
Universidade Federal Fluminense

Joel André Ferreira dos Santos

Multimedia and hypermedia document validation

and verification using a model-driven approach

NITERÓI

2012

Universidade Federal Fluminense

Joel André Ferreira dos Santos

Multimedia and hypermedia document validation

and verification using a model-driven approach

Dissertação de Mestrado submetida ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do t́ıtulo de
Mestre. Área de concentração: Redes e Sis-
temas Distribúıdos e Paralelos.

Orientador:

Profa. Débora Christina Muchaluat Saade, D.Sc.

Co-orientador:

Prof. Christiano de Oliveira Braga, D.Sc.

NITERÓI

2012

Multimedia and hypermedia document validation and verification using a

model-driven approach

Joel André Ferreira dos Santos

Dissertação de Mestrado submetida ao Pro-

grama de Pós-Graduação em Computação da

Universidade Federal Fluminense como re-

quisito parcial para a obtenção do t́ıtulo de

Mestre. Área de concentração: Redes e Sis-

temas Distribúıdos e Paralelos.

Aprovada por:

Profa. Débora Christina Muchaluat Saade, D.Sc. / IC-UFF

(Orientadora)

Prof. Christiano de Oliveira Braga, D.Sc. / IC-UFF

(Co-orientador)

Prof. Célio Vinicius Neves de Albuquerque, Ph.D. / IC-UFF

Prof. Luiz Fernando Gomes Soares, D.Sc. / PUC-Rio

Niterói, 26 de Março de 2012.

A dúvida é o prinćıpio da sabedoria.

(Aristóteles)

aos meus pais Joel e Fátima, por terem tornado essa caminhada posśıvel;

à minha irmã Maria Rosa, por ser um exemplo;

à minha namorada Alina, por seu apoio constante.

Agradecimentos

Aos meus pais e irmã: Joel, Fátima e Maria Rosa, que estiveram ao meu lado durante

a realização deste trabalho. Em alguns momentos tentando até entender o que eu estava

fazendo. À minha namorada, Alina, pelo apoio constante.

Às amizades constrúıdas na Universidade Federal Fluminense, em especial no labo-

ratório Mı́diaCom, pelo excelente conv́ıvio e pelas trocas de conhecimento.

À Professora Débora Christina Muchaluat Saade, mais uma vez, pela sua enorme

paciência e excelente orientação. Ao Professor Christiano de Oliveira Braga, por suas

contribuições e orientação.

A todos aqueles que contribúıram para a conclusão deste trabalho. Em especial à Júlia

Varanda, por sua ajuda no desenvolvimento e manutenção da API aNa e ao Roberto

Menezes, por sua grande ajuda no desenvolvimento dos invariantes OCL e no uso do

TCLib. Agradeço também às Professora Loana Tito e Maria Luiza e aos amigos Diego

Passos e Rafael Carvalho por seus excelentes conselhos.

Finalmente, a você, por estar lendo esta dissertação.

Resumo

Este trabalho discute a validação e verificação de documentos hipermı́dia e multimı́dia.

Com a validação e verificação de documentos hipermı́dia e multimı́dia, é posśıvel indicar

para o autor posśıveis pontos inconsistentes em sua definição. Dessa forma o autor tem

a possibilidade de corrigir essas inconsistências, garantindo a boa definição da aplicação

antes desta ser disponibilizada ao usuário final.

A validação e verificação apresentada neste trabalho é dividida em um conjunto de

propriedades que um documento deve apresentar. Estas propriedades foram propostas

baseadas em trabalhos relacionados publicados na literatura. A implementação da vali-

dação e verificação usa uma abordagem dirigida a modelos.

Este trabalho também apresenta uma ferramenta, chamada aNaa (API for NCL Au-

thoring and Analysis), capaz de realizar a validação e verificação apresentada, baseada no

conjunto de propriedades propostas, garantindo a consistência de documentos especifica-

dos com a linguagem NCL (Nested Context Language).

Palavras-chave: Validação de Documentos Multimı́dia, Verificação de Docu-

mentos Multimı́dia, Aplicações Multimı́dia Interativas, Sincronização baseada

em Eventos, Autoria Multimı́dia, NCM, NCL, aNa, aNaa.

Abstract

This work discusses the validation and verification of hypermedia and multimedia docu-

ments. With the validation and verification of hypermedia and multimedia documents, it

is possible to indicate to the author possible inconsistent points in his definition. It also

provides the author the possibility of correcting those inconsistencies, guaranteeing that

the application is well-defined before it is made available for the final user.

The validation and verification here presented are divided into a set of desirable doc-

ument properties, which are proposed based on related works published in the literature.

The implementation of the validation and verification uses a model-driven approach.

This work also presents a tool, named aNaa (API for NCL Authoring and Analysis),

capable of performing the validation and verification here presented in order to guaran-

tee the consistency of NCL (Nested Context Language) documents, based on the set of

properties proposed.

Keywords: Multimedia Document Validation, Multimedia Document Veri-

fication, Interactive Multimedia Applications, Event-based synchronization,

Multimedia Authoring, NCM, NCL, aNa, aNaa.

Acronyms

aNa : API for NCL Authoring

aNaa : API for NCL Authoring and Analysis

API : Application Programming Interface

AST : Abstract Syntax Tree

caT : context aware Trellis

DOM : Document Object Model

DTV : Digital Television

FDT : Formal Description Technique

HMBS : Hypermedia Model Based on Statecharts

HTML : HyperText Markup Language

IPTV : IP Television

ITU : International Telecommunications Union

ITU-T : ITU Telecommunication Standardization Sector

JMF : Java Media Framework API

LOTOS : Language Of Temporal Ordering Specification

LSM : Language Structure Metamodel

LTL : Linear Temporal Logic

MDA : Model-driven Architecture

NCL : Nested Context Language

NCM : Nested Context Model

OCL : Object Constraint Language

OMG : Object Management Group

RT-LOTOS : Real-Time LOTOS

SHM : Simple Hypermedia Model

SMIL : Synchronized Multimedia Integration Language

TDD : Test-driven Development

UML : Unified Modeling Language

W3C : World Wide Web Consortium

XHTML : eXtensible HyperText Markup Language

Acronyms viii

XML : eXtensible Markup Language

XSLT : XML Stylesheet Language Transformations

List of Figures

1.1 Typical authoring process . 2

1.2 Authoring process with analysis . 3

3.1 Temporal scenario example . 17

3.2 NCM event state machine . 24

3.3 Sample NCM document . 25

3.4 NCM data and representation plans . 26

4.1 Metamodel and model example . 32

4.2 MDA concepts summary . 33

4.3 Sample transition system . 34

4.4 Sample transition system paths . 35

4.5 Next operator example (Xp) . 36

4.6 Future operator example (Fp) . 36

4.7 Global operator example (Gp) . 36

4.8 Until operator example (pUq) . 36

4.9 Weak until operator example (pWq) . 36

4.10 Release operator example (qRp) . 37

4.11 Property verification over transition system paths (Fp) 37

4.12 Property verification over transition system paths (¬Fp) 37

5.1 Examples of possible undesired behaviors. 46

6.1 Metamodel representation . 52

6.2 Structure metamodel of NCL document head 53

6.3 Structure metamodel of NCL document body 54

List of Figures x

6.4 Sample document head representation as an object diagram 59

6.5 Sample document body representation as an object diagram 59

6.6 Sample document body representation with error 61

7.1 NCM event state machine . 64

7.2 Sample document induced transition system 70

8.1 aNaa external tools . 74

8.2 TCLib tool overview . 75

8.3 Maude generic event state machine . 78

8.4 NCLDoc class representation . 91

8.5 Array type class . 92

8.6 Number type classes . 92

8.7 Parameterized type class . 92

8.8 aNa auxiliary type classes . 93

8.9 aNaa architecture . 96

8.10 aNaa multimedia verification process . 99

8.11 SHM implementation . 100

8.12 SHM implementation anchor package . 100

8.13 SHM implementation link package . 101

8.14 Connector condition domains example . 103

9.1 Rewrites x anchor/link . 111

9.2 Rewrites/second x anchor/link . 111

9.3 Duration x anchor/link . 111

List of Listings

3.1 Interval-based synchronization . 18

3.2 Reference point-based synchronization . 18

3.3 Axes-based synchronization . 19

3.4 Hierarchical-based synchronization . 19

3.5 Event-based synchronization . 20

3.6 Script-based synchronization . 21

3.7 NCL document example . 27

3.8 NCL document head example . 27

3.9 NCL document body example . 29

4.1 Invariant definition example . 33

4.2 Maude primitives example . 38

4.3 Maude commands result . 39

4.4 Maude rewrite results . 40

4.5 Maude pattern matching example . 40

4.6 Maude pattern matching result . 40

4.7 Maude conditional equation example . 41

4.8 Maude conditional equation result . 41

6.1 Example of reference between elements . 52

6.2 Hierarchy and Attribute properties invariant example 54

6.3 Attribute relation invariant example . 55

6.4 Unique identifier invariants . 55

6.5 Reference property invariant example . 56

List of Listings xii

6.6 Compositionality property invariant example 56

6.7 Composition nesting and element reuse properties invariant example 56

6.8 loops() operation definition . 57

6.9 referLoops() operation definition . 57

8.1 Maude anchor identification representation 76

8.2 Maude attribute set . 77

8.3 Maude anchor representation . 77

8.4 Maude anchor attribute list . 77

8.5 Maude event state representation . 77

8.6 Maude event state transition representation 79

8.7 Maude event occurrence representation . 79

8.8 Maude transition attributes . 79

8.9 Maude transition occurrence equations . 79

8.10 Maude SHM document representation . 81

8.11 Document end test . 81

8.12 Maude system configuration . 81

8.13 Maude evolving info . 82

8.14 Maude evolving steps . 82

8.15 Maude implicit evolve equations . 83

8.16 Maude formatter evolve equations . 84

8.17 Maude selection equations . 85

8.18 Maude explicit evolve operations . 86

8.19 Ending document execution by maximum time 87

8.20 Sample document Maude representation 87

8.21 Maude model checker result example . 89

8.22 Attribute value examples . 91

List of Listings xiii

8.23 Parsing error example . 95

8.24 createObject() method implementation for class NCLCompositeRule . . 97

8.25 aNaa validation return message . 98

8.26 aNaa verification return message . 98

8.27 Connector condition domains example . 102

9.1 Tic-tac-toe element id specification problem 107

9.2 Tic-tac-toe parameter element specification problem 108

9.3 Boolean test module . 112

9.4 Boolean test result . 112

9.5 Conditional equation test module . 113

9.6 Conditional equation result . 114

9.7 Conditional equation pattern matching test module 115

9.8 Conditional equation pattern matching result 115

List of Tables

5.1 Summary of the related work comparison 49

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Dissertation structure . 5

2 Related work 8

2.1 Approaches for structural validation . 8

2.2 Approaches for behavioral verification . 9

2.3 Closing remarks . 15

3 Multimedia background 16

3.1 Multimedia basic concepts . 16

3.2 Temporal synchronization models . 17

3.2.1 Constraint-based synchronization 17

3.2.2 Axes-based synchronization . 18

3.2.3 Hierarchical-based synchronization 19

3.2.4 Formal model-based synchronization 20

3.2.5 Event-based synchronization . 20

3.2.6 Script-based synchronization . 21

3.3 The NCM Model and the NCL language 22

3.3.1 NCM . 22

Contents xvi

3.3.2 NCL . 27

3.4 Closing remarks . 29

4 MDA background 31

4.1 MDA . 31

4.2 OCL validation . 33

4.3 Model checking . 34

4.3.1 LTL operators . 35

4.3.2 LTL verification over paths . 36

4.4 Rewriting logic . 38

4.5 Closing remarks . 41

5 Validation and verification properties 43

5.1 Static validation properties . 43

5.2 Dynamic verification properties . 45

5.3 Related work comparison . 46

5.4 Closing remarks . 50

6 NCL static semantics 51

6.1 NCL Language structure metamodel . 51

6.2 Validation invariants . 53

6.3 Document representation . 58

6.4 Closing remarks . 61

7 Simple Hypermedia Model dynamic semantics 62

7.1 Basic concepts . 62

7.2 Simple Hypermedia Model . 64

7.3 SHM transition system . 69

Contents xvii

7.4 Verification of SHM properties . 71

7.5 Closing remarks . 73

8 API for NCL Authoring and Analysis 74

8.1 aNaa supporting tools . 74

8.1.1 Supporting tool for OCL validation 75

8.1.2 Supporting tool for SHM verification 76

8.2 aNa . 90

8.3 aNaa implementation . 96

8.3.1 Static validation implementation 97

8.3.2 Behavioral verification implementation 98

8.3.2.1 SHM implementation architecture 99

8.3.2.2 NCL to SHM transformation 102

8.4 Closing remarks . 105

9 Empirical analysis 106

9.1 The analyzed documents . 106

9.2 Maude performance tests . 110

9.3 Implementation limitations . 116

10 Conclusion 118

10.1 Contributions . 118

10.2 Future works . 120

Appendix A -- OCL invariant list 123

References 142

Chapter 1

Introduction

Efforts like the ITU-T H series [ITU 1997], focus on the convergence of Digital TV (DTV)

systems, such as: IPTV, Terrestrial DTV, etc. Such a convergence will result in a common

middleware layer for different DTV systems. A common middleware for DTV systems

will increase interest in multimedia systems1. In order to support multimedia document

authoring and presentation in different platforms, validation and verification of multime-

dia documents is very important, guaranteeing that applications are well-defined before

deployed. Thus, an approach for analyzing multimedia documents is necessary, so authors

can identify possible specification problems and correct them.

The use of a declarative language simplifies the definition of multimedia documents

since it emphasizes the description of a problem rather than its decomposition into the

necessary steps to solve it.

Although declarative languages make the creation of interactive multimedia applica-

tions easier, by allowing the document author to focus on authoring aspects, when an

application becomes more complex, for example, with many media objects and user in-

teraction, the multimedia document that describes it gets bigger, with many XML [W3C

2008a] code lines.

Commonly, the authoring of large multimedia documents is more error-prone, since

the author tends to reuse previously defined specifications and structures copying code.

Besides, sometimes the author forgets to define some crucial relationships for the desired

behavior of the application being created. This may cause non-termination and/or un-

reachability of parts of a given document. Another very common error is the definition

of conflicting relationships, leading an application to present an undesirable behavior.

1In the literature, the terms multimedia and hypermedia are sometimes used with the same meaning.
Sometimes, the term hypermedia is used to represent interactive multimedia documents. In this work,
both terms are used as synonyms.

1 Introduction 2

One approach to avoid this problem is to enrich the specification of a document with

temporal and/or spatial semantics in some language elements, facilitating the specification

of relationships among application components. One example of this approach is seen in

SMIL (Synchronized Multimedia Integration Language) [W3C 2008b], which provides a

set of containers with embedded temporal semantics (<seq>, <par> and <excl>).

Another approach is the use of authoring facilities that abstract the authoring lan-

guage expressiveness, defining an authoring layer where the language elements present

spatial and/or temporal embedded semantics. One example of this approach is the use

of hypermedia composite templates [Santos and Muchaluat-Saade 2011] to embed spatio-

temporal semantics into NCL (Nested Context Language) [ITU 2009] contexts.

These approaches provide an important contribution for the creation of interactive

multimedia applications. However, they are not capable of preventing the creation of

documents with specification problems, either because the authoring language can not

be enriched at a point that avoids it or because a composite template may be defined

incorrectly by an author.

1.1 Motivation

The multimedia application authoring process, in this work, is defined as the necessary

steps for the creation of a multimedia document before its distribution to the final user.

Typically, this process is divided in two steps, the authoring of the multimedia document

and its execution in order to verify its behavior. Figure 1.1 presents this process.

executionauthoring

error perception

Figure 1.1: Typical authoring process

In the first step, the author defines the multimedia document that describes the de-

sired temporal scenario. A temporal scenario is the description of a set of activities that

are in some way related in time [Pérez-Luque and Little 1996]. It will be presented in

more details in Chapter 3. In order to verify if the created document corresponds to the

desired temporal scenario, the author executes the application in the authoring language

presentation engine. In case the application behavior is not the desired one, the author

goes back to the document definition searching for code parts potentially responsible for

1 Introduction 3

that behavior. This iteration continues until the specification problems are solved and the

application works properly. This process is not efficient since, as stated by [Eidenberger

2003], it is not always clear if an undesired behavior is due to a conflict generated by

an author’s wrong definition or a bug in the presentation engine implementation. Addi-

tionally, it is necessary several simulations to cover all possible situations of a document

execution. Bugs in a presentation engine implementation would not occur if a well-defined

set of benchmark multimedia documents for a specific multimedia language were available.

In order to allow an efficient authoring process, some works in the literature propose

models, languages and tools that intervene themselves in the authoring-execution path,

providing the analysis of the multimedia document being created, alerting the author of

possible specification problems. So, the execution of the application is not necessary in

order to verify its behavior. This approach is illustrated in Figure 1.2.

executionauthoring
analysis

error
indication

Figure 1.2: Authoring process with analysis

This work evolves from the need to create consistent multimedia documents. We

consider a document consistent, when it does not present specification problems or an un-

desired behavior. With a common middleware for DTV systems and the simple approach

for the creation of multimedia documents provided by declarative languages, users with

different skills can create interactive applications. It is important that authors are able to

analyze the created multimedia document in order to guarantee that it is in accordance

with the desired behavior. The success of those applications for final users depends on

their consistency. Multimedia document specification problems may lead to application

bugs, reducing the application distribution and use by final users.

This work proposes an approach to check the consistency of declarative multimedia

documents. The consistency checking, proposed in this work, is achieved through model

validation and verification. Validation means to demonstrate that a property is valid for

a particular case, whether verification means to demonstrate that a property is valid for

a general case. In order to make this text simpler, the remaining of this dissertation will

use analysis to represent the validation and/or verification of multimedia documents.

1 Introduction 4

1.2 Objectives

The main objective of this work is to propose a solution for analyzing multimedia docu-

ments specified with the NCM model, using the NCL language, in order to avoid authoring

errors and guarantee that they work as desired. This analysis will be done after the doc-

ument authoring is complete, to test the multimedia document and present its possible

specification problems to the author, allowing him to correct them.

Several works present approaches for the analysis of multimedia document consis-

tency. From the analysis of those works, it is possible to identify desirable properties

that, when satisfied in a multimedia document, it can be considered consistent. Those

properties should be generic enough to make their use possible for the analysis of docu-

ments described with different multimedia languages. One objective of this work is the

proposition of that set of properties. Another objective is to present a generic method for

the analysis of multimedia documents following the set of generic properties here defined.

The multimedia document analysis presented in this work is divided in two parts:

the validation of the document structural definition, which investigates if the multimedia

document created by the author satisfies the syntactic rules defined by the declarative

authoring language grammar, and the verification of the document behavioral definition,

which investigates if the multimedia document created describes a temporal scenario

possibly free of errors.

The analysis follows an MDA (Model-driven Architecture) [OMG 2003] approach. The

validation of the document structural definition is achieved by representing the document

as an instance of a metamodel that represents the authoring language structure and the

representation of the authoring language syntactic rules as invariants. Metamodels and

metamodel instances representation uses UML (Unified Modeling Language) [OMG 2010]

and invariants are represented by OCL (Object Constraint Language) invariants [Warmer

and Kleppe 1999]. The verification of the document behavioral definition is achieved

by representing the document in a general model that represents multimedia documents

behavior, and investigating multimedia documents temporal properties over its induced

transition system. The multimedia documents temporal properties representation uses

LTL (Linear Temporal Logic) [Pnueli 1977] and the automatic investigation of those

properties is done by a model checker [Clarke et al. 2000]. The properties, as well as

the representation of the multimedia document to be verified and the investigation of the

temporal properties are implemented using Maude [Clavel et al. 2007].

1 Introduction 5

As a test case, this work develops an analysis tool for documents defined by the NCM

model (Nested Context Model) [Soares et al. 2000], using the NCL language. NCL was

chosen since it is a standard for DTV systems. The developed tool is called aNaa - API

for NCL Authoring and Analysis.

1.3 Contributions

This work contributions are:

• The definition of a set of properties that, when satisfied in a multimedia document,

it can be considered consistent;

• The use of a model-driven approach for the analysis of multimedia documents, which

brings the following contributions:

– The definition of a general method for the validation of multimedia document

structural definitions;

– The definition of a model that represents a multimedia document spatio-

temporal specification for NCL documents;

– The definition of a general method for the verification of multimedia document

behavioral definition.

• The development of an API called aNa (API for NCL Authoring) for representing

NCL documents, which brings the following contributions:

– The creation of a data model specifically for representing NCL documents;

– The implementation of a common core for NCL authoring tools, making pos-

sible to exchange object-oriented data among different tools without the need

to generate XML code;

• The development of an API called aNaa (API for NCL Authoring and Analysis),

making possible for authoring tools to analyze an NCL document.

Those contributions will be presented during this text and highlighted in this disser-

tation conclusion.

1 Introduction 6

1.4 Dissertation structure

The remainder of this dissertation is structured as follows.

Chapter 2 discusses related work revisiting analysis techniques published in the lit-

erature. The related works presented are divided regarding their use or not of formal

description approaches.

Chapter 3 presents a multimedia background. It describes some multimedia concepts

to clarify the text comprehension and presents the different classes of temporal synchro-

nization models. To illustrate the models presented, this chapter also presents an example

of temporal scenario and its description in the different temporal synchronization models.

This chapter also gives an overview of the NCM model and the NCL language. Since

NCM and NCL are used for the test case analysis tool implementation, those concepts

facilitate understanding this work.

Chapter 4 presents an MDA background. It describes some MDA concepts and how

the OCL validation and the model checking work. This chapter also introduces linear

temporal logic, rewriting logic and its use for model checking.

Chapter 5 defines the proposed validation and verification properties to be satisfied

in a multimedia document. The properties are divided into static properties and dy-

namic properties. The static properties are used for the multimedia document definition

structural validation, while the dynamic properties are used for the document behavioral

verification. It also presents a comparison among related work regarding the validation

and verification properties.

Chapter 6 presents the proposed method for the validation of the structure of mul-

timedia documents. It describes the modeling of the multimedia language structure and

how the static properties are represented for that model. It also shows the representation

of a multimedia document following the language structure metamodel. This chapter

content is described over the NCL language.

Chapter 7 presents the proposed method for the verification of the behavior of mul-

timedia documents. It proposes a generic model for multimedia documents and presents

the formalization of the verification properties for the document verification.

Chapter 8 presents the implementation of the analysis here presented by aNaa. This

chapter describes the tools used for achieving NCL document analysis and the APIs

created.

1 Introduction 7

Chapter 9 shows some NCL document examples and their analysis using aNaa. It

also presents some performance tests and a discussion of the tool limitations.

Chapter 10 concludes this dissertation, restating this work contributions and presents

future and ongoing works.

Chapter 2

Related work

Many previous works in the literature proposed models, languages and tools to improve

the multimedia authoring process by providing analysis of multimedia documents and

alerting the author about possible problems in its specification. However, great part of

those works is not recent. In recent years there is a lack of available tools for multimedia

document analysis published in the literature.

Those works, taking into account their functionality, are divided in: approaches for

structural validation [Araújo et al. 2008, Honorato and Barbosa 2010] and approaches

for behavioral verification [Santos et al. 1998, Na and Furuta 2001, Furuta and Stotts

2001, Oliveira et al. 2001, Felix 2004, Bossi and Gaggi 2007, Bertino et al. 2005, Elias et

al. 2006,Ma and Shin 2004]. The following sections present those related works.

2.1 Approaches for structural validation

In [Araújo et al. 2008], the authors presented a validation process for hypermedia docu-

ments specified with the NCL language. The validation process is divided in four steps:

(1) lexical and syntactic validation, (2) structural validation, (3) contextual and reference

validation and (4) semantic validation.

The lexical and syntactic validation investigates the lexical and syntactic structure of

the XML document. The structural validation investigates if all element attributes are

valid, all the required attributes are present and the element children are correct and have

the correct cardinality. The contextual and reference validation checks if some element

referenced in an attribute exists and if it has the type the attribute demands. It also

checks if the elements are in the same context. The semantic validation investigates if

document parts are not reached or if there are alternatives that will never be chosen.

2 Related work 9

The NCL-validator tool is an implementation of that validation process. However,

the semantic validation step is not implemented, since, according to the paper, it does

not endanger the NCL document validation. NCL-validator is used as a library for NCL

document validation by the NCL-Eclipse [Azevedo et al. 2009] and NCL Composer [Lima

et al. 2010] authoring tools. When authoring problems are found, the tool returns error

messages to the author identifying the correspondent problem.

In [Honorato and Barbosa 2010], the authors presented the NCL-Inspector tool. This

tool, based on other tools for code quality critique, supports the authoring of NCL ap-

plications. It supports the author in terms of code quality. With this tool, besides the

possibility of analyzing the NCL code searching for coding problems, it is possible to

suggest modifications regarding best programming practices.

The code analysis, or inspection, is done following a set of rules, forming a rule

repository. Each rule presents an NCL code pattern and an action realized when that

pattern is found. Also, each rule is implemented as a plugin, so the system as a whole

may be extended by adding new rules. Another benefit of that approach is the possibility

of sharing those rules with other NCL-Inspector users.

The specification of a rule may be done using XSLT (XML Stylesheet Language

Transformations) [W3C 1999] and Java languages. During a rule creation, the author

may test it through a mini-test framework available. This framework follows a Test-

driven Development (TDD) approach.

For the inspection of an NCL document, NCL-Inspector parses the document. After

that step, the tool creates an AST (Abstract Syntax Tree) that represents the NCL

document being inspected. Then it walks through the AST searching for violations of

the existent rules. The violations found are presented to the user so he can correct the

application code. Those violations are presented as error or warning messages. Besides

the AST, an inspector (part of the tool that inspects a specific rule) may act directly

with the application code with some textual abstraction. This way, it is possible to

investigate specific text details, for example, the use of the tabulation character (\t) for

code indenting.

2.2 Approaches for behavioral verification

In [Santos et al. 1998], the authors presented a way to detect possible undesired behaviors

created by the combination of conflicting temporal constraints in a multimedia document.

2 Related work 10

The approach presented in the paper did not assume, a priori, a specific model to express

and compose the temporal constraints, but used generic authoring models. The multime-

dia document to be analyzed is translated, automatically, into a formal specification, in

that case, into generic FDTs (Formal Description Techniques). With the specification of

an FDT document, it is possible to apply general validation techniques for the analysis

of the multimedia document consistency. In that paper, RT-LOTOS was chosen as the

formalism to be used.

In order to translate the multimedia document into RT-LOTOS processes, general

mapping rules were used. Also, the definition of RT-LOTOS process libraries, specifying

the behavior of reusable document parts, were used. The modularity and hierarchy of

RT-LOTOS allows the combination of processes specifying the document presentation

with other processes modeling the available platform.

The verification consists in the interpretation of the minimum reachability graph, in

order to prove if the action corresponding to the presentation end can be reached from

the initial state. Each node in the graph represents a reachable state and each edge, the

occurrence of an action or temporal progression. When a possible undesired behavior is

found, the tool returns an error message to the author, so he can repair it.

The paper presented different possible undesired behavior situations to be analyzed,

which are: qualitative, if they do not depend on an object duration, and quantitative, if

they depend on an object duration. The possible undesired behaviors can also be intrinsic

if they do not depend on the platform where the document is presented and extrinsic if

they depend on it. In the last case, it is considered if platform resources are blocking or

non-blocking. Blocking resources are the ones that can not be used by two objects at the

same time. An audio channel, according to the paper, is an example of blocking resource.

In addition, presentation component delays were also considered. Regarding those delays,

the document behavior may become undesired.

Although in [Santos et al. 1998] the analyzed hypermedia documents were specified

according to NCM [Soares et al. 2000], their proposal may also be used to analyze

documents specified with SMIL [W3C 2008b].

In [Na and Furuta 2001], the authors presented the caT (context aware Trellis) system,

an evolution of Trellis [Furuta and Stotts 2001] that provides application adaptation

according to the user context. An author, using an authoring tool based on Petri nets,

builds the document structure and associates network places to document media objects.

2 Related work 11

The work presented Petri nets as a good candidate for modeling multimedia docu-

ments, since its synchronization is easy to model and allows the analysis of important

properties. Basic Petri nets, however, are not convenient for representing and analyzing

complex systems, since their tokens do not have identity. To overcome this limitation,

the paper proposes Petri nets with identifiable tokens, called High-Level Petri nets.

The caT system provides the separation among document specification and presenta-

tion, allowing multiple presentations for a document specification. To reduce the author-

ing graphical complexity and improve net reuse, caT incorporates hierarchical Petri nets.

The authoring tool supports a tool for the analysis of hierarchical Petri nets, through its

reachability graph.

The analysis tool builds the reachability tree of the analyzed document. The author

defines limit values for the occurrence of dead links (transitions that may not be triggered),

places with token excess, besides other options, as the analysis maximum time. Then the

tool investigates the existence of a terminal state, that is, if there is a state where no

transitions are triggered. It also investigates the limitation property, that is, if no place in

the net has an unlimited number of tokens and the safeness property, that is, if each place

in the net has a token. The limitation analysis is important since tokens may represent

scarce system resources.

In [Oliveira et al. 2001], the authors presented HMBS (Hypermedia Model Based on

Statecharts). That model uses statecharts for the authoring of multimedia documents.

Statecharts are extensions of finite state machines and HMBS is a generalization of hy-

pertext models based on hypergraphs. The paper presents the use of models for the

authoring of multimedia documents as a way to encourage a structured development,

since the document structure is defined before content is added to the model.

An HMBS hypermedia application is described by a statechart that represents its

structural hierarchy, regarding nodes and links, and its human-consumable components.

Those components are expressed as information units, called pages and anchors. The

statechart execution semantics provide the application navigation model. A statechart

state is mapped into pages and transactions and events represent a set of possible link

activations.

During the execution process, the statechart assumes a new state configuration corre-

spondent to the set of current basic states. The substates of an OR decomposition (state

with sequential temporal semantics) are not activated simultaneously, while the substates

of an AND decomposition (state with parallel temporal semantics) are simultaneously

2 Related work 12

activated, as long as its parent state remains active.

The statechart reachability tree for a specific configuration may be used to verify if

any page can not be reached. For this, the occurrence of a state s in one of the generated

configurations is verified. If s does not occur, the information associated to that state

will not be visible when the application navigation starts in the initial state considered.

In a similar manner, it is possible to determine if a certain group of pages may be seen

simultaneously searching state configurations containing the states associated to those

pages. The reachability tree also allows the detection of configurations from which no

other page may be reached or that present cyclical paths.

The reachability tree also allows determining the maximum number of simultaneous

windows necessary to present the application. Analyzing the tree and determining the

maximum number of active states, it is possible to determine a better layout for the

application.

An obvious overload of using caT and HMBS systems is that the author interacting

with those systems should be familiarized with the models and their basic formalism.

Although that need can be discarded if the formalism is “hidden” in a more friendly

metaphor, those systems diminish the author freedom, not allowing the choice of another

multimedia model to be used for the application creation.

In [Felix 2004], the author presents an approach for the verification of temporal proper-

ties of multimedia documents through the application of model checking techniques. Since

the work did not present a name, here it will be identified by NCL-FA (formal analysis).

The work presents a notation used for the description of NCL relevant characteristics, in

the case its temporal characteristics.

Such a description is transformed into a timed automata net that indicates the docu-

ment temporal behavior. The transformation creates a state machine for each media node

and a synchronizer machine for each link. A synchronizer machine is used to tie together

the occurrence of transitions in the media node state machines.

The work also presents a tool where the author can define temporal-logic formulas for

verification of the temporal properties. The temporal verification is done with a model-

checker. It is worth mentioning that the work does not define any temporal-logic formula,

forcing the author to know the formalism used.

In [Bossi and Gaggi 2007], the authors proposed an authoring system that includes a

semantic analysis module for multimedia document temporal behavior evaluation. This

2 Related work 13

is obtained by defining a formal semantics for the SMIL language [W3C 2008b]. Since

that approach did not present a name, here the system will be identified by SMIL-EA

(enriched with assertions). The proposed semantics is defined through a set of inference

rules inspired by Hoare logic. The main characteristic of Hoare logic is that it describes

how a command, or code part, changes the computation state. That way, the SMIL

structure may be enriched with assertions expressing temporal properties that may be

used during the authoring phase. Another application resulting from the defined formal

semantics is the concept of equivalence, which guarantees that two sets of SMIL tags may

be replaced, without changing the application behavior.

The work presented the choice of inserting temporal assertions in a SMIL document

as a way of diminishing the analysis complexity, since this approach does not require

the translation of the document being created to some formalism and then perform its

analysis. The analysis is done during the authoring phase, whenever the author wants or

when he saves the application. This is done to diminish the occurrence of error messages

regarding possible specification problems generated during the application creation.

The assertions defined by the semantics proposed in the paper specify the system

temporal state before and after the execution of a SMIL tag or set of tags. For the system

correctness verification, the tool applies axioms, also defined by the proposed semantics,

in order to verify if a tag, or set of tags, correctly changes the system temporal state.

Otherwise, the tool presents the author the problem found so it can be corrected.

In [Bertino et al. 2005], the authors proposed an authoring model based on con-

straints. Since the paper did not indicate a name for the model, it is identified as BFPS

(authors’ initials). In the BFPS model, a multimedia application consists of several sub

presentations, each one representing a topic composed of multimedia objects semantically

related. All relations, temporal, layout and structural, are specified in a single step. This

way, the author defines a set of high-level constraints that will be used by the system

to automatically group the objects into topics. The application generation process is re-

sponsible for three main tasks: consistency checking, presentation structure generation

and topics generation.

The presentation consistency is checked by applying compatibility rules to each pair of

constraints, detecting inconsistencies. Before checking, several inference rules are applied

to the initial specification to determine constraints that, even not defined explicitly, are

consequences of the constraints defined. If an inconsistency arises, the system applies re-

laxation techniques, reducing the constraint set until the presentation becomes consistent

2 Related work 14

or, when it is not possible, the author must review the specification.

The presentation structure generation process creates a structure that reflects the

given application specification. The structure is represented by a direct graph where each

vertex represents a topic and the edges, the connections among them. This process always

returns a consistent graph, otherwise, the author should review the specification. After

this step, the system relates media objects to topics. According to the constraints, it

creates connections among topics and checks the consistency before returning the final

generated graph. If any failure occurs, the author is warned about the inconsistencies

found.

In [Elias et al. 2006], the authors present an algorithm for dynamic checking spatio-

temporal relations. Since the paper does not present a name for the approach, it will be

identified by EEC (authors’ initials). Dynamic, in the paper, means that the checking

is done during presentation specification. The paper extends the work published in [Ma

and Shin 2004] proposing new operators to model the temporal and spatial relations of a

multimedia document, solving limitations of the operators defined in [Ma and Shin 2004].

Temporal inconsistencies occur when a set of constrains can not be satisfied at the

same time. Incompleteness of a constraint set occurs when there is a discontinuity in the

presentation, that is, there is a media object set that is not reached during presentation.

In case an inconsistency occurs in a constraint set, one of the constraints must be removed

in order to obtain a consistent set. That removal is done by relating a priority value to

each constraint. In case two inconsistent constraints present the same priority, relaxation

techniques are applied to determine the constraint to be removed.

The paper presents two operators TEMPORAL and SPATIAL, to model temporal

and spatial relations, respectively. In TEMPORAL(A, B, d1, d2, priority), d1 and d2

are the difference among the begin and end time of media objects A and B, respectively.

This operator is used to model any temporal relation. SPATIAL(A, B, dx1, dx2, dy1,

dy2, priority) is used to model any spatial relation. In this operator, dx1 and dx2 are

the distances between the x coordinates of the inferior left and superior right corners,

respectively, and dy1 and dy2 are the distance of the y coordinates of those corners.

The consistency checking is done by finding the minimum spanning tree T for the

graph defined by the media objects (vertices) and the relationships among them (edges).

In order to maintain the presentation consistency and the acyclic nature of T, a relation-

ship that creates cycles must be removed. The choice is done by taking into account the

priority of each relationship. For the completeness checking, all vertices must be found in

2 Related work 15

the set that contains the first media object. If this search returns the vertex set of T, then

all presentation media objects are reached directly or indirectly from the initial object.

Otherwise, the algorithm presents an error message so the author can define restrictions

that make the constraint set complete. With the use of the SPATIAL operator, it is

possible to determine if A overlaps B and vice versa. The spatial consistency is checked

the same way as the temporal one.

2.3 Closing remarks

This chapter presented previous works that provide the analysis of multimedia documents.

Those works were divided in: formal approaches and informal approaches. The use of a

formal approach brings the benefit of having available tools to support the implementation

of the analysis, besides guaranteeing the correctness of the analysis done, since it uses

formal descriptions of the multimedia language used for the document authoring. Based

on the benefits brought by a formal description, this work has chosen to follow that

approach.

The works here presented were used for the definition of the validation and verification

properties as it will be presented in Chapter 5. The next chapter presents a background

on multimedia models.

Chapter 3

Multimedia background

This chapter introduces some multimedia concepts to facilitate the comprehension of

this work. Section 3.1 presents basic multimedia concepts. Section 3.2 presents different

classes of temporal synchronization models and examples of their representation of a same

temporal scenario. Section 3.3 introduces the NCM model and the NCL language, which

are used in the proposed solution implementation and Section 3.4 concludes this chapter

with some remarks.

