
Universidade Federal Fluminense

Ricardo Campanha Carrano

Schedule-based asynchronous duty cycling with

Nested Block Designs

NITERÓI

2013

Universidade Federal Fluminense

Ricardo Campanha Carrano

Schedule-based asynchronous duty cycling with

Nested Block Designs

Tese de Doutorado submetida ao Programa
de Pós-Graduação em Computação da Uni-
versidade Federal Fluminense como requisito
parcial para a obtenção do t́ıtulo de Doutor
em Computação. Área de concentração: Re-
des e Sistemas Distribúıdos e Paralelos.

Orientador:

Prof. Célio Vinicius Neves de Albuquerque, Ph.D.

Co-orientador:

Prof. Luiz Claudio Schara Magalhães, Ph.D.

NITERÓI

2013

Schedule-based asynchronous duty cycling with Nested Block Designs

Ricardo Campanha Carrano

Tese de Doutorado submetida ao Programa

de Pós-Graduação em Computação da Uni-

versidade Federal Fluminense como requisito

parcial para a obtenção do t́ıtulo de Doutor

em Computação. Área de concentração: Re-

des e Sistemas Distribúıdos e Paralelos.

Aprovada por:

Prof. Dr. Célio Vińıcius Neves de Albuquerque / IC-UFF

(Orientador)

Prof. Dr. Luiz Claudio Schara Magalhães / TET-UFF

(Co-orientador)

Prof. Dr. Julius Leite / IC-UFF

Prof. Dr. Michael Anthony Stanton / IC-UFF

Profa. Dra. Luci Pirmez / NCE-UFRJ

Prof. Dr. Nelson Luis Saldanha da Fonseca / IC-Unicamp

Niterói, 23 de maio de 2013.

“Dilegua, o notte! Tramontate, stelle! Tramontate, stelle!

All’alba vincerò! Vincerò! Vincerò!”

— Giacomo Puccini, Giuseppe Adami and Renato Simoni, Turandot, Act III.

To my sweet Erika.

Agradecimentos

Começo agradecendo ao Professor Célio Albuquerque, por sua orientação constante,

fundamentada e positiva. Como seu orientado, estive sempre bem acompanhado e ampa-

rado.

Ao Professor Claudio Schara, agradeço pelo imenso incentivo. Esta tese é, em boa

medida, o fruto de sua visão presciente de uma carreira acadêmica que parecia improvável.

A todos no Laboratório Mı́diaCom, representados na pessoa sempre amável da Pro-

fessora Débora Saade, muitos agradecimentos são devidos. E são particularmente devidos

à Sra. Marister Outão, pelo carinho e constância com que ajuda a todos.

Um agradecimento especial, que reforça o de numeroso coro de colegas, é devido a

Diego Passos, colaborador brilhante e generoso.

No âmbito pessoal, a gratidão a meus pais, Jorge e Wanda, não cabem no papel. A

valorização do trabalho e do estudo, e todos os outros exemplos inestimáveis, foram e

serão sempre fundamentais.

Finalmente, e principalmente, meus agradecimentos eternos a minha querida Erika,

que enriquece e alegra minha existência, diariamente.

Resumo

Nos ciclos de trabalho asśıncronos baseados em padrões de escalonamento, os nós de uma

rede ativam e desativam suas interfaces de rádio, de acordo com um padrão especial de

atividade, que garante que esses mesmos nós terão intervalos de tempos de atividade em

comum, independente de seus desvios de sincronização. Quando comparada aos métodos

śıncronos, esta abordagem tem a vantagem de ser simples de implementar, eliminando

a necessidade de protocolos de sincronização, cálculos complexos ou hardware adicional.

No entanto, entre as propostas já publicadas, não há um padrão de escalonamento que

resulte na menor latência para todos os cenários, quando consideradas a simetria dos ciclos

de trabalho, a probabilidade de entrega dos quadros, ou a própria taxa de atividade do

ciclo de trabalho. Após estudar em detalhes e modelar o comportamento dos mecanismos

baseados em padrões de escalonamento, esta tese propõe o uso de configurações de bloco

aninhadas — um novo padrão de escalonamento, que estende o uso dos esquemas baseados

em configurações de bloco para aplicações onde estes não poderiam ser utilizados, ou o

seriam de forma ineficiente. As configurações de bloco aninhadas apresentam a menor

latência entre todos os padrões de escalonamento conhecidos em uma ampla gama de

cenários, conforme demonstrado por modelos anaĺıticos e implementações em dispositivos

sensores reais.

Abstract

In schedule-based asynchronous duty cycling, nodes activate and deactivate their radio

interfaces according to a specially designed wakeup schedule, which guarantees overlapping

active time between nodes, irrespective of their synchronization offsets. When compared

to synchronous duty cycling, such an approach has the advantage of being simple to

implement, eliminating the need for synchronization protocols, complex computations

or extra hardware. However, among published proposals, there is no single schedule-

based mechanism that provides the lowest latency in all scenarios, when considering duty

cycling symmetry, frame delivery probability and duty cycle rate. This thesis presents an

in-depth analysis and modelling of schedule-based mechanisms and proposes Nested Block

Designs, a new schedule that extends the use of block designs to application scenarios for

which they were not possible or not as efficient to implement as other schedules. Nested

block designs provide the lowest latency among known schedule-based asynchronous duty

cycling mechanisms for a wide range of applications, as confirmed by analytical models

and real implementations on WSN motes.

Keywords

1. Duty cycling

2. Schedule design

3. Latency modelling

4. Wireless networks

5. Wireless Sensor Networks

6. Block designs

Abbreviations

AM : Amplitude Modulation

DC : Duty Cycle

GPS : Global Positioning System

LCM : Least Common Multiple

LEACH : Low-Energy Adaptive Clustering Hierarchy

LPL : Low Power Listening

LPP : Low Power Probing

MAC : Media Access Control

NAMA : Node Activation Multiple Access

NDT : Neighbor Discovery Time

RAW : Random Asynchronous Wakeup Protocol

RFID : Radio Frequency Identification

S-MAC : Sensor-MAC

STEM : Sparse Topology and Energy Management

TDMA : Time Division Multiple Access

T-MAC : Timeout-MAC

TRAMA : Traffic-Adaptive MAC protocol

WSN : Wireless Sensor Network

Contents

List of Figures xxi

List of Tables xxiii

1 Introduction 1

1.1 Contributions of this thesis . 2

1.2 How this thesis is organized . 2

2 Duty cycling 5

2.1 The challenge of duty cycling . 6

2.2 Duty cycling taxonomy . 7

2.2.1 Synchronous Schemes . 8

2.2.1.1 Rendezvous or Strictly Synchronous Schemes 9

2.2.1.2 Skewed/Staggered Schemes 10

2.2.2 Semi-Synchronous Schemes . 11

2.2.2.1 Spontaneous Clustering 12

2.2.2.2 Elected Cluster-head . 13

2.2.3 Asynchronous Schemes . 14

2.2.3.1 Preamble Sampling . 15

2.2.3.2 Receiver-Initiated . 15

2.2.3.3 On-demand wakeup . 16

2.2.3.4 Random duty cycling . 17

2.2.3.5 Schedule-based . 18

xviii Contents

3 Schedule-based asynchronous duty cycling 19

3.1 Schedules, co-schedules and other definitions 20

3.2 A method for finding the NDT of asynchronous schedule-based mechanisms 26

3.2.1 Discussion . 30

3.3 Quorum Systems . 31

3.3.1 Grid Quorum . 31

3.3.2 Torus Quorum . 33

3.3.3 Discussion . 34

3.3.3.1 Impact of active slots selection 34

3.3.3.2 Torus versus Grid . 37

3.4 Prime numbers-based mechanisms . 38

3.4.1 Discussion . 40

3.5 Block Designs . 42

3.5.1 Discussion . 45

3.5.1.1 Qualitative understanding of the NDT in Block Designs . 45

3.5.1.2 Projective Planes versus (other) Block Designs 46

3.6 Why a new schedule? . 48

3.6.1 Closed-form expressions for the E[NDT] 49

3.6.1.1 Closed-form expression for the E[NDT] of Block Designs . 49

3.6.1.2 Closed-form expression for the E[NDT] of Grid 51

3.6.1.3 Closed-form expression for the E[NDT] of Torus 52

3.6.1.4 Closed-form expression for the E[NDT] of Disco 52

3.6.2 Comparisons and the relative-latency metric 54

3.6.3 The need for a new schedule . 57

4 Nested Block Designs 61

4.1 Design choices . 62

Contents xix

4.1.1 Inner design rotation . 63

4.1.2 Nesting order . 63

4.2 NDT is comparable to Block Designs . 65

4.2.1 Closed-form expression for the NDT of Nested Block Designs 67

4.3 Duty cycle may be arbitrarily low . 68

4.4 Duty cycle granularity is significantly improved 69

4.5 Asymmetric operation is possible . 70

4.6 Implementing Nested Block Designs . 72

4.6.1 Symmetric operation . 73

4.6.2 Asymmetric operation . 74

4.7 Nested Block Designs and other schedules 74

5 Conclusion and Future Directions 77

5.1 Future directions . 78

Appendix A -- Computation of the NDT 81

Appendix B -- Closed-form approximative expressions for the NDT of monotonic

schemes 83

B.1 Block Design schemes . 83

B.2 Grid schemes . 84

B.3 Torus schemes . 86

B.4 Disco schemes . 88

B.4.1 Case 1: θ is a Multiple of q1 but not of q2 89

B.4.2 Case 2: θ is a Multiple of q2 but not of q1 90

B.4.3 Case 3: θ is not a Multiple of either q1 or q2 90

B.4.4 Case 4: θ is 0 . 93

B.4.5 Averaging the Cases . 93

xx Contents

B.5 Nested Block Designs . 94

Appendix C -- Nested Block Designs: A closer look at the NDT 97

References 101

List of Figures

2.1 The proposed taxonomy for duty cycling techniques. 8

2.2 Synchronous Schemes. 9

2.3 Semi-synchronous Schemes. 12

2.4 Asynchronous Schemes. 14

3.1 An example of a wakeup schedule. 19

3.2 Slot border alignment. 22

3.3 An example of a co-schedule and its delta-set and Phi-coefficients. 28

3.4 Two nodes operating under a 4× 4 Grid Quorum. 32

3.5 Two nodes operating under a 4× 4 Torus Quorum. 33

3.6 Equivalent and non-equivalent schedules for Grid and Torus schedules. . . 35

3.7 Best and worst columns in Grid. 35

3.8 The NDT for three Torus schedules of same dimension. 37

3.9 Torus versus Grid: comparing NDT. 38

3.10 Two nodes operating under Disco. 40

3.11 NDT for 15 Disco schedules of same approximate duty cycle. 41

3.12 Difference in NDT as unbalancing level increases in Disco. 42

3.13 Example of a Block Design . 43

3.14 The behavior of the NDT in Block Designs. 47

3.15 NDT and duty cycle for known Block Designs. 47

3.16 The NDT of Projective Planes and other Block Designs 48

3.17 Gap for the closed-form expression for the NDT of Block Designs. 51

3.18 Gap for the closed-form expression for the NDT of Grid. 52

xxii List of Figures

3.19 Gap for the closed-form expression for the NDT of Torus. 53

3.20 Gap for the closed-form expression for the NDT of Disco. 54

3.21 Comparison with relative-latency metric. 55

3.22 Comparison between the four mechanisms. 57

3.23 Experimental NDT in real sensor motes. 58

3.24 A comparison between our proposed models and current literature. 58

3.25 Decision Tree for schedule-based mechanisms. 59

4.1 An example of a Nested Block Design. 61

4.2 Rotations of the inner schedule and the NDT. 64

4.3 Nesting order and the NDT. 65

4.4 Comparing the NDT of Nested Block Designs and Block Designs 66

4.5 Comparing the NDT of Nested Block Designs and other schedules. 67

4.6 Gap for the closed-form expression for the NDT of Nested schedules. . . . 69

4.7 Nested schedules from Projective Planes. 70

4.8 A Nested Block Design for asynchronous operation. 71

4.9 Asymmetric operation with Nested Block Designs. 72

4.10 New Decision Tree . 75

B.1 Example of the parameters used in the proof. 84

B.2 Sum of the times until the first and the ith opportunity 85

B.3 Possible co-schedules for a Disco (2,5) monotonic scheme. 89

B.4 Possible values of e1 as θB varies. 96

List of Tables

2.1 Popular WSN motes hardware (from manufacturers data sheets) 6

2.2 Duty cycling downsides and their causes 7

3.1 Summary of the main properties of Grid schedules. 32

3.2 Summary of the main properties of Torus schedules. 34

3.3 Summary of the main properties of Disco. 40

3.4 Summary of the main properties of Block Design schedules. 43

3.5 Examples of Block Designs with their forming sets and duty cycles. 44

3.6 Block Designs with λ = 1 (Projective Planes). 45

3.7 Block Designs with λ > 1 . 46

3.8 Three special cases derived from the model. 50

3.9 Power-latency product as it appears in the literature. 54

3.10 The relative-latency metric. 55

3.11 Synoptic table — comparing Block Designs, Grid, Torus and Disco. 57

4.1 The granularity of Nested Block Designs. 70

4.2 Implementation of Nested Designs on sensor motes (p = 1.0). 73

4.3 Implementation of Nested Designs on sensor motes (p = 0.8). 74

4.4 Implementation of Nested Designs on sensor motes: asymmetric operation . 75

B.1 Values of constants a . . . g on Equation B.5. 85

B.2 Values of constants a . . . f on Equation B.10. 87

B.3 Values of constants a . . . f on Equation B.13. 87

Chapter 1

Introduction

As an engineering practice, duty cycling has long been used in a wide variety of devices to

save energy and extend the lifetime of equipments, such as air-conditioning, pumps and

electric motors [1]. Its application to the radio of wireless communicating devices devel-

oped in tandem with the popularization of mobile telephony and mobile computing. Such

battery-operated devices are severely power constrained, and their radio interface, which

is seldom used continuously, accounts for a great part of its power consumption [2], [3].

Therefore, duty cycling is a fundamental mechanism in most wireless networks and

a necessity if nodes are required to operate for more than a few days before recharging

the battery — a typical requirement of Wireless Sensor Networks (WSNs). In fact, duty

cycling mechanisms have been proposed for most categories of multi-hop wireless networks,

but it was taken to its state-of-the-art by the demands of WSNs. Sensor nodes (motes)

need to be small and inexpensive, while the application data they have to transmit is often

just a few bytes per second or even per day. This combination calls for small batteries

and favors duty cycling.

Duty cycling mechanisms comes in many forms and impose different requirements.

There is, however, a category of duty cycling in which nodes are not required to run

synchronization protocols or to rely on additional hardware (as GPS or extra precision

clocks). This is the category of the schedule-based asynchronous duty cycling. All that is

required from the nodes is that they activate and deactivate their radios according to a

periodic and fixed schedule, with no regard whatsoever to the synchronization offsets to

their neighbors. This category also does not require any modification to MAC or physical

layers and pose no extra burden to the limited computation, memory or storage of the

minute devices that populate WSNs. The only downside is the longer latency due to sleep

waiting, that happens because nodes need to wait for their neighbors to become active.

2 1 Introduction

A comparison between current proposals of schedule-based asynchronous duty cycling

mechanisms establishes no clear winner. Each mechanism could be a better choice, de-

pending on the average quality of links, the target duty cycle, the tolerable latency, or

the capability to change to lower or higher duty cycles, if necessary, i.e. asymmetric

operation. With Nested Block Designs schedules, we propose a mechanism that can, as

demonstrated, outperform current alternatives in any of these metrics.

1.1 Contributions of this thesis

The two main contributions of this thesis are:

1. A method for finding the neighbor discovery time (NDT) for any asynchronous

schedule-based mechanism. This method is the first in literature to include link

quality as a parameter and also the first to yield exact calculation of the expected

NDT (pre-existing models are grossly inaccurate). Moreover, the proposed method

unveils important aspects on the design of asynchronous schedules and helps ad-

dressing open questions on each of the studied mechanisms, making for a cluster of

additional contributions.

2. Nested Block Design schedules, which are based on Block Designs, and address

their limitations. Nested Block Designs are capable of achieving arbitrarily low

duty cycles and of asymmetric operation. They also result in NDT near the optimal

NDT of Block Designs, and significantly shorter than that of other schedules.

Other contributions include closed-form expressions for the NDT of all studied mech-

anisms, that facilitate general conclusions and comparisons among them, and also permit

the creation of a new metric for the assessment of schedules — the relative-latency metric.

Finally, a more detailed taxonomy of duty cycling mechanisms followed by a comprehen-

sive study and characterization of the schedule-based asynchronous category are also

among our contributions.

1.2 How this thesis is organized

The rest of this thesis is organized as follows:

• Chapter 2 discusses duty cycling and presents the most prominent proposals orga-

nized into a two-level taxonomy.

1.2 How this thesis is organized 3

• Chapter 3 provides a comprehensive analysis of the mechanisms in the category

of schedule-based asynchronous duty cycling. It includes our method and close-

form models for the expected NDT, and ends with the relative-latency metric and

comparisons between the proposals.

• Chapter 4 is dedicated to Nested Block Design schedules. After their description

and discussion on how they should be designed, each of their features is presented.

Test results, including implementation on sensor motes, close the chapter.

• Chapter 5 presents our conclusions and future directions.

• Appendix A presents an example of source code that implements our exact method

to compute the NDT for any asynchronous schedule.

• Appendix B demonstrates how each of the contributed closed-form expressions for

the NDT, presented for all studied schedules, was obtained.

• Appendix C provides additional detail on the analysis of the NDT of Nested Block

Designs, useful for some of the suggested future work.

Chapter 2

Duty cycling

The primary objective of duty cycling in WSNs is to reduce the energy consumption of

motes and to increase the overall network longevity as a consequence. More specifically,

duty cycling aims at reducing idle listening, i.e. having the radio transceiver waiting in

vain for a frame. The difficulty of keeping the radio on only when necessary is that, for

most applications, motes do not know beforehand when data is coming.

Idle listening is not the only source of energy waste. Overhearing (when a node wastes

power in listening to uninteresting frames), control packet overhead and collisions also

waste power. These causes are important to identify since, while attempting to reduce

idle listening, duty cycling can increase the collision rates and introduce more control

traffic — side effects that can increase the very energy consumption duty cycling is trying

to reduce.

Given the current state of the art in batteries, low power solid state technology and

radios, duty cycling is a necessity. As an example, a TI CC2420 radio (found in many

models of motes) will deplete two size AA batteries in four days of continuous activity [4].

Hence, in order to operate for one year, it should operate on a duty cycle of approximately

1%. Table 2.1 presents the current drain of typical modern radios found in sensor motes,

and shows that idle listening will drain as much as tens to thousands times the current

consumed during the sleeping state. Data on power consumption of microcontrollers

commonly found in motes are also found in Table 2.1. Generally, the microprocessor

accounts for the second highest energy consumption of a mote and, as seen in the table,

active radios consume at least twice as much power as active CPUs (except for the Imote2).

6 2 Duty cycling

Table 2.1: Popular WSN motes hardware (from manufacturers data sheets)

Mote RADIO CPU Power Source
Model current drain Model current drain

sleep ∗ idle † active (TX/RX) ‡ sleep active
Mica2 TI CC1000 0.2 to 1µA 0.030 to 0.105 mA 10 to 27mA ATmega128L 15µA 8mA 2xAA batteries
Mica2dot TI CC1000 0.2 to 1µA 0.030 to 0.105 mA 10 to 27mA ATmega128L 15µA 8mA 3V coin cell
MicaZ TI CC2420 20µA 0.426 mA 11 to 20mA ATmega128L 15µA 8mA 2xAA batteries
TelosB TI CC2420 20µA 0.426 mA 11 to 20mA TI MSP430 5.1µA 1.8mA 2xAA batteries
Imote2 TI CC2420 20µA 0.426 mA 11 to 20mA Marvell PXA271 390µA 66mA 3xAAA batteries
Iris Atmel AT86RF230 0.02µA 1.5 mA 10 to 17mA ATmega1281 8µA 8mA 2xAA batteries
∗ Under sleep state, the voltage regulator is powered up but the crystal oscillator is not enabled. For CC1000 and CC2420, this corresponds to the PD
(Power Down) state. For AT86RF230, this state is called SLEEP state.
† For our purposes, a transition from sleep to idle is finished when the crystal oscillator is enabled. In the resulting idle state, the radio is ready for a transition
either to receiving or transmitting states, or back to sleep. This idle state is called IDLE in CC2420 documentation and TRX OFF in AT86RF230’s. It
has no specific name for CC1000.
‡ Current drain during transmission depends on transmission power and, for CC1000, also on the frequency used (433 or 868 MHz). Current drain during
frame reception is typically of the same order of the transmission states.

2.1 The challenge of duty cycling

Duty cycling is currently a major trend in the design of Wireless Sensor Networks (WSNs),

but it is also still an evolving research area. Designers aim at very low duty cycles (< 1%,

meaning that the radio will be active less than 1% of the time), but to achieve that they

will have to compromise on other network performance goals. Also, sensor applications

have diverse requirements in terms of end-to-end delay, throughput or robustness, and the

duty cycling mechanism employed for one scenario may not work efficiently in another.

The downsides of duty cycling are summarized in Table 2.2 and briefly discussed next.

End-to-end message delay — Data traversing a duty cycling multi-hop network will

occasionally have to wait for the next hop to wake up. This is called sleep waiting and

may add significantly to end-to-end latency. Some applications will not be able to cope

with that. Surveillance applications, for instance, need guarantees that a given event will

be communicated timely. In fact, for hard real time applications the problem is not only

the added delay but also the nondeterministic way in which that delay occurs (for more

information on Real-Time MAC protocols for WSNs the reader is referred to [5]).

Collision rates — Another side effect of duty cycling is the shortening of transmission

and reception time windows. If a contention-based medium access control (MAC) protocol

is used, these smaller time windows will increase the probability of collisions. If TDMA

is used instead, a better synchronization will be required and synchronization means an

increase in control traffic, which costs energy to transmit.

Control packet overhead — Duty cycling may need extra control traffic. The most

common source of this overhead is synchronization. Fine-grained synchronization requires

frequent resynchronization to deal with clock skews. Designers must check if the added

power drain caused by the extra control traffic overhead is compensated by the savings

2.2 Duty cycling taxonomy 7

Table 2.2: Duty cycling downsides and their causes

ISSUE CAUSE
Increase in end-to-end message delay Sleep waiting — nodes have to wait other nodes to become active
Increase in collision rates Transmissions are concentrated in shorter intervals
Control packet overhead Duty cycling may require control messages, particularly when synchronization is needed

from duty cycling.

Notwithstanding these shortcomings, duty cycling may be the most important of all

the “green” techniques. It is the most effective [3] and may be implemented in conjunction

with other techniques as power control or energy aware routing, to cite two. It is also

thoroughly implemented in WSNs, being included in the two main operating systems for

WSNs: TinyOS [6] and Contiki [7].

2.2 Duty cycling taxonomy

Many different proposals of duty cycling mechanisms have emerged during the last decade

and new ones are still being published. The usual way to classify them is in accordance

with the synchronization between nodes. However, simply dividing the proposals into

synchronous and asynchronous is not sufficient to provide enough understanding of the

relevant literature. Two given asynchronous mechanisms may be extremely different in as-

pects such as topology dependency or network density requirements, resulting in different

end-to-end delay or reliability, for example. In, this section, we organize the most im-

portant proposals into a taxonomy that starts on their synchronization requirements and

adds another level, in order to provide useful insights into the strengths and weaknesses

of the many mechanisms. The last category presented, the schedule-based asynchronous

duty cycling will deserve a more detailed analysis, since nested block designs, our proposed

mechanism, is a representative of this category. Therefore, schedule-based asynchronous

duty cycling will be quickly introduced here and thoroughly studied in Chapter 3.

The content presented here differs from other published surveys in that it is neither

concerned with the whole spectrum of techniques for energy conservation (as in [8], [3]

and [9]), nor is it focused solely on some specific category of duty cycling (as in [10])

or application scenario (as in [5]). It is also more comprehensive than [11] and [12].

Our taxonomy organizes proposals in more categories and subcategories than any other

taxonomy of our knowledge, henceforth providing a more detailed analysis of duty cycling

proposal features.

