	3,121	P3-14	100,355	P.+-7	147,317	P3-14	84,379	P ₃₋₁₀	51,731
Pisa 26,730 Qui- 34,882 Pisa 96,138 Qui- 31,300 Pisa 31,300 <th< td=""><td>P₃₋₁₀</td><td>65,883</td><td>Q3-14</td><td>38,731</td><td></td><td></td><td>P₁₀</td><td>98,432</td><td>P3-14</td><td>78,452</td><td>Q3-14</td><td>80,840</td><td>P₁₀</td><td>47,218</td></th<>	P ₃₋₁₀	65,883	Q3-14	38,731			P ₁₀	98,432	P3-14	78,452	Q3-14	80,840	P ₁₀	47,218
Pass 26534 Pen 9215 Pens 9215 Pens 9215 Pens 33,000 Pens 33,000 Pens 33,000 Pens 26,336 Pens 26,336 Pens 26,356 Pens 26,356 Pens 36,300 Pens 26,366 Pens 26,356 Pens 26,356 Pens 26,356 Pens 26,366 Pens 26,100 Pens 26,100 Pens 26,100 Pens 26,100 Pens 26,100 Pens 23,103 Qasa 17,536 Qasa 3,030 Qasa 3,030 Qasa 7,000 Pens 23,103 Qasa 23,103	P5-2	26,720	04-1	34,982			P.4-7	98,138	Q3-14	38,058	P ₇₋₈	31,302	P3-4	44,641
PLas 22.766 Pas 8.936 Pas 6.750 Que 11,571 Pen 38.07 Pris 19.333 Vi 5.664 Que 3.204 Que 7.524 Que 24.108 Qas 19.335 Vi 5.665 Que 3.204 Que 7.524 Que 24.108 Que 16.837 Pue 3.704 Pue 3.704 Que 7.524 Que 24.108 Vi 15.864 Que 3.403 Que 3.704 Pue 7.000 Pue 2.706 Vi 15.864 Que 3.403 Que 3.702 Que 7.000 Pue 7.000 Pie 15.864 Que 3.302 Que 3.704 Pue 7.000 Pue 2.706 Pie 14.53 Que 3.704 Pue P	P ₂₋₅	26,534	P ₆₋₁₁	9,215			P ₃₋₁₀	95,593	Q4-7	32,103	Q7-8	18,092	P4-9	43,869
Pis 20,119 Pa 5,964 Quas 5,377 Pa 9,664 Qas 11,060 Pas 26,713 Pa 19,365 Vi 6,635 Pa 3,204 Qas 7,544 Qas 2,3764 Qas 7,544 Qas 2,3764 Qas 2,1764 <t< td=""><td>P4-3</td><td>22,766</td><td>P₁₀</td><td>8,936</td><td></td><td></td><td>P4-3</td><td>6,750</td><td>Q1-8</td><td>31,601</td><td>04-1</td><td>11,571</td><td>P6-11</td><td>38,870</td></t<>	P4-3	22,766	P ₁₀	8,936			P4-3	6,750	Q1-8	31,601	04-1	11,571	P6-11	38,870
Pa 19,363 Vi 5,635 Pa 3,204 Oa 9,795 Pas 24,500 Qase 19,326 Pas 4,506 Pas 4,506 Pas 2,139 Qas 19,326 Pas 4,564 Pas 4,564 Pas 2,506 Pa 16,827 Pas 4,564 Pas 6,422 Qas 23,764 Vi 15,633 Qas 3,020 Pas 6,432 Qas 17,724 Pas 15,633 Qas 3,020 Pas 6,432 Qas 17,724 Qas 14,572 Qas 12,316 Pas 17,724 Qas 17,931 Qas 12,415 Pas 12,416 Pas 12,416 Pas 19,942 Pas 12,415 Pas 12,416 Pas 12,416 Pas 19,943 Qas 12,415 Pas 12,416 Pas 12,416 Pas 19,943 Qas	P ₁₅	20,119	å	5,964			Q4-9	5,377	Ъ.	9,664	Q2-3	11,050	P9-7	26,771
Qia 19,326 Pais 4,708 Pais 24,130 Qia 7,524 Qia 7,524 Qia 24,130 Qia 17,598 Pasa 4,564 Pia 4,564 Pia 23,764 Pia 23,764 Vi 15,686 Qia 3,996 Pia 3,996 Pia 27,788 Pia 23,764 Pia 15,686 Qia 3,996 Pia 3,996 Pia 19,032 Qia 15,630 Qia 3,906 Pia 3,906 Pia 19,032 Pia 14,153 Pia 13,906 Pia 19,032 Pia 13,906 Pia 12,152 Pia 13,906 Pia Pia 11,931 Pia 11,931 Qia 5,056 Pia 1,925 Pia Pia 11,931 Pia 11,931 Qia 5,056 Pia 1,925 Pia 11,931 Pia 11,931 Pia 11,931 <	Å	19,363	-'	5,635			Å	3,204			ð	9,795	P5-6	24,508
Q1: 17:598 P=0 4,564 Image: Construct on the Constr	Q5-2	19,326	P4-3	4,708							0 ⁰	7,524	Q9-7	24,139
Pio 16,827 Pi-s 4,306 I 4,306 I 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 23,764 24,726 24,726 24,726 24,726 24,772 23,764 24,966	<mark>0</mark> 12	17,598	P2-3	4,564							Q4-3	7,000	P3-14	23,764
Vi 15,884 Qias 3,994 Image: constraint of constrand of constraint of constraint	°°	16,827	P ₁₂	4,306							P ₃₋₁₀	6,751	å	23,764
Pt-a 15,836 Qt-s 3,403 I 17,724 Qt-s 16,030 Qs 3,020 I 17,724 Qt-s 16,030 Qs 3,020 I 17,724 Qt-s 16,030 Qs 3,020 I 17,724 Qt-s 14,153 I I I Qs 16,434 Pass 12,152 I I I I Qs 13,946 Pass 12,152 I	->	15,864	Q12	3,994							å	6,492	04-7	21,884
Q1+5 15,030 Q3 3,020 P 17,724 Qao 14,572 0 14,572 0 0 16,494 Pasi 14,153 1 14,153 1 16,494 0 0 16,494 Pasi 12,152 P P 11,193 0 0 11,193 Qari 11,932 P P P P P 11,193 Qai 11,932 P P P P P 11,193 Qai 11,932 P	P ₁₂	15,836	<mark>0</mark> †5	3,403									Q3-10	19,032
Qno 14,572 Qo Qo+4 16,494 Pa 14,153 Pa 16,494 Qa Pa 14,153 Pa 16,494 Qa Pa 16,494 Pa-13 12,152 Pa 12,162 Pa 11,090 Qa 8,885 Qa 8,885 Qa 4,509 Pa 4,450 Pa 4,450 Pa 4,450 Pa 4,460 Pa 4,600	<mark>0</mark> †5	15,030	ð	3,020									P ₈	17,724
P3 14,153 03 16,494 Q3*0 12,315 Pe-4 13,946 Q4.7 12,152 Pe-4 13,946 Pera 12,152 Pe-4 13,946 Q4.7 11,932 Pera 11,100 Q4.7 11,932 Pera 11,100 Q4.8 5,705 Pera 8,856 Q3.5 5,705 Pera 8,826 Q3.5 5,705 Pera 8,826 Q3.5 4,509 Pera 4,627 Pe-4 4,509 Pera 4,627 Q3.5 4,609 Pera 8,826 Q4.9 Pera 4,053 Pera 8,321 Q4.9 Pera 3,600 Pera 9,055 Pera 3,320 Pera 3,573 Pera 3,573 Pera 3,320 Pera 3,320 Pera 3,573 Pera 3,573 Pera 3,573 Pera 3,573 Pe	0 ⁰	14,572											Q3-14	16,494
Q3-10 12,315 Peta 13,346 Peta 12,152 Peta 11,031 Q4-1 11,932 Q10 11,030 Q4-1 11,932 Q10 11,030 Q4-1 11,932 Q49 885 Q5 5,065 P P Q49 885 Q5 5,065 P P Q49 885 Q6 5,869 P P Q49 885 Q6 5,869 P P Q49 882 Q6 5,065 P P P Q69 P Pea 4,509 P P P P P P Q14 3,800 P P P P P P P P Q14 3,800 P P P P P P P P P P P P P P P P P	ĥ	14,153											ő	16,494
Pease 12,152 Pease 11,932 Pease 11,932 Q4-7 11,932 Q4 11,932 Q4 Pease Q4	Q3-10	12,315											P5-4	13,946
Qt-7 11,932 Qt0 11,032 Qt0 11,030 Qt0 11,030 Qt 5,869 0 6 0 0 0 0 11,030 Qt 5,705 0 7 0 </td <td>P₆₋₁₃</td> <td>12,152</td> <td></td> <td>P6-13</td> <td>11,931</td>	P ₆₋₁₃	12,152											P6-13	11,931
Q6 5,869 (1-4) (2	04-1	11,932											0 ⁰ 0	11,090
Qs 5,705 Qe:it 0.6:1 0.6:1 8,821 Pe:iz 4,509 Pe:iz 4,509 Pe:iz 4,682 Pa:iz 4,509 Pair Pice Pice 4,682 Pa:iz 4,509 Pice Pice Pice 4,682 Pa:iz 3,890 Pice Pice Pice 3,672 Qa:iz 3,800 Pice Pice Pice 3,666 Qa:iz 3,672 Pice Pice Pice 2,61 Pice 3,672 Pice Pice Pice 2,61 Pice 3,672 Pice Pice Pice 2,61 Pice 3,672 Pice Pice Pice 2,65 Pice 3,672 Pice Pice Pice 2,65 Pice 3,672 Pice Pice Pice 2,320 Pice 3,563 Pice Pice Pice 2,56 Qc:i 3,520 <td>ð</td> <td>5,869</td> <td></td> <td>Q4-9</td> <td>8,885</td>	ð	5,869											Q4-9	8,885
P6:re 4,609 P6:re 4,609 P6:re 4,609 P2:s 4,282 4,282 4,053 1	ő	5,705											Q6-11	8,821
P2-3 4,282 0 V3 4,261 Q2-3 4,053 0 1 0 1	P ₆₋₁₂	4,509											P ₆₋₁₂	4,682
Q2-3 4,053 Pre-13 Pre-13 3,777 3,777 Q4-3 3,899 P P P P 3,665 P P 3,665 P P 3,665 P P 2,49 P 2,40 P 2,655 2,40 P 2,655 2,40 P 2,656 3,320 2,40 P P 2,656 3,320 2,616 P P 2,616 2,513 2,616 P P 2,520 P 2,513 2,513 P P 2,513 P 2,513 P P 2,513 P P 2,513 P<	P2-3	4,282											V ₉	4,261
Q4-3 3,899 Prz 3,655 Q6-13 3,860 Prz 3,655 Q6-13 3,860 Prz 3,656 Prz-14 3,672 Prz 9,645 Prz-15 3,672 Prz 9,646 Prz-15 3,672 Prz 9,646 Prz-15 3,672 Prz 9,672 Prz-16 3,672 Prz 9,647 Prz-15 3,672 Prz 9,672 Prz-16 Prz Prz 9,573 Prz 3,573 Prz 0,255 Prz 3,573 Prz 0,255 Prz 3,573 Prz 0,255 Prz 3,520 Prz 0,255 Q6-11 3,520 Prz Prz 0,255 As medidas em vermelho são medidas adicionais formecida por UTRs nas barras 2, 5 e 6 Prz Prz 1,405	<mark>0</mark> 2-3	4,053											P12-13	3,777
Q6-rs 3,860 V3 3,440 Pra-rs 3,672 0 V3 3,440 Pra-rs 3,672 0 0 0 V3 3,440 Pra-rs 3,672 0 <	Q4-3	3,899											P ₁₂	3,655
Pte-ts 3,672 0 0 0 0 0 5,320 Pte 3,608 0	Q6-13	3,860											V3	3,449
Pre 3,608 Q2-5 3,287 P6-11 3,573 Q2-5 3,287 Q6-11 3,520 Q2-5 3,287 Q6-11 3,520 Q2-5 3,287 As medidas em vermelho são medidas adicionais fornecida por UTRs nas barras 2, 5 e 6 Q2-5 9,287	P ¹²⁻¹³	3,672											Q5-6	3,320
Pett 3,573 October October <thoctober< th=""> <thoctober< th=""> <thocto< td=""><td>P¹²</td><td>3,608</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Q2-5</td><td>3,287</td></thocto<></thoctober<></thoctober<>	P ¹²	3,608											Q2-5	3,287
Q6-th 3,520 As medidas em vermelho são medidas adicionais fornecida por UTRs nas barras 2, 5 e 6	P ₆₋₁₁	3,573												
As medidas em vermelho são medidas adicionais fornecida por UTRs nas barras 2, 5 e 6	Q6-11	3,520												
As medidas em vermelho são medidas adicionais fornecida por UTRs nas barras 2, 5 e 6														
	As medida	s em verme	lho são me	edidas adicio	nais forned	cida por UT	Rs nas ba	rras 2, 5 e 6						

5.6 Simulações adicionais

Na seção 5.5 percebeu-se que a consideração de medidas de UMFs no processo de EE em adição às medidas de UTRs traz o benefício de melhorar a detecção e identificação de medidas espúrias. Assim sendo, procurou-se verificar se tal benefício decorre apenas do aumento de redundância dos dados processados ou se também depende do tipo das medidas processadas. Para tal, medidas adicionais foram consideradas como disponíveis nas UTRs instaladas nas barras 2,5 e 6, sendo apresentadas na Tabela 5.13. O sistema SM1 acrescido destas medidas será denominado UTR256.

