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“I’ve missed more than 9000 shots in my career. I’ve lost almost 300 games. 26 times,

I’ve been trusted to take the game winning shot and missed. I’ve failed over and over

and over again in my life. And that is why I succeed.”

Michael Jordan



Acknowledgments

I would like to express my gratitude to my supervisor, Professor Esteban Clua, for

all his patience and all the opportunities he gives me every day to grow as a researcher

and as a person. I also want to thank my co-advisor Professor Leandro Augusto Frata

Fernandes for all his technical knowledge that he shared with me since the beginning of

our cooperation. I also want to express my gratitude to the committee members for the

important contributions and suggestions that helped to improve the quality of this thesis.

I would like to express, in particular, my special gratitude to Professor Didier Stricker

for accepting me as an external researcher at DFKI for six months in Kaiserslautern,

Germany. That period was the best period of my professional live until the end of my

thesis.

A great number of people helped me in several ways. I would like to thank:

• From DFKI, Leivy Michelly Kaul (for all the “miracles” and frienship), Klaus Greff,

Yan Cui, Bernd Krolla, Daniel Steffen, Attila Reiss, Markus Weber, Frank Michel,

Jan Hirzel, Nils Petersen, Gabriele Bleser, Gerd Reis, Vladimir Hasko, José Manuel
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Resumo

A detecção e rastreamento automáticos de partes do corpo em imagens coloridas é alta-
mente senśıvel à caracteŕısticas de aparência, como iluminação, cor de pele e roupas. Como
resultado, o uso de informação de profundidade tem sido mostrado como uma alternativa
atrativa a imagens coloridas, ao variar as condições de iluminação. Também, detecção e
rastreamento de partes do corpo ainda é um problema que trás desafios, principalmente
porque o feitio e a profundidade dos corpos em imagem podem mudar, dependendo da
perspectiva. Esta tese apresenta um método de detecção e rastreamