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Abstract

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem
that was proposed in the late 1950’s and it is still one of the most studied in the field
of Operations Research. The great interest in the VRP is due to its practical impor-
tance, as well as the difficulty in solving it. This work deals with heuristic, exact and
hybrid approaches for solving different variants of the VRP, namely: Capacitated VRP
(CVRP), Open VRP (OVRP), Asymmetric CVRP (ACVRP), VRP with Simultaneous
Pickup and Delivery (VRPSPD), VRP with Mixed Pickup and Delivery (VRPMPD), TSP
with Mixed Pickup and Delivery (TSPMPD), Multi-Depot VRP (MDVRP), Multi-Depot
Vehicle Routing Problem with Mixed Pickup and Delivery (MDVRPMPD) and Hetero-
geneous Fleet VRP (HFVRP). An extensive literature review is performed for all these
variants, focusing on the main contributions of each work. Commodity flow formulations
for the VRPSPD/VRPMPD are theoretically examined and their practical performance
are measured by a Branch-and-cut (BC) algorithm. Another BC algorithm, based on a
formulation defined only over the edge variables, is proposed for the VRPSPD, VRPMPD
and MDVRPMPD, where the constraints that ensure that the capacity of the vehicle is
not exceeded in the middle of the route and those that ensure that a route starts and ends
at the same depot are treated in a lazy fashion. The third and last exact approach is a
Branch-cut-and-price algorithm that is also designed to solve the VRPSPD/VRPMPD.
These three exact approaches are tested in benchmark instances involving up to 200 cus-
tomers and new optimal solutions are found for 67 open problems. A heuristic algorithm
is proposed for solving the VRPs considered here. The algorithm, called ILS-RVND, is
based on the Iterated Local Search (ILS) metaheuristic and it makes use of a Variable
Neighborhood Descent with Random neighborhood ordering (RVND) in the local search
phase. Finally, a hybrid algorithm that incorporates a Set Partitioning approach into the
ILS-RVND heuristic is presented for solving 8 of the VRPs treated in this work. The
developed heuristic and hybrid algorithms are tested in hundreds of benchmark instances
and the results obtained are, on average, highly competitive.

Keywords: Vehicle Routing Problems. Exact approaches. Heuristic and hybrid algo-
rithms. Iterated Local Search. Logistics.



Resumo

O Problema de Roteamento de Véıculos (PRV) é um problema clássico de otimização
combinatória proposto no final da década de 1950, sendo ainda um dos mais estudados
na área de Pesquisa Operacional. O elevado interesse no PRV é devido a sua importân-
cia prática, bem como a dificuldade em resolvê-lo. Este trabalho trata de abordagens
heuŕısticas, exatas e h́ıbridas para diferentes variantes do PRV, a saber: PRV Capacitado
(PRVC), PRV com Rotas Abertas (PRVRA), PRV Capacitado e Assimétrico (PRVCA),
PRV com Coleta e Entrega Simultânea (PRVCES), PRV com Coleta e Entrega Mista
(PRVCEM), Problema do Caixeiro Viajante com Coleta e Entrega Mista (PCVCEM),
PRV com Múltiplos Depósitos (PRVMD), PRV com Coleta e Entrega Mista e Múlti-
plos Depósitos (PRVCEMMD) e PRV com Frota Heterogênea (PRVFH). Uma extensa
revisão da literatura é efetuada para todas estas variantes, dando destaque as princi-
pais contribuições de cada trabalho. Formulações baseadas em fluxo em rede para o
PRVCES/PRVCEM são teoricamente examinadas e seus desempenhos práticos são me-
didos por meio de um algoritmo Branch-and-Cut (BC). Outro algoritmo BC, baseado em
uma formulação definida apenas sobre as variáveis de aresta, é proposto para o PRVCES,
PRVCEM e PRVCEMMD, onde as restrições que garantem que a capacidade do véıculo
não é excedida no meio da rota e aquelas que garantem que uma rota começa e termina
no mesmo depósito são separadas de uma maneira lazy. A terceira e última abordagem
exata é um algoritmo Branch-cut-and-price que também é desenvolvido para resolver o
PRVCES/PRVCEM. Estas três abordagens exatas são testadas em instâncias da literatura
envolvendo até 200 clientes e novas soluções ótimas são encontradas para 67 problemas
em aberto. Um algoritmo heuŕıstico é proposto para resolver os PRVs aqui considerados.
O algoritmo, denominado, ILS-RVND, é baseado na metaheuŕıstica Iterated Local Search
(ILS) que faz uso de procedimento inspirado no método Variable Neighborhood Descent
com ordem aleatória na escolha das vizinhanças (RVND) na fase de busca local. Final-
mente, um algoritmo h́ıbrido, que incorpora uma abordagem baseada em Particionamento
de Conjuntos na heuŕıstica ILS-RVND, é apresentado para resolver 8 dos PRVs tratados
neste trabalho. Os algoritmos heuŕısticos e h́ıbridos são testados em centenas de instân-
cias da literatura e os resultados obtidos são, em média, altamente competitivos.

Palavras-chave: Problemas de Roteamento de Véıculos. Abordagens exatas. Algoritmos
heuŕısticos e h́ıbridos. Iterated Local Search. Loǵıstica.
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Chapter 1

Introduction

1.1 De�nition of the theme

The Vehicle Routing Problem (VRP) is a classical Combinatorial Optimization (CO)

problem that was proposed in the late 1950’s and it is still one of the most studied in the

field of Operations Research (OR). The great interest in the VRP is due to its practical

importance, as well as the difficulty in solving it.

The dictionary defines the term routing as the act of sending someone or something

along a particular course. According to Laporte [95], the name Vehicle Routing Problem

was first employed in the mid 1970’s by Christofides [30] and it had been widely adopted

since then. In a general form, the VRP consists of designing a least-cost set of vehicle

routes, subjected to some side constraints, in order to serve geographically dispersed

customers.

The VRP is generally solved by exact or heuristic algorithms. The first aims to

find strict optimal solutions while the latter seeks to obtain sub-optimal/approximate

solutions. The term heuristic is derived from the greek word heuriskein, which means

to find. In the area of computing, heuristic can be defined as a rule-based procedure

developed for determining a good quality solution to a specific problem.

Hybrid approaches, i.e, those that combine heuristic and exact methods, are another

alternative that can be employed to solve the VRP. Exact procedures can be integrated

into heuristics and vice-versa.

This work presents heuristic, exact and hybrid approaches to solve a large class of

VRPs. The next sections describe the motivation, objectives and outline of the thesis.

1.2 Motivation

The VRP plays an important role in the supply chain of several companies that are

involved with the transportation of goods or people. This problem is regularly faced by

the distribution systems of these corporations and its solution quality may have direct
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implications on the logistic performance. In addition, the VRP can arise in different

contexts within the same company, whether by transporting raw-materials and/or finished

goods between the production unit and its subsidiaries, delivering (collecting) products to

(from) the customers, or even transporting employees from their homes to the company

and vice-versa.

Motivated by real-life situations, many VRP variants were proposed throughout the

years. They may include additional constraints to satisfy customers’ needs such as time

windows and pickup and delivery services, or additional features such as route duration,

multiple depots, mixed vehicle fleet, etc. In the end, regardless of the variant, the main

goal is to optimize the use of the transportation resources and also to satisfy customers’

demands.

The computing revolution as well as the industrial boom had impulsed the application

of OR methods in real-life CO problems such as the VRP in the last 50 years. Golden

et al. [77] described a number of case studies in which the application of computerized

vehicle routing systems in the solid waste, beverage, food, dairy and newspaper industries

led to substantial cost reductions. Toth and Vigo [175] state that the use of computerized

procedures in distribution planning results in 5% to 10% savings in transportation costs.

However, solving the VRP is far from a simple task since the problem isNP-hard [102].

Yet, there has been lot of advances in the development of exact algorithms for dealing

with the VRP, particularly those based on mathematical programming techniques. Up

to date, there is no exact algorithm that consistently solves VRP instances with more

than 150 customers. Nonetheless, in those cases where the optimal solution could not be

determined, one can still make use of the the value of the dual bounds for evaluating the

solution quality obtained by heuristic algorithms.

Due to their ability of obtaining good solutions in an acceptable time, heuristic proce-

dures are the most common method employed to solve CO problems. A special attention

must be given to metaheuristics, which can be defined as general master processes that

guide a subordinate heuristic in order to efficiently find high quality solutions. Meta-

heuristics are the core of a huge number of successful heuristic algorithms for CO prob-

lems, including the VRP. Such popularity arises from the fact that metaheuristics are

more flexible, easier to understand and, in general, require less implementation efforts

than the exact approaches.

Combining (meta)heuristic and exact methods appears to be a very promising al-

ternative in solving CO problems. The interest in hybrid approaches is rapidly growing

especially due to several encouraging results obtained by the fusion of these two methods

(see Maniezzo et al. [116]). The interaction between mathematical programming tech-

niques and metaheuristics led to a new class of optimization algorithms called matheuris-

tics. Nevertheless, the application of these kind of approaches have not received much
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attention yet from the VRP literature. Some examples can be found in the works of De

Franceschi et al. [43], Toth and Tramontani [173] and Alvarenga et al. [2].

Most VRP heuristics usually focus on a particular type of problem. A relatively small

number of works have suggested unified heuristic procedures for dealing with several

variants (see, for example, Røpke and Pisinger ([136], [148]), Cordeau et al. [38]). Seen

from a practical point of view, these non-specific approaches are highly relevant. For

instance, VRP commercial packages must be prepared to face real-life problems of different

classes. Therefore, the development of efficient general algorithms are crucial for achieving

a satisfactory performance. When talking about attributes for good heuristics, one should

take into account not only the solution quality (accuracy) and computational time (speed),

but also the simplicity and flexibility factors [36]. Hence, a general VRP heuristic that

contains these four attributes, is more likely to be successfully employed in practice.

Given the above, one of the interests of this work is to propose general heuristic and

hybrid algorithms for solving different VRPs. However, because of the huge number of

existing variations it becomes virtually impossible to tackle all of them here. Therefore, it

was thought advisable to turn attention only to a subset of variants, namely the following

ones:

(i) Capacitated VRP.

(ii) Asymmetric CVRP.

(iii) Open VRP.

(iv) VRP with Simultaneous Pickup and Delivery.

(v) VRP with Mixed Pickup and Delivery.

(vi) Traveling Salesman Problem with Mixed Pickup and Delivery.

(vii) Multi-depot VRP.

(viii) Multi-depot VRP with Mixed Pickup and Delivery.

(ix) Heterogeneous Fleet VRP.

Some versions of the problems listed above may also include route duration constraints.

These cases were also treated in this work.

Although other variants were not explicitly considered, the heuristic and hybrid ap-

proaches suggested here can easily be adapted to solve other cases such as VRP with

Time Windows, Site-dependent VRP, VRP with Backhauls, etc.

The proposed heuristic improves/extends the one suggested by Subramanian et al.

[157] for the VRP with Simultaneous Pickup and Delivery. The algorithm consists of a
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combination between the Iterated Local Search (ILS) [112] metaheuristic and the Variable

Neighborhood Descent (VND) [120] procedure. The first is a stochastic local search

procedure that focuses the search on a given subset of the solution space which is defined

by local optimal solutions. The latter is characterized for systematically modifying the

neighborhood operators during the local search.

According to Lourenço et al. [112], ILS contains several of the desirable features of a

metaheuristic such as simplicity, robustness, effectiveness and the ease of implementing.

These ingredients are highly important with regard to the development of general heuris-

tics. The authors [112] also described a number of well-succeeded ILS implementations

for different CO problems such as the Traveling Salesman Problem (TSP), Job Shop,

Flow Shop, MAX-SAT, etc. Surprisingly, to date there are relatively few applications of

this metaheuristic to VRPs (see, for example, [16], [28], [89], [140] and [157]). Yet, the

computational results found by these researchers who have made use of an ILS approach

to solve some VRP variant are quite encouraging.

One essential component of a good ILS algorithm is an efficient local search procedure.

The VND is a simple and flexible strategy that can be embedded into any other neighbor-

hood based heuristic. Hansen et al. [83] present various applications of the VND to many

classes of CO problems, including VRPs. Differently from the usual VND approaches that

employ a deterministic neighborhood ordering, the proposed heuristic adopted a random

neighborhood ordering scheme (RVND). This not only avoids parameter tuning, but may

also prevent premature convergence to poor local optimal solutions. In addition, the best

order may be highly dependent on the instance.

The developed hybrid algorithm incorporates an exact procedure based on the Set

Partitioning (SP) formulation into the ILS heuristic. This strategy is quite similar to the

classical two-phase petal algorithm (see Laporte and Semet [100]). The idea is to store

a pool of routes generated during the heuristic execution and then solve a SP problem

in order to extract the best combination of routes. However, unlike traditional petal

algorithms and other SP based approaches to VRPs [2, 91, 147], the proposed hybrid

algorithm includes some enhanced features such as the cooperation between a Mixed

Integer Programming (MIP) solver and the ILS heuristic (while solving the SP problem)

and a reactive mechanism that dynamically controls the dimension of the SP models when

dealing with large size instances.

Exact algorithms capable of solving instances with more than 50 customers can be

found in the literature for problems (i)-(iii), (vi), (viii) and (ix). It was thus decided to

develop exact approaches for problems (iv), (v) and (vi) in order to obtain new lower

bounds and some optimal solutions that can be used as a reference for measuring the

performance of the proposed heuristic and hybrid algorithms. In view of this, three math-

ematical formulations were implemented within a Branch-and-cut scheme for problems
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(iv) and (v). These formulations are also theoretically compared. Furthermore, another

Branch-and-cut algorithm, which is based on a mathematical formulation composed only

by edge variables, was developed for problems (iv), (v) and (vii). Finally, a Branch-cut-

and-price approach was put forward for problems (iv) and (v). Although there are more

sophisticated exact algorithms for solving problems (i)-(iii) and (vi), the proposed exact

strategies can still be used to solve these problems.

1.3 Objectives

The objectives of this work are as follows.

• Review the VRPs (i)-(ix), describing some practical applications and solution meth-

ods proposed in the literature.

• Develop exact approaches for problems (iv), (v) and (vii).

• Develop a general heuristic framework capable of solving a large class of VRPs with

emphasis on problems (i)-(ix).

• Develop a general hybrid algorithm capable of solving a large class of VRPs with

emphasis on problems (i)-(v) and (vii)-(ix).

1.4 Thesis outline

The remainder of this work is organized as follows.

• Chapter 2 describes the VRPs treated in this work, as well as their respective liter-

ature reviews.

• Chapter 3 presents a theoretical comparison between different commodity flow for-

mulations and a Branch-and-cut approach for the VRP with Simultaneous/Mixed

Pickup and Delivery.

• Chapter 4 presents a Branch-and-cut algorithm with a lazy separation scheme over

a mathematical formulation composed only by the edge variables for the Single and

Multi-depot VRP with Simultaneous/Mixed Pickup and delivery.

• Chapter 5 presents a Branch-cut-and-price algorithm for the VRP with Simultane-

ous/Mixed Pickup and Delivery.

• Chapter 6 presents the heuristic algorithm for general VRPs, describing the con-

structive procedures, neighborhood operators and perturbation mechanisms.
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• Chapter 7 presents the hybrid algorithm for general VRPs, describing how an exact

procedure is integrated into the heuristic algorithm.

• Chapter 8 contains the concluding remarks of this work.



Chapter 2

A Review of the Vehicle Routing Prob-
lems Considered in the Present Work

A huge number of works dealing with VRPs had been published since the seminal work of

Dantzig and Ramser [42] entitled The Truck Dispatching Problem that was published in

1959. Different variants may include some specific characteristics such as time windows,

pickup and delivery services, mixed fleet, stochastic components and so on. This chapter

describes and reviews the VRP variants treated in this work, particularly the: (i) Capac-

itated VRP (CVRP); (ii) Open VRP (OVRP); (iii) Asymmetric CVRP (ACVRP); (iv)

VRP with Simultaneous Pickup and Delivery (VRPSPD); (v) VRP with Mixed Pickup

and Delivery (VRPMPD); (vii) TSP with Mixed Pickup and Delivery (TSPMPD); (vii)

Multi-Depot VRP (MDVRP); (viii) Multi-Depot Vehicle Routing Problem with Mixed

Pickup and Delivery (MDVRPMPD); and (ix) Heterogeneous Fleet VRP (HFVRP). A

detailed and comprehensive survey of VRPs can be found in [39], [74], [75] and [175].

2.1 Capacitated Vehicle Routing Problem (CVRP)

The CVRP is considered to be the classical version of the VRP. A formal definition of

the problem is as follows. Let G = (V,E) be a complete graph with a set of vertices V =

{0, ..., n}, where the vertex 0 represents the depot and the remaining ones the customers.

Each edge {i, j} ∈ E has a non-negative cost cij and each customer i ∈ V ′ = V \{0} has a
demand di. Let C = {1, ...,m} be the set of homogeneous vehicles with capacity Q. The

CVRP consists in constructing a set up to m routes in such a way that: (i) every route

starts and ends at the depot; (ii) all the demands are accomplished; (iii) the vehicle’s

capacity is not exceeded; (iv) a customer is visited by only a single vehicle; (v) the sum

of costs is minimized.

Many exact algorithms had been proposed to solve the CVRP and the goal is not to

review all of them here. There are some specific surveys in the literature that cover most of

these approaches. A detailed review of algorithms based on Branch-and-bound, Branch-
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and-cut and set-covering were respectively performed by Toth and Vigo [176], Naddef and

Rinaldi [124] and Bramel and Simchi-Levi [19]. These three works, along with those of

Laporte and Nobert [97] and Cordeau et al. [39], together survey the main CVRP exact

algorithms developed in the past century and early 2000’s. A review of the most latest

advances regarding the exact approaches for solving the CVRP was performed by Baldacci

et al. ([11], [12]). According to these authors, the best exact algorithms designed for the

CVRP up to now are the BC of Lysgaard et al. [115], the robust Branch-cut-and-price

(BCP) of Fukasawa et al. [63] and the Set Partitioning (SP) with additional cuts based

algorithm of Baldacci et al. [7].

Recently, a robust BCP algorithm based on an extended formulation that makes use of

capacity-indexed variables was proposed by Pessoa et al. [134]. In addition, new families

of cuts over this formulation were also presented. Besides the CVRP, the authors applied

their BCP for solving other VRP variants, namely: OVRP, ACVRP and Fleet Size and

Mix VRP. The results obtained in all variants were highly competitive when compared

to those found in the literature. Finally, they believe that the development of new cuts

over the extended formulation appears to be promising and it can lead to novel research

directions.

Even though there has been a lot of progress in the development of exact algorithms,

the heuristic methods are still the most suitable approach, in terms of solution quality

vs. computational time, when dealing with the CVRP. Some authors ([39], [95], [100]),

divide them into two distinct classes: (i) classical heuristics, which consist on construc-

tive, two-phase and improvement heuristics; and (ii) metaheuristics, which employ more

sophisticated mechanisms such as memory structure, perturbation moves, route combina-

tion and so forth. A complete description of the classical heuristics can be found in [100],

while a review of the application of metaheuristics to the CVRP is available in [34], [67]

and [69]. In general, all of these solution methods can be extended to most VRP variants.

Due to the large number of (meta)heuristic based algorithms proposed for the CVRP,

one will concentrate only on those that produced the best results for two of the most used

sets of benchmark instances, specifically the one of Christofides et al. [31] and the one of

Golden et al. [80].

There were several applications of the Tabu Search (TS) metaheuristic [72] to the

CVRP during the 1990’s and early 2000’s (see [37]). Taillard’s algorithm [162] was one

of the first well succeeded implementations and it still remains as one of the best. In his

algorithm, two decomposition methods are employed in which customers are randomly

partitioned into subregions where each of these is treated as a subproblem that is solved

separately using a TS strategy. A feasible solution is then generated by merging the routes

produced by each subproblem. Rochat and Taillard [147] proposed a more sophisticated

version of Taillard’s algorithm by combining TS with an Adaptive Memory Procedure
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(AMP). During the TS execution, the AMP stores a pool of promising routes which are

periodically recombined/updated, with a view to obtain an improved incumbent solution.

A post-optimization phase was also incorporated in which a SP formulation was applied

over the pool of routes in order to build an improved solution. A similar AMP approach,

called Solutions’ Elite PArts Search (SEPAS), was suggested by Tarantilis [167]. Another

version of the TS, known as Attribute Based Hill Climber (ABHC) [45], was implemented

by Derigs and Kaiser [46]. This method extends the aspiration criterion concept by

defining a set of attributes (e.g, in a boolean fashion) over a feasible solution.

Some CVRP algorithms based on other local search metaheuristics such as Large

Neighorhood Search (LNS) [152], Variable Neighborhood Search (VNS) [120] and Guided

Local Search (GLS) [179] started to appear in the mid 2000’s. The Adaptive LNS (ALNS)

of Pisinger and Røpke [136] seems to be one of the most robust in terms of flexibility. Their

method consists of a set of removal (destroy) and insertion (repair) heuristics which are

chosen, at each iteration, using roulette wheel selection based on the past performance

of these heuristics. The authors also have applied their algorithm in the following VRP

variants: VRP with Time Windows (VRPTW), Site-dependent VRP, OVRP and MD-

VRP. Kytöjoki et al. [93] proposed an algorithm that uses VNS to guide an improvement

heuristic and the GLS to help escaping from local optimal solutions. This heuristic was

specially designed for very large scale VRPs. Zachariadis and Kiranoudis [187] developed

a procedure based on TS, GLS and VNS which contains local search enhancements in

terms of computational complexity. Chen et al. [28] developed a heuristic that integrates

the Variable Neighborhood Descent (VND) procedure in an ILS scheme which in turn

employs a Simulated Annealing (SA) approach for the acceptance criterion. Their scheme

is quite similar to the one presented in this work (see Chapter 6).

In recent years, there emerged many successful CVRP heuristics inspired in Evolution-

ary Strategies (ES). Reimann et al. [143] proposed an Ant Colony (AC) [51] based heuris-

tic using a divide and conquer decomposition. Both the complete and partial problems

are solved as follows: (i) a solution is generated employing a nearest neighbor heuristic;

(ii) local search is applied to the initial solution; (iii) the pheromones are updated; and

(iv) information regarding the level of attractiveness between each pair of customers is

augmented. Mester and Bräysy [118] proposed a two phase heuristic by combining GLS,

LNS and ES. In the first phase, an initial solution is generated using a hybrid version of

the cheapest insertion heuristic while the second one is divided into two stages: (i) a local

search is applied using the GLS; and (ii) LNS is performed through removal and inser-

tion heuristics in an evolutionary (genetic) fashion. Prins [139] put forward a Memetic

Algorithm (MA) whose main characteristics are: (i) TSP representation of chromosomes

(giant tour), without tour delimiters, which can be directly converted to a VRP solution

using a splitting procedure; and (ii) first improvement local search as mutation operator.
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The same metaheuristic was implemented by Nagata [125] and Nagata and Bräysy [127].

In both these works, the MA proposed combines the edge assembly crossover (EAX),

that allows infeasible solutions, with an repairing/improvement (local search) procedure.

An enhanced version of Nagata’s MA was implemented by Nagata and Bräysy [126], in

which efficient limitation strategies were incorporated into the local search neighborhoods.

Prins [140] proposed some heuristics based on ILS, ES and Greedy Randomized Adaptive

Search Procedure (GRASP) that use some of the features previously adopted in [139].

More recently, Vidal et al. [177] put forward a hybrid GA originally designed to solve

the MDVRP, Period VRP and the Multi-depot Period VRP, which also turned out to be

highly efficient for the CVRP.

Unlike pure exact and heuristic methods, hybrid versions combining these two ap-

proaches have not been much explored in the CVRP literature. De Franceschi et al. [43]

proposed an LNS-like improvement heuristic based on Integer Linear Programming (ILP)

that works as follows: (i) a set of nodes is removed, according to a predefined criterion,

from a given solution which in turn is partially reconstructed by short-cutting all the

deleted nodes; and (ii) a complete solution is generated by solving an ILP associated to

a Reallocation Model which consists of re-inserting the extracted nodes into the partial

solution. This solution method was also applied to the ACVRP. Toth and Tramontani

[173] later extended this approach by generalizing the neighborhood structure which is

evaluated by a two-phase method that: (i) applies a neighborhood reduction strategy;

and (ii) explores this reduced neighborhood by solving the Column Generation problem

associated with the linear programming relaxation of the ILP of the so-called Reduced

Reallocation Model.

Table 2.1 presents a list of surveys regarding the CVRP, while Table 2.2 enumerates

the most effective heuristics developed for the CVRP.

2.2 Asymmetric Capacitated Vehicle Routing Problem

(ACVRP)

The ACVRP is a generalization of the CVRP where the cost between a pair of vertices is

not necessarily symmetric, i.e., cij need not be equal to cji, ∀i, j ∈ V .

Examples of ACVRP applications appear in some cases where the travel costs between

two destinations may differ due to certain road restrictions such as one-way directions or

the existence of tolls.

There are very few works specially devoted to the ACVRP in the literature. In mid

1980’s, Laporte et al. [96] suggested an exact Branch-and-bound algorithm in which

the subproblems are formulated as modified assignment problems. Almost a decade later,

Fischetti et al. [57] proposed a Branch-and-bound approach whose lower bounds are based
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on: (i) assignment problems; (ii) disjunction on infeasible arcs subset; and (iii) min-cost

flow relaxation.

Table 2.1: CVRP surveys
Work Year Topic of the survey

Laporte and Nobert [97] 1987 Exact algorithms

Toth and Vigo [176] 2002 Branch-and-bound algorithms

Naddef and Rinaldi [124] 2002 Branch-and-cut algorithms

Bramel and Simchi-Levi [19] 2002 Set-covering based algorithms

Laporte and Semet [100] 2002 Classical heuristics

Gendreau et al. [100] 2002 Metaheuristics

Cordeau et al. [37] 2004 TS heuristics

Cordeau et al. [34] 2005 Metaheuristics

Cordeau et al. [39] 2007 Exact and heuristic algorithms

Laporte [94] 2007 Exact and heuristic algorithms

Baldacci et al. [11] 2007 Latest exact approaches

Gendreau et al. [69] 2008 Annotated bibliography on metaheuristics

Laporte [95] 2009 Exact and heurisitc algorithms

Baldacci et al. [12] 2010 Latest exact approaches (update of [11])

Table 2.2: CVRP effective heuristics
Work Year Approach

Taillard [162] 1993 TS

Rochat and Taillard [147] 1995 TS + AMP

Reinmann et al. [143] 2004 AC

Prins [139] 2004 MA

Tarantilis [167] 2005 TS + AMP

De Franceschi et al. [43] 2006 ILP Local Search

Pisinger and Røpke [136] 2007 ALNS

Kytöjoki [93] 2007 VNS + GLS

Mester and Bräysy [118] 2007 LNS + GLS + ES

Nagata [125] 2007 MA

Derigs and Kaiser [46] 2007 ABHC

Nagata and Bräysy [126] 2008 MA

Toth and Tramontani [173] 2008 ILP Local Search

Prins [140] 2009 GRASP + ILS + ES

Nagata and Bräysy [127] 2009 MA

Zacharidis and Kiranoudis [187] 2010 Enhanced Local Search algorithm

Chen et al. [28] 2010 ILS + VND

Vidal et al. [177] 2011 Hybrid GA

Vigo [178] extended the classical CVRP heuristics of Clarke and Wright [33] and

Fisher and Jaikumar [59] to the ACVRP and also proposed a refinement heuristic that

repairs/improves an initial infeasible solution generated by the procedure developed by

Fischetti et al. [57].
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Table 2.3 present the works that dealt with the ACVRP including the ones of De

Franceschi et al. [43] and Pessoa et al. [134] described in the previous section.

Table 2.3: ACVRP related works
Work Year Approach

Laporte et al. [96] 1986 Branch-and-bound Algorithm

Fischetti et al. [57] 1994 Branch-and-bound Algorithm

Vigo [178] 1996 Improvement/repairing heuristic

De Franceschi et al. [43] 2006 ILP Local Search

Pessoa et al. [134] 2008 Robust Branch-and-cut-and-price

2.3 Open Vehicle Routing Problem (OVRP)

The OVRP is a special case of the ACVRP where the vehicles need not to return to

the depot after visiting the last customer of a given route. Any OVRP instance can be

converted to an ACVRP instance by simply setting ci0 = 0,∀i ∈ V . Most authors also

state that the number of vehicles must be minimized.

Applications of the OVRP may arise when a company chooses to hire a vehicle fleet

to be in charge of the delivery services and, due to logistic reasons, these vehicles are not

forced to return to the company’s depot. In this case, the distribution costs are generally

proportional to the lenght of the routes and/or to the number of vehicles used by the

outsourced company.

Schrage [151] was the first to address the problem, in early 1980’s, by describing certain

characteristics of some real-life VRPs. One example mentioned by the author is the air

express courier, in which aircrafts depart from a depot city, deliver their cargo to a set of

customers geographically spread and then collect the cargo from the same set of customers

by retracing their routes back to the depot. Bodin et al. [18] have presented a case study

of this type of application at the FedEx Express company. Besides capacity constraints,

other restrictions such as time windows and routes duration were also considered. The

problem was solved by a procudure based on the Clarke and Wright savings heuristic [33].

The OVRP literature remained practically unchanged for nearly two decades until

it was revisited by Sariklis and Powell [150] in 2000. The authors proposed a cluster-

first, route second approach [17] where the first phase consists in grouping the customers

according to the capacity constraints, while the second phase consists of a Minimum

Spanning Tree (MST) heuristic that incoporates a penalty procedure.

Letchford et al. [103] presented an ILP formulation, a set of valid inequalities, as well

as a BC algorithm that is mainly based on the one described in [115]. Their procedure

is capable of solving to optimality several small and medium-sized instances. This work,

along with the one of Pessoa et al. [134], are to date the only exact approaches that dealt
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with the OVRP.

A considerable number of OVRP heuristic algorithms have been published since 2004.

Some of these are based on the TS metaheuristic. Brandão [21] proposed a TS heuristic

that makes use of a nearest neighborhood heuristic and a K-tree based procedure for

generating initial solutions, whereas the local search is performed by shift and swap moves.

Tarantilis et al. [23] suggested a heuristic that interactively combines the TS and AMP

methods. Fu et al. ([61], [62]) developed a TS algorithm that employs a farthest-first

heuristic for constructing an initial solution while shift, swap and 2-opt moves are used

in the local search phase. Derigs and Reuter [47] proposed a ABHC procedure which is

similar to the one presented in [46] for the CVRP.

OVRP algorithms based on other local search metaheuristics were also proposed.

Tarantilis et al. [165] presented a threshold accepting approach [54] that consists of an

adaptation of the SA procedure in which a worse solution is only accepted if it is within a

given threshold. The same authors [166] also proposed another threshold accepting pro-

cedure that is integrated in a single-parameter metaheuristic. Li et al. [105] put forward

a record-to-record [53] travel algorithm that, also as the threshold method, consists of

a deterministic variant of the SA. Fleszar et al. [60] presented a VNS heuristic whose

neighborhood operators are composed by exchanging segments between two routes and

reversing segments of a single route. Zachariadis et al. [186] developed a local search

metaheuristic that explores wide neighborhoods by only evaluating parts of a current

solution that have been modified by a previous move.

Differently from pure local search approches, there are few works containing applica-

tions of ES to the OVRP. Li and Tian [108] presented an AC algorithm combined with

local search followed by a post-optimization procedure applied to the best solution ob-

tained. A similar approach was later developed by Li et al. [109] where a TS procedure

is incorporated into the AC framework. Repoussis et al. [146] suggested a heuristic based

on ES in which offspring individuals (solutions) are generated through mutation operators

and these intermediate solutions are improved by a procedure based on GLS and TS.

Table 2.4 summarizes the OVRP related works.

2.4 Vehicle Routing Problem with Simultaneous Pickup

and Delivery (VRPSPD)

The VRPSPD is a generalization of the CVRP in which a customer i ∈ V ′ have both

a delivery demand di and also a pickup demand pi. This problem can be considered as

a Pickup and Delivery Problem (PDP). Berbeglia et al. [14] proposed a general scheme

for classifying PDPs based on the characteristic of each problem. According to their

framework, the VRPSPD was categorized as the multi-vehicle one-to-many-to-one PDP
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with combined demands.

Table 2.4: OVRP related works
Work Year Approach

Bodin et al. [18] 1983 Clarke and Wright based heuristic

Sariklis and Powell [150] 2000 Cluster-first, route-second heuristic

Brandão [21] 2004 TS

Tarantilis et al. [23] 2004 TS + AMP

Tarantilis et al. [165] 2004 Threshold accepting approach

Tarantilis et al. [166] 2005 Single-parameter metaheuristic

Fu et al. ([61], [62]) 2005 TS

Li and Tian [108] 2006 AC

Letchford et al. [103] 2007 Branch-and-cut algorithm

Pisinger and Røpke [136] 2007 ALNS

Li et al. ([105] 2007 Record-to-record travel algorithm

Pessoa et al. [134] 2008 Robust Branch-and-cut-and-price

Derigs and Reuter [47] 2009 ABHC

Fleszar et al. [60] 2009 VNS

Li et al. [109] 2009 AC + TS

Repoussis et al. [146] 2010 ES + GLS + TS

Zachariadis and Kiranoudis [186] 2010 Wide neighborhoods based metaheuristic

A number of applications of the VRPSPD can be found in the beverage industry,

where filled bottles are delivered while the empty ones are collected; in grocery stores,

where pallets or containers are collected for re-use in merchandise transportation, etc.

On the other hand, some customers can demand that the delivery and pickup services

should performed at the same time, since, if it is carried out separately, it may imply in

additional costs and operational efforts for these customers.

The VRPSPD was first proposed by Min [119] in the late 1980’s. The author presented

a heuristic to solve a real-life problem concerning the distribution and collection of books

of a public library.

Very few exact approaches were proposed in the VRPSPD literature. A Branch-and-

price algorithm was developed by Dell’Amico et al. [44], in which two different strategies

were used to solve the subpricing problem: (i) exact dynamic programming; and (ii)

state space relaxation. The authors managed to find optimal solutions for instances

with up to 40 customers. Angelelli and Manisini [3] also developed a Branch-and-price

approach based on the set covering formulation, but for the VRPSPD with time-windows

constraints. The subproblem was formulated as a shortest-path with resource constraints

but without the elementary condition and it was solved by applying a permanent labeling

algorithm. The authors were able to find optimal solutions for instances with up to 20

customers. Three-index formulations for the VRPSPD were proposed by Dethloff [48] and

Montané and Galvão [121], however only the last authors had tested it in practice. They
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ran their formulation in CPLEX 9.0 within a time limit of 2 hours and had reported the

lower bounds produced for benchmark instances with 50-400 customers. Subramanian

[154] presented a two-commodity flow formulation for the VRPSPD but no practical

experiments were performed.

As a matter of fact, heuristic methods have been by far the most usual approach

applied for solving the VRPSPD. However, only two works were published during the

1990’s. Halse [82] proposed a two-phase heuristic based on the cluster-first, route-second

concept for some VRPs including the VRPSPD and the VRPMPD, while some insertion

heuristics also cabaple of solving the VRPMPD and the MDVRPMPD, were implemented

by Salhi and Nagy [149].

A considerable number of VRPSPD works started to appear at the beginning of this

century. Dethloff [48] proposed an insertion heuristic based on the cheapest feasible cri-

terion, radial surcharge and residual capacity. The author also investigates the relation

between the VRPSPD and other VRP variants. Røpke and Pisinger [148] developed

a LNS heuristic associated with a procedure similar to the VNS metaheuristic to solve

several variants of the VRP with Backhauls including the VRPSPD, VRPMPD and MD-

VRPMPD. Nagy and Salhi [128] developed a heuristic algorithm that considers different

levels of feasibility. The authors also dealt with the VRPMPD and MDVRPMPD.

Most of the heuristics developed for the VRPSPD are based on the TS metaheuristic.

Crispim and Brandão [40] presented a procedure where TS and the VND approach are

combined. Montané and Galvão [121] proposed a TS algorithm involving traditional

VRP neighborhood structures. Chen and Wu [27] proposed a local search procedure

based on the record-to-record travel approximation and tabu lists. Chen [26] presented a

heuristic based on SA and TS. Bianchessi and Righini [15] suggested some constructive

and local search heuristics as well as a TS procedure that uses a variable neighborhood

structure, in which the node-exchange-based and arc-exchange-based movements were

combined. Wassan et al. [183] presented a reactive TS with the following neighborhood

structures: rellocation of a ADS, exchanging two customers between two different routes

and reversing the route direction (reverse). Zachariadis et al. [189] developed an algorithm

which combines the principles of the TS and GLS metaheuristics. The same authors [190]

later suggested an AMP associated with a granular TS heuristic.

Some ES were also developed for the VRPSPD. Vural [180] proposed two Genetic

Algorithms, where the first one is inspired on the random key representation [13] while the

second one consists in an improvement heuristic that applies Or-opt movements. Gajpal

and Abad [64] also developed an AC heuristic which has two main steps: (i) the trail

intensities and parameters are initialized using an initial solution obtained by means of a

nearest neighborhood constructive heuristic; and (ii) an ant-solution is generated for each

ant using the trail intensities, followed by a local search in every ant-solution and updating
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of the elitist ants and trail intensities. The authors also dealt with the VRPMPD. Ai and

Kachitvichyanukul [1] suggested a Particle Swarm Optimization (PSO) [92] algorithm

with multiple structures that employs a random key based representation.

Subramanian [154] and Subramanian et al. [156] put forward an ILS algorithm which

uses a VND approach, with deterministic neighborhood ordering, in the local search phase.

A parallel version of this algorithm, in which the VND procedure has a random neighbor-

hood ordering (RVND), was later developed by Subramanian et al. [157]. Subramanian

and Cabral [155] also applied the ILS-VND combination to solve the VRPSPD with route

duration constraints. The unified VRP framework developed in the present work is an

extension of these ILS approaches. Souza et al. [153] also implemented an ILS algorithm

but combined with a GENIUS [66] approach. Finally, a local search based metaheuristic

was recently proposed by Zachariadis and Kiranoudis [188].

Table 2.5 summarizes the VRPSPD related works mentioned in this section.

Table 2.5: VRPSPD related works
Work Year Approach

Min [119] 1989 Three-phase heuristic

Halse [82] 1992 Cluster-first, route-second strategy

Salhi and Nagy [149] 1999 Insertion based heuristics

Dethloff [48] 2001 Constructive heuristics

Angelelli and Mansini[3] 2001 Branch-and-price for the VRPSPD with TW

Vural [180] 2003 GA

Røpke and Pisinger [148] 2004 LNS

Nagy and Salhi [128] 2005 Constructive and Improvement/Feasibility Heuristics

Crispim and Brandão [40] 2005 TS + VND

Dell’amico et al. [44] 2006 Branch-and-price

Chen and Wu [27] 2006 Record-to-record travel + Tabu Lists

Chen [26] 2006 TS + SA

Montané and Galvão [121] 2006 TS Algorithm

Bianchessi and Righini [15] 2007 Constructive, Local Search and TS + VNS Heuristics

Wassan et al. [183] 2008 Reactive TS

Subramanian and Cabral [155] 2008 ILS + VND for the VRPSPD with route durations

Subramanian [154] 2008 ILS + VND

Subramanian et al. [156] 2008 ILS + VND

Zachariadis et al. [189] 2009 TS + GLS

Gajpal and Abad [64] 2009 AC

Zachariadis et al. [190] 2010 TS + AMP

Subramanian et al. [157] 2010 Parallel ILS + RVND

Souza et al. [157] 2011 ILS + GENIUS

Zachariadis and Kiranoudis [188] 2011 Local search metaheuristic
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2.5 Vehicle Routing Problem with Mixed Pickup and

Delivery (VRPMPD)

The VRPMPD, also known as the VRP with Mixed Backhauls, is a particular case of the

VRPSPD, in which customers either have a pickup or a delivery demand. More precisely,

if di > 0, then pi = 0 and vice-versa. In principle, any VRPSPD solution method

can be directly applied to solve the VRPMPD. According to the classification scheme

of Berbeglia et al. [14], this problem is referred as the multi-vehicle one-to-many-to-one

PDP with single demands and mixed solutions.

The first VRPMPD works appeared in the 1980’s. Golden et al. [78] suggested a so-

called stop-based backhaul insertion procedure, where routes are first generated in terms of

the delivery customers, and then the pickup customers are evaluated for insertion in these

routes. Casco et al. [24] proposed a so-called load-based backhaul insertion procedure, in

which a penalty term, associated to the delivery load after pickup, is incorporated to the

insertion cost.

A decade later, Mosheiov [123] developed two tour partitioning heuristics that consist

of breaking a tour into disjoint segments which are assigned to different vehicles. Dethloff

[49] applied the VRPSPD insertion approach developed in [48] to the VRPMPD.Wade and

Salhi [181] proposed an AC heuristic that include some features such as the incorporation

of a look ahead approach into the visibility function and enhanced trail updating rules.

Recently, Wassan et al. [182] investigated the relationship between the VRPSPD and the

VPMPD, besides presenting a Reactive TS heuristic based on the one developed for the

VRPSPD [183].

Table 2.6 presents the works that dealt with the VRPMPD, including those of Salhi

and Nagy [149], Røpke and Pisinger [148], Crispim and Brandão [40] and Gajpal and

Abad [64], that were cited in the previous subsection.

Table 2.6: VRPMPD related works
Work Year Approach

Golden et al. [78] 1985 Stop-based backhaul insertion procedure

Casco et al. [24] 1988 Load-based backhaul insertion procedure

Mosheiov [123] 1998 Tour partitioning based heuristics

Salhi and Nagy [149] 1999 Insertion based heuristics

Dethloff [49] 2002 Insertion based heuristics

Wade and Salhi [181] 2003 AC

Røpke and Pisinger [148] 2004 LNS

Nagy and Salhi [128] 2005 Constructive and Improvement/Feasibility Heuristics

Crispim and Brandao [40] 2005 TS + VND

Wassan et al. [182] 2008 Reactive TS

Gajpal and Abad [64] 2009 AC
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2.6 Traveling Salesmen Problem with Mixed Pickup

and Delivery (TSPMPD)

The TSPMPD, sometimes referred as TSP with Pickup and Delivery or TSP with Delivery

and Backhauls, is a special case of the VRPMPD in which only one vehicle is considered,

i.e, m = 1. Berbeglia et al. [14] classified this problem as the single-vehicle one-to-many-

to-one PDP with single demands and mixed solutions.

Mosheiov [122] was one of the first to deal with the TSPMPD, in mid 1990’s, when he

described a real-life application concerning a welfare non-profit organization that arranges

summer vacations for underprivileged children in out of town locations. The institution

was faced with the problem of transporting the children between a central station and

the vacation locations. The author also proposed a mathematical formulation as well as

two heuristic procedures. The first one obtains a feasible solution for the TSPMPD by

adapting an (sub-)optimal TSP solution, while the second one is based on the cheapest

insertion criterion.

Some TSPMPD exact approaches have been proposed during the past decade. Bal-

dacci et al. [8] developed a BC algorithm based on a two-commodity flow formulation that

is capable of solving instances with up to 200 customers. Hernández-Pérez and Salazar-

González [84] analyzed the relationship between the TSPMPD and a similar problem

called One-Commodity Pickup and Delivery TSP (1-PDTSP) and they also proposed a

BC algorithm that solves both problems. The same authors [86] later described a new set

of valid inequalities and an improved BC algorithm that is capable of solving TSPMPD

instances with up to 260 customers.

The number of heuristic works devoted to the TSPMPD are more or less equivalent

to the exact ones. Anily and Mosheiov [4] suggested a two-phase MST heuristic where

the first step consists of solving a relaxation of the problem and the second one consists

of extending the relaxed solution into a feasible solution. Two heuristics were proposed

by Gendreau et al. [68] in which the first one was designed to solve a special case of the

TSPMPD that arises when the graph G is a cycle, whereas the second one consists of a

TS algorithm that solves the general TSPMPD. Zhao et al. [191] presented a GA that

makes use of a pheromone-based crossover operator as well as a local search procedure.

Hernández-Pérez and Salazar-González [85] presented a local search heuristic that

uses 2-opt and 3-opt moves. They also proposed a hybrid algorithm, implemented using

a Local Branching [56] scheme, that is based on their BC algorithm developed in [84].

This procedure also incorporates a primal heuristic that is periodically applied in order

to obtain feasible solutions.

Table 2.7 compiles the TSPMPD works mentioned above.
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Table 2.7: TSPMPD related works
Work Year Approach

Mosheiov [122] 1994 TSP based and Cheapest Insertion heuristics

Anily and Mosheiov [4] 1994 MST heuristics

Gendreau et al. [68] 1999 TS

Baldacci et al. [8] 2003 BC based on a two-commodity flow formulation

Hernández-Pérez and Salazar-González [84] 2004 BC algorithm

Hernández-Pérez and Salazar-González [85] 2004 Local Search and Hybrid algorithms

Hernández-Pérez and Salazar-González [86] 2007 Improved BC algorithm

Zhao et al. [191] 2009 GA

2.7 Multi-depot Vehicle Routing Problem (MDVRP)

Let G be the set of depots. The MDVRP is a generalization of the CVRP where more

the one depot may be considered, that is, |G| ≥ 1. Also, the vehicle must start and end

at the same depot. Typically, the number of vehicles per depot is given as an input data.

Applications of the MDVRP may arise when a company has multiple warehouses

and/or subsidiaries, each of these with their own vehicle fleet, that together are capable

of meeting customers’ demands.

Tillman [170] was the first to address the MDVRP in late 1960’s when he proposed

an algorithm based on Clarke and Wright savings heuristic.

Exact Branch-and-bound algorithms were proposed in the 1980’s by Laporte et al.

[98] and Laporte et al. [99], where the first was capable of solving instances with up to

50 customers and 8 depots, while the latter managed to solve problems with up to 80

customers and 8 depots. Baldacci and Mingozzi [10] put forward a SP based algorithm

that uses bounding procedures based on linear relaxation and lagrangean relaxation. Their

method was designed to deal with several VRPs, including the HFVRP, Site-dependent

VRP and the MDVRP. The authors found optimal solutions of MDVRP instances with

up to 200 customers and 4 depots.