		MEDIDA	DESVIO
			PADRÃO
P ₂₋₁	-1,5251	-1,5478	0,012052
P2-4	0,5609	0,5694	0,005530
P2-5	0,4144	0,4164	0,004509
Q 2-1	0,2765	0,2730	0,003554
Q 2-4	-0,0173	-0,0173	0,001849
Q 2-5	0,0091	0,0129	0,001819
P ₂	0,1832	0,1844	0,002962
Q_2	0,3037	0,2985	0,003723
P 5-1	-0,7270	-0,7246	0,006564
P5-4	0,6187	0,6353	0,005968
P5-6	0,4413	0,4407	0,004671
Q 5-1	0,0243	0,0206	0,001871
Q 5-4	-0,1388	-0,1363	0,002642
Q 5-6	0,1271	0,1254	0,002570
P ₅	-0,0724	-0,0756	0,002237
Q_5	-0,0060	-0,0088	0,001792
P6-5	-0,4413	-0,4467	0,004711
Q 6-5	-0,0827	-0,0839	0,002292
V2	1,0450	1,0430	0,005215
V5	1,0200	1,0275	0,005138
V ₆	1,0700	1,0703	0,005352

Tabela 5.13 – Conjunto de medidas adicionais em SM1.

Na Figura 5.7, apresenta-se o sistema IEEE 14-barras com estas medidas.

☐ Medida de Magnitude de Tensão; ∆ Medida de Injeção de Potência Ativa e Reativa; O Medidas de Fluxo de Potência Ativa e Reativa; símbolos preenchidos medidas adicionais Figura 5.7 – Sistema de Medição SM1 onde medidas convencionais são instaladas para UTR256.

A Figura 5.8 apresenta os EVTs médios de um processo de estimação de estado convencional utilizando o sistema de medição denominado UTR256, conjuntamente com os melhores resultados dos três estimadores, implementados sem a presença de EGs.

No que diz respeito à precisão do estado estimado, a utilização do sistema de medição UTR256 levou a obtenção de EVTs de valores semelhantes com Estimadores 1 e 3, na ausência de EGs.

Na Figura 5.9 são apresentados os EVTs médios obtidos com o sistema UTR256 juntamente com os melhores resultados alcançados com os Estimadores 1, 2, 3 e estimador de estado convencional, porém desta vez na presença do grupo EG1. Percebe-se que o desempenho do estimador de estado convencional não se iguala mais aos Estimadores 1 e 3.

Nas Tabelas B.25 e B.26 são apresentados mais detalhes dos EVTs obtidos nesta simulação.

Figura 5.9 – EVT dos Estimadores para os sistemas SM1 e UTR256 na presença de EG1.

A simulação consegue se equiparar aos resultados obtidos com os Estimadores 1 e 2 onde identificam-se as duas medidas portadoras de EGs com os dois maiores resíduos. São medidas indicadas na análise como sendo portadoras de EGs, sem utilizar as violações das medidas adicionais. Entretanto, como é um estimador convencional esta separação não deve ser feita, sendo, ao todo, dezesseis medidas indicadas. Estas informações podem ser vistas na Tabela 5.3.

Pode-se também verificar o comportamento do estimador com o sistema UTR256 quanto ao EVT médio alcançado no processo de estimação, na presença do grupo EG2, como se vê na Figura 5.10. Mais detalhes podem ser colhidos na Tabela B.27.

O que se percebe com esta simulação é que o uso de medidas convencionais adicionais (de forma a completar todas as medidas possíveis de UTRs), não alcança resultados próximos ao uso de UMFs com os Estimadores 1, 2 e 3. Esta simulação apresenta quarenta e cinco medidas com a violação de resíduos, das quais sete são efetivamente medidas portadoras de EGs: (P6-12), (P13), (Q6-12), (Q1-5), (Q13), (Q3) e

(P1-5). Porém, apenas as duas primeiras medidas são efetivamente destacadas com os dois maiores resíduos normalizados. Tem-se também que, as duas últimas têm resíduos normalizados inferiores às medidas (P6-5) e (P5-6), que são medidas adicionais inseridas nas barras 6 e 5. Estes resultados podem ser verificados na Tabela 5.6.

Nas Tabelas 5.7 e 5.8 podem ser vistos os resíduos utilizando-se medidas oriundas de UTRs nas barras 2, 5 e 6 para o sistema de medição SM2 com a presença do grupo EG3 e EG4, respectivamente. Pode-se notar que apesar de identificar e detectar algumas medidas portadoras de EGs, esta alternativa não consegue igualar o desempenho do Estimador 3. A Tabela B.28 apresenta EVTs para as respectivas simulações.

Os resultados da análise residual com a utilização de medidas oriundas de UTRs nas barras 3, 5 e 9 para o sistema de medição SM3 são apresentados nas Tabelas 5.11 e 5.12. Observa-se que esta alternativa não se equipara a nenhum dos três estimadores, que processam UMFs, na identificação e detecção de medidas espúrias. Na Tabela B.29 pode ser visto os EVTs para as respectivas simulações.

As medidas fasoriais foram consideradas como medidas válidas, isto é. Sem conter EGs. Entretanto, se estas medidas apresentarem tais erros, sua inclusão tornase muito prejudicial ao processo de EE. De forma a exemplificar tal efeito, considere o sistema de medição SM1 proposto anteriormente, inserindo agora o grupo EG7 caracterizado a seguir na Tabela 5.14.

Tabela 5.14 – Grupo EG7			
MEDIDA	Referência	Correto	Erro
θ5	-0,15307	-0,15308	0,15308
V5	1,02000	1,02751	1,12751

Os resultados encontrados com esta simulação (erros em medidas da UMF instalada na barra 5) passam a ser descritos a seguir.

O Estimador 1 só conseguiu convergir quando se utilizaram medidas de magnitudes e ângulos de tensão apenas, porém o EVT médio final é de 38,8379, muito distante do estado verdadeiro. A análise residual fica completamente

prejudicada deixando apenas sete medidas dentro do limite aceitável. A medida de (θ_5) é indicada com o maior resíduo e o efeito de espalhamento é elevadíssimo.

O Estimador 2 obtém convergência em todas as situações, e os EVTs são menos elevados, conforme se vê na Tabela 5.15.

Tabela 5.15 – EVT médio final para o Estimador 2 no SM1 na presença do grupo EG7.

	$V \textbf{ e } \theta$	Veθel	Veθelel _{ij}
EVT médio final	2,2732	5,0468	3,0035

A análise dos resíduos ponderados mostra que muitas medidas violam o limite considerado. Incluindo as medidas oriundas de UMFs na análise residual, a medida (θ 5) fica bem destacada, e com valores elevadíssimos quando comparadas ao maior resíduo normalizado proveniente de medidas convencionais. Os valores dos resíduos ponderados de θ 5 e P4-7 são 790 e 188, respectivamente.

O efeito de espalhamento nesta simulação é muito elevado, atingindo a grande maioria das medidas convencionais. O EVT médio alcançado pelo Estimador 3 também é elevado (22,9612)

5.7 Considerações Finais

Neste capítulo foram realizados diversos testes com estimadores capazes de processar medidas de UMFs. A seguir, serão destacadas algumas observações sobre os resultados alcançados com os testes realizados:

- O Estimador 1 mostrou excelentes resultados quanto à identificação de medidas portadoras de EGs. Quando este não consegue identificar todas as medidas portadoras de EGs, indica uma maior quantidade destas medidas, através da análise residual. Outra observação importante sobre este estimador é o fato dele alcançar estimativas bem precisas, inclusive, com a presença de EGs. Analisar esta precisão não é o objetivo deste trabalho, o que será deixado para pesquisa futura.
- O Estimador 2 possui um custo de implementação computacional menor, quando se analisam as alterações necessárias em softwares de estimadores existentes. A identificação das medidas portadoras de EGs

tem uma melhora significativa quando comparada a de estimador convencional. Sua capacidade de detecção pode superar inclusive a do estimador convencional quando o sistema de medição recebe medidas convencionais adicionais equivalentes ao plano de medição de UMFs A análise de resíduos ponderados, apesar de não ser muito confiável, mostrou-se eficiente em indicar medidas espúrias, quando simularamse EGs em medidas de baixa redundância.

- O Estimador 3 tem sua implementação também facilitada, quando falase em alteração da codificação do estimador existente e os seus resultados também são bem relevantes. O nível de redundância é elevado, porque exige a instalação de uma UMF em cada barra do sistema. Entretanto, poderia ser utilizado de forma mista, inserindo-se medidas provenientes de UMFs existentes e pseudomedidas provenientes de estados anteriores. Outra forma de utilizar tal estimador seria utilizá-lo em uma sub-rede que já seja bem instrumentada, possibilitando uma melhora na estimação local. É o estimador com maior capacidade de identificação de medidas portadoras de EGs.
- Os estimadores de estado reduzidos apesar de conseguirem uma boa precisão do estado estimado não alcançam bons resultados na identificação de medidas portadoras de EGs. Isto deve-se ao fato do método dos mínimos quadrados ponderados não conseguir distribuir o erro nos pontos onde são fixadas as leituras provenientes de UMFs.
- O estimador com medidas convencionais adicionais equivalentes ao uso de UMFs alcançou bons resultados, conseguindo inclusive se equiparar aos resultados do Estimador 2 em alguns casos, mas é nítida a vantagem de estimadores com processamento de UMFs. Inclusive analisando-se os EVTs obtidos, os estimadores que processam a UMFs mostraram-se em geral mais precisos.

CAPÍTULO 6

CONCLUSÕES

Desde sua introdução, há cerca de quarenta anos, a EE em sistemas de potência vem se estabelecendo como uma função essencial para se alcançar uma operação segura de redes de transmissão de energia elétrica. Um considerável volume de trabalhos neste campo de pesquisa multifacetado, comportando desde a modelagem matemática do problema até sua implementação em sistemas de gerenciamento de energia, indicam que a EE pode ser vista como uma função avançada, em certos aspectos, bem estabelecida e em outros ainda em construção. Amplamente, adota-se o processo de EE com base no método dos mínimos quadrados ponderados, realizado de forma centralizada e alimentado por dados adquiridos através de UTRs, referentes a uma única varredura sobre a rede elétrica supervisionada. Com a utilização recente de UMFs, que permite a obtenção sincronizada de tensões nodais e correntes de ramos da rede, em magnitude e ângulo de fase, diversos aspectos relacionados à EE devem ser reconsiderados, entre estes: observabilidade e alocação de pontos de medição; precisão e confiabilidade de estimativas; processamento de EGs em medidas, parâmetros e configuração da rede.

