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Abstract

Neighbourhood gathering methods are commonly required in many real-time simulation
scenarios, such as: crowd simulation and game AI for simulating the vision of the enti-
ties; SPH fluid simulation for calculate the forces,density and viscosity interactions; and
particle systems and physics simulation as the broad phase of the collision detection al-
gorithm. In a naive implementation, it has a complexity of O(n2) required computations
of the neighbourhood gathering algorithm, necessary for the proximity queries of all pair
of entities in order to compute the relevant mutual interactions. In order to solve this
problem, many works propose spatial data structures that subdivide the environment and
classify the entities among the cells based on their position. Although this strategy mini-
mizes the number of proximity queries to be treated, it is not efficient when a large number
of particles are grouped in the same cell. This thesis proposes a novel and efficient data
structure that maintains the entities into another paradigm of proximity data structure,
called NGrid, where each cell contains only one entity and does not directly represent a
discrete spatial subdivision. The NGrid proposal fills the lack of GPU bounded architec-
tures, which usually processes all elements in the scene at each frame. Results shows that
the use of the NGrid in different scenarios leads to a performance gain when compared to
traditional data structure.
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Resumo

Comumente métodos de selecionar a vizinhança são obrigatórios em muitos cenários
Métodos de seleção de vizinhança são tradicionalmento utilizados em cenários de si-
mulações em tempo real. Por exemplo, em problemas de simulação de multidões, visão de
entidades em IA de games, simulação de fluidos com o método SPH e detecção de colisões
em f́ısica de games. Em geral, as implementações desse método possuem complexidade
da ordem de O(n2). Esta complexidade é associada as operações necessárias para con-
sultar a proximidade de todos os pares das entidades, considerando as interações mútuas
relevantes. Inúmeros trabalhos propõem a utilização de estruturas de dados espaciais
para reduzir essa complexidade. Tais estruturas subdividem o ambiente, classificando as
entidades entre as células com base em sua posição. Apesar dessa estratégia minimizar o
número de consultas de proximidade a ser tratada, ela não é eficiente quando um grande
número de part́ıculas estão agrupados em uma mesma célula. Neste sentido, a presente
tese propõe uma nova e eficiente estrutura de dados, na qual as entidades são mantidas
em um paradigma baseado em proximidade. Em tal estrutura, denominada NGrid, cada
célula contém apenas uma entidade e não representa diretamente a subdivisão do espaço
discreto. A proposta da NGrid preenche a falta de estrutura de dados espećıficas para ar-
quiteturas do tipo GPU, onde geralmente são processados todos os elementos da cena em
cada quadro de renderização. Resultados obtidos demonstram a viabilidade da utilização
da NGrid em diferentes cenários, com significativo ganho de desempenho em relação a
estruturas de dados tradicionais.
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Introdução em Português

Jogos digitais e simulações gráficas normalmente gastam a maior parte dos recursos com-

putacionais com renderização e visualização. Comumente, sobram poucos recursos com-

putacionais para processar as tarefas complexas de comportamento das entidades na cena,

requeridas normalmente pela f́ısica e/ou pela inteligência artificial. Este fato faz com que

o comportamento e o número de objetos interativos venham a ser normalmente limitado.

Além disso, a fim de processar um elevado número de entidades interativas, numa cena

em tempo real, é necessário desenvolver uma solução para este problema espećıfico. Isso

requer estratégias de coleta de vizinhançca para a interação entre eles, o que afeta o

desempenho do aplicativo.

A coleta de vizinhançca é o processo de coleta das entidades mais próximas uma

determinada entidade n, e normalmente é feito para todas as entidade. Usualmente, para

uma simulação, é necessário realizar este cálculo, entre um grande conjunto de entidades,

exigindo um alto poder de processamento. A coleta de vizinhança é aplicada em muitos

tipos de simulação, com diferentes finalidades. Para simular multidões e games, a coleta

é normalmente usada para reunir as entidades mais próximas, a fim de simular a visão

da entidade. Num cenário de fluido SPH, cada part́ıcula tem de coletar as part́ıculas

mais próximas a fim de calcular a densidade, a viscosidade e as forças da part́ıcula. Em

um sistema de part́ıculas, o algoritmo de detecção de colisão precisa das part́ıculas mais

próximos, a fim de verificar se existem colisões entre elas.

A abordagem direta de tal algoritmo tem complexidade O(n2), uma vez que é necessário

processar cada entidade contra todas as outras entidades. Muitos trabalhos, que necessi-

tam de resultados em tempo real, tentam otimizar essa coleta, evitando a alta complex-

idade de consultas de proximidade através da aplicação de alguma forma de subdivisão

espacial ou hierárquica no meio ambiente e classificando entidades em células com base

na sua posição. Para acelerar essa busca dos dados em um ambiente paralelo (como as

GPUs), a lista de entidades devem ser classificados de um modo que todas as entidades que

estão nas mesmas células estejam proximas. Esta abordagem auxilia a reduzir o número

de consultas de proximidade, mas é muito senśıvel ao número máximo de entidades que
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podem caber numa única célula. A fim de proporcionar uma estrutura de dados para

simulações em tempo real, este trabalho apresenta NGrid, uma nova estrutura de dados

para o problema da coleta de vizinhança, adequado para ambientes de alto processamento

paralelo, tal como as GPUs

Em aplicações em tempo real, muitos algoritmos tradicionalmente executadas na CPU

muitas vezes são adequados para execução em paralelo, o que os torna adequados a serem

implementadas na GPU. Existem várias áreas de pesquisa que usam a computação GPU, a

fim de otimizar seu processamento, como a previsão do tempo [2], qúımica [3] e algoritmos

de inteligência artificial [4]. No entanto, as primeiras aplicações de GPGPU tinham que

realizar a adaptação de shaders gráficos APIs, levando a uma curva de aprendizado dif́ıcil

e codigos que, por vezes, não eram muito eficientes para as soluções propostas [5]. CUDA

[?] e OpenCL [?] tecnologias como objectivo proporcionar uma nova camada de abstração

sobre o hardware gráfico para facilitar a sua utilização para o processamento não-gráficos.

Simulação em tempo real que explora este modelo de programação na GPU é uma linha

de pesquisa promissora, uma vez que pode speedup a solução de computação de alto custo

da simulação do comportamento.

Esta tese propõe uma nova estrutura de dados, chamada de NGrid, que otimiza e faz

uso da proximidade de dados na memória. Enquanto o NGrid é projetada principalmente

para o uso com os processadores manycores, como as GPUs, outros tipos de hardware

paralelo, tais como processadores de múltiplos núcleos de CPU, podem tirar vantagem

dela.

A NGrid é uma estrutura topológica discreta que mantém todas as part́ıculas classi-

ficadas de tal maneira que as part́ıculas, que estão próximos umas das outras de acordo

com a métrica Euclidiana, são inseridas nas posições vizinhas do NGrid. O NGrid não tem

células vazias, porque uma part́ıcula sempre terá um vizinho, mesmo quando ele estiver

muito longe e não influenciar o comportamento da outra entidade. Assim, o seu tamanho

coincide com o número de part́ıculas. Com isso, a estrutura de dados é muito adequado

para o processamento paralelo, evitando conflitos de banco e aproveitando a coalescncia

de dados, maximizando o desempenho de leitura de memória com base na localidade.

Contribuições

Esta tese apresenta o NGrid: uma nova estrutura de dados, adequada para processa-

mento paralelo, elaborada para a simulação em tempo real que requerem um algoritmo

de coleta de vizinhança. Esta estrutura é capaz de processar um grande número de en-

tidades, sendo mais rápido do que as abordagens tradicionais, especialmente por causa
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da estratégia de coalescência. Esta estrutura de dados tem sido bem sucedida em muitas

simulações em tempo real, tais como, animação de fluidos (caṕıtulo 5), simulação de mul-

tidão (caṕıtulo 6), sistemas de part́ıculas (caṕıtulo 7) e jogos digitais simples (caṕıtulo

8).

Os estudos de caso usam a NGrid, a fim de realizar a coleta de vizinhança. Ao

fazer isso, a proposta atende também a falta de estruturas de dados da GPU, sendo uma

solução eficiente para simulações em tempo real em soluções paralelo e distribúıdas. A

estrutura também tem sido aplicada com sucesso em arquiteturas móveis e arquitetura

de multi-GPUs.

Organização da tese

Esta tese está organizada em duas partes, sendo a primeira relacionada proposta da

arquitetura e a segunda para a sua aplicação e resultados. No Caṕıtulo 2, o problema de

coleta de vizinhana̧ é apresentado, apresentando conceitos relacionados sobre o problema

e também onde ele se aplica. Este caṕıtulo também fornece uma introdução sobre sis-

temas de tempo real e GPU Computing. O caṕıtulo 3 apresenta algumas das soluções do

problema coleta de vizinhaça que aparece na literatura. O Caṕıtulo 4 apresenta a NGrid.

Em seguida, os caṕıtulos de aplicação são apresentados, aonde todos os testes e im-

plementações são detalhados e discutidos.

Caṕıtulo 5 mostra a implementação e os testes da NGrid em uma animação de fluidos,

com base na simulação de fluidos usando SPH, implementado usando CUDA. O caṕıtulo

também inclui o desempenho e testes de erro contra a estrutura de dados grade uniforme.

O Caṕıtulo 6 descreve a aplicação e os testes da NGrid numa simulação de multidões

utilizando CUDA, numa única GPU e em um ambiente multi-GPU. Estes testes incluem

a comparação do desempenho e do erro de NGrid com N-radius adaptativa e um fixo, e

a grade uniforme. O Caṕıtulo 7 mostra os detalhes da implementação e testes da NGrid

aplicada sobre um sistema de part́ıculas, utilizando uma plataforma móvel. Estes testes

incluem também a comparação de desempenho com o método de força bruta. Seguido

pelo caṕıtulo 8, que descreve a implementação e testes do NGrid em um jogo usando

CUDA. E finalmente, o caṕıtulo 9 apresenta a conclusão deste trabalho, bem como as

consideração finais.



Chapter 1

Introduction

Games and visual simulations normally spend most of the processing power in the scene

with rendering and visualization. Commonly, fewer computation resources are left to

process complex behavior tasks of the entities in the scene,which normally comes from

physics and/or artificial intelligence. This fact makes the behavior and the number of

interactive objects to be normally limited. Moreover, in order to process a high number

of interactive entities in a real-time scene, it is necessary to develop a dedicated solution

for this problem. These large number of elements in a scene usually requires neighborhood

gathering strategies for the interaction among them, which affects the performance of the

application.

The neighborhood gathering is the process of gathering the n closest entities to a

certain entity, which is normally done for every entity. Usually, for a complete simulation,

it is necessary to perform this calculation among a big set of entities, requiring a lot of

processing power. The neighborhood gathering is applied in many simulation scenarios,

with different purposes. In a crowd and game scenario, it is normally used to gather

the closest entities in order to simulate the vision of the entity. In a SPH (Smoothed-

Particle Hydrodynamics) fluid scenario, each particle needs its n closest particles in order

to calculate the density, viscosity and forces of the particle. Also in a particle system, the

collision detection algorithm needs the closest particles in order to check if there are any

collisions between them.

The naive approach of such algorithm has complexity of O(n2 ), since it has to process

each entity against the other entities. Many works that require real time results try to

optimize this issue by avoiding the high complexity of proximity queries by applying some

form of spatial or hierarchical subdivision to the environment and by classifying entities

among the cells based on their position. To accelerate data fetching in a parallel hardware

(such as GPUs) the entities list must be sorted in a way that all entities on the same cells

are grouped together. This approach helps to lower the number of proximity queries, but
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it is very sensible to the maximum number of entities that can fit in a single cell. In

order to provide a data structure for massive real-time simulations, this thesis presents

the NGrid, an new data structure for the neighborhood gathering problem, suitable for

high parallel processing environments, such as GPUs

In real time applications, many non-graphics algorithms traditionally executed on

the CPU are often suitable for parallel execution, which makes them appropriate to be

implemented on the GPU. There are several research areas that use GPU computing

in order to speedup its computation, such as weather forecast [2], chemistry [3] and

behavioral AI algorithms [4]. However, the first applications of GPUs performing general-

purpose computation (GPGPU) had to rely on the adaptation of graphics rendering APIs,

leading to a difficult learning curve and sometimes not very efficient data structures for

the proposed solutions [5]. CUDA [?] and OpenCL [?] technologies aim to provide a

new abstraction layer on top of graphics hardware to facilitate its usage for non-graphics

processing. Real-time simulation that explores this programming model on the GPU is a

promising line of research, since it can speedup the high cost computation solution of the

behavior simulation.

GPUs are a collection of SIMD processors designed to run streamed graphics pipelines.

It is a computational model where the processing of each pixel is independent of the others

and usually requires localized memory reads. There are rules of thumb to create efficient

streamed applications, where, the most important one is to organize the data streams in

a way that maximizes the memory read performance based on locality. These rules tend

to result in more efficient usage of available memory and read ahead mechanisms of these

devices.

This thesis proposes a novel structure, called the NGrid, which optimizes and make

usage of data proximity for memory fetch. While the NGrid is mainly designed for the us-

age with manycores processors, such as GPUs, other parallel hardware, such as multicore

CPU processors, may take advantage of it.

This NGrid is a discrete topological structure that keeps all particles sorted in such

a way that particles, which are close to each others according to the Euclidian metric

are inserted in neighboring positions at the NGrid. The NGrid does not have empty

cells, because a particle always will have a neighbor, even when it can be far and does

not influence the other entity’s behavior. Hence, its size does match the number of

particles. With that, the data structure is very suitable for parallel processing, avoiding

bank conflicts and taking advantage of data coalescence by maximizing memory read
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performance based on locality.

1.1 Contributions

This thesis presents the NGrid: a novel data structure, suitable for parallel processing,

for real-time simulation that requires a neighborhood gathering algorithm. This structure

is capable of processing a massive number of entities in a real-time application, being

faster than traditional approaches, especially because of the coalescence strategy. This

data structure has been successful applied in many real-time simulations, such as, fluid

animation (chapter 5), crowd simulation (chapter 6), particle systems (chapter 7) and

simple games (chapter 8).

The case studies use the NGrid in order to gather the neighborhoods of the entities.

By doing that, this proposal will fulfill the lack of GPU data structures, being an efficient

solution for other parallel and distributed solutions of real-time simulations. The structure

also has been successfully applied in mobile architectures and in multi-GPUs architecture.

1.2 Publications

The initial results and the usage of the NGrid data structure of this thesis is present in

the following peer review publications:

• Journals:

– Journal of Computational Interdisciplinary Sciences [8] (Qualis B5): this work

presents a flocking boids implementation with the processing of the work dis-

tributed among processors, which is particularly important since the NGrid

will also have a mechanism for task division and distribution among multiples

GPUs;

– Computer in Entertainment [9] (Qualis B3): This work presents a architecture

for task distribution among GPUs, which will be used when distributing task

among multiples GPUs;

– Computer in Entertainment [10] (Qualis B3): In this work an extended version

of the paper [11] with the first concept of the NGrid is presented applied in a

crowd scenario. Even though the author of this work is not the main author
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of this paper, he has participated in the conception and implementation of the

work;

– International Journal of Computational Fluid Dynamics [12] (Qualis B2): In

this journal, a SPH fluid simulation with the use of the GPU is presented. This

work uses a uniform grid as a neighbourhood gathering that is used as the

traditional approach to compared against the NGrid on SPH fluid simulations

(chapter 5);

– Lecture Notes in Computer Science [13] (Qualis C): This journal presents the

results of the application of the NGrid in a mobile game framework.

• Conference procedings:

– Brazilian Symposium on Games and Digital Entertainment 2008 [11] (Qualis

B4): the first work, where a early concept of the NGrid appeared in a 2d flock-

ing boids scenario. This work has received the best paper award for computer

category;

– Conferência de Ciências e Artes dos Videojogos 2009 [14] (Sem Qualis): This

work presents a boid simulation with the use of uniform grid for neighbourhood

gathering implemented on the GPU. This implementation is used as the tradi-

tional approach to compared against the NGrid on crowd simulations (chapter

6);

– Brazilian Symposium on Games and Digital Entertainment 2009 [15] (Qualis

B4): This work presents a game with all the logic implemented in the GPU with

the use of uniform grid for neighbourhood gathering. The implementation of

this paper is used as the traditional approach to compared against the NGrid

on game scenarios. This work received 3rd best paper award of computer

category;

– Brazilian Symposium on Games and Digital Entertainment 2009 [4] (Qualis

B4): This work presents an evolution of the NGrid on crowd simulation pre-

sented in [11, 10] allowing more complex space scenarios;

– IEEE International Games Innovation Conference 2012[16] (Qualis B5): This

work presents a framework for optimizing a game with the use of GPU Com-

puting. One of the implemented techniques is the NGrid;

– Brazilian Symposium on Games and Digital Entertainment 2012[17] (Qualis

B4): This work presents the NGrid for crowd simulation implemented in a mo-
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bile platform with the use of mobile GPU Computing. This work has received

the second best paper award for computing category;

– Brazilian Symposium on Games and Digital Entertainment 2012 [18] (Qualis

B4): This paper presents a SPH fluid simulation using multi-Gpus, which

is particularly important since the NGrid also make use of multi-GPUs, and

similar techniques are used in the Multi-GPU implementation.