Some MDVRP algorithms based on classical VRP heuristics were suggested between

early 1970’s and early 1980’s. Tillman and Hering [172] proposed an algorithm that

incorporates a look ahead approach into Tillman’s savings heuristic [170]. Tillman and

Cain [171] also extended Tillman’s algorithm [170] by including a partial enumerative

procedure to compute the savings of joining customers on routes. Wren and Holliday [184]

put forward an algorithm that employs a sweep procedure to generate routes which in turn

are further refined by a set of improvement heuristics. Gillet and Johnson [70] applied

the classical sweep algorithm of Gillet and Miller [71] to build an initial solution that is

later refined by an improvement procedure that reassigns customers to different depots.

Golden et al. [79] proposed two heuristic approaches where the first is a savings based

method, while the second is a cluster-first route-second procedure. Raft [142] suggested
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a modular algorithm that decomposes the problem into subproblems which are solved

separately and then merged by means of an iterative procedure.

Like some other VRP variants, MDVRP algorithms inspired in metaheuristics started

to appear in the 1990’s. Chao et al. [25] developed an algorithm that makes use of

a record-to-record procedure to improve an initial solution generated using the savings

heuristic of Golden et al. [79]. Renaud et al. [145] implemented a TS heuristic composed

of three phases: fast improvements, intensification and diversification. Cordeau et al. [35]

suggested a TS algorithm that is embedded with a GENI mechanism, which consists of a

general insertion procedure originally developed by Gendreau et al. [66] for the TSP.

Table 2.8 lists the works that dealt with the MDVRP, including those of Pisinger and

Røpke [136] and Vidal et al. [177] that were already described in Subsection 2.1.

Table 2.8: MDVRP related works
Work Year Approach

Tillman [170] 1969 Savings heuristic

Tillman and Hering [172] 1971 Savings heuristic + look ahead approach

Tillman and Cain [171] 1972 Savings heuristic + partial enumerative procedure

Gillet and Johnson [70] 1976 Sweep algorithm

Golden et al. [79] 1977 Savings and route-first cluster-second heuristics

Raft [142] 1982 Modular algorithm

Chao et al. [25] 1993 Record-to-record algorithm

Renaud et al. [145] 1996 TS

Cordeau et al. [35] 1997 TS + GENI

Pisinger and Røpke [136] 2007 ALNS

Baldacci and Mingozzi [10] 2009 SP based exact algorithm

Vidal et al. [177] 2011 Hybrid GA

2.8 Multi-depot Vehicle Routing Problem with Mixed

Pickup and Delivery (MDVRPMPD)

The MDVRPMPD generalizes the VRPMPD by allowing |G| ≥ 1 depot(s). As in the

MDVRP, the vehicle must start and end at the same depot.

Salhi and Nagy [149] introduced the MDVRPMPD in late 1990’s and their solution

method has been already described in Subsection 2.4.

To date, the problem has received very little attention in the literature. Only two

other works dealt with it, particularly those of Røpke and Pisinger [148] and Nagy and

Salhi [128]. Both were mentioned in Subsection 2.4.

Table 2.9 contains the MDVRPMPD works cited above.



2.9 Heterogeneous Fleet Vehicle Routing Problem (HFVRP) 21

Table 2.9: MDVRPMPD related works
Work Year Approach

Salhi and Nagy [149] 1999 Insertion based heuristics

Røpke and Pisinger [148] 2004 LNS

Nagy and Salhi [128] 2005 Constructive and Improvement/Feasibility Heuristics

2.9 Heterogeneous Fleet Vehicle Routing Problem (H-

FVRP)

The HFVRP is a generalization of the classical VRP because it allows vehicles with

different capacities, instead of a homogeneous fleet. The fleet is composed by m different

types of vehicles, with M = {1, . . . ,m}. For each u ∈M , there are mu available vehicles,

each with a capacity Qu. Every vehicle is associated with a fixed cost denoted by fu and

a dependent (variable) cost denoted by per distance unit.

This situation can be often found in practice and the HFVRP might be a suitable

model for dealing with this kind of applications. According to Hoff et al. [87], in industry,

a fleet of vehicles is rarely homogeneous. Generally, either an acquired fleet is already

heterogeneous or they become heterogeneous over the time when vehicles with different

features are incorporated into the original fleet. In addition, insurance, maintenance and

operating costs usually have distinct values according to the level of depreciation or usage

time of the fleet. Moreover, from both tactical and operational point of view, a mixed

vehicle fleet also increases the flexibility in terms of distribution planning.

There are several HFVRP variants often found in the literature. They are basically

related to the fleet limitation (limited or unlimited) and the costs considered (dependent

and/or fixed). The HFVRP with unlimited fleet, also known as the Fleet Size and Mix

(FSM), was proposed by Golden et al. [76] and it consists of determining the best fleet

composition and its optimal routing scheme. Another HFVRP version, called Heteroge-

neous VRP (HVRP), was proposed by Taillard [164] and it consists in optimizing the use

of the available fixed fleet.

The present work deals with the five following variants:

i. HVRPFD, limited fleet, with fixed and dependent costs;

ii. HVRPD, limited fleet, with dependent costs but without fixed costs, i.e., fu =

0,∀k ∈M ;

iii. FSMFD, unlimited fleet, i.e., mu = +∞,∀k ∈M , with fixed and dependent costs;

iv. FSMF, unlimited fleet, with fixed costs but without dependent costs;

v. FSMD, unlimited fleet, with dependent costs but without fixed costs.
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The first HFVRP variant studied in the literature was the FSM, initially proposed

by Golden et al. [76]. The authors developed two heuristics where the first one is based

on the savings algorithm of [33] while the second one makes use of a giant tour scheme.

They also proposed a mathematical formulation for the FSMF and presented some lower

bounds.

Some exact approaches were developed for the FSM. Yaman [185] suggested valid

inequalities and presented lower bounds for the FSMF. Baldacci et al. [6] proposed some

valid inequalities as well as a two-commodity Mixed Integer Programming (MIP) formula-

tion for the same variant. Choi and Tcha [29] obtained lower bounds for all FSM variants

by means of a Column Generation algorithm based on a set covering formulation. Pessoa

et al. [135] proposed a BCP algorithm also capable of solving all FSM variants. The

general exact approach of Baldacci and Mingozzi [10], mentioned in Subsection 2.7, was

also applied to the five HFVRP variants dealt in the present work.

Several TS heuristics were proposed to solve the FSMF and the FSMD. Gendreau et

al. [68] suggested a TS algorithm that incorporates a GENIUS approach and an AMP.

Lee et al. [101] developed an algorithm that combines TS with a SP approach. More

recently, Brandão [22] proposed a deterministic TS that makes use of different procedures

for generating initial solutions.

Some authors implemented heuristic procedures based on ES. Ochi et al. [129] devel-

oped a hybrid evolutionary heuristic that combines a Genetic Algorithm (GA) [88] with

Scatter Search (SS) [73] to solve the FSMF. A parallel version, based on the island model,

of the same algorithm was presented by Ochi et al. [130]. A hybrid GA that applies a

local search as a mutation method was proposed by Liu et al. [111] to solve the FSMF

and the FSMD. A MA was proposed by Lima et al. [110] for solving the FSMF. Two

heuristic procedures based on the same metaheuristic were developed by Prins [141] to

solve all FSM variants and the HVRPD.

Renaud and Boctor [144] proposed a sweep-based heuristic for the FSMF that in-

tegrates classical construction and improvement VRP approaches. Imran et al. [90]

developed a VNS algorithm that makes use of a procedure based on Dijkstra’s and sweep

algorithms for generating an initial solution and several neighborhood structures in the

local search phase. The authors considered all FSM variants.

The HVRP was proposed by Taillard [164]. The author developed an algorithm based

on AMP, TS and Column Generation which was also applied to solve the FSM.

Prins [138] dealt with the HVRP by implementing a heuristic that extends a series

of VRP classical heuristics followed by a local search procedure based on the Steepest

Descent Local Search and TS. Tarantilis et al. [168] solved the HVRPD by means of a

threshold accepting approach that consists of an adaptation of the SA procedure in which

a worse solution is only accepted if it is within a given threshold. The same authors [169]
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also proposed another threshold accepting procedure to solve the same variant. Li et al.

[106] put forward a record-to-record travel algorithm that, also as the threshold method,

consists of a deterministic variant of the SA. The authors considered both HVRPFD and

HVRPD. Li et al. [107] proposed a multi-start adaptive memory procedure combined with

Path Relinking and a modified TS to solve the HVRPFD. More recently, [20] proposed a

TS algorithm for the HVRP which includes additional features such as strategic oscilation,

shaking and frequency-based memory.

A HFVRP comprehensive survey containing all the five variants mentioned here can

be found in [5]. The HFVRP works are summarized in Table 2.10.

Table 2.10: HFVRP related works
Work Year Variant(s) Approach

Golden et al. [76] 1984 FSMF Heuristic algorithms

Ochi et al.[129] 1998 FSMF GA + SS

Ochi et al.[130] 1998 FSMF Parallel GA + SS

Taillard [164] 1999 HVRPD, FSMD TS + AMP + Column Generation

Gendreau et al. [68] 1999 FSMF, FSMD TS + GENIUS + AMP

Renaud and Boctor [144] 2002 FSMF Sweep algorithm

Prins [138] 2002 HVRPD Heuristic algorithms

Tarantilis et al. [168] 2003 HVRPD Threshold Accepting approach

Tarantilis et al. [169] 2004 HVRPD Threshold Accepting approach

Lima et al. [110] 2004 FSMF MA

Yaman [185] 2006 FSMF Valid inequalities

Choi and Tcha [29] 2007 FSMF, FSMD, FSMFD Column Generation Algorithm

Li et al. [106] 2007 HVRPFD, HVRPD Record-to-record

Lee et al. [101] 2008 FSMF, FSMD TS + SP

Baldacci et al. [5] 2008 All Survey

Liu et al. [111] 2009 FSMF, FSMD Hybrid GA

Pessoa et al. [135] 2009 FSMF, FSMD, FSMFD BCP algorithm

Imran et al. [90] 2009 FSMF, FSMD, FSMFD VNS

Brandão [22] 2009 FSMF, FSMD Deterministic TS

Prins [141] 2009 All, except HVRPFD Two MAs

Baldacci et al. [6] 2009 FSMF MIP formulation and valid inequalites

Baldacci and Mingozzi [10] 2009 All SP based exact algorithm

Li et al. [107] 2010 HVRPFD SP AMP + Path Relinking + TS

Brandão [20] 2011 HVRPD TS algorithm



Chapter 3

Branch-and-cut over Flow Formulations
for the Vehicle Routing Problem with Si-
multaneous/Mixed Pickup and Delivery

This chapter presents commodity flow formulations for the VRPSPD/VRPMPD. Two-

commodity flow formulations — an undirected, developed by Subramanian [154], and a

directed, proposed in this work — are theoretically compared with the one-commodity

flow formulation presented by Dell’Amico et al. [44]. In addition, these three formulations

were implemented within a BC algorithm, including cuts from the CVRPSEP library [114],

and they were tested in well-known VRPSPD and VRPMPD benchmark problems with

up to 200 customers. The contents of the present chapter were partially published in

[159].

3.1 One-commodity �ow formulation

Reasonably simple and effective formulations for the CVRP can be defined only over the

natural edge variables (arc variables in the asymmetric case), see [174]. Similar formula-

tions are not available for the VRPSPD. The difference between these two problems can

be explained as follows. In the CVRP, the feasibility of a route can be determined by only

checking whether the sum of its customer demands does not exceed the vehicle’s capacity.

In contrast, the feasibility of a VRPSPD route depends crucially on the sequence of visi-

tation of the clients. In the example shown in Fig. 3.1, the route 0→ 2→ 3→ 1→ 0 is

feasible, but the shorter routes 0→ 1→ 2→ 3→ 0 or 0→ 3→ 2→ 1→ 0 are not. This

fact suggests the use of extended formulations, where auxiliary flow variables are used to

enforce route feasibility.

The following directed one-commodity flow formulation for the VRPSPD was pro-

posed by Dell’Amico et al. [44]. Define A as the set of arcs consisting of a pair of opposite

arcs (i, j) and (j, i) for each edge {i, j} ∈ E and let Dij and Pij be the flow variables which
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Figure 3.1: VRPSPD example

indicate, respectively, the delivery and pickup loads carried along the arc (i, j) ∈ A. Let

xij be 1 if the arc (i, j) ∈ A is in the solution and 0 otherwise. The formulation F1C is

described next.

min
∑
i∈V

∑
j∈V

cijxij (3.1)

s.t.
∑
j∈V

xij = 1 ∀i ∈ V ′ (3.2)∑
j∈V

xji = 1 ∀i ∈ V ′ (3.3)∑
j∈V ′

x0j ≤ m (3.4)∑
j∈V

Dji −
∑
j∈V

Dij = di ∀i ∈ V ′ (3.5)∑
j∈V

Pij −
∑
j∈V

Pji = pi ∀i ∈ V ′ (3.6)

Dij + Pij ≤ Qxij ∀(i, j) ∈ A (3.7)

Dij ≥ 0 ∀(i, j) ∈ A (3.8)

Pij ≥ 0 ∀(i, j) ∈ A (3.9)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.10)

The objective function (3.1) minimizes the sum of the travel costs. Constraints (3.2)-

(3.3) impose that each client should be visited exactly once. Constraints (3.4) refer to the

number of vehicles available. Constraints (3.5)-(3.7) are the flow conservation equalities.

Constraints (3.8)-(3.10) are related to the nature of the decision variables.

Dell’Amico et al. [44] basically extended the one-commodity flow formulation pro-
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posed by Gavish and Graves [65] for the CVRP by adding constraints (3.6) and (3.9), and

the term Pij in (3.7). Gouveia [81] showed that it is possible to obtain stronger inequali-

ties for Dij by using the tighter bounds (3.11) instead of (3.8) in the Gavish and Graves

formulation. Accordingly, the same idea can be applied to develop stronger inequalities

for Pij by replacing (3.9) with (3.12) and for Dij + Pij by replacing (3.7) with (3.13).

djxij ≤ Dij ≤ (Q− di)xij ∀(i, j) ∈ A (3.11)

pixij ≤ Pij ≤ (Q− pj)xij ∀(i, j) ∈ A (3.12)

Dij + Pij ≤ (Q−max{0, pj − dj, di − pi})xij ∀(i, j) ∈ A (3.13)

It should be noticed that a lower bound for (3.13) is implicit in (3.11) and (3.12), i.e,

Dij + Pij ≥ djxij + pixij. Another valid inequality for F1C, given by (3.14), is due to the

fact that each edge not adjacent to the depot is traversed at most once.

xij + xji ≤ 1 ∀i, j, i < j,∈ V ′ (3.14)

3.2 Two-commodity �ow formulations

This section presents both an undirected and a directed two-commodity flow formulations

for the VRPSPD which are based on the one proposed by Baldacci et al. [9] for the CVRP.

It is important to mention that the idea of employing two-commodities was originally

developed by Finke et al. [55] for the TSP. Their formulation was later generalized by

Lucena [113] for the CVRP.

3.2.1 Undirected two-commodity �ow formulation

For the sake of convenience let vertex n+1 be a copy of the depot, V̄ = V ∪{n+1} and Ē

be the complete set of edges Ē, excepting {0, n+1}. Let x′
ij be 1 if the edge {i, j} ∈ Ē is

in the solution and 0 otherwise. Let the variables D′
ij, P

′
ij and SPDij denote, respectively,

the delivery, pickup and simultaneous pickup and delivery flows when a vehicle goes from

i ∈ V̄ to j ∈ V̄ and let the same variables denote, respectively, the associated residual

capacities when a vehicle goes from j ∈ V̄ to i ∈ V̄ , in such a way that D′
ij +D′

ji = Qx′
ij,

P ′
ij + P ′

ji = Qx′
ij and SPDij + SPDji = Qx′

ij. Also, an integer variable v, which denotes

the number of vehicles utilized, is included with an upper bound m. In the Baldacci et

al. formulation [9] the precise number of vehicles m is assumed to be known in advance,

since their formulation will produce feasible solutions with exact m vehicles.

Fig. 3.2 shows an example of the scheme used by the two-commodity flow formulation

for the VRPSPD, where (i), (ii) and (iii) denote, respectively, the delivery, pickup and

simultaneous pickup and delivery flows. In this case, Q = 20 and two routes are considered

where r1 is the one composed by 0 → 1 → 2 → 3 → 4 → n + 1 and r2 is composed by
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0→ 5→ 6→ 7→ 8→ n+1. Moreover, it can be observed that the flows when the vehicle

is leaving the depot are equivalent in (i) and (iii), whereas the flows when the vehicle is

returning to the depot are equivalent in (ii) and (iii). This fact can be generalized to any

VRPSPD instance by means of the following relationships: SPD0j = D′
0j, SPDj0 = D′

j0,

SPDj,n+1 = P ′
j,n+1 and SPDn+1,j = D′

n+1,j, ∀j ∈ V ′.
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Figure 3.2: The two-commodity formulation scheme for the VRPSPD
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The undirected formulation F2C-U is as follows.

min
∑

{i,j}∈Ē

cijx
′
ij (3.15)

s.t.
∑

i∈V̄ ,i<k

x′
ik +

∑
j∈V̄ ,j>k

x′
kj = 2 ∀k ∈ V ′ (3.16)

∑
j∈V̄

(D′
ji −D′

ij) = 2di ∀i ∈ V ′ (3.17)

∑
j∈V ′

D′
0j =

∑
i∈V ′

di (3.18)∑
j∈V ′

D′
j0 = vQ−

∑
i∈V ′

di (3.19)∑
j∈V̄

(P ′
ij − P ′

ji) = 2pi ∀i ∈ V ′ (3.20)

∑
j∈V ′

P ′
j,n+1 =

∑
i∈V ′

pi (3.21)∑
j∈V ′

P ′
n+1,j = vQ−

∑
i∈V ′

pi (3.22)∑
j∈V̄

(SPDji − SPDij) = 2(di − pi) ∀i ∈ V ′ (3.23)

SPD0j = D′
0j ∀j ∈ V ′ (3.24)

SPDj0 = D′
j0 ∀j ∈ V ′ (3.25)

SPDj,n+1 = P ′
j,n+1 ∀j ∈ V ′ (3.26)

SPDn+1,j = D′
n+1,j ∀j ∈ V ′ (3.27)

D′
ij +D′

ji = Qx′
ij ∀{i, j} ∈ Ē (3.28)

P ′
ij + P ′

ji = Qx′
ij ∀{i, j} ∈ Ē (3.29)

SPDij + SPDji = Qx′
ij ∀{i, j} ∈ Ē (3.30)

D′
j,n+1 = P ′

0j = 0 ∀j ∈ V ′ (3.31)∑
j∈V ′

D′
n+1,j =

∑
j∈V ′

P ′
j0 = vQ (3.32)∑

j∈V ′

x′
0j =

∑
j∈V ′

x′
j,n+1 = v (3.33)

0 ≤ v ≤ m (3.34)

D′
ij ≥ 0, D′

ji ≥ 0 ∀{i, j} ∈ Ē (3.35)

P ′
ij ≥ 0, P ′

ji ≥ 0 ∀{i, j} ∈ Ē (3.36)

SPDij ≥ 0, SPDji ≥ 0 ∀{i, j} ∈ Ē (3.37)

x′
ij ∈ {0, 1} ∀(i, j) ∈ Ē (3.38)
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The objective function (3.15) minimizes the sum of the travel costs. Constraints

(3.16) are the degree equations. Constraints (3.17) ensure that the delivery demands are

satisfied. Constraints (3.18) state that the sum of the vehicle loads leaving the vertex

0 must be equal to the sum of the demand of all costumers. Constraints (3.19) enforce

that the sum of the vehicle loads arriving at the vertex 0 must be equal to the sum of

the residual capacity of all vehicles. Constraints (3.20)-(3.22) are related to the pickup

flow and their meaning are, respectively, analogous to (3.17)-(3.19). Constraints (3.23)

guarantee that the pickup and delivery demands are simultaneously satisfied. Constraints

(3.24)-(3.27) are self-explanatory. Constraints (3.28)-(3.30) state, respectively, that the

sum of the delivery, pickup and combined loads arriving and leaving each customer must

be equal to the vehicle capacity. Constraints (3.31)-(3.32) are self-explanatory. Constraint

(3.33) is related to the number of vehicles. Constraints (3.34)-(3.38) define the domain of

the decision variables.

The formulation F2C-U was obtained by simply adding constraints (3.20)-(3.27),

(3.29)-(3.34) and (3.36)-(3.37) to the formulation presented in [9]. As in F1C, stronger

inequalities can be developed by tightening the bounds of the flow variables, i.e, replacing

(3.35)-(3.36) with (3.39)-(3.40) and (3.37) with (3.41).

D′
ij ≥ djx

′
ij ∀(i, j) ∈ Ē (3.39)

P ′
ij ≥ pix

′
ij ∀(i, j) ∈ Ē (3.40)

SPDij ≥ max{0, dj − pj, pi − di}x′
ij ∀(i, j) ∈ Ē (3.41)

Although the lower bounds of the flow variables are not explicit in (3.39)-(3.41) it

can be easily verified that they become inherent to the formulation when these upper

bound inequalities are combined with (3.28)-(3.30), resulting in D′
ij ≤ (Q− di)x

′
ij, P

′
ij ≤

(Q− dj)x
′
ij and SPDij ≤ (Q−max{0, di − pi, pj − dj})x′

ij.

3.2.2 Directed two-commodity �ow formulation

Let Ā be the set of arcs (i, j), ∀i, j ∈ V̄ and x̄ij be 1 if the arc (i, j) ∈ Ā is in the solution

and 0 otherwise. A directed version of the two-commodity flow formulation (F2C-D) is

as follows.

min
∑
i∈V̄

∑
j∈V̄

cijx̄ij (3.42)
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s.t.
∑
j∈V̄

x̄ij = 1 ∀i ∈ V ′ (3.43)

∑
j∈V̄

x̄ji = 1 ∀i ∈ V ′ (3.44)

x̄j0 = x̄n+1,j = 0 ∀j ∈ V ′ (3.45)

D′
ij +D′

ji = Q(x̄ij + x̄ji) ∀(i, j), i < j,∈ A (3.46)

P ′
ij + P ′

ji = Q(x̄ij + x̄ji) ∀(i, j), i < j, i 6= 0 ∈ Ā (3.47)

SPDij + SPDji = Q(x̄ij + x̄ji) ∀i, j, i < j,∈ V ′ (3.48)∑
j∈V ′

x̄0j =
∑
j∈V ′

x̄j,n+1 = v (3.49)

x̄ij ∈ {0, 1} ∀(i, j) ∈ Ā (3.50)

(3.17)-(3.27), (3.31)-(3.32) and (3.34)-(3.37)

Constraints (3.43)-(3.44) are the degree equations. The meaning of constraint (3.45)

is self-explanatory. Constraints (3.46)-(3.48) are the capacity equalities. Constraints

(3.49)-(3.50) have already been defined.

The stronger flow inequalities defined for F2C-U also hold for F2C-D as can be ob-

served in (3.51)-(3.53). Also, the arc inequalities (3.14) used in F1C can be directly

converted to F2C-D as shown in (3.54).

D′
ij ≥ dj(x̄ij + x̄ji) ∀(i, j) ∈ Ā (3.51)

P ′
ij ≥ pi(x̄ij + x̄ji) ∀(i, j) ∈ Ā (3.52)

SPDij ≥ (max{0, dj − pj, pi − di})(x̄ij + x̄ji) ∀(i, j) ∈ Ā (3.53)

x̄ij + x̄ji ≤ 1 ∀i, j, i < j,∈ V ′ (3.54)

F2C-D is clearly at least as strong as F2C-U since the degree constraints (3.43)-

(3.44) along with (3.54) dominate (3.16) and the linear relaxation of (3.38), whereas the

remaining constraints are equivalent in both formulations.

Letchford and Salazar-Gonzalez [104] have shown that the one-commodity formulation

and the directed two-commodity flow formulation with their respective stronger inequal-

ities are equivalent for the CVRP. However, this fact is not verified for the VRPSPD as

stated by Proposition 1.

Proposition 1. The linear relaxation of F1C with (3.11)-(3.14) is stronger than the one

obtained by F2C-D with (3.51)-(3.54).

Proof. First, one shall prove that given the solution vector (x∗, D∗, P ∗) with cost z∗ of the

linear programming relaxation of the one-commodity flow formulation, it is possible to

build a feasible solution of the linear program of F2C-D (in terms of (x̄, D′, P ′, SPD, v))

with the same cost.
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The values of the variables of F2C-D can be directly obtained by means of (3.55)-

(3.68). For the sake of simplicity let Pj,n+1 = Pj0 and Pn+1,j = P0j, ∀j ∈ V ′.

x̄ij = xij ∀i, j ∈ V ′ (3.55)

x̄0j = x0j ∀j ∈ V ′ (3.56)

x̄j,n+1 = xj0 ∀j ∈ V ′ (3.57)

D′
ij = Dij + (Qx̄ji −Dji) ∀(i, j), i < j,∈ A (3.58)

D′
ji = Dji + (Qx̄ij −Dij) ∀(i, j), i < j,∈ A (3.59)

P ′
ij = Pij + (Qx̄ji − Pji) ∀(i, j), i < j, i 6= 0 ∈ Ā (3.60)

P ′
ji = Pji + (Qx̄ij − Pij) ∀(i, j), i < j, i 6= 0 ∈ Ā (3.61)

SPDij = Dij + Pij + (Qx̄ji −Dji − Pji) ∀i, j, i < j,∈ V ′ (3.62)

SPDji = Dji + Pji + (Qx̄ij −Dij − Pij) ∀i, j, i < j,∈ V ′ (3.63)

D′
j,n+1 = P ′

0j = x̄j0 = x̄n+1,j = 0 ∀j ∈ V ′ (3.64)

D′
n+1,j = Qx̄n+1,j, P

′
j0 = Qx̄j0 ∀j ∈ V ′ (3.65)

SPD0j = D′
0j, SPDj0 = D′

j0 ∀j ∈ V ′ (3.66)

SPDj,n+1 = P ′
j,n+1, SPDn+1,j = P ′

n+1,j ∀j ∈ V ′ (3.67)

v =
∑
j∈V ′

x̄0j (3.68)

Note that constraints (3.46)-(3.48) are automatically satisfied since they can be easily

obtained from (3.58)-(3.63). Constraints (3.51) are satisfied since, according to (3.11),

Dij ≥ djx̄ij and Qx̄ji −Dji ≥ djx̄ji, which implies in D′
ij ≥ dj(x̄ij + x̄ji). The same idea

can be employed, using (3.12), to show that constraints (3.52) are also satisfied.

To verify if constraints (3.53) are not violated the following statement must be proven:

Dij + Pij + (Qx̄ij −Dji − Pji) ≥ (max{0, dj − pj, pi − di})(x̄ij + x̄ji). Using the fact that

Dij+Pij ≥ djx̄ij +pix̄ij (see (3.11)-(3.12)) and after some algebraic manipulation one can

obtain: djx̄ij + pix̄ij +(Q−max{0, dj − pj, pi− di})x̄ji ≥ Dji+Pji+(max{0, dj − pj, pi−
di})x̄ij. From (3.13) it can be observed that (Q−max{0, dj − pj, pi − di})x̄ji ≥ Dji + Pji

and it is clear that djx̄ij + pix̄ij ≥ (max{0, dj − pj, pi − di})x̄ij, which proves that (3.53)

is satisfied.

Thus one can conclude that the vector (x̄, D′, P ′, SPD, v) is indeed a feasible solution

of the linear program of F2C-D.

On the other hand, given the solution vector (x̄∗, D′∗, P ′∗, SPD∗, v∗) with cost z̄∗ of

the linear programming relaxation of F2C-D it is not always possible to build a feasible

solution in terms of (x,D, P ) with the same cost. Tables 3.1 and 3.3; 3.4 and 3.6; and 3.7

and 3.9; all presented in Section 5, show that the value of the linear relaxation obtained

by the F1C is always greater or equal than the one found by F2C-D.



3.3 A Branch-and-cut approach 32

3.3 A Branch-and-cut approach

A simple BC algorithm was employed to evaluate the formulations presented in this work.

Traditional CVRP inequalities were used, namely the rounded capacity, multistar and

comb inequalities. They can be directly applied to the VRPSPD. The cuts were separated

using the CVRPSEP package [114]. The reader is referred to [115] for details concerning

the separation routines.

At first, the delivery demands are used to separate the cuts. When no valid inequalities

are found then the pickup demands are used. All of the three kinds of cuts are generated

at the root node, but just the rounded capacity cuts are used throughout the tree up

to the 5th level. Preliminary tests have shown that the overhead of separating comb

and multistar inequalities outside the root node was not worthwhile. For each separation

routine of the CVRPSEP package a limit of 50 violated cuts per iteration was established.

In the case of the VRPSPD instances, the best upper bound (UB) solutions pointed

out in the literature were given as initial primal bound for the BC, namely those reported

in [157]. This definitely helps the algorithm to find optimal solutions in much less com-

putational time. As for the VRPMPD instances, the UBs found by Gajpal and Abad [64]

were provided as a cutoff value for the BC.

3.4 Computational experiments

The BC procedures were implemented using the CPLEX 11.2 callable library and exe-

cuted in an Intel Core 2 Quad with 2.4 GHz and 4 GB of RAM running under Linux 64

bits (kernel 2.6.27-16). Only a single thread was used in the experiments. Each BC is

respectively associated with the formulations F1C, F2C-U and F2C-D. A time limit of 2

hours of execution was imposed for the BC algorithms. In some very particular cases, the

CPLEX have slightly exceeded this time limit, namely on few instances involving more

than 100 customers.

3.4.1 VRPSPD

Three set of test-problems are available in the VRPSPD literature. These benchmark

instances were proposed by Dethloff [48], Salhi and Nagy [149] and Montané and Galvão

[121]. The first group contains 40 instances with 50 customers, the second contains 14

instances with 50-199 customers, while the third contains 12 instances with 100-200 cus-

tomers. The number of vehicles is not explicitly specified in these 66 instances. The

barrier algorithm was used to solve the initial linear relaxation of the last two group of

instances. It is noteworthy to mention that the Montané and Galvão’s instances involving

400 customers were not considered.

In the tables presented hereafter, #v represents the number of vehicles in the best
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known solution, LP is the linear relaxation, Root LB indicates the root lower bound,

after CVRPSEP cuts are added, Root Time is the CPU time in seconds spent at the

root node, Tree size corresponds to the the number of nodes opened, Total time is the

total CPU time in seconds of the BC procedure, Prev. LB is the lower bound obtained

in [121], New LB is the best lower bound determined among the three flow formulations,

F-LB is the lower bound found by the respective formulation, UB is the upper bound

reported in the literature, and Gap corresponds to the gap between the LB and the UB.

Proven optimal solutions are highlighted in boldface. If the F-LB is the one associated

with the New LB (F-LB = New LB), then its value is underlined only if New LB is not

an optimal solution.

Tables 3.1, 3.2 and 3.3 contain, respectively, the results obtained by F1C, F2C-U and

F2C-D on the set of instances of Dethloff. It can be seen that the three formulations were

able to prove the optimality of almost all instances of 4 vehicles. F2C-U appears to be the

most effective under this aspect, being capable of proving the optimality of 17 instances.

The performance of the three formulations on the instances of 9 vehicles were inferior in

terms of optimality proof, but their LBs are significantly better than the previous values

reported in [121]. F2C-U also seems to be the most effective in terms of LBs, with an

average gap of 0.94%, against 1.34% and 1.26% of F1C and F2C-D, respectively.

In order to check if the values of the UB of the instances SCA3-0, SCA3-6, SCA8-3,

SCA8-6, CON3-2, CON8-1, CON8-4 and CON8-7 are optimal the F2C-U was executed

with a time limit of 48 hours. The formulation was successful to prove the optimality of

each of these instances within up to 36 hours of execution.

The results found by F1C, F2C-U and F2C-D on the set of instances of Salhi and Nagy

are presented, respectively, in Tables 3.4, 3.5 and 3.6. The optimality of the instances

CMT1X and CMT1Y has been proven by all the three formulations. Nevertheless, these

are the first LBs presented for this set of instances. Montané and Galvão [121] had

reported LBs for the case where the demands were rounded to the nearest integer. When

comparing the LBs obtained by each of the three formulations it can be verified that F2C-

U produced superior results, with an average gap of 4,27 %, against 4,57% and 4,31% of

F2C-D and F1C, respectively.

The results obtained by the three formulations on the set of instances of Montané and

Galvão are shown in Tables 3.7, 3.8 and 3.9. Three optimal solutions were proven by all

formulations, namely in the instances r201, c201 and rc201. The main characteristic of

these three instances is the fact of having relatively very few vehicles. When comparing

the LBs of the different formulations, it can be verified that F2C-U found the best results,

with an average gap of 2.94%, whereas for F2C-U and F1C the average gap was 3.57%

and 3.62%, respectively.

Tables 3.10-3.12 present the statistics of the root node of each formulation over a
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set of representative instances. In these tables, Sep. Rounds represent the number of

calls to the separation routines, LP Time is the time in seconds spent solving the linear

relaxations, Sep. Time is the time in seconds spent separating the cuts, Root Time is

the sum of the LP Time and Sep. Time, and Gap is the gap between the root relaxation

and the UB.

Table 3.1: Results obtained by F1C on Dethloff’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 551.14 613.38 41 73473 7200 583.77 627.66 622.73 635.62 2.03
SCA3-1/50 4 645.95 682.40 107 1712 1230 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.56 658.35 19 1 19 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.30 667.37 70 1083 415 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 627.29 672.92 80 8718 1599 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 604.31 646.14 83 15560 1901 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.97 624.92 47 37655 7200 607.53 645.56 639.97 651.09 1.71
SCA3-7/50 4 584.69 654.30 82 26 103 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.75 688.77 94 72785 7200 668.04 719.48 703.12 719.48 2.27
SCA3-9/50 4 597.02 668.09 82 1674 417 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 849.35 922.36 96 8854 7200 877.55 936.89 933.12 961.50 2.95
SCA8-1/50 9 937.71 998.04 75 9948 7200 954.29 1020.28 1015.05 1049.65 3.30
SCA8-2/50 9 931.93 1008.83 78 10334 7200 950.74 1024.24 1019.99 1039.64 1.89
SCA8-3/50 9 874.31 954.55 74 11375 7200 905.29 975.87 970.88 983.34 1.27
SCA8-4/50 9 958.58 1022.44 72 12054 7200 972.62 1041.65 1036.45 1065.49 2.73
SCA8-5/50 9 923.50 996.01 79 9207 7200 940.60 1015.19 1011.57 1027.08 1.51
SCA8-6/50 9 870.58 933.57 133 6219 7200 885.34 959.91 944.53 971.82 2.81
SCA8-7/50 9 937.30 1013.86 65 12533 7200 955.86 1031.56 1029.97 1051.28 2.03
SCA8-8/50 9 962.50 1023.86 102 8510 7200 986.52 1048.93 1036.90 1071.18 3.20
SCA8-9/50 9 953.36 1012.73 89 9031 7200 978.90 1034.28 1031.51 1060.50 2.73
CON3-0/50 4 577.74 606.00 91 40753 4836 592.38 616.52 616.46 616.52 0.01
CON3-1/50 4 506.41 543.71 73 52033 6498 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.40 503.14 61 13874 7200 491.04 517.26 514.11 518.00 0.75
CON3-3/50 4 541.46 581.45 55 20044 1941 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.90 577.61 63 78398 7200 558.26 588.79 588.47 588.79 0.06
CON3-5/50 4 511.88 553.87 107 32652 5975 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.90 486.59 128 14248 7200 475.33 499.05 493.01 499.05 1.21
CON3-7/50 4 533.86 562.10 38 53629 5522 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.81 513.90 87 15317 1923 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 528.34 564.87 63 15461 5602 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 774.69 829.80 47 16498 7200 795.45 845.19 842.62 857.17 1.70
CON8-1/50 9 680.24 719.03 80 7552 7200 693.22 734.71 732.44 740.85 1.14
CON8-2/50 9 636.18 682.76 128 9856 7200 650.81 695.70 693.07 712.89 2.78
CON8-3/50 10 732.55 784.93 71 7536 7200 754.41 797.57 796.31 811.07 1.82
CON8-4/50 9 710.36 749.83 122 6374 7200 729.09 767.63 759.11 772.25 1.70
CON8-5/50 9 696.85 728.10 78 7901 7200 709.76 741.51 736.79 754.88 2.40
CON8-6/50 9 611.16 647.04 61 10400 7200 631.41 662.14 662.14 678.92 2.47
CON8-7/50 9 729.28 787.89 64 11861 7200 762.03 810.08 800.22 811.96 1.44
CON8-8/50 9 689.23 741.02 74 10324 7200 705.08 757.45 753.42 767.53 1.84
CON8-9/50 9 716.21 770.66 101 5435 7200 729.10 786.40 778.65 809.00 3.75

Avg. Gap (%) 1.34

From the results of Tables 3.10-3.12 it can be seen that in most cases the Sep. Rounds

increases with the number of vehicles, given a fixed number of customers. Also, it is

possible to verify that the LP Time is considerably higher than the Sep. Time and, as

expected, this difference tends to increase with the size of the instance as well as the

number of vehicles. It appears that all the three formulations became very “heavy” in the

instances involving 200 customers, since in almost all cases, they took about 2 hours to

solve less than 13 linear programs. An attempt has been made to use the barrier algorithm

to solve all the linear programs, but unfortunately the results were not satisfactory.
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Table 3.2: Results obtained by the F2C-U on Dethloff’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 550.85 613.36 28 211456 7200 583.77 627.66 625.00 635.62 1.67
SCA3-1/50 4 645.59 682.33 42 1467 142 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.44 658.89 12 1 12 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.02 667.37 25 847 81 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 626.93 673.28 50 2866 252 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 603.95 646.29 38 19724 731 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.85 624.89 27 176561 7200 607.53 645.56 644.37 651.09 1.03
SCA3-7/50 4 584.59 653.76 34 30 43 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.41 693.71 42 108017 4899 668.04 719.48 719.48 719.48 0.00
SCA3-9/50 4 596.79 668.09 36 1452 96 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 847.39 922.58 79 17695 7200 877.55 936.89 936.89 961.50 2.56
SCA8-1/50 9 933.44 997.07 56 18086 7200 954.29 1020.28 1020.28 1049.65 2.80
SCA8-2/50 9 931.34 1008.27 75 12789 7200 950.74 1024.24 1024.24 1039.64 1.48
SCA8-3/50 9 872.37 953.67 49 18487 7200 905.29 975.87 975.87 983.34 0.76
SCA8-4/50 9 955.74 1021.35 44 25853 7200 972.62 1041.65 1041.65 1065.49 2.24
SCA8-5/50 9 922.25 995.93 58 19464 7200 940.60 1015.19 1013.87 1027.08 1.29
SCA8-6/50 9 868.00 933.76 74 10467 7200 885.34 959.91 959.91 971.82 1.23
SCA8-7/50 9 935.55 1015.11 69 15193 7200 955.86 1031.56 1031.56 1051.28 1.88
SCA8-8/50 9 960.17 1023.60 87 8262 7200 986.52 1048.93 1048.93 1071.18 2.08
SCA8-9/50 9 952.34 1014.89 64 16262 7200 978.90 1034.28 1034.28 1060.50 2.47
CON3-0/50 4 577.52 606.82 46 3048 247 592.38 616.52 616.52 616.52 0.00
CON3-1/50 4 506.23 545.53 54 16039 823 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.22 504.44 59 22107 7200 491.04 517.26 516.23 518.00 0.34
CON3-3/50 4 541.40 582.83 35 6608 330 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.73 577.57 42 50663 3198 558.26 588.79 588.79 588.79 0.00
CON3-5/50 4 511.59 554.35 65 10191 729 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.75 486.61 100 48466 5230 475.33 499.05 499.05 499.05 0.00
CON3-7/50 4 533.73 561.87 37 9822 1141 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.45 514.13 71 5541 450 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 527.94 564.78 53 6372 790 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 773.46 827.14 74 13038 7200 795.45 845.19 845.19 857.17 1.40
CON8-1/50 9 678.95 719.09 67 13302 7200 693.22 734.71 734.71 740.85 0.83
CON8-2/50 9 635.23 682.37 127 9409 7200 650.81 695.70 695.70 712.89 2.41
CON8-3/50 10 731.55 785.00 71 18680 7200 754.41 797.57 797.57 811.07 1.66
CON8-4/50 9 708.64 751.32 60 15700 7200 729.09 767.63 767.63 772.25 0.60
CON8-5/50 9 696.08 727.26 66 9765 7200 709.76 741.51 741.51 754.88 1.77
CON8-6/50 9 610.20 646.78 94 11947 7200 631.41 662.14 661.36 678.92 2.59
CON8-7/50 9 726.55 788.64 74 5520 7200 762.03 810.08 810.08 811.96 0.23
CON8-8/50 9 688.25 741.76 81 13325 7200 705.08 757.45 757.45 767.53 1.31
CON8-9/50 9 713.85 770.85 109 12833 7200 729.10 786.40 786.40 809.00 2.79

Avg. Gap (%) 0.94

Table 3.13 shows a summary of the results obtained by the three formulations in all

set of instances. In this table, G1 is the average gap between the linear relaxation and

the UB, G2 is the average gap with respect to the root LB, including the CVRPSEP cuts,

and G3 is average gap for the LB, possibly after branching, found within the time limit

established. Those results can be explained as follows. The linear relaxation of F1C is

indeed a little better than the linear relaxations of F2C-D and F2C-U. However, after the

cuts, there is no significant difference in the LB quality. This can be clearly seen in the

column G2 under Dethloff instances. For those smaller instances, the cut separation in

the root node could always be completed within the time limit. In those cases, the small

gap differences (2.96%, 2.94% and 2.92%) are not significant and can be attributed to

the heuristic nature of the routines in the CVRPSEP library. The consistent advantage

of formulation F2C-U shown in columns G3 is explained by the fact that CPLEX has a

significantly better performance when reoptimizing its LPs. This means that more cuts
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can be separated and more nodes can be explored within the same time limit.

Table 3.3: Results obtained by F2C-D on Dethloff’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 550.93 613.35 25 132649 7200 583.77 627.66 627.66 635.62 1.25
SCA3-1/50 4 645.60 682.23 29 1262 114 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.47 659.11 11 1 11 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.02 667.35 21 374 50 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 626.93 673.22 31 6156 334 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 603.96 646.41 31 12594 330 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.85 624.92 26 167625 7200 607.53 645.56 645.56 651.09 0.85
SCA3-7/50 4 584.59 654.30 33 23 40 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.41 694.13 42 196322 7200 668.04 719.48 714.19 719.48 0.73
SCA3-9/50 4 596.79 668.09 38 1567 116 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 847.73 922.85 107 3758 7200 877.55 936.89 933.89 961.50 2.87
SCA8-1/50 9 933.47 997.57 103 3661 7200 954.29 1020.28 1013.38 1049.65 3.46
SCA8-2/50 9 931.42 1008.87 147 2435 7200 950.74 1024.24 1019.31 1039.64 1.96
SCA8-3/50 9 872.45 953.21 98 3914 7200 905.29 975.87 968.55 983.34 1.50
SCA8-4/50 9 955.96 1022.13 134 4773 7200 972.62 1041.65 1032.49 1065.49 3.10
SCA8-5/50 9 922.32 996.33 184 14246 7200 940.60 1015.19 1015.19 1027.08 1.16
SCA8-6/50 9 868.05 933.74 143 1593 7200 885.34 959.91 943.47 971.82 2.92
SCA8-7/50 9 935.82 1013.12 102 3334 7200 955.86 1031.56 1028.04 1051.28 2.21
SCA8-8/50 9 960.27 1023.53 159 1559 7200 986.52 1048.93 1036.29 1071.18 3.26
SCA8-9/50 9 952.41 1013.82 111 7476 7200 978.90 1034.28 1031.54 1060.50 2.73
CON3-0/50 4 577.52 605.97 34 21249 1141 592.38 616.52 616.52 616.52 0.00
CON3-1/50 4 506.24 543.70 41 19638 1199 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.22 504.31 71 97732 7200 491.04 517.26 517.26 518.00 0.14
CON3-3/50 4 541.40 582.89 37 4116 213 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.73 577.59 28 78652 2932 558.26 588.79 588.79 588.79 0.00
CON3-5/50 4 511.60 554.43 50 16215 772 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.75 486.76 96 65792 6979 475.33 499.05 499.05 499.05 0.00
CON3-7/50 4 533.75 561.89 31 15895 1134 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.45 513.99 51 3833 269 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 527.95 564.77 48 4637 585 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 773.51 826.63 122 2526 7200 795.45 845.19 840.60 857.17 1.93
CON8-1/50 9 679.00 719.00 132 2885 7200 693.22 734.71 729.26 740.85 1.56
CON8-2/50 9 635.25 682.12 200 2416 7200 650.81 695.70 692.34 712.89 2.88
CON8-3/50 10 731.55 785.01 151 3406 7200 754.41 797.57 794.94 811.07 1.99
CON8-4/50 9 708.64 751.40 121 5468 7200 729.09 767.63 766.37 772.25 0.76
CON8-5/50 9 696.08 726.88 133 3688 7200 709.76 741.51 734.84 754.88 2.66
CON8-6/50 9 610.20 646.22 125 2458 7200 631.41 662.14 658.43 678.92 3.02
CON8-7/50 9 726.57 787.53 142 1995 7200 762.03 810.08 801.59 811.96 1.28
CON8-8/50 9 688.33 741.06 166 4021 7200 705.08 757.45 749.66 767.53 2.33
CON8-9/50 9 713.94 770.74 234 2307 7200 729.10 786.40 778.72 809.00 3.74

Avg. Gap (%) 1.26

Table 3.4: Results obtained by F1C on Salhi and Nagy’s instances (VRPSPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1X/50 3 449.00 459.94 63 1691 245 466.77 466.77 466.77 0.00
CMT1Y/50 3 449.00 460.06 71 3225 369 466.77 466.77 466.77 0.00
CMT2X/75 6 632.14 652.90 1025 2190 7200 655.98 655.39 684.21 4.21
CMT2Y/75 6 632.14 652.66 939 1071 7200 655.41 653.78 684.21 4.45
CMT3X/100 5 682.20 694.61 1382 1399 7200 705.54 695.55 721.27 3.57
CMT3Y/100 5 682.20 694.56 1649 1262 7200 705.62 696.05 721.27 3.50
CMT12X/100 5 566.09 628.64 3017 252 7200 629.39 629.19 662.22 4.99
CMT12Y/100 5 566.09 628.60 2279 618 7201 629.18 629.18 662.22 4.99
CMT11X/120 4 689.87 774.78 7200 1 7204 776.35 774.78 833.92 7.09
CMT11Y/120 4 689.87 775.01 7253 1 7256 775.74 775.01 833.92 7.06
CMT4X/150 7 796.52 816.39 7033 1 7201 817.11 816.39 852.46 4.23
CMT4Y/150 7 796.52 814.67 7013 1 7200 816.99 814.67 852.46 4.43
CMT5X/200 10 933.43 949.19 7315 1 7319 954.87 949.19 1029.25 7.78
CMT5Y/200 10 933.43 950.48 6844 1 7201 953.56 950.48 1029.25 7.65

Avg. Gap (%) 4.57
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Table 3.5: Results obtained by the F2C-U on Salhi and Nagy’s instances (VRPSPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1X/50 3 449.00 459.98 102 2282 300 466.77 466.77 466.77 0.00
CMT1Y/50 3 449.00 460.02 70 3205 213 466.77 466.77 466.77 0.00
CMT2X/75 6 632.11 652.85 346 2073 7200 655.88 655.21 684.21 4.24
CMT2Y/75 6 632.11 653.13 449 2610 7200 655.41 655.41 684.21 4.21
CMT3X/100 5 682.18 701.10 504 13820 7200 705.54 704.35 721.27 2.35
CMT3Y/100 5 682.18 701.12 612 19865 7200 705.62 705.28 721.27 2.22
CMT12X/100 5 564.08 628.59 813 991 7201 629.39 629.39 662.22 4.96
CMT12Y/100 5 564.08 628.58 923 118 7201 629.18 629.09 662.22 5.00
CMT11X/120 4 687.42 775.51 4835 42 7201 776.35 776.35 833.92 6.90
CMT11Y/120 4 687.42 775.40 6138 22 7200 775.74 775.74 833.92 6.98
CMT4X/150 7 796.48 817.11 7288 1 7292 817.11 817.11 852.46 4.15
CMT4Y/150 7 796.48 816.99 5747 1 7201 816.99 816.99 852.46 4.16
CMT5X/200 10 933.21 954.87 6939 1 7201 954.87 954.87 1029.25 7.23
CMT5Y/200 10 933.21 953.56 6600 1 7202 953.56 953.56 1029.25 7.35

Avg. Gap (%) 4.27

Table 3.6: Results obtained by F2C-D on Salhi and Nagy’s instances (VRPSPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1X/50 3 449.00 459.89 56 1971 204 466.77 466.77 466.77 0.00
CMT1Y/50 3 449.00 460.02 71 3204 239 466.77 466.77 466.77 0.00
CMT2X/75 6 632.11 653.05 788 5719 7200 655.88 655.88 684.21 4.14
CMT2Y/75 6 632.11 652.95 625 1800 7200 655.41 654.96 684.21 4.28
CMT3X/100 5 682.18 701.77 610 14470 7200 705.54 705.54 721.27 2.18
CMT3Y/100 5 682.18 701.74 460 13533 7200 705.62 705.62 721.27 2.17
CMT12X/100 5 564.18 628.58 1804 88 7200 629.39 628.81 662.22 5.05
CMT12Y/100 5 564.18 628.53 1564 88 7200 629.18 629.02 662.22 5.01
CMT11X/120 4 687.42 774.36 7222 1 7224 776.35 774.36 833.92 7.14
CMT11Y/120 4 687.42 774.56 7237 1 7239 775.74 774.56 833.92 7.12
CMT4X/150 7 796.48 816.90 7154 1 7201 817.11 816.90 852.46 4.17
CMT4Y/150 7 796.48 816.90 7185 1 7201 816.99 816.91 852.46 4.17
CMT5X/200 10 933.21 952.38 7419 1 7422 954.87 952.38 1029.25 7.47
CMT5Y/200 10 933.21 952.62 6798 1 7201 953.56 952.62 1029.25 7.45

Avg. Gap (%) 4.31

Table 3.7: Results obtained by the F1C on Montané and Galvão’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

r101/100 12 939.75 972.57 3084 104 7201 934.97 973.91 973.17 1009.95 3.64
r201/100 3 643.08 664.87 562 17 575 643.65 666.20 666.20 666.20 0.00
c101/100 16 1070.82 1195.47 1788 909 7200 1066.19 1196.70 1196.70 1220.18 1.92
c201/100 5 598.51 657.97 260 88 325 278.05 662.07 662.07 662.07 0.00
rc101/100 10 946.99 1028.72 4006 82 7201 937.41 1029.38 1029.08 1059.32 2.85
rc201/100 3 600.31 672.31 323 1 324 602.70 672.92 672.92 672.92 0.00
r1 2 1/200 23 3023.35 3078.76 7015 1 7202 2951.12 3084.97 3078.76 3360.02 8.37
r2 2 1/200 5 1549.88 1607.89 6824 1 7201 1501.82 1618.76 1607.89 1665.58 3.46
c1 2 1/200 28 3326.05 3396.32 5377 1 7201 3299.07 3475.03 3396.32 3629.89 6.43
c2 2 1/200 9 1560.54 1611.74 5601 1 7201 1542.96 1647.83 1611.74 1726.59 6.65
rc1 2 1/200 23 3020.18 3092.57 7124 1 7202 2939.98 3093.30 3092.57 3306.00 6.46
rc2 2 1/200 5 1439.13 1513.14 6757 1 7200 1396.95 1551.07 1513.14 1560.00 3.00

Avg. Gap (%) 3.57

3.4.2 VRPMPD

A set of 21 VRPMPD instances involving 50-199 customers was proposed by Salhi and

Nagy [149]. As in the VRPSPD, the number of vehicles is not specified. Also, Gajpal and

Abad [64] did not report the number of vehicles associated with their UBs. The barrier
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algorithm was employed to solve the initial linear relaxation.

Table 3.8: Results obtained by F2C-U on Montané and Galvão’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

r101/100 12 939.19 972.88 2910 122 7201 934.97 973.91 973.10 1009.95 3.65
r201/100 3 643.07 664.80 292 21 307 643.65 666.20 666.20 666.20 0.00
c101/100 16 1070.40 1195.53 1396 302 7201 1066.19 1196.70 1195.89 1220.18 1.99
c201/100 5 598.47 657.97 197 17 241 596.85 662.07 662.07 662.07 0.00
rc101/100 10 944.21 1028.15 2940 138 7201 937.41 1029.38 1029.38 1059.32 2.83
rc201/100 3 600.24 671.84 134 4 134 602.70 672.92 672.92 672.92 0.00
r1 2 1/200 23 3013.16 3084.97 6971 1 7200 2951.12 3084.97 3084.97 3360.02 8.19
r2 2 1/200 5 1549.60 1618.76 7869 1 7874 1501.82 1618.76 1618.76 1665.58 2.81
c1 2 1/200 28 3325.20 3475.03 7041 1 7202 3299.07 3475.03 3475.03 3629.89 4.27
c2 2 1/200 9 1560.22 1647.83 7370 1 7374 1542.96 1647.83 1647.83 1726.59 4.56
rc1 2 1/200 23 3015.44 3093.30 7064 1 7201 2939.98 3093.30 3093.30 3306.00 6.43
rc2 2 1/200 5 1438.91 1551.07 7301 1 7308 1396.95 1551.07 1551.07 1560.00 0.57

Avg. Gap (%) 2.94

Table 3.9: Results obtained by F2C-D on Montané and Galvão’s instances
Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

r101/100 12 939.26 972.85 5867 12 7200 934.97 973.91 973.91 1009.95 3.57
r201/100 3 643.07 665.05 490 14 524 643.65 666.20 666.20 666.20 0.00
c101/100 16 1070.40 1196.16 2752 666 7200 1066.19 1196.70 1196.65 1220.18 1.93
c201/100 5 598.47 657.97 317 61 404 596.85 662.07 662.07 662.07 0.00
rc101/100 10 944.39 1028.49 6570 6 7200 937.41 1029.38 1028.52 1059.32 2.91
rc201/100 3 600.26 671.84 200 6 201 602.70 672.92 672.92 672.92 0.00
r1 2 1/200 23 3013.21 3074.77 7088 1 7201 2951.12 3084.97 3074.77 3360.02 8.49
r2 2 1/200 5 1549.62 1615.14 7383 1 7386 1501.82 1618.76 1615.14 1665.58 3.03
c1 2 1/200 28 3325.20 3389.36 7517 1 7521 3299.07 3475.03 3389.36 3629.89 6.63
c2 2 1/200 9 1560.39 1596.24 6028 1 7201 1542.96 1647.83 1596.24 1726.59 7.55
rc1 2 1/200 23 3015.98 3067.65 7280 1 7283 2939.98 3093.30 3067.65 3306.00 7.21
rc2 2 1/200 5 1439.01 1526.68 6896 1 7202 1396.95 1551.07 1526.68 1560.00 2.14

Avg. Gap (%) 3.62

Table 3.10: Root node statistics of F1C over a set of VRPSPD representative instances
Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

SCA3-1/50 4 19 106.1 0.8 106.9 2.21
SCA8-1/50 9 17 72.8 1.8 74.6 4.92
CON3-1/50 4 26 71.5 1.5 73.1 1.94
CON8-1/50 9 37 73.9 6.5 80.4 2.95
CMT1X/50 3 38 59.0 3.7 62.7 1.46
CMT2X/75 6 65 1005.0 19.9 1025.0 4.58
CMT3X/100 5 38 1369.0 13.4 1382.3 3.70
CMT12X/100 5 47 3006.4 10.2 3016.5 5.07
CMT11X/120 4 87 7152.3 48.1 7200.4 7.09
CMT4X/150 7 21 7030.6 2.6 7033.2 4.23
CMT5X/200 10 7 7312.7 2.2 7314.9 7.78
r101/100 12 82 2946.5 137.5 3084.0 3.70
r201/100 3 50 551.7 10.5 562.2 0.20
r1 2 1/200 23 12 7008.9 6.5 7015.4 8.37
r2 2 1/200 5 4 6823.0 0.5 6823.5 3.46

Tables 3.14, 3.15 and 3.16 present the results obtained, respectively, by F1C, F2C-U

and F2C-D. It can be observed that the optimality of the instances CMT1H, CMT1Q,

CMT1T, CMT3Q and CMT12T was proven by all formulations. When comparing the
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LBs, one can verify that they are very similar, but F1C slightly outperformed the other

formulations, with an average gap of 2.37% against 2.42% of F2C-U and 2.40% of F2C-D.

This little difference in favor of F1C is mostly due to the significant better LBs found in

all the three instances involving 200 customers.

Table 3.11: Root node statistics of F2C-U over a set of VRPSPD representative instances
Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

SCA3-1/50 4 22 40.8 1.2 42.0 2.22
SCA8-1/50 9 29 50.9 5.1 56.0 5.01
CON3-1/50 4 33 52.4 1.6 54.1 1.61
CON8-1/50 9 33 62.3 4.4 66.7 2.94
CMT1X/50 3 45 96.4 5.2 101.5 1.46
CMT2X/75 6 44 330.8 15.0 345.8 4.58
CMT3X/100 5 39 493.0 10.6 503.6 2.80
CMT12X/100 5 41 805.5 7.1 812.6 5.08
CMT11X/120 4 88 4770.0 64.5 4834.5 7.00
CMT4X/150 7 55 7173.3 114.6 7287.9 4.15
CMT5X/200 10 8 6936.7 2.6 6939.3 7.23
r101/100 12 76 2802.9 106.8 2909.7 3.67
r201/100 3 28 288.7 3.6 292.4 0.21
r1 2 1/200 23 13 6966.9 3.6 6970.5 8.19
r2 2 1/200 5 8 7868.2 1.0 7869.2 2.81

Table 3.12: Root node statistics of F2C-D over a set of VRPSPD representative instances
Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

SCA3-1/50 4 18 40.0 0.7 40.8 2.29
SCA8-1/50 9 26 78.2 2.8 81.0 5.35
CON3-1/50 4 25 39.8 1.4 41.2 1.98
CON8-1/50 9 55 126.0 6.1 132.1 3.04
CMT1X/50 3 33 53.1 2.7 55.8 1.50
CMT2X/75 6 49 778.3 9.9 788.2 4.77
CMT3X/100 5 45 586.9 22.7 609.6 2.78
CMT12X/100 5 44 1798.3 5.8 1804.1 5.35
CMT11X/120 4 80 7173.9 47.7 7221.6 7.69
CMT4X/150 7 29 7135.6 18.1 7153.8 4.35
CMT5X/200 10 6 7417.3 1.5 7418.7 8.07
r101/100 12 80 5776.4 90.8 5867.3 3.81
r201/100 3 56 472.4 17.2 489.5 0.17
r1 2 1/200 23 11 7084.8 2.9 7087.6 9.28
r2 2 1/200 5 8 7381.9 0.8 7382.7 3.12

Table 3.13: Summary of the results obtained by the three formulations
Formulation Dethloff Salhi and Nagy Montané and Galvão

G1 (%) G2 (%) G3 (%) G1 (%) G2 (%) G3 (%) G1 (%) G2 (%) G3 (%)

F1C 9.74 2.96 1.34 9.21 4.85 4.57 8.75 3.66 3.57
F2C-U 9.85 2.92 0.94 9.30 4.62 4.27 8.82 3.04 2.94
F2C-D 9.85 2.94 1.26 9.30 4.66 4.31 8.82 3.57 3.62

Since the Gaps of the instances CMT12H and CMT12Q were relatively small for all

formulations, it was thought advisable, to verify if the UBs found by Gajpal and Abad

[64] for these instances are indeed optimal solutions by running F1C with a time limit

of 48 hours. The BC algorithm was capable of proving the optimality of the instance
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CMT12H after 7.1 hours of execution. On the other hand, the optimal solution found

by the BC algorithm (729.25) for the instance CMT12Q, after 22.7 hours of execution,

was better than the UB found by Gajpal and Abad (729.46). Moreover, the number of

vehicles associated with optimal solutions of the instances CMT12H and CMT12Q are,

respectively, 5 and 7.

Table 3.14: Results obtained by F1C on Salhi and Nagy’s instances (VRPMPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1H/50 3 442.77 460.11 39 794 87 465.02 465.02 465.02 0.00
CMT1Q/50 4 468.98 488.10 36 15 40 489.74 489.74 489.74 0.00
CMT1T/50 5 488.08 513.07 47 908 193 520.06 520.06 520.06 0.00
CMT2H/75 - 622.00 643.52 292 6174 7200 647.84 647.84 662.63 2.23
CMT2Q/75 - 682.68 707.50 698 5827 7200 711.30 710.83 732.76 2.99
CMT2T/75 - 733.20 760.18 574 4996 7200 764.99 764.19 782.77 2.37
CMT3H/100 - 675.40 691.44 621 4735 7200 694.92 694.40 701.31 0.98
CMT3Q/100 6 719.22 744.42 901 309 1112 747.15 747.15 747.15 0.00
CMT3T/100 - 757.25 784.23 3602 1016 7200 787.12 786.14 798.07 1.50
CMT12H/100 - 542.24 623.03 526 20280 7200 627.32 627.32 629.37 0.33
CMT12Q/100 - 641.08 721.71 863 2880 7200 726.71 724.63 729.46 0.66
CMT12T/100 9 706.28 787.52 457 1 457 787.52 787.52 787.52 0.00
CMT11H/120 - 671.59 800.99 7200 1 7204 801.05 800.99 820.35 2.36
CMT11Q/120 - 816.16 926.87 7182 1 7200 928.74 926.87 939.36 1.33
CMT11T/120 - 904.02 984.35 7224 1 7228 985.03 984.35 998.80 1.45
CMT4H/150 - 778.93 798.15 7240 1 7242 798.38 798.15 831.39 4.00
CMT4Q/150 - 857.79 889.58 7133 1 7201 890.12 889.58 913.93 2.66
CMT4T/150 - 920.63 949.50 7101 1 7200 950.59 949.50 990.39 4.13
CMT5H/200 - 905.32 922.88 6913 1 7201 922.88 922.88 992.37 7.00
CMT5Q/200 - 1023.95 1040.25 6541 1 7201 1040.25 1040.25 1134.72 8.33
CMT5T/200 - 1118.60 1139.93 7448 1 7449 1139.93 1139.93 1232.08 7.48

Avg. Gap (%) 2.37

Table 3.15: Results obtained by F2C-U on Salhi and Nagy’s instances (VRPMPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1H/50 3 442.09 460.12 52 2893 128 465.02 465.02 465.02 0.00
CMT1Q/50 4 468.58 488.13 49 15 54 489.74 489.74 489.74 0.00
CMT1T/50 5 488.08 512.83 71 1050 193 520.06 520.06 520.06 0.00
CMT2H/75 - 620.06 643.20 365 1642 7200 647.84 646.11 662.63 2.49
CMT2Q/75 - 681.52 707.91 765 1596 7200 711.30 709.96 732.76 3.11
CMT2T/75 - 733.01 760.81 511 2763 7200 764.99 763.47 782.77 2.47
CMT3H/100 - 674.46 691.53 1499 10735 7200 694.92 694.15 701.31 1.02
CMT3Q/100 6 718.88 744.50 1583 271 1788 747.15 747.15 747.15 0.00
CMT3T/100 - 757.23 784.43 4414 1267 7200 787.12 785.86 798.07 1.53
CMT12H/100 - 537.95 623.32 674 57192 7200 627.32 626.70 629.37 0.42
CMT12Q/100 - 639.80 721.95 1160 5675 7200 726.71 726.49 729.46 0.41
CMT12T/100 9 706.08 787.52 508 7 509 787.52 787.52 787.52 0.00
CMT11H/120 - 665.43 800.91 7057 4 7214 801.05 800.91 820.35 2.37
CMT11Q/120 - 811.84 928.74 7272 1 7275 928.74 928.74 939.36 1.13
CMT11T/120 - 903.15 984.67 5670 12 7201 985.03 985.03 998.80 1.38
CMT4H/150 - 778.19 798.38 7199 1 7202 798.38 798.38 831.39 3.97
CMT4Q/150 - 857.54 890.12 7280 1 7286 890.12 890.12 913.93 2.61
CMT4T/150 - 920.63 950.59 7255 1 7259 950.59 950.59 990.39 4.02
CMT5H/200 - 902.33 917.99 6756 1 7201 922.88 917.99 992.37 7.50
CMT5Q/200 - 1022.01 1039.20 7837 1 7840 1040.25 1039.20 1134.72 8.42
CMT5T/200 - 1118.44 1133.52 7538 1 7540 1139.93 1133.52 1232.08 8.00

Avg. Gap (%) 2.42

The statistics of the root node of each formulation over a set of representative instances

is presented in Tables 3.17-3.19. The interpretation of the results contained in these tables
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are quite similar to those reported for the VRPSPD instances (see Tables 3.10-3.12). The

amount of time spent by all formulations to solve the LPs considerably increases with

the size of the instances. Since the estimated number of vehicles of most instances is

unknown, a further analysis regarding their influence in the statistics of the root node

could not be performed.

Table 3.16: Results obtained by F2C-D on Salhi and Nagy’s instances (VRPMPD)
Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1H/50 3 442.09 460.07 71 1748 148 465.02 465.02 465.02 0.00
CMT1Q/50 4 468.58 488.21 61 11 64 489.74 489.74 489.74 0.00
CMT1T/50 5 488.08 512.92 85 813 208 520.06 520.06 520.06 0.00
CMT2H/75 - 620.06 643.42 730 5735 7200 647.84 647.45 662.63 2.29
CMT2Q/75 - 681.52 707.13 953 6287 7200 711.30 711.30 732.76 2.93
CMT2T/75 - 733.01 760.91 918 6183 7200 764.99 764.99 782.77 2.27
CMT3H/100 - 674.46 691.53 1158 19031 7200 694.92 694.92 701.31 0.91
CMT3Q/100 6 718.88 744.47 1366 411 1608 747.15 747.15 747.15 0.00
CMT3T/100 - 757.23 784.13 3957 1904 7200 787.12 787.12 798.07 1.37
CMT12H/100 - 538.07 623.32 773 42656 7200 627.32 626.45 629.37 0.46
CMT12Q/100 - 639.80 721.90 1309 3676 7200 726.71 726.71 729.46 0.38
CMT12T/100 9 706.08 787.25 750 6 752 787.52 787.52 787.52 0.00
CMT11H/120 - 665.46 801.05 7273 1 7277 801.05 801.05 820.35 2.35
CMT11Q/120 - 811.92 926.91 7197 1 7200 928.74 926.91 939.36 1.33
CMT11T/120 - 903.19 984.48 7196 1 7200 985.03 984.48 998.80 1.43
CMT4H/150 - 778.19 798.15 7295 1 7298 798.38 798.15 831.39 4.00
CMT4Q/150 - 857.54 890.11 7168 1 7200 890.12 890.11 913.93 2.61
CMT4T/150 - 920.63 950.12 7152 1 7200 950.59 950.12 990.39 4.07
CMT5H/200 - 902.34 922.85 7262 1 7265 922.88 922.85 992.37 7.01
CMT5Q/200 - 1022.08 1037.29 7249 1 7251 1040.25 1037.29 1134.72 8.59
CMT5T/200 - 1118.44 1129.15 6383 1 7201 1139.93 1129.15 1232.08 8.35

Avg. Gap (%) 2.40

Table 3.17: Root node statistics of the F1C over a set of VRPMPD representative in-
stances

Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

CMT1H/50 3 27 37.0 1.8 38.8 1.06
CMT1T/50 5 34 44.5 2.1 46.6 1.34
CMT2H/75 - 45 280.8 11.1 291.9 2.88
CMT2T/75 - 62 553.4 20.5 573.8 2.89
CMT3H/100 - 33 604.0 16.8 620.8 1.41
CMT3T/100 - 91 3520.0 81.9 3601.9 1.73
CMT12H/100 - 67 7168.0 32.2 7200.2 1.01
CMT12T/100 9 72 7206.0 17.5 7223.5 0.00
CMT11H/120 - 32 522.4 4.0 526.4 2.36
CMT11T/120 - 39 455.0 1.7 456.7 1.45
CMT4H/150 - 22 7236.6 3.4 7240.1 4.00
CMT4T/150 - 30 7096.0 5.3 7101.3 4.13
CMT5H/200 - 13 6908.8 4.1 6912.9 7.00
CMT5T/200 - 8 7445.6 2.1 7447.8 7.48

Table 3.20 shows the summary of the results obtained in the set of VRPMPD instances

of Salhi and Nagy. The value of the average gaps G1, G2 and G3 suggest that there are

practically no difference between the three formulations. Nonetheless, differently from

the VRPSPD results, where F2C-U consistently found better results, it was F1C that

produce, on average, slightly better LBs.



3.5 Concluding remarks 42

Table 3.18: Root node statistics of F2C-U over a set of VRPMPD representative instances
Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

CMT1H/50 3 30 49.6 2.0 51.7 1.05
CMT1T/50 5 41 68.3 3.2 71.4 1.39
CMT2H/75 - 53 355.2 9.4 364.7 2.93
CMT2T/75 - 58 492.1 19.2 511.3 2.81
CMT3H/100 - 52 1477.7 21.5 1499.2 1.39
CMT3T/100 - 110 4340.3 73.6 4413.9 1.71
CMT12H/100 - 45 671.4 2.9 674.3 0.96
CMT12T/100 9 39 505.1 2.9 508.0 0.00
CMT11H/120 - 83 6994.5 62.1 7056.6 2.37
CMT11T/120 - 118 5589.4 80.9 5670.3 1.41
CMT4H/150 - 31 7194.2 4.3 7198.5 3.97
CMT4T/150 - 30 7249.4 5.9 7255.2 4.02
CMT5H/200 - 4 6755.2 1.1 6756.4 7.50
CMT5T/200 - 4 7537.2 0.8 7538.0 8.00

Table 3.19: Root node statistics of F2C-D over a set of VRPMPD representative instances
Instance/ #v Sep. LP Sep. Root Gap
Customers Rounds Time (s) Time (s) Time (s) (%)

CMT1H/50 3 32 68.2 2.9 71.1 1.06
CMT1T/50 5 39 82.8 2.4 85.3 1.37
CMT2H/75 - 75 704.4 25.3 729.7 2.90
CMT2T/75 - 82 883.9 33.9 917.8 2.79
CMT3H/100 - 44 1142.7 15.5 1158.2 1.39
CMT3T/100 - 90 3882.4 74.2 3956.7 1.75
CMT12H/100 - 49 769.0 3.8 772.8 0.96
CMT12T/100 9 37 748.0 2.2 750.2 0.03
CMT11H/120 - 65 7246.7 26.2 7272.9 2.35
CMT11T/120 - 74 7178.3 17.6 7195.9 1.43
CMT4H/150 - 30 7274.2 21.1 7295.2 4.00
CMT4T/150 - 21 7148.7 3.0 7151.7 4.07
CMT5H/200 - 8 7259.8 2.2 7261.9 7.01
CMT5T/200 - 3 6382.6 0.6 6383.2 8.35

Table 3.20: Summary of the results obtained by the three formulations (VRPMPD)
Formulation Salhi and Nagy

G1 (%) G2 (%) G3 (%)

F1C 8.16 2.68 2.37
F2C-U 8.33 2.70 2.42
F2C-D 8.33 2.72 2.40

3.5 Concluding remarks

This chapter dealt with Mixed Integer Programming formulations for the the Vehicle

Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). An undirected and

a directed two-commodity flow formulations were proposed. They were tested within

a branch-and-cut scheme and their results were compared with the one-commodity flow

formulation of Dell’Amico et al. [44]. The optimal solutions of 30 VRPSPD open problems

were proved, as can be seen in Table 3.21. The three formulations were also tested in

benchmark instances of the Vehicle Routing Problem with Mixed Pickup and Delivery

(VRPMPD), which is a particular case of the VRPSPD, and were able to prove the

optimality of 7 open problems (see Table 3.21). Furthermore, new lower bounds were
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produced for both VRPSPD and VRPMPD instances with up to 200 customers. In

addition, although it has been shown that the one-commodity flow formulation produces

a stronger linear relaxation, the two-commodity flow formulations have found, on average,

better lower bounds in the VRPSPD instances. As for the VRPMPD, the lower bounds

were, on average, quite similar, but with a slight superiority of F1C.

Table 3.21: Optimal Solutions
Instance/ #v OPT Instance/ #v OPT
Customers Customers

SCA3-0/50 4 635.62 CON3-7/50 4 576.48
SCA3-1/50 4 697.84 CON3-8/50 4 523.05
SCA3-2/50 4 659.34 CON3-9/50 4 578.25
SCA3-3/50 4 680.04 CON8-1/50 9 740.85
SCA3-4/50 4 690.50 CON8-4/50 9 772.25
SCA3-5/50 4 659.90 CON8-7/50 9 811.96
SCA3-6/50 4 651.09 CMT1X/50 3 466.77
SCA3-7/50 4 659.17 CMT1Y/50 3 466.77
SCA3-8/50 4 719.48 r201/100 3 666.20
SCA3-9/50 4 681.00 c201/100 5 662.07
SCA8-3/50 9 983.34 rc201/100 3 672.92
SCA8-6/50 9 971.82 CMT1H/50 3 465.02
CON3-0/50 4 616.52 CMT1Q/50 4 489.74
CON3-1/50 4 554.47 CMT1T/50 5 520.06
CON3-2/50 4 518.00 CMT3Q/100 6 747.15
CON3-3/50 4 591.19 CMT12H/100 5 629.37
CON3-4/50 4 588.79 CMT12Q/100 7 729.25
CON3-5/50 4 563.70 CMT12T/100 9 787.52
CON3-6/50 4 499.05



Chapter 4

Branch-and-cut with Lazy Separation for
the Single and Multi-depot Vehicle Rout-
ing Problem with Simultaneous/Mixed
Pickup and Delivery

This chapter presents a BC algorithm that is capable of dealing with the VRPSPD,

VRPMPD and MDVRPMPD. This BC includes cuts from the CVRPSEP library [114]

and it is based on a mathematical formulation composed only by edge variables. The

constraints that ensure that the capacities are not exceeded in the middle of a route and

those that ensure that a route starts and ends at the same depot are applied in a lazy

fashion. The developed solution approach was tested in well-known VRPSPD/VRPMPD

instances with up to 200 customers and it was capable of improving most of the previously

known lower bounds. The contents of the present chapter were partially published in [161].

4.1 Mathematical formulation

Let xij be an integer variable counting the number of times that an edge {i, j} ∈ E

appears in a route, this number can only be 2 for an edge used in a route with a single

customer. Given a set S ⊆ V ′, let d(S) and p(S) be the sum of the delivery and pickup

demands, respectively, of all customers in S. Let e(S) = dd(S)/Qe and q(S) = dp(S)/Qe.
Finally, let vk be integer variables representing the number of vehicles used at each depot

k ∈ G in the solution. Finally, define S̄ as the complementary set of S, plus the depot

{0}. Define the following IP:

min
∑
i∈V

∑
j∈V,j>i

cijxij (4.1)
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s.t.
∑

i∈V,i<k

xik +
∑

j∈V,j>k

xkj = 2 ∀k ∈ V ′ (4.2)∑
j∈V ′

x0j = 2vk ∀k ∈ G (4.3)∑
i∈S

∑
j∈S̄,i<j

xij +
∑
i∈S̄

∑
j∈S,i<j

xij ≥ 2e(S) ∀S ⊆ V ′ (4.4)

∑
i∈S

∑
j∈S̄,i<j

xij +
∑
i∈S̄

∑
j∈S,i<j

xij ≥ 2q(S) ∀S ⊆ V ′ (4.5)

0 ≤ vk ≤ mk ∀k ∈ G (4.6)

xij ∈ {0, 1} ∀{i, j} ∈ E, i > 0 (4.7)

xij ∈ {0, 1, 2} ∀{0, j} ∈ E. (4.8)

This is not a complete formulation for the VRPSPD. While Constraints (4.4) and

(4.5) are enough to ensure that all vehicles leave and return to the depot with load at

most Q, it is possible that a vehicle capacity may be exceeded in the middle of the

route. In fact, previous VRPSPD formulations use auxiliary flows for controlling vehicle

load ([44, 159, 160]). Such additional variables and constraints have the drawback of

increasing the solution time of the associated LPs. The new formulation proposed in this

work eliminates those unfeasible routes with constraints over the edge variables. Let R
be the set of all subsets of edges, not adjacent to the depot, representing routes (in both

directions) that are feasible with respect to both pickup and delivery alone, but not with

respect to the simultaneous pickup and delivery. The following constraints are added to

(4.1-4.8) in order to obtain a complete formulation for the VRPSPD, called F1:∑
{i,j}∈R

xij ≤ |R| − 1 ∀R ∈ R (4.9)

Constraints similar to (4.9) are sometimes called “no-good cuts” since they only remove

a single infeasible integral point, which is usually weak in a polyhedral sense, because

these kind of cuts are seldom violated by fractional solutions. In this case, a constraint

associated to an unfeasible route R actually eliminates all integral solutions that contain

such route. Nevertheless, they are still weak and only worthy to be applied in a lazy

fashion in a BC algorithm, with the purpose of checking the feasibility of the integral

solutions found along the tree.

Formulation F1 is a complete formulation for the VRPSPD/VRPMPD, but not for

the MDVRPMPD, because there are no constraints preventing a route from starting and

ending in different depots. Let R′ be the set of all feasible VRPSPD routes, represented

by their edges (including those adjacent to the depot), that start and end in different

depots. With a view of obtaining a complete formulation for the MDVRPMPD, called

F1-MD, one can add the following constraints to F1:
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∑
{0,j}∈R

xij + 2
∑

{i,j}∈R,i>0

xij ≤ 2(|R| − 2) + 1 ∀R ∈ R′ (4.10)

Constraints (4.10) follow the same idea of constraints (4.9) and therefore they are

only worthy to be applied in a lazy fashion within a BC scheme.

4.2 Computational experiments with a Branch-and-cut

approach

A BC algorithm over F1 and F1-MD was implemented. Besides capacity inequalities

(4.4-4.5), two other families of valid CVRP inequalities, namely the multistar and comb

inequalities, are also separated using the CVRPSEP package [114, 115]. Firstly, the

separation is performed considering only the delivery demands (like in Constraints (4.4)).

When no violated inequalities are found one then starts separating the pickup demands

(like in (4.5)). For each separation routine of the CVRPSEP package a limit of 50 violated

cuts per iteration was established. The multistar and comb inequalities are generated only

at the root node. The rounded capacity cuts (4.4-4.5) are generated throughout the tree

up to the 7th level and whenever an integer solution is found. Moreover, every time a

feasible integer CVRP solution is found, it is necessary to check whether it is also feasible

for the VRPSPD. If it is not the case, inequality (4.9) is added for each unfeasible route R.

For the MDVRPMPD, if a route is feasible with respect to the VRPMPD but not feasible

for the MDVRPMPD, i.e., a route that starts and ends in different depots, constraints

(4.10) are added.

The BC was implemented using the CPLEX 11.2 callable library and executed in an

Intel Core 2 Quad with 2.4 GHz and 4 GB of RAM running under Linux 64 bits. Only a

single thread was used.

In the tables presented hereafter, v is the number of vehicles in the best known

solution of VRPSPD/VRPMPD instances and the number of available vehicles per depot

for MDVRPMPD instances, m is the number of depots, Root LB indicates the root

lower bound, after CVRPSEP cuts are added, Root Time is the CPU time in seconds

spent at the root node, Tree size is the number of nodes opened, Total time is the total

CPU time in seconds of the BC procedure, #Lazy Cuts 1 and #Lazy Cuts 2 denote

the number of lazy cuts (4.9) and (4.10), respectively, added, Prev. LB is the best lower

bound obtained in Chapter 3, LB is the lower bound (LB) determined by the proposed

BC, UB is the upper bound reported in [157], [64] and Chapter 6 for the VRPSPD,

VRPMPD and MDVRPMPD, respectively, and Gap corresponds to the gap between the

LB and the UB. Proven optimal solutions are highlighted in boldface and new optimal
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solutions are underlined.

4.2.1 VRPSPD

Tables 4.1-4.3 present the results obtained by the BC on the set of instances of Dethloff

[48], Salhi and Nagy [149] and Montané and Galvão [121], respectively. For the first set

of instances, the BC was ran until the optimal solution was found, whereas a time limit

of 2 hours of execution was imposed for the remaining sets.

From Table 4.1, it is possible to observe that, except for the instance CON8-9, the

optimality of all instances were proved within up to 5000 seconds. In the instances that

require less vehicles the BC spent at most 33 seconds to find the optimal solution. Fur-

thermore, 15 new optimal solutions were proved. From Table 4.2 it can be seen that,

except for the instance CMT5Y, all the LBs were equaled or improved. Also, the optimal-

ity of the instances CMT3X and CMT3Y, involving 100 customers, were proved. Lastly,

from Table 4.3, one can verify that the BC equaled or improved the LBs of the instances

involving 100 customers, regardless of the number of vehicles. However, for the instances

involving 200 customers the results were rather inconsistent. On one hand, the BC found

the optimal solutions for the instances requiring few vehicles. On the other hand, the BC

obtained poor LBs for the instances requiring a large number of vehicles.

4.2.2 VRPMPD

Table 4.4 shows the results obtained in the instances of Salhi and Nagy. A time limit of

2 hours was imposed for the BC (which was sometimes exceeded by CPLEX), except for

the instances CMT3H, CMT3T and CMT11Q, where we the BC algorithm was ran until

the optimal solution was found. It can be verified that all LBs were either equaled or

improved and one new optimal solution was found (CMT11Q).

4.2.3 MDVRPMPD

The proposed algorithm was tested in the set of MDVRPMPD instances developed by

Salhi and Nagy [149]. This set consists of 33 test-problems with 50-249 customers. Only

those without route duration constraints (50-100 customers) were considered. Table 4.5

presents the results found by the BC algorithm in these instances. It can be observed that

BC managed to find the optimal solutions of 4 open-problems and to obtain the first lower

bounds for this set of instances. Furthermore, it is possible to verify that the quality of the

linear relaxation decreases when the number of depots and vehicles per depot increases.

Although the overall results are reasonably satisfactory, the BC algorithm was not as

effective for the MDVRPMPD as it was for the VRPSPD/VRPMPD.
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Table 4.1: Results obtained on the instances of Dethloff [48]
Instance/ Root Root Tree Total #Lazy Prev. Gap
Customers

v
LB Time (s) size Time (s) Cuts 1 LB

LB UB
(%)

SCA3-0/50 4 619.21 5.18 543 16.8 5 635.62 635.62 635.62 0.00
SCA3-1/50 4 682.34 1.90 129 6.75 0 697.84 697.84 697.84 0.00
SCA3-2/50 4 659.34 0.60 1 0.61 0 659.34 659.34 659.34 0.00
SCA3-3/50 4 667.56 1.76 35 2.75 0 680.04 680.04 680.04 0.00
SCA3-4/50 4 676.56 6.75 98 10.4 0 690.50 690.50 690.50 0.00
SCA3-5/50 4 647.90 1.16 623 5.71 26 659.90 659.91 659.91 0.00
SCA3-6/50 4 625.60 1.29 2655 239 0 651.09 651.09 651.09 0.00
SCA3-7/50 4 654.97 3.70 5 3.87 0 659.17 659.17 659.17 0.00
SCA3-8/50 4 688.21 1.97 5880 710 0 719.48 719.48 719.48 0.00
SCA3-9/50 4 671.07 2.04 27 2.88 0 681.00 681.00 681.00 0.00
SCA8-0/50 9 926.03 18.8 2836 557 0 936.89 961.50 961.50 0.00
SCA8-1/50 9 1002.29 15.5 14292 3288 2 1020.28 1049.65 1049.65 0.00
SCA8-2/50 9 1013.37 19.8 4321 553 0 1024.24 1039.64 1039.64 0.00
SCA8-3/50 9 956.10 11.9 350 66.5 0 983.34 983.34 983.34 0.00
SCA8-4/50 9 1027.24 25.9 9136 931 1 1041.65 1065.49 1065.49 0.00
SCA8-5/50 9 998.05 13.7 948 149 3 1015.19 1027.08 1027.08 0.00
SCA8-6/50 9 948.26 12.8 750 95.3 12 971.82 971.82 971.82 0.00
SCA8-7/50 9 1018.20 16.4 6303 600 4 1031.56 1051.28 1051.28 0.00
SCA8-8/50 9 1038.86 6.15 957 100 1 1048.93 1071.18 1071.18 0.00
SCA8-9/50 9 1019.25 12.0 9068 1381 1 1034.28 1060.50 1060.50 0.00
CON3-0/50 4 611.30 2.58 21 3.39 0 616.52 616.52 616.52 0.00
CON3-1/50 4 546.65 8.26 142 13.7 0 554.47 554.47 554.47 0.00
CON3-2/50 4 505.06 3.94 293 22.4 6 518.01 518.01 518.01 0.00
CON3-3/50 4 584.28 2.05 22 2.62 0 591.19 591.19 591.19 0.00
CON3-4/50 4 577.52 1.04 322 10.4 5 588.79 588.79 588.79 0.00
CON3-5/50 4 552.91 3.22 350 20.2 2 563.70 563.70 563.70 0.00
CON3-6/50 4 486.98 5.22 352 32.5 0 499.05 499.05 499.05 0.00
CON3-7/50 4 561.62 0.97 494 29.1 0 576.48 576.48 576.48 0.00
CON3-8/50 4 514.84 5.03 97 8.55 3 523.05 523.05 523.05 0.00
CON3-9/50 4 564.78 2.51 175 19.4 0 578.25 578.25 578.25 0.00
CON8-0/50 9 830.03 41.5 1760 272 0 845.19 857.17 857.17 0.00
CON8-1/50 9 722.38 27.7 1179 200 1 740.85 740.85 740.85 0.00
CON8-2/50 9 685.66 39.2 14315 4842 1 695.70 712.89 712.89 0.00
CON8-3/50 10 787.84 39.3 12377 1599 2 797.57 811.07 811.07 0.00
CON8-4/50 9 751.95 21.2 806 159 3 772.25 772.25 772.25 0.00
CON8-5/50 9 729.92 15.1 6369 1212 0 741.51 754.88 754.88 0.00
CON8-6/50 9 648.64 18.7 10738 2865 0 662.14 678.92 678.92 0.00
CON8-7/50 9 793.50 15.5 228 38.4 2 811.96 811.96 811.96 0.00
CON8-8/50 9 744.52 26.8 3520 606 0 757.45 767.53 767.53 0.00
CON8-9/50 9 773.65 45.0 90738 38137 4 786.40 809.00 809.00 0.00

Table 4.2: Results obtained on the VRPSPD instances of Salhi and Nagy [149]
Instance/ Root Root Tree Total #Lazy Prev. Gap
Customers

v
LB Time (s) size Time (s) Cuts 1 LB

LB UB
(%)

CMT1X/50 3 460.73 5.56 78 10.3 0 466.77 466.77 466.77 0.00
CMT1Y/50 3 460.69 15.5 60 19.3 0 466.77 466.77 466.77 0.00
CMT2X/75 6 658.38 100 17718 7200 0 655.98 666.57 684.21 2.65
CMT2Y/75 6 658.12 200 19875 7200 0 655.41 666.69 684.21 2.63
CMT3X/100 5 711.77 79.7 8521 2461 36 705.54 721.27 721.27 0.00
CMT3Y/100 5 711.89 140 9313 3226 36 705.62 721.27 721.27 0.00
CMT12X/100 5 635.52 50.3 10460 7200 1 629.39 643.76 662.22 2.87
CMT12Y/100 5 635.45 65.1 11621 7200 0 629.18 644.10 662.22 2.81
CMT11X/120 4 793.11 892 5988 7200 0 776.35 799.67 833.92 4.28
CMT11Y/120 4 793.54 1098 4063 7200 0 775.74 799.02 833.92 4.37
CMT4X/150 7 826.74 1950 4012 7200 0 817.11 831.18 852.46 2.56
CMT4Y/150 7 826.34 2568 4380 7200 0 816.99 831.65 852.46 2.50
CMT5X/200 10 971.07 7202 1 7206 0 954.87 971.07 1029.25 5.99
CMT5Y/200 10 937.66 7248 1 7252 0 953.56 937.66 1029.25 9.77
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Table 4.3: Results obtained on the instances of Montané and Galvão [121]
Instance/ Root Root Tree Total #Lazy Prev. Gap
Customers

v
LB Time (s) size Time (s) Cuts 1 LB

LB UB
(%)

r101/100 12 972.58 1282 5528 7200 0 973.91 978.28 1009.95 3.24
r201/100 3 664.80 42.9 10 43.7 0 666.20 666.20 666.20 0.00
c101/100 16 1194.69 722 10480 7200 0 1196.70 1202.59 1220.18 1.46
c201/100 5 657.97 24.6 12 28.3 0 662.07 662.07 662.07 0.00
rc101/100 10 1028.06 1067 8208 7200 0 1029.38 1041.06 1059.32 1.75
rc201/100 3 671.84 6.37 3 6.42 0 672.92 672.92 672.92 0.00
r1 2 1/200 23 2681.05 7198 1 7202 0 3084.97 2681.05 3360.02 25.32
r2 2 1/200 5 1656.62 4477 974 5551 0 1618.76 1665.58 1665.58 0.00
c1 2 1/200 27 2857.45 7196 1 the 7201 0 3475.03 2857.45 3629.89 27.03
c2 2 1/200 9 1638.99 7197 1 7203 0 1647.83 1638.99 1726.59 5.34
rc1 2 1/200 23 2656.78 7196 1 7201 0 3093.30 2656.78 3306.00 24.44
rc2 2 1/200 5 1551.54 1932 483 2323 0 1551.07 1560.00 1560.00 0.00

Table 4.4: Results obtained on the VRPMPD instances of Salhi and Nagy [149]
Instance/ Root Root Tree Total #Lazy Prev. Gap
Customers

v
LB Time (s) size Time (s) Cuts 1 LB

LB UB
(%)

CMT1H/50 3 460.10 7.14 103 9.67 10 465.02 465.02 465.02 0.00
CMT1Q/50 4 488.15 5.65 5 5.87 0 489.74 489.74 489.74 0.00
CMT1T/50 5 512.61 4.98 126 11.7 0 520.06 520.06 520.06 0.00
CMT2H/75 - 643.28 101 15003 7200 0 647.84 653.79 662.63 1.33
CMT2Q/75 - 707.66 100 12256 7200 0 711.30 717.36 732.76 2.10
CMT2T/75 - 759.92 151 15585 7200 0 764.99 770.35 782.77 1.59
CMT3H/100 3 691.32 58.0 58219 42606 481 694.92 700.94 700.94 0.00
CMT3Q/100 6 744.50 95.5 39 113 0 747.15 747.15 747.15 0.00
CMT3T/100 5 784.13 342 92974 164046 0 787.12 798.07 798.07 0.00
CMT12H/100 - 623.00 40.3 17791 3018 180 629.37 629.37 629.37 0.00
CMT12Q/100 - 721.81 83.9 1577 686 4 729.25 729.25 729.25 0.00
CMT12T/100 9 787.27 37.7 3 37.9 0 787.52 787.52 787.52 0.00
CMT11H/120 - 801.24 353 4296 7200 0 801.05 806.46 820.35 1.69
CMT11Q/120 6 928.28 653 95065 209428 9 928.74 939.36 939.36 0.00
CMT11T/120 - 984.81 359 7232 7200 0 985.03 989.32 998.80 0.95
CMT4H/150 - 799.19 1122 3544 7200 0 798.38 804.10 831.39 3.28
CMT4Q/150 - 892.99 2920 3243 7200 0 890.12 898.28 913.93 1.71
CMT4T/150 - 953.41 4246 1873 7200 0 950.59 956.54 990.39 3.42
CMT5H/199 - 931.02 7209 1 7215 0 922.88 931.02 992.37 6.18
CMT5Q/199 - 1056.74 7206 1 7213 0 1040.25 1056.74 1134.72 6.87
CMT5T/199 - 1145.61 7192 1 7200 0 1139.93 1145.63 1232.08 7.02

4.3 Concluding remarks

The success of the proposed BC when compared to previous approaches can be attributed

to the use of a formulation where the load of a vehicle in the middle of a route is only

controlled by weak constraints, that are only separated in a lazy way over integral so-

lutions, avoiding complicated and larger extended formulations. In practice (at least on

the instances from the literature), it seems that there are relatively few routes where the

load capacity is respected in both ends but not in the middle, as can be observed by the

small number of lazy cuts added throughout the BC (see Tables 4.1-2.8). However, the

BC becomes less effective when the number of vehicles and/or depots increases.
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Table 4.5: Results obtained on the MDVRPMPD instances of Salhi and Nagy [149]
Instance/ Root Root Tree Total #Lazy #Lazy Gap
Customers

v |G|
LB Time (s) size Time (s) Cuts 1 Cuts 2

LB UB
(%)

GJ01H/50 4 4 459.594 5.28 34210 7200 0 263 480.43 499.12 3.74
GJ01Q/50 4 4 492.635 3.34 44224 7200 2 132 515.09 528.30 2.50
GJ01T/50 4 4 532.425 11.0 33046 7200 0 45 558.12 569.43 1.99
GJ02H/50 2 4 428.195 0.46 2554 93.7 2 132 440.00 440.00 0.00
GJ02Q/50 2 4 437.079 1.00 4065 224 0 127 449.72 449.72 0.00
GJ02T/50 2 4 447.174 3.90 5321 517 0 151 464.13 464.13 0.00
GJ03H/75 3 5 559.289 15.1 27805 7200 5 71 572.75 579.45 1.16
GJ03Q/75 3 5 580.047 14.3 22271 7200 0 56 591.35 605.25 2.30
GJ03T/75 3 5 594.704 60.9 20880 7200 0 10 606.68 624.44 2.84
GJ04H/100 8 2 745.99 250 6362 7200 0 0 754.33 789.19 4.42
GJ04Q/100 8 2 831.759 364 8446 7200 0 0 841.74 874.78 3.78
GJ04T/100 8 2 915.006 589 8595 7200 0 0 923.90 962.25 3.99
GJ05H/100 5 2 659.855 13.6 16762 7200 9 12 668.72 676.81 1.20
GJ05Q/100 5 2 692.707 36.3 493 278 0 12 700.15 700.15 0.00
GJ05T/100 5 2 715.925 97.8 10080 7200 0 2 723.35 733.17 1.34
GJ06H/100 6 3 702.486 167 8408 7200 0 0 709.71 742.18 4.38
GJ06Q/100 6 3 756.244 358 9531 7200 0 0 765.70 793.85 3.55
GJ06T/100 6 3 805.96 735 8561 7200 0 0 815.61 850.82 4.14
GJ07H/100 4 4 699.282 64.3 10448 7200 0 0 706.86 732.73 3.53
GJ07Q/100 4 4 758.286 166 10011 7200 0 0 768.21 802.20 4.24
GJ07T/100 4 4 806.337 315 11053 7200 0 0 816.31 853.54 4.36



Chapter 5

Branch-cut-and-price for the Vehicle
Routing Problem with Simultane-
ous/Mixed Pickup and Delivery

This chapter presents a Branch-cut-and-price (BCP) algorithm for the VRPSPD that is

also capable of solving the VRPMPD. To the knowledge of the author this is the first

attempt to solve this problem using a BCP approach. The developed algorithm consists

of an extension of the one proposed by Fukasawa et al. [63] for the CVRP. Computational

experiments were carried out on instances with up to 200 customers. Four instances were

solved for the first time and some LBs were improved.

BCP is a generalization of both Branch-and-cut (BC) and Branch-and-price (BP)

algorithms. It can be used to solve formulations with a very large number of constraints

and variables. In the case of VRPs, such variables (columns) are usually associated to

routes. The columns are generated by solving a so-called pricing subproblem which aims

at finding the single vehicle route with most negative reduced cost. The cuts (constraints)

are expressed in terms of edge variables and then translated to route variables. The reader

is referred to [137] for further details on how this approach can be generally applied to

CO problems.

5.1 Introducing the pd-route

Let a q-route be a walk that starts at the depot vertex, traverses a sequence of customer

vertices with total delivery (or pickup) demand at most Q, and returns to the depot.

Some customers may be visited more than once, so the set of valid CVRP routes is

strictly contained in the set of q-routes. For the VRPSPD, the direct use of q-routes

does not yield strong relaxations because the pickup (or delivery) demands are ignored.

Therefore, the concept of pd-route, which extends the definition of q-route by considering

both pickup and delivery demands, is introduced, as given by Definition 1.
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Definition 1. A pd-route is a sequence of vertices v1, v2, . . . , vk with vi 6= vi+1, i =

1, 2, . . . , k − 1, v1 = vk = 0, vi ∈ V ′, i = 2, . . . , k − 1, and
∑i

j=2 pvj +
∑k−1

j=i+1 dvj ≤
Q, i = 1, . . . , k − 1. The cost of this pd-route is given by the sum of its edge costs, i.e.,∑k−1

i=1 cvi,vi+1

Fig. 5.1 illustrates an example of a pd-route. In this case, the pd-route is defined by

0→ 1→ 2→ 3→ 1→ 0. The vehicle leaves the depot with a load of 22 and returns to

depot with a load of 30. Notice that the edge {0,1} is traversed twice, which shows that

the existence of cycles is valid on pd-routes.

1 2 10

2 15 5
3 3 5

Customer id

2 Cust.

3

ip

0

Depot1

Q = 30

22 / 0

Delivery load / 
Pickup load

20 / 10

2 / 20

5 / 15

0 / 30

Figure 5.1: Example of a pd-route

5.2 Mathematical formulation

Consider the following Formulation F1 described in the previous chapter.

(F1) min
∑
i∈V

∑
j∈V,j>i

cijxij (5.1)

s.t.
∑

i∈V,i<k

xik +
∑

j∈V,j>k

xkj = 2 ∀k ∈ V ′ (5.2)∑
j∈V ′

x0j = 2v (5.3)∑
i∈S

∑
j∈S̄,i<j

xij +
∑
i∈S̄

∑
j∈S,i<j

xij ≥ 2e(S) ∀S ⊆ V ′ (5.4)
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∑
i∈S

∑
j∈S̄,i<j

xij +
∑
i∈S̄

∑
j∈S,i<j

xij ≥ 2q(S) ∀S ⊆ V ′ (5.5)

∑
{i,j}∈R

xij ≤ |R| − 1 ∀R ∈ R (5.6)

v ∈ Z+ (5.7)

xij ∈ {0, 1} ∀{i, j} ∈ E, i > 0 (5.8)

xij ∈ {0, 1, 2} ∀{0, j} ∈ E. (5.9)

Formulation F1 can be strengthened by adding an exponential number of variables

corresponding to the pd-routes. Enumerate all possible pd-routes from 1 to P and let atij

be the number of times an edge {i, j} appears in the t-th pd-route. Define λt as a positive

variable associated to the t-th pd-route. In order to improve F1 the following constraints

are added:

P∑
t=1

atijλt − xij = 0 ∀{i, j} ∈ E (5.10)

λt ≥ 0 (t = 1, . . . , P ) (5.11)

Constraints (5.10) state that x is as a weighted sum of edge-incidence vectors of pd-

routes. Notice that constraints (5.6) can be dropped from F1 since they are implied by

(5.10). Hence, define F2 as the IP formulation composed by (5.1)-(5.5) and (5.7)-(5.11).

When solving the linear relaxation of F2 by column and row generation, a more

compact Master LP is obtained if every occurrence xij in (5.2)-(5.5) is replaced by its

equivalent given by (5.10). The resulting LP will be referred to as the Dantzig-Wolfe

Master (DWM):

(DWM) min
P∑
t=1

(
∑
i∈V

∑
j∈V,j>i

cija
t
ij)λt (5.12)

s.t.
P∑
t=1

(
∑

i∈V,i<k

atik +
∑

j∈V,j>k

atkj)λt = 2 ∀k ∈ V ′ (5.13)

P∑
t=1

(
∑
j∈V ′

at0j)λt = 2v (5.14)

P∑
t=1

(
∑
i∈S

∑
j∈S̄,i<j

atij +
∑
i∈S̄

∑
j∈S,i<j

atij)λt ≥ 2e(S) ∀S ⊆ V ′ (5.15)
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P∑
t=1

(
∑
i∈S

∑
j∈S̄,i<j

atij +
∑
i∈S̄

∑
j∈S,i<j

atij)λt ≥ 2q(S) ∀S ⊆ V ′ (5.16)

P∑
t=1

atijλt ≤ 1 ∀{i, j} ∈ E, i > 0 (5.17)

λt ≥ 0 (t = 1, . . . , P ) (5.18)

The reduced cost of a given λ variable is the sum of the reduced costs of the edges in

the corresponding pd-route. Let µ, ν, π, ω and σ be the dual variables associated with

constraints (5.13), (5.14), (5.15), (5.16) and (5.17) respectively. Define S : S̄ as the set

composed by the edges with one end in S and the other end in S̄. The reduced cost c̄ij

of an edge is given by:

c̄ij =


cij − µi − µj −

∑
S|S:S̄3{i,j}

πS −
∑

S|S:S̄3{i,j}

ωS − σij ∀{i, j} ∈ E, i > 0

cij − ν −
∑
S|j∈S

πS −
∑
S|j∈S

ωS ∀{0, j} ∈ E

In general, a cut of the form
∑P

t=1(
∑

{i,j}∈E hija
t
ij)λt ≥ b, with dual variable α, con-

tributes with −hijα to the value of c̄ij.

5.3 The Branch-cut-and-price algorithm

As already mentioned, the BCP algorithm presented in this work is mainly based on the

one developed in [63] for the CVRP. Some elements such as branching rules, node selection

strategy and strong branching scheme remained practically unchanged with respect to

the original version. On the other hand, the column generation procedure had to be

completely redesigned in order to deal with both pickup and delivery demands.

5.3.1 Pricing subproblem

The pricing subproblem can be seen as a shortest path problem with resource constraints,

which is known to be strongly NP-hard when cycles are forbidden (see Dror [52]). How-

ever, it can be solved in pseudo-polynomial time when pd-routes are considered. Therefore,

the pricing subproblem consists of finding pd-routes with minimum reduced costs.

In this work a dynamic programming based algorithm is used to solve the pricing

subproblem. The load resources are denoted by D and P, where the first indicates the

total amount of load to be delivered, while the second indicates the cumulative amount

of load that was collected. Resource D is initialized with a value less or equal to Q and
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resource P is initialized with 0. Every time a customer j is visited the value of D decreases

by dj and the value of P increases by pj. A state is here denoted by a triple (j,D,P)
and it represents that customer j has just been visited, with D demand units to be still

delivered and P demand units already picked up.

Let c̄(i,D,P) be the least costly walk from customer i to the depot with respect to

the edge reduced costs. The recursive expression of the dynamic programming can be

expressed as follows.

c̄(i,D,P) =


min
j
{c̄ij + c̄(j,D − dj,P + pj) | D − dj ≥ 0, (D − dj) + (P + pj) ≤ Q},

if D > 0

c̄i0, if D = 0

The minimum reduced cost of a pd-route is given by mini,D{c̄0i + c̄(i,D, pi)}.
In classical dynamic programming recursion, the optimal cost of a given state is writ-

ten as a function of other known optimal state costs. Conversely, in label correcting

approaches, a state with known optimal cost is extended to others with unknown optimal

cost. In view of the latter, for each state there is an associated label containing three ele-

ments, namely: the customer identifier j; the minimum reduced cost, given by c(j,D,P),
of a walk that starts at the depot and ends at state (j,D,P); and a pointer to a label

representing the walk up to the previous customer.

The developed label correcting based dynamic programming algorithm starts by con-

sidering all feasible expansions from the depot given by states (0,D, 0),D ∈ {1, 2, . . . , Q},
to each customer j ∈ V ′, thus generating the states (j,D − dj, pj). This procedure is

repeated for every new generated state and a label is updated when c(i,D,P) + cij <

c(j,D − dj,P + pj). Of course, a state can be only expanded when its optimal walk

had been already computed. The algorithm terminates when feasible expansions are no

longer possible. The optimal walk of each customer is then extended to the depot in

order to obtain a pd-route. The columns associated to pd-routes with negative reduced

costs are added to the master problem. The computational complexity of the dynamic

programming approach is O(n2Q2).

Fig. 5.2 shows an example of all feasible states and pd-routes generated during the

dynamic programming. It can be seen that the initial states are (0, 1, 0), (0, 2, 0) and

(0, 3, 0). A total of 7 possible pd-routes can be obtained but only those with negative

reduced costs are considered as mentioned above. Notice that (1, 0, 3) is the only state

that is generated from two other states, namely (3, 1, 1) and (2, 1, 1). In this case, the

optimal walk for this state is the one with minimum cost between walks 0→ 2→ 1 and

0→ 3→ 1. The example assumes that the latter walk is the optimal one.

A crucial aspect regarding the performance of the proposed dynamic programming
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Figure 5.2: Example of states and pd-routes generated during the dynamic programming

algorithm is the state elimination. A particular expansion can be avoided if it is known

in advance that the optimal walk of the state generated from such expansion will never

be in a pd-route with negative reduced cost. In order to apply this type of strategy one

must compute a valid LB for every possible state. In view of this, a relaxed version of

the pricing subproblem was formulated by only considering the delivery demands. This

relaxed problem is also solved using dynamic programming to fill a matrix where each

entry M(j,D) corresponds to the least costly walk given by c(M(j,D)) starting from

the depot and ending at customer j using total delivery demand exactly D. Therefore

one can avoid all expansions from a state (i,D,P) if c(i,D,P) + c(M(i,D + di)) ≥ 0.

Furthermore, one can also avoid an expansion from state (i,D,P) to state (j,D−dj,P+pj)

if c(i,D,P) + cij + c(M(j,D)) ≥ 0.

The full execution of the dynamic programming algorithm can be very time consum-

ing. A common speed-up strategy is to employ heuristic acceleration with a view of

finding columns (pd-routes) with negative reduced costs more faster. The full dynamic

programming procedure is then only applied when the heuristics fail to obtain pd-routes

with negative reduced costs. The proposed heuristic strategy consists of a combination

between two techniques: scaling and sparsification. Let g > 1 be the scaling factor.

The scaling consists of modifying the customers original delivery and pickup demands to

d′i(g) = ddi/ge, i ∈ V ′ and p′i(g) = dpi/ge, i ∈ V ′ respectively, and the original vehicle

capacity to Q′ = bQ/gc. Hence, the computational complexity will be in function of the

capacity Q′ ≤ Q. The sparsification limits the number of possible expansions from a

state (i,D,P) to those states associated with the vertices that are in the neighborhood of

i. These neighbors are computed only once in the beginning of the algorithm using the

Minimum Spanning Tree based approach presented in [63].
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Finally, in order to strengthen the formulation, pd-routes with 2-cycle are forbidden.

This is done by simply keeping the label of the second least costly walk of each state [32].

5.3.2 Cut generation

The rounded capacity cuts (5.15)-(5.16) and the bound cuts (5.17) are separated in every

node of the branch-and-bound tree. In addition to these cuts, the strengthened comb cuts

are also applied, but only at the root node. The capacity and comb cuts are separated

using the CVRPSEP package [114].

5.4 Computational experiments

The BCP algorithm was coded in C++ and executed in an Intel Core 2 Quad with 2.4

GHz and 4 GB of RAM running under Linux 64 bits. Linear Programs were solved

using CPLEX 11.2. Only a single thread was used in the experiments. The same set of

VRPSPD/VRPMPD instances used in the previous two chapters were considered here.

5.4.1 Data preprocessing

The data of the VRPSPD instances proposed in [48, 149] contain fractional values with 6

decimal places. This becomes an issue to the dynamic programming algorithm presented

in Section 5.3.1, since the conversion of demands and capacities to integer values results

in very large values of Q. In order to avoid this, the capacity is divided by a scaling factor

r such that the new capacity Q/r is integral and not greater than 250. The demands

are also divided by r and rounded down. In addition, for each delivery demand that is

zero, its value is set one and the vehicle capacity is incremented by one unit. Notice

that one must also ensure that the total increase on the vehicle capacity does not exceed

the maximum number of customers with incremented delivery demands that could fit

into a single route (considering the pickup demands). These adaptations correspond to a

(usually mild) relaxation of the pricing subproblem, allowing some routes that violate the

true capacities. Since the rounded capacity cuts are applied over the original instance,

one can ensure that the original vehicle capacity will be never violated in the depot.

Nevertheless, these cuts are still not sufficient to prevent the algorithm of generating

infeasible integer solutions, i.e., those containing at least one vehicle whose capacity is

violated in the middle of the route. The cuts that ensure that the vehicle capacity is not

exceeded in the middle of a route, i.e. those given by (5.6) are separated in a lazy fashion.

Very few such cuts are needed in practice.
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5.4.2 Results

In the following tables, Instance is the name of the instance, Customers is the number

of customers, #vehicles is the number of vehicles in the best known solution or a LB

on the number of vehicles, Root LB indicates the root LB, Root Time is the CPU

time in seconds spent at the root node, Tree size is the number of nodes opened, Total

time is the total CPU time in seconds of the BCP procedure, Prev. LB is the best

known LB obtained considering Chapters 3 and 4, LB is the LB determined by BCP,

UB is the upper bound reported in [157] and [64, 161] for the VRPSPD and VRPMPD,

respectively. Previously known optimal solutions and improved LBs are highlighted in

boldface and new optimal solutions are underlined.

The LBs obtained at the root node are reported for all VRPSPD/VRPMPD. For

those instances with a relatively large number of customers per vehicle a time limit of 2

hours was imposed (CMT11X, CMT11Y, r201, rc101, r2 2 1, rc2 2 1 and CMT11H and

CMT4T). Nevertheless, this limit was exceeded in some instances because it was decided

not to interrupt the execution of the algorithm during a column generation procedure.

A comparison is performed with the root relaxations obtained by the BC presented in

Chapter 4. The full BCP algorithm was only executed in the instances where the BC has

an inferior performance.

5.4.2.1 VRPSPD

Table 4.1 shows the results found by the BCP algorithm on the set of instances proposed

in [48]. It is noteworthy to mention that the optimal solutions of all instances of this set

were found by the BC presented in Chapter 4. From Table 5.1, it can be observed that

the BCP algorithm had a considerable better performance in terms of both root LB and

computational time in those cases where the average number of customers per vehicle

(given by n/v) is smaller, i.e. instances SCA8-0, SCA8-1,...,SCA8-9, CON8-0, CON8-

1,...,CON8-9. The BC and BCP average gaps between the root LBs and the optimal

solutions in such subset of 20 instances were 3.24% and 1.28%, respectively. Moreover,

the average computational time of the complete execution of BCP in these instances was

197 seconds, whereas for BC this value was 2883 seconds.

Table 5.2 illustrates the results found in the instances suggested in [149]. In these

set of instances, BC appears to be more suitable, in terms of overall performance, when

compared to the BCP. Yet, the best known LBs of the instances CMT5X and CMT5Y

were improved at the root node when solving such problems using the BCP algorithm.

For the remaining the instances there is no advantage in applying the BCP instead of a

pure BC. Moreover, closing the gap between the UB and the LB of instances CMT2X and

CMT2Y, both with 75 customers and 6 vehicles, still remains a challenge.

Table 5.3 presents the results obtained in the set of benchmark instances proposed
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in [121]. As it happened in the set of instances of Dethloff [48], the BCP algorithm out-

performed the BC on those instances where the average number of customers per vehicle

is relatively small. Three instances containing 100 customers were solved to optimality

for the first time, namely r101, c101 and rc101. As a result, all the six 100-customer

instances of this set are now solved. In addition, the LB of the instances r1 2 1, c1 2 1,

c2 2 1 and rc1 2 1 were dramatically improved. On the other hand, the BCP algorithm

failed completely to solve the linear relaxation of the instances r2 2 1 and rc2 2 1 (where

the are about 40 customers per vehicle) in the time limit specified. These instances were

solved to optimality by the pure BC.

Table 5.1: Results obtained on the instances of Dethloff [48]
Instance/ BC BCP

Customers/
Root Root Root Root Tree Total LB

Prev. UB
#vehicles

LB Time (s) LB Time (s) Size Time (s)
LB

SCA3-0/50/4 619.21 5.18 620.87 149 - - - 635.62 635.62
SCA3-1/50/4 682.34 1.90 682.75 27.2 - - - 697.84 697.84
SCA3-2/50/4 659.34 0.60 659.34 64.8 - - - 659.34 659.34
SCA3-3/50/4 667.56 1.76 667.56 102 - - - 680.04 680.04
SCA3-4/50/4 676.56 6.75 675.97 51.6 - - - 690.50 690.50
SCA3-5/50/4 647.90 1.16 649.56 48.5 - - - 659.91 659.91
SCA3-6/50/4 625.60 1.29 625.16 67.0 - - - 651.09 651.09
SCA3-7/50/4 654.97 3.70 655.99 72.8 - - - 659.17 659.17
SCA3-8/50/4 688.21 1.97 690.29 161 - - - 719.48 719.48
SCA3-9/50/4 671.07 2.04 670.56 85.2 - - - 681.00 681.00
SCA8-0/50/9 926.03 18.8 946.50 2.91 63 76.2 961.50 961.50 961.50
SCA8-1/50/9 1002.29 15.5 1028.22 2.71 369 437 1049.65 1049.65 1049.65
SCA8-2/50/9 1013.37 19.8 1026.07 2.90 307 270 1039.64 1039.64 1039.64
SCA8-3/50/9 956.10 11.9 975.45 1.93 11 10.6 983.34 983.34 983.34
SCA8-4/50/9 1027.24 25.9 1052.79 1.11 51 34.4 1065.49 1065.49 1065.49
SCA8-5/50/9 998.05 13.7 1017.77 2.75 107 115 1027.08 1027.08 1027.08
SCA8-6/50/9 948.26 12.8 964.03 3.56 19 20.8 971.82 971.82 971.82
SCA8-7/50/9 1018.20 16.4 1028.30 2.01 547 601 1051.28 1051.28 1051.28
SCA8-8/50/9 1038.86 6.15 1057.44 1.85 35 53.7 1071.18 1071.18 1071.18
SCA8-9/50/9 1019.25 12.0 1037.29 1.51 245 341 1060.50 1060.50 1060.50
CON3-0/50/4 611.30 2.58 612.16 66.9 - - - 616.52 616.52
CON3-1/50/4 546.65 8.26 546.38 104 - - - 554.47 554.47
CON3-2/50/4 505.06 3.94 507.43 71.5 - - - 518.01 518.01
CON3-3/50/4 584.28 2.05 585.16 167 - - - 591.19 591.19
CON3-4/50/4 577.52 1.04 578.09 48.4 - - - 588.79 588.79
CON3-5/50/4 552.91 3.22 555.76 114 - - - 563.70 563.70
CON3-6/50/4 486.98 5.22 487.83 67.9 - - - 499.05 499.05
CON3-7/50/4 561.62 0.97 563.49 58.8 - - - 576.48 576.48
CON3-8/50/4 514.84 5.03 516.45 50.6 - - - 523.05 523.05
CON3-9/50/4 564.78 2.51 567.69 59.0 - - - 578.25 578.25
CON8-0/50/9 830.03 41.5 850.16 2.82 53 45.2 857.17 857.17 857.17
CON8-1/50/9 722.38 27.7 732.24 0.98 151 85.9 740.85 740.85 740.85
CON8-2/50/9 685.66 39.2 700.78 2.94 249 576 712.89 712.89 712.89
CON8-3/50/10 787.84 39.3 806.23 1.73 95 85.2 811.07 811.07 811.07
CON8-4/50/9 751.95 21.2 764.50 1.16 121 107 772.25 772.25 772.25
CON8-5/50/9 729.92 15.1 746.25 1.69 273 358 754.88 754.88 754.88
CON8-6/50/9 648.64 18.7 666.09 1.42 151 202 678.92 678.92 678.92
CON8-7/50/9 793.50 15.5 804.51 1.35 25 35.7 811.96 811.96 811.96
CON8-8/50/9 744.52 26.8 761.79 2.93 31 66.2 767.53 767.53 767.53
CON8-9/50/9 773.65 45.0 798.12 1.61 419 422 809.00 809.00 809.00

5.4.2.2 VRPMPD

The results found in the VRPMPD instances generated in [149] are depicted in Table 5.4.

The best known upper bounds for VRPMPD instances that are not proven optimal were
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taken from [64]. However, the number of vehicles was not specified in the referred work.

The LB on the number of vehicles is reported in such cases. From Table 5.4 it is possible

to verify that the BCP algorithm had an overall performance similar to the one observed

in the VRPSPD instances of Salhi and Nagy [149] (see Table 4.2). The optimality of the

instance CMT2T was proved for the first time and LBs of the instances CMT4T, CMT5H,

CMT5Q and CMT5T were improved.

Table 5.2: Results obtained on the VRPSPD instances of Salhi and Nagy [149]
Instance/ BC BCP

Customers/
Root Root Root Root Tree Total LB

Prev. UB
#vehicles

LB Time (s) LB Time (s) Size Time (s)
LB

CMT1X/50/3 460.73 5.56 461.90 96.0 - - - 466.77 466.77
CMT1Y/50/3 460.69 15.5 460.86 238 - - - 466.77 466.77
CMT2X/75/6 658.38 100 661.11 94.2 - - - 666.57 684.21
CMT2Y/75/6 658.12 200 659.76 308 - - - 666.69 684.21
CMT3X/100/5 711.77 79.7 711.70 1404 - - - 721.27 721.27
CMT3Y/100/5 711.89 140 711.49 4519 - - - 721.27 721.27
CMT12X/100/5 635.52 50.3 638.72 3130 - - - 643.76 662.22
CMT12Y/100/5 635.45 65.1 636.29 3608 - - - 644.10 662.22
CMT11X/120/4 793.11 892 766.22 9570 - - - 799.67 833.92
CMT11Y/120/4 793.54 1098 765.47 9421 - - - 799.02 833.92
CMT4X/150/7 826.74 1950 829.58 11433 - - - 831.18 852.46
CMT4Y/150/7 826.34 2568 827.50 791912 - - - 831.65 852.46
CMT5X/199/10 971.07 7202 988.28 66063 - - - 971.07 1029.25
CMT5Y/199/10 937.66 7248 980.63 260737 - - - 953.56 1029.25

Table 5.3: Results obtained on the instances of Montané and Galvão [121]
Instance/ BC BCP

Customers/
Root Root Root Root Tree Total LB

Prev. UB
#vehicles

LB Time (s) LB Time (s) Size Time (s)
LB

r101/100/12 972.58 1282 996.18 208 23465 1.06× 106 1009.95 978.28 1009.95
r201/100/3 664.80 42.9 661.95 9968 - - - 666.20 666.20
c101/100/16 1194.69 722 1208.99 3.99 31631 31042 1220.18 1202.59 1220.18
c201/100/5 657.97 24.6 659.11 17086 - - - 662.07 662.07
rc101/100/10 1028.06 1067 1049.84 78.5 653 17491 1059.32 1041.06 1059.32
rc201/100/3 671.84 6.37 668.84 15021 - - - 672.92 672.92
r1 2 1/200/23 2681.05 7198 3273.27 1094 - - - 3084.97 3360.02
r2 2 1/200/5 1656.62 4477 - - - - - 1665.58 1665.58
c1 2 1/200/28 2857.45 7196 3609.16 78.4 - - - 3475.03 3629.89
c2 2 1/200/9 1638.99 7197 1704.00 97487 - - - 1647.83 1726.59
rc1 2 1/200/23 2656.78 7196 3241.98 888 - - - 3093.30 3306.00
rc2 2 1/200/5 1551.54 1932 - - - - - 1560.00 1560.00

5.5 Concluding remarks

This chapter presented a BCP approach for the VRPSPD that is also capable of solv-

ing the VRPMPD. The proposed algorithm is an adaptation of the one developed in

[63] for solving the CVRP. The fundamental difference of this BCP relies on the column

generation procedure that was redesigned to deal with the delivery and pickup demands

simultaneously. The BCP algorithm was tested in well-known benchmark instances and it

was found capable of proving the optimality of 4 problems for the first time, where three
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of them are VRPSPD instances containing 100 customers and one of them corresponds

to a VRPMPD instance containing 75 customers. Also, the best known LBs of other 10

instances involving 150-200 customers were improved. Moreover, the BCP clearly outper-

formed previous methods in a subset of instances proposed in [48] and [121]. The main

characteristic of such instances is the fact of having a small average number of customers

per vehicle, which is known to be favorable to column generation based techniques.

Table 5.4: Results obtained on the VRPMPD instances of Salhi and Nagy [149]
Instance/ BC BCP

Customers/
Root Root Root Root Tree Total LB

Prev. UB
#vehicles

LB Time (s) LB Time (s) Size Time (s)
LB

CMT1H/50/3 460.10 7.14 461.32 64.7 - - - 465.02 465.02
CMT1Q/50/4 488.15 5.65 488.26 31.2 - - - 489.74 489.74
CMT1T/50/5 512.61 4.98 515.20 5.81 - - - 520.06 520.06
CMT2H/75/6 643.28 101 648.63 174 - - - 653.79 662.63
CMT2Q/75/8 707.66 100 710.00 14.0 - - - 717.36 732.76
CMT2T/75/9 759.92 151 767.77 7.31 14627 109348 782.77 770.35 782.77
CMT3H/100/3 691.32 58.0 691.42 3376 - - - 700.94 700.94
CMT3Q/100/6 744.50 95.5 744.84 854 - - - 747.15 747.15
CMT3T/100/5 784.13 342 784.75 346 - - - 798.07 798.07
CMT12H/100/5 623.00 40.3 623.33 881 - - - 629.37 629.37
CMT12Q/100/7 721.81 83.9 722.35 948 - - - 729.25 729.25
CMT12T/100/9 787.27 37.7 787.52 52.7 - - - 787.52 787.52
CMT11H/120/4 801.24 353 776.36 7680 - - - 806.46 820.35
CMT11Q/120/6 928.28 653 899.45 7831 - - - 939.36 939.36
CMT11T/120/7 984.81 359 985.75 2884 - - - 989.32 998.80
CMT4H/150/6 799.19 1122 795.22 8465 - - - 804.10 831.39
CMT4Q/150/9 892.99 2920 895.15 13090 - - - 898.28 913.93
CMT4T/150/11 953.41 4246 960.59 228 - - - 956.54 990.39
CMT5H/199/9 931.02 7209 948.46 276318 - - - 931.02 992.37
CMT5Q/199/12 1056.74 7206 1069.91 97259 - - - 1056.74 1134.72
CMT5T/199/15 1145.61 7192 1175.62 755 - - - 1145.63 1232.08



Chapter 6

An ILS Heuristic for General Vehicle
Routing Problems

This chapter presents a general heuristic algorithm for solving different VRPs. The pro-

posed approach is mostly based on the ILS framework. Before describing the solution

method, a brief outline of this metaheuristic is provided. The contents of this chapter

were partially published in [133].

6.1 A brief overview of the ILS metaheuristic

Consider a local optimum solution that has been found by a local search algorithm. In-

stead of restarting the same procedure from a completely new solution, the ILS meta-

heuristic applies a local search repeatedly to a set of solutions obtained by perturbing

previously visited local optimal solutions. As stated in Chapter 1, the essential idea of

ILS resides in the fact that it focuses on a smaller subset, instead of considering the

total space of solutions. This subset is defined by the local optimums of a given opti-

mization procedure [112]. To implement an ILS algorithm, four procedures should be

specified: (i) GenerateInitialSolution, where an initial solution is constructed; (ii)

LocalSearch, which improves the solution initially obtained; (iii) Perturb, where a new

starter point is generated through a perturbation of a solution found in the LocalSearch;

(iv) AcceptanceCriterion, that determines from which solution the search should con-

tinue. Alg. 6.1 describes how these components are combined to build the ILS framework.

The modification performed in the perturbation phase is used in order to try escape

from a current locally optimal solution. Frequently, the move is randomly chosen within

a larger neighborhood than the case utilized in the local search, or a move that the

local search cannot undo in just one step. In principle, any local search method can be

used. However, its performance, in terms of the solution quality and computational effort,

strongly depends on the chosen procedure. The acceptance criterion is used to decide

the next solution that should be perturbed. The choice of this criterion is important
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Algorithm 6.1 ILS
1: Procedure ILS
2: s0 ← GenerateInitialSolution;
3: s∗ ← LocalSearch(s0);
4: while Stopping criterion is not met do
5: s′ ← Perturb(s∗, history);
6: s∗′ ← LocalSearch(s′);
7: s∗ ← AcceptanceCriterion(s∗, s∗′, history);
8: end ILS;

because it controls the balance between intensification and diversification. The search

history is employed for deciding if some found previously local optimum solution should

be chosen. The ILS procedure can lead to good samples of the search space as long as the

perturbations are not too large or too small. If it is small, not many new solutions will

be explored, while if it is too large, it will adopt almost randomly starting points.

6.2 The ILS-RVND heuristic

This section describes the proposed heuristic algorithm, called ILS-RVND, whose main

steps are summarized in Alg. 6.2. Let v be the number of vehicles (or routes). If its value

is not specified in advance then an estimation is performed (lines 3-5). The multi-start

heuristic executes MaxIter iterations (lines 6-19), where at each iteration a solution is

generated by means of a constructive procedure (line 7). The main ILS loop (lines 10-

16) seeks to improve this initial solution using a RVND procedure (line 11) in the local

search phase combined with a set of perturbation mechanisms (line 15). Notice that the

perturbation is always performed on the best current solution (s′) of a given iteration

(acceptance criterion). The parameter MaxIterILS represents the maximum number of

consecutive perturbations allowed without improvements.

The next subsections provide a detailed explanation of the main components of the

ILS-RVND heuristic.

6.2.1 Estimating the number of vehicles

Sometimes the number of available vehicles is not specified by the instance. Since the

constructive method depends on this information, a procedure to estimate the initial

number of vehicles had to be developed, as can be observed in Alg. 6.3. Let CL denote the

Candidate List composed by customers that have not been added to the partial solution.

At first, just one vehicle is considered (line 2). A customer k ∈ CL is chosen at random

and inserted into the single route (lines 3-5). Next, while the CL is not empty, one of the

insertion criteria described in Section 6.2.2 is selected at random to evaluate the inclusion

of a customer k ∈ CL in each position of the route v and the least cost insertion is

considered (lines 6-14). If the vehicle v is full then a new vehicle is added (lines 11-12).
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Algorithm 6.2 ILS-RVND
1: Procedure ILS-RVND(MaxIter,MaxIterILS, v)
2: LoadData( );
3: if v was not defined then
4: v ← EstimateTheNumberOfVehicles(seed);
5: f∗ ← ∞;
6: for i:=1,..., MaxIter do
7: s ← GenerateInitialSolution(v, MaxIter, seed);
8: s′ ← s;
9: iterILS ← 0;
10: while iterILS ≤MaxIterILS do
11: s ← RVND(s);
12: if f(s) < f(s′) {or v of s < v of s′ (considered only when v must be minimized)} then
13: s′ ← s;
14: iterILS ← 0;
15: s ← Perturb(s′, seed);
16: iterILS ← iterILS + 1;
17: if f(s′) < f∗ then
18: s∗ ← s′;
19: f∗ ← f(s′);
20: return s∗;
21: end ILS-RVND.

For the HFVRP with limited fleet and for the VRPs with multiple depots, the maxi-

mum number of vehicles of each type/depot is initially considered. In the case of HFVRP,

these values are computed considering the sum of the customers demands and the capac-

ity of each vehicle. For the HFVRP with unlimited fleet, one vehicle of each type is first

considered. As for the OVRP, use is made of a lower bound on the number of vehicles

(vmin) which is computed dividing the sum of the customers demands by the capacity of

the vehicle.

6.2.2 Constructive procedure

In essence any classical VRP construction method can be used to generate initial solu-

tions. However, the main interest is to build diversified initial solutions using relatively

simple schemes. The developed procedure makes use of two insertion criteria, namely

the Modified Cheapest Feasible Insertion Criterion (MCFIC) and the Nearest Feasible

Insertion Criterion (NFIC). Also, two insertion strategies were employed, specifically the

Sequential Insertion Strategy (SIS) and the Parallel Insertion Strategy (PIS).

The pseudocode of the constructive procedure is presented in Alg. 6.4. Each route

is filled with a seed customer k, randomly selected from the CL (lines 5-7). An insertion

criterion and an insertion strategy is chosen at random (lines 8-9). An initial solution

is generated using the selected combination of criterion and strategy (lines 10-13). If

an infeasible solution has been found the procedure restarts from line 3. In this case, an

infeasible solution necessarily corresponds to an incomplete solution, which means that the

selected insertion procedure was not capable of including all customers using v vehicles.
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Algorithm 6.3 EstimateTheNumberOfVehicles
1: Procedure EstimateTheNumberOfVehicles(seed)
2: v ← 1;
3: Initialize the CL
4: sv ← k ∈ CL selected at random;
5: Update CL;
6: while CL 6= ∅ do
7: Evaluate the cost g(k) for each k ∈ CL using an insertion criterion selected at random;
8: gmin ← min{g(k)|k ∈ CL};
9: n ← client e associated to gmin;
10: sv ← sv ∪ {n};
11: if vehicle v is full then
12: v ← v + 1;
13: else
14: Update CL;
15: return v;
16: end EstimateTheNumberOfVehicles.

Moreover, if the number of vehicles was not specified by the instance and the number of

consecutive trials for generating a feasible initial solution (ConsecutiveTrials) is equal to

MaxIter then an extra vehicle is added (lines 14-20). If a feasible solution is found then

the procedure ends (lines 21-25). Notice that if the fleet is heterogeneous and unlimited

then an empty route associated to each type of vehicle is added to the constructed solution

s (lines 22-23). These empty routes are necessary to allow a possible fleet resizing during

the local search phase.

6.2.2.1 Insertion criteria

The cost of inserting an unrouted customer k ∈ CL in a given route using MCFIC is

expressed in Eq. 6.1, where function g(k) represents the insertion cost. The value of

g(k) is computed by the sum of two parcels. The first computes the insertion cost of the

client k between every pair of adjacent customers i and j while the second corresponds to

a surcharge used to avoid late insertions of customers located far away from the depot.

The cost back and forth from the depot is weighted by a factor γ. This greedy insertion

criterion was inspired in [48].

g (k) = (cik + ckj − cij)− γ (c0k + ck0) (6.1)

NFIC directly computes the distance between a customer k ∈ CL and every customer

i that has been already included into the partial solution, as can be observed by function

g in Eq. 6.2. It is assumed that the insertion of k is always performed after i.

g (k) = cik (6.2)

In both criteria, the insertion associated with the least-cost is done, i.e. min{g(k)|k ∈
CL}.
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Algorithm 6.4 GenerateInitialSolution
1: Procedure GenerateInitialSolution(v, MaxIter, seed)
2: ConsecutiveTrials← 0;
3: Initialize the CL;
4: Let s =

{
s1, . . . , sv−1

}
be the set composed by v − 1 empty routes;

5: for v′ = 1 . . . v − 1 do
6: sv

′ ← k ∈ CL selected at random;
7: Update CL; {CL ← CL - {k}}
8: InsertionCriterion ← MCFIC or NFIC (chosen at random);
9: InsertionStrategy ← SIS or PIS (chosen at random);
10: if InsertionStrategy = SIS then
11: s ← SequentialInsertion(s, v, CL, InsertionCriterion);
12: else
13: s ← ParallelInsertion(s, v, CL, InsertionCriterion);
14: if s is infeasible then
15: if v was not defined then
16: ConsecutiveTrials← ConsecutiveTrials+ 1;
17: if ConsecutiveTrials = MaxIter then
18: v ← v + 1;
19: ConsecutiveTrials← 0;
20: Go to line 3;
21: else
22: if the vehicle fleet is heterogeneous and unlimited then
23: Add an empty route associated to each type of vehicle to s
24: return s;
25: end GenerateInitialSolution.

6.2.2.2 Insertion strategies

In SIS, only a single route is considered for insertion at each iteration. The pseudocode of

SIS is presented in Alg. 6.5. If the insertion criterion corresponds to MCFIC then a value

of γ is chosen at random within the set {0.00, 0.05, 0.10, . . . , 1.65, 1.70} (lines 3-4). This

set was defined in [157] after some preliminary experiments. While the CL is not empty

and there is at least one customer k ∈ CL that can be added to the current partial solution

without violating any constraint (lines 7-16), each route is filled with a customer selected

using the correspondent insertion criterion (lines 8-15). If the solution s is incomplete

and there are multiple depots and route duration constraints, a local search is performed

with a view of reducing the duration of the routes, thus may allowing further insertions

(lines 17-20). The procedure than restarts from line 7 (line 21). Moreover, if the vehicle

fleet is heterogeneous and unlimited and the solution s is incomplete then a new vehicle,

chosen at random from the available types, is added and the procedure restarts from line

7 (lines 21-24).

PIS differs from SIS because all routes are considered while evaluating the least-cost

insertion. Alg. 6.6 illustrates the pseudocode of PIS. While the CL is not empty and

there is at least one customer k ∈ CL that can be included in s (lines 6-12), the insertions

are evaluated using the selected insertion criterion and the customer associated with the

least-cost insertion is then included in the correspondent route v (lines 7-11). The rest of
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the code is likewise SIS.

Algorithm 6.5 SequentialInsertion
1: Procedure SequentialInsertion(s, v, CL, InsertionCriterion)
2: γ ← 0;
3: customerInserted← false;
4: if InsertionCriterion = MCFIC then
5: γ ← random value within a given set;
6: v0 ← 1;
7: while CL 6= ∅ and at least one customer k ∈ CL can be added to s do
8: for v′ = v0 . . . v and CL 6= ∅ do
9: if at least one customer k ∈ CL can be inserted into the vehicle v′ then
10: Evaluate the value of each cost g(k) for k ∈ CL;
11: gmin ← min{g(k)|k ∈ CL};
12: k′ ← customer k associated to gmin;
13: sv

′ ← sv
′ ∪ {k′};

14: Update CL;
15: customerInserted← true;
16: Update v0;
17: if CL > 0 and there are multiple depots + route duration and customerInserted = true then
18: s ← RVND(s);
19: customerInserted← false;
20: Go to line 7;
21: if CL > 0 and the vehicle fleet is heterogeneous and unlimited then
22: Add a new vehicle chosen at random; {v ← v + 1}
23: Update v0; {v0 ← v}
24: Go to line 7;
25: return s;
26: end SequentialInsertion.

Algorithm 6.6 ParallelInsertion
1: Procedure ParallelInsertion(s, v, CL, InsertionCriterion)
2: γ ← 0;
3: customerInserted← false;
4: if InsertionCriterion = MCFIC then
5: γ ← random value within a given set;
6: while CL 6= ∅ and at least one customer k ∈ CL can be added to s do
7: Evaluate the value of each cost g(k) for k ∈ CL;
8: gmin ← min{g(k)|k ∈ CL};
9: k′ ← customer k associated to gmin;
10: v′ ← route associated to gmin;
11: sv

′ ← sv
′ ∪ {k′};

12: Update CL;
13: if CL > 0 and there are multiple depots + route duration and customerInserted = true then
14: s ← RVND(s);
15: customerInserted← false;
16: Go to line 7;
17: if CL > 0 and the vehicle fleet is heterogeneous and unlimited then
18: Add a new vehicle chosen at random; {v ← v + 1}
19: Go to line 6;
20: return s;
21: end ParallelInsertion.
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6.2.3 Local search

The local search is performed by a VND procedure which utilizes a random neighbor-

hood ordering (RVND). Let N =
{
N (1), N (2), N (3), . . . , N (r)

}
be the set of neighborhood

structures. Whenever a given neighborhood of the set N fails to improve the incum-

bent solution, the RVND randomly chooses another neighborhood from the same set to

continue the search throughout the solution space. In this case, N is composed only by

inter-route neighborhood structures.

The pseudocode of the RVND procedure is presented in Alg. 6.7. Firstly, a Neigh-

borhood List (NL) containing a predefined number of inter-route moves is initialized (line

3). In the main loop (lines 4-13), a neighborhood N (η) ∈ NL is chosen at random (line

5) and then the best admissible move is determined (line 6). In case of improvement, an

intra-route local search is performed, the fleet is updated (only when the vehicle fleet is

unlimited) and the NL is populated with all the neighborhoods (lines 7-12). Otherwise,

N (η) is removed from the NL (line 14). A set of Auxiliary Data Structures (ADSs) is

updated (see Subsection 6.2.3.1) at the beginning of the process (line 2) and whenever

a neighborhood search is performed (line 15). If the problem has a primary objective of

minimizing the sum of the vehicles, which is the case of the OVRP, then a procedure that

tries to empty a route is applied (line 16).

Algorithm 6.7 RVND
1: Procedure RVND(s)
2: Update ADSs;
3: Initialize the inter-route Neighborhood List (NL);
4: while NL 6= 0 do
5: Choose a neighborhood N (η) ∈ NL at random;
6: Find the best neighbor s′ of s ∈ N (η);
7: if f(s′) < f(s) then
8: s← s′;
9: s← IntraRouteSearch(s);
10: if the vehicle fleet is heterogeneous and unlimited then
11: Update Fleet in such a way that there is one empty vehicle of each type
12: Update NL; {NL in populated with all inter-route neighborhood structures}
13: else
14: Remove N (η) from the NL;
15: Update ADSs;
16: TryToEmptyRoute(s); {considered only when vehicle fleet must be necessarily minimized}
17: return s;
18: end RVND.

LetN ′ be a set composed by r′ intra-route neighborhood structures. Alg. 6.8 describes

how the intra-route search procedure was implemented. At first, a neighborhood list NL′ is

initialized with all the intra-route neighborhood structures (line 2). Next, while NL′ is not

empty a neighborhood N ′(η) ∈ NL′ is randomly selected and a local search is exhaustively

performed until no more improvements are found (lines 3-9).