Dentre os aspectos acima mencionados, esta Dissertação se ocupou de apresentar algumas formas de conjunção de dados, provenientes de UTRs e UMFs, para auxiliar o processamento de medidas portadoras de EGs na EE.

De modo a se construir estimadores que processem tanto medidas convencionais como fasoriais, as seguintes formas foram adotadas: (1) processamento simultâneo de ambos os tipos de medidas; (2) inicialmente, processamento de medidas convencionais, resultando na obtenção de estimativa de estado operativo, seguindo-se uma segunda etapa em que medidas fasoriais são utilizadas em conjunto com a estimativa da primeira etapa, agora tratado como vetor de pseudomedidas; (3) processamento de medidas convencionais em conjunto com adotados a priori, tal como em estimadores com capacidade de previsão.

Diversos testes, resultantes de estudos de simulação, foram realizados para demonstrar o desempenho dos estimadores acima caracterizados, frente à presença

de EGs de medição (convencional), sob condições de redundância variada, apurando assim o que a seguir se descreve.

Em um primeiro momento, observou-se o comportamento dos estimadores em uma situação onde o sistema de medição proporcionasse um grau de redundância adequado, de forma que houvesse a ausência de medidas e conjuntos críticos. Neste cenário ainda simulou-se a presença de duas medidas portadoras de EGs e oito medidas contaminadas com tais erros. Utilizando-se o cenário com duas medidas espúrias constata-se que o uso de UMFs no processo de EE, identifica e destaca claramente (Estimadores 1 e 2) as medidas portadoras de EGs. Ao substituir as UMFs por medidas convencionais equivalentes, por exemplo, adaptando-se o sistema de medição UTR256, constatou-se que este estimador também identifica e destaca estas medidas. Entretanto quando ocorrem oito EGs, o sistema de medições oriundas de UTRs não consegue mais identificar todas as medidas e destaca apenas 25% das mesmas, enquanto que os Estimadores 2 e 3 continuam identificando todas as medidas espúrias e destacam 50% delas. O critério de destaque aqui mencionado se refere à análise residual com maiores resíduos em cada estimador.

Em um segundo momento, mudou-se o sistema de medição de forma que a redundância não fosse mais adequada e surgisse um conjunto crítico. A presença de EGs foi igualmente simulada e constatou-se que o Estimador 3 mantém a capacidade de identificar e destacar as medidas espúrias quando estão presentes duas destas. O estimador de estado convencional utilizando UTRs adicionais ainda identifica as medidas, porém destaca apenas uma delas. Ao utilizar oito medidas portadoras de EGs, todos os estimadores identificam as medidas espúrias, porém o Estimador 3 destaca 75% delas, enquanto os outros estimadores destacam 25% das mesmas.

Também, observou-se o comportamento dos estimadores em condição de baixa redundância, tal que medidas críticas estivessem presentes no sistema de medição. Utilizando duas medidas portando EGs os Estimadores 1 e 3 identificam e destacam ambas as medidas, enquanto o estimador de estado convencional utilizando UTRs adicionais identifica as duas medidas, porém somente destaca uma delas. Quando se utilizam oito medidas espúrias, os Estimadores 2 e 3 identificam e destacam estas medidas, enquanto o estimador convencional utilizando UTRs adicionais não identifica todas as medidas e somente destaca uma das que identifica.

Desta forma, fica evidente que a utilização de UMFs no processo de EE traz benefícios bem consideráveis na identificação de medidas espúrias, quando ocorrem múltiplos EGs nas medidas convencionais e em sistemas menos instrumentados que propiciam a existência de medidas e conjuntos críticos. O Estimador 3 apresentou melhores resultados quanto à identificação de medidas espúrias, sendo que o Estimador 1 também alcançou bons resultados. O Estimador 2 apesar de ter o desempenho inferior pode também ser utilizado, pois mesmo destacando menos medidas que os Estimadores 1 e 3, ainda trazem benefícios quando comprado ao estimador convencional que se utiliza de UTRs adicionais, sendo de fácil implementação computacional.

Como trabalhos futuros, pode-se avaliar a implementação de estimadores desacoplados frente ao processamento de medidas espúrias.

Uma outra possibilidade seria estudar uma colocação otimizada das UMFs de modo a garantir uma eficiência maior na identificação de medidas portadoras de EGs, mas com os menores custos possíveis.

Algumas linhas de pesquisa na EE apontam para a identificação de erros de parâmetros da rede elétrica do sistema. A utilização de UMFs poderia de alguma forma melhorar as técnicas existentes de estimação de parâmetros.

Seria interessante também estudar os resultados de um Estimador 2 alterado para que a segunda etapa seja um Estimador 3, ou seja, o estado estimado na primeira etapa seriam as previsões a serem utilizadas na segunda etapa e o vetor de medidas seriam as medidas oriundas de UMFs. Outra idéia é a elaboração de um estimador em duas etapas, onde, na segunda etapa, seriam utilizadas medidas de correntes provenientes das UMFs e as medidas de magnitudes e ângulos de tensão seriam consideradas previsões. Onde não existam medidas de UMFs, o estado estimado na primeira etapa completaria as informações.

Por fim, seria recomendável avaliar o desempenho dos estimadores estudados com dados reais.

[ABA09] N. H. Abassy; H. M. Ismail; "A Unified Approach for the Optimal PMU Location for Power System State Estimation"; IEEE Transactions on Power System, Vol. 24, No. 2, Maio 2009, pp. 806-813.

[ABU04] A. Abur; A. G. Expósito; "Power System State Estimation – Theory and Implementation"; CRC Press, Marcel Dekker, Inc., 2004.

[ALL82] J. J. Allemong; L. Radu; A. M. Sasson; "A Fast and Reliable State Estimation Algorithm for AEP's New Control Center"; IEEE Transactions on PAS, Vol. PAS-101, No. 4, Abril 1982, pp. 933-944.

[ALV99] F. L. Alvarado; "Solving Power Flow Problems with a MATLAB Implementation of the Power System Applications Data Dictionary"; IEEE Proceedings of the 32nd Annual Hawaii International Conference on System Sciences, HICSS-32, 1999, Vol. 3, pp. 3017, Janeiro 1999.

[BAL93] T. L. Baldwin; L. Mili; M. B. Boisen; R. Adapa; "Power System Observability with Minimal Phasor Measurement Placement", IEEE Transactions on Power System, Vol. 8, No. 2, Maio 1993, pp. 707-715.

[BAT10] R. Baltensperger; A. Loosli; H. Sauvain; M. Zima; G. Andersson; R. Nuqui; "An Implementation of two Stages Hybrid State Estimation with Limited Number of PMU"; Developments in Power System Protection (DPST), Março 2010, pp. 1-5

[CHE06] J. Chen; A. Abur; "Placement of PMU to Enable Bad Data Detection in State Estimation"; IEEE Transactions on Power Systems, Vol. 21, No. 4, Novembro 2006, pp. 1608-1615.

[CHN08] F. Chen; X. Han; Z. Pan; L. Han; "State Estimation Model and Algorithm Including PMU"; Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Abril 2008, pp. 1097-1102.

[COU89] M. B. Do Coutto Filho; J. C. S. De Souza; J. M. C. Calvo Cantera; R. A. Da Silva; "Information Debugging for Real Time Power System Monitoring"; IEE Proceedings, Vol. 136, Maio 1989, pp. 145-152.

[COU99] M. B. Do Coutto Filho; J. C. S. De Souza; R. S. G. Matos; M. Th. Schilling; "Strategies for preserving data redundancy in power system state estimation"; 13th Power Systems Computation Conference Proc.; Trodhein, Norway, Julho 1999

[COU01a] M. B. Do Coutto Filho; J. C. S. De Souza; R. S. G. Matos; M. Th. Schilling; "Revealing Gross Errors in Critical Measurements and Sets Via Forecasting-aided State Estimators"; Electric Power Systems Research, Vol. 57, No. 1, Janeiro 2001, pp. 25-32.

[COU01b] M. B. Do Coutto Filho; J. C. S. De Souza; F. M. F. Oliveira; M. Th. Schilling; "Identifying critical measurements and sets for Power System State Estimation"; IEEE Porto Power Tech Conference, Setembro 2001.

[COU07] M. B. Do Coutto Filho; J. C. S. De Souza; M. Th. Schilling; "Handling Critical Data and Observability"; Electric Power Components and Systems, Vol. 35, No. 5, Maio 2007, pp. 553-573.

[COU09] M. B. Do Coutto Filho; J. C. S. De Souza; "Forecasting-Aided State Estimation – Part I: Panorama"; IEEE Transactions on Power System, Vol.24, No.4, Novembro 2009, pp. 1667-1677.

[DEN02] G. B. Denegri; M. Invernizzi; F. Milano; "A Security Oriented Approach to PMU Positioning for Advanced Monitoring of a Transmission Grid"; Power System Technology Proceedings, Outubro 2002, Vol. 2, pp. 798-803.

[EXP11] A. G. Exposito; A. Abur; P. Rousseaux; A. de la V. Jaén; C. G. Quiles; "On the use of PMU in Power System State Estimation"; Proc. of 17th Power Systems Computation Conference (PSCC), Artigo #211, Suécia, Agosto 2011.

[GRA94] J. J. Grainger; W. D. Stevenson Jr.; "Power System Analysis"; McGraw-Hill, Inc.; 1994.

[IEE06] IEEE Power Engineering Society; "IEEE Standard for Synchrophasors for Power Systems"; IEEE C37.118-2005, Março 2006

[MAZ10] K. Mazlumi; H. Vahedi; S. M. Ezzati; "Optimal Placement of PMU in Power System Using Heuristic Algorithms and Mixed Integer Non Linear Programming Methods"; Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Maio 2010, pp. 805-809.

[MON99] A. Monticelli; "State Estimation in Electric Power Systems – A Generalized Approach"; Kluwer Academic Publishers, Boston, 1999.

[MOR09] R. M. De Moraes; "Sincrofasores em Sistemas de Potência: Aplicação na Estimação de Estado"; Tese Doutorado Instituto de Computação da Universidade Federal Fluminense, Outubro 2009.

[MOT10] W. M. Motta Jr.; "Utilização de Pseudomedidas em Benefício da Estimação de Estado em Sistemas de Potência"; Dissertação de Mestrado Instituto de Computação da Universidade Federal Fluminense, Junho 2010.

[PHA86] A.G.Phadke; et al.; "State Estimation with Phasor Measurements"; IEEE Transactions on Power Systems, Vol. PWRS-1, Fevereiro 1986, pp. 233-241.

[PHA02] A. G. Phadke; "Synchronized Phasor Measurements ~ A Historical Overview", Proceedings of the Transmission and Distribution Conference and Exhibition 2002: Asia/Pacific, Vol. 1, Outubro 2002, pp. 476-479.

[PHA08] A. G. Phadke; J. S. Thorp;"Synchronized Phasor Measurements and Their Applications"; Springer, 2008

[PSE06] J. Zhu; A. Abur; M. J. Rice; G. T. Heidt; S. Meliopoulos; "Enhanced State Estimators"; Power Systems Engineering Research Center (PSERC), Final Project Report; Publication 06-45, Novembro 2006.

[SCH70] F. C. Schweppe; J. Wildes; D. B. Rom; "Power System Static-State Estimation, Part I: Exact Model, Part II: Approximate Model, Part III: Implementation"; IEEE Transactions on PAS, Vol. PAS-89, No. 1, Janeiro 1970, pp. 120-135.

[SCL08] SCILAB; "The Scilab Consortium", Julho 2008. http://www.scilab.org/

[SIM11] A. S. Costa; A. Albuquerque; "A Two-Stage Orthogonal Estimator to Incorporate Phasor Measurements into Power System Real-Time Modeling"; Proc. of 17th Power Systems Computation Conference (PSCC), Artigo #455, Suécia, Agosto 2011.

[THO85] J. S. Thorp; A. G. Phadke; K. J. Karimi; "Real Time Voltage-Phasor Measurements for Static State Estimation"; IEEE Transactions on PAS, Vol. PAS-104, No. 11, pp. 3098-3106, Novembro 1985.

[VAL11] G. Valverde; S. Chakrabarti; E. Kiriakides; V. Terzija; "A Constrained Formulation for Hybrid State Estimation"; IEEE Transactions on Power System, Vol. 26, No. 3, pp. 1102-1109, Agosto 2011.

[XU05] B. Xu; A. Abur; "Optimal Placement of Phasor Measurement Units for State Estimation"; Power System Engineering Research Center Publication, Outubro 2005, pp. 5-58.

[YAN11] T. Yang; H. Sun; A. Bose; "Transition to a Two-Level Linear State Estimator-Part I: Architecture, Part II: Algorithm"; IEEE Transactions on Power System, Vol. 26, No. 1, pp. 46-62, Fevereiro 2011

[ZHA05] L. Zhao; A. Abur; "Multiarea State Estimation Using Synchronized Phasor Measurements"; IEEE Transactions on Power Systems, Vol. 20, No.2, Maio 2005, pp. 611-617.

[ZH06] H. Zhao; "A New State Estimation Model Utilizing PMU Measurements"; International Conference on Power System Technology, 2006.

[ZHO06] M. Zhou; V. A. Centeno; J. S. Thorp; A. G. Phadke; "An Alternative for Including Phasor Measurements in State Estimators"; IEEE Transactions on Power Systems, VOL. 21, No. 4, Novembro 2006, pp. 1930-1937.

[ZHU07] J. Zhu; A. Abur; "Effect of Phasor Measurements on the Choice of Reference Bus for State Estimation"; IEEE Power Engineering Society General Meeting, Tampa, FL, USA, Junho 2007.

[ZIV96] R. Zivanovic; C. Cairns; "Implementation of PMU Technology in State Estimation: an Overview"; IEEE Transactions on Power System, Junho 1996, pp. 1006-1011

[BOS87] A. Bose; K. A. Clements; "Real-Time Modeling of Power Network", proc. IEEE, Vol.75, No. 12, pp. 1607-1622, Dezembro 1987.

[CHA09] S. Chakrabarti; E. Kyriakides; "PMU Measurement Uncertainty Considerations in WLS State Estimation"; IEEE Transactions on Power System, Vol.24, NO.2, Maio 2009,pp. 1062-1071.

[DEP04] J. Depablos; V. Centeno; A. G. Phadke; M. Ingram; "Comparative Testing of Synchronized Phasor Measurement Units"; Power Engineering Society General Meeting, 2004, Vol. 1, pp. 948-954.

[EHR03] J. G. Ehrensperger; "Sistemas de Medição Fasorial: Estudo e Análise do Estado da Arte" Relatório Técnico Interno LabPlan RT 01/2003.

[EXP09] A. G. Exposito; A. de la V. Jaen; "Two Level State Estimation With Local Measurement Pre-Processing"; IEEE Transactions on Power System, Vol.24, NO.2, Maio 2009, pp. 676-684.

[LEI10] R. da C. Leites; A. S. Costa, Antônio Simões; "Um Estimador de Estado Ortogonal com capacidade para Processar Medidas Fasoriais de tensão e Corrente"; Simpósio Brasileiro de Sistemas Elétricos 2010.

[MAR05] R. L. V. Marini; "Uso de Medição Fasorial Sincronizada Visando Melhoria da Estabilidade de Sistemas Elétricos de Potência"; CPGEE da UFSC, 2005.

[MON83] A. Monticelli; A. Garcia; "Reliable Bad Data Processing for Real-Time State Estimation"; IEEE Transactions on Power Apparatus System, Vol. PAS 102, Maio 1983.

[PHA77] A. G. Phadke; M. Ibrahim; T. Hlibka; "Fundamental Basis for Distance Relaying with Symmetrical Components", IEEE Trans. PAS, Vol. PAS-96, No. 2, Março/Abril 1977, pp. 635-646.

[PHA79] A. G. Phadke; M. Ibrahim; T. Hlibka; M. G. Adamiak; "A Microcomputer Based Symmetrical Component Distance Relay", Power Industry Computer Applications Conference 1979, pp. 47-55.

[PHA06] A. G. Phadke; J. S. Thorp; "History and Applications of Phasor Measurements"; IEEE 2006 pp. 331-335.

[PHA09] A. G. Phadke; J. S. Thorp; R. F. Nuqui; M. Zhou; "Recent Developments in State Estimation with Phasor Measurements"; Power Systems Conference and Exposition, 2009, pp.1-7.

[SCT05] Schweitzer Engineering Laboratories Incorporation; "Data Sheet of Measurement SEL-734" 2005 pp. 3

APÊNDICE A

SISTEMAS DE MEDIÇÃO CONSIDERADOS

No intuito de investigar o comportamento dos estimadores em diferentes condições de medição, utilizou-se três sistemas de medição distintos onde um dos sistemas possui redundância adequada sem presença de medidas e conjuntos críticos. Outro conjunto de medição é na verdade um grande conjunto crítico e por último um sistema de medição onde há seis medidas críticas.

A.1 Sistema de Medição 1 (SM1) – Redundância Adequada.

Este sistema de medição foi utilizado em [MOR09], proposto por [COU01a] composto de 39 medidores, e conjunto de UTRs suficientes para garantir plena observabilidade do sistema com redundância adequada, sem conjuntos e medidas críticos conforme visto na Figura A.1.

- □ Medida de Magnitude de Tensão; ∆ Medida de Injeção de Potência Ativa e Reativa;
 O Medidas de Fluxo de Potência Ativa e Reativa.
 Figura A.1 – Sistema de medição SM1

Este plano de medição é detalhado na Tabela A.1 com os respectivos valores medidos simulados.

As medidas são simuladas pela adição de ruídos aleatórios, com distribuição normal e variância do medidor simulado. Foram utilizadas as formas de cálculo dos desvios conforme [MOR09]:

TIPO	REFERÊNCIA	MEDIDA	DESVIO
	(pu)	(pu)	PADRÃO
P1-2	1,5681	1,5628	0,012152
P 1-5	0,7546	0,7433	0,006689
P2-3	0,7331	0,7339	0,006626
P4-7	0,2813	0,2823	0,003615
P 4-9	0,1610	0,1578	0,002785
P5-2	-0,4054	-0,4001	0,004400
P 6-11	0,0734	0,0760	0,002240
P 6-12	0,0785	0,0784	0,002256
P 6-13	0,1793	0,1802	0,002935
P7-8	0,0000	0,0003	0,001735
P8-7	0,0000	-0,0003	0,001735
P 9-10	0,0528	0,0543	0,002095
P 9-14	0,0934	0,0920	0,002347
P 12-13	0,0166	0,0206	0,001871
Рз	-0,9441	-0,9452	0,008034
P ₆	-0,1102	-0,1099	0,002466
P ₉	-0,2960	-0,2920	0,003680
P 10	-0,0909	-0,0908	0,002338
P 13	-0,1386	-0,1388	0,002659
V1	1,0600	1,0556	0,005278
Q 1-2	-0,2039	-0,2030	0,003086
Q 1-5	0,0363	0,0337	0,001958
Q 2-3	0,0355	0,0369	0,001980
Q4-7	-0,0975	-0,0937	0,002358
Q 4-9	-0,0038	-0,0050	0,001766
Q 5-2	-0,0185	-0,0169	0,001846
Q 6-11	0,0352	0,0377	0,001984
Q 6-12	0,0255	0,0225	0,001883
Q 6-13	0,0744	0,0712	0,002208
Q 7-8	-0,1688	-0,1672	0,002848
Q 8-7	0,1733	0,1721	0,002881
Q 9-10	0,0427	0,0441	0,002027
Q 9-14	0,0349	0,0365	0,001977
Q 12-13	0,0080	0,0093	0,001795
Q₃	0,0597	0,0624	0,002149
Q_6	0,0524	0,0538	0,002092
Q9	-0,1712	-0,1739	0,002893
Q 10	-0,0587	-0,0613	0,002142
Q 13	-0,0626	-0,0626	0,002151

Tabela A.1 – Plano de medição proposto com medidas simuladas do SM1.

Assumindo um conjunto de três UMFs instaladas nas barras 2, 5 e 6 tem-se as seguintes medidas disponíveis na Tabela A.2:

TIPO	REFERÊNCIA (pu)	MEDIDA (pu)	DESVIO
			PADRÃO
θ2	-0,0869	-0,0869	0,000506
V2	1,0450	1,0430	0,003477
θ5	-0,1531	-0,1531	0,000891
V5	1,0200	1,0275	0,003425
θ6	-0,2482	-0,2483	0,001444
V ₆	1,0700	1,0703	0,003568
lr ₂	0,1494	0,1482	0,000494
limag-2	-0,3048	-0,3058	0,001019
lr ₅	-0,0692	-0,0695	0,000232
limag-₅	0,0166	0,0165	0,000055
lr ₆	-0,1119	-0,1112	0,000371
limag-6	-0,0222	-0,0222	0,000074
Ir 2-1	-1,4769	-1,4699	0,004900
Ir 2-3	0,6959	0,6940	0,002313
Ir 2-4	0,5361	0,5371	0,001790
Ir 2-5	0,3943	0,3946	0,001315
limag-2-1	-0,1369	-0,1373	0,000458
limag-2-3	-0,0948	-0,0942	0,000314
limag-2-4	-0,0301	-0,0299	0,000249
limag-2-5	-0,0431	-0,0434	0,000145
lr 5-1	-0,7080	-0,7114	0,002371
lr 5-2	-0,3900	-0,3915	0,001305
lr 5-4	0,6202	0,6164	0,002055
lr 5-6	0,4086	0,4052	0,001351
limag-5-1	0,0853	0,0850	0,000283
limag-5-2	0,0786	0,0792	0,000264
limag-5-4	0,0419	0,0417	0,000139
limag-5-6	-0,1891	-0,1905	0,000635
Ir 6-5	-0,3808	-0,3823	0,001274
lr 6-11	0,0584	0,0584	0,000195
Ir 6-12	0,0653	0,0655	0,000218
Ir 6-13	0,1453	0,1448	0,000483
limag-6-5	0,1762	0,1766	0,000589
limag-6-11	-0,0487	-0,0488	0,000163
limag-6-12	-0,0411	-0,0411	0,000137
limag-6-13	-0,1086	-0,1090	0,000363

Tabela A.2 – Conjunto de medidas UMFs instaladas nas barras 2, 5 e 6.

Na Figura A.2 vê-se o conjunto de UMFs instalados junto com os 39 medidores do SM1.

 - □ Medida de Magnitude de Tensão; △ Medida de Injeção de Potência Ativa e Reativa; O Medidas de Fluxo de Potência Ativa e Reativa e ■ Unidades de Medidas Fasoriais.
 Figura A.2 – Sistema de medição SM1 com UMFs nas barras 2,5 e 6

A.2 Sistema de Medição 2 (SM2) – Conjunto Crítico

Este sistema de medição foi utilizado para se testar o comportamento dos estimadores quando o sistema de medição do processo possui conjuntos críticos. O sistema a seguir foi proposto em [COU07] e possui um conjunto de 29 medidores, distribuídos de forma a constituir um grande conjunto crítico. Este conjunto é apresentado na Figura A.3 e detalhado na Tabela A.3

- □ Medida de Magnitude de Tensão; ∆ Medida de Injeção de Potência Ativa e Reativa; O Medidas de Fluxo de Potência Ativa e Reativa. Figura A.3 – Sistema de medição SM2
| | REFERÊNCIA | MEDIDA | DESVIO |
|--------------------------|------------|---------|----------|
| | (pu) | (pu) | PADRÃO |
| P 5-1 | -0,7270 | -0,7246 | 0,006564 |
| P4-3 | 0,2381 | 0,2417 | 0,003345 |
| P6-12 | 0,0785 | 0,0784 | 0,002256 |
| P7-8 | 0,0000 | 0,0003 | 0,001735 |
| P ₉₋₁₄ | 0,0934 | 0,0920 | 0,002347 |
| P 10-11 | -0,0383 | -0,0335 | 0,001957 |
| P 13-14 | 0,0551 | 0,0550 | 0,002100 |
| Q 5-1 | 0,0243 | 0,0206 | 0,001871 |
| Q4-3 | -0,0469 | -0,0435 | 0,002024 |
| Q 6-12 | 0,0255 | 0,0225 | 0,001883 |
| Q7-8 | -0,1688 | -0,1672 | 0,002848 |
| Q 9-14 | 0,0349 | 0,0365 | 0,001977 |
| Q 10-11 | -0,0164 | -0,0125 | 0,001817 |
| Q 13-14 | 0,0155 | 0,0133 | 0,001822 |
| P ₄ | -0,4773 | -0,4679 | 0,004853 |
| P₅ | -0,0724 | -0,0729 | 0,002462 |
| P ₆ | -0,1102 | -0,1099 | 0,002466 |
| P7 | -0,0002 | 0,0006 | 0,001737 |
| P9 | -0,2960 | -0,2920 | 0,003680 |
| P 10 | -0,0909 | -0,0908 | 0,002338 |
| P 13 | -0,1386 | -0,1388 | 0,002659 |
| Q_4 | 0,0388 | 0,0409 | 0,002006 |
| Q_5 | -0,0060 | -0,0088 | 0,001792 |
| Q_6 | 0,0524 | 0,0538 | 0,002092 |
| Q 7 | 0,0076 | 0,0035 | 0,001756 |
| Q9 | -0,1712 | -0,1739 | 0,002893 |
| Q 10 | -0,0587 | -0,0613 | 0,002142 |
| Q 13 | -0,0626 | -0,0626 | 0,002151 |
| V1 | 1,0600 | 1,0556 | 0,005278 |

Tabela A.3 – Plano de medição proposto com medidas simuladas do SM2.

Na Figura A.4 pode ser visto o plano de medição da Tabela A.3 juntamente com as UMFs a serem instaladas nas barras 2, 5 e 6.

 - □ Medida de Magnitude de Tensão; △ Medida de Injeção de Potência Ativa e Reativa; O Medidas de Fluxo de Potência Ativa e Reativa e ■ Unidades de Medidas Fasoriais.
Figura A.4 – Sistema de medição SM2 com UMF nas barras 2,5 e 6

A.3 Sistema de Medição 3 (SM3) – Medidas Críticas

Sistema composto por 39 medidores, porém distribuídos de forma a ter seis medidas críticas em sua composição. As medidas são: P4-7, Q4-7, P7-8, Q7-8, P9-14 e Q9-14. Este sistema de medição também foi proposto em [COU07] sendo mostrado na Figura A.5 e detalhado na Tabela A.4

- □ Medida de Magnitude de Tensão; ∆ Medida de Injeção de Potência Ativa e Reativa;
O Medidas de Fluxo de Potência Ativa e Reativa.
Figura A.5 – Sistema de medição SM3

	REFERÊNCIA	MEDIDA	DESVIO
	(pu)	(pu)	PADRÃO
P 1-2	1,5681	1,5628	0,012152
P 1-5	0,7546	0,7433	0,006689
P ₂₋₃	0,7331	0,7339	0,006626
P ₂₋₅	0,4144	0,4164	0,004509
P5-2	-0,4054	-0,4001	0,004400
P4-7	0,2813	0,2823	0,003615
P4-9	0,1610	0,1578	0,002785
P 6-11	0,0734	0,0760	0,002240
P 6-12	0,0785	0,0784	0,002256
P12-6	-0,0778	-0,0713	0,002209
P 6-13	0,1793	0,1802	0,002935
P7-8	0,0000	0,0003	0,001735
P 9-10	0,0528	0,0543	0,002095
P ₉₋₁₄	0,0934	0,0920	0,002347
P 12-13	0,0166	0,0206	0,001871
Q 1-2	-0,2039	-0,2030	0,003086
Q 1-5	0,0363	0,0337	0,001958
Q 2-3	0,0355	0,0369	0,001980
Q 2-5	0,0091	0,0129	0,001819
Q 5-2	-0,0185	-0,0169	0,001846
Q4-7	-0,0975	-0,0937	0,002358
Q 4-9	-0,0038	-0,0050	0,001766
Q 6-11	0,0352	0,0377	0,001984
Q 6-12	0,0255	0,0225	0,001883
Q 12-6	-0,0240	-0,0229	0,001886
Q 6-13	0,0744	0,0712	0,002208
Q7-8	-0,1688	-0,1672	0,002848
Q 9-10	0,0427	0,0441	0,002027
Q 9-14	0,0349	0,0365	0,001977
Q 12-13	0,0080	0,0093	0,001795
Pз	-0,9441	-0,9452	0,008034
P ₆	-0,1102	-0,1099	0,002466
P 10	-0,0909	-0,0908	0,002338
P 12	-0,0612	-0,0588	0,002125
Q₃	0,0597	0,0624	0,002149
Q_6	0,0524	0,0538	0,002092
Q 10	-0,0587	-0,0613	0,002142
Q 12	-0,0160	-0,0151	0,001834
V1	1,0600	1,0556	0,005278

Tabela A.4 – Plano de medição proposto com medidas simuladas do SM3.

Outro conjunto de UMFs instalado nas barras 3, 5 e 9, pelo fato de conseguir eliminar algumas medidas críticas do plano de medição. Na Figura A.6 e Tabela A.5 pode ser visto este novo conjunto de UMFs.

 \Box Medida de Magnitude de Tensão; Δ Medida de Injeção de Potência Ativa e Reativa;

O Medidas de Fluxo de Potência Ativa e Reativa e ■ UMFs.

Figura A.6 – Sistema de medição SM3 com UMFs nas barras 3, 5 e 9

TIPO	REFERÊNCIA	MEDIDA	DESV. PAD.
θз	-0,2222	-0,2221	0,001480
V3	1,0100	1,0040	0,003347
θ5	-0,1531	-0,1531	0,001021
V5	1,0200	1,0275	0,003425
θ9	-0,2608	-0,2607	0,001738
V9	1,0560	1,0500	0,003500
lrз	-0,9248	-0,9187	0,003062
Ic3	0,1482	0,1475	0,000492
lr5	-0,0692	-0,0695	0,000232
lc5	0,0166	0,0165	0,000055
lr9	-0,2290	-0,2292	0,000764
Ic9	0,2289	0,2276	0,000759
lr3-2	-0,6891	-0,6830	0,002277
lr3-4	-0,2357	-0,2342	0,000781
IC3-4	0,0092	0,0091	0,000030
IC3-2	0,1390	0,1383	0,000461
lr5-6	0,4086	0,4052	0,001351
lr 5-1	-0,7080	-0,7114	0,002371
lr5-4	0,6202	0,6164	0,002055
lr5-2	-0,3900	-0,3915	0,001305
IC5-4	0,0419	0,0417	0,000139
IC5-2	0,0786	0,0792	0,000264
IC5-1	0,0853	0,0850	0,000283
IC5-6	-0,1891	-0,1905	0,000635
lr 9-10	0,0378	0,0375	0,000125
lr 9-14	0,0769	0,0772	0,000257
lr9-7	-0,2441	-0,2435	0,000812
lr9-4	-0,1514	-0,1518	0,000506
Ic9-7	0,1178	0,1179	0,000393
IC 9-10	-0,0519	-0,0517	0,000172
IC9-14	-0,0548	-0,0548	0,000183
IC9-4	0,0239	0,0239	0,000080

Tabela A.5 – Conjunto de medidas UMFs instaladas nas barras 3, 5 e 9.

APÊNDICE B

RESULTADOS DAS SIMULAÇÕES

	Referência		Estim	Estimado		
BARRA	Modulo	Ângulo	Modulo	Ângulo	%	
1	1,0600	0,00	1,0795	0,00	1,8411	
2	1,0450	-4,98	1,0657	-4,85	1,9966	
3	1,0100	-12,73	1,0316	-12,30	2,2694	
4	1,0180	-10,31	1,0400	-9,86	2,3072	
5	1,0200	-8,77	1,0469	-8,40	2,7203	
6	1,0700	-14,22	1,0965	-13,61	2,6996	
7	1,0620	-13,36	1,0839	-12,79	2,2942	
8	1,0900	-13,36	1,1112	-12,80	2,1810	
9	1,0560	-14,94	1,0793	-14,28	2,4950	
10	1,0510	-15,10	1,0746	-14,44	2,5358	
11	1,0570	-14,79	1,0820	-14,16	2,6167	
12	1,0550	-15,08	1,0822	-14,42	2,8308	
13	1,0500	-15,16	1,0765	-14,50	2,7773	
14	1,0360	-16,03	1,0600	-15,31	2,6427	
	EVT médic)			2,4434	

Tabela B.1 – Estado gerado pelo estimador convencional com o Grupo EG1

Tabela B.2 – Estado Estimado com o grupo EG1 e UMFs das barras 2, 5 e 6 Estimador 1.

ν ν ε θ				V,θ el		V, θ, I e Iij			
	Esti	mado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0583	0,05	0,1816	1,0548	0,09	0,5143	1,0621	-0,03	0,2018
2	1,0446	-4,98	0,0356	1,0421	-4,98	0,2738	1,0472	-5,00	0,2090
3	1,0100	-12,77	0,0736	1,0079	-12,90	0,3546	1,0121	-12,73	0,2065
4	1,0187	-10,31	0,0733	1,0196	-10,33	0,1654	1,0202	-10,31	0,2156
5	1,0251	-8,78	0,4957	1,0202	-8,78	0,0256	1,0222	-8,78	0,2150
6	1,0734	-14,22	0,3185	1,0718	-14,22	0,1678	1,0724	-14,21	0,2253
7	1,0626	-13,37	0,0552	1,0633	-13,38	0,1247	1,0639	-13,36	0,1757
8	1,0903	-13,37	0,0355	1,0910	-13,38	0,1012	1,0916	-13,36	0,1462
9	1,0568	-14,92	0,0811	1,0573	-14,93	0,1210	1,0579	-14,91	0,1928
10	1,0519	-15,08	0,0901	1,0522	-15,10	0,1142	1,0529	-15,07	0,1909
11	1,0590	-14,79	0,1848	1,0585	-14,80	0,1421	1,0594	-14,78	0,2312
12	1,0590	-15,06	0,3762	1,0582	-15,08	0,3046	1,0574	-15,07	0,2269
13	1,0531	-15,15	0,2985	1,0522	-15,15	0,2088	1,0524	-15,15	0,2321
14	1,0370	-16,00	0,1128	1,0375	-16,01	0,1476	1,0381	-15,98	0,2225
EVT médio			0,1723			0,1976			0,2065

V e θ				Veθel		V	eθele	lij	
	Estin	nado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0795	0,00	1,8396	1,0794	-0,05	1,8363	1,0828	-0,12	2,1641
2	1,0655	-4,93	1,9635	1,0670	-4,92	2,1119	1,0685	-4,92	2,2546
3	1,0316	-12,30	2,2683	1,0315	-12,31	2,2511	1,0332	-12,32	2,4087
4	1,0400	-9,86	2,3026	1,0440	-10,20	2,5645	1,0415	-10,08	2,3456
5	1,0467	-8,69	2,6197	1,0447	-8,66	2,4294	1,0436	-8,59	2,3397
6	1,0965	-13,84	2,5631	1,0962	-13,78	2,5664	1,0951	-13,80	2,4648
7	1,0839	-12,79	2,2917	1,0839	-12,79	2,2917	1,0839	-12,79	2,2917
8	1,1112	-12,80	2,1843	1,1112	-12,80	2,1843	1,1112	-12,80	2,1843
9	1,0793	-14,28	2,4950	1,0793	-14,28	2,4950	1,0793	-14,28	2,4950
10	1,0746	-14,44	2,5322	1,0746	-14,44	2,5322	1,0746	-14,44	2,5322
11	1,0820	-14,16	2,6150	1,0824	-14,34	2,5295	1,0821	-14,34	2,5042
12	1,0822	-14,42	2,8302	1,0826	-14,60	2,7479	1,0802	-14,62	2,5165
13	1,0765	-14,50	2,7800	1,0766	-14,58	2,7389	1,0755	-14,66	2,5833
14	1,0600	-15,31	2,6424	1,0600	-15,31	2,6424	1,0600	-15,31	2,6424
EVT Médio			2,4234			2,4230			2,4091

Tabela B.3 – Estado Estimado com o grupo EG1 e UMFs das barras 2, 5 e 6 Estimador 2.

