
UNIVERSIDADE FEDERAL FLUMINENSE

VINICIUS TAVARES PETRUCCI

Optimization of power and performance for

heterogeneous server systems

NITERÓI

2012



UNIVERSIDADE FEDERAL FLUMINENSE

VINICIUS TAVARES PETRUCCI

Optimization of power and performance for

heterogeneous server systems

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Topic Area: Parallel and Distributed Sys-
tems.

Advisor:

Orlando Loques

NITERÓI

2012



Optimization of power and performance for heterogeneous

multiprocessing server systems

Vinicius Tavares Petrucci

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial fulfillment of the require-

ments for the degree of Doctor of Science.

Approved by:

Prof. Orlando Gomes Loques Filho, IC-UFF (President)

Prof. Julius Cesar Barreto Leite, IC-UFF

Prof. Eugene Francis Vinod Rebello, IC-UFF

Prof. Claudio Luis de Amorim, COPPE/PESC/UFRJ

Prof. Renato Fontoura de Gusmão Cerqueira, IBM-Research

Niterói, 20 December, 2012



“The journey is the reward”

Chinese Proverb.



Para Bete e Claudio.



Agradecimentos

• Um agradecimento mais que especial aos meus pais Claudio e Bete por todo amor,

carinho, e apoio incondicional durante todos esses meus 29 anos. Sem eles, seria

impossivel chegar ate aqui, nao apenas biologicamente falando. :-)

• À minha querida irma Juliana, sempre presente e tendo um carinho enorme comigo,

e Nilson Victor (Foguinho), um irmao de consideracao, por todo incentivo e torcida,

e por trazerem ao mundo duas figurinhas maravilhosas: Caio e Laura.

• Aos meus avos paternos Bras (in Memoriam) e Ecila, e maternos: Custodio (in

Memoriam) e Merces.

• Ao Prof. Orlando Loques pela orientacao, apoio, e incentivo constantes durante

todo meu periodo na pos-graduacao (mestrado e doutorado) na UFF.

• Ao Prof. Daniel Mosse pela inestimavel colaboracao (na pratica, co-orientacao)

neste trabalho e imenso apoio (tanto na parte de trabalho/tecnica quanto social/amizade)

durante meu estagio de doutorado, na Universidade de Pittsburgh, EUA.

• Big hugs and thanks to: Michelle, Phil, Mike, Evie, Lory, Peter, Mina, Rakan,

Iyad, John, Hannah. All of you made my stay in Pittsburgh a very pleasant and

memorable one!

• Prof. Julius Leite, Eduardo Uchoa e Enrique Vinicio Carrera pelas frutiferas dis-

cussoes tecnicas e colaboracao.

• Quando vim pra Niteroi para cursar o mestrado na UFF, morei durante o primeiro

ano na casa do meu tio-avo Andre e Ceicao, que me acolheram como um filho. Tenho

uma enorme gratidao por isso, e aos primos Bruno, Leo, Camila e Felipe, pelo com-

panheirismo. Grande Tio Andre’, que algumas semanas antes da minha defesa meu

deu um abraco e me desejou boa sorte. Apos 3 dias da minha defesa, veio a fale-

cer abruptamente aos 62 anos, apos um acidente estupido em uma caminhada pela

praia. Como engenheiro eletrico, me lembro de nossas sempre agradaveis conversas

(a noite, quando ele voltava do trabalho, durante uma pausa e outra do jogo de

paciencia no computador) e de quando eu falava da minha tese em economizar ener-

gia, ele sempre curioso e interessado em saber mais e aprender. Me lembro tambem,



Agradecimentos v

eu devia ter uns 15 anos, do tio Andre mexendo num circuito eletronico na sala do

seu antigo apartamento e me explicando sobre uma patente daquele circuito que ele

tinha desenvolvido. Tal exemplo de curiosidade e paciencia (muito alem daquela da

tela do computador) em realizar e entender as coisas da vida (com seu jeito simples)

me inspirou bastante. Obrigado tio Andre, descanse em paz.

• Agradecimento tambem especial ao primo Guilherme Saad Terra pelo grande incen-

tivo em cursar uma pos-graduacao.

• À toda familia de Minas e Campos. Em especial aos primos Diego Tavares, Renato

Tavares, Lucas Tavares, Donato Tavares, Luciano Petrucci.

• Aos amigos Alessandro Copetti, Thibaut Lust, Juliano Kazienko e Douglas Mareli

pelas boas cantareiras :-)

• Aos amigos Gil de Goes, Leonardo Costa, Pablo Saraiva, Gustavo Lima, Filippe

Mota, Carolina Laert, pelos otimos momentos juntos.

• Aos amigos que tive o grande prazer em conhecer durante meu tempo na UFF:

Anand, Hugo, Sergio, Romulo, Puca, Carlitos, Luciano Bertini. Higor, Renatha, Ey-

der, Luciana, Juliana, Stenio, Jacques, Giulio, Matheus, Gleiph, Gustavo Zanatta,

Gustavo Alexandre, Diego Brandao, Erick Passos, Ney Paranagua, Thibaut Vidal.

• Ao suporte e secretaria da pos-graduacao, em especial Rafael Abreu, Carlos Ed-

uardo, Teresa Cancela e Viviane Aceti, pela gentileza e cooperacao.

• Conselho Nacional de Pesquisa (CNPq) pelo apoio financeiro durante o doutorado.

• CAPES pelo apoio financeiro durante o estagio de doutorado sanduiche na Univer-

sidade de Pittsburgh.



Abstract

An increasing number of clusters of server machines with multi-core processors have been
deployed in large-scale computing environments (data centers). The energy consumed to
maintain these server systems up and running is a very important concern that requires
major investigation of optimization techniques to improve the energy efficiency of their
computing infrastructure. This thesis develops, implements, and evaluates optimization
approaches to determine and apply energy-efficient assignments of tasks to processors in
a server system. Since task workload may change over time, these approaches include
a self-adaptive scheme to dynamically change task-to-processor assignment at runtime,
leveraging optimized decisions driven by optimization models and heuristic techniques.

This thesis describes specialized management strategy and implementation for the
following server scenarios. In the first case, we consider a virtualized server environ-
ment where multiple services can be hosted on a single physical server. We determine an
optimized subset of servers that must be active (and respective CPU speeds) and a corre-
sponding mapping of the services to physical servers. In the second scenario, we deal with
a heterogeneous multi-core platform that includes types of cores having different power
and performance characteristics, namely fast/high-performance and slow/power-efficient
core types. We provide optimized thread assignment decisions by mapping workload
threads to run on the core type that is best suited for them, taking advantage of run-
time observation of compute-intensive vs IO/memory-intensive execution phases of the
threads. We show energy savings and performance gains for a variety of workloads, while
respecting task real-time performance needs in the server system.

Keywords: Energy-efficient systems. Optimization. Server Virtualization. Multi-core
Processors.



Contents

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The case of virtualized server cluster . . . . . . . . . . . . . . . . . . . . . 5

1.4 The case of heterogeneous multi-core systems . . . . . . . . . . . . . . . . 7

1.5 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optimized management of virtual heterogeneous servers 11

2.1 Server cluster modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Performance model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Power consumption model . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Power/performance model validation . . . . . . . . . . . . . . . . . 15

2.2 Optimization for cluster management . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Optimization model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Optimization control strategy . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Dynamic optimization support . . . . . . . . . . . . . . . . . . . . . 22

2.3 Implementation in a cluster testbed . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Cluster QoS measurement and control . . . . . . . . . . . . . . . . 25

2.3.3 Application workloads . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Load prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Power and performance gains . . . . . . . . . . . . . . . . . . . . . 29

2.4 Scalability concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Thread assignment optimization for heterogeneous multi-cores 36

3.1 Optimized thread assignment . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Thread performance prediction . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Solution to the optimization problem . . . . . . . . . . . . . . . . . 43

3.2 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Thread execution behavior . . . . . . . . . . . . . . . . . . . . . . . 44



Contents viii

3.2.2 Core and memory system performance . . . . . . . . . . . . . . . . 45

3.2.3 Simulator environment . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Estimating thread execution time . . . . . . . . . . . . . . . . . . . 46

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Energy-delay product . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Tardiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Memory contention analysis . . . . . . . . . . . . . . . . . . . . . . 51

3.3.4 Scalability of optimization scheme . . . . . . . . . . . . . . . . . . . 52

3.4 Linux implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Emulated heterogeneous core system . . . . . . . . . . . . . . . . . 54

3.4.2 Workload description and measurements . . . . . . . . . . . . . . . 56

3.4.3 Performance gains and energy savings . . . . . . . . . . . . . . . . . 57

3.4.4 Best and worst case analysis . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Proportional share scheduling for heterogeneous multi-cores 63

4.1 Fairness in dynamic thread assignment . . . . . . . . . . . . . . . . . . . . 63

4.2 Power/performance for heterogeneous cores . . . . . . . . . . . . . . . . . . 64

4.2.1 Thread performance/bias characterization . . . . . . . . . . . . . . 65

4.3 Lucky scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Energy efficiency metric . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Workload description . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Energy efficiency and performance gains . . . . . . . . . . . . . . . 72

4.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Conclusion and future directions 75

Appendix A -- Publications 77

Bibliography 79



Chapter 1

Introduction

1.1 Problem statement

An increasing number of clusters of server machines with multi-core processors have been

deployed in large-scale computing environments (data centers) [43]. These server plat-

forms allow for the development and implementation of many kinds of services supporting

different applications, such as email and online banking, in a scalable and efficient man-

ner. Also, the applications running on these server clusters usually have great processing

and performance demands, incurring in enormous amount of energy use and costs, and

indirectly contributing to increase CO2 generation and environmental deterioration [74].

According to [21], it is common to have server clusters that are built on the order of

thousands to tens of thousands of physical servers, whereas medium clusters are on the

order of hundreds of servers.

The energy consumed for keeping today’s server systems running became a very im-

portant concern, which in turn, requires major investigation of techniques to improve the

energy efficiency of their computing infrastructure [11, 28, 84]. According to a study by

the Uptime Institute and McKinsey and Company [74], server clusters in data centers

contribute to 30% of the world’s carbon-dioxide emissions and will surpass those of the

airline industry by 2020. A supercomputer such as Japan’s Fujitsu K (10.5-petaflop) cur-

rently draws 12.7 megawatts which is enough to power a middle-sized town [58]. Other

data center studies, such as [4], indicate that costs associated with power and cooling

could overtake hardware acquisition costs.

More recently, the New York Times has published a report [78] about the energy

use by data centers. According to their study, data centers currently use about 2% of

total electricity in the US. One of the reasons for this high energy consumption is that

Internet-based companies are typically running their data center facilities at maximum

capacity, with server utilization rates between 7% and 12%, wasting 90% or more of the

grid electricity consumed/paid. In a study of Google servers it was reported that typical



1.2 Optimization framework 2

server utilization is between 10 and 50 percent of peak, with a CPU utilization that rarely

surpasses 40 percent [5]. Other studies estimate Amazon’s EC2 utilization at 7% to 26%

[68]. Figure 1.1 shows the server utilization histogram of a real HP data center running

Web and IT services. We can observe that the servers in the data center spend most of

time (60%) under a quite low utilization (10%).

Figure 1.1: Histogram of server utilization [76]

This thesis advocates the adoption of cost-effective optimization solutions for the sus-

tainable development and efficient utilization of computing resources. We provide an

optimization framework for periodic monitoring, evaluation and control/management to

assess the energy efficiency in server systems. A technical challenge is that indiscrimi-

nately providing high server utilization can lead to negative effects such as long latency

of user-request response, shared resource contention and performance degradation. Some

workload demands can vary significantly over time and resource utilization control is

essential in order to have room to handle workload spikes. Thus, delivering combined

power/energy-efficient and performance requirements in server systems is a very challeng-

ing and important concern.

1.2 Optimization framework

We propose an optimization framework that includes a mathematical formulation and

a scheme to dynamically determine optimized task-to-processor assignment, since task

execution phases and performance requirements may change over time. Following the

concepts of self-adaptive (autonomic) software systems [18, 19, 53], our framework is de-

signed to periodically performs the following loop: (1) monitor the important system

run-time measures to characterize performance requirements (e.g., CPU, memory band-

width) of tasks, (2) solve a new optimization instance of the optimization model, given

the updated values of the inputs, (3) use the optimized solution to configure the server



1.2 Optimization framework 3

system, for example, by dynamically migrating tasks to different processors based on task

runtime behavior and/or adjusting CPU speeds according to the workload. Also, we may

consider consolidating tasks into as few processors as possible by (quickly) powering down

idle processors and bringing them up when thread workloads increase.

Server 
system

performance 
measures

Monitor Estimator

run-time and 
predicted data

OptimizerReconfig.
Algorithm

Opt. 
modeloptimized

configuration

migrate tasks,
turn processor on/off

Figure 1.2: Optimization framework for self-adaptive server system

A performance Monitor module gathers run-time task data from the server system.

The monitored values are evaluated by the Estimator module to predict the performance

behavior of tasks running on different heterogeneous processors. To accomplish that, a

performance prediction model can be derived analytically based on empirical analysis

of tasks executions on different processor types. This module is also used to filter and

estimate future values from past observed values for the workload time series.

After the monitoring and prediction phases, the Optimization model is updated with

new inputs according to the dynamic behavior observation of each task running in the

system and a new instance of the optimization problem is constructed. The Optimizer

module solves the updated optimization problem instance, yielding a new optimized so-

lution.

Note that the Optimization model represents the problem definition in a formal

way. To solve such an optimization model, we rely on an efficient solver to achieve a low

execution overhead, which depends on the problem/instance size. Alternatively, rather

than solving directly the full optimization model, we may consider applying incremental

local search/modification in the current optimized solution aimed at improving a given

thread-to-core assignment for the next scheduling interval.

The Reconfiguration Algorithm module is responsible for applying the changes in

the server system, such as migrating tasks and adjusting processors speeds/states, tran-

sitioning the system to a new state given by the new optimized configuration. Choosing

the periodicity of migration and reconfiguration of the system allows for providing energy

and performance gains with low overhead.

To develop our optimization framework, we consider a target server cluster scenario

(shown in Figure 1.3) consisting of a group of replicated physical servers. The server

cluster presents a single view to the clients through a special entity termed dispatcher/load



1.2 Optimization framework 4

balancer server, which distributes the incoming workload among the actual servers that

process the requests (jobs). The dispatcher server is also responsible for monitoring and

managing the current configuration of the servers. In this system, we aim to guarantee

specified quality-of-service requirements, such as service throughput and response time.

Also, to reduce costs, the set of servers should be configured to minimize the power/energy

consumption.

Figure 1.3: Server cluster environment

The first case addressed in this thesis deals with cluster-level optimization (Section

1.3) given by (1) which servers must be active and their respective CPU frequencies and

(2) a corresponding mapping of the services to physical servers. We consider a virtualized

server environment, where multiple services can be hosted on a single physical server.

In the second scenario, this thesis addresses the case of server-level optimization dealing

with heterogeneous multi-core processors (Section 1.4). Previous research has shown

that improved performance and energy-efficiency benefits can be achieved by adopting

heterogeneous multi-core systems in contrast to traditional homogeneous systems [61].

Such a heterogeneous platform includes cores with same ISA (instruction set architecture)

but very different power and performance characteristics.

This thesis proposes approaches for cluster and server level optimizations that are

implemented and evaluated separately. Nevertheless, these approaches can work coop-

eratively since they encompass different monitoring/management levels and timing con-

straints. That is, a longer control period (seconds to minutes) can be used for cluster

level adaptations such as server on/off and VM migration/replication, whereas a shorter

control period (milliseconds to seconds) can be used for thread assignment/scheduling on

each multi-core server. This would allow for optimizing energy efficiency for both hetero-



1.3 The case of virtualized server cluster 5

geneous virtualized servers and individual multi-core processors. It is out of the scope of

this thesis to develop of a comprehensive approach that implements and evaluates these

two optimization schemes when used in an integrated solution.

Next, we will present in more detail our specialized management strategy and imple-

mentation for each multiprocessing optimization scenario.

1.3 The case of virtualized server cluster

Many of today’s server clusters rely on virtualization techniques to run different VM’s

(Virtual Machines) on a single physical server, allowing the hosting of multiple indepen-

dent services. With server virtualization, as shown in Figure 1.4, each application runs as

a virtual machine that includes its own operating system (e.g., Linux) and any additional

software or library required to support the respective service execution, such as a Web

or e-mail services. These cluster architectures are common in utility/cloud computing

platforms [21, 40], such as Amazon EC2 and Google AppEngine.

Figure 1.4: Server virtualization architecture and consolidation view

Server virtualization has been widely adopted in data centers around the world for

improving resource usage efficiency and service isolation. In particular, several VM tech-

nologies have been developed to support server virtualization, such as Xen and VMware

[3, 37]. From a power and performance management point of view, the adoption of

virtualization technologies has turned power-aware optimization on clusters into an in-

teresting research topic. Virtualization provides a means for server consolidation through

on-demand allocation and live migration. This helps increase server utilization and reduce

the long term use of computer resources and their associated power/energy consumption.

Specifically, the ability to dynamically distribute server workloads in a virtualized

server environment allows for turning off physical machines during periods of low activity,



1.3 The case of virtualized server cluster 6

and bringing them back up when the demand increases. Moreover, server on/off mecha-

nisms can be combined with CPU DVFS (Dynamic Voltage and Frequency Scaling), which

is a technique that consists of varying the frequency and voltage of the CPU at runtime

according to processing needs, in order to provide even better power optimizations.

The DVFS technique allows for dynamically adjusting the performance states (P-

States) at which the server can operate when the CPU is active, which consists of a

pre-defined set of frequency and voltage combinations. A DVFS-capable processor has

only discrete levels of operating points. As an example of DVFS power management

capability, Figure 1.5 shows the P-states varying frequency and voltage, and the effect on

power consumption for the Intel Pentium M 1.6 GHz processor [31]. In practical terms,

the processing performance of a server system is proportional to its CPU frequency.

Figure 1.5: Example of CPU operating states and power consumption ([31])

In addition to the DVFS technique, we assume that a server can be turned on/off in the

cluster and the power dissipated by the servers when they are completely switched off can

be further minimized. For example, a server can be switched off by a remote halt/suspend

command via network message. To resume a machine from the suspended state, the

servers can make use of the Wake-on-LAN mechanism available in Ethernet cards, which

allows a machine to be turned on remotely by a network message, but consuming an extra

power to keep active the Ethernet card and power supply unit (approximately 5W) [9].

The optimization range related to power consumption and possible energy savings are

greater when it is possible to turn off servers compared to using only DVFS. On the other

hand, the overhead/latency to perform DVFS (order of microseconds) is much lower than

turning servers on/off (order of seconds). An optimized power usage can be achieved with

combined DVFS and on/off mechanisms. Notice that Figure 1.5 only includes the power

consumption of the CPU. A server is composed of other components that also consume

power, such as hard disk, RAM memory, motherboard; however, power management for

these components are not addressed in this thesis.

Virtual server consolidation must be carefully employed, considering individual ser-



1.4 The case of heterogeneous multi-core systems 7

vice performance levels, in order to guarantee QoS (Quality of Service) related to their

corresponding SLA (Service Level Agreements). This is not a simple task since large clus-

ters include many heterogeneous machines and each machine could have different capacity

and power consumption according to the number of CPU cores, their frequencies, their

specific devices, and so forth. Additionally, the incoming workload of a server can signifi-

cantly change over time. Our solution to this scenario is to efficiently manage the cluster

resources leveraging server virtualization and CPU DVFS techniques.

1.4 The case of heterogeneous multi-core systems

There is an increasing adoption of multi-core processors in server systems for improved

performance and power usage while running parallel tasks in multiple cores. Most of

today’s computer systems are largely based on homogeneous multi-core processors, where

all cores are the same. Due to the desire to reduce energy consumption, computer ar-

chitecture researchers and designers are beginning to move to heterogeneous multi-cores

[20, 34]. This heterogeneous system assumes that many low power/performance cores

(“small” cores) can be combined with a few higher-performance cores (“large” cores) in a

given multi-core processor [59, 67], as illustrated in Figure 1.6. A heterogeneous multi-core

system can deliver higher power efficiency, such as performance per watt, when compared

to homogeneous systems running a mix of distinct kinds of applications [29, 61]. While

power efficiency is important, the server system must also conform to finishing their tasks

in a timely fashion [23].

Figure 1.6: Multi-core system evolution: from homogeneous to heterogeneous cores

In homogeneous multi-core systems, there is a limitation in that the frequency can

be scaled individually but all cores uses the same voltage (associated with the maximum

core frequency) since they are fed from the same off-chip voltage regulator/domain [46].



1.4 The case of heterogeneous multi-core systems 8

There are some research efforts (simulation) that attempt to address the limitation of

existing voltage regulator implementations by proposing several designs for on-chip voltage

regulators, possibly in the future enabling fast adjustment of per-core frequency and

voltage (on the order of nanoseconds) [56].

Over time, DVFS is becoming less attractive in homogeneous multicore systems [66],

since it is very expensive to fully implement DVFS for individual cores on the same chip

and low-power processors are already operating at near-minimum supply voltages [48].

Previous research in the multi-core area has shown that migrating threads between cores

with distinct fixed frequency/voltages has comparable energy gains to systems having per-

core DVFS mechanisms [83]. Their research work advocates for real heterogeneous core

systems to be adopted as an alternative energy-efficient design to homogeneous multi-core

systems.

Having different core types in a multi-core system opens up new challenges and pos-

sibilities for power/energy management, thread scheduling and load balancing. In this

scenario we obtain improvements in energy efficiency and performance by assigning each

thread to run on the core type (big or small) that is best suited for it. To provide such

improvements, thread-to-core assignment decisions take advantage of runtime observa-

tion of compute-intensive (big core bias) vs memory-intensive (small core bias) execution

phases of the threads [29, 61].

Recent research has shown that two types of cores (big high-performance vs small low-

power) are able to capture most of the power/performance benefits from core heterogeneity

while running typical workloads [20, 34, 59]. Additional energy-savings may be achieved

by maximizing the utilization of a set of active cores and quickly powering down idle

cores, bringing them up when thread workloads increase.