Duty cycling schemes are usually classified into synchronous and asynchronous in

8 2 Duty cycling

Figure 2.1: The proposed taxonomy for duty cycling techniques.

relation to the mechanism used to coordinate motes’ schedules. Synchronous schemes are

those where nodes are time synchronized, although the degree of synchronization varies

greatly. In asynchronous methods, nodes are not required to keep a common clock.

Since pair-wise synchronization is easier to achieve than global synchronization [13], it

makes sense to group neighbors into synchronized clusters and have the clusters interact

with each other asynchronously, resulting in a semi-synchronous scheme (also called hybrid

or semi-asynchronous). This taxonomy is summarized in Figure 2.1 and discussed in the

following subsections.

2.2.1 Synchronous Schemes

In this category of duty cycling, nodes are supposed to keep common time references.

This does not necessarily mean that they agree on a universal wall time, but it will imply

the exchange of synchronization information to achieve and to keep the necessary degree

of synchronization throughout the network. In this proposed taxonomy, synchronous

mechanisms will fall into the rendezvous (or strictly synchronous) or the skewed/staggered

approaches. Figure 2.2 summarizes the synchronous category.

2.2 Duty cycling taxonomy 9

Figure 2.2: Synchronous Schemes.

2.2.1.1 Rendezvous or Strictly Synchronous Schemes

Clearly, the most intuitive synchronous scheme is the global rendezvous scheme, where

all nodes will turn their radios on and off at the same time. In a multi-hop environment,

nevertheless, global rendezvous is hard to achieve since pair-wise synchronization errors

tend to accumulate. Moreover, even between neighbors, strict synchronization is not easy

to attain and, in general, schemes must cope with a certain degree of synchronization

error. In order to keep the synchronization error tolerable, the use of synchronization

protocols and occasionally of extra hardware is a prerequisite to many proposals. Either

way, guard times are usually necessary, i.e. nodes will turn their radio on slightly before

the reference time.

Most of the duty cycling proposals are actually designed to be incorporated into new

MAC layers [2, 14]. MAC layers can be categorized into TDMA (Time Division Medium

Access), also called contention-free, where time is divided into slots assigned to different

nodes and contention-based where nodes contend for the medium, generally by listening

before transmitting (carrier sensing).

RT-Link [15] is a TDMA-based link layer protocol designed to run on FireFly Sensor

Nodes [16] which incorporate a GPS receiver for clock synchronization and, optionally, an

AM receiver to listen to WWVB radio clock broadcasts [17] for indoor nodes. Such extra

hardware will add to cost and power consumption of motes.

Another TDMA-based mechanism, TRAMA (Traffic-Adaptive MAC protocol) [18]

intends to save energy by eliminating collisions and also by putting in sleep mode nodes

that will not participate in the communication (as transmitters or receivers). It is assumed

that global time synchronization is addressed by other mechanisms. As most of the

TDMA-based approaches, both TRAMA and RT-Link include contention-based slots for

node admission.

TRAMA resembles the early NAMA (Node Activation Multiple Access) [19] as it uses

10 2 Duty cycling

a distributed election mechanism to assign time slots to nodes, avoiding collisions, but

the latter was not proposed with energy savings in mind. It has been pointed out in [11]

that TRAMA will result in duty cycling of at least 12.5% — high by current standards.

If application data is predictable, then data-flow information can be used as a basis

for node scheduling. This is the idea behind µ-MAC [20], another TDMA-based ap-

proach. However, as pointed out in [21], µ-MAC requires long contention-based slots,

strict synchronization and it is not resilient to topology changes.

If global time synchronization is available, rendezvous schemes may be advantageous,

because of their high capability to coordinate transmissions, reducing idle listening and

collisions at the same time. Rendezvous schemes are also inherently good for broadcast

traffic. On the other hand, global synchronization is rarely available, and usually depends

on extra hardware and/or significant amounts of control messages.

2.2.1.2 Skewed/Staggered Schemes

Interestingly, rendezvous schemes are not necessarily the optimal solution in terms of min-

imizing end-to-end delay. It has been observed that when a frame traverses the network

hop by hop, from a sensor node to a sink, it may suffer what the authors of [22] called the

Data Forwarding Interruption Problem. This happens when the data-flow is interrupted

because an upstream node, unaware that a frame is due to come, goes to sleep before it

arrives. This is, in fact, a special case of the aforementioned sleep waiting.

In order to solve the Data Forwarding Interruption Problem and reduce sleep waiting,

staggered or skewed schemes have been proposed. In [22, 23, 24, 25, 26] a topology tree

is formed, rooted at the sink node, and each node will schedule its wakeup in a ladder

pattern, according to its depth in the topology tree.

One of the first uses of such scheme was DMAC [22]. Besides offsetting the nodes

according to its hop count to the sink node, DMAC is also an adaptive mechanism in that

the number of active slots will vary with the traffic load offered to a node. The authors

of PELLMAC [23] suggested that DMAC suffers from intense interference, since nodes at

the same offset (at the same hop distance from the sink) would contend for the medium

at the same time. Therefore they proposed the use of different schedules for different

branches on the topology tree. Assigning nodes to such branch trees however adds extra

complexity, book-keeping and additional control traffic. Another enhancement to DMAC

is LEEMAC [24], but this mechanism is focused on improving the adaptation to traffic of

2.2 Duty cycling taxonomy 11

DMAC, considered inefficient by the authors.

The expression staggered schemes is used in reference to other differentiation mecha-

nisms for the wakeup scheduling. In [27] a graph coloring mechanism is proposed in which

nodes schedule wakeups according to their assigned colors. A protocol would guarantee

that a node always has at least one neighbor operating under the same color (or sched-

ule). Although the authors call their mechanism Asynchronous Wakeup Schedule, it is

debatable whether the scheme is actually asynchronous since it relies and depends upon

an external synchronization protocol.

More recently [25] and [26] include proposals for a third generation of staggered syn-

chronization mechanisms. Avoiding collisions was again the main concern in SPEED-

MAC [25], but this time the idea is the introduction of a signalling period used to notify

the occurrence of an event and prepare nodes downstream to forward the incoming data.

The signalling would also be used as a collision detection mechanism — an unusual feature

in wireless networks — in which nodes would be able to detect and notify collisions based

on the difference between signal strength and background noise. The authors show their

collision detection mechanism would be effective 95% of the time, but their experiments

were performed in a very specific and controlled environment.

CUPID [26] proposes a bidirectional ladder scheme, pointing out that upstream traffic

from nodes to sink (convergecast traffic) is not necessarily the only traffic pattern present

in a WSN and a unidirectional ladder would not be a good fit for downstream traffic

(configuration traffic).

Staggered or skewed schemes are topology-dependent and rely on topology discov-

ery and maintenance. Some assumptions may not hold over a wide range of scenarios.

PELLMAC, for instance, relies on disjoint paths and SPEED-MAC on a collision detec-

tion mechanism. They are also dependent on synchronization between nodes and may

require guard times but, as most proposals in this category are contention-based, the

synchronization requirement is less strict than that of rendezvous proposals.

2.2.2 Semi-Synchronous Schemes

In semi-synchronous proposals, summarized in Figure 2.3, neighbors are grouped into syn-

chronized clusters and clusters interact with each other asynchronously. These schemes try

to take the best of synchronous and asynchronous mechanisms. As mentioned, the main

advantage of clustering is that synchronization between neighbors is easier to achieve than

12 2 Duty cycling

Figure 2.3: Semi-synchronous Schemes.

global synchronization. On the other hand, cluster maintenance may need election mecha-

nisms [28], [29] that require control traffic and may also be inadequate for dynamic topolo-

gies. However, there are also schemes that will form clusters spontaneously [30, 31, 32] as

a consequence of synchronization among neighbors. In this proposed taxonomy, cluster

coordination will be used to further categorize semi-synchronous schemes. Spontaneous

clustering will refer to mechanisms where nodes coordinate themselves without the need of

a cluster-head, while Elected Cluster-heads will include the mechanisms where one of the

nodes in each cluster (the cluster-head) receives the special assignment of (temporarily,

in most cases) coordinating cluster activity.

2.2.2.1 Spontaneous Clustering

The most seminal of the spontaneous cluster-forming proposals was S-MAC (Sensor-

MAC [30]). S-MAC was inspired by PAMAS [33] and is a contention-based mechanism

often used as an example of a synchronous mechanism, though it does not try to achieve

global synchronization, and also does not require strict synchronization.

In S-MAC nodes form loosely synchronized virtual clusters. Synchronization is consid-

ered loose since it is performed solely with the exchange of timestamps between neighbors.

Because S-MAC slot resolution is in the order of 0.5 seconds, synchronization requirements

are less strict than in the proposals discussed so far. The virtual clusters form sponta-

neously as each node broadcasts its schedule to the neighbors. If node B listens to node A’s

schedule before deciding on its own, B becomes a follower of A, meaning that B adopts

the schedule of A. If node B receives a different schedule after that it will adopt both

schedules, i.e. nodes that participate in more than one neighborhood will have to follow

schedules for all its neighborhoods, a feature frequently criticized as energy inefficient.

2.2 Duty cycling taxonomy 13

Though influential, S-MAC may be considered outdated — its fixed and long (hun-

dreds of milliseconds) sleep and listen periods and the overall high duty cycling (about

20%, typically) falls short of the current needs. Moreover, nodes are required to keep

track of synchronization information of neighbors, and sleep waiting is considerably high

when a frame traverses different clusters.

T-MAC (Timeout-MAC [31]) was proposed as an improvement over S-MAC. It adds

an adaptive edge to it, by making nodes switch off dynamically whenever traffic activity

in the neighborhood ceases. The resulting scheme is more energy efficient but sacrifices

listen synchronization among members of a virtual cluster, resulting in the early sleep

problem (a node goes to sleep when a neighbor still has traffic for it), identified and

addressed by the authors at the cost of added complexity. DSMAC [32] is also based on

SMAC but its main objective is to reduce the latency imposed by the long sleep intervals

of the latter. To achieve that, DSMAC proposes an adaptive mechanism that shortens

the sleep interval as traffic increases.

2.2.2.2 Elected Cluster-head

LEACH (Low-Energy Adaptive Clustering Hierarchy [28]) is a pioneer clustering-based

protocol in which cluster-heads are randomly rotated to guarantee energy consumption

fairness. A cluster-head will coordinate the activity of the cluster members and perform

traffic aggregation to improve energy saving. In LEACH, cluster-heads are assumed to

be one hop away from the sink, and hence capable of direct transmission. However, this

assumption poses a limit to network scalability.

Many of the proposals in this subcategory are improvements over LEACH, such as

multihop-LEACH [34], that introduces multi-hop communications between the cluster-

head and the sink, and Energy-LEACH, also proposed in [34], that advocates that the

selection of cluster-head should take the residual energy of candidate nodes into account.

Cluster forming in election-based mechanisms may be complex and result in significant

control traffic. Position-based clustering propositions, such as GAF [29], may simplify

cluster-forming by the use of a coordinate system as the one provided by a GPS device.

GAF was not specifically designed for WSNs but the concept still applies — the sensor-

covered area is divided into quadrants and each node will know its quadrant based on

GPS readings. The problem of head election, though, is still present and a protocol is

needed to solve it. Clearly, GPS will add cost and energy consumption, and is not feasible

in indoor deployments.

14 2 Duty cycling

Figure 2.4: Asynchronous Schemes.

Challenges in this subcategory include finding efficient cluster-head election and intra-

cluster coordination mechanisms, as well as efficient ways for inter-cluster traffic relaying.

These issues, along with the presentation of other cluster-based routing protocols for

WSNs are discussed in [10]. In terms of duty cycling, elected cluster-head proposals

tend to adopt a form of TDMA for intra-cluster communications, suggesting the use

of rendezvous schemes in which nodes synchronize their duty cycles with the schedule

of their cluster-heads. However, inter-cluster communication is hard to be achieved with

synchronous schemes and, usually, this implies that cluster-heads will operate under higher

duty cycles as, in most cases, they are also responsible for inter-cluster relaying.

2.2.3 Asynchronous Schemes

It is generally accepted that synchronizing nodes in a multi-hop wireless network is hard

and costly, requiring extra hardware or processing capacities that may be high for typical

sensor motes and adding frequent control traffic that takes airtime and drains precious

energy to transmit [13]. In response to that, the asynchronous branch of proposals — in

which nodes will not need to agree on time references — is prolific and diverse. Asyn-

chronous proposals are illustrated in Figure 2.4.

2.2 Duty cycling taxonomy 15

2.2.3.1 Preamble Sampling

One important technique, first incorporated into WSNs in 2004 by B-MAC [35] and

WiseMAC [36], is preamble sampling, sometimes referred to as LPL (low power listening)

in the context of sensors networks. The idea is to reduce idle listening by transferring the

burden of energy expenditure to the sender (just one) and removing it from the receiver

(possibly many). The mechanism goes as follows. Every node goes to sleep asynchronously

and wakes up periodically to check for channel activity. Since every frame is preceded by

a long preamble — longer than the duration of active and sleep times together — any

node will have time to wake up, detect the preamble transmission, and stay awake to

receive the incoming frame, if necessary. Though influential and actually implemented

in TinyOS, the disadvantages of this mechanism were soon exposed. Firstly, there is the

long appropriation of the channel by the preamble that will not only be wasteful, but also

prevent other nodes from transmitting. Secondly, the end-to-end latency may be too large

and, finally, there is excessive overhearing, since the uninterested nodes will also remain

active while hearing the preamble. In fact, TinyOS supports LPL only for the CC2420

and CC1000 radios and it is not currently (TinyOS 2.1.1) compiled in by default because

of the extra memory footprint [37].

The scheme has been improved by the introduction of short preamble techniques in

X-MAC [38], which substitutes an intermittent train of short frames (strobe) for the long

preamble. The short frames, with short intervals between them, have the advantage of

being interruptible, giving the receiver an early opportunity to acknowledge the transmit-

ter’s intention and diminish the signaling time. Also, instead of a meaningless preamble,

these short frames may carry the receiver address permitting that uninterested nodes go

back to sleep, minimizing unnecessary overhearing. On the downside, inserting the target

receiver address in the probe frames for acknowledgement makes broadcasting difficult.

2.2.3.2 Receiver-Initiated

Another asynchronous method is the receiver-initiated transmission. Differently from the

preamble sampling technique, instead of signaling that it has data to transfer, the willing

sender will wait for a periodic beacon from the receiver, and transmit the frame only after

that beacon is heard. This substitutes the periodic beacons for the preamble, with the

advantage that the receiver beacon does not occupy the medium for as long as the sender

preamble.

16 2 Duty cycling

The idea of receiver-initiated transmissions was first introduced mainly as a collision

avoidance mechanism by [39] and later applied to infrastructure WSNs (where all nodes

are one-hop away from the sink) in PTIP [40]. Low Power Probing (LPP) was described

in [41] as a means to distribute data from sinks to nodes. In the proposal, every node

will periodically wake up, send a beacon and go back to sleep unless an acknowledgement,

meant to work as a stay awake signal, is received shortly after. While LPP was devised as

a means to wake up the network for configuration traffic, RI-MAC [42] proposed receiver-

initiated communication as a more generic solution, operating over a wide range of traffic

rates and patterns.

As in preamble sampling, the burden of extra energy expenditure lies on the trans-

mitter that has to stay active until receiving the beacon from the intended receiver, but

the authors of RI-MAC reported significant improvements over X-MAC, particularly when

multiple data flows are present. However, Receiver-Initiated still incurs in high end-to-end

delay.

2.2.3.3 On-demand wakeup

On-demand wakeup is based on the idea that a node may be removed from the sleep

state when necessary. The mechanism usually relies on another communication interface,

generally called wakeup radio — a low power radio that would listen to a wakeup signal

and send an interruption to the CPU that would activate the primary (or data) radio in

response.

As a concept on-demand wakeup is clearly advantageous, the question being whether

keeping the wakeup radio active all the time would not consume more power than that

saved from reducing the active time of the data radio. According to [43] that extra device

must consume no more than tens of microwatts for the on-demand scheme to truly save

energy. The same authors presented preliminary results with a device that would consume

about 20µW . Consumptions even lower (470nW in [44]) are reported, the problem being

the short range of operation that would make its use on WSNs difficult.

Instead of a full wakeup radio, the authors of [45] propose radio-triggered circuits that

would wake up the radio device upon detection of the radio signal, much like RFID tags

do, but with the main difference that the circuit would be activated by weaker signals

than those involved in RFID. In this case the question is whether the signal would be

strong enough when tests are performed at typical WSN distances.

2.2 Duty cycling taxonomy 17

Even before such hardware-based approaches became popular, proposals of on-demand

mechanisms were already found in literature. One influential mechanism is STEM (Sparse

Topology and Energy Management [46]). Because different radio types will have different

transmission ranges, a coverage mismatch between the wakeup signal and the data trans-

mitted by the primary interface limits the use of the so-called ultra-low radio interfaces

as a wakeup device. STEM addresses that by using a regular radio as a wakeup radio. It

applies duty cycling to the wakeup radio and keeps the data radio off unless demanded.

When a node has data to send, it will notify that by sending a sequence of beacons

through the wakeup interface and wait for the intended receiver to activate its radio and

respond with a wakeup acknowledgement. Then the transmitter sends the data via the

primary radio. Such scheme resembles the preamble-sampling approach and could as well

be implemented with a single radio, but the advantage of that second radio, according

to the authors, is the fact that ongoing transmission will not prevent or postpone the

wakeup signaling. The authors argue that the added cost for the extra interface would be

tolerable.

There are also proposals that claim to be on demand but are actually synchronous

mechanisms. An example is DW-MAC [47] which reserves periods in which nodes signal

their intention to transmit to other nodes upstream.

2.2.3.4 Random duty cycling

Another asynchronous category is the random duty cycling. The idea is that, in sufficiently

dense deployments, nodes can go to sleep and wakeup randomly, since there is a high

probability that there will be enough active nodes anytime. RAW (Random Asynchronous

Wakeup Protocol [48]) draws on this idea. It proposes a random wakeup scheme in which

the activity time of a node would be inversely proportional to the number of its neighbors

and data forwarding would follow a geographical routing mechanism. In such a scheme, if

a relatively high duty cycle of 5% is chosen, and supposing that a node has five neighbors

capable of forwarding a frame, there will be less than 23% of chance that one of these

neighbors is active when such frame is transmitted. For such probability to reach 80%,

the number of neighbors should increase to 31. These numbers illustrate how dense a

WSN should be for RAW to work properly.

Randomness combined with duty cycling is also found in [49]. In the proposed pseudo-

random duty cycling scheme, the random seeds used to generate the duty cycling schedules

are exchanged between neighbors so that each node is capable of predicting when a given

18 2 Duty cycling

neighbor will be active. The idea is to reduce latency and the authors compare their

mechanism with pure random walk forwarding where nodes select the next hop randomly

among all neighbors, independently of their duty cycle schedules. However, random walk

forwarding results in extremely high latencies. Even with the improvements proposed in

the paper, the resulting latency and duty cycling are both still too high considering the

typical maximum delay demands and energy constraints of a WSN.

The random approach is restricted to very dense scenarios and the duty cycle must be

carefully adjusted to the quantity of available nodes, otherwise low delivery rates are to

be expected. That means that the random schemes call for adaptation to topology, what

undermines the simplicity that its proponents often indicate as one of the strengths of

random mechanisms. Advantages of this category include a fair distribution of traffic load

(due to randomness) and low end-to-end delay (due to the elimination of sleep waiting),

both subject to enough graph density.

2.2.3.5 Schedule-based

Finally, some early proposals of asynchronous duty cycling were based solely on the design

of the wakeup/sleep schedule. In this category, nodes will divide time into cycles and each

cycle will have active and inactive slots. These active slots will be distributed in such a

way that a common active time per cycle is ensured for any two nodes, with no need for

synchronization.

Most asynchronous mechanisms come in the form of redesigned MAC layers (as

preamble-sampling and receiver-initiated), while others rely on extra hardware to work

properly (such as on-demand wakeup) or need a minimum network density (as the random

mechanisms). Schedule-based mechanisms are the least demanding of the asynchronous

techniques, not requiring extra hardware, or modifications to the MAC layer. They are

also topology-independent.

Our main contribution — nested block designs — belong to this category. Therefore,

schedule-based mechanisms and their more relevant representatives will be studied in

detail in the next chapter.

Chapter 3

Schedule-based asynchronous duty

cycling

It is not difficult to see that if two nodes are active for more than half the time, at

least a portion of their active times will overlap [50]. Such simple approach, that would

clearly result in high duty cycles, is an incipient example of a schedule-based mechanism.

Fortunately, this line of research evolved significantly in the last decade, borrowing from

other areas as Quorum systems [51] and Block Designs [52] and achieving much lower

duty cycles, of 1% or less.

In schedule-based asynchronous mechanisms, nodes divide time into cycles, further

subdivided into slots, either active or inactive, according to the selected wakeup schedule.

Each cycle is a repetition of the previous. Figure 3.1 illustrates the idea.

Figure 3.1: An example of wakeup schedule. Time is divided into cycles, in this example
consisting of 7 slots, either active (dark) or inactive (white).

To be used in asynchronous duty cycling, a schedule must guarantee that two nodes

will have overlapping active time irrespective of their offset (difference in their slot count-

ing). In [51] this is referred to as the rotation closure property. We define this property

and other entities referred throughout this thesis in Section 3.1.

As noted in [51] and [50], some Quorum systems, such as the Grid and the Torus [51]

present the rotation closure property. Quorum systems consist of a set system (set of

sets) where any two elements present non-null intersections. Quorum systems have been

studied in the context of distributed systems since at least 1985 [53], though initially as a

solution to the mutual exclusion problem, i.e. avoiding the concurrent use of a resource.

20 3 Schedule-based asynchronous duty cycling

In another category of schedule-based mechanisms, schedules are built from prime

numbers, where the rotation closure property is guaranteed by the Chinese Remainder

Theorem [54]. An example in this category is Disco [55].

However, optimum schedules, in terms of duty cycling, as demonstrated in [53], come

from Block Designs. An asynchronous mechanism based on Block Designs is presented

in [52], and recently the idea was revisited in [56], in which the authors advocate its use

in an energy-efficient mechanism for neighbor discovery.

We start this chapter by presenting a set of definitions (Section 3.1), that are necessary

for understanding schedule-based duty cycling. Then, using these definitions, we present

our method for finding the neighbor discovery time (NDT) for any schedule in Section 3.2.

Finally, the main propositions in the area are presented: Section 3.3 is dedicated to

Quorum systems, Section 3.4 discusses proposals based on prime numbers, and Section 3.5

covers Block Designs. Each category will be thoroughly discussed and, at the end of

the chapter (Section 3.6), they will be compared, with the identification of their major

strengths and shortcomings, based on which our own mechanism will be proposed in

Chapter 4.

3.1 Schedules, co-schedules and other definitions

Before discussing schedule-based propositions and our own mechanism in depth, we will

first provide a set of definitions that will help clarifying important characteristics of these

mechanisms. We start with the fundamental definitions of schedule and co-schedule, and

then move to the definition of the operation of rotation of a schedule and to the concept

of scheme. Finally, we define the rotation closure property and provide a more formal

definition for neighbor discovery time, NDT — one of the most important metrics used

to analyze and compare the mechanisms.

Definition 1 Schedule — The schedule of a node A, SA, is an infinite sequence of time

slots of fixed duration, that can be either active or inactive, following a pattern that repeats

every w slots, the schedule cycle length. The schedule starts once the node boots up,

and the number of the active slots within each cycle is q, the schedule order. The set of

active slots within the first w slots (i.e. the first cycle) of a schedule defines its forming

set {s0, s1, ..., sq−1|si < w}. Because of its cyclic nature, a schedule may be completely

defined by its cycle length, order and forming set: SA = ς[w, q, {s0, s1, ..., sq−1}]. For

shortness, we omit the parameter q, as it may be obtained from the cardinality of the

3.1 Schedules, co-schedules and other definitions 21

forming set, and end with the notation SA = ς[w, {s0, s1, ..., sq−1}].

• Example: SA = ς[5, {0, 1, 2}] is a schedule formed by cycles of 5 slots, where the 3

first slots in each cycle are active: SA = ς[5, {0, 1, 2}] = {0, 1, 2, 5, 6, 7, 10, 11, 12, ...}.