Tabela B.4 – Estado Estimado com o grupo EG1 e UMFs em todas as barras.

	Estin	nado	EVT
BARRA	Modulo	Ângulo	%
1	1,0570	0,00	0,2801
2	1,0436	-4,99	0,1384
3	1,0088	-12,73	0,1155
4	1,0167	-10,31	0,1230
5	1,0240	-8,77	0,3939
6	1,0718	-14,22	0,1694
7	1,0605	-13,36	0,1402
8	1,0883	-13,37	0,1532
9	1,0547	-14,93	0,1221
10	1,0499	-15,09	0,1082
11	1,0571	-14,79	0,0161
12	1,0573	-15,07	0,2225
13	1,0514	-15,15	0,1368
14	1,0349	-16,04	0,1051
EVT Médio			0,1589

	Referé	ència	Estim	iado	EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,1201	0,00	5,6718
2	1,0450	-4,98	1,1063	-4,49	5,9326
3	1,0100	-12,73	1,0713	-10,57	7,2018
4	1,0180	-10,31	1,0899	-8,61	7,6970
5	1,0200	-8,77	1,0883	-7,90	6,8808
6	1,0700	-14,22	1,1372	-10,81	8,7820
7	1,0620	-13,36	1,1324	-11,18	7,7051
8	1,0900	-13,36	1,1585	-11,18	7,4045
9	1,0560	-14,94	1,1282	-12,53	8,1035
10	1,0510	-15,10	1,1225	-12,53	8,2365
11	1,0570	-14,79	1,1256	-11,67	8,5878
12	1,0550	-15,08	1,1238	-10,35	10,7212
13	1,0500	-15,16	1,1214	-10,79	10,4006
14	1,0360	-16,03	1,1090	-13,85	8,0703
	EVT médic)			7,9568

Tabela B.5 – Estado gerado pelo estimador convencional com o Grupo EG2

Tabela B.6 – Estado Estimado com grupo EG2 e UMFs das barras 2, 5 e 6 Estimador 1.

		$V e \theta$			Veθel		V e θ e l e lij		lij
	Estim	nado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0439	0,21	1,5610	1,0330	0,09	2,5504	1,0553	-0,08	0,4679
2	1,0300	-4,98	1,4355	1,0208	-4,95	2,3174	1,0410	-4,96	0,3872
3	0,9915	-12,88	1,8458	0,9816	-12,47	2,8462	1,0056	-12,16	1,0809
4	1,0077	-11,96	3,0358	1,0012	-10,53	1,6895	1,0138	-10,38	0,4305
5	1,0114	-8,80	0,8412	0,9999	-8,87	1,9822	1,0158	-8,82	0,4206
6	1,0523	-14,20	1,6524	1,0410	-14,15	2,7125	1,0652	-14,20	0,4483
7	1,0498	-15,02	3,1051	1,0427	-14,10	2,2193	1,0565	-13,90	1,0769
8	1,0779	-15,03	3,0963	1,0710	-14,10	2,1637	1,0844	-13,91	1,0785
9	1,0413	-16,66	3,2973	1,0336	-16,05	2,8551	1,0502	-15,82	1,6302
10	1,0349	-16,66	3,1075	1,0265	-16,19	2,9910	1,0449	-15,83	1,3875
11	1,0373	-15,63	2,3550	1,0262	-15,69	3,2943	1,0522	-14,78	0,4544
12	1,0342	-14,12	2,5795	1,0217	-14,38	3,3750	1,0502	-15,06	0,4561
13	1,0333	-14,48	1,9742	1,0220	-14,55	2,8652	1,0455	-15,08	0,4523
14	1,0192	-18,38	4,3827	1,0091	-18,11	4,4289	1,0248	-18,45	4,3381
EVT médio			2,4478			2,7351			1,0078

V e θ				Veθel		V e θ e l e l _{ij}			
	Estir	nado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,1201	0,00	5,6698	1,1196	-0,22	5,6386	1,1248	-0,29	6,1318
2	1,1058	-4,78	5,8315	1,1107	-4,75	6,3011	1,1123	-4,58	6,4794
3	1,0713	-10,57	7,2021	1,0706	-10,61	7,1066	1,0760	-10,82	7,3848
4	1,0899	-8,61	7,6993	1,0929	-10,25	7,3599	1,0849	-9,39	6,7756
5	1,0877	-8,58	6,6480	1,0920	-8,43	7,0833	1,0875	-7,90	6,8028
6	1,1372	-12,06	7,3778	1,1372	-11,66	7,7844	1,1367	-11,81	7,5898
7	1,1324	-11,18	7,7072	1,1324	-11,18	7,7072	1,1324	-11,18	7,7072
8	1,1585	-11,18	7,4073	1,1585	-11,18	7,4073	1,1585	-11,18	7,4073
9	1,1282	-12,53	8,1044	1,1282	-12,53	8,1044	1,1282	-12,53	8,1044
10	1,1225	-12,53	8,2355	1,1225	-12,53	8,2355	1,1225	-12,53	8,2355
11	1,1256	-11,67	8,5890	1,1248	-12,77	7,3752	1,1238	-12,27	7,7794
12	1,1238	-10,35	10,7212	1,1227	-11,64	8,9095	1,1218	-12,45	7,9051
13	1,1214	-10,79	10,4032	1,1207	-11,35	9,6124	1,1187	-12,19	8,4520
14	1,1090	-13,85	8,0727	1,1090	-13,85	8,0727	1,1090	-13,85	8,0727
EVT Médio			7,8335			7,6213			7,4877

Tabela B.7 – Estado Estimado com grupo EG2 e UMFs das barras 2, 5 e 6 Estimador 2.

Tabela B.8 – Estado Estimado com grupo EG2 e UMFs em todas as barras.

	Estin	nado	EVT
BARRA	Modulo	Ângulo	%
1	1,0464	0,00	1,2803
2	1,0330	-5,00	1,1449
3	0,9940	-12,70	1,5866
4	1,0182	-10,32	0,0316
5	1,0145	-8,80	0,5396
6	1,0608	-14,31	0,8743
7	1,0603	-13,36	0,1626
8	1,0881	-13,37	0,1740
9	1,0525	-14,94	0,3314
10	1,0462	-15,10	0,4528
11	1,0480	-14,83	0,8560
12	1,0400	-15,07	1,4249
13	1,0433	-14,94	0,7456
14	1,0315	-16,10	0,4542
EVT Médio			0,7185

	Referência		Estim	iado	EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,0575	0,00	0,2360
2	1,0450	-4,98	1,0400	-6,14	2,0724
3	1,0100	-12,73	1,0048	-12,96	0,6475
4	1,0180	-10,31	1,0136	-10,47	0,5067
5	1,0200	-8,77	1,0160	-8,89	0,4452
6	1,0700	-14,22	1,0574	-13,10	2,2722
7	1,0620	-13,36	1,0519	-12,96	1,1825
8	1,0900	-13,36	1,0811	-13,01	1,0243
9	1,0560	-14,94	1,0419	-14,20	1,8524
10	1,0510	-15,10	1,0363	-14,38	1,8706
11	1,0570	-14,79	1,0416	-14,02	1,9735
12	1,0550	-15,08	1,0449	-13,44	3,0067
13	1,0500	-15,16	1,0382	-13,39	3,2656
14	1,0360	-16,03	1,0231	-12,97	5,4487
	EVT médic)			1,8432

Tabela B.9 - Estado gerado pelo estimador convencional com o Grupo EG3

Tabela B.10 – Estado Estimado com o grupo EG3 e UMFs das barras 2, 5 e 6 Estimador 1.

	V e θ			Veθel			V e θ e l e lij		
	Estin	nado	EVT	Estin	nado	EVT	Estimado		EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0475	0,14	1,2013	1,0518	0,12	0,7975	1,0524	0,05	0,7193
2	1,0397	-4,98	0,5087	1,0347	-4,97	0,9858	1,0373	-4,97	0,7340
3	0,9941	-13,04	1,6632	0,9978	-12,99	1,2827	1,0023	-12,80	0,7738
4	1,0033	-10,42	1,4613	1,0058	-10,42	1,2095	1,0103	-10,34	0,7551
5	1,0060	-8,79	1,3694	1,0083	-8,81	1,1448	1,0123	-8,78	0,7507
6	1,0465	-14,20	2,1989	1,0543	-14,20	1,4679	1,0616	-14,21	0,7880
7	1,0402	-13,72	2,1497	1,0474	-13,68	1,4793	1,0542	-13,50	0,7746
8	1,0697	-13,83	2,0334	1,0779	-13,78	1,3274	1,0841	-13,59	0,6782
9	1,0299	-15,32	2,5545	1,0388	-15,26	1,7215	1,0471	-15,03	0,8605
10	1,0233	-15,70	2,8309	1,0330	-15,65	1,9583	1,0422	-15,21	0,8588
11	1,0273	-15,56	3,1061	1,0379	-15,54	2,2320	1,0486	-14,79	0,7940
12	1,0324	-14,79	2,2039	1,0408	-14,82	1,4201	1,0465	-15,09	0,8021
13	1,0262	-14,65	2,4298	1,0349	-14,66	1,6832	1,0417	-15,12	0,7933
14	1,0098	-14,31	3,8909	1,0198	-14,31	3,3617	1,0291	-14,81	2,2292
EVT Médio			2,1144			1,5766			0,8794

	Veθ			Veθel			V e θ e l e lij		
	Estin	nado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0575	0,00	0,2358	1,0574	-0,32	0,6096	1,0552	-0,13	0,5096
2	1,0400	-5,18	0,5918	1,0415	-5,22	0,5280	1,0402	-5,12	0,5199
3	1,0048	-12,96	0,6489	1,0045	-12,97	0,6840	1,0057	-12,98	0,6124
4	1,0136	-10,47	0,5107	1,0137	-10,49	0,5291	1,0132	-10,47	0,5490
5	1,0160	-8,88	0,4350	1,0160	-8,85	0,4194	1,0153	-8,82	0,4635
6	1,0574	-13,57	1,6341	1,0574	-13,43	1,8099	1,0604	-13,52	1,5105
7	1,0519	-12,96	1,1822	1,0519	-12,96	1,1822	1,0519	-12,96	1,1822
8	1,0811	-13,00	1,0235	1,0811	-13,00	1,0235	1,0811	-13,00	1,0235
9	1,0419	-14,20	1,8535	1,0419	-14,20	1,8535	1,0419	-14,20	1,8535
10	1,0363	-14,38	1,8736	1,0363	-14,38	1,8736	1,0363	-14,38	1,8736
11	1,0416	-14,02	1,9705	1,0415	-14,40	1,6153	1,0473	-14,05	1,5809
12	1,0449	-13,44	3,0062	1,0446	-14,03	2,0799	1,0455	-14,30	1,6325
13	1,0382	-13,39	3,2643	1,0380	-13,61	2,9239	1,0408	-14,14	1,9689
14	1,0231	-12,97	5,4488	1,0231	-12,97	5,4488	1,0231	-12,97	5,4488
EVT Médio			1,6914			1,6129			1,4806

Tabela B.11 – Estado Estimado com o grupo EG3 e UMFs das barras 2, 5 e 6 Estimador 2.

	Estin	nado	EVT
BARRA	Modulo	Ângulo	%
1	1,0564	0,00	0,3383
2	1,0430	-4,98	0,1902
3	1,0049	-12,73	0,5012
4	1,0136	-10,31	0,4344
5	1,0158	-8,76	0,4145
6	1,0635	-14,23	0,6088
7	1,0552	-13,38	0,6417
8	1,0834	-13,37	0,6044
9	1,0483	-14,99	0,7384
10	1,0425	-15,11	0,8111

1,0475 -14,79 0,8995 1,0495 -15,08 0,5198

1,0437 -15,15 0,6011

1,0295 -15,95 0,6398

0,5674

Tabela B.12 – Estado Estimado com o grupo EG3 e UMFs em todas as barras.