There are also challenges to meeting limited memory bandwidth constraints when

running multiple threads in the heterogeneous multi-core system. The intuition is that

moving specific threads between different core types at runtime may affect the rate of

requests to the memory subsystem, overwhelming (or underwhelming) the memory con-

troller/bus and thus delaying (or speeding up) the thread execution. In particular, moving

some threads to small cores at runtime may decrease the requests on the memory subsys-

tem, lowering thread execution throughput.

Additionally, large cores can have bigger private caches that may reduce the num-

ber of memory requests and associated thread execution time. Clearly, the best thread

assignment decision should match the computational and memory demands of the run-

ning threads with the capabilities of the cores and memory subsystem. In addition to

satisfying the threads’ computational demands, thread scheduling has to provide some

degree of fairness to the allocation of the platform resources to the threads in the system.

Otherwise, some threads can monopolize the available big cores and hinder the progress



1.5 Thesis contributions 9

of other threads.

1.5 Thesis contributions

This thesis develops, implements, and evaluates optimization schemes to determine and

apply energy-efficient assignments of tasks to processors in a server system. Our optimiza-

tion framework allows for exploration of several domains. We consider tasks as (a) virtual

machines, which run specialized operating system plus library/software applications, or

(b) threads/processes that run on a typical operating system. We consider the resource

allocation problem for two scenarios: a cluster of (i) machines linked by a fast network

and (ii) processing cores in a physical package/chip.

The outline and main contributions of this thesis are as follows:

• Following the self-adaptation concepts outlined in Section 1.2, we pose the task-

to-processor management as one of optimization problem, incorporating it in the

design of a dynamic configuration framework. The basic idea is to solve a new

instance of an optimization model, given the task runtime input values, and use the

optimized solution to configure the server system.

• In Chapter 2, we address the case of virtualized servers by deriving a simple but

effective way of modeling power consumption and capacity of servers for heteroge-

neous machines and changing workloads. Given this power/performance model, we

develop an optimization model and strategy to determine power-efficient cluster con-

figurations (i.e., which servers must be active and their respective CPU frequencies).

In this platform, the tasks/services are implemented as virtual machines hosted on

several shared heterogeneous servers with task workloads varying over time.

• In Chapter 3, we propose an optimization model to determine the most suitable

thread assignment decision, while meeting soft real-time requirements for the appli-

cation threads and minimizing energy consumption in the heterogeneous multi-core

system. This case follows the trend to move from homogeneous to heterogeneous

multi-core systems to provide better performance and energy-efficiency benefits.

• Finally, in Chapter 4, we design and implement a heuristic for energy-efficient thread

assignment, lucky, which is based on lottery scheduling to provide fair-share of avail-

able heterogeneous cores in the multi-core system. We argue that thread scheduling

should provide fair allocation of the platform resources to the threads, in addition

to satisfying the threads’ computational demands. We propose a simple and effec-

tive way to determine ticket assignment for thread workloads by estimating thread

performance and energy efficiency between core types in the system.



1.5 Thesis contributions 10

In addition to the research in Chapters 2-4, we add in each chapter a section for

related work. Lastly, we summarize this dissertation and discuss future research directions

in Chapter 5.



Chapter 2

Optimized management of virtual het-
erogeneous servers

Following the optimization framework introduced in Chapter 1, our scheme periodically

solves an optimization model and uses the optimized solution to configure the cluster. In

this way, considering that the tasks have individual time-varying workloads, our optimiza-

tion strategy enables the virtualized server system to react to load variations and adapt

its configuration accordingly. The proposed optimization strategy also accounts for the

overhead due to switching servers on/off and disruptive migration of virtual servers. Fur-

thermore, the optimization determines an optimized load distribution for the applications,

which is a non-trivial task considering that an application workload can be distributed

among multiple heterogeneous servers in a cluster. The underlying mathematical formu-

lation for optimizing the power and performance in a virtualized cluster is given by a

mixed integer programming (MIP) model.

We describe our approach to virtualized server scenario in two parts. First, we provide

a simple and effective way of modeling performance and power consumption of the servers

in the cluster (Section 2.1). Second, based on the power and performance models, we

describe an optimization formulation implemented in a control loop strategy for power and

performance management in a virtualized server cluster (Section 2.2). The system model

and server architecture testbed used to apply our optimization approach are described

in Section 2.3. In Section 2.3.5, we evaluate our approach through experiments driven

by actual workload traces. We present in Section 2.4 simulation results and discussion

regarding scalability issues.



2.1 Server cluster modeling 12

Figure 2.1: Server performance at maximum CPU frequency as a function of the normal-
ized CPU utilization

2.1 Server cluster modeling

2.1.1 Performance model

In order to model the performance of each real machine, the following definitions are

introduced:

• M is the number of applications or services running on the cluster.

• N is the number of physical servers in the cluster.

• fij is a valid working frequency j ∈ {1 . . . Fi} for the CPU on a given server i ∈
{1 . . . N}.

• uij is the normalized utilization of the CPU at server-frequency fij.

• rij(uij) is the maximum number of requests of certain type that a server i can attend

per unit of time when running at frequency j and its CPU utilization is uij.

• Rij is the maximum rij (i.e., when uij = 100%).

Figure 2.1 shows the linear relationship existing between the number of completed

requests per second and the normalized CPU utilization for five different machines in

our server cluster (described in more detail in Section 2.3). The web requests used in the

experiments are CPU-bound and consume a fixed amount of CPU time, and the frequency

of the CPU was kept constant. Specifically, we measured the performance of the servers,

for each CPU speed, in terms of the number of requests per second (req/s) that they

can handle at a given target CPU utilization. To generate the benchmark workload, we



2.1 Server cluster modeling 13

Figure 2.2: Server performance while varying CPU frequency

used the httperf tool [77]. Note that the case of web servers may be similar to other

CPU-intensive services in a cluster.

We consider the CPU resource as the bottleneck in our system. The required data

for the web services are already cached in main memory after the system has been run-

ning. Since the performance of a server is proportional to its CPU utilization at constant

frequency, the server performance can be modeled as:

rij(uij) = Rij · uij

The performance of a server is also proportional to its CPU frequency. Figure 2.2

shows the relationship existing between these two variables. Since this relationship is also

linear, the server performance can be expressed as:

rij(uij) = riFi
(uij) ·

fij
fiFi

Based on the two previous relationships, we can conclude that the performance of a

machine can be modeled as:

rij(uij) = RiFi
· uij ·

fij
fiFi

where RiFi
and fiFi

are the only constants defined for each server. Thus, we define the

capacity of a server-frequency by

cij = RiFi
· (fij/fiFi

)



2.1 Server cluster modeling 14

In addition, the normalized utilizations of the CPU at different frequencies when the

workload is kept constant can be related by: uik = uij · fikfij where k and j are valid CPU

frequency levels in a given server i.

Since we consider a shared server cluster with multiple distinct applications, it is

quite impractical to assume a priori any information about the incoming workload for

those applications because they all have different types of requests with diverse processing

requirements. Thus, we define and measure the workload demand of an application by

considering the utilization of the bottleneck resource in the system, which is the CPU in

our case. More formally, for each application k ∈ {1 . . .M}, we define

dk =
N∑
i=1

u′ik ·RiFi

to represent the workload of application k basically in terms of the sum of the CPU usage,

given by the variable u′ik, which is monitored from the running system, for each server i

allocated to that application k.

2.1.2 Power consumption model

To model the power consumption of each real machine, besides the previous terminology,

some additional terms are required:

• pij(uij) is the average power consumption of a server-frequency fij when its CPU

utilization is uij.

• PMij is the maximum (busy) power consumption of a server-frequency when uij =

100% at fij.

• Pmij is the minimum (idle) power consumption of a server-frequency when idle at

fij.

Figure 2.3 shows the measured relationship existing between the power consumed

by a given server and its performance at 2.57Ghz. We obtained a similar relationship

for the other available frequencies. Since the relationship between these two variables is

linear when the CPU frequency is kept constant, the power consumed by a server can be

modeled as:

pij(uij) = Pmij + (PMij − Pmij) · uij

To obtain the several PMij and Pmij values, we can use the relationship displayed in

Figure 2.4. This shows that the power consumed by a server is proportional (in a quadratic

form) to its CPU frequency. Thus, the server power consumption can be modeled as:

PMij = PMi1 +KM · (fij − fi1)2



2.1 Server cluster modeling 15

Figure 2.3: Server power consumption as a function of the server performance keeping
constant the CPU frequency

Pmij = Pmi1 +Km · (fij − fi1)2

where KM = (PMiFi
−PMi1)/(fiFi

−fi1)2 and Km = (PmiFi
−Pmi1)/(fiFi

−fi1)2. In other

words, the power consumption of a server basically depends on its working frequency (fij),

its normalized CPU utilization (uij), and the constants PMi1, Pmi1, PMiFi
and PmiFi

.

Although related works, such as [33], consider a cubic relationship between power

consumption and the frequency at which a server is running, especially for the processor,

we are assuming a quadratic relationship between these two variables. Because our main

goal is to predict power consumption values based on only four power measurements

(i.e., Pmi1, PmiF , PMi1, and PMiF for a given server i), we have proposed a more

straightforward alternative, given by the previous power equations, to the curve fitting

processes. Using this simplified power model, we observed that the lowest mean squared

errors are obtained with the quadratic relationship instead of the cubic one. As we can

see in Section 2.1.3, the normalized root mean squared errors for the power vs. frequency

relationship are always less than 2%. When we used the cubic relationship, the normalized

root mean squared errors were as big as 5%.

2.1.3 Power/performance model validation

To validate our analytical model, we have measured the performance and power con-

sumption of five different machines in our cluster, varying their CPU frequency and CPU

utilization. The machines used on our experiments, termed Edison (Intel Core i7), Farad

(Intel Core 2 Duo), Galvani (Intel Core i5), Gauss (AMD Athlon 64) and Tesla (AMD

Phenom X4), have very different technologies including a wide range of working frequen-



2.1 Server cluster modeling 16

Figure 2.4: Server power consumption as a function of the CPU frequency at 100%
utilization

cies, whose main characteristics are described in Section 4.2.

In our case, recording the average values for power and performance for a given load

over a period of 2 minutes was sufficient to obtain a good average and low standard

deviation. We measured the average power consumption and performance for different

levels of load in 10% increments for each server at each CPU frequency available. We

measured AC power directly using the WattsUP Pro power meter with 1% accuracy [25].

The power measurements thus represent the whole machines, not only their CPUs.

In our experiments, due to incompatibility issues on the Linux kernel with the Intel

“Turbo Boost” feature, we disabled it on Edison and Galvani machines. Specifically, the

processors can achieve different speeds than those requested by the Linux kernel power

management when the “Turbo Boost“ was enabled. In addition, the “Turbo Boost”

feature makes it quite difficult to sample the exact maximum CPU speed and performance

of the processor, because these values would depend on several factors, such as the chip

temperature, which requires further study on this technology.

Table 2.1 summarizes our measurements. Comparing the measured values of per-

formance with our model, the maximum normalized root mean squared error for the

performance–CPU utilization relationship (r vs u) is 2.5%. For the performance–CPU

frequency relationship (r vs f), the normalized root mean squared error is less than 1.7%

in all the cases. Similarly, the comparison of the measured values of power with our

model shows that the power–CPU utilization relationship (p vs u) has a maximum nor-

malized root mean squared error of 1.5%. The normalized root mean squared error for

the power–CPU frequency relationship (p vs f) is always less than 1.7%.



2.2 Optimization for cluster management 17

Machine r vs u r vs f p vs u p vs f
Farad 1.5% 0.8% 0.4% 0.0%
Galvani 1.8% 0.8% 1.5% 1.7%
Edison 1.5% 0.8% 0.3% 1.2%
Tesla 1.7% 1.7% 0.2% 1.2%
Gauss 2.5% 1.3% 0.8% 1.4%

Table 2.1: Normalized root mean squared errors

Although the normalized root mean squared errors are quite small, it is also im-

portant to mention that the maximum absolute error is always less than 8.3% (Tesla

in the performance–CPU utilization relationship), which validates our analytical model

with acceptable accuracy. Given these accurate power and performance relationships, we

simplify the extensive and time-consuming task of power and performance benchmark,

which commonly leads to high customization and setup costs for archiving power-aware

optimizations in server clusters [41, 85]. In our simplified benchmark, we only needed

to measure, for each machine, the idle and busy power at minimum and maximum CPU

speed. Thus, in our cluster, it took four measurements per machine.

2.2 Optimization for cluster management

The cluster optimization problem we consider is to determine the most power efficient

configuration (i.e., which servers must be active and their respective CPU frequencies)

that can handle a certain set of application workloads. The problem of allocating a set

of processes across a pool of server machines is basically a bin-packing problem where

each of the machines is a bin. The goal is to allocate as many processes as possible into

each bin. The underlying mathematical formulation for minimizing the power consumed

while meeting performance requirements in the virtualized cluster problem is given by a

MIP (Mixed Integer Programming) model. The cluster configuration problem is NP-hard,

since it can be seen as a generalization of the 1-D Variable-sized Bin Packing Problem,

which is known to be NP-hard [32], when each type of server has an unlimited number

and only a single frequency available.

2.2.1 Optimization model

The information about power consumption and capacity of servers can then be used

by our optimization model to make runtime decisions. In our virtualized environment,

the applications are implemented as VMs, which are assigned to physical servers. In our

optimization model, several different VMs can be mapped (consolidated) to a single server.

This way, our strategy for power-aware optimization in a cluster of virtualized servers is to

select the physical servers where the VMs will be running and the frequencies of each real



2.2 Optimization for cluster management 18

machine according to the CPU utilization that every VM associated to an application

requires. Our optimization model also allows an application to be implemented using

multiple VMs, which are mapped and distributed to different physical servers. This is

useful for load balancing purposes, that is, when an application workload demands more

capacity than the supported by a single physical server.

In addition to the terminology introduced previously, the following decision variables

are defined: xijk is a binary variable that denotes whether server i uses frequency j to run

application k (xijk = 1), or not (xijk = 0); yij is a binary variable that denotes whether

server i is active at frequency j (yij = 1), or not (yij = 0). The uij variable denotes the

utilization of server i running at frequency j.

The problem formulation for the cluster optimization is thus given by the following

MIP model:

Minimize

N∑
i=1

Fi∑
j=1

[PMij · uij + Pmij · (yij − uij)]

+ swt cost(U, y) (2.1)

+ mig cost(A, z)

Subject to
M∑
k=1

dk · xijk ≤ cij · uij ∀i ∈ {1 . . . N},∀j ∈ {1 . . . Fi} (2.2)

N∑
i=1

Fi∑
j=1

xijk = 1 ∀k ∈ {1 . . .M} (2.3)

Fi∑
j=1

yij ≤ 1 ∀i ∈ {1 . . . N} (2.4)

uij ≤ yij ∀i ∈ {1 . . . N},∀j ∈ {1 . . . Fi} (2.5)

xijk ∈ {0, 1}, yij ∈ {0, 1}, uij ∈ [0, 1] (2.6)

The objective function given by Equation (2.1) is to find a cluster configuration that

minimizes the overall server cluster cost in terms of power consumption. The power

consumption for the servers is given by the analytical model from Section 2.1. The

objective function has also two terms to account for server switching and VM relocation

costs. To model a server switching cost, we have included in the model a new parameter

input Uij ∈ {0, 1} to denote the previous cluster usage in terms of which machines are

turned on and off; that is, Uij = 1 if machine i is running at speed j. Similarly, the

new parameter input Aik ∈ {0, 1} denotes which application was previously associated

with which server. More precisely, we may define the switching cost function as follows:

swt cost(U, y) =
∑N

i=1

∑Fi

j=1[SWT P · (yij · (1 − Uij) + Uij · (1 − yij))]. The constant

SWT P represents a penalty for turning a machine off (if it was on) and for turning a



2.2 Optimization for cluster management 19

machine on (if it was off), which can mean an additional power consumed to boot the

respective server machine. We do not consider the cost of changing frequencies, since the

overhead incurred is quite low [85]. Actually, if Uij = 1 for a given server i ∈ {1 . . . N},
we set Uij = 1 for all j ∈ {1 . . . Fi} to avoid taking into account frequency switching costs.

To facilitate modeling the VM relocation cost, we define a new decision variable

zik ∈ {0, 1} to denote if an application k is to be allocated on server i. We also include

in the model a new set of constraints, which are defined as follows: xijk ≤ zik ∀i ∈
{1 . . . N},∀j ∈ {1 . . . Fi},∀k ∈ {1 . . .M}. The relocation cost function can be defined

similarly based on the previous allocation input variable A and the new allocation decision

z, such as mig cost(A, z) =
∑N

i=1

∑M
k=1[MIG P · (zik · (1 − Aik) + Aik · (1 − zik))]. We

assume that both server switching on/off and relocation penalties can be estimated in a

real server cluster. In our case, these costs were basically defined by the average power

consumption of the servers in the cluster.

In the optimization model, the constraints (2.2) prevent a possible solution in which

the demand of all applications k ∈ M running on a server i at frequency j exceeds the

capacity of that server, given by our analytical model (Section 2.1). The constraints

(2.3) guarantee that a server i at frequency j is assigned to a given application k. The

constraints (2.4) are defined so that only one frequency j on a given server i can be chosen.

The constraints (2.5) are used to relate the decision variable yij with the uij variable in

the objective function. The solution is thus given by the decision variable xijk, where i is

a server reference, j is the server’s status (i.e., its operating frequency or inactive status,

when j = 0), and k represents the respective allocated application. The expressions on

(2.6) define the variables of the problem.

For example, a MIP solution that returns x123 = 0.3 and x273 = 0.7 means that 30%

of the workload of application 3 is executed on server 1 running on the CPU frequency 2,

and 70% of that workload is executed on server 2 running at frequency 7. The optimized

solution also provides useful information to implement a load balancing scheme, such as a

weighted round-robin policy, for distributing the application workloads among the servers

in the cluster.

2.2.2 Optimization control strategy

Dynamic optimization behavior is attained by periodically monitoring the proper inputs

of the optimization model and solving a new optimal configuration given the updated

values of the inputs. In other words, as some of the input variables may change over time,

such as the application workload vector, a new instance of the optimization problem

is constructed and solved at run-time. We assume that the workload does not change

radically often and it is mostly stable during the specified control period.

Particularly, we are able to devise a control loop of the following form: (a) monitor



2.2 Optimization for cluster management 20

and store the most recent values of the optimization input variables, (b) construct and

solve a new optimization problem instance, yielding a new optimal configuration and (c)

apply the changes in the system, transitioning the system to a new state given by the

new optimized configuration. The details are given in the following algorithm.

do periodically:

// 1. Input variables

curDemand = getDemandVector()

curUsage = getCurrentUsage()

curAlloc = getCurrentAlloc()

// 2. Workload filter / prediction

d = predict(curDemand)

// 3. Run optimization

newUsage, newAlloc = bestConfig(d)

// 4. Generate usage and alloc sets for changes

chgUsage = sort(diff(newUsage, curUsage))

chgAlloc = sort(diff(newAlloc, curAlloc))

// 5. Power management operations

for (i, j) in chgUsage:

if j == 0:

turnOff(i)

else:

if curUsage[i] == 0:

turnOn(i)

setFreq(i, j)

// 6. Virtualization management operations

for (k, i) in chgAlloc:

if i == 0:

stopVm(k, curAlloc[k])

else:

if curAlloc[k] == 0:

startVm(k, i)

else:

migrateVm(k, curAlloc[k], i)

The control loop outlined above relies on the mathematical formulation described in



2.2 Optimization for cluster management 21

Section 2.2.1 to solve the cluster configuration problem. The key idea of the optimiza-

tion control policy is to periodically select and enforce the lowest power consumption

configuration that maintains the cluster within the desired performance level, given the

time-varying incoming workload of multiple applications.

The input variables for the control loop algorithm, described in step 1, are: the

monitored and updated application demand (load) vector, the current server configuration

and application allocation. At step 2, we may apply a predictive filter to estimate the

workload demand vector for lookahead horizons. The bestConfig operator, at algorithm

step 3, returns a cluster usage and allocation solution, where newUsage represents an

usage configuration of servers and their respective status (i.e., its operating frequency

or inactive), and newAlloc represents which application has to be associated with each

server.

In fact, the configuration to be imposed is a difference between two sets: the new con-

figuration and the current configuration solution. For example, suppose the current cluster

usage is curUsage={(1,0),(2,2),(3,0)} and the new usage is newUsage={(1,0),(2,0),
(3,4)}. Thus, we need to perform a change in the system given by chgUsage = newUsage

− curUsage = {(2,0),(3,4)}. That is, we need to turn off server 2, and turn on server

3 at the frequency 4. To handle this, we apply a diff operator in the usage and allocation

solutions provided by the optimization operator (see the algorithm step 4).

The order in which the operations are executed may lead to a problematic behavior.

Specifically, in the example above, if the new usage configuration shutdowns the current

active server before the new server is ready to respond the requests, as the server booting

time is not instantaneous, the cluster will be in an unavailable state. To solve this issue,

we simply sort the new cluster usage representation so that the operation to shutdown

servers is always performed last, and the operations to increase frequency and turn on

servers, respectively, are performed first. This scheme can be similarly adopted to the new

allocation representation, in which the operations to start and migrate virtual machines

are performed at first. To achieve this, we make use of a sort operator in the configuration

algorithm, as shown in algorithm step 4.

At step 5, we employ dynamic configurations for power optimization which consists

of (a) turning servers off in periods of low activity and turning them back on when the

demand increases, and (b) exploiting the dynamic voltage and frequency scaling capa-

bility of current processor architectures to further reduce power consumption. Finally,

to manage the application services (which are associated to virtual machines), we rely

on configuration operators to start, stop, and migrate the virtual machines in the server

cluster, such as those described in the algorithm step 6.

Execution example. As an example of optimization execution, we may assume

that the demand vector (in request/sec) for three different applications is d=[45,120,17].