In the case of single-vehicle routing problems such as the TSPMPD, it does not make
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Algorithm 6.8 IntraRouteSearch
1: Procedure IntraRouteSearch(s)
2: Initialize the Intra-Route Neighborhood List (NL′);
3: while NL′ 6= 0 do
4: Choose a neighborhood N ′(η) ∈ NL′ at random;
5: Find the best neighbor s′ of s ∈ N ′(η);
6: if f(s′) < f(s) then
7: s← s′;
8: else
9: Remove N ′(η) from the NL′;
10: return s;
11: end IntraRouteSearch.

sense to use inter-route neighborhoods in the local search. Hence, in these situations the

set N utilized in the RVND procedure is replaced by the set N ′ composed only by intra-

route neighborhood structures and the call to the function IntraRouteSearch (line 9 in

Alg. 6.7) is ignored.

6.2.3.1 Auxiliary Data Structures (ADSs)

In order to enhance the neighborhood search, some ADSs were adopted. The following

arrays store useful informations regarding each route.

• SumDelivery[ ] — sum of the delivery demands. For example, if SumDelivery[2]

= 100, it means that the sum of the delivery demands of all customers of route 2

corresponds to 100.

• SumPickup[ ] — sum of the pickup demands.

• MinDelivery[ ] — minimum delivery demand. For example, if MinDelivery[3]

= 5, it means that 5 is the least delivery demand among all customers of route 3.

• MinPickup[ ] — minimum pickup demand.

• MaxDelivery[ ] — maximum delivery demand.

• MaxPickup[ ] — maximum pickup demand.

• MinPairDelivery[ ] — minimum sum of delivery demands of two adjacent cus-

tomers. For example, if MinPairDelivery[1] = 10, it means that the least sum of

the delivery demands of two adjacent customers of route 1 corresponds to 10.

• MinPairPickup[ ] — minimum sum of pickup demands of two adjacent customers.

• MaxPairDelivery[ ] — maximum sum of delivery demands of two adjacent cus-

tomers.

• MaxPairPickup[ ]— maximum sum of pickup demands of two adjacent customers.
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• CumulativeDelivery[ ][ ] — cumulative delivery load at each point of the route.

For example, if CumulativeDelivery[2][4] = 78, it means that the sum of the

delivery demands of the first four customers of route 2 corresponds to 78.

• CumulativePickup[ ][ ] — cumulative pickup load at each point of the route.

• NeighbStatus[ ][ ] — informs if the route has been modified after the neighbor-

hood has failed to find an improvement move involving the same route. For example,

if NeighbStatus[1][3] = true, it means that the last time the neighborhood N (1)

was applied, no improvement move involving route 3 was found, but this route was

later modified by another neighborhood structure or by a perturbation move. If

NeighbStatus[1][3] = false, it means that the route 3 did not suffer any change

after the last time N (1) was unsuccessful to find an improvement move involving

this route.

To update the information of the ADSs one should take into account only the routes

that were modified. Let n̄ be the total number of customers in the modified routes.

Except for the NeighbStatus, the ADSs updating is as follows. For each modified route,

a verification is performed along the whole tour to update the corresponding values of

the ADSs. Hence, the computational complexity is of the order of O(n̄). As for the

NeighbStatus, for each route, the information regarding all inter-routes neighborhoods

are updated which results in a computational complexity of O(v̄|N |), where v̄ is the

number of modified routes.

6.2.3.2 Inter-Route neighborhood structures

Six VRP neighborhood structures involving inter-route moves were employed for the VRPs

with homogeneous fleet and for the HVRP. Five of them are based on the λ-interchanges

scheme [132], which consists of exchanging up to λ customers between two routes, while

one is based on the Cross-exchange operator [163], which consists of exchanging two seg-

ments of different routes. For the FSM, besides these six neighborhood structures, another

one, called K−Shift, was also implemented. As for the MDVRP and MDVRPMPD, two

new neighborhood structures called ShiftDepot and SwapDepot were also employed.

To limit the number of possibilities one considered λ = 2. According to Cordeau and

Laporte [37], these exchanges are better described as couples (λ1, λ2) (with λ1 ≤ λ and

λ2 ≤ λ) that represent an operation where λ1 customers are transferred from route 1 to

route 2 and λ2 customers are removed from route 2 to route 1. Therefore, disregarding

symmetries, the following combinations are possible in 2-exchanges: (1,0), (1,1), (2,0),

(2,1), (2,2). Remark that such combinations include swap moves ((1,1), (2,1), (2,2)) and

shift moves ((1,0), (2,0)).
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The solutions associated to all neighborhoods structures are explored exhaustively,

that is, all possible combinations are examined, and the best improvement strategy is

considered. The computational complexity of each one of these moves is O(n2), with the

exception of the neighborhoods structures ShiftDepot and SwapDepot whose complexity

is of the order of O(v|G|).
In order to accelerate the local search, a set of conditions can be specified to avoid

the examination of moves that are known to be infeasible. It is in this context that the

ADSs play an important role. The information stored in these data structures are used in

the process of identifying unnecessary moves during the local search. Each neighborhood

structure has its own conditions but the idea is essentially the same. Moreover, all of

them share the condition that, given a inter-route movement involving the routes r1 and

r2, it is worth examining a move using neighborhood N (η) only if NeighbStatus[η][r1]

= true or NeighbStatus[η][r2] = true.

Only feasible moves are admitted, i.e., those that do not violate the vehicle load and

route duration constraints. Therefore, every time an improvement occurs, the algorithm

checks whether this new solution is feasible or not. In some VRP variants such as the

CVRP, ACVRP, OVRP, MDVRP and the HFVRP checking the vehicle load is trivial

and it can be performed in a constant time by just verifying if the sum of the customers

demands of a given route does not exceed the vehicle’s capacity when the same is leaving

(or arriving at) the depot. In other variants, specially those that include both pickup and

delivery services such as the VRPSPD, VRPMPD, TSPMPD and the MDVRPMPD, a

more elaborated procedure must be designed for checking the feasibility of a move with

respect to the vehicle capacity. As for the route duration, it is possible to check if a

route exceeds the maximum limit in constant time. For that, one should keep track of

the duration of each route throughout the local search procedure.

The inter-route neighborhood structures are described next. The feasibility check-

ing procedures for those problems that contain both pickup and delivery (VRPSPD,

VRPMPD and MDVRPMPD) are also presented and, in all these cases, the compu-

tational complexity is O(n). In addition, the particular conditions of each neighborhood

that must be satisfied to avoid evaluating some infeasible moves are presented as well.

Implementation steps of the neighborhoods Shift(1,0), Swap(1,1), Shift(2,0), Swap(2,1),

Swap(2,2), Cross and K−Shift are respectively provided in Algs. 6.9-6.17. Fig. 6.1 illus-

trates an example of the effect of the λ-interchanges and Cross based neighborhoods over

a given solution, while Figs. 6.2 and 6.3 show, respectively, the effect of the K-Shift and

multi-depot neighborhoods.

Shift(1,0) — N (1) — A customer k is transferred from a route r1 to a route r2. In

Fig. 6.1.b the customer 7 was moved from one route to the other one. If MinDelivery[r1]
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+ SumDelivery[r2] > Q or MinPickup[r1] + SumPickup[r2] > Q it means that trans-

fering any customer from r1 to r2 implies an infeasible solution. This fact is easy to

verify because if even the customer with the least delivery (or pickup) demand cannot

be transferred to the other route, it is clear that the remaining customers also cannot.

In addition, if dk + SumDelivery[r2] > Q or pk + SumPickup[r2] > Q then there is no

point in evaluating the transfer of k ∈ r1 to any position in r2, since the vehicle load

will always be violated. Thus a verification should be performed to avoid the evaluation

of these infeasible moves. The vehicle load is checked as follows. All customers located

before the insertion’s position have their loads added by dk, while the ones located after

have their loads added by pk.
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Figure 6.1: λ-interchanges and Cross based neighborhoods
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Algorithm 6.9 Shift(1,0)
1: Procedure Shift-1-0(s)
2: for r1 = 1 . . . v do
3: for r2 = 1 . . . v do
4: if r1 6= r2 and (NeighbStatus[1][r1] = true or NeighbStatus[1][r2] = true) and

MinDelivery[r1] + SumDelivery[r2] ≤ Q and MinPickup[r1] + SumPickup[r2] ≤ Q then
5: for every customer k ∈ r1 do
6: if dk + SumDelivery[r2] ≤ Q and pk + SumPickup[r2] ≤ Q then
7: for each position z in r2 do
8: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

transfering k ∈ r1 to the position z in r2;
9: if f(s′) < f∗ and s′ is feasible then
10: f∗ ← f(s′);
11: s∗ ← s′;
12: if f∗ < f(s) then
13: s← s∗;
14: else
15: Update NeighbStatus;
16: return s;
17: end Shift-1-0.

Swap(1,1) — N (2) — Permutation between a customer k from a route r1 and a

customer l, from a route r2. In Fig. 6.1.c the customers 2 and 6 were swapped. To avoid

evaluating infeasible moves one should verify if MinDelivery[r1] - MaxDelivery[r2] +

SumDelivery[r2] ≤ Q, MinPickup[r1] - MaxPickup[r2] + SumPickup[r2] ≤ Q, dk +

SumDelivery[r2] - MaxDelivery[r2] ≤ Q and pk + SumPickup[r2] - MaxPickup[r2]

≤ Q. The loads of the vehicles of both routes are examined in the same way. For example,

in case of r2, all customers situated before the position that l was found (now replaced by

k), have their values added by dk and subtracted by dl while the load of the customers

positioned after k increases by pk and decreases by pl.

Shift(2,0) — N (3) — Two adjacent customers, k and l, are transferred from a

route r1 to a route r2. This move can also be seen as an arc transfer. In this case,

the move examines the transfer of both arcs (k, l) and (l, k). In Fig. 6.1.d the adja-

cent customers 7 and 11 were moved from one route to the other one. Before starting

to evaluate the customers transferring from r1 to r2 one should verify following condi-

tions are met: MinPairDelivery[r1] + SumDelivery[r2] ≤ Q and MinPairPickup[r1]

+ SumPickup[r2] ≤ Q. The vehicle load of r2 is checked using an approach similar to

the one adopted in Shift(1,0). All customers located before the insertion’s position in r2

have their loads added by dk + dl, while the ones located after have their loads added by

pk + pl. Also, the new load carried out in the arc (k, l) must be verified.

Swap(2,1)— N (4) —Permutation of two adjacent customers, k and l, from a route r1

by a customer k′ from a route r2. As in Shift(2,0), both arcs (k, l) and (l, k) are considered.

In Fig. 6.1.e the adjacent customers 6 and 7 were exchanged with customer 2. The

evaluation of some infeasible moves are avoided by checking if MinPairDelivery[r1] -

MaxDelivery[r2] + SumDelivery[r2] ≤ Q and MinPairPickup[r1] - MaxPickup[r2]
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+ SumPickup[r2] ≤ Q. The load is verified by means of an extension of the approach

used in the neighborhoods Shift(2,0) and Swap(1,1).

Algorithm 6.10 Swap(1,1)
1: Procedure Swap-1-1(s)
2: for r1 = 1 . . . v do
3: for r2 = r1 + 1 . . . v do
4: if (NeighbStatus[2][r1] = true or NeighbStatus[2][r2] = true) and

MinDelivery[r1] - MaxDelivery[r2] + SumDelivery[r2] ≤ Q and
MinPickup[r1] - MaxPickup[r2] + SumPickup[r2] ≤ Q then

5: for every customer k ∈ r1 do
6: if dk + SumDelivery[r2] - MaxDelivery[r2] ≤ Q and

pk + SumPickup[r2] - MaxPickup[r2] ≤ Q then
7: for every customer l ∈ r2 do
8: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

exchanging k ∈ r1 with l in r2;
9: if f(s′) < f∗ and s′ is feasible then
10: f∗ ← f(s′);
11: s∗ ← s′;
12: if f∗ < f(s) then
13: s← s∗;
14: else
15: Update NeighbStatus;
16: return s;
17: end Swap-1-1.

Algorithm 6.11 Shift(2,0)
1: Procedure Shift-2-0(s)
2: for r1 = 1 . . . v do
3: for r2 = 1 . . . v do
4: if r1 6= r2 and (NeighbStatus[3][r1] = true or NeighbStatus[3][r2] = true) and

MinPairDelivery[r1] + SumDelivery[r2] ≤ Q and MinPairPickup[r1] + SumPickup[r2]
≤ Q then

5: for every pair of adjacent customers k and l ∈ r1 do
6: if dk + dl + SumDelivery[r2] ≤ Q and pk + pl + SumPickup[r2] ≤ Q then
7: for each position z in r2 do
8: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

transfering k and l ∈ r1 to the position z in r2;
9: if f(s′) < f∗ and s′ is feasible then
10: f∗ ← f(s′);
11: s∗ ← s′;
12: if f∗ < f(s) then
13: s← s∗;
14: else
15: Update NeighbStatus;
16: return s;
17: end Shift-2-0.

Swap(2,2) — N (5) — Permutation between two adjacent customers, k and l, from

a route r1 by another two adjacent customers k′ and l′, belonging to a route r2. All

the four possible combinations of exchanging arcs (k, l) and (k′, l′) are considered. In

Fig. 6.1.f the adjacent customers 6 and 7 were exchanged with the adjacent customers 1
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and 2. In order to avoid evaluating some infeasible moves the following conditions must

be satisfied: MinPairDelivery[r1] - MaxDelivery[r2] + SumDelivery[r2] ≤ Q and

MinPairPickup[r1] - MaxPickup[r2] + SumPickup[r2] ≤ Q. The load is checked just

as Swap(2,1).

Algorithm 6.12 Swap(2,1)
1: Procedure Swap-2-1(s)
2: for r1 = 1 . . . v do
3: for r2 = 1 . . . v do
4: if r1 6= r2 and (NeighbStatus[4][r1] = true or NeighbStatus[4][r2] = true) and

MinPairDelivery[r1] - MaxDelivery[r2] + SumDelivery[r2] ≤ Q and
MinPairPickup[r1] - MaxPickup[r2] + SumPickup[r2] ≤ Q then

5: for every pair of adjacent customers k and l ∈ r1 do
6: if dk + dl + SumDelivery[r2] - MaxDelivery[r2] ≤ Q and

pk + pl + SumPickup[r2] - MaxPickup[r2] ≤ Q then
7: for every customer k′ in r2 do
8: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

exchanging adjacent customers k and l ∈ r1 with k′ ∈ r2;
9: if f(s′) < f∗ and s′ is feasible then
10: f∗ ← f(s′);
11: s∗ ← s′;
12: if f∗ < f(s) then
13: s← s∗;
14: else
15: Update NeighbStatus;
16: return s;
17: end Swap-2-1.

Algorithm 6.13 Swap(2,2)
1: Procedure Swap-2-2(s)
2: for r1 = 1 . . . v do
3: for r2 = r1 + 1 . . . v do
4: if r1 6= r2 and (NeighbStatus[5][r1] = true or NeighbStatus[5][r2] = true) and

MinPairDelivery[r1] - MaxPairDelivery[r2] + SumDelivery[r2] ≤ Q and
MinPairPickup[r1] - MaxPairPickup[r2] + SumPickup[r2] ≤ Q then

5: for every pair of adjacent customers k and l ∈ r1 do
6: if dk + dl + SumDelivery[r2] - MaxPairDelivery[r2] ≤ Q and

pk + pl + SumPickup[r2] - MaxPairPickup[r2] ≤ Q then
7: for every pair of adjacent customers k′ and l′ ∈ r2 do
8: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

exchanging adjacent customers k and l ∈ r1 with adjacent customers k′ and k′ ∈ r2;
9: if f(s′) < f∗ and s′ is feasible then
10: f∗ ← f(s′);
11: s∗ ← s′;
12: if f∗ < f(s) then
13: s← s∗;
14: else
15: Update NeighbStatus;
16: return s;
17: end Swap-2-2.

Cross — N (6) — The arc between adjacent customers k and l, belonging to a route

r1, and the one between k′ and l′, from a route r2, are both removed. Next, an arc is
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inserted connecting k and l′ and another is inserted linking k′ and l. In Fig. 6.1.g the arcs

(1,2) and (6,7) were removed and the arcs (6,2) and (1,7) were inserted. The procedure

for testing the vehicle load of each route is the same and is as follows. At first, the initial

(L0) and final (Lf ) vehicle loads of both routes are computed in constant time using the

ADSs SumDelivery, SumPickup, CumulativeDelivery and CumulativePickup. If the

values of (L0) and (Lf ) do not exceed the vehicle capacity Q then the remaining loads

are verified through the following expression: Li = Li−1 + pi − di. Hence, if Li surpasses

Q, the move is infeasible.

Algorithm 6.14 Cross
1: Procedure Cross(s)
2: for r1 = 1 . . . v do
3: for r2 = 1 . . . v do
4: if r1 6= r2 and (NeighbStatus[6][r1] = true or NeighbStatus[6][r2] = true) then
5: for every position i in r1 do
6: {Let f be the last customer of r2}
7: if CumulativeDelivery[r1][i] + df ≤ Q and CumulativePickup[r1][i] + pf ≤ Q

then
8: for every position j in r2 do
9: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost

of removing the arc (k, l) ∈ r1, associated with positions i and i + 1, and the arc
(k′, l′) ∈ r2, associated with positions j − 1 and j and inserting arcs (k, l′) and (k′, l);

10: if f(s′) < f∗ and s′ is feasible then
11: f∗ ← f(s′);
12: s∗ ← s′;
13: if f∗ < f(s) then
14: s← s∗;
15: else
16: Update NeighbStatus;
17: return s;
18: end Cross.

K-Shift — N (7) — A subset of consecutive customers K is transferred from a route

r1 to the end of a route r2. In this case, it is assumed that the dependent and fixed costs

of r2 is smaller than those of r1. It should be pointed out that the move is also applied

if r2 is an empty route. In Fig. 6.2, the consecutive customers 1, 2 and 7 are transferred

from one route to the end of the other one.

ShiftDepot — N (8) — A route r is transferred from a depot1 to a depot2, as long

as there is a vehicle available on the latter. In principle, any move is considered to be

feasible. In Fig 6.3.b, the route composed by customers 14, 18 and 15 is transferred from

one depot to the other one.

SwapDepot — N (9) — Permutation between a route r1 from a depot1 and a route r2

from a depot2. As in the previous case, any move is admitted to be feasible. In Fig 6.3.c,

the route composed by customers 14, 18 and 15, belonging to depot D1 is exchanged with

the route composed by customers 4, 5, 6 and 8, belonging to the depot D2.
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Algorithm 6.15 K -Shift
1: Procedure K -Shift(s)
2: for r1 = 1 . . . v do
3: for r2 = 1 . . . v do
4: if r1 6= r2 and Qr1 < Qr2 and

(NeighbStatus[1][r1] = true or NeighbStatus[1][r2] = true) and MinDelivery[r1] +

SumDelivery[r2] ≤ Qr2 then
5: for every customer k ∈ r1 do
6: if dk + SumDelivery[r2] ≤ Qr2 then
7: SumDeliveryTemp← dk + SumDelivery[r2];
8: z ← position of k;
9: l← k;
10: while SumDeliveryTemp ≤ Qr2 and z is a valid position of r1 do
11: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

transfering the consecutive customers ranging from k ∈ r1 to l ∈ r1 to the end of r2;
12: if f(s′) < f∗ and s′ is feasible then
13: f∗ ← f(s′);
14: s∗ ← s′;
15: z ← z + 1;
16: l← customer associated with the position z ∈ r1
17: SumDeliveryTemp← SumDeliveryTemp+ dl
18: if f∗ < f(s) then
19: s← s∗;
20: else
21: Update NeighbStatus;
22: return s;
23: end K -Shift.
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Figure 6.2: K-Shift neighborhood

It is important to mention that other conditions to avoid the examination of moves

that are known to be infeasible were tested but the results were disappointing in terms of

computational time. For example, in the case of Swap(1,1), it is clear that the following

conditions must be met: MinDelivery[r2] - MaxDelivery[r1] + SumDelivery[r1] ≤
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Q, MinPickup[r2] - MaxPickup[r1] + SumPickup[r1] ≤ Q, dl + SumDelivery[r1] -

MaxDelivery[r1] ≤ Q. However, preliminary experiments showed that the overhead of

including these verifications in addition to the existing ones was not worth it.
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Figure 6.3: Multi-depot neighborhoods

Algorithm 6.16 ShiftDepot
1: Procedure ShiftDepot(s)
2: for depot1 = 1 . . . |G| do
3: for each non-empty route r ∈ depot1 do
4: for depot2 = 1 . . . |G| do
5: if depot1 6= depot2 and depot2 has an empty route then
6: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

transfering route r ∈ depot1 to the depot2;
7: if f(s′) < f∗ then
8: f∗ ← f(s′);
9: s∗ ← s′;
10: if f∗ < f(s) then
11: s← s∗;
12: return s;
13: end ShiftDepot.
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Algorithm 6.17 SwapDepot
1: Procedure SwapDepot(s)
2: for depot1 = 1 . . . |G| do
3: for each non-empty route r1 ∈ depot1 do
4: for depot2 = 1 . . . |G| do
5: if depot1 6= depot2 then
6: for each non-empty route r2 ∈ depot1 do
7: Evaluate the solution cost f(s′) of the neighborhood solution s′ of s, i.e., the cost of

exchanging route r1 ∈ depot1 with r2 ∈ depot2;
8: if f(s′) < f∗ then
9: f∗ ← f(s′);
10: s∗ ← s′;
11: if f∗ < f(s) then
12: s← s∗;
13: return s;
14: end SwapDepot.

6.2.3.3 Intra-Route neighborhood structures

The six intra-route neighborhood structures are described next. The set N ′ is composed

by Reinsertion, Or-opt [131], 2-opt [41], exchange and reverse [128] moves. In all cases, the

vehicle load of the PDP problems (VRPSPD, VRPMPD and MDVRPMPD) is verified

utilizing the same approach of the neighborhood Cross, but it is known in advance that

L0 and Lf never violate the maximum load allowed. Fig 6.4 shows an example of each

one of these neighborhood operators.

Reinsertion — One, customer is removed and inserted in another position of the

route. In Fig. 6.4.b the customer 3 was re-inserted in another position.

Or-opt2 — Two adjacent customers are removed and inserted in another position

of the route. In Fig. 6.4.c the adjacent customers 2 and 3 were re-inserted in another

position.

Or-opt3 — Three adjacent customers are removed and inserted in another position

of the route. In Fig. 6.4.d the adjacent customers 1, 2 and 3 were re-inserted in another

position.

2-opt — Two nonadjacent arcs are deleted and another two are added in such a way

that a new route is generated. In Fig. 6.4.e The arcs (2,3) and (5,6) were deleted while

the arcs (2,5) and (3,6) were inserted. This neighborhood structure was not employed in

the ACVRP.

Exchange — Permutation between two customers. In Fig. 6.4.f the customers 2 and

6 were swapped.

Reverse — This move reverses the route direction if the value of the maximum load

of the corresponding route is reduced. In Fig. 6.4.g all the arcs had their direction re-

versed. This neighborhood structure is only employed in PDP problems.
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Figure 6.4: Intra-Route neighborhoods

The computational complexity of evaluating the neighborhoods Reinsertion, Or-opt2,

Or-opt3, 2-opt and Exchange is O(n̄2) while the complexity of evaluating the neighbor-

hood Reverse is O(n̄).

6.2.3.4 Trying to empty a route

In some VRP variants, minimizing the number of vehicles is the primary goal. Hence a

greedy randomized procedure was developed for dealing with this issue, as can be observed

in Alg. 6.18. The idea is to make use of the residual capacity and residual duration of the

routes of a given solution s by means of local search, with a view of decreasing the number

of routes of s. The procedure starts by storing a backup of the solution s in s′ (line 2).

Let Route List (RL) be the list composed by the routes of s (line 3). While |RL| is greater
than 1 (lines 4-11), an attempt to empty a route is performed. A route r is selected to
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be removed from RL (lines 6-7) according to one of the following criteria: (i) route with

maximum load; (ii) route with maximum duration; (iii) random selection. The route

selection criterion is chosen at random (line 5). Next, while it is still possible to move a

customer from any route r′ ∈ RL to r or it is still possible to exchange a customer from

any route r′ ∈ RL with another one in r in such a way that the load of r is increased,

a local search is performed between the route r and those in RL by the neighborhood

structures Shift(1,0), Shift(2,0) and Swap(1,1) (lines 9-11). The best admissible move is

considered for each of these three neighborhoods. Moreover, in the case of Shift(1,0) and

Shift(2,0), a move is immediately accepted if a route r′ ∈ RL becomes empty, whereas in

the case of Swap(1,1), a move is only accepted if the vehicle load of r is increased. An

intra-route local search is performed in every modified route using 2-opt and exchange

neighborhood structures. If the procedure is not capable of emptying a route then the

current solution is restored (lines 12-13).

Algorithm 6.18 TryEmptyRoute
1: Procedure TryEmptyRoute(s)
2: s′ ← s
3: Initialize Route List (RL) with the routes of s
4: while |RL| > 1 do
5: Choose a route selection criterion at random;
6: Choose a route r ∈ RL according to the selected criterion;
7: Remove r from RL;
8: while it is still possible to move a customer from any route r′ ∈ RL to r or it is still possible to

exchange a customer from any route r′ ∈ RL with another one in r in such a way that the load of
r is increased do

9: s← Shift(1,0);
10: s← Shift(2,0);
11: s← Swap(1,1);
12: if number of routes of s is equal to the number of routes of s′ then
13: s← s′;
14: return s;
15: end TryEmptyRoute.

6.2.4 Perturbation mechanisms

A set P of four perturbation mechanisms were adopted. Only feasible perturbation moves

are accepted. Whenever the Perturb() function is called, one of the following moves is

randomly selected.

Multiple-Swap(1,1) – P (1) – Multiple random Swap(1,1) moves are performed in

sequence.

Multiple-Shift(1,1) – P (2) – Multiple random Shift(1,1) moves are performed in

sequence. The Shift(1,1) consists in transferring a customer k from a route r1 to a route

r2, whereas a customer l from r2 is transferred to r1.
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Double-Bridge – P (3) – Consists in cutting four arcs of a given route and inserting

another four to form a new tour [117] (see Fig. 6.5). This perturbation can also be seen

as a permutation of segments of routes. For those instances with less than 75 customers,

an intra-route version of the neighborhood structure Swap(2,2) is employed. For the

remaining cases the length of the segment of routes is chosen at random from the set

[2, .. . . . , bn/25c]. This perturbation is only considered for single-vehicle routing problems.

Figure 6.5: Double-Bridge

Split, P (4), a route r is divided into smaller routes. Let M ′ = {2, . . . ,m} be a subset

of M composed by all vehicle types, except the one with the smallest capacity. Firstly,

a route r ∈ s (let s = s′) associated with a vehicle u ∈ M ′ is selected at random. Next,

while r is not empty, the remaining customers of r are sequentially transferred to a new

randomly selected route r′ /∈ s associated with a vehicle u′ ∈ {1, . . . , u− 1} in such a way

that the capacity of u′ is not violated. The new generated routes are added to the solution

s while the route r is removed from s. The procedure described is repeated multiple times

where the number of repetitions is chosen at random from the set {1, 2, ..., v}. This

perturbation was applied only for the FSM, since it does not make sense for the HVRP.

6.3 Computational results

The algorithm ILS-RVND was coded in C++ (g++ 4.4.3). For the VRPs with homo-

geneous fleet and TSPMPD the tests were executed in an Intel R© CoreTM 2 Quad with

2.4 GHz and 4 GB of RAM running under Linux 64 bits (kernel 2.6.27-16). As for the

HFVRP the tests were executed in an Intel R© CoreTM i7 with 2.93 GHz and 8 GB of RAM

running under Linux 64 bits (kernel 2.6.32-22). Only a single thread was used.

The current section is divided into three parts: (i) VRPs with homogeneous fleet; (ii)

HFVRP and (iii) TSPMPD. For each of these parts, a parameter tuning was performed.

In the tables presented hereafter, Instance denotes the number of the test-problem,

n is the number of customers, BKS represents the best known solution reported in the

literature, Best Sol., Avg. Sol. and Time(s) indicate, respectively, the best solution,

the average solution and the average computational time in seconds associated to the cor-

respondent work, Gap denotes the gap between the best solution found by ILS-RVND and
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the best known solution, Avg. Gap corresponds to the gap between the average solution

found by ILS-RVND and the best known solution. The best solutions are highlighted

in boldface and the solutions improved by ILS-RVND are underlined. The approximate

speed, in Mflop/s, of the machines used by other authors is also reported considering the

factors suggested by the benchmarks of Dongarra [50], when solving solving a system of

equations of order 1000,

6.3.1 VRPs with Homogeneous Fleet

The seven VRP variants tackled in this subsection are: CVRP, ACVRP, OVRP, VRPSPD,

VRPMPD, MDVRP and MDVRPMPD. The benchmark instances used in every type of

problem were those most adopted in the literature. For each group of instances, the

performance of the ILS-RVND, in terms of solution quality, was compared with the best

known heuristic algorithms or simply with the optimal/BKS. The number of executions

of the ILS-RVND on each instance of every variant was 50.

6.3.1.1 Parameter tuning

A set of representative instances of different VRPs with homogeneous fleet was selected

for tuning the two main parameters of the ILS-RVND heuristic, that is, MaxIter and

MaxIterILS. It has been observed that the last one varies with the size of the instances,

more precisely, with the number of customers and vehicles. For the sake of simplicity, it

was decided to use an intuitive and straightforward linear expression for computing the

value of MaxIterILS according to n and v, as shown in Eq. 6.3.

MaxIterILS = n+ β × v (6.3)

The parameter β in Eq. 6.3 corresponds to a non-negative integer constant that

indicates the level of influence of the number of vehicles v in the value of MaxIterILS.

Twenty three instances with varying number of customers (50 - 480) and vehicles were

chosen as a sample for tuning the values of the parameters. For each of these test-problems

the ILS-RVND was executed 20 times. Two values of MaxIter were tested, specifically

50 and 75. For each of these, five values of β were evaluated.

In order to select an attractive parameters configuration one took into account the

quality of the solutions obtained in each variant, measured by the average gap between

the solutions obtained using a given β value and the respective best solution found in the

literature, and the computational effort, measured by the average computational time.

The gap was calculated using Eq. 6.4. Negative values indicate an improvement.

gap =
ILS-RVND solution− literature solution

literature solution
× 100 (6.4)
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Table 6.1 contains the results of the average gap and the average CPU time for the

tests involving MaxIter = 50, while those obtained for MaxIter = 75 are presented in

Table 6.2. It can be observed that the quality of the solutions and the computational time

tend to increase with the value of β and MaxIter. This behavior was obviously expected

since more trials are given to the algorithm when the values of these two parameters

increase. The selected configuration was β = 5 and MaxIter = 50 since it was capable

of producing, on average, satisfactory solutions in much less computational time when

compared to the configuration that obtained the best results in terms of solution quality

(β = 7 and MaxIter = 75).

Table 6.1: Results of the parameter tuning for MaxIter = 50
β

Instance N v 3 4 5 6 7

Avg. Avg. Avg. Avg. Avg.
Gap

Time
Gap

Time
Gap

Time
Gap

Time
Gap

Time

(%)
(s)

(%)
(s)

(%)
(s)

(%)
(s)

(%)
(s)

CMT1X3 50 3 0.00 2.08 0.00 2.18 0.00 2.35 0.00 2.43 0.00 2.57
CMT1Q4 50 4 0.00 1.76 0.00 1.87 0.00 1.93 0.00 2.05 0.00 2.12
SCA3-03 50 4 0.07 1.51 0.07 1.60 0.07 1.68 0.07 1.74 0.07 1.82
SCA8-03 50 9 0.00 1.86 0.00 1.95 0.00 2.14 0.00 2.31 0.00 2.54
CMT2X2 75 6 0.22 6.15 0.15 6.41 0.19 6.62 0.15 7.00 0.12 7.29
CMT2Q4 75 8 -0.01 5.46 -0.01 5.85 -0.10 6.30 0.01 6.71 -0.02 6.82
CMT3X3 100 5 0.08 15.07 0.15 16.17 0.08 16.18 0.12 17.33 0.06 17.47
CMT3Q4 100 6 0.00 14.32 0.00 14.86 0.00 15.43 0.00 16.18 0.00 16.95
r1013 100 11 0.46 13.07 0.41 14.37 0.29 15.30 0.32 16.31 0.34 16.86
CMT11X3 120 4 2.02 40.52 1.77 42.90 1.77 42.78 1.89 43.86 1.88 45.75
F-n135-k72 134 7 0.09 38.91 0.10 40.12 0.11 42.10 0.11 42.86 0.09 45.60
CMT4X3 150 7 0.19 52.00 0.18 54.15 0.17 55.85 0.12 56.96 0.12 59.26
CMT4Q4 150 9 0.18 43.87 0.18 46.29 0.20 48.10 0.19 49.98 0.16 50.66
CMT5X3 199 10 0.42 122.08 0.35 127.07 0.43 134.27 0.40 139.51 0.35 143.12
CMT5Q4 199 12 -1.85 124.03 -1.90 132.49 -1.87 136.82 -1.90 139.11 -1.87 146.94
rc1 2 13 200 23 0.59 100.43 0.62 110.16 0.68 117.22 0.60 122.95 0.55 132.74
c1 2 13 200 28 0.33 91.29 0.33 100.38 0.33 106.44 0.34 113.59 0.29 118.14
G91 255 14 1.58 259.25 1.55 267.96 1.54 270.60 1.50 289.21 1.47 296.71
G181 300 27 0.90 472.27 0.82 501.70 0.77 523.43 0.79 542.48 0.73 568.91
c2 4 13 400 15 0.70 1135.35 0.55 1152.96 0.69 1142.65 0.61 1154.56 0.70 1187.65
c1 4 13 400 63 0.15 857.68 0.10 924.39 0.07 988.83 0.06 1026.24 0.09 1117.27
G201 420 38 0.98 1300.91 0.93 1375.48 0.85 1460.54 0.87 1497.13 0.91 1540.54
G161 480 37 1.23 1285.28 1.27 1365.71 1.21 1379.75 1.14 1464.85 1.18 1521.31

Average 0.36 260.22 0.33 274.22 0.32 283.36 0.32 293.71 0.31 306.48

(1) CVRP, (2) OVRP, (3) VRPSPD, (4) VRPMPD

6.3.1.2 CVRP

Different sets of well-known CVRP instances were used to verify the behavior of the

proposed heuristic. The first group is composed by the so-called A, B, E, F, M, and P in-

stances (available at www.branchandcut.org, accessed 11 August 2010). These instances

are generally used for testing exact algorithms and most of them had been solved to opti-

mality (see [63, 115]). Also, it is worth mentioning that the distance matrix is rounded up

to the nearest integer. The second group of instances was suggested by Christofides et al.

[31] and it is composed of 14 instances with 50-199 customers. Half of these includes route

duration constraints (C6-C10, C13-C14). The third group contains large-sized instances
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Table 6.2: Results of the parameter tuning for MaxIter = 75
β

Instance N v 3 4 5 6 7

Avg. Avg. Avg. Avg. Avg.
Gap

Time
Gap

Time
Gap

Time
Gap

Time
Gap

Time

(%)
(s)

(%)
(s)

(%)
(s)

(%)
(s)

(%)
(s)

CMT1X3 50 3 0,00 3,11 0,00 3,31 0,00 3,42 0,00 3,52 0,00 3,75
CMT1Q4 50 4 0.00 2.65 0.00 2.75 0.00 2.94 0.00 2.99 0.00 3.18
SCA3-03 50 4 0.07 2.24 0.07 2.36 0.07 2.48 0.07 2.59 0.07 2.72
SCA8-03 50 9 0.00 2.76 0.00 3.04 0.00 3.35 0.00 3.53 0.00 3.73
CMT2X3 75 6 0.09 8.87 0.16 9.70 0.13 9.99 0.08 10.43 0.10 11.03
CMT2Q4 75 6 -0.10 8.25 -0.04 8.76 -0.10 9.47 -0.08 9.84 -0.10 10.36
CMT3X3 100 5 0.06 23.36 0.03 23.69 0.07 25.12 0.10 25.76 0.07 25.88
CMT3Q4 100 6 0.00 21.82 0.00 22.42 0.00 23.29 0.00 23.89 0.00 24.75
r1013 100 11 0.39 20.32 0.31 22.17 0.24 22.87 0.34 24.21 0.28 25.41
CMT11X3 120 4 1.61 60.28 1.60 62.48 1.44 64.19 1.54 66.65 1.58 69.25
F-n135-k72 134 7 0.08 58.60 0.09 59.94 0.07 62.54 0.08 64.11 0.06 66.86
CMT4X3 150 7 0.12 78.72 0.15 81.28 0.12 86.12 0.14 88.48 0.11 89.70
CMT4Q4 150 9 0.18 66.66 0.17 70.16 0.16 72.50 0.16 74.04 0.17 77.12
CMT5X3 199 10 0.33 192.94 0.37 198.06 0.31 208.29 0.36 208.96 0.27 219.95
CMT5Q4 199 12 -1.94 187.50 -1.87 199.37 -1.92 202.91 -1.91 214.19 -1.95 218.94
rc1 2 13 200 23 0.56 153.68 0.56 165.48 0.52 175.59 0.56 187.16 0.57 193.25
c1 2 13 200 28 0.33 137.58 0.28 148.23 0.30 158.81 0.29 169.54 0.29 177.02
G91 255 14 1.46 384.47 1.41 393.88 1.47 411.40 1.40 435.25 1.41 445.49
G181 300 27 0.83 714.53 0.76 758.75 0.79 793.26 0.81 833.43 0.69 859.82
c2 4 13 400 15 0.67 1738.73 0.61 1737.37 0.57 1715.61 0.66 1776.34 0.53 1788.57
c1 4 13 400 63 0.10 1303.45 0.06 1443.32 0.05 1528.06 0.05 1578.59 0.06 1671.75
G201 420 38 0.92 1954.09 0.89 2114.32 0.91 2213.09 0.85 2272.95 0.84 2412.72
G161 480 37 1.17 1943.82 1.17 2093.85 1.19 2169.48 1.18 2231.98 1.14 2349.35

Average 0.30 394.28 0.29 418.46 0.28 433.25 0.29 448.19 0.27 467.42

(1) CVRP, (2) OVRP, (3) VRPSPD, (4) VRPMPD

composed by 20 instances with 240-483 customers and it was proposed by Golden et al.

[80]. In this case 8 instances include route duration constraints (G1-G8).

Tables 6.3-6.4 present the results obtained in the first group of CVRP instances. It can

be observed that, except for the instance B-n63-k10, the ILS-RVND managed to find all

proven optimal solutions. For the three instances where the optimal solution is not known,

the ILS-RVND equaled the BKS of one of them (M-n151-k12) but failed to obtain the

BKS for the other two (M-n200-k16 and M-n200-k17). Notice that the computational time

spent by ILS-RVND on the instance M-n200-k16 was considerably higher when compared

to the instance M-n200-k17. This occurred because the algorithm struggled to generate

initial feasible solutions due to the instance tightness ((
∑

i∈V ′ di)/(mQ) = 0.995).

Table 6.5 contains the results found in the instances of Christofides et al. [31] and a

comparison with those reported by Rochat and Taillard [147], Pisinger and Røpke (ALNS

50K) [136], Mester and Bräysy [118], Nagata and Bräysy [127] and Vidal et al. [177]. The

performance of the proposed algorithm was quite similar to the one developed by Pisinger

and Røpke [136], being successful to equal the BKS in 11 of the 14 instances. The average

gap between the Avg. Sols. found by ILS-RVND and the BKSs was 0.26%.

Table 6.6 illustrates a comparison, in terms of average solution. between the results

obtained by ILS-RVND and those found by Pisinger and Røpke (ALNS 50K) [136], Nagata

and Bräysy [127] and Zachariadis Kiranoudis [187] for the instances of Golden et al. [80].
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Table 6.3: Results found for the A and B CVRP instances
ILS-RVND

Instance n v BKS
Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

A-n32-k5 31 5 a784 784 784.00 0.00 0.00 0.63
A-n33-k5 32 5 a661 661 661.00 0.00 0.00 0.66
A-n33-k6 32 6 a742 742 742.00 0.00 0.00 0.63
A-n34-k5 33 5 a778 778 778.00 0.00 0.00 0.72
A-n36-k5 35 5 a799 799 799.00 0.00 0.00 0.87
A-n37-k5 36 5 a669 669 669.00 0.00 0.00 0.88
A-n37-k6 36 6 a949 949 949.00 0.00 0.00 0.99
A-n38-k5 37 5 a730 730 730.00 0.00 0.00 0.88
A-n39-k5 38 5 a822 822 822.00 0.00 0.00 1.07
A-n39-k6 38 6 a831 831 831.88 0.00 0.11 0.93
A-n44-k6 43 6 a937 937 937.00 0.00 0.00 1.62
A-n45-k6 44 6 a944 944 944.24 0.00 0.03 1.32
A-n45-k7 44 7 a1146 1146 1146.00 0.00 0.00 1.40
A-n46-k7 45 7 a914 914 914.00 0.00 0.00 1.14
A-n48-k7 47 7 a1073 1073 1073.00 0.00 0.00 1.37
A-n53-k7 52 7 a1010 1010 1010.02 0.00 < 0.01 1.76
A-n54-k7 53 7 a1167 1167 1167.00 0.00 0.00 2.04
A-n55-k9 54 9 a1073 1073 1073.00 0.00 0.00 1.70
A-n60-k9 59 9 a1354 1354 1354.00 0.00 0.00 3.01
A-n61-k9 60 9 a1034 1034 1034.18 0.00 0.02 2.80
A-n62-k8 61 8 a1288 1288 1289.92 0.00 0.15 2.92
A-n63-k10 62 10 a1314 1314 1316.82 0.00 0.21 2.92
A-n63-k9 62 9 a1616 1616 1618.60 0.00 0.16 2.98
A-n64-k9 63 9 a1401 1401 1406.26 0.00 0.38 3.14
A-n65-k9 64 9 a1174 1174 1175.80 0.00 0.15 2.63
A-n69-k9 68 9 a1159 1159 1159.40 0.00 0.03 3.54
A-n80-k10 79 10 a1763 1763 1763.66 0.00 0.04 6.18
B-n31-k5 30 5 a672 672 672.00 0.00 0.00 0.61
B-n34-k5 33 5 a788 788 788.00 0.00 0.00 0.67
B-n35-k5 34 5 a955 955 955.00 0.00 0.00 0.75
B-n38-k6 37 6 a805 805 805.00 0.00 0.00 1.10
B-n39-k5 38 5 a549 549 549.00 0.00 0.00 1.04
B-n41-k6 40 6 a829 829 829.00 0.00 0.00 1.33
B-n43-k6 42 6 a742 742 742.00 0.00 0.00 1.34
B-n44-k7 43 7 a909 909 909.00 0.00 0.00 1.02
B-n45-k5 44 5 a751 751 751.00 0.00 0.00 1.45
B-n45-k6 44 6 a678 678 678.00 0.00 0.00 1.51
B-n50-k7 49 7 a741 741 741.00 0.00 0.00 1.00
B-n50-k8 49 8 a1312 1312 1313.40 0.00 0.11 1.73
B-n51-k7 50 7 a1032 1032 1032.00 0.00 0.00 1.55
B-n52-k7 51 7 a747 747 747.00 0.00 0.00 1.64
B-n56-k7 55 7 a707 707 707.00 0.00 0.00 2.02
B-n57-k7 56 7 a1153 1153 1153.00 0.00 0.00 2.75
B-n57-k9 56 9 a1598 1598 1598.00 0.00 0.00 2.42
B-n63-k10 62 10 a1496 1497 1504.78 0.07 0.59 2.65
B-n64-k9 63 9 a861 861 861.00 0.00 0.00 2.91
B-n66-k9 65 9 a1316 1316 1316.24 0.00 0.02 3.26
B-n67-k10 66 10 a1032 1032 1033.34 0.00 0.13 3.48
B-n68-k9 67 9 a1272 1272 1277.10 0.00 0.40 3.58
B-n78-k10 77 10 a1221 1221 1221.02 0.00 0.00 5.86

Avg. 0.00 0.05 1.93

a: Optimality proved.

It can be seen that the ILS-RVND outperformed the algorithm of Pisinger and Røpke

[136], but it could not compete with those of Nagata and Bräysy [127], Vidal et al. [177]

and Zachariadis and Kiranoudis [187] in terms of average solution quality. Yet, the average

gap between the Avg. Sols. found by ILS-RVND and the BKSs was only 1.03%, a value

smaller the one obtained by the general heuristic of Pisinger and Røpke [136]. On the

other hand, in spite of obtaining slightly lower quality solutions, the proposed algorithm
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appears to be rather simple than those developed in [127], [177] and [187].