11 12

13 14

EVT Médio

	Referé	ència	Estim	iado	EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,0564	0,00	0,3424
2	1,0450	-4,98	0,9914	-9,60	9,3855
3	1,0100	-12,73	1,0059	-12,93	0,5407
4	1,0180	-10,31	1,0147	-10,43	0,3847
5	1,0200	-8,77	1,0142	-9,01	0,7033
6	1,0700	-14,22	1,0744	-9,36	8,5010
7	1,0620	-13,36	1,0742	-9,46	6,9380
8	1,0900	-13,36	1,1039	-9,55	6,8136
9	1,0560	-14,94	1,0743	-8,86	10,8302
10	1,0510	-15,10	1,0690	-9,04	10,7950
11	1,0570	-14,79	1,0742	-8,65	10,9201
12	1,0550	-15,08	1,0636	-9,20	10,3299
13	1,0500	-15,16	1,0704	-9,29	10,5259
14	1,0360	-16,03	1,0592	-8,53	13,4191
	EVT médic)			7,1735

Tabela B.13 – Estado gerado pelo estimador convencional com o Grupo EG4.

Tabela B.14 – Estado Estimado com grupo EG4 e UMFs das barras 2, 5 e 6 Estimador 1.

	V e θ			Veθel			$V e \theta e I e I_{ij}$		
	Estin	nado	EVT	Estin	nado	EVT	Estin	nado	EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0086	0,89	5,0789	1,0162	0,21	4,1428	1,0309	0,17	2,7601
2	0,9774	-4,98	6,4671	1,0015	-4,99	4,1658	1,0157	-4,94	2,8065
3	0,9515	-13,62	5,9824	0,9653	-13,37	4,5555	0,9807	-13,03	2,9414
4	0,9621	-10,55	5,5091	0,9770	-10,43	4,0335	0,9889	-10,38	2,8594
5	0,9634	-8,83	5,5465	0,9782	-8,81	4,1019	0,9909	-8,79	2,8518
6	1,0161	-14,16	5,0429	1,0234	-14,18	4,3533	1,0386	-14,24	2,9332
7	1,0139	-12,87	4,6022	1,0237	-12,72	3,7680	1,0322	-13,00	2,8750
8	1,0435	-13,20	4,2707	1,0517	-12,96	3,5825	1,0572	-13,35	3,0049
9	1,0114	-13,63	4,7788	1,0197	-13,60	4,1420	1,0288	-13,90	3,1370
10	0,9997	-14,63	4,9485	1,0081	-14,35	4,2790	1,0205	-14,66	2,9957
11	0,9981	-15,13	5,5991	1,0062	-14,62	4,8134	1,0256	-14,82	2,9742
12	0,9975	-14,97	5,4557	1,0019	-15,05	5,0333	1,0234	-15,12	2,9935
13	1,0079	-14,66	4,1004	1,0100	-15,08	3,8128	1,0193	-15,13	2,9225
14	0,9881	-14,33	5,4594	0,9787	-16,21	5,5358	0,9858	-15,46	4,9407
EVT Médio			5,2030			4,3085			3,0711

.

	V e θ			Veθel			V e θ e l e lij		
	Estin	nado	EVT	Estin	nado	EVT	Estimado		EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0564	0,00	0,3396	1,0512	-1,53	2,7882	1,0534	-0,83	1,5655
2	0,9919	-5,80	5,2659	1,0370	-5,86	1,7061	1,0418	-5,50	0,9474
3	1,0059	-12,93	0,5388	0,9926	-13,10	1,8350	1,0082	-13,15	0,7547
4	1,0147	-10,43	0,3832	1,0116	-10,55	0,7508	1,0177	-10,46	0,2607
5	1,0142	-8,98	0,6775	1,0175	-8,86	0,2905	1,0206	-8,70	0,1321
6	1,0744	-11,32	5,0823	1,0745	-10,69	6,1910	1,0663	-11,25	5,1796
7	1,0742	-9,46	6,9370	1,0742	-9,46	6,9370	1,0742	-9,46	6,9370
8	1,1039	-9,55	6,8131	1,1039	-9,55	6,8131	1,1039	-9,55	6,8131
9	1,0743	-8,86	10,8312	1,0743	-8,86	10,8312	1,0743	-8,86	10,8312
10	1,0690	-9,04	10,7954	1,0690	-9,04	10,7954	1,0690	-9,04	10,7954
11	1,0742	-8,65	10,9200	1,0712	-10,37	7,8837	1,0545	-11,58	5,6039
12	1,0636	-9,20	10,3290	1,0599	-11,65	6,0118	1,0524	-11,79	5,7432
13	1,0704	-9,29	10,5256	1,0687	-10,15	8,9978	1,0539	-11,16	6,9996
14	1,0592	-8,53	13,4192	1,0592	-8,53	13,4192	1,0592	-8,53	13,4192
EVT Médio			6,6327			6,0893			5,4273

Tabela B.15 – Estado Estimado com grupo EG4 e UMFs das barras 2, 5 e 6 Estimador 2.

Tabela B.16 – Estado Estimado com grupo EG4 e UMFs em todas as barras

	Estin	nado	EVT
BARRA	Modulo	Ângulo	%
1	1,0447	0,00	1,4433
2	1,0124	-4,96	3,1180
3	0,9947	-12,72	1,5147
4	1,0036	-10,34	1,4174
5	1,0039	-8,81	1,5840
6	1,0647	-14,26	0,4969
7	1,0630	-13,40	0,1138
8	1,0844	-13,35	0,5103
9	1,0714	-15,06	1,4727
10	1,0617	-15,10	1,0218
11	1,0620	-14,81	0,4734
12	1,0415	-15,18	1,2877
13	1,0506	-14,94	0,3821
14	1,0415	-15,92	0,5616
EVT Médio			1,0998

	Referé	ència	Estim	nado	EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,0547	0,00	0,4958
2	1,0450	-4,98	1,0399	-4,99	0,4843
3	1,0100	-12,73	1,0046	-12,84	0,5699
4	1,0180	-10,31	1,0122	-10,41	0,5976
5	1,0200	-8,77	1,0149	-8,79	0,5003
6	1,0700	-14,22	1,0652	-14,29	0,4634
7	1,0620	-13,36	1,0756	-7,37	10,5973
8	1,0900	-13,36	1,1030	-7,37	10,5777
9	1,0560	-14,94	1,0506	-15,01	0,5269
10	1,0510	-15,10	1,0454	-15,17	0,5488
11	1,0570	-14,79	1,0515	-14,88	0,5447
12	1,0550	-15,08	1,0509	-15,15	0,4046
13	1,0500	-15,16	1,0455	-15,26	0,4637
14	1,0360	-16,03	1,0302	-16,08	0,5645
	EVT médic)			1,9528

Tabela B.17 – Estado gerado pelo estimador convencional com o Grupo EG5

Tabela B.18 – Estado Estimado com o grupo EG5 e UMFs das barras 3, 5 e 9 Estimador 1.

	V e θ			Veθel			V e θ e l e l _{ij}		
	Estin	nado	EVT	Estin	nado	EVT	Estimado		EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0584	-0,03	0,1616	0,9861	2,61	8,2338	1,0300	0,26	2,8624
2	1,0436	-4,98	0,1335	0,9708	-3,45	7,5526	1,0149	-4,86	2,8872
3	1,0083	-12,72	0,1652	0,9333	-12,75	7,5933	0,9798	-12,79	2,9872
4	1,0154	-10,31	0,2562	0,9386	-11,29	7,9685	0,9875	-10,40	2,9993
5	1,0186	-8,77	0,1383	0,9409	-8,85	7,7558	0,9895	-8,79	2,9859
6	1,0689	-14,23	0,1042	0,9851	-14,58	7,9546	1,0372	-14,35	3,0710
7	1,0787	-7,29	10,7951	0,9947	-11,96	6,7601	1,0294	-13,16	3,0890
8	1,1060	-7,29	10,7704	1,0243	-11,96	6,4703	1,0580	-13,16	2,9547
9	1,0540	-14,93	0,1925	0,9820	-14,83	7,0112	1,0234	-14,86	3,0934
10	1,0488	-15,10	0,2053	0,9736	-15,24	7,3711	1,0184	-15,02	3,1058
11	1,0551	-14,82	0,1853	0,9722	-15,24	8,0617	1,0243	-14,82	3,0925
12	1,0546	-15,08	0,0371	0,9702	-15,47	8,0655	1,0225	-15,24	3,0893
13	1,0492	-15,19	0,0928	0,9649	-15,54	8,1291	1,0170	-15,35	3,1612
14	1,0337	-16,00	0,2306	0,9503	-17,26	8,5258	1,0033	-15,99	3,1533
EVT Médio			1,6763			7,6752			3,0380

	ν ε θ			Veθel			V e θ e l e l ij		
	Estin	nado	EVT	Estin	nado	EVT	Estimado		EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0547	0,00	0,5000	1,0547	0,03	0,4981	1,0556	-0,02	0,4136
2	1,0399	-4,99	0,4882	1,0403	-4,97	0,4475	1,0410	-4,99	0,3840
3	1,0046	-12,76	0,5374	1,0044	-12,76	0,5600	1,0060	-12,75	0,3979
4	1,0122	-10,41	0,5946	1,0110	-10,42	0,7155	1,0139	-10,33	0,4006
5	1,0150	-8,78	0,4885	1,0138	-8,84	0,6196	1,0159	-8,79	0,4051
6	1,0652	-14,29	0,4671	1,0652	-14,29	0,4670	1,0656	-14,28	0,4254
7	1,0756	-7,37	10,5972	1,0717	-10,61	4,9034	1,0576	-13,09	0,6297
8	1,1030	-7,37	10,5784	1,1030	-7,37	10,5784	1,1030	-7,37	10,5784
9	1,0506	-14,97	0,5138	1,0557	-14,55	0,6849	1,0514	-14,82	0,4826
10	1,0454	-15,17	0,5476	1,0432	-15,45	0,9559	1,0464	-14,98	0,4853
11	1,0515	-14,88	0,5450	1,0515	-14,88	0,5450	1,0515	-14,88	0,5450
12	1,0509	-15,15	0,4059	1,0509	-15,15	0,4059	1,0509	-15,15	0,4059
13	1,0455	-15,26	0,4598	1,0455	-15,26	0,4598	1,0455	-15,26	0,4598
14	1,0302	-16,08	0,5658	1,0049	-18,44	5,1114	1,0311	-15,95	0,4901
EVT Médio			1,9492			1,9252			1,1788

Tabela B.19 – Estado Estimado com o grupo EG5 e UMFs das barras 3, 5 e 9 Estimador 2.

Tabela B.20 – Estado Estimado com o grupo EG5 e UMFs em todas as barras.

	Estin	nado	EVT
BARRA	Modulo	Ângulo	%
1	1,0458	0,00	1,3375
2	1,0312	-4,98	1,3165
3	0,9937	-12,73	1,6174
4	0,9950	-10,47	2,2776
5	1,0064	-8,77	1,3290
6	1,0564	-14,22	1,2666
7	1,0549	-13,22	0,7113
8	1,0829	-13,35	0,6496
9	1,0394	-14,93	1,5731
10	1,0346	-15,10	1,5628
11	1,0425	-14,79	1,3746
12	1,0423	-15,07	1,2039
13	1,0370	-15,16	1,2352
14	1,0194	-16,04	1,6063
EVT Médio			1,3615

	Referé	ència	Estim	nado	EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,0547	0,00	0,4958
2	1,0450	-4,98	1,0399	-4,99	0,4843
3	1,0100	-12,73	1,0046	-12,84	0,5699
4	1,0180	-10,31	1,0122	-10,41	0,5976
5	1,0200	-8,77	1,0149	-8,79	0,5003
6	1,0700	-14,22	1,0652	-14,29	0,4634
7	1,0620	-13,36	1,0756	-7,37	10,5973
8	1,0900	-13,36	1,0483	-8,27	9,5179
9	1,0560	-14,94	1,0506	-15,01	0,5269
10	1,0510	-15,10	1,0454	-15,17	0,5488
11	1,0570	-14,79	1,0515	-14,88	0,5447
12	1,0550	-15,08	1,0509	-15,15	0,4046
13	1,0500	-15,16	1,0455	-15,26	0,4637
14	1,0360	-16,03	1,0273	-12,76	5,7376
	EVT médic)			2,2466

Tabela B.21 – Estado gerado pelo estimador convencional com o Grupo EG6

Tabela B.22 – Estado Estimado com grupo EG6 e UMFs das barras 3, 5 e 9 Estimador 1.