2.2 Optimization for cluster management 22

After solving the optimization problem, we have an abstract configuration solution given

by a vector of tuples (i, j, k), where i is a server, j is the respective CPU speed, and k is

the allocated application, defined by conf = [(1,3,1),(1,3,2),(1,3,3)]. This means

that, application 1, 2 and 3 are hosted by server 1 at frequency 3, which is its maximum

frequency, while the other servers are turned off.

At another execution snapshot, say d=[45,170,17], the new configuration solution

is defined by conf = [(2,1,1),(1,3,2),(1,3,3)]. This means that if the demand for

application 2 has been increased from 120 to 170, we need to turn on a new server and

migrate application 1 to this new server 2 that will run at frequency 1 (i.e., the minimum

frequency). In case the demand for application 2 decreases, we may turn off server 2 to

save power and migrate back application 1 to server 1.

2.2.3 Dynamic optimization support

In our approach, the monitoring and dynamic configuration mechanisms (for example,

as used by our optimization policy in Section 2.2.2) are implemented in terms of an

application programming interface (API) [18, 19] given by the system support level (see

Figure 2.5). For example, the Apache web server [94] supports an API to enable developers

to extend a server with their own extension modules. The Xen hypervisor [3] also provides

capabilities and mechanisms to monitor and manage virtual machines in a server cluster

by means of an API.

Figure 2.5: API support for dynamic optimization

The key idea of an API is that it specifies an abstract and well-defined interface to

control the behavior of the system, which builds on lower-level mechanisms at the system

level. A desired feature for an API is that it can be called from several programming

languages and is available as a remote procedure call, such as the XML-RPC protocol.

Our optimization approach encapsulates most of the required functionality for dynamic

configuration in terms of an API and provide generic configuration operators [80, 81].

This, in turn, enables the dynamic optimization logic to be described in a more appropriate

way by using a number of high-level constructs. Examples of our API and operators



2.3 Implementation in a cluster testbed 23

include a call to a configuration operator, termed bestConfig, which encapsulates an

optimization algorithm for solving the cluster configuration problem.

2.3 Implementation in a cluster testbed

In our virtualized cluster environment, targeted at hosting multiple independent web

applications, we need to maintain two correlated objectives. First, we aim to guarantee

quality-of-service requirements for the applications, for example, by controlling average

cluster load. Second, to reduce costs, the set of currently active servers and their respective

processor’s speeds should be dynamically configured to minimize the power consumption.

2.3.1 Server architecture

The target testbed architecture (shown in Figure 2.6) consists of a cluster of servers

running CentOS Linux 5.5. The cluster presents a single view to the clients through

the front-end machine, which distributes incoming requests among the actual servers

that process the requests (also known as workers). The worker servers run Xen 3.1

hypervisor enabled to support the execution of virtual machines and capable of CPU

DVFS. Our testbed includes a cluster of seven physical machines, whose characteristics

and configurations are detailed in Table 2.2.

The web requests from the clients are redirected, based on a load balancing scheme,

to the VMs allocated to the applications that run Apache web servers on top of physical

server machines. Each VM has a copy of a simple CPU-bound PHP script to characterize

a web application. We define three different applications in the cluster, named App1,

App2 and App3. To generate the workload for each application, we developed a workload

generator tool to simulate realistic workload patterns (described in Section 2.3.3).

The load generator machine is physically connected to the front-end machine via a

gigabit ethernet switch. The worker machines and the front-end machine are connected

via another gigabit switch. The front-end machine has two gigabit network interfaces,

each one connected to one of the switches. All worker machines share an NFS (Network

File System) storage mounted in the front-end to store the VM images and configuration

files.

Notice that the time to switch on a server, when a server was switched off by a

halt or shutdown command, is on average 1.5 minutes. The shutdown time is about 15

seconds and halt power consumption is 6.5 W on average. In the future experiments,

we believe that this time could be minimized by using mechanisms of suspend/hibernate

on the servers. However, the suspend/hibernate mechanism is not supported yet by the

Xen-enabled kernel in our servers.

The front-end machine is the main component in the architecture including three



2.3 Implementation in a cluster testbed 24

����������

	AAB�CDE��F

���������	ABCDE��

�������D�����

�����

�����

F�����	�

�����A���E���

�������

F�����	�

�����A���E���

�������

C��F��DD��

��B�	�����B���	ABCDE��

	AA���CDE��F

Figure 2.6: Testbed server architecture

Machine Role Processor model Cores CPU model RAM
Freq.
steps

Xingo Load generator Intel Core i7 4 2.93 8GB —
Henry Front-end AMD Athon 64 1 2.2GHz 4GB —
Edison Worker Intel Core i7 4 2.67GHz 8GB 9
Farad Worker Intel Core 2 Duo 2 3.0GHz 6GB 2
Galvani Worker Intel Core i5 4 2.67GHz 8GB 12
Gauss Worker AMD Phenom X4 II 4 3.2GHz 8GB 4
Tesla Worker AMD Athon 64 X2 2 3.0GHz 6GB 8

Table 2.2: Specification of the machines used in our cluster

entities: (a) VM manager, (b) Load balancer, and (c) Controller. The VM Manager is

implemented using the OpenNebula toolkit [79] which enables the management of the

VMs in the cluster, such as deployment and monitoring. Since we are running virtual-

ized web servers in our cluster, the Load Balancer implements a weighted round-robin

scheduler strategy provided by the Apache’s mod proxy balancer module [94]. Finally,

the Controller implements the control loop strategy that consists of an external module

written in Python that relies on the primitives provided by the VM Manager and Load

Balancer modules. The goal of the Controller is to dynamically configure the appli-

cations over the server cluster, in order to reduce power consumption, while meeting

the application’s performance requirements. The Controller: (a) monitors application’s

load, (b) decides about a possible relocation in the cluster to attend the demand, based

on the proposed optimization model, and (c) applies the new configuration executing

necessary primitives (see details of the optimization strategy in Section 2.2).

For the integration of the Controller with the VM Manager module, we used the

XML-RPC interface provided by OpenNebula. To dynamically manage the Load Balancer

module, we implemented and installed in the front-end machine a new Apache module



2.3 Implementation in a cluster testbed 25

written in C called mod frontend, which relies on the Apache proxy load balancer module

functionalities. This Apache module exposes a generic interface (through the XML-RPC

protocol) to enable (and disable) a worker server, to assign weights in the load balancing

scheme to the servers, and to monitor the cluster QoS properties, such as arrival rate,

throughput and response time of the web requests execution. To manage the cluster

machines, we issue commands remotely via SSH, for example, to turn servers off and to

adjust servers frequencies. To resume a machine from the shutdown state, the servers

support the Wake-on-LAN mechanism, which allows a machine to be turned on remotely

by a network message.

2.3.2 Cluster QoS measurement and control

In this work, the cluster system load is measured by the sum of CPU usage of the virtual

machines (running the applications) in the cluster. Because we are interested in the macro

behavior of our optimization, the web applications are simplified in that we assume that

there is no state information to be maintained for PHP requests. As for performance

optimization guarantees, while still meeting temporal QoS requirements of the requests

in the cluster, we provide a tight control on the system load; that is, the CPU utilization

in the whole cluster. With such a control strategy, we show that we can also satisfy the

user-perceived experience commonly measured by the response time of the requests in the

cluster.

As shown in Figure 2.7, when the CPU utilization of a VM (running a web server

application) is low, the average response time is also low. This is expected since no time

is spent queuing due to the presence of many concurrent requests. On the other hand,

when the utilization is high, the response time goes up abruptly as the server utilization

gets close to 100%. In the graph, the maximum value for utilization is 400% because

we are using quad-core machines and each core represents 100%. To meet response time

requirements, we shall perform dynamic optimizations in the cluster before the machine

reaches saturation, for example, above a target of 80% (or 300% for the quad-core con-

figuration) of server utilization. This gives us a simple but effective measure to keep the

response time under control. Moreover, since we measured the bottleneck resource (CPU)

as a “black-box”, this control scheme can work for different types of HTTP requests with

distinct average execution times. This also allows for an extra amount of CPU capacity

available to be used by the VM management domain (Dom0) on the physical servers during

the migration or replication activities.

The response time is defined as the duration between the time a response is generated

and the moment the server accepts the request. To obtain the response time for the web

applications we have implemented a new Apache module (as mentioned in Section 2.3.1)

that collects such timing information using pre-defined hooks provided by the Apache



2.3 Implementation in a cluster testbed 26

 0

 200
 400

 600

 800
 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  10  20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(m
s)

 0

 100

 200

 300

 400

 0  10  20  30  40  50  60  70  80  90  100

C
P

U
 U

til
iz

at
io

n 
(%

)

Time (s)

Figure 2.7: Relationship among throughput, response time, and CPU utilization

Module API [94]. The hooks used to measure the response time are: post read request

and log transaction. The post read request function allows our module to store the

moment a request was accepted by Apache and the log transaction function allows it

to store the moment a response was sent to the client.

Based on these hooks, we can also measure the workload arrival rate by accumulating

the number of requests for a given interval in the post read request phase. Similarly, we

can measure the throughput in the log transaction phase. To smooth out high short-

term fluctuations in these measurements readings, we have implemented a filter procedure

in our Apache module based on a single exponential moving average. In the filter module,

we have used α = 0.6 as the default smoothing factor. Based on our experiments, this

value was found suitable.

We mainly define the QoS for the applications in the server cluster by means of the

maximum allowed response time for the respective requests — the application deadline. In

the optimization approach, we should satisfy this QoS metric by managing two variables.

First, the cluster utilization must be below a reference value, in our case target util =

80%. Second, in case the current response time is above the deadline response time, we

determine a tardiness value by the ratio of current response time to the deadline response

time, which denotes “how far” the average application requests are from the respective

requests deadline.

More precisely, to guarantee that the response time restriction is met, we regulate

the application workload demand vector by multiplying it to the tardiness preset limit

to achieve the desired response time requirement. In a similar manner, to maintain the

cluster utilization around its reference value, we normalize the application workload de-

mand vector by the target util to achieve the desired cluster utilization bound. Typically

these reference values for utilization and requests deadline depends on workload demand



2.3 Implementation in a cluster testbed 27

characteristics and performance purposes for a target cluster system.

That way, the target workload demand for a given application k, which was previously

defined in Section 2.1.1, can be rewritten as d′k = (dk / target util) ∗ tardiness ∗ γ. A

reinforcement constant γ can be used to give smoothing or boosting performance effect

to allow the cluster to be more or less responsive to changes with respect to the response

time tardiness metric. In our case, we assume a γ = 1.0, but other values for it need to

be investigated in future experiments. So, the modified workload demand aims to drive

our controller to dynamically configure the cluster to meet the QoS goal accordingly.

2.3.3 Application workloads

We generated three distinct workload traces using the 1998 World Cup Web logs to

characterize the multiple applications in the cluster [2]. We calculated the number of

requests over a fixed and customized sampling interval for different parts of the World

Cup logs over time. We also adapted the original workload data to fit our cluster capacity,

which is measured in requests per second, for a fixed type of request. As shown in Figure

2.8, the applications within the cluster can have a wide range of request demands. Each

application in the cluster is assigned a maximum allowed response time specified at 500ms.

In a real system, the deadline response times are given based on particular requirements of

the applications and can assume different target values, which is allowed by our approach.

 0

 50

 100

 150

 0  1000  2000  3000  4000  5000  6000  7000

L
o

a
d

 (
re

q
/s

)

App1

 0

 50

 100

 150

 0  1000  2000  3000  4000  5000  6000  7000

L
o

a
d

 (
re

q
/s

)

App2

 0

 50

 100

 150

 0  1000  2000  3000  4000  5000  6000  7000

L
o

a
d

 (
re

q
/s

)

Time (s)

App3

Figure 2.8: Workload traces for three different applications



2.3 Implementation in a cluster testbed 28

Each workload demand point in Figure 2.8 is the average of 36 seconds, describing

an experiment execution of 2 hours in duration. In our experiments, we assume that

App1, App2, and App3 services can be distributed and balanced among all servers in the

cluster. To generate the workloads, we implemented a closed-loop workload generator

written in C that sends web requests to the applications. The idea employed was to

dynamically change the “think time” of a given set of running web sessions (implemented

using P-threads) within the system every 36 seconds, which is the time granularity of

our workload traces. Specifically, the workload generator interprets each data point in

Figure 2.8 as the target load to generate, deriving a new adjustment on the “think time”

for the running web sessions, during each 36-second interval. Clearly, the “think time”

is inversely proportional to the workload intensity; that is, the smaller the value of the

“think time”, the greater the workload intensity.

2.3.4 Load prediction

Previous works show that CPU server utilization [24] and Web server traffic [7, 88] can

be modeled through simple linear models. Dinda and O’Hallaron [24] conclude that the

host load is consistently predictable by practical models such as AR, reaching a very good

prediction confidence for up to 30 seconds into the future. On the other hand, Baryshnikov

et. al. [7] prove that even bursts of traffic can be predicted far enough in advance using a

simple linear-fit extrapolation. Based on that, our predictor module implements a linear

regression based on k past values to predict the load of the applications in the cluster.

To anticipate fast load increments, we must take into account the time for turning

servers on. In order to avoid on/off disruptions we must consider the break-even threshold

of the servers. That is, the time required by an unloaded server to consume as much

energy as required for turning a server off and on immediately. In other words, our

predictor needs to see as far into the future as the break-even threshold, that in our case,

it is no more that 110 seconds, according to the maximum boot time for the machines in

our cluster.

Leveraging predictive capabilities, the optimization approach can cope with well-

known patterns in measurements readings, such as trends, that indicate anticipatory

conditions for triggering new optimized configurations. This is important for improving

the optimization decisions, guaranteeing a better quality of service for the applications in

server systems [88]. For example, turning on a new server in advance before a resource

saturation occurs. As will be shown in Section 2.3.5, the applicability of our predictor

in the control loop using a linear regression fit through (k = 10) past workload measure-

ments was enough to anticipate fast load increments and improve the QoS in the system.

In the following experiments, since the controller sampling period is set to 25 seconds, our

controller looks ahead 4 steps to help anticipate the time to boot a new server. We plan



2.3 Implementation in a cluster testbed 29

to evaluate the robustness and accuracy of this kind of prediction and other prediction

methods in future work.

2.3.5 Power and performance gains

To evaluate our optimization approach, we have carried out a set of experiments in the

cluster environment described in Section 2.3. The proposed optimization formulation was

implemented using the solver IBM ILOG CPLEX 11 [45], which employs very efficient

algorithms based on the branch-and-cut exact method to search for optimal configuration

solutions. The optimization problem worst-case execution time was less than 1 second,

considering our cluster setup of 3 applications and 5 physical servers (Section 2.3). Scal-

ability issues concerning large-scale clusters using the adopted optimization model are

discussed in Section 2.4.

In the experiments, we adopted an optimization control loop of 25 seconds interval.

This value was found suitable in our case, but it typically depends on the target system

and workload demand characteristics, like variance. As an additional work, it would be

interesting to investigate the use of two control loops with distinct intervals concerning

different kinds of dynamic operations in the cluster. For example, a shorter control interval

for load balancing and DVFS adaptations and a longer interval for server on/off and VM

migration/replication activities.

In this work, we mainly evaluated the effectiveness of our approach by means of

the energy consumption reduction and QoS violation in the cluster as compared to the

Linux on-demand and performance CPU governors. The performance governor keeps

all servers turned on at full speed to handle peak load and dynamic optimization is not

conducted. The ondemand governor allows for managing the CPU frequency depending

on system utilization, but does not include server on/off mechanisms.

The allocation scheme for the performance and ondemand governors are statically

configured such that response time goals can be met under the worst-case (peak) workload

arrival rate. That is, a static number of VMs were deployed and configured on each

physical server for every application running in the cluster. The respective workload

allocation shares for all the applications to be balanced among the physical servers in the

cluster are statically defined as follows: 28% for Edison; 13% for Farad; 25% for Galvani;

26% for Gauss; and 8% for Tesla. That means we adopted a fixed weighted round-robin

method for application workload balancing given the measured capacity for each server

(cf. Section 2.1.1).

The experimental results for the optimization execution are given in Figure 2.9. The

upper and middle plots show, respectively, the throughput and response time measured

for each application in the cluster. The bottom plots show the cluster load as a function

of the average CPU utilization of the currently active servers (left plot) and the cluster



2.3 Implementation in a cluster testbed 30

Policy Energy (Wh) Savings QoS violations
Performance 281.45 — 0%
On-demand 241.84 14.07% 0%
Optimization (reactive) 134.67 52.15% 9.72%
Optimization (predictive) 143.61 48.97% 4.79%

Table 2.3: Comparison of cluster management policies

power consumption (right plot), measured using the WattsUp Pro [25] to sample the

power data every second. So, the energy consumption of the cluster could be calculated

by the sum these power values over each second interval time.

 0

 50

 100

 150

 0  2000  4000  6000

T
h

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (s)

App1

 0

 50

 100

 150

 0  2000  4000  6000

T
h

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (s)

App2

 0

 50

 100

 150

 0  2000  4000  6000

T
h

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (s)

App3

 0

 200

 400

 600

 800

 0  2000  4000  6000

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (s)

App1

 0

 200

 400

 600

 800

 0  2000  4000  6000

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (s)

App2

 0

 200

 400

 600

 800

 0  2000  4000  6000

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (s)

App3

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  2000  4000  6000

C
lu

st
e

r 
lo

a
d

 (
%

)

Time (s)

 100

 200

 300

 400

 500

 600

 700

 0  2000  4000  6000

P
o

w
e

r 
(W

a
tt

s)

Time (s)

Figure 2.9: Dynamic optimization execution with predictive capabilities

As shown in Table 2.3, by using our approach, the energy consumption in the cluster

is substantially reduced. The main argument for these energy savings is the fact that

the baseline (or idle) power consumption of current server machines is substantial. This

in turn makes server on/off mechanisms (used by our optimization) very power-efficient.

The energy savings are reduced percentages with respect to the performance policy. The

percentage number of QoS violations were calculated as the sum of how many times the

response time of all applications missed their deadlines divided by the total number of

requests completed during the experiment. Clearly, there is a trade-off between QoS

and energy minimization. Both performance and ondemand policies produced zero QoS

violation. On the other hand, the energy optimization achieved by our approach lead to

some QoS violations. By using a predictive optimization policy, about 7% more energy

was consumed although with the benefit of an approximately 50% less QoS violations.



2.4 Scalability concerns 31

We show that a cluster system managed using our approach is effective in reduc-

ing the power consumption costs, when compared to built-in Linux power management

policies, while still maintaining good QoS levels. Our experiments are based on typical

time-varying workload traces for web servers. Other power management policies adopt

heuristics to turn on/off servers in a predefined order based on a power-efficiency metric

for all servers in the cluster, like those described [85, 95]. To compare our approach with

their work, migration/replication for the VMs and workload balancing schemes would

need to be designed and implemented accordingly, which would incur in a large amount

of time consuming work. We left such comparisons for future work.

2.4 Scalability concerns

To evaluate the scalability of our approach, we generated different pairs of server-application

setup. For each pair, we ran the CPLEX to build and solve 180 instances. This means

that each instance uses as its application demand vector the workload data at each time

interval of 10 seconds using the traces shown in Figure 2.8.

The CPLEX solver was executed for every instance with a user-defined solution time

limit of 180 seconds, which is related to the maximum allowed control period used in our

dynamic optimization policy for managing the cluster environment. Table 2.4 shows the

results of simulations with different number of servers and applications. From 5 to 30

servers, the optimal configuration solutions were found in all 180 runs within the solution

time limit. From 50 to 100 servers, there is at least one instance where CPLEX could not

find the optimal solution for all instances within 180 seconds.

Server,App Avg. (s) Stdev. (s) Max. (s)
(5,3) 0.022 0.018 0.070
(10,6) 0.054 0.035 0.250
(15,9) 0.062 0.038 0.240
(30,18) 0.392 0.913 8.610
(50,30) 13.630 29.959 180.010
(80,48) 58.941 53.570 180.020
(100,60) 80.135 52.394 180.030

Table 2.4: Scalability simulation

In order to speed up the process of obtaining a high quality solution, we adopted a

simple heuristic by setting a gap tolerance of 5% with respect to the optimal solution. This

is a user-defined value and intends to allow the solver to provide acceptable solutions in

a short amount of time. Table 2.5 summarizes the simulation results when the minimum

gap tolerance criteria was adopted. From 5 to 350 servers, the configuration solutions

were found in all 180 runs within the gap tolerance (5%) and the solution time limit (180



2.4 Scalability concerns 32

seconds), with a maximum processing time about 75 seconds. For 500 servers, there were

three instances for which CPLEX could not find the solution within the time limit.

Server,App Avg. (s) Stdev. (s) Max. (s)
(5,3) 0.006 0.008 0.040
(10,6) 0.023 0.022 0.100
(15,9) 0.031 0.030 0.130
(30,18) 0.062 0.067 0.540
(50,30) 0.139 0.281 2.390
(80,48) 0.267 0.235 3.000
(100,60) 0.481 0.409 3.080
(200,120) 2.893 1.993 11.550
(350,210) 16.488 12.979 75.440
(500,300) 48.409 41.472 181.030

Table 2.5: Scalability simulation using the optimality gap criteria

This strategy considers the solution gap between the best integer feasible solution

found so far and the lower bound (LB) provided by the solver, which is usually calculated

by solving a pure linear version the original problem. In minimization problems, the LB

can be seen as a reference value which ensures that the optimal solution is greater or

equal than this quantity. Considering the small gap value used, the CPLEX was capable

of finding highly acceptable solutions, i.e., close to the optimal lower bound.

Even though we generate a number of scenarios involving different pairs of server-

application setup, it is not possible to assume that the CPLEX will have a similar behavior

in all instances. The main difficulty is that the branch-and-cut method has a worst-case

exponential time complexity and depending on the combination of application workloads,

this approach may lead to poor solutions in an acceptable runtime execution (solution

time limit). Nevertheless, based on the simulations presented here, we have observed that

the CPLEX performs well on the average case.