Table 6.4: Results found for the E, F, M and P CVRP instances
ILS-RVND

Instance n v BKS
Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

E-n23-k3 22 3 a569 569 569.00 0.00 0.00 0.25
E-n30-k3 29 3 a534 534 534.00 0.00 0.00 0.45
E-n33-k4 32 4 a835 835 835.00 0.00 0.00 0.63
E-n51-k5 50 5 a521 521 521.00 0.00 0.00 1.98
E-n76-k10 75 10 a830 830 831.58 0.00 0.19 5.08
E-n76-k14 75 14 a1021 1021 1022.12 0.00 0.11 6.79
E-n76-k7 75 7 a682 682 682.40 0.00 0.06 4.61
E-n76-k8 75 8 a735 735 735.46 0.00 0.06 4.50
E-n101-k8 100 8 a815 815 815.50 0.00 0.06 10.98
E-n101-k14 100 14 a1067 1067 1073.36 0.00 0.60 10.81
F-n135-k7 134 7 a1162 1162 1162.30 0.00 0.03 30.26
F-n45-k4 44 4 a724 724 724.00 0.00 0.00 1.15
F-n72-k4 71 4 a237 237 237.00 0.00 0.00 5.03
M-n101-k10 100 10 a820 820 820.00 0.00 0.00 6.93
M-n121-k7 120 7 a1034 1034 1034.00 0.00 0.00 18.55
M-n151-k12 150 12 b1015 1015 1020.56 0.00 0.55 32.88
M-n200-k16 199 16 c1285 1290 1308.88 0.39 1.86 129.93
M-n200-k17 199 17 b1275 1282 1290.84 0.55 1.24 73.99
P-n16-k8 15 8 a450 450 450.00 0.00 0.00 0.15
P-n19-k2 14 2 a212 212 212.00 0.00 0.00 0.15
P-n20-k2 19 2 a216 216 216.00 0.00 0.00 0.15
P-n21-k2 20 2 a211 211 211.00 0.00 0.00 0.15
P-n22-k2 21 2 a216 216 216.00 0.00 0.00 0.17
P-n22-k8 21 8 a603 603 603.00 0.00 0.00 0.30
P-n23-k8 22 8 a529 529 529.00 0.00 0.00 0.77
P-n40-k5 39 5 a458 458 458.00 0.00 0.00 1.01
P-n45-k5 44 5 a510 510 510.00 0.00 0.00 1.42
P-n50-k7 49 7 a554 554 554.00 0.00 0.00 1.48
P-n50-k8 49 8 a631 631 632.90 0.00 0.30 9.61
P-n50-k10 49 10 a696 696 696.90 0.00 0.13 1.56
P-n51-k10 50 10 a741 741 741.00 0.00 0.00 1.89
P-n55-k7 54 7 a568 568 568 0.00 0.00 1.17
P-n55-k8 54 8 a588 588 588 0.00 0.00 1.76
P-n55-k10 54 10 a694 694 695.20 0.00 0.17 1.94
P-n55-k15 54 15 a989 989 999.42 0.00 0.35 2.76
P-n60-k10 59 10 a744 744 744.00 0.00 0.00 2.49
P-n60-k15 59 15 a968 968 968.14 0.00 0.01 2.46
P-n65-k10 64 10 a792 792 792.00 0.00 0.00 2.81
P-n70-k10 69 10 a827 827 827.52 0.00 0.06 3.82
P-n76-k4 75 4 a593 593 593.04 0.00 0.01 7.29
P-n76-k5 75 5 a627 627 627.00 0.00 0.00 7.18
P-n101-k4 100 4 a681 681 681.00 0.00 0.00 17.04

Avg. 0.02 0.13 9.65

a: Optimality proved. b: Value presented in [63]. c: Value obtained in [173].
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rä
y
sy

[1
2
7
]

et
a
l.

[1
7
7
]

K
ir
a
n
o
u
d
is

[1
8
7
]

IL
S
-R

V
N
D

In
st
a
n
ce

n
v

B
K
S

A
v
g
.

T
im

e1
A
v
g
.

T
im

e2
A
v
g
.

T
im

e3
A
v
g
.

T
im

e4
B
es
t

A
v
g
.

G
a
p

A
v
g
.

T
im

e
S
o
l.
∗

(s
)

S
o
l.
∗

(s
)

S
o
l.
∗

(s
)

S
o
l.
∗

(s
)

S
o
l.

S
o
l.

(%
)

G
a
p
(%

)
(s
)

G
1
7

2
4
0

2
2

a
,b
7
0
7
.7
6

7
1
0
.5
9

3
0
4

7
0
7
.7
8

5
8
2
.4

7
0
8
.0
9

4
2
3
.6

7
0
8
.9
4

9
6
2
.3

7
0
8
.0
6

7
0
9
.2
1

0
.0
4

0
.2
0

1
7
6
.9
5

G
1
3

2
5
2

2
6

a
,b
8
5
7
.1
9

8
7
4
.2
4

2
8
5

8
5
8
.4
2

9
2
1
.9

8
5
9
.6
4

5
6
1
.6

8
6
0
.4
4

1
1
8
9
.3

8
6
1
.5
2

8
6
5
.6
4

0
.5
1

0
.9
9

1
7
1
.1
4

G
9

2
5
5

1
4

b
5
7
9
.7
1

5
9
0
.3
3

4
3
7

5
8
1
.4
6

1
0
4
3
.3

5
8
1
.7
9

9
7
3
.2

5
8
4
.6
6

9
2
9
.4

5
8
6
.9
0

5
8
9
.5
4

1
.2
4

1
.6
9

2
6
0
.1
6

G
1
8

3
0
0

2
7

a
,b
9
9
5
.1
3

1
0
0
7
.8
4

3
8
7

9
9
5
.9
1

1
4
6
5
.9

9
9
8
.4
4

9
9
3
.6

9
9
7
.7
4

1
7
1
8
.6

9
9
9
.7
7

1
0
0
3
.1
3

0
.4
7

0
.8
0

4
8
9
.3
7

G
1
4

3
2
0

3
0

a
,b
1
0
8
0
.5
5

1
1
0
3
.5
3

3
9
3

1
0
8
0
.8
4

1
2
3
9
.3

1
0
8
2
.4
1

8
4
7
.2

1
0
8
3
.5
5

1
1
8
7
.4

1
0
8
5
.3
6

1
0
9
2
.0
7

0
.4
5

1
.0
7

3
4
4
.6
1

G
1
0

3
2
3

1
6

b
7
3
6
.2
6

7
5
1
.3
6

6
1
6

7
3
9
.5
6

1
6
1
7
.5

7
3
9
.8
6

1
5
5
1
.6

7
3
9
.8
6

1
2
7
1
.4

7
4
4
.0
7

7
4
9
.1
6

1
.0
6

1
.7
5

5
9
8
.8
5

G
1
9

3
6
0

3
3

b
1
3
6
5
.6
0

1
3
7
7
.8
8

4
4
9

1
3
6
6
.7
0

2
1
1
5
.6

1
3
6
7
.8
3

1
6
7
4
.6

1
3
7
0
.7
7

1
8
2
4
.2

1
3
7
0
.4
6

1
3
7
6
.0
1

0
.3
6

0
.7
6

7
1
1
.6
0

G
1
5

3
9
6

3
3

b
1
3
3
7
.9
2

1
3
6
6
.2
3

4
6
8

1
3
4
4
.3
2

1
8
7
2
.2

1
3
4
3
.5
2

2
3
4
9
.0

1
3
4
4
.4
1

1
6
5
8
.8

1
3
4
7
.4
2

1
3
5
4
.2
4

0
.7
1

1
.2
2

7
8
4
.2
8

G
1
1

3
9
9

1
8

b
9
1
2
.8
4

9
2
6
.5
7

7
6
1

9
1
6
.2
7

2
3
3
7
.5

9
1
6
.4
4

2
7
3
6
.6

9
1
9
.5
2

1
3
9
2
.2

9
2
2
.5
3

9
2
8
.2
3

1
.0
6

1
.6
9

1
2
3
0
.8
9

G
2
0

4
2
0

3
8

b
1
8
1
8
.3
2

1
8
3
4
.7
0

4
8
8

1
8
2
1
.6
5

2
8
2
4
.7

1
8
2
2
.0
2

2
2
9
3
.8

1
8
2
9
.5
7

1
1
9
9
.3

1
8
2
8
.7
2

1
8
3
6
.0
6

0
.5
7

0
.9
8

1
3
1
4
.4
4

G
1
6

4
8
0

3
7

b
1
6
1
2
.5
0

1
6
4
5
.6
7

5
4
9

1
6
2
2
.2
6

2
6
1
6
.2

1
6
2
1
.0
2

3
4
9
6
.2

1
6
2
3
.4
2

1
8
4
8
.5

1
6
2
8
.6
2

1
6
3
5
.6
2

1
.0
0

1
.4
3

1
2
4
7
.3
4

G
1
2

4
8
3

1
9

b
1
1
0
2
.6
9

1
1
2
5
.2
2

9
1
1

1
1
0
8
.2
1

3
5
6
1
.9

1
1
0
6
.7
3

5
7
4
0
.2

1
1
1
0
.6
5

1
2
8
2
.3

1
1
1
6
.4
6

1
1
2
1
.2
4

1
.2
5

1
.6
8

2
9
6
9
.8
3

G
5

2
0
0

5
6
4
6
0
.9
8

6
4
8
2
.4
9

6
2
9

6
4
6
0
.9
8

1
6
4
.7

6
4
6
0
.9
8

1
5
3
.6

6
4
6
0
.9
8

9
8
9
.6

6
4
6
0
.9
8

6
4
6
0
.9
8

0
.0
0

0
.0
0

1
1
2
.9
0

G
1

2
4
0

9
b
5
6
2
3
.4
7

5
6
6
2
.5
7

9
3

5
6
3
2
.0
5

3
3
9
3

5
6
2
7
.0
0

7
0
0
.8

5
6
3
7
.9
9

9
0
7
.7

5
6
5
4
.6
6

5
7
1
1
.1
9

0
.5
5

1
.5
6

1
5
2
.0
9

G
6

2
8
0

7
c
8
4
1
2
.8
8

8
5
4
3
.3
0

8
7
6

8
4
1
3
.4
1

8
3
0
.3

8
4
1
2
.9
0

5
0
2
.8

8
4
1
2
.9
0

1
0
9
1
.6

8
4
1
2
.9
0

8
4
1
2
.9
0

0
.0
0

0
.0
0

3
3
3
.0
6

G
2

3
2
0

1
0

b
8
4
0
4
.6
1

8
4
8
7
.9
4

6
7
2

8
4
4
0
.2
5

1
7
2
6
.2

8
4
4
6
.6
5

1
2
4
5
.0

8
4
5
7
.9
2

1
2
4
9
.4

8
4
5
5
.1
1

8
4
8
0
.6
2

0
.6
0

0
.9
0

4
4
1
.9
8

G
7

3
6
0

9
b
1
0
1
0
2
.7
0

1
0
2
6
5
.1
5

9
4
1

1
0
1
8
6
.9
3

2
1
7
9
.7

1
0
1
5
7
.6
3

1
3
7
6
.4

1
0
1
9
2
.4
7

1
8
8
5
.5

1
0
1
9
5
.6
0

1
0
2
2
8
.8
0

0
.9
2

1
.2
5

6
8
1
.2
7

G
3

4
0
0

1
0

1
1
0
3
6
.2
2

1
1
0
5
2
.7
2

1
0
1
5

1
1
0
3
6
.2
2

2
6
0
6
.8

1
1
0
3
6
.2
2

1
6
7
9
.4

1
1
0
3
6
.2
2

1
1
6
4
.0

1
1
0
3
8
.6
0

1
1
0
7
6
.2
0

0
.0
2

0
.3
6

9
5
3
.8
8

G
8

4
4
0

1
0

b
1
1
6
3
5
.3
0

1
1
7
6
6
.0
7

1
0
1
1

1
1
6
9
1
.5
4

5
7
7
6
.7

1
1
6
4
6
.5
8

2
4
4
0
.2

1
1
6
7
4
.4
3

1
6
5
7
.4

1
1
7
0
4
.5
0

1
1
8
4
2
.8
0

0
.5
9

1
.7
8

1
2
9
2
.3
4

G
4

4
8
0

1
0

a
1
3
5
9
2
.8
8

1
3
7
4
8
.5
0

1
3
2
8

1
3
6
1
8
.5
5

3
8
4
1
.6

1
3
6
2
4
.5
2

2
6
2
0
.2

1
3
6
3
2
.5
9

1
0
1
9
.0

1
3
6
2
4
.5
2

1
3
6
6
5
.8
5

0
.2
3

0
.5
4

1
7
0
2
.9
0

A
v
g
.
G
a
p
(%

)
1
.3
4

A
v
g
.
G
a
p
(%

)
0
.2
7

A
v
g
.
G
a
p
(%

)
0
.2
6

A
v
g
.
G
a
p
(%

)
0
.4
2

A
v
g
.

0
.5
8

1
.0
3

7
9
8
.4
9

1
:
A
v
er
a
g
e
o
f
1
0
ru

n
s
o
n
a
P
en

ti
u
m

IV
3
.0

G
H
z
(3
1
8
1
M
fl
o
p
/
s)
.

2
:
A
v
er
a
g
e
o
f
1
0
ru

n
s
o
n
a
n
O
p
te
ro
n
2
.4

G
H
z
(3
4
8
5
M
fl
o
p
/
s)

3
:
A
v
er
a
g
e
o
f
1
0
ru

n
s
o
n
a
n
O
p
te
ro
n
2
.4

G
H
z
sc
a
le
d
fo
r
a
P
en

ti
u
m

IV
3
.0

G
H
z.

4
:
A
v
er
a
g
e
o
f
1
0
ru

n
s
o
n
a
T
5
5
0
0
1
.6
6
G
H
z
(2
7
9
1
M
fl
o
p
/
s)
.

∗
:
A
v
er
a
g
e
o
f
1
0
ru

n
s

a
:
F
o
u
n
d
b
y
N
a
g
a
ta

a
n
d
B
rä
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6.3.1.3 ACVRP

The ILS-RVND algorithm was tested in the ACVRP instances suggested by Fischetti et

al. [57]. The capacity of the vehicle is the same (Q = 1000) for all these instances and

the number of customers varies between 33 and 70. Pessoa et al. [134] also considered

the same data set of Fischetti et al. [57] but with different capacities (150, 250 and 500).

The instances with Q = 150 are not considered, since they can be easily solved using a

Set Partitioning based formulation (most feasible routes contain very few customers and

it is practical to perform a complete enumeration), thus leading to a total of 24 instances.

Table 6.7 shows the results found for the ACVRP instances. All the known optimal

solutions were consistently found by ILS-RVND. Regarding the two instances where the

optimal solutions is not known, the proposed algorithm was capable of improving the BKS

in one of them (A071-05f), but the same did not happen with the other one (A071-10f).

Table 6.7: Results found for the ACVRP instances of Fischetti et al. [57] and Pessoa et
al. [134]

ILS-RVND
Instance n v BKS

Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

A034-02f 34 2 a1406 1406 1406.00 0.00 0.00 0.56
A034-04f 34 4 a1773 1773 1773.00 0.00 0.00 0.68
A034-08f 34 8 a2672 2672 2672.00 0.00 0.00 0.73
A036-03f 36 3 a1644 1644 1644.00 0.00 0.00 0.79
A036-05f 36 5 a2110 2110 2110.00 0.00 0.00 0.82
A036-10f 36 10 a3338 3338 3338.00 0.00 0.00 9.23
A039-03f 39 3 a1654 1654 1654.00 0.00 0.00 0.85
A039-06f 39 6 a2289 2289 2289.00 0.00 0.00 1.08
A039-12f 39 12 a3705 3705 3705.00 0.00 0.00 1.12
A045-03f 45 3 a1740 1740 1740.00 0.00 0.00 1.33
A045-06f 45 6 a2303 2303 2303.36 0.00 0.02 1.60
A045-11f 45 11 a3544 3544 3553.00 0.00 0.25 2.57
A048-03f 48 3 a1891 1891 1891.00 0.00 0.00 1.61
A048-05f 48 5 a2283 2283 2289.66 0.00 0.29 1.91
A048-10f 48 10 a3325 3325 3325.66 0.00 0.02 1.51
A056-03f 56 3 a1739 1739 1739.56 0.00 0.03 2.46
A056-05f 56 5 a2165 2165 2175.70 0.00 0.49 2.42
A056-10f 56 10 a3263 3263 3309.80 0.00 1.43 2.10
A065-03f 65 3 a1974 1974 1974.00 0.00 0.00 3.78
A065-06f 65 6 a2567 2567 2572.80 0.00 0.23 4.46
A065-12f 65 12 a3902 3902 3925.36 0.00 0.60 3.06
A071-03f 71 3 a2054 2054 2054.00 0.00 0.00 5.66
A071-05f 71 5 b2475 2457 2463.58 -0.73 -0.46 6.16
A071-10f 71 10 b3486 3489 3512.24 0.09 0.75 4.42

Avg. -0.03 0.15 2.54

a: Optimality proved. b: Value presented in [134].



6.3 Computational results 91

6.3.1.4 OVRP

To examine the behavior of the ILS-RVND algorithm when applied to solve the OVRP,

use was made of the CVRP A, B, E, F, M, and P instances, but without rounding up the

distance matrix. In this set of instances, the maximum number of vehicles is assumed as

an input data. The instances of Christofides et al. [31] without and with route durations

constraints (see Brandão [21] for more details), as well as another two generated by Fisher

[58] were also considered. Finally, the proposed heuristic was also tested in the large-sized

instances suggested by Li et al. [105] involving 200-480 customers. For these last two

benchmark data sets, the primary objective is to minimize the number of vehicles, whereas

the secondary one consists in minimizing the distance traveled.

Tables 6.8-6.9 illustrate the results obtained in the first group of instances. All known

optimal solutions were found with the exception instances B-n50-k8, B-n57-k9, M-n200-

k16 and P-n60-k15. Furthermore, the result of the instance M-n200-k17 was improved.

The overall behavior of the algorithm in this benchmark data set was quite similar to the

one verified for the CVRP.

Table 6.10 presents the results found by ILS-RVND in the second and third group of

instances and a comparison with those pointed out by Pisinger and Røpke (ALNS 50K)

[136], Fleszar et al. [60], Repoussis et al. [146] and Zachariadis and Kiranoudis [186].

Regarding those of Christofides et al. [31] and Fisher [58], ILS-RVND was capable of

obtaining the BKS in 11 cases and to improve another 2 solutions, but it failed to find 3

BKSs. Furthermore, ILS-RVND also failed to always obtain solutions with the minimum

number of vehicles on instances C7 and C9. The average gap between the Avg. Sols.

obtained by ILS-RVND and the BKSs, disregarding those two instances where the average

number of vehicles found by the proposed algorithm was larger than those associated to

the BKSs, was 0.62%. As for the 8 instances of Li et al. [105], ILS-RVND improved 7

results and the average gap between the Avg. Sols produced by ILS-RVND and the BKSs

was 0.19%. Also, the developed algorithm was successful to generate feasible solutions

using vmin vehicles in all instances of this group.
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Table 6.8: Results found for the A and B OVRP instances
ILS-RVND

Instance n v BKS
Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

A-n32-k5 31 5 a487.31 487.31 487.31 0.00 0.00 0.68
A-n33-k5 32 5 a424.54 424.54 424.54 0.00 0.00 0.76
A-n33-k6 32 6 a462.43 462.43 462.43 0.00 0.00 0.80
A-n34-k5 33 5 a508.17 508.17 508.17 0.00 0.00 0.88
A-n36-k5 35 5 a519.46 519.46 519.46 0.00 0.00 1.10
A-n37-k5 36 5 a486.24 486.24 486.24 0.00 0.00 1.22
A-n37-k6 36 6 a581.07 581.07 581.07 0.00 0.00 1.31
A-n38-k5 37 5 a498.00 498.00 498.00 0.00 0.00 1.09
A-n39-k5 38 5 a549.68 549.68 549.68 0.00 0.00 1.47
A-n39-k6 38 6 a533.07 533.07 533.07 0.00 0.00 1.09
A-n44-k6 43 6 a617.39 617.39 617.39 0.00 0.00 2.07
A-n45-k6 44 6 a648.67 648.67 649.26 0.00 0.09 1.72
A-n45-k7 44 7 a685.16 685.16 685.16 0.00 0.00 1.64
A-n46-k7 45 7 a583.54 583.54 584.37 0.00 0.14 1.18
A-n48-k7 47 7 a669.83 669.83 669.83 0.00 0.00 1.76
A-n53-k7 52 7 a655.18 655.18 655.18 0.00 0.00 2.47
A-n54-k7 53 7 a709.27 709.27 709.27 0.00 0.00 2.96
A-n55-k9 54 9 a669.06 669.06 669.06 0.00 0.00 2.10
A-n60-k9 59 9 b798.01 798.01 798.01 0.00 0.00 3.67
A-n61-k9 60 9 b678.30 678.30 678.85 0.00 0.08 4.12
A-n62-k8 61 8 a783.18 783.18 783.45 0.00 0.03 3.42
A-n63-k9 62 9 b941.53 941.53 941.70 0.00 0.02 4.49
A-n63-k10 62 10 a778.46 778.46 779.12 0.00 0.08 4.18
A-n64-k9 63 9 a848.15 848.16 848.39 0.00 0.03 3.99
A-n65-k9 64 9 a728.59 728.59 728.68 0.00 0.01 3.83
A-n69-k9 68 9 a757.76 757.76 758.12 0.00 0.05 4.54
A-n80-k10 79 10 a1067.09 1067.09 1068.63 0.00 0.14 7.68
B-n31-k5 30 5 a362.73 362.73 362.73 0.00 0.00 0.76
B-n34-k5 33 5 a458.76 458.76 458.76 0.00 0.00 0.78
B-n35-k5 34 5 a557.33 557.33 557.33 0.00 0.00 0.82
B-n38-k6 37 6 a445.63 445.63 445.63 0.00 0.00 1.02
B-n39-k5 38 5 a322.54 322.54 322.54 0.00 0.00 1.30
B-n41-k6 40 6 a483.07 483.07 483.07 0.00 0.00 1.96
B-n43-k6 42 6 a428.17 428.17 428.17 0.00 0.00 1.67
B-n44-k7 43 7 a501.31 501.31 501.31 0.00 0.00 1.17
B-n45-k5 44 5 a488.07 488.07 488.07 0.00 0.00 1.77
B-n45-k6 44 6 a403.81 403.81 405.18 0.00 0.34 1.92
B-n50-k7 49 7 a437.15 437.15 437.15 0.00 0.00 1.67
B-n50-k8 49 8 a720.79 722.03 722.03 0.17 0.17 2.58
B-n51-k7 50 7 a625.14 625.14 625.14 0.00 0.00 1.88
B-n52-k7 51 7 a441.19 441.19 441.19 0.00 0.00 1.98
B-n56-k7 55 7 a420.49 420.49 420.49 0.00 0.00 2.45
B-n57-k7 56 7 a646.36 646.36 646.36 0.00 0.00 4.66
B-n57-k9 56 9 b869.31 869.32 869.33 < 0.01 < 0.01 2.92
B-n63-k10 62 10 a837.07 837.07 837.07 0.00 0.00 3.40
B-n64-k9 63 9 a520.47 520.47 520.53 0.00 0.01 4.39
B-n66-k9 65 9 a755.27 755.27 755.27 0.00 0.00 4.82
B-n67-k10 66 10 b616.54 616.54 618.59 0.00 0.33 4.12
B-n68-k9 67 9 a701.72 701.72 701.72 0.00 0.00 5.19
B-n78-k10 77 10 b722.71 722.71 724.75 0.00 0.28 7.48

0.00 0.03 2.54

a: Optimality proved.
b: Optimality proved using the BCP algorithm of Pessoa et al. [134].
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Table 6.9: Results found for the E, F, M and P OVRP instances
ILS-RVND

Instance n v BKS
Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

E-n23-k3 22 3 a442.98 442.98 442.98 0.00 0.00 0.32
E-n30-k3 29 3 a393.51 393.51 393.51 0.00 0.00 0.56
E-n33-k4 32 4 a511.26 511.26 511.26 0.00 0.00 0.82
E-n51-k5 50 5 a416.06 416.06 416.09 0.00 0.01 2.62
E-n76-k7 75 7 a530.02 530.02 530.06 0.00 0.01 5.92
E-n76-k8 75 8 a537.24 537.24 537.45 0.00 0.04 5.71
E-n76-k10 75 10 a567.14 567.14 568.54 0.00 0.25 6.55
E-n76-k14 75 14 a623.55 623.55 624.03 0.00 0.08 13.96
E-n101-k8 100 8 a639.74 639.74 640.49 0.00 0.12 13.98
E-n101-k14 100 14 a711.58 711.58 712.27 0.00 0.10 13.80
F-n45-k4 44 4 a463.90 463.90 463.90 0.00 0.00 1.55
F-n72-k4 71 4 a177.00 177.00 177.12 0.00 0.07 6.30
F-n135-k7 134 7 d769.55 769.55 770.69 0.00 0.15 41.18
M-n101-k10 100 10 a534.24 534.24 534.24 0.00 0.00 8.85
M-n121-k7 120 7 a682.12 682.12 682.21 0.00 0.01 27.79
M-n151-k12 150 12 c733.13 733.13 733.43 0.00 0.04 39.71
M-n200-k16 199 16 d893.39 898.08 927.31 0.52 3.80 101.86
M-n200-k17 199 17 d869.00 867.89 870.28 -0.13 0.15 89.92
P-n16-k8 15 8 a235.06 235.06 235.06 0.00 0.00 0.16
P-n19-k2 18 2 a168.57 168.57 168.57 0.00 0.00 0.14
P-n20-k2 19 2 a170.28 170.28 170.28 0.00 0.00 0.16
P-n21-k2 20 2 a163.88 163.88 163.88 0.00 0.00 0.16
P-n22-k2 21 2 a167.19 167.19 167.19 0.00 0.00 0.19
P-n22-k8 21 8 a345.87 345.87 345.87 0.00 0.00 0.38
P-n23-k8 22 8 a302.87 302.87 303.75 0.00 0.29 4.92
P-n40-k5 39 5 a349.55 349.55 349.55 0.00 0.00 1.17
P-n45-k5 44 5 a391.81 391.81 391.81 0.00 0.00 1.52
P-n50-k7 49 7 a397.38 397.38 397.38 0.00 0.00 1.63
P-n50-k8 49 8 a436.51 436.51 436.60 0.00 0.02 9.82
P-n50-k10 49 10 a440.44 440.44 440.44 0.00 0.00 1.88
P-n51-k10 50 10 b480.78 480.78 481.55 0.00 0.16 2.34
P-n55-k7 54 7 a411.58 411.58 411.58 0.00 0.00 2.14
P-n55-k8 54 7 a412.55 412.55 412.55 0.00 0.00 2.27
P-n55-k10 54 10 a444.31 444.31 444.31 0.00 0.00 2.18
P-n60-k10 59 10 a482.09 482.09 482.36 0.00 0.06 2.79
P-n60-k15 59 15 b569.43 569.44 569.44 < 0.01 < 0.01 3.47
P-n65-k10 64 10 a522.50 522.50 522.51 0.00 < 0.01 3.53
P-n70-k10 69 10 a552.65 552.65 553.49 0.00 0.15 5.11
P-n76-k4 75 4 a522.95 522.95 524.15 0.00 0.23 8.90
P-n76-k5 75 5 a525.64 525.64 525.78 0.00 0.03 9.23
P-n101-k4 100 4 a621.75 621.75 621.75 0.00 0.00 21.57

0.01 0.14 11.13

a: Optimality proved.
b: Optimality proved using the BCP algorithm of Pessoa et al. [134].
c: First found by Pisinger and Røpke [136].
d: Found by Zachariadis and Kiranoudis [186].
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6.3.1.5 VRPSPD

The same three set of VRPSPD instances used in Subsection 3.4.1 were also adopted

to evaluate the performance of the ILS-RVND. In this case the Montané and Galvão’s

instances [121] involving 400 customers were considered, as well as those of Salhi and Nagy

that include route duration constraints (CMT6X-CMT10X, CMT6Y-CMT10Y, CMT13X-

CMT14X, CMT13Y-CMT14Y).

Table 6.11 shows the results found in the benchmark instances of Dethloff [48] and

a comparison with those reported by Gajpal and Abad [64], Zachariadis et al. [190] and

Subramanian et al. [157]. All optimal solutions were found and in most cases the Avg.

Sol. was equal to the Best Sol.

Table 6.12 contains the results obtained on the set of instances of Salhi and Nagy

[149]. The same works mentioned in Table 6.11 are considered for comparison. It can

be verified that the ILS-RVND equaled 20 BKSs and it was found capable of improving

another 3. The Avg. Sols. appear to be highly consistent with an exception of instances

CMT11X and CMT11Y in which the Avg. Gaps were more than 1.50%.

Table 6.13 presents the results found by ILS-RNVD in the instances of Montané and

Galvão [121] and also those reported by Souza et al. [153], Zachariadis et al. [188] and

Subramanian et al. [157]. The ILS-RVND managed to find 10 BKSs and to improve

another 3 results. It is noteworthy to mention that the proposed algorithm had a satisfac-

tory performance in the large-sized instances, always producing, on average, competitive

results.

The average gap between the Avg. Sols. generated by ILS-RVND and the BKSs for

the first, second and third group of instances was, respectively, 0.02%, 0.28% and 0.26%.
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Table 6.11: Results found for the VRPSPD instances of Dethloff et al. [48]
Gajpal and Zachariadis Subramanian
Abad [64] et al. [190] et al. [157]

ILS-RVND

Instance n v BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

SCA3-0 50 4 a635.62 635.62 6.0 635.62 2.5 635.62 2.31 635.62 636.05 0.00 0.07 1.67
SCA3-1 50 4 a697.84 697.84 6.0 697.84 2.5 697.84 2.28 697.84 697.84 0.00 0.00 1.65
SCA3-2 50 4 a659.34 659.34 6.0 659.34 2.9 659.34 2.14 659.34 659.34 0.00 0.00 1.87
SCA3-3 50 4 a680.04 680.04 6.1 680.04 2.3 680.04 2.49 680.04 680.04 0.00 0.00 1.76
SCA3-4 50 4 a690.50 690.50 5.7 690.50 2.9 690.50 2.18 690.50 690.50 0.00 0.00 1.66
SCA3-5 50 4 a659.90 659.90 5.1 659.90 3.0 659.90 2.23 659.91 659.91 0.00 0.00 1.86
SCA3-6 50 4 a651.09 651.09 6.1 651.09 3.1 651.09 2.51 651.09 651.09 0.00 0.00 1.99
SCA3-7 50 4 a659.17 659.17 6.8 659.17 2.8 659.17 2.49 659.17 659.86 0.00 0.11 1.63
SCA3-8 50 4 a719.48 719.47 5.4 719.47 3.5 719.48 2.26 719.48 719.48 0.00 0.00 1.85
SCA3-9 50 4 a681.00 681.00 6.0 681.00 4.7 681.00 1.90 681.00 681.00 0.00 0.00 1.70
SCA8-0 50 9 a961.50 961.50 11.0 961.50 2.7 961.50 3.37 961.50 961.50 0.00 0.00 2.19
SCA8-1 50 9 a1049.65 1049.65 11.5 1049.65 3.8 1049.65 2.89 1049.65 1049.65 0.00 0.00 2.27
SCA8-2 50 9 a1039.64 1042.69 11.9 1039.64 3.9 1039.64 2.38 1039.64 1040.52 0.00 0.08 2.20
SCA8-3 50 9 a983.34 983.34 11.3 983.34 2.6 983.34 2.98 983.34 983.34 0.00 0.00 2.05
SCA8-4 50 9 a1065.49 1065.49 11.1 1065.49 2.4 1065.49 2.81 1065.49 1065.49 0.00 0.00 1.87
SCA8-5 50 9 a1027.08 1027.08 11.3 1027.08 3.4 1027.08 3.31 1027.08 1027.08 0.00 0.00 2.34
SCA8-6 50 9 a971.82 971.82 12.0 971.82 2.7 971.82 3.51 971.82 971.86 0.00 < 0.01 2.16
SCA8-7 50 10 a1051.28 1052.17 12.5 1051.28 5.1 1051.28 3.12 1051.28 1052.74 0.00 0.14 2.18
SCA8-8 50 9 a1071.18 1071.18 11.0 1071.18 3.6 1071.18 2.92 1071.18 1071.18 0.00 0.00 1.81
SCA8-9 50 9 a1060.50 1060.50 11.5 1060.50 4.8 1060.50 2.18 1060.50 1060.50 0.00 0.00 2.10
CON3-0 50 4 a616.52 616.52 8.3 616.52 4.7 616.52 3.12 616.52 616.52 0.00 0.00 2.42
CON3-1 50 4 a554.47 554.47 7.1 554.47 2.2 554.47 2.83 554.47 554.47 0.00 0.00 1.82
CON3-2 50 4 a518.00 518.00 6.9 518.00 3.1 518.00 2.77 518.01 519.19 0.00 0.23 2.08
CON3-3 50 4 a591.19 591.19 7.2 591.19 3.2 591.19 2.34 591.19 591.19 0.00 0.00 2.02
CON3-4 50 4 a588.79 588.79 6.0 588.79 2.3 588.79 2.63 588.79 588.82 0.00 < 0.01 2.06
CON3-5 50 4 a563.70 563.70 6.9 563.70 3.7 563.70 2.69 563.70 563.70 0.00 0.00 2.26
CON3-6 50 4 a499.05 499.05 7.3 499.05 3.7 499.05 2.75 499.05 499.05 0.00 0.00 2.13
CON3-7 50 4 a576.48 576.48 7.0 576.48 1.9 576.48 2.75 576.48 576.48 0.00 0.00 2.37
CON3-8 50 4 a523.05 523.05 7.4 523.05 3.8 523.05 2.46 523.05 523.05 0.00 0.00 1.96
CON3-9 50 4 a578.25 578.25 6.8 578.25 2.2 578.25 3.37 578.25 578.80 0.00 0.09 2.07
CON8-0 50 9 a857.17 857.17 12.3 857.17 4.4 857.17 3.65 857.17 857.17 0.00 0.00 2.53
CON8-1 50 9 a740.85 740.85 12.0 740.85 3.3 740.85 3.02 740.85 740.85 0.00 0.00 1.94
CON8-2 50 9 a712.89 712.89 13.0 712.89 2.7 712.89 3.08 712.89 712.90 0.00 < 0.01 2.09
CON8-3 50 9 a811.07 811.07 13.9 811.07 2.8 811.07 3.99 811.07 811.07 0.00 0.00 2.13
CON8-4 50 9 a772.25 772.25 11.9 772.25 2.8 772.25 3.69 772.25 772.25 0.00 0.00 2.12
CON8-5 50 9 a754.88 754.88 12.4 754.88 5.7 754.88 4.18 754.88 754.92 0.00 0.01 2.06
CON8-6 50 9 a678.92 678.92 12.4 678.92 3.4 678.92 4.09 678.92 679.02 0.00 0.01 2.24
CON8-7 50 9 a811.96 811.96 13.0 811.96 2.5 811.96 4.03 811.96 811.96 0.00 0.00 2.10
CON8-8 50 9 a767.53 767.53 12.5 767.53 3.2 767.53 3.42 767.53 767.53 0.00 0.00 2.16
CON8-9 50 9 a809.00 809.00 12.9 809.00 3.8 809.00 3.48 809.00 809.00 0.00 0.00 2.23

Avg. 0.00 0.02 2.04

a: Optimality proved.
1: Best run on a Xeon 2.4 GHz.
2: Best run on a T5500 1.66 GHz.
3: Best run on a Cluster with 32 SMP nodes, where each node consists of two Intel Xeon 2.66 GHz (wall clock).
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Table 6.12: Results found for the VRPSPD instances of Salhi and Nagy [149]
Gajpal and Zachariadis Subramanian
Abad [64] et al. [188] et al. [157]

ILS-RVND

Instance n v BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

CMT1X 50 3 a466.77 466.77 5.00 469.80 2.1 466.77 2.3 466.77 466.77 0.00 0.00 2.25
CMT1Y 50 3 a466.77 466.77 5.00 469.80 3.8 466.77 2.3 466.77 466.77 0.00 0.00 2.25
CMT2X 75 6 684.21 684.21 41.25 684.21 5.4 684.21 6.4 684.21 685.45 0.00 0.18 6.74
CMT2Y 75 6 684.21 684.94 22.25 684.21 6.8 684.21 6.4 684.21 685.25 0.00 0.15 6.73
CMT3X 100 5 a721.27 721.40 377.50 721.27 11.9 721.27 12.1 721.27 721.99 0.00 0.10 16.59
CMT3Y 100 5 a721.27 721.40 43.75 721.27 11 721.27 12.3 721.27 721.95 0.00 0.09 16.63
CMT12X 100 5 662.22 663.01 36.25 662.22 9.3 662.22 10.3 662.22 663.82 0.00 0.24 13.39
CMT12Y 100 5 662.22 663.50 39.25 662.22 4.8 662.22 10.8 662.22 664.23 0.00 0.31 13.51
CMT11X 120 4 833.92 839.66 57.25 833.92 21.2 833.92 18.9 836.02 846.79 0.25 1.54 44.63
CMT11Y 120 4 833.92 840.19 52.75 833.92 14.4 833.92 19.0 835,53 847.51 0.19 1.63 45.22
CMT4X 150 7 852.46 854.12 131.75 852.46 29.6 852.46 30.9 852.46 853.70 0.00 0.15 56.40
CMT4Y 150 7 852.46 855.76 140.25 852.46 27.4 852.46 31.6 852.46 854.05 0.00 0.19 55.98
CMT5X 199 10 1029.25 1034.87 377.50 1030.55 62.8 1029.25 71.5 1029.25 1029.44 0.00 0.74 137.41
CMT5Y 199 10 1029.25 1037.34 393.50 1030.55 47.7 1029.25 69.6 1029.25 1033.38 0.00 0.40 138.68

CMT6X 50 7 555.43 555.43 14.00 - - - - 555.43 556.89 0.00 0.26 1.74
CMT6Y 50 7 555.43 555.43 13.75 - - - - 555.43 556.99 0.00 0.28 1.72
CMT7X 75 13 900.12 900.12 47.75 - - - - 900.54 901.20 0.05 0.12 6.45
CMT7Y 75 13 900.54 900.54 46.25 - - - - 900.12 901.16 -0.05 0.07 6.36
CMT8X 100 10 865.50 865.50 80.75 - - - - 865.50 865.50 0.00 0.00 11.71
CMT8Y 100 10 865.50 865.50 77.75 - - - - 865.50 865.50 0.00 0.00 11.61
CMT14X 100 11 821.75 821.75 78.50 - - - - 821.75 821.75 0.00 0.00 9.09
CMT14Y 100 11 821.75 821.75 74.75 - - - - 821.75 821.75 0.00 0.00 9.08
CMT13X 120 12 1542.86 1542.86 160.25 - - - - 1542.86 1544.24 0.00 0.09 22.09
CMT13Y 120 12 1542.86 1542.86 160.25 - - - - 1542.86 1544.29 0.00 0.09 22.45
CMT9X 150 16 1161.54 1161.54 300.00 - - - - 1163.02 1166.30 0.13 0.41 37.13
CMT9Y 150 16 1161.54 1161.54 291.75 - - - - 1161.88 1165.48 0.03 0.34 37.30
CMT10X 199 20 1386.29 1386.29 773.50 - - - - 1383.97 1395.64 -0.17 0.67 86.86
CMT10Y 199 20 1395.04 1395.04 757.50 - - - - 1381.71 1394.89 -0.96 -0.01 85.59

Avg. -0.02 0.28 32.34

a: Optimality proved.
b: Average of 10 runs considering the following instances: CMT1X, CMT1Y, CMT2X, CMT2Y, CMT3X,
CMT3Y, CMT12X, CMT12Y, CMT11X. CMT11Y, CMT4X, CMT4Y, CMT5X and CMT5Y.
1: Best run on a Xeon 2.4 GHz (1978 Mflop/s). 2: Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).
3: Average of 50 runs on a cluster with 32 SMP nodes, where each consists of two Intel Xeon 2.66 GHz (wall clock).
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6.3.1.6 VRPMPD

The set composed of 21 VRPMPD instances suggested by Salhi and Nagy [149] (see

Subsection 3.4.2) plus another 21 of the same authors that include route duration con-

straints (CMT6H-CMT10H, CMT6Q-CMT10Q, CMT6T-CMT10T CMT13H-CMT14H,

CMT13Q-CMT14Q, CMT13T-CMT14T) were used to test the proposed algorithm.

Table 6.14 illustrates the results found by ILS-RVND on the VRPMPD instances and

a comparison with those reported by Røpke and Pisinger (6R - normal learning) [148]

and Gajpal and Abad [64]. ILS-RVND obtained the BKS in 24 instances and it managed

to improve the result of another 10. The developed algorithm outperformed both the

algorithms of Røpke and Pisinger [148] and Gajpal and Abad [64] in terms of solution

quality. The average gap between the Avg. Sols. obtained by ILS-RVND and the BKSs

was 0.09%.

6.3.1.7 MDVRP

Two MDVRP benchmark instances proposed by Cordeau et al. [35] were used to test

the ILS-RVND algorithm. The first one, known as old, contains 23 instances involving

50-360 customers, where 12 of them have route duration constraints (p13, p14, p16, p17,

p19, p20, p08, p09, p10, p11, p22 and p23). The second set, known as new, contains 10

instances involving 48-288 customers, where all of them have route duration constraints.

Tables 6.15 and 6.16 present a comparison, in terms of average solution, between the

results found by ILS-RVND and those determined by Pisinger and Røpke (ALNS 50K)

[136] and Vidal et al. [177]. The latter clearly outperformed the first two in terms of

solution quality. The average gap between the Avg. Sols. found by ILS-RVND and the

BKSs for the old and new benchmark sets was respectively 0.47% and 0.66%.

6.3.1.8 MDVRPMPD

The proposed algorithm was tested in the set of 33 MDVRPMPD instances proposed by

Salhi and Nagy [149], where 12 of them (all with 249 customers) include route duration

constraints.

Table 6.17 presents the results found by ILS-RVND and those pointed out by Røpke

and Pisinger (6R - no learning) [148]. With respect to the solution quality, the developed

algorithm clearly had a better performance, equaling 17 BKSs and improving the result

of another 14. The average gap between the Avg. Sols. and the BKSs was 0.23%.
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Table 6.14: Results found for the VRPMPD instances of Salhi and Nagy [149]
Røpke and Gajpal and

Pisinger [148] Abad [64]
ILS-RVND

Instance n v BKS Best Time1 Best Time2 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

CMT1H 50 4 a465.02 465 51 465.02 5.6 465.02 465.04 0.00 < 0.01 2.40
CMT1Q 50 6 a489.74 490 41 489.74 6.0 489.74 489.74 0.00 0.00 1.91
CMT1T 50 7 a520.06 520 34 520.06 7.0 520.06 520.06 0.00 0.00 1.86
CMT2H 75 5 662.63 663 78 662.63 22.0 662.63 662.70 0.00 0.01 6.67
CMT2Q 75 7 732.76 733 65 732.76 26.2 731.26 732.44 -0.20 -0.04 6.11
CMT2T 75 9 a782.77 783 57 782.77 26.0 782.77 783.68 0.00 0.12 6.25
CMT3H 100 3 701.31 701 186 701.31 35.6 a700.94 700.95 -0.05 -0.05 19.63
CMT3Q 100 4 a747.15 747 128 747.15 39.8 747.15 747.15 0.00 0.00 15.24
CMT3T 100 5 a798.07 798 109 798.07 42.6 798.07 798.19 0.00 0.01 15.77
CMT12H 100 6 a629.37 629 150 629.37 32.8 629.37 629.37 0.00 0.00 16.04
CMT12Q 100 8 a729.46 729 108 729.46 42.0 729.25 729.38 -0.03 -0.01 15.71
CMT12T 100 9 a787.52 788 96 787.52 52.0 787.52 787.52 0.00 0.00 9.85
CMT11H 120 4 818 818 303 820.35 45.8 818.05 818.11 0.01 0.01 34.06
CMT11Q 120 6 a939.36 939 196 939.36 66.2 939.36 939.36 0.00 0.00 28.96
CMT11T 120 7 998.8 1000 164 998.80 70.2 998.80 998.83 0.00 < 0.01 25.06
CMT4H 150 6 829 829 345 831.39 125.4 829.42 835.59 0.05 0.79 62.63
CMT4Q 150 9 913.93 918 244 913.93 153.0 915.27 915.59 0.15 0.18 46.98
CMT4T 150 11 990.39 1000 212 990.39 166.8 990.39 992.05 0.00 0.17 43.82
CMT5H 200 9 992.37 983 514 992.37 351.4 978.74 982.32 -1.37 -1.01 132.02
CMT5Q 200 12 b1118 1119 381 1134.72 451.8 1109.43 1114.09 -0.77 -0.35 136.89
CMT5T 200 15 1227 1227 333 1232.08 460.8 1222.29 1226.82 -0.38 -0.01 107.71

CMT6H 50 7 555.43 555 31 555.43 13.0 555.43 557.24 0.00 0.33 1.79
CMT6Q 50 7 555.43 555 30 555.43 12.8 555.43 557.06 0.00 0.29 1.78
CMT6T 50 7 555.43 555 31 555.43 11.6 555.43 556.93 0.00 0.27 1.75
CMT7H 75 13 900 900 54 900.84 50.0 900.84 901.10 0.09 0.12 6.30
CMT7Q 75 14 900.69 901 53 900.69 46.8 900.69 902.86 0.00 0.24 7.19
CMT7T 75 14 903.05 903 52 903.05 39.0 903.05 903.12 0.00 0.01 7.26
CMT8H 100 10 865.50 866 95 865.50 85.6 865.50 865.50 0.00 0.00 12.04
CMT8Q 100 10 865.50 866 93 865.50 74.4 865.50 865.50 0.00 0.00 11.70
CMT8T 100 10 865.54 866 95 865.54 65.6 865.54 865.55 0.00 < 0.01 11.95
CMT14H 100 11 821.75 822 89 821.75 81.6 821.75 821.75 0.00 0.00 9.22
CMT14Q 100 11 821.75 822 85 821.75 72.4 821.75 821.75 0.00 0.00 9.12
CMT14T 100 11 826.77 827 86 826.77 64.6 826.77 826.77 0.00 0.00 10.31
CMT13H 120 12 1542.86 1543 125 1542.86 164.2 1542.86 1544.24 0.00 0.09 22.57
CMT13Q 120 12 1542.97 1543 120 1542.97 157.8 1542.86 1544.23 -0.01 0.08 22.46
CMT13T 120 12 1542.97 1544 127 1542.97 152.8 1541.25 1544.21 -0.11 0.08 22.81
CMT9H 150 16 b1161 1166 177 1161.63 306.4 1161.31 1166.06 0.03 0.44 37.12
CMT9Q 150 16 1161.51 1162 171 1161.51 289.6 1161.76 1166.35 0.02 0.42 37.66
CMT9T 150 16 1162.68 1164 178 1162.68 261.0 1164.05 1167.44 0.12 0.41 37.31
CMT10H 199 20 1383.78 1393 296 1383.78 791.0 1379.83 1389.41 -0.29 0.41 88.14
CMT10Q 199 20 1386.54 1389 288 1386.54 730.2 1384.10 1391.99 -0.18 0.39 85.89
CMT10T 199 20 b1395 1402 291 1400.22 658.6 1390.04 1401.34 -0.36 0.45 82.05

Avg. -0.08 0.09 30.05

a: Optimality proved. b: Found by Røpke and Pisinger [148] using another version of their algorithm.
1: Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s). 2: Best run on a Xeon 2.4 GHz (1978 Mflop/s).
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Table 6.15: Results found for the old MDVRP instances of Cordeau et al. [35]
Pisinger and Vidal
Røpke [136] et al. [177]

ILS-RVND

Instance n v |G|
BKS Avg.∗ Time1 Avg.∗ Time2 Best Avg. Gap Avg. Time

Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

p01 50 4 4 a576.87 576.87 29 576.87 13.8 576.87 576.87 0.00 0.00 3.98
p02 50 2 4 a473.53 473.53 28 473.53 12.6 473.53 473.53 0.00 0.00 3.12
p03 75 3 2 c641.19 641.19 64 641.19 25.8 641.19 641.19 0.00 0.00 8.91
p12 80 5 2 b1318.95 1319.13 75 1318.95 31.2 1318.95 1318.96 0.00 < 0.01 8.27
p04 100 8 2 d1001.04 1006.09 88 1001.23 116.4 1001.04 1004.53 0.18 0.53 20.63
p05 100 5 2 c750.03 752.34 120 750.03 63.6 750.03 751.26 0.00 0.16 20.67
p06 100 6 3 b876.50 883.01 93 876.50 68.4 876.50 878.40 0.00 0.22 20.94
p07 100 4 4 d881.97 889.36 88 884.43 93.0 881.97 883.61 0.00 0.19 18.42
p15 160 5 4 c2505.42 2519.64 253 2505.42 115.2 2505.42 2505.42 0.00 0.00 75.62
p18 240 5 6 c3702.85 3736.53 419 3702.85 271.2 3702.85 3714.48 0.00 0.31 367.91
p21 360 5 9 c5474.84 5501.58 582 5476.41 600.0 5474.84 5500.75 0.00 0.47 1656.68

p13 80 5 2 b1318.95 1318.95 60 1318.95 34.2 1318.95 1318.96 0.00 < 0.01 7.74
p14 80 5 2 c1360.12 1360.12 58 1360.12 33.0 1360.12 1360.12 0.00 0.00 49.60
p16 160 5 4 b2572.23 2573.95 188 2572.23 118.2 2572.23 2573.94 0.00 0.07 33.65
p17 160 5 4 c2709.09 2709.09 179 2709.09 128.4 2709.09 2734.93 0.00 0.95 58.99
p19 240 5 6 b3827.06 3838.76 315 3827.06 252.0 3827.06 3838.39 0.00 0.30 103.08
p20 240 5 6 c4058.07 4064.76 300 4058.07 262.2 4058.07 4110.74 0.00 1.30 135.98
p08 249 14 2 e4372.78 4421.03 333 4397.42 600.0 4403.47 4425.42 0.70 1.20 440.78
p09 249 12 3 e3858.66 3892.50 361 3868.59 570.0 3877.15 3900.27 0.48 1.08 484.65
p10 249 8 4 e3631.11 3666.85 363 3636.08 589.2 3634.16 3664.73 0.08 0.93 488.37
p11 249 6 5 d3546.06 3573.23 357 3548.25 428.4 3546.06 3563.52 0.00 0.49 423.68
p22 360 5 9 c5702.16 5722.19 462 5702.16 600.0 5714.45 5737.82 0.22 0.63 352.18
p23 360 5 9 d6078.75 6092.66 443 6078.75 600.0 6112.46 6189.67 0.55 1.82 393.60

Avg. Gap (%) 0.40 Avg. Gap (%) 0.07 Avg. 0.10 0.46 225.11

a: Optimality proved. 1: Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
2: Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz. ∗: Average of 10 runs.
b: First found by Renaud et al. [145]. c: First found by Cordeau et al. [35].
d: First found by Pisinger and Røpke [136]. e: First found by Vidal et al. [177].