Definition 2 Co-schedule of two schedules — The co-schedule of two schedules

SA = ς[wA, {a0, a1, ..., aqA−1}] and SB = ς[wB, {b0, b1, ..., bqB−1}], noted SAB, is their inter-

section. The resulting co-schedule is, in itself, a schedule, of length w′ = LCM(wA, wB)

— the least common multiple of wA and wB. The forming set and the order of the co-

schedule may be determined by finding the common active slots in the first w′ slots of both

schedules.

• Example: The co-schedule of the schedules SA = ς[3, {0}] and SB = ς[8, {5, 6, 7}] is
the schedule SAB = ς[24, {6, 15, 21}].

Clearly, if the schedules of A and B represent the time slots when these nodes are

active, their co-schedule determines the communication opportunities between these two

nodes.

It is important to notice that the presented definitions and the following analyses

assume that the time slots of A and B are border-aligned (starting and ending together),

which would, actually, demand synchronization. However, as shown in [51] and [53], if

a schedule satisfies the rotation closure property, slot border alignment is not a require-

ment for discovery opportunities to happen. Figure 3.2 illustrates this property with an

example schedule — a minimum overlapping time equivalent to the duration of one slot is

guaranteed for any offset (three are shown in the figure). Moreover, we assume the lack of

alignment may alter the NDT negatively or positively with equal probability and, hence,

it does not affect the average values of NDT. In summary, we treat the problem as if slots

were aligned and argue that all conclusions and formulations presented with regard to the

NDT still hold when they are not. Our claim is supported by experimental data, partially

presented in Chapters 3 and 4, in which the NDT, measured from implementations in real

sensor motes, is always remarkably close to the predictions from our models.

Note also that, even when programmed to operate under the same schedules, be-

cause nodes are not expected to be synchronized in their slot counting, they may end up

operating under different schedules in respect to an external time reference. To better

characterize this, we describe the idea of rotation of a schedule.

22 3 Schedule-based asynchronous duty cycling

Figure 3.2: Three different offsets (0.5, 1.0 and 1.5 slots) between neighbor nodes operating
under the same schedule illustrate that slot border alignment is not a requirement for
common active time, given the schedule presents rotation closure.

Definition 3 Rotation of a schedule — The rotation of S = ς[w, {s0, s1, ..., sq−1}]
by r, (r ∈ Z), noted as

−→
S r, is another schedule of same cycle length and order,

−→
S r =

ς[w, {(si + r) modulo w | i = 0, ..., q − 1}].

• Example: The rotation of the schedule S = ς[5, {0, 1, 2}] by 3 is
−→
S 3 = ς[5, {0, 3, 4}] =

{0, 3, 4, 5, 8, 9, 10, 13, ...}.

• Note: Since co-schedules are, in themselves, schedules, we may as well apply the

rotation operation to co-schedules.

As already noted, in asynchronous duty cycling, nodes may operate under different

schedules that may or may not be rotations of each other’s schedules. Again, if two nodes

are programmed to operate under the same schedule, because they are not synchronized,

they will end up operating in rotations of each other schedules, dictated by their synchro-

nization offsets. However, nodes may also operate under schedules that are not rotations

of each other. For example, two nodes A and B might operate under schedules, as in the

above example, where A operates under SA = ς[3, {0}], and B under SB = ς[8, {5, 6, 7}]
and they would still be able to communicate, as their co-schedule SAB = ς[24, {6, 15, 21}]
is non-null. This points out the need to define another entity which captures this idea of

a set of schedules that may be found in a network. We will call this entity a scheme.

Definition 4 Scheme — A scheme, χ, is a set of schedules: χ = {S0, S1, ..., Sn} =

{ς0[w0, {s00, s01, ..., s0q0−1}], ς1[w1, {s10, s11, .., s1q1−1}], ..., ςn[wn, {sn0, sn1, ..., snqn−1}]}.

3.1 Schedules, co-schedules and other definitions 23

We find some particular schemes to be of interest and classify them as:

• Uniform scheme — If all schedules in the scheme χ have the same cycle length w,

we say χ is a uniform scheme in w slots. Otherwise, the scheme is non-uniform.

• Example: χ = {ς[5, {0, 1, 2}], ς[5, {1}], ς[5, {0, 1, 4}]} is an example of a uniform

scheme in 5 slots, consisting of 3 schedules. The co-schedule of any two schedules

in this scheme will also have the same cycle length, of 5 slots.

• Symmetric scheme — If all schedules in the scheme χ have the same proportion

of order to cycle length, (q/w — which translates to the same duty cycle), we say

that χ is a symmetric scheme. Otherwise, we say the scheme is asymmetric.

• Example: χ = {ς[6, {0, 1, 2}], ς[4, {1, 2}], ς[6, {0, 1, 4}}] is a symmetric scheme with

duty cycle of 50%.

• Monotonic scheme — A scheme that contains all possible different rotations of

a given schedule, and no other schedule, is a monotonic scheme. As monotonic

schemes are important to our analysis, we shall note them compactly as χ[S], where

S is a schedule that may be used to generate (by successive rotations) all other

schedules in the scheme, or alternatively: χ[w, {s0, s1, ..., sq−1}]. We call schemes

that does not hold this property non-monotonic.

• Example: χ = {ς[4, {0, 1, 2}], ς[4, {1, 2, 3}], ς[4, {0, 2, 3}], ς[4, {0, 1, 3}]} is an example

of a monotonic scheme in 4 slots. Using our compact notation this scheme could be

represented as χ[4, {0, 1, 2}]

• Note: A monotonic scheme will be always symmetric and uniform, but the opposite

may not hold.

• Example: χ = {ς[5, {0, 1, 2}], ς[5, {1, 2, 3}], ς[5, {0, 1, 4}]} is an example of a sym-

metric uniform scheme in 5 slots, consisting of 3 schedules, all with duty cycle of

60%. However, χ is non-monotonic.

When all nodes in an unsynchronized network are programmed to operate under the

same schedule, we have a monotonic scheme. Monotonic schemes are, in fact, the most

common schemes to be found since, in most cases, there is no reason to program different

schedules to each node, a procedure that would, in fact, be more laborious than simply

programming the same schedule.

24 3 Schedule-based asynchronous duty cycling

In some instances, however, a network may need asymmetric schemes in order to

accommodate different battery conditions, that may come as a result of different workloads

for identical nodes, or because nodes with different capacities were mixed. This capability

for asymmetric operation will be relevant to our future discussions.

One advantage of the schedule approach is its simplicity of implementation, since it is

sufficient that nodes operate under the proper wakeup schedule. A mechanism may rely

on a monotonic scheme (where all nodes operate under the rotations of a schedule), or in

a non-monotonic scheme. In both cases, the scheme must be designed in a way that any

two nodes will have overlapping active time, irrespective of their time offsets.

What ensures that a scheme provides these opportunities of discovery is the property

of rotation closure [51]. Without it, there is the risk of the deafness problem, when nodes

become disconnected from the rest of the network for never waking up in tandem with

any of its neighbors. The rotation closure property may now be easily defined within our

framework of definitions.

Definition 5 Rotation closure property — A scheme χ presents the rotation closure

property if, and only if, any rotations of any two of its schedules have non-null intersection,

i.e. a non-null co-schedule: ∀Si, Sj ∈ χ : Si ∩
−→
Sj

k 6= ∅, k = 0, 1,

• Example: The scheme χa = {ς[4, {0, 1, 2}], ς[4, {1, 2, 3}], ς[4, {0, 2, 3}]} presents the

rotation closure property, while χb = {ς[4, {0, 1}], ς[4, {0, 2}], ς[4, {1, 2}]} does not,

since {0, 1} ∩ {(1 + 1) modulo 4, (2 + 1) modulo 4} = ∅.

• Note: Non-null intersection between any two schedules is a necessary condition for

the rotation closure. However, as seen in the example of χb above, this condition is

not sufficient — rotations must also be considered.

In a practical asynchronous network, all rotations of any schedule in a scheme may

occur, because of the random slot counting offsets between nodes. Therefore, a practical

scheme will be the union of one or more monotonic schemes, and should present rotation

closure. As a consequence, all schedules may be designed in a way that a monotonic

scheme built from it presents the rotation closure property. As we will see, this is the

case for the schedules studied in the following sections (Quorum systems, Block Designs

and Disco) and also a requisite for our own proposition (Nested Block Designs).

We are now able to define the Neighbor Discovery Time, the quantity extensively used

throughout the text to analyze and compare the main asynchronous schemes.

3.1 Schedules, co-schedules and other definitions 25

Definition 6 Neighbor Discovery Time — Say A and B are two nodes operating

under duty cycling schedules from a scheme with rotation closure, and that each node

broadcasts a beacon during each of its active slots. Define t0 as the moment when A and

B are placed within communication range of each other. If p > 0 is the probability of

A receiving a beacon from B, the neighbor discovery time NDT is the time, measured in

number of time slots, that will elapse from t0 until A hears the first message from B.

Definition 7 Expected Neighbor Discovery Time — The expected NDT, E[NDT]

is the average NDT, as in Definition 6, for all possible slot counting offsets θ and for a

fixed message delivery probability p.

We are particularly interested in obtaining the expected value for the NDT (E[NDT]),

for a monotonic scheme, where all nodes operate under the same schedule, but with

random offsets. Although we do not exclude non-monotonic schemes from our analysis,

we will be soon comparing the NDT of the monotonic schemes obtained from the main

propositions in the literature. Therefore, we refine our definition of the NDT for this more

specific scenario:

Definition 8 Expected Neighbor Discovery Time for Monotonic Schemes —

Say A and B are two nodes operating under rotations of the same duty cycling schedule

from a monotonic scheme with rotation closure. Assume such schedule has cycle length

w and order q and that the schedule of A is θ time slots ahead of the schedule of B

(SA =
−→
S θ

B), where θ may be any number of slots, with equal probability. Assume also

that each node broadcasts a beacon during each of its active slots, and define t0 as the

moment when A and B are placed within communication range of each other. If p > 0 is

the probability of A receiving a beacon from B, the neighbor discovery time (NDT) is the

expected number of time slots that will elapse from t0 until A hears the first message from

B, weighting all possible offsets θ.

To propose a final and useful definition, we note that, if SB is a rotation of SA

(SB =
−→
S θ

A), it follows that they will form equivalent monotonic schemes (χ[SA] ≡ χ[
−→
S θ

A])

and, therefore, result in the same E[NDT]. We will define this latency-equivalence simply

as equivalence.

Definition 9 Equivalent schedules — We say two schedules S1 and S2 are equivalent

if they are rotations of each other (∃r : S1 =
−→
S r

2).

26 3 Schedule-based asynchronous duty cycling

Once equipped with clear definitions of schedule, scheme and NDT, we move to our

contributed method for finding the NDT for any asynchronous scheme.

3.2 A method for finding the NDT of asynchronous

schedule-based mechanisms

In order to find E[NDT] between A and B, given their schedules SA and SB and subject

to beacon reception probability p, we need to consider all possible co-schedules that these

two schedules may result in, as a function of their offset θ, SAB(θ), and then, all possible

starting slots of each of these co-schedules, in respect to t0 (the moment we start counting

the time). Algorithm 1 summarizes this procedure. In the outer loop, all possible co-

schedules that two schedules may result in (as a function of their offset θ) are calculated

and then, in the inner loop, all possible starting positions of each of these co-schedules,

with respect to t0 are considered.

Computing all co-schedules (outer loop) is a straightforward algorithm to find the

intersection between two vectors, with complexity O(w′), where w′ is given by the cycle

length of the schedules of both nodes, wA and wB
1. As for the inner loop, we now present a

method with complexity O(q2), where q is the average number of discovery opportunities in

the co-schedules. Therefore, the complete procedure results in an algorithm of complexity2

O(w′ × q2).

1 E[NDT]← 0;
2 for θ ← 0 to w − 1 do
3 SAB(θ)← S[w] ∩ ρ(S[w], θ);
4 for t0 ← 0 to w − 1 do

5 Compute E[NDT]θ for SAB(θ);

6 end

7 E[NDT]← E[NDT] + E[NDT]θ;

8 end
9 E[NDT]← E[NDT]/w

Algorithm 1: Finding E[NDT] for a given schedule.

To find the E[NDT] for a given SAB(θ), we define Φi as the average number of slots

until the ith discovery opportunity, and p as the probability of message delivery. Clearly,

1Remember that w′ = LCM(wA, wB) and, for a monotonic scheme, w′ = wA = wB

2This algorithm is not intended to be executed on motes, but on the computer of the network designer
and, given the typical values of w and q, and based on our own computations, it runs in a few seconds
or less.

3.2 A method for finding the NDT of asynchronous schedule-based mechanisms 27

E[NDT] = pΦ0 + p(1− p)Φ1 + p(1− p)2Φ2 + ... (3.1)

As SAB(θ) is cyclic, if q is the number of discovery opportunities per cycle, then

Φn+q = Φn + w′, and Equation 3.1 can be rewritten as:

E[NDT] = pΦ0 + p(1− p)Φ1 + ...+ p(1− p)q−1Φq−1

+ p(1− p)q(Φ0 + w′) + p(1− p)q+1(Φ1 + w′) + ...+ p(1− p)2q−1(Φq−1 + w′)

+ p(1− p)2q(Φ0 + 2w′) + p(1− p)2q+1(Φ1 + 2w′) + ...+ p(1− p)3q−1(Φq−1 + 2w′)

+ ...

(3.2)

Define c as the number of cycles (of w′ slots) until discovery, then:

E[NDT] = p
∞
∑

c=0

q−1
∑

i=0

(Φi + w′c)(1− p)cq+i (3.3)

The problem now is reduced to finding these Phi-coefficients, Φi, that represent each

of the discovery opportunities, and that we define more formally as:

Definition 10 Phi-coefficients of a co-schedule — Given a co-schedule SAB(θ), the

ith Phi-coefficient of SAB(θ), Φi, is the sum of the ith elements of all rotations of SAB(θ)

divided by w′, the co-schedule cycle length.

• Note: Because Φn+q = Φn+w′, there are only q = |SAB(θ)| different Phi-coefficients

for SAB(θ): Φ0,Φ1, ...,Φq−1, i.e. there are as many Phi-coefficients as there are

discovery opportunities within each cycle.

We use Figure 3.3 to illustrate our method of obtaining the Phi-coefficients of a co-

schedule. The figure shows all rotations of a co-schedule SAB(θ) = ς[7, {2, 3, 5}]. As

expected, there are 7 (w′) rotations of SAB(θ), and they may be divided in three groups

such that each group starts with a rotation of SAB(θ) that contains the element zero (an

opportunity of discovery in the first slot) and contains all other successive rotations that

does not contain slot zero.

Within each group, the three opportunities of discovery follow a fixed relation that

is determined by the delta-set of the co-schedule — the difference between successive

discovery opportunities, defined as follows:

28 3 Schedule-based asynchronous duty cycling

Figure 3.3: An example of a co-schedule SAB(θ) = ς[7, {2, 3, 5}], with the elements of its
delta-set {1,2,4} and the Phi-coefficients {1,3,5}. Partial phi-coefficients are computed
for each of the three groups of rotations of the co-schedule and then summed up to find
the Phi-coefficients. Note that any rotation of this co-schedule results in the same Phi-
coefficients.

Definition 11 Delta-set of a co-schedule — The delta-set of a co-schedule SAB(θ) =

ς[w, {o0, o1, ..., oq−1}] is the sequence ∆{SAB(θ)} = {δ0, δ1, ..., δq−1|δi = oi−o(i−1) modulo w}.

• Note: The delta-set of the rotation of a co-schedule ∆{−→S r
AB(θ))} is a cyclic permu-

tation of the delta-set of the schedule ∆{SAB(θ)}.

Key to our method is the fact that all relations between discovery opportunities may

be defined in terms of the delta-set of a co-schedule. In the topmost group in Figure 3.3,

for instance, the second opportunity (mid-gray) always occurs exactly one slot (δ0) after

the first opportunity (light gray). Likewise, the third opportunity (dark gray) happens

two slots (δ1) after the second. As for the first opportunity, it occurs in all slots from zero

to three, i.e. from 0 to δ2 − 1, successively.

In fact, similar relations may be observed in all three groups. The only difference

being the order that each δ should be applied. The very size of each group also comes

from the delta-set (1, 2 and 4 rotations of SAB(θ)). In short, all Phi-coefficients may be

obtained entirely from the delta-set and are given by the following expressions:

3.2 A method for finding the NDT of asynchronous schedule-based mechanisms 29

Φ0 =
1

2w′

q−1
∑

i=0

δi(δi − 1)

Φ1 = Φ0 +
1
w′

q−1
∑

i=0

δi(δ(i−1) modulo q)

Φi = Φ0 +
1
w′

i
∑

r=1

q−1
∑

j=0

δi(δ(j−r) modulo q)

Finally, Equation 3.4 gives the NDT of a co-schedule SAB(θ).

E[NDT] = p
∞
∑

c=0

q−1
∑

i=0

(Φi + w′c)(1− p)cq+i (3.4)

where,

Φi = Φ0 +
1

w′

i
∑

r=1

q−1
∑

j=0

δi(δ(j−r) modulo q) (3.5)

and,

Φ0 =
1

2w′

q−1
∑

i=0

δi(δi − 1) (3.6)

A more intuitive form for Equation 3.4 may be found by solving the infinite summa-

tions, as follows:

E[NDT] =
p

w′

q−1
∑

i=0

(1− p)i

{

Φi

∞
∑

c=0

(1− p)cq + w′2
∞
∑

c=0

c(1− p)cq

}

E[NDT] =
p

w′

q−1
∑

i=0

(1− p)i
{

Φi

1

1− (1− p)q
+ w′2 (1− p)q

[1− (1− p)q]2

}

E[NDT] =

[

1

1− (1− p)q
− 1

]

· w′ +

q−1
∑

i=0

p(1− p)i

1− (1− p)q
Φi

w′ (3.7)

Equation 3.7, which is equivalent to Equation 3.4, is formed by two terms with clear

meanings. The first term is the expected number of cycles (given the success probability

for each cycle [1− (1−p)q]) times the size of a cycle (w′). The second term is the average

of the expected distances to each of the q discovery opportunities (Φi/w
′) weighted by

their respective success probabilities, given that the encounter will happen within a given

30 3 Schedule-based asynchronous duty cycling

cycle p(1−p)i

1−(1−p)q
.

Finally, Equation 3.2 provides an alternative recursive formula for finding the Phi-

coefficients that can be easily computed (see Appendix A for code example).

Φi =

1
2w′

q−1
∑

j=0

δj(δj − 1), if i = 0

Φi−1 +
1
w′

k−1
∑

j=0

δjδ(j−i) modulo k, otherwise.

3.2.1 Discussion

Some interesting conclusions on the design of asynchronous schedules can be drawn from

the proposed model.

1. Two monotonic schemes formed from two schedules of same length and same duty

cycle do not necessarily result in the same NDT (unless the two schedules are equiv-

alent, in which case the schemes would be the same). Hence, there is merit in

designing schedules to minimize the NDT. However, minimizing the NDT without

considering the delivery probability p (as in [53] or [52]) is not enough. A schedule

that performs better when the link quality is high, may be surpassed when this

quality drops.

2. The way active slots are distributed within the schedule is important, for it affects

the way discovery opportunities are distributed within the co-schedule.

3. Not only the number of discovery opportunities counts. The interval between these

opportunities, i.e. the way they occur within a cycle, also affects the NDT. If

two schedules present the same duty cycle and result in monotonic schemes with

the same average order (number of discovery opportunities per cycle averaged for

all offsets), the one where these opportunities are more regularly distributed will

produce the shorter NDT for good link quality. This happens because Φ0, which is

the most significant coefficient for p ∼ 1 (and the only one, if p = 1), increases with

the standard deviation of the delta-set of the co-schedule.

In short, the design of asynchronous wakeup schedules is the quest for low duty

cycle schedules, which result in schemes that satisfy the rotation closure property, while

providing acceptable E[NDT]. There are, however, a few more desirable characteristics in

the resulting scheme. Asymmetric schemes, for instance, may be useful in deployments

3.3 Quorum Systems 31

where nodes need to operate under different duty cycles, and since asymmetric schemes

are necessarily non-monotonic, these schemes are harder to obtain. Also, the duty cycle

range of a mechanism — the range of duty cycles that are possible under the mechanism

— is clearly important, as also is the duty cycle granularity of a mechanism, i.e. the

availability of duty cycle values within a given duty cycle sub-range. We now discuss the

most prominent asynchronous schemes and highlight each of these properties.

3.3 Quorum Systems

A Quorum is a set system where the intersection of any two sets, its elements, is never

null. At least three systems may be found throughout the networking literature: the

Grid [51, 50], the Torus [51, 50] and the e-Torus [51]. The last one was proposed as a

basis for an adaptive mechanism where nodes are capable of determining their level of

mobility — an added complexity that is not assumed in other mechanisms. Because of

that, the e-Torus departs from the category of schedule-based mechanisms and we will

limit our analysis to the first two propositions — the Grid and the Torus.

3.3.1 Grid Quorum

To define whether a slot is active or not in an asynchronous schedule based on a Grid

Quorum, each cycle is equated to an n× n matrix where each cell represents a time slot.

The first slot is represented by the cell in (1,1) (line=1, column=1), the second slot by

cell (1,2). Cell (2,1) represents time slot n+1, and so on, line after line of the matrix.

In a Grid Quorum schedule, a node will activate only the slots corresponding to a single

column and to a single line of the matrix.

Figure 3.4 depicts an example of two Grid schedules based on a 4 × 4 matrix. As

the figure illustrates, nodes A and B are not demanded to select the same combination

of lines and columns. The scheme suggested in the figure is uniform and symmetric,

but not monotonic3, since SA = ς[16, {1, 5, 9, 12, 13, 14, 15}] is not a rotation of SB =

ς[16, {2, 4, 5, 6, 7, 10, 14}]. In this example, there is an offset of four slots between nodes

A and B, and the resulting co-schedule is the intersection between SA and
−→
S 4

B, which is

SAB = ς[16, {2, 6, 10, 14}].

Table 3.1 summarizes important characteristics of the Grid Quorum schedules. A

3The capacity of creating both monotonic and non-monotonic schemes with rotation closure is, as we
will see, an advantage of Grid.

32 3 Schedule-based asynchronous duty cycling

Figure 3.4: Two nodes operating under a 4× 4 Grid Quorum.

Table 3.1: Summary of the main properties of Grid schedules.

Parameters n grid dimension
line active line
column active column

Cycle length n2

Duty cycle 2n−1
n2

Duty cycle range (0,1]
Granularity 1 to 10% 180

0.1 to 1% 1800
0.01 to 0.1% 18000

Asymmetric operation? yes

Grid schedule is completely characterized by its dimension, n, and the line and column

selected as active. The cycle length for a schedule generated from an n× n grid is n2 and

the resulting duty cycle is 2n−1
n2 . The range refers to the range of duty cycles achievable

by the mechanism. As n can be arbitrarily large, there is no lower limit to the duty cycle

of a Grid schedule, and if we consider dimension n = 1, the resulting duty cycle will be 1

(or 100%).

The granularity is the number of different possible configurations in three given duty

cycle ranges, selected as to characterize (1) future demands for ultra-low duty cycle (0.01

to 0.1%), (2) most of the current mainstream propositions (0.1 to 1%) and (3) early

propositions (1 to 10%) of duty cycling. There are, for example, 1800 different possible

duty cycles in the second interval.

The line Asymmetric operation refers to the possibility of having different nodes op-

erating under different duty cycles coexisting as neighbors. In fact, Grid schedules of

different dimensions will always have non-null intersections. To understand that, suppose

two nodes, A and B, operate under schedules based on the grids nA × nA and nB × nB,

nA > nB. Because there will be a sequence of nA consecutive active slots in the schedule

of A (due to the active line in the schedule matrix of A) and, since there is at least one

3.3 Quorum Systems 33

active slot every nB slots in the schedule of B (due to the active column in the schedule

matrix of B), and considering nA > nB, it follows necessarily that there will be at least

one opportunity of discovery per cycle in the co-schedule of A and B. This means that

any grid schedule is able to interoperate with any other grid schedule, of any dimension.

Therefore, grid schemes intrinsically adhere to the rotation closure property and support

asymmetric operation, a fact that has been neglected by current literature (See Table 2,

in [55]).