Given a typical optimization control period of few minutes, such as used in [63],

the proposed optimization approach is suitable and scales well for clusters with up to

350 machines. This seems to be a reasonable size for a server cluster set, because, for

instance, servers can be divided in smaller clusters or racks in a hierarchical fashion to

address scalability issues. For example, Google uses racks with 40 and 80 PCs and racks

are organized into clusters, typically with 30 or more racks [42, 43]. Typically, clusters

are the basic unit of management.

As the numbers of servers and services increase in the cluster, the direct use of a MIP

formulation (Section 2.2.1) to obtain integer feasible solutions for the cluster configuration

problem becomes prohibitive, due to its large number of variables and constraints in the

model. To make our approach practical for (very) large-scale heterogeneous server clusters,



2.5 Related work 33

we can rely on the following optimization heuristics efforts aimed at providing high quality

solutions in short amount of processing time.

In [60] we described a reformulation of the cluster configuration problem using a

Dantzig-Wolfe Decomposition [22]. We developed a column generation based heuristic,

called Rounding Heuristic (RH), for obtaining a feasible integer solution by rounding up

the value of the fractional variables of a relaxed optimization solution. This proposed

solution approach was found highly effective in terms of very low optimality gap and

computational time.

We also proposed a Multi-Start Iterated Local Search for large-scale packing prob-

lems with multiple resources. This method iteratively applies a local-search procedure to

improve the solutions, along with shaking moves to escape from local optima. To reduce

the computational time, shaking moves/restarts are dynamically triggered whenever the

improvement is estimated to be too small with respect to the total solution cost. Exten-

sive experimental evaluations demonstrate the remarkable performance of the proposed

method on cluster configuration with up to 50,000 processes and 5,000 machines. More

details can be found in [73] and [96]. Note that the integration of these research works in

our optimization framework is orthogonal to the current work and left for future work.

2.5 Related work

Optimization approaches, based on the bin packing problem, for configuring virtualized

servers are described in the literature, such as [12, 54]. However, their models are not

designed for power-aware optimization. In [98], the authors present a two-layer control

architecture aimed at providing power-efficient real-time guarantees for virtualized com-

puting environments. The work relies on a sound control theory based framework, but

does not addresses dynamic virtual machine allocation or migration and machine on/off

mechanisms in a server cluster context. A heuristic-based solution outline for the power-

aware consolidation problem of virtualized clusters is presented in [91], but it does not

provide a means to find solutions that are at least near to the optimal.

The non-virtualized approach described in [26] determines predefined thresholds to

switch servers on/off (given by simulation) based on CPU frequency values for the active

servers that must match in order to change the cluster configuration to meet the perfor-

mance requirements. However, their proposal does not provide an optimal solution as a

combination of which servers should be active and their respective CPU frequencies. The

problem of optimally allocating a power budget among servers in a cluster in order to

minimize mean response time is described in [33]. In contrast to our approach, which is

designed to minimize the cluster power consumption while meeting performance require-

ments, their problem poses different optimization goals and does not address a virtualized



2.5 Related work 34

environment considering multiple services in a server cluster.

A dynamic resource provisioning framework is developed in [63] based on lookahead

control theory. Their approach does not consider DVFS, but the proposed optimization

controller addresses interesting issues, such as switching machines costs (i.e., overhead of

turning servers on and off) and predictive configuration model. Our approach also copes

with switching costs and it includes the ability to incorporate prediction techniques in

the optimization strategy to improve the configuration decisions. A power-aware migra-

tion framework for virtualized HPC (High-performance computing) applications, which

accounts for migration costs during virtual machine reconfigurations, is presented in [95].

Similarly to our approach, it relies on virtualization techniques used for dynamic consol-

idation, although the application domains are different and the algorithm solution does

not provide optimal cluster configurations.

Contrasting with [63, 91, 95], our approach takes advantage of dynamic voltage/frequency

scaling (DVFS) mechanisms to optimize the server’s operating frequencies to reduce the

overall energy consumption. An approach based on DVFS is presented in [44] for power

optimization and end-to-end delay control in multi-tier web servers. Related approaches,

such as presented in [9, 17, 41, 51, 55, 85, 89] also rely on DVFS techniques and/or in-

clude server on/off mechanisms for power optimization. However, these approaches are

not designed (and not applicable) for virtualized server clusters. That is, they do not

consider multiple application workloads in a shared cluster infrastructure.

Predictive/proactive optimization policies have been shown to avoid unnecessary and

disruptive configuration changes due to workload fluctuations, and thus may provide

further energy reduction and better quality-of-service provided by the applications in a

server cluster [63, 88]. Although our approach is not meant to address in detail the

specific aspects on workload prediction, it allows for including predictive capabilities in

our optimization control loop during monitoring activities.

The idea of energy proportionality, presented by Luiz Barroso and Urs Hölzle in

[5], is that computing systems should consume power in proportion to their utilization

level. The energy-proportionality concept would enable large energy savings in servers,

considering their study at Google that servers in data centers are loaded between 10 and

50 percent of peak, with a CPU utilization that rarely surpasses 40 percent. Although

power proportionality is very important, it does not reduce the importance of ensuring

that data center resources should be near fully utilized, as pointed out in [39]. Thus, our

solution to this problem is to efficiently manage the cluster utilization leveraging server

virtualization and CPU DVFS techniques.

Some proposals like FAWN [1] explore the idea of building clusters of low-power

embedded devices coupled with flash storage, which operate efficiently for specific I/O

bound workloads. There is also an interest in distributing the workload across server



2.6 Summary 35

clusters in different locations with respect to their energy consumption [64, 82]. An issue

here is that energy cost models for distinct time zones and variable electricity prices need

to be specified accordingly.

2.6 Summary

We have applied our approach to power optimization in virtualized server clusters, in-

cluding power and performance models, an optimization MIP model and a strategy for

dynamic configuration. In the optimization model, we addressed application workload

balancing and the often ignored switching costs due to frequent and undesirable turning

servers on/off. The major goal of this work was to develop and demonstrate the feasibility

of our optimization approach for power and performance management, while providing

experiments with realistic Web traffic driven by time-varying demands with real system

measurements.

Our experiments show that our strategy can achieve energy savings of 14% compared

to DVFS-enabled cluster (Linux on-demand kernel governor) and 52% compared to a typ-

ical uncontrolled system (all CPUs running at maximum speed), while simultaneously

meeting applications’ performance goals as specified in their response time deadlines.

Moreover, many power management schemes like [9] and [41] would need extensive power

and performance measurements, which should be repeated every time upon new installa-

tions, server failures, upgrades or changes. The power and performance models presented

in this work can simplify such benchmarking activities.



Chapter 3

Thread assignment optimization for
heterogeneous multi-cores

One important challenge that arises in this scenario is to determine the most suitable

thread assignment decision, while meeting soft real-time requirements for the application

threads and reducing energy consumption in the heterogeneous multi-core system. Con-

sidering that different threads can have different runtime requirements, improvements in

energy efficiency and performance can be achieved by assigning each thread to run on

the core type (large or small) that is best suited for it. Such thread assignment decisions

should be re-evaluated at runtime since a thread may have execution phases with different

performance demands over time. The optimal energy-efficient thread assignment has to

satisfy the threads’ computational demands. Assigning a thread to a large core rather

than to small core might be counter intuitive for energy-efficiency, because a large core

consumes more power than a small one. However, executing a particular thread for a

while on a large core can shorten the overall execution time, and hence might end up

consuming less energy.

Previous studies have shown that the performance of a thread can vary considerably

depending on the memory-intensiveness of co-scheduled threads in the multi-core sys-

tem [15, 69]. Typically the running threads have working sets larger than the on-chip

caches of their allocated core and may impose a significant burden on the limited off-

chip memory bandwidth, shared among all cores. Some threads that make heavy usage

of the shared cache will eventually evict the data of others threads, possibly leading to

increased cache misses and contention during the execution of those threads. The most

suitable thread-to-core assignment decision comes with a challenging trade-off: moving

the least memory-intensive thread from a big to a small core may help alleviate shared re-

source contention, lowering thread instruction throughput/retirement rate, but this could

considerably slowdown its performance and increase energy consumption.

For the above described context, we tailored our optimization approach to determine



3 Thread assignment optimization for heterogeneous multi-cores 37

Figure 3.1: Heterogeneous platform

an optimized mapping of threads to a set of available cores to reduce energy consumption

while meeting soft real-time performance requirements for a set of application threads.

We propose an ILP (Integer Linear Programming) optimization model associated with a

periodic thread re-assignment scheme. The optimization model is solved at runtime given

updated values of key performance counters, such as IPC and LLC miss rate, aiming at

characterizing the different execution phases of running threads on different core types.

In a multi-core heterogeneous platform, as the one depicted in Figure 3.1, application

threads can take advantage of large cores for their CPU-intensive execution phases, while

memory-intensive threads are best suited and assigned to small cores [29]. Therefore, it

is important to effectively characterize the resource demands of threads such as CPU and

memory bandwidth needs/requirements. We take advantage of specific counters provided

by the hardware to determine the performance characteristics for the running thread,

namely the IPC (Instructions committed Per Cycle) or IPS (Instructions Per Second)1

as a measure of the CPU load and LLC (Last Level Cache) misses as a measure of the

memory load in a given interval. The LLC miss rate is known to be a good measure to

characterize memory-intensive threads, because there is a strong correlation of threads

having a high LLC miss rate and the high demand of memory requests [15].

Previous work has used mainly one of these counters, assuming that there is a cor-

relation between them [59, 86]. Figure 3.2 shows the IPC and LLC misses for the astar

SPEC CPU2006 benchmark on an Intel Core2 processor. We can clearly observe the dis-

tinct phases of high/low LLC misses and low/high IPC. Considering the overall low IPC

measure, astar can be classified as a memory-intensive program [47]. However, we can

notice that it exhibits a CPU-intensive phase for 200 billions cycles in the middle of its

execution that should be properly taken into account. We can see that the correlation is

1The IPS measure is more adequate when cores differ in clock frequency and cache size, possibly
having the same micro-architectural characteristics.



3.1 Optimized thread assignment 38

not as strong as one-to-one, contrasting the IPC and LLC misses between 0 to 100 billions

of cycles and 300 to 400 billions of cycles. In order to consider this type of behavior, in

our approach, we use additional performance metrics independently as inputs for our op-

timization model. In particular, we use two performance measures aimed at augmenting

thread assignment optimizations. Our optimization scheme achieves performance gains

and energy savings over purely static assignment and related scheduling schemes that do

not take into account combined computational and memory bandwidth requirements.

Figure 3.2: Time-varying demands of IPC and LLC misses for astar benchmark running
on Intel Core2

We have implemented a prototype of our thread assignment scheme at user-level

leveraging Linux scheduling and performance monitoring capabilities. We evaluate our

approach on a real 64-bit quad-core x86 processor, where frequency scaling was used

to emulate heterogeneous cores. The assignment of threads to cores, as specified by

our optimization scheme, is implemented via a system call in the Linux scheduler (CPU

affinity) that places a thread on a specified core at runtime. To implement our approach

in the real system, we propose a regression model to predict at runtime the performance

of threads running on different core types.

3.1 Optimized thread assignment

In this section we present our approach for solving the energy-aware thread assignment

problem accounting for real-time performance and memory constraints of the running

threads in heterogeneous multi-core systems. Our scheme is novel in three main aspects,

in comparison to existing solutions. First, our scheme relies on performance counters to

monitor the execution behavior of a set of threads and determine an optimized thread-to-

core global assignment, instead of performing local thread assignment decisions. Second,



3.1 Optimized thread assignment 39

the optimization objective function deals with combined energy savings and performance

gains by meeting soft real-time computational and memory bandwidth requirements in

the heterogeneous multi-core system. Third, our scheme explicitly uses two performance

measures, instruction retirement and LLC miss rate, rather than relying on their possi-

ble/probable correlation.

3.1.1 Optimization problem

We deal with the multi-core optimization problem of determining the most efficient

thread-to-core assignment that minimizes energy consumption while meeting temporal

requirements. In our formulation, we divide the temporal requirements into computa-

tional and memory requirements. Our optimization problem is defined as follows. Let

N = {1, 2, ..., i, ..., n} be the set of core types in the system with maximum gi cores for

each type i. It is predicted that n will be 2 for the near-future multi-core systems [59, 92],

since two distinct core types combined with core on-off capabilities are able to capture

much of the benefits from heterogeneity. The multi-core system has a memory controller

with bandwidth capacity B, which is measured in requests per second, where each request

has a fixed size (number of bytes).

In our model, each core of type i ∈ N has exactly the same characteristics, having

computational capacity Ci, given by MIPS (Million Instructions Per Second), and power

consumption given by Pi, which includes both static and dynamic power. We use MIPS

instead of IPC, since MIPS is a more adequate metric when cores can differ in clock

frequencies, possibly having the same micro-architectural characteristics. In fact, we use

a multi-core system with cores running at different clock speeds to emulate heterogeneity

in our implementation (see Section 3.4). We assume that unused cores can be quickly

powered down, rather than left idle, meaning they have no idle power consumption. For

example, modern Intel processors rely on effective power gating techniques to quickly

shutdown power to the idle cores [46].

The set of application threads is denoted by K = {1, 2, ...,m}. The performance

demand of each thread k ∈ K running on a core type i ∈ N requires a computational

rate (in MIPS)2 given by cik and a memory access rate (in requests per second) denoted

by bik. Our real-time constraints are soft in that they can be violated without severe

performance loss to the system; in that sense, attempting to satisfy the rate of computing

and memory requests is sufficient to satisfy the deadline constraints as well (see more in

Section 3.3.2 where we measure how well the system did in completing the requests on a

timely fashion [23]).

The optimization problem is formulated as an Integer Linear Program (ILP), described

2Even though the rate is expressed in millions of instructions per second, the actual period of the
applications varies and is not necessarily one second.



3.1 Optimized thread assignment 40

in Equations (3.1)-(3.5). The decision variable is given by xik, which is a binary variable

to denote whether or not a thread k ∈ K is assigned to core type i ∈ N .

Maximize
∑
i∈N

∑
k∈K

(
cik

γ

Pi
)xik (3.1)

Subject to ∑
k∈K

cikxik ≤ Cigi ∀i ∈ N (3.2)∑
i∈N

∑
k∈K

bikxik ≤ B (3.3)∑
i∈N

xik = 1 ∀k ∈ K (3.4)

xik ∈ {0, 1} ∀i ∈ N, ∀k ∈ K (3.5)

The ILP model describes the problem of assigning threads to core types respecting

computational and memory bandwidth requirements. The objective function given by

(3.1) aims to find a mapping of threads to core types (xik values) that optimizes thread

performance and energy consumption in the multi-core system. Constraints (3.2) guar-

antee that the total thread computational workloads do not exceed the total processing

capacity of available cores for a given core type, obeying the soft real-time requirements

of the application. Constraints (3.3) ensure the total memory workload of threads (allo-

cated to certain core types) does not exceed the available memory capacity, avoiding stalls

and contributing to the soft real-time requirements of the application. Constraints (3.4)

require that each thread is assigned to a core type. Constraints (3.5) define the domain

of the problem variables.

In the objective function, the metric used for combining thread performance and

energy efficiency is weighted performance per watt, namely MIPSγ/Watt. The constant

γ is a power-aware design parameter that gives a smoothing or boosting performance

effect in the system. This usually requires a trade-off between the performance and

energy consumption. To optimize a metric of performance per watt we can set γ = 1.0.

A value of γ = 2.0 is more suitable to allow further emphasis on performance gains: the

objective function minimizes (in fact, maximizes the inverse) of the energy delay product

per instruction, given by Watt/IPS2, which can be rewritten as (Watt × S × S)/I2 =

(Energy×Delay)/I2. This objective function aims to minimize both the energy and the

amount of time required to execute thread instructions [16].

Figure 3.3 shows a comparison of the energy efficiency metric given by MIPS2/Watt

when running the same astar SPEC benchmark on different cores types. As can be seen,

the efficiency metric varies over different execution phases between the core types and will



3.1 Optimized thread assignment 41

Figure 3.3: Performance and energy efficiency over time during a given thread execution
on different core types

be used by our approach for guiding dynamic thread assignment decisions. Note that the

graph in Figure 3.3 shows that in the middle of the execution (approximately at 43% of

the thread execution lifetime) there is no clear winner with respect to energy efficiency

and the thread assignment decision has to be made in some other way. In fact, using our

optimization model, the decision will be influenced by the memory demands and energy

efficiency of the other threads in the system. A thread may have almost the same energy

efficiency but different LLC miss rate when running on either large or small cores. Our

optimization model will move threads between core types to optimize energy efficiency

and avoid exceeding memory constraints in the system.

3.1.2 Thread performance prediction

One important practical issue in heterogeneous multi-core systems is the ability to predict

the performance behavior (IPS and LLC misses) of a thread currently running on a given

core type when assigned to a different core type. Previous works [61, 8] require each

thread to run on both core types to be able to determine the IPS ratio between large and

small cores. As noticed in [90], such a direct IPS measurement on both core types poses

many practical issues and incurs much overhead. In contrast to those works, we addressed

the thread performance prediction by collecting performance data from a representative

set of workloads in the system and establishing the following linear regression model:

IPSsmall = w1 ∗ IPSlarge + w2 ∗ LLCMlarge + w3

IPSlarge = w4 ∗ IPSsmall + w5 ∗ LLCMsmall + w6

LLCMsmall = w7 ∗ IPSlarge + w8 ∗ LLCMlarge + w9

LLCMlarge = w10 ∗ IPSsmall + w11 ∗ LLCMsmall + w12



3.1 Optimized thread assignment 42

Figure 3.4: Predicting thread MIPS and LLC miss rate from large to small core

The above performance prediction model for our multi-core system is derived from

offline performance data running the threads of the SPEC CPU2006 benchmark suite

individually on each core type. The coefficients w1 to w12 are derived from running the

machine learning software Weka [38]. A 10-fold cross-validation of the performance model

yielded a coefficient correlation of approximately 97% for the least squares fitting to the

collected performance data.

In our Linux implementation in Section 3.4, we use the equations of the prediction

model at runtime to obtain the values for the computational cik and memory bik demands,

for each core type i ∈ N running thread k ∈ K. Our prediction model does not estimate

the values for the next reassignment interval on the same core type; we use real measure-

ments for those values. These measured or computed values are used as inputs to the ILP

model. We use the offline performance data directly in our simulation methodology, as

described in Section 3.2, instead of relying on the prediction model.

Figure 3.4 illustrates the prediction of MIPS and LLC miss rate for the tonto SPEC

benchmark when running on a large core and intended to run a small core. That is, the

data were collected from a large core to predict the performance on a small core. The

graphs in Figure 3.4 show predicted versus actual values on a small core. We observe that

our prediction model could successfully distinguish low, mid and high compute-intensive

thread phases in most cases. More importantly, for practical purposes minor inaccuracies

in our prediction model did not impede our approach from achieving performance and

energy improvements.

Note that thread/core performance characterization needs to be done only once at

the design stage. Given a set of representative workloads intended to run on the multi-



3.1 Optimized thread assignment 43

core system, there is no need to recalibrate the parameters of the prediction model.

Nevertheless, when substantial changes are observed in the behavior of the workloads,

better results can be obtained by updating the coefficients of the prediction model or

determining the coefficients at runtime.

3.1.3 Solution to the optimization problem

We solve the ILP model to determine the best assignment decision of threads to core types.

Our ILP model is implemented using the Gurobi solver [36]. We set heuristic emphasis

and solution time limit in the solver to provide (near-)optimal solution in a reasonable

amount of time and minimize the overhead of our approach. Clearly, increasing the

solution time bound would improve the assignment solution, however we found that a

time limit of few milliseconds is able to provide on average 1% percentage of distance

from the optimal solution (see Section 3.3). With time limits imposed on the solver for

optimization solution, the solver reports the best feasible solution found at the end of the

time limit. Currently, when no feasible solution can be found within the time limit, our

scheme just keeps the configuration found in the last optimization call.

To allocate each thread to an available core of a given assigned core type, several

packing heuristics can be used, such as first-fit, best-fit or next-fit decreasing. We use

a next-fit (round-robin) strategy that first sorts the threads in decreasing order by core

performance demands and then places a thread in the next available core that has sufficient

remaining capacity to accommodate the thread demand (see Section 3.4). In case more

than one thread is assigned to a given core, we assume that the underlying OS allows

to time-share the core among different threads. Actually, the thread allocation phase is

applied only when threads have to move between different core types, preserving as much

as possible the existing assignment of threads to cores to take advantage of caches current

contents.

During the thread allocation phase, a given thread workload may have to be scheduled

to different cores in order to fully utilize the multi-core system. Figure 3.5(a) shows a

scenario where threads A, B, and C are best mapped to a given core type. Given this

assignment solution, we rely on a multi-processor OS scheduler to enable the effective

thread execution among cores. Basically, this can be accomplished by migrating part of

a thread workload during scheduling activity [10], such as depicted in Figure 3.5(b).

In practical terms, the ILP assumes that context switch overhead for different thread

executions is relatively small [92], when multiple threads are supposed to run on a given

core. In this work, we deal with the problem of assigning threads to core types respecting

computational and memory bandwidth requirements. We rely on underlying scheduling

techniques developed elsewhere [10] for the exact scheduling implementation, or even

simultaneous multi-threading (SMT) support found in modern multi-core systems.



3.2 Simulation methodology 44

A

B

C

Set of 
threads

C1

C2

150

Demands (in MIPS)

150

100

2 cores with capacities 
of 200 MIPS

Core type 1

C1

C2

Time

A B(2)

B(1) C

(a) (b)

Figure 3.5: Optimization solution: (a) thread allocation phase and (b) example of schedul-
ing execution

3.2 Simulation methodology

We developed an in-house simulator, similar to [92], aimed at comparing our approach

against other related schemes using collected performance data. In the simulation, we

consider a heterogeneous multi-core system where two types of cores are available and

can differ in power, performance, and architectural characteristics, such as in-order vs

out-of-order execution, maximum clock speed and cache size [92]; also, the area size of a

large core is equivalent to three small cores (3:1 ratio) [59]. Thus, the basic multi-core

system is composed of one large and three small cores, where N = {1, 2} and g1 = 1 and

g2 = 3 in our ILP model (Section 3.1.1).