Veθ				Veθel			Veθelelij		
	Estin	nado	EVT	Estin	nado	EVT	Estin	Estimado	
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0584	-0,03	0,1616	0,9752	3,10	9,5337	1,0266	0,30	3,1932
2	1,0436	-4,98	0,1335	0,9598	-3,16	8,7008	1,0114	-4,84	3,2214
3	1,0083	-12,72	0,1652	0,9222	-12,75	8,6927	0,9763	-12,80	3,3340
4	1,0154	-10,31	0,2562	0,9275	-11,48	9,1018	0,9840	-10,40	3,3438
5	1,0186	-8,77	0,1383	0,9291	-8,87	8,9112	0,9860	-8,78	3,3300
6	1,0689	-14,23	0,1042	0,9694	-14,68	9,4285	1,0335	-14,37	3,4222
7	1,0008	-7,05	12,1380	0,9872	-12,92	7,0777	1,0258	-13,16	3,4301
8	1,0304	-8,03	10,5624	0,9576	-13,99	12,1922	0,9972	-14,15	8,6162
9	1,0540	-14,93	0,1925	0,9652	-14,81	8,6034	1,0197	-14,86	3,4424
10	1,0488	-15,10	0,2053	0,9567	-15,28	8,9773	1,0147	-15,02	3,4562
11	1,0551	-14,82	0,1853	0,9557	-15,36	9,6341	1,0206	-14,83	3,4416
12	1,0546	-15,08	0,0371	0,9541	-15,58	9,6031	1,0188	-15,26	3,4495
13	1,0492	-15,19	0,0928	0,9487	-15,64	9,6845	1,0132	-15,37	3,5238
14	1,0308	-12,71	5,8057	0,9276	-13,59	11,2103	0,9997	-15,95	3,5043
EVT Médio			2,1556			9,3822			3,7649

		$V \textbf{e} \theta$		Veθel			Veθelelij		
	Estin	Estimado EVT		Estimado		EVT	Estimado		EVT
BARRA	Modulo	Ângulo	%	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0547	0,00	0,5000	1,0547	0,03	0,4991	1,0557	-0,03	0,4092
2	1,0399	-4,99	0,4882	1,0402	-4,96	0,4618	1,0411	-4,99	0,3783
3	1,0046	-12,76	0,5374	1,0048	-12,76	0,5192	1,0060	-12,74	0,3925
4	1,0122	-10,41	0,5946	1,0119	-10,44	0,6419	1,0140	-10,32	0,3939
5	1,0150	-8,78	0,4885	1,0143	-8,85	0,5732	1,0159	-8,79	0,3989
6	1,0652	-14,29	0,4671	1,0652	-14,29	0,4677	1,0657	-14,28	0,4206
7	1,0756	-7,37	10,5972	1,0742	-11,22	3,9281	1,0575	-13,06	0,6755
8	1,0483	-8,27	9,5186	1,0483	-8,27	9,5186	1,0483	-8,27	9,5186
9	1,0506	-14,97	0,5138	1,0546	-14,46	0,8437	1,0513	-14,78	0,5235
10	1,0454	-15,17	0,5476	1,0434	-15,51	1,0095	1,0463	-14,94	0,5250
11	1,0515	-14,88	0,5450	1,0515	-14,88	0,5450	1,0515	-14,88	0,5450
12	1,0509	-15,15	0,4059	1,0509	-15,15	0,4059	1,0509	-15,15	0,4059
13	1,0455	-15,26	0,4598	1,0455	-15,26	0,4598	1,0455	-15,26	0,4598
14	1,0273	-12,76	5,7377	1,0013	-15,59	3,4278	1,0311	-15,85	0,5625
EVT Médio			2,2430			1,6644			1,1149

Tabela B.23 – Estado Estimado com grupo EG6 e UMFs das barras 3, 5 e 9 Estimador 2.

	Estin	EVT	
BARRA	Modulo	Ângulo	%
1	1,0470	0,00	1,2258
2	1,0324	-4,98	1,2053
3	0,9953	-12,73	1,4586
4	0,9974	-10,47	2,0434
5	1,0076	-8,77	1,2203
6	1,0569	-14,22	1,2282
7	1,0591	-13,14	0,4727
8	1,0323	-13,43	5,2918
9	1,0390	-15,00	1,6093
10	1,0343	-15,12	1,5865
11	1,0426	-14,79	1,3605
12	1,0426	-15,07	1,1720
13	1,0373	-15,16	1,2072
14	1,0204	-15,95	1,5165
EVT Médio			1,6142

Tabela B.24 – Estado Estimado com grupo EG6 e UMFs em todas as barras.

	Referé	ència	Estim	EVT	
BARRA	Modulo	Ângulo	Modulo	Ângulo	%
1	1,0600	0,00	1,0625	0,00	0,2358
2	1,0450	-4,98	1,0473	-4,97	0,2225
3	1,0100	-12,73	1,0124	-12,70	0,2442
4	1,0180	-10,31	1,0201	-10,29	0,2133
5	1,0200	-8,77	1,0222	-8,75	0,2193
6	1,0700	-14,22	1,0726	-14,16	0,2663
7	1,0620	-13,36	1,0637	-13,33	0,1717
8	1,0900	-13,36	1,0914	-13,33	0,1432
9	1,0560	-14,94	1,0577	-14,88	0,1922
10	1,0510	-15,10	1,0526	-15,04	0,1858
11	1,0570	-14,79	1,0588	-14,74	0,1974
12	1,0550	-15,08	1,0586	-15,01	0,3624
13	1,0500	-15,16	1,0527	-15,09	0,2865
14	1,0360	-16,03	1,0378	-15,95	0,2250
				EVT Médio	0,2261

Tabela B.25 – Estado estimado com as medidas adicionais oriundas de UTRs nas barras 2, 5 e 6 com SM1 sem EGs.

Tabela B.26 – Estado estimado com as medidas adicionais oriundas de UTRs nas barras 2, 5 e 6 com SM1 e grupo EG1.

	Referé	ência	Estim	EVT						
BARRA	Modulo Ângulo		Modulo	Ângulo	%					
1	1,0600	0,00	1,0736	0,00	1,2795					
2	1,0450	-4,98	1,0597	-4,84	1,4231					
3	1,0100	-12,73	1,0256	-12,41	1,6373					
4	1,0180	-10,31	1,0343	-10,01	1,6873					
5	1,0200	-8,77	1,0361	-8,52	1,6393					
6	1,0700	-14,22	1,0883	-13,76	1,8981					
7	1,0620	-13,36	1,0780	-12,96	1,6646					
8	1,0900	-13,36	1,1054	-12,96	1,5758					
9	1,0560	-14,94	1,0729	-14,46	1,8072					
10	1,0510	-15,10	1,0680	-14,61	1,8298					
11	1,0570	-14,79	1,0747	-14,32	1,8734					
12	1,0550	-15,08	1,0747	-14,58	2,0667					
13	1,0500	-15,16	1,0688	-14,66	1,9921					
14	1,0360	-16,03	1,0535	-15,50	1,9315					
				EVT Médio	1,7361					

EG2.										
	Referé	ència	Estim	EVT						
BARRA	Modulo Ângulo		Modulo	Ângulo	%					
1	1,0600	0,00	1,0822	0,00	2,0947					
2	1,0450	-4,98	1,0689	-4,63	2,3674					
3	1,0100	-12,73	1,0301	-11,43	3,0435					
4	1,0180	-10,31	1,0441	-9,82	2,7062					
5	1,0200	-8,77	1,0463	-8,23	2,7482					
6	1,0700	-14,22	1,0971	-12,51	3,9443					
7	1,0620	-13,36	1,0877	-12,81	2,6030					
8	1,0900	-13,36	1,1148	-12,81	2,4704					
9	1,0560	-14,94	1,0831	-14,37	2,7569					
10	1,0510	-15,10	1,0780	-14,42	2,8347					
11	1,0570	-14,79	1,0840	-13,66	3,2402					
12	1,0550	-15,08	1,0831	-12,36	5,5042					
13	1,0500	-15,16	1,0803	-12,68	5,2583					
14	1,0360	-16,03	1,0634	-16,00	2,6430					
				EVT Médio	3,1582					

Tabela B.27 – Estado estimado com as medidas adicionais oriundas de UTRs nas barras 2, 5 e 6 com SM1 e grupo

Tabela B.28 – Estado estimado com as medidas adicionais oriundas de UTRs nas barras 2, 5 e 6 com SM2 e grupos EG3 e EG4.

				EG3		EG4			
	Refer	ência	Estim	ado	EVT	EVT Estimado		EVT	
BARRA	Modulo	Ângulo	Modulo	Ângulo	%	Modulo	Ângulo	%	
1	1,0600	0,00	1,0618	0,00	0,1665	1,0432	0,00	1,5855	
2	1,0450	-4,98	1,0466	-4,94	0,1711	1,0294	-4,92	1,5001	
3	1,0100	-12,73	1,0110	-12,74	0,1005	0,9926	-13,02	1,7912	
4	1,0180	-10,31	1,0198	-10,20	0,2612	1,0053	-10,04	1,3316	
5	1,0200	-8,77	1,0220	-8,63	0,3071	1,0069	-8,45	1,4037	
6	1,0700	-14,22	1,0711	-13,66	0,9762	1,0541	-12,81	2,8549	
7	1,0620	-13,36	1,0634	-13,14	0,4055	1,0520	-11,91	2,6835	
8	1,0900	-13,36	1,0931	-13,23	0,3645	1,0778	-12,23	2,2592	
9	1,0560	-14,94	1,0558	-14,56	0,6692	1,0491	-12,48	4,3292	
10	1,0510	-15,10	1,0508	-14,78	0,5593	1,0386	-13,22	3,4705	
11	1,0570	-14,79	1,0567	-14,45	0,5939	1,0390	-13,42	2,9142	
12	1,0550	-15,08	1,0571	-14,48	1,0701	1,0333	-13,38	3,5903	
13	1,0500	-15,16	1,0522	-14,27	1,5740	1,0424	-13,29	3,3397	
14	1,0360	-16,03	1,0383	-13,87	3,7870	1,0205	-13,11	5,2792	
					0,7862			2,7381	

		EG5					EG6	
	Refer	ência	Estim	Estimado EVT		Estimado		EVT
BARRA	Modulo	Ângulo	Modulo	Ângulo	%	Modulo	Ângulo	%
1	1,0600	0,00	1,0602	0,00	0,0224	1,0692	0,00	0,8652
2	1,0450	-4,98	1,0454	-4,94	0,0783	1,0544	-4,86	0,9191
3	1,0100	-12,73	1,0101	-12,76	0,0441	1,0194	-12,55	0,9830
4	1,0180	-10,31	1,0176	-10,37	0,1052	1,0268	-10,20	0,8904
5	1,0200	-8,77	1,0208	-8,65	0,2329	1,0301	-8,50	1,0912
6	1,0700	-14,22	1,0711	-12,85	2,3982	1,0809	-12,63	2,9687
7	1,0620	-13,36	1,0701	-9,76	6,3531	1,0791	-9,55	6,8999
8	1,0900	-13,36	1,0977	-9,76	6,3392	1,0520	-10,44	6,1061
9	1,0560	-14,94	1,0626	-12,00	5,1821	1,0700	-11,41	6,3319
10	1,0510	-15,10	1,0569	-12,34	4,8541	1,0651	-11,87	5,8358
11	1,0570	-14,79	1,0601	-12,88	3,3569	1,0698	-12,66	3,9382
12	1,0550	-15,08	1,0576	-13,59	2,6184	1,0675	-13,36	3,2482
13	1,0500	-15,16	1,0528	-13,64	2,6737	1,0628	-13,40	3,3128
14	1,0360	-16,03	1,0423	-12,97	5,3969	1,0501	-9,69	11,2100
					2,8325			3,9000

Tabela B.29 – Estado estimado com as medidas adicionais oriundas de UTRs nas barras 3, 5 e 9 com SM3 e grupos EG5 e EG6.