3.3.2 Torus Quorum

A Torus Quorum system was proposed as an improvement over the Grid in the sense that

it requires fewer active slots to ensure the rotation closure property. In a Torus, schedule

a cycle is again equated to a matrix and each node should again activate a complete

column of slots. However, instead of selecting a complete line, each node needs only to

select one slot in each column c+ i, i = 1, .., ⌊n/2⌋ (in a n×n matrix, where c is the active

column). We will call this set of slots not in the selected column, the horizontal slots, as

calling them a line would be incorrect.

Figure 3.5 shows an example of two Torus schedules based on a 4×4 matrix, whereas

only two additional slots are activated as horizontal slots, instead of a complete line. As

in the case of the Grid Quorum, nodes are not required to synchronize their slot counting,

nor to select the same columns or horizontal slots.

Figure 3.5: Two nodes operating under a 4× 4 Torus Quorum.

Table 3.2 shows the properties of schedules obtained from Torus. Its parameters are

n, the torus dimension, the active column and the set of horizontal slots. Cycle length is

n2, and it is not difficult to see that the duty cycle for a Torus schedule is 3
2n
, if n is even,

or 3n−1
2n2 , if n is odd, and duty cycle may be arbitrarily small. Note that a Torus quorum

will present a duty cycle 25% smaller in relation to a Grid of the same length (a little

less, if n is odd).

34 3 Schedule-based asynchronous duty cycling

Table 3.2: Summary of the main properties of Torus schedules.

Parameters n torus dimension
column active column
horizontal slots active slots not in column

Cycle length n2

Duty cycle if n is even 3
2n

if n is odd 3n−1
2n2

Duty cycle range (0,1]
Granularity 1 to 10% 136

0.1 to 1% 1351
0.01 to 0.1% 13501

Asymmetric operation? no

Granularity is smaller, if compared to Grid, but of the same order of magnitude.

However, while in the Grid Quorum, nodes may select matrices of different order and still

preserve rotation closure, this is not the case for the Torus. Hence, the Torus Quorum does

not support asymmetric operation, even though non-monotonic schemes, as exemplified

in Figure 3.5, are possible.

3.3.3 Discussion

Due to the absence of a precise model to understand the NDT of Quorum schedules, there

are some unanswered questions, which we are now, based on our method, able to address.

This section discusses two of them: (1) what is the impact of the selection of active line

(or horizontal slots for Torus) and column on the NDT, and is it possible to determine

which should be selected for reducing the NDT, and (2) to what extent is Torus a practical

improvement over Grid.

3.3.3.1 Impact of active slots selection

Proposers of either the Grid or the Torus Quorum did not indicate which column or

line/horizontal slots should be selected as active to reduce the NDT. Actually, initial and

subsequent papers did not even raise the question. Neglecting these selections, however,

is consistent with the simplified approach used in current literature studies of the NDT of

these schedules, and also with the lack of tools to calculate it. We have used our method

to investigate this selection, as explained in this section.

We start by analyzing the case with Grids. Firstly, we notice that because of the

cyclic repetition of the schedule, the selection of the active line does not have an impact

3.3 Quorum Systems 35

Figure 3.6: Equivalent and non-equivalent schedules for Grid and Torus schedules. Be-
cause line selection does not change the NDT, Grid schedules (a) and (b) are equivalent.
Column selection impacts the NDT, and Grids (a) and (c) are not equivalent. For Torus,
column selection is irrelevant, and equivalence is preserved as long as the relative position
of the horizontal slots is not changed, as in (d), (e) and (f), but opposite to (d), (g) and
(h).

Figure 3.7: The difference in the NDT between best and worst column selection for Grid
dimensions n = 20, 40, ..., 400. Plotted values are for p = 1, when the difference is bigger.

on the NDT. Two grid schedules of same dimension and same active column, but with

different active lines, are simply rotations of each other and, henceforth, equivalent in

terms of NDT (Definition 9). This equivalence is represented in Figure 3.6 — schedules

(a) and (b) differ only in active line and would produce the same monotonic scheme.

However, we found that the selection of the active column does have an impact on

the expected NDT. To understand that, we used our model to compare column selections

for grid dimensions in the intervals n=3,4,..,100 and n=120,140,...,400. For all these

schedules, the E[NDT]s were computed for probabilities p varying from 0.05 to 1, with

increments of 0.05.

36 3 Schedule-based asynchronous duty cycling

Figure 3.7 shows the difference between the worst and the best case for some of

the tested grids. Results indicate that, as n increases, the impact of column selection

decreases. Also, the difference is more significant as p increases, and reaches its maximum

at p = 1. For better legibility we plotted the difference only for n = 20, 40, ..., 400 and for

p = 1 (for lower values of p the difference is even smaller). As we see, the difference is

always below 0.005 (or 0.5%) for all depicted values.

As expected, the most severe impact of column selection occurs in a 3×3 Grid (middle

column versus first or last column). In this case, the difference grows from less than 0.03%

to 4.8%, as p goes from 0.05 to 1. In comparison, this difference is less than 0.000013 (or

0.0013%) for all values of p in the 400× 400 Grid.

The difference is more accentuated for higher values of p because the schedule pat-

tern tends to make a bigger difference in these cases. For poor quality links, there is a

tendency for the NDT to be dominated by the number of elapsed cycles until discovery,

and the wakeup pattern has a diminished impact. In conclusion, the difference is small

for schedules with low duty cycle (less than 1% for n > 12, less than 0.1% for n > 43 and

less than 0.01% for n > 140).

Another regular pattern that emerges is that the column selections c and n − c (n

being the dimension of the grid) result in the same NDT. Also, the worst selections are

always the first and the last columns, while the best columns (averaging all values of p)

are around 3n/8 or 5n/8 (least squares fitting of the obtained results indicates the best

column as 0.3564935 · n+ 1.1434984). Therefore, we recommend one of these columns to

be selected, as there is nothing to lose, and there may be a small gain in some scenarios.

For n = 100, for example, the best columns are 37 and 63. For n = 400, the best columns

would be 143 and 257. Note, however, that the best column selection for a given p,

actually depends on p.

For the analysis of Torus, we recall that the horizontal slots do not need to belong

to the same line and, because of that, there is a great number of possible schedules for a

Torus of same dimension — n
n
2
−1, if n is even and n

n
2 , if n is odd.

Figure 3.6 illustrates some possibilities for a 6×6 Torus schedule. Note that schedules

(d), (e) and (f) are equivalent — any of them may be obtained as a rotation of either of

the other two schedules. Contrary to what happens with Grid, column selection has no

impact on the NDT in a Torus. What does impact on the NDT is the relative positions

of the horizontal active slots. This explains why (a) is equivalent to (e), but not to (g) or

(h).

3.3 Quorum Systems 37

(a) The 3 schedules (b) The resulting NDT

Figure 3.8: Three Torus schedules with dimension n = 100 but different horizontal slots
selection and the resulting NDT for each of them.

For measuring the impact or determining the best horizontal selection of slots, for any

sufficiently big Torus schedule (i.e. one with low duty cycle), a huge number of compu-

tations would be necessary. Nonetheless, for illustration, we compared the results for the

three 100 × 100 Torus schedules depicted in Figure 3.8a. The results of the comparison

are shown in Figure 3.8b — the observed difference was always below 0.1%, indicating

that the impact of the selection of the horizontal slots may be of little significance.

3.3.3.2 Torus versus Grid

Another interesting question regarding Quorum-based mechanisms is determining to which

extension Torus schemes are a substitute for Grid schemes. In one hand, the resulting

duty cycle, for the same dimension n, will be smaller in the case of the Torus. On the

other hand, if the NDT is considered, the comparison is not as simple.

Again, we resort to our method for an answer. We compared three Grid and Torus

schedules of the same approximate duty cycles: a 400× 400 Grid with a 300× 300 Torus;

a 200×200 Grid with a 150×150 Torus; and a 100×100 Grid with a 75×75 Torus. The

best columns were selected for the Grid schedules (150, 75 and 37, respectively) and, for

the Torus, all horizontal slots were selected in the same line. The results are presented

38 3 Schedule-based asynchronous duty cycling

Figure 3.9: A comparison between Torus and Grid schedules of same duty cycle, reveals
that Torus will result in shorter NDT only for good link quality.

in Figure 3.9 and reveal that Torus will result in shorter NDT for good link quality. The

results are similar for all three comparisons — a delivery probability around 0.75 marks

the transition from Grid to Torus as the schedule resulting in shorter NDT. Therefore,

Torus does not always surpass Grid. The best choice depends, once again, on p.

3.4 Prime numbers-based mechanisms

The second category of asynchronous schedule-based duty cycling mechanisms relies on

properties of prime numbers. For example, if two nodes select different prime numbers,

m and n, and activate every mth and the nth slots, respectively, there will be a moment

when both will be active, irrespective of their time offsets.

Conversely, if both nodes select the same prime number, there will be no overlapping

slot, unless these nodes are synchronized (offset = 0). But forcing nodes to always select

different prime numbers would require a coordination mechanism, and not needing such

coordination is the main strength of schedule-based mechanisms. In U-connect [57], this

problem is solved by making the node activate not only the multiples of the selected prime

number, m, but also some of the slots, such that 0 < slotnumber < m+1
2

, at the beginning

3.4 Prime numbers-based mechanisms 39

of every cycle of m2 slots. Nevertheless, a closer look reveals that a U-connect schedule

is actually a Torus schedule4. Therefore, we will not analyze this proposal.

Moreover, making a node select one prime number severely limit the choices in terms of

duty cycle. The authors of Disco [55] propose that each node selects two prime numbers,

instead of one, and activate the slots multiple to either of the primes, allowing more

flexibility in the selection of the operating duty cycle. As an added bonus, the demand

that each node selects different numbers is waived — the Chinese Remainder Theorem [54]

guarantees the rotation closure property irrespective of the selection [55].

Figure 3.10 illustrates the use of Disco. For conciseness and clarity, nodes A and

B select small primes: Node A selects the pair (5,7) resulting in the schedule SA =

ς[35, {0, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30}] and Node B selects the pair (3,13) for a schedule

SB = ς[39, {0, 3, 6, 9, 12, 13, 15, 18, 21, 24, 26, 27, 30, 33, 36}]. Evidently, to achieve lower

duty cycles, larger primes must be selected. The proposers of Disco classify the pair of

primes into balanced — for primes that are consecutive or close (e.g. {37,43}) — and

unbalanced — when primes are not close (e.g. {23,157}). They also refer to the symme-

try of a selection referring to the fact that nodes may select the same pair (symmetric

selection), or a different pair of primes (asymmetric selection).

Though the authors of Disco do not provide proof, they present empirical results

suggesting that the best configuration, in terms of NDT, happens when nodes select

unbalanced-asymmetric pairs. We, once again, argue that forcing nodes to select different

schedules is undesirable under asynchronous duty cycle, because of the incurring com-

munication costs. Moreover, the authors of Disco use only symmetric pairs during the

analysis of their mechanism. They also state that, after unbalanced-asymmetric pairs, the

second best selection are balanced-symmetric pairs. We will discuss this assertive in the

next section, but before proceeding we find useful to define a measure for the balancing

or unbalancing of the two selected prime numbers. We will call it level of unbalancing.

A level of unbalancing of 1 (u = 1) means that only consecutive primes are selected (11

and 13, for instance). For u = 2, 11 could be combined with 17 or 5. In other words, if

P is the set of prime numbers and qi ∈ P is the ith element of P, for a given u, qi may be

paired with all primes qi−u or qi+u.

Table 3.3 summarizes the main characteristics of a Disco schedule. It is defined

completely by the selected primes, q1 and q2, from which it is easy to calculate the cycle

4With the unnecessary drawback of being restricted to prime dimensions, which severely limits its
granularity

40 3 Schedule-based asynchronous duty cycling

Table 3.3: Summary of the main properties of Disco.

Parameters q1, q2 selected prime numbers
Cycle length q1 · q2
Duty cycle 1/q1 + 1/q2
Duty cycle range (0,2/3]
Granularity level of unbalancing (u)

1 2 3 4 5
1% to 10% 7 13 19 25 31
0.1% to 1% 45 89 132 174 216
0.01% to 0.1% 302 603 904 1204 1504

Asymmetric operation? yes

Figure 3.10: Two nodes operating under Disco. Node A selects prime numbers 5 and 7,
and activates slots that are multiple of these numbers. Node B selects 3 and 13 and acts
likewise.

length (q1 · q2) and the duty cycle (1/q1 + 1/q2). Duty cycle can be arbitrarily small

or reach 2/3 (q1 = 2, q2 = 3). Granularity strongly depends on the admitted level of

unbalancing. If any pair of prime numbers is admitted, the granularity of Disco is infinite.

However, as balanced pairs are preferred, granularity was provided for five different levels

of unbalancing (u). Finally, Disco supports asymmetric operation, since different pairs of

primes will result in different duty cycles.

3.4.1 Discussion

Through the selection of two prime numbers, it is possible for a node using Disco to op-

erate under almost any desired duty cycle, the question being which two prime numbers

to select among all possibilities. As already mentioned, the authors of Disco state that if

two nodes select the same pair of primes (symmetric selection) the best results, in terms

of NDT, would come from balanced pairs. However, the delivery probability p was left

outside of such analysis and, once again, we will employ our model to confirm the em-

pirical observations of the proposers of Disco, and to check it over the whole spectrum

of p. For this assessment, we tested 15 pairs of primes which result in duty cycles of

approximately 1% (all within the interval [0.9969%,1.0072%]): (109, 1201), (113,863),

(127,467), (131,421), (137,367), (139,359), (149,307), (151,293), (157,277), (163,257),

3.4 Prime numbers-based mechanisms 41

Figure 3.11: The NDT for 15 Disco schedules with the same approximate duty cycle of
1%. More balanced pairs result in shorter NDT.

(167,251), (173,233), (179,227), (181,223) and (191,211). The resulting NDT is plot-

ted in Figure 3.11. As shown by the figure, as the level of unbalancing increases, the

NDT also increases, and although the difference between the first 10 pairs is small, the

difference between pairs (109, 1201) and (191,211) is really significant.

Figure 3.12 complements the information by showing the increase in the NDT of the

less balanced pairs in respect to the more balanced pair (191, 211, level of unbalancing 4).

The NDT for pair (109,1201, level of unbalancing 143) is approximately 3.25 times longer,

and this relation seems to be independent of p for all pairs and values of p observed. This

data is consonant with the principle that balanced pairs are superior than unbalanced

pairs in symmetric operation, and it also demonstrated that this holds irrespective of link

quality.

42 3 Schedule-based asynchronous duty cycling

Figure 3.12: The NDT of the most unbalanced fourteen pairs in relation to the NDT of
(191,211). The NDT of pair (109,1201) is approximately 3.25 times as high.

3.5 Block Designs

Block Designs come from the Mathematics Area of Combinatorics, and were first intro-

duced as a technique to design experiments in agriculture [58]. A Block Design5 is a set

system (a set of sets called blocks) that can be defined as follows:

Definition 12 Block Design — Given a finite set V of v elements and integers k, λ ≥ 1,

a Block Design, represented as {v, k, λ}, will have exactly v blocks (B0 . . . Bv−1 ⊂ V) of k

elements and the following properties:

1. Each and every element of V occurs in exactly k blocks; and

2. Any two blocks will have exactly λ elements in common.

• Example: Suppose, for instance, that V={0,1,2,3,4,5,6}. A Block Design {7,3,1}
(exemplified in Figure 3.13) would be the set of 7 blocks consisting of 3 elements

each, such that any two of these blocks would have exactly one element in common.

{{0,1,3},{1,2,4},{2,3,5},{3,4,6},{4,5,0},{5,6,1},{6,0,2}}.
5We should actually refer to a Symmetric Block Design. However, in networking literature, Block

Designs and Symmetric Block Designs are commonly treated as synonyms, and usually defined with lack
of mathematical rigor. For conciseness, we will proceed likewise. The reader is referred to [59] for a
formal definition.

3.5 Block Designs 43

Figure 3.13: A {7,3,1} Block Design, its elements (blocks) and an example of two nodes
operating under two different blocks ([1,2,4] and [0,4,5]), that intersect at slot 4.

Table 3.4: Summary of the main properties of Block Design schedules.

Parameters v block length
k number of active slots
λ number of overlapping slots
forming set active slots in the first cycle

Cycle length v
Duty cycle k/v
Duty cycle range [0.0103,0.43]
Granularity 1 to 10% 118 (35 Projective Planes)

0.1 to 1% 0
0.01 to 0.1% 0

Asymmetric operation? no

In relation to our previous definitions, a block is equivalent to a schedule, while a

block design is equivalent to a monotonic scheme formed by all blocks in the design. The

rotation closure property is ensured by the Property 2 in Definition 12. In the notation

introduced earlier in Section 3.1, the scheme resulting from the Block Design {7,3,1}
would be denoted as χ[7, {0, 1, 3}].

Table 3.4 summarizes the properties of schedules based on Block Designs. A Block

Design schedule is characterized by its three parameters, {v, k, λ}, plus its forming set6.

The duty cycle is k/v, which ranges from 1.03%, for a {9507,98,1} design, and 43%, for

{7,3,1}. Block designs outside this interval are still unknown [60], limiting both range

and granularity. Asymmetric operation is not possible under Block Designs.

As an illustration, Table 3.5 presents some examples of Block Designs, providing the

resulting duty cycles and their elements, i.e. their forming sets. A complete list of Block

Designs with their forming sets is found in [60].

6There exist cases of Block Designs of same parameters and different forming sets.

44 3 Schedule-based asynchronous duty cycling

Table 3.5: Some examples of Block Designs, with the resulting duty cycles and the list
of active slots (forming sets). Slots are numbered from 0 to v − 1, where v is the first
parameter of the design, and also the cycle length. Note that, in {7,3,1}, the forming set
{0,1,3} is completely equivalent to {1,2,4} or any other rotation of the schedule.

design duty cycle forming set
{7,3,1} 42.86% {0, 1, 3}
{183,14,1} 7.65 % {0, 12, 19, 20, 22, 43, 60, 71, 76, 85, 89, 115, 121, 168}
{9507,98,1} 1.03% {0, 1, 3, 37, 52, 191, 308, 332, 433, 914, 919, 984, 1093,

1155, 1231, 1238, 1600, 1678, 1723, 1732, 1755, 1773, 1826,
1930, 1938, 2099, 2116, 2141, 2457, 2712, 2859, 3058, 3187,
3466, 3524, 3655, 3675, 3748, 4139, 4145, 4183, 4297, 4301,
4518, 4528, 4600, 4720, 4777, 4964, 5043, 5054, 5176, 5268,
5329, 5356, 5496, 5526, 5601, 5617, 5851, 6151, 6173, 6491,
6539, 6759, 6778, 6792, 6878, 7021, 7163, 7226, 7290, 7490,
7650, 7747, 7860, 7941, 8028, 8056, 8154, 8304, 8339, 8370,
8438, 8450, 8505, 8534, 8574, 8797, 9005, 9048, 9094, 9107,
9133, 9154, 9270, 9326, 9400}

{11,5,2} 45.45% {0, 2, 3, 4, 8}

To date, networking literature has considered mainly, if not exclusively, a particular

category of Block Design where λ = 1, commonly referred to as Projective Planes7. A

Projective Plane is a Block Design that takes the form {s2 + s + 1, s + 1, 1}, where the

parameter s is called order (which differs in one unit to our definition of the order of a

schedule — the number of active slots per cycle). It is conjectured that there only exist

Projective Planes for values of s which are powers of primes [59]. This implies that there

are no Projective Planes for k=7, 11, 13, 15 and so on. In reality, the number of known

Block Designs is relatively small — 145, of which only 35 are Projective Planes and 27

are variations with same parameters {v, k, λ} and different forming sets [60]. All known

Block Designs were included in our analysis and are presented in Tables 3.6 (Projective

Planes) and 3.7 (other Block Designs). The forming sets were omitted to save space and

are found in [60].

One reason for the attention received by Projective Planes (λ = 1) comes from the fact

that they provide the optimal schedules in terms of duty cycle [53]. That means that, given

a fixed number of time slots, Projective Planes will generate the wakeup schedule with the

minimum rate of active to inactive slots that present the rotation closure property. As we

will see, this property places Block Designs in an unique position among all asynchronous

schedules.

7Actually, the term Projective Plane comes from Geometry and not from Combinatorics. However,
the two concepts bear the same mathematical formulation and are usually considered as equivalent.

3.5 Block Designs 45

Table 3.6: Known Block Designs with λ = 1 (Projective Planes), sorted by duty cycle.

{v, k, λ} duty cycle {v, k, λ} duty cycle {v, k, λ} duty cycle
{7,3,1} 42.86% {553,24,1} 4.34% {3541,60,1} 1.69%
{13,4,1} 30.77% {651,26,1} 3.99% {3783,62,1} 1.64%
{21,5,1} 23.81% {757,28,1} 3.70% {4161,65,1} 1.56%
{31,6,1} 19.35% {871,30,1} 3.44% {4557,68,1} 1.49%
{57,8,1} 14.04% {993,32,1} 3.22% {5113,72,1} 1.41%
{73,9,1} 12.33% {1057,33,1} 3.12% {5403,74,1} 1.37%
{91,10,1} 10.99% {1407,38,1} 2.70% {6321,80,1} 1.27%
{133,12,1} 9.02% {1723,42,1} 2.44% {6643,82,1} 1.23%
{183,14,1} 7.65% {1893,44,1} 2.32% {6973,84,1} 1.20%
{273,17,1} 6.23% {2257,48,1} 2.13% {8011,90,1} 1.12%
{307,18,1} 5.86% {2451,50,1} 2.04% {9507,98,1} 1.03%
{381,20,1} 5.25% {2863,54,1} 1.89%

The literature sometimes refers to Perfect Difference Sets [56] which form directly

from Projective Planes and result in the same schedule of operation. Because of the

equivalence, we will refer only to Projective Planes throughout this text. A formal defi-

nition of Difference Sets may be found in [59].

Before moving on to the discussion section, is it worth noting the fact that no known

Block Design provides duty cycles of less than 1% which is the major drawback of the

Block Design schemes.

3.5.1 Discussion

We will now use our model for an in-depth analysis of two aspects regarding the NDT of

Block Designs. Firstly, we will build a qualitative understanding of how the NDT varies

with the parameters of Block Designs, and with the delivery probability p. Secondly, we

will determine whether Block Designs with λ > 1 may or not provide useful schedules.

3.5.1.1 Qualitative understanding of the NDT in Block Designs

The three graphs in Figure 3.14 provide a qualitative understanding on the way E[NDT]

grows with the variation of the three parameters (p, λ and v) in a monotonic scheme.

Figure 3.14a shows the variation of E[NDT] as we fix the number of slots (v) and vary

the probability of reception (p) and the number of discovery opportunities per cycle (λ).

As expected, E[NDT] decreases as p or λ increase. As p and λ increase, the surface

flattens and E[NDT] changes less dramatically. Outside this area, an exponential growth

46 3 Schedule-based asynchronous duty cycling

Table 3.7: Known Block Designs with λ > 1, sorted by duty cycle. The quantity in paren-
thesis indicates the number of variations known for each design (there are, for instance,
10 distinct forming sets for the {1023,511,255} design).