In our simulated multi-core system, large cores have characteristics based on Intel

Core2 processor, whereas small cores are based on Intel Atom processor. Those core

types were chosen because they differ significantly in terms of power and performance

characteristics but have the same Intel 64-bit ISA (instruction set architecture). More

precisely, Intel Core2 operates at 2.8Ghz and has a 4-way super-scalar and out-of-order

architecture with 3M L2 cache size, while Intel Atom’s architecture has a 2-way issue and

in-order execution with 1.66 GHz clock speed and 512k L2 cache size. We assume 30%

of total chip power is consumed by the “uncore” part, that is, last level cache (LLC),

memory controller, and I/O controller; the approximately per-core power consumption of

a small core (Intel Atom) is 3W and large core (Intel Core2) is 23W [46].

3.2.1 Thread execution behavior

We use the perfmon2 Linux interface [27] to gather thread execution traces, consisting

of IPC (instruction per cycle) and LLC misses, where each thread represents an instance

of a SPEC CPU2006 benchmark. The ref input option is used in all the benchmark



3.2 Simulation methodology 45

programs. The perfmon2 interface allows for monitoring hardware performance events on

a per-thread basis. We set a sampling time of 50ms to collect data of each thread [92].

From running the benchmarks alone on each core type, we obtained the values for cik and

bik that were used as inputs to the ILP model, in Constraints (3.2) and (3.3), respectively.

In heterogeneous multi-core systems, a thread has different performance on each core

type, mostly due to the distinct micro-architectural characteristics found in those core

types, such as clock speed, private cache size, in-order vs out-of-order execution, and

branch predictor capabilities. Based on analysis of the collected execution traces for

different programs from the SPEC CPU2006 benchmark suite, we observed a correlation

between IPC or LLC misses and thread execution phases [8, 61, 59], which allows to

explore a dynamic thread assignment scheme based on IPC or LLC miss rate indicators. In

our work, we go beyond that, characterizing the thread behavior in terms of both CPU and

memory requirements, because we have found that there is not always a clear one-to-one

correlation between these two metrics in the entire execution of the threads. We explicitly

use these two performance measures to improve thread assignment optimizations.

3.2.2 Core and memory system performance

We determine the capacity of the hardware with respect to the number of instructions

and number of memory requests that can be processed. Based on the execution of a

high compute-intensive thread, we derive the processing capacity for each core type as

follows. We measured the highest IPC for each core type, by running all the SPEC CPU

benchmarks one thread at a time. Multiplying the highest IPC obtained by the clock

speed, we can estimate how many instructions can be executed in one second.

The results are as follows: small core type maximum IPC is 1.44 and large core is

2.71. Thus, the core capacity is given by C1 = 1.44 × 1.66Ghz = 2, 390 MIPS for small

cores and C2 = 2.71 × 2.8Ghz = 7, 588 MIPS for large cores. The memory bandwidth

B for the multi-core system is set to be 52 million requests per second, which is based

on real measurements of a heterogeneous platform configuration composed of large and

small cores [92]. The calculation assumes a memory bandwidth capacity of approximately

3.3GB/s with fixed requests of 64 bytes. Those measurements are used as inputs to the

ILP model, in Constraints (3.2) and (3.3) in Section 3.1.1.

3.2.3 Simulator environment

Our simulation is driven by a workload trace, where each entry corresponds to the number

of committed instructions I(i, k), number of cycles (including stall cycles) C(i, k) and LLC

misses L(i, k) collected over a fixed monitoring period (P = 50ms), for each combination

of thread k and core type i. The workload trace is constructed based on thread per-

formance measurements collected in a real system (see Section 3.2.1). The performance



3.2 Simulation methodology 46

traces were collected running a single thread at a time. In our simulation, we ignore the

effect of context switching even when more than one thread runs on a given core because

it has been shown that this is relatively small [61, 92].

The simulation interval of 50ms is divided in two main phases: (1) thread monitor-

ing/execution and (2) thread reassignment. The monitoring/execution phase is performed

by tracking the workload trace and determining the execution time for each thread run-

ning on a given core type. The thread reassignment phase is executed just after the

completion of the monitoring/execution phase. At each reassignment period, the values

of IPC and LLC misses for each thread are computed based on the last simulation interval.

Using our approach, the reassignment phase consists of solving the optimization model

and deciding an energy-efficient thread-to-core mapping that will take effect in the next

simulation interval. Each entry of the workload trace is used as input data to the opti-

mization model to specify thread computational and memory requirements. Also, with

this simulation infrastructure, we can implement different dynamic thread assignment

schemes to compare with our optimization approach (see Section 3.3).

We use the following values as inputs for the simulations: (a) migration overhead is

450 microseconds, as measured by [92]. Since P = 50ms, the migration overhead is at

most 0.9% = 0.450 ms / 50 ms; and (b) a single memory request latency (penalty due to

LLC miss) is on average 75ns, based on real measurements [92]. The energy consumption

of a thread, accumulated over each simulation interval, is obtained by multiplying the

simulation interval length by the dynamic power consumption of the core type allocated

to the thread. The dynamic power measure is given by the thread utilization multiplied

by the core peak power, where the utilization of a thread means its computational demand

in a given interval divided by the allocated core capacity.

3.2.4 Estimating thread execution time

To evaluate whether the thread k is meeting its soft real-time requirements, we need to

determine the execution time of the thread. For that, we use the number of core execution

cycles C(i, k) and LLC misses L(i, k) that the thread will perform on its assigned core

type i at core clock rate R(i). We assume that each memory request is due to a LLC miss

and that it takes M(i) cycles on a core type i. However, the LLC misses may stall the

thread a variable amount of time, depending on the contention at the memory controller.

Below we show how we calculate thread execution time over each simulation interval.

We account for potential contention on the limited bandwidth of the memory con-

troller by including the following factor in the thread execution time. We sum up the LLC

miss rates L(i, k) of all threads k in the current simulation interval. In case the sum, S,

does not exceed the bandwidth of the memory controller, B, that is S/B ≤ 1, the thread

execution is not affected by memory contention; otherwise, when S/B > 1, the memory



3.3 Simulation results 47

contention for each thread k is given by MC(k) = (max{1, S/B} − 1) · L(i, k) ·M(i).

The execution time of a thread k, running on core type i, is modified as follows at each

simulation interval: E(k) = [C(i, k) + MC(k)]/R(i). Note that this is very conserva-

tive, since it assumes every LLC miss will add the full penalty of a memory access to

the execution time, while in practice multiple-issue memories and pipelining mitigate this

penalty. Being conservative is commonly done in real-time systems, where timeliness is

an important issue. Note that the number of LLC misses is typically much lower than

the capacity of a core, since the cores would stall if the threads were issuing too many

memory requests.

In addition to memory contention, our simulation framework also considers thread

migration between cores. In that case, we add a constant ML (migration latency) to the

execution time: E ′(k) = E(k) +ML. Since both core types used in our work (Atom and

Core2) have the same Intel 64-bit ISA, we use the accumulated number of committed

instructions A(k) to keep track of the execution of each thread k. When a thread resumes

on a different core type after a thread re-assignment, the simulator resumes the thread

execution from the point given by A(k), since the ISA is the same for both core types.

After determining the core where thread will run in the next interval, the execution

time calculation allows us to determine whether the execution phase of thread k will

expect a slowdown. This happens in case of memory contention (when MC(k) > 0) or

migration latency (when ML > 0); in those cases, we add a factor given by: SD(k) =

min{0.9, (MC(k)+ML)/P}, where P is the simulation interval. We set a slowdown limit

of 90% because we assume a thread makes at least 10% rate of progress in its execution,

given that the MC may be overestimated in our model. The slowdown factor SD is used

to update the instruction pointer A(k) for the next simulation interval for each thread on

both core types. We assume that within a given simulation interval, the CPU instructions

I(i, k) and memory request L(i, k) are uniformly distributed, so that we can easily map

the value of each measure proportionately to a time interval in a given simulation interval.

3.3 Simulation results

We have carried out a set of simulation experiments, where the workloads are given

by a set of combinations of individual programs collected from running the SPEC 2006

benchmark suite (see Section 3.2.1). We adopt a similar workload configuration to the

one described in [59], where the number of threads is equal to the sum of cores in the

system and each workload is composed of a set of programs of the SPEC benchmark as

follows. The workloads A1 to B4, as shown in Table 3.1, are composed of three instances

of one SPEC benchmark and one instance of a second benchmark. These workloads are

divided into two groups: workloads A1−A4 have high variability on IPC ratio (large-to-



3.3 Simulation results 48

small core) and workloads B1−B4 have medium/low IPC variability between the selected

benchmark programs.

Workload 3-instances — IPC ratio 1-instance — IPC ratio

A1 soplex — 1.74 gamess — 4.14
A2 milc — 1.75 zeusmp — 3.53
A3 astar — 1.90 calculix — 3.82
A4 lbm — 1.52 bwaves — 3.06
B1 omnetpp — 2.27 gobmk — 2.31
B2 bzip2 — 2.41 cactusADM — 2.49
B3 mcf — 2.76 namd — 2.92
B4 GemsFDTD — 2.76 sphinx3 — 2.94

Table 3.1: Workload configuration

We compare our scheme with three other schemes: (a) static assignment; (b) IPC-

driven algorithm [8]; and (c) bias scheduling [59]; see Section 3.5 for more details on

the latter two algorithm. The static assignment is obtained by running the ILP once

at the beginning of the simulation, based on the average IPC and LLC misses of the

entire execution of the benchmarks. For the IPC-driven and bias scheduling algorithms,

the simulator determines the relative threads’ IPC ratio or bias (characterized by LLC

misses). A large core bias would represent lower LLC misses. Threads with the highest

IPC ratios (or lowest bias) are mapped to the available large cores, whereas the lowest

IPC ratios (or highest bias) are mapped to small cores. In our scheme, the IPC and

LLC misses collected over the simulation are used to specify thread computational (in

MIPS) and memory (in requests per second) requirements and yield an optimized thread

assignment solution. In this work we are interested in the behavior analysis of the thread

assignment decisions. We ignore the known measurement overheads of the IPC scheme [29]

and we assume a priori knowledge about the exact workload values of each thread running

on each core type.

In our ILP model we use a performance constant γ = 2.0 which is related to the energy-

delay product [16] (see Section 3.1.1). During thread execution phases with high memory

contention, we observed that our model may lead to infeasible solutions because of memory

bandwidth constraint violation. To address this issue, when the solver identifies that the

memory constraint is violated, we solve a new instance of the ILP model by performing

two modifications at the same time: (1) relaxing/removing the memory constraint and

(2) decreasing the value of the performance parameter γ. With those modifications in the

ILP model, the solver intends to find an assignment solution that decreases the bandwidth

demands by placing more emphasis to using small cores (recall that smaller cores issue

fewer memory requests per time unit). However, a good optimized solution should balance

the usage of large and small cores to avoid negative impact on the overall performance.



3.3 Simulation results 49

For the set of workloads used in this work, we empirically tested values for γ from 1.0

to 2.0 spaced by 0.1 and observed that keeping the value close to 2.0 caused higher

contention overhead and setting lower values close to 1.0 led to higher performance loss.

The best parameter found, in terms of energy-delay, was γ = 1.4. Each subsection

below analyzes the simulation results for different metrics, namely energy-delay product,

tardiness, memory bandwidth contention, and optimization execution overhead.

3.3.1 Energy-delay product

We first evaluate our approach in comparison with related schemes by computing energy-

delay product. Using a similar methodology as described in [59], we report the execution

time and energy consumption of the first run for each thread. We multiply the execu-

tion time by the energy consumption to derive the energy-delay product (EDP), which

quantifies the effectiveness of trading energy for performance. We avoid idle cores in the

system by allowing a thread to restart its execution as soon as it is finished. We report

the workload EDP by summing the individual EDP of all threads.

The energy-delay product normalized to the best static scheme for the workloads A1

to B4 is shown in Figure 3.6. Improvements of dynamic schemes over static assignments

are expected because a static scheme cannot cope with thread phase changes, as already

observed in previous works [61, 8]. Surprisingly, the bias scheduling showed, on average,

practically no improvement over the best static scheme. We observed that in general the

bias metric, used for characterizing the thread behavior, led to very few thread migration

activities when compared to the IPC algorithm and our scheme. Our results demonstrate

that avoiding thread migration is not essential, because migration can provide more per-

formance benefits than its associated execution overhead and slowdown.

The IPC-driven algorithm showed good results and, for instance, outperformed our

approach by 4% in the workload B2. However, considering all workloads executions, our

scheme showed an average improvement over the static, IPC, bias schemes of 23%,

22%, 22%, respectively, for A workloads, and 43%, 17%, 45% for B workloads. A lower

improvement over the bias and static assignment with A workloads was expected since

these workloads have a high IPC ratio (from large-to-small core type) and CPU vs memory

intensiveness distinction between the selected benchmarks, favoring static or less dynamic

assignment schemes.

3.3.2 Tardiness

We used a real-time metric called tardiness [23] for each workload execution and assign-

ment scheme. The deadline for each thread is half its running time in a small core type.

The average tardiness of a thread execution is accumulated over each completed thread

instance and is given by its completion time divided by its deadline, normalized by the



3.3 Simulation results 50

stat opt ipc bias stat opt ipc bias stat opt ipc bias stat opt ipc bias
0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 e

n
e

rg
y-

d
e

la
y 

p
ro

d
u

ct

stat opt ipc bias stat opt ipc bias stat opt ipc bias stat opt ipc bias
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 e

n
e

rg
y-

d
e

la
y 

p
ro

d
u

ct

B1 B2 B3 B4

A1 A2 A3 A4

Figure 3.6: Total energy-delay products normalized with respect to the static scheme for
workloads with varied IPC (A1–A4) and with uniform IPC (B1–B4).

number of deadline misses counted for each thread instance. Tardiness is zero when there

is no deadline misses. As can be seen in Figure 3.7, our scheme always achieved smallest

tardiness among all tested schemes over all workloads executions.

As expected, the static scheme had the most deadline misses and tardiness, given the

tight deadlines for the threads running on three small cores. It was surprising, though,

to see that both IPC and Bias had such high tardiness for the high variability workloads

(A1 − A4). The average tardiness reduction was 74%, 61%, 67% over static, IPC and

bias, respectively. Those workloads are composed of one compute-intensive and three

memory-intensive benchmarks. The IPC algorithm aims to maximize performance with-

out considering the actual memory intensity of the threads. This can lead to memory

contention and tardiness when moving a thread to the large core that violates memory

bandwidth. The Bias algorithm is aware of memory intensity and moves to a large core

the thread that experiences least memory stalls. However, on average, this leads to perfor-

mance loss since others thread cannot benefit from running on the large core and making

progress.



3.3 Simulation results 51

stat opt ipc bias stat opt ipc bias stat opt ipc bias stat opt ipc bias

0

0.5

1

1.5

2

2.5

A
ve

ra
g

e
 ta

rd
in

e
ss

stat opt ipc bias stat opt ipc bias stat opt ipc bias stat opt ipc bias

0

0.5

1

1.5

2

2.5

A
ve

ra
g

e
 ta

rd
in

e
ss

A1 A2 A3 A4

B1 B2 B3 B4

Figure 3.7: Average tardiness during execution of each scheme using workloads A1–A4
and B1–B4.

3.3.3 Memory contention analysis

To observe the effects of memory contention, we executed the same workloads A1 to B4 in

a system with reduced peak memory bandwidth. In particular, we reduced the memory

bandwidth of the system by half, that is, the memory controller is able to handle 26

millions of requests per second. We show in Figure 3.8 a comparison of our approach with

the IPC scheme. We only show a comparison with IPC because it outperformed both

static and bias schemes in all executions. In the figure, we show the energy-delay product

as well as normalized memory contention, that is, the number of simulation intervals when

total number of memory requests of all threads exceeded the capacity of the controller,

divided by the total number of simulation execution intervals.

We observe two main results from Figure 3.8. First, considering all those workloads,

the average reduction on memory contention by our scheme is approximately 13% in

comparison to the IPC scheme, showing that measuring and taking both the memory and

CPU requirements into account is beneficial. Second, we observed a correlation between

memory contention and energy-delay values: the higher memory contention is, the higher

energy-delay is for different workload executions. An exception is workload A1, where

our optimization scheme could minimize the energy-delay despite creating more memory

contention. This can be explained by the fact that ultimately our scheme could better

cope with thread phase changes and outperformed in terms of overall energy/performance

benefits. By performing about 51% more migration activities in comparison with the IPC

scheme, our scheme could reduce the total execution time by 40% although consuming



3.3 Simulation results 52

ipc opt ipc opt ipc opt ipc opt ipc opt ipc opt ipc opt ipc opt
0

0.5

1

1.5

2

2.5

3

3.5

Memory Contention Energy-delay product (normalized)

B1 B2 B3 B4A1 A2 A3 A4

Figure 3.8: Memory contention analysis: comparison between our optimization and IPC
scheme using workloads A1 to B4. The energy-delay products are normalized by the IPC
scheme.

15% more energy and incurring in 48% more memory contention. This shows that an

effective thread assignment scheme has to account for the various trade-offs, addressing

all those previous aspects together, to achieve good overall energy/performance gains.

3.3.4 Scalability of optimization scheme

For our optimization scheme to be practical, the proposed ILP model must execute for

a short time compared to the period used for dynamic thread assignment (in our case,

50ms). We have used the Gurobi optimizer version 4.5 [36] to solve the ILP model using

one large core (Intel Core2). To evaluate the scalability of our approach, we perform

some experiments regarding the resolution time for different instances of the optimization

problem. Note that the overall complexity of the optimization model is dominated by the

number of threads in the system, since the number of core types is typically small and

fixed.

To improve the ILP solving strategy, we have adjusted some parameters in the Gurobi

solver. The first change was to place more emphasis on heuristics to allow the solver to find

feasible solutions quickly. For small instances (four threads), we were capable of running

the Gurobi solver with a solution time limit of 1 ms; but on average these instances

actually required 212 µs with standard deviation of 75 µs. An interesting aspect of the

Gurobi solver is that it automatically uses the previous solution as an efficient warm start

for optimizing a new modified optimization model. This helps reduce the solution time

of subsequent optimization calls.

For medium/large instances we used a callback function to stop the solver as soon as

an integer feasible solution was found. In the following results, we compare this heuristic

strategy with running the Gurobi solver without time limit and without callback ter-

mination in terms of the time required to solve the model and quality of the solutions



3.3 Simulation results 53

found. As above, we compare with the IPC-driven algorithm but not with static and bias

schemes, because IPC outperformed both in all previous simulations.

We generated new, more demanding workloads (Table 3.2) with higher number of

threads from workloads A1 to B4 (Table 3.1), but not using thread instances more than

once. To perform simulations with sizeable multi-core systems, we scale the previous

multi-core system by a multiplication factor to build k-large, 3k-small systems, for k =

4, 8, 16, 32. We assume that the number of threads is equal to the sum of cores in the

system.

Workload Thread composition Threads Core setup

C Each instance from A1 to B4 16 4L12S
D C + C 32 8L24S
E D + D 64 16L48S
F E + E 128 32L96S

Table 3.2: Workload configuration for large multi-core setups

Table 3.3 shows the results of simulations varying the number of threads and cores

in the system. The EDP Improvement column gives the percentage improvement over

the IPC-driven algorithm on each workload. The Runtime column corresponds to the

average / standard deviation of the processing time required to solve all instances of

the optimization model associated with each workload and multi-core configuration. The

Solution Gap column gives the relative difference between the lower and upper solution

bounds, that is, the best known integer feasible solution and the best bound on the

solution quality of the original problem, whose initial value is usually provided by a linear

programming relaxation (assuming all variables to be continuous in the model). This is a

common measure for the quality of a given optimization solution that means how far at

most a solution can be from the optimal one.

Workload EDP Improv. (%) Avg. / Stdev. Runtime (ms) Sol. Gap (%)

C 18% 0.560 / 0.03 0.02
D 19% 0.680 / 0.02 0.0
E 21% 0.870 / 0.2 1.0
F 21% 1.28 / 0.17 1.0

Table 3.3: Scalability results of our ILP scheme over the IPC scheme

As can be seen from Table 3.3, the heuristic strategy used in our optimization scheme

could provide very good solutions with very low optimally gap compared to running

the solver without time limit and callback. Also, such a strategy provided substantial

improvements over the IPC-driven algorithm while requiring a relatively low execution

time overhead.



3.4 Linux implementation 54

To further improve the scalability of our optimization scheme, we may relax the task

allocation variables of the ILP model (Section 3.1.1) to get a linear programming (LP)

model that can be solved more efficiently. For example, to solve the LP using the interior-

point algorithm requires polynomial time [52] and the classical simplex algorithm typically

requires polynomial time, on average, despite its exponential worst-case behavior. The

approximate (fractional) solutions derived from LP relaxations of the ILP model would

require additional tasks to be split/migrated among core types, but a bound on the

maximum number of split tasks could be derived [6]. Finally, our ILP model is a variant of

the classical generalized assignment problem (GAP) and several heuristic implementations

described in the literature, for example in [72], could be adapted and used to solve the

ILP in a more efficient way.

3.4 Linux implementation

In this section we describe our experience with an implementation on a real multi-core

running Linux. Our optimization scheme runs on a 64-bit x86 quad-core system with

Linux CentOS 6 and kernel version 2.6.32. We developed a user-level monitor module

using the perfmon2 library, as described in Section 3.2.1, to collect performance data of

the threads and a module to execute the configuration algorithm. In our implementation,

a monitor process with a sampling period of 200ms (the same as used in [86]) is attached

to each thread running in the system. We empirically determined the time limit of 5ms

to solve our ILP model that stops the Gurobi solver, even if no solution was found, and

thread re-allocation period of 1000ms to migrate threads between different core types.

These parameters were able to capture an acceptable trade-off between overhead and

configuration quality/responsiveness in our experiments.

3.4.1 Emulated heterogeneous core system

In our implementation, we use a 64-bit x86 quad-core system (Figure 3.9) where one core

runs at 3.2Ghz and the other three cores run at 0.8Ghz with a shared 6MB L3 (last

level) cache and off-chip memory subsystem of 8GB. We consider that a large core is

equivalent to three small cores (3:1 ratio) [59]. Each individual core has 64 KB of L1

Data/Instruction cache, and 512 KB of L2 cache. Unfortunately it was not possible to

make any other changes to the cores to model core heterogeneity in a more precise way,

since that would require access to restricted and proprietary tools [59].

Based on the system in use, we determine the capacity of the multi-core system with

respect to the number of instructions each core type can execute, Ci, and number of

memory requests that can be processed, B, as inputs to our ILP model.

Similarly to the simulation methodology described in Section 3.2, we derive the pro-



3.4 Linux implementation 55

Shared
cache

Large/fast core (3.2Ghz)

Small core 
(800Mhz)

Multi-core system

Small core 
(800Mhz)

Small core 
(800Mhz)

Memory

Figure 3.9: Block diagram of our target heterogeneous multi-core system

cessing capacity for each core type Ci by measuring the highest thread IPC of all the

SPEC CPU benchmarks, running one thread at a time. We made sure no other threads

were running in the same core and no other user-level threads were running in our quad

core system. We then multiply the highest IPC with the respective core clock speed to

figure out the instruction per second capacity for each core type. The IPC is the same

for both core types because the cores have the same micro-architecture and only differ in

clock speeds.

To determine the memory bandwidth B, we used the LMbench performance bench-

mark [75] that reports the memory capacity as the data movement rate (bytes per second)

between the processor and memory subsystem. The value of B for our system is 156 mil-

lion requests per second based on the measured memory capacity of ≈ 10GB/s and cache

lines of 64 bytes.

The details of our optimization solution are given in the configuration algorithm shown

in Figure 3.10. Our configuration algorithm consists of four phases. The first phase

reads monitored computational (IPS) and memory demands (LLC misses) of the running

threads in the system. The second phase predicts and updates the thread demands on

each core type, applying the performance prediction model described in Section 3.1.2.

The third phase involves solving the ILP model (described in Section 3.1.1) with the

updated input demands of all threads; and then storing the configuration solution sorted

by increasing thread IPS.

The last phase of the configuration algorithm assigns the threads to available cores in

the system, given the configuration solution obtained from threads-to-core types assign-

ment. This thread allocation phase sorts the available cores of each type by increasing

IPS load, and then assigns each thread to a respective core in a round robin fashion,

starting with the least-loaded core from a list of available cores.

The configuration algorithm is invoked at every configuration period (1000ms) to read

the updated monitoring values and, when necessary, apply the reassignment decisions of

threads to cores in the system. To enforce such reassignment decisions, our scheme uses



3.4 Linux implementation 56

// 1. Read counters of threads running on their respective core:
// computational (IPS) ”c mon” and memory (LLC misses) ”b mon”
c mon, b mon <- perfmon()

// 2. Apply prediction model and update computational ”c” and
// memory ”b” demands for all threads on each core type
c, b <- core pred(c mon, b mon)

// 3. Solve ILP model and store new configuration ”config” is a vector
// of tuples (i,k), where k is the thread to be allocated on core type i
config <- bestConfig(c, b)

Sort threads in config by decreasing order of IPS

// 4. Assign threads to available cores, where ”core list(i)” is a list
// of available cores of type i sorted by increasing IPS load
for each (i, k) in config:

Assign thread k to a core from core list(i) in a round robin

fashion

Figure 3.10: Configuration algorithm

Linux’s sched setaffinity system call. In this way the kernel’s scheduler guarantees

that a thread will run only on those cores specified by a given thread-to-core affinity.

3.4.2 Workload description and measurements

We compare the performance and energy consumption against Linux’s scheduler using a

mix of different workloads. Although it might seem unfair to compare our optimization

to the standard Linux scheduler, because the latter was not designed for heterogeneous

systems, this gives an idea of how much improvement can be achieved if today’s OS sched-

ulers, such as Linux CFS (Completely Fair Scheduler), were to be used on a heterogeneous

system.

A random subset of the SPEC 2006 benchmark suite is used as the workload on the

system as shown in Table 3.4. We run several different programs concurrently to occupy

the cores and memory system that allows for evaluating the thread assignment decisions

in a variety of situations. We adopt a similar workload configuration to the one described

in [59], where each SPEC benchmark program is considered a thread in the system and

the number of threads is equal to the sum of cores.

The workload keeps running on the system and the experiment ends when each thread

has run at least once. While one or more threads are not finished, a thread can restart

its execution as soon as it is finished. We take the average of the execution time of each

thread that runs more than once. We determine the performance as the average of the



3.4 Linux implementation 57

Workload Set of threads
R4-1 gobmk, cactusADM, mcf, GemsFDTD

R4-2 lbm , bwaves , bzip2 , namd

R4-3 gamess, bwaves, bzip2, GemsFDTD

R4-4 soplex, astar, lbm, mcf

R4-5 bwaves, namd, GemsFDTD, tonto

R4-6 soplex, milc, astar, tonto

R4-7 soplex, milc, lbm, mcf

R4-8 astar, gobmk, mcf, namd

R4-9 soplex, calculix, bwaves, tonto

R4-10 gamess, milc, gobmk, cactusADM

Table 3.4: Workload composition of 4-thread combinations

execution times (wall clock) of all threads that have already ran in the multi-core system.

We measure thread execution time using the time program in Linux.

We obtain the power consumption of the multi-core system directly using the WattsUP

Pro meter with 1% accuracy [25]. To determine the energy consumption, the power

measurements are read out and accumulated every second while the experiment is running.

Note that the power measures represent the whole machine, not only the CPU, although

the CPU consumes the major fraction of the total power. We multiply the sum of the

execution time of all threads by the total measured energy consumption to derive the

energy-delay product (EDP).

3.4.3 Performance gains and energy savings

Figure 3.11 shows the energy and performance improvements of our scheme compared

with the Linux scheduler on the multi-core system. The comparison of a given workload

is based on an instance of the performance of the Linux scheduler. As observed in [59],

the Linux scheduler shows inherent performance variability because of arbitrary initial

thread-to-core assignments.

Figure 3.11: Energy and performance improvements (%) of our scheme over Linux sched-
uler



3.4 Linux implementation 58

(a) Linux scheduler (b) Our scheme

Figure 3.12: Distribution of thread-to-core assignment for workload R4-2 — Best scenario

(a) Linux scheduler (b) Our scheme

Figure 3.13: Distribution of thread-to-core assignment for workload R4-9 — Worst sce-
nario

As shown in Figure 3.11, our scheme is able to improve the EDP of all workloads by

an average of 15%. Some workloads have improvements of more than 35%, namely R4-2,

R4-3, R4-10, where our scheme have correctly assigned threads to the available cores.

However, our scheme performed worst than Linux scheduler for the workloads R4-8 and

R4-9, with negative impact in the EDP metric. In Section 3.4.4 we will analyze the

reasons why some workloads have performed well and others worse.

Considering the execution of all workloads, the average processing time required to

solve the ILP model was 676 microseconds, with minimum, maximum and standard de-

viation of 590, 920 and 100 microseconds, respectively. Given the configuration period of

1000ms used for dynamic thread assignment, the overhead of solving the ILP model is

consistently very low across all of the experiments; more precisely, 1ms/1000ms = 0.1%.

3.4.4 Best and worst case analysis

We first examine workload R4-2 where our approach provides the best improvement in

both energy and performance. Figure 3.12 shows the fraction of time (%) that each thread



3.4 Linux implementation 59

spends running on each core using the Linux scheduler (Figure 3.12(a)) and our scheme

(Figure 3.12(b)). For example, by allowing bwaves to run about 64% of its lifetime on

the large core, our scheme provides performance gains of 48% over the bwaves execution

using the Linux scheduler, and an average of 30% for the overall R4-2. The energy delay

in this workload is approximately 70%.

We also examine workload R4-9 where our approach performs the worst in terms of

energy and performance. Looking at the distribution of thread-to-core assignment from

Figure 3.13(a) we observe that Linux achieves good load balancing among all threads. As

shown in Figure 3.13(b), our scheme assigned soplex to run on the large core for about

71% of its execution lifetime. However, the compute-intensive threads calculix and

tonto were only allowed to run on the large core for about 1% and 6% of their execution

lifetime, respectively.

Running our scheme with workload R4-9 introduced a particular unbalanced and

“unfair” core assignment, resulting in large negative impact on the overall performance

and energy optimization. In particular, soplex improves its performance by 26%, but

impacts negatively both calculix and tonto by approximately 60%. We only have

one large core and they both would benefit from running on this one. To address this

phenomenon, we plan to extend our ILP model to spread threads more evenly across

all cores and allow each thread to receive a fair share of the available core resources,

proportionally to the thread’s computational demands. As shown in our experiments,

it is not beneficial that in some cases a thread gets a much larger share of a large core

than other threads. We propose and evaluate in Chapter 4.3 a heuristic solution for this

particular unfair phenomenon. We opted for a simple heuristic solution to highlight such

a fairness aspect in the heterogeneous core system. We plan to incorporate in our ILP-

based approach the insights revealed through developing the proportional-share heuristic

(Chapter 4.3).

Our optimization scheme works by reallocating a thread to different cores when the

performance profile of a thread changes, while running concurrently with other threads in

the system. In our scheme, the number of LLC cache misses of a thread is used to measure

its memory bandwidth requirements, that must be met to minimize resource contention

and improve performance in the system. In addition to the inherent overheads of thread

relocation in dynamic thread assignment schemes, severe performance degradation asso-

ciated with co-running threads may be observed due to shared LLC among all threads

and cores in the system. Even without exceeding memory bandwidth constraints, it is

possible that LLC contention exist and negatively affect the performance of threads to

very different degrees [70].

Currently, our optimization model does not explicitly address the issues of shared

LLC when predicting the behavior of a thread on different core types. We collected the



3.5 Related work 60

performance data of each thread running individually on each core type to build our

prediction model. Furthermore, accurate measurement of LLC shared events at user-level

on Linux poses some practical limitations when multiple threads are running in the multi-

core system [14]. In particular, using perfmon2 tool [27], we observed that a thread that

is actively running on a core can inadvertently capture LLC events caused by activity of

threads running on other cores. Depending on the memory-intensity of co-running threads

(for example, when there is a thread with very high LLC miss rate), other threads can

observe a conflation of their own LLC miss rates. That may help explain some of the

poor decisions taken by our optimization approach in the real system.

3.5 Related work

There have been several prior research works that focused on exploring the benefits from

heterogeneous multi-core systems. Most of the related work found in the literature strive

to maximize the performance gain over applications running on these systems. Few related

works explicitly deal with energy and performance efficiency metrics in their approach.

The work described in [61] is pioneering in studying thread assignment policies considering

different core types in order to optimize both energy and performance metrics. However,

their work provides analysis of potential energy reduction of dynamic core assignments

for each thread instead of determining a global optimized assignment for a set of threads

to cores in the system.

A fine-grained power management technique for multi-core systems with homogeneous

architecture but different fixed frequency/voltages [83] enables fast migration of threads

between cores, showing energy gains comparable to systems having per-core dynamic volt-

age/frequency scaling (DVFS). Their work also argues that per-core DVFS is expensive

to be implemented in practice, meaning that heterogeneous multi-core systems are more

likely to be adopted as an energy-efficient alternative in the near future. Similarly to our

approach, previous works rely on hardware performance monitoring to determine the best

matching of threads to cores [57, 92], although only focusing on performance gains. The

monitoring framework outlined in [92] aims to provide software support to predict thread

performance on heterogeneous multi-cores.

In the same direction, previous research have proposed local thread assignment de-

cisions based on relative performance benefits of each thread running on different core

types. For instance, to guide the choice of the best thread assignment, some works such

as [61, 8] use a measure related to the thread IPC. In particular, the IPC-driven algorithm

bases its decision on the thread IPC ratio between large and small core types. Similarly,

the work described in [59] adopts a specific thread-to-core affinity measure, termed bias,

which is related to the intensity of off-core (cache/memory) requests of each thread in the



3.6 Summary 61

system. The metric used by bias scheduling can be determined by the number of off-core

requests (LLC misses) per committed instructions. Both the IPC-driven algorithm and

bias scheduling make local thread assignment decisions based on a relative gain metric

with regard to running a thread on a particular core type. The intuition is that a thread

with a high IPC ratio or low memory intensiveness bias ratio is expected to take best

advantage of a large core rather than a small core. A comprehensive scheduler for hetero-

geneous core systems is proposed in [86] to maximize performance of both single-threaded

and parallel workloads using the memory-intensity of threads to guide thread assignment

decisions. In contrast to our work, they use only a single measure, due to the alleged

correlation between IPC and LLC miss rate.

A scheduling technique for heterogeneous multi-core systems is described in [90]. How-

ever, their technique cannot cope with thread phase changes, nor does it scale well since

the complexity of using off-line thread profiling becomes very high as the number of

threads increases. Some research studies [62, 29, 35] analyze architectural characteristics

of core types for optimizing the design area and power/performance efficiency in future

multi-core systems. These works provide useful insights on enhanced capabilities of future

heterogeneous multi-core systems but are orthogonal to the dynamic thread assignment

problem. However, some works note that architectural or implementation limitations will

hinder the efficiency of certain schemes. In particular, the proposed IPC-based scheme [8]

needs to know the IPC of each core type before assigning threads to cores. In their im-

plementation, the threads are executed for a small interval of time in each core, the IPC

measured, and then the threads assigned. This incurs much overhead, as noticed in [90].

3.6 Summary

Heterogeneous multi-core systems present interesting challenges on thread assignment

and scheduling research. Despite the challenging fact that core types have asymmetric

computing capabilities, threads have time-varying real-time computational and memory

requirements that need to be met accordingly. We propose an optimization scheme to

effectively determine an energy efficient thread assignment based on an ILP model. Our

scheme is able to dynamically change thread-to-core assignment aiming at meeting soft

real-time performance and memory bandwidth constraints in heterogeneous multi-core

systems.

According to simulation results, our scheme achieves large energy savings and perfor-

mance gains for a variety of workloads and outperforms other proposed thread assignment

schemes that do not address explicitly memory bandwidth constraints. For example, the

improvement on energy-delay product over the state-of-the-art is about 20% to 40% de-

pending on the workload. We also show a substantial decrease in tardiness. Additionally,



3.6 Summary 62

we presented an implementation and experimental evaluation of our approach in a real

heterogeneous multi-core system. Our approach successfully satisfied thread performance

and memory bandwidth requirements for a variety of workloads composed of programs

that concurrently lay emphasis on the cores and memory subsystem. We have shown

energy-delay product gains of 15% (average) to 35% (maximum) for a variety of work-

loads compared to existing OS scheduler (Linux).



Chapter 4

Proportional share scheduling for het-
erogeneous multi-cores

As we have presented in Chapter 3, an optimized energy-efficient thread assignment has

to match the thread demands with the capabilities of the heterogeneous cores. In this

part of the work, we demonstrate that, in addition to satisfying the threads’ computa-

tional demands, thread scheduling has to provide fair allocation of the platform resources

to the threads. We develop a proportional-share scheduling strategy for heterogeneous

multi-cores that leverages lottery/ticket mechanisms to provide fairness and optimize for

combined performance and energy savings.

Our heuristic, lucky scheduling, relies on local thread reassignment decisions rather

than solving an ILP optimization model. Lucky is a simple heuristic designed to demon-

strate the essence of proportional-share scheduling decisions and highlight the benefits of

providing fairness in big/small core allocation to the threads in the system. The running

threads are given some number of tickets derived from runtime performance monitoring.

The given tickets of a thread corresponds to its energy efficiency estimate and determine

relative chance of all of the other threads competing for the available big cores. Exper-

imental results show that lucky scheduling can provide better performance and energy

savings over state-of-the-art heterogeneous-aware scheduling techniques.

4.1 Fairness in dynamic thread assignment

Recalling our discussion in Chapter 3, previous works have proposed taking advantage

of performance counters provided by the hardware to determine the characteristics for

the running threads and schedule them on the right core type [59, 87, 92]. To make

thread scheduling decisions, these scheduling techniques calculate the thread bias through

measuring either compute-intensity (IPC or IPS, instructions per cycle or per second)

[8, 61] or memory intensity (e.g., LLC miss rate) [59, 86] which determines the thread

execution efficiency between the core types. The intuition is that a thread with a high



4.2 Power/performance for heterogeneous cores 64

Figure 4.1: Performance comparison between bias scheduling and big core fair sharing

IPS ratio or low-memory intensity bias is expected to take best advantage of a big core

rather than a small core.

Most of those scheduling algorithms [8, 59, 61, 87, 90] are unfair by design since they

assign to big cores the threads that experience the highest bias towards those cores. As

such, some threads can monopolize the available big cores and hinder the progress of

other threads. Figure 4.1 shows the results of an experiment where one memory-intensive

and three compute-intensive threads were running on a quad-core multi-core system with

one big core and three small cores (Section 4.2 describes our experimental setup). For

this particular workload, we can observe a performance speedup of 1.47 times (energy

consumption reduction of 37%) over running bias scheduling [59] by simply providing

equally fair sharing (round-robin) of the big core among all threads (25% for each thread).

In particular, using bias scheduling in the experiment shown in Figure 4.1, the highest

compute-intensive thread had possession of the big core 96% of the workload execution

time, leading to severe performance degradation of the other compute-intensive threads.

The workload execution time for each scheduling algorithm is the elapsed time of the

last completed thread. The workload is long lived and threads are restarted until longest

thread finishes.

In contrast to existing work, we make the case for proportional-share scheduling of

threads in heterogeneous processor cores aimed at improving combined energy efficiency

and performance. We show that allocating big/small cores proportionally to the thread-

to-core execution efficiency provides on average the best energy and performance gains.

4.2 Power/performance for heterogeneous cores

We consider a multi-core system having the following core types: big/fast cores targeted

for high-performance and small/slow cores optimized for low-power. Such a system with



4.2 Power/performance for heterogeneous cores 65

Core Peak power Idle power Avg. power Capacity
big 18.75 W 9.625 W 15.63 W 6,307 MIPS
small 2.15 W 0.7 W 1.6 W 1,592 MIPS

Table 4.1: Power and performance measures of heterogeneous cores

two distinct types of cores is able to capture most of the benefits from heterogeneity

[20, 34]. As in Chapter 3, we use the following performance-asymmetric multi-core system

in our experiments: a quad-core x86 64 chip capable of individual core frequency scaling

where one core runs at 3.2Ghz and the other three cores run at 0.8Ghz. All cores share

a L3 (last level) cache of 6MB and off-chip memory subsystem of 8GB.

Table 4.1 describes the power and performance characteristics of the heterogeneous

cores in the system. The performance (capacity) of a core is defined as follows. We

measured the highest thread IPC, by running the SPEC CPU benchmarks one thread at

a time. Multiplying this number by the clock speed, we find out how many instructions

can be executed in one second. We use MIPS (million instructions per second) as the

measure of core computational capacity/performance.

Our multi-core system includes identical cores only differing in clock frequency. Recall

that power consumption typically scales linearly with core frequency (Chapter 2). This

means that power savings do not necessarily translate into energy savings, since reducing

core power/frequency will extend thread execution time and increase energy consumption.

Thus, we estimate core power consumption based on measurements [48] of a real heteroge-

neous platform configuration composed of typical big (Intel Xeon) and small (Intel Atom)

cores [20].

In our multi-core system model, a big core delivers 4-fold performance but a small

core is 2.2 times more power-efficient (i.e., MIPS per Watt). A small core consumes on

average much less power than a big core and is also attractive in terms of the performance

obtained in proportion to the power consumed (power-performance proportionality). This

is because of its very low idle power (0.7W ) and wide dynamic power range between idle

and peak power (0.7W to 2.15W ).

4.2.1 Thread performance/bias characterization

We use Linux 2.6.34 kernel with perf monitoring tool to gather hardware performance

events namely retired instructions and L3 cache misses in order to characterize the

behavior of a thread execution in the multi-core system. To allow isolation of individual

LLC miss rate, we set up the Linux perf tool to read the 4E1 (L3 Cache Misses) raw reg-

ister with different core selection masks, overcoming some monitoring issues we described

in Chapter 3. We measure LLC misses per core since a LLC event is an event shared

across all cores in the system [14].



4.2 Power/performance for heterogeneous cores 66

Figure 4.2: Performance characterization of benchmarks programs while running alone
on a big core

Each core runs a separate thread and thus we monitor the performance counters for

a given core (thread) for a given monitoring interval. Given these counters, we compute

the MIPS (million instructions per second) to determine the CPU demands of a thread.

Similarly, we obtain the number of LLC misses per second, LLCMS, to characterize

memory demands, where each LLC miss represents an off-chip memory request.

Existing thread assignment policies [8, 59, 86] work based on the correlation between

the CPU load given by IPS (or MIPS, millions of IPS) or IPC (Instructions Per Cycle)

and core stall-time indicators, such as LLC miss rate, which directly correlate to the

amount of execution time in which the thread cannot retire instructions. However, we

have observed that there is not always a clear one-to-one correlation between these two

metrics in the execution of typical threads.

As shown in Figure 4.2, a single metric cannot clearly characterize some threads and

schedule them to the right core type. For example, both MIPS and LLC misses can be

increased for a given thread execution, such as the case of milc benchmark (64M LLC

misses and 2K MIPS) when compared with mcf (18M LLC misses and 0.4K MIPS). Also,

very similar MIPS can lead to very different memory intensity, such as between lbm (48M

MPS, 2.4K MIPS) and cactusADM (8M MPS, 2.3K MIPS). In our work we explicitly

use both performance measures aimed at augmenting thread assignment decision to meet

thread performance demands.

We use real performance measurements when a thread is running on the same core

type, and assume the next scheduling interval can be approximated by the current in-

terval. We use the equation MIPSj,k = αj ·MIPSi,k + βj · LLCMSi,k + γj to estimate

the performance behavior of a thread k currently running on a given core type i when it

is assigned to a different core type j in the next scheduling interval. The linear regres-

sion model above is key to determine the energy efficiency (MIPS2/Watt) of a thread

between big and small cores. The regression coefficients αj, βj and γj are derived from of-



4.2 Power/performance for heterogeneous cores 67

Figure 4.3: Prediction error analysis of thread performance on different core types

Figure 4.4: Predicting thread MIPS from big to small core (bwaves) and small to big core
(astar)

fline performance data collected running programs from the SPEC 2006 benchmark suite

individually on each core type j. Running the method of least squares to the performance

data yielded a coefficient correlation of approximately 98%.

Figure 4.3 shows the prediction error (given by the normalized root mean square

deviation) for different benchmarks. We normalized the prediction errors by the range of

measured values on the respective core type to make the results comparable. The average

prediction error of less than 3% indicates that our estimation model can accurately predict

the performance of a thread running on different core types. The highest prediction error

was for the astar benchmark, considering the performance estimation from both small-to-

big and big-to-small cores, 8% and 7%, respectively. The bwaves benchmark had highest

prediction error (10.7%) for predicting big-to-small core.

Figure 4.4 illustrates the prediction of MIPS for the bwaves and astar benchmarks

when running on a small core and intended to run a big core. The performance data

were collected from a small core and used to predict the performance on a big core.

The graph shows predicted versus actual values on a big core. We can observe that our

prediction model can successfully capture the different phases of a thread in most cases.



4.3 Lucky scheduling 68

For practical purposes such inaccuracies in our prediction model did not prevent our

scheduling strategy from achieving performance and energy improvements over existing

thread scheduling techniques (Section 4.4).

4.3 Lucky scheduling

Lucky scheduling is designed to carry out thread assignment to heterogeneous cores for op-

timized performance and energy savings. The assignment of threads to cores are periodic

(reassignment interval) to cope with thread execution phase changes. Lucky scheduling

builds on the concepts and mechanism from the lottery scheduler [97] to implement such

a dynamic scheduling strategy.

The novelty of lucky is in how the ticket assignment is done in the scheduling al-

gorithm. Each thread receives a dynamic number of tickets which is determined by the

energy efficiency ratio between running the thread on a big core vs small core.

4.3.1 Energy efficiency metric

The goal of the metric used by lucky scheduling to guide thread assignment decisions is

to optimize for the energy-delay product (EDP) per instruction. In fact, we maximize

the inverse of the energy-delay product, given by MIPS2/Watt [16], to facilitate the

computation of the energy efficiency ratio between big and small cores (details presented

in Section 4.3.2).

Figure 4.5 shows a comparison of the energy efficiency ratio between big and small

cores when running the SPEC benchmarks on different core types. We can observe that

the energy efficiency varies over different programs and can be used for guiding dynamic

thread assignment decisions. Relying on previous experiments described in Chapter 3, we

observe that similar behavior exists for different execution phases of each thread. That

is, some threads go through compute-intensive or memory-intensive phases where the

MIPS2/Watt changes during the course of their executions [61]. We use this information

to periodically reassign the running threads to big or small cores in an energy-efficient

manner.

Looking at Figure 4.5, we observe that the astar benchmark should run on a big core,

whereas zeusmp is best suited on a small core to improve energy efficiency. Bias scheduling

[59], for example, would map both programs on a small core type since both experience

high memory stalls, about 14 million LLCMS. A typical compute-intensive thread has 1-

2 million LLCMS. Recall Figure 4.2 that shows MIPS vs LLCMS measurements for those

programs. We also noted that bwaves is an instance of benchmark that bias scheduling

would run it on a small core because of its high memory-intensive (29 millions of LLCMS).

However, bwaves is best suited for a big core to improve energy efficiency.



4.3 Lucky scheduling 69

Figure 4.5: Energy-efficiency ratio (big-to-small core) of threads when running on different
core types

The observations above indicate that explicitly taking into account the core power

consumption in thread scheduling can improve energy-efficient scheduling decisions. Fur-

thermore, different power/performance ratios can be observed in the design of heteroge-

neous multi-core systems. This makes it much more challenging to derive energy-efficient

thread assignment decisions based only on either computational demands (MIPS) [8, 61]

or memory stalls (LLC misses) [59, 86], individually.

4.3.2 Algorithm outline

We introduce the following notation for the heterogeneous multi-core system. Let N be

the set of core types, Ni be the set of cores of type i ∈ N , and M be the set of all available

cores; that is M = N1 ∪ N2 ∪ . . . Nn, where n = |N |. Each core of type i ∈ N has same

computational capacity Ci (million instructions per second) and peak/busy power Bi and

static/idle power Ii (Watts).

LetK be the set of threads to run in the system. Each thread k ∈ K requires computa-

tional execution rate MIPSi,k and memory access rate LLCMSi,k when executing on core

type i ∈ N . We estimate thread power consumption as Pi,k = (Bi−Ii)·(MIPSi,k / Ci)+Ii,

when thread k runs on a core of type i. We estimate the energy consumption (in Joules)

as E =
∑

k∈K Pk · S, given the configuration of each thread allocated to a core type

in a given scheduling interval S (in seconds). The energy efficiency of a thread-to-core

assignment is energy efficiency(i, k) = MIPS2
i,k / Pi,k in a given scheduling interval.

In lucky scheduling, the ticket allocation of a thread k ∈ K is determined periodically

by its energy efficiency ratio between two types of cores: big and small cores (where

N = {big, small}). A given thread is expected to run on a big vs small core proportionally

to the number of tickets it holds. More precisely, allocating more tickets to a thread

gives it a higher priority to run on a big core. This allows to adjust dynamically the

priority of a given thread currently running on a small core to move to a big core, thereby

reducing unfairness and improving overall performance in the system. The activity of



4.4 Results 70

always exchanging two running threads between different core types help preserve load

balancing.

The initial thread assignment is given by the underlying operating system (OS) sched-

uler. Typically the OS assigns each thread to a core so that the workload is balanced

across the available cores in the system. The algorithm of lucky scheduling is outlined as

follows:

1. Measure MIPSi,k and LLCMSi,k of each thread k ∈ K running on a core of type

i ∈ N

2. Predict MIPSj,k on the other core of type j ∈ N − {i} (see Section 4.2.1)

3. Evaluate big core benefit(k) = energy efficiency(b,k)
energy efficiency(s,k)

for each thread k, big core b,

and small core s

4. Generate a number of tickets(k) = 100 · big core benefit(k) to assign to each

thread k ∈ K

5. Determine thread T that holds the winning ticket given by a random number uni-

formly distributed between [0, total tickets) where total tickets =
∑

k∈K tickets(k)

6. Swap thread T with a thread T ′ in case T is not running on a big core, considering

that T ′ has the minimum number of tickets and is running on the least-loaded big

core.

We exploit a lottery-based approach to implement lucky scheduling because of the

simplicity of its implementation including the flexibility when including/removing threads

in the system. The current implementation of lucky scheduling uses a list data structure

to keep threads updated with their current number of tickets and a global variable to

track the sum of threads’ tickets. The random number generator implemented in C++

standard library is used to select the winning ticket/thread.

Since the number of core types is small and fixed, the algorithm complexity is O(m)

where m is the number of threads, because it is dominated by searching for a thread

with winning ticket. For future many-core systems with hundreds or thousands of cores,

a more efficient implementation using balanced tree or heap structures could reduce the

complexity to O(log m) [97].

4.4 Results

We evaluate the performance and energy consumption of lucky scheduling against the

heterogeneous-aware fair share policy [87] and bias scheduling [59] using a mix of thread

workloads. The fair share algorithm allocates the big core among threads in a round



4.4 Results 71

robin fashion. For the bias scheduling, we compute biask = LLCMSi,k / MIPSi,k for

each thread k running on a core of type i. Threads with the lowest bias are mapped to

the available big cores, whereas the highest bias are mapped to small cores.

Binding threads to cores of the same type is done via sched setaffinity system

call. The Linux scheduler thus makes scheduling decisions respecting this affinity. The

reassignment interval is set up to 200ms which approximately corresponds to the Linux

load balancing granularity, responsible for migrating threads among cores to maximize

system utilization [65]. We found this interval suitable to capture thread phase changes

while helping mitigate thread migration overhead and cold-cache effect.

4.4.1 Workload description

The SPEC 2006 benchmark suite was used as the workload on the system. Each SPEC

benchmark program is considered a thread in the system and the number of threads

is equal to the sum of cores [59]. Table 4.2 shows the different workloads tested in

our experiments where each workload is a combination of four threads. We run several

different benchmarks concurrently to create a mix of core and memory usage. The ref

input option is used in all the SPEC benchmark programs. The benchmarks were selected

to test a variety of CPU and memory requirements which are composed of 4-threads

mixture varying from compute-intensive (4CI) to memory-intensive (4MI) workloads [86].

The workload 4P represent benchmarks that exhibit different phases and workloads 4R1,

and 4R2 are random combinations of threads.

Workload Set of programs
1CI-3MI sjeng lbm milc soplex

2CI-2MI bwaves tonto soplex mcf

3CI-1MI povray sjeng bwaves soplex

4CI calculix povray namd tonto

4MI lbm milc mcf soplex

4P astar bzip2 leslie3d milc

4R1 namd mcf astar bwaves

4R2 lbm bzip2 calculix GemsFDTD

Table 4.2: Workload composition of 4-thread combinations of the SPEC2006 benchmark

The experiment ends when each thread has run at least once; that is, until the longest

thread finishes, also known as makespan in the literature. While the longest thread is

not finished, the other threads restart their executions as soon as they are finished. We

measure the execution time (wall clock) of a workload by calling Linux gettimeofday

system call at the start and end of the workload execution. We estimate the energy

consumption of the running threads in a workload using the formula from Section 4.3.2.

We multiply the sum of estimated energy consumption of all threads executed in the



4.4 Results 72

Figure 4.6: Improvements of lucky scheduling (%) over bias scheduling and big core fair
policy

system by the workload execution time to derive the energy delay product (EDP).

4.4.2 Energy efficiency and performance gains

Figure 4.6 shows an experiment to demonstrate that inherently unfair thread scheduling

leads to more performance loss than improvement for the given mixed set of workloads.

When considering all workloads executions, a simple big core fair policy provides EDP

gains of 16% over bias scheduling. Beyond that, lucky scheduling outperforms big core

fair policy in EDP by 12% (avg.) and 20% (max.). This indicates that energy-efficient

proportional-share brings higher performance/energy improvements rather than simply

providing equally fair sharing of the big core among all threads. Lucky scheduling achieved

better EDP when compared to bias scheduling over all workloads executions (avg. 39%

and max. 51%).

The big core fair policy outperformed lucky scheduling in EDP by 4% in the work-

load 3CI-1MI and 12% in the workload 4MI. This particularly highlights that more bi-

ased/unfair decisions can negatively affect the energy and performance for some work-

loads. For example, for workload 4MI, lucky scheduling allocated a specific memory-

intensive thread (mcf) to the big core for about 9%, in contrast to 25% using the fair

policy. As shown in Figure 4.7, the benchmark mcf has high MIPS phases, when it is

suitable to run the big core, which last around 25% of the time (as provided by fair policy)

rather than 9% (as provided by lucky).

Also, we can observe that the other memory-intensity programs (soplex, milc, lbm)

in the composition of workload 4MI have higher MIPS than mcf (see Figure 4.2) and,

accordingly, these programs obtained more tickets/bias to run on the big core than the mcf

program. Clearly, this particular big core distribution hurts mcf performance, although

it is, on average, small core biased. This highlights the bias/fairness trade-off decisions.

Regarding the execution of workload 4P, lucky outperformed big core fair (by 19%)

and bias (by 51%) policies. Figure 4.8 shows the allocation distribution of the big core



4.4 Results 73

Figure 4.7: MIPS over time for mcf running on a big core

Figure 4.8: Big core distribution of workload 4P with fair, bias and lucky scheduling

among the threads in the system. We can observe that bias scheduling assigned bzip2

to run on the big core for about 87% of the time, monopolizing the big core. We can

see that lucky scheduling was able to provide adequate balance between fairness and core

execution bias/efficiency in this particular workload, and most cases in Figure 4.6.

We demonstrate that providing fair-share in addition to bias scheduling is a very

important aspect that should be taken into account when matching the threads’ compu-

tational demands to the multi-core resources over time. In future experiments, we may

exploit ticket inflation to allocate additional tickets to the threads that are already run-

ning on a big core, giving more chances to keep those threads running on the same type

of core. This can help minimize migration overhead and preserve cache affinity. Sensitiv-

ity analysis is needed to determine the best parameter for the ticket inflation and which

workloads would benefit from such a thread scheduling adjustment.



4.5 Related work 74

Migrating specific threads between cores with different processing capabilities can

also cause performance variability due to contention in the shared resources (last-level

cache, memory controller/bus). Extending lucky scheduling to incorporate explicitly (1)

cache/memory contention awareness [71, 50] and (2) real-time/tardiness/laxity aspects of

tasks in the ticket estimate/assignment are interesting avenues for future work. In partic-

ular, real-time performance guarantees are crucial for latency-sensitive cloud applications

such as web search and media streaming [30].

4.5 Related work

Evolving beyond traditional homogeneous systems, research works have shown that im-

proved performance and energy-efficiency benefits can be achieved by adopting heteroge-

neous multi-core systems [61, 29]. To determine the thread execution efficiency between

the core types, state-of-the-art scheduling techniques calculate the thread bias through

measuring either compute-intensity (IPC or IPS, instructions per cycle or per second)

[8, 61] or memory intensity (e.g., LLC miss rate) [59, 86].

A typical unfair scheduler such as bias scheduling [59, 86] may not be appropriate in

situations when more than one compute-intensive thread can benefit from running on a big

core. On the other hand, existing fair scheduling algorithms aim to share the available

big cores in the same degree among all threads in the system [67, 87]. Also, current

scheduling algorithms strive to maximize the performance gain over threads running on

the heterogeneous cores. They do not take into account the actual core power consumption

to make scheduling decisions and may deliver less energy-efficient thread assignments.

4.6 Summary

Energy-efficient heterogeneous multi-core systems pose challenging scheduling problems.

We advocated a proportional-share scheduling strategy based on lottery/ticket mech-

anisms that optimizes for combined performance and energy savings. We proposed a

simple and effective way to determine ticket/thread assignment by estimating thread per-

formance and energy efficiency between core types in the system emulated using different

clock speeds. We demonstrated that inherently unfair thread scheduling may cause, on

average, more energy/performance loss than improvements for the given set of workloads.

Lucky scheduling has shown energy savings and performance improvements over state-of-

the-art thread assignment schemes designed for heterogeneous multi-core systems.



Chapter 5

Conclusion and future directions

In this dissertation, we described an approach based on optimization models and heuris-

tic techniques to perform dynamic optimized assignment of tasks to processors in server

systems, while meeting power and performance requirements. We tailored our optimiza-

tion approach to address the cases of heterogeneous virtualized clusters and multi-core

systems, developing specialized management strategy and implementation for each case.

In Chapter 2, we developed and demonstrated the feasibility of our optimization

approach for power and performance management in virtualized servers. We conducted

experiments with realistic Web traffic driven by time-varying demands with real system

measurements. Such an optimization strategy achieved energy savings of 14% compared

to DVFS-enabled cluster and 52% compared to typical uncontrolled system (used as

baseline), while simultaneously meeting applications’ performance goals as specified in

their response time deadlines.

In Chapter 3, we introduced timeliness as a first-class concern in scheduling of hetero-

geneous cores and solved an optimization problem with constraints on bandwidth to the

memory and core utilizations. Our approach successfully satisfied thread performance and

memory bandwidth requirements, showing improvement on energy-delay product over the

state-of-the-art of 20% to 40% depending on the workload. We also show a substantial

decrease in tardiness, which measured how well the system did in completing the task ex-

ecution on a timely fashion. In comparison with a Linux task scheduler implementation,

we show an average energy-delay product gains of 15%, with average energy savings of

11% and performance improvements of 7%.

In Chapter 4, we devised a lottery scheduling scheme, lucky, in which the number of

tickets allocated to a thread is determined at runtime by its energy efficiency ratio on

big and small cores. This strategy was used to assign to each thread the appropriate

chance to execute in the most suited core type. In this way, lucky scheduling was able to

provide an adequate balance between bias and fairness on using big/small cores. Lucky

scheduling outperformed a big core fair (round-robin) policy in EDP by 12% (avg.) and



5 Conclusion and future directions 76

20% (max.), and achieved better EDP when compared to state-of-the-art bias scheduling

over all workloads executions (avg. 39% and max. 51%).

We have identified the following research directions:

• A promising continuation of our work would be to develop a comprehensive approach

that optimizes for both heterogeneous virtualized servers and multi-cores processors.

This would require further investigation on designing an optimization approach as

multiple interacting feedback/management loops, possibly in a hierarchical manner.

• To achieve energy-efficient program execution in multi-threaded benchmarks, one

direction is to speed up the thread(s) that are (likely) to be on the critical path

by running them on the big/high-performance core(s) and allow the other threads

to execute in parallel on the small/low-power cores [93]. One challenging aspect

will be to determine whether or not threads are on the program critical path; for

example, based on correlation of run-time performance data or program code anno-

tation/instrumentation [49].

• Exploring thread consolidation may provide additional energy-savings by maximiz-

ing the utilization of a set of active cores and quickly powering down idle cores, bring-

ing them up when thread workloads increase [13]. However, switching cores on/off

indiscriminately can consume extra time and power/energy that should be taken into

account. This will require the characterization of performance degradation/overhead

when co-running workload threads with shared resources (cache/memory) [15, 69]

and powering up/down the cores in the system.



77

APPENDIX A -- Publications

1. Vinicius Petrucci, Orlando Loques, Daniel Mossé. Lucky scheduling for energy-

efficient heterogeneous multicore systems. The 2012 Workshop on Power-Aware

Computing and Systems (HotPower’12), co-located with the 10th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI ’12), Hollywood,

CA. — Workshop at Conference CAPES/Qualis A1.

2. Luca Lugini, Vinicius Petrucci and Daniel Mossé. Online Thread Assignment for

Heterogeneous Multicore Systems. The 2012 International Workshop on Embedded

Multicore Systems (ICPP- EMS 2012), Pittsburgh, PA. — Workshop at Confer-

ence CAPES/Qualis A2.

3. Vinicius Petrucci, Orlando Loques, Daniel Mossé, Rami Melhem, Neven Gazala,

Sameh Gobriel. Thread assignment optimization with real-time performance and

memory bandwidth guarantees for energy-efficient heterogeneous multi-core sys-

tems. The 18th IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS’12), Beijing, China, April, 2012. — Conference CAPES/Qualis

A2.

4. Renaud Masson, Thibaut Vidal, Julien Michallet, Puca Huachi Vaz Penna, Vinicius

Petrucci, Anand Subramanian, Hugues Dubedout. A Hybrid Large Neighborhood

and Local Search for the Machine Reassignment Problem. 25th European Conference

on Operations Research (EURO), Vilnius, Lithuania, 2012.

5. Hugo Kramer, Vinicius Petrucci, Anand Subramanian, Eduardo Uchoa. A col-

umn generation approach for power-aware optimization of virtualized heterogeneous

server clusters. Computers & Industrial Engineering 63(3): 652-662 (2012) —

Journal CAPES/Qualis A2.

6. Vinicius Petrucci, Enrique V. Carrera, Orlando Loques, Julius Leite, Daniel Mossé.

Optimized Management of Power and Performance for Virtualized Heterogeneous

Server Clusters. 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid (CCGrid’11), Newport Beach, CA, USA, 2011. — Conference CAPES/Qualis

A1.



Appendix A -- Publications 78

7. Carlos Oliveira, Vinicius Petrucci, Orlando Loques. Using Virtual Machine Replica-

tion for Dynamic Configuration of Multi-tier Internet Services. IADIS International

Conference WWW-Internet, Rio de Janeiro, RJ, Brazil, 2011.

8. Carlos Oliveira, Vinicius Petrucci, Orlando Loques. Impact of server dynamic al-

location on the response time for energy-efficient virtualized web clusters. 12th

Brazillian Workshop on Real-Time and Embedded Systems (WTR), Gramado-RS,

Brazil, 2010.

9. Vinicius Petrucci, Orlando Loques, Daniel Mossé. A dynamic optimization model

for power and performance management of virtualized clusters. 1st International

Conference on Energy-Efficient Computing and Networking. In cooperation with

ACM SIGCOMM. University of Passau, Germany, 2010.

10. Vinicius Petrucci, Orlando Loques, Daniel Mossé. Dynamic optimization of power

and performance for virtualized server clusters. 25th ACM SAC (Short Paper/Poster

on Power-Aware Design and Optimization Track), Sierre, Switzerland, 2010.

11. Vinicius Petrucci, Orlando Loques, Daniel Mossé. Dynamic Configuration Support

for Power-Aware Virtualized Server Clusters. 21th Euromicro Conference on Real-

Time Systems (WiP Session), Dublin, Ireland, 2009.

12. Vinicius Petrucci, Orlando Loques, Daniel Mossé. A Dynamic Configuration Model

for Power-Efficient Virtualized Server Clusters. 11th Brazillian Workshop on Real-

Time and Embedded Systems (WTR), Recife-PE, Brazil, 2009.



Bibliography

[1] Andersen, D. G.; Franklin, J.; Kaminsky, M.; Phanishayee, A.; Tan, L.;

Vasudevan, V. Fawn: a fast array of wimpy nodes. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles (SOSP’09) (New York,

NY, USA, 2009), ACM, pp. 1–14.

[2] Arlitt, M.; Jin, T. Workload characterization of the 1998 world cup web site.

Tech. rep., IEEE Network, 1999.

[3] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.;

Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of virtualization.

In Proceedings of the nineteenth ACM symposium on Operating systems principles

(New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[4] Barroso, L. A. The price of performance. ACM Queue 3, 7 (2005), 48–53.

[5] Barroso, L. A.; Hölzle, U. The case for energy-proportional computing. Com-

puter 40, 12 (2007), 33–37.