Table 6.16: Results found for the new MDVRP instances of Cordeau et al. [35]
Pisinger and Vidal
Røpke [136] et al. [177]

ILS-RVND

Instance n v |G|
BKS Avg.∗ Time1 Avg.∗ Time2 Best Avg. Gap Avg. Time

Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

pr01 48 2 4 b861.32 861.32 30 861.32 10.2 861.32 861.32 0.00 0.00 3.17
pr07 72 3 6 b1089.56 1089.56 58 1089.56 20.4 1089.56 1089.56 0.00 0.00 9.28
pr02 96 4 4 c1307.34 1308.17 103 1307.34 45.6 1307.34 1308.64 0.00 0.10 22.81
pr03 144 6 4 d1803.80 1810.66 214 1803.80 114.6 1803.81 1807.50 0.00 0.21 74.64
pr08 144 6 6 c1664.85 1675.74 207 1665.05 123.0 1664.85 1670.19 0.00 0.32 67.14
pr04 192 8 4 d2058.31 2073.16 296 2059.36 313.2 2058.47 2075.57 0.01 0.84 179.79
pr09 216 9 6 d2133.20 2144.84 350 2134.17 366.0 2133.64 2151.52 0.02 0.86 307.68
pr05 240 10 4 d2331.20 2350.31 372 2340.29 573.6 2347.37 2359.94 0.69 1.23 439.88
pr06 288 12 4 d2676.30 2695.74 465 2681.93 600.0 2696.03 2711.99 0.74 1.33 908.23
pr10 288 12 6 d2868.26 2905.43 455 2886.59 600.0 2890.68 2916.15 0.78 1.67 908.94

Avg. Gap (%) 0.52 Avg. Gap (%) 0.13 Avg. 0.22 0.66 292.16

a: Optimality proved. 1: Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
2: Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz. ∗: Average of 10 runs.
b: First found by Cordeau et al. [35]. c: First found by Pisinger and Røpke [136]. d: First found by Vidal et al. [177].
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Table 6.17: Results found for the MDVRPMPD instances of Salhi and Nagy [149]
Røpke and

Pisinger [148]
ILS-RVND

Instance n v |G| BKS
Best Avg. Time1 Best Avg. Gap Avg. Time
Sol. Sol. (s) Sol. Sol. (%) Gap (%) (s)

GJ01H 50 4 4 499 499 499 40 499.12 499.12 0.02 0.02 5.71
GJ01Q 50 4 4 528 528 528 36 528.30 528.30 0.06 0.06 4.81
GJ01T 50 4 4 569 569 569 34 569.43 569.43 0.08 0.08 4.72
GJ02H 50 4 2 440 440 440 51 a440.00 440.00 0.00 0.00 4.55
GJ02Q 50 4 2 450 450 451 43 a449.72 449.72 -0.06 -0.06 4.24
GJ02T 50 4 2 464 464 464 37 a464.13 464.13 0.03 0.03 3.91
GJ03H 75 5 3 581 581 583 81 579.45 579.59 -0.27 -0.24 14.82
GJ03Q 75 5 3 605 605 608 71 605.25 605.25 0.04 0.04 13.62
GJ03T 75 5 3 624 624 626 65 624.44 625.00 0.07 0.16 11.85
GJ04H 100 2 8 790 790 797 112 789.19 789.49 -0.10 -0.06 29.62
GJ04Q 100 2 8 875 875 876 94 874.78 875.37 -0.03 0.04 26.23
GJ04T 100 2 8 962 962 969 85 962.25 968.30 0.03 0.65 23.61
GJ05H 100 2 5 678 678 680 168 676.81 677.11 -0.18 -0.13 30.52
GJ05Q 100 2 5 b700 702 705 133 a700.15 700.15 0.02 0.02 26.99
GJ05T 100 2 5 733 733 738 118 733.17 733.74 0.02 0.10 24.99
GJ06H 100 3 6 b745 747 751 116 742.18 743.05 -0.38 -0.26 30.84
GJ06Q 100 3 6 794 794 800 100 793.85 794.13 -0.02 0.02 27.52
GJ06T 100 3 6 851 851 853 90 850.82 851.61 -0.02 0.07 26.60
GJ07H 100 4 4 733 733 734 117 732.73 732.88 -0.04 -0.02 28.76
GJ07Q 100 4 4 b802 803 807 94 802.20 803.76 0.02 0.22 24.46
GJ07T 100 4 4 b854 855 862 88 853.54 853.80 -0.05 -0.02 23.79
GJ08H 249 2 14 3327 3327 3373 581 3348.39 3373.40 0.64 1.39 464.27
GJ08Q 249 2 14 b3762 3774 3810 479 3773.99 3811.91 0.32 1.33 450.30
GJ08T 249 2 14 4134 4134 4170 431 4121.68 4151.68 -0.30 0.43 463.77
GJ09H 249 3 12 b3005 3006 3028 646 3003.66 3029.16 -0.04 0.80 532.14
GJ09Q 249 3 12 3355 3355 3393 535 3351.66 3386.62 -0.10 0.94 510.96
GJ09T 249 3 12 3677 3677 3718 492 3667.55 3695.26 -0.26 0.50 525.20
GJ010H 249 4 8 b2927 2930 2963 644 2907.94 2931.95 -0.65 0.17 512.72
GJ010Q 249 4 8 b3242 3245 3267 513 3232.64 3250.22 -0.29 0.25 495.35
GJ010T 249 4 8 3485 3485 3524 472 3478.80 3502.61 -0.18 0.51 492.28
GJ011H 249 5 6 b2855 2880 2905 609 2846.03 2871.93 -0.31 0.59 477.51
GJ011Q 249 5 6 b3155 3165 3192 511 3140.15 3159.68 -0.47 0.15 455.25
GJ011T 249 5 6 3390 3390 3421 469 3376.54 3388.91 -0.40 -0.03 452.56

Avg. Gap (%) 0.66 Avg. -0.08 0.23 188.62

∗: Average of 10 runs.
b: Found by Røpke and Pisinger [148] using another version of their algorithm.
1: Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s).

6.3.2 HFVRP

The developed heuristic was tested in well-known HFVRP instances, namely those pro-

posed by Golden et al. [76] and by Taillard [164]. The latter introduced dependent costs

and established a limit for the number of vehicles of each type. Table 6.18 describes the

characteristics of these instances. The number of executions of the ILS-RVND on each

instance was 30.

A more detailed description of the results obtained by ILS-RVND for the HFVRP

instances can be found in [133].
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6.3.2.1 Parameter tuning

Four instances with varying number of customers (20 - 100) and vehicles were selected

for tuning the values of the parameters. For each of these test-problems the ILS-RVND

was executed 10 times in all of their respective HFVRP variants. Two values of MaxIter

were tested, specifically 400 and 450. For each of these, ten values of β were evaluated.

Table 6.19 contains the results of the average gap and the average CPU time for the

tests involving MaxIter = 400, while those obtained for MaxIter = 450 are presented in

Table 6.20. The selected configuration was β = 5 and MaxIter = 400 and these values

were chosen using the same criterion employed for the VRP with homogeneous fleet.

Table 6.19: Results of the parameter tuning for MaxIter = 400
Instance

β 04 13 17 20 Avg.

Avg. Time Avg. Time Avg. Time Avg. Time
Gap (%) (s) Gap (%) (s) Gap (%) (s) Gap (%) (s)

1 2.13 1.68 0.51 14.43 0.64 29.61 0.78 55.19 1.02 25.23
2 0.50 2.03 0.49 17.49 0.60 32.56 0.67 60.32 0.56 28.10
3 0.28 2.40 0.42 20.32 0.56 35.44 0.65 65.43 0.48 30.90
4 0.48 2.71 0.33 22.87 0.54 38.12 0.64 70.29 0.50 33.49
5 0.01 3.02 0.30 25.42 0.51 41.00 0.58 75.01 0.35 36.11
6 0.00 3.38 0.31 28.18 0.46 43.83 0.58 79.81 0.34 38.80
7 0.23 3.67 0.28 30.71 0.47 46.38 0.53 84.48 0.38 41.31
8 0.23 3.94 0.26 33.33 0.48 49.23 0.52 89.44 0.37 43.98
9 0.00 4.30 0.29 35.94 0.48 51.73 0.49 94.27 0.32 46.56
10 0.00 4.61 0.31 38.26 0.48 54.22 0.51 98.00 0.33 48.77

Table 6.20: Results of the parameter tuning for MaxIter = 450
Instance

β 04 13 17 20 Avg.

Avg. Time Avg. Time Avg. Time Avg. Time
Gap (%) (s) Gap (%) (s) Gap (%) (s) Gap (%) (s)

1 1.69 1.95 0.50 16.51 0.55 33.90 0.66 62.94 0.85 28.82
2 0.71 2.32 0.46 19.79 0.60 37.05 0.62 68.53 0.60 31.92
3 0.50 2.73 0.42 22.98 0.53 40.58 0.61 74.60 0.51 35.22
4 0.01 3.06 0.35 26.28 0.49 43.85 0.58 80.38 0.36 38.39
5 0.01 3.47 0.36 29.08 0.50 47.02 0.58 86.19 0.36 41.44
6 0.01 3.86 0.29 32.13 0.45 49.82 0.61 91.57 0.34 44.34
7 0.01 4.20 0.30 35.05 0.44 53.18 0.53 97.23 0.32 47.42
8 0.00 4.54 0.29 37.98 0.45 56.10 0.54 102.13 0.32 50.19
9 0.00 4.91 0.27 40.44 0.39 59.05 0.53 107.34 0.30 52.93
10 0.00 5.31 0.25 43.56 0.37 62.07 0.45 112.42 0.27 55.84

6.3.2.2 HVRPFD

To the knowledge of the author the HVRPFD was only examined by Baldacci and Min-

gozzi [10] and Li et al. [107]. From Table 6.21 it can be verified that ILS-RVND found

all proven optimal solutions and improved the result of one instance. The average gap

between the Avg. Sols found by the developed algorithm and the BKSs was 0.27%.
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6.3.2.3 HVRPD

Table 6.22 presents a comparison between the results found by ILS-RVND and the best

heuristics proposed in the literature, namely those of Taillard [164], Tarantilis et al. [169],

Li et al. [106] and Prins (SMA-D2) [141]. As in the previous variant all proven optimal

solutions were found by ILS-RVND. In the only instance where the optimality was not

proved, ILS-RVND was unsuccessful to obtain the best solution pointed out by Taillard

[164]. The average gap between the Avg. Sols found by the proposed algorithm and the

BKSs was 0.22%.

6.3.2.4 FSMFD

In Table 6.23 a comparison is performed between the results found by ILS-RVND and

those of Choi and Tcha [29], Prins (SMA-U1) [141] and Imran et al. [90]. The ILS-

RVND failed to equal the results one instance but it was capable of improving the results

of another one. When individually comparing the ILS-RVND with each one of these

algorithms, one can verify that the ILS-RVND produced, on average, superior results in

terms of best solutions and the average gap between the Avg. Sols. and the BKSs was

0.09%.

6.3.2.5 FSMF

Table 6.24 illustrates the results obtained by ILS-RVND for the FSMF. These results are

compared with those of Choi and Tcha [29], Brandão [22], Prins (SMA-D1) [141], Imran

et al. [90] and Liu et al. [111]. It can be seen that the proposed algorithm equaled the

results of 10 instances and improved the result of another one. However, it failed to obtain

the best known solutions in another 3. The average gap between the Avg. Sols. found by

ILS-RVND and the BKSs was 0.23%.

6.3.2.6 FSMD

The best results obtained in the literature for the FSMD using heuristic approaches were

reported by Choi and Tcha [29], Brandão [22], Prins (SMA-D1) [141], Imran et al. [90]

and Liu et al. [111]. These results along with those found by ILS-RVND are presented

in Table 6.25. In this variant the optimal solutions were determined by Baldacci and

Mingozzi [10] for all instances. From Table 6.25 it can be observed that ILS-RVND was

capable of finding all optimal solutions, except for one instance. The average gap between

the Avg. Sols. obtained by the proposed algorithm and the BKSs was 0.17%.
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6.3.3 TSPMPD

The ILS-RVND was tested on the benchmark instances generated by Mosheiov [122]. This

set of instances consists of 100 test-problems involving 20-500 customers. The algorithm

was executed 50 times for each instance.

6.3.3.1 Parameter tuning

Since there is only a single vehicle involved in the TSPMPD, a different approach from the

one adopted in the previous variants was employed to calibrate the value of MaxIterILS.

This time an expression given by Eq. 6.5 computes the value ofMaxIterILS only in terms

of the number of customers n. A non-negative parameter α is used to adjust the level of

influence of n in the value of MaxIterILS.

MaxIterILS = α× n (6.5)

Tables 6.26 and 6.27 present the results of the parameter tuning forMaxIter = 50 and

MaxIter = 75, respectively. For each case, four values of α were tested. Ten instances of

different sizes were considered. Apparently, all configurations lead to competitive results

in terms of solution quality. The chosen parameters were MaxIter = 50 and α = 1/5,

because the correspondent Avg. Gap was only 0.07% worse than the “heaviest” con-

figuration (MaxIterILS = 75 and α = 1/3), but the average computational time was

approximately 50% smaller.

Table 6.26: Results of the parameter tuning for MaxIter = 50 (TSPMPD)
α

Instance n 1/6 1/5 1/4 1/3

Avg. Time Avg. Time Avg. Time Avg. Time
Gap (%) (s) Gap (%) (s) Gap (%) (s) Gap (%) (s)

n20mosA 20 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02
n30mosA 30 0.00 0.04 0.00 0.05 0.00 0.07 0.00 0.09
n40mosA 40 0.00 0.15 0.00 0.17 0.00 0.23 0.00 0.32
n50mosA 50 0.00 0.32 0.00 0.36 0.00 0.47 0.00 0.63
n60mosA 60 0.00 0.54 0.00 0.65 0.00 0.83 0.00 1.09
n100mosA 100 0.02 4.90 0.02 5.75 0.00 6.96 0.00 8.99
n200mosA 200 0.38 66.74 0.25 76.94 0.25 92.49 0.12 116.87
n300mosA 300 0.15 286.30 0.10 323.85 0.02 397.83 -0.04 499.79
n400mosA 400 -0.41 1067.08 -0.52 1189.65 -0.60 1310.76 -0.69 1767.85
n500mosA 500 -0.50 2980.21 -0.66 3257.70 -0.76 3775.85 -0.85 4546.10

Avg. -0.04 440.63 -0.08 485.51 -0.11 558.55 -0.15 694.17

6.3.3.2 Results

Table 6.28 shows the results for the small sized instances, that is, those involving 20-60 cus-

tomers. A comparison is performed with those reported by Hernández-Pérez and Salazar-

González [85] (webpages.ull.es/users/hhperez/PDsite/TS2004t2.sol). It can be ob-

served that both the algorithms found all known optimal solutions.

webpages.ull.es/users/hhperez/PDsite/TS2004t2.sol
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Table 6.27: Results of the parameter tuning for MaxIter = 75 (TSPMPD)
α

Instance n 1/6 1/5 1/4 1/3

Avg. Time Avg. Time Avg. Time Avg. Time
Gap (%) (s) Gap (%) (s) Gap (%) (s) Gap (%) (s)

n20mosA 20 0.00 0.02 0.00 0.02 0.00 0.03 0.00 0.0
n30mosA 30 0.00 0.07 0.00 0.08 0.00 0.11 0.00 0.1
n40mosA 40 0.00 0.23 0.00 0.27 0.00 0.32 0.00 0.5
n50mosA 50 0.00 0.45 0.00 0.51 0.00 0.67 0.00 0.9
n60mosA 60 0.00 0.76 0.00 0.93 0.00 1.18 0.00 1.6
n100mosA 100 0.01 6.93 0.00 8.35 0.00 10.41 0.00 13.4
n200mosA 200 0.29 96.02 0.17 113.38 0.12 134.88 0.06 165.6
n300mosA 300 0.07 417.64 0.06 493.66 -0.02 580.61 -0.03 728.3
n400mosA 400 -0.52 1429.72 -0.57 1672.15 -0.62 2060.60 -0.68 2642.8
n500mosA 500 -0.64 3957.70 -0.71 4271.90 -0.77 4899.42 -0.82 6470.2

Avg. -0.08 590.95 -0.10 656.13 -0.13 768.82 -0.15 1002.34

Table 6.29 contains the results found by ILS-RNVD and those found by Hernández-

Pérez and Salazar-González [85] (webpages.ull.es/users/hhperez/PDsite/TS2004t3.

sol) for the medium/large sized instances (200-500 customers). The proposed algorithm

equaled the results of 6 BKSs and improve those of the remaining 44 instances. The

average gap between the Avg. Sols and the BKSs was -0.46%.

webpages.ull.es/users/hhperez/PDsite/TS2004t3.sol
webpages.ull.es/users/hhperez/PDsite/TS2004t3.sol
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Table 6.28: Results found for the TSPMPD instances (20-60 customers) of Mosheiov [122]
Hernández-Pérez and

Instance n BKS Salazar-González [85]
ILS-RVND

Best Time1 Best Avg. Gap Avg. Time
Sol. (s) Sol. Sol. (%) Gap (%) (s)

n20mosA 20 a3816 3816 0.06 3816 3816.00 0.00 0.00 0.01
n20mosB 20 a3942 3942 0.06 3942 3942.00 0.00 0.00 0.01
n20mosC 20 a4048 4048 0.05 4048 4048.00 0.00 0.00 0.01
n20mosD 20 a4151 4151 0.11 4151 4151.00 0.00 0.00 0.01
n20mosE 20 a4387 4387 0.11 4387 4387.00 0.00 0.00 0.01
n20mosF 20 a4262 4262 0.10 4262 4262.00 0.00 0.00 0.01
n20mosG 20 a4248 4248 0.11 4248 4248.00 0.00 0.00 0.01
n20mosH 20 a4057 4057 0.05 4057 4057.00 0.00 0.00 0.01
n20mosI 20 a4064 4064 0.06 4064 4064.00 0.00 0.00 0.01
n20mosJ 20 a3793 3793 0.06 3793 3793.00 0.00 0.00 0.01
n30mosA 30 a4686 4686 0.11 4686 4686.00 0.00 0.00 0.05
n30mosB 30 a4805 4805 0.06 4805 4805.00 0.00 0.00 0.05
n30mosC 30 a4503 4503 0.06 4503 4503.00 0.00 0.00 0.06
n30mosD 30 a5047 5047 0.11 5047 5047.00 0.00 0.00 0.07
n30mosE 30 a4929 4929 0.16 4929 4929.00 0.00 0.00 0.06
n30mosF 30 a4500 4500 0.11 4500 4500.00 0.00 0.00 0.05
n30mosG 30 a4948 4948 0.10 4948 4948.00 0.00 0.00 0.05
n30mosH 30 a4602 4602 0.16 4602 4602.00 0.00 0.00 0.07
n30mosI 30 a4390 4390 0.05 4390 4390.00 0.00 0.00 0.06
n30mosJ 30 a4469 4469 0.05 4469 4469.00 0.00 0.00 0.06
n40mosA 40 a5192 5192 0.11 5192 5192.00 0.00 0.00 0.18
n40mosB 40 a5416 5416 0.11 5416 5416.00 0.00 0.00 0.19
n40mosC 40 a5079 5079 0.28 5079 5079.00 0.00 0.00 0.16
n40mosD 40 a5640 5640 0.11 5640 5640.00 0.00 0.00 0.19
n40mosE 40 a5364 5364 0.11 5364 5364.00 0.00 0.00 0.19
n40mosF 40 a5187 5187 0.44 5187 5187.00 0.00 0.00 0.16
n40mosG 40 a5424 5424 0.11 5424 5424.00 0.00 0.00 0.17
n40mosH 40 a5010 5010 0.44 5010 5010.00 0.00 0.00 0.18
n40mosI 40 a5065 5065 0.22 5065 5065.00 0.00 0.00 0.18
n40mosJ 40 a5068 5068 0.44 5068 5068.00 0.00 0.00 0.18
n50mosA 50 a5826 5826 0.39 5826 5826.00 0.00 0.00 0.37
n50mosB 50 a6080 6080 0.55 6080 6080.00 0.00 0.00 0.37
n50mosC 50 a6203 6203 0.77 6203 6203.00 0.00 0.00 0.41
n50mosD 50 a6239 6239 0.27 6239 6239.00 0.00 0.00 0.42
n50mosE 50 a6200 6200 0.44 6200 6200.00 0.00 0.00 0.45
n50mosF 50 a5537 5537 0.16 5537 5537.00 0.00 0.00 0.37
n50mosG 50 a5938 5938 0.38 5938 5938.00 0.00 0.00 0.37
n50mosH 50 a5820 5820 0.50 5820 5820.00 0.00 0.00 0.36
n50mosI 50 a5625 5625 0.38 5625 5625.00 0.00 0.00 0.35
n50mosJ 50 a5969 5969 0.27 5969 5969.00 0.00 0.00 0.39
n60mosA 60 a6279 6279 1.48 6279 6279.00 0.00 0.00 0.67
n60mosB 60 a6561 6561 0.71 6561 6561.00 0.00 0.00 0.83
n60mosC 60 a6295 6295 0.76 6295 6295.00 0.00 0.00 0.71
n60mosD 60 a6774 6774 0.77 6774 6774.00 0.00 0.00 0.76
n60mosE 60 a6628 6628 2.53 6628 6642.04 0.00 0.21 0.80
n60mosF 60 a6246 6246 1.98 6246 6246.00 0.00 0.00 0.87
n60mosG 60 a6417 6417 0.44 6417 6417.00 0.00 0.00 0.85
n60mosH 60 a6204 6204 0.49 6204 6204.00 0.00 0.00 0.83
n60mosI 60 a6072 6072 0.71 6072 6072.00 0.00 0.00 0.72
n60mosJ 60 a6651 6651 0.71 6651 6651.00 0.00 0.00 0.85

Avg. 0.00 < 0.01 0.28

a: Optimal Solution.
1: Best run on an AMD 1.33 GHz (1554 Mflop/s)
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Table 6.29: Results found for the TSPMPD instances (100-500 customers) of Mosheiov
[122]

Hernández-Pérez and
Instance n BKS Salazar-González [85]

ILS-RVND

Best Time1 Best Avg. Gap Avg. Time
Sol. (s) Sol. Sol. (%) Gap (%) (s)

n100mosA 100 a7860 7860 1.98 7860 7860.72 0.00 0.01 5.66
n100mosB 100 a7843 7843 1.42 7843 7843.00 0.00 0.00 5.38
n100mosC 100 a8244 8244 3.95 8244 8244.86 0.00 0.01 6.01
n100mosD 100 a8100 8100 3.18 8100 8100.80 0.00 0.01 6.12
n100mosE 100 8105 8105 2.58 a8100 8103.56 -0.06 -0.02 6.03
n100mosF 100 7941 7941 1.43 a7918 7918.04 -0.29 -0.29 6.17
n100mosG 100 a8080 8080 1.86 8080 8080.00 0.00 0.00 6.31
n100mosH 100 7923 7923 1.48 a7909 7909.32 -0.18 -0.17 5.80
n100mosI 100 8080 8080 1.26 a8071 8071.00 -0.11 -0.11 6.32
n100mosJ 100 7872 7872 3.13 a7850 7850.00 -0.28 -0.28 5.52
n200mosA 200 10715 10715 18.40 10715 10748.70 0.00 0.31 82.37
n200mosB 200 10976 10976 17.69 10930 10952.70 -0.42 -0.21 82.59
n200mosC 200 10652 10652 21.81 10601 10608.20 -0.48 -0.41 89.83
n200mosD 200 11125 11125 30.86 10934 10958.40 -1.72 -1.50 85.75
n200mosE 200 10541 10541 19.39 10540 10543.50 -0.01 0.02 78.75
n200mosF 200 10854 10854 10.82 10816 10824.30 -0.35 -0.27 80.47
n200mosG 200 10844 10844 13.89 10759 10776.50 -0.78 -0.62 71.01
n200mosH 200 11345 11345 12.91 11231 11247.50 -1.00 -0.86 87.22
n200mosI 200 10835 10835 9.95 10824 10835.30 -0.10 0.00 78.85
n200mosJ 200 10648 10648 9.22 10593 10604.40 -0.52 -0.41 75.98
n300mosA 300 12889 12889 58.00 12872 12901.40 -0.13 0.10 357.18
n300mosB 300 13176 13176 45.97 13041 13093.50 -1.02 -0.63 393.81
n300mosC 300 13053 13053 86.12 12947 12974.40 -0.81 -0.60 351.62
n300mosD 300 13151 13151 27.58 13131 13190.10 -0.15 0.30 350.00
n300mosE 300 12882 12882 24.82 12723 12771.90 -1.23 -0.85 366.02
n300mosF 300 13138 13138 47.46 13122 13155.60 -0.12 0.13 372.93
n300mosG 300 13157 13157 39.93 12933 12955.10 -1.70 -1.53 353.74
n300mosH 300 13357 13357 30.16 13258 13314.80 -0.74 -0.32 367.32
n300mosI 300 13194 13194 80.46 13071 13121.00 -0.93 -0.55 353.67
n300mosJ 300 13304 13304 89.97 13300 13340.80 -0.03 0.28 345.73
n400mosA 400 14890 14890 112.49 14779 14817.20 -0.75 -0.49 1365.47
n400mosB 400 15177 15177 91.12 14919 14959.10 -1.70 -1.44 1230.52
n400mosC 400 15121 15121 168.95 14911 14967.00 -1.39 -1.02 1307.10
n400mosD 400 15291 15291 66.46 15179 15252.40 -0.73 -0.25 1204.40
n400mosE 400 14937 14937 75.85 14791 14855.40 -0.98 -0.55 1143.59
n400mosF 400 15191 15191 155.88 15061 15104.70 -0.86 -0.57 1180.64
n400mosG 400 15015 15015 57.50 14863 14925.50 -1.01 -0.60 1109.28
n400mosH 400 15196 15196 107.49 14922 14978.40 -1.80 -1.43 1062.90
n400mosI 400 14989 14989 277.04 14769 14867.50 -1.47 -0.81 1209.04
n400mosJ 400 15134 15134 73.54 15050 15090.60 -0.56 -0.29 1191.84
n500mosA 500 16555 16555 54.87 16503 16552.20 -0.31 -0.02 3161.28
n500mosB 500 16672 16672 109.74 16572 16625.80 -0.60 -0.28 3373.15
n500mosC 500 16859 16859 133.08 16720 16777.70 -0.82 -0.48 3474.14
n500mosD 500 17093 17093 426.61 16776 16842.20 -1.85 -1.47 3552.75
n500mosE 500 16738 16738 152.96 16560 16613.50 -1.06 -0.74 2993.31
n500mosF 500 16991 16991 80.03 16711 16808.70 -1.65 -1.07 3292.06
n500mosG 500 16708 16708 76.18 16638 16686.10 -0.42 -0.13 3186.70
n500mosH 500 16987 16987 39.55 16665 16710.70 -1.90 -1.63 3353.80
n500mosI 500 16668 16668 118.69 16470 16528.80 -1.19 -0.84 2969.25
n500mosJ 500 16941 16941 109.30 16798 16829.90 -0.84 -0.66 3294.63

Avg. -0.70 -0.46 982.80

a: Optimality proved using the BC approach presented in Chapter 3.
1: Best run on an AMD 1.33 GHz (1554 Mflop/s)
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6.4 Concluding remarks

This chapter presented a heuristic algorithm, called ILS-RVND, for a large class of VRPs.

The developed algorithm has a simple structure and relies on relatively very few parame-

ters. Extensive computational experiments proved the efficiency of the proposed solution

approach, especially in terms of flexibility and solution quality, as can be observed in Table

6.30. In this table, Avg. Gap corresponds to the average gap between the average solu-

tions and the BKSs, #Instances is the number of instances of a particular benchmark,

#Improvements denotes the number of solutions improved and #Ties represents the

number of ties. It can be observed that ILS-RVND was found capable of improving the

result of 98 instances and to equal the result of another 464. Furthermore, it is possible to

verify that the Avg. Gap was always smaller than 0.66%, except in the CVRP instances

of Golden et al. [80], where the Avg. Gap was 1.03%.

Table 6.30: Summary of ILS-RVND results

Variant #Instances #Improvements #Ties Avg. Gap (%) Avg. Time (s)

CVRP1 a93, b14,c20 a0, b0, c0 a90, b10, c1 a0.09, b0.26, c1.03 a5.50, b23.56, c798.49

ACVRP1 d24 d1 d23 d0.15 d2.54

OVRP1 a93, e16, f8 a1, e2, f6 a88, e12, f1 a0.09, e0.62, f0.19 a9.31, e24.50, f843.25

VRPSPD1 g40, h28, i18 g0, h3, i2 g40, h20, i10 g0.02, h0.28, i0.26 g2.04, h12.60, i433.89

VRPMPD1 h42 h12 h26 h0.09 h30.05

MDVRP1 j23, k10 j0, k0 j16, k4 j0.47, k0.66 j225.11, k292.16

MDVRPMPD1 h33 h14 h17 h0.23 h188.62

HFVRP2 l16, m36 l1, m2 l14, m29 l0.23, m0.16 l32.39, m28.51

TSPMPD1 n60, o60 n0, o44 n60, o6 n< 0.01, o-0.46 n0.28, o982.80

Total 634 87 467

a: A, B, E, F, M, P set; b: Christofides et al. [31]; c: Golden et al. [80].
d: Fischetti et al. [57] and Pessoa et al. [134].
e: Christofides et al. [31] and Fisher [58]; f : Li et al. [105].
g : Dethloff [48]; h: Salhi and Nagy [149]; i: Montané and Galvão [121].
j : Cordeau et al. (old) [35]; k: Cordeau et al. (new) [35].
l: Taillard [164]; m: Golden et al. [76].
n: Mosheiov (small) [122]; o: Mosheiov (large) [122].
1: Core 2 Quad 2.4 GHz (single thread).
2: Core i7 2.93 GHz (single thread).



Chapter 7

A Hybrid Algorithm for General Vehicle
Routing Problems

This chapter presents a unified hybrid heuristic algorithm for a large class of Vehicle

Routing Problems. The developed approach consists of a combination of the ILS-RVND

heuristic described in Chapter 6 and a Set Partitioning (SP) formulation. A sequence of

SP models, with columns corresponding to routes found by ILS-RVND, are solved, not

necessarily to optimality, by means of a Mixed Integer Programming (MIP) solver, that

may interact with the ILS-RVND heuristic during its execution. The contents of this

chapter were partially published in [158].

The ILS-RVND structure was slightly modified in order to store routes during its

execution. Every time a local search is performed, the routes associated to the local

optimal solution s may be added to a pool of routes (RoutePool). The method decides

whether to add or not such routes based on the average number of customers per route

(n/v) and on the deviation between the current best solution s∗ and s (see Subsection

7.2). If this deviation, given by (f(s) − f(s∗))/f(s∗), where f(.) is the cost function, is

smaller than a threshold value (tolerance) then the routes of s are added to RoutePool.

Of course, if s0 is provided then the procedure that generates an initial solution is skipped.

7.1 A Set Partitioning approach

Let R be the set of all possible routes of all vehicle types, Ri ⊆ R be the subset of routes

that contain customer i ∈ V ′. Define yj as the binary variable associated to a route j ∈ R,
and cj as its cost.
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Consider the following basic SP formulation F1:

Min
∑
j∈R

cjyj (7.1)

s.t.
∑
j∈Ri

yj = 1 ∀i ∈ V ′ (7.2)

yj ∈ {0, 1} ∀j ∈ R. (7.3)

The objective function (7.1) minimizes the sum of the costs by choosing the best

combination of routes. Constraints (7.2) state that a single route from the subset Ri

visits costumer i ∈ V ′. Since the enumeration of set R is an impractical task, ILS-

RVND-SP only considers a subset of this set, usually limited to a few thousand routes.

Formulation F1 is mainly suitable for variants such as the Fleet Size and Mix because

the number of vehicles of each type is not predefined. Let Ru ⊆ R be the set of routes

associated with vehicle type u ∈ M or with depot u ∈ G and let mu be an upper bound

on the number of vehicles of a given type or available at a given depot. In order to deal

with HVRPs or with MDVRPs one can add the following constraints:∑
j∈Ru

yj ≤ mu ∀u ∈M(or ∀u ∈ G). (7.4)

Let v be the number of vehicles. For the remaining variants, one must include the con-

straint that ensure that the number of routes in the solution is equal to the number of

vehicles available, i.e., ∑
j∈R

yj = v. (7.5)

It is important to mention that there are some instances of VRPs with homogeneous fleet

that do not specify the number of vehicles, but ILS-RVND-SP fixes this value by using the

number of vehicles of the best current solution. Although the solution space is reduced,

this helps the problem to be solved more efficiently.

The pseudocode of the SP procedure is illustrated in Alg. 7.1. Input parame-

ter MaxSPTime corresponds to the time limit imposed to the MIP solver, whereas

MaxRootGap is the maximum gap allowed between the Lower Bound (LB) and the Up-

per Bound (UB) after solving the root node. It is assumed that the MIP solver uses a

branch-and-bound or a branch-and-cut procedure. The algorithm starts by verifying if the

number of vehicles should be minimized (e.g. OVRP) and if the number of vehicles of s∗ is

larger than the estimated lower bound on the number of vehicles (vmin = d(
∑

i∈V ′ di)/Qe).
If so, solution s∗ is stored in s′ and the number of vehicles is decreased by one unit (lines

2-3). Next, the SP Model is created (line 4) according to the VRP variant and the

Cutoff value is initialized (line 5). The SP problem is given to a MIP solver (line 6),
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which calls ILS-RVND whenever an incumbent solution is found (Procedure Incumbent-

Callback). If the solution s∗ is improved in the IncumbentCallback, the Cutoff value is

updated (lines 19-21), but s∗ is not given back to the solver since it may contain a route

that does not belong to the subset of routes R of the SP model. The solver is interrupted

if: (i) the optimal solution is found; (ii) LB > Cutoff (iii) MaxSPTime is exceeded;

(iv) MaxRootGap is exceeded. If the fleet is unlimited (e.g. FSM) and the solver has

been interrupt due to (iii) or (iv) then the SP model is updated by adding constraints

that enforce the fleet composition to be the same as in s∗ (lines 7-9). This is most likely

to happen when fixed costs are considered. The addition of these constraints may prevent

the algorithm to find better solutions but it makes the problem much more computa-

tionally tractable in an acceptable time. Finally, if the primary objective is to minimize

the number of vehicles and the solution s∗ is infeasible, then the number of vehicles is

incremented by one unit, s∗ is restored and the MIP solver is called again (lines 10-13).

Algorithm 7.1 SP
1: Procedure SP(s∗, RoutePool, MaxSPTime,MaxRootGap, v);
2: if v must be minimized and v > vmin then
3: v ← v − 1; s′ ← s∗;
4: SP Model ← CreateSetPartitioningModel(RoutePool, v);
5: Cutoff ← f(s∗); {Only if v = vmin. Otherwise, Cutoff ←∞}
6: s∗ ← MIPSolver(SP Model, s∗, Cutoff , MaxSPTime, MaxRootGap, IncumbentCallback(s∗));
7: if Unlimited fleet and (Time > MaxSPTime or RootGap > MaxRootGap) then
8: Update SP Model {Fixing the fleet}; MaxRootGap←∞;
9: s∗ ← MIPSolver(SP Model, s∗, Cutoff , MaxSPTime, MaxRootGap, IncumbentCallback(s∗));
10: if v must be minimized and and s∗ is infeasible then
11: s∗ ← s′; v ← v + 1;
12: Update SP Model {Increasing one vehicle};
13: s∗ ← MIPSolver(SP Model, s∗, Cutoff , MaxSPTime, MaxRootGap, IncumbentCallback(s∗));
14: return s∗;
15: end SP.
16: Procedure IncumbentCallback(s∗)
17: s← Incumbent Solution
18: s← ILS-RVND(1, s, NULL)
19: if f(s) < f(s∗) then
20: s∗ ← s
21: Cutoff ← f(s)
22: end IncumbentCallback

7.2 The ILS-RVND-SP algorithm

One of the challenges of designing a unified hybrid solution approach is to ensure that

the MIP model is computationally tractable, regardless of the instance. For example,

a SP model that exceeds the time limit only to solve its linear relaxation (e.g. due to

an excessive number of routes) is not a suitable improving mechanism. On the other

hand, a SP model that contains relatively few routes, is easily solved, but seldom finds

improved solutions. Hence, it is necessary that the SP models generated throughout the
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algorithm find a balance between computational tractability and improvement potential.

Experiments carried out in many instances with distinct characteristics indicated that

the following simple pieces of data are crucial for estimating the dimension (number of

routes) of a properly balanced SP model: (i) number of customers; (ii) the average number

of customers per route; and (iii) the vehicle fleet (homogeneous or heterogeneous). The

latter has been already discussed in Subsection 7.1.

With respect to (i), two strategies for ILS-RVND-SP were developed. The first one,

called ILS-RVND-SP-a, is executed when the number of customers is less or equal to a pa-

rameter N . The idea of ILS-RVND-SP-a is straightforward: the SP procedure is run only

once at the end of the algorithm, after the ILS-RVND heuristic. The second one, called

ILS-RVND-SP-b, is executed when n > N . In this case, the SP procedure is called after

each iteration of the ILS-RVND heuristic. Both strategies are completely independent,

as well as some of their parameters, namely: MaxIter-a, MaxIter-b, MaxIterILS-a,

MaxIterILS-b, TDev-a, TDev-b. The parameter TDev is described next.

With respect to (ii), the following is done. Let A be a parameter. It has been observed

that when the ratio between the number of customers and the number of vehicles is smaller

than A = 11, the SP models tend to become harder. In such cases, one only adds the

routes of a solution to the SP model if its deviation when compared to the incumbent

solution is smaller than a given threshold TDev. However, this parameter is difficult

to tune, especially in ILS-RVND-SP-b. To overcome this issue, a reactive approach that

dynamically adjusts its value throughout the execution of the algorithm was implemented,

as will be further explained.

The pseudocode of ILS-RVND-SP and ILS-RVND-SP-a are depicted in Algs. 7.2 and

7.3, respectively, and their explanation will be omitted since they are quite simple.

Algorithm 7.2 ILS-RVND-SP
1: Procedure ILS-RVND-SP(MaxIter-a, MaxIter-b, MaxIterILS-a, MaxIterILS-b, TDev-a,

TDev-b, MaxSPTime, MaxRootGap)
2: LoadData();
3: if v was not defined then
4: v ← EstimateTheNumberOfVehicles(seed);
5: RoutePool← NULL;
6: if n ≤ N then
7: s∗ ← ILS-RVND-SP-a(MaxIter-a, MaxIterILS-a, RoutePool, v, TDev-a, MaxSPTime,

MaxRootGap);
8: else
9: s∗ ← ILS-RVND-SP-b(MaxIter-b, MaxIterILS-b, RoutePool, v, TDev-b, MaxSPTime,

MaxRootGap);
10: return s∗;
11: end ILS-RVND-SP.

Alg. 7.4 shows the pseudocode of ILS-RVND-SP-b. Firstly, tolerance (threshold

deviation) is set to a given value according to average number of customers per route

(lines 2-5). In the main loop (lines 7-24), the ILS-RVND heuristic is executed with a single
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iteration (line 8) and the SP procedure is repeatedly called while there is any improvement

over the best current solution (lines 10-21). When no improvement is observed, the non-

permanent routes (short-term memory) are removed from RoutePool (line 16). After

each call to the SP procedure, the algorithm may update the value of tolerance, in case

n/v < A, according to the following conditions. If the SP model is solved at the root

node, meaning that the problem is easy, then tolerance is increased by one tenth of

TDev-b (lines 17-18). If the time limit is exceeded then tolerance is decreased by one

tenth of TDev-b (lines 19-20). If there is any improvement at the end of a given iteration,

the incumbent solution s∗ is updated and the associated routes are permanently added

(long-term memory) to RoutePool (lines 22-24).

Algorithm 7.3 ILS-RVND-SP-a
1: Procedure ILS-RVND-SP-a(MaxIter-a, MaxIterILS-a, RoutePool, v, TDev-a, MaxSPTime,

MaxRootGap);
2: if n/v < A then
3: tolerance← TDev-a;
4: else
5: tolerance← 1;
6: s∗ ← ILS-RVND(MaxIter-a, MaxIterILS-a, NULL, RoutePool, v, tolerance);
7: s∗ ← SP(s∗, RoutePool, MaxSPTime,MaxRootGap, v);
8: return s∗;
9: end ILS-RVND-SP-a.

7.3 Computational results

The algorithm ILS-RVND-SP was coded in C++ and the tests were executed in an Intel R©
CoreTM i7 with 2.93 GHz and 8 GB of RAM running under Linux 64 bits. CPLEX 12.2

was used as a MIP solver. The computational experiments were carried out using a single

thread. Table 7.1 shows the values of the parameters used by ILS-RVND-SP, which were

calibrated after preliminary experiments. The most crucial parameters are N and A. The
values adopted for the remaining ones are not so critical, which is reflected in the round

numbers chosen.

Table 7.1: Values of the parameters used by ILS-RVND-SP
Parameter Value

N 150
A 11

MaxIter-a 50
MaxIter-b 100

MaxIterILS-a n+ 0, 5× v
MaxIterILS-b 2000

Tdev-a 0.05
Tdev-b 0.005

γ random value of the set {0.00, 0.05, 0.10, . . . , 1, 70}
MaxRootGap 0.02

MaxSPTime (s) 60

In the following tables, Instance denotes the test-problem, n is the number of cus-



7.3 Computational results 120

tomers, |G| is the number of depots, v is the number of vehicles available per depot, BKS

represents the Best Known Solution (BKS) reported in the literature, Best Sol., Avg.

Sol. and Time (s) indicate, respectively, the best solution, the average solution and

the average computational time in seconds associated to the correspondent work, Gap

denotes the gap, given by 100× ((zILS-RVND-SP − zBKS)/zBKS), between the best solution

found by ILS-RVND-SP and the BKS, Avg. Gap corresponds to the gap between the

average solution found by ILS-RVND-SP and the best known solution. The BKSs are

highlighted in boldface and the improved solutions are underlined.