– Workshop on Applications for Multi-Core Architectures 2012 [19] (Qualis B5):

This work shows a distribution on multi-GPUs, which some ideas are used on

the Multi-GPU implementation.

• Conference resumes:

– CSBC GPU Forum 2012 [20]: This work shows a implementation of a game

using the NGrid;

– CSBC GPU Forum 2012[21]: This work shows a implementation of a crowd

simulation using the NGrid;

– CSBC GPU Forum 2012 [22]: this work shows the implementation of a SPH

fluid simulation using the uniform grid for neighbourhood gathering;

– CSBC GPU Forum 2012 [23]: This work shows a implementation of a particle

system using the NGrid;

– GPU Technology Conference 2012 [24]: This work shows the NGrid for simu-

lation and games with the use of Gpu Computing.

– GPU Technology Conference 2013 [25]: This work shows the NGrid for game

simulation on mobile devices.

– GPU Technology Conference 2013 [26]: This work shows the NGrid applied in

a GPGPU game.

There is also a journal (on Computer Animation and Virtual Worlds Qualis B1)

written and in reviewing process with the results of the application of the NGrid in SPH

fluids.

1.3 Organization of this thesis

This thesis is organized in two parts, being the first related to the architecture proposal

and the second for its application and results. In Chapter 2, the neighborhood gathering

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1546-427X
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problem is presented, providing a background on the problem being addressed by this

thesis and also where it applies. This chapter also provides some introduction on real-

time systems and GPU Computing. Chapter 3 presents some of the solutions of the

neighborhood gathering problem that appears in the literature. Chapter 4 presents the

novel data structure for neighborhood gathering, the NGrid.

Next, the application chapters are presented, where all the tests and implementations

are detailed and discussed.

Chapter 5 shows the implementation and tests of the NGrid on a fluid animation,

based on the SPH fluid simulation, using CUDA. The chapter also includes performance

and error tests against the uniform grid data structure. Chapter 6 describes the im-

plementation and tests of the NGrid on a flocking void simulation using CUDA, in a

single-GPU and in a Multi-GPU ambient. These tests also include the comparison of the

performance and error of NGrid with adaptive N-radius and a fixed one, and the uniform

grid. Chapter 7 shows the details of the implementation and tests of the NGrid applied

on a particle system using a mobile platform. These tests also include the performance

comparison with the brute-force method. Followed by Chapter 8 that describes the im-

plementation and tests of the NGrid on a simple Game using CUDA. Finally, Chapter 9

shows the conclusion of this work, as well as consideration and final analyzes.



Chapter 2

The Neighborhood Gathering

Problem

The neighborhood gathering is the process of gathering closest entities of a certain element

that are inside a given radius. In many simulations, this is done for every entity, having

a complexity of O(n2 ) in a brute force method. The neighborhood gathering method

is applied in many scenarios, like crowd simulations, fluid simulations, particle system

and the behavior of entities in games (AI and physics of the game). Even thought this

problem appears in many scenarios, there are no works that discusses it in a generic way.

This thesis tries to formalize and discuss it in a more generic way. Different authors, like

[27] presents this gathering as the bottleneck of its simulation.

This problem appears often in the real time simulation literature, even though they do

not deal with the problem in a generic way, since most authors only discuss the problem at

the application level. This problem can be seen as a variant of the Fixed-Radius Nearest-

Neighbors Search [28], where all points need to be found, given a fixed distance and a

specified point in Euclidean space. In the case of real time simulations, this has to be

done to the n entities in the scene [29]. This problem can also be seen as a modification

of the Nearest neighbor search (NNS) [30], normally applied in pattern recognition [31],

where the problem is to find the closest points in metric spaces of a certain point. Another

similar problem is the KNNS (k-nearest neighbor search) [32], used in biology [33] and

in image retrieval [34], where the problem is to identify the top k nearest neighbors to a

certain point.

This chapter is divided as follows, first the background concepts of real-time simula-

tions and GPU Computing will be presented. Then, the neighborhood gathering problem

is described more formally, and later some of the real-time simulations that need a neigh-

borhood gathering are presented. Finally, the summary of the chapter is presented.
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2.1 Background

This section is dedicated to present some background concepts. Since the main application

of the NGrid is in real-time simulation and games, the next subsection will present its

concepts. Also, since the NGrid is mainly designed for GPU and manycore architecture,

the main concepts on the subject will be presented as well.

2.1.1 Real-Time simulation

Graphical interactive real-time systems, like games and real-time simulations, are multi-

media applications, and being so, they have time constraints to execute all of its processes

and present to the end user the results. If a system does not fulfill this requirement, it will

lose its interactivity and consequently it will fail. A common parameter for measuring

a simulation is frames per second (FPS), which is the frequency (rate) that the system

produces unique consecutive images called frames.The lower acceptable bound for being

interactive is 16 FPS. Their are not higher bounds for a simulation FPS, but in PCs when

the refresh rate of the monitor is less than the refresh of the simulation some discard of

the rendered frame may occur [8].

The tasks that a real-time simulation normally should execute can be broken down

into three general groups [35]: data acquisition, data processing and presentation. Data

acquisition means gathering data from available input devices, such as, mice, joysticks,

keyboards, and motion sensors. The data processing part refers to apply the user input

into the simulation (user commands), apply the simulation rules, simulating the entities

behavior (like physics and artificial intelligence), and related tasks. The presentation

refers to providing feedback to the user about the current game state, through images

and sounds. The main execution of a simulation or game can be seen on the workflow of

Figure 2.1.

As listed previously, there are many tasks that a simulation must execute. A real-time

simulation provides the illusion that everything is happening at once. In order to run a

simulation in real-time, it must be an interactive application, and if it is unable to perform

its work on time, the user experience will not be acceptable. This issue characterizes this

kind of simulation as a heavy real-time application.

There are some previous works of the author that deals with the distribution of the

simulation tasks between processors [8, 9, 35, 36, 37, 38], which are particularly important

for this work, since it involves the distribution of workload between GPUs.
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Initialisation of the simulation

User Input

Update

Render

End of the simulation

Figure 2.1: Workflow of a real-time simulation.

The neighborhood gathering is part of the data processing task group, since it is part

of the update stage.

2.1.2 GPU Computing

GPUs are powerful processors originally dedicated to graphics computation. It is com-

posed by several parallel processors, allowing it to present much better performance then

modern CPUs in several applications scenarios. The Kepler K20 GPU card,for instance,

can sustain a measured 4.7 TFLOPS/s against 60 GFLOPS/s of its contemporary CPU

processors [39].

The GPUs architectures are being specially designed for processing tasks that require

high arithmetic rates and data bandwidths. Because of the SIMD parallel architecture of

the GPU, the development of this kind of application requires a different programming

paradigm than the traditional CPU sequential programming model (the nVidia K20 [40],

for example, has 2496 unified stream processors.). In order to take advantage of the GPU

processing power, the developer needs to adapt its tasks to this kind of parallel paradigm,

such as the data structure presented in this thesis.

The GPU can be used on the PC as a generic processor to process data and deal

with computationally intensive tasks, through development of elaborate frameworks such

as CUDA (Compute Unified Device Architecture ) [?] and OpenCL (Open Computing

Language) [?]. These frameworks facilitates the use of the GPU computing for generic

processing. One main advantage in the use of these architectures is that they allow the

use of the GPU in a more flexible way (both languages are based on the C language)

without some of the traditional shader languages limitations (such as scatter memory
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operations, i.e. indexed write array operations), and offering others features that are

not even implemented on those languages (such as integer data operands like bit-wise

logical operations AND, OR, XOR, NOT and bit-shifts) [41]. CUDA has a more mature

architecture and is up to 30% faster than OpenCL [42, 43], but the disadvantage of the

CUDA software architecture is that it is only available for the hardware of the proper

vendors, i.e. CUDA only works on Nvidia Cards, while OpenCL is implemented in the

main vendors of GPUs (AMD/ATI, nVidia and Intel), and even on CPU architectures.

GPU computing can be applied in many different scenarios, like: fluid simulation [12],

medical [44] and computer vision [45].

The GPGPU is getting more and more common and it is being applied in many fields,

like geologic [46], medical [44] and computer vision [45]. The websites from CUDA [47]

and gpgpu.org [48] show the latest development in the field.

The NGrid is mainly designed to be used in many cores processors like GPUs. It

was developed having in mind different architectures using CUDA, Multiple GPUs and

Mobile GPUs.

Nowadays, many GPU Computing systems are starting to have multiple GPU devices

to solve their computational problems [49]. In order to distribute the workload across

multiple GPUs, the developer must manage the data exchange between the main memory

and these devices, guaranteeing consistency between the multiple copies of data, making

the development for these architectures more difficult for the developer.

In order to allow a faster simulation, some kinds of problems are being solved using

more than one GPU architecture. Among some works, we can cite [50], which solves

a Fast Fourier Transform in 3D using multiples GPUs. Additionally, [51] computes a

fast conjugate gradient in more than one GPU. Using more than one device to solve a

problem requires a well-established process in order to share and processing data among

these GPUs.

On mobile devices, the GPU is much less capable and powerful [52], and is typically

integrated into the mobile processor system-on-a-chip (SoC), which also consists of one or

several CPUs, DSP (digital system processor), and other available mobile-specific acceler-

ators, as Figure 2.2 illustrates. This embedded GPU does not have a memory specific for

it, having to share the system bus, with the others processors for accessing the memory.

Consequently the memory bandwidth is also much lower when compared to the desktops

GPUs [1].
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Figure 2.2: Mobile Hardware Architecture [1].

Currently, mobile GPUs emphasis more on lower power consumption [53] than per-

formance. Some of these currently available GPUs devices are the Qualcomm’s Adreno

200 GPU, the TI’s PowerVR SGX 530/535 GPU and the nVidia Tegra3 GPU.

Normally, most works that uses mobile for parallel processing, deals with the use

of the GPU for generic processing with the OpenGL ES [54] programable shaders, the

vertex and fragment shader, as the programming interface [55]. The disadvantage of

these approaches is the traditional shader languages limitations (such as scatter memory

operations, i.e. indexed write array operations), and the lack of some features (such as

integer data operands like bit-wise logical operations AND, OR, XOR, NOT and bit-

shifts) [41]. The NGrid implemented in a mobile architecture will use the Renderscript

API, that has also some of these disadvantages, like the limitation of scatter memory

operations.

Renderscript is a new software development kit and API for Android firstly intro-

duced by Google in the Honeycomb version of Android. Renderscript is an API for

high-performance graphics processing on Android phones and tablets. It is used for fast

3D rendering and computing processing, having similar paradigm as GPU computing li-

braries and frameworks [56]. The main goal of Renderscript API is to bring a lower level,

higher performance API to Android developers, in order to achieve better performance in

visual animations and simulations [57].

The CUDA implementations of the NGrid have been designed to get the most of

memory optimizations in order to speedup the data structure [58]. One of the techniques

used is the data alignment. Since the device can read 4-byte, 8-byte, or 16-byte words

from global memory into registers in a single instruction, all the data used is multiple of

these values.

Also the global memory bandwidth, which is the main memory used in the GPU, is

used most efficiently when the simultaneous memory accesses by the threads in a half-
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warp can be coalesced into one or two memory transactions if the following rules are

achieved: all the threads access 32/64/128-bit words, resulting in one 32/64/128-byte

memory transaction, and all the memory accessed lies in the same memory segment, which

must be equal to the transaction size. The NGrid is naturally organized to use coalesced

memory access, since the NGrid sort the data according to access to the neighbors, as will

be seen in chapter 4. Because of this organization the shared memory can be used inside

the same block in order to help minimize the processing time, since it requires fewer warps

to process. Also the same memory organization helps the optimization of the multi-GPU

tests, that will be shown in Chapter 6.

2.2 The Neighborhood Gathering Problem

Neighborhood gathering problem is used in many real time simulation scenarios. In a

virtual world, the n interactive entities may lay at a 2D or 3D in an Euclidian space.

The method of neighborhood gathering consist of gathering the nearest set of entities

with Euclidian distance less than a specify radius k, among the n − 1 entities in the

virtual world. This method is used together with others tasks of the simulation, like

simulate behavior or physics. This work defines the problem based on the Fixed-Radius

Near-Neighbors Search definition [29, 59, 60].

An entity is defined as an interactive element named i, placed in the virtual world,

which has vector of positions in a determine time t:

f(i, t) = pi (2.1)

, where the pi is a 3D vector:

pi = [xi, yi, zi] (2.2)

In order to gather the set of nearest entities at a distance k of the entity pi, the

algorithm must test pairs of entities (pi and pb) in order to gather the set of entities that

respects the equation:

G(i, b) = distance(pi, pb) < k AND i 6= b⇒ add b to i list (2.3)

, where b is the other entity and the distance is:

distance(pi, pb) =
√

(xi − xb)2 + (yi − yb)2 + (zi − zb)2, (2.4)
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So, for solving the problem for all the simulated world, the equation:

∀i,∀b : G(i, b), (2.5)

, must be respected in order to gather the neighborhoods’ entities.

In order to illustrate this method, Figure 2.3 shows the ith entity that will gather

the entities with the smallest distance than the radius, which in this case is the set

{A,E, F,K,O, P} that will be gathered.

Figure 2.3: Regular grid for searching for neighboring particles.

The searching for neighboring entities is a bottleneck of many real time interactive

applications. An entity can potently have Euclidean distance of k between every other

entity. A world with n entities require (n−1)+(n−2)+ ...+1 = n(n−1)/2 = O(n2). Due

to the quadratic time complexity, naively testing every entity pair can quickly become too

expensive even for moderate values of n. To speed up this process, the number of pairs

tested must be reduced.

The naive approach of such algorithm has complexity of O(n2 ), since it has to process

each entity against the other entities. This implementation is showed in Algorithm 1.
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Input: a set of entities P = { p0,p1,,...,pn−1 }
Input: a radius k
Result: n set of neighbours N = { N0,N1,,...,Nn−1 }

for i=0;i<n;i++ do
for j=0;j<n;j++ do

if i ! = j AND distance(pi,pj) < k then
add j in i list, Ni ⇐ j

end if
end for

end for

Algorithm 1: Brute Force Neighborhood Gathering Algorithm

Since this problem is very time consuming, and would consume a lot of computation

time, some solution have appeared in the literature that optimize this method. These

solutions are based on the task of identifying smaller groups of entities that may be

interacting and quickly exclude those that definitely are not. The available methods in

the literature will be presented in the next chapter, and the NGrid will be presented in

the subsequent chapter.

The neighborhood gathering problem comes from computational geometry field and

does not appears, in this form, in the literature very often. However, some of the few avail-

able works are [61, 62, 63, 64, 65, 66]. This work concentrates on real-time simulations,

where this problem is described with a different name, in the next section.

2.3 The Neighbourhood Gathering for Real Time Sim-

ulations

Neighborhood Gathering is required in different applications, such as: particle systems,

crowd simulation, fluid simulation, physics simulation, and games, among many others.

2.3.1 Particle System

Dynamic particle systems is a computer graphics technique, commonly used in games,

films and animations to animate fire [67], wind [68], smoke [69], clouds [70], and other

”fuzzy” phenomena. These animations usually require a large number of entities, modeled

as particles, interacting with each other and with the environment. Normally particles

have simple rules for governing the individuals behavior with the complexity coming from

the high number of particles.
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This animation technique was first introduced in computer graphics by Reeves [71] for

an animation used in 1983 in the movie Star Trek II: The Wrath of Khan, to simulate an

explosion of a planet. This presentation shows the basic concepts of a particle system. He

defined a particle system as a collection of many tiny particles, that during the simulation

can be added to the system, moved, changed, or even removed from the system. Normally

these particles are rendered as graphical primitives such as points, sphere and sprites.

Later Reeves [72] extended his particle system by including more sophisticated particle

motion for grass. Nowadays, all the major game engines and digital content creation

system have some sort of particles system integrated into it.

The particle systems, on some animations, can have no mutual interaction, like on

some simulations of wind and explosions [73]. In these cases, it does not need a data

structure for neighborhood gathering. But in other cases, where the particles collides or

interacts with each others , a neighbor gathering is needed.

Particles systems have the following workflow: first the particle system is initialized by

creating the proper initializations; after entering the main loop of the simulation, where

the particles may be created and destroyed according to the rules of the system; then

the particles positions are updated according to the movement rules o the particles; and

finally the particles are rendered on the screen. After the simulation finishes, the system

ends the main loop and destroy the particles.

The motion of a Newtonian particle is governed by the second law of Newton (F =

m.a). In this case, Particles are entities that have mass, position, and velocity, and

respond to forces.

A Newtonian particle i has a know state:

Si(t) =


xi(t)

mi

Pi(t)

 , (2.6)

at the time t , consisting of position (xi(t)), mass (mi) and the linear momentum

(Pi(t)). The particles could also have some others attributes like size, color, damping,

friction, bounce and age.

The system is responsible to provide the knowledge the state of each of the particles

S(i, t) , to determine the next state S(i, t + ∆t) of each particle into the scene, where

∆t is the time step. This task involves the integration of the equation of motion of the
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particle [74].

d

dt
Si(t) =


vi(t)

mi

Fi(t)

 , (2.7)

, where

vi = m−1
i Pi (2.8)

is the world linear velocity of the particle i, mi is the mass of the body and Fi is the

external force.

In order to calculate the interactions and collisions between the particles, a neighbor-

hood gathering mechanism is needed. This collisions influentiates how the particle will

behave during the simulation. For newtonian particles, it is required that the particles

do not interpenetrate each other. Most particle system divides this step in two phases: a

broad phase, and a narrow phase.

The broad phase is the neighborhood gathering step, which is responsible for avoiding

the n2 comparison between all the individuals, and also avoid doing a narrow phase of

the collision detection between the n2 individuals.

The narrow phase of the collision detection is responsible for doing the collision de-

tection among the individual particles. The algorithm to perform this test is very simple

in a particle system: if the particles are at a distance d from each other, less than the

sum of radius (r1 + r2), then they are colliding and must be treated accordantly. Figure

2.4 illustrates two particles near each other.

r
1

r
2

d

Figure 2.4: Two particles near each other.

The workflow of a newtonian particle system is illustrated in Figure 2.5.
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Initialize simulation

create and destroy particles

Gather Particles Neighbors

Check for Collisions

Integrate

Render

Destroy Simulation

Figure 2.5: Workflow of a particle system

2.3.2 Crowd Simulation

In a typical natural environment it is common to find a huge number of animals, plants

and small dynamic particles. This is also the case in other densely populated systems,

such as sport arenas, communities of ants, bees and other insects, or even streams of

blood cells in our circulatory system.

Crowd simulation are now appearing frequently on computer games, like Gran Theft

Auto IV [75], and digital films, like trilogy of The Lord of the Rings [76]. Typical examples

of the use of crowd simulation are the simulation of the behavior of group of animals [77],

people walking on the street [78], soldiers fighting in a battle [79] and spectators watching

a performance [80].

Computer simulations of crowds usually present a very limited number of independent

entities, mostly with very predictable behavior. There are several approaches that aim to

include more realistic behavioral models for crowd simulation such [77, 81, 82, 83, 84, 85].

All these models are based on the flocking boids approach [77], which also fundaments

the crowd simulation test case on chapter 6.

Reynolds [77] presents the first distributed behavior model to simulate a flock of

animals, that he called it boids (from bird-oid). This flock of boids is designed as a particle

system, where each boid acts similar to particle. But instead of having the newtonian

rules to control the behavior, it has also some behavior rules created by Reynolds. Each

boid is implemented as a independent actor that behaves accordingly to its perception of
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the environment, the physical rules (like gravity, inertia and collisions) and some set of

behavior rules. In Reynold’s work, these rules were 3 simply steering behavior of the boid,

first a bird avoids too crowded local boid mates, second the boid tries to steer accordingly

to the same place as its local boid mates, and third it tries to stay together with its group

of boid. These rules can be seen on Figure 2.6.

Repulsion DirectionGrouping

Figure 2.6: Flocking Boids Rules.

In order to achieve a believable simulation the algorithm tries to mimic what is ob-

servable in nature: many entities’ behaviors depend on the vision of the entity. For that,

it depends on a combination of internal and external factors (from the closest neighbors)

that defines which actions are taken and how they are done. With this approach, internal

state is represented by position, speed (also orientation) and the boid type, and external

information refers to visible neighbors, depending on where the boid is looking at (orien-

tation), and their relative distances. In order to mimic the vision of the individual, an

neighborhood gathering algorithm is needed.

Figure 2.7 shows an entity with its’ nearest entities to simulate its vision. The rules of

the behavior of the crowd entities have evolved from these simple rules, to complex inter-

active agents, with memory and planning, but they still need some form of neighborhood

gathering in order to simulate the agent’s vision.

Invisible Area

Visible Area

Figure 2.7: The entity and its vision.
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2.3.3 SPH Fluid Simulation

Due to the graphics technology improvements, simulation of natural phenomena, such as

water flows or smoke, has become possible to be performed in real time and interactive

environments, like scientific applications and digital games. In fact, this kind of simulation

is now quite popular in computer games, digital movies and animations. The use of

aerodynamic effects and physics effects in games like races and flight simulators improves

the player immersion.

Fluid simulation using SPH is a particle system, where the particles behavior follows

the Navier-Stokes equations,

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p + ρg + µ∇2v, (2.9)

and
∂ρ

∂t
+∇.(ρv) = 0, (2.10)

which are known as Navier-Stokes equations for modeling the flow of incompressible New-

tonian fluids. In these equations, ρ represents the fluid’s density, v the velocity field, p

the pressure field, µ is the fluid’s viscosity and g the resultant of external forces.

Equation (2.9) is known as the equation of motion and states that changes in linear

momentum must be equal to all forces that act in the system. The convective term v.∇v

represents the change of a fluid’s element properties that moves from one position to

another.

Equation (2.10) is known as the continuity equation or mass conservation and states

that in the absence of sinks and sources the mass in the system must be constant.

In this paper, the Navier-Stokes equations are solved using a mesh-less Lagrangian

method called SPH. This method was introduced by Lucy [86] and Gingold and Monaghan

[87] to perform simulations of astrophysical problems and latter extended for incompres-

sive Newtonian fluids by [88].

In particle based Lagrangian methods, the convective term of Equation (2.9) and

Equation (2.10) do not need to be solved since the material moves the flow and carries a

fixed quantity of mass [89].

In SPH a compact support, radial and symmetrical smoothing kernel function is

used to evaluate (anywhere in space) the field quantities defined only at a discrete set of
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particles [90].

The evaluation of a continuous scalar field A(x) is achieved by calculating a weighted

summation of contributions for all particles i ∈ [1...N ], with position xi, mass mi and

additional attributes Ai using

A(x) =
∑
j

mj
Aj

ρj
W (r, h), (2.11)

where ρi is the density of particle i, r = x− xj and W (r, h) is the smoothing kernel.

The gradient and Laplacian of a smoothed attribute function A(x) depends on the

gradient and Laplacian of the kernel function, respectively

5 A(x) =
∑
j

mj
Aj

ρj
5W (r, h), (2.12)

52 A(x) =
∑
j

mj
Aj

ρj
52 W (r, h). (2.13)

In SPH, the pressure is computed using a modified ideal gas law state proposed by

Desbrun [88]

pi = k(ρi − ρ0), (2.14)

where k is the stiffness constant of the fluid and ρ0 corresponds to its rest density.

The SPH method divides the fluid into a set of discrete elements, referred as particles.

In order to process the interaction between the particles using the Lagrangian approach, a

neighborhood-gathering algorithm is needed in order to process the interaction for density,

viscosity and force calculations. The neighborhoods gathering is normally done by some

form of spatial subdivision and is responsible for avoiding the n2 comparison between all

the individuals in order to calculate the pressures, density and forces.

2.3.4 Physics Engines

A physics engine also follow as a base a particle engine, where a rigid body is a (possibly

continuum) collection of particles, in which the relative distance between any two particles

never changes, despite the external forces acting on the system.

In a scene composed of n rigid bodies, the state Si(t) of a body i at time t is defined

by four variables that represents its coordinates and velocities of the body [74]:
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Si(t) =


xi(t)

mqi(t)

Pi(t)

Li(t)

 , (2.15)

where xi is the world position in global coordinate of the center of mass Ci of the body,

qi is a quaternion that represents the rotation of the local reference frame of the body

in relation to the world frame (with the origin in Ci), Pi is the world linear momentum

and Li is the world angular momentum of the body. The main functionality of a physics

engine consists on determining the state Si(t+ ∆t) of each rigid body into the scene, for

a known state Si(t) , where ∆t is the time step. This task involves the integration of the

equation of motion of each rigid body i [74]:

d

dt
Si(t) =


vi(t)

1
2
wi(t)qi(t)

Fi(t)

ti(t)

 , (2.16)

where vi = m−1
i Pi is the world linear velocity of the center of mass of the body Ci,

mi is the mass of the body, qi is the quaternion [0, wi], wi = I−1
i Li is the angular velocity

of the body, Fi is the external force, ti is the external torque applied to the body and the

Ii is a 3×3 matrix of the inertia tensor of the body at time t, respectively. The last one

calculated in t:

Ii(t) = Ri(t) I0iRi(t)
T , (2.17)

where Ri is the 3×3 rotation matrix correspondent to the quaternion qi and I0i is the

inertia tensor computed in relation to the local system of the rigid body i at the time of

its creation. If the density and geometry of the body is constant during the simulation,

I0i will also be constant.

Equation (2.16) is a first order ordinary differential equation (ODE); the component of

a physics engine responsible by its integration (usually by applying a numerical method

such as Runge-Kutta fourth-order) is called ODE solver. This method is used in the

simulation step.

Generally, the motion of a rigid body is not free, but subject to constraints that
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restraint one or more degrees of freedom (DOFs) of the body. Each constraint applied to

a body introduces an unknown constraint force that should be determined by the physics

engine in order to assure the restriction of the corresponding DOF. Constraints are related

to joints between (usually) two bodies and/or (collision or resting) contact between two

or more bodies [74]. In the case of our architecture, this kind of constraints are not

calculated.

In order to compute the contact forces that will prevent interpenetration of bodies, a

physics engine needs to know at each time t the set of contact points between each pair of

bodies into the scene. The contact information includes the position and surface normal

at the contact point, among others. This task is performed by a component integrated

to the engine responsible for collision detection, which can be divided in a broad and a

narrow phase [91].

This broad phase is responsible for avoiding the n2 comparison between all the in-

dividuals, and also avoid doing a narrow phase of the collision detection between the n2

individuals. This phase is a neighborhood gathering problem. The narrow phase of the

collision detection is responsible for doing the collision detection among the rigid bodies,

that is a collision check between all the polygons of the entities. In order to optimize this

broad phase, and also have a similar bound structure for all the entities, a bound volume

is commonly used. The bounding volume for any entity is a closed volume that completely

contains the union of the entities’ geometry. Some examples of bound volumes are the

bounding sphere, the axis-aligned bounding box (AABB) and the oriented bounding box

(OBB) [92]. An example of a geometry bound by a sphere can be seen on Figure 2.8.

Figure 2.8: Bounding Sphere.

2.3.5 Digital Games

Computer games are multimedia applications that employ knowledge of many different

fields, such as Computer Graphics, Artificial Intelligence, Physics, Network and others
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[37].

The line of sight of NPC (non player characters) is the determination of every objects

and entities that the NPC can see, and is used in order to simulate the vision of the NPC.

This is used in order to simulate the behavior of the NPC.

In order to process the physics (the same as the physics engines) and AI steps (simu-

lating the vision of the characters) some sort of neighborhood gathering method is needed.

Most of the games tries to avoid the high complexity of proximity queries by applying

some form of spatial subdivision to the environment and classifying entities among the

cells based on their position.

2.4 Summary

In this chapter neighborhood gathering problem is presented and contextualize in different

problems, related to the field of application of the NGrid.

There are also many other relevant publications that deals with neighborhood gath-

ering, like raytracing [93], terrain visibility [94] and molecular dynamics [95] that are not

detailed in this work but could also be good test cases the NGrid proposal, since they

need a neighborhood gathering method.

The next chapter will present some solutions of the neighborhood gathering problem

that appears in the literature.



Chapter 3

Solutions for the Neighborhood

Gathering Problem in the Literature

Neighborhood gathering is still one of the bottlenecks of interactive environments, like

games and real-time simulations. In scenarios with thousands of entities the processing

of the neighborhood gathering can deteriorate the performance of the application. The

brute-force approach will test all O(n2) pairs of entities. Hence, neighborhood gathering

methods must ensure that this quadratic asymptotic behavior do not occur.

There are many methods that tries to avoid the quadratic complexity. Most of them

tries to reach an average O(n) complexity. This chapter presents the most used methods

for neighborhood gathering mechanisms in the literature. First the sweep and prune

method is presented, followed by the uniform grid and the hierarchical trees. Finally the

summary is presented.

3.1 Sweep and Prune

The Sweep and Prune algorithm is a topological subdivision algorithm also called Sort

and Prune algorithm or just SaP. The main idea of the algorithm, as the name says, is to

do a dimension reduction, sort all the entities, and then prune it. This method appears

more often in the literature as a broad phase mechanism for physics engines.

3.1.1 Algorithm Details

In order to determine that two objects are near each other, this approach reduces the

3D/2D problem into three/two 1D problems. This is done by determining the interval

occupied by the entity along each of the axes (x,y and z for 3D and x and y for 2D),

which is the contraction of the data structure. If the interval of two entities overlap, or is
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less that the distance radius, in all of the axis, the entities must be near. This step test is

called interception test. In order to determinate which intervals of the entities along the

axis are close, the interval list is sorted. Since the entities move and rotate continuously,

it is necessary to reconstruct and resort at every step of the simulation. The workflow of

this method can be seen on Figure 3.1.

Constructuon of the
intersection lists

Sort each list

Check for intercep-
tion for each entity

Figure 3.1: Workflow of the sweep and prune algorithm.

Figure 3.2 illustrates the SaP method in a 2D environment. Each entity is mapped to

the X Axis and YAxis lists, and the neighbourhood gathering occurs by visiting the neigh-

bours that appears in both lists with distance less than the radius of the neighbourhood

gathering.
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Figure 3.2: The SaP method illustrated.

The Sweep and Prune algorithm has an average O(n) complexity. Normally, the

construction of the interval lists has an O(n) complexity and the sorting is commonly

done by a quick-sort, which has a O(n ∗ logn) complexity, or simple a insertion sort,

which can have an expected O(n), since the objects do not change position very often

between frames. However, using the insertion sort for the sorting step can deteriorate

to O(n2) on a clustered axis because of small world movements causing large positional

movements in the list [92]. The interception test has an average O(m ∗ n), where m is
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the number of near objects. However, this numbers of near objects can be equal to the

number of objects in the scene, having a O(n2) for the worst case for this method as well.

Since, it needs one interval list for each axis, it has an space complexity of O(2 ∗ d ∗ n),

where d is the number of axis.

This method first appeared in the literature as part of a collision detection library,

named as I-COLLIDE [96]. Followed by Baraff [97] that showed it applied on a physics

engine.

This method appears more often in the literature as a broad phase algorithm for

collision detection [92, 96, 98], but it also can be seen applied in the computation of line

of sight algorithms [99], entity behaviour [100] and culling [101]. This method can be also

seen in some open source physics engines, like Bullet [102] and Box2D [103].

There are not many implementation of the sweep and prune using parallel architecture.

Among the few ones, Govindaraju et al. [104] presents a collision mechanism, with SaP

as one of the steps of its collision detection, implemented in the GPU using depth and

stencil buffer techniques. Liu et al [101] presents a culling system implemented in the

GPU using CUDA, using a hybrid neighbourhood gathering mechanism, which combines

the SaP method with a uniform grid mechanism.

There are also some variation of the SaP method, like the Kinect Sweep and Prune

[105, 106], which uses the SaP with a kinetic data structure, transforming the SaP to an

event-driven method. With the kinect data structure, the SaP list is only updated when

there are collision responses, motion changes, or intersections. Also [100] presents some

improvements for the SaP method by reducing the sort cost.

3.2 Uniform Grid

The uniform grid (also called a spatial hash) is a spatial subdivision technique, where the

simulated world is subdivided in equally sized regular grids/boxes/buckets, called cells,

among the 3/2 main axis of the simulated scene (x,y and z for 3D and x and y of 2D). This

data structure appears very often in the literature applied in many real-time simulations.

This method is the one choosen from the literature to compare the performance against

the NGrid, since it is the most common in the literature.
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3.2.1 Algorithm Details

This method discretize the simulated world into a set of equally sized regular volumes (or

geometry in the case of 2D worlds), which are called cells. Normally, these cells should be

larger than the diameter of the largest objects bound sphere, but there are some works

that have smaller sized cells and the bigger objects are put in more than one cell. In

order to gather the neighborhoods, all objects in the same cell and in neighboring cells

are gathered ( the number of neighboring cells are chosen according to the radius size).

Once the grid size is determinate, inserting the entity in the grid is a simple operation.

In order to find the cell position simple divide each of the entity’s coordinate position by

the cell size, as can be seen of equation 3.1:

(cx, cy, cz) = (
px

cellsizex
,

py
cellsizey

,
pz

cellsizez
) (3.1)

This grid must be constructed in every step of the simulations, since particles move

during the frames. Average case performance is O(n). However, the cell size directly

affects the overall performance and efficiency of the algorithm, and can be a problem

[107]. If the selected size is too small, many cells must update when an entity moves,

reducing the performance, and also a larger amount of memory is needed for the uniform

grid.

Another problem is when the cell size is too big resulting that many entities are in

the same cell, or adjacent cells, requiring a hidden O(n2) performance. Even when the

scene has many entities that vary greatly in size, finding the optimum cell size becomes

very hard [92]. Figure 3.3 illustrates two uniform grids, the first with a cell size too big

and the second with a smaller cell size.
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Figure 3.3: Two uniform grids with different cell sizes.

Another problem with the uniform grid is the memory consumption in bigger simu-
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lated scenes. The memory requirements is O(h ∗ w), where h is height of the grid and w

is the width of the grid. One solution for this problem is the construction of a hash table

or bin table using the cell position as key [92, 108, 109], which gives a space complexity

of almost O(n). An example of a hash function can be seen on Equation 3.2:

i = [(ix ∗ 92837111)xor (iy ∗ 689287499)xor (iz ∗ 283923481)]modn (3.2)

, where i is the bucket number cell (ix, iy, iz), which the entity is mapped to.

Figure 3.4 illustrates this process. The world is divided in cells, and each entity is

indexed according to the cell position, and each entity gather the neighbors inside the

same cell and the adjacent cells, depending on the neighborhood gathering radius.
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Figure 3.4: The uniform grid world subdivision.

There are many works that use this method in order to process the neighborhood

gathering, and it is applied in many real-time simulations, like particle systems [110],

crowd simulation [111], fluid simulation [12], raytracing [107], photon mapping [112] and

physics engines, like ODE [113] and Chipmunk [114].

In a particle system, this work has appeared as part of the nVidia SDK [110], with the

method explained in a book chapter [115]. The simulation was implemented in the GPU

with the use of CUDA, and could process and render up to 65k particles in interactive

frame rates.

In a crowd scenario, Reynolds first implemented a uniform grid [111, 116] that could

simulate up to 280 boids at 60 fps in a Playstation 2 hardware. Reynolds implemented a

more complex crowd simulation using uniform grid with a hash table that could simulate

up to 15,000 boids in a Playstation 3 hardware [117] . A mix of GPU-CPU implementation

can be seen on [118] that could simulate 1,600 boids and [119] that could simulate 16k

boids in interactive frame rates.
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Kurose and Takahashi [120] use this method to optimize the neighborhood gathering,

but it also grows bigger in size as the fluid discretization grows. The uniform grid with

SPH on GPU can also be seen in many others works, like [12], [121] and [122].

One way of reducing this problem is by using an index sort with the uniform grid.

This index sort first sorts all the entities according to their cell indices and store them in

an array. These indices of the sorted array are stored in each cell of the grid. With that,

the cells just store one reference to the first particle with the corresponding cell index.

This optimization is described in [112], and was implemented in the GPU by [123] for

fluid simulation. Other optimizations based on memory convalescence can be seen on [27]

and [124] applied in SPH fluid simulation.

3.3 Hierarchical Trees

Hierarchical tree data structure have been used in order to hierarchically arrange the

entities in order to avoid the O(n2) comparisons. There has been several Hierarchical

tree data structures applied in real-time simulations, but the more common are the BVH,

Kd-tree quadtree and octree.

The most common in real-time simulations are the octree and quadtree. A quadtree/octree

is a tree, where each node (that is not a leaf) has connection with 4/8 others nodes of the

data structure, hierarchically bellow the node.

3.3.1 Algorithm Details

Both the octree and quadtree data structures are built upon a recursive idea. Normally

the quadtree is build for 2D simulations and the octree for 3D simulations. A quadtree

is a tree data structure in which each internal node has exactly four children, while the

octree has exactly eight children. These data structures can be seen as an extended binary

tree [125], but instead of two child nodes it has four and eight child nodes.

While the root of the tree represents all the simulated space, each node in the quadtree

is a square, and has four child nodes (unless it is a leaf node), representing the subspace

of the region , while in the octree each node is a cube, and has eight child nodes. Each

node in the quadtree either has exactly four children (eight in the case of the octree), or

has no children (a leaf node).

A quadtree/octree works by dividing space into quadrants/boxes as entities enter that
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space. It does this by following a simple rule, that for any node in the tree, the node will

be divided further if more than a specified number of entities are contained within the

node at any time. When a node is divided, it divides into 4/8 different rectangles/cubes

by splitting the node in half according to the axis (x and y for the quadtree and x,y and z

for the octree). Any entity that can fit entirely within one of these new nodes are pushed

down (with entities that are on a node edges remaining in the higher-level node).

Figure 3.5 illustrates the process for a Quad-Tree. Each entity is divided recursively in

four, until the there are the maximum specified number of entities per leaf. The structure

is organized in the tree structure as Figure 3.6 shows. In this figures, the nodes represented

by a blue circle represents the parent nodes, the nodes represented as a small square are

empty leafs and the nodes in a green circle represent the leafs with entities attached to

it. The letters correspond to the specific entities .
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Figure 3.5: The environment subdivided in a quadtree structure.
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Figure 3.6: The entities organised in the tree structure.

The complexity of the Hierarchical tree depends on the distribution of the entities

inside the simulated world. If the entities are uniformly distributed, so the leaves of the

tree are all on the same level and the complexity of inserting all the n particles will be

O(n*log n). Since the entities move during the simulation, this construction must be done
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every simulation step. Also in order to do the neighborhood gathering, a search is needed,

which can also be done in a O(n*log n) complexity in a uniformly distributed entities.

The space complexity of Hierarchical tree is a expected O(n2) [126]. Bad stochastic

distribution of entities may degenerate the trees, with many empty cells.

The quadtree was first introduced in [127] and the octree in [128]. These data structure

can be seen applied in many scenarios, like crowd [129], fluid simulation [130, 131], ray-

casting [132, 133], image processing [134], geometric modelling [135] collision detection

[136] and in a physics game engine [137].

Most works of Hierarchical trees implemented on the GPU deals with raytracing [133]

and culling [138] problems. A Fluid simulation using quadtree with GPGPU can be seen

on [139], which could simulate up to 16k particles at interactive framerate. An nbody

problem on the GPU can be seen on [140].

3.4 Summary

This chapter has presented the most common data structures for dealing with the neigh-

borhood gathering problem in real-time simulations. There are also some others structures

that were not described in this work like BSP (Binary space partitioning) [141], hierar-

chical grids [92], Verlet list [142] and kd-tree [143]. But the more common on the selected

real-time simulations scenario is the uniform grid, which will be used in this work as a

comparison.

The next chapter will introduce the NGrid, which is another form of neighborhood

gathering and it is the main contribution of this work.



Chapter 4

The NGrid

Many real time simulations neighborhood need gathering data structures. As highlighted

in preview chapters, the naive straightforward implementation of the neighborhood gath-

ering algorithm has complexity O(n2 ). Moreover, since entities are autonomous and can

move during each frame, the neighborhood maintenance is a very computationally inten-

sive task.

Different techniques, some of them presented in the last chapter, have been used to

group and sort entities in order to accelerate the neighborhood gathering, especially for

parallel and distributed solutions. Most of the implementations are based on some sort

of spatial subdivision technique. On GPU and other parallel-based solutions, sorting

algorithms may be used to reorder the particles, so it can benefit from the memory

coalescence of such hardware with parallel architecture. Using this approach, Euclidean

distant neighbors are stored near each other in the data structure, which is also the

approach used in the NGrid to have a faster data structure for neighborhood gathering.

In this work a new approach for the neighborhood gathering problem is proposed.

This chapter is organized as follows. First the NGrid is introduced in section 4.1. The

properties of the NGrid are highlighted in section 4.2. The dimension size definition of the

NGrid is presented in section 4.3. Then the sort mechanisms are presented in section 4.4

and in section 4.5 the gathering mechanisms are highlighted. Finally, section 4.6 presents

an analyze of the NGrid and section 4.7 present the summary of the chapter.

4.1 NGrid: a Proximity Data Structure

The proposed data structure was mainly developed to be used in a parallel environment,

like GPUs. This approach uses a proper grid data structure, which the author called

NGrid and it stores information about all the entities of the simulation. In the NGrid,

each entity is mapped to an individual cell (1:1 mapping) according to its spatial location.
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Entities that are close in a geometric neighborhood sense are mapped to be close in the

NGrid structure. In order to keep the NGrid properties (Section 4.2), a sorting mechanism

is necessary. The following subsections describe the neighborhood data gathering using

the NGrid data structure.

All the information about the entities are stored in arrays (the NGrid), where each

entry holds the entire data for an individual entity. In this data structure, each cell fits

one and only one entity, and has the same size as the entity. Figure 4.1 illustrates how

a randomly distributed set of particles would be arranged in the NGrid when correctly

sorted. The smaller entities represent particles that are further away from the viewpoint.

Figure 4.1: An example of a distribution of entities in the NGrid. Small circles illustrate
entities that are further away from the viewpoint.

The NGrid can be described as a grid, where each cell has only one entity and it

adapts its boundaries in order to completely hold each entity. Figure 4.2 illustrates the

NGrid adaptation over a set of entities. From this figure it is possible to see that instead

of adapting the entities to the cell, like the uniform grid does, the NGrid adapts the cell

to the entities.

The NGrid structure is based on the Extended Moore Neighborhood [144] gathering

algorithm using a 3D grid or a 2D matrix to hold the information of the entities. To

reduce the cost of proximity queries, each entity only gathers the information about the

entities surrounding its cell, based on the neighborhood search radius, called N-radius.

Figure 4.3 illustrates the NGrid with a N-radius equal to 1.

This kind of spatial data structure with extremely regular information gathering en-

ables a good prediction of the performance, since the number of proximity queries will

always be similar over the simulation. This happens because instead of making the prox-

imity queries over all entities inside a coarse grid/bucket/cell (variable quantity) and ad-

jacent grid/bucket/cell, such as in traditional implementations, each entity would query

only the surrounding individual neighbors. However, the NGrid has to be sorted continu-
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Figure 4.2: The adaptation of the NGrid cells over a set on entities.

Entity

Figure 4.3: Example of the NGrid with N-radius of 1.

ally in such a way that those entities, which are neighbors in geometric space are stored in

individual cells that are close in the NGrid, so that each entity should gather information

only about its closest neighbors. In order to better illustrate how the entities would be

organized by the NGrid and by the Uniform Grid, Figure 4.4 illustrates a set of particles

and how they are organized in both structures.

The NGrid starts, at the beginning of the simulation, by determining the dimensions

sizes (which are called N-dimensions) and does a full sort on all the dimensions, but during

the simulation (and depending on the sorting step), some misalignment may occur over



4.1 NGrid: a Proximity Data Structure 38

Uniform Grid

NGrid

Figure 4.4: Example of the organization of a set of particles in the NGrid and the uniform
grid.

the data structure because the entities can move during the simulation. This can make the

gathering step to miss some of the neighbor entities. However, since the algorithm needs a

sorting mechanism, this misalignment is very small when used a proper NGrid dimension

size and time step - less than 1% of all entities are misaligned in all the test cases (when

compared with the full sorted NGrid), and in the next step this misalignment is fixed

by the sorting mechanism. The outline workflow of the NGrid processing is illustrate at

Figure 4.5.

This type of structure cannot guarantee that the processed set of entities’ neighbors

corresponds to the closest set of neighbors in the Euclidean way, since the NGrid can be

misaligned or the chosen N-radius can be small. But with the right sorting algorithm and

the right radius this kind of algorithm can yield visually believable simulations. The tests

from this thesis show that this approximated neighborhood gathering is an interesting

model for optimizing real-time visual simulations, that needs a neighborhood gathering

algorithm and needs a fast visual feedback for the animation.

The structure can be used in 3D or 2D scenarios. In a 2D scenario the NGrid is a

simplification of the 3D proximity with only the X and Y (or Z) dimension. In this case,

the proximity data structure used is a 2D NGrid. The 2D term mentioned refers only to
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Determining the N-dimensions

Full Sort on each NGrid Axis

Sort the NGrid

Neighbourhood Gathering

Update the Simulation

End the Simulation

Figure 4.5: Workflow of the NGrid.

the spatial nature of the data structure, which is still suitable for a simple 3D simulation

where the entities do not traverse the third dimension too much, such as particles spread

at a terrain.

4.2 Properties of the NGrid

The NGrid is a data structure designed specifically for the Neighborhood Gathering prob-

lem. Instead of partition the world like the spatial subdivision techniques, the NGrid is a

topological subdivision data structure, that has the following properties:

Property 1: The number of cells in the NGrid will be equal to the number of the

entities being simulated, so in a simulated world with n entities, the NGrid will also have

n cells.

Property 2: The number of entities on each NGrid’s cell is equal to one. With that,

there are not empty cells on the NGrid.

Properties 1 and 2 correspond to the properties of the number of cells of the NGrid.

The NGrid is a topological data structure, where each entity is mapped to one and only

one cell, keeping every cell with one entity. This way, the NGrid does not requires any

additional memory space, since the entities’ position array can be used as the NGrid.

Property 3: The size of each cell correspond to the size of the entity that it holds.

Property 4: The position of the cell on the simulated world correspond to the

position of the entity that it holds. With that, the position of the cell on the NGrid
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correspond to the position on each N-dimension.

Properties 3 and 4 corresponds to the properties of the NGrid’s cells, which have the

same size and position of the entity it holds. This means that the cell on the NGrid has

a different approach as the cell on spatial subdivision techniques, where the entities are

mapped to the corresponding cell. In the case of the NGrid the cell maps itself to the

entity, having the same properties as the entity it holds.

Property 5: The NGrid is an array that have one N-dimension value for each axis

(x and y for 2D and x,y and z for 3D), and the size of each N-dimension value can be

fixed or dynamic.

Property 6: The size of the N-dimension value of each axis of the NGrid can vary,

but the multiplication of the N-dimensions must be equal to the number of NGrid cells.

So for a 2D NGrid, Ndimensionx∗Ndimensiony = n and for a 3D NGrid, Ndimensionx∗
Ndimensiony ∗Ndimensionz = n.

Properties 5 and 6 corresponds to the N-dimension properties of the NGrid. The

NGrid can have the N-dimension fixed as a value in the beginning of its usage, or it can

use an algorithm for its determination. The algorithm approach can also be use during

the simulation, to determinate if the entities distribution on the environment has changed.

This property and the algorithm are better explained in section 4.3.

Property 7: For each dimension of the NGrid, every element on the same dimension

must be organized in a way that for a array of values A, ∀A[i] ∈ A, i > 0⇒ A[i− 1] ≤
A[i], where A represents the value corresponding to the axis (X,Y or Z).

Property 7 correspond to the maintenance step of the NGrid, which need to be sorted

in order to adapt its cells to the entities’ cells, since it moves during the simulation. This

property is better explained in section 4.4.

Property 8: In order to gather the neighbors each entity have a separated N-radius

for each dimension. This N-radius may be fixed or dynamic. The N-radius determine how

many neighbors’ cells the gather method will visit.

The property 8 is related to the gathering of the neighbors. The NGrid can use a

fixed N-radius, which can achieve good results, but it must be determinate in a way that

does not produces a lot of errors, and can be adaptive in a way that can be determinate

to each entity in all directions. Both methods are better explained in section 4.5.
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4.3 Determining the N-dimensions

The N-dimensions values can be determined by two ways, a fixed way, by defining a

number or algorithmically, which analyses the position of every entity and determine the

dimensions sizes of the NGrid. The fixed dimension size can be very simple to implement,

since it only needs to calculate the dimension size so that for a 2D NGrid,

Ndimensionx ∗Ndimensiony = n (4.1)

and for a 3D NGrid,

Ndimensionx ∗Ndimensiony ∗Ndimensionz = n (4.2)

where n is the number of entities in the world. The fixed dimension size could lead to

gathering errors, since the N-dimension value do not fit well the dispersion of the entities

in the world. Also the distribution of the entities in the world could change during

the simulation, requiring an adaptation of N-dimension sizes, since it could not be done

previously, at a fixed N-dimension.

Figure 4.6 illustrates an NGrid with a 8 × 2 N-dimensions and a NGrid with a 4x4

N-dimensions. It is possible to notice from the figures that the 4×4 sample adapts better

in the environment, keeping the neighbors closer among each other.

In order to determine the N-dimensions size dynamically, an algorithm is required.