[6] Baruah, S. Task partitioning upon heterogeneous multiprocessor platforms. In

IEEE Real-Time Systems and Embedded Technology and Applications Symposium

(2004), pp. 536–543.

[7] Baryshnikov, Y.; Coffman, E.; Pierre, G.; Rubenstein, D.; Squillante,

M.; Yimwadsana, T. Predictability of web-server traffic congestion. In 10th Inter-

national Workshop on Web Content Caching and Distribution (WCW) (Sept. 2005),

pp. 97–103.

[8] Becchi, M.; Crowley, P. Dynamic thread assignment on heterogeneous multi-

processor architectures. In Computing frontiers (2006).

[9] Bertini, L.; Leite, J. C. B.; Mossé, D. Power optimization for dynamic config-

uration in heterogeneous web server clusters. Journal of Systems and Software 83, 4

(2010), 585 – 598.

[10] Bertossi, A. A.; Mancini, L. V. Scheduling algorithms for fault-tolerance in

hard-real-time systems. Real-Time Systems 7 (1994), 229–245.



BIBLIOGRAPHY 80

[11] Bianchini, R.; Rajamony, R. Power and energy management for server systems.

Computer 37, 11 (2004), 68–74.

[12] Bichler, M.; Setzer, T.; Speitkamp, B. Capacity planning for virtualized

servers. Workshop on Information Technologies and Systems (WITS), Milwaukee,

Wisconsin, USA (2006).

[13] Bilgir, O.; Martonosi, M.; ; Wu, Q. Exploring the potential of cmp core count

management on data center energy savings. In In Proceedings of the 3rd Workshop

on Energy Efficient Design (WEED) (2011).

[14] Blagodurov, S.; Fedorova, A. User-level scheduling on numa multicore systems

under linux. In Linux Symposium (2011).

[15] Blagodurov, S.; Zhuravlev, S.; Fedorova, A. Contention-aware scheduling

on multicore systems. ACM Trans. Comput. Syst. 28 (December 2010), 8:1–8:45.

[16] Brooks, D. M.; Bose, P.; Schuster, S. E.; Jacobson, H.; Kudva, P. N.;

Buyuktosunoglu, A.; Wellman, J.-D.; Zyuban, V.; Gupta, M.; Cook,

P. W. Power-aware microarchitecture: Design and modeling challenges for next-

generation microprocessors. IEEE Micro 20, 6 (Nov. 2000), 26–44.

[17] Chase, J. S.; Anderson, D. C.; Thakar, P. N.; Vahdat, A. M.; Doyle,

R. P. Managing energy and server resources in hosting centers. SIGOPS Oper. Syst.

Rev. 35, 5 (2001), 103–116.

[18] Cheng, B. H.; Giese, H.; Inverardi, P.; Magee, J.; de Lemos, R. 08031

– software engineering for self-adaptive systems: A research road map. In Software

Engineering for Self-Adaptive Systems (Dagstuhl, Germany, 2008), B. H. C. Cheng,

R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds., no. 08031 in Dagstuhl

Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[19] Cheng, S.-W. Rainbow: cost-effective software architecture-based self-adaptation.

PhD thesis, Pittsburgh, PA, USA, 2008. AAI3305807.

[20] Chitlur, N.; Srinivasa, G.; Hahn, S.; Gupta, P. K.; Reddy, D.; Koufaty,

D.; Brett, P.; Prabhakaran, A.; Zhao, L.; Ijih, N.; Subhaschandra, S.;

Grover, S.; Jiang, X.; Iyer, R. Quickia: Exploring heterogeneous architectures

on real prototypes. In IEEE 18th International Symposium on High-Performance

Computer Architecture (Washington, DC, USA, 2012), HPCA ’12, IEEE Computer

Society, pp. 1–8.

[21] Church, K.; Greenberg, A.; Hamilton, J. On delivering embarrassingly dis-

tributed cloud services. In HotNets (2008).



BIBLIOGRAPHY 81

[22] Dantzig, G. B.; Wolfe, P. Decomposition principle for linear programs. Opera-

tions research 8, 1 (1960), 101–111.

[23] Devi, U. C.; Anderson, J. H. Tardiness bounds under global edf scheduling on

a multiprocessor. Real-Time Syst. 38 (February 2008), 133–189.

[24] Dinda, P. A.; O’Hallaron, D. R. Host load prediction using linear models.

Cluster Computing 3, 4 (2000), 265–280.

[25] Electronic Educational Devices. Watts Up PRO.

http://www.wattsupmeters.com/, 2010.

[26] Elnozahy, E. N.; Kistler, M.; Rajamony, R. Energy-efficient server clusters.

In Proceedings of the 2nd international conference on Power-aware computer systems

(Berlin, Heidelberg, 2003), PACS’02, Springer-Verlag, pp. 179–197.

[27] Eranian, S. Perfmon2: a flexible performance monitoring interface for linux. In

Proceedings of the Linux Symposium (2006), pp. 269–287.

[28] Fan, X.; Weber, W.-D.; Barroso, L. A. Power provisioning for a warehouse-

sized computer. In ISCA ’07: Proceedings of the 34th annual international symposium

on Computer architecture (New York, NY, USA, 2007), ACM, pp. 13–23.

[29] Fedorova, A.; Saez, J. C.; Shelepov, D.; Prieto, M. Maximizing power

efficiency with asymmetric multicore systems. Commun. ACM 52 (December 2009).

[30] Ferdman, M.; Adileh, A.; Kocberber, O.; Volos, S.; Alisafaee, M.;

Jevdjic, D.; Kaynak, C.; Popescu, A. D.; Ailamaki, A.; Falsafi, B. Clear-

ing the clouds: a study of emerging scale-out workloads on modern hardware. In

Proceedings of the seventeenth international conference on Architectural Support for

Programming Languages and Operating Systems (New York, NY, USA, 2012), ASP-

LOS ’12, ACM, pp. 37–48.

[31] Filani, D.; He, J.; Gao, S.; Rajappa, M.; Kumar, A.; Shah, P.; Na-

gappan, R. Dynamic data center power management: Trends, issues, and solu-

tions. Intel Technology Journal. http://www.intel.com/technology/itj/2008/v12i1/6-

datacenter/1-abstract.htm (February 2008), 2008.

[32] Friesen, D. K.; Langston, M. A. Variable sized bin packing. SIAM J. Comput.

15, 1 (Feb. 1986), 222–230.

[33] Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C. Optimal power al-

location in server farms. In Proceedings of the eleventh international joint conference



BIBLIOGRAPHY 82

on Measurement and modeling of computer systems (New York, NY, USA, 2009),

SIGMETRICS ’09, ACM, pp. 157–168.

[34] Greenhalgh, P. Big.LITTLE processing with ARM CortexTM-A15 and Cortex-

A7. White Paper, 2011.

[35] Gupta, V.; Knauerhase, R.; Schwan, K. Attaining system performance points:

revisiting the end-to-end argument in system design for heterogeneous many-core

systems. SIGOPS Oper. Syst. Rev. 45 (February 2011).

[36] Gurobi Optimization Inc. Gurobi optimizer version 4.5.

http://www.gurobi.com/, 2011.

[37] Haletky, E. L. VMware ESX Server in the Enterprise: Planning and Securing

Virtualization Servers.

[38] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Wit-

ten, I. H. The weka data mining software: an update. SIGKDD Explor. Newsl. 11

(November 2009), 10–18.

[39] Hamilton, J. Energy proportional datacenter networks. http://perspectives.

mvdirona.com/2010/08/01/EnergyProportionalDatacenterNetworks.aspx,

2010.

[40] Hayes, B. Cloud computing. Commun. ACM 51, 7 (2008), 9–11.

[41] Heath, T.; Diniz, B.; Carrera, E. V.; Meira, Jr., W.; Bianchini, R.

Energy conservation in heterogeneous server clusters. In ACM SIGPLAN symposium

on Principles and practice of parallel programming (New York, NY, USA, 2005),

PPoPP ’05, ACM, pp. 186–195.

[42] Hennessy, J. L.; Patterson, D. A. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2006.

[43] Hoelzle, U.; Barroso, L. A. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines, 1st ed. Morgan and Claypool Publishers,

2009.

[44] Horvath, T.; Abdelzaher, T.; Skadron, K.; Liu, X. Dynamic voltage scal-

ing in multitier web servers with end-to-end delay control. IEEE Transactions on

Computers 56, 4 (2007), 444–458.

[45] ILOG, Inc. CPLEX, 2009. http://www.ilog.com/products/cplex/.

http://perspectives.mvdirona.com/2010/08/01/EnergyProportionalDatacenterNetworks.aspx
http://perspectives.mvdirona.com/2010/08/01/EnergyProportionalDatacenterNetworks.aspx


BIBLIOGRAPHY 83

[46] Intel Corp. Intel processor specifications. http://ark.intel.com/, 2011.

[47] Jaleel, A. Memory characterization of workloads using instrumentation-driven

simulation. http://www.glue.umd.edu/ ajaleel/workload/, 2011.

[48] Janapa Reddi, V.; Lee, B. C.; Chilimbi, T.; Vaid, K. Web search using mobile

cores: quantifying and mitigating the price of efficiency. In 37th annual International

Symposium on Computer Architecture (New York, NY, USA, 2010), ISCA ’10, ACM,

pp. 314–325.

[49] Joao, J. A.; Suleman, M. A.; Mutlu, O.; Patt, Y. N. Bottleneck identifica-

tion and scheduling in multithreaded applications. In Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages and

Operating Systems (New York, NY, USA, 2012), ASPLOS ’12, ACM, pp. 223–234.

[50] Kambadur, M.; Moseley, T.; Hank, R.; Kim, M. A. Measuring interference

between live datacenter applications. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis (Los Alamitos,

CA, USA, 2012), SC ’12, IEEE Computer Society Press, pp. 51:1–51:12.

[51] Kandasamy, N.; Abdelwahed, S.; Hayes, J. Self-optimization in computer

systems via on-line control: Application to power management. In International

Conference on Autonomic Computing (2004), pp. 54–61.

[52] Karmarkar, N. A new polynomial-time algorithm for linear programming. In

Proceedings of the sixteenth annual ACM symposium on Theory of computing (New

York, NY, USA, 1984), STOC ’84, ACM, pp. 302–311.

[53] Kephart, J. O.; Chess, D. M. The vision of autonomic computing. Computer

36, 1 (Jan. 2003), 41–50.

[54] Khanna, G.; Beaty, K.; Kar, G.; Kochut, A. Application performance man-

agement in virtualized server environments. 10th IEEE/IFIP Network Operations

and Management Symposium (0-0 2006), 373–381.

[55] Khargharia, B.; Hariri, S.; Yousif, M. S. Autonomic power and performance

management for computing systems. Cluster Computing 11, 2 (2008), 167–181.

[56] Kim, W.; Gupta, M. S.; Wei, G.-Y.; Brooks, D. System level analysis of fast,

per-core dvfs using on-chip switching regulators. In 14th International Conference

on High-Performance Computer Architecture (HPCA-14 2008), 16-20 February 2008,

Salt Lake City, UT, USA (2008), IEEE Computer Society, pp. 123–134.



BIBLIOGRAPHY 84

[57] Knauerhase, R.; Brett, P.; Hohlt, B.; Li, T.; Hahn, S. Using OS observa-

tions to improve performance in multicore systems. IEEE Micro 28 (May 2008).

[58] Koomey, J. G.; Berard, S.; Sanchez, M.; Wong, H. Implications of histor-

ical trends in the electrical efficiency of computing. IEEE Annals of the History of

Computing 33 (2011), 46–54.

[59] Koufaty, D.; Reddy, D.; Hahn, S. Bias scheduling in heterogeneous multi-core

architectures. In EuroSys’10.

[60] Kramer, H. H.; Petrucci, V.; Subramanian, A.; Uchoa, E. A column

generation approach for power-aware optimization of virtualized heterogeneous server

clusters. Computers & Industrial Engineering 63, 3 (2012), 652 – 662.

[61] Kumar, R.; Farkas, K. I.; Jouppi, N. P.; Ranganathan, P.; Tullsen,

D. M. Single-ISA heterogeneous multi-core architectures: The potential for processor

power reduction. In MICRO 36 (2003).

[62] Kumar, R.; Tullsen, D. M.; Jouppi, N. P. Core architecture optimization for

heterogeneous chip multiprocessors. In PACT (2006), pp. 23–32.

[63] Kusic, D.; Kephart, J. O.; Hanson, J. E.; Kandasamy, N.; Jiang, G. Power

and performance management of virtualized computing environments via lookahead

control. Cluster Computing 12, 1 (2009), 1–15.

[64] Le, K.; Bianchini, R.; Martonosi, M.; Nguyen, T. Cost-and Energy-Aware

Load Distribution Across Data Centers, 2009.

[65] Le, T. M. A study on linux kernel scheduler version 2.6.32. Available online: http:

//www.scribd.com/thangmle/d/24111564-Project-Linux-Scheduler-2-6-32.

[66] Le Sueur, E.; Heiser, G. Dynamic voltage and frequency scaling: the laws of

diminishing returns. In Proceedings of the 2010 international conference on Power

aware computing and systems (Berkeley, CA, USA, 2010), HotPower’10, USENIX

Association, pp. 1–8.

[67] Li, T.; Brett, P.; Knauerhase, R.; Koufaty, D.; Reddy, D.; Hahn, S. Op-

erating system support for overlapping-ISA heterogeneous multi-core architectures.

In HPCA’10.

[68] Liu, H. A measurement study of server utilization in public clouds. In 2011 IEEE

Ninth International Conference on Dependable, Autonomic and Secure Computing

(DASC) (Dec. 2011), pp. 435 –442.

http://www.scribd.com/thangmle/d/24111564-Project-Linux-Scheduler-2-6-32
http://www.scribd.com/thangmle/d/24111564-Project-Linux-Scheduler-2-6-32


BIBLIOGRAPHY 85

[69] Mars, J.; Tang, L.; Hundt, R.; Skadron, K.; Soffa, M. L. Bubble-up:

increasing utilization in modern warehouse scale computers via sensible co-locations.

In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture (New York, NY, USA, 2011), MICRO-44 ’11, ACM, pp. 248–259.

[70] Mars, J.; Tang, L.; Soffa, M. L. Directly characterizing cross core interference

through contention synthesis. In Proceedings of the 6th International Conference on

High Performance and Embedded Architectures and Compilers (New York, NY, USA,

2011), HiPEAC ’11, ACM, pp. 167–176.

[71] Mars, J.; Vachharajani, N.; Hundt, R.; Soffa, M. L. Contention aware

execution: online contention detection and response. In CGO ’10.

[72] Martello, S.; Toth, P. Knapsack problems: algorithms and computer implemen-

tations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[73] Masson, R.; Vidal, T.; Michallet, J.; Penna, P. H. V.; Petrucci, V.;

Subramanian, A.; Dubedout, H. An iterated local search heuristic for multi-

capacity bin packing and machine reassignment problems. Tech. Rep., CIRRELT-

2012-70 (Submitted for publication) (2012).

[74] McKinsey & Company. Revolutionizing data center efficiency.

http://uptimeinstitute.org, 2008.

[75] McVoy, L. W.; Staelin, C. lmbench: Portable tools for performance analysis.

In USENIX Annual Technical Conference (1996), pp. 279–294.

[76] Meisner, D.; Gold, B. T.; Wenisch, T. F. Powernap: eliminating server idle

power. In Proceedings of the 14th international conference on Architectural support

for programming languages and operating systems (New York, NY, USA, 2009), AS-

PLOS ’09, ACM, pp. 205–216.

[77] Mosberger, D.; Jin, T. httperf – a tool for measuring web server performance.

SIGMETRICS Perform. Eval. Rev. 26, 3 (1998), 31–37.

[78] New York Times. Power, pollution and the internet.

http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-

amounts-of-energy-belying-industry-image.html, 2012.

[79] OpenNebula. The open source toolkit for cloud computing.

http://opennebula.org/, 2010.



BIBLIOGRAPHY 86

[80] Petrucci, V.; Loques, O.; Mossé, D. Dynamic configuration support for power-

aware virtualized server clusters. In WIP Session of the 21th Euromicro Conference

on Real-Time Systems (2009).

[81] Petrucci, V.; Loques, O.; Mossé, D. Dynamic optimization of power and

performance for virtualized server clusters. In SAC ’10: Proceedings of the 2010 ACM

Symposium on Applied Computing (New York, NY, USA, 2010), ACM, pp. 263–264.

[82] Qureshi, A.; Weber, R.; Balakrishnan, H.; Guttag, J.; Maggs, B. Cutting

the Electric Bill for Internet-Scale Systems. In ACM SIGCOMM (Barcelona, Spain,

August 2009).

[83] Rangan, K. K.; Wei, G.-Y.; Brooks, D. Thread motion: fine-grained power

management for multi-core systems. In ISCA (2009), pp. 302–313.

[84] Ranganathan, P. Recipe for efficiency: principles of power-aware computing.

Commun. ACM 53, 4 (2010), 60–67.

[85] Rusu, C.; Ferreira, A.; Scordino, C.; Watson, A. Energy-efficient real-

time heterogeneous server clusters. In Proceedings of the 12th IEEE Real-Time and

Embedded Technology and Applications Symposium (Washington, DC, USA, 2006),

RTAS ’06, IEEE Computer Society, pp. 418–428.

[86] Saez, J. C.; Prieto, M.; Fedorova, A.; Blagodurov, S. A comprehensive

scheduler for asymmetric multicore systems. In EuroSys’10.

[87] Saez, J. C.; Shelepov, D.; Fedorova, A.; Prieto, M. Leveraging workload

diversity through os scheduling to maximize performance on single-isa heterogeneous

multicore systems. J. Parallel Distrib. Comput. 71, 1 (Jan. 2011), 114–131.

[88] Santana, C.; Leite, J.; Mosse, D. Load forecasting applied to soft real-time

web clusters. In ACM SAC (Sierre, Switzerland, March 2010).

[89] Sharma, V.; Thomas, A.; Abdelzaher, T.; Skadron, K.; Lu, Z. Power-

aware qos management in web servers. In The 24th IEEE International Real-Time

Systems Symposium (Washington, DC, USA, 2003), RTSS ’03, IEEE Computer So-

ciety, pp. 63–.

[90] Shelepov, D.; Saez Alcaide, J. C.; Jeffery, S.; Fedorova, A.; Perez, N.;

Huang, Z. F.; Blagodurov, S.; Kumar, V. HASS: a scheduler for heterogeneous

multicore systems. SIGOPS Oper. Syst. Rev. 43 (April 2009).



BIBLIOGRAPHY 87

[91] Srikantaiah, S.; Kansal, A.; Zhao, F. Energy aware consolidation for cloud

computing. In Proceedings of the 2008 conference on Power aware computing and

systems (Berkeley, CA, USA, 2008), HotPower’08, USENIX Association, pp. 10–10.

[92] Srinivasan, S.; Zhao, L.; Illikkal, R.; Iyer, R. Efficient interaction between os

and architecture in heterogeneous platforms. SIGOPS Oper. Syst. Rev. 45 (February

2011).

[93] Suleman, M. A.; Mutlu, O.; Qureshi, M. K.; Patt, Y. N. Accelerating

critical section execution with asymmetric multi-core architectures. In Proceedings of

the 14th international conference on Architectural support for programming languages

and operating systems (New York, NY, USA, 2009), ASPLOS ’09, ACM, pp. 253–264.

[94] The Apache Software Foundation. Apache HTTP server version 2.2.

http://httpd.apache.org/docs/2.2/, 2008.

[95] Verma, A.; Ahuja, P.; Neogi, A. pMapper: Power and migration cost aware

application placement in virtualized systems. In Middleware’08 (2008), pp. 243–264.

[96] Vidal, T.; Dubedout, H.; Masson, R.; Michallet, J.; Penna, P.;

Petrucci, V.; Subramanian, A. A hybrid large neighborhood and local search

for the machine reassignment problem. In 25th European Conference on Operations

Research (2012).

[97] Waldspurger, C. A.; Weihl, W. E. Lottery scheduling: flexible proportional-

share resource management. In Proceedings of the 1st USENIX conference on Op-

erating Systems Design and Implementation (Berkeley, CA, USA, 1994), OSDI ’94,

USENIX Association.

[98] Wang, Y.; Wang, X.; Chen, M.; Zhu, X. Power-efficient response time guar-

antees for virtualized enterprise servers. In Proceedings of the 2008 Real-Time Sys-

tems Symposium (Washington, DC, USA, 2008), RTSS ’08, IEEE Computer Society,

pp. 303–312.


	Introduction
	Problem statement
	Optimization framework
	The case of virtualized server cluster
	The case of heterogeneous multi-core systems
	Thesis contributions

	Optimized management of virtual heterogeneous servers
	Server cluster modeling
	Performance model
	Power consumption model
	Power/performance model validation

	Optimization for cluster management
	Optimization model
	Optimization control strategy
	Dynamic optimization support

	Implementation in a cluster testbed
	Server architecture
	Cluster QoS measurement and control
	Application workloads
	Load prediction
	Power and performance gains

	Scalability concerns
	Related work
	Summary

	Thread assignment optimization for heterogeneous multi-cores
	Optimized thread assignment
	Optimization problem
	Thread performance prediction
	Solution to the optimization problem

	Simulation methodology
	Thread execution behavior
	Core and memory system performance
	Simulator environment
	Estimating thread execution time

	Simulation results
	Energy-delay product
	Tardiness
	Memory contention analysis
	Scalability of optimization scheme

	Linux implementation
	Emulated heterogeneous core system
	Workload description and measurements
	Performance gains and energy savings
	Best and worst case analysis

	Related work
	Summary

	Proportional share scheduling for heterogeneous multi-cores
	Fairness in dynamic thread assignment
	Power/performance for heterogeneous cores
	Thread performance/bias characterization

	Lucky scheduling
	Energy efficiency metric
	Algorithm outline

	Results
	Workload description
	Energy efficiency and performance gains

	Related work
	Summary

	Conclusion and future directions
	Appendix A – Publications
	Bibliography