3.1 Multimedia basic concepts

This section presents basic concepts related to multimedia documents: temporal scenario,

multimedia documents, multimedia document models and temporal synchronization mod-

els. Those concepts are based in the definitions presented in [Pérez-Luque and Little

1996,Boll 2001].

A temporal scenario represents a set of activities that are in some way related in time.

Those activities are associated to the grouping of continuous and discrete media objects

into a logically coherent unit and, possibly, taking into account user interaction.

A multimedia document is a document that describes a temporal scenario. It is com-

posed of nodes, that represent media objects in the temporal scenario and relationships

among them. Sometimes, multimedia documents can express relationships taking into

account node content subunits, called anchors.

A multimedia document is an instance of a multimedia document model, which defines

the entities used by the multimedia document for the description of a temporal scenario.

A multimedia document model also defines how temporal dependencies (relationships)

among nodes are represented. That representation can be based in one or more temporal

3 Multimedia background 17

synchronization models.

A multimedia document model is said to have more expressive power [Pérez-Luque and

Little 1996] than another multimedia document model, when it is capable of representing

more complex temporal scenarios.

3.2 Temporal synchronization models

This section presents different classes of temporal synchronization models. Different works

published in the literature have proposed different ways to classify multimedia document

models. [Bulterman and Hardman 2005], for example, proposed a classification of the

multimedia document models based on the authoring approach. Here, the classification

is based on [Blakowski and Steinmetz 1996, Boll 2001], dividing the multimedia docu-

ment models regarding how they specify temporal relations among media objects. The

following classes of temporal synchronization models were identified: constraint-based,

axes-based, hierarchical-based, formal model-based, event-based and script-based syn-

chronization models.

To illustrate the different temporal synchronization models, Figure 3.1 presents a

sample of temporal scenario where a video, an audio, an image and a text are related.

This example comes from [Boll 2001].

Video

Audio

ImageText 1 min

t1 t2 t3 t4 t5 t(min)

Figure 3.1: Temporal scenario example

The figure describes the presentation of a text, followed by a temporal gap of 60

seconds and then the presentation of an image. In parallel, beginning when the text

finishes its presentation, the parallel presentation of an audio and a video starts. The

following sections present the classes of temporal synchronization models and present,

when possible, how they specify this temporal scenario.

3 Multimedia background 18

3.2.1 Constraint-based synchronization

Constraint-based synchronization defines constraints about the temporal ordering of me-

dia objects. It can be divided in two types: interval-based and reference point-based

synchronization.

Interval-based synchronization defines the duration of a node as an interval. The

synchronization between two intervals is defined using 13 basic relations presented by

[Allen 1983], where some of those relations are invertible. Another approach is to use the

29 relations defined by [Wahl and Rothermel 1994]. One example of an interval-based

multimedia authoring system is Madeus [Jourdan et al. 1998].

Although it provides simple definition of relations between nodes (intervals), an

interval-based model does not allow the specification of relations regarding node anchors.

Those definitions have to be made indirectly. Listing 3.1 presents how Interval-based

synchronization is used to specify the sample temporal scenario.

Listing 3.1: Interval-based synchronization

1 v i d eo equa l s aud io

2 t e x t meets v i d eo

3 t e x t meets image d e l a y 1min

Reference point-based synchronization uses reference points to define the synchroniza-

tion of nodes. Reference points may be the beginning and end of a node, or its anchors,

presentation. The relation among nodes come from the specification of constraints among

reference points, creating synchronization points. That way, anchors participating at the

same synchronization point are started or stopped together when that point is reached

during the document presentation.

Since it provides the possibility of creating reference points to represent the node

internal structure, reference point-based models present more flexibility than interval-

based ones. One example of a reference point-based multimedia authoring system is

Firefly [Buchanan and Zellweger 2005]. Listing 3.2 presents how Reference point-based

synchronization is used to specify the sample temporal scenario.

Listing 3.2: Reference point-based synchronization

1 Po in t t2 :

2 t e x t ends and v i d eo s t a r t s and aud io s t a r t s and image s t a r t s d e l a y 1 min

3 Po in t t5 :

4 v i d eo ends and aud io ends

3 Multimedia background 19

3.2.2 Axes-based synchronization

Axes-based synchronization, or timeline-based synchronization, maps synchronization events,

like the start and end of a node presentation, to a temporal axis. That axis may be global,

so every node is attached to the same temporal axis, or it may be virtual. In this case,

it is possible to specify different axes to where the nodes may be attached. Examples

of systems based on that class are commercial softwares like Apple iMovie [Apple Inc.

2010]. Listing 3.3 presents how Axes-based synchronization is used to specify the sample

temporal scenario.

Listing 3.3: Axes-based synchronization

1 t e x t [t1 , t2]

2 v i d eo [t2 , t5]

3 aud io [t2 , t5]

4 image [t3 , t4]

3.2.3 Hierarchical-based synchronization

Hierarchical-based synchronization describes the synchronization among nodes using two

main synchronization operations: serial or sequential synchronization and parallel syn-

chronization. In that approach, the document synchronization is defined by a tree of

temporal containers denoting the serial or parallel presentation of its inner nodes. It is

also possible to define a delay for a specific node or even define synchronization constraints

among them. SMIL [W3C 2008b] and MPEG-4 XMT [ISO/IEC 2005] are examples of

declarative authoring languages based on hierarchical synchronization.

Hierarchical-based models provide a simple definition for node synchronization. Like

interval-based synchronization, they do not allow specifying relationships among node

anchors. This type of relation is defined indirectly with the use of delays or by dividing a

node into different nodes. In addition, the hierarchical structure can not represent some

synchronization conditions, like conditions involving more than one type of node event

occurrence or state. One example can be the synchronization among two nodes A and B

and the occurrence of a user interaction. In this example, the synchronization relationship

states that node A will be presented if the user interacts with the application while node

B is being presented.

The possibility of manipulating variable state inside multimedia documents is a way

of extending hierarchical-based synchronization in order to overcome this limitation, as

3 Multimedia background 20

SMIL State does [Jansen and Bulterman 2009]. Listing 3.4 presents how Hierarchical-

based synchronization is used to specify the sample temporal scenario.

Listing 3.4: Hierarchical-based synchronization

1 seq {
2 t e x t

3 par {
4 v i d eo

5 aud io

6 image beg in 1min

7 }
8 }

3.2.4 Formal model-based synchronization

Formal model-based synchronization uses some kind of formalism to represent nodes and

specify synchronization among them. This kind of synchronization takes advantage of

the great number of formal model tools available to present the multimedia document

described. Among others, two types of formal model-based synchronization can be used:

Timed Petri net-based and Statechart-based synchronization.

Timed Petri net-based synchronization uses Petri nets [Peterson 1981] whose places

have duration. In a Petri net, a transition will be fired when all its input places contain

tokens. Those tokens, when the transition is triggered, are moved to the output places.

When a token arrives at a place, it remains blocked for the place duration.

Although it allows the definition of any kind of synchronization, it presents a complex

specification for authors and an insufficient abstraction for a node. It does not allow the

synchronization among node anchors without the need of dividing the node in several

others, as it occurs with hierarchical-based synchronization. Trellis, caT [Furuta and

Stotts 2001,Na and Furuta 2001] and HTSPN [Willrich et al. 2001] are examples of that

synchronization class.

Statechart-based synchronization uses statecharts to represent nodes and their tem-

poral synchronization. In this approach, states represent media objects and transitions

define a state hierarchy. A transition also defines if child states of a common state are

presented simultaneously or not. One example of statechart-based synchronization system

is seen at [Oliveira et al. 2001].

3 Multimedia background 21

3.2.5 Event-based synchronization

Event-based synchronization allows the creation of relationships among events that happen

during document execution, such as presentation events (start, stop or pause of a node, for

example), selection events (user interaction, for example) or attribution events (changing

variable values, for example). Examples of event-based synchronization models are the

NCM model [Soares et al. 2000] and Labyrinth [Dı́az et al. 2001]. Listing 3.5 presents

how Event-based synchronization is used to specify the sample temporal scenario.

Listing 3.5: Event-based synchronization

1 t e x t . b eg i n

2 on t e x t . end do v i d eo . beg in and aud io . beg i n

3 on t e x t . end do image . beg in d e l a y 1min

As stated in [Blakowski and Steinmetz 1996], this type of specification is easily ex-

tended to new synchronization types. One extension is the use of events with durations

and the possibility of triggering presentation actions, not only by event state transitions,

but also by the state of document nodes and values of document variables.

3.2.6 Script-based synchronization

Script-based synchronization uses a textual description for the synchronization of nodes.

A script (textual description) defines a set of algorithmic steps that represent the temporal

scenario desired. Flash [Adobe Systems 2010] is an example of well-known script use.

Although scripts have a great expressive power, a disadvantage of their use is the fact

that the author usually needs to specify all the details for node synchronization, which

are already abstracted in a declarative approach. Listing 3.6 presents how Script-based

synchronization is used to specify the sample temporal scenario.

Listing 3.6: Script-based synchronization

1 f u n c t i o n imageEnd () {
2 image . s top () ;

3 }
4

5 f u n c t i o n imageSta r t () {
6 image . s t a r t () ;

7 s e t I n t e r v a l (imageEnd , (t4−t3) ∗60000) ;
8 }
9

10 f u n c t i o n v ideoEnd () {
11 v i d eo . s top () ;

12 aud io . s top () ;

3 Multimedia background 22

13 }
14

15 f u n c t i o n textEnd () {
16 t e x t . s top () ;

17 v i d eo . s t a r t () ;

18 aud io . s t a r t () ;

19 s e t I n t e r v a l (imageSta r t , 60000) ;

20 s e t I n t e r v a l (v ideoEnd , (t5−t2) ∗60000) ;
21 }
22

23 f u n c t i o n t e x t S t a r t () {
24 t e x t . s t a r t () ;

25 s e t I n t e r v a l (textEnd , (t2−t1) ∗60000) ;
26 }
27

28 t e x t S t a r t () ;

3.3 The NCM Model and the NCL language

Nested Context Language (NCL) [ABNT 2011,ITU 2009] is based on the Nested Context

Model (NCM) [Soares et al. 2000, Soares and Rodrigues 2005], defining XML elements

to represent the entities specified by the NCM model. Section 3.3.1 presents the NCM

entities and main concepts and Section 3.3.2 presents how NCL represents multimedia

documents. Those sections describe only NCM and NCL characteristics that are relevant

to this work. References [ABNT 2011, ITU 2009], [Soares et al. 2000] and [Soares and

Rodrigues 2005] should be consulted for more details.

3.3.1 NCM

NCM offers two types of nodes: content nodes and composite nodes. A content node, also

called media node, represents a media object, for example an audio, a video, a text, etc.

A composite node represents a set of nodes, which can be content nodes or composite

nodes, and a set of links that represent the relationships among those component nodes.

Although a content node represents a media object, it does not have that media object

content. It is only a representation of that object inside the document, so relationships can

be defined among that media object and other objects inside the document. It indicates

the location of the media content, its type and how it will be presented to the final user.

In addition, a content node can define interface points for a media object, called anchors.

An anchor may be a content anchor or an attribute anchor.

3 Multimedia background 23

A content anchor represents a subset of the media content, possibly the whole media

content. Suppose, for example, a content node that represents a video. A content anchor

of that video may represents a subpart of that video - a time interval or an amount of

sequential frames - or even the whole video. In NCM, a content anchor that represents

the whole media content is called all content anchor.

An attribute anchor represents a node attribute and its value. Supposing the same

video node example, an attribute anchor of that video could be its location on the screen,

its sound level, etc.

A composite node, also called composition or context, represents a set of nodes and

links among its component nodes. A composite node also has interface points, which can

be ports or attribute anchors.

A port maps a composite node interface point to one inner node interface point. For

example, a port may map to a component composite node, a component composite node

interface point, a content node or a content node interface point. Since NCM only allows

links to be defined among nodes inside the same composition, a port is useful when some

node, inside a composition, should be “reached” by a link from outside the composition.

A special type of composite node called switch node is used to define a set of component

nodes that can be alternatively presented. A switch defines a set of nodes and mappings

relating those nodes to generic conditions defined by rules. The chosen node will be

the first one whose rule is evaluated as true. A switch may also have port mappings to

component node interface points. The switch port “target” will also be the first one whose

node related rule is evaluated as true.

NCM also allows nodes to be reused inside any composite node, however, a composite

node can not be recursively contained in itself. In order to identify nodes inside an NCM

document, it introduces the notion of perspective [Soares et al. 2000]. A node perspective

is the whole node path from a node to the most external composite node. The perspective

of a node N is a sequence P = (Nm, . . . , N1), with m ≥ 1, such that, for i ∈ [1,m):

• N1 = N ;

• Ni+1 is a composite node;

• Ni is a component node of Ni+1;

• Nm is not contained in any other node.

3 Multimedia background 24

In order to define how content nodes will be presented on the screen, NCM offers

regions and descriptors. Regions define areas on the screen where visible media objects

will be presented. Descriptors describe how a media object will be presented. A descriptor

may define, for example, the volume of an audio or video object, the transparency level

of a figure or even the duration of a media. The descriptor also defines the region where

a media object, using this descriptor, will be presented.

NCM is an event-based multimedia model. Every anchor, and therefore content node,

in NCM has related events. An event is an occurrence in time with a duration. It has

a type and a state. NCM considers seven types of events [Soares and Rodrigues 2005],

however, just the selection, presentation and attribution events are relevant to this work.

A selection event represents a user selection, a presentation event represents a content

anchor presentation and an attribution event represents an attribute anchor value change.

During document presentation, each anchor related event has a state.

The state of an event, or event state, is the current state of an event in its associated

state machine. The possible event states are: sleeping, occurring and paused. Figure

3.2 presents the NCM event state machine. It also presents the name of the transitions

responsible for changing event states.

paused

abort, stop

start

resume

pause

occurringsleeping

abort, stop

Figure 3.2: NCM event state machine

It is worth mentioning that a content anchor will only be related to presentation and

selection events, while an attribute anchor will be related to attribution events.

NCM defines generic relations, represented by connectors [Muchaluat-Saade and Soares

2002], which are used in the definition of links (relationships). Connectors may represent

a causal relation or a constraint relation, however, just causal relations are relevant to

this work. A causal relation has a condition and an action, where the condition, when

satisfied, triggers the action. A condition can be defined using event transitions (see Fig-

ure 3.2), event states or attribute anchor values. An action triggers the occurrence of a

transition in an event state machine. Connector conditions and actions are identified by

3 Multimedia background 25

connector roles.

One example of connector is the onBeginStart connector. This connector defines two

roles: onBegin and start. This connector specifies a relation stating that “the beginning

of the presentation of a node, related to the onBegin role, causes the beginning of the

presentation of another node, related to the start role”. The onBegin condition will be

satisfied when a start transition occurs in its related anchor presentation state, while

the start action will perform the start transition in its related anchor presentation state.

Notice that this connector does not specify which anchors will be attached to its roles, it

just defines a relation type.

NCM relationships are defined by links. A link uses a relation type defined by a

connector and indicates the nodes participating in the relationship. The participant

nodes are defined by a set of binds, where each bind attaches a node interface point

to a connector role. That way a link ties together the occurrence of transitions in the

event states of different node anchors.

In order to exemplify the concepts here presented, Figure 3.3 presents a structural

view of a sample NCM document. In the figure, solid circles represent content nodes,

dashed circles represent composite nodes, squares represent interface points (ports or

anchors), dashed lines represent mappings and arrows represent links.

N3

C2
N1

N2

C1

P1

A1

N4

r1

r2

L2

L1

Figure 3.3: Sample NCM document

The document represented in Figure 3.3 has six nodes: content nodes N1, N2, N3

and N4 and composite nodes C1 and C2. Composite node C1 contains nodes N1, N2 and

C2. It also has port P1 (interface point), which maps to node N1 and links L1 and L2

defining relationships among its nodes. Switch node C2 contains nodes N3 and N4. It will

present node N3, if rule r1 is evaluated as true, or node N4, if rule r2 is evaluated as true.

Content node N2 has one attribute anchor A1. Regarding node perspectives, node N3 has

the perspective “C1, C2, N3”, while, for example, node N1 has the perspective “C1, N1”.

3 Multimedia background 26

Link L1 defines that anchor A1 will have its value set to “yes” when node N1 starts

its presentation. Link L2 defines that switch C2 will start its presentation when node N1

ends its presentation. Rules r1 and r2 will test if a document global variable named A1 is

equal to “yes” or “no”, respectively. It is worth noticing that anchor A1 represents that

global variable in the NCM document.

When a content node starts its presentation, its all content anchor and all its anchors,

except temporal anchors, have their presentation event started. A temporal anchor is a

content anchor defined as a temporal interval. Temporal anchors are started as their

start time is reached during the node presentation. An ending or pausing on the node

presentation is also performed in every anchor of that node being presented. If, however,

the action is done over a node anchor, it is performed only on that anchor.

Regarding composite nodes, every presentation action over a context node is done

over its context ports and so over its mapped nodes or anchors. If, however, the target

is one context port, the action is done only to the element mapped by that port. The

behavior of the switch node is close to the context node, except that the action is done

only to the selected component node according to its rules.

It is worth to notice that a node is active, that is, being presented, if at least one of

its anchors is active. So a content node is active if at least one anchor is active, a switch

node is active if at least one component node is active and the same for the context node.

A context node is also considered to be active if at least one link is being evaluated at

that moment.

Whenever a content anchor is active, it is able to be selected by the user. An attri-

bution action, however, is performed only over the property anchor indicated in the link

bind.

NCM differs documents specification from their execution. NCM defines a data plan

containing the nodes and links specified in a set of documents. Whenever those docu-

ments are executed, NCM defines a representation plan. A data object, which composes

the data plan, represents an NCM node. Once a data object is associated to its presenta-

tion characteristics (specified by a descriptor), it becomes a representation object, which

composes the representation plan. If the same data object is associated, for example,

to two different descriptors, it will create two distinct representation objects. Figure 3.4

presents NCM data and representation plans considering a sample document.

Notice, in Figure 3.4, that each content node is associated to at least one descriptor,

3 Multimedia background 27

N3d

N4e

A1c

N1a

N2b

N2cA1b

Representation plan

Data plan

Representation objects

Data objects Descriptors

N3

C2
N1

N2

C1

P1

A1

N4

r1

r2

Da

Db

De

Dd

Dc

L2

L1

Figure 3.4: NCM data and representation plans

creating a representation object. Node N2, however, is associated to descriptors Db and

Dc. That way two representation objects N2b and N2c are created.

3.3.2 NCL

NCL is an XML-based language that defines elements to represent NCM entities. An NCL

document is divided in two parts: the document head and the document body. Listing

3.7 presents the structure of an NCL document. Listings 3.8 and 3.9 respectively show

the head and body of an NCL document representing the NCM document illustrated in

Figure 3.3.

Listing 3.7: NCL document example

1 <n c l i d=”runn ingExample ” xmlns=”ht tp : //www. n c l . o rg . br /NCL3 .0/ EDTVProf i le”>

2 <head>

3 . . . head con t en t . . .

4 </head>

5

6 <body>

7 . . . body con t en t . . .

8 </body>

9 </nc l>

The ncl element presented in Listing 3.7 is identified by runningExample. It represents

an NCL document using the NCL 3.0 namespace EDTVProfile [ABNT 2011], which

defines the XML elements that can be used in the document.

The document head defines connectors, rules and presentation characteristics that

will be used in the document body element. Those definitions are done in bases, which

are: connectorBase, ruleBase, regionBase, descriptorBase and transitionBase. Inside

3 Multimedia background 28

those bases, the NCL document defines connectors (causalConnector element), rules (rule

element), regions (region element), descriptors (descriptor element) and transitions (tran-

sition element), respectively. Listing 3.8 presents an NCL document head example.

Listing 3.8: NCL document head example

1 <head>

2 <ru l eBase>

3 < r u l e i d=”r1 ” va r=”A1” comparator=”eq” va l u e=”yes ” />

4 < r u l e i d=”r2 ” va r=”A1” comparator=”eq” va l u e=”no” />

5 </ru l eBase>

6

7 <r eg ionBase>

8 <r e g i o n i d=”reg1 ” l e f t =”0” top=”0” width=”100%” he i g h t=”100%” z Index=”1”>

9 <r e g i o n i d=”reg2 ” l e f t =”50” top=”50” width=”50” h e i g h t =”50” z I ndex=”2”/>

10 </r eg i on>

11 </reg ionBase>

12

13 <d e s c r i p t o rBa s e>

14 <d e s c r i p t o r i d=”desc1 ” r e g i o n=”reg1 ” e x p l i c i t D u r =”90s”/>

15 <d e s c r i p t o r i d=”desc2 ” r e g i o n=”reg2 ” e x p l i c i t D u r =”20s”/>

16 </d e s c r i p t o rBa s e>

17

18 <connectorBase>

19 <cau sa lConnec t o r i d=”onBeg inSet”>

20 <s imp l eCond i t i o n r o l e=”onBegin”/>

21 <s imp l eAc t i o n r o l e=”s e t ” v a l u e=”yes”/>

22 </causa lConnec to r>

23

24 <cau sa lConnec t o r i d=”onEndStart”>

25 <s imp l eCond i t i o n r o l e=”onEnd”/>

26 <s imp l eAc t i o n r o l e=” s t a r t ”/>

27 </causa lConnec to r>

28 </connectorBase>

29 </head>

The document head presented in Listing 3.8 defines two rules identified by r1 and

r2. Rule r1 tests if the value of global variable A1 is equal to “yes”, while rule r2 tests

if it is equal to “no”. It also defines two regions reg1 and reg2. Region reg1 specifies an

area that occupies all the screen and region reg2 defines an area whose upper left corner

is (50, 50), width of 50 pixels and height of 50 pixels. Descriptor desc1 uses region reg1

and defines a duration of 90 seconds. Descriptor desc2 uses region reg2 and defines a

duration of 20 seconds. The document head also defines two connectors onBeginSet and

onEndStart. Connector onBeginSet defines a generic relation stating that “the beginning

of the presentation of a node, related to the onBegin role, causes the attribution of the

value ‘yes’ to an attribute anchor related to the set role” and connector onEndStart defines

a generic relation stating that “the end of the presentation of a node, related to the onEnd

3 Multimedia background 29

role, causes the beginning of the presentation of another node, related to the start role”.

The document body defines NCL nodes and links that composes the document. Con-

tent nodes are defined by the media element, context nodes are defines by the context

element and switch nodes are defined by the switch element. Links are defined by the

link element. Content node anchors are represented by elements area (content anchor)

and property (attribute anchor). A context node port is represented by the port element.

Listing 3.9 presents an NCL document body example. Once the document body is

a composite node, it represents content node C1 of the example illustrated in Figure

3.3. The example defines port P1 that maps to content node N1 through its component

attribute. Content node N1 represent a video that will be presented as defined by descrip-

tor desc1 and content node N2 defines an attribute anchor named A1, which represents

the global variable with the same name inside the document. Switch C2 defines content

nodes N3 and N4 representing figures, both presented as defined by descriptor desc2. The

association between a switch node component and a rule is done by element bindRule.

The first bindRule associates node N3 to rule r1 and the second one associates node N4

to rule r2. It is worth to notice that switch bindRules are evaluated in the same sequence

they are defined.

Listing 3.9: NCL document body example

1 <body i d=”C1”>

2 <po r t i d=”P1” component=”N1”/>

3

4 <media i d=”N1” s r c=”media/ v i d .mp4” d e s c r i p t o r=”desc1”/>

5 <media i d=”N2” type=”a p p l i c a t i o n /x−ginga−s e t t i n g s ”>

6 <p r op e r t y name=”A1”/>

7 </media>

8

9 <sw i t c h i d=”C2”>

10 <b indRu l e r u l e=”r1 ” c o n s t i t u e n t=”N3”/>

11 <b indRu l e r u l e=”r2 ” c o n s t i t u e n t=”N4”/>

12 <media i d=”N3” s r c=”media/ f i g 1 . png” d e s c r i p t o r=”desc2”/>

13 <media i d=”N4” s r c=”media/ f i g 2 . png” d e s c r i p t o r=”desc2”/>

14 </sw i tch>

15

16 < l i n k i d=”L1” xconnec to r=”onBeg inSet”>

17 <b ind component=”N1” r o l e=”onBegin”/>

18 <b ind component=”N2” i n t e r f a c e=”A1” r o l e=”s e t ”/>

19 </ l i n k>

20 < l i n k i d=”L2” xconnec to r=”onEndStart”>

21 <b ind component=”N1” r o l e=”onEnd”/>

22 <b ind component=”C2” r o l e=” s t a r t ”/>

23 </ l i n k>

24 </body>

3 Multimedia background 30

Listing 3.9 also presents two links L1 and L2. Link L1 uses the onBeginSet connector

and associates node N1 to role onBegin and anchor A1 of node N2 to role set. Link L2

uses the onEndStart connector and associates node N1 to role onEnd and node C2 to

role start.

3.4 Closing remarks

This chapter presented basic concepts related to multimedia documents and the different

classes of temporal synchronization models. It also presented an overview of the NCM

model and the NCL language.

As stated in [Blakowski and Steinmetz 1996], event-based models have a great expres-

sive power [Pérez-Luque and Little 1996] to represent a temporal scenario. We believe

that a model based on events is general enough to support a representation of other multi-

media model temporal scenario descriptions, such as the work presented in [Rodrigues et

al. 2002], that proposed a translation from a hierarchical-based synchronization authoring

language (SMIL) to an event-based model (NCM).

Thus, the analysis of multimedia documents discussed in this work, that is, the vali-

dation of the document structural definition and verification of the document behavioral

definition, follows an event-based temporal model. As a test case, this work implements

an analysis tool capable of analyzing NCL documents. The choice for NCL was made since

it is an international standard and it is also used in the Brazilian Digital TV system.

The next chapter presents a background on MDA (Model-drive Architecture).

Chapter 4

MDA background

This chapter introduces the MDA (Model-driven Architecture) [OMG 2003] concepts

necessary to the comprehension of this work. Section 4.1 gives an overview of the MDA

process used in this work. Section 4.2 introduces OCL (Object Constraint Language)

[Warmer and Kleppe 1999] and how it is used in model validation. Section 4.3 introduces

model verification with a model checker. Section 4.4 introduces rewriting logic, using

Maude as a concrete syntax and Section 4.5 concludes this chapter with some remarks.

4.1 MDA

MDA [OMG 2003] proposes an approach to simplify software development and mainte-

nance. In that approach, models are not only used for software design and documentation,

but also for its development. MDA proposes the transformation of models describing soft-

ware into some coding language, so any further modification on the software is done over

its models. That approach guarantees that models and code are always updated. Once

models present a language-independent software description, they also improve software

reuse.

A model, as stated by [Mellor et al. 2003], is a coherent set of formal elements

describing something built with some purpose. The description presented by a model

follows a specific structure, which is given by a metamodel. A metamodel is the description

of a modeling language used by a model. A model may be seen as an instance of a

metamodel.

Suppose a metamodel of a person description. It defines the important information a

model should have to describe a person. All models describing persons represent instances

of that metamodel. Figure 4.1 illustrates that example.

4 MDA background 32

Figure 4.1: Metamodel and model example

A model is said to be well-formed with respect to a metamodel when it follows the

syntax denoted by the metamodel. A well-formed model, however, can define incorrect

relations among the modeling language elements. To constrain the use of the modeling

language elements, the metamodel defines a set of additional properties through invariants.

A model is said to be in conformance with a metamodel when the properties of that

metamodel hold for the model.

The behavior of a model will be given by a transition system. A transition system

is defined by a set of states and transitions defining a relation between states of the

transition system.

Under a programing language perspective, a model transformation can be seen as a

programing language compilation. A modeling language description has an abstract syn-

tax; one or more concrete syntax; a mapping between the abstract syntax and a concrete

syntax; and a description of its semantics. So a metamodel can be seen as the language

abstract syntax and a model as a concrete syntax. Also, the metamodel invariants can

be seen as the language static semantics and the transition system associated to a model

can be seen as the language dynamic semantics. Similar to the process of program trans-

formation, a model-driven development process can be presented as follows:

m ∈Mconcrete syntax
parse // m̂ ∈Mabstract syntax

τ

tt
m̂′ ∈M ′

abstract syntax

pretty print//m′ ∈M ′
concrete syntax

where m, m′, m̂ and m̂′ represent models and M and M ′ represent the τ transformation

source and target metamodels. m ∈M denotes that m is well-formed with respect to M .

parse represents a mapping where a model m produces an instance m̂ of M , where m̂ is

well-formed with respect to M . pretty print does the inverse mapping of parse.

4 MDA background 33

In this work, UML [OMG 2010] was chosen for the representation of models and

metamodels. A metamodel is mapped into a class diagram, while the model, instance

of that metamodel, is mapped into an object diagram. Structural metamodel properties,

that is, its invariants, are represented by OCL invariants [Warmer and Kleppe 1999].

The transition system associated with a modeling language is represented in rewriting

logic. The behavioral properties are specified in temporal logic. Figure 4.2 summarizes

the concepts presented in this section.

Programming Language MDA This work

Syntax Metamodeloo Class Diagramoo

Static Semantics Invariantsoo OCL Invariantsoo

Dynamic Semantics Transition Systemoo Rewriting Logicoo

Figure 4.2: MDA concepts summary

4.2 OCL validation

OCL [Warmer and Kleppe 1999] is a language used to constrain class diagrams through

invariants. An invariant defines a condition on the state of objects in an instance of

the class diagram it constrains. OCL expressions are able to describe navigation paths

through object associations and tests over object attribute values.

An invariant defines a context and an expression. The invariant context defines the

type of the objects to which the invariant will be applied and the invariant expression

defines a boolean expression that tests the object state. OCL invariants are defined based

on the metamodel they constrain. Taking as example the NCL language, Listing 4.1

presents the definition of an invariant using OCL.

Listing 4.1: Invariant definition example

1 con t e x t RegionBase i n v noEmptyBase :

2 s e l f . r e g i o n s−>notEmpty ()

Listing 4.1 presents an invariant that is applied to objects of RegionBase type. The

invariant noEmptyBase states that every object of type RegionBase should have at least

one associated object with a role “regions”. Operationally, this invariant gets the objects

4 MDA background 34

associated with a regionBase type object through its “regions” association. The expres-

sion notEmpty() tests if the returned object set is not empty. If this set is not empty, this

expression will return true, so the invariant holds. Otherwise the expression returns false

and the invariant fails.

OCL invariants describe properties that a model should have in order to be considered

in conformance with the metamodel. Every invariant that can be applied over some model,

that is, the invariants whose context is present in the model, will be applied. The model

will be considered in conformance, if all applied invariants hold. In this work, we call

model validation the application of invariants to a particular model.

4.3 Model checking

In this work, behavioral properties are described as temporal logic formulas over transition

systems. The verification of behavioral properties is done using a technique called model

checking which is essentially a decision procedure for temporal logic.

In this section we recall the fundamental concepts associated with temporal logic

specifications. In Section 4.4 we discuss the rewriting logic formalism in which we will

implement transition systems, their properties and verify them.

The behavior of a model is given by a transition system. A transition system M is

defined by a set of states S and a relation → among the states of the transition system.

M = (S,→)

→ ⊆ S × S

Figure 4.3 presents an example of a transition system, where p, q and r represent

properties.

p, q

q, r

r

s0

s2

s1

Figure 4.3: Sample transition system

4 MDA background 35

In a transition system M, a path π is an infinite state sequence si ∈ S, such that:

• for i ≥ 0, si → si+1;

• s0 is the initial state of path π;

• s ∈ S is reachable from s0 if there is a path π, such that, s and s0 ∈ π.

It is worth mentioning that different paths may have the same initial state. Figure

4.4 presents different paths of the sample transition system presented in Figure 4.3.

p, q

s0

r

s2

q, r

s1

r

s2

r

s2

r

s2

r

s2

p, q

s0

q, r

s1 ...

............

Figure 4.4: Sample transition system paths

LTL (Linear Temporal Logic) [Pnueli 1977] defines a set of logic operators with tem-

poral semantics. The following sections introduce LTL. Section 4.3.1 introduces LTL

operators, while Section 4.3.2 presents the verification of LTL formulas over paths.

4.3.1 LTL operators

An LTL formula ϕ is defined as follows, where X, F , G, U , W and R are called temporal

operators.

ϕ ::= > | ⊥ | p | ¬(ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |
(Xϕ) | (Fϕ) | (Gϕ) | (ϕ Uϕ) | (ϕ Wϕ) | (ϕ Rϕ)

A concurrent system may have different paths from the same initial state. To illustrate

the temporal operators, this section presents their application to a single path.

4 MDA background 36

Operator X (next) states that a property must be valid for the following state. Figure

4.5 presents an example of operator next applied to state s0.

s0 s1 s2 s3 s4 s5

p

Figure 4.5: Next operator example (Xp)

Operator F (future) states that a property must be valid for some future state. Figure

4.6 presents an example of operator future applied to state s0.

s0 s1 s2 s3 s4 s5

p

Figure 4.6: Future operator example (Fp)

Operator G (global) states that a property must be valid for all states in a path.

Figure 4.7 presents an example of operator global.

s0 s1 s2 s3 s4 s5

p p p p p p

Figure 4.7: Global operator example (Gp)

Operator U (until) states that a property p must be valid until a property q becomes

valid. Figure 4.8 presents an example of operator until.

s0 s1 s2 s3 s4 s5

p p p q q q

Figure 4.8: Until operator example (pUq)

Operator W (weak until) states that a property p must be valid until a property q

becomes valid or p must be valid for all states in the path. Figure 4.9 presents an example

of operator weak until.

s0 s1 s2 s3 s4 s5

p p p q q q

s0 s1 s2 s3 s4 s5

p p p p p p

Figure 4.9: Weak until operator example (pWq)

Operator R (release) states that a property p must be valid until a property q becomes

valid and both p and q must be valid at the same time for some state. Figure 4.10 presents

an example of operator release.

4 MDA background 37

s0 s1 s2 s3 s4 s5

p p p q qp, q

Figure 4.10: Release operator example (qRp)

4.3.2 LTL verification over paths

LTL logical operators define properties verifiable for all paths from the state where the

property is tested. Figure 4.11 presents the verification of property Fp over some paths

with the same initial state. Figure 4.11a presents a valid example and Figure 4.11b an

invalid one.

...

...

...

...

...

p

p

p p

p

(a) Valid example

...

...

...

...

...

p

(b) Invalid example

Figure 4.11: Property verification over transition system paths (Fp)

The verification of the existence of a path where a property is valid is achieved through

the negation of an LTL formula. The negated formula verification produces a counter-

example that exemplifies a possible path where the property holds. Figure 4.12 presents

the verification of property ¬Fp over the paths presented in Figure 4.11b.

4 MDA background 38

p

...

...

...

...

...

p

Figure 4.12: Property verification over transition system paths (¬Fp)

4.4 Rewriting logic

In this work we will use rewriting logic and its implementation in the Maude system to

represent transition systems and behavioral properties. The LTL model checker imple-

mented in the Maude system will be used to investigate behavioral properties of transition

systems.

Rewriting logic consists of a set of rewrite rules defining the concurrent evolution of

a system. A theory in rewriting logic, or rewrite theory, is defined as follows.

R = (Σ, E,R)

A rewrite theory is divided in two parts. The first one (Σ, E) is the equational theory

part, while the second one R is the rewrite rules. This section presents the concepts

related to rewrite theory using, as a concrete syntax, the Maude language [Clavel et al.

2007]. It is a declarative language and a system for the description of a theory in rewriting

logic.

In this section we will present rewrite theories from a transition system perspective

as it is the one used in this work.

A rewrite theory is described in terms of sorts, operations, equations and rules. Sorts

are used to define data types and how those types are related through set theory. Opera-

tions define how elements on those sorts are created and manipulated. Equations define

a simplification over the elements that compose the system state. Every simplification is

applied until the system canonical form is reached, that is, when no other simplification

4 MDA background 39

over the system state can be obtained. Rules define the system evolution. They are

applied, possibly concurrently, changing the system state. A rewrite theory is assumed

coherent, which means that no equational reduction or rewrite is missed. Operationally,

this is achieved in Maude by first applying the equations and then the rules, that is, rules

are applied modulo equations.

Regarding a rewrite theory definition (Σ, E,R), Σ represents the system signature

and is described by sorts and operations, while E represents the system equations and

R, the system rules. Listing 4.2 presents an example of sorts, operations, equations and

rules described in Maude.

Listing 4.2: Maude primitives example

1 −−− s o r t s

2 s o r t s A B .

3 s u b s o r t A < B .

4

5 −−− o p e r a t i o n s

6 ops a1 a2 : −> A .

7 ops b1 b2 : −> B .

8 op f : A −> B .

9

10 −−− equa t i o n s

11 eq f (a1) = b1 .

12 eq f (a2) = b2 .

13

14 −−− r u l e s

15 r l b1 => a2 .

16 r l b1 => b2 .

Listing 4.2 defines two sorts A and B, where A ⊆ B. It defines operations for the

creation of elements a1 and a2 of sort A and elements b1 and b2 of sort B. It also

defines operation f , of type B which is parameterized by an element of A. The equations

define reductions for the f operation, that is, f(a1) is reduced to b1 and f(a2) is reduced

to b2. Rules define a modification in the system state. Every time the canonical form

presents element b1, it can be rewritten to a2 and b2 concurrently. Listing 4.3 demonstrates

how equations and rules work by presenting the result of Maude reduce and rewrite

commands.

The reduce command invokes the equations only. The rewrite command applies the

rules over equationally simplified terms.

Listing 4.3: Maude commands result

1 Maude> r educe a1 .

2 r e s u l t A : a1

3

4 MDA background 40

4 Maude> r educe b1 .

5 r e s u l t B : b1

6

7 Maude> r educe f (a1) .

8 r e s u l t B : b1

9

10 Maude> r e w r i t e b1 .

11 r e s u l t A : a2

12

13 Maude> r e w r i t e f (a1) .

14 r e s u l t A : a2

Listing 4.2 defines two concurrent rules but in Listing 4.3 only the result on the first

rule is presented. That occurs because the rewrite command always shows the first

solution obtained with one rewrite command. Listing 4.4 presents all possible results of

command rewrite f(a1). This is done using a command to search all results from a

term.

Listing 4.4: Maude rewrite results

1 Maude> s e a r c h f (a1) =>∗ b :B .

2

3 So l u t i o n 1 (s t a t e 0)

4 b :B −−> b1

5

6 So l u t i o n 2 (s t a t e 1)

7 b :B −−> a2

8

9 So l u t i o n 3 (s t a t e 2)

10 b :B −−> b2

11

12 No more s o l u t i o n s .

Listing 4.4 presents three solutions, the first one where no rule was applied, the second

one where the first rule was applied and the third one where the second rule was applied.

It is worth noticing that a rule is applied only when the system reaches the canonical

form.

Equations and rules are applied when their left side matches at least a fragment of the

system state. This is called pattern matching. Maude pattern matching can be defined

over elements, as presented in the previous examples, but also to a general signature.

Listing 4.5 presents an example of equation whose left side defines a general signature.

Listing 4.5: Maude pattern matching example

1 op g : B −> B .

2

3 va r va rb : B .

4 MDA background 41

4

5 eq g (varb) = varb .

Listing 4.5 defines an operation g over set B, a variable varb of type B and a equation

the simplifies an element g(varb), where varb represents every element of sort B, to the

element represented by varb. Listing 4.6 shows examples using that equation.

Listing 4.6: Maude pattern matching result

1 Maude> r educe g (b1) .

2 r e s u l t B : b1

3

4 Maude> r educe g (b2) .

5 r e s u l t B : b2

For conditional equations and rules, a condition must be satisfied so the equation or

rule is applied. Listing 9.5 presents an example of a conditional equation. The result of

that equation application is presented in Listing 4.8

Listing 4.7: Maude conditional equation example

1 ceq g (varb) = varb i f va rb == b1 .

Listing 4.8: Maude conditional equation result

1 Maude> r educe g (b1) .

2 r e s u l t B : b1

3

4 Maude> r educe g (b2) .

5 r e s u l t B : g b2

Notice in Listing 4.8 that just the first reduce command is applied, since it is the

only one that satisfies the equation condition.

A Maude rewrite theory is divided in modules, which can be a functional module or

a system module. Functional modules define data types (sorts) and operations over those

types. That is, a functional module defines sorts and how those types are related through

set theory and operations that may be done over them (Σ part). Functional module

equations define a simplification, over the sorts, of the system state (E part). System

modules define a rewrite theory, by defining data types, operations and equations over

them (E part) and rewrite rules (R part).

A possible interpretation of a rewrite theory is to associate a transition system with

it, where sorts, operations and equations define the signature of the transition system

states and transitions are induced by rules. Because of that characteristic, rewriting

4 MDA background 42

logic - and Maude as a concrete syntax - was chosen to support the representation of

a transition system modeling a multimedia document behavior. Formally, a transition

system M = (S,→) is represented as a rewrite theory R = (Σ, E,R) as follows.

S = (Σ, E)

→ ⊆ S × S = R

4.5 Closing remarks

This chapter introduced MDA and how model validation and verification are done. In

this work an MDA approach is used to achieve the analysis of multimedia documents

specified using the NCM model and NCL language.

The proposed analysis represents the NCL language structure as a metamodel and

OCL invariants to represent properties a document must have to be considered consistent.

The document itself is represented as a model, instance of the metamodel representing

the language structure. The language and document representations and the validation

of an NCL document will be presented in more details in Chapter 6.

Besides, this work uses a transition system representation of that document to in-

vestigate temporal properties. The transition system is represented using rewriting logic

and the temporal properties are represented in LTL. The verification of those temporal

properties is achieved by using a model checker implemented in Maude. It is possible to

observe, that during model checking, an explosion of the number of states may occur.

This concern was taken into consideration when creating the representation of the doc-

ument, as it will be presented later in this work. The document representation and the

temporal properties checking will be presented in more details in Chapter 7.

The next chapter presents the validation and verification properties and a comparison

among related works regarding the identified properties.

Chapter 5

Validation and verification properties

This work presents a solution for analyzing a multimedia document in order to guarantee

its consistency. We consider a document consistent, when it does not present specification

problems or an undesired behavior. The analysis presented here is divided into two parts:

the validation of the document structure and the verification of the document behavior,

where each part defines a set of properties. Considering the language perspective discussed

in Chapter 4, those properties will be called static or dynamic, making reference to static

and dynamic semantics of a modeling language. It is worth mentioning that the properties

presented here come from the study of the related works presented in Chapter 2.

Section 5.1 presents the static properties, while Section 5.2 presents the dynamic

properties. Section 5.3 discusses related work regarding the static and dynamic properties

and Section 5.4 concludes this chapter with final remarks.

5.1 Static validation properties

Static validation properties are the ones responsible for validating the document structure,

that is, if the multimedia document created by the author satisfies the syntax rules defined

by the authoring language grammar and structural invariants. Although those properties

were described in a general manner, their implementation is domain dependent, since

the properties must be validated over specific multimedia language elements. The static

properties are: lexical and syntactic, hierarchy, attribute, reference, compositionality,

composition nesting and element reuse validation properties. The following paragraphs

present those properties.

The lexical and syntactic validation property specifies that the multimedia doc-

ument lexical and syntactic structure should be well-formed with respect to the authoring

5 Validation and verification properties 44

language specification. For example, when an XML-based language is used, such a prop-

erty specifies that the XML tags used should be defined in the language namespace and

should be correctly closed.

The hierarchy validation property specifies that all language elements should

contain valid child elements and in the correct cardinality. It also specifies that required

child elements should not be missing.

The attribute validation property specifies that all language elements should

contain valid attributes and the required attributes should be defined. In some elements,

attribute pairs have related values. For example, suppose an XML element with attributes

“type” and “subtype”. In that case the value of the attribute “subtype” must be related

to the value of attribute “type”. This validation property specifies that such relation

should be correct. It also specifies that each element identifier should be unique.

It is worth to highlight that the XML concepts of well-formed and valid documents

[W3C 2008a] are guaranteed by the lexical and syntactic, hierarchy and attribute proper-

ties. Those properties can be applied to any document specified using an XML notation

like HTML5 [W3C 2011]. Besides, the hierarchy and attribute properties can also be ap-

plied to documents where language elements have hierarchy and attributes with related

values, like NCL, HTML and SMIL languages.

The reference validation property specifies that, for each attribute that refers to

another element, the element whose identifier was referenced should match the required

attribute type. For example, suppose an NCL element with attributes “node” and “an-

chor”. In that case, the element referenced by attribute “anchor” must be a child of the

element referenced by attribute “node”.

The compositionality validation property specifies that composition component

elements and their attributes should not refer to elements outside the composition. For

example, suppose an NCL context port. That port can not refer to a node outside

the context it is defined. Another example is the use of a SMIL par container endsync

attribute that can refer to a container child component, determining that the container

will end when its child component ends. This container can not refer to a component

outside of it.

The composition nesting validation property specifies that a composition should

not create a nesting loop. If this property is not valid, one composition alone, or through a

set of compositions, nests itself. NCM and caT enables the reuse of composition elements

5 Validation and verification properties 45

(contexts and switches for NCM and places for caT). In both of them, those elements can

not nest themselves, otherwise the multimedia document would become inconsistent.

The element reuse validation property specifies that an element should not

create a reuse loop. If this property is not valid, one element alone, or through a set

of elements, reuses itself. For example, NCL media elements can not make a reference,

through its “refer” attribute, to itself.

5.2 Dynamic verification properties

Dynamic verification properties are the ones responsible for investigating the document

behavior. It is worth noticing that those properties investigates if the document presents

a possible undesired behavior. The dynamic properties are: reachability, anchor termina-

tion, document termination and resource verification properties.

The following paragraphs present those properties with a high level of abstraction.

In later chapters, we present the model used to represent the behavioral definition of a

multimedia document and the representation of the dynamic properties over that model.

With such a detailed presentation of the dynamic properties it will be possible to observe

that their verification is decidable.

The reachability verification property specifies that there should be no unreach-

able document parts. Unreachable document parts may occur when a document does not

define relationships referring to some elements or if content control elements have alterna-

tive conditions that will never be evaluated as true. This may happen, for example, when

a variable responsible for an alternative content evaluation never has its value changed.

The anchor termination verification property specifies that a document element

(anchor), once started, should end. A document element may end by its natural end or

by an external cause. When an element is ended by an external cause, it is desired that it

occurs after the element is started. For example, consider two elements A and B, where

A has a natural end and B does not. If the end of element A ends element B, it is

important that A ends after B starts. Suppose two temporal intervals in a constraint-

based synchronization model. If there is a relation of the type A finishes B and A ends

before B starts, then B will never end. Figure 5.1 presents an end event that never occurs.

The document termination verification property specifies that the multimedia

document, in at least one possible execution, as a whole should end. This specifies that

5 Validation and verification properties 46

there should be one configuration where all document elements remain finished. This

configuration is achieved if all document elements end and there are no loops in the

document. Loops occur when an element once stopped, triggers its own presentation

begin and no other event aborts its presentation exiting the loop. Examples of loops

without exit conditions are: the use of links in NCL that start an element once it ends;

or the use of repeat attributes in SMIL elements and the document does not present a

possibility of stoping those elements. Figure 5.1 also presents the concept of loops in an

event-based document model.

A
B

A finishes B

LOOP END EVENT

...

onEnd

start

onEnd
start onEnd

start

time

...

Figure 5.1: Examples of possible undesired behaviors.

The resource verification property investigates if two distinct media nodes use

the same presentation resource at the same time. This resource may be, for example,

a screen or an audio device. For spatial verification, it investigates if two visual media

nodes are presented overlapped. For audio verification, it investigates if two media nodes

with audio content (music and video, for example) are presented at the same time.

5.3 Related work comparison

This work proposes a set of desired properties a multimedia document should present,

they are the validation and verification properties presented in Sections 5.1 and 5.2. This

section uses those properties to evaluate the related work. This comparison is functional,

since the great part of the tools is not available for practical tests.

The investigation of the set of possible undesired behaviors proposed by [Santos et

al. 1998] meets the verification properties of reachability, anchor termination, document

termination and resource. Although it is not the focus of the paper, it does not make

clear, however, if, during the translation of the multimedia document into the RT-LOTOS

formalism, the document is analyzed regarding any of the static validation properties.

In Trellis [Furuta and Stotts 2001] and caT [Na and Furuta 2001], the Petri net anal-

ysis provided meets the verification properties of reachability and document termination.

5 Validation and verification properties 47

Although it is not the focus of the caT system, since the authoring of a hypermedia doc-

ument is done directly in Petri nets, the validation properties of lexical and syntactic,

hierarchy, attribute, reference, compositionality and composition nesting are embedded

in the authoring tool.

The HMBS model [Oliveira et al. 2001] provides characteristics that meet the reach-

ability, anchor termination and document termination verification properties. As it also

provides an analysis of a best application layout, it can be considered as an approach

to meet the resource verification property. Like caT, in HMBS, the hypermedia docu-

ment authoring is done directly using statecharts, so the validation properties of lexical

and syntactic, hierarchy, attribute, reference and compositionality are embedded in the

authoring tool.

NCL-FA [Felix 2004] creates a timed automata net representing the NCL document

temporal behavior. The author defines temporal-logic formulas in order to investigate the

temporal properties. All the verification properties can be met, since the author is free

to define any temporal-logic formulas. The static validation properties are not met since

they are not the focus of that work.

SMIL-EA [Bossi and Gaggi 2007] uses assertions to investigate if the SMIL tags cor-

rectly changed the application state. With that assertive analysis, it is possible to meet

the reachability, anchor termination and document termination verification properties.

The static validation properties are not met since they are not the focus of that work.

In caT and SMIL-EA, it was not identified if the tools could be used to meet the

resource verification property.

In BFPS [Bertino et al. 2005], the checking done during the authoring process meets

the anchor termination and document termination verification properties. Also, as in

BFPS the spatial positioning is done analyzing the space available on the screen at each

instant and dividing it in rectangles where objects may be inserted, the resource verifica-

tion property is also met. The static validation properties are not met since they are not

the focus of that work.

EEC [Elias et al. 2006] finds the minimum spanning tree of the graph defined by

the application to check its consistency. The acyclic nature of the spanning tree and

the completeness checking are sufficient to meet the anchor termination and document

termination verification properties. The tool meets the resource verification property

with its spatial consistency checking using the SPATIAL operator. The static validation

5 Validation and verification properties 48

properties are not met since they are not the focus of that work.

In BFPS and EEC approaches, it was not identified, however, if the tools could be

used to meet the reachability verification property.

With the analysis process presented by NCL-validator [Araújo et al. 2008] it is possible

to meet the lexical and syntactic, hierarchy, reference and compositionality validation

properties and partially meet the attribute validation property. The dynamic verification

properties are not met since they are not the focus of that work.

NCL-Inspector [Honorato and Barbosa 2010] allows the analysis of an NCL appli-

cation. With the rules used by NCL-Inspector to inspect a document, it is possible to

meet the lexical and syntactic, hierarchy and attribute validation properties. It was not

possible to determine, if the tool can meet the other validation properties. The dynamic

verification properties are not met since they are not the focus of that work.

The related works presented generally focus on either the validation of the document

structure or the verification of the document behavior. aNaa (API for NCL Authoring

and Analysis), the analysis tool proposed in this work, focuses on both, meeting all static

validation and dynamic verification properties.

Table 5.1 summarizes the related work comparison regarding the validation and ver-

ification properties. The “-” sign represents partially meet properties and the “e” sign

represents properties embedded in the authoring tool.

5 Validation and verification properties 49

T
ab

le
5.

1:
S
u
m

m
ar

y
of

th
e

re
la

te
d

w
or

k
co

m
p
ar

is
on

R
T

-L
O

T
O

S
ca

T
H

M
B

S
N

C
L

-F
A

S
M

IL
-E

A
B

F
P

S
E

E
C

N
C

L
-v

al
id

at
or

N
C

L
-I

n
sp

ec
to

r
aN

aa

Static

L
ex

ic
al

an
d

sy
n
ta

ct
ic

e
e

X
X

X

H
ie

ra
rc

h
y

e
e

X
X

X

A
tt

ri
b
u
te

e
e

-
X

X

R
ef

er
en

ce
e

e
X

X

C
om

p
os

it
io

n
al

it
y

e
e

X
X

C
om

p
os

it
io

n
n
es

ti
n
g

e
X

E
le

m
en

t
re

u
se

X

Dynamic

R
ea

ch
ab

il
it

y
X

X
X

X
X

X

A
n
ch

or
T

er
m

in
at

io
n

X
X

X
X

X
X

X

D
o
cu

m
en

t
T

er
m

in
at

io
n

X
X

X
X

X
X

X
X

R
es

ou
rc

e
X

X
X

X
X

X

X
:

fu
ll
y

m
et

p
ro

p
er

ty
;

-
:

p
ar

ti
al

ly
m

et
p
ro

p
er

ty
;

e
:

em
b

ed
d
ed

p
ro

p
er

ty
.

5 Validation and verification properties 50

5.4 Closing remarks

The set of properties presented in this chapter came from the study of related work.

Since the related works here presented comprises different multimedia temporal models,

we believe that the set of properties proposed in this work is general enough to be applied

to other multimedia models different than NCM.

In addition, it is important to investigate if the set of properties is complete or not. It

is possible that the study of related work could not identify all document characteristics

that could create specification errors or possible undesired behaviors. This set, however,

may be enlarged as different inconsistencies are identified. In order to help the study of the

property set completeness, it is important to use those properties to analyze documents

specified in different multimedia models, which will be done as future works.

The properties here identified will be used in the document validation and verification

as will be presented in the next two chapters.

Chapter 6

NCL static semantics

The proposed static validation properties should be applied to a specific multimedia doc-

ument in order to be checked. An analysis tool should check those properties focusing on

the multimedia language to be validated, since they depend on the language syntax.

In this work, the static validation is done using model validation. To achieve that,

the multimedia language syntax to be validated is represented as a metamodel, while

the language static semantics is represented by that metamodel properties. In our case,

the language metamodel is represented as a class diagram and the metamodel properties

as OCL invariants [Warmer and Kleppe 1999]. The model to be validated, that is, the

multimedia document, is represented as an object diagram.

It is worth mentioning that OCL invariants represent the set of static validation

properties. So, if the OCL invariants hold, it is equivalent to say that the static validation

properties also hold and the document is considered valid.

As a test case, this work implemented the validation of the static properties for doc-

uments defined by the NCM model [Soares et al. 2000,Soares and Rodrigues 2005], using

the NCL language [ITU 2009]. The following sections present the validation of NCL

documents.

The remaining of this chapter is structured as follows. Section 6.1 presents an overview

of the NCL language syntax metamodel. Section 6.2 presents the OCL invariants used

for the static validation. Section 6.3 presents the representation of the document to be

validated as an object diagram and Section 6.4 presents some closing remarks.

6 NCL static semantics 52

6.1 NCL Language structure metamodel

The metamodel used for static property validation is defined based on the NCL language

structure. Since it is represented as a class diagram, each XML element of the NCL

language is represented as a class. Each class contains the same attributes of the XML el-

ement it represents. For an XML element that has child elements, the class that represents

it will have associations between that element and its children. In this way, hierarchical

relations among elements are represented, making it possible to navigate from an element

to its children and back.

NCL defines element attributes that refer to other elements. That reference is usu-

ally done by defining the attribute value equal to the referenced element id or another

attribute. In order to improve navigation over NCL elements, the metamodel structure

represents those references as associations between element classes. Listing 6.1 presents an

example of reference between XML elements and Figure 6.1 presents how those elements

are represented in the metamodel.

Listing 6.1: Example of reference between elements

1 <r eg ionBase>

2 <r e g i o n i d=”reg1 ” l e f t =”0” top=”0” width=”100%” he i g h t=”100%”/>

3 </reg ionBase>

4

5 <d e s c r i p t o rBa s e>

6 <d e s c r i p t o r i d=”desc1 ” r e g i o n=”reg1”/>

7 </d e s c r i p t o rBa s e>

Figure 6.1: Metamodel representation

Listing 6.1 presents a fragment of the NCL document example from Section 3.3.2.

That example defines a regionBase element, which has region elements as children. The

region element defines a set of attributes, which are: id, top, left, width and height.

The id attribute is a string that represents the region identification and the top, left,

6 NCL static semantics 53

width and height attributes are integers that represent the region location on the screen.

The example also defines a descriptorBase element, which has descriptor elements as

children. The descriptor element defines two attributes, id and region. The id attribute

is a string that represents the descriptor identification and the region attribute is a string

that represents the identification of the region element used by that descriptor element.

So, in this example, descriptor element “desc1” refers to region element “reg1”.

In Figure 6.1, it is possible to observe that every XML element is represented by a

class. Each element class has the same attributes as the XML element and each element

is associated to its children (see regionBase and descriptorBase). Notice that the region

attribute of the descriptor element is represented as an association between the Descriptor

and Region classes. That way, it is easy to follow element references inside a document.

Figure 6.2 presents a part of the NCL language structure metamodel (LSM) representing

the relations among elements of the NCL document head and Figure 6.3 does the same

for the NCL document body.

Figure 6.2: Structure metamodel of NCL document head

The NCL LSM here presented is used during the static validation of an NCL docu-

ment. The following section presents how static validation properties are represented as

OCL invariants.

6 NCL static semantics 54

Figure 6.3: Structure metamodel of NCL document body

6.2 Validation invariants

Static validation properties are defined as general properties. In order to be able to in-

vestigate those properties, the validation tool has to specialize those properties for the

elements in the Language Structure Metamodel (LSM). The OCL invariants used for val-

idating the document will represent the hierarchy, attribute, reference, compositionality,

composition nesting and element reuse validation properties. The remaining of this sec-

tion presents how OCL was used to represent those properties and also give invariant

examples.

The hierarchy property is represented by a set of invariants that test the required

cardinality of child elements. Notice that while testing the cardinality of the child ele-

ments, it already tests if some required child element is missing. The attribute property

is represented by a set of invariants that test if required attributes are defined. When

representing those two properties with OCL invariants, it was necessary to create a base

of OCL invariants with one invariant for each element class to be tested. Since the num-

ber of invariants is big, Listing 6.2 presents just two examples of invariants that test the

properties described above. Appendix A lists the complete set of OCL invariants.

Listing 6.2: Hierarchy and Attribute properties invariant example

1 con t e x t NCLLink i n v :

2 s e l f . b inds−>s i z e () >= 2

3

4 con t e x t NCLLink i n v :

5 s e l f . xconnecto r−>notEmpty ()

6 NCL static semantics 55

The first invariant in Listing 6.2 constrains that the Link element should have at least

two Bind elements as children. The second invariant constraints that the Link attribute

“xconnector” should be defined. Those two invariants implement hierarchy and attribute

validation properties, respectively.

The attribute validation property also tests if related attributes have the correct

values and XML element identifiers are unique. The related attribute value validation

is done with one invariant, for each pair of attributes, that tests if the values of both

attributes are related. Regarding the unique identifier, NCL defines domains into which

the element identifier must be unique. For some elements, like properties and connector

roles, their identifier must be unique among the children elements of the same parent.

For the remaining elements that have identifiers, they must be unique inside the whole

document. The unique identifier validation is done with one invariant, for each domain,

that tests if the element identifier is unique. Listing 6.3 presents an example of invariant

that tests related attributes and Listing 6.4, invariants that test if element identifiers are

unique.

Listing 6.3: Attribute relation invariant example

1 con t e x t NCLSimpleAction i n v :

2 s e l f . r epea tDe l ay−>notEmpty () i m p l i e s s e l f . r epea t−>notEmpty ()

The invariant in Listing 6.3 constrains that if the SimpleAction element defines the

“repeatDelay” attribute then the “repeat” attribute must be defined.

Listing 6.4: Unique identifier invariants

1 con t e x t NCLMedia i n v :

2 s e l f . p r o p e r t i e s−> f o r A l l (p1 : NCLProperty , p2 : NCLProperty | p1 <> p2 im p l i e s

p1 . name <> p2 . name)

3

4 con t e x t NCLCausalConnector i n v :

5 s e l f . ge tRo l e sF romCausa lConnec to r ()−> f o r A l l (r1 , r2 | r1 <> r2 im p l i e s r1 . d i f f e r (r2)))

6

7 con t e x t NCL I d en t i f i a b l eE l emen t i n v :

8 i f not s e l f . o c l I sTypeOf (NCLProperty) and s e l f . id−>notEmpty () then

9 NCL I d en t i f i a b l eE l emen t . a l l I n s t a n c e s ()−> f o r A l l (d |
10 i f d . id−>notEmpty () and d <> i then

11 d . i d . v a l u e <> s e l f . i d . v a l u e

12 e l s e

13 t r u e

14 e n d i f)

15 e l s e

16 t r u e

17 e n d i f

Listing 6.4 presents three invariants that constrains the elements Media, CausalCon-

6 NCL static semantics 56

nector and all IdentifiableElement, respectively. It is worth to notice that, in NCL LSM,

every element that has an “id” attribute is an IdentifiableElement. That is why the

unique identifier validation could be represented by just one invariant. Those invariant

states that the “name” attribute of all properties inside a Media element must be unique,

the “role” attribute of all elements inside a CausalConnector element must be unique

and that the “id” attribute of all elements that have one, inside the document, must be

unique.

The reference property is represented by a set of invariants that test if attributes

that refer to other elements refer to the correct element. For each NCL element that has

this type of attribute, one invariant will be created. Listing 6.5 presents an example of

invariant that implements the reference property.

Listing 6.5: Reference property invariant example

1 con t e x t NCLLink i n v :

2 s e l f . b i nd s . r o l e−> f o r A l l (r |
s e l f . x connec to r . ge tRo l e sF romCausa lConnec to r ()−> i n c l u d e s (r))

The invariant presented in Listing 6.5 constrains that the “role” attribute of all Bind

elements inside a Link element must be a role defined by the connector referenced by the

“xconnector” attribute of the link.

The compositionality property is represented by a set of invariants that test if at-

tributes that must refer to other elements inside the same composition make that reference

correctly. For each NCL element that has that type of attribute, one invariant will be cre-

ated. Listing 6.6 presents an example of invariant that implements the compositionality

property.

Listing 6.6: Compositionality property invariant example

1 con t e x t NCLPort i n v :

2 i f s e l f . parentBody−>notEmpty () then

3 s e l f . parentBody . nodes−>e x i s t s (a | a = s e l f . component)

4 e l s e

5 s e l f . pa r en tCon t ex t . nodes−>e x i s t s (a | a = s e l f . component)

6 e n d i f

The invariant presented in Listing 6.6 constrains that the Port element must define

the “component” attribute referring to a node element inside the composition it is defined.

Notice that the invariant tests if the node referred by the “component” attribute is a child

element of its parent, which can be a Body or a Context element.

The last two properties, composition nesting and element reuse properties, are rep-

6 NCL static semantics 57

resented by a set of invariants that walks through the elements associations, testing if a

composition nests itself or if an element reuses itself. Listing 6.7 presents an example of

invariant for both properties.

Listing 6.7: Composition nesting and element reuse properties invariant example

1 con t e x t NCLSwitch i n v :

2 s e l f . nodes−> f o r A l l (n : NCLNode | n . l o op s ())

3

4 con t e x t NCLSwitch i n v :

5 s e l f . r e f e r−> f o r A l l (s : NCLSwitch | s . oc lAsType (NCLNode) . r e f e r L o o p s ()))

The first invariant in Listing 6.7 constrains that the Switch element must not nest

itself. This invariant walks through the association among a Switch element and its parent

element and from it to its parent, testing if the Switch is one of those parent elements.

This test is done by the loops() operation. Listing 6.8 presents the loops() operation

definition.

Listing 6.8: loops() operation definition

1 con t e x t NCLNode : : l o op s () : Boolean body :

2 i f s e l f . hasParent () then

3 s e l f . oc lAsType (NCLElement) . g e tPa r en t () . v e r i f y L o o p (s e l f)

4 e l s e

5 t r u e

6 e n d i f

7

8 con t e x t NCLElement : : v e r i f y L o o p (node : NCLElement) : Boolean body :

9 i f s e l f = node then

10 f a l s e

11 e l s e

12 i f s e l f . hasParent () then

13 s e l f . g e tPa r en t () . v e r i f y L o o p (s e l f)

14 e l s e

15 t r u e

16 e n d i f

17 e n d i f

The second invariant in Listing 6.7 constrains that the Switch element must not refer

to itself. This invariant walks through the association among a Switch element and its

referred element and from it to its referred element and so on, testing if it is one of those

referred elements. This test is done by the referLoops() operation. Listing 6.9 presents

the referLoops() operation definition.

Listing 6.9: referLoops() operation definition

1 con t e x t NCLNode : : r e f e r L o o p s () : Boolean body :

2 i f s e l f . oc lAsType (NCLElement) . h a sRe f e r () then

3 s e l f . oc lAsType (NCLElement) . g e tRe f e r () . v e r i f y R e f e r L o o p (s e l f)

6 NCL static semantics 58

4 e l s e

5 t r u e

6 e n d i f

7

8

9 con t e x t NCLElement : : v e r i f y R e f e r L o o p (node : NCLElement) : Boolean body :

10 i f s e l f = node then

11 f a l s e

12 e l s e

13 i f s e l f . oc lAsType (NCLElement) . h a sRe f e r () then

14 s e l f . oc lAsType (NCLElement) . g e tRe f e r () . v e r i f y L o o p (s e l f)

15 e l s e

16 t r u e

17 e n d i f

18 e n d i f

Notice that the only validation property that is not represented by OCL invariants is

the lexical and syntactic property. Since the OCL invariants are applied over an object

diagram, this validation should be done before the transformation of a document into an

object diagram, as will be presented in Chapter 8.

This section presented a few invariants used for the model validation, Appendix A

presents the complete list of invariants. The following section presents the representation

of an NCL document as an object diagram.

6.3 Document representation

In order to validate an NCL document, it must be represented as an object diagram.

This diagram represents an instance of the NCL LSM. Each element in the document

is represented by an object. This object defines attribute values the element has and is

associated with the objects that represent the other document elements it is related to

(child/parent relation or reference).

Regarding the example presented in Section 3.3.2, the object diagram that represents

that document should present objects representing the document elements (see Listings

3.7, 3.8 and 3.9). These objects define attribute values based on the XML element at-

tribute values and associations according to elements hierarchy and reference between

elements. Figure 6.4 presents the representation of that document head as an object

diagram and Figure 6.5 presents the representation of that document body.

The object diagrams presented in Figures 6.4 and 6.5 show the objects that represent

NCL document elements and their attributes. Associations representing elements hierar-

6 NCL static semantics 59

Figure 6.4: Sample document head representation as an object diagram

Figure 6.5: Sample document body representation as an object diagram

chy are shown without roles, while associations representing element references show roles

representing the element attributes that make references.

The sample document presented satisfies all static validation properties. Taking as

6 NCL static semantics 60

example the invariants presented in Section 6.2, the following paragraphs give a brief

explanation about the invariants validation.

The invariants shown in Listing 6.2 hold since both links L1 and L2 have two or more

bind elements and their “xconnector” attributes are not empty.

The invariant shown in Listing 6.3 holds since both NCLSimpleAction elements (ob-

jects el17 and el22) neither defines the “repeat” nor the “repeatDelay” attributes.

The invariants shown in Listing 6.4 also hold. The first invariant tests if the property

“name” attribute is unique inside a media. Property A1 satisfies it. The second invariant

tests if roles inside a connector have different names. This invariant holds since, for both

connectors onBeginSet and onEndStart, their roles are different, onBegin and set for the

first connector and onEnd and start for the second one. Finally, the third invariant tests

if all elements that define an “id” attribute have an unique id. It is possible to observe

that the “id” attribute of objects el01, el03, el05, el06, el08, el09, el11, el12, el14,

el19, el24, el25, el26, el27, el28, el31, el32, el33 and el36 are different.

The invariant shown in Listing 6.5 holds since for both links, the NCLBind elements

(objects el34 and el35 for link L1 and el37 and el38 for link L2) refer to roles defined

by the connector referred by the link “xconnector” attribute.

The invariant shown in Listing 6.6 holds since port P1 refers to element N1 and both

are direct children of the document body.

The invariants shown in Listing 6.7 hold since switch C2 neither nests itself nor refers

to itself creating a nesting loop or a refer loop, respectively.

Suppose we do the following changes to the sample document:

• Object el24 “id” attribute changes to r1 and the component association is changed

to object el31;

• Object el35 changes its association representing its parent link from link L1 to link

L2.

Figure 6.6 presents the sample document body with those changes. Changed objects

are highlighted in red.

Regarding the changed document, the first invariant in Listing 6.2 does not hold since

link L1 does not have two or more bind elements. The third invariant in Listing 6.4 does

not hold anymore since the “id” attribute of objects el05 and el24 are not different.

6 NCL static semantics 61

Figure 6.6: Sample document body representation with error

The invariant shown in Listing 6.5 does not hold since, for link L2, the NCLBind element

represented by object el35 refers to a role not defined by connector onEndStart. The

invariant shown in Listing 6.6 does not hold since port P1 (changed to r1) refers to

element N3 that is not a direct children of the document body.

6.4 Closing remarks

This chapter presented the metamodel that represents the NCL language syntax. It

also presented the representation of the validation properties as OCL invariants and the

representation of the document to be validated as an object diagram.

The next chapter proposes SHM (Simple Hypermedia Model), which is used to rep-

resent a document behavioral definition, and the representation of the set of dynamic

verification properties as a set of LTL formulas that can be verified over the transition

system induced by SHM.

API aNaa implements the validation here presented as will be seen in Chapter 8.

Chapter 7

Simple Hypermedia Model dynamic
semantics

Several multimedia document models [Buchanan and Zellweger 2005,W3C 2008b,Na and

Furuta 2001,Soares et al. 2000,Boll 2001] that present different approaches for specifying

a temporal scenario can be found in the literature. From a formal point of view, a tem-

poral scenario represents real time constraints among multimedia document components.

Although these models provide different primitives for specifying a temporal scenario,

they follow common concepts to multimedia systems. In this chapter, we formally define

a generic multimedia model expressive enough to represent the properties we have identi-

fied in Chapter 5. It presents a reduced set of entities, giving a simplified representation of

a multimedia document. The model proposed here models multimedia documents, whose

behavior is not time dependent.

Section 7.1 highlights basic concepts of multimedia systems recalling important def-

initions presented in Chapter 3. Section 7.2 describes the proposed generic multimedia

model named Simple Hypermedia Model (SHM). Section 7.3 discusses the representation

of a document as a transition system. Section 7.4 presents how the dynamic verification

properties are expressed as LTL [Pnueli 1977] formulas to be verified over a transition

system to analyze a multimedia document and Section 7.5 presents some closing remarks.

7.1 Basic concepts

This section recalls important concepts presented on Chapter 3. It presents common

characteristics of multimedia document models. Those concepts are based on the NCM

model [Soares et al. 2000], presented in Section 3.3, which is event-based and expressive

enough to represent those common characteristics.

7 Simple Hypermedia Model dynamic semantics 63

A multimedia document describes a temporal scenario in terms of nodes and links.

Nodes represent media objects and links relate nodes, defining an order for their presen-

tation, which is based on event occurrences, like user interaction or other events such as

node presentation and attribute value changes.

A node can be a content node or a composite node. A content node represents a media

object, while a composite node represents a set of nodes. Some multimedia authoring

models support composite nodes, but not all of them.

A content node has a set of interface points called anchors, which can be content

anchors or attribute anchors. Content anchors represent a subpart of the node content,

possibly the whole node content. Attribute anchors represent a node attribute and its

value.

Composite nodes can be context nodes or switch nodes. A context node is used to

logically structure the multimedia document. It contains a set of component nodes and

a set of links. It has a set of interface points, which can be attribute anchors or ports.

A port represents a mapping to a component node or a component node interface point.

A switch node contains a set of nodes and also has ports, mapping to a component node

or a component node interface point. A switch node, however, defines binds relating a

condition to a component node. That way only the component node whose associated

condition is evaluated as true is presented when the switch node is presented.

Definition 1 A node defines interface points. Content node interface points are called

anchors. Composite node interface points can be ports and/or attribute anchors.

The presentation of content nodes follows the presentation characteristics defined in

the document, like screen position, sound level, etc. Those characteristics are defined by

descriptors. Descriptors are defined as in NCM and the association between a node and

a descriptor follows the conceptual model (see Figure 3.4).

A multimedia link may relate several source and target nodes. It defines a condition

related to each source node and how conditions are combined to create a single link

activation condition. A condition may represent an event state transition, a test over

a node, or anchor, state or a test over an attribute value. Regarding target nodes, a

multimedia link defines what will happen with them once the link is activated.

A multimedia event has a state, so its behavior follows a state machine. This behavior

follows the generic event state machine defined by NCM, presented in Figure 7.1.

7 Simple Hypermedia Model dynamic semantics 64

paused

abort, stop

start

resume

pause

occurringsleeping

abort, stop

Figure 7.1: NCM event state machine

Definition 2 The state of an event, or event state, is the current state of an event in its

state machine. The possible event states are: sleeping, occurring and paused.

In the cases where the multimedia authoring model, used by the document to be

verified, defines composite nodes, it defines a node perspective giving the composition

nesting. Since composite nodes can be nested in any depth, a node perspective is the

path from the outermost composite node to any node in that path, as defined by NCM

semantics.

7.2 Simple Hypermedia Model

The generic multimedia model proposed in this work is based on multimedia events [Pérez-

Luque and Little 1996,Blakowski and Steinmetz 1996]. A multimedia event is an occur-

rence in time with a duration, a state and a type. For example, a user selection is

represented as a selection-type event, a media object presentation is represented as a

presentation-type event and a attribute value change is represented as an attribution-

type event. Other types of events may be defined depending on the multimedia authoring

language.

Our model, called Simple Hypermedia Model (SHM) is based on the NCM model

[Soares and Rodrigues 2005], supporting the concepts presented in Section 7.1 and is used

for the verification of the properties defined in Section 5.2. It represents a multimedia

document formalizing the concepts of anchors, links and events. SHM supports three

types of events: presentation, selection and attribution.

A multimedia document, using the SHM formalization, is represented as a set of

anchors (A) and links (L) and has a set of actions (Ia) that are executed as the document

begins.

7 Simple Hypermedia Model dynamic semantics 65

D = (A,L, Ia)

Once a document is represented as a set of anchors, the document state is given by

the state of all document anchors.

An anchor may be an attribute anchor or a content anchor. An attribute anchor has

an identification, a value and the state of the attribution event related to it. A content

anchor has an identification and the states of the presentation and selection events related

to it.