The algorithm starts by determining similar values for each N-dimension size. For example

for a quadratic number of entities n, the N-dimension in 2D would be 2
√
n for each N-

dimension value. The algorithm needs, as an input, the position of every entity, then it

sorts the entities in every dimension according to the defined dimension. After sorted,

the algorithm determine the average of the difference between the value of the distance

between each neighbor position in each N-dimension, which is called the step. If the

step in one N-dimension is higher (in this work is set to more than 20 %, which was

the best result among tests) than the other N-dimensions, these dimensions must change,

because different step values mean that the entities are not distributed according to the

N-dimensions of the NGrid. Determining if the difference steps are high or low comes

from the size of the simulated world. This algorithm is illustrated in the Algorithm 2.

Also, since the distribution of the entities’s position in the world may change during

the simulation, this method is used during the simulation together with the sorting stage

to change dynamically the dimensions size whenever needed.
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NGrid 4x4

NGrid 8x2

Figure 4.6: Different NGrid dimensions for the same set of entities.

Input: INPUT: Entities Positions Array
Result: Entities Positions Array
Result: N-dimensions

Determinate similar N-dimensions for each axis
repeat

for all Dimensions do
Sort
Calculate the average step

end for
until steps difference is small

Algorithm 2: Algorithm to find the dimension of the NGrid
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4.4 Maintenance of the NGrid: Sorting Stage

Since the particles move at each frame, the NGrid may become misaligned. In order to

maintain the NGrid in such a way that neighbors in geometric space are stored in cells

close to each other, it has to be sorted in every step of the simulation. This section

presents the process of sorting such data structure.

The position information of each entity is used to perform a lexicographical sort based

on the three dimensional coordinates of the position’s vector. The goal is to store the

entity with the smaller values for Z, Y and X in the closer-bottom-left cell of the grid,

and the entity with the highest values of Z, Y and X in the far-top-right cell respectively.

Using these three values to sort the grid, the furthest lines will be filled with the entities

with the higher values of Z while the top lines will be filled with the entities with higher

values of Y and the right columns will store those with higher values for X,according with

figure 4.7.

Figure 4.7: The sorting of a NGrid.

This sorting strategy provides data for the approximate neighborhood query, which

is optimal in terms of data coalescence and bank conflicts avoidance. When performing a

sorting over an one dimensional array of floating point values, the goal is that, given an

array A, the following rule must apply at the end:

∀A[i] ∈ A, i > 0⇒ A[i-1] ≤ A[i] (4.3)

. Extending this rule to a grid G, each cell has three floating point values X, Y and Z,

and the following rules are defined:

1. ∀G[i][j][k] ∈ G, k > 0,G[i][j][k− 1].Z ≤ G[i][j][k].Z;

2. ∀G[i][j][k] ∈ G, k > 0,G[i][j][k−1].Z = G[i][j][k].Z ⇒ G[i][j][k].X ≤ G[i][j][k−1].X;
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3. ∀G[i][j][k] ∈ G, k > 0,G[i][j][k].Z = G[i][j][k].Z andG[i][j][k].X = G[i][j][k−1].X ⇒
G[i][j][k].Y ≤ G[i][j][k− 1].Y ;

4. ∀G[i][j][k] ∈ G, j > 0,G[i][j− 1][k].Y ≤ G[i][j][k].Y ;

5. ∀G[i][j][k] ∈ G, j > 0,G[i][j−1][k].Y = G[i][j][k].Y ⇒ G[i][j][k].Z ≤ G[i][j−1][k].Z;

6. ∀G[i][j][k] ∈ G, j > 0,G[i][j−1][k].Y = G[i][j][k].Y andG[i][j−1][k].Z ≤ G[i][j][k].Z ⇒
G[i− 1][j][k].X ≤ G[i][j][k].X;

7. ∀G[i][j][k] ∈ G, i > 0,G[i][j][k].X ≤ G[i− 1][j][k].X;

8. ∀G[i][j][k] ∈ G, i > 0,G[i−1][j][k].X = G[i][j][k].X ⇒ G[i][j][k].Y ≤ G[i−1][j][k].Y ;

9. ∀G[i][j][k] ∈ G, i > 0,G[i − 1][j][k].X = G[i][j][k].X and G[i][j][k].Y = G[i −
1][j][k].Y ⇒ G[i][j][k].Z ≤ G[i− 1][j][k].Z;

The NGrid data structure is independent of the sorting algorithm used, as long as

the rules above are always valid, eventually or even partially achieved during simulation,

depending on the desired neighborhood precision.

In the case the simulated world is a 2D, the sorting pass is a simplified one with just

the X and Y passes. The next subsections will present the sorting strategies that are used

together with the NGrid, and partial odd-even sort and a bitonic sort.

4.4.1 Partial Odd-Even Sorting

The odd-even sort is a relative simple sorting mechanism that was originally created for

parallel processors [145]. This strategy works by comparing all the odd adjacent pairs

in the same NGrid dimension, and if a pair is in the wrong order, being the first larger

than the second, the entities are swapped. The next step repeats this process for the even

pars. Then it repeats until the array is correctly sorted. This mechanism is described in

Algorithm 3.

Here, the odd-even is used as a partial sort strategy, the odd-even transposition sort,

with only one odd-even pass per update. The odd-even transposition sort is similar to the

bubble sort algorithm and it is possible to complete a partial pass, traversing the whole

data structure, in O(n) sequential time or O(1) parallel complexity when running on n

threads (if available on the environment). Because there are two steps, one for odd and

other for even elements (for each axis), this algorithm is suitable for parallel execution.
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Input: Entities Positions Array
Result: Entities Positions Array

repeat
sorted = true
for all D=Dimensions do

for all E=Odd Entities in D do
if Position[D][E] > Position[D][E+1] then

Calculate the average step
sorted = false

end if
end for
for all E=Even Entities in D do

if Position[D][E] > Position[D][E+1] then
Calculate the average step
sorted = false

end if
end for

end for
until sorted == false

Algorithm 3: Odd even sort for a NGrid

Figure 4.8 shows a schematic presentation of a partial odd-even transposition sort pass.

The dark cells represent the cells that are sorted during the step.

This sorting pass must be spread into six steps, one for the odd and one for the even

elements of each axis. The first step runs the sorting process between each entity position

vector of the even columns against its immediate neighbor in the subsequent odd column.

If the rules described by Rule 1, Rule 2 or Rule 3 are violated, the entities switch cells in

the grids. The other six sorting steps perform the same operation for the odd column of

the Z and the similar steps over the Y and X axis.

From the tests performed in this work, it was possible to see that with this partial

sort more than 10% of entities are in the wrong Ngrid position when comparing with a

full sort on the entire NGrid. So this sorting mechanism only seems viable on simulation

that does not need a lot of precision, or that the entities does not change position very

often. Otherwise the usage of the bitonic sort is suggested, as present in next session.

4.4.2 Bitonic Sort

This work also uses a bitonic sort [146], which makes a full sort in each dimension.

The algorithm, created by Ken Batcher in 1968 [147], consists of two parts. First, the

unsorted sequence is built into a bitonic sequence; then, the series are split multiple
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Figure 4.8: Partial sorting pass with 6 odd-even transposition steps.

times into smaller sequences until the input is in sorted order. The bitonic sort [146] is a

parallel sorting algorithm that is very efficient when sorting a small number of elements

[148], which is the case of the NGrid since the sort strategy is applied to each dimension

separately.

The bitonic sort is a comparison-based sorting algorithm, and it is mainly designed to

run in parallel. The approach is a divide and conquer strategy, where, first, a comparison

is built for sorting a bitonic sequence, dividing into two subsequences, where all elements

of the first are smaller or equal than those of the second. The subsequences themselves

are sorted by recursive application of BitonicSort, and a BitonicMerge is used to combine

those sorted subsequences.

The used implementation is an optimized and adapted version based on a previous

work of nVidia [149]. This sort is divided into 3 passes, one for each dimension (X,Y and

Z) of the NGrid.

The complexity of this algorithm is O(n ∗ log(n)2) where n is the number of elements

to sort in sequential time. This comparisons are performed by m CUDA threads making

such parallel implementation of the algorithm to perform with a complexity of O(log(n)2),
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if there were m = n stream processors on the processor.

This sorting stage does not make a full sort on the NGrid but only a full sort on each

dimension (X,Y and Z) of the grid. If a change is made, for instance, in one entity position

on the Y pass, another pass for the X would be needed in order to keep the NGrid with

a full sort. In the tests the author have seen that this misalignment is very small, usually

less than 1% of the entities changes place in one step of the simulation. In the next step

this error will be fixed, and the use of a full sort on the neighborhood grid would impose

some loss in performance without visible gain in the simulation.

4.5 Gathering of the NGrid

After establishing the NGrid correct dimension and it is already sorted, it is necessary a

gathering mechanism. Since the NGrid does not have a spatial structure, but a topological

one, it cannot use the radius, but will use instead N-radius, which is the number of NGrid

neighbors that the entities will visit.

The NGrid uses two forms of neighborhood gathering, a fixed N-radius and an adaptive

one.

4.5.1 Fixed N-radius

The fixed N-radius, as the name says, is the N-radius fixed at the beginning of the simu-

lation. This gathering mechanism is based on the Extended Moore Neighborhood that is

used in the Cellular Automata theory [150] . The algorithm for gathering such a neigh-

borhood can be seen at Algorithm 4. This algorithm takes as input the fixed N-radius

and the NGrid, the array with the stored particles, which were already sorted.

Figure 4.9 illustrates the structure that was built with the NGrid in a 2D matrix

holding arbitrary information for 16 individual entities. In this gather mechanism each

entity only gathers the information about the entities surrounding its cell, based on a

constant search of N-radius. In the example of Figure 4.9, the chosen fixed N-radius is

1, so the entity represented as I (in light gray) would have access to the 8 highlighted

surrounding cells (represented in dark gray).

Using the fixed N-radius could cause that some neighbors are missing by the method,

like Figure 4.9 illustrates. The entity I should gather entities that are less than the radius,

which should be { A, E, O, P, N, K, B } and not { A, E, C, O, P, N, H, K } like it is
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Input: Grid - Entities Positions Array
Input: Nradius - the fixed N-radius
Input: indexZ - index of the entity on dimension Z
Input: indexY - index of the entity on dimension Y
Input: indexX - index of the entity on dimension X

for z=-Nradius;z<=Nradius;z++ do
for y=-Nradius;y<=Nradius;y++ do

for x=-Nradius;x<=Nradius;x++ do
if (z!=0 OR x != 0 OR y != 0) then

Do computation with (Grid[indexZ+z][indexY+y][indexX+x])
end if

end for
end for

end for

Algorithm 4: The fixed N-radius gathering algorithm
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Figure 4.9: Example of the gathering of a NGrid 4x4 and fixed N-radius of 1

gathered by the algorithm. This mechanism misses a entity (B) and it gather a not used

entities (C) This could be avoided by increasing the fixed-radius or by using the adaptive

N-radius, presented in the next subsection.

4.5.2 Adaptive N-radius

Instead of having a fixed N-radius, the adaptive N-radius tries to adapt the N-radius in

order to gather the neighbors that have a lesser distance than the radius. This is done by

having an adaptive N-radius, where the value of the N-radius is adapted for each neighbor

direction and it increases until all the entities inside the radius are gathered. This is done

by following a simple algorithm, for every direction of the entity’s neighbors on the NGrid,

the algorithm increases the N-radius until it has gathered all the entities that are less than

the radius distance of it.
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Input: Grid - Entities Positions Array
Input: radius - the position radius

for all Entities directions do
distance = 0
while distance <= radius do

distance = calculate distance between entities
Do computation with neighbor

end while
end for

Algorithm 5: The adaptive N-radius gathering algorithm

Figure 4.10 illustrates the structure that was built with the NGrid in a 2D 4 × 4

matrix holding the information for all 16 individual entities. The proximity queries are

done by the adaptive N-radius, so each entity only gathers the information about the

entities surrounding its cell, based on the Euclidean radius. In the example of Figure

4.10, the adaptive N-radius varies from 0 to 2, so the entities represented as I (in light

gray) would gather the 8 highlighted surrounding cells (represented in dark gray), which

are { A, E, O, P, N, H, K, B }.
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Figure 4.10: Example of the Structure of the Extended Moore Neighborhood with 16
particles and adaptive N-radius

Using this method, the NGrid gathers practically the same neighbors that the uniform

grid or other traditional methods, unless the NGrid has a misaligned dimension, but since

the NGrid is constantly ordered and checked the dimension, this does not happens very

often.

4.6 Analysis of the NGrid

The NGrid can be divided into two stages, a construction, which only happens in the

beginning of the simulation, and a maintenance stage, which happens at every step of the
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simulation.

The construction of the NGrid, using the algorithm can have, in the worst case, 2
√
n

changes in the dimensions, before finding the right one, having a O(n3/2 ∗ logn) (with

n ∗ logn as the sorting cost). This complexity can appears to be huge, when compared to

traditional approaches, which has complexity close to O(n), but these approaches have

to construct its data structure every step of the simulation, while the construction of the

NGrid is done only once on the beginning of the simulation.

During the simulation loop, the NGrid maintenance is done by sorting it according

to each dimension, having the same complexity of the sorting mechanism. In the case of

the partial Odd-even sort, it has O(n) complexity and for the bitonic sort case it has a

O(n*log n) complexity. Even the check for a change on the grid dimensions is done during

the sort mechanism, which does not influentiate on the complexity. Others solutions for

the neighborhood gathering also requires a sorting step, like the SaP and the uniform

grid, having similar complexity. Also, the construction of a quadtree/octree requires a

O(n*log n) insertion.

One of the advantages of the NGrid is that it does not require the construction step

during the simulation, only the maintenance step. Also the NGrid does not require

any additional data for the NGrid array, since it uses the same position array, arranged

according to the NGrid properties.

4.7 Summary

This chapter has presented the NGrid, the novel data structure for neighborhood gath-

ering. Using this structure, the following of the work consists on applying it in different

scenarios, which the following chapters will describe.

The next chapters will present the tests and concepts of the NGrid applied in different

architectures and scenarios.



Chapter 5

NGrid on a GPU Fluid Animation

Realism in real-time graphical simulations includes the search for real behaviors and

physics. Due to the graphics technology improvements, simulation of natural phenomena,

such as water flows or smoke, has become possible to be performed in real time and

interactive environments, like scientific applications and digital games. In fact, this kind

of simulation is now quite popular in computer games, digital movies and animations. The

use of aerodynamic effects and physics effects in games like races and flight simulators

improves the player immersion. It is important to state that in real-time simulations,

there is a trade-off between realism and interactivity, and most of the times the realistic

behavior is put aside in order to have interactive frame rates.

This chapter implements a fluid animation based on the SPH presented on section

2.3.3. The NGrid is used in a dynamic 3D dimension, a fixed N-radius of 4 and the bitonic

sort and the partial odd-even sort as a possible maintenance step. The uniform grid is

also implemented and used in the experiments and precision of the calculus.

This chapter is divided as follows first the architecture using the NGrid is presented.

Then the results are detailed and discussed. Finally the summary of the chapter is

presented.

5.1 Architecture environment

The proposed architecture implements fluid simulation using a novel GPU computing

solution, based on the NGrid data structure, allowing a high performance increase during

simulation. This architecture environment is explained in the following subsections.
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5.1.1 Execution workflow

The proposed workflow can be described as follows: at the beginning, the architecture

sorts all particles according to its position. The sorted particles gather their neighbor-

hoods according to the radius and calculate their pressure and density. Based on these

results, the system calculates the internal forces at the particles and adds any external

forces that may be influencing it, such as gravity and users’ input. Finally the system

calculates the new velocity and positions, integrating the whole system.

5.1.2 Neighborhood Gathering

Fluids are represented using a set of particles that interact with each other. This is

always true for fluids’ particles, as each of them needs to find its neighborhood particles

for calculating variables such as pressure and density, according to the SPH method.

This chapter presents the Fluid animation using the NGrid with a dynamic 3D dimen-

sions, a fixed N-radius of 4 and two sort mechanisms were implemented as the maintenance

stage: the partial Odd-even sort and the bitonic sort.

In order to evaluate this data structure for fluid animation, this chapter has imple-

mented the traditional uniform grid with a index sort method in the GPU with the use

of CUDA. This implementation uses a uniform grid to discretize the simulated world into

cells. In order to optimize this structure, especially for GPUs, these particles are sorted

into an index array according to the cells index.

5.1.3 Data configuration

Different state settings that rule the fluid simulation must be updated at every frame,

according to the simulation behavior. During fluid simulation, each particle has its state

composed of a float4 for the position, a float4 for the forces, a float2 for density/pressure

and a float4 for its velocity. These data are stored at GPU’s global memory, as shown in

Figure 5.1. The fluid simulation is performed entirely on the GPU, avoiding data transfers

between CPU-GPU, since it is typically the bottleneck in most of the CPU-GPU systems.