{v, k, λ} duty cycle {v, k, λ} duty cycle {v, k, λ} duty cycle
{1023,511,255} (10) 49.95% {271,135,67} 49.82% {43,21,10} (2) 48.84%
{599,299,149} 49.92% {263,131,65} 49.81% {35,17,8} 48.57%
{587,293,146} 49.91% {255,127,63} (4) 49.80% {31,15,7} (2) 48.39%
{571,285,142} 49.91% {251,125,62} 49.80% {23,11,5} 47.83%
{563,281,140} 49.91% {239,119,59} 49.79% {19,9,4} 47.37%
{547,273,136} 49.91% {227,113,56} 49.78% {15,7,3} 46.67%
{523,261,130} 49.90% {223,111,55} 49.78% {11,5,2} 45.45%
{511,255,127} (6) 49.90% {211,105,52} 49.76% {364,121,40} 33.24%
{499,249,124} 49.90% {199,99,49} 49.75% {121,40,13} (4) 33.06%
{491,245,122} 49.90% {191,95,47} 49.74% {40,13,4} 32.50%
{487,243,121} 49.90% {179,89,44} 49.72% {109,28,7} 25.69%
{479,239,119} 49.90% {167,83,41} 49.70% {901,225,56} 24.97%
{467,233,116} 49.89% {163,81,40} 49.69% {677,169,42} 24.96%
{463,231,115} 49.89% {151,75,37} 49.67% {341,85,21} 24.93%
{443,221,110} 49.89% {143,71,35} 49.65% {197,49,12} 24.87%
{439,219,109} 49.89% {139,69,34} 49.64% {133,33,8} 24.81%
{431,215,107} 49.88% {131,65,32} 49.62% {101,25,6} 24.75%
{419,209,104} 49.88% {127,63,31} (6) 49.61% {85,21,5} 24.71%
{383,191,95} 49.87% {107,53,26} 49.53% {37,9,2} 24.32%
{379,189,94} 49.87% {103,51,25} 49.51% {781,156,31} 19.97%
{367,183,91} 49.86% {83,41,20} 49.40% {156,31,6} 19.87%
{359,179,89} 49.86% {79,39,19} 49.37% {400,57,8} 14.25%
{347,173,86} 49.86% {71,35,17} 49.30% {585,73,9} 12.48%
{331,165,82} 49.85% {67,33,16} 49.25% {820,91,10} 11.10%
{323,161,80} 49.85% {63,31,15} 49.21% {1464,133,12} 9.08%
{311,155,77} 49.84% {63,31,15} 49.21% {2380,183,14} 7.69%
{307,153,76} 49.84% {59,29,14} 49.15% {4369,273,17} 6.25%
{283,141,70} 49.82% {47,23,11} 48.94%

of E[NDT] is observed.

In Figure 3.14b, the fixed parameter is p and the resulting curve clearly demonstrates

the linear relation between E[NDT] and v, which differs from the non-linear gains resulting

from the increase of λ. A similar analysis can be made to Figure 3.14c — cutting the cycle

length in half will halve the discovery time, while increasing the delivery probability (for

example, by increasing the transmission power, or by reducing the distance) may have a

dramatic effect, particularly for marginal links (low values of p).

3.5.1.2 Projective Planes versus (other) Block Designs

The proposed model also permits a comparison between Projective Planes and Block

Designs with λ > 1. While Projective Planes provide minimal duty cycle, the augmented

frequency of discovery opportunities caused by an increase in λmay reduce the NDT as the

3.5 Block Designs 47

(a) v fixed (b) p fixed (c) λ fixed

Figure 3.14: The behavior of Equation 3.8 — linear growth of E[NDT] with v and non-
linear decrease, with both p and λ. As the NDT is infinite for p = 0, all graphs are plotted
for p ∈ [0.1, 1].

(a) p = 0.9 (b) p = 0.1

Figure 3.15: NDT and duty cycle for all known Block Designs, for p = 0.9 and for p = 0.1.
The most efficient Block Designs are within the expanded areas.

link quality deteriorates (low values of p). Figure 3.15a plots all known Block Designs in

the NDT×DC (DC = duty cycle) space for p = 0.9. Projective Planes are represented by

circles, while the other Block Designs are represented by crosses. As expected, Projective

Planes provide the lowest duty cycles — all Block Designs with duty cycles of less than

5% are Projective Planes, and only three Block Designs with λ > 1 present duty cycles

of less than 10%, as can be seen in the expanded area (and in Table 3.7).

Figure 3.15b provides the same information for p = 0.1. The points for {4369,273,17}
and {273,17,1} are marked in the expanded areas of both Figures 3.15a and 3.15b. It is

possible to notice the exchange in the relative positions of these points — while {273,17,1}
is better (lower NDT) for p = 0.9, the same does not happen when p = 0.1.

Figures 3.16a and 3.16b continue this analysis and provide a direct comparison be-

48 3 Schedule-based asynchronous duty cycling

(a) {4369,273,17} vs. {273,17,1} (b) {400,57,8} vs. {57,8,1}.

Figure 3.16: Comparisons between a Projective Plane and another Block Design (λ > 1)
with similar duty cycle show that the best NDT depends on the link quality p.

tween two pairs of Block Designs, always opposing a Projective Plane with another Block

Design with bigger λ and same approximate duty cycle. Figure 3.16a compares {273,17,1}
(duty cycle 6.23%) and {4369,273,17} (duty cycle 6.25%). For p < 0.26 the NDT for the

latter is the shortest. Likewise, as we can see in Figure 3.16b, the NDT for {57,8,1} (duty
cycle 14.04%) is only shorter than the NDT of {400,57,8} (duty cycle 14.25%) while

p > 0.44.

3.6 Why a new schedule?

After presenting the most important schedule-based asynchronous mechanisms in the

literature, one should question if a new mechanism is possible, that would present clear

advantages over all present propositions. To answer to that question, we need first to

select a set of metrics for comparison. The natural candidates are: duty cycle range,

duty cycle granularity, support for asymmetric operation and the resulting NDT for a

given duty cycle. Though we already possess these first three metrics for all studied

mechanisms, we still need to find the fourth in a way that permits a direct comparison.

Our method, though able to compare any two schedules, fails to give us means for

a general comparison among the mechanisms, that would be possible with the aid of

closed-form expressions. Therefore, we devote this section to finding such closed-form

expressions for the mechanisms under study. After that, and based on these expressions,

we will propose the last metric — the relative-latency.

3.6 Why a new schedule? 49

With this four metrics (duty cycle range and granularity, support for asymmetric

operation and relative-latency), we will show that there is room for improvement, once

there is not a single mechanism that is superior to the others in all metrics, in all scenarios.

This will lead us to our own proposition of a mechanism — Nested Block Design schedules,

in Chapter 4.

3.6.1 Closed-form expressions for the E[NDT]

Although our exact model provides the NDT with complexity O(w′ × q2), a closed-form

expression for the NDT for each of the studied schemes would be useful. Firstly, it would

provide a more intuitive understanding of the NDT, without summations and coefficients

with non-obvious meanings. Secondly, a closed-form expression may be used for general

and direct analytical comparison between the many existing schemes.

All closed-form expressions presented in here will be approximate. As it will become

clear, removing the Phi-coefficients from the expressions is only achievable through the

removal of some of the possible co-schedules. In some cases, the choice of which simplifi-

cations to use will lead to a more or less accurate expression for a given set of parameters.

We decided to be more precise in schedules that result in duty cycles of 2% or less8 and

to sacrifice accuracy for the other, less useful, schedules that result in higher duty cycles.

The specifics of each simplifying assumption will be clarified as an expression is obtained

for each of the four studied schedules (Block Designs, Grid, Torus and Disco). The pre-

sentation of each expression is followed by a validation, where the estimated NDT of the

expression is compared to the NDT given by our exact model.

3.6.1.1 Closed-form expression for the E[NDT] of Block Designs

In this section we present a closed-form expression that was obtained by combinatorial

analysis of all possible co-schedules between the schedules of two unsynchronized nodes

operating with random offsets in a monotonic scheme based on Block Designs. In order

to build such a model, we analyzed every possible distribution of discovery opportunities

that may occur for two unsynchronized nodes, accounting for the discovery probability

for each opportunity.

This approach works for all Block Designs, not only for Projective Planes. The key

point is to determine how the λ encounter opportunities are distributed within a cycle of

8We would prefer to set this limit to 1%. However, that would make a comparison with Block Designs
impossible.

50 3 Schedule-based asynchronous duty cycling

the co-schedule, as a function of all the possible v offsets between the neighbors, and also

considering that many cycles may be necessary for the discovery, depending on p.

We argue that our model, presented in Equation 3.8, provides an estimate of the NDT

in asynchronous duty cycling monotonic schemes based on Block Designs. Equation 3.8,

which is derived in Appendix B, Section B.1, takes the parameters v (number of slots per

cycle) and λ (number of discovery opportunities per cycle) from the Block Design and

the discovery probability, p, to estimate the expectancy for the neighbor discovery time,

E[NDT].

E[NDT]blockdesign =
v + 1

p(λ+ 1)
− (v + 1)(1− p)λ − (λ+ 1)

(λ+ 1)[(1− p)λ − 1]
(3.8)

Some special cases can be derived from Equation 3.8 and provide more practical and

insightful expressions for the NDT. Three of these cases are presented on Table 3.8. Case

1 presents the behavior of E[NDT] when λ = 1, i.e. for Projective Planes. In this case, as

p increases, E[NDT] tends to a little less than half a cycle (v−1
2
). Case 2 is a sub-case of

Case 1 and presents an intuitive result for near-perfect links (p ∼ 1): the waiting time will

range from 0 (immediate) to v slots (a complete cycle) with mean equal to v/2. This comes

from the fact that, for λ = 1 and p = 1, the NDT follows a discrete uniform distribution.

Finally, Case 3 also considers perfect links (and can be extrapolated to near-perfect links

without prejudice), but now there are many opportunities per cycle. The model shows

that for a given cycle duration, designs with higher λ will reduce E[NDT] at the expense

of a higher duty cycle.

Table 3.8: Three special cases derived from the model.

Case 1: λ = 1 E[NDT] = v
p
− v+1

2

Case 2: λ = 1 and p = 1 E[NDT] = v−1
2

Case 3: p = 1 E[NDT] = v−λ
λ+1

For validation, the closed-form expression provided in Equation 3.8 was compared to

the results from our exact method, for all known Block Designs for the delivery probabil-

ities from 0.05 to 1.0, with increments of 0.05. Figure 3.17, shows the gap for all Block

Designs with duty cycles of less than 2% as p grows. The gap is smaller than 0.3% in all

cases. As all Block Designs with duty cycle of less than 2% are Projective Planes, we can

use the expression for Case 1, at Table 3.8, for very good accuracy.

3.6 Why a new schedule? 51

Figure 3.17: The gap between the simplified closed-form and the exact model for all Block
Designs with duty cycle of less than 2%.

3.6.1.2 Closed-form expression for the E[NDT] of Grid

Deriving the expected NDT for a Grid system is not as straightforward as it is for other

mechanisms. This difficulty is due mainly to the many different ways in which two Grids

intersect as the offsets change. By empirically analyzing the behavior of this intersection

patterns with the R language [61] and applying methods of interpolation and curve fitting,

we were able to find the expression for the NDT, presented in Equation 3.9.

As detailed in Appendix B, Section B.2, we obtained a 6th degree polynomial ex-

pression, and tested it with many interesting values of n to reassure its accuracy and,

then, we derived a compact quadratic version that approximates the complete 6th degree

expression with accuracy better than 99% for all schedules with duty cycles lower than

2% (n > 100). Equation 3.9 is our expression for the expected NDT, when two nodes

operate under a monotonic scheme obtained from a n× n Grid schedule, for n > 100. It

takes the parameters p, the probability of discovery, and n, the grid dimension.

E[NDT]grid =
(3− p)n2

6p
(3.9)

To measure the gap for the expression in Equation 3.9 we selected 16 Grid schedules

with n = 100, 120, ..., 400, i.e. duty cycles between 0.5% and 2%, always selecting the

column which gives the shortest NDT. Figure 3.18 shows the gap to the exact model for

all these Grid schedules. The gap decreases as n increases and is more accentuated for

mid-range values of p. Although significantly higher than the gap found for the simplified

expression for Block Designs, a gap of less than 10% still fits our purposes, as we will see

in the end of this chapter.

52 3 Schedule-based asynchronous duty cycling

Figure 3.18: The gap between the simplified closed-form and the exact model for Grids
with n = 100, 120, .., 400.

3.6.1.3 Closed-form expression for the E[NDT] of Torus

In order to obtain a model for the estimation of the NDT for monotonic schemes based on

Torus schedules, a similar procedure to the one for the Grid system was used. However,

for Torus, the process must start by treating odd and even values of n differently. In

the end of the process, we were able to unify both cases in a single quadratic expression

(Equation 3.10). Because intersection patterns in Torus are better behaved than in Grid,

the resulting expression for Torus is more accurate. The specifics of the methodology are

detailed in Appendix B, Section B.3. Equation 3.10 is our NDT model for Torus schemes.

It takes the parameters p, the probability of discovery, and n, the grid dimension.

E[NDT]torus =
(2− p)n2

2p
(3.10)

To measure the gap for the expression in Equation 3.10, we selected 10 Torus schedules

with n = 75, 100, 125, ..., 300, i.e. duty cycles between 0.5% and 2%. Figure 3.19 shows

the gap to the exact values for all these Torus schedules. The gap tends to decrease as

n increases, although not monotonically, and is more accentuated for lower values of p.

The maximum gap observed for the tested schedules was of 2.54%.

3.6.1.4 Closed-form expression for the E[NDT] of Disco

In order to obtain a model of the NDT for monotonic duty cycling schemes out of Disco, we

again analyzed every possible distribution of discovery opportunities that may occur for

two unsynchronized nodes, accounting for the probability of discovery for each opportunity

3.6 Why a new schedule? 53

Figure 3.19: The gap between the simplified closed-form and the exact model for Torus
with n = 75, 100, 125, .., 300.

— a method similar to that employed for Block Designs.

Although, as in the case of Block Designs, a combinatorial analysis is feasible, such

analysis is more complex, since a change in the offset between neighbors affects the number

of discovery opportunities per cycle. Therefore, the derivation of this model, presented

in Appendix B, Section B.4 is the longest between the four schedules, and the resulting

expression, even in its compact quadratic version, presented in Equation 3.11, is also

slightly more cumbersome.

Equation 3.11 gives an approximation of the expected NDT with an error proportional

to 1
q1q2

(see Section B.4). It takes the parameters q1 and q2 (the prime numbers) and the

probability of discovery p.

E[NDT]disco =
q1q2(p

2 − 3p+ 3)

3p(2− p)
(3.11)

To measure the gap for the expression in Equation 3.11 we selected 10 Disco schedules

formed with balanced pairs (consecutive primes) and duty cycles between 0.5% and 2%.

Figure 3.20 shows the gap to the exact model for these Disco schedules. The gap tends

to decrease as the duty cycle decreases, and does not change appreciably with p. The

maximum gap observed for the tested schedules was of 2.01%. For schedules with duty

cycles of less than 1% the gap was never superior to 1%.

54 3 Schedule-based asynchronous duty cycling

Figure 3.20: The gap between the simplified closed-form and the exact model for 10
selected Disco schedules.

Table 3.9: Power-latency product as it appears in the literature.

Mechanism Latency Duty cycle Power-latency product

Block Designs (Projective Plane) {s2 + s+ 1, s+ 1, 1} N = v DC = k
v
= s+1

s2+s+1
=

√
N− 3

4
+ 1

2

N
∼ 1√

N

√
N

Torus Quorum (n× n) N = n2 DC = 3
√
N

2N
3
√
N/2

Grid Quorum (n× n) N = n2 DC = 2
√
N−1
N

2
√
N − 1

Disco, balanced (q1, q2) N = q1 · q2 DC = q1+q2
q1q2
∼ 2√

N
, (q1 ∼ q2 ∼

√
N) 2

√
N

3.6.2 Comparisons and the relative-latency metric

Schedule-based asynchronous mechanisms are usually compared through the power-latency

metric [57, 56], which is calculated as the product of the duty cycle and the latency. In

this computation, the latency used is, in fact, the cycle length, and the power is repre-

sented by the duty cycle. Henceforth, the way it has been used, the power-latency metric

intrinsically assumes p = 1. As a result, the power-latency represents the maximum NDT

over perfect links, and implies that between two mechanisms, one will always be better or

worse for all link qualities, which we already proved to be erroneous by comparing Grid

and Torus schedules, and also by comparing Block Designs with different lambdas.

The power-latency metric values for the studied schemes are presented in Table 3.9.

As already mentioned, an analysis based on such formulations results, for instance, that

the Torus Quorum would always present a lower latency than Grid Quorum or Disco, for

the same duty cycle9. The power-latency product is also misleading since the N in the

formulae, which is actually the cycle length, is not the same for all schemes.

For improved accuracy and direct comparison, we propose an alternative metric, the

relative-latency, which provides the NDT as a function of the duty cycle and of delivery

9For all values of N > 3

3.6 Why a new schedule? 55

Table 3.10: The relative-latency metric.

Mechanism Cycle length Latency Duty cycle Relative-latency

Block Design (Projective Plane) {s2 + s + 1, s+ 1, 1} L = s2 + s+ 1 L
p
− L+1

2
DC ∼ 1√

L

2−p

2p
· 1
DC2

Torus Quorum (n× n) L = n2 (2−p)L
2p

DC = 3
√
L

2L
9(2−p)

8p
· 1
DC2

Grid Quorum (n× n) L = n2 (3−p)L
6p

DC = 2
√
L−1
L

2(3−p)
3p
· 1
DC2

Disco, balanced (q1, q2) L = q1 · q2 L(p2−3p+3)
3p(2−p)

DC ∼ 2√
L

4(p2−3p+3)
3p(2−p)

· 1
DC2

Figure 3.21: Comparison between the four mechanisms based on the relative-latency
metric. This graph applies for all duty cycles.

probability, p. The relative-latency values for the four studied schedules are presented in

Table 3.10. They were obtained from the closed-form expression provided earlier in this

chapter. The third column in Table 3.10 shows the latency as a function of the cycle

length L, as given by the closed-form NDT expressions. The relative-latency is obtained

by replacing the value of the duty cycle DC, provided in the fourth column, in these

expressions for latency.

The relative-latency metric shows that, for a fixed duty cycle, Block Designs will

(when available) result in shorter NDT, while for the other three schemes, the second best

result would depend on the value of p. It is important to note that we do not need the

relative-latency metric to compare two given schedules, since we have an exact method

for such analysis. However, the new metric permits general conclusions that, though

approximative (since the relative metric is obtained from the approximative closed-form

expressions), provide a clear picture of how the schedules behave comparatively. This

behavior is captured in Figure 3.21 where each mechanism is represented by an area that

contains all curves that represent the NDT as a function of p, normalized in relation to

the NDT of Block Design schedules.

56 3 Schedule-based asynchronous duty cycling

Torus schedules, for example, will always result in approximately 2.25 times the NDT

of a Block Design, for the same duty cycle and delivery probability. This is easily observed

by dividing the relative-latency metric of both schedules. We may also conclude that,

compared to Torus, Grid and Disco will result in shorter NDT as link quality deteriorates.

The areas represent the imprecision of the closed-form expressions. However, for all

mechanisms, as the duty cycle decreases, the results converge to the upper limit of each

area. That means that Grid will result in shorter NDT for higher duty cycles, but as the

duty cycles decrease, Disco will eventually be more advantageous. Another conclusion is

that, for delivery probabilities around 0.7, the difference between Disco, Grid and Torus

may be irrelevant.

To reinforce the results presented in Figure 3.21, we used our model to compute the

NDT of four schedules of same approximate duty cycle: the {9507,98,1} Block Design,

the 193 × 193 Grid Quorum, the 145 × 145 Torus Quorum and Disco with the primes

(193,197). The selected schedules result in the duty cycle of 1.03% (selected, because it

is the lowest achievable by using Block Designs). The results are presented in Figure 3.22

and clearly fall within the prediction areas of the relative-latency metric.

Additionally, we implemented the same four schedules on TelosB motes [62]. The

results after 400 trials for each method are presented in Figure 3.23. The motes were

tested in conditions where practically no frames were lost, hence p = 1 was assumed. The

results confirm that Block Designs perform significantly better than the other schedules in

terms of average NDT. The Torus Quorum performed second best, and the Grid Quorum

and Disco presented similar results. The results also indicate the good prediction of the

closed-form expression, which, in fact, provides predictions not very different from the

exact values taken from our model. In all cases, a gap of less than 4% was observed

between the three bars.

Finally, we compare the literature assumption that the cycle length may be used as

an indicator of the NDT with our models. Figure 3.24 shows how greatly both approaches

differ. The four schedules were selected in order to provide diversity. In each graph, a

different schedule (Block Design, Grid, Torus and Disco) and duty cycle (1.03%, 0.5%,

0.19% and 0.05%) were selected and, in each case, the results from our proposed models

were compared to the cycle length, for values of p (delivery probability) from 0.05 to 1.0,

with increments of 0.05. The cycle length does not change with link quality and it is

represented by a horizontal line. In opposition, our models capture the effects of random

offsets and of link quality, yielding accurate estimations. Since the accuracy of our models

3.6 Why a new schedule? 57

Figure 3.22: The results from our exact model for four schedules of same approximate
duty cycle of 1.03%.

Table 3.11: Synoptic table — final comparison between Block Designs, Grid Quorum,
Torus Quorum and Disco.

Scheme Relative Minimum Granularity Asymmetric
latency duty cycle (order of magnitude) operation?

Block Design 2−p

2p
· 1
DC2 1.03% low no

Torus Quorum 9(2−p)
8p
· 1
DC2 any medium no

Grid Quorum 2(3−p)
3p
· 1
DC2 any medium yes

Disco, balanced 4(p2−3p+3)
3p(2−p)

· 1
DC2 any low to medium† yes

† depending on level of unbalancing

was established, the conclusion is that using the cycle length as a measure of latency is

a gross simplification. For low quality links, the NDT is in fact many times longer than

the cycle length (from 10 to 20 times as long, depending on the schedule). Likewise, for

good quality links, an overestimation of 100% is typical if the cycle length is assumed.

3.6.3 The need for a new schedule

We are now in position to decide in which way a new schedule could improve the per-

formance of schedule-based asynchronous duty cycling. Table 3.11 summarizes our com-

parison between the four schedule-based asynchronous duty cycling schemes. As demon-

58 3 Schedule-based asynchronous duty cycling

Figure 3.23: Experimental NDT for four schedules implemented in TelosB motes:
{9507,98,1} Block Design, 193× 193 Grid Quorum, 145× 145 Torus Quorum and Disco
with the primes (193,197). The confidence intervals of 95% are indicated with error bars.

(a) Block design {9507,98,1} (DC = 1.03%). (b) Grid 400× 400 (DC = 0.50%).

(c) Torus 800× 800 (DC = 0.19%). (d) Disco (1999, 2003) (DC = 0.05%).

Figure 3.24: A comparison between our proposed models and current literature.

strated, Block Designs are indisputable if the same duty cycle can be applied to all nodes

in the network, i.e. if asymmetric operation is not required. However, there is currently

no known Block Design that provides less than 1% of duty cycle — which is a significant

disadvantage.

3.6 Why a new schedule? 59

Figure 3.25: Decision Tree for selecting a schedule-based mechanism, considering asym-
metric operation, duty cycle and link quality. All studied schemes have application sce-
narios.

For duty cycles inferior to 1% the decision is more complex. For good quality links

Torus outperforms Grid or Disco, but it does not support asymmetric operation. For poor

quality links, or when asymmetric operation is required, Grid and Disco surpass Torus.

Between Disco and Grid, there is no clear winner. As already mentioned, Disco tends to

be superior for lower duty cycles. With the help of our model, we determined that Grid

is slightly better for duty cycles of 0.78% or higher, and Disco is better for lower duty

cycles. But the difference is small and restricted to mid-range delivery probabilities.

Granularity proved to be a poor metric. Actually, no mechanism provides high gran-

ularity (except highly unbalanced Disco, which is not recommended for its high latency),

although it tends to increase if low duty cycles are targeted. In terms of order of magni-

tude, granularity is in the order of 1/DC for the studied mechanisms.

Based on all this considerations, a decision tree like the one portrayed in Figure 3.25

summarizes the options and motivates our own proposition — to design a schedule that

achieves NDTs as low as Block Designs, while achieving arbitrarily low duty cycles and

supporting asymmetric operation. We introduce such a schedule in the next chapter.

Chapter 4

Nested Block Designs

This chapter presents Nested Block Designs, our proposal to extend the application do-

main of Block Designs, by removing its aforementioned shortcomings: (1) the lack of a

schedule that provides duty cycles lower than 1%, (2) the impossibility of asymmetric

operation and (3) its low duty cycle granularity.

As in the other schedules, under Nested Block Design schedules, time is also divided

into cycles. However, each cycle is divided into superslots that are further divided into

slots. A superslot is either active or inactive, according to a given Block Design, referred

to as outer design. If a superslot is inactive, all its slots will also be inactive. If, on the

other hand, the superslot is active, its constituting slots will be either active or inactive

according to a second given Block Design, referred to as inner design. The inner and

outer designs may be the same Block Design, or different Block Designs. To denote a

Nested Block Design we will use {vo, ko, λo}#{vi, ki, λi}, where {vo, ko, λo} indicates the

outer schedule or design, and {vi, ki, λi} the inner schedule or design.