A = Ac ∪ Aa
Aa ⊆ Aid× value× Es
Ac ⊆ Aid× Es× Es

(7.1)

In Equations 7.1, Aa represents the set of attribute anchors and Ac the set of content

anchors. Aid represents the set of anchor identifications and Es the set of multimedia

event states. The anchor identification is formed by the anchor “id” attribute (in the

multimedia document), its parent node perspective or the parent node “id” attribute and

its parent node descriptor, if defined.

Following the state machine presented in Figure 7.1, the set of multimedia event states

Es and the set of multimedia event transitions Et is defined as follows.

Es = {occurring, paused, sleeping} (7.2)

Et = {abort, pause, resume, start, stop, ε} (7.3)

A multimedia event transition, therefore, is given by Equation (7.4).

→transition⊆ Es× Et× Es (7.4)

SHM multimedia event transitions are presented as follows. Notice that transition ε

represents the maintenance of the event state. It will be used when modeling the document

state change, which will be presented later in this section.

7 Simple Hypermedia Model dynamic semantics 66

e
ε−→transition e

occurring
pause−−−→transition paused

occurring
stop−−→transition sleeping

occurring
abort−−−→transition sleeping

paused
resume−−−−→transition occurring

paused
stop−−→transition sleeping

paused
abort−−−→transition sleeping

sleeping
start−−→transition occurring,

e
et−→transition e , e ∈ Es, et ∈ Et otherwise

Once the document execution begins, a set of initial actions are executed, changing the

state of anchors of the document nodes. An initial action may have associated conditions,

so the actions whose conditions hold are executed.

Ia = A× Et×Bool

The general form of elements of Ia is described by (an, etn) if Pj(al) ∧ . . . ∧ Pk(ar)
where ai ∈ A, eti ∈ Et and P (ai) represent a condition, defining a test over an anchor

and returning a boolean value.

A link has conditions and actions. Conditions must be satisfied in order to activate

the link and actions are executed as the link is active, modifying the document state. A

link condition is triggered by multimedia event transitions related to its source anchors

and may define tests over anchor states or values. A link action defines a multimedia

event transition that will be induced over a multimedia event state related to its target

anchor.

L = Set{A,Et} × Set{A,Et} ×Bool (7.5)

In Equation 7.5, (A,Et) represents the test of the occurrence of a multimedia event

transition in the source anchor event state. In the second projection, (A,Et) represents

a multimedia event transition in the target anchor event state. Tests over anchor states

or values are represented as the link’s predicate (Bool in third projection).

Definition 3 A link is referred as enabled over a set of anchors A when its first projection

is equal to A. That is, the link conditions are satisfied.

7 Simple Hypermedia Model dynamic semantics 67

The general form of elements of L is described by {(a1, et1), . . ., (ak, etk)} → {(al, etl),
. . ., (an, etn)} if Pm(al) ∧ . . . ∧ Ps(ar) where ai ∈ A and eti ∈ Et.

Taking as example link L1, in the sample multimedia document presented in Listings

3.8 and 3.9, its SHM representation is given as follows.

(< aN1 , sleeping, e1 >, start)→ (< aA1 , “yes
′′, sleeping >, start)

The →transition relation presented in Equation 7.4 represents a transition in the mul-

timedia state machine presented in Figure 7.1. In a link, that transition is applied to an

event related to an anchor. A transition applied to an event related to an anchor is called

an event occurrence.

Definition 4 An event occurrence is the occurrence of a transition in the state of a

multimedia event related to an anchor.

An event occurrence is formalized by Equations (7.6) and (7.7). In the equations,

index P represents presentation, S selection and A attribution related event states or

transitions.

eP
etP−−→transition e

′
P eS

etS−−→transition e
′
S

< aid, eP , eS >
etP ,etS−−−−→event< aid, e′P , e

′
S >

,

etP , etS ∈ Et
eP , e

′
P , eS, e

′
S ∈ Es

aid ∈ Aid
(7.6)

eA
etA−−→transition e

′
A

< aid, value, eA >
etA−−→event< aid, value, e′A >

,

etA ∈ Et
eA, e

′
A ∈ Es

aid ∈ Aid

(7.7)

An event occurrence is considered natural when it occurs independently of the links

specified in the multimedia document. Examples of natural event occurrences are user

interaction and the anchor presentation end when its duration is reached. A natural event

occurrence follows the same formalization as →event, where tP ∈ {stop, ε}, tS ∈ Et and

tA ∈ {stop, ε}.

Definition 5 A natural event occurrence is an event occurrence that happens indepen-

dently of the links specified in the multimedia document. A natural event occurrence is

represented by
etP ,etS ,etA−−−−−−→natural where etP ∈ {stop, ε}, etS ∈ Et and etA ∈ {stop, ε}.

7 Simple Hypermedia Model dynamic semantics 68

A relation of type→natural represents a modification of an anchor state, which is given

by the occurrence of a multimedia event transition in the anchor event states.

Once a natural event occurrence happens, all links enabled by that event occurrence

are triggered, changing the state of document anchors, possibly the same source anchor.

That behavior is formalized by Equation (7.8).

etP 6= ε ∨ etS 6= ε ∨ etA 6= ε S ′1 ⊆ S1, alx ∈ S ′1, ary ∈ S1 ∪ S2

ai ∈ S1 m ≤ |S ′1|, k ≤ |S1 ∪ S2|
1 ≤ x ≤ m, 1 ≤ y ≤ k

ai
etP ,etS ,etA−−−−−−→natural a

′
i {(al1 , etl1), . . . , (alm , etlm)} →∗L

{(ar1 , etr1), . . . , (ark , etrk)} if etl1 6= ε ∧ . . . ∧ etlm 6= ε

S1 ∪ S2 →SHM ({a′1, . . . , a′n} ∪ S2)/{ar1 , . . . , ark}
(7.8)

where / is the overriding operation on anchor sets defined as follows.

∅/S1 = S1

({ai} ∪ S1)/S2 = {ai} ∪ (S1/S2) ifai 6∈ S2

({ai} ∪ S1)/({a′i} ∪ S2) = {a′i} ∪ (S1/S2)

(7.9)

On the formalization above, S1 represents the anchors that will suffer a natural event

occurrence and S2 represents the remaining anchors of the document. The anchors ai ∈ S1

will have at least one of its multimedia event state changed, since at least one of the

multimedia event transitions etP , etS and etA should not be equal to ε.

Once the natural event occurrence happens, links enabled over a subset of the anchors

that suffered the natural event occurrence (S ′1) will be triggered, changing the state of

one or more anchors in the document. It is worth to notice that once a link changes the

state of document anchors, it may enable other document links, which will be triggered.

The document link evaluation continues until no other document link is enabled.

After a→SHM relation, the document state will be given by the state of the document

anchors after the natural event occurrence, taking into consideration the anchors affected

by document links.

Regarding the SHM formalization, the sample multimedia document presented in

Listings 3.8 and 3.9 is described by Equation 7.10 where e1, e2 ∈ Es.

7 Simple Hypermedia Model dynamic semantics 69

doc = (Adoc, Ldoc)

Adoc = {aN1 , aA1 , aN3 , aN4}
Ldoc = {((< aN1 , sleeping, e1 >, start)→ (< aA1 , “yes

′′, sleeping >, start)),

((< aN1 , occurring, e1 >, stop)→ (< aN3 , sleeping, e2 >, start) if Pr1(aA1)),

((< aN1 , occurring, e1 >, stop)→ (< aN4 , sleeping, e2 >, start) if Pr2(aA1))}
(7.10)

The anchor identifications are described by Equation 7.11.

aN1 = N1 : C1, N1 : desc1

aA1 = A1 : C1, N2

aN3 = N3 : C1, C2, N3 : desc2

aN4 = N4 : C1, C2, N4 : desc2

(7.11)

The link conditions are described by Equation 7.12.

Pr1(< aA1 , v, e1 >) = true if v = “yes′′

Pr2(< aA1 , v, e1 >) = true if v = “no′′
(7.12)

Notice, from equation 7.11 that the all content anchor of nodes N1, N3 and N4 have

the same id as the parent node. Also, from Equation 7.12, link L2 was converted to two

links having as target each one of the switch C2 component anchors and the switch rules

were represented as link additional conditions.

7.3 SHM transition system

The behavior of an SHM document is given by the transition system associated to it.

This section presents that representation of an SHM document as a transition system.

The configuration of the transition system MSHM associated to an SHM document is

comprised by a set of anchors Set{A}.

SSHM = Set{A}
→SHM ⊆ SSHM × SSHM

Every state of the transition system (SSHM) represents the state of the whole multi-

media document, which is given by the state of the anchors that compose the document.

7 Simple Hypermedia Model dynamic semantics 70

Every transition represents a modification in that document state. A transition in the

document state is given by →SHM relations.

Regarding the SHM formalization of the sample multimedia document presented in

Equation 7.10, the transition system induced by the document is presented in Figure 7.2.

In the figure, rectangles represent the transition system states (s0 until s4). Dark rectan-

gles s0 and s4 represent the initial and final state of the transition system, respectively.

<aN1
, sleeping, sleeping>

<aA1
, null, sleeping>

<aN3
, sleeping, sleeping>

<aN4
, sleeping, sleeping>

s0

s1

s2

s3

s4

<aN1
, occurring, sleeping>

<aA1
, "yes", occurring>

<aN3
, sleeping, sleeping>

<aN4
, sleeping, sleeping>

<aN1
, occurring, sleeping>

<aA1
, "yes", sleeping>

<aN3
, sleeping, sleeping>

<aN4
, sleeping, sleeping>

<aN1
, sleeping, sleeping>

<aA1
, "yes", sleeping>

<aN3
, occurring, sleeping>

<aN4
, sleeping, sleeping>

<aN1
, sleeping, sleeping>

<aA1
, "yes", sleeping>

<aN3
, sleeping, sleeping>

<aN4
, sleeping, sleeping>

Figure 7.2: Sample document induced transition system

State s0 represents the document initial state. At that moment all document anchors

have their associated event states equal to “sleeping”. Attribute anchor aA1 does not

have a value at this moment. When the document execution begins anchor aN1 starts its

presentation and, as defined by link L1, anchor aA1 have its value set to “yes” (state s1).

7 Simple Hypermedia Model dynamic semantics 71

After anchor aA1 value is set, its attribution event state changes to “sleeping” (state s2).

Once the anchor aN1 duration is reached, it stops its presentation and, as defined by link

L2, anchor aN3 presentation starts (state s3). Once the anchor aN3 duration is reached, it

stops its presentation and the document execution ends (state s4).

The following section presents how the dynamic properties defined in Chapter 5 are

represented as LTL formulas and how they are applied over the sample document induced

transition system.

7.4 Verification of SHM properties

The dynamic verification is done over the generic multimedia model presented in Section

7.2 (SHM). The verification is achieved by transforming SHM into a transition system.

The set of dynamic verification properties is represented as a set of LTL formulas that can

be verified over the transition system. The automatic investigation of transition system

properties is done by a model checker [Clarke et al. 2000].

Let a1 ∈ A be the anchor that we want to reason about. The reachability verification

property is represented as an LTL formula that investigates if there is a path π and a

state s ∈ π, such that, a1 in s presents the state of at least one event related to it equals

to occurring. Then it is possible to determine if an anchor event will be executed during

the document execution. An anchor event is considered to be executed, when its state

changes to occurring. The LTL formula representing the reachability property is presented

by Equation (7.13).

F pre-occurring(Aid) ∨ F att-occurring(Aid) (7.13)

In Equations 7.13, 7.14, 7.15 and 7.16, F and G represents the future and global

operators, respectively (see Section 4.3.1). The functions that test the anchor event

state are formed by a prefix representing the event type (presentation, attribution and

selection) and the state to be tested. For example, function pre-occurring(Aid) tests if the

presentation state of anchor Aid is equal to occurring.

The anchor termination verification property is represented as an LTL formula that

investigates if there is a path π and states si, sj ∈ π, i < j, such that, a1 in si has an

event state equal to occurring and in sj has the state of the same event equal to sleeping.

In this way it is possible to determine that once an anchor event is executed, it will stop

7 Simple Hypermedia Model dynamic semantics 72

sometime afterwards. The LTL formula representing the anchor termination property is

presented by Equation (7.14).

(GF pre-occurring(Aid) → GF pre-sleeping(Aid)) ∧
(GF att-occurring(Aid) → GF att-sleeping(Aid)) ∧
(GF sel-occurring(Aid) → GF sel-sleeping(Aid))

(7.14)

The document termination verification property is represented as an LTL formula

that investigates if there is a path π and a state s ∈ π, such that, ∀ ai ∈ A, the state of

the events in ai is sleeping and remains that way for every state in π after s. The LTL

formula representing the document termination property is given by Equation (7.15),

where function doc-sleeping tests if the document reached its end.

GF doc-sleeping (7.15)

It is worth noticing that a multimedia document will present a loop without an exit

condition, for example a user interaction, if the final state, where every anchor has its

state equal to sleeping, is unreachable. Since the termination verification is undecidable,

an ending condition for M with a document maximum duration may be defined.

Finally the resource verification property is represented as an LTL formula that in-

vestigates if there is a path π and a state s ∈ π, such that, ai and aj in s have the state of

events related to ai and aj equal to occurring. Where ai and aj represent the anchors that

use a same resource, for example, a same screen space at a specific presentation device.

The LTL formula representing the resource property is presented by Equation (7.16).

G (¬ pre-occurring(Aid1) ∧ ¬ pre-occurring(Aid2)) (7.16)

Regarding the sample multimedia document induced transition system presented in

Figure 7.2, the following paragraphs explain the application of the LTL formulas previ-

ously presented.

The transition system example of Figure 7.2 defines a path π = {s0, s1, s2, s3, s4} over

which the properties are verified.

The reachability verification property holds for anchors aN1 , aA1 and aN3 , since there

is a state for aN1 (s1), aA1 (s1) and aN3 (s3), where the anchor presentation state (for

aN1 and aN3) and attribution state (for aA1) is equal to occurring. The property does not

7 Simple Hypermedia Model dynamic semantics 73

hold for anchor aN4 , since there is no state where the anchor presentation state is equal

to occurring.

The anchor termination property holds for all anchors, since in the states s2, s3 and

s4, aA1 , aN1 and aN3 have their event states equal to sleeping, respectively. Since anchor

aN4 does not change its state in path π, the property also holds.

The document termination property holds, since in s4 every anchor has its event state

equal to sleeping and remains that way.

The resource property also holds since both anchors that use a same resource (aN3

and aN4) are not executed at the same time.

7.5 Closing remarks

This chapter presented the SHM model used for representing the verification properties

presented in Chapter 5. That model is based in common characteristics of multimedia

document models and represents a multimedia document as anchors, events and links.

SHM definition induces a transition system. The set of dynamic verification properties is

represented as a set of LTL formulas that can be verified over the transition system. The

automatic investigation of transition system properties is done by a model checker.

Although SHM was based on the NCM model, some characteristics of NCM were

not comprised in this version of SHM, such as the representation of link delays and

the complete representation of an event, representing the occurrences and repetitions

concepts [Soares and Rodrigues 2005]. Those characteristics are important and will be

addressed as future work.

The next chapter presents the implementation of the verification here presented in

the API aNaa.

Chapter 8

API for NCL Authoring and Analysis

This chapter presents aNaa (API for NCL Authoring and Analysis), the test case tool

that implements the analysis proposed in this work for multimedia documents defined by

the NCM model [Soares et al. 2000], using the NCL language [ITU 2009]. aNaa can be

used as an analysis tool, receiving NCL documents as input and returning error messages,

or as the basis for developing NCL authoring tools with analysis capabilities.

To achieve the analysis here presented, aNaa uses some supporting tools. Those

tools are used in the validation of NCL document structure and the verification of NCL

document behavior. Those supporting tools will be presented in Section 8.1.

aNaa uses the aNa API as it basis, which represents NCL 3.0 documents. The aNa API

implementation is shown in Section 8.2. Finally the aNaa implementation is presented in

Section 8.3. Section 8.4 concludes this chapter with some remarks.

8.1 aNaa supporting tools

aNaa implements both methods presented in this work for an NCL document analysis,

which are: the validation of an NCL document structure and the verification of an NCL

document behavior. This section presents the supporting tools used to achieve that anal-

ysis. Figure 8.1 presents an overview of aNaa, regarding the use of external tools.

aNaa

OCL validation SHM verification

TCLib MaudeSHM

Figure 8.1: aNaa external tools

8 API for NCL Authoring and Analysis 75

To validate an NCL document structure, aNaa uses the TCLib tool [Braga et al.

2011]. To validate an NCL document behavior, aNaa uses both the SHM model and the

Maude tool. It is worth noticing that the validation and the verification implementations

are independent from each other. Further details of the tools will be presented in the

following sections. Section 8.3 will present the API architecture in more details.

8.1.1 Supporting tool for OCL validation

aNaa validates NCL document structure. This validation is achieved using the TCLib

tool [Braga et al. 2011]. This tool receives a metamodel and a set of invariants defining

properties that every instance of that metamodel should satisfy. When the tool receives an

instance of that metamodel, it investigates, for that instance, if the invariants hold. TCLib

represents the metamodel and its instance as class and object diagrams respectively.

Invariants are described with OCL (Object Constraint Language). Figure 8.2 presents an

overview of TCLib.

error
report

TCLib core

OCL invariants for
Static Validation

properties

context RegionBase inv:
 self.regions->notEmpty()

Class Diagram

Object Diagram

LSM

Figure 8.2: TCLib tool overview

TCLib provides operations to create a class diagram, that is, create classes, attributes,

associations, generalizations, etc; to create an object diagram, that is, create objects,

object attribute values, object associations, etc; to create a set of desired properties to

be validated and the validation of those properties. TCLib is implemented based on a

Transformation Contract project pattern [Braga et al. 2011]. This pattern is used in

Model-driven Development to guarantee the consistency of a model before and after its

transformation among different domains. During the transformation, consistency checking

8 API for NCL Authoring and Analysis 76

is done using OCL invariants.

Although TCLib was designed for consistency checking in a model transformation, it

architecture allows its use just for model validation. aNaa only uses the tool validation

capabilities.

aNaa creates inside TCLib the NCL Language Structure Metamodel (LSM), pre-

sented in Section 6.1, and OCL invariants that represent the static validation properties,

presented in Section 5.1. It also represents the document being authored as an object

diagram, which is used as input for TCLib to test the invariants. Once one invariant fails,

TCLib returns the invariant that was not respected and the object that did not respect

it. That way aNaa can return to the author error messages that clearly indicate the NCL

element and the specification problem related to it.

8.1.2 Supporting tool for SHM verification

aNaa verifies the behavior of NCL documents. The verification is done over the SHM

model as presented in Chapter 7. An NCL document is represented as an SHM document.

The automatic investigation of transition system properties is done by a model checker

[Clarke et al. 2000]. The properties to be verified, as well as the SHM representation of

the multimedia document to be verified and the investigation of the temporal properties

uses Maude [Clavel et al. 2007].

As presented in Chapter 7, an SHM document has an associated transition system

TSSHM . Maude is used to represent an SHM document as a rewrite theory RSHM and,

therefore, as a transition system induced by RSHM . This section presents the Maude

representation of SHM documents.

SHM represents a document D in terms of anchors, links and initial actions D =

(A,L, Ia).

Maude represents the sort of anchors A as the anchor sort. An element of sort anchor

is formed by the anchor identification - which is the anchor id, perspective and descriptor

- and a set of attributes that represent information related to it. Listing 8.1 presents the

representation of anchor identification (sort AnchorIdentInfo), Listing 8.2 presents the

definition of an attribute set and Listing 8.3 presents the representation of an anchor.

Listing 8.1: Maude anchor identification representation

1 s o r t Ancho r I d en t I n f o .

2 s o r t s Anchor Id Ancho rPe r s p e c t i v e Ancho rDe s c r i p t o r .

8 API for NCL Authoring and Analysis 77

3

4 s u b s o r t S t r i n g < Anchor Id Ancho rPe r s p e c t i v e Ancho rDe s c r i p t o r .

5

6 op (:) : Anchor Id Ancho rPe r s p e c t i v e −> Ancho r I d e n t I n f o .

7 op (: :) : Anchor Id Ancho rPe r s p e c t i v e Ancho rDe s c r i p t o r −> Ancho r I d e n t I n f o .

Listing 8.2: Maude attribute set

1 s o r t s A t t r i b u t e A t t r i b u t e S e t .

2

3 s u b s o r t A t t r i b u t e < A t t r i b u t e S e t .

4

5 op none : −> A t t r i b u t e S e t [c t o r] .

6 op , : A t t r i b u t e S e t A t t r i b u t e S e t −> A t t r i b u t e S e t [c t o r a s s o c comm id : none] .

Listing 8.3: Maude anchor representation

1 s o r t Anchor .

2

3 ops de fConten t d e f A t t r i b u t e : −> A t t r i b u t e S e t .

4

5 op < | > : An cho r I d e n t I n f o A t t r i b u t e S e t −> Anchor [c t o r] .

Operations defContent and defAttribute in Listing 8.3 represent a syntactic sugar

for the construction of content anchors and attribute anchors, respectively. Listing 8.4

presents the anchor attributes defined by Maude and the defContent and defAttribute

values. The list is divided by the anchor type.

Listing 8.4: Maude anchor attribute list

1 ∗∗∗ a t t r i b u t e anchor a t t r i b u t e s

2 op at t−v a l u e = : EventVa lue −> A t t r i b u t e [c t o r] .

3 op at t−s t a t e = : Even tS ta t e −> A t t r i b u t e [c t o r] .

4

5 ∗∗∗ con t en t anchor a t t r i b u t e s

6 op pre−s t a t e = : Even tS ta t e −> A t t r i b u t e [c t o r] .

7 op pre−du r a t i o n = : EventDura t i on −> A t t r i b u t e [c t o r] .

8 op s e l−s t a t e = : Even tS ta t e −> A t t r i b u t e [c t o r] .

9 op s e l−pre s sedKey = : EventKey −> A t t r i b u t e [c t o r] .

10

11 ∗∗∗ d e f a u l t a t t r i b u t e v a l u e s

12 eq de fConten t = pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey .

13 eq d e f A t t r i b u t e = att−v a l u e = ”noVal ” , a t t−s t a t e = s l e e p i n g .

An anchor has the state of the events associated to it (see Equation 7.1). The sort

EventState represents the set of multimedia event states Es in Maude. Listing 8.5

presents the definition of sort EventState.

Listing 8.5: Maude event state representation

8 API for NCL Authoring and Analysis 78

1 s o r t s S t and i ngS ta t e T r a n s i e n t S t a t e Even tS ta t e .

2 s o r t s I n i t S t a n d i n g S t a t e EndStand ingState I n i t T r a n s i e n t S t a t e EndTran s i en tS ta t e

I n i t E v e n t S t a t e EndEventState .

3 s o r t EventType EventDura t i on EventVa lue EventKey .

4

5 s u b s o r t I n i t S t a n d i n g S t a t e EndStand ingState < Stand i ngS ta t e .

6 s u b s o r t I n i t T r a n s i e n t S t a t e EndTran s i en tS ta t e < Tran s i e n t S t a t e .

7 s u b s o r t S t and i ngS ta t e T r a n s i e n t S t a t e < EventS ta t e .

8 s u b s o r t I n i t S t a n d i n g S t a t e I n i t T r a n s i e n t S t a t e < I n i t E v e n t S t a t e .

9 s u b s o r t EndStand ingState EndTran s i en tS ta t e < EndEventState .

10 s u b s o r t Nat < EventDura t i on .

11 s u b s o r t S t r i n g < EventVa lue .

12

13 ops p r e s e n t a t i o n s e l e c t i o n a t t r i b u t i o n : −> EventType [c t o r] .

14

15 op s l e e p i n g : −> EndStand ingState [c t o r] .

16 ops o c c u r r i n g paused : −> I n i t S t a n d i n g S t a t e [c t o r] .

17 ops s t opp i ng a b o r t i n g : −> EndTran s i en tS ta t e [c t o r] .

18 ops s t a r t i n g paus i ng resuming : −> I n i t T r a n s i e n t S t a t e [c t o r] .

19

20 ops noKey RED GREEN BLUE YELLOW OK : −> EventKey .

Since it is necessary to be able to model and reason over the occurrence of event tran-

sitions (see Figure 7.1), they were represented as event states in the Maude specification.

The set Es of event states was extended with new states representing those transitions.

Figure 8.3 presents the extended generic event state machine. SHM event states are the

green ones and Maude transient states are the yellow ones.

sleeping

aborting

stopping

resuming

pausing

starting

stopping

occurring

paused

aborting

Figure 8.3: Maude generic event state machine

Maude defines sort EventState as the sort formed by the union of the event states

defined by SHM - sort StandingState - and the states that represent transitions - sort

TransientState. Maude also defines sorts EventType and EventKey to represent the

8 API for NCL Authoring and Analysis 79

types of events that may be related to anchors and a set of keys related to user selection,

respectively. Notice that sorts EventState, StandingState and TransientState have

subsorts to help identifying the state. That characteristic makes easy the definition of

equations that change the document state.

SHM transitions model a modification of an event state. Sort StateTransition rep-

resents the sort of transitions Et in Maude. Listing 8.6 presents the definition of sort

StateTransition.

Listing 8.6: Maude event state transition representation

1 s o r t S t a t eT r a n s i t i o n .

2

3 ops s t a r t s top pause resume abo r t : −> S t a t eT r a n s i t i o n [c t o r] .

The event relation (see Equations 7.6 and 7.7) represents the occurrence of a transition

in the state of a specific event of an anchor. Maude represents an event occurrence by

sort EventTransition presented in Listing 8.7.

Listing 8.7: Maude event occurrence representation

1 s o r t E v e n tT r a n s i t i o n .

2 s o r t T ran s i t i onType .

3

4 op : S t a t eT r a n s i t i o n EventType −> Tran s i t i onType [c t o r] .

5 op < | | > : T r an s i t i onType Ancho r I d e n t I n f o A t t r i b u t e S e t −> Ev en tT r a n s i t i o n [c t o r] .

6 op < | > : T r an s i t i onType Ancho r I d e n t I n f o −> Ev en tT r a n s i t i o n .

7

8 va r I : T r a n s i t i o nTa r g e t .

9 va r T : T ran s i t i onType .

10

11 eq < T | I > = < T | I | none > [ow i s e] .

An element of sort EventTransition may have attributes. Listing 8.8 presents those

possible attributes.

Listing 8.8: Maude transition attributes

1 s o r t EventVa lue .

2 s u b s o r t S t r i n g < EventVa lue .

3

4 op va l u e = : EventVa lue −> A t t r i b u t e [c t o r fo rmat (s s b o)] .

5 op key = : EventKey −> A t t r i b u t e [c t o r fo rmat (s s b o)] .

The value attribute represents the value to be set in a property anchor in an at-

tribution event. The key attribute represents the key pressed in a user selection. The

application of a transition over an anchor is represented by the equations presented in

Listing 8.9.

8 API for NCL Authoring and Analysis 80

Listing 8.9: Maude transition occurrence equations

1 va r D : DocContent .

2 va r Ac : Anchor .

3 va r I : An cho r I d en t I n f o .

4 va r A : A t t r i b u t e S e t .

5 va r T : E v en tT r a n s i t i o n .

6 va r I e s : I n i t E v e n t S t a t e .

7 va r Ees : EndEventState .

8 v a r s Ev Ev ’ : EventVa lue .

9 v a r s Ek Ek ’ : EventKey .

10 va r Et : EventDura t i on .

11

12 ∗∗∗ s t a r t t r a n s i t i o n s

13 eq < s t a r t p r e s e n t a t i o n | I | none > < I | pre−s t a t e = Ees , A > D = < I | pre−s t a t e =

s t a r t i n g , A > D .

14 eq < s t a r t a t t r i b u t i o n | I | v a l u e = Ev > < I | at t−v a l u e = Ev ’ , a t t−s t a t e = Ees , A > D

= < I | at t−v a l u e = Ev , at t−s t a t e = s t a r t i n g , A > D .

15 eq < s t a r t s e l e c t i o n | I | key = Ek > < I | s e l−s t a t e = Ees , s e l−pre s sedKey = Ek ’ , A > D

= < I | s e l−s t a t e = s t a r t i n g , s e l−pre s sedKey = Ek , A > D .

16

17 ∗∗∗ s top t r a n s i t i o n s

18 eq < s top p r e s e n t a t i o n | I | none > < I | pre−s t a t e = I e s , pre−du r a t i o n = Et , A > D = <

I | pre−s t a t e = stopp ing , pre−du r a t i o n = 0 , A > D .

19 eq < s top a t t r i b u t i o n | I | none > < I | at t−s t a t e = I e s , A > D = < I | at t−s t a t e =

stopp ing , A > D .

20 eq < s top s e l e c t i o n | I | none > < I | s e l−s t a t e = I e s , A > D = < I | s e l−s t a t e =

stopp ing , A > D .

21

22 ∗∗∗ abo r t t r a n s i t i o n s

23 eq < abo r t p r e s e n t a t i o n | I | none > < I | pre−s t a t e = I e s , pre−du r a t i o n = Et , A > D = <

I | pre−s t a t e = abo r t i ng , pre−du r a t i o n = 0 , A > D .

24 eq < abo r t a t t r i b u t i o n | I | none > < I | at t−s t a t e = I e s , A > D = < I | at t−s t a t e =

abo r t i ng , A > D .

25 eq < abo r t s e l e c t i o n | I | none > < I | s e l−s t a t e = I e s , A > D = < I | s e l−s t a t e =

abo r t i ng , A > D .

26

27 ∗∗∗ pause t r a n s i t i o n s

28 eq < pause p r e s e n t a t i o n | I | none > < I | pre−s t a t e = oc cu r r i n g , A > D = < I |
pre−s t a t e = paus ing , A > D .

29 eq < pause a t t r i b u t i o n | I | none > < I | at t−s t a t e = oc cu r r i n g , A > D = < I | at t−s t a t e

= paus ing , A > D .

30 eq < pause s e l e c t i o n | I | none > < I | s e l−s t a t e = oc cu r r i n g , A > D = < I | s e l−s t a t e =

paus ing , A > D .

31

32 ∗∗∗ resume t r a n s i t i o n s

33 eq < resume p r e s e n t a t i o n | I | none > < I | pre−s t a t e = paused , A > D = < I | pre−s t a t e

= resuming , A > D .

34 eq < resume a t t r i b u t i o n | I | none > < I | at t−s t a t e = paused , A > D = < I | at t−s t a t e =

resuming , A > D .

35 eq < resume s e l e c t i o n | I | none > < I | s e l−s t a t e = paused , A > D = < I | s e l−s t a t e =

resuming , A > D .

36

37 eq T Ac = Ac [ow i se] .

8 API for NCL Authoring and Analysis 81

A document, in Maude, is represented by the set of anchors that compose it, which

is represented by sort DocContent. Listing 8.10 presents the definition of that sort.

Listing 8.10: Maude SHM document representation

1 s o r t s DocContent .

2

3 s u b s o r t Anchor E v en tT r a n s i t i o n < DocContent .

4

5 op none : −> DocContent [c t o r] .

6 op : DocContent DocContent −> DocContent [c t o r a s s o c comm id : none] .

SHM relations model the document state modification by natural event occurrences

and the application of document links enabled by them. A natural event occurrence

is given by the end of an anchor presentation, regarding its duration, the end of an

attribution or the occurrence of user selection (see Definition 5 in Section 7.2).

Maude maps SHM transitions to evolution steps, where four steps are necessary to

model an SHM transition. They are: (1) the increment of anchors duration, (2) the

evaluation of natural event occurrences, (3) the evaluation of links and (4) the evolving of

states that represent transitions. The application of those four steps is equivalent to the

application of one SHM transition. Those steps application continues until the document

ends.

ai ∈ D a′i ∈ D′ a′′i ∈ D′′ a′′′i ∈ D′′′

ai
increment−−−−−−→1 a

′
i a′i

natural−−−−→1 a
′′
i a′′i

links−−−→1 a
′′′
i a′′′i

evolving−−−−→1 a
′′′′
i

D
SHM−−−→1 D′′′′

¬ended(D) (8.1)

The test of the document end is presented in Listing 8.11.

Listing 8.11: Document end test

1 op ended : DocContent −> Bool .

2 eq ended(< I | at t−s t a t e = s l e e p i n g , A > D) = ended (D) .

3 eq ended(< I | pre−s t a t e = s l e e p i n g , s e l−s t a t e = s l e e p i n g , A > D) = ended (D) .

4 eq ended(< I | at t−s t a t e = s l e e p i n g , A > none) = t r u e .

5 eq ended(< I | pre−s t a t e = s l e e p i n g , s e l−s t a t e = s l e e p i n g , A > none) = t r u e .

6 eq ended (none) = t r u e .

7 eq ended (D) = f a l s e [ow i s e] .

The system configuration, represented by sort DocState, is given by DocContent plus

a token to indicate the current document evolution step. Listing 8.12 presents the sort

DocState definition.

8 API for NCL Authoring and Analysis 82

Listing 8.12: Maude system configuration

1 s o r t s DocContent DocState .

2

3 s u b s o r t Evo lv ingToken < DocContent .

4

5 op [] : E v o l v i n g I n f o DocContent −> DocState .

The EvolvingInfo sort definition is presented in Listing 8.13.

Listing 8.13: Maude evolving info

1 s o r t E v o l v i n g I n f o Evo lv ingToken .

2 s o r t Evo l v i n gS t ep Evo lv ingTime Evo lv ingMessage .

3

4 s u b s o r t Nat < Evo lv ingTime .

5

6 ops f o rma t t e r i m p l i c i t e x p l i c i t : −> Evo l v i n gS t ep [c t o r] .

7

8 op END−TIME : −> Evo lv ingMessage [c t o r] .

9 op DOC−END : −> Evo lv ingMessage [c t o r] .

10

11 op [:] : E vo l v i n gS t ep Evo lv ingTime −> E v o l v i n g I n f o [c t o r] .

12 op [: |] : E vo l v i n gS t ep Evo lv ingTime Evo lv ingMessage −> E v o l v i n g I n f o [c t o r] .

13 op [|] : Evo l v ingMessage Evo lv ingTime −> E v o l v i n g I n f o [c t o r] .

Notice that Maude just defines three evolving steps: formatter, implicit and explicit.

During the formatter step, Maude implements the evolving of states that represent tran-

sitions and the increment of anchors duration (steps evolving and increment in Equation

8.1). During the implicit step, Maude evaluates natural event occurrences (step natural

in Equation 8.1). And during the explicit step, Maude evaluates links (step links in

Equation 8.1). Listing 8.14 presents the change from one step to another.

Listing 8.14: Maude evolving steps

1 va r D : DocContent .

2 va r I : An cho r I d en t I n f o .

3 va r A : A t t r i b u t e S e t .

4 va r S : Evo l v i n gS t ep .

5 va r T : Evo lv ingTime .

6 va r ET : Evo lv ingToken .

7

8 −−− op e r a t i o n to t e s t i f the document i s s t i l l e v o l v i n g

9 op d o c I s E v o l v i n g : DocContent −> Bool .

10 eq d o c I s E v o l v i n g (ET D) = t r u e .

11 eq d o c I s E v o l v i n g (D) = f a l s e [ow i s e] .

12

13 −−− s t a r t the document s imu l a t i o n

14 eq run = [e x p l i c i t : 0] [(I n i t A c t i o n s Document) l i n k s] .

15

16 −−− document e v o l v i n g s t e p s

8 API for NCL Authoring and Analysis 83

17 c r l [e x p l i c i t : T] [D] => [f o rma t t e r : i n c (T)] [f o rmat t e r−evo l v e−doc (D)] i f

not (ended (D)) and docWi l l Fo rma t t e rEvo l v e (D) .

18 ceq [e x p l i c i t : T] [D] = [f o rma t t e r : i n c (T)] [f o rmat t e r−evo l v e−doc (D)] i f

not (d o c I s E v o l v i n g (D)) and not (ended (D)) and not (docWi l l Fo rma t t e rEvo l v e (D)) .

19

20 c r l [f o rma t t e r : T] [D] => [i m p l i c i t : T] [mountEvo lv ingStep (T, D,

E v o l v i n gOc cu r S e l e c t i o n) D] i f not (ended (D)) and d o cW i l l I m p l i c i t E v o l v e (s e l e c tK e y (T) ,

D) .

21 ceq [f o rma t t e r : T] [D] = [i m p l i c i t : T] [mountEvo lv ingStep (T, D,

E v o l v i n gOc cu r S e l e c t i o n) D] i f not (d o c I s E v o l v i n g (D)) and not (ended (D)) and

not (d o cW i l l I m p l i c i t E v o l v e (s e l e c tKe y (T) , D)) .

22

23 c r l [i m p l i c i t : T] [D] => [e x p l i c i t : T] [l i n k s D] i f not (ended (D)) and

d o cW i l l E x p l i c i t E v o l v e (D) .

24 ceq [i m p l i c i t : T] [D] = [e x p l i c i t : T] [l i n k s D] i f not (d o c I s E v o l v i n g (D)) and

not (ended (D)) and not (d o cW i l l E x p l i c i t E v o l v e (D)) .

25

26 −−− end the document i f i t s ended

27 c r l [S : T] [D] => [DOC−END | T] [D] i f ended (D) .

At each step, Maude verifies if the document is still executing. If so, it applies the

equations that describe the document behavior inside a step.

After all equations are applied, Maude tests if any modification in the document state

will occur in the next step. If the document state will change, a rule is used to change

the evolving step, and consequently, creating a new state in the transition system. If the

document state will not change, an equation is used, so no new state is created.

The natural event occurrences are evaluated at the same time, by equations that end

an anchor presentation if the anchor duration was reached, end an anchor attribution

once it is occurring and start an anchor selection once it is sleeping. Listing 8.15 shows

the definition regarding the implicit step.

Listing 8.15: Maude implicit evolve equations

1 op im p l i c i t −evo l v e−doc : DocContent −> DocContent .

2 op im p l i c i t −evo l v e−doc : DocContent EventKey −> DocContent .

3 op im p l i c i t −e v o l v e : An cho r I d en t I n f o −> Evo lv ingToken .

4 op im p l i c i t −e v o l v e : An cho r I d en t I n f o EventKey −> Evo lv ingToken .

5

6 ∗∗∗ I m p l i c i t e v o l v e b eha v i o r

7 va r I : An cho r I d en t I n f o .

8 va r A : A t t r i b u t e S e t .

9 va r T : E v en tT r a n s i t i o n .

10 va r D : DocContent .

11 va r K : EventKey .

12 va r S : Even tS ta t e .

13

14 eq i m p l i c i t −evo l v e−doc(< I | A > D) = im p l i c i t −e v o l v e (I) i m p l i c i t −evo l v e−doc (D) .

15 eq i m p l i c i t −evo l v e−doc(< I | A >) = im p l i c i t −e v o l v e (I) .

8 API for NCL Authoring and Analysis 84

16 eq i m p l i c i t −evo l v e−doc (T D) = im p l i c i t −evo l v e−doc (D) .

17 eq i m p l i c i t −evo l v e−doc (none) = none .

18 eq i m p l i c i t −evo l v e−doc (D, noKey) = im p l i c i t −evo l v e−doc (D) .

19 eq i m p l i c i t −evo l v e−doc(< I | s e l−s t a t e = S , A > D, K) = im p l i c i t −e v o l v e (I)

i m p l i c i t −e v o l v e (I , K) i m p l i c i t −evo l v e−doc (D, K) .

20 eq i m p l i c i t −evo l v e−doc(< I | A > D, K) = im p l i c i t −e v o l v e (I) i m p l i c i t −evo l v e−doc (D, K) .

21 eq i m p l i c i t −evo l v e−doc(< I | s e l−s t a t e = S , A >, K) = im p l i c i t −e v o l v e (I)

i m p l i c i t −e v o l v e (I , K) .

22 eq i m p l i c i t −evo l v e−doc(< I | A >, K) = im p l i c i t −e v o l v e (I) .

23 eq i m p l i c i t −evo l v e−doc (T D, K) = im p l i c i t −evo l v e−doc (D, K) .

24 eq i m p l i c i t −evo l v e−doc (none , K) = none .

25

26 va r Ev : EventVa lue .

27 va r I e s : I n i t E v e n t S t a t e .

28 va r Ees : EndEventState .

29 va r Et : EventDura t i on .

30

31 eq i m p l i c i t −e v o l v e (I) < I | at t−s t a t e = oc cu r r i n g , A > D = < I | at t−s t a t e = oc cu r r i n g ,

A > < s top a t t r i b u t i o n | I | none > D .

32 eq i m p l i c i t −e v o l v e (I , Ek) < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ees , A > D = < I |
pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ees , A > < s t a r t s e l e c t i o n | I | key = Ek > D .

33 eq i m p l i c i t −e v o l v e (I , Ek) < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = I e s , A > D = < I |
pre−s t a t e = oc cu r r i n g , s e l−s t a t e = I e s , A > D .

34 eq i m p l i c i t −e v o l v e (I) < I | s e l−s t a t e = oc cu r r i n g , A > D = < I | s e l−s t a t e = oc cu r r i n g ,

A > < s top s e l e c t i o n | I | none > D .

35 eq i m p l i c i t −e v o l v e (I) An = An [ow i se] .

36 eq i m p l i c i t −e v o l v e (I , Ek) An = An [ow i se] .

Also, in order to reason about anchor duration, equations that increment the anchor

time information are applied. Listing 8.15 shows the definition regarding the formatting

step.

Listing 8.16: Maude formatter evolve equations

1 op fo rmat t e r−evo l v e−doc : DocContent −> DocContent .

2 op fo rmat t e r−evo l v e−anchor : Anchor −> Evo lv ingToken .

3

4 ∗∗∗ Formatte r e v o l v e b eha v i o r

5 va r An : Anchor .

6

7 eq fo rmat t e r−evo l v e−doc (An D) = fo rmat t e r−evo l v e−anchor (An) f o rmat t e r−evo l v e−doc (D) .

8 eq fo rmat t e r−evo l v e−doc (An) = fo rmat t e r−evo l v e−anchor (An) .

9 eq fo rmat t e r−evo l v e−doc (D) = D [ow i se] .

10

11 va r Ts : T r a n s i e n t S t a t e .

12 v a r s I t s I t s ’ : I n i t T r a n s i e n t S t a t e .

13 v a r s Ets Ets ’ : EndTran s i en tS ta t e .

14 v a r s Ss Ss ’ : S t and i ngS ta t e .

15 v a r s Ed Ed ’ : EventDura t i on .

16 va r Tt : T ran s i t i onType .

17 va r Td : Nat .

18

19 op evo l v e−s t a t e : T r a n s i e n t S t a t e −> Stand i ngS ta t e .

8 API for NCL Authoring and Analysis 85

20 eq evo l v e−s t a t e (s t a r t i n g) = o c c u r r i n g .

21 eq evo l v e−s t a t e (s t opp i ng) = s l e e p i n g .

22 eq evo l v e−s t a t e (a b o r t i n g) = s l e e p i n g .

23 eq evo l v e−s t a t e (paus i ng) = paused .

24 eq evo l v e−s t a t e (resuming) = o c c u r r i n g .

25

26 eq fo rmat t e r−evo l v e−anchor (< I | at t−s t a t e = I t s , A >) = < I | at t−s t a t e =

evo l v e−s t a t e (I t s) , A > .

27 eq fo rmat t e r−evo l v e−anchor (< I | at t−s t a t e = Ets , A >) = < I | at t−s t a t e =

evo l v e−s t a t e (Ets) , A > .

28 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = I t s , s e l−s t a t e = Et , pre−du r a t i o n = Ed , A

>) = < I | pre−s t a t e = evo l v e−s t a t e (I t s) , s e l−s t a t e = evo l v e−s t a t e (Et) , pre−du r a t i o n
= i n c (Ed) , A > .

29 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ets , s e l−s t a t e = Et , A >) = < I | pre−s t a t e

= evo l v e−s t a t e (Ets) , s e l−s t a t e = evo l v e−s t a t e (Et) , A > .

30 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = I t s , s e l−s t a t e = Ss , pre−du r a t i o n = Ed , A

>) = < I | pre−s t a t e = evo l v e−s t a t e (I t s) , s e l−s t a t e = Ss , pre−du r a t i o n = i n c (Ed) , A

> .

31 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ets , s e l−s t a t e = Ss , A >) = < I | pre−s t a t e

= evo l v e−s t a t e (Ets) , s e l−s t a t e = Ss , A > .

32 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Et , pre−du r a t i o n =

Ed , A >) = < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = evo l v e−s t a t e (Et) , pre−du r a t i o n =

i n c (Ed) , A > .

33 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ss , pre−du r a t i o n =

Ed , A >) = < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ss , pre−du r a t i o n = i n c (Ed) , A > .

34 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ss , s e l−s t a t e = Ts , A >) = < I | pre−s t a t e

= Ss , s e l−s t a t e = evo l v e−s t a t e (Ts) , A > .

35 eq fo rmat t e r−evo l v e−anchor (< I | A >) = < I | A > [ow i s e] .

A user selection defines the key that was pressed. This information is important since

links may define a different document behavior depending on the key pressed. When a

selection may occur, Maude chooses one element of set EventKey to represent the key

pressed. The element noKey represents that the selection will not occur at that moment.

Listing 8.15 presents the behavior associated to user selection.

Listing 8.17: Maude selection equations

1 op fo rmat t e r−evo l v e−doc : DocContent −> DocContent .

2 op fo rmat t e r−evo l v e−anchor : Anchor −> Evo lv ingToken .

3

4 ∗∗∗ Formatte r e v o l v e b eha v i o r

5 va r An : Anchor .

6

7 eq fo rmat t e r−evo l v e−doc (An D) = fo rmat t e r−evo l v e−anchor (An) f o rmat t e r−evo l v e−doc (D) .

8 eq fo rmat t e r−evo l v e−doc (An) = fo rmat t e r−evo l v e−anchor (An) .

9 eq fo rmat t e r−evo l v e−doc (D) = D [ow i se] .

10

11 va r Ts : T r a n s i e n t S t a t e .

12 v a r s I t s I t s ’ : I n i t T r a n s i e n t S t a t e .

13 v a r s Ets Ets ’ : EndTran s i en tS ta t e .

14 v a r s Ss Ss ’ : S t and i ngS ta t e .

15 v a r s Ed Ed ’ : EventDura t i on .

8 API for NCL Authoring and Analysis 86

16 va r Tt : T ran s i t i onType .

17 va r Td : Nat .

18

19 op evo l v e−s t a t e : T r a n s i e n t S t a t e −> Stand i ngS ta t e .

20 eq evo l v e−s t a t e (s t a r t i n g) = o c c u r r i n g .

21 eq evo l v e−s t a t e (s t opp i ng) = s l e e p i n g .

22 eq evo l v e−s t a t e (a b o r t i n g) = s l e e p i n g .

23 eq evo l v e−s t a t e (paus i ng) = paused .

24 eq evo l v e−s t a t e (resuming) = o c c u r r i n g .

25

26 eq fo rmat t e r−evo l v e−anchor (< I | at t−s t a t e = I t s , A >) = < I | at t−s t a t e =

evo l v e−s t a t e (I t s) , A > .

27 eq fo rmat t e r−evo l v e−anchor (< I | at t−s t a t e = Ets , A >) = < I | at t−s t a t e =

evo l v e−s t a t e (Ets) , A > .

28 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = I t s , s e l−s t a t e = Et , pre−du r a t i o n = Ed , A

>) = < I | pre−s t a t e = evo l v e−s t a t e (I t s) , s e l−s t a t e = evo l v e−s t a t e (Et) , pre−du r a t i o n
= i n c (Ed) , A > .

29 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ets , s e l−s t a t e = Et , A >) = < I | pre−s t a t e

= evo l v e−s t a t e (Ets) , s e l−s t a t e = evo l v e−s t a t e (Et) , A > .

30 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = I t s , s e l−s t a t e = Ss , pre−du r a t i o n = Ed , A

>) = < I | pre−s t a t e = evo l v e−s t a t e (I t s) , s e l−s t a t e = Ss , pre−du r a t i o n = i n c (Ed) , A

> .

31 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ets , s e l−s t a t e = Ss , A >) = < I | pre−s t a t e

= evo l v e−s t a t e (Ets) , s e l−s t a t e = Ss , A > .

32 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Et , pre−du r a t i o n =

Ed , A >) = < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = evo l v e−s t a t e (Et) , pre−du r a t i o n =

i n c (Ed) , A > .

33 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ss , pre−du r a t i o n =

Ed , A >) = < I | pre−s t a t e = oc cu r r i n g , s e l−s t a t e = Ss , pre−du r a t i o n = i n c (Ed) , A > .

34 eq fo rmat t e r−evo l v e−anchor (< I | pre−s t a t e = Ss , s e l−s t a t e = Ts , A >) = < I | pre−s t a t e

= Ss , s e l−s t a t e = evo l v e−s t a t e (Ts) , A > .

35 eq fo rmat t e r−evo l v e−anchor (< I | A >) = < I | A > [ow i s e] .

Links, in the Maude specification, are represented by equations that are applied over

anchors whose state represents a transition, inducing the modification of the state of

other anchors. Since equations are also used in a transition system state definition, a

modification of the document state will be given by the application of all enabled links,

as it occurs in the SHM transition system. Once no other link can be applied, the states

that represent transitions are evolved to states that represent SHM states.

Once the equations that represent document links depend on the document that will

be analyzed, Maude does not define any behavior for the explicit step a priori. Listing

8.18 shows the definition regarding the explicit step.

Listing 8.18: Maude explicit evolve operations

1 op l i n k s : −> DocContent .

2 op e x p l i c i t −e v o l v e : S t r i n g −> Evo lv ingToken .

8 API for NCL Authoring and Analysis 87

The model checker tool is used, in this work, for the verification of termination prop-

erties. Since termination properties are not decidable, the document execution can be

ended if a maximum time is achieved1. Listing 8.19 presents the implementation of that

option.

Listing 8.19: Ending document execution by maximum time

1 ∗∗∗ r a i s e an e r r o r message i f the maximum time i s r eached

2 ceq [e x p l i c i t : T] = [e x p l i c i t : T | END−TIME] i f T == Evo lv ingMaxDurat ion .

3

4 ∗∗∗ end the document i f an e r r o r message appear

5 r l [S : T | M] [D] => [M | T] [D] .

The Maude specification, as presented, represents the signature of SHM in Maude,

besides the generic behavior of SHM documents.

A specific document uses that specification to define its content (anchors) and defines

its specific behavior. Regarding the sample multimedia document presented in Listings

3.8 and 3.9, Listing 8.20 shows the representation of its SHM document in Maude.

Listing 8.20: Sample document Maude representation

1 mod NCL−DOC i s

2 p r o t e c t i n g NCM−MODEL .

3

4 eq Document = < ”N1” : ”C1 .N1” : ” desc1 ” | de fConten t > < ”A1” : ”C1 .N2” | d e f A t t r i b u t e

> < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | de fConten t > < ”N4” : ”C1 . C2 .N4” : ” desc2 ” |
de fConten t > .

5

6 eq l i n k s = e x p l i c i t −e v o l v e (” L1 ”) e x p l i c i t −e v o l v e (” L2 ”) .

7

8 va r V0 : EventVa lue .

9 v a r s A0 A1 : A t t r i b u t e S e t .

10 va r D : DocContent .

11 va r EI : E v o l v i n g I n f o .

12

13 eq I n i t A c t i o n s = < s t a r t p r e s e n t a t i o n | ”N1” : ”C1 .N1” : ” desc1 ” > .

14

15 ∗∗∗ e x p l i c i t e v o l v e l i n k s

16 eq EI [e x p l i c i t −e v o l v e (” L1 ”) < ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e = s t a r t i n g , A0 > D

] = EI [< s t a r t a t t r i b u t i o n | ”A1” : ”C1 .N2” | v a l u e = ” yes ” > < ”N1” : ”C1 .N1” :

” desc1 ” | pre−s t a t e = s t a r t i n g , A0 > D] .

17

18 ceq EI [e x p l i c i t −e v o l v e (” L2 ”) < ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1”

: ” desc1 ” | pre−s t a t e = stopp ing , A1 > D] = EI [< s t a r t p r e s e n t a t i o n | ”N3” :

”C1 . C2 .N3” : ” desc2 ” > < ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1” :

” desc1 ” | pre−s t a t e = stopp ing , A1 > D] i f V0 == ” yes ” .

19

1The maximum execution time is defined by the user, by determining the value of variable
EvolvingMaxDuration. By default that variable value is one hour

8 API for NCL Authoring and Analysis 88

20 ceq EI [e x p l i c i t −e v o l v e (” L2 ”) < ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1”

: ” desc1 ” | pre−s t a t e = stopp ing , A1 > D] = EI [< s t a r t p r e s e n t a t i o n | ”N4” :

”C1 . C2 .N4” : ” desc2 ” > < ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1” :

” desc1 ” | pre−s t a t e = stopp ing , A1 > D] i f V0 == ”no” .

21

22 ∗∗∗ i m p l i c i t e v o l v e l i n k s

23 eq i m p l i c i t −e v o l v e (”N1” : ”C1 .N1” : ” desc1 ”) < ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e =

oc cu r r i n g , pre−du r a t i o n = 900 , A0 > D = < s top p r e s e n t a t i o n | ”N1” : ”C1 .N1” :

” desc1 ” > < ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 900 , A0

> D .

24

25 eq i m p l i c i t −e v o l v e (”N3” : ”C1 . C2 .N3” : ” desc2 ”) < ”N3” : ”C1 . C2 .N3” : ” desc2 ” |
pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 200 , A0 > D = < s top p r e s e n t a t i o n | ”N3” :

”C1 . C2 .N3” : ” desc2 ” > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 200 , A0 > D .

26

27 eq i m p l i c i t −e v o l v e (”N4” : ”C1 . C2 .N4” : ” desc2 ”) < ”N4” : ”C1 . C2 .N4” : ” desc2 ” |
pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 200 , A0 > D = < s top p r e s e n t a t i o n | ”N4” :

”C1 . C2 .N4” : ” desc2 ” > < ”N4” : ”C1 . C2 .N4” : ” desc2 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 200 , A0 > D .

28

29 ∗∗∗ e v o l u t i o n t e s t i n g

30 eq d o cW i l l E x p l i c i t E v o l v e (< ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e = s t a r t i n g , A0 > D) =

t r u e .

31

32 ceq d o cW i l l E x p l i c i t E v o l v e (< ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1” :

” desc1 ” | pre−s t a t e = stopp ing , A1 > D) = t r u e i f V0 == ” yes ” .

33

34 ceq d o cW i l l E x p l i c i t E v o l v e (< ”A1” : ”C1 .N2” | at t−v a l u e = V0 , A0 > < ”N1” : ”C1 .N1” :

” desc1 ” | pre−s t a t e = stopp ing , A1 > D) = t r u e i f V0 == ”no” .

35

36 eq a n c h o rW i l l I m p l i c i t E v o l v e (< ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 900 , A0 >) = t r u e .

37

38 eq a n c h o rW i l l I m p l i c i t E v o l v e (< ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 200 , A0 >) = t r u e .

39

40 eq a n c h o rW i l l I m p l i c i t E v o l v e (< ”N4” : ”C1 . C2 .N4” : ” desc2 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 200 , A0 >) = t r u e .

41

42 endm

The Maude model checker tool receives the initial document state and the temporal

property to be verified. If that property holds, the model checker returns the boolean value

true. If not, it returns a counterexample. Listing 8.21 presents the model checker result

for testing the reachability and document termination properties using the document in

Listing 8.20.

8 API for NCL Authoring and Analysis 89

Listing 8.21: Maude model checker result example

1 ==

2 r educe i n NCL−DOC : modelCheck (run , r e a c h a b i l i t y (”N1” : ”C1 .N1” : ” desc1 ”)) .

3 r e w r i t e s : 214 i n 0ms cpu (0ms r e a l) (254458 r e w r i t e s / second)

4 r e s u l t Bool : t r u e

5 ==

6 r educe i n NCL−DOC : modelCheck (run , r e a c h a b i l i t y (”A1” : ”C1 .N2”)) .

7 r e w r i t e s : 213 i n 0ms cpu (0ms r e a l) (569518 r e w r i t e s / second)

8 r e s u l t Bool : t r u e

9 ==

10 r educe i n NCL−DOC : modelCheck (run , r e a c h a b i l i t y (”N3” : ”C1 . C2 .N3” : ” desc2 ”)) .

11 r e w r i t e s : 241881 i n 428ms cpu (429ms r e a l) (564890 r e w r i t e s / second)

12 r e s u l t Bool : t r u e

13 ==

14 r educe i n NCL−DOC : modelCheck (run , r e a c h a b i l i t y (”N4” : ”C1 . C2 .N4” : ” desc2 ”)) .

15 r e w r i t e s : 242247 i n 429ms cpu (429ms r e a l) (563750 r e w r i t e s / second)

16 r e s u l t Mode lCheckResu l t : counte r examp le ({ [e x p l i c i t : 0][< ”A1” : ”C1 .N2” | at t−v a l u e =

” yes ” , a t t−s t a t e = s t a r t i n g > < ”N1” : ”C1 .N1” : ” desc1 ” | pre−s t a t e = s t a r t i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey >] , u n l a b e l e d }
17

18 { [f o rma t t e r : 1][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = o c c u r r i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 1 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
19

20 { [e x p l i c i t : 1][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s t opp i ng > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 1 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
21

22 { [f o rma t t e r : 900][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = oc cu r r i n g , pre−du r a t i o n = 900 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
23

24 { [i m p l i c i t : 900][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = stopp ing , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
25

26 { [e x p l i c i t : 900][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = stopp ing , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s t a r t i n g ,

8 API for NCL Authoring and Analysis 90

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
27

28 { [f o rma t t e r : 1100][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1”

: ”C1 .N1” : ” desc1 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = oc cu r r i n g ,

pre−du r a t i o n = 200 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” :

”C1 . C2 .N4” : ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
29

30 { [e x p l i c i t : 1100][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = stopp ing ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d }
31

32 { [f o rma t t e r : 1101][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1”

: ”C1 .N1” : ” desc1 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , u n l a b e l e d } ,
33

34 { [DOC−END | 1101][< ”A1” : ”C1 .N2” | at t−v a l u e = ” yes ” , a t t−s t a t e = s l e e p i n g > < ”N1” :

”C1 .N1” : ” desc1 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey > < ”N3” : ”C1 . C2 .N3” : ” desc2 ” | pre−s t a t e = s l e e p i n g ,

pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g , s e l−pre s sedKey = noKey > < ”N4” : ”C1 . C2 .N4”

: ” desc2 ” | pre−s t a t e = s l e e p i n g , pre−du r a t i o n = 0 , s e l−s t a t e = s l e e p i n g ,

s e l−pre s sedKey = noKey >] , d ead l ock })
35 ==

36 r educe i n NCL−DOC : modelCheck (run , doc−end) .

37 r e w r i t e s : 242264 i n 419ms cpu (426ms r e a l) (577583 r e w r i t e s / second)

38 r e s u l t Bool : t r u e

Notice that the reachability property holds for N1 (lines 2 to 4), A1 (lines 6 to 8) and

N3 (lines 10 to 12), but not for N4, where a counterexample was presented (lines 14 to

34). The counterexample shows a document execution path where that anchor was not

reached. The document termination property holds for that document (lines 36 to 38).

8.2 aNa

aNa (API for NCL Authoring) was created to represent an NCL document. Its structure

is optimized so the author of NCL tools that manipulate NCL XML code does not need to

worry about the language representation. aNa defines classes that represent NCL elements

with the same characteristics presented in Section 6.1 for the NCL LSM.

8 API for NCL Authoring and Analysis 91

Every NCL element is represented as a class, which will be called element class.

An element class contains the same attributes of the NCL element it represents. Every

element class in aNa inherits from basic type NCLElement. Additionally, every element

that has an id attribute inherits from basic type NCLIdentifiableElement. Figure 8.4

presents that representation in aNa.

Figure 8.4: NCLDoc class representation

Some element attributes may have a value from a specific value set, like the xmlns

attribute. In those cases, aNa defines the attribute type as an Enumeration with all the

possible values for that attribute (see xmlns in Figure 8.4). Sometimes an attribute value

can be of more that one type. For example, consider the example presented in Listing

8.22.

Listing 8.22: Attribute value examples

1 <r e g i o n i d=”reg1 ” top=”10” l e f t =”10”/>

2 <r e g i o n i d=”reg2 ” top=”10.5” l e f t =”10”/>

3 <r e g i o n i d=”reg3 ” top=”10.5%” l e f t =”10%”/>

Notice that element region has attributes that may be an integer, a double or a number

with a percent sign (%). For those elements, aNa defines basic types that can have any of

the possible values that the attribute receives. For the example presented in Listing 8.22,

aNa defined the attributes as a PercentType value. In order to represent those values,

aNa defines NCL basic types, which will be presented in the following paragraphs.

Figure 8.5 presents the ArrayType class. That class represents an attribute value

represented by several double numbers separated by commas. It may be created from an

array of double numbers or from a string where each value is separated by a comma.

Figure 8.6 presents three classes: MaxType, PercentageType, RelativeType. The Max-

Type class represents an attribute value represented by a positive integer or the string

8 API for NCL Authoring and Analysis 92

Figure 8.5: Array type class

Figure 8.6: Number type classes

“unbounded”. The PercentageType class represents an attribute value represented by a

double number between 0 and 1 without a percent sign, or between 0 and 100 with a per-

cent sign. The RelativeType class represents an attribute value represented by a double

number with or without the percent sign. It is used for representing an absolute value or

a relative value.

Figure 8.7: Parameterized type class

Figure 8.7 presents the ParameterizedValueType class. This class represents an at-

tribute value represented by a value (like a string, a number, etc) or an element that

represents a parameter. This class is specialized as presented in Figure 8.8 in order to

create other classes that represent attributes of connector conditions or actions. Those

values may have a type (AssValueType, ByType, double, integer, string, NCLKey) or refer

8 API for NCL Authoring and Analysis 93

to a connector parameter.

Figure 8.8: aNa auxiliary type classes

8 API for NCL Authoring and Analysis 94

Figure 8.8 also presents classes that define basic types. AssValueType represents the

value attribute of a valueAssessment element, which can be a string or a default value

(listed in an Enumeration). BlendColorType represents an attribute value represented

by a color or the string “blend”, the same for the TranspColorType where it could be a

color or the string “transparent”. ByType represents an attribute value represented by an

integer or the string “indefinite”. SrcType represents an attribute value that is a resource

location or a time. TimeType represents a time value in the format “seconds.fraction”,

“hour:minute:seconds.fraction” or “year:month:day:hour:minute:seconds.fraction”. Sam-

pleType represents an attribute value that is a number followed by S (for seconds), F (for

frames) or NPT (for Normal Play Time).

All classes that represent basic types have methods to create the value from a string

and to parse the value in the format used by NCL.

aNa is implemented in Java. The document parsing is done using DOM (Document

Object Model) [W3C 2000]. aNa walks through the DOM tree gathering information

about the NCL elements and creating Java objects that represent them. During that

object creation, aNa already creates references between objects. For example, if aNa

finds the value “reg1” in the attribute region of a descriptor element, it will search for a

region element in the region base with that id in order to create this reference and it will

raise an error if no region with that id is found.

The search for a referred element is done only in the attribute scope. That is, if

an attribute indicates the id of an element inside the same context, aNa will search for

that element only inside the context. For example, suppose a port element that defines

component and interface attributes. aNa will search for an NCL node with the id defined

in the component attribute inside the port parent context element. Once that element

is found, aNa will search for an interface with the id defined in the interface attribute

inside that node.

During parsing, aNa gathers from the DOM representation of an NCL element only

the information that makes sense to it, that is, the attributes and child elements defined

in the language specification. Also, when reading an NCL document, the Java DOM

API already validates if the XML document is well written, that is, if all the XML tags

are opened and closed correctly. So, after document parsing, aNa will have a consistent

document representation.

aNa raises errors when a wrong definition is found in the NCL document. Listing 8.23

presents an error example. Errors always present the whole path from the root document

8 API for NCL Authoring and Analysis 95

element to the element where the error occurred. It also shows a message that informs

the error found to the author.

Listing 8.23: Parsing error example

1 E r r o r p a r s i n g Head > ConnectorBase > Causa lConnec to r (onKeySe l e c t i onS top) >

S imp l eCond i t i on

2 Could not f i n d a param i n connec to r w i th name : t e c l a

aNa will not parse a document where an element refers to (through an attribute)

either an element different from the one required (for that attribute) or a non-existing

one. Also, during parsing, aNa gathers from the DOM representation of an NCL element

only the information about attributes and child elements defined in the NCL language

specification. The parsing step, by itself, already implements the lexical and syntactic, ref-

erence and compositionality validation properties and partially implements the hierarchy

and attribute validation properties.

The opposite way, that is, creating an NCL XML document from the aNa represen-

tation is done by getting, from each Java object, its XML representation. The method

that implements it returns a String with the XML element representation. It is worth to

highlight that the code returned is indented, making the document reading easier.

Once aNa is developed to be used by tools that manipulate NCL code, it is able to

notify the tool that uses it about a modification on an element class. This notification can

help the tool to maintain a consistent document representation. For example, suppose a

tool that is built to graphically show all document regions. Every time a modification

occurs in the position of any region, the tool is notified, so it is able to apply the necessary

changes in the graphical position of the modified region. Every element class may have

a ModificationListener, which will receive notifications when the value of an attribute is

set and a child element is added or removed. As this feature may not be necessary for all

kinds of tools, the tool is not obliged to implement the ModificationListener interface.

Another characteristic of aNa is that it is implemented using parameterized classes,

which is done using the Generics Java language feature2. Using that feature, aNa element

class extensions are simpler, requiring less coding effort.

2more information available at http://docs.oracle.com/javase/tutorial/java/generics

8 API for NCL Authoring and Analysis 96

8.3 aNaa implementation

To implement the analysis proposed in this work, aNaa (API for NCL Authoring and

Analysis) has to:

• create an NCL LSM;

• create the OCL invariants;

• transform an NCL document into an object diagram;

• call TCLib to validate the document structure;

• transform an NCL document into the Maude representation of an SHM document;

• call Maude model checker to verify the document behavior.

In order to be able to do the necessary transformations of an NCL document, aNaa

extends aNa. Every aNa class is extended with new methods to perform those trans-

formations. The most important ones are createObject() and createModel(). The

methods signature may vary depending on the class where they are defined, but their

behavior is the same in all classes. Method createObject() is implemented in all classes

that represent NCL elements, it creates and returns the representation of that element

as a TCLib object. Method createModel() is implemented in the classes that represent

elements related to the document behavior, they are the elements of the document body,

connectors and rules. This method is used to create the SHM representation of those

elements transforming an NCL document into SHM.

Besides the methods, aNaa also defines new packages, which are the structure, shm

and maude packages. Figure 8.9 presents an overview of the analysis tool architecture,

where rounded rectangles represent external tools.

aNaa

aNa

shm

TCLib

structure

Maude

maude

Figure 8.9: aNaa architecture

Package structure encapsulates TCLib and is responsible for managing it, creating

the NCL LSM and the OCL invariants. It also creates an abstraction layer for helping

8 API for NCL Authoring and Analysis 97

the creation of TCLib objects, which is used by method createObject() and run TCLib

to perform the validation. Package shm is a representation of SHM in Java. It is used

by aNaa during the transformation of an NCL document into SHM, to keep the SHM

representation. Package maude parses the Java representation of SHM into Maude and

is responsible for running Maude to perform the verification.

8.3.1 Static validation implementation

The implementation of the static validation is done as follows. aNaa calls package structure

to create the NCL LSM inside TCLib (1). The creation of the LSM is always the same,

since it does not depend on the document being validated. After the NCL LSM is created,

package structure creates the OCL invariants for the NCL language inside TCLib (2).

Once both the LSM and the invariants are created, aNaa, starting from the document

root element (Class NCLDoc), parses the document elements, creating TCLib objects (3).

During the parsing step, each document element calls the createObject() method of its

related elements, parsing attribute values and TCLib objects that are related to it. That

way, aNaa creates the TCLib objects and associations among them. Listing 8.24 presents

the code for transforming an NCLCompositeRule element.

Listing 8.24: createObject() method implementation for class NCLCompositeRule

1 i f (t h i sOb j e c t != n u l l)

2 r e t u r n t h i sOb j e c t ;

3

4 Object aux ;

5

6 t h i sOb j e c t = new ModelNCLObject (CLASS NCLCOMPOSITERULE) ;

7

8 i f ((aux = ge t I d ()) != n u l l)

9 t h i sOb j e c t . a ddA t t r i b u t e (TYPE STRING , ATT ID , (S t r i n g) aux) ;

10

11 i f ((aux = ge tOpe ra to r ()) != n u l l)

12 t h i sOb j e c t . a ddA t t r i b u t e (ENUM NCLOPERATOR, ATT OPERATOR, ((NCLOperator) aux) . name ()) ;

13 e l s e

14 t h i sOb j e c t . a ddA t t r i b u t e (ENUM NCLOPERATOR, ATT OPERATOR, ENUM NULL LITERAL) ;

15

16 f o r (NCLTestRule e : g e tRu l e s ())

17 t h i sOb j e c t . addAggregat ion (ATT RULES , e . c r e a t eOb j e c t ()) ;

18

19 r e t u r n t h i sOb j e c t ;

Once the transformation is finished, aNaa calls TCLib to validate the document (4).

If some invariant does not hold, TCLib returns the invariant and a list of TCLib objects

that failed on that invariant. aNaa, based on that information, presents to the user

8 API for NCL Authoring and Analysis 98

the invariant name and body and a description of the NCL element that failed on it.

Listing 8.25 shows an aNaa message example, considering the sample document with

error presented in Figure 6.6. The element description has the element hierarchy from

the document body or head. If the element does not have an id attribute its position

and/or other relevant attribute is presented to facilitate the element identification in the

document.

Listing 8.25: aNaa validation return message

1 ===

2 ERROR: NCLLink : ’C1 > L1 ’ ,

3

4 i n v a r i a n t 1 0 6

5 NCLLink . a l l I n s t a n c e s ()−> f o r A l l (i : NCLLink | i . b inds−>s i z e () >= 2)

6 ===

Since both aNaa and the NCL LSM have the same architecture, calling the methods

that create TCLib objects of all classes in aNaa does the transformation of the document

into an object diagram. Otherwise it would be necessary to process the NCL document

in order to transform it into the LSM model.

8.3.2 Behavioral verification implementation

The implementation of the behavioral verification is done as follows. aNaa uses package

shm to create the representation of the NCL document in SHM (1). aNaa calls pack-

age maude to parse the SHM document into the Maude representation (2). Once the

transformation is finished, aNaa creates the commands to run model checker for each

property and for each document anchor (3). Then it calls Maude to verify the document

(4). If some property does not hold, Maude presents a counterexample (see Listing 8.20).

Based on that information returned by Maude, aNaa presents to the user the anchor and

the failed property. Listing 8.26 shows an aNaa message example, regarding the sample

document presented in Section 8.1.2.

Listing 8.26: aNaa verification return message

1 ===

2 ERROR: ”N4” : ”C1 . C2 .N4” : ” desc2 ”

3

4 Anchor i s un r e a chab l e

5 ===

Since a transformation of a multimedia document to SHM is required, NCM (and

NCL) was chosen in the implementation once it is also based on events. That way, a

8 API for NCL Authoring and Analysis 99

simple transformation was required. However, different multimedia document models can

be used, by providing a transformation of a document from the model to SHM. Figure

8.10 presents an overview of the verification process done by aNaa.

aNaa Maude Model Checker

LTL formulas for
Dynamic Verification

properties

error
report

G(¬p ⟶	Fq)
F(¬p U q)

s0

s3

s1

s4

s2

Transition System Paths

s3

π2

π1

π3

s0

s2

s1

s4

s3

Transition System

SHM representation

D = (A, L)

A = {a1, a2, a3, a4, a5}

L = {l1, l2, l3, l4}
NCL Multimedia

Document

Figure 8.10: aNaa multimedia verification process

The following sections present the architecture of package shm and the transformation

of an NCL document into SHM.

8.3.2.1 SHM implementation architecture

To help the transformation of an NCL document into SHM, aNaa implements SHM as

Java classes. The SHM implementation follows the architecture presented in Figures 8.11,

8.12 and 8.13.

The Document class in Figure 8.11 represents the SHM document. It is composed by

the document initial actions, the document anchors and the document links.

The initial actions represent the actions that will be performed as the document

begins its presentation. An initial action may be an action with an execution condition

associated to it, which is represented by the ConditionalAction class.

Figure 8.12 presents the anchor package. That package defines the structure of an

anchor and its type. Every anchor in SHM has an id attribute, a perspective and may also

have a layout associated to it. The layout, represented by the AnchorLayout class indicates

the descriptor used by that anchor. The two types of anchor, attribute anchor and content

anchor, are represented by classes AttributeAnchor and ContentAnchor, respectively.

An attribute anchor represents an attribute of a node and has a value and an attribu-

tion event, represented by the AttributionEventState class. A content anchor represents a

subpart of a node content and has the presentation and selection events, represented by

the PresentationEventState and SelectionEventState classes, respectively.

EventState is a class that represents an event, specifying its type and state. The event

8 API for NCL Authoring and Analysis 100

Figure 8.11: SHM implementation

Figure 8.12: SHM implementation anchor package

type defines if it is an attribution, presentation or selection event. The event state defines

its state, which can be: sleeping, occurring, paused, starting, stopping, aborting, pausing

and resuming, according to the event state machine presented in Figure 8.3. Classes Pre-

sentationEventState and AttributionEventState extend the EventState class specializing

it for the presentation and attribution event types, respectively. The SelectionEventState

class extends EventState class specializing it for the selection event type and adds a

pressedKey attribute. That attribute represents the key pressed by the user.

8 API for NCL Authoring and Analysis 101

Figure 8.13 presents the link package. That package defines the structure of an SHM

link. An SHM link has two types: an explicit relationship link and an implicit relationship

link, represented by the ExplicitRelationship and ImplicitRelationship classes, respectively.

Figure 8.13: SHM implementation link package

An implicit relationship link represents natural event occurrences, like an anchor

natural end, or the beginning of a media temporal anchor. It has a trigger condition,

which triggers the link execution and an action to be performed over the target anchor.

It can also have a delay the link should wait between its condition is satisfied and the

action is executed. That delay represents the anchor duration, when the link represents

an anchor natural end, or the time when a media temporal anchor is started.

An explicit relationship link represents relationships explicitly defined in an NCL doc-

8 API for NCL Authoring and Analysis 102

ument as link elements. It is composed by one or more conditions and one or more actions.

A condition, represented by the Condition class, represents a set of link conditions that

when satisfied, the link is activated. Those conditions can be an EventCondition, which

represents an event occurrence, and several TestConditions, which represent a comparison

of the value of two anchor attributes, possibly the same anchor, or of an anchor attribute

and a value.