In this work, the simulation of each particle is mapped to one GPU thread for both

the sorting and simulation steps, so it is important to mention that the grids are double

buffered; consequently each of these tasks do not write data over the input structures

that can still be read by others parallel GPU threads. This work could also use atomic
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Figure 5.1: Fluid’s data stored at GPU’s global memory.

operations for the grid operations, but these kinds of operations are still very costly for

massive simulations.

5.1.4 Density Processing

After the sorting step, it is necessary to process each particle, using its neighborhood parti-

cles information, in order to calculate the particle’s density. Performing this step requires

a different GPU kernel, as for calculating other fluid properties the density information

must be available. Employing a grid radius of h requires traversing the three dimensions’

(Z,Y and X) neighborhood and processing this neighbors according to Algorithm 6.

for z=-h;z<=h;z++ do
for y=-h;y<=h;y++ do

for x=-h;x<=h;x++ do
if (x != 0 OR y != 0 OR z != 0) then

Grid[indexZ][indexY][indexX].Density +=
ComputeDensity(Grid[indexZ+z][indexY+y][indexX+x])

end if
end for

end for
end for

Algorithm 6: Particle’s density processing.

5.1.5 Force Processing

After processing each particle’s density, internal and external forces are processed. In this

work, internal forces are represented by pressure and viscosity, while external forces are
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the gravitational forces and the user’s inputs. The Algorithm 7 shows how these forces

are processed.

for z=-h;z<=h;z++ do
for y=-h;y<=h;y++ do

for x=-h;x<=h;x++ do
if (x != 0 OR y != 0 OR z != 0) then

Grid[indexZ][indexY][indexX].Forces +=
ComputeViscosityForce(Grid[indexZ+z][indexY+y][indexX+x])
Grid[indexZ][indexY][indexX].Forces +=
ComputePressureForce(Grid[indexZ+z][indexY+y][indexX+x])

end if
end for

end for
end for
Grid[indexZ][indexY][indexX].Forces += GlobalExternalForce

Algorithm 7: Particle’s forces processing.

5.1.6 Integration

After fluid forces are computed, it is necessary to integrate the particles velocity and

position. This step is responsible for integrating the equations for the motion of a particle

[151]. In the proposed architecture, it consists of a simple formulation, since it does not

take into account the angular velocities and torque, which are not necessary for the fluid

simulation. Then, it updates the particle velocity based on the forces that are applied to

it, which are sent to the integrator, and then it updates the position based on its velocities,

using a method based on Euler integration (this approach is one of the simplest forms of

integration) using a finite time step.

Due to the fact that there are no dependencies among the particles during fluid

simulation, they can be updated independently from each other. Following, internal and

external forces are integrated into fluid’s particle velocity and finally in its position.

It is also during this step that the collision between the particles and the bounds of

the box in which reflect the velocity, of the particles that are colliding with the box’s wall,

in relation to the normal to the wall scaled by a damping factor d, are calculated. The

Algorithm 8 illustrates this step.
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for Each particle do
Calculate new velocity
Check collison with the wall
Calculate new position

end for

Algorithm 8: Integration of the Particles.

5.2 Results

This section presents the results obtained from the proposed data structure. A series of

screenshots of a fluid animation, built with the presented architecture applying raytracing

in a set of 65k particles using pov-ray [152], can be seen in Figure 5.2.

Figure 5.2: Screenshots of the simulation.

5.2.1 Simulation Configuration

For the tests, a PC with a Ubuntu 10.10 Linux distribution equipped with an Intel i7

3.07GHz using 8 GB of RAM and a NVidia GeForce GTX 580 with 512 cores were used.
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Simulations tests with different configurations were performed. Fluid rendering is done in

two ways: by applying raytracing in the particles using pov-ray (for Figure 5.2), and by

using simple primitives (for performance tests). To assure that results are consistent, each

test was repeated 10 times and the standard deviation of the average times was confirmed

to be within 5%.

The test scene consists on the fluid with different number of particles, and a box with

fixed size, where the fluid will be dropped. The interaction with the box is done apart

from the fluid calculation, during the integration step. When the particle collide with this

box, it reflects its velocity with a damping factor d. The fluid particles are updated at a

fixed speed of 30 interactions per second and the rendering is processed at every frame

time.The fluid is dropped in different configurations to test different initial conditions,

like the classical dan-break, where the fluids are concentrated in a dam and the dam is

released, and drop, where the fluids are dropped from a high spot into a receptacle.

To evaluate the scalability of the data structure, the number of particles being sim-

ulated varied from 1 thousands to 1 million. The N-radius was set to 4 (which was the

radius with less mean error in experiments). The cell size of the traditional uniform grid

influences the total the number of visited neighbors in each interaction, which in the tests

for this work have used a size of h = 1 for this (which was the size with empirical better

performance). The fluid particle radius are also set to 1. The fluid is also influenced by

the gravity force, which were set to 9.8 m/s2. The damping factor d was set to 0.9.

5.2.2 Test Results

Table 5.1 presents the results for the simulations using the NGrid method and the uni-

form grid with index sort considering a varying number of particles in both methods, all

processing is done in the GPU. The label FPS represents the frames per second which mea-

sure the time necessary to update and render the simulation (of simple particles spheres).

Speedup is defined by the relation S = X1

Y2
, being X1 the FPS for the NGrid and Y2 the

FPS for the Uniform Grid. As expected, the fluid simulation using the NGrid method

presents better results than the simulation using the uniform grid with index sort.

Table 5.2 presents the results for the simulations using the NGrid method and the

uniform grid with index sort considering a varying number of particles In both methods,

all processing is done in the GPU. The label M represents the time elapsed for the

maintenance of the neighborhood gathering algorithm (sorting the NGrid or building

the uniform grid). On the other hand, the label S is the time spent in the simulation
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Table 5.1: Scalability of the Simulation when using the Uniform Grid with Index Sort
and the Neighborhood Grid.

# Uniform Grid With NGrid with NGrid with
Particles Index Sort Bitonic Sort Odd-Even Sort

FPS FPS Speedup FPS Speedup
1,024 703 1388 1.97 1263 1.88
4,096 571 1201 2.10 1109 1.94
16,384 377 826 2.19 788 2.09
65,536 131 384 2.95 352 2.68
262,144 30 109 3.63 89 2.96

1,048,576 3 27 9.00 22 7.33

processing (density, force and integration calculations). Here, the time for rendering the

particles is not taken into account. From these results, it can be seen that the time spent

with the maintenance of the NGrid is lower than the time spent building a uniform grid

and maintaining it.

Table 5.2: Time in milliseconds spent with Tasks by each Gathering Method. M stands
for maintenance and S stands for simulation

Uniform Grid NGrid NGrid
# with Index Sort with Bitonic Sort with Odd-Even Sort

Particles M S M S M S
1,024 0.0429 0.71 0.015 0.23 0.016 0.23
4,096 0.1175 1.68 0.015 0.23 0.017 0.23
16,384 0.1281 6.55 0.016 0.79 0.018 0.79
65,536 0.1728 60.49 0.017 2.94 0.019 2.94
262,144 0.1891 127.33 0.018 10.84 0.022 10.84

1,048,576 0.3166 401.88 0.026 25.27 0.031 25.27

Table 5.3 and Figure 5.3 shows the memory usage for the presented data structure.

From these results, it can be seen that this data structure uses much less memory space,

since it does not need a lot of memory to keep the data structure in a linear form, while

the uniform grid with index sort does need at least 2 MB for keeping the data structure.

This data is required for the extras arrays for the index sort array and the uniform grid

array in the GPU.

Table 5.4 shows the mean error and variance as a function of the number of particles

keeping the radius equal to 4 (which produced the smaller error with greater performance).

This mean error is calculated by processing the particles with the NGrid and comparing

its positions with the one calculated by the uniform grid method (by calculating the

distance between both). From these results, it can be seen that the error is small with

the bitonic sort mechanism (less than 0.05, while the radius size is 1.0) as well as the
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Table 5.3: Usage of memory when using the uniform grid with index sort and the NGrid.
# Particles uniform grid with index sort NGrid

1,024 2.10 MB 5.6 KB
4,096 2.12 MB 22.4 KB
16,384 2.19 MB 89.6 KB
65,536 2.5 MB 360 KB
262,144 3.5 MB 1.4 MB

1,048,576 7.7 MB 5.6 MB

Figure 5.3: Use of Memory in the Simulation in MB.

variance. The mean error from density calculation and force steps were also measured,

being not included in this work, since they follow the same evolution as the mean error

included in Table 5.3, absent 10% for the density calculus error.

Figure 5.4 shows the evolution in a log scale of the performance of the simulation

with the uniform grid and the NGrid with bitonic sort mechanism varying the number of

particles. This graph shows that the NGrid data structure is faster for fluid simulation

and that it scales better than the uniform grid with index sort.

Figure 5.5 shows the mean error of the particles position during 1000 frames of the

simulation with 65k particles in the scene using the NGrid with bitonic sort. From these

results it can be seen that the error does not varies considerable during the simulation,

maintaining a low variance of the error.

The number of particles neighbors visited for each method was also measured, as the

number of particles neighbors that are actually used in the simulation. The authors have

noticed that the uniform grid with index sort visits from 100 up to 275 particles in order
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Table 5.4: Erro of the NGrid in comparison with the uniform grid with different sort
mechanisms.

# NGrid wit Odd Even Sort NGrid with Bitonic Sort
Particles Mean Error Variance Mean Error Variance

1,024 0.0009836 0.000025 0.000642 0.000004
4,096 0.012236 0.000936 0.002437 0.000108
16,384 0.082615 0.001233 0.011948 0.000393
65,536 0.23655 0.011676 0.020246 0.000689
262,144 0.57226 0.100328 0.025120 0.001765

1,048,576 0.66419 0.169628 0.035663 0.001940
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Figure 5.4: Evolution of the Simulation in FPS.

to use from 17 up to 35 particles neighbors in its calculation. While the neighborhood grid

always visits 102 particles in order to use from 17 to 35 neighbors. Also a test comparing

the presented architecture implemented in the GPU and the uniform grid implemented

in the CPU shows a speedup of 100 times (with 100K particles).

5.2.3 Comparison to other works in the Literature

In [27], the authors show two optimizations of a parallel CPU implementation for the

uniform grid with index sort and the spatial hashing, with great performance and present

also a comparison between this optimization and the known methods. Although it is

hard to compare to other’s work, for the lack of the code and the tested architecture, the
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Figure 5.5: Error during the simulation of 65k particles.

simulation with the NGrid can achieve a 174 FPS rate (which consists on the processing of

the neighborhood gathering, behavior processing and rendering) of 262K particles, while

the work [27] has a performance of 16.5 ups (update per lab second which consists on the

processing of the neighborhood gathering and behavior processing without rendering and

with a fixed time step) of 170K particles.

Goswami et al [124] show an implementation of the SPH with CUDA using a z-

indexing for the spatial hashing, which appears to be the fastest real time SPH implemen-

tation in the literature. Based on the z-index hash map, it can achieve better performance

since it reduces the memory overhead for building the data structures. This work could

achieve a performance of 10 FPS for the physical calculations of 255K particles (without

the rendering) on a Geforce GTX 280 (which has 640 cores) while the present chapter can

achieve 16 FPS for the same steps with 262K in a less powerful card, an nVidia Geforce

GT 650M (that has only 384 cores).

The work [153] combine in one method the density and pressure force computation,

which is updated with a one frame delay. Even though it doubles the performance, it still

has the uniform grid cost, which is higher than the NGrid method. And also by using

this technique the simulation can become unstable [154].
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5.3 Summary

This chapter has presented a fluid animation using the NGrid and its comparison with

the uniform grid. The NGrid has proved to have a nice speedup with a small error for

fluid animations. Even though this structure does not fulfil all the steps of a SPH fluid

animation, it is still good enough for animation of fluids, since it has a small error and

the behaviour of the fluids appears to the human eye similar to the SPH implementation.

This chapter used two sorting mechanisms with the NGrid, the bitonic sort and a

partial odd-even sort. The bitonic sort has a much better speedup and a small amount

of error when compared to the partial odd-even. Even with that results, the NGrid with

odd-even implementation is still important for architectures that can not implement a full

sorting mechanism, like the mobile architect presented in chapter 7.

The next chapter will be showing crowd simulation implementation and tests using

the NGrid.



Chapter 6

NGrid on a Multi-GPU Crowd

Simulation

In a typical natural environment it is common to find a huge number of animals, plants

and small dynamic particles. This is also the case of other densely populated systems, such

as sport arenas, communities of ants, bees and other insects, or even streams of blood cells

in our circulatory system. Computer simulations of these systems usually present a very

limited number of independent entities, mostly with very predictable behavior. There

are several approaches that aim to include more realistic behavioral models for crowd

simulation as in [77, 81, 85, 82, 83, 84]. All these models are based on the flocking boids

approach [77], which also fundaments this work. While high end games traditionally use

crowd environments, due to its high end hardware resources, mobile games avoid them.

Algorithms for flocking simulation are driven by the need to avoid the O(n2 ) com-

plexity of the proximity queries between entities. Several approaches have been proposed

to cope with this issue [111, 118, 155] but none of them has reached an ideal level of

scalability. As far as this thesis verified, no work until the present date has proposed

a real time simulation of more than just a few hundreds thousands of complex entities

interacting with each other in real-time.

This chapter implements a flocking animation based on the Reynolds rules presented

on [111] and Section 2.3.2. The NGrid is used in dynamic 3D dimension, a dynamic

N-radius and a fixed N-radius of 4 are used. The bitonic sort is implemented as the main-

tenance step. The uniform grid is also implemented and used to evaluate the performance

and the calculus precision. This chapter has also implemented the NGrid simulation on a

Multi-GPU environment to test its performance and scalability in a different architecture.

This chapter is divided as follows: first the architecture using the NGrid is pre-

sented. Then the results are presented and discussed, including implementations in mul-

tiple GPUs. Finally the summary of the chapter is presented.



6.1 Multiples GPUs architecture 63

6.1 Multiples GPUs architecture

The crowd entities are represented using a collection of particles that interact with each

according to the boids rules. This interaction needs to be performed at each step of

the simulation, and each entity needs to find its neighborhood particles for calculating

its behavior. The crowd simulation is divided in three steps, a maintenance, which will

construct/maintain the neighborhood gathering mechanism (in this case the NGrid); the

simulation, which applies the boid rules for each entity; and the rendering, which render

the boids on the screen.

The strategy used in this work for allowing more than one GPU to process entities

is to split up the crowd domain among the available GPUs. In this case, the entities

located in the boarder of the NGrid are processed differently from the one inside the

grid. In this case, entities, which are not on the edge of the NGrid, can be processed

normally, as all the dependency data is available on the same GPU. However, entities

that are located on the edge of the NGrid cannot be processed, as some of its dependency

data are located on another GPU’s memory. This required a data transferring using

the NVidia GPU Compute Direct with CUDA language [156], which allows Peer to Peer

(P2P) communication to share the memory that enables a single view of the whole GPUs

memory in the host.

Processing crowd simulation using a set of GPUs is done by a collection of ordered

tasks, maintenance, simulation and rendering. The maintenance requires much less com-

putation power than the simulation and the rendering, as presented in the fluid tests on

Table 5.2. Since the maintenance does not require much processing power and would

require a more complex synchronization mechanism, it will not be distributed among

the GPUs. Also the rendering step must be done in the GPU connected with the video

monitor, so it is not distributed as well. The outline process is highlighted in Algorithm

9.

6.2 Results

In this work, we implemented and tested the flocking boids case-study using the NGrid

and also evaluated the rendering of all boids. The rendering consists of a simple display

list that is repeated for each entity/boid using the position and orientation information

gathered from a texture that is bound from the output VBO of the CUDA simulation in
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Input: Grid - Entities Positions Array
Input: numGPUS - the number of available GPUs on the system

Sort the NGrid according to the X axis
Sort the NGrid according to the Y axis
Sort the NGrid according to the Z axis
for all available GPU do

share the Grid data
Process the boid rules

end for
Synchronize
Render the entities

Algorithm 9: Algorithm describing the high level steps during the simulation for
various GPUs.

a vertex shader as can be seen on Figure 6.1.

Figure 6.1: Simulation with 32K boids.

For the tests, a PC with a Ubuntu 10.10 Linux distribution equipped with an Intel i7

3.07GHz using 8 GB of RAM and two NVidia GeForce GTX 580 with 512 cores were used.

Simulations tests with different configurations were performed. To assure that results are

consistent, each test was repeated 10 times and the standard deviation of the average

times was confirmed to be within 5%.

In order to better evaluate the NGrid in a crowd simulation, this work has divided

the test in two subsections. The first dedicated to the NGrid in a single GPU, and the

second to the multi-GPU implementation.
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6.2.1 Simulation using a single GPU

The tests with single GPU are designed specifically to show the performance of the NGrid

in a crowd simulation and to show the error test with the use of the adaptive N-radius.