Figure 4.1: A Nested Block Design. The outer design is {7,3,1}. Each one of the active
superslots in the outer design is further divided into active and inactive slots according
to the inner design {13,4,1}.

Figure 4.1 presents an example of a Nested Block Design. The depicted Nested Block

Design is {7, 3, 1}#{13, 4, 1}, meaning that each cycle is formed by 7 superslots, consisting

62 4 Nested Block Designs

of 13 slots each. The three active superslots will have four active slots according to the

{13,4,1} design. The resulting duty cycle is koki
vovi

. In this example, there will be 12 active

slots in a cycle of 91 slots.

It should be noted that a Nested Block Design is no longer adherent to the definition

of Block Design given in Section 3.5, and its optimality in terms of duty cycle is lost. This

is easy to see if we compare the schedules {91,10,1} and {7,3,1}#{13,4,1}. While both

present the same length, the Projective Plane has only 10 active slots, against 12 of the

Nested Design. However, as we will see, this increase in duty cycle will be followed by a

decrease in the NDT, due to the increased number of discovery opportunities per cycle.

The rest of this chapter is organized as follows. We start by presenting some of the

design choices taken for Nested Block Designs, in Section 4.1. Sections 4.2 to 4.5 are

organized to demonstrate the desirable qualities of Nested Block Designs:

• Neighbor discovery time for Nested Block Designs is shorter than that of Grid

and Torus Quora or Disco, and only marginally longer than that of Block Designs

(Section 4.2).

• Nested Block Designs may achieve arbitrarily low duty cycles (Section 4.3).

• Nested Block Designs have duty cycle granularity superior than that of Block De-

signs and at least comparable to that of other mechanisms (Section 4.4).

• With Nested Block Designs it is possible to devise a scheme for asymmetric operation

(Section 4.5).

Section 4.6 presents the results of tests performed with Nested Block Designs in real sensor

motes, and Section 4.7 presents our final remarks on Nested Block Designs, concluding

the chapter.

4.1 Design choices

Nested Block Designs may be formed from any Block Designs, i.e. Projective Planes

or other Block Designs. Because of their optimality, we will use only Projective Planes

in most of our analyses, using Block Designs with λ > 1 only when necessary, such as

to illustrate a given point. However, as we did for all other schedules, we may use our

method to help finding answers to other specific questions regarding the design of Nested

Block Design schedules.

4.1 Design choices 63

4.1.1 Inner design rotation

Given a {vo, ko, 1}#{vi, ki, 1} schedule, there is the question of which rotation of the inner

design {vi, ki, 1} should be selected for lower NDT. Note that any rotation of the outer

design {vo, ko, 1} will result in an equivalent schedule. However, rotating {vi, ki, 1} results
in an non-equivalent Nested Design.

Figure 4.2 shows the impact on the NDT as the inner schedule {7,3,1} rotates in

a {7,3,1}#{7,3,1} Nested schedule. As demonstrated in the Appendix C, the smaller

the last element of the delta-set of the inner schedule (δki−1), the smaller the NDT. In

the case of the {7,3,1} schedule, there is one rotation with δ2 = 1 (forming set {0,2,6}),
two rotations with δ2 = 2 ({0,4,5} and {1,4,6}) and four rotations with δ2 = 4 ({0,1,3},
{1,2,4}), {2,3,5} and {3,4,6}) (see Figure 3.13). Figure 4.2 shows the percentual increase

in the NDT in relation to the best case (δ2 = 1). The difference increases with p but

never reaches 1.65%. The impact is proportional to MAX(∆{Si})/vi — the maximum

delta in the delta-set of the inner schedule divided by the cycle length of the inner schedule

(see Appendix C), which, by testing all known Projective Planes, we determined to be

maximum for {7,3,1}. Therefore, the percentual difference is always less than 2%, falling

inside the gray area in Figure 4.2 for all inner rotations.

Although the difference is small, there is no reason not to select the inner schedule

with minimum δki−1. In a Projective Plane, there will always be exactly one rotation with

δki−1 = 1. This can be explained by the relation between Projective Planes and Perfect

Difference Sets (see [59]) — two consecutive active slots will always occur in Projective

Planes, and there is always one rotation with the first and the last slots active, as a

consequence.

4.1.2 Nesting order

Another question regarding the design of Nested schedules is the order in which the

forming schedules should be nested. Given two distinct Projective Planes, {va, ka, 1} and
{vb, kb, 1}, it is possible to select either of them as inner or outer design: the resulting duty

cycle will be the same. However, we may ask which nesting order, {va, ka, 1}#{vb, kb, 1}
or {vb, kb, 1}#{va, ka, 1}, would result in the shortest NDT.

An analytical answer to the question above would require the solving of the maxi-

mization problem presented in Appendix C. Nevertheless, as the number of Projective

Planes are finite, we may actually test all possibilities and avoid the maximization prob-

64 4 Nested Block Designs

Figure 4.2: The percentual difference in the NDT given rotations of the inner schedule
{7,3,1}. The minimum NDT happens when δki−1 = 1.

lem. We proceeded likewise, and concluded that one should select the longest schedule

as the inner schedule. Therefore, if vb > va: {va, ka, 1}#{vb, kb, 1} results in shorter NDT

than {vb, kb, 1}#{va, ka, 1}.

Figure 4.3 illustrates that by showing a comparison between two pairs of Nested

schedules. The first pair, {7,3,1}#{9507,98,1} and {9507,98,1}#{7,3,1}, is extreme, in

the sense that it is the Nested schedule where the difference between inner and outer

designs is maximized. It is, in fact, the pair where the observed difference in NDT is

the greatest. When p, the delivery probability, approaches 1, the difference between the

NDT of {7,3,1}#{9507,98,1} vs {9507,98,1}#{7,3,1} reaches 8%, showing that the first

schedule is significantly faster than the second in neighbor discovery.

For the second pair in Figure 4.3, {7,3,1}#{13,4,1} and {13,4,1}#{7,3,1}, the dif-

ference is smaller. As the cycle lengths of inner and outer designs approach each other,

the impact of the nesting order decreases. For schedules {1057,33,1}#{993,32,1} and

{993,32,1}#{1057,33,1}, for example, the difference is always smaller than 0.01%. Actu-

ally, for all combinations the difference in nesting order will always fall within the gray

area in Figure 4.3.

4.2 NDT is comparable to Block Designs 65

Figure 4.3: The difference in the NDT as a function of the nesting order. Two specific
cases are shown in the graph, and all cases fall within the gray area.

4.2 NDT is comparable to Block Designs

As shown in Section 3.6.2, for the same duty cycle and discovery probability, Block Designs

require less than half the time for neighbor discovery than any other studied schedule.

Therefore, if we demonstrate that the E[NDT] of Nested Block Designs are only slightly

longer than that of Block Designs, this will also prove that Nested Block Designs perform

better than the other mechanisms, with respect to NDT.

We start by using our model for a series of comparisons between Block Designs and

Nested Block Designs. Since there are no combinations of these schedules that provide

the same exact duty cycle, we paired schedules that present less than 1% of relative

difference in duty cycle. Because it is already difficult to match these duty cycles for

a fair comparison, we will use Nested Designs formed by any Block Designs, not only

Projective Planes.

Figure 4.4 shows a comparison between three pairs of Block Designs and Nested

Block Designs of approximately same duty cycle: {19,9,4}#{553,24,1} (DC = 2.056%)

and {2451,50,1} (DC = 2.040%), {91,10,1}#{91,10,1} (DC = 1.208%) and {6973,84,1}
(DC = 1.205%), and {121,40,13}#{1057,33,1} (DC = 1.032%) and {9507,98,1} (DC =

1.031%). Though, as expected, Block Designs present lower NDT, the difference is not as

marked as it is for other schedules (Grid, Torus and Disco). As seen in the next section,

66 4 Nested Block Designs

(a) duty cycle ∼ 2% (b) duty cycle ∼ 1.2% (c) duty cycle ∼ 1%

Figure 4.4: Comparison between Nested Block Designs and Block Designs of similar duty
cycle.

the difference peaks at 10.6% and it is typically much smaller.

To demonstrate better the difference between Nested Block Designs and other sched-

ules, another set of direct comparisons, including Grid, Torus and Disco, is provided in

Figure 4.5. The graphs clearly demonstrate that Nested Block Designs provide lower

NDT than all of the other schedules (except Block Designs, when they exist — see Fig-

ure 4.5d). Figure 4.5a shows a comparison between Disco, Grid, Torus and Nested Block

Designs with duty cycles of approximately 0.0975%. Though the difference between the

first three is hard to spot, the superiority of Nested Block Designs is clear for all values of

p. Figures 4.5b and 4.5c demonstrate the same for other selected duty cycles (0.2% and

0.5%, respectively).

For a relatively high duty cycle of 1.2%, it is possible to include regular Block Designs

in the comparison. Figure 4.5d shows that, as expected, the latter results in shorter NDT.

However, Nested Block Designs perform noticeably closer to Block Designs than the other

schedules. In fact, the choice between nested and regular designs, could tend towards the

former because they provide the capability for asymmetric operation. In short, Nested

Block Designs not only extend the applicability of Block Designs to new domains (duty

cycles of less than 1% and asymmetric operation), but it may also achieve comparable

performance in terms of NDT.

4.2 NDT is comparable to Block Designs 67

(a) duty cycle = 0.0975% (b) duty cycle = 0.2%

(c) duty cycle = 0.5% (d) duty cycle = 1.2%

Figure 4.5: Comparing Nested Block Designs with other schedules of approximately the
same duty cycle.

4.2.1 Closed-form expression for the NDT of Nested Block De-

signs

For the same reasons exposed in Chapter 3, it is useful to have a closed-form expres-

sion for the NDT of Nested Block Designs. Although Nested Block Designs depart from

Block Designs in some aspects, it is possible to obtain a reasonable approximation for

the NDT of the former, based on the expression for the latter. We will, therefore, use

68 4 Nested Block Designs

the closed-form expression for NDT of Projective Planes, replacing v with vovi as the

cycle length. Assuming both nodes operate asynchronously under the Nested Block De-

sign {vo, ko, 1}#{vi, ki, 1}, we declare that Equation 4.1 provides the E[NDT] with a gap

proportional to (1/vo + 1/vi). A proof is provided in Appendix B, Section B.5.

E[NDT]nested =
vivo
p
− vivo + 1

2
(4.1)

By computing Nested schedules {vo, ko, 1}#{vi, ki, 1}, vi ≥ vo, that result in duty

cycles of less than duty cycle of {9507,98,1} (1.03%), we found that the worst gap (for

the {7,3,1}#{1893,44,1} design) is 8.9% and, for any schedule with duty cycle of less

than 0.1%, the biggest gap, that happens for {133,12,1}#{8011,90,1}, is 0.6%. The gap

decreases with the decrease in duty cycle, as expected1.

Figure 4.6 shows the percentual difference from the closed-form expression results to

the exact values obtained with our method. Each line represents a family of schedules

formed by all Nested Designs with the same outer design — within a family all schedules

present the same approximate gap, with relative difference of less than 0.5% between any

two, which results in less than 0.05% of difference in the gap to the exact model, in the

worst case. Therefore, the gap is approximately the same for all schedules in the same

family, but drops noticeably as the outer design lengthens. For all values of p, the gap

is less than 2% for all Nested Designs with outer schedules longer than 57 slots, which

means that the simplification is reasonable.

Moreover, as the gap in the closed-form expression for Block Designs is so low (less

than 0.05% for all designs with duty cycle of less than 1%), the results in Figure 4.6 are

also an indicator of the increase in the NDT of Nested Block Designs in relation to the

NDT of Block Designs. This difference will always remain under 10.6%, and will be of

less than 2% for outer schedules longer than 57 slots.

4.3 Duty cycle may be arbitrarily low

With Nested Block Designs, a duty cycle as low as 0.01% can be achieved (for example,

with the schedule {9507, 98, 1}#{9507, 98, 1}). In fact, if more than one level of nesting

is employed, the duty cycle can be arbitrarily low. A second level of nesting would be

1We have not computed all 596 schedules, for some have more than 107 slots. There is clear indication
that the gap decreases monotonically as the inner schedule increases in cycle length. Therefore, we
computed all combinations of designs with length < 1457.

4.4 Duty cycle granularity is significantly improved 69

Figure 4.6: The gap between the simplified closed-form and the exact model for Nested
Block Designs.

achieved by subdividing the slots of the inner design into superslots, further divided into

slots. In practice, nesting can proceed in as many levels as desired and achieve arbitrarily

low duty cycles.

Figure 4.7 presents the resulting duty cycle for all Nested Block Designs formed with

Projective Planes in four ranges. Projective Planes are represented by their length (v).

The combinations in white are of limited use, since there are Projective Planes with the

same duty cycle.

4.4 Duty cycle granularity is significantly improved

There are many ways to measure the duty cycle granularity of Nested Block Designs.

Obviously, we should not count schedules that result in the same duty cycle. Therefore,

{va, ka, 1}#{vb, kb, 1} and {vb, kb, 1}#{va, ka, 1} count as the same. Likewise, two variants

of the same schedule should also count as the same (there are, for example, 10 different

forming sets for {1023,511,255}).

However, there are also different criteria that will result in different values for the

granularity of Nested Block Designs. First, we may or may not consider Block Designs

with λ > 1. Secondly, there is the question of the level of nesting ({vo, ko, λo}#{vi, ki, λi}
has one level, {vo, ko, λo}#{vi, ki, λi}#{vt, kt, λt} has two levels of nesting). When the

level of nesting increases, the granularity also increases. Table 4.1 presents the granularity

of Nested Block Designs considering all Block Designs or only Projective Planes, for

levels of nesting 1 to 3. Granularity increases rapidly with the level of nesting and, if

all Block Designs are considered, it surpasses all other schedules for level of nesting 2

70 4 Nested Block Designs

Figure 4.7: All combinations of Projective Planes (each represented by their corresponding
length v) and their approximate duty cycles. Duty cycles as low as 0.01% are possible.

Table 4.1: The granularity of Nested Block Designs.

Level of nesting Projective Planes only All Block Designs
1 to 10% 0.1 to 1% 0.01 to 0.1% 1 to 10% 0.1 to 1% 0.01 to 0.1%

1 61 276 290 2229 1502 305
2 90 1295 15500 256517 292563 129540
3 38 2108 560555 25574405 33239617 32218860

(considering Disco with level of unbalancing 5), as can be seen by comparing Table 4.1

with Tables 3.1, 3.2, 3.3 and 3.4.

4.5 Asymmetric operation is possible

For achieving asymmetric operation, we need designs with different duty cycles that are

still able to interoperate, i.e. a scheme with rotation closure. In order to achieve rotation

closure with Nested Block Designs, we introduce a new variant of these schedules and

extend our notation. We will refer to a {v, k, λ}#N schedule as a {v, k, λ} schedule

where each superslot is divided into N slots that will be either all active, for an active

superslot, or all inactive, for an inactive superslot. Figure 4.8 represents the concept for

a {7,3,1}#13 Nested Design. Note that the duty cycle of the schedule {v, k, λ}#N is the

same as the duty cycle of the schedule {v, k, λ}.

4.5 Asymmetric operation is possible 71

Figure 4.8: A {7,3,1}#13 Nested Block Design. The outer design is {7,3,1}. But in this
case, each slot of an active superslot is also active and, likewise, each inactive superslot
consists only of inactive slots.

These new Nested Designs permit asymmetric operation since a scheme formed by ro-

tations of {vo, ko, λo}#vi and {vo, ko, λo}#{vi, ki, λi} present rotation closure. This means

that a node operating under the {91,10,1}#183 nested design can change its schedule to

a {91,10,1}#{183,14,1}, thus reducing its duty cycle from 11% to 0.84% and still be able

to communicate with nodes operating under the former schedule, as well as with other

neighbors that also made the switch.

It is worth reminding what is the advantage of operating under {91,10,1}#183, in

comparison to the more power efficient {91,10,1}#{183,14,1}. The answer lies in the

decreased latency, since an increase in the number of overlapping slots translates into

more discovery opportunities and a corresponding decrease on the NDT. The intuition

behind the NDT in this case can be easily illustrated by considering all possibilities in

our example:

1. Both nodes operate under {91,10,1}#{183,14,1}. In this case, the modal number

of discovery opportunities per cycle will be one.

2. One node operates under {91,10,1}#{183,14,1}, while the other operates under

{91,10,1}#183. In this case, the modal number of opportunities of discovery per

cycle will be 10, instead of one in Case 1. These opportunities will be concentrated

within a superslot (of 183 slots, in this case).

3. Both nodes operate under {91,10,1}#183. The modal number of opportunities of

discovery per cycle will be 183 — all of the slots of the overlapping superlot.

It is not hard to see that the probability of discovery within the first cycle increases

significantly from Case 1 to Case 3, as the typical number of opportunities increases from

1 to 10 and then to 183. A similar example is illustrated in Figure 4.9, which shows the

72 4 Nested Block Designs

Figure 4.9: An example of how Nested Block Designs can be combined for asymmetric
operation and their resulting duty cyle as a function of p

resulting NDT for the three combinations of schedules {7,3,1}#{13,4,1} and {7,3,1}#13,

calculated with our method. There is a clear trade off between the most power efficient

scheme, where both nodes operate under {7,3,1}#{13,4,1}, and the most robust scheme,

where both nodes operate under {7,3,1}#13. The intermediary case may be a good

compromise if one node’s battery is low.

One obvious example of use of these interoperable Nested Designs could be an appli-

cation where nodes start with the higher duty cycle schedule until a certain event happens

as, for instance, the node finds a given number of neighbors. After this event, the node

could switch to the less energy consuming schedule. The node may also switch back to

the more aggressive schedule, if necessary.

With additional levels of nesting, it is also possible to achieve increased degrees of

asymmetry in nodes’ duty cycles. A schedule {91,10,1}#{91,10,1}#{91,10,1} (duty cycle

= 0.13%) is compatible with both {91,10,1}#{91,10,1}#91 (duty cycle = 1.2%) and

{91,10,1}#8281 (duty cycle = 11%).

4.6 Implementing Nested Block Designs

This section provides experimental results that show the feasibility of Nested Block De-

signs implemented in real sensor motes. Moreover, the experiments reinforce the claim

that slot alignment is not a requirement for asynchronous mechanisms to work, and that

4.6 Implementing Nested Block Designs 73

our method to find the NDT is applicable to the general case, as the experiments with

other schedules in Chapter 3 also indicated.

4.6.1 Symmetric operation

As a first test, the Nested Block Design {91,10,1}#{183,14,1} was implemented in MicaZ

sensor motes, manufactured by Memsic [62]. Because neighbor discovery is a phenomenon

involving only two peers, the tests used two sensor motes (A and B), with no loss of

generality, since interference caused by other nodes is incorporated as affecting p. The

experiment worked as follows. Mote A operates continually on an activity pattern taken

from the schedule under test and sends a beacon at every active slot. Mote B is activated

after a random wait, in order to guarantee the random offset between A and B. When

activated, B starts a counter that stops when a beacon from A is received. This counter

measures the NDT. After reporting this measurement, B waits a random time and restarts

the process.

The two motes were placed in an environment with low interference in the selected

channel (channel 26 of the IEEE 802.15.4 standard) and only a few centimeters apart. The

delivery probability was periodically monitored and was 100% during all measurements,

indicating that p was, at least, very close to 1 during the entire experiment.

Table 4.2: Implementation of Nested Block Designs on sensor motes — experimental
results for p = 1.0.

Tested schedule {91,10,1}#{183,14,1}
Slot duration 9.77ms (10 ticks of a 1024Hz clock)
Number of measurements 1,000
Link quality p = 1.0
E[NDT] for p = 1.0 80.6s
Experimental NDT 79.8s
95% confidence interval 78.2 to 81.4s

In order to assess the model in an error prone scenario, a second battery of tests was

performed with the motes placed inside metallic boxes separated by 75cm and transmitter

power was reduced to -20dBm. In this controlled setup, the delivery probability was

measured during an entire day and determined to be of 0.8. Because a higher variance is

to be expected with lower values of p, the test was performed 1,447 times over three days

(instead of the 1,000 times in tests with p = 1). Results for this second series of tests

are presented in Table 4.3. The same schedule and slot length was used. This time, the

expected NDT would be of 122 seconds, and the experimental average NDT was 123.3

74 4 Nested Block Designs

seconds, with a 95% confidence interval between 118 and 128 seconds. Once more, an

accuracy better than 98% was achieved.

Table 4.3: Implementation of Nested Block Designs on sensor motes — experimental
results for p = 0.8.

Tested schedule {91,10,1}#{183,14,1}
Slot duration 9.77ms (10 ticks of a 1024Hz clock)
Number of measures 1,447
Link quality p = 0.8
E[NDT] for p = 0.8 122s
Experimental NDT 123.3s
95% confidence interval 118 to 128s

Table 4.2 summarizes the experiment and its results. Slots were 9.77 ms long (10

ticks of a 1024 Hz clock). According to our method, for p = 1, the NDT for the schedule

{91,10,1}#{183,14,1} would be equivalent to 8,248.23 slots, or 80.6 seconds. As shown in

the table, the experimental NDT after 1,000 measures was 79.8 seconds. Therefore, the

NDT predicted by the model falls within the 95% confidence interval for the experiment.

Also, the difference between the average experimental NDT and the model prediction was

less than 1%.

4.6.2 Asymmetric operation

To test asymmetric operation two Iris motes [62], A and B, where programmed to operate

under the schedules {7,3,1}#{13,4,1} and {7,3,1}#13, respectively. All the other param-

eters where kept identical of the tests performed with symmetric operation (Section 4.6.1),

except for slot duration —100 ticks for this test.

The results are presented in Table 4.4. The experimental average NDT of 2.80s

deviates only 1.45% from the expected value of 2.76s, which is within the confidence

interval of the experiment.

4.7 Nested Block Designs and other schedules

With Nested Block Designs we addressed the shortcomings of Block Designs and proposed

a schedule that may operate under arbitrarily low duty cycles in asymmetric mode, and

yields NDT marginally longer than Block Designs, and therefore significantly shorter than

Disco, Grid Quorum or Torus Quorum. Duty cycle granularity was also much increased

4.7 Nested Block Designs and other schedules 75

Table 4.4: Implementation of Nested Block Designs on sensor motes for asymmetric op-
eration

Tested schedules {7,3,1}#13 in A and {7,3,1}#{13,4,1} in B
Slot duration 97.7ms (100 ticks of a 1024Hz clock)
Number of measurements 1,000
Link quality p = 1.00
E[NDT] for p = 1 2.76s
Experimental NDT 2.80s
95% confidence interval 2.75 to 2.85

and it is at least comparable to that of other schedules. As a result, we may simplify the

decision tree presented in Figure 3.25 to include only Block Designs and Nested Block

Designs, where the former would be advantageous only for duty cycles of more than 1%,

and only useful for symmetric operation. For all other scenarios, we demonstrated that

Nested Block Designs would out-perform all studied schedules. The new decision tree is

presented in Figure 4.10.

Figure 4.10: Decision Tree for selecting a schedule-based mechanism, considering asym-
metric operation, duty cycle and link quality, after the introduction of Nested Block
Designs.

Chapter 5

Conclusion and Future Directions

This thesis introduced Nested Block Designs — a new schedule for asynchronous duty

cycling that presents the advantages of Block Designs (lowest latency for a given duty

cycle and rotation closure) while addressing its shortcomings (low granularity, incapability

of achieving low duty cycles and of operating in asymmetric mode). These features of

Nested Block Designs were demonstrated or supported by analytical and experimental

results.

We also provided a method for finding the expected neighbor discovery time for any

schedule-based scheme, and a set of closed-form expressions with same purpose, for the

most prominent schedules in the literature. The method and a new set of definitions com-

pose a framework that may be used to analyze any future schedule and better understand

how they should be designed to hasten neighbor discovery without sacrificing duty cycle.

Moreover, we used our method to better understand each of these schedules. A complete

list of contributions follows:

• A survey and taxonomy of duty cycling mechanisms, which divides proposals not

only into synchronous and asynchronous, but into nine subcategories (Chapter 2).

• Full characterization of schedule-based asynchronous duty cycling, with formal def-

inition of basic concepts, such as schedule, schemes, etc (Section 3.1).

• An exact method to obtain the E[NDT] of any schedule-based mechanisms, with

analysis of important design aspects of the schedules (Section 3.2).

• Detailed analysis of Quorum Systems, including the use of the exact method to

address pending questions related to column selection, comparison between Grid

and Torus (Section 3.3).

78 5 Conclusion and Future Directions

• Detailed analysis of Disco, including the use of the exact method to understand the

impact of pair balancing on the NDT (Section 3.4).

• Detailed analysis of Block Designs, with comparison between Projective Planes and

other Designs. (Section 3.5).

• Closed-form expressions for the E[NDT] of all mechanisms presented in Chapter 3

(Section 3.6.1 and Appendix B).

• Proposal of the relative-latency metric, for better comparison of the mechanisms

(Section 3.6.2).

• A comparison between the existing mechanisms and a decision tree to summarize the

process of selecting a mechanism that is adequate to a given scenario (Section 3.6.3).

• Introduction of Nested Block Designs, a new schedule-based mechanism, that presents

the aforementioned advantages and changes the decision tree (Chapter 4). Nested

Block Designs should be used in all cases where a duty cycle of less than 1% is

required or when asymmetric operation is desired.

5.1 Future directions

As demonstrated, Nested Block Design schedules are close to optimal in terms of NDT

and equal or surpass all other schedules in all usual metrics. There are, however, aspects

of the new schedule that deserve further investigation or enhancements.

In relation to the schedule design, the most important aspect is the study of the mixed

schemes used for asymmetric operation. The resulting NDT needs better characterization.

Also, the scheme could be enhanced to allow for a higher number of different duty cycles.

In its current form, the number of possible duty cycles is limited to the level of nesting.

Therefore, new and more flexible forms of combining schedules should be investigated.

Still regarding design issues, the use of Block Designs with λ > 1 may also render use-

ful and interesting Nested Designs that have not yet been studied. In terms of modelling,

the complete characterization of the NDT as a random variable, defined by its probability

distribution, seems the natural sequence after the determination of its expectation.

If we venture outside the scope of this thesis — schedule design and modeling —

other questions may be of interest for further investigation. For example, there is the

question of designing protocols that employ such schedules, and the important study of

5.1 Future directions 79

the interaction between schedule-based asynchronous duty cycling and other techniques of

energy conservation and, even more importantly, its interaction with sensory applications.

81

APPENDIX A -- Computation of the NDT

The Python code (for version 3) bellow computes the NDT for a monotonic scheme based

on a generic schedule, for all probabilities in the range 0.05 to 1, with increments of 0.05:

Input form: entrada="schedule description; length; active slots (list, comma separated)"

entrada="{7,3,1};7;0,1,3"

description=entrada.split(";")[0]

cyclelength=int(entrada.split(";")[1])

activeslots_str=(entrada.split(";")[2]).split(",")

activeslots = [int(slot) for slot in activeslots_str]

numactive=len(activeslots)

‘‘opportunities’’ is a list of lists for all discovery opportunities ordered by the offset

opportunities = []

opportunities.append(activeslots)

for offset in range(1,cyclelength):

opportunities_offset = []

for i in range(0,numactive):

if (activeslots[i] + offset)%cyclelength in activeslots:

opportunities_offset.append((activeslots[i] + offset)%cyclelength)

opportunities.append(opportunities_offset)

‘‘phi’’ is a list of lists of the phi coefficients ordered by the offset

phi = []

off = 0

for ops in opportunities:

‘‘phi_off’’ keeps the phi coefficients for the current offset

phi_off = []

Find the delta set of the co-schedule

delta = []

for j in range(0,len(ops)):

82 Appendix A -- Computation of the NDT

delta.append(ops[(j + 1) % len(ops)] - ops[j])

if (delta[j] <= 0):

delta[j] += cyclelength

Find phi_0

phi_off_0 = 0;

for d in range(0,len(delta)):

phi_off_0 += delta[d] * (delta[d] - 1)

phi_off_0 = phi_off_0 / (2 * cyclelength)

phi_off.append(phi_off_0)

Find the other phi coefficients

phi_prev = phi_off_0

for d in range(1,len(delta)):

phi_k = 0

for k in range (0,len(delta)):

prev = k - d

if (prev < 0):

prev += len(delta)

phi_k += delta[k] * delta[prev]

phi_k = phi_prev + phi_k/cyclelength

phi_prev = phi_k

phi_off.append(phi_k)

phi.append(phi_off)

off+=1

Calculate NDT for p in (0.05, 1, 0.05)

for prob in range (5,105,5):

p = prob / 100

NDT = 0

for off in range(0,cyclelength):

NDT_off = 0

numops = len(phi[off])

The part which depends on the expected number of cycles

termcycles = cyclelength * ((1 / (1 - (1 - p)**numops)) - 1)

The part which depends on the phi coefficients

termphi = 0

for i in range(0, numops):

termphi += (phi[off][i] * p * (1 - p)**i) / (1 - (1 - p)**numops)

NDT_off = termcycles + termphi

NDT += NDT_off

NDT = NDT / cyclelength

print (p, NDT)

83

APPENDIX B -- Closed-form approximative

expressions for the NDT of

monotonic schemes

This Appendix provides details on the techniques used to obtain closed-form expressions

for monotonic schemes out of Block Designs, Grid Quorum, Torus Quorum, Disco and

Nested Block Designs.

B.1 Block Design schemes

This section presents a derivation of Equation 3.8 — a closed-form expression for Block

Designs.

Proof — Let A and B be two nodes operating under a scheme of asynchronous duty

cycling based on a Block Design {v, k, λ}. As a simplification, suppose that A and B

operate under different offsets (i.e. under different blocks). Define ei, 1 ≤ i ≤ λ, as the

ith common active slot between both nodes within a given cycle (i.e. the ith opportunity

of discovery in a cycle). Figure B.1 exemplifies such definitions with an instance where

two nodes operate under a {15,7,3} design. Clearly, for 0 < i < λ:

E[ei+1 − ei] =
v + 1

λ+ 1
and, E[e1] =

v + 1

λ+ 1
− 1

In this case, we can calculate E[NDT] from the definition of expectancy:

E[NDT] =
∞
∑

c=1

λ
∑

i=1

tci · pci (B.1)

where tci is the time when the ith discovery opportunity happens within cycle c and

pci is the probability that the discovery happens on that moment. But,

84Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

Figure B.1: Two nodes operating under a {15,7,3} design, with an offset of two slots, give
an example for the parameters used in the proof.

tci = tc1 +

i−1
∑

j=1

{ei+1 − ei}

E[tci] =

[

v(c− 1) +

(

v + 1

λ+ 1
− 1

)]

+ (i− 1)
v + 1

λ+ 1
(B.2)

and,

pci = p(1− p)λ(c−1)+i−1 (B.3)

By substituting (B.2) and (B.3) in (B.1) and solving the summation, we find that:

E[NDT] =
v + 1

p(λ+ 1)
− (v + 1)(1− p)λ − (λ+ 1)

(λ+ 1)[(1− p)λ − 1]

�

B.2 Grid schemes

In order to derive a model of the NDT for the Grid Quorum, we developed a script using

the R language [61] to compute the sum of the times needed until the first opportunity of

encounter for all n4 combinations of offset and starting slots, for n = 1, ..., 60. Figure B.2a

shows the values found using this computation. By applying the finite difference method

to the data, it is possible to identify this curve as a 6th degree polynomial. Using a simple

interpolation method, we find that the mean time until the first opportunity of encounter

is given by:

E[e1] =
2n6 − 2n5 − 3n3 + 4n2 − n

6n4
(B.4)

B.2 Grid schemes 85

0 10 20 30 40 50

0
1

2
3

4
5

Values of N

S
um

 o
f t

he
 ti

m
es

 u
nt

il
th

e
fir

st
 o

pp
or

tu
ni

ty
 (

in
10

9 sl
ot

s)

(a) First opportunity

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Value of i

S
um

 o
f t

he
 ti

m
es

 u
nt

il
th

e
i−

th
 o

pp
or

tu
ni

ty
 (

in
 1

09 s
lo

ts
) n = 30

n = 29
n = 28
n = 27
n = 26
n = 25

(b) ith opportunity

Figure B.2: Sum of the times until the first and the ith opportunity for all combinations
of offsets and starting slots as a function of n in a Grid system.

Table B.1: Values of constants a . . . g on Equation B.5.

a b c d e f g
0.4999 1.4636 8.3847 51.0981 315.5027 1066.6953 1119.9465

We reinforced the validity of Equation B.4 by additionally testing the values n = 1000

and n = 10000, to find that the curve also fits perfectly to these values. We then proceeded

our analysis by executing the same computation, but for the i-th opportunity (notice that

for the first opportunity, we consider i = 0). Figure B.2b shows the obtained results for

some values of n and i. One can notice that, for a given n, the curve is approximately

linear in i. The function intersects the Y-axis at the values given by Equation B.4 and a

reasonable angular coefficient can be computed by taking any two points. For all values

of n, we chose to compute the angular coefficient based on the values for i = 0 and

i = 10000. Interestingly, the obtained coefficients behave approximately as a 6th degree

polynomial function of n. By applying the least squares method, we found the following

approximation for the value of the angular coefficients:

AngularCoefficient(n) = an6 − bn5 + cn4 − dn3 + en2 − fn+ g (B.5)

where the values of a . . . g are given on Table B.1.

Therefore, by combining Equations B.4 and B.5, we can find an approximation for

the mean time until the ith opportunity of encounter:

86Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

E[ei] = E[e1] + i× AngularCoefficient(n) (B.6)

Finally, given the success probability p of a discovery, one can find the expected NDT

for a Grid system of dimension n as:

E[NDT] = −{[(6a− 2)n6 + (2− 6b)n5 + 6cn4 + (3− 6d)n3+

(6e− 4)n2 + (1− 6f)n+ 6g]p− 6an6 + 6bn5−
6cn4 + 6dn3 − 6en2 + 6fn− 6g} · 1

6n4p
(B.7)

However, for values of n > 100, Equation B.7 can be approximated, with less than

1% of error, by Equation B.8:

E[NDT] =
(3− p)n2

6p
(B.8)

Since n > 199 is the necessary condition to achieve a duty cycle of 1% (a typical

requirement), such simplification is a reasonable approximation for many useful scenarios.

B.3 Torus schemes

Although the process for obtaining the expression for Torus is similar to the one used for

Grid, in Torus we must treat odd and even values of n differently.

For even values of n, the first opportunity e1 is given by:

e1 =
12n6 − 16n5 − 6n4 + 11n3 − 9n2 + 2n

24n4
(B.9)

And the ith opportunity:

ei =
12n6 − 16n5 − 6n4 + 11n3 − 9n2 + 2n

24
+

i · an
6 − bn5 + cn4 − dn3 + en2 − fn + g

n4
, (B.10)

where the values for constants a . . . g are given in Table B.2.

B.3 Torus schemes 87

Table B.2: Values of constants a . . . f on Equation B.10.

a b c d e f g
0.9994 2.4187 6.4341 22.6085 74.7884 148.5750 118.8220

Table B.3: Values of constants a . . . f on Equation B.13.

a b c d e f g
0.9992 1.9079 7.1622 21.2087 54.0977 80.9621 43.0001

Finally, for even values of n:

E[NDT] = −{[(24a− 12)n6 + (16− 24b)n5 + (24c+ 6)n4+

(−24d− 11)n3 + (24e+ 9)n2 + (−24f − 2)n+ 24g]p−
24(an6 + bn5 − cn4 + dn3 − en2 + fn− g)

}

· 1

24n4p
(B.11)

Similarly, for odd values of n:

e1 =
12n6 − 12n5 − 6n4 + 25n3 − 30n2 + 11n

24n4
(B.12)

ei =
12n6 − 12n5 − 6n4 + 25n3 − 30n2 + 11n

24
+

i · an
6 − 1.bn5 + cn4 − dn3 + en2 − fn+ g

n4
, (B.13)

where the values for constants a to g are given in Table B.3.

E[NDT] = −{[(24a− 12)n6 + (12− 24b)n5 + (24c+ 6)n4+

(−24d− 25)n3 + (24e+ 30)n2 + (−24f − 11)n+ 24g]p−
24(an6 + bn5 − cn4 + dn3 − en2 + fn− g

)

} · 1

24n4p
(B.14)

A simplification similar to that used in the case of the Grid model can also be used

for the Torus — for n > 100. Equations B.11 and B.14 can be unified and simplified to

the more manageable form presented in Equation B.15, with less than 1% of error.

E[NDT] =
(2− p)n2

2p
(B.15)

88Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

B.4 Disco schemes

Suppose nodes A and B follow duty cycle schedules generated by Disco using parameters

q1 and q2 (by definition, both prime numbers). Assume, without loss of generality, that

we use the current slot of A as a time reference. Let θ, 0 ≤ θ < q1q2, denote the offset

between the current slots of A and B. The co-schedule of A and B can be computed based

on the solutions for the following modular equations (where xa . . . xd are the variables):

θ + q1 · xa ≡ 0 (mod q1) (B.16a)

θ + q1 · xb ≡ 0 (mod q2) (B.16b)

θ + q2 · xc ≡ 0 (mod q1) (B.16c)

θ + q2 · xd ≡ 0 (mod q2) (B.16d)

In each equation, the left-hand side represents a set of active slots for B, while the

right-hand side represents a set of active slots for A. For example, the left-hand side of

Equation B.16a represents all active slots for B due to the parameter q1 (by adding θ, we

use the time reference of A). The right-hand side represents all active slots for A due to

the parameter q1 (all slots that are congruent to 0 modulo q1). By solving each equation

and replacing the values of xa . . . xd on the left-hand sides, one can obtain all discovery

opportunities.

Consider, for example, the case q1 = 2 and q2 = 5. Figure B.3 shows all possible offsets

between the schedules of A and B. Since we use the current slot of A as a time reference,

its duty cycling follows the schedule for offset 0. Node B, on the other hand, can use any

of the schedules, depending on its offset with respect to A. For each schedule, each white

box represents an inactive slot, while the gray boxes represent discovery opportunities and

the boxes with diagonal lines are active slots of B which are not in the co-schedule. The

figure also relates each offset with the solutions for Equations B.16a to B.16d. Consider,

for instance, the co-schedule for offset 2. Every xa ∈ Z is a solution for Equation B.16a,

resulting in slots 0, 2, 4, 6, 8 of the co-schedule1. Likewise, Equation B.16b has a solution

for slot 0 and Equation B.16c has a solution for slot 2. However, Equation B.16d has no

solution.

In order to compute the NDT, we need to analyze the delta-set in the resulting co-

1We consider only the slots in the represented cycle (slots 0 to 9). The complete list of slots would be
0, 2, 4, 6, 8, 10, ...

B.4 Disco schemes 89

Figure B.3: Possible co-schedules if nodes operate under a monotonic scheme generated
by Disco using prime numbers 2 and 5. White slots are inactive, slots with diagonal lines
are active only in B, and gray slots belong to the co-schedule.

schedule. Based on the offset, there are four distinct cases, also indicated in Figure B.3.

Case 1 happens when the offset is a multiple of q1, but not of q2. Case 2 happens when

the offset is multiple of q2, but not of q1. Case 3 happens when the offset is neither

multiple of q1, nor of q2. Case 4 happens when the offset is multiple of both q1 and

q2. The expected NDT considering all cases can be computed by a weighted average of

the expected NDT for each particular case. On the following sections, each case will be

discussed individually.

B.4.1 Case 1: θ is a Multiple of q1 but not of q2

In this case, every ka ∈ Z is a solution for Equation B.16a. Therefore, all slots which

are multiples of q1 belong to the co-schedule. Equation B.16b has solutions of the form

xb = q2 · kb − θ
q1
, ∀kb ∈ Z. Hence, all slots of the form q1q2(kb + 1) are solutions. Notice,

however, that these slots are also multiples of q1. For Equation B.16c, solutions are of the

form xc = q1 · kc, ∀kc ∈ Z, which results in slots of the form θ + q1q2 · kc. Again, all slots
are multiples of q1. Finally, Equation B.16d has no feasible solutions.

The analysis of these equations shows that the only discovery opportunities in the

co-schedule of A and B are the multiples of q1. Thus, every two consecutive active slots

in the co-schedule are separated by q1 − 1 inactive slots. As a consequence, the expected

time until the first opportunity of encounter is (q1−1)
2

slots. If the first opportunity fails,

new opportunities happen every q1 slots. Therefore, the expected NDT for this case, given

the success probability of a discovery p, is:

90Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

E[NDT]1 =
q1 − 1

2
+

(

1

p
− 1

)

· q1 =
2q1 − p(q1 + 1)

2p
(B.17)

B.4.2 Case 2: θ is a Multiple of q2 but not of q1

This case is analogous to the previous one. The only slots active in the co-schedule are

the multiples of q2. Therefore, every two consecutive active slots in the co-schedule are

separated by q2 − 1 inactive slots. Hence, the expected NDT for this case, given the

success probability of a discovery p, is:

E[NDT]2 =
q2 − 1

2
+

(

1

p
− 1

)

· q2 =
2q2 − p(q2 + 1)

2p
(B.18)

B.4.3 Case 3: θ is not a Multiple of either q1 or q2

In this case, Equations B.16a and B.16d have no solutions. According to the Chinese

Remainder Theorem [54], Equations B.16b and B.16c have, respectively, solutions of the

form xb = [xb]0 + kb · q2 and xc = [xc]0 + kc · q1, ∀kb, kc ∈ Z (where [xb]0 and [xc]0 denote

any particular solution for each equation). This means that the discovery opportunities

are of the form (θ+ q1 · [xb]0) + kb · q1q2 or (θ+ q2 · [xc]0) + kc · q1q2. This implies that for

each cycle of q1q2 slots, there are two discovery opportunities in the co-schedule (or one,

if q1 · [xb]0 ≡ q2 · [xc]0 (mod q1q2)).

Let sb = (θ + q1 · [xb]0) + kb · q1q2 and sc = (θ + q2 · [xc]0) + kc · q1q2 be two discovery

opportunities in the co-schedule, for some kb and kc so that sb and sc belong to the same

cycle. Let ∆θ = sc − sb be the difference between both slots. Finally, let NDq1,q2 denote

the set of all natural numbers less than q1q2 that are not divisible by either q1 or q2. Notice

that all offsets that fall into this case belong to NDq1,q2. Then, the following lemmas hold:

Lemma 1 For any offset θ in Case 3, ∆θ ∈ NDq1,q2.

Proof — From the definition of ∆θ it follows that:

∆θ = (θ + q2 · [xc]0) + kc · q1q2 − [(θ + q1 · [xb]0) + kb · q1q2]
∆θ = q2 · [xc]0 + kc · q1q2 − (q1 · [xb]0 + kb · q1q2) (B.19a)

B.4 Disco schemes 91

We can rewrite this equation in two equivalent forms:

q2 · [xc]0 + kc · q1q2 = ∆θ + q1 · [xb]0 + kb · q1q2 (B.20a)

q1 · [xb]0 + kb · q1q2 = q2 · [xc]0 + kc · q1q2 −∆θ (B.20b)

Since [xb]0 and [xc]0 are solutions for Equations B.16b and B.16c:

θ +∆θ + q1 · [xb]0 + kb · q1q2 ≡ 0 (mod q1) (B.21a)

θ + q2 · [xc]0 + kc · q1q2 −∆θ ≡ 0 (mod q2) (B.21b)

Simplifying the expressions and rearranging the terms, it follows that:

∆θ ≡ −θ (mod q1) (B.22a)

∆θ ≡ θ (mod q2) (B.22b)

By definition, θ is not divisible by either q1 or q2. Hence, ∆θ must have the same property.

Moreover, since ∆θ is the distance between two slots in the same cycle, 0 < ∆θ < q1q2.

�

Lemma 2 Let f : NDq1,q2 7→ NDq1,q2 be the function that maps any offset θ ∈ NDq1,q2 to

its respective ∆θ. The function f is a bijection.

Proof — Suppose f is not a bijection, i.e. there exists at least one ∆i such that

f(θi) = f(θj) = ∆i, for some distinct θi, θj ∈ NDq1,q2. Since ∆i is a valid value of distance

between active slots in a co-schedule, we can substitute ∆θ for ∆i in Equations B.22a and

B.22b:

∆i ≡ −θ (mod q1) (B.23a)

∆i ≡ θ (mod q2) (B.23b)

Solving the system for θ, we must obtain at least θi and θj as solutions. However, the

Chinese Remainder Theorem guarantees that all solutions for this system are congruent

92Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

modulo q1q2. This implies either θi 6∈ NDq1,q2 or θj 6∈ NDq1,q2, which contradicts the initial

hypothesis.

�

Given the value of ∆θ for a given offset, it is possible to compute the expected time

until the first encounter opportunity. If the initial slot is located between sb and sc, the

expected time until the first encounter opportunity is ∆θ−1
2

. Otherwise, the expected time

until the first encounter opportunity is q1q2−∆θ−1
2

. Hence, on average, the time until the

first opportunity is given by:

[

∆θ

∆θ − 1

2
+ (q1q2 −∆θ)

q1q2 −∆θ − 1

2

]

· 1

q1q2
=

(q1q2)
2 + (−2∆θ − 1)q1q2 + 2∆2

θ

2q1q2
(B.24)

If the first opportunity fails, the nodes have to wait, respectively, q1q2− 1 or ∆θ more

slots. On average, the total time until the second opportunity is:

[

∆θ

2q1q2 −∆θ − 1

2
+ (q1q2 −∆θ)

q1q2 +∆θ − 1

2

]

· 1

q1q2
=

(q1q2)
2 + (2∆θ − 1)q1q2 − 2∆2

θ

2q1q2
(B.25)

Since every cycle has exactly two discovery opportunities, the expected NDT for a

given offset θ that falls into this case is:

E[NDT]3(θ) = q1q2

(

1
1−(1−p)2

− 1
)

+ p

1−(1−p)2
· (q1q2)

2+(−2∆θ−1)q1q2+2∆2
θ

2q1q2

+ p(1−p)
1−(1−p)2

· (q1q2)
2+(2∆θ−1)q1q2−∆2

θ

2q1q2
(B.26)

By Lemmas 1 and 2, we can compute the expected NDT for all values of θ that fall

into this case by computing the summation of E[NDT]3(θ) for all values of ∆θ ∈ NDq1,q2

and dividing the result by |NDq1,q2|. This results in an expected NDT for this case of:

B.4 Disco schemes 93

E[NDT]
3
=

[

(q1 − 1)
(

2 q1 q2 p
2 − q2 p

2 + 3 p2 − 6 q1 q2 p− 6 p+ 6 q1 q2
)

6 (p− 2) p

+
(q2 − 1)

(

2 q1 q2 p
2 − q1 p

2 + 3 p2 − 6 q1 q2 p− 6 p+ 6 q1 q2
)

6 (p− 2) p

− (q1 q2 − 1)
(

q1 q2 p
2 + p2 − 3 q1 q2 p− 3 p+ 3 q1 q2

)

3 (p− 2) p

]

· 1

q1q2 − q1 − q2 + 1
(B.27)

B.4.4 Case 4: θ is 0

This case is simple from the point of view of finding out the co-schedule, since both A and

B use the exact same schedule. However, the analysis of the expected NDT is much more

complex than with the previous cases. Since the probability of occurrence of this case is
1

q1q2
and the most interesting schedules for energy conservation are the ones with larger

values of q1 and q2, as an approximation we disregard this case for computing the expected

NDT for Disco. Notice that the duty cycle of Disco is proportional to 1/q1 + 1/q2, while

the error caused by this approximation is proportional to 1
q1q2

. Therefore, for balanced

pairs (q1 ∼ q2), the error drops quadratically with the decrease of the duty cycle.

B.4.5 Averaging the Cases

The previously analyzed cases do not happen with the same frequency. Cases 1 and 2

happen q2−1
q1q2−1

and q1−1
q1q2−1

of the times, respectively. Case 3 happens q1q2−q1−q2+1
q1q2−1

. By

weighting all three cases, we obtain the final expression for the NDT for Disco:

E[NDT] =
1

3(q1q2 − 1)(p− 2)p

[

−
((

q1
2 − q1

)

q2
2 +

(

−q12 + 6 q1 − 2
)

q2 − 2 q1 − 1
)

p2

−
((

3 q1 − 3 q1
2
)

q2
2 +

(

3 q1
2 − 18 q1 + 6

)

q2 + 6 q1 + 3
)

p

−
(

3 q1
2 − 3 q1

)

q2
2 −

(

−3 q12 + 15 q1 − 6
)

q2 + 6 q1
]

(B.28)

Similarly to the other models, a simplification of the model presented in Equation B.28

is possible under certain assumptions. For example, for reasonably balanced pairs and

duty cycles of less than 2%, (q1 ∼ q2 > 100), we can reduce Equation B.28 to Equa-

tion B.29.