An action, represented by the Action class, has attributes to represent the action to

be performed over its target anchor. The event and transition attributes identify the

transition that will occur and the event that will have its state changed. The value

attribute represents the value to be set in an attribute anchor, in case the action is going

to set an attribute value.

8.3.2.2 NCL to SHM transformation

The creation of SHM objects follows the sequence: creation of the document initial actions,

creation of the document links (explicit relationships), creation of the document anchors

and implicit relationships.

The initial actions creation is done by parsing the document body ports. For each

body port found, at least one Action object will be created. If a port maps to more

than one anchor, for example a port that maps to a context node, one Action object for

each mapped anchor will be created. Also, if the port maps to an anchor that has an

associated condition, for example a port that maps to an anchor inside a switch element,

one ConditionalAction object will be created for that anchor with a TestCondition object

representing the associated condition, for example the switch element bind condition (see

Figure 8.11).

The creation of SHM links is done by parsing the link elements inside the document.

For each link element at least one ExplicitRelationship object will be created. At first, link

binds are separated into action binds and condition binds. Action binds are the ones whose

role is an action role, that is associated to a connector action element, and condition binds

are the ones whose role is a condition role, that is associated to a connector condition

element. After the binds separation, the connector associated to the link is parsed to

determine its condition domains. A condition domain represents all the conditions that

must be true at the same time so the link is activated. Suppose the connector conditions

presented in Listing 8.27.

8 API for NCL Authoring and Analysis 103

Listing 8.27: Connector condition domains example

1 <compoundCondit ion op e r a t o r =’and ’>

2 <compoundCondit ion op e r a t o r =’or ’>

3 <s imp l eCond i t i o n r o l e =’A’/>

4 <s imp l eCond i t i o n r o l e =’B’/>

5 <compoundCondit ion op e r a t o r =’and ’>

6 <s imp l eCond i t i o n r o l e =’C’/>

7 <s imp l eCond i t i o n r o l e =’D’/>

8 <s imp l eCond i t i o n r o l e =’E’/>

9 </compoundCondit ion>

10 </compoundCondit ion>

11 <compoundStatement op e r a t o r =’and ’>

12 <as se s smentSta tement comparator=’eq ’>

13 <a t t r i b u t eA s s e s smen t r o l e =’F’/>

14 <va l ueAs s e s sment v a l u e=’abc ’/>

15 </asses smentStatement>

16 <compoundStatement op e r a t o r =’or ’>

17 <as se s smentSta tement comparator=’eq ’>

18 <a t t r i b u t eA s s e s smen t r o l e =’G’/>

19 <va l ueAs s e s sment v a l u e=’abc ’/>

20 </asses smentStatement>

21 <as se s smentSta tement comparator=’eq ’>

22 <a t t r i b u t eA s s e s smen t r o l e =’H’/>

23 <va l ueAs s e s sment v a l u e=’abc ’/>

24 </asses smentStatement>

25 </compoundStatement>

26 </compoundStatement>

27 </compoundCondit ion>

Figure 8.14 presents the condition roles distribution graphically.

A

<

B

C D E HG

<F

<

<

<

Figure 8.14: Connector condition domains example

The condition domains defined by that connector are: “AFG”, “AFH ”, “BFG”,

“BFH ”, “CDEFG” and “CDEFH ”. So, a link that uses that connector will be activated

if condition roles A, F and G are satisfied, for example.

After the condition binds are arranged into condition domains, one Condition object is

created for each domain and, for each bind, a TestCondition or EventCondition object will

8 API for NCL Authoring and Analysis 104

be created, depending on the condition defined by the connector. A simpleCondition is

transformed into an EventCondition object, while an assessmentStatement is transformed

into a TestCondition object. The TestCondition and EventCondition target comes from

the bind mapped element. The next step is the parsing of the action binds. For each bind

an Action will be created, gathering the information defined by simpleAction elements

defined in the connector.

It is worth to notice that if the NCL link bind defines a descriptor to be used, a new

target anchor will be created, merging the anchor defined by the mapped element with

the descriptor defined in the bind. Also, if the target anchor has associated conditions,

new condition domains may be created, taking into account the anchor conditions.

The creation of SHM anchors and implicit relationship links is done by parsing the

nodes defined in the document. If the node is a media node, all its anchors and properties

are represented as Anchor objects. The created anchor will have the media anchor or

property id, the perspective and descriptor defined by the media node. If the media node

as a whole is used in a link bind, it is represented as its all content anchor. Implicit

relations among media node anchors are represented as implicit relationship links. They

are, the beginning of a temporal anchor at the time defined by the NCL document, the

begin of non-temporal anchors when the whole node begins, the end of those anchors

when the whole node ends and the end of an anchor when its duration is reached.

If the node is a context node, the anchors defined by its component nodes are created.

The same is done for a switch node, except that a condition is associated to the anchor,

representing the condition defined by the switch element for its component activation.

During the SHM objects creation, port and link bind references should be parsed.

The parsing of port and link bind references is done as follows.

1. A reference to a media node returns the anchor that represents that media node,

that is, its all content anchor ;

2. A reference to a media node interface point returns the anchor defined by that

interface point;

3. A reference to a context node returns the anchors the elements mapped by all

context ports return;

4. A reference to a context node interface point returns, if it is a property, the anchor

defined by that interface point or, if it is a port, the anchors the element mapped

8 API for NCL Authoring and Analysis 105

by that port returns;

5. A reference to a switch node does the same as the context node but adds a condition

to each anchor returned, related to the switch bind that maps to that anchor;

6. A reference to a switch node interface point (switch port) returns the anchors

mapped by that switch port adding a condition to each anchor returned, related

to the switch bind that maps to that anchor;

8.4 Closing remarks

This chapter presented aNaa, an implementation of the validation and verification ap-

proaches presented in this work. The tool was implemented to analyze documents speci-

fied with the NCM model, using the NCL language. aNaa extends the API aNa, adding

to it methods to create the representation of an NCL document as an object diagram and

perform its validation, besides methods to create the SHM representation of that docu-

ment and perform its verification. This chapter also presented the Maude specification to

represent an SHM document and the transformation of an NCL document into SHM.

The next chapter presents tests done with aNaa to validate its implementation. The

tests were done with documents developed by the NCL user community, to test if the tool

could find errors, and some sample documents built to test the tool response time.

Chapter 9

Empirical analysis

To validate the implementation of the analysis proposed in this work, aNaa was used

to analyze several sample documents. This was done to test if the tool was capable

of identifying specification problems and undesired behaviors. Each sample document

was created to fail in one of the properties presented. After those tests, aNaa was used

to analyze three documents available in the NCL club1, a repository for interactive TV

applications using NCL. The documents analyzed with aNaa, are the ones supported by

the current version of the tool. This chapter: (i) presents the documents tested together

with the errors (if any) found in each document; (ii) discusses tests designed to analyze

the response time of the Maude model checker when analyzing documents with different

sizes; (iii) discusses limitations of the tool.

9.1 The analyzed documents

The first document analyzed describes the “First João” application. “First João” is an

interactive TV application developed by TeleMı́dia Lab, in PUC-Rio, which presents an

animation inspired in a chronicle about a famous Brazilian soccer player named Garrincha.

As the animation executes, the application plays a sound and presents a background

image. At the moment Garrincha dribbles the opponent, a video of kids performing the

same dribble is presented. When Garrincha’s opponent falls in the ground, a photo of

a kid in the same position is presented. At some moment a soccer shoes icon appears.

If the TV user presses the remote red key, the animation is resized and a video of a kid

thinking about shoes starts playing.

In order to analyze this document, a few changes to the document were necessary, as

1http://club.ncl.org.br

9 Empirical analysis 107

follows: moving the definition of the connectors used by the document to the document

head, since aNa does not import external bases and link delays were removed, since SHM

does not support link delays (Section 7.5). For this document, no specification problems

and possible undesired behaviors were found. Every document element is well defined,

every anchor is reachable and has an end. Besides, the document as a whole ends. The

approximated duration for this document analysis was 4 seconds, 1,5 seconds for the static

validation and 2,5 seconds for the dynamic verification.

The second document is “Tic-tac-toe”, also developed by UFMA (Universidade Fe-

deral do Maranhão), describing a tic-tac-toe game using just NCL code. It defines nine

spaces at the screen where the TV user can mark an X or O. When the TV user selects

an empty space, an X or an O is marked, depending on the player of the current round.

The game starts with player X. If the TV user presses the remote red key, the game is

ended. If the green key is pressed, the game restarts.

This document also had to be modified in order to be analyzed by aNaa. Connector

definitions were moved to the document head and a few descriptors using string values

in the focusIndex attribute had their values changed to numbers, since that attribute in

aNa is represented as an Integer value.

This document presented a few specification problems. It was possible to find two

rule elements with the same id (rXLoseDia1 pos4), making the document to fail in the

attribute validation property. Listing 9.1 (lines 4 and 9) shows a fragment of “Tic-tac-toe”

where this specification problem appears. It is worth noticing that this problem did not

impact the document presentation, since both rules are inside different composite rules

and are not used directly.

Listing 9.1: Tic-tac-toe element id specification problem

1 <compos i t eRu l e i d=”RXLoseDia” op e r a t o r=”and”>

2 <compos i t eRu l e i d=”RXLoseDia1” op e r a t o r=”or”>

3 < r u l e i d=”rXLoseDia1 pos0 ” va r=” pos0 ” comparator=”ne” va l u e=”x” />

4 < r u l e i d=”rXLoseDia1 pos4 ” va r=” pos4 ” comparator=”ne” va l u e=”x” />

5 < r u l e i d=”rXLoseDia1 pos8 ” va r=” pos8 ” comparator=”ne” va l u e=”x” />

6 </compos i teRu le>

7 <compos i t eRu l e i d=”RXLoseDia2” op e r a t o r=”or”>

8 < r u l e i d=”rXLoseDia1 pos2 ” va r=” pos2 ” comparator=”ne” va l u e=”x” />

9 < r u l e i d=”rXLoseDia1 pos4 ” va r=” pos4 ” comparator=”ne” va l u e=”x” />

10 < r u l e i d=”rXLoseDia1 pos6 ” va r=” pos6 ” comparator=”ne” va l u e=”x” />

11 </compos i teRu le>

12 </compos i teRu le>

Another specification problem found was that the document defined a connector with

9 Empirical analysis 108

a simpleCondition pointing, through the attribute key, to a connector parameter. How-

ever, this parameter does not have its value determined in the link using that connector,

making the document to fail in the hierarchy validation property. Listing 9.2 presents the

definition of the connector and the link using it (see lines 6 and 22). It is worth noticing

that this problem did not impact the document presentation, since the NCL presentation

engine uses a default value when the parameter value is not set. This behavior, however,

was not described in the standard [ABNT 2007] used in this work.

Listing 9.2: Tic-tac-toe parameter element specification problem

1 <cau sa lConnec t o r i d=”onKeySe l e c t i o nP r op e r t yTe s tS t opSe tS t a r t”>

2 <connectorParam name=”key”/>

3 <connectorParam name=”v a l ”/>

4 <!−− c o n d i t i o n −−>
5 <compoundCondit ion op e r a t o r=”and”>

6 <s imp l eCond i t i o n r o l e=”onS e l e c t i o n ” key=”$key”/>

7 <as se s smentSta tement comparator=”eq”>

8 <a t t r i b u t eA s s e s smen t r o l e=”p r op e r t yTe s t ” eventType=”a t t r i b u t i o n ”

a t t r i b u t eTyp e=”nodePrope r ty”/>

9 <va l ueAs s e s sment v a l u e=”$va l ”/>

10 </asses smentStatement>

11 </compoundCondit ion>

12 <compoundAction op e r a t o r=”seq”>

13 <s imp l eAc t i o n r o l e=”s top ” max=”unbounded” />

14 <s imp l eAc t i o n r o l e=”s e t ” v a l u e=”$va l ” max=”unbounded”/>

15 <s imp l eAc t i o n r o l e=” s t a r t ” max=”unbounded” />

16 </compoundAction>

17 </causa lConnec to r>

18

19 . . .

20

21 < l i n k xconnec to r=”onKeySe l e c t i o nP r op e r t yTe s tS t opSe tS t a r t”>

22 <b ind component=”empty2” r o l e=”onS e l e c t i o n ”/>

23 <b ind component=”noS e t t i n g s ” i n t e r f a c e=”tu rn ” r o l e=”p r op e r t yTe s t”>

24 <bindParam name=”v a l ” v a l u e=”x”/>

25 </bind>

26 <b ind component=”noS e t t i n g s ” i n t e r f a c e=” pos2 ” r o l e=”s e t”>

27 <bindParam name=”v a l ” v a l u e=”x”/>

28 </bind>

29 <b ind component=”noS e t t i n g s ” i n t e r f a c e=”tu rn ” r o l e=”s e t”>

30 <bindParam name=”v a l ” v a l u e=”o”/>

31 </bind>

32 <b ind component=”x” d e s c r i p t o r=”dPos2” r o l e=” s t a r t ”/>

33 <b ind component=”s e a r c h w i n n e r ” r o l e=” s t a r t ”/>

34 <b ind component=”empty2” d e s c r i p t o r=”dPos2” r o l e=”s top”/>

35 </ l i n k>

aNaa was able to create the SHM document representation. However, the document

could not be executed in Maude. Since the document SHM representation is very big and

have many conditional equations, it was identified that some equations were tried to be

9 Empirical analysis 109

applied a large number of times. This limitation will be commented in Section 9.3. The

approximated duration for this document static analysis was 3,5 seconds.

The third document is “Viva Mais”, an application developed by Núcleo de TV Digital

Interativa in UFSC (Universidade Federal de Santa Catarina). It presents a TV show

discussing several subjects concerning health and welfare and offers some opportunities

for an active participation of the TV user.

Once the TV show video starts playing, an interaction icon appears. When the red

key is pressed, four different food options appear and the TV user chooses the one he/she

prefers to eat. To choose a dish, the TV user presses the colored keys of the remote

control. When a dish is chosen, the TV user is informed about the quality of his/her

choice, telling if there are missing nutrients or nutrients in excess.

No changes where necessary to analyze the document with aNaa. For this example,

no problems in the document syntax were found, since every document element is well

defined.

The verification of the document spatio-temporal definition indicated that all docu-

ment anchors were unreachable, except the anchor mapped by the document body port.

The anchor mapped by the body port is an anchor of the application main video. Inside

the document, the links that start and stop the remaining anchors are triggered by the

video presentation. In the NCL to SHM transformation, an ImplicitRelationship link was

not created to start the video all content anchor, once one of its internal anchors starts

its presentation. So the video all content anchor does not start its presentation and the

document links are not triggered. This limitation will be commented in Section 9.3.

We changed the SHM document that represents the “Viva Mais” NCL document

to solve that problem, creating a link to start the video all content anchor when its

internal anchor starts. After that change, the document could be verified. Possible

undesired behaviors were found in that document. In the document test execution, just

dish 1 was chosen. Once that dish was chosen, the result for that dish was presented.

aNaa verification indicated that the anchors representing the other dishes result were

unreachable. This behavior, however, is not related to the document specification, but to

a limitation of the tool, which will be commented in Section 9.3.

Also, aNaa indicated that the anchors representing dish 1 and its result do not end, and

consequently the document as a whole. Investigating the NCL document, we confirmed

that behavior, making the document to fail in the anchor termination and document

9 Empirical analysis 110

termination verification properties. The approximated duration for this document analysis

was 8 seconds, 2,5 for the static validation and 5,5 seconds for the dynamic verification.

9.2 Maude performance tests

When aNaa calls the Maude model checker to verify the NCL document, it executes the

document and searches for a state where the given property holds. Notice that for each

property, the document is executed. Since aNaa is designed to be used by NCL authoring

tools, it is important to test the response time for documents with different sizes. This

section presents performance tests done with the Maude model checker and analyzes those

test results.

A document, in the Maude specification, is represented by its anchors and the links

among those anchors. For each document anchor, Maude has to test if it will change

its related event states and evolve it, for each evolving step (see Section 8.1.2). So,

the computations for executing a document should grow with the number of document

anchors. Since anchors that are active in the document can have their event states changed

(end of an attribution and user selection) freely and its duration has to be incremented

(for content anchors), it is possible that active anchors have more influence than inactive

ones. Also, for each link Maude has to test if it will change the document state and, of

course, execute the link. So, the computations for executing a document should also grow

with the number of document links.

Three tests were performed to determine the influence of the number of anchors in

Maude response time. The first executes documents with a growing number of active

anchors from 1 to 100. The second executes documents with 1 active anchor and a

growing number of inactive anchors from 1 to 100. The third executes documents with a

growing number of active and inactive anchors from 1 to 50 (giving a total of 100 anchors).

The test to determine the influence of links in Maude response time executes documents

with one anchor and a growing number of links from 1 to 100. Every link is executed once

during the document execution. The duration of the documents (in simulation time) is 1

hour. Both the maximum number of anchors (100) and the document duration (1 hour)

were chosen in order to represent very big documents. Figures 9.1 to 9.3 show the results

of those tests, presenting the number of Maude rewrites, the number of rewrites/second

and the duration (in seconds) of the document execution per anchor/link.

Notice that the duration of the document execution grows very fast with the number

9 Empirical analysis 111

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

R
ew

rit
es

 (x
10

^6
)

Anchors/Links

Anchors/Links x Rewrites

active anchors
inactive anchors

active and inactive anchors
links

Figure 9.1: Rewrites x anchor/link

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

R
ew

rit
es

/s
 (x

10
^3

)

Anchors/Links

Anchors/Links x Rewrites/s

active anchors
inactive anchors

active and inactive anchors
links

Figure 9.2: Rewrites/second x anchor/link

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

s
C

PU

Anchors/Links

Anchors/Links x s CPU

active anchors
inactive anchors

active and inactive anchors
links

Figure 9.3: Duration x anchor/link

9 Empirical analysis 112

of anchors (Figure 9.3). After a certain number of anchors (80 anchors in average) the

document execution duration is bigger than its real execution (3600s). Notice, however,

that the number of rewrites/second diminishes also very fast (Figure 9.2) and the number

of rewrites grows at a constant rate, as expected (Figure 9.1). It is also possible to observe

that links do not affect the increase of rewrites and execution duration as anchors. Links

are represented as equations and the way Maude tests the equations that can be applied

at a certain moment is not time consuming.

We identified four important problems related to this behavior in our Maude specifica-

tion representing an SHM document. The following paragraphs discusses these problems.

The first problem identified is the test to determine if the document execution has

ended. This test verifies all anchors in the document, testing if that anchor is not active.

Since this test is used every time the document evolves, it plays an important role on

growing the number of rewrites. It would be better if we could test if the document is

active, which is true most of the time, instead of verifying if at least one anchor is active.

This can be refined in our Maude specification, by redefining the ended operation (see

Listing 8.11). Another improvement would be to diminish the use of those tests.

The second problem identified is the boolean operations performed. We identified

that a simple boolean operation, like A ∧ B ∨ C, has a big rewrite cost. Suppose the

example presented in Listing 9.3.

Listing 9.3: Boolean test module

1 mod TEST i s

2 ops va r1 va r2 va r3 : −> Bool .

3 eq va r1 = t r u e .

4 eq va r2 = t r u e .

5 eq va r3 = t r u e .

6 endm

Listing 9.4 shows the result of operations var1 ∧ var2 ∧ var3 and var1 ∨ var2 ∨ var3
and the detailed list of rewrites done, using the Maude profile command.

Listing 9.4: Boolean test result

1 Maude> r ed va r1 and var2 and var3 .

2 r educe i n TEST : va r1 and var2 and va r3 .

3 r e w r i t e s : 5 i n 0ms cpu (0ms r e a l) (454545 r e w r i t e s / second) r e s u l t Bool : t r u e

4

5 Maude> show p r o f i l e .

6 eq va r1 = t r u e .

7 r e w r i t e s : 1 (20%)

8

9 eq va r2 = t r u e .

9 Empirical analysis 113

10 r e w r i t e s : 1 (20%)

11

12 eq va r3 = t r u e .

13 r e w r i t e s : 1 (20%)

14

15 eq t r u e and A: Bool = A: Bool .

16 r e w r i t e s : 2 (40%)

17

18

19

20 Maude> r ed va r1 or va r2 or va r3 .

21 r educe i n TEST : va r1 or va r2 or va r3 .

22 r e w r i t e s : 11 i n 0ms cpu (0ms r e a l) (˜ r e w r i t e s / second) r e s u l t Bool : t r u e

23

24 Maude> show p r o f i l e .

25 eq va r1 = t r u e .

26 r e w r i t e s : 1 (9.09091%)

27

28 eq va r2 = t r u e .

29 r e w r i t e s : 1 (9.09091%)

30

31 eq va r3 = t r u e .

32 r e w r i t e s : 1 (9.09091%)

33

34 eq t r u e and A: Bool = A: Bool .

35 r e w r i t e s : 2 (18.1818%)

36

37 eq f a l s e xo r A : Bool = A: Bool .

38 r e w r i t e s : 2 (18.1818%)

39

40 eq A: Bool xo r A : Bool = f a l s e .

41 r e w r i t e s : 2 (18.1818%)

42

43 eq A: Bool o r B : Bool = A: Bool and B: Bool xo r A : Bool xo r B : Bool .

44 r e w r i t e s : 2 (18.1818%)

Notice that the or operation takes twice more rewrites that and. Diminishing the

number of rewrites necessary to get the result of a boolean operation should help dimin-

ishing the number of rewrites when executing the document, since that kind of operation

is done many times. This could be achieved by defining all boolean operations in normal

form or creating functions to represent boolean operations.

The third problem identified, and very important, is regarding the use of conditional

equations or rules. This kind of equation (and rule) is mostly used when changing the

document evolution step. We identified that equations (and rules) match (Section 4.4)

many times, but their condition is not true most of the time. So time and rewrites are

spent testing if the equation can be applied. Suppose the example presented in Listing

9.5.

9 Empirical analysis 114

Listing 9.5: Conditional equation test module

1 mod TEST i s i n c l u d i n g STRING .

2 s o r t s anchor s t a t e .

3

4 ops s l e e p i n g o c c u r r i n g paused : −> s t a t e [c t o r] .

5 op < , , , > : S t r i n g s t a t e s t a t e s t a t e −> anchor [c t o r] .

6

7 v a r s s1 s2 s3 : s t a t e .

8

9 eq < ”a ” , s1 , s2 , s3 > = < ”b” , s1 , s2 , s3 > .

10 ceq < ”c ” , s1 , s2 , s3 > = < ”d” , s1 , s2 , s3 > i f s1 == oc c u r r i n g and (s2 == s l e e p i n g

or s3 == paused) .

11 endm

Listing 9.6 shows the result of applying both equations defined in Listing 9.5 and the

detailed list of rewrites done, using the Maude profile command.

Listing 9.6: Conditional equation result

1 Maude> r ed < ”a ” , o c cu r r i n g , paused , s l e e p i n g > .

2 r educe i n TEST : < ”a ” , o c cu r r i n g , paused , s l e e p i n g > .

3 r e w r i t e s : 1 i n 0ms cpu (0ms r e a l) (62500 r e w r i t e s / second)

4 r e s u l t anchor : < ”b” , o c cu r r i n g , paused , s l e e p i n g >

5

6 Maude> show p r o f i l e .

7 eq < ”a ” , s1 , s2 , s3 > = < ”b” , s1 , s2 , s3 > .

8 r e w r i t e s : 1 (100%)

9

10

11

12 Maude> r ed < ”c ” , o c cu r r i n g , paused , s l e e p i n g > .

13 r educe i n TEST : < ”c ” , o c cu r r i n g , paused , s l e e p i n g > .

14 r e w r i t e s : 8 i n 0ms cpu (0ms r e a l) (145454 r e w r i t e s / second)

15 r e s u l t anchor : < ”c ” , o c cu r r i n g , paused , s l e e p i n g >

16

17 Maude> show p r o f i l e .

18 op == : [s t a t e] [s t a t e] −> [Bool] .

19 b u i l t−i n eq r e w r i t e s : 3 (37.5%)

20

21 ceq < ”c ” , s1 , s2 , s3 > = < ”d” , s1 , s2 , s3 > i f (s2 == s l e e p i n g or s3 == paused) and s1 ==

oc c u r r i n g = t r u e .

22 l h s matches : 1 r e w r i t e s : 0 (0%)

23 Fragment I n i t i a l t r i e s Re so l v e t r i e s Suc c e s s e s F a i l u r e s

24

25 eq t r u e and A: Bool = A: Bool .

26 r e w r i t e s : 1 (12.5%)

27

28 eq f a l s e and A: Bool = f a l s e .

29 r e w r i t e s : 1 (12.5%)

30

31 eq f a l s e xo r A : Bool = A: Bool .

32 r e w r i t e s : 2 (25%)

33

9 Empirical analysis 115

34 eq A: Bool o r B : Bool = A: Bool and B: Bool xo r A : Bool xo r B : Bool .

35 r e w r i t e s : 1 (12.5%)

Notice that although the conditional equation has no rewrites, when it matches, 8

rewrites are done in order to determine if it can be applied. Diminishing the number of

conditional equations and rules in the Maude specification or diminishing the number of

rewrites necessary to determine if a conditional equation or rule can be applied should

help diminishing the number of rewrites when executing the document.

The fourth problem identified, and the most important, is also regarding the use of

conditional equations or rules. In our Maude specification representing an SHM document,

some conditional equations were used. Those equations left size define a pattern with

a variable to represent the remaining document anchors. When Maude tries to apply

those equations and their conditions are not satisfied, it changes the value of the variable

representing the remaining document anchors and tries to apply the equation again, due

to rewriting modulo associativity and commutativity. As the number of anchors increases,

the time and rewrites spent trying to apply those equations increases too. In some cases,

as presented in Section 9.1, the time spent is so big that a document can not be executed.

Suppose the example presented in Listing 9.7.

Listing 9.7: Conditional equation pattern matching test module

1 mod TEST i s i n c l u d i n g STRING .

2 s o r t s s t a t e anchor con f .

3 s u b s o r t anchor < con f .

4

5 ops s l e e p i n g o c c u r r i n g paused : −> s t a t e [c t o r] .

6 op < , > : S t r i n g s t a t e −> anchor [c t o r] .

7

8 op none : −> con f [c t o r] .

9 op : con f con f −> con f [c t o r a s s o c comm id : none] .

10

11 va r s : s t a t e .

12 va r c : con f .

13

14 ceq < ” i ” , s > c = < ” i i ” , o c c u r r i n g > c i f s == paused .

15 endm

Listing 9.8 shows the result of applying the equation defined in Listing 9.7 and the

detailed list of rewrites done, using the Maude profile command.

Listing 9.8: Conditional equation pattern matching result

1 Maude> r educe < ” i ” , s l e e p i n g > < ”a ” , s l e e p i n g > < ”b” , s l e e p i n g > .

2 r educe i n TEST : < ” i ” , s l e e p i n g > < ”a ” , s l e e p i n g > < ”b” , s l e e p i n g > .

3 r e w r i t e s : 5 i n 0ms cpu (0ms r e a l) (384615 r e w r i t e s / second)

9 Empirical analysis 116

4 r e s u l t con f : < ”a ” , s l e e p i n g > < ”b” , s l e e p i n g > < ” i ” , s l e e p i n g >

5

6 Maude> show p r o f i l e .

7 op == : [s t a t e] [s t a t e] −> [Bool] .

8 b u i l t−i n eq r e w r i t e s : 4 (80%)

9

10 ceq c : con f < ” i ” , s : s t a t e > = c : con f < ” i i ” , o c c u r r i n g > i f s : s t a t e == paused = t r u e .

11 l h s matches : 4 r e w r i t e s : 0 (0%)

12 Fragment I n i t i a l t r i e s Re so l v e t r i e s Suc c e s s e s F a i l u r e s

Notice that, although the conditional equation has no rewrites, it matches four times

when trying to reduce the command. That occurs because Maude tries to apply the

conditional equation when variable c is equal to none, anchor a, anchor b and both

anchors a and b. To solve that problem, conditional equations have to be modified, to

define a less general pattern.

9.3 Implementation limitations

Currently, the API used to represent an NCL document (aNa) and the NCL language

structure metamodel (presented in Chapter 6) are not able to support NCL documents

using full reuse capacity, as documents that reuse external documents.

The current version of aNaa does not consider the NCL reuse features. A node in

NCL can reuse another node inside the document reusing its specification and, sometimes,

presenting the same behavior. It is important to consider those reuse facilities when

creating the SHM representation of an NCL document.

Another limitation is the use of delays in link conditions and actions. Since SHM does

not support these delays, they have to be removed from the document before its analysis.

Also, as stated in Section 7.5, SHM currently does not fully represent an NCM event.

Both the concepts of occurrences and repetitions are not represented by SHM.

aNaa uses JMF (Java Media Framework API)2 for decoding media objects and getting

their duration. When testing the documents presented in the previous section, it was

necessary to define the media durations manually in their descriptors, since JMF was not

able to return their duration.

As seen in Section 9.1 the “Tic-tac-toe” example could not be executed and we iden-

tified that some conditional equations were tried to be applied a large number of times.

2more information available at http://www.oracle.com/technetwork/java/javase/specdownload-
136569.html

9 Empirical analysis 117

This problem may be solved by refactoring the Maude specification as presented in Sec-

tion 9.2. It is important, however, to research if the problem that happened with the

“Tic-tac-toe” was caused just by a large number of tries for some conditional equations.

Considering the “Viva Mais” example, it was identified that links relating anchors

inside the same node were missing. It is important to refactor the transformation to

address this limitation. Besides, while verifying that example, just one of the possible

dishes was selected. That occurs because the user interaction in the Maude specification

was modeled as equations. If, on the other hand, it was modeled as rules, the user

interaction would create a new state every time an anchor was selected and consequently

a new execution path. With this modification, we could use the Maude model checker to

find at least one path were the other dishes were selected. As a consequence, all anchors

would be reached.

Chapter 10

Conclusion

Although declarative languages facilitate the creation of interactive applications, when an

application has many components and many user interactions, the hypermedia document

that describes it gets bigger, with many lines of code. Generally, those documents may

become more prone to errors, since the author tends to reuse definitions through code

copy. In addition, frequently the author forgets to define some relationships that could

make the application not to end, for example, or even defines conflicting relationships,

leading the application to an undesirable behavior.

This dissertation discusses a preliminary work on formal validation and verification of

NCL documents. The validation and verification may indicate to the author specification

problems and possible undesired behaviors. It also provides the author the possibility

of correcting them, guaranteeing that the application is well defined before it is made

available for the final user. To achieve that validation and verification, a set of validation

and verification properties were defined besides the use of an MDA approach for the

validation of the document structural definition and the verification of the document

behavioral definition. This work also presents aNaa, an analysis tool capable of verifying

a multimedia document in order to guarantee its consistency.

Section 10.1 highlights this work’s contributions and Section 10.2 presents future and

ongoing works.

10.1 Contributions

This work defined a set of properties that, when satisfied in a multimedia document, it

can be considered consistent (Chapter 5). The properties here presented were divided

in two parts: properties for the validation of the document structural definition and the

10 Conclusion 119

verification of the document behavioral definition. Those properties were called static

and dynamic properties, respectively. There are seven static validation properties: lexical

and syntactic, hierarchy, attribute, reference, compositionality, composition nesting and

element reuse validation properties. The dynamic verification was divided into four prop-

erties: reachability, anchor termination, document termination and resource verification

properties. Those properties came from the study of related work and were used as basis

for the implementation of an analysis tool.

In Chapters 6 and 7, we presented a model-driven approach for the analysis of multi-

media documents. And Chapter 8 presented that approach implementation in an analysis

tool called aNaa (API for NCL Authoring and Analysis).

The static validation used a representation of the language structure as a metamodel

and defined a set of OCL invariants that represent the static validation properties. It

also represented a multimedia document as an instance of that metamodel and used this

representation as input to a tool that validated the invariants. The dynamic verification

was based on SHM, a general model proposed for representing multimedia document pre-

sentation behavior, and its transformation into a transition system, where each temporal

property was verified with the use of LTL formulas and a model checker tool.

Once NCL documents have to be transformed into the language metamodel and the

SHM notation, it was important to be able to read NCL documents and create a repre-

sentation for them. To achieve this goal, we developed aNa, an API for representing NCL

documents. That API represents the NCL elements with the same characteristics of the

NCL Language Structure Metamodel. The API implementation was done so it can be

used by NCL authoring tools as a common core.

The analysis tool here presented, aNaa, extends aNa adding to the API the capabil-

ity of analyzing NCL documents. It implements the static validation and the dynamic

verification, transforming an NCL document into the different representations and calling

external tools to perform the document analysis. aNa and aNaa were implemented in

Java, making its use possible by NCL authoring tools for analyzing NCL documents.

The following topics summarize this work contributions.

• The definition of a set of properties that, when satisfied in a multimedia document,

it can be considered consistent;

• The use of a model-driven approach for the analysis of multimedia documents, which

brings the following contributions:

10 Conclusion 120

– The definition of a general method for the validation of multimedia document

structural definitions;

– The definition of a model that represents a multimedia document spatio-

temporal specification for NCL documents;

– The definition of a general method for the verification of multimedia document

behavioral definition.

• Development of the API aNa (API for NCL Authoring) for representing NCL doc-

uments, which brings the following contributions:

– The creation of a data model specifically for representing NCL documents;

– The implementation of a common core for NCL authoring tools, making pos-

sible to exchange object-oriented data among different tools without the need

to generate XML code;

• The development of API aNaa (API for NCL Authoring and Analysis), making

possible for authoring tools to analyze an NCL document being authored.

10.2 Future works

Regarding the validation of multimedia document structural definition, a future work is

the use of the same method here proposed for NCL for validating documents specified with

different languages, such as SMIL and HTML5, by defining an LSM and OCL invariants

for those languages. This is important in order to prove the generality of the set of static

validation properties.

The validation of multimedia document structural definition is language dependent,

since an LSM and OCL invariants have to be defined for each different language. In order

to generalize this validation, a future work is the creation of basic multimedia linguistic

constructions, general enough to represent multimedia documents described with different

languages, to be used as basis for the static definition validation.

The verification of dynamic properties was implemented based on SHM, presented

in Chapter 7. Since a transformation of a multimedia document to SHM was required,

NCL was chosen as the authoring language in the implementation test case, once it is also

based on events, and a simple transformation was required. However, different authoring

languages could be used, requiring a document transformation to SHM. Another future

10 Conclusion 121

work is the implementation of the dynamic properties verification for documents specified

with different languages, such as SMIL, in order to prove the generality of the SHM model

and of the set of verification dynamic properties.

An SHM document is represented in Maude as a rewrite theory. A future work is the

formal proof of the correctness of that transformation.

aNaa is capable of indicating possible undesired behaviors in the authored document.

However, it is not capable of verifying if the author desired behavior was described by the

analyzed multimedia document. This verification can be achieved from a user description

of the expected document behavior and the comparison of that behavior with the one that

comes from the Maude rewrite theory execution. Another approach is to make possible

to the author to define a temporal property (in temporal logic) to be investigated. That

facility was left as future work.

Chapter 8 presented the messages returned by aNaa to indicate a possible specification

problem. It is important that the messages returned to the user are clear enough to help

even non-expert authors. One possible approach is to simulate the path returned by the

model checker counterexample. A future work is to improve these messages making them

clearer.

The Maude rewrite theory representation, as the SHM model, is not capable of rep-

resenting real time properties of multimedia documents, such as link delays. An ongoing

work is the improvement of SHM and Maude rewrite theory in order to represent these

properties. Besides, the response time of the Maude model checker tool proved to be big

for large documents. The analysis of that response time and the behavior of some Maude

constructs highlighted in the Maude specification must be refactored. This specification

refactoring is an ongoing work. Another ongoing work related to the Maude specification

is the modeling of user selection as rules (currently it is modeled as equations). With

this modification every user interaction would create a new state and consequently a new

execution path. We believe that this behavior is more correct than the one currently in

use.

NCL documents may have nodes representing Lua scripts. These nodes are sometimes

used to determine the behavior of the NCL document, since Lua scripts can generate

events that are interpreted by links in the NCL document. An important future work is

the representation of the behavior of those scripts in Maude, when necessary. Modeling

that behavior will make possible to determine when, during the node representing a Lua

script, an event will be generated, enabling those documents analysis.

10 Conclusion 122

Another facility provided by NCL is live editing commands [ABNT 2011]. A live

editing command enables a TV broadcaster to edit an NCL document, that is, create

elements, change attribute values, etc. A future work is to represent in the SHM model

those live editing commands.

Multimedia documents are sometimes executed in platforms with limited resources,

such as memory, bandwidth, etc. Such limitation may interfere in the multimedia docu-

ment execution. For example, consider a media node retrieved from a media server. It is

possible that an execution platform with a limited bandwidth could add a delay in that

media presentation, changing the behavior of the multimedia document. A future work

is to enable the analysis tool user to define some characteristics of the execution platform

prior to the document analysis.

At last, an important ongoing work is to solve aNaa limitations presented in Section

9.3. Also, in order to guarantee that the tool works properly, another important future

work is to define a set of multimedia documents to be used as benchmark.