The same machine was used, with only one GPU doing the processing and rendering of

the simulation. To evaluate the scalability of the architecture, this work has varied the

number of entities/boids being simulated (from 1 thousand to 1 million). The N-radius

used was set to 4 and also the adaptive N-radius was used, both of them using the bitonic

sort as the maintenance stage. The cell size of the traditional uniform grid influences the

total the number of visited neighbors in each interaction, and in the tests this work have

used a size of h = 1 for this (which was the size with better performance). At preliminary

tests, it has been observed that the number of different boid types had no observable

influence on the performance, so a fixed number of 4 types was used for all experiments.

Table 6.1 presents the results for the simulations using the NGrid method and the

uniform grid with index sort considering a varying number of entities in both methods,

all processing is done in the GPU. The label FPS represents the frames per second which

measure the time necessary to update and render the simulation (of simple particles

spheres). Speedup is defined by the relation S = X1

Y2
, being X1 the FPS for the NGrid and

Y2 the FPS for the Uniform Grid. As expected, the crowd simulation using the NGrid

method presents better results than the simulation using the uniform grid with index sort.

Also, it can be seen that the time spent using the adaptive is higher, since it will visit

more neighbors, but it is gives a nice speedup over the uniform grid.

Table 6.1: Scalability of the Simulation when using the Uniform Grid with Index Sort
and the Neighborhood Grid with Bitonic Sort.

# Uniform Grid With NGrid with NGrid with
Particles Index Sort Adaptative N-radius N-radius 4

FPS FPS Speedup FPS Speedup
1,024 1344 2784 2.07 2995 2.27
4,096 1103 2514 2.28 2692 2.44
16,384 588 1492 2.53 1690 2.87
65,536 211 561 2.66 656 3.11
262,144 38 166 4.36 197 5.11

1,048,576 4 41 10.25 47 11.75

Figure 6.2 shows the evolution in a log scale of the performance of the boid simulation

with the uniform grid and the NGrid with bitonic sort mechanism using the adaptive N-

radius and a N-radius of 4 varying the number of boids. This graph shows that the NGrid

data structure is faster for crowd simulation and that it scales better than the uniform
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grid with index sort. Also can be seen that the adaptive N-radius is slower than the fixed

N-radius, since it can potentially gather more neighbors, but this adaptive N-radius can

also decrease the error on the simulation as Table 6.2 will show.
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Figure 6.2: Evolution of the performance of the simulation in a log scale.

Table 6.2 shows the mean error and variance as a function of the number of entities.

This mean error is calculated by processing the entities with the NGrid (with the fixed N-

radius of 4 and the adaptive N-radius) and comparing its positions with the one calculated

by the uniform grid method (by calculating the distance between both). From these

results, it can be seen that the error is smaller with the adaptive N-radius as well as the

variance.

Table 6.2: Error of the NGrid with different sort mechanisms.
# NGrid wit N-radius 4 NGrid with Adaptative N-radius

Particles Mean Error Variance Mean Error Variance
1,024 0.0008876 0.000022 0.000461 0.000002
4,096 0.0093627 0.000721 0.001956 0.000055
16,384 0.077372 0.009801 0.008438 0.000199
65,536 0.201974 0.009369 0.011952 0.000401
262,144 0.509362 0.089647 0.019449 0.000936

1,048,576 0.611983 0.123675 0.027566 0.001022

Figure 6.3 shows the mean error of the particles position during 1000 frames of the

simulation with 65k particles in the scene using the NGrid with bitonic sort and adaptive
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N-radius. From these results it can be seen that the error does not varies considerable

during the simulation, maintaining a low variance of the error. This means that the NGrid

can be used for animations of crowds, since the error is small.
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Figure 6.3: Error Evolution of 65k boids simulation.

6.2.2 Simulation with Multi-GPU

The tests with dual GPU were designed specifically to show the speedup of using more

than one GPU and also to show the adaptability of the NGrid on different architectures.

Both of the GPUs are used, one for maintenance, simulation and rendering, and the other

for simulation only. To evaluate the scalability of the architecture, this work has varied the

number of entities/boids being simulated (from 4 thousand to 1 million). The N-radius

used was the adaptive N-radius using the bitonic sort as the maintenance stage.

Table 6.3 shows the results of using a single and dual-GPU for processing the sim-

ulation. According to the presented result, it is possible to see that using more than

one GPU has increased the overall performance of the simulation using the NGrid. This

speedup is mostly because of the increased number of available processors.

Figure 6.4 shows the evolution in a log scale of the performance of the boid simulation

with the single and dual gnu system varying the number of particles. This graph shows

that the NGrid data structure is faster and that it scales well in a multi-GPU system.
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Table 6.3: Scalability of the Simulation
# Single-GPU Multi-GPU Performance Gain

Boids FPS FPS
4,096 2514 2564 1.02
16,384 1492 1641 1.10
65,536 561 701 1.25
262,144 166 237 1.43

1,048,576 41 66 1.61
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Figure 6.4: Evolution of the simulation with one and two Gpus.

6.3 Summary

This chapter has presented the NGrid applied in a crowd scenario, implemented using the

adaptive N-radius, using multiples GPUs. The next chapter presents the NGrid applied

in a mobile architecture.



Chapter 7

NGrid on a Mobile GPU Particle

System

Mobile devices, like smartphone and tablets, and Digital TVs have many others con-

straints [157], when compared to PC, like: hardware constraints (processing power and

screen size); user input, (buttons, voice, touch screen and accelerometers); and different

operating systems, like Android, BB, iPhone OS, Symbian and Windows Mobile. Devel-

oping and porting algorithms for this kind of device must take these issues into account.

During the past few years, mobile phones and other mobile devices evolved from

simple phone and messaging devices to high end smartphones with serious computing

capabilities. Nowadays, most of these devices are equipped with multicore processors

like dual- core CPUs and GPUs, which are designed for both low power consumption

and high performance computation. Moreover, most devices still lack libraries for generic

multicore computing usage, such as CUDA or OpenCL, but they still have the shader

abilities. For the Android specific case, there is the Renderscript, which is a API for

computation. However, computing certain specific kind of tasks in these mobile GPUs,

and other available multicores processors may be faster and much more efficient than their

single threaded CPU counterparts. This chapter shows that the NGrid proposal scales

well and fits this kind of architecture.

Google introduced in the Honeycomb version of Android the Renderscript API (ap-

plication programming interface) [158]. Renderscript is an API for achieving better per-

formance on Android phones and tablets. Using this API, applications can use the same

code to run on different hardware architectures like different CPUs (Central Processing

Unity), ARM (Advanced RISC Machine) v5, ARM v7, and X86, GPUs (Graphic Process-

ing Unit) and DSPs (Digital Signal Processors). The API decides which processor will

run the code on the device at runtime, choosing the best processor for the available code.

This chapter models the NGrid data structure adapted to make it suitable for this new
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architecture and compares it to the traditional brute force algorithm.

There are no works on the literature that deals with the use of renderscript, like

presented in this work [17], but the Android SDK [158] makes available a series of sample

codes, for building simple animations based on particle systems, like a fountain and a

brute force physics simulation that can render and process up to 900 interacting particles.

This chapter is divided as follows: first some basic concepts of the Rendescript API

are presented. Then the architecture of the simulation is shown. The tests are presented

in section 7.4 and finally in section 7.5 discusses the the summary of the chapter.

7.1 The Renderscript API

Renderscript is a new software development kit and API for Android firstly introduced

by Google in the Honeycomb version of Android. Renderscript is an API for high-

performance processing on Android phones and tablets. It is used for fast 3D render-

ing and computing processing, having similar paradigm as GPU computing libraries and

frameworks [56]. The main goal of Renderscript API is to bring a lower level, higher

performance API to Android developers, in order to achieve better performance in visual

animations and simulations [57].

The API was mainly design for portability, performance and usability [159]:

• Portability: it is possible to have the same code being able to run on different

architectures like different CPUs, ARM v5, ARM v7, and X86, GPUs and even

Digital signal processors (DSP). With that, the developer can have access to all of

the API features without having to write code to support different architectures or

a different amount of processing cores.

• Performance: the main goal of the architecture is to achieve a better performance

on the available processors. This performance gain comes from executing the code

natively on the device.

• Usability: the API has a developer friendly compute API similar to CUDA, and a

familiar language in C99.

Renderscript code is compiled on the device at runtime, so the developer does not need

to recompile the application for different processor types, making easier its usage [159].
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Its language is an extension of the C99 language that is translated to an intermediate

code at compile time, and then to machine code at runtime. The API scale the generated

code to the amount of processing cores available on the device. The decision of choosing

which processor will run the code is made on the device at runtime, being completely

transparent for the developer. Normally simple scripts will be able to run on the available

GPUs, while more complex scripts will run on the CPU. The CPU is also a fallback, so

that if none other available suitable device, it will run the code.

All the tasks implemented in Renderscript are automatic portable for parallel pro-

cessing on the available processors of the device, like the CPU, GPU and even DSP.

Renderscript is especially useful for apps that do image processing, mathematical mod-

eling, or any operations that require lots of mathematical computation, similar to GPU

computing paradigm. The main use of renderscript is to gain performance in critical code

where the traditional Android framework and OpenGL ES APIs are not fast enough.

The Renderscript is composed of two APIs: a computing API (responsible for pro-

cessing the computation), and a rendering API ( responsible for the renderization of the

scene, working together with OpenGl ES 2.0). The Renderscript code is called from an

Android Activity inside the virtual machine. If the code can execute on a GPU or on a

multi-core CPU, it may be assigned to run on that. The script runs asynchronously and

sends its results back into the Virtual Machine.

The renderscript files are defined with a .rs extension. Android build tools compile the

Renderscript .rs file to intermediate byte-code, and package it inside the application’s .apk

file. On the device, the byte-code is compiled (while loading the application) to machine

code that is optimized for the exact device that it will use for processing. This machine

code is cached for future use, so it is only compiled in the first run. This eliminates the

need to target a specific architecture during the development process, while speeding up

the application processing.

In order to have a particle system, with the NGrid, processed using the Renderscript,

a specific architecture is needed, which is present in the next section.

7.2 The Particle System

The simulated particle system for validating this proposal at a low profile computing is a

simple newtonian particle system, where each particle is a sphere. The system has some

physics properties, like collision detection, and gravity. The input of gravity is made by
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the device accelerometer, and some collision input is made also though touch input. There

are three main steps to the performing the simulation: integration, maintenance of the

NGrid and processing the collisions.

The integration is a simple step. It integrates the particle position and velocity in

order to move the particles though space. In this work, the Euler integration is used. The

velocity is updated accordantly to the applied forces and the gravity force, and then the

position is updated accordantly to the calculated velocity. Also the particles interaction

with the bounding walls of the screen are applied during this integration scheme.

The maintenance of the NGrid is done by a sorting step. In this case the parallel

odd-even sorting strategy is used, as explained in section 4.5.1.

The simple collisions between particles are done using the DEM method [160]. This

collision model consist of diverse forces, including a dashpot force, which causes damping,

and a spring force, which are the forces that the particles move apart.

7.3 Architecture

As explained in Chapter 4, the NGrid can have different configurations. Since the mobile

devices are simpler and have more constraints, for this work the NGrid is used with the

following reduced properties, a 2D fixed dimension, a fixed N-radius of 4 and a partial

odd-even sort.

In order to fully operate at the mobile device, this simulation tasks are divided in four

different ambients, which are illustrated on Figure 7.1:

• the Android framework, where the application is created, and the renderscript con-

text is also created. Besides, this ambient is responsible for gathering the inputs

and to sent it to the computing renderscript;

• the computing renderscript is where the variables for the simulation are created,

the call for the renderscript computing engine are made and the sort the entities is

done;

• the renderscript computing engine will process the behavior of the scene distributing

its process among the available processors;

• OpenGL: will render all the objects, applying shaders and visual effects to them.
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Figure 7.1: Architecture Overview.

This architecture works in two main steps: the initialization, and the main loop.

In the initialization step, the Android Framework creates all the context, the necessary

data structures for communication between the Android framework and the Renderscript,

and the data structures needed for the computation. Then, the compute Renderscript

initializes all the variables, like the particles properties, initial position, initial velocity

and size.

The main loop step is repeated during the entire simulation and has the following

sequence of tasks, first the input, coming from the accelerometer and touch, is gathered

from the Android framework and sent to the renderscript to process accordantly. Then

the simulation is processed, i.e. the collision is processed according to the NGrid neighbors

and the integration is processed. Afterwards, the maintenance of the NGrid is done by

the sorting step. All these updated positions are put on a VBO (Vertex Buffer Object)

and sent to a vertex shader in order to render the individuals without using the Activity.

The the visualization part is done by the OpenGL ES, by rendering the particles and

applying the shaders.
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7.4 Results

In this chapter, the particle system is implemented and evaluated, the evaluation includes

the rendering of all particles. The rendering consists of a simple primitive of a sphere

representing each particle, which is bound from the output VBO (vertex buffer object)

of the simulation in a vertex shader. A screenshot from the simulation can be seen on

Figure 7.2.

Figure 7.2: Screenshot of the simulation with 1024 particles on a Android Tablet.

In order to evaluate the performance of the NGrid in mobile devices, this work has

implemented also the brute force algorithm, which has a O(n2) complexity. Since the

Renderscript is very new and have some scatter constraints, there are lack of spatial

subdivisions techniques implemented in this technology, so most works uses the brute

force algorithm.

For the tests, we have used a Asus Tranformer TF101, which is a 10.1 inches tablet

with an Android 4.03 operating system that has a Nvidia Tegra 2 T20 chipset with a

Dual-core 1 GHz Cortex-A9 CPU and a ULP (ultra-low power) GeForce GPU and 1GB

RAM memory. Simulations tests with different configurations were performed. To assure

that results are consistent, each test was repeated 10 times and the standard deviation of

the average times was confirmed to be within 5 %.

Table 7.1 show the results of different simulation configurations, by varying the num-

ber of boids in the scene. In these results, the label FPS represents the frames per second

which measure a time necessary to update and render the simulation. Speedup is defined

by the relation S = X1

Y2
, being X1 the FPS for the NGrid and Y2 the FPS for the Brute
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Force algorithm.

Table 7.1: Scalability of the Simulation.
# Brute Force NGrid Performance Gain

Particles FPS FPS
64 585 604 1.03
128 290 444 1.53
256 221 351 1.59
512 151 245 1.62
1024 88 180 2.04
2048 28 116 4.14
4096 5 94 18.8
8192 2 76 38
16384 0.8 44 55

From these results, as expected, the simulation using the method implemented with

the NGrid presents a better result than the simulation using the method based at the

brute force algorithm. These tests also shows that even with more that 16k interactive

particles in the scene, the simulation with NGrid can still maintain the interaction, since

it maintain the lower bound for interaction [35] (higher than 16FPS).

7.5 Summary

This chapter has presented the NGrid used in a particle system implemented in a mobile

architecture with the use of Renderscript.

The next chapters will present the implementation and tests of a game using the

NGrid on a GPU architecture.
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NGrid on a GPU Game

Computers, new video game consoles (such as the Microsoft Xbox 360 and the Sony

Playstation 3) and GPUs feature multi-core processors. For this reason, putting the game

tasks isn parallel is getting crucial for performance gain As a proof of concept, this chapter

shows the NGrid applied in a game with its tasks execution in parallel, with the sequential

execution kept to a minimum.

The development of programmable GPUs has enabled new possibilities for general

purpose computation (GPGPU) which can be used to enhance the level of realism of

virtual simulations. Many games and applications that uses GPGPU to process some

parts of its tasks in the GPU and another on the CPU. This may bring limitation on the

simulation, because it requires a lot of data transfers between the CPU and GPU, and

this can be the bottleneck of the simulation. This chapter implements all the methods of

the game entirely on the GPU with the use of CUDA architecture keeping the GPU-CPU

communication to a minimum. In order to process the physics and AI steps some sort of

neighborhood gathering method is needed. This chapter validates the NGrid in a game

context, with an adaptive N-radius and a bitonic sort as the maintenance stage.

This chapter is divided as follows, first the game design and requirements of the test

case is presented. Then, the architecture used by the game is described. Finally the

results are presented followed by the chapter summary.

8.1 GpuWars Game Design

The GpuWars is a massive 2D game prototype shooter with a top-down 2D perspective.

The game is similar to 2D shooters like Geometric Wars [161] and E4 [162]. The main

enhancements of GPUWars is that it uses GPU to process its calculations, allowing to

process and render thousands of enemies, while similar games only process hundreds.

The game play is very simple: the player plays as a GPU card (which is called
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“GPUship”) inside the “computer universe”, and he needs to process (by shooting them)

polygons, shaders and data (the enemies) from a game. Every time the “GPUship” make

physical contact with an enemy it looses time and as a consequence, looses FPS. The

objective is to process the maximum number of data in the smaller amount of time, and

keep the game interactive with a minimum 12 frames per second.