Algorithm 7.4 ILS-RVND-SP-b
1: Procedure ILS-RVND-SP-b(MaxIter-b, MaxIterILS-b, RoutePool, v, TDev-b, MaxSPTime,

MaxRootGap);
2: if n/v < A then
3: tolerance← TDev-b;
4: else
5: tolerance← 1;
6: iter ← 0; s∗ ← ∅; s0 ← NULL;
7: while iter < MaxIter-b do
8: s ← ILS-RVND(1, MaxIterILS-b, s0, RoutePool, v, tolerance);
9: improvement← true;
10: while improvement do
11: s′ ← SP(s, RoutePool, MaxSPTime,MaxRootGap, v);
12: if f(s′) < f(s) then
13: s← s′;
14: else
15: improvement← false;
16: Remove non-permanent routes from RoutePool;
17: if n/v < A and Time > MaxSPTime then
18: tolerance← tolerance− 0.1× TDev-b;
19: if n/v < A and Problem solved at the root node then
20: tolerance← tolerance+ 0.1× TDev-b;
21: iter ← iter + 1;
22: if f(s) < f(s∗) or s∗ is empty then
23: s∗ ← s;
24: Add routes associated to s∗ permanently to the pool;
25: return s∗;
26: end ILS-RVND-SP-b.

7.3.1 CVRP

The developed algorithm was tested in the instances of the A, B, E, M, P series and

all known optimal solutions were easily determined. Table 7.2 only shows the results

obtained in the three open instances of the M-series, namely: M-n151-k12, M-n200-k16

and M-n200-k17. ILS-RVND-SP was found capable of improving the result of the second

one and to equal the BKSs of the first and third ones. Table 7.3 contains the results

found in the instances of Christofides et al. [31] and a comparison with those reported

by Rochat and Taillard [147], Pisinger and Røpke (ALNS 50K) [136], Mester and Bräysy

[118], Nagata and Bräysy [127] and Vidal et al. [177]. ILS-RVND-SP was successful to
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equal the BKS in 13 of the 14 instances and the average gap between the Avg. Sols.

found by ILS-RVND-SP and the BKSs was 0.08%. Table 7.4 illustrates a comparison, in

terms of average solution. between the results obtained by ILS-RVND-SP and those found

by Pisinger and Røpke [136] (ALNS 50K),Nagata and Bräysy [127] and Zachariadis and

Kiranoudis [187] for the instances of Golden et al. [80]. It can be seen that the ILS-RVND

outperformed the algorithm of Pisinger and Røpke [136], but it could not compete with

those of Nagata and Bräysy [127], Vidal et al. [177] in terms of average solution quality.

Yet, the average gap between the Avg. Sols. found by ILS-RVND and the BKSs was

only 0.55%, a value smaller the one obtained by the general heuristic of [136]. On the

other hand, in spite of obtaining slightly lower quality solutions, the proposed algorithm

appears to be simpler than those developed in [127], [177] and [187].

Table 7.2: Results found for the open instances of the M-series
ILS-RVND-SP

Instance n v BKS
Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

M-n151-k12 150 12 1015 1015 1015.5 0.00 0.05 37.12
M-n200-k16 199 16 1285 1278 1285.8 -0.54 0.06 772.01
M-n200-k17 199 17 1275 1275 1279.9 0.00 0.38 513.00

Avg. -0.18 0.17 440.71

7.3.2 ACVRP

ILS-RVND-SP was tested in the ACVRP instances suggested by Fischetti et al. [57] and

extended by Pessoa et al. [134]. Table 7.5 shows the results obtained for the ACVRP

instances. All known optimal solutions were found by ILS-RVND-SP. Regarding the two

instances where the optimal solutions is not known, the proposed algorithm was capable

of improving the BKS in one of them and to equal the best result in the other one.

7.3.3 OVRP

Table 7.6 presents the results found by ILS-RVND-SP in the set of instances of Christofides

et al. [31] / Fisher [58] and in the set of instances of Li et al. [105], as well as a

comparison with those pointed out by Pisinger and Røpke [136] (ALNS 50K), Fleszar et

al. [60], Repoussis et al. [146] and Zachariadis and Kiranoudis [186]. Regarding those of

Christofides et al. [31] / Fisher [58], ILS-RVND-SP was capable of obtaining the BKS in

12 cases and to improve another 3 solutions, but it failed to find 1 BKS. Furthermore,

ILS-RVND-SP also failed to always obtain solutions with the minimum number of vehicles

on instance C7 . The average gap between the Avg. Sols. obtained by ILS-RVND-SP

and the BKSs, disregarding instance C7, was 0.06%. As for the 8 instances of Li et al.

[105], ILS-RVND-SP improved all solutions and the average gap between the Avg. Sols

produced by ILS-RVND-SP and the BKSs was -0.08%.
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Table 7.5: Results found for the ACVRP instances of Fischetti et al. [57] and Pessoa et
al. [134]

ILS-RVND-SP
Instance n v BKS

Best Avg. Gap Avg. Time
Sol. Sol. (%) Gap (%) (s)

A034-02f 34 2 a1406 1406 1406.00 0.00 0.00 0.57
A034-04f 34 4 a1773 1773 1773.00 0.00 0.00 0.47
A034-08f 34 8 a2672 2672 2672.00 0.00 0.00 0.47
A036-03f 36 3 a1644 1644 1644.00 0.00 0.00 0.64
A036-05f 36 5 a2110 2110 2110.00 0.00 0.00 0.61
A036-10f 36 10 a3338 3338 3338.00 0.00 0.00 5.67
A039-03f 39 3 a1654 1654 1654.00 0.00 0.00 0.69
A039-06f 39 6 a2289 2289 2289.00 0.00 0.00 0.60
A039-12f 39 12 a3705 3705 3705.00 0.00 0.00 0.77
A045-03f 45 3 a1740 1740 1740.00 0.00 0.00 1.06
A045-06f 45 6 a2303 2303 2303.00 0.00 0.00 0.88
A045-11f 45 11 a3544 3544 3544.00 0.00 0.00 2.46
A048-03f 48 3 a1891 1891 1891.00 0.00 0.00 1.26
A048-05f 48 5 a2283 2283 2289.50 0.00 0.28 1.79
A048-10f 48 10 a3325 3325 3325.60 0.00 0.02 1.29
A056-03f 56 3 a1739 1739 1740.00 0.00 0.06 2.09
A056-05f 56 5 a2165 2165 2165.00 0.00 0.00 3.53
A056-10f 56 10 a3263 3263 3264.50 0.00 0.05 2.26
A065-03f 65 3 a1974 1974 1974.00 0.00 0.00 3.08
A065-06f 65 6 a2567 2567 2571.70 0.00 0.18 3.30
A065-12f 65 12 a3902 3902 3904.90 0.00 0.07 3.41
A071-03f 71 3 a2054 2054 2054.00 0.00 0.00 4.46
A071-05f 71 5 b2475 2457 2457.90 -0.73 -0.69 6.72
A071-10f 71 10 b3486 3486 3492.90 0.00 0.20 5.61

Avg. -0.03 0.01 2.24

a: Optimality proved. b: Value presented by Pessoa et al. [134].

7.3.4 VRPSPD

Table 7.7 contains the results obtained in the set of instances of Salhi and Nagy [149] and

a comparison with those reported by Gajpal and Abad [64], Zachariadis et al. [190] and

Subramanian et al. [157]. It can be verified that the ILS-RVND-SP equaled 21 BKSs and

improved another 5. Table 7.8 presents the results found in the instances of Montané and

Galvão [121] and also those reported by Souza et al. [153], Zachariadis and Kiranoudis

[188] and Subramanian et al. [157]. ILS-RVND-SP found 12 BKSs and improved another

6 results. It is noteworthy to mention that the proposed algorithm had a satisfactory

performance in the large size instances, always producing, on average, competitive results.

The average gap between the Avg. Sols produced by ILS-RVND-SP and the BKSs in the

first and second group of instances was 0.12% and -0.07% respectively.
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Table 7.7: Results found for the VRPSPD instances of Salhi and [149]
Gajpal and Zachariadis Subramanian

Abad et al. et al.
ILS-RVND-SP

Instance n v BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

CMT1X 50 3 a466.77 466.77 5.00 469.80 2.1 466.77 2.3 466.77 466.77 0.00 0.00 2.08
CMT1Y 50 3 a466.77 466.77 5.00 469.80 3.8 466.77 2.3 466.77 466.77 0.00 0.00 1.97
CMT2X 75 6 684.21 684.21 41.25 684.21 5.4 684.21 6.4 684.21 684.78 0.00 0.08 12.79
CMT2Y 75 6 684.21 684.94 22.25 684.21 6.8 684.21 6.4 684.21 684.59 0.00 0.06 10.83
CMT3X 100 5 a721.27 721.40 377.50 721.27 11.9 721.27 12.1 721.27 721.46 0.00 0.03 17.69
CMT3Y 100 5 a721.27 721.40 43.75 721.27 11 721.27 12.3 721.27 721.50 0.00 0.03 17.61
CMT12X 100 5 662.22 663.01 36.25 662.22 9.3 662.22 10.3 662.22 663.44 0.00 0.18 9.07
CMT12Y 100 5 662.22 663.50 39.25 662.22 4.8 662.22 10.8 662.22 663.12 0.00 0.14 9.34
CMT11X 120 4 833.92 839.66 57.25 833.92 21.2 833.92 18.9 846.23 848.65 1.48 1.77 51.82
CMT11Y 120 4 833.92 840.19 52.75 833.92 14.4 833.92 19.0 846.23 848.74 1.48 1.78 48.63
CMT4X 150 7 852.46 854.12 131.75 852.46 29.6 852.46 30.9 852.46 853.02 0.00 0.07 98.03
CMT4Y 150 7 852.46 855.76 140.25 852.46 27.4 852.46 31.6 852.46 852.73 0.00 0.03 80.63
CMT5X 199 10 1029.25 1034.87 377.50 1030.55 62.8 1029.25 71.5 1029.25 1029.52 0.00 0.03 1786.74
CMT5Y 199 10 1029.25 1037.34 393.50 1030.55 47.7 1029.25 69.6 1029.25 1029.25 0.00 0.00 1726.18

CMT6X 50 7 555.43 555.43 14.00 - - - - 555.43 557.35 0.00 0.35 1.04
CMT6Y 50 7 555.43 555.43 13.75 - - - - 555.43 557.10 0.00 0.30 1.08
CMT7X 75 13 900.12 900.12 47.75 - - - - 900.12 901.02 0.00 0.10 4.55
CMT7Y 75 13 900.54 900.54 46.25 - - - - 900.12 901.08 -0.05 0.06 4.87
CMT8X 100 10 865.50 865.50 80.75 - - - - 865.50 865.50 0.00 0.00 7.36
CMT8Y 100 10 865.50 865.50 77.75 - - - - 865.50 865.50 0.00 0.00 7.74
CMT14X 100 11 821.75 821.75 78.50 - - - - 821.75 821.75 0.00 0.00 5.42
CMT14Y 100 11 821.75 821.75 74.75 - - - - 821.75 821.75 0.00 0.00 5.48
CMT13X 120 12 1542.86 1542.86 160.25 - - - - 1542.86 1543.54 -0.03 0.04 68.72
CMT13Y 120 12 1542.86 1542.86 160.25 - - - - 1542.86 1544.42 0.00 0.10 73.49
CMT9X 150 16 1161.54 1161.54 300.00 - - - - 1160.68 1161.77 -0.07 0.02 64.43
CMT9Y 150 16 1161.54 1161.54 291.75 - - - - 1160.68 1162.59 -0.07 0.09 80.86
CMT10X 199 20 1386.29 1386.29 773.50 - - - - 1373.40 1379.19 -0.93 -0.51 552.81
CMT10Y 199 20 1395.04 1395.04 757.50 - - - - 1373.40 1377.03 -1.55 -1.29 547.39

Avg. 0.01 0.12 189.24

a: Optimality proved.
1: Best run on a Xeon 2.4 GHz (1978 Mflop/s). 2: Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).
3: Average of 50 runs on a cluster with 32 SMP nodes, where each consists of two Intel Xeon 2.66 GHz (wall clock).

7.3.5 VRPMPD

Table 7.9 illustrates the results found by ILS-RVND-SP in the VRPMPD instances of

Salhi and Nagy [149] and a comparison with those reported by Røpke and Pisinger [148]

(6R - normal learning) and Gajpal and Abad [64]. ILS-RVND-SP obtained the BKS in 25

instances and it managed to improve the result of another 12. The developed algorithm

outperformed both the algorithms of Røpke and Pisinger [148] and Gajpal and Abad

[64] in terms of solution quality. The average gap between the Avg. Sols. obtained by

ILS-RVND-SP and the BKSs was -0.06%.
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Table 7.9: Results found for the VRPMPD instances of Salhi and Nagy [149]
Røpke and Gajpal and
Pisinger Abad

ILS-RVND-SP

Instance n v BKS Best Time1 Best Time2 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

CMT1H 50 4 a465.02 465 51 465.02 5.6 465.02 465.03 0.00 0.00 2.07
CMT1Q 50 6 a489.74 490 41 489.74 6.0 489.74 489.74 0.00 0.00 1.52
CMT1T 50 7 a520.06 520 34 520.06 7.0 520.06 520.06 0.00 0.00 1.60
CMT2H 75 5 662.63 663 78 662.63 22.0 662.63 662.63 0.00 0.00 5.16
CMT2Q 75 7 732.76 733 65 732.76 26.2 731.26 731.40 -0.20 -0.19 8.03
CMT2T 75 9 a782.77 783 57 782.77 26.0 782.77 782.77 0.00 0.00 7.56
CMT3H 100 3 a700.94 701 186 701.31 35.6 700.94 700.94 0.00 0.00 17.65
CMT3Q 100 4 a747.15 747 128 747.15 39.8 747.15 747.15 0.00 0.00 9.70
CMT3T 100 5 a798.07 798 109 798.07 42.6 798.07 798.07 0.00 0.00 28.76
CMT12H 100 6 a629.37 629 150 629.37 32.8 629.37 629.37 0.00 0.00 13.93
CMT12Q 100 8 a729.46 729 108 729.46 42.0 729.25 729.25 -0.03 -0.03 17.37
CMT12T 100 9 a787.52 788 96 787.52 52.0 787.52 787.52 0.00 0.00 6.79
CMT11H 120 4 818 818 303 820.35 45.8 818.05 818.06 0.01 0.01 63.18
CMT11Q 120 6 a939.36 939 196 939.36 66.2 939.36 939.36 0.00 0.00 20.35
CMT11T 120 7 998.8 1000 164 998.80 70.2 998.80 998.81 0.00 0.00 19.91
CMT4H 150 6 829 829 345 831.39 125.4 828.12 831.59 -0.11 0.31 80.24
CMT4Q 150 9 913.93 918 244 913.93 153.0 915.27 915.27 0.15 0.15 58.92
CMT4T 150 11 990.39 1000 212 990.39 166.8 990.39 990.39 0.00 0.00 50.42
CMT5H 200 9 992.37 983 514 992.37 351.4 978.736 978.736 -1.37 -1.37 1531.73
CMT5Q 200 12 b1118 1119 381 1134.72 451.8 1104.87 1105.79 -1.17 -1.09 1627.78
CMT5T 200 15 1227 1227 333 1232.08 460.8 1218.77 1220.24 -0.67 -0.55 1802.81

CMT6H 50 7 555.43 555 31 555.43 13.0 555.43 557.35 0.00 0.35 1.08
CMT6Q 50 7 555.43 555 30 555.43 12.8 555.43 557.15 0.00 0.31 1.08
CMT6T 50 7 555.43 555 31 555.43 11.6 555.43 556.64 0.00 0.22 1.15
CMT7H 75 13 900 900 54 900.84 50.0 900.54 900.84 0.06 0.09 4.47
CMT7Q 75 14 900.69 901 53 900.69 46.8 900.69 902.62 0.00 0.21 4.90
CMT7T 75 14 903.05 903 52 903.05 39.0 903.05 903.05 0.00 0.00 4.77
CMT8H 100 10 865.50 866 95 865.50 85.6 865.50 865.50 0.00 0.00 7.78
CMT8Q 100 10 865.50 866 93 865.50 74.4 865.50 865.50 0.00 0.00 7.50
CMT8T 100 10 865.54 866 95 865.54 65.6 865.54 865.54 0.00 0.00 7.18
CMT14H 100 11 821.75 822 89 821.75 81.6 821.75 821.75 0.00 0.00 5.37
CMT14Q 100 11 821.75 822 85 821.75 72.4 821.75 821.75 0.00 0.00 5.47
CMT14T 100 11 826.77 827 86 826.77 64.6 826.77 826.77 0.00 0.00 6.30
CMT13H 120 12 1542.86 1543 125 1542.86 164.2 1542.86 1544.54 0.00 0.11 73.82
CMT13Q 120 12 1542.97 1543 120 1542.97 157.8 1542.86 1544.05 -0.01 0.07 69.87
CMT13T 120 12 1542.97 1544 127 1542.97 152.8 1542.86 1544.11 -0.01 0.07 73.59
CMT9H 150 16 b1161 1166 177 1161.63 306.4 1160.68 1162.17 -0.03 0.10 77.95
CMT9Q 150 16 1161.51 1162 171 1161.51 289.6 1161.24 1161.69 -0.02 0.02 80.64
CMT9T 150 16 1162.68 1164 178 1162.68 261.0 1162.55 1164.37 -0.01 0.15 83.29
CMT10H 199 20 1383.78 1393 296 1383.78 791.0 1372.52 1377.23 -0.81 -0.47 550.45
CMT10Q 199 20 1386.54 1389 288 1386.54 730.2 1374.18 1379.47 -0.89 -0.51 537.66
CMT10T 199 20 b1395 1402 291 1400.22 658.6 1381.04 1388.17 -1.00 -0.49 501.65

Avg. -0.15 -0.06 178.13

a: Optimality proved. b: Found by Røpke and Pisinger [148] using another version of their algorithm.
1: Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s). 2: Best run on a Xeon 2.4 GHz (1978 Mflop/s).

7.3.6 MDVRP

Tables 7.10 and 7.11 present a comparison, in terms of average solution, between the

results found by ILS-RVND-SP and those determined by Pisinger and Røpke [136] (ALNS

50K) and Vidal et al. [177] in the old and new set of instances of [35], respectively. The

latter two clearly outperformed the first one in terms of solution quality. The average

gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs for the old and new

benchmark sets was, respectively, 0.04% and 0.15%.
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Table 7.10: Results found for the old MDVRP instances of Cordeau et al. [35]
Pisinger and Vidal

Røpke et al.
ILS-RVND-SP

Instance n v |G|
BKS Avg.∗ Time1 Avg.∗ Time2 Best Avg. Gap Avg. Time

Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

p01 50 4 4 a576.87 576.87 29 576.87 13.8 576.87 576.87 0.00 0.00 2.80
p02 50 2 4 a473.53 473.53 28 473.53 12.6 473.53 473.53 0.00 0.00 2.27
p03 75 3 2 c641.19 641.19 64 641.19 25.8 641.19 641.19 0.00 0.00 7.25
p12 80 5 2 b1318.95 1319.13 75 1318.95 31.2 1318.95 1318.95 0.00 0.00 6.14
p04 100 8 2 d1001.04 1006.09 88 1001.23 116.4 1001.04 1001.04 0.00 0.00 51.76
p05 100 5 2 c750.03 752.34 120 750.03 63.6 750.03 750.21 0.00 0.02 31.54
p06 100 6 3 b876.50 883.01 93 876.50 68.4 876.50 876.50 0.00 0.00 25.70
p07 100 4 4 d881.97 889.36 88 884.43 93.0 881.97 881.97 0.00 0.00 21.88
p15 160 5 4 c2505.42 2519.64 253 2505.42 115.2 2505.42 2505.42 0.00 0.00 48.59
p18 240 5 6 c3702.85 3736.53 419 3702.85 271.2 3702.85 3702.85 0.00 0.00 1019.76
p21 360 5 9 c5474.84 5501.58 582 5476.41 600.0 5474.84 5474.84 0.00 0.00 2544.57

p13 80 5 2 b1318.95 1318.95 60 1318.95 34.2 1318.95 1318.95 0.00 0.00 3.06
p14 80 5 2 c1360.12 1360.12 58 1360.12 33.0 1360.12 1360.12 0.00 0.00 19.11
p16 160 5 4 b2572.23 2573.95 188 2572.23 118.2 2572.23 2572.23 0.00 0.00 247.77
p17 160 5 4 c2709.09 2709.09 179 2709.09 128.4 2709.09 2710.21 0.00 0.04 1448.47
p19 240 5 6 b3827.06 3838.76 315 3827.06 252.0 3827.06 3827.55 0.00 0.01 1214.57
p20 240 5 6 c4058.07 4064.76 300 4058.07 262.2 4058.07 4058.07 0.00 0.00 544.80
p08 249 14 2 e4372.78 4421.03 333 4397.42 600.0 4379.46 4393.70 0.15 0.48 1244.57
p09 249 12 3 e3858.66 3892.50 361 3868.59 570.0 3859.54 3864.22 0.02 0.14 1431.88
p10 249 8 4 e3631.11 3666.85 363 3636.08 589.2 3631.37 3634.72 0.01 0.10 1422.66
p11 249 6 5 d3546.06 3573.23 357 3548.25 428.4 3546.06 3546.15 0.00 0.00 1217.35
p22 360 5 9 c5702.16 5722.19 462 5702.16 600.0 5702.15 5705.84 0.00 0.06 846.01
p23 360 5 9 d6078.75 6092.66 443 6078.75 600.0 6078.75 6078.75 0.00 0.00 1019.15

Avg. Gap (%) 0.40 Avg. Gap (%) 0.07 Avg. 0.01 0.04 627.03

a: Optimality proved. 1: Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
2: Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz. ∗: Average of 10 runs.
b: First found by Renaud et al. [145]. c: First found by Cordeau et al. [35].
d: First found by Pisinger and Røpke [136]. e: First found by Vidal et al. [177].

Table 7.11: Results found for the new MDVRP instances of Cordeau et al. [35]
Pisinger and Vidal

Røpke et al.
ILS-RVND-SP

Instance n v |G|
BKS Avg.∗ Time1 Avg.∗ Time2 Best Avg. Gap Avg. Time

Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

pr01 48 2 4 b861.32 861.32 30 861.32 10.2 861.32 861.32 0.00 0.00 1.24
pr07 72 3 6 b1089.56 1089.56 58 1089.56 20.4 1089.56 1089.56 0.00 0.00 3.87
pr02 96 4 4 c1307.34 1308.17 103 1307.34 45.6 1307.34 1308.53 0.00 0.09 12.39
pr03 144 6 4 d1803.80 1810.66 214 1803.80 114.6 1803.81 1804.09 0.00 0.02 55.04
pr08 144 6 6 c1664.85 1675.74 207 1665.05 123.0 1664.85 1665.08 0.00 0.01 393.98
pr04 192 8 4 d2058.31 2073.16 296 2059.36 313.2 2058.31 2060.93 0.00 0.13 779.30
pr09 216 9 6 d2133.20 2144.84 350 2134.17 366.0 2133.20 2135.37 0.00 0.10 1070.41
pr05 240 10 4 d2331.20 2350.31 372 2340.29 573.6 2331.20 2338.12 0.00 0.30 1337.10
pr06 288 12 4 d2676.30 2695.74 465 2681.93 600.0 2680.77 2685.23 0.17 0.33 2297.66
pr10 288 12 6 d2868.26 2905.43 455 2886.59 600.0 2874.28 2882.41 0.21 0.49 3009.53

Avg. Gap (%) 0.52 Avg. Gap (%) 0.13 Avg. 0.04 0.15 896.05

a: Optimality proved. 1: Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
2: Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz. ∗: Average of 10 runs.
b: First found by Cordeau et al. [35]. c: First found by Pisinger and Røpke [136]. d: First found by Vidal et al. [177].

7.3.7 MDVRPMPD

Table 7.12 presents the results found by ILS-RVND-SP and those pointed out by Røpke

and Pisinger [148] (6R - no learning) in the set of instances of Salhi and Nagy [149]. With

respect to the solution quality, the developed algorithm clearly had a better performance,
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equaling 17 BKSs and improving the result of another 16. The average gap between the

Avg. Sols. and the BKSs was -0.10%.

Table 7.12: Results found for the MDVRPMPD instances of Salhi and Nagy [149]
Røpke and
Pisinger

ILS-RVND-SP

Instance n v |G| BKS
Best Avg. Time1 Best Avg. Gap Avg. Time
Sol. Sol.∗ (s) Sol. Sol. (%) Gap (%) (s)

GJ01Q 50 4 4 528 528 528 36 528.30 528.30 0.06 0.06 3.12
GJ01T 50 4 4 569 569 569 34 569.43 569.43 0.08 0.08 2.98
GJ02H 75 4 2 440 440 440 51 440.00 440.00 0.00 0.00 2.95
GJ02Q 75 4 2 450 450 451 43 449.72 449.72 -0.06 -0.06 2.60
GJ02T 75 4 2 464 464 464 37 464.13 464.13 0.03 0.03 2.50
GJ03H 100 5 3 581 581 583 81 579.45 579.45 -0.27 -0.27 9.54
GJ03Q 100 5 3 605 605 608 71 605.25 605.25 0.04 0.04 8.95
GJ03T 100 5 3 624 624 626 65 624.44 624.44 0.07 0.07 10.94
GJ04H 100 2 8 790 790 797 112 789.19 789.30 -0.10 -0.09 31.69
GJ04Q 100 2 8 875 875 876 94 874.78 874.79 -0.03 -0.02 41.89
GJ04T 100 2 8 962 962 969 85 962.25 962.65 0.03 0.07 37.95
GJ05H 100 2 5 678 678 680 168 676.81 676.91 -0.18 -0.16 22.24
GJ05Q 100 2 5 700 702 705 133 700.15 700.15 0.02 0.02 19.55
GJ05T 100 2 5 733 733 738 118 733.17 733.18 0.02 0.02 39.31
GJ06H 100 3 6 745 747 751 116 742.18 742.18 -0.38 -0.38 32.28
GJ06Q 100 3 6 794 794 800 100 793.85 793.87 -0.02 -0.02 25.00
GJ06T 100 3 6 851 851 853 90 850.82 850.82 -0.02 -0.02 27.19
GJ07H 100 4 4 733 733 734 117 732.73 732.73 -0.04 -0.04 24.66
GJ07Q 100 4 4 802 803 807 94 801.91 801.94 -0.01 -0.01 38.58
GJ07T 100 4 4 854 855 862 88 853.54 853.54 -0.05 -0.05 20.64
GJ08H 249 2 14 3327 3327 3373 581 3320.39 3342.91 -0.20 0.48 1435.21
GJ08Q 249 2 14 3762 3774 3810 479 3745.18 3769.01 -0.45 0.19 1288.57
GJ08T 249 2 14 4134 4134 4170 431 4110.78 4120.27 -0.56 -0.33 1272.63
GJ09H 249 3 12 3005 3006 3028 646 2990.92 3005.52 -0.47 0.02 1478.35
GJ09Q 249 3 12 3355 3355 3393 535 3351.18 3361.23 -0.11 0.19 1362.18
GJ09T 249 3 12 3677 3677 3718 492 3656.03 3661.62 -0.57 -0.42 1316.84
GJ010H 249 4 8 2927 2930 2963 644 2894.71 2905.23 -1.10 -0.74 1452.52
GJ010Q 249 4 8 3242 3245 3267 513 3220.79 3226.79 -0.65 -0.47 1315.68
GJ010T 249 4 8 3485 3485 3524 472 3470.70 3477.99 -0.41 -0.20 1281.92
GJ011H 249 5 6 2855 2880 2905 609 2842.79 2845.71 -0.43 -0.33 1357.58
GJ011Q 249 5 6 3155 3165 3192 511 3138.64 3143.33 -0.52 -0.37 1267.12
GJ011T 249 5 6 3390 3390 3421 469 3360.48 3367.63 -0.87 -0.66 1181.56

Avg. Gap (%) 0.66 Avg. -0.22 -0.10 497.54

∗: Average of 10 runs.
b: Found by Røpke and Pisinger [148] using another version of their algorithm.
1: Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s).

7.3.8 HFVRP

Table 7.13 illustrates a comparison between ILS-RVND-SP and the algorithms of Li et

al. [107] and Penna et al. [133] in the HVRP instances of Taillard [164] with fixed

and dependent costs (HVRPFD). It can be verified that ILS-RVND-SP found all proven

optimal solutions and improved the result of one instance. The average gap between the

Avg. Sols found by the developed algorithm and the BKSs was 0.19%.

Table 7.14 presents a comparison between the results found by ILS-RVND-SP and

those of Prins [141] (SMA-D2), Li et al. [106] and Penna et al. [133] in the HVRP

instances of [164] only with dependent costs (HVRPD). As in the previous variant all

proven optimal solutions were found by ILS-RVND-SP. In the only instance where the

optimality was not proved, ILS-RVND-SP was unsuccessful to obtain the best solution
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Table 7.13: Results found for the HVRPFD instances of Taillard [164]
Li et al. Penna et al. ILS-RVND-SP

Best Time1 Best Time2 Best Avg. Gap Avg. Time
Instance n BKS

Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

13 50 a3185.09 3185.09 110 3185.09 19.04 3185.09 3185.09 0.00 0.00 4.48
14 50 a10107.53 10107.53 34 10107.53 11.28 10107.53 10109.74 0.00 0.02 2.24
15 50 a3065.29 3065.29 46 3065.29 12.48 3065.29 3065.29 0.00 0.00 4.47
16 50 a3265.41 3278.96 99 3265.41 12.22 3265.41 3277.52 0.00 0.37 3.68
17 75 a2076.96 2076.96 148 2076.96 29.59 2076.96 2079.38 0.00 0.12 13.9
18 75 a3743.58 3743.58 119 3743.58 36.38 3743.58 3752.54 0.00 0.24 57.77
19 100 10420.34 10420.34 287 10420.34 73.66 10420.34 10420.34 0.00 0.00 27.40
20 100 4788.49 4834.17 200 4788.49 68.46 4761.26 4826.98 -0.57 0.80 26.85

Avg. -0.07 0.19 17.60

a: Optimality proved. 1: Best run on an Intel 2.2 GHz (the model was not provided by the authors).
2: Average of 30 runs on an i7 2.93 GHz (5839 Mflop/s).

pointed out by Taillard [164]. The average gap between the Avg. Sols found by the

proposed algorithm and the BKSs was 0.12%.

Table 7.14: Results found for the HVRPD instances of [164]
Li et al. Prins Penna et al. ILS-RVND-SP

Instance n BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

13 50 a1517.84 1517.84 358 1517.84 33.2 1517.84 19.29 1517.84 1517.84 0.00 0.00 3.61
14 50 a607.53 607.53 141 607.53 37.6 607.53 11.20 607.53 608.41 0.00 0.14 2.50
15 50 a1015.29 1015.29 166 1015.29 6.6 1015.29 12.56 1015.29 1015.29 0.00 0.00 3.07
16 50 a1144.94 1144.94 188 1144.94 7.5 1144.94 12.29 1144.94 1144.94 0.00 0.00 2.69
17 75 a1061.96 1061.96 216 1065.85 81.5 1061.96 29.92 1061.96 1065.20 0.00 0.31 7.65
18 75 a1823.58 1823.58 366 1823.58 190.6 1823.58 38.34 1823.58 1826.93 0.00 0.18 7.69
19 100 b1117.51 1120.34 404 1120.34 177.8 1120.34 67.72 1120.34 1120.41 0.25 0.26 16.92
20 100 a1534.17 1534.17 447 1534.17 223.3 1534.17 63.77 1534.17 1534.65 0.00 0.03 16.56

Avg. 0.03 0.12 7.59

a: Optimality proved. b: Found by Taillard [164]. 1: Best run on an Athlon 1.0 GHz (1168 Mflop/s).
2: Best run on a Pentium IV M 1.8 GHz (1564 Mflop/s). 3: Average of 30 runs on an i7 2.93 GHz (5839 Mflop/s).

Table 7.15 shows the results obtained by ILS-RVND-SP and those of Choi and Tcha

[29], Prins (SMA-U1) [141] and Penna et al. [133] in the FSM instances of [76] with fixed

and dependent costs (FSMFD). ILS-RVND-SP was capable of finding all BKSs. When

individually comparing ILS-RVND-SP with each one of these algorithms, one can verify

that the ILS-RVND-SP produced, on average, superior results in terms of best solutions

and the average gap between the Avg. Sols. and the BKSs was 0.01%.

Table 7.16 contains the results found by ILS-RVND-SP in the FSM instances of Golden

et al. [76] only with fixed costs (FSMF). A comparison is performed with those of Choi

and Tcha [29], Prins [141] (SMA-D1) and Penna et al. [133]. ILS-RVND-SP managed

to determine the BSKs of 10 instances, besides improving the result of another one. The

average gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs was 0.07%.

The best heuristic results obtained in the literature in the FSM instances of Golden

et al. [76] wih only dependent costs (FSMD) were reported by Choi and Tcha [29], Prins

[141] (SMA-D1) and Penna et al. [133]. Table 7.17 illustrates a comparison between the
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Table 7.15: Results found for the FSMFD instances of [76]
Choi and Tcha Prins Penna et al. ILS-RVND-SP

Instance n BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

3 20 a1144.22 1144.22 0.25 1144.22 0.01 1144.22 4.05 1144.22 1144.22 0.00 0.00 0.78
4 20 a6437.33 6437.33 0.45 6437.33 0.07 6437.33 3.03 6437.33 6437.33 0.00 0.00 0.48
5 20 a1322.26 1322.26 0.19 1322.26 0.02 1322.26 4.85 1322.26 1322.26 0.00 0.00 0.79
6 20 a6516.47 6516.47 0.41 6516.47 0.07 6516.47 3.01 6516.47 6516.48 0.00 < 0.01 0.46

13 50 a2964.65 2964.65 3.95 2964.65 0.32 2964.65 27.44 2964.65 2964.65 0.00 0.00 7.49
14 50 a9126.9 9126.9 51.7 9126.9 8.90 9126.90 11.66 9126.90 9127.01 0.00 < 0.01 2.18
15 50 a2634.96 2634.96 4.36 2635.21 1.04 2634.96 13.83 2634.96 2634.96 0.00 0.00 2.98
16 50 a3168.92 3168.92 5.98 3169.14 13.05 3168.92 18.20 3168.92 3168.92 0.00 0.00 13.06
17 75 a2004.48 2023.61 68.11 2004.48 23.92 2004.48 43.68 2004.48 2004.48 0.00 0.00 9.76
18 75 a3147.99 3147.99 18.78 3153.16 24.85 3149.63 47.80 3147.99 3149.72 0.00 0.05 8.30
19 100 a8661.81 8664.29 905.2 8664.67 163.25 8661.81 59.13 8661.81 8661.94 0.00 < 0.01 49.07
20 100 4153.02 4154.49 53.02 4154.49 41.25 4153.02 59.07 4153.02 4153.31 0.00 0.01 76.51

Avg. 0.00 0.01 14.32

a: Optimality proved. 1: Pentium IV 2.6 GHz (2266 Mflop/s).
2: Best run on a Pentium IV M 1.8 GHz (1564 Mflop/s). 3: Average of 30 runs on an i7 2.93 GHz (5839 Mflop/s).

Table 7.16: Results found for the FSMF instances of Golden et al. [76]
Choi and Tcha Prins Penna et al. ILS-RVND-SP

Instance n BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

3 20 a961.03 961.03 0 961.03 0.04 961.03 4.91 961.03 961.03 0.00 0.00 0.76
4 20 a6437.33 6437.33 1 6437.33 0.03 6437.33 3.16 6437.33 6437.33 0.00 0.00 0.53
5 20 a1007.05 1007.05 1 1007.05 0.09 1007.05 5.88 1007.05 1007.83 0.00 0.08 0.77
6 20 a6516.47 6516.47 0 6516.47 0.08 6516.47 3.07 6516.47 6516.51 0.00 < 0.01 0.57

13 50 a2406.36 2406.36 10 2406.36 17.12 2408.41 30.29 2406.36 2406.57 0.00 0.01 4.43
14 50 a9119.03 9119.03 51 9119.03 19.66 9119.03 11.89 9119.03 9119.16 0.00 < 0.01 2.31
15 50 a2586.37 2586.37 10 2586.37 25.10 2586.37 20.24 2586.37 2586.37 0.00 0.00 10.37
16 50 a2720.43 2720.43 11 2729.08 16.37 2720.43 20.67 2720.43 2727.76 0.00 0.27 5.93
17 75 a1734.53 1744.83 207 1746.09 52.22 1734.53 52.49 1734.53 1741.37 0.00 0.39 18.61
18 75 a2369.65 2371.49 70 2369.65 36.92 2371.48 55.35 2369.65 2371.01 0.00 0.06 22.40
19 100 a8661.81 8664.29 1179 8665.12 169.93 8662.86 63.92 8661.81 8662.46 0.00 0.01 55.86
20 100 4037.90 4039.49 264 4044.78 172.73 4037.90 93.88 4029.74 4037.44 -0.20 -0.01 91.30

Avg. -0.02 0.07 17.82

a: Optimality proved. 1: Pentium IV 2.6 GHz (2266 Mflop/s).
2: Best run on a Pentium IV M 1.8 GHz (1564 Mflop/s). 3: Average of 30 runs on an i7 2.93 GHz (5839 Mflop/s).

results presented in such works and those obtained by ILS-RVND-SP. It can be verified

that all optimal solutions were found and the average gap between the Avg. Sols. obtained

by ILS-RVND-SP and the BKSs was 0.03%.

7.4 Concluding remarks

This chapter presented an algorithm that hybridizes an Iterated Local Search based heuris-

tic and a Set Partitioning formulation. Its design favored the flexibility, allowing its appli-

cation in the solution of several VRP variants. Moreover, the developed hybrid approach

is relatively simple and easy to implement. The key aspect of the proposed methodology

is the interaction between a solver and a metaheuristic approach while solving a given

MIP model. This idea can be employed to efficiently solve a large class of combinatorial

optimization problems.
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Table 7.17: Results found for the FSMD instances of Golden et al. [76]
Choi and Tcha Prins Penna et al. ILS-RVND-SP

Instance n BKS
Best Time1 Best Time2 Best Time3 Best Avg. Gap Avg. Time
Sol. (s) Sol. (s) Sol. (s) Sol. Sol. (%) Gap (%) (s)

3 20 a623.22 623.22 0.19 - - 623.22 4.58 623.22 623.22 0.00 0.00 0.69
4 20 a387.18 387.18 0.44 - - 387.18 2.85 387.18 387.18 0.00 0.00 0.41
5 20 a742.87 742.87 0.23 - - 742.87 5.53 742.87 742.87 0.00 0.00 0.80
6 20 a415.03 415.03 0.92 - - 415.03 3.37 415.03 415.03 0.00 0.00 0.46

13 50 a1491.86 1491.86 4.11 1491.86 3.45 1491.86 31.62 1491.86 1491.86 0.00 0.00 5.27
14 50 a603.21 603.21 20.41 603.21 0.86 603.21 14.66 603.21 603.21 0.00 0.00 2.97
15 50 a999.82 999.82 4.61 999.82 9.14 999.82 15.33 999.82 999.82 0.00 0.00 3.05
16 50 a1131.00 1131.00 3.36 1131.00 13.00 1131.00 17.77 1131.00 1131.56 0.00 0.05 3.25
17 75 a1038.60 1038.60 69.38 1038.60 9.53 1038.60 49.18 1038.60 1039.36 0.00 0.07 9.32
18 75 a1800.80 1801.40 48.06 1800.80 18.92 1800.80 53.88 1800.80 1801.43 0.00 0.03 9.11
19 100 a1105.44 1105.44 182.86 1105.44 52.31 1105.44 77.84 1105.44 1105.51 0.00 0.01 18.4
20 100 a1530.43 1530.43 98.14 1535.12 104.41 1530.52 88.02 1530.43 1533.07 0.00 0.17 21.92

Avg. 0.00 0.03 6.30

a: Optimality proved. 1: Pentium IV 2.6 GHz (2266 Mflop/s).
2: Best run on a Pentium IV M 1.8 GHz (1564 Mflop/s). 3: Average of 30 runs on an i7 2.93 GHz (5839 Mflop/s).
4: Average of 10 runs considering the following instances: 13, 14, 15, 16, 17, 18, 19 and 20.

The ILS-RVND-SP algorithm was evaluated in hundreds of well-known instances of

the variants considered in this work, with up to 480 customers. The same parameter

tuning was adopted and the results obtained were quite competitive with those found by

heuristics devoted to specific variants. Table 7.18 shows the summary of the results found

by ILS-RNVD-SP. In this table Avg. Gap corresponds to the average gap between the

average solutions and the BKSs, #Instances is the number of instances of a particular

benchmark, #Improvements denotes the number of solutions improved and #Ties

represents the number of ties. It can be seen that 54 new best solutions were found and

that the Avg. Gap was always smaller than 0.55%.

Table 7.18: Summary of ILS-RVND-SP results

Variant #Instances #Improvements #Ties Avg. Gap (%) Avg. Time (s)

CVRP1 a93, b14,c20 a1, b0, c0 a92, b13, c5 a0.03, b0.08, c0.55 a17.41 b100.83, c3938.23

ACVRP1 d24 d1 d23 d0.01 d2.24

OVRP1 e16, f8 e3, f7 e12, f1 e0.06, f -0.08 e143.44, f3844.03

VRPSPD1 g28, h18 g5, h7 g21, h11 g0.12, h-0.07 g189.24, h3653.44

VRPMPD1 g42 g12 g29 g-0.06 g178.13

MDVRP1 i23, j10 i0, j0 i20, j8 i0.04, j0.15 i627.03, j896.05

MDVRPMPD1 g33 g16 g17 g-0.10 g497.54

HFVRP1 k16, l36 k1, l1 k14, l35 k0.16, l0.04 k11.10, l12.81

Total 381 54 301

a: A, B, E, F, M, P set; b: Christofides et al. [31]; c: Golden et al. [80].
d: Fischetti et al. [57] and Pessoa et al. [134].
e: Christofides et al. [31] and Fisher [58]; f : Li et al. [105].
g : Salhi and Nagy [149]; h: Montané and Galvão [121];
i: Cordeau et al. (old) [35]; j : Cordeau et al. (new) [35].
k: Taillard [164]; l: Golden et al. [76].
1: Core i7 2.93 GHz (single thread).



Chapter 8

Concluding Remarks and Future Work

This thesis dealt with heuristic, exact and hybrid approaches for VRPs. One of the objec-

tives was to present the state-of-the-art of the VRPs considered here i.e., CVRP, ACVRP,

OVRP, VRPSPD, VRPMPD, TSPMPD, MDVRP, MDVRPMPD and HFVRP. An ex-

tensive literature review was carried out, focusing on describing the main contributions of

each work. By observing the substantial number of publications, one can verify that this

is indeed an area of intense and continuous research in the fields of CO and OR.

The present work also dealt with MIP flow formulations for the VRPSPD/VRPMPD.

Two versions of two-commodity flow formulations (an undirected and a directed) were

tested within a BC scheme, using cuts from the CVRPSEP library [114], and their results

were compared with the one-commodity flow formulation of Dell’Amico et al. [44]. The

optimal solutions of 30 VRPSPD open problems were proved. The three formulations

were also tested in benchmark instances of the VRPMPD, which is a particular case of

the VRPSPD, and were able to prove the optimality of 7 open problems. Furthermore,

new lower bounds were produced for both VRPSPD and VRPMPD instances with up to

200 customers. In addition, although it has been shown that the one-commodity flow for-

mulation produces a stronger linear relaxation, the two-commodity flow formulations have

found, on average, better lower bounds in the VRPSPD instances. As for the VRPMPD,

the lower bounds were, on average, quite similar, but with a slight superiority of the

one-commodity formulation.

A BC algorithm with a lazy separation scheme was developed for the VRPSPD,

VRPMPD and MDVRPMPD. This approach relies on a formulation only over the edge

variables and the constraints that ensure that the capacity is not exceeded in the middle

of the route and those that ensure that a route starts and ends at the same depot are

separated in a lazy fashion. The results obtained in the VRPSPD/VRPMPD instances

using this BC outperformed those found using the flow formulations in most cases, where

a total of 59 optimal solutions were found for instances with up to 200 customers. As for

the MDVRPMPD, the first LBs were presented for this variant and 4 optimal solutions



8 Concluding Remarks and Future Work 135

were found for instances with up to 100 customers.

The third exact approach proposed for the VRPSPD/VRPMPD consists of a BCP

algorithm that combines the CVRP cuts used in the BCs (rounded capacity, multistar

and comb) with column generation. The BCP is mostly based on the one developed by

Fukasawa et al. [63] for the CVRP. The original column generation module was replaced

by a dynamic programming based algorithm that is capable of considering both delivery

and pickup demands. The main motivation of this method was to improve the lower

bounds of the instances with relatively large number of vehicles produced by the BCs. As

a result, 4 new optimal solutions were found and some lower bounds were improved.

An ILS based heuristic algorithm, called ILS-RVND, was developed to solve a large

class of VRPs. The proposed approach is quite simple and computational experiments

showed that the algorithm was capable of producing, on average, competitive results,

regardless of the variant. The ILS-RVND heuristic was tested in 628 instances with up to

500 customers and it managed to equal the BKS in 461 cases and to improve 87 results.

For every group of instances, the average gap between the average solutions obtained by

the ILS-RVND and the BKSs was always smaller than 1.03%.

Finally, a hybrid algorithm, called ILS-RVND-SP, was proposed to solve a large class

of VRPs where an exact procedure, based on a SP formulation, was incorporated into

the ILS-RVND heuristic. While ILS-RVND seeks an equilibrium among solution quality,

speed, simplicity and flexibility, ILS-RVND-SP gives preference to the solution quality at

the expense of the speed, but still holding all the flexibility. The ILS-RVND-SP algorithm

was evaluated in 378 instances with up to 480 customers, where 297 results were equaled

and 54 were improved.

As for future work, the following lines of research are suggested: (i) development of

efficient local search limitation strategies in order to decrease the computational effort

without compromising the solution quality, which in turn can allow ILS-RVND to be

competitively applied to solve very-large sized VRPs; (ii) extension of the range of ap-

plication of ILS-RVND and ILS-RVND-SP to other VRP variants that may include time

windows, backhauls, site/time dependence constraints and so on; (iii) application of the

ideas contained in the proposed heuristic and hybrid algorithms to efficiently solve other

COs like scheduling on single/multiple machines or clustering problems; (iv) investigation

of alternative forms of hybridization between heuristic and exact approaches for VRPs.
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