123

APPENDIX A -- OCL invariant list

Listing A.1: Hierarchy OCL invariants
1 −−−
2 −− A document must have at l e a s t a head or a body

3 context NCLDoc i n v :

4 s e l f . head−>notEmpty () or s e l f . body−>notEmpty ()

5

6

7 −−−
8 −− The document body can not be empty

9 context NCLBody i n v :

10 s e l f . nodes−>notEmpty () or s e l f . p r o p e r t i e s−>notEmpty () or s e l f . metas−>notEmpty () or s e l f . metadatas−>notEmpty ()

11

12

13 −−−
14 −− The document body can not have l i n k s w i thout hav ing nodes or p r o p e r t i e s

15 context NCLBody i n v :

16 (s e l f . po r t s−>notEmpty () or s e l f . l i n k s−>notEmpty ()) imp l i e s (s e l f . nodes−>notEmpty () or s e l f . p r o p e r t i e s−>notEmpty ())

17

18

19 −−−
20 −− The document head can not be empty

21 context NCLHead i n v :

22 s e l f . importedDocumentBase−>notEmpty () or s e l f . r u l eBase−>notEmpty () or s e l f . t r a n s i t i o nBa s e−>notEmpty ()

23 or s e l f . r eg ionBase−>notEmpty () or s e l f . d e s c r i p t o rBa s e−>notEmpty () or s e l f . connectorBase−>notEmpty ()

24

25

26 −−−
27 −− A asse s smentSta tement must have two a t t r i b u t eA s s e s smen t or an a t t r i b u t eA s s e s smen t and a va lueAs s e s sment

28 context NCLAssessmentStatement i n v :

29 i f s e l f . va lueAsse s sment−>notEmpty () then

30 s e l f . a t t r i b u t eA s s e s smen t s−>s i z e () = 1

31 e l s e

32 s e l f . a t t r i b u t eA s s e s smen t s−>s i z e () = 2

33 end i f

34

35

36 −−−
37 −− A cau sa lConnec t o r must have a c o n d i t i o n

38 context NCLCausalConnector i n v :

39 s e l f . c o nd i t i o n−>notEmpty ()

40

41

42 −−−
43 −− A cau sa lConnec t o r must have an a c t i o n

44 context NCLCausalConnector i n v :

45 s e l f . a c t i on−>notEmpty ()

46

47

48 −−−
49 −− A compoundAction must have at l e a s t two i n n e r a c t i o n s

50 context NCLCompoundAction i n v :

51 s e l f . a c t i o n s−>s i z e () >= 2

52

53

54 −−−

Appendix A -- OCL invariant list 124

55 −− A compoundCondit ion must have at l e a s t two i n n e r c o n d i t i o n s and/ or a s s e r t i v e s

56 context NCLCompoundCondition i n v :

57 (s e l f . c o nd i t i o n s−>s i z e () + s e l f . s ta tements−>s i z e ()) >= 2

58

59

60 −−−
61 −− A compoundStatement must have at l e a s t two a s s e r t i v e s

62 context NCLCompoundStatement i n v :

63 s e l f . s ta tements−>s i z e () >= 2

64

65

66 −−−
67 −− A connec to rBase can not be empty

68 context NCLConnectorBase i n v :

69 s e l f . connec to r s−>notEmpty () or s e l f . impor t s−>notEmpty ()

70

71

72 −−−
73 −− A de s c r i p t o rB a s e can not be empty

74 context NCLDescr iptorBase i n v :

75 s e l f . d e s c r i p t o r s−>notEmpty () or s e l f . impor t s−>notEmpty ()

76

77

78 −−−
79 −− A d e s c r i p t o r Sw i t c h must have at l e a s t one d e s c r i p t o r and one b indRu l e

80 context NCLDesc r ip to rSwi tch i n v :

81 s e l f . d e s c r i p t o r s−>s i z e () >= 1 and s e l f . b inds−>s i z e () >= 1

82

83

84 −−−
85 −− A reg i onBas e can not be empty

86 context NCLRegionBase i n v :

87 s e l f . r e g i o n s−>notEmpty () or s e l f . impor t s−>notEmpty ()

88

89

90 −−−
91 −− A importedDocumentBase can not be empty

92 context NCLImportedDocumentBase i n v :

93 s e l f . impor t s−>notEmpty ()

94

95

96 −−−
97 −− A ru l eBa s e can not be empty

98 context NCLRuleBase i n v :

99 s e l f . r u l e s−>notEmpty () or s e l f . impor t s−>notEmpty ()

100

101

102 −−−
103 −− A compos i t eRu l e mut have at l e a s t two i n n e r r u l e s

104 context NCLCompositeRule i n v :

105 s e l f . r u l e s−>s i z e () >= 2

106

107

108 −−−
109 −− A t r a n s i t i o nB a s e can not be empty

110 context NCLTrans i t ionBase i n v :

111 s e l f . t r a n s i t i o n s−>notEmpty () or s e l f . impor t s−>notEmpty ()

112

113

114 −−−
115 −− A sw i t chPo r t must have at l e a s t one mapping

116 context NCLSwitchPort i n v :

117 s e l f . mappings−>notEmpty ()

118

119 −−−
120 −− A con t e x t must have at l e a s t one i n n e r node or p r o p e r t y or r e f e r ano the r c on t e x t

121 context NCLContext i n v :

122 s e l f . nodes−>notEmpty () or s e l f . p r o p e r t i e s−>notEmpty () or s e l f . r e f e r−>notEmpty ()

123

124

125 −−−
126 −− A sw i t ch must have at l e a s t one i n n e r node and one b ind

127 context NCLSwitch i n v :

Appendix A -- OCL invariant list 125

128 s e l f . b inds−>notEmpty () and s e l f . nodes−>notEmpty ()

129

130

131 −−−
132 −− A l i n k must have at l e a s t two b i nd s

133 context NCLLink i n v :

134 s e l f . b inds−>s i z e () >= 2

135

136

137 −−−
138 −− The number o f l i n k b i nd s must r e s p e c t the c a r d i n a l i t y d e f i n e d by the l i n k connec to r

139 context NCLLink i n v :

140 s e l f . x connec to r . ge tRo l e sF romCausa lConnec to r ()−>f o r A l l (r o l e | (r o l e . getMax () <> −1 imp l i e s s e l f . getBindsFromRole (

r o l e)−>s i z e () <= r o l e . getMax ()) and (r o l e . getMin () <> −1 imp l i e s s e l f . getBindsFromRole (r o l e)−>s i z e () >= r o l e .

getMin ()))

141

142

143 −−−
144 −− The l i n k must d e f i n e a v a l u e to a l l c onnec to r pa ramete r s

145 context NCLLink i n v :

146 s e l f . g e tPa ramete r s ()−>c o l l e c t (p | p . name)−>f l a t t e n ()−>asSe t ()−>s i z e () = s e l f . x connec to r . conn params−>s i z e ()

Listing A.2: Attribute OCL invariants
1 −−−
2 −− An i d e n t i f i a b l e e l ement i d must be un ique i n s i d e the whole document (excep t f o r p r o p e r t i e s)

3 context NCL I d en t i f i a b l eE l emen t i n v :

4 i f not (s e l f . o c l I sK i n dO f (NCLProperty) or s e l f . o c l I sK i n dO f (NCLConnectorParam)) and s e l f . id−>notEmpty () then

5 NCL I d en t i f i a b l eE l emen t . a l l I n s t a n c e s ()−>f o r A l l (d |
6 i f d . id−>notEmpty () and d <> i then

7 d . i d . v a l u e <> s e l f . i d . v a l u e

8 e l s e

9 t r u e

10 end i f)

11 e l s e

12 t r u e

13 end i f

14

15

16 −−−
17 −− A p r op e r t y i d must be un ique i n s i d e i t s pa r en t media

18 context NCLMedia i n v :

19 s e l f . p r o p e r t i e s−>f o r A l l (p1 : NCLProperty , p2 : NCLProperty | p1 <> p2 imp l i e s p1 . name <> p2 . name)

20

21

22 −−−
23 −− A d e s c r i p t o r f o c u s I n d e x must be un ique i n s i d e the whole document

24 context NCLDescr iptor i n v :

25 i f s e l f . f o cu s I ndex−>notEmpty () then

26 NCLDescr iptor . a l l I n s t a n c e s ()−>f o r A l l (d : NCLDescr iptor |
27 i f d <> i and d . f o cu s I ndex−>notEmpty () then d . f o c u s I n d e x . v a l u e <> i . f o c u s I n d e x . v a l u e e l s e t r u e end i f)

28 e l s e

29 t r u e

30 end i f

31

32

33 −−−
34 −− A connec to r r o l e must be un ique i n s i d e the connec to r

35 context NCLCausalConnector i n v :

36 s e l f . ge tRo l e sF romCausa lConnec to r ()−>f o r A l l (r1 , r2 | r1 <> r2 imp l i e s r1 . d i f f e r (r2)))

37

38

39

40 −−−
41 −−−
42 −− An i d e n t i f i a b l e e l ement must d e f i n e the i d a t t r i b u t e (excep t f o r the ones l i s t e d)

43 context NCL I d en t i f i a b l eE l emen t i n v :

44 not (s e l f . o c l I sK i n dO f (NCLImportedDocumentBase) or

45 s e l f . o c l I sK i n dO f (NCLRuleBase) or

46 s e l f . o c l I sK i n dO f (NCLTrans i t ionBase) or

47 s e l f . o c l I sK i n dO f (NCLRegionBase) or

48 s e l f . o c l I sK i n dO f (NCLDescr iptorBase) or

Appendix A -- OCL invariant list 126

49 s e l f . o c l I sK i n dO f (NCLConnectorBase) or

50 s e l f . o c l I sK i n dO f (NCLBody) or

51 s e l f . o c l I sK i n dO f (NCLLink)) imp l i e s s e l f . id−>notEmpty ()

52

53

54 −−−
55 −− A document must d e f i n e the xmlns a t t r i b u t e

56 context NCLDoc i n v :

57 s e l f . xmlns <> NCLNamespace : : NULL

58

59

60 −−−
61 −− An asse s smentSta tement must d e f i n e the comparator a t t r i b u t e

62 context NCLAssessmentStatement i n v :

63 s e l f . comparator <> NCLComparator : : NULL

64

65

66 −−−
67 −− An a t t r i b u t eA s s e s smen t must d e f i n e a r o l e

68 context NCLAtt r ibuteAsses sment i n v :

69 s e l f . r o l e−>notEmpty ()

70

71

72 −−−
73 −− An a t t r i b u t eA s s e s smen t must d e f i n e the eventType a t t r i b u t e

74 context NCLAtt r ibuteAsses sment i n v :

75 s e l f . eventType <> NCLEventType : : NULL

76

77

78 −−−
79 −− A compoundAction must d e f i n e the op e r a t o r a t t r i b u t e

80 context NCLCompoundAction i n v :

81 s e l f . o p e r a t o r <> NCLAct ionOperator : : NULL

82

83

84 −−−
85 −− A compoundCondit ion must d e f i n e the op e r a t o r a t t r i b u t e

86 context NCLCompoundCondition i n v :

87 s e l f . o p e r a t o r <> NCLCondi t ionOperator : : NULL

88

89

90 −−−
91 −− A compoundStatement must d e f i n e the op e r a t o r a t t r i b u t e

92 context NCLCompoundStatement i n v :

93 s e l f . o p e r a t o r <> NCLOperator : : NULL

94

95

96 −−−
97 −− A s imp l eAc t i o n must d e f i n e a r o l e

98 context NCLSimpleAction i n v :

99 s e l f . r o l e−>notEmpty ()

100

101

102 −−−
103 −− A va lueAs s e s sment must d e f i n e the v a l u e a t t r i b u t e

104 context NCLValueAssessment i n v :

105 s e l f . va lue−>notEmpty () or s e l f . d e fVa lue <> NCLDefau l tVa lueAssessment : : NULL or s e l f . parValue−>notEmpty ()

106

107

108 −−−
109 −− A s imp l eCond i t i o n must d e f i n e a r o l e

110 context NCLSimpleCondit ion i n v :

111 s e l f . r o l e−>notEmpty ()

112

113

114 −−−
115 −− A de s c r i p t o rPa r am must d e f i n e the name a t t r i b u t e

116 context NCLDescr iptorParam i n v :

117 s e l f . name <> NCLAtt r ibute s : : NULL

118

119

120 −−−
121 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

Appendix A -- OCL invariant list 127

122 context NCLStr ingDesc r ip to rParam i n v :

123 s e l f . va lue−>notEmpty ()

124

125

126 −−−
127 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

128 context NCLBooleanDescr iptorParam i n v :

129 s e l f . va lue−>notEmpty ()

130

131

132 −−−
133 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

134 context NCLColorDescr iptorParam i n v :

135 s e l f . v a l u e <> NCLColor : : NULL

136

137

138 −−−
139 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

140 context NCLPercentDescr iptorParam i n v :

141 s e l f . va lue−>notEmpty ()

142

143

144 −−−
145 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

146 context NCLFitDescr iptorParam i n v :

147 s e l f . v a l u e <> NCLFit : : NULL

148

149

150 −−−
151 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

152 context NCLScro l lDesc r i p to rPa ram i n v :

153 s e l f . v a l u e <> NCLScro l l : : NULL

154

155

156 −−−
157 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

158 context NCLPlaye rL i f eDesc r i p to rPa ram i n v :

159 s e l f . v a l u e <> NCLPlaye rL i f e : : NULL

160

161

162 −−−
163 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

164 context NCLFontWeightDescr iptorParam i n v :

165 s e l f . v a l u e <> NCLFontWeight : : NULL

166

167

168 −−−
169 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

170 context NCLFontVar iantDescr iptorParam i n v :

171 s e l f . v a l u e <> NCLFontVariant : : NULL

172

173

174 −−−
175 −− A de s c r i p t o rPa r am must d e f i n e the v a l u e a t t r i b u t e

176 context NCLDoubleDescr iptorParam i n v :

177 s e l f . va lue−>notEmpty ()

178

179

180 −−−
181 −− The d e s c r i p t o r Sw i t c h b indRu l e must d e f i n e the r u l e a t t r i b u t e

182 context NCLDescr ip to rB indRu le i n v :

183 s e l f . r u l e−>notEmpty ()

184

185 −−−
186 −− The d e s c r i p t o r Sw i t c h b indRu l e must d e f i n e the c o n s t i t u e n t a t t r i b u t e

187 context NCLDescr ip to rB indRu le i n v :

188 s e l f . c o n s t i t u e n t−>notEmpty ()

189

190

191 −−−
192 −− An impor t must d e f i n e the a l i a s a t t r i b u t e

193 context NCLImport i n v :

194 s e l f . a l i a s−>notEmpty ()

Appendix A -- OCL invariant list 128

195

196

197 −−−
198 −− An impor t must d e f i n e the documentURI a t t r i b u t e

199 context NCLImport i n v :

200 s e l f . documentURI−>notEmpty ()

201

202

203 −−−
204 −− A compos i t eRu l e must d e f i n e the op e r a t o r a t t r i b u t e

205 context NCLCompositeRule i n v :

206 s e l f . o p e r a t o r <> NCLOperator : : NULL

207

208

209 −−−
210 −− A r u l e must d e f i n e the va r a t t r i b u t e

211 context NCLRule i n v :

212 s e l f . var−>notEmpty ()

213

214

215 −−−
216 −− A r u l e must d e f i n e the comparator a t t r i b u t e

217 context NCLRule i n v :

218 s e l f . comparator <> NCLComparator : : NULL

219

220

221 −−−
222 −− A r u l e must d e f i n e the v a l u e a t t r i b u t e

223 context NCLRule i n v :

224 s e l f . va lue−>notEmpty ()

225

226

227 −−−
228 −− A t r a n s i t i o n must d e f i n e the type a t t r i b u t e

229 context NCLTrans i t ion i n v :

230 s e l f . t ype <> NCLTrans i t ionType : : NULL

231

232

233 −−−
234 −− A metadata must not be empty

235 context NCLMetadata i n v :

236 s e l f . rd fTree−>notEmpty ()

237

238

239 −−−
240 −− A meta must d e f i n e the name a t t r i b u t e

241 context NCLMeta i n v :

242 s e l f . name−>notEmpty ()

243

244

245 −−−
246 −− A meta must d e f i n e the con t en t a t t r i b u t e

247 context NCLMeta i n v :

248 s e l f . mcontent−>notEmpty ()

249

250

251 −−−
252 −− A po r t must d e f i n e the component a t t r i b u t e

253 context NCLPort i n v :

254 s e l f . component−>notEmpty ()

255

256

257 −−−
258 −− A b indRu l e must d e f i n e the r u l e a t t r i b u t e

259 context NCLSwitchBindRule i n v :

260 s e l f . r u l e−>notEmpty ()

261

262

263 −−−
264 −− A b indRu l e must d e f i n e the c o n s t i t u e n t a t t r i b u t e

265 context NCLSwitchBindRule i n v :

266 s e l f . c o n s t i t u e n t−>notEmpty ()

267

Appendix A -- OCL invariant list 129

268

269 −−−
270 −− A mapping must d e f i n e the component a t t r i b u t e

271 context NCLMapping i n v :

272 s e l f . component−>notEmpty ()

273

274

275 −−−
276 −− A l i n k must d e f i n e the xconnec to r a t t r i b u t e

277 context NCLLink i n v :

278 s e l f . xconnecto r−>notEmpty ()

279

280

281 −−−
282 −− A bind must d e f i n e a r o l e

283 context NCLBind i n v :

284 s e l f . r o l e−>notEmpty ()

285

286

287 −−−
288 −− A bind must d e f i n e the component a t t r i b u t e

289 context NCLBind i n v :

290 s e l f . component−>notEmpty ()

291

292

293 −−−
294 −− A l i n k or b ind paramete r must d e f i n e the name a t t r i b u t e

295 context NCLParam i n v :

296 s e l f . name−>notEmpty ()

297

298

299 −−−
300 −− A l i n k or b ind paramete r must d e f i n e the v a l u e a t t r i b u t e

301 context NCLParam i n v :

302 s e l f . va lue−>notEmpty ()

303

304

305 −−−
306 −−−
307 −− An asse s smentSta tement must compare two v a l u e s o f the same type

308 context NCLAssessmentStatement i n v :

309 i f s e l f . a t t r i b u t eA s s e s smen t s−>s i z e () = 2 then

310 s e l f . a t t r i b u t eA s s e s smen t s−>f o r A l l (i 1 : NCLAssessmentStatement , i 2 : NCLAssessmentStatement | i 1 . a t t r i b u t eTyp e =

i 2 . a t t r i b u t eTyp e)

311 e l s e

312 s e l f . a t t r i b u t eA s s e s smen t s−>asOrde redSet ()−> f i r s t () . a t t r i b u t eTyp e = NCLAttr ibuteType : : STATE imp l i e s s e l f .

v a l u eAs s e s sment . de fVa lue <> NCLDefau l tVa lueAssessment : : NULL

313 end i f

314

315

316 −−−
317 −− An a t t r i b u t eA s s e s smen t can d e f i n e the key a t t r i b u t e when the eventType a t t r i b u t e i s e qu a l s to s e l e c t i o n

318 context NCLAtt r ibuteAsses sment i n v :

319 i f s e l f . eventType = NCLEventType : : SELECTION then

320 s e l f . key <> NCLKey : : NULL

321 e l s e

322 s e l f . key = NCLKey : : NULL

323 end i f

324

325

326 −−−
327 −− An a t t r i b u t eA s s e s smen t must d e f i n e the a t t r i b u t eTyp e a t t r i b u t e e qua l s to o c c u r r e n c e s or s t a t e when the eventType

a t t r i b u t e i s e qu a l s to s e l e c t i o n

328 context NCLAtt r ibuteAsses sment i n v :

329 s e l f . eventType = NCLEventType : : SELECTION imp l i e s (s e l f . a t t r i b u t eTyp e = NCLAttr ibuteType : : OCCURRENCES or s e l f .

a t t r i b u t eTyp e = NCLAttr ibuteType : : STATE)

330

331

332 −−−
333 −− An a t t r i b u t eA s s e s smen t must d e f i n e the a t t r i b u t eTyp e a t t r i b u t e d i f f e r e n t o f nodePrope r ty when the eventType

a t t r i b u t e i s e qu a l s to p r e s e n t e t i o n

334 context NCLAtt r ibuteAsses sment i n v :

335 s e l f . eventType = NCLEventType : : PRESENTATION imp l i e s s e l f . a t t r i b u t eTyp e <> NCLAttr ibuteType : : NODE PROPERTY

Appendix A -- OCL invariant list 130

336

337

338 −−−
339 −− A s imp l eAc t i o n must d e f i n e a s t anda rd r o l e o r the eventType and act ionType a t t r i b u t e s

340 context NCLSimpleAction i n v :

341 i f s e l f . r o l e−>notEmpty () then

342 s e l f . r o l e . aname <> NCLDefau l tAct ionRo le : : NULL or (s e l f . eventType <> NCLEventType : : NULL and s e l f . ac t i onType <>

NCLEventAction : : NULL)

343 e l s e

344 t r u e

345 end i f

346

347

348 −−−
349 −− A s imp l eAc t i o n can d e f i n e the v a l u e a t t r i b u t e when the a c t i o n i s an a t t r i b u t i o n a c t i o n

350 context NCLSimpleAction i n v :

351 i f s e l f . r o l e−>notEmpty () then

352 s e l f . va lue−>notEmpty () imp l i e s (s e l f . r o l e . aname = NCLDefau l tAct ionRo le : : SET or (s e l f . eventType = NCLEventType : :

ATTRIBUTION and s e l f . ac t i onType = NCLEventAction : : START))

353 e l s e

354 t r u e

355 end i f

356

357

358 −−−
359 −− A s imp l eAc t i o n can d e f i n e the du r a t i o n a t t r i b u t e when the a c t i o n i s an a t t r i b u t i o n a c t i o n

360 context NCLSimpleAction i n v :

361 i f s e l f . r o l e−>notEmpty () then

362 s e l f . du r a t i on−>notEmpty () imp l i e s (s e l f . r o l e . aname = NCLDefau l tAct ionRo le : : SET or (s e l f . eventType =

NCLEventType : : ATTRIBUTION and s e l f . ac t i onType = NCLEventAction : : START))

363 e l s e

364 t r u e

365 end i f

366

367

368 −−−
369 −− A s imp l eAc t i o n can d e f i n e the r e p e a t a t t r i b u t e when the a c t i o n i s a p r e s e n t a t i o n a c t i o n

370 context NCLSimpleAction i n v :

371 i f s e l f . r o l e−>notEmpty () then

372 s e l f . r epea t−>notEmpty () imp l i e s (s e l f . r o l e . aname = NCLDefau l tAct ionRo le : : START or (s e l f . eventType =

NCLEventType : : PRESENTATION and s e l f . ac t i onType = NCLEventAction : : START))

373 e l s e

374 t r u e

375 end i f

376

377

378 −−−
379 −− A s imp l eAc t i o n can d e f i n e the by a t t r i b u t e when the du r a t i o n a t t r i b u t e i s d e f i n e d

380 context NCLSimpleAction i n v :

381 s e l f . by−>notEmpty () imp l i e s s e l f . du r a t i on−>notEmpty ()

382

383

384 −−−
385 −− A s imp l eAc t i o n can d e f i n e the r ep ea tDe l a y a t t r i b u t e when the r e p e a t a t t r i b u t e i s d e f i n e d

386 context NCLSimpleAction i n v :

387 s e l f . r epea tDe l ay−>notEmpty () imp l i e s s e l f . r epea t−>notEmpty ()

388

389

390 −−−
391 −− A s imp l eAc t i o n can d e f i n e the q u a l i f i e r a t t r i b u t e when the max a t t r i b u t e i s d e f i n e d and i s b i g g e r than 1

392 context NCLSimpleAction i n v :

393 s e l f . q u a l i f i e r <> NCLAct ionOperator : : NULL imp l i e s (s e l f . max . v a l u e > 1 or s e l f . max . v a l u e = −1)

394

395

396 −−−
397 −− A s imp l eCond i t i o n must d e f i n e a s t anda rd r o l e o r the eventType and t r a n s i t i o n a t t r i b u t e s

398 context NCLSimpleCondit ion i n v :

399 i f s e l f . r o l e−>notEmpty () then

400 s e l f . r o l e . cname <> NCLDefau l tCond i t i onRo l e : : NULL or (s e l f . eventType <> NCLEventType : : NULL and s e l f . t r a n s i t i o n

<> NCLEventTrans i t i on : : NULL)

401 e l s e

402 t r u e

403 end i f

Appendix A -- OCL invariant list 131

404

405

406 −−−
407 −− A s imp l eCond i t i o n can d e f i n e the key a t t r i b u t e when the c o n d i t i o n i s a s e l e c t i o n c o n d i t i o n

408 context NCLSimpleCondit ion i n v :

409 i f s e l f . r o l e . cname <> NCLDefau l tCond i t i onRo l e : : ONSELECTION and s e l f . eventType <> NCLEventType : : SELECTION then

410 s e l f . key = NCLKey : : NULL and s e l f . parKey−>i sEmpty ()

411 e l s e

412 t r u e

413 end i f

414

415

416 −−−
417 −− A s imp l eCond i t i o n can d e f i n e the q u a l i f i e r a t t r i b u t e when the max a t t r i b u t e i s d e f i n e d and i s b i g g e r than 1

418 context NCLSimpleCondit ion i n v :

419 s e l f . q u a l i f i e r <> NCLCondi t ionOperator : : NULL imp l i e s

420 i f i . max−>notEmpty () then

421 (i . max . v a l u e > 1 or i . max . v a l u e = −1)

422 e l s e

423 f a l s e

424 end i f

425

426

427 −−−
428 −− The impor t e l ement must have the type NCL when i t r e p r e s e n t s an importNCL and BASE when i t r e p r e s e n t s an importBase

429 context NCLImport i n v :

430 i f s e l f . pa rent Impor tBase−>notEmpty () then

431 s e l f . t ype = NCLImportType : : NCL

432 e l s e

433 s e l f . t ype = NCLImportType : : BASE

434 end i f

435

436

437 −−−
438 −− A r e g i o n must not d e f i n e t h r e e e q u i v a l e n t a t t r i b u t e s at the same t ime

439 context NCLRegion i n v :

440 not (s e l f . l e f t−>notEmpty () and s e l f . r i g h t−>notEmpty () and s e l f . width−>notEmpty ())

441 and

442 not (s e l f . top−>notEmpty () and s e l f . bottom−>notEmpty () and s e l f . h e i gh t−>notEmpty ())

443

444

445 −−−
446 −− A t r a n s i t i o n can d e f i n e the f a d eCo l o r a t t r i b u t e when i t s type i s f ade wi th c o l o r

447 context NCLTrans i t ion i n v :

448 i f s e l f . t ype = NCLTrans i t ionType : : FADE and (s e l f . subType = NCLTrans i t ionSubtype : : FADE FROM COLOR or s e l f . subType =

NCLTrans i t ionSubtype : : FADE TO COLOR) then

449 s e l f . f a d eCo l o r <> NCLColor : : NULL

450 e l s e

451 s e l f . f a d eCo l o r = NCLColor : : NULL

452 end i f

453

454

455 −−−
456 −− A t r a n s i t i o n must d e f i n e i t s subtype a t t r i b u t e a c c o r d i n t to i t s type a t t r i b u t e

457 context NCLTrans i t ion i n v :

458 (s e l f . t ype = NCLTrans i t ionType : : BAR and (s e l f . subType = NCLTrans i t ionSubtype : : LEFT TO RIGHT or s e l f . subType =

NCLTrans i t ionSubtype : : TOP TO BOTTOM))

459 or

460 (s e l f . t ype = NCLTrans i t ionType : : IR IS and (s e l f . subType = NCLTrans i t ionSubtype : : RECTANGLE or s e l f . subType =

NCLTrans i t ionSubtype : :DIAMOND))

461 or

462 (s e l f . t ype = NCLTrans i t ionType : : CLOCK and (s e l f . subType = NCLTrans i t ionSubtype : : CLOCKWISE TWELVE or s e l f . subType =

NCLTrans i t ionSubtype : : CLOCKWISE THREE or s e l f . subType = NCLTrans i t ionSubtype : : CLOCKWISE SIX or s e l f . subType =

NCLTrans i t ionSubtype : : CLOCKWISE NINE))

463 or

464 (s e l f . t ype = NCLTrans i t ionType : : SNAKE and (s e l f . subType = NCLTrans i t ionSubtype : : TOP LEFT HORIZONTAL or s e l f . subType

= NCLTrans i t ionSubtype : : TOP LEFT VERTICAL or s e l f . subType = NCLTrans i t ionSubtype : : TOP LEFT DIAGONAL or s e l f .

subType = NCLTrans i t ionSubtype : : TOP RIGHT DIAGONAL or s e l f . subType = NCLTrans i t ionSubtype : :

BOTTOM RIGHT DIAGONAL or s e l f . subType = NCLTrans i t ionSubtype : : BOTTOM LEFT DIAGONAL))

465 or

466 (s e l f . t ype = NCLTrans i t ionType : : FADE and (s e l f . subType = NCLTrans i t ionSubtype : : CROSSFADE or s e l f . subType =

NCLTrans i t ionSubtype : : FADE TO COLOR or s e l f . subType = NCLTrans i t ionSubtype : : FADE FROM COLOR))

467

Appendix A -- OCL invariant list 132

468

469 −−−
470 −− An area can d e f i n e the p o s i t i o n a t t r i b u t e when the t e x t a t t r i b u t e i s d e f i n e d

471 context NCLArea i n v :

472 s e l f . p o s i t i o n−>notEmpty () imp l i e s s e l f . t e x t−>notEmpty ()

473

474

475 −−−
476 −− An area can d e f i n e the coo rd s a t t r i b u t e when i t r e p r e s e n t s a s p a t i a l anchor

477 context NCLArea i n v :

478 i f s e l f . parentMedia−>notEmpty () then

479 s e l f . coords−>notEmpty () imp l i e s (s e l f . parentMed ia . mediaType = MediaType : : IMAGE or s e l f . parentMed ia . mediaType =

MediaType : : VIDEO)

480 e l s e

481 t r u e

482 end i f

483

484

485 −−−
486 −− An area can d e f i n e the beg in or end a t t r i b u t e s when i t i s a t empora l anchor

487 context NCLArea i n v :

488 i f s e l f . parentMedia−>notEmpty () then

489 (s e l f . beg in−>notEmpty () or s e l f . end−>notEmpty ()) imp l i e s (s e l f . parentMed ia . mediaType = MediaType : : AUDIO or s e l f

. parentMed ia . mediaType = MediaType : : VIDEO)

490 e l s e

491 t r u e

492 end i f

493

494

495 −−−
496 −− An area can d e f i n e the f i r s t o r l a s t a t t r i b u t e s when i t i s a t empora l anchor

497 context NCLArea i n v :

498 i f s e l f . parentMedia−>notEmpty () then

499 (s e l f . f i r s t−>notEmpty () or s e l f . l a s t−>notEmpty ()) imp l i e s (s e l f . parentMed ia . mediaType = MediaType : : AUDIO or

s e l f . parentMed ia . mediaType = MediaType : : VIDEO)

500 e l s e

501 t r u e

502 end i f

503

504

505 −−−
506 −− An area can d e f i n e the t e x t o r p o s i t i o n a t t r i b u t e s when i t i s a t e x t u a l anchor

507 context NCLArea i n v :

508 i f s e l f . parentMedia−>notEmpty () then

509 (s e l f . t e x t−>notEmpty () or s e l f . p o s i t i o n−>notEmpty ()) imp l i e s s e l f . parentMed ia . mediaType = MediaType : : TEXT

510 e l s e

511 t r u e

512 end i f

513

514

515 −−−
516 −− An area can d e f i n e the l a b e l a t t r i b u t e when i t i s a p r o c e d u r a l anchor

517 context NCLArea i n v :

518 i f s e l f . parentMedia−>notEmpty () then

519 s e l f . l a b e l−>notEmpty () imp l i e s s e l f . parentMed ia . mediaType = MediaType : : PROCEDURAL

520 e l s e

521 t r u e

522 end i f

523

524

525 −−−
526 −− An area can not have more than one type

527 context NCLArea i n v :

528 (s e l f . coords−>notEmpty () imp l i e s (s e l f . beg in−>i sEmpty () and s e l f . end−>i sEmpty () and s e l f . f i r s t−>i sEmpty () and s e l f .

l a s t−>i sEmpty () and s e l f . t e x t−>i sEmpty () and s e l f . p o s i t i o n−>i sEmpty () and s e l f . l a b e l−>i sEmpty ()))

529 and

530 ((s e l f . beg in−>notEmpty () or s e l f . end−>notEmpty ()) imp l i e s (s e l f . coords−>i sEmpty () and s e l f . f i r s t−>i sEmpty () and

s e l f . l a s t−>i sEmpty () and s e l f . t e x t−>i sEmpty () and s e l f . p o s i t i o n−>i sEmpty () and s e l f . l a b e l−>i sEmpty ()))

531 and

532 ((s e l f . f i r s t−>notEmpty () or s e l f . l a s t−>notEmpty ()) imp l i e s (s e l f . coords−>i sEmpty () and s e l f . beg in−>i sEmpty () and

s e l f . end−>i sEmpty () and s e l f . t e x t−>i sEmpty () and s e l f . p o s i t i o n−>i sEmpty () and s e l f . l a b e l−>i sEmpty ()))

533 and

534 ((s e l f . t e x t−>notEmpty () or s e l f . p o s i t i o n−>notEmpty ()) imp l i e s (s e l f . coords−>i sEmpty () and s e l f . beg in−>i sEmpty () and

Appendix A -- OCL invariant list 133

s e l f . end−>i sEmpty () and s e l f . f i r s t−>i sEmpty () and s e l f . l a s t−>i sEmpty () and s e l f . l a b e l−>i sEmpty ()))

535 and

536 (s e l f . l a b e l−>notEmpty () imp l i e s (s e l f . coords−>i sEmpty () and s e l f . beg in−>i sEmpty () and s e l f . end−>i sEmpty () and s e l f .

f i r s t−>i sEmpty () and s e l f . l a s t−>i sEmpty () and s e l f . t e x t−>i sEmpty () and s e l f . p o s i t i o n−>i sEmpty ()))

537

538

539 −−−
540 −− An area can not d e f i n e the end a t t r i b u t e sma l l e r t ha t the beg in a t t r i b u t e

541 context NCLArea i n v :

542 i f s e l f . end−>notEmpty () and s e l f . beg in−>notEmpty () then

543 s e l f . b eg i n . getTime () . l e s sThan (s e l f . end . getTime ())

544 e l s e

545 t r u e

546 end i f

547

548 −−−
549 −− An area can not d e f i n e the f i r s t and l a s t a t t r i b u t e w i th d i f f e r e n t t yp e s

550 context NCLArea i n v :

551 i f s e l f . l a s t−>notEmpty () and s e l f . f i r s t−>notEmpty () then

552 s e l f . l a s t . t ype = s e l f . f i r s t . t ype

553 end i f

554

555

556 −−−
557 −− An area can not d e f i n e the l a s t a t t r i b u t e sma l l e r t ha t the f i r s t a t t r i b u t e

558 context NCLArea i n v :

559 i f s e l f . l a s t−>notEmpty () and s e l f . f i r s t−>notEmpty () then

560 s e l f . l a s t . v a l u e . v a l u e > s e l f . f i r s t . v a l u e . v a l u e

561 e l s e

562 t r u e

563 end i f

564

565

566 −−−
567 −− A media can d e f i n e the i n s t a n c e a t t r i b u t e when i t s r e f e r a t t r i b u t e i s d e f i n e d

568 context NCLMedia i n v :

569 s e l f . i n s t a n c e <> NCLInstanceType : : NULL imp l i e s s e l f . r e f e r−>notEmpty ()

570

571

572 −−−
573 −− The param e lement must have the type LINKPARAM when i t r e p r e s e n t s a l inkParam and BINDPARAM when i t r e p r e s e n t s a

bindParam

574 context NCLParam i n v :

575 i f s e l f . pa renL ink−>notEmpty () then

576 s e l f . paramType = NCLParamInstance : : LINKPARAM

577 e l s e

578 s e l f . paramType = NCLParamInstance : : BINDPARAM

579 end i f

Listing A.3: Reference OCL invariants
1 −−−
2 −− A r u l e e l ement must r e f e r to a s e t t i n g s node p r op e r t y through i t s va r a t t r i b u t e

3 context NCLRule i n v :

4 i f s e l f . var−>f o r A l l (v | v . parentNCLMedia−>notEmpty ()) then

5 s e l f . var−>f o r A l l (v | v . parentNCLMedia−>f o r A l l (p | p . type = NCLMimeType : : APPLICATION X GINGA SETTINGS))

6 e l s e

7 t r u e

8 end i f

9

10

11 −−−
12 −− A paramete r o f a l i n k or b ind must r e f e r to a paramete r o f the connec to r used by the l i n k

13 context NCLParam i n v :

14 i f s e l f . pa renL ink−>notEmpty () then

15 s e l f . pa r en tL ink−>f o r A l l (l | l . x connecto r−>f o r A l l (c | c . conn params−>e x i s t s (a | a = s e l f . name)))

16 e l s e

17 s e l f . pa r en tB ind . p a r e n tL i n k . x connec to r . conn params−>e x i s t s (s e l f . name)

18 s e l f . parentBind−>f o r A l l (b | b . pa r en tL ink−>f o r A l l (l | l . x connecto r−>f o r A l l (c | c . conn params−>e x i s t s (a | a =

s e l f . name))))

19 end i f

20

Appendix A -- OCL invariant list 134

21

22 −−−
23 −− A l i n k b ind must r e f e r to a r o l e d e f i n e d by the connec to r used by the l i n k

24 context NCLLink i n v :