The GpuWars uses the keyboard as the input device, where one set of controls are

used to control the movement of the “GPUship” and another set to control the direction

of the shots. The shots are implemented as physical entities and the enemies are simulated

as physical-behavior entities.

8.2 The Architecture

Computer games are multimedia applications that employ knowledge of many different

fields, such as Computer Graphics, Artificial Intelligence, Physics, Network and others

[163]. The game loops are the underlying structure that games and real time simulations

are built upon. These loops are regarded as real-time because games and simulations (and

similar kinds of multimedia applications) have time constraints to run the tasks that rely

on them. This means that if those tasks do not run fast enough, the experience that the

application must provide will be compromised.

Most GPGPU works uses a sequential game loop called Single-Thread Game Loop

with a GPGPU Stage [37], which processes some of the data processing tasks of the game

loop inside the GPU. Figure 8.1 illustrates this game loop. There are some variations of

the same loop by putting the tasks in multi-threats [164].

User Input

GPGPU

Update

Render

Figure 8.1: Single-Thread Game Loop with a GPGPU Stage.

The game loop of this architecture differs from those works, since it does not have

an update stage in the CPU. This loop work as follows: First the CPU gathers the input

and sends it to the GPU. The GPU treat this data, making the necessary adjustments,
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like the transformation of the players’ position and the creation of the players’ shots. The

GPU starts updating the bodies by applying the physics update behavior and their logic

behavior, which corresponds to the artificial intelligence step. These updates are put on a

VBO (Vertex Buffer Object) and sent to the shaders for rendering. The GPU also sends

variables to the CPU in order to execute sound effects and to tell if it should terminate

the application. This game loop is illustrated in figure 8.2.

User Input

Game Physics

Game IA

Render

Terminate
?

Terminate 
the application

 No

 Yes

CPU

GPU

Figure 8.2: Game Loop of Architecture

To resume, the CPU is responsible for:

• Creating a window;

• Gathering the users input and sending it to the GPU;

• Making the GPU calls;

• Executing the music and sound effects;

• Terminating the simulation/application/game, i.e., destroying the window and re-

leasing the data.

While the GPU is responsible for:

• Applying the physics on the bodies;

• Processing the artificial intelligence;
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• Determining the game status, like the player scores;

• Determining the end of the simulation/application/game.

The data that is exchanged between the CPU and GPU, which normallyy happen

every frame, is encapsulate in a special structure, in order to keep the communication

between the CPU and the GPU to a minimum, since this process can be a bottleneck

of any simulation that has communication between CPU and GPU [165]. In order to

implement this architecture some data structure is needed. The description of the data

required for each entity follows:

• One vector (x,y,z) with the entity position;

• One vector (x,y,z) with the entity force;

• One vector (x,y,z) with the entity direction/orientation;

• One float as the entity type;

• One float with the entity energy;

• One float for the entity mass.

These data are grouped together into three vectors of float4 in order to optimize the

data exchange between the GPU executions. To assure the desired high performance, all

information, whenever possible, are organized and mapped as textures, using a ping-pong

strategy.

Random numbers are used in games to avoid deterministic behavior by its entities.

In the proposed architecture, random numbers are used in order to determinate random

behavior of the entities (the creation of new entities, the initial status of these entities and

the actions of the entities). Since most GPUs do not have native pseudo random number

generation, this work developed a pseudo-random number generation based on a nVidia

work [166].

GPGPU programs are divided into threads. In order to process the main game logic

that needs to be executed sequentially, the proposed architecture has a special GPU

thread, which is responsible for it, and is the same that treats the user inputs. This pro-

cessing includes tasks that: updates the simulation according to the users input, i.e. treats

the input; creates new entities, if necessary (which are created in other GPU threads);
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determines the scores (in case that the simulation is a game); determines the game over

or the end of the simulation. The others threads are responsible for updating the entities,

like collision detection and response, and the entities behavior.

There are three types of entities simulated by this work: physical entity, behavior

entity and physical-behavior entity. The physical entity will only simulate the physical

aspects of an entity related to collisions. The behavior entity will only simulate the

behavior of the entity and will not simulate the collisions. The physical-behavior entity

will simulate both physical and behavioral aspects.

The positions and type of all entities are gathered into a VBO (Vertex Buffer Object)

and sent to a vertex shader in order to render the entities without using the CPU. In

order to deal with the creation of the entities, the architecture keeps a list with the values

to indicate available positions for entities creation.

Using this structure, the GPU processes some empty threads (threads that practically

do not process anything), and also threads running different codes, which can affect the

general performance, because of the threads synchronization mechanism inside the GPU

block. Here is proposed the usage of the NGrid structure, which during its’ sort stage

groups the empty threads together. Figure 8.3 illustrates the process of the different

threads.

The proposed architecture is built in a way such that it can be used, with proper

modifications, for both 3D games and GPGPU particle simulation. It was implemented

using the following technology: CUDA [?] for GPGPU processing; OpenGL for rendering;

GLSL (OpenGL Shading Language) for shaders; and GLUT (OpenGL Utility Toolkit)

for window creation and input gathering. But the concepts presented here could also be

adapted to others technologies. In the next sections shows how the NGrid is applied to

the physics and the AI step.

8.3 Physics Step

This step is responsible for the physics behaviour, i.e. how the bodies process and resolve

all bodies collisions and response. The physics of this architecture is based on the physics

on particle systems [110, 167, 168] and in a hybrid physics engine[37].

Collision detection is a complex operation. Normally, to reduce this computation cost,

this task is performed in two steps: first, the broad phase, and second, the narrow phase.
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Figure 8.3: The Different Process of the Architecture Threads.

In the broad phase, the collision library detects which bodies have a chance of colliding

among themselves. In the narrow phase, a more refined algorithm to do the collisions

tests are performed between the pairs of bodies that passed by the broad phase. This

work implements as a broad phase neighborhood gathering using the NGrid with 2D fixed

dimension, an adaptive N-radius and a bitonic sort as the maintenance stage.

The physics step is responsible for:

• Executing the broad phase of the collision detection, using the NGrid;

• Executing the narrow phase of the collision detection, i.e. applying the collision test

in each of the previously approved body pair;

• Forwarding the simulation step for each body by computing the new position and

velocity according to the forces and the time step, i.e., solving the motion equations;
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8.3.1 The narrow phase of the collision detection

The narrow phase of the collision detection is responsible for doing the collision detection

among the rigid bodies. In this work, instead of doing the collision check between all the

polygons of the entities, it is implemented a basic primitive area element, that complex

models are put inside. The bounds are used to surround every model, simplifying the

narrow phase of the collision detection. Two types of bounds were implemented: a circle

bound and a bounding rectangle. The circle bound is used whenever it is possible. This

is done in order to save memory, since the circle bound only needs the position vector and

a radius, while the bounding rectangle needs four variables.

8.3.2 The Integrator

This method is responsible for integrating the equations of motion of a rigid body [151]. In

the proposed architecture, it consists of a simple formulation; since it does not take into

account the angular velocities and torque. This method updates crowd entity velocity

based on the forces that are applied to it, which are sent to the integrator, and then

it updates the position based on its velocities, using an integration method based on

Euler integration (this type of integration is one of the simplest forms of integration).

Mathematically, it evaluates the derivative of a function at a certain time, and linearly

extrapolate based on that derivative to the next time step.

8.4 AI Step

Game Artificial Intelligence (AI) is used to produce the illusion of intelligence in the

behavior of non-player characters (NPC), as, for instance, in the case of the text case

GpuWars, of the enemies. The algorithms used for Game AI are typically built upon know

methods from the Artificial Intelligence field, but game AI focus more on the gameplay

instead of precision. Besides, game AI has more computational constraints then pure AI

applications, since the game needs also to process the game physics and to render of the

results.

There are several ways to implement the game AI, such as Finite State Machines

(FSM), fuzzy logic, neural networks, and many other [169]. This work uses Finite State

Machine. FSMs are powerful tools used in many parts of computer games [170, 171, 172],

like the NPC behavior, the characters animation states and the game menu states.
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A FSM models structured behavior and is composed by states, the transitions between

those states, and the actions. The architecture can be used to implements agent-based

behaviors like finite state machines and crowd behavior.

The behaviors are affected by the size of vision (which uses the grid made by the broad

phase of the collision detection), velocity, energy and type, which are variables available

for each type of entity.

8.4.1 The GpuWars Game AI

This game implements 3 different behaviors using FSM: the kamikaze, the group and the

tricky behaviors, which are present in the next subsections.

The behaviors are affected by the size of vision (which uses the same NGrid made

by the broad phase of the collision detection), velocity and energy (which are variables

available for each type of enemy). By modifying these values, this work implements seven

different types of enemies.

8.4.1.1 Kamikaze Behavior

The kamikaze approach is a behavior that simulates suicidal attacks. It is created by

using a state machine that has four states: wandering, attacking, checking energy and

dead. It is illustrated on Figure 8.4.
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Figure 8.4: The Kamikaze State Machine.

The kamikaze is a very simple behavior. It wanders until it sees the “GPUShip”, then

it goes attacking it by throwing itself against it. This approach is well suited for GPU

architecture, since little information about the scene is necessary.
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8.4.1.2 Group Behavior

The group behavior, creates a conduct pattern that makes groups, avoid bullets and

attacks. It was modeled with a state machine that has six states: wandering, grouping,

attacking, checking energy, avoiding bullets and dead (Figure 8.5).
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Figure 8.5: The Group State Machine.

This behavior is also very simple. The entity wanders trying to find similar entities,

i.e., entities of the same type, and the “GPUShip”. If it sees a similar entity, it goes closer

to it and makes a group. In cases where it can see the player, it attacks the player by

throwing itself against it. If the entity sees a bullet coming in its direction, it tries to

avoid it.

8.4.1.3 Tricky Behavior

The tricky behavior is the most complex behavior of the game. This behavior also tries to

group similar entities, but it is the only that recoveries energy. It has a state machine with

seven states: wandering, grouping, attacking, avoiding bullets, checking energy, escaping

and dead (Figure 8.6).

This type of enemy wanders trying to find the “GPUShip” or similar entities. If it

sees a similar individual, it goes closer to it and makes a group. If it is seeing the player,

it throws itself against it. If the entity sees a bullet coming in its direction it tries to avoid

it. If it has little energy it tries to escape from the player neighborhood to recover the

lost energy.
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Figure 8.6: The Tricky State Machine.

8.5 Results

For the sake of replicability, the experiments were executed on a common hardware that

can run CUDA. In that sense, it was used a Macbook with an AMD Turion Dual-core

with 3GB RAM memory and equipped with nVidia Geforce mobile 9400M GPU card

(which has only 8 stream processors).

The number of enemies determines the performance of the game. This work has

decided to have a maximum bound of 8192 enemies. This number was not chosen because

of any limitation of the architecture, but it was chosen in order to present a massive

amount of enemies and still have the fun factor in the game. A screenshot of the game

can be seen of Figure 8.7.

Figure 8.7: A Screenshot of the game.
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To better view the performance, Figure 8.8 shows a graph with the performance in

FPS of the game in 5 minutes of the game.
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Figure 8.8: Performance of the game

From this figure it can be seen that the performance of the game ranges from 88 to

118 frames per second (FPS). This performance is considered optimal in a game [35].

As far as the author of this work is concerned, there are not any works in the literature

that implements all the game tasks using the GPU, like this chapter presents. This work

has also implemented the GpuWars using a uniform grid, which the game ranges from 45

to 58 FPS. So the NGrid has a speedup of 1.95 times over the uniform grid.

8.6 Summary

This chapter has presented a game with all tasks implemented in the GPU, using the

NGrid. The next chapter will be presenting the conclusion of this work.



Chapter 9

Conclusions

The main motivation for developing a new data structure for the neighborhood gathering

on GPUs was the search for a method that could delivery the neighbors consuming less

power and memory resources, in order to have a more complex scene, delivered in real-

time. One of the benefits of the NGrid is the coalescence memory and bank conflicts

avoidance, which comes with the NGrid properties.

The development and evolution of multi-core processors, GPUs and video games in-

dicates that multithread architectures are a trend. In addition, GPUs have evolved into

more generic processors, allowing them to be used to process different tasks of the game

logic.

The games industry and real-time visualization demands for faster processing, since

they demand for real time processing. The neighborhood gathering can have a high

complexity. With that has been developed many different data structures for this neigh-

borhood gathering, which were presented by this work.

A lot of works on the field are researching on optimizations and adaptations for

the already developed data structures, in order to achieve more simulation with less

consuming. The optimization of these structures on the GPU, rely on the organization of

the memory gathering in order to have memory convalescence and avoid bank conflicts.

The NGrid was developed focusing specifically on the speeding of the neighborhood

gathering. The NGrid has naturally in its memory organization the optimization for

GPUs avoiding banks conflicts and having the memory convalescence. This organization

also allows a effective use of GPUs shared memory and facilitation on division of work

among GPUs. The NGrid has a fast maintenance stage, which only requires the sorting

of the structure according to the coordination axis. It also has different configurations,

in order to adapt to the different architecture and simulation scenarios.

The NGrid was tested over different GPU architectures and scales: a mobile GPU,
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an CUDA capable GPU and a multi-GPU ambient, and it has shown great adaptability

over these different ambients, as results have demonstrated, it has expressive speedup over

traditional approaches in all those environments.

The NGrid was also tested in different problems that require some form of neigh-

borhood gathering, which was particle system, a simple game shooter, a fluid animation

and a crowd simulation. In all those scenarios the NGrid was faster than the traditional

approach, giving impressive speedups. Also, the NGrid has much less memory footprint,

since it does not require any extra data for organizing its data structures, unlike the others

data structures.

As shown in the crowd simulation tests and the fluid animation tests, the NGrid is a

topological structure, which gives the approximate neighborhood gathering. The NGrid

has an amount error, which could lead to visual issues. These errors have showed to be

small in the test, but they still exists. Most of these errors are from the misaligned NGrid,

which could be avoided with a full sort step. With that, the NGrid is recommended to be

used in games and animations, like the movement of a flock of birds, the flow of a river, or

the simple games that do not have many collisions, but not in scientific simulation which

requires high precision interactions.

The following contributions are considered from this thesis:

• Formalization of the neighborhood gathering as a computional problem. All the

works that the author have seen only approach this problem in the application of

the neighborhood gathering, and this work formalized it as a generic problem with

different applications;

• Provide a literature overview of the more common data structure that could be

applied to neighborhood gathering;

• Provide a new data structure capable of processing a massive number of entities, in

real time, using the GPU;

• Provide an architecture for distribution of data over multi-GPUs ambients;

• Provide an architecture for visual simulation using the GPU on mobile architectures.
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9.1 Future Work

This work has focus on the creation and application of the NGrid in games and visual

simulations. There are others problems that could be investigated as possible cases that

the NGrid could be applied, like ray casting.

Also the NGrid has an amount of error from the misaligned grid, which derivate at

every time an entity change position in one axis, where it should be sorted again for the

others axis. This could be avoided with a more powerful sort step. One approach is to use

the Dynamic Parallelism of the newest Kepler GPUs architecture, which allows dispatch

of CUDA kernel inside the kernel being processed. This way, every time an entity changes

the NGrid position, it is sorted in all the axis, for the right NGrid position.

The proposed data structure was developed to be used with a GPU computing archi-

tecture, based on CUDA and OpenCL, but it also could be applied to others multi-cores

scenarios, like parallel computers, multi-cores CPUs and even the latest video games

(Playstation 3 and Xbox 360).Also the NGrid could be applied in others distributed sys-

tems.
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<http://dl.acm.org/citation.cfm?id=313559.313789>.

[32] COVER, T.; HART, P. Nearest neighbor pattern classification. Information The-
ory, IEEE Transactions on, IEEE, v. 13, n. 1, p. 21–27, jan. 1967. ISSN 0018-9448.
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http://chipmunk-physics.net/. 20/12/2012.

[115] GRAND, S. L. Broad-phase collision detection with cuda. In: NGUYEN, H. (Ed.).
GPU Gems 3. [S.l.]: Addison Wesley Professional, 2007. cap. 32.

[116] REYNOLDS, C. Steering behaviors for autonomous characters.
In: GDC. Game Developers Conference 1999. 1999. Dispońıvel em:
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CHEOK, A. D.; MüLLER, W. (Ed.). Berlin, Heidelberg: Springer-Verlag, 2011. cap. A
novel method for large crowd flow, p. 67–78. ISBN 978-3-642-22638-0. Dispońıvel em:
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<http://dx.doi.org/10.1016/j.ins.2012.06.028>.
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<http://dx.doi.org/10.2312/VG/VG-PBG08/137-146>.

[154] SOLENTHALER, B.; PAJAROLA, R. Density contrast sph interfaces. In:
Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics Associ-
ation, 2008. (SCA ’08), p. 211–218. ISBN 978-3-905674-10-1. Dispońıvel em:
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