E[NDT] =
q1q2(p

2 − 3p+ 3)

3p(2− p)
(B.29)

94Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

B.5 Nested Block Designs

As already mentioned, the approximative closed-form expression for the NDT of Nested

Block Designs was obtained from the approximative closed-form expression for Block De-

signs, already presented in Section B.1 of this appendix. This section is devoted to showing

why this formula presents a gap proportional to (1/vo + 1/vi) as stated in Section 4.2.1

and supported by experimental data.

The gap comes from a simplification used in the model regarding the possible offsets

between the two neighbor nodes. We should confirm that this simplification results in a

gap proportional to (1/vo + 1/vi). In order to do so, we define θ as the schedule offset

of node X in relation to node Y and determine all four cases for θ, that define the four

groups of co-schedules bellow:

• Group I: When θ = 0, the schedules of X and Y are perfectly aligned and there are

exactly koki opportunities of discovery per cycle. This case happens with probability

1/(vovi) and the resulting co-schedule is the schedule itself.

• Group II: When θ = nvi, n = 1, 2, ... there will be ki opportunities of discovery

per cycle. This case happens with probability (vo − 1)/(vovi) and the discovery

opportunities will be concentrated in a given superslot.

• Group III: In this Group, there are (vi−1) cases with ko opportunities of discovery

per cycle. These cases occur within two intervals: 1 < θ < vi − 1 and vovi − vi <

θ < vovi (half the cases in each interval)2. These cases happen with probability

(vi − 1)/(vovi) and the discovery opportunities will be distributed throughout the

co-schedule, one at each of the active superslots.

• Group IV: For all the other cases, the number of opportunities per cycle is 1. This

is the simplest and more abundant case.

Group IV is of particular interest for it contains the majority of the cases, and also

because its cases entail only one opportunity of discovery per cycle, therefore being the

worst in terms of NDT. Our simplification consists of only considering cases in this group.

The relative weight of the cases not in Group IV in the NDT is low:

2The exact values of θ in which this case occurs depend on the way the active slots are distributed in
the block designs and are irrelevant to our analysis.

B.5 Nested Block Designs 95

G
IV

weight =
1 + (vo − 1) + (vi − 1)

vivo
≈ 1

vi
+

1

vo
(B.30)

For example, the ratio of cases not in Group IV, G
IV

weight, for the Nested sched-

ule {91,10,1}#{183,14,1} (duty cycle = 0.0975%) is only 0.016, while for the design

{9507,98,1}#{9507,98,1} (duty cycle = 0.01%) it is as low as 0.00021. Because it does

not include this small number of cases, our model is based only on the parameters vi and

vo of the Nested Block Design, eliminating complex parameters, such as the delta-sets of

the many possible co-schedules.

Proof — Let A and B be two nodes operating under a scheme of asynchronous duty

cycling based on a Nested Block Design from Projective Planes, {vo, ko, 1}#{vi, ki, 1}, and
define v = vovi as the resulting cycle length. Consider that the NDT will be calculated

starting from a given moment t0 when nodes A and B become able to communicate with

each other. Define θAB as the schedule offset of A in relation to B and θB as the offset of

B in relation to t0. Since, at moment t0, nodes A and B may be in any slot with equal

probability, it follows that θAB and θB are both uniformly distributed in the interval

[0,...,v − 1] (the cycle length).

As a simplification, consider that all co-schedules fall within Group IV. In this case,

there will be only one discovery opportunity per cycle. Define e1 as the slot in which the

first opportunity occurs during the first cycle. Clearly, if the discovery does not happen in

e1 (due to a message loss, for example), the next opportunity will happen in e1 + v, then

in e1 + 2v, and so on. As a result, if p is the message reception probability, the expected

time, in slots, for the discovery, i.e. the E[NDT], is:

E[NDT]nested = E[e1] +
1− p

p
v

In order to find E[e1] we shall determine e1 for all possible combinations of θB and

θAB. To do so, we take each value of θAB and make θB vary from 0 to v−1. As illustrated

by Figure B.4, for any3 value of θAB, if we take all possible values of θB (from 0 to v − 1

with unitary increments), all values of e1 in the interval [0,...,v − 1] will be produced

exactly once. In other words for each increment of θB the sole discovery opportunity will

also advance by one in relation to t0 (increment 1 modulo v − 1). As a result:

3Because of the simplification of eliminating all cases from Groups I, II and III.

96Appendix B -- Closed-form approximative expressions for the NDT of monotonic schemes

Figure B.4: For a fixed value of θAB (12, in this example), if θB varies from 0 to v− 1, e1
will assume all values from 0 to v − 1.

E[e1] =
v − 1

2

and,

E[NDT]nested =
v − 1

2
+

1− p

p
v =

vivo
p
− vivo + 1

2

�

As for the impact of ignoring Groups I to III, note that the relative occurrence of

such cases is low (given by Equation B.30) and diminishes as we increase vi or vo. But

the duty cycle also decreases with vi and vo, since:

DC =
koki
vovi

; ki ∼
√
vi; ko ∼

√
vo ⇒ DC ∼ 1√

vovi

Therefore, the schedules with lower duty cycle are less affected by the simplification.

Moreover, considering that cases in Groups I to III are those who present a higher density

of discovery opportunities, our model works as an upper bound for the NDT.

97

APPENDIX C -- Nested Block Designs: A closer

look at the NDT

This appendix is dedicated to the formulation of some parameters of Nested Block De-

sign schedules, such as its delta-sets and Phi-coefficients, that may serve for building

and solving optimization problems in the design of these schedules. Some of the results

presented in Chapter 4 are empirical. However, it is possible that they could be subject

to analytical methods. This appendix provides a better understanding of the resulting

co-schedules of Nested Block Designs, which are, in fact, considerably more complex than

the co-schedules formed by Block Designs in general, and Projective Planes in particular.

We start this analysis by repeating the four different classes of co-schedules of Nested

Block Designs composed with Projective Planes (which were already presented in Ap-

pendix B, Section B.5). These four classes of co-schedules are mapped to four classes of

offsets, θ, between the two neighbor nodes X and Y :

• Group I: When θ = 0, the schedules of X and Y are perfectly aligned and there are

exactly koki opportunities of discovery per cycle. This case happens with probability

1/(vovi) and the resulting co-schedule is the schedule itself.

• Group II: When θ = nvi, n = 1, 2, ... there will be ki opportunities of discovery

per cycle. This case happens with probability (vo − 1)/(vovi) and the discovery

opportunities will be concentrated in a given superslot.

• Group III: In this Group, there are (vi−1) cases with ko opportunities of discovery

per cycle. These cases occur within two intervals: 1 < θ < vi − 1 and vovi − vi <

θ < vovi (half the cases in each interval). These cases happen with probability

(vi − 1)/(vovi) and the discovery opportunities will be distributed throughout the

co-schedule, one at each of the active superslots.

• Group IV: For all the other cases, the number of opportunities per cycle is 1. This

is the simplest and more abundant case.

98 Appendix C -- Nested Block Designs: A closer look at the NDT

In order to find the expected NDT for a Nested schedule, we need to find the NDT

for all of these cases, and average them, weighted by their frequency of occurrence. Note

also that the NDT may be determined by the cycle length and order of the co-schedules

and from their Phi-coefficients, which, in their turn, are calculated from the delta-sets.

Delta-sets are given by the difference between successive discovery opportunities in a

co-schedule.

Note that the Phi-coefficients within a group are the same, since all co-schedules

within a group have the same delta-set. Moreover, all four different delta-sets (call them

∆I , ∆II , ∆III and ∆IV) for a schedule {vo, ko, 1}#{vi, ki, 1} may be obtained from the

delta-sets of their forming Block Designs, {vo, ko, 1} and {vi, ki, 1}. Suppose these delta-

sets are respectively {δo0, δo1, ..., δoko−1} and {δi0, δi1, ..., δiki−1}. Then:

∆I = {δi0, δi1, ..., δiki−1 + (δo0 − 1)vi, δ
i

0, δ
i

1, ..., δ
i

ki−1 + (δo1 − 1)vi, ..., δ
i

0, δ
i

1, ..., δ
i

ki−1 + (δoko−1 − 1)vi}
∆II = {δi

0
, δi

1
, ..., δiki−1

+ (vo − 1)vi}
∆III = {δo0vi, δo1vi, ..., δoko−1vi}
∆IV = {vovi − 1} (C.1)

With these delta-sets, one could obtain all Phi-coefficients for all Groups. The first

Phi-coefficient is particularly interesting and meaningful. It represents the NDT when

the delivery probability, p, is 1. The four Φ0 coefficients for the four groups (ΦI
0 to ΦIV

0)

are:

ΦI
0

=
1

2vovi
[ko(δ

i

0

2

+ δi
1

2

+ ...+ δiki−1

2

) + v2i (δ
o

0

2 + δo
1

2 + ...+ δoko−1

2)

+2vi(vo − ko)δ
i

ki−1 − v2i (2vo − ko)− vivo]

ΦII
0

=
1

2vovi
[(δi

0

2

+ δi
1

2

+ ...+ δiki−1

2

) + 2vi(vo − 1)δiki−1
− v2i (vo − 1)2 − vivo]

ΦIII
0 =

1

2vovi
[v2i (δ

o

0

2 + δo1
2 + ...+ δoko−1

2)− vovi]

ΦIV
0 =

vovi − 1

2
(C.2)

A recurring expression in the set of equations above is the sum of the squares of

all deltas in the delta-set of the inner and outer schedules, (δi0
2
+ δi1

2
+ ... + δiki−1

2
) and

(δo0
2 + δo1

2 + ... + δoko−1
2), which we abbreviate as ϕo and ϕi in order to obtain a more

manageable set of expressions:

Appendix C -- Nested Block Designs: A closer look at the NDT 99

ΦI
0

=
1

2vovi
[koϕi + v2i ϕo + 2vi(vo − ko)δ

i

ki−1
− v2i (2vo − ko)− vivo]

ΦII
0

=
1

2vovi
[ϕi + 2vi(vo − 1)δiki−1

− v2i (vo − 1)2 − vivo]

ΦIII
0 =

1

2vovi
[v2i ϕo − vovi]

ΦIV
0 =

vovi − 1

2
(C.3)

It is interesting to note that ϕo and ϕi do not change when the inner or the outer

schedules are rotated. From Equations C.3, it is clear that rotating the outer schedule does

not affect the NDT, while rotating the inner schedule does affect the NDT, as indicated

by the presence of δiki−1 in the expressions of ΦI
0 and ΦII

0 . The smallest δiki−1 will result

in the smallest NDT, what confirms the experimental results presented in Section 4.1.1.

Finally, it may be possible to build an optimization problem from the expressions

here presented in order to demonstrate another experimental result — that if the two

Projective Planes in a Nested schedule are of different cycle lengths, the longest should

be used as the inner schedule (Section 4.1.2). The expression to minimize the NDT for

p = 1 is given bellow:

E[NDT]p=1 =
1

vovi

[

ΦI
0 + (vo − 1)ΦII

0 + (vi − 1)ΦIII
0 + (vivo − vo − vi + 1)ΦIV

0

]

(C.4)

By analyzing the convexity and monotonicity of the complete expressions for the

NDT, it may be possible to demonstrate that, for Nested schedules, if a schedule results

in minimum NDT for p = 1, it may also result in minimum NDT for all values of p, for

the same duty cycle. We leave this for future work.

100 Appendix C -- Nested Block Designs: A closer look at the NDT

References

[1] A. Thumann and D.P. Mehta, Handbook of energy engineering, Fairmont Press,
2008.

[2] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials for wireless
sensor networks”, IEEE Communications Surveys and Tutorials, vol. 12, no. 2, pp.
222–248, 2010.

[3] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in
wireless sensor networks: A survey”, Ad Hoc Netw., vol. 7, pp. 537–568, May 2009.

[4] P. Levis and D. Gay, TinyOS Programming, Cambridge University Press, 2009.

[5] Z. Teng and K. Kim, “A Survey on Real-Time MAC Protocols in Wireless Sensor
Networks”, Communications and Network, vol. 02, pp. 104–112, 2010.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System ar-
chitecture directions for networked sensors”, SIGPLAN Not., vol. 35, pp. 93–104,
November 2000.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible oper-
ating system for tiny networked sensors”, in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, November 2004, pp. 455–462.

[8] A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green networking
research”, IEEE Communications Surveys and Tutorials, vol. 14, no. 1, pp. 3–20,
2012.

[9] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen, “A survey of energy
efficient network protocols for wireless networks”, Wirel. Netw., vol. 7, no. 4, pp.
343–358, September 2001.

[10] A. Martirosyan, A. Boukerche, and R. W. N. Pazzi, “A taxonomy of cluster-based
routing protocols for wireless sensor networks”, in Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 2008),
May 2008, pp. 247–253.

[11] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless sensor networks:
a survey”, Communications Magazine, IEEE, vol. 44, no. 4, pp. 115–121, April 2006.

[12] A. Roy and N. Sarma, “Energy saving in MAC layer of wireless sensor networks: a
survey”, Analysis, 2010.

[13] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a survey”,
IEEE Network, vol. 18, no. 4, pp. 45–50, July-August 2004.

102 References

[14] R. C. Carrano, L. C. S. Magalhaes, D. C. M. Saade, and C. V. N. Albuquerque,
“IEEE 802.11s multihop MAC: A tutorial”, IEEE Communications Surveys and
Tutorials, vol. 13, no. 1, pp. 52 –67, quarter 2011.

[15] A. Rowe, R. Mangharam, and R. Rajkumar, “RT-Link: A global time-synchronized
link protocol for sensor networks”, Ad Hoc Netw., vol. 6, no. 8, pp. 1201–1220,
November 2008.

[16] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: a cross-layer platform for
real-time embedded wireless networks.”, Real-Time Systems, pp. 183–231, 2007.

[17] NIST - National Institute of Standards and Technology - USA, “WWVB radio
controlled clocks”, http://www.nist.gov/pml/div688/grp40/radioclocks.cfm,
February 2012.

[18] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient
collision-free medium access control for wireless sensor networks”, in Proceedings
of the 1st ACM International Conference on Embedded Networked Sensor Systems
(SenSys ’03), New York, NY, USA, 2003, pp. 181–192, ACM.

[19] L. Bao and J. J. Garcia-Luna-Aceves, “A new approach to channel access scheduling
for ad hoc networks”, in Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MobiCom ’01), New York, NY, USA, 2001, pp.
210–221, ACM.

[20] A. Barroso, U. Roedig, and C. Sreenan, “µMAC: an energy-efficient medium ac-
cess control for wireless sensor networks”, in Proceeedings of the Second European
Workshop on Wireless Sensor Networks., January. 2005, pp. 70–80.

[21] P. P. Czapski, “A survey: MAC protocols for applications of wireless sensor net-
works”, in Proceedings of the IEEE Region 10 Conference TENCON 2006, November.
2006, pp. 1–4.

[22] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient
and low-latency MAC for data gathering in wireless sensor networks”, in Proceedings
of the 18th International Parallel and Distributed Processing Symposium, April 2004,
p. 224.

[23] S. N. Parmar, S. Nandi, and A. R. Chowdhury, “Power efficient and low latency
MAC for wireless sensor networks”, in Proceedings of the 3rd Annual IEEE Com-
munications Society on Sensor and Ad Hoc Communications and Networks (SECON
’06), September. 2006, vol. 3, pp. 940–944.

[24] S. W. Hussain, T. Khan, and S. M. H. Zaidi, “Latency and energy efficient MAC
(LEEMAC) protocol for event critical applications in wsns”, in Proceedings of the
International Symposium on Collaborative Technologies and Systems (CTS 2006),
May 2006, pp. 370–378.

[25] L. Choi, S. H. Lee, and J. A. Jun, “SPEED-MAC: Speedy and energy efficient data
delivery MAC protocol for real-time sensor network applications”, in Proceedings of
the IEEE International Conference on Communications (ICC 2010), May 2010, pp.
1–6.

References 103

[26] D. Krüandger, D. Pfisterer, and S. Fischer, “CUPID - communication pattern in-
formed duty cycling in sensor networks”, in Proceedings of the Fifth International
Conference on Systems and Networks Communications (ICSNC 2010), August 2010,
pp. 70–75.

[27] N. A. Vasanthi and S. Annadurai, “AWS: asynchronous wakeup schedule to minimize
latency in wireless sensor networks”, in Proceedings of the IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing, June 2006,
vol. 1, pp. 144–151.

[28] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocol for wireless microsensor networks”, in Proceedings of the 33rd
Hawaii International Conference on System Sciences (HICSS ’00), Washington, DC,
USA, 2000, pp. 8020–8029, IEEE Computer Society.

[29] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation for
ad hoc routing”, in Proceedings of the 7th annual international conference on Mobile
computing and networking (MobiCom ’01), New York, NY, USA, 2001, pp. 70–84,
ACM.

[30] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless
sensor networks”, in Proceedings of the Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2002), 2002, vol. 3, pp.
1567–1576.

[31] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for
wireless sensor networks”, in Proceedings of the 1st ACM International Conference
on Embedded Networked Sensor Systems (SenSys ’03), New York, NY, USA, 2003,
pp. 171–180, ACM.

[32] C. Yin, Y. Li, D. Zhang, Y. Cheng, and M. Yin, “DSMAC: An energy-efficient MAC
protocol in event-driven sensor networks”, in Proceedings of the 2nd International
Conference on Advanced Computer Control (ICACC 2010), March 2010, vol. 1, pp.
422–425.

[33] S. Singh and C. S. Raghavendra, “PAMAS — power aware multi-access protocol
with signalling for ad hoc networks”, SIGCOMM Comput. Commun. Rev., vol. 28,
no. 3, pp. 5–26, July 1998.

[34] F. Xiangning and S. Yulin, “Improvement on leach protocol of wireless sensor net-
work”, in Proceedings of the International Conference on Sensor Technologies and
Applications, (SensorComm 2007), October 2007, vol. 1, pp. 260 –264.

[35] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless
sensor networks”, in Proceedings of the 2nd ACM International Conference on Em-
bedded Networked Sensor Systems (SenSys ’04), New York, NY, USA, 2004, pp.
95–107, ACM.

[36] A. El-Hoiydi and J. Decotignie, “WiseMAC: An Ultra Low Power MAC Protocol
for Multi-hop Wireless Sensor Networks”, in Algorithmic Aspects of Wireless Sensor
Networks - Lecture Notes in Computer Science, Sotiris Nikoletseas and José Rolim,
Eds., vol. 3121, pp. 18–31. Springer Berlin / Heidelberg, 2004.

104 References

[37] TinyOS, “TinyOS wiki page on low power implementation over the CC2420
radio”, http://docs.tinyos.net/index.php/CC2420_Asynchronous_Low_Power_

Listening_Implementation, February 2012.

[38] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks”, in Proceedings of the 4th ACM
International Conference on Embedded Networked Sensor Systems (SenSys ’06), New
York, NY, USA, 2006, pp. 307–320, ACM.

[39] J. J. Garcia-Luna-Aceves and A. Tzamaloukas, “Reversing the collision-avoidance
handshake in wireless networks”, in Proceedings of the 5th annual ACM/IEEE inter-
national conference on Mobile computing and networking (MobiCom ’99), New York,
NY, USA, 1999, pp. 120–131, ACM.

[40] A. El-Hoiydi and J. Decotignie, “Low power downlink MAC protocols for infras-
tructure wireless sensor networks”, Mob. Netw. Appl., vol. 10, no. 5, pp. 675–690,
October 2005.

[41] R. Musaloiu-E., C. M. Liang, and A. Terzis, “Koala: Ultra-low power data retrieval
in wireless sensor networks”, in Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN ’08), Washington, DC, USA,
2008, pp. 421–432, IEEE Computer Society.

[42] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a receiver-initiated asynchronous
duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks”, in
Proceedings of the 6th ACM International Conference on Embedded Networked Sensor
Systems (SenSys ’08), New York, NY, USA, 2008, pp. 1–14, ACM.

[43] P. Le-Huy and S. Roy, “Low-power wake-up radio for wireless sensor networks”,
Mob. Netw. Appl., vol. 15, no. 2, pp. 226–236, April 2010.

[44] S. Marinkovic and E. Popovici, “Nano-power wake-up radio circuit for wireless body
area networks”, in Proceedings of the IEEE Radio and Wireless Symposium (RWS
2011), January 2011, pp. 398–401.

[45] L. Gu and J. A. Stankovic, “Radio-triggered wake-up for wireless sensor networks”,
Real-Time Syst., vol. 29, no. 2-3, pp. 157–182, March 2005.

[46] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing sensor
networks in the energy-latency-density design space”, IEEE Transactions on Mobile
Computing, vol. 1, no. 1, pp. 70–80, January-March 2002.

[47] Y. Sun, S. Du, O. Gurewitz, and D. B. Johnson, “DW-MAC: a low latency, energy
efficient demand-wakeup MAC protocol for wireless sensor networks”, in Proceedings
of the 9th ACM International symposium on Mobile ad hoc networking and computing
(MobiHoc ’08), New York, NY, USA, 2008, pp. 53–62, ACM.

[48] V. Paruchuri, S. Basavaraju, A. Durresi, R. Kannan, and S. S. Iyengar, “Random
asynchronous wakeup protocol for sensor networks”, in Proceedings of First Inter-
national Conference on Broadband Networks (BroadNets 2004)., October 2004, pp.
710–717.

References 105

[49] P. Basu and C. Chau, “Opportunistic forwarding in wireless networks with duty cy-
cling”, in Proceedings of the third ACM workshop on Challenged Networks (CHANTS
’08), New York, NY, USA, 2008, pp. 19–26, ACM.

[50] Y. Tseng, C. Hsu, and T. Hsieh, “Power-saving protocols for IEEE 802.11-based
multi-hop ad hoc networks”, in Proceedings of the Twenty-First Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM 2002),
2002, vol. 1, pp. 200–209 vol.1.

[51] J. Jiang, Y. Tseng, C. Hsu, and T. Lai, “Quorum-based asynchronous power-saving
protocols for IEEE 802.11 ad hoc networks”, Mobile Networks and Applications, vol.
10, pp. 169–181, 2005.

[52] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc networks”, in
Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
& Computing (MobiHoc ’03), New York, NY, USA, 2003, pp. 35–45, ACM.

[53] M. Maekawa, “A
√
N algorithm for mutual exclusion in decentralized systems”,

ACM Trans. Comput. Syst., vol. 3, pp. 145–159, May 1985.

[54] C. Ding, D. Pei, and A. Salomaa, Chinese remainder theorem: applications in com-
puting, coding, cryptography, World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1996.

[55] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and rendezvous
for mobile sensing applications”, in Proceedings of the 6th ACM conference on Em-
bedded network sensor systems (SenSys ’08), New York, NY, USA, 2008, pp. 71–84,
ACM.

[56] J. Link, C. Wollgarten, S. Schupp, and K. Wehrle, “Perfect difference sets for neigh-
bor discovery”, in Proceedings of the 3rd Extreme Conference of Communication
(ExtremeCom 2011), September 2011.

[57] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect: a low-latency
energy-efficient asynchronous neighbor discovery protocol”, in Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN ’10), New York, NY, USA, 2010, pp. 350–361, ACM.

[58] F. Yates, “Incomplete randomized blocks”, Annals of Eugenics, vol. 7, no. 2, pp.
121–140, 1936.

[59] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second Edition
(Discrete Mathematics and Its Applications), Chapman & Hall/CRC, 2006.

[60] D. Gordon, “La Jolla cyclic difference set repository”, http://www.ccrwest.org/

diffsets.html, February 2012.

[61] R. Gentleman and R. Ihaka, “The R project for statistical computing”, http:

//www.r-project.org/, February 2012.

[62] Memsic Corporation, “MEMSIC”, http://www.memsic.com/, February 2012.