25 s e l f . b i nd s . r o l e−>f o r A l l (r | s e l f . x connec to r . ge tRo l e sF romCausa lConnec to r ()−>i n c l u d e s (r))

Listing A.4: Compositionality OCL invariants
1 −−−
2 −− A b indRu l e c o n s t i t u e n t a t t r i b u t e must r e f e r to a d e s c r i p t o r i n s i d e the d e s c r i p t o r Sw i t c h

3 context NCLDescr ip to rB indRu le i n v :

4 i f s e l f . p a r e n tDe s c r i p t o r Sw i t c h−>notEmpty () then

5 s e l f . p a r e n tDe s c r i p t o r Sw i t c h−>f o r A l l (q | q . d e s c r i p t o r s−>e x i s t s (a | a = s e l f . c o n s t i t u e n t))

6 e l s e

7 t r u e

8 end i f

9

10

11 −−−
12 −− A sw i t ch d e f a u l t D e s c r i p t o r must r e f e r to a d e s c r i p t o r i n s i d e the d e s c r i p t o r Sw i t c h

13 context NCLDesc r ip to rSwi tch i n v :

14 s e l f . d e s c r i p t o r s−>e x i s t s (a | a = s e l f . d e f a u l t D e s c r i p t o r)

15

16

17 −−−
18 −− A po r t component a t t r i b u t e must r e f e r to a node i n s i d e the po r t pa r en t con t e x t o r body

19 context NCLPort i n v :

20 i f s e l f . parentBody−>notEmpty () then

21 s e l f . parentBody . nodes−>e x i s t s (a | a = s e l f . component)

22 e l s e

23 s e l f . pa r en tCon t ex t . nodes−>e x i s t s (a | a = s e l f . component)

24 end i f

25

26

27 −−−
28 −− A po r t i n t e r f a c e a t t r i b u t e must r e f e r to a i n t e r f a c e po i n t o f i t s r e f e r r e d node

29 context NCLPort i n v :

30 i f s e l f . i n t e r f a c e−>notEmpty () then

31 i f s e l f . component . o c l I sK i n dO f (NCLMedia) then

32 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLMedia) . a r eas−>e x i s t s (a | a = s e l f . i n t e r f a c e))

33 or

34 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLMedia) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

35 e l s e i f s e l f . component . o c l I sK i n dO f (NCLContext) then

36 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLContext) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

37 or

38 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLContext) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

39 e l s e

40 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLSwitch) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

41 end i f e n d i f

42 e l s e

43 t r u e

44 end i f

45

46

47 −−−
48 −− A mapping component a t t r i b u t e must r e f e r to a node i n s i d e i t pa r en t sw i t c h

49 context NCLMapping i n v :

50 i f s e l f . parentNCLSwitchPort−>notEmpty () then

51 i f s e l f . parentNCLSwitchPort−>f o r A l l (p | p . parentNCLSwitch−>notEmpty ()) then

52 s e l f . parentNCLSwitchPort−>f o r A l l (p | p . parentNCLSwitch−>f o r A l l (s | s . nodes−>e x i s t s (a | a = s e l f . component))

)

53 e l s e

54 t r u e

55 end i f

56 e l s e

57 t r u e

58 end i f

59

60

61 −−−
62 −− A mapping i n t e r f a c e a t t r i b u t e must r e f e r to a i n t e r f a c e po i n t o f i t s r e f e r r e d node

63 context NCLMapping i n v :

Appendix A -- OCL invariant list 135

64 i f s e l f . i n t e r f a c e−>notEmpty () then

65 i f s e l f . component . o c l I sK i n dO f (NCLMedia) then

66 s e l f . component . a r eas−>e x i s t s (s e l f . i n t e r f a c e) or s e l f . component . p r o p e r t i e s−>e x i s t s (s e l f . i n t e r f a c e)

67 e l s e i f s e l f . component . o c l I sK i n dO f (NCLContext) then

68 s e l f . component . po r t s−>e x i s t s (s e l f . i n t e r f a c e) or s e l f . component . p r o p e r t i e s−>e x i s t s (s e l f . i n t e r f a c e)

69 e l s e

70 s e l f . component . po r t s−>e x i s t s (s e l f . i n t e r f a c e)

71 end i f e n d i f

72 e l s e

73 t r u e

74 end i f

75

76 i f s e l f . i n t e r f a c e−>notEmpty () then

77 i f s e l f . component . o c l I sK i n dO f (NCLMedia) then

78 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLMedia) . a r eas−>e x i s t s (a | a = s e l f . i n t e r f a c e))

79 or

80 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLMedia) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

81 e l s e i f s e l f . component . o c l I sK i n dO f (NCLContext) then

82 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLContext) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

83 or

84 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLContext) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

85 e l s e

86 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLSwitch) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

87 end i f e n d i f

88 e l s e

89 t r u e

90 end i f

91

92

93 −−−
94 −− A sw i t ch defau l tComponent must r e f e r to a node i n s i d e the sw i t c h

95 context NCLSwitch i n v :

96 i f s e l f . defau l tComponent−>notEmpty () then

97 s e l f . nodes−>e x i s t s (a | a = s e l f . de fau l tComponent)

98 e l s e

99 t r u e

100 end i f

101

102

103 −−−
104 −− A b indRu l e c o n s t i t u e n t a t t r i b u t e must r e f e r to a node i n s i d e the sw i t ch

105 context NCLSwitchBindRule i n v :

106 i f s e l f . pa rentSw i tch−>notEmpty () then

107 s e l f . pa rentSw i t ch−>f o r A l l (s | s . nodes−>e x i s t s (a | a = s e l f . c o n s t i t u e n t))

108 e l s e

109 t r u e

110 end i f

111

112

113 −−−
114 −− A bind component a t t r i b u t e must r e f e r to a node i n s i d e the l i n k pa r en t con t e x t o r body

115 context NCLBind i n v :

116 i f s e l f . pa r en tL ink−>notEmpty () then

117 i f s e l f . p a r e n tL i n k . parentBody−>notEmpty () then

118 s e l f . p a r e n tL i n k . parentBody . nodes−>e x i s t s (a | a = s e l f . component)

119 e l s e

120 s e l f . p a r e n tL i n k . pa r en tCon t ex t . nodes−>e x i s t s (a | a = s e l f . component)

121 end i f

122 e l s e

123 t r u e

124 end i f

125

126

127 −−−
128 −− A bind i n t e r f a c e a t t r i b u t e must r e f e r to a i n t e r f a c e po i n t o f i t s r e f e r r e d node

129 context NCLBind i n v :

130 i f s e l f . i n t e r f a c e−>notEmpty () then

131 i f s e l f . component . o c l I sK i n dO f (NCLMedia) then

132 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLMedia) . a r eas−>e x i s t s (a | a = s e l f . i n t e r f a c e)) or s e l f .

component−>f o r A l l (c | c . oc lAsType (NCLMedia) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

133 e l s e i f s e l f . component . o c l I sK i n dO f (NCLContext) then

134 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLContext) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e)) or s e l f .

component−>f o r A l l (c | c . oc lAsType (NCLContext) . p r o p e r t i e s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

Appendix A -- OCL invariant list 136

135 e l s e

136 s e l f . component−>f o r A l l (c | c . oc lAsType (NCLSwitch) . po r t s−>e x i s t s (a | a = s e l f . i n t e r f a c e))

137 end i f

138 end i f

139 e l s e

140 t r u e

141 end i f

Listing A.5: Composition nesting OCL invariants
1 −−−
2 −− A con t e x t e l ement can not n e s t i t s e l f

3 context NCLContext i n v :

4 s e l f . nodes−>f o r A l l (n : NCLNode | n . l o op s ())

5

6

7 −−−
8 −− A sw i t ch e l ement can not n e s t i t s e l f

9 context NCLSwitch i n v :

10 s e l f . nodes−>f o r A l l (n : NCLNode | n . l o op s ())

Listing A.6: Element reuse OCL invariants
1 −−−
2 −− A con t e x t e l ement can not r e f e r i t s e l f

3 context NCLContext i n v :

4 s e l f . r e f e r−>f o r A l l (c : NCLContext | c . oc lAsType (NCLNode) . r e f e r L o o p s ())

5

6

7 −−−
8 −− A media e l ement can not r e f e r i t s e l f

9 context NCLMedia i n v :

10 s e l f . r e f e r−>f o r A l l (m: NCLMedia | m. oclAsType (NCLNode) . r e f e r L o o p s ())

11

12

13 −−−
14 −− A sw i t ch e l ement can not r e f e r i t s e l f

15 context NCLSwitch i n v :

16 s e l f . r e f e r−>f o r A l l (s : NCLSwitch | s . oc lAsType (NCLNode) . r e f e r L o o p s ())

Listing A.7: Functions used by OCL invariants
1 −−−
2 −− Funct i on to t e s t i f an i n t e g e r i s sm a l l e r than ano the r

3 context I n t ege r : : l e s sThan (i : I n t e ge r) : Boolean body :

4 i f s e l f . v a l u e < i . v a l u e then

5 t r u e

6 e l s e

7 f a l s e

8 end i f

9

10

11 −−−
12 −− Funct i on to t e s t i f a t ime i r p r i o r than ano the r

13 context NCLTime : : be foreThan (t : NCLTime) : Boolean body :

14 i f s e l f . y e a r . v a l u e = t . y ea r . v a l u e then

15 i f s e l f . month . v a l u e = t . month . v a l u e then

16 i f s e l f . day . v a l u e = t . day . v a l u e then

17 i f s e l f . hour . v a l u e = t . hour . v a l u e then

18 i f s e l f . minute . v a l u e = t . minute . v a l u e then

19 i f s e l f . second . v a l u e = t . second . v a l u e then

20 i f s e l f . f r a c t i o n . v a l u e = t . f r a c t i o n . v a l u e then

21 f a l s e

22 e l s e

23 s e l f . f r a c t i o n . l e s sThan (t . f r a c t i o n)

24 end i f

25 e l s e

26 s e l f . second . l e s sThan (t . second)

27 e nd i f

Appendix A -- OCL invariant list 137

28 e l s e

29 s e l f . minute . l e s sThan (t . minute)

30 end i f

31 e l s e

32 s e l f . hour . l e s sThan (t . hour)

33 end i f

34 e l s e

35 s e l f . day . l e s sThan (t . day)

36 end i f

37 e l s e

38 s e l f . month . l e s sThan (t . month)

39 end i f

40 e l s e

41 s e l f . y e a r . l e s sThan (t . y ea r)

42 end i f

43

44

45 −−−
46 −−−
47 −− Func t i on s used i n n e s t i n g l oop v e r i f i c a t i o n

48 context NCLNode : : l o op s () : Boolean body :

49 i f s e l f . ha sParent () then

50 s e l f . oc lAsType (NCLElement) . g e tPa r en t () . v e r i f y L o o p (s e l f)

51 e l s e

52 t r u e

53 end i f

54

55

56 context NCLElement : : v e r i f y L o o p (node : NCLElement) : Boolean body :

57 i f s e l f = node then

58 f a l s e

59 e l s e

60 i f s e l f . ha sParent () then

61 s e l f . g e tPa r en t () . v e r i f y L o o p (s e l f)

62 e l s e

63 t r u e

64 end i f

65 end i f

66

67

68 −−−
69 −−−
70 −− Func t i on s used i n r e f e r l oop v e r i f i c a t i o n

71 context NCLNode : : r e f e r L o o p s () : Boolean body :

72 i f s e l f . oc lAsType (NCLElement) . h a sRe f e r () then

73 s e l f . oc lAsType (NCLElement) . g e tRe f e r () . v e r i f y R e f e r L o o p (s e l f)

74 e l s e

75 t r u e

76 end i f

77

78

79 context NCLElement : : v e r i f y R e f e r L o o p (node : NCLElement) : Boolean body :

80 i f s e l f = node then

81 f a l s e

82 e l s e

83 i f s e l f . oc lAsType (NCLElement) . h a sRe f e r () then

84 s e l f . oc lAsType (NCLElement) . g e tRe f e r () . v e r i f y L o o p (s e l f)

85 e l s e

86 t r u e

87 end i f

88 end i f

89

90

91 −−−
92 −− Funct i on to get an e l ement pa r en t

93 context NCLElement : : g e tPa r en t () : NCLElement body :

94 i f s e l f . oc lAsType (NCLNode) . pa rentContex t−>notEmpty () then

95 s e l f . oc lAsType (NCLNode) . pa r en tCon t ex t

96 e l s e

97 i f s e l f . oc lAsType (NCLNode) . pa ren tSw i tch−>notEmpty () then

98 s e l f . oc lAsType (NCLNode) . pa r en tSw i t ch

99 e l s e

100 s e l f . oc lAsType (NCLNode) . parentBody

Appendix A -- OCL invariant list 138

101 end i f

102 end i f

103

104

105 −−−
106 −− Funct i on to t e s t i f an e l ement has a pa r en t

107 context NCLElement : : hasParent () : Boolean body :

108 i f s e l f . oc lAsType (NCLNode) . pa rentContex t−>notEmpty () then

109 t r u e

110 e l s e

111 i f s e l f . oc lAsType (NCLNode) . pa ren tSw i tch−>notEmpty () then

112 t r u e

113 e l s e

114 i f s e l f . oc lAsType (NCLNode) . parentBody−>notEmpty () then

115 t r u e

116 e l s e

117 f a l s e

118 end i f

119 end i f

120 end i f

121

122

123 −−−
124 −− Funct i on to get the e l ement r e f e r r e d by a node r e f e r a t t r i b u t e

125 context NCLElement : : g e tR e f e r () : NCLElement body :

126 i f s e l f . o c l I sTypeOf (NCLMedia) then

127 s e l f . oc lAsType (NCLMedia) . r e f e r

128 e l s e

129 i f s e l f . o c l I sTypeOf (NCLContext) then

130 s e l f . oc lAsType (NCLContext) . r e f e r

131 e l s e

132 s e l f . oc lAsType (NCLSwitch) . r e f e r

133 end i f

134 end i f

135

136

137 −−−
138 −− Funct i on to t e s t i f a node r e f e r a t t r i b u t e i s d e f i n e d

139 context NCLElement : : h a sRe f e r () : Boolean body :

140 i f s e l f . o c l I sTypeOf (NCLMedia) then

141 s e l f . oc lAsType (NCLMedia) . r e f e r−>notEmpty ()

142 e l s e

143 i f s e l f . o c l I sTypeOf (NCLContext) then

144 s e l f . oc lAsType (NCLContext) . r e f e r−>notEmpty ()

145 e l s e

146 s e l f . oc lAsType (NCLSwitch) . r e f e r−>notEmpty ()

147 end i f

148 end i f

149

150

151 −−−
152 −−−
153 −− Func t i on s to ge t a r e g i o n l o c a t i o n on the s c r e e n

154 context NCLRegion : : getX () : I n t e ge r body :

155 i f s e l f . l e f t−>notEmpty () then

156 s e l f . l e f t . v a l u e

157 e l s e

158 s e l f . r i g h t . v a l u e − s e l f . w idth . v a l u e

159 end i f

160

161

162 context NCLRegion : : getY () : I n t e ge r body :

163 i f s e l f . top−>notEmpty () then

164 s e l f . top . v a l u e

165 e l s e

166 s e l f . bottom . v a l u e − s e l f . h e i g h t . v a l u e

167 end i f

168

169

170 context NCLRegion : : getW () : I n t e ge r body :

171 i f s e l f . width−>notEmpty () then

172 s e l f . w idth . v a l u e

173 e l s e

Appendix A -- OCL invariant list 139

174 s e l f . r i g h t . v a l u e − s e l f . l e f t . v a l u e

175 end i f

176

177

178 context NCLRegion : : getH () : I n t e ge r body :

179 i f s e l f . h e i gh t−>notEmpty () then

180 s e l f . h e i g h t . v a l u e

181 e l s e

182 s e l f . bottom . v a l u e − s e l f . top . v a l u e

183 end i f

184

185

186 −−−
187 −− Funct i on to t e s t i f two r e g i o n s c o l l i d e

188 context NCLRegion : : c o l l i d e (r : NCLRegion) : Boolean body :

189 i f (s e l f . getX () > (r . getX () + r . getW ())) or (s e l f . getY () > (r . getY () + r . getH ())) or

190 ((s e l f . getX () + s e l f . getW) < r . getX ()) or ((s e l f . getY () + s e l f . getH ()) < r . getY ()) then

191 f a l s e

192 e l s e

193 t r u e

194 end i f

195

196

197 −−−
198 −− Funct i on to get a r o l e min c a r d i n a l i t y

199 context NCLRole : : getMin () : I n t e ge r body :

200 i f s e l f . pa r en tAc t i on−>notEmpty () then

201 i f s e l f . p a r en tAc t i on . min−>notEmpty () then

202 s e l f . p a r en tAc t i on . min . v a l u e

203 e l s e

204 1

205 end i f

206 e l s e

207 i f s e l f . p a r en tCond i t i on−>notEmpty () then

208 i f s e l f . p a r e n tCond i t i o n . min−>notEmpty () then

209 s e l f . p a r e n tCond i t i o n . min . v a l u e

210 e l s e

211 1

212 end i f

213 e l s e

214 1

215 end i f

216 end i f

217

218

219 −−−
220 −− Funct i on to get a r o l e max c a r d i n a l i t y

221 context NCLRole : : getMax () : I n t e ge r body :

222 i f s e l f . pa r en tAc t i on−>notEmpty () then

223 i f s e l f . p a r en tAc t i on .max−>notEmpty () then

224 s e l f . p a r en tAc t i on . max . v a l u e

225 e l s e

226 −1
227 end i f

228 e l s e

229 i f s e l f . p a r en tCond i t i on−>notEmpty () then

230 i f s e l f . p a r e n tCond i t i o n .max−>notEmpty () then

231 s e l f . p a r e n tCond i t i o n . max . v a l u e

232 e l s e

233 −1
234 end i f

235 e l s e

236 1

237 end i f

238 end i f

239

240

241 −−−
242 −− Funct i on to get a l l medias i n the document tha t o v e r l a p s

243 context NCLMedia : : g e tA l lOve r l appedMed i a () : Set (NCLMedia) body :

244 NCLMedia . a l l I n s t a n c e s ()−>s e l e c t (media | media . d e s c r i p t o r−>notEmpty ())−>s e l e c t (media | s e l f . d e s c r i p t o r . g e tA l l R e g i o n s

()−>e x i s t s (r | media . d e s c r i p t o r . g e tA l l R e g i o n s ()−>e x i s t s (r2 | r2 . c o l l i d e (r))))

245

Appendix A -- OCL invariant list 140

246

247 −−−
248 −− Funct i on to get a l l r e g i o n s r e f e r r e d by a d e s c r i p t o r o r d e s c r i p t o r Sw i t c h

249 context NCLLayoutDescr ip tor : : g e tA l l R e g i o n s () : Set (NCLRegion) body :

250 i f s e l f . o c l I sTypeOf (NCLDesc r ip to rSwi tch) then

251 s e l f . oc lAsType (NCLDesc r ip to rSwi tch) . d e s c r i p t o r s−>c o l l e c t (desc | desc . g e tA l l R e g i o n s ())−>f l a t t e n ()−>asSe t ()

252 e l s e

253 NCLRegion . a l l I n s t a n c e s ()−>asOrde redSet ()−> f i r s t () . emptySet ()−>i n c l u d i n g (s e l f . oc lAsType (NCLDescr iptor) . r e g i o n)

254 end i f

255

256

257 −−−
258 −− Funct i on to get a l l r o l e s d e f i n e d i n s i d e a connec to r

259 context NCLCausalConnector : : ge tRo l e sF romCausa lConnec to r () : Set (NCLRole) body :

260 s e l f . a c t i o n . ge tRo l e sFromAct ion ()−>un ion (s e l f . c o n d i t i o n . ge tRo l e sF romCond i t i on ())

261

262

263 −−−
264 −− Funct i on to get the r o l e d e f i n e d by an a c t i o n or compoundAction

265 context NCLAction : : ge tRo l e sF romAct ion () : Set (NCLRole) body :

266 i f s e l f . o c l I sTypeOf (NCLCompoundAction) then

267 s e l f . oc lAsType (NCLCompoundAction) . a c t i o n s−>c o l l e c t (ac | ac . ge tRo l e sF romAct ion ())−>f l a t t e n ()−>asSe t ()

268 e l s e

269 s e l f . oc lAsType (NCLSimpleAction) . r o l e−>s e l e c t (r | t r u e)−>asSe t ()

270 end i f

271

272

273 −−−
274 −− Funct i on to get the r o l e d e f i n e d by a c o n d i t i o n or compoundCondit ion

275 context NCLCondit ion : : g e tRo l e sF romCond i t i on () : Set (NCLRole) body :

276 i f s e l f . o c l I sTypeOf (NCLCompoundCondition) then

277 s e l f . oc lAsType (NCLCompoundCondition) . c o nd i t i o n s−>c o l l e c t (ac | ac . ge tRo l e sF romCond i t i on ())−>f l a t t e n ()−>asSe t ()

−>un ion (s e l f . oc lAsType (NCLCompoundCondition) . s ta tements−>c o l l e c t (s t | s t . getRo lesFromStatement ())−>
f l a t t e n ()−>asSe t ())

278 e l s e

279 s e l f . oc lAsType (NCLSimpleCondit ion) . r o l e−>s e l e c t (r | t r u e)−>asSe t ()

280 end i f

281

282

283 −−−
284 −− Funct i on to get the r o l e d e f i n e d by an as se s smentSta tement or compoundStatement

285 context NCLStatement : : getRo lesFromStatement () : Set (NCLRole) body :

286 i f s e l f . o c l I sTypeOf (NCLCompoundStatement) then

287 s e l f . oc lAsType (NCLCompoundStatement) . s ta tements−>c o l l e c t (s t | s t . getRo lesFromStatement ())−>f l a t t e n ()−>asSe t ()

288 e l s e

289 s e l f . oc lAsType (NCLAssessmentStatement) . a t t r i b u t eA s s e s smen t s−>c o l l e c t (as | as . r o l e−>s e l e c t (r | t r u e))−>f l a t t e n ()

−>asSe t ()

290 end i f

291

292

293 −−−
294 −− Funct i on to t e s t i f two r o l e s a r e d i f f e r e n t

295 context NCLRole : : d i f f e r (r o l e : NCLRole) : Boolean body :

296 i f s e l f . name−>notEmpty () and r o l e . name−>notEmpty () then

297 s e l f . name . v a l u e <> r o l e . name . v a l u e

298 e l s e

299 i f (s e l f . cname <> NCLDefau l tCond i t i onRo l e : : NULL) and (r o l e . cname <> NCLDefau l tCond i t i onRo l e : : NULL) then

300 s e l f . cname <> r o l e . cname

301 e l s e

302 i f (s e l f . aname <> NCLDefau l tAct ionRo le : : NULL) and (r o l e . aname <> NCLDefau l tAct ionRo le : : NULL) then

303 s e l f . aname <> r o l e . aname

304 e l s e

305 t r u e

306 end i f

307 end i f

308 end i f

309

310

311 −−−
312 −− Funct i on to get the l i n k b i nd s tha t use the same r o l e

313 context NCLLink : : getBindsFromRole (r o l e : NCLRole) : Set (NCLBind) body :

314 s e l f . b inds−>s e l e c t (b | b . r o l e = r o l e)

315

Appendix A -- OCL invariant list 141

316

317 −−−
318 −− Funct i on to get a l l pa ramete r s i n s i d e a l i n k

319 context NCLLink : : ge tPa ramete r s () : Set (NCLParam) body :

320 s e l f . b inds−>c o l l e c t (b | b . bindParams)−>f l a t t e n ()−>asSe t ()−>un ion (s e l f . l i nkParams)

References

[ABNT 2007]ABNT. Digital terrestrial television - Data coding and transmission specifi-
cation for digital broadcasting - Part 2: Ginga-NCL for fixed and mobile receivers - XML
application language for application coding. 2007. ABNT NBR 15606-2:2007 standard.

[ABNT 2011]ABNT. Digital terrestrial television - Data coding and transmission specifi-
cation for digital broadcasting - Part 2: Ginga-NCL for fixed and mobile receivers - XML
application language for application coding. 2011. ABNT NBR 15606-2:2011 standard.

[Adobe Systems 2010]Adobe Systems. ActionScript references and documentation. 2010.
http://www.adobe.com/devnet/actionscript/references.html.

[Allen 1983]ALLEN, J. F. Maintaining Knowledge about Temporal Intervals. Communi-
cations of the ACM, ACM, v. 26, n. 11, p. 832–843, 1983.

[Apple Inc. 2010]Apple Inc. iMovie 11. 2010. http://www.apple.com/ilife/imovie/.

[Araújo et al. 2008]ARAÚJO, E. C.; AZEVEDO, R. G. A.; NETO, C. S. S. NCL-
validator: um processo para validação sintática e semântica de documentos multimı́dia
NCL . In: Jornada de Informática do Maranhão. [S.l.: s.n.], 2008. In portuguese.

[Azevedo et al. 2009]AZEVEDO, R. G. A.; TEIXEIRA, M. M.; NETO, C. S. S. NCL
Eclipse: Ambiente Integrado para o Desenvolvimento de Aplicações para TV Digital
Interativa em Nested Context Language. In: Salão de ferramentas - Simpósio Brasileiro
de Redes Computadores 2009. [S.l.]: SBRC, 2009. In portuguese.

[Bertino et al. 2005]BERTINO, E.; FERRARI, E.; PEREGO, A.; SANTI, D. A
Constraint-Based Approach for the Authoring of Multi-Topic Multimedia Presentations.
In: IEEE International Conference on Multimedia and Expo. [S.l.]: IEEE Computer So-
ciety, 2005. p. 578–581.

[Blakowski and Steinmetz 1996]BLAKOWSKI, G.; STEINMETZ, R. A Media Synchro-
nization Survey: Reference Model, Specification and Case Studies. Journal on Selected
Areas in Communications, IEEE, v. 14, n. 1, p. 5–35, January 1996.

[Boll 2001]BOLL, S. ZYX - Towards flexible multimedia document models for reuse and
adaptation. Ph.D. Thesis Vienna University of Technology, 2001.

[Bossi and Gaggi 2007]BOSSI, A.; GAGGI, O. Enriching SMIL with assertions for tem-
poral validation. In: Proceedings of the 15th International Conference on Multimedia.
[S.l.]: ACM, 2007. p. 107–116.

[Braga et al. 2011]BRAGA, C. O.; MENEZES, R. W.; COMICIO, T.; SANTOS, C.;
LANDIM, E. Transformation Contracts in Practice. IET Software, 2011.

References 143

[Buchanan and Zellweger 2005]BUCHANAN, M. C.; ZELLWEGER, P. T. Automatic
Temporal Layout Mechanisms Revisited. ACM Transactions on Multimedia Computing,
Communications and Applications (TOMCCAP), ACM, v. 1, n. 1, p. 60–88, February
2005.

[Bulterman and Hardman 2005]BULTERMAN, D. C. A.; HARDMAN, L. Structured
multimedia authoring. ACM Transactions on Multimedia Computing, Communications
and Applications (TOMCCAP), ACM, v. 1, n. 1, p. 89–109, February 2005.

[Clarke et al. 2000]CLARKE, E. M.; GRUMBERG, O.; PELED, D. A. Model Checking.
[S.l.]: The MIT Press, 2000.

[Clavel et al. 2007]CLAVEL, M.; EKER, S.; DURÁN, F.; LINCOLN, P.; MARTÍ-OLIET,
N.; MESEGUER, J. All about Maude - A High-performance Logical Framework: how to
Specify, Program, and Verify Systems in Rewriting Logic. [S.l.]: Springer-Verlag New
York Inc, 2007.

[Dı́az et al. 2001]DÍAZ, P.; AEDO, I.; PANETSOS, F. Modeling the Dynamic Behavior
of Hypermedia Applications. IEEE Transactions on Software Engineering, IEEE, v. 27,
n. 6, p. 550–572, June 2001.

[Eidenberger 2003]EIDENBERGER, H. SMIL and SVG in teaching. In: Proceedings of
Internet Imaging V. [S.l.]: SPIE, 2003. p. 69–80.

[Elias et al. 2006]ELIAS, S.; EASWARAKUMAR, K.; CHBEIR, R. Dynamic consistency
checking for temporal and spatial relations in multimedia presentations. In: Proceedings
of the 2006 ACM symposium on Applied computing. [S.l.]: ACM, 2006. p. 1380–1384.

[Felix 2004]FELIX, M. F. Formal Analysis of Software Models Oriented by Architectural
Abstractions. D.Sc. Thesis Pontif́ıcia Universidade Católica do Rio de Janeiro, 2004. In
Portuguese.

[Furuta and Stotts 2001]FURUTA, R.; STOTTS, P. D. Trellis: a Formally-defined Hy-
pertextual Basis for Integrating Task and Information. Coordination Theory and Col-
laboration Technology, Lawrence Erlbaum Associates, p. 341–367, 2001.

[Honorato and Barbosa 2010]HONORATO, G. S. C.; BARBOSA, S. D. J. NCL-
Inspector: Towards Improving NCL Code. In: Proceedings of the 2010 ACM Symposium
on Applied Computing. [S.l.]: ACM, 2010. p. 1946–1947.

[ISO/IEC 2005]ISO/IEC. Information technology - Coding of audio-visual objects - Part
11: Scene description and application engine. 2005. ISO/IEC 14496-11:2005.

[ITU 1997]ITU. Audiovisual and multimedia systems. 1997. http://www.itu.int/ITU-
T/studygroups/com16/index.asp. Study Group 16 - Multimedia Coding, Systems and
Applications.

[ITU 2009]ITU. Nested Context Language (NCL) and Ginga-NCL for IPTV services.
2009. http://www.itu.int/rec/T-REC-H.761-200904-S. ITU-T Recommendation H.761.

[Jansen and Bulterman 2009]JANSEN, J.; BULTERMAN, D. C. A. SMIL State: an ar-
chitecture and implementation for adaptative time-based web applications. Multimedia
Tools and Applications, Springer, v. 43, n. 3, p. 203–224, 2009.

References 144

[Jourdan et al. 1998]JOURDAN, M.; LAYAIDA, N.; ROISIN, C.; SABRY-ISMAIL, L.;
TARDIF, L. Madeus, an authoring environment for interactive multimedia documents.
In: Proceedings of the 6th ACM International Conference on Multimedia. [S.l.]: ACM,
1998. p. 267–272.

[Lima et al. 2010]LIMA, B.; AZEVEDO, R. G. A.; MORENO, M.; SOARES, L. F. G.
Composer 3: Ambiente de autoria extenśıvel, adaptável e multiplataforma. In: Workshop
of Interactive Digital TV (WTVDI). [S.l.: s.n.], 2010. In portuguese.

[Ma and Shin 2004]MA, H.; SHIN, K. G. Checking consistency in multimedia synchro-
nization constraints. IEEE Transactions on Multimedia, v. 6, p. 565–574, Agosto 2004.

[Mellor et al. 2003]MELLOR, S.; CLARK, A.; FUTAGAMI, T. Guest editors’ introduc-
tion: Model driven development. IEEE Software, v. 20, p. 14–18, 2003.

[Muchaluat-Saade and Soares 2002]MUCHALUAT-SAADE, D. C.; SOARES, L. F. G.
XConnector & XTemplate: Improving the Expressiveness and Reuse in Web Authoring
Languages. The New Review of Hypermedia and Multimedia Journal, Taylor Graham,
v. 8, n. 1, p. 139–169, 2002.

[Na and Furuta 2001]NA, J.; FURUTA, R. Dynamic documents: authoring, browsing,
and analysis using a high-level petri net-based hypermedia system. In: Proceedings of
the 2001 ACM Symposium on Document engineering. [S.l.]: ACM, 2001. p. 38–47.

[Oliveira et al. 2001]OLIVEIRA, M. de; TURINE, M.; MASIERO, P. A statechart-based
model for hypermedia applications. ACM Transactions on Information Systems (TOIS),
ACM, v. 19, n. 1, p. 52, 2001.

[OMG 2003]OMG. MDA Guide Version 1.0.1. june 2003.
http://www.omg.org/docs/omg/03-06-01.pdf. Object Management Group.

[OMG 2010]OMG. OMG Unified Modeling Language (OMG UML) Infrastructure Version
2.3. 2010. http://www.omg.org/spec/UML/2.3/ Infrastructure/PDF. Object Manage-
ment Group.

[Peterson 1981]PETERSON, J. L. Petri Net Theory and Modeling of systems. [S.l.]:
Prentice-Hall, 1981.

[Pnueli 1977]PNUELI, A. The temporal logic of programs. In: IEEE. 18th Annual Sym-
posium on Foundations of Computer Science. [S.l.], 1977. p. 46–57. ISSN 0272-5428.

[Pérez-Luque and Little 1996]PÉREZ-LUQUE, M. J.; LITTLE, T. D. C. A Temporal Ref-
erence Framework for Multimedia Synchronization. Journal on Selected Areas in Com-
munications, IEEE, v. 14, n. 1, p. 36–51, January 1996.

[Rodrigues et al. 2002]RODRIGUES, L.; ANTONACCI, M. J.; RODRIGUES, R. F.;
MUCHALUAT-SAADE, D. C.; SOARES, L. F. G. Improving SMIL with NCM Fa-
cilities. Multimedia Tools and Applications, Springer, v. 16, n. 1, p. 29–54, 2002.

[Santos et al. 1998]SANTOS, C.; SOARES, L. F. G.; SOUZA, G. L. de; COURTIAT, J. P.
Design methodology and formal validation of hypermedia documents. In: Proceedings of
the sixth ACM International Conference on Multimedia. [S.l.]: ACM, 1998. p. 39–48.

References 145

[Santos and Muchaluat-Saade 2011]SANTOS, J. A. F. dos; MUCHALUAT-SAADE,
D. C. XTemplate 3.0: spatio-temporal semantics and structure reuse for hypermedia
compositions. Multimedia Tools and Applications, Springer, 2011. published online -
http://www.springerlink.com/content/m3932258853567j0/.

[Soares and Rodrigues 2005]SOARES, L. F. G.; RODRIGUES, R. F. Nested Context
Model 3.0 Part 1 - NCM Core. Rio de Janeiro, May 2005.

[Soares et al. 2000]SOARES, L. F. G.; RODRIGUES, R. F.; MUCHALUAT-SAADE,
D. C. Modeling, authoring and formatting hypermedia documents in the HyperProp
system. Multimedia Systems, Springer-Verlag, 2000.

[W3C 1999]W3C. XML Stylesheet Language Transformations (XSLT) Version 1.0. 1999.
http://www.w3.org/TR/xslt. World-Wide Web Consortium Recommendation.

[W3C 2000]W3C. Document Object Model (DOM) Level 2 Core Specification. 2000.
World-Wide Web Consortium Recommendation DOM-Level-2-Core-20001113.

[W3C 2008a]W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/. World-Wide Web Consortium Rec-
ommendation.

[W3C 2008b]W3C. Synchronized Multimedia Integration Language - SMIL 3.0 Specifica-
tion. 2008. http://www.w3c.org/TR/SMIL3. World-Wide Web Consortium Recommen-
dation.

[W3C 2011]W3C. HTML5: A vocabulary and associated APIs for HTML and XHTML.
2011. http://www.w3.org/TR/html5/. World-Wide Web Consortium Working Draft.

[Wahl and Rothermel 1994]WAHL, T.; ROTHERMEL, K. Representing Time in Multi-
media Systems. In: Proceedings of International Conference on Multimedia Computing
and Systems. [S.l.]: IEEE Computer Society Press, 1994.

[Warmer and Kleppe 1999]WARMER, J.; KLEPPE, A. The Object Constraint Language.
[S.l.]: Addison–Wesley, 1999.

[Willrich et al. 2001]WILLRICH, R.; SAQUI-SANNES, P. de; SÉNAC, P.; DIAZ, M. De-
sign and management of multimedia information systems. In: RAHMAN, S. M. (Ed.).
[S.l.]: IGI Publishing, 2001. cap. HTSPN: an experience in formal modeling of multime-
dia applications coded in MHEG or Java, p. 380–411.

	Introduction
	Motivation
	Objectives
	Contributions
	Dissertation structure

	Related work
	Approaches for structural validation
	Approaches for behavioral verification
	Closing remarks

	Multimedia background
	Multimedia basic concepts
	Temporal synchronization models
	Constraint-based synchronization
	Axes-based synchronization
	Hierarchical-based synchronization
	Formal model-based synchronization
	Event-based synchronization
	Script-based synchronization

	The NCM Model and the NCL language
	NCM
	NCL

	Closing remarks

	MDA background
	MDA
	OCL validation
	Model checking
	LTL operators
	LTL verification over paths

	Rewriting logic
	Closing remarks

	Validation and verification properties
	Static validation properties
	Dynamic verification properties
	Related work comparison
	Closing remarks

	NCL static semantics
	NCL Language structure metamodel
	Validation invariants
	Document representation
	Closing remarks

	Simple Hypermedia Model dynamic semantics
	Basic concepts
	Simple Hypermedia Model
	SHM transition system
	Verification of SHM properties
	Closing remarks

	API for NCL Authoring and Analysis
	aNaa supporting tools
	Supporting tool for OCL validation
	Supporting tool for SHM verification

	aNa
	aNaa implementation
	Static validation implementation
	Behavioral verification implementation
	SHM implementation architecture
	NCL to SHM transformation

	Closing remarks

	Empirical analysis
	The analyzed documents
	Maude performance tests
	Implementation limitations

	Conclusion
	Contributions
	Future works

	Appendix A – OCL invariant list
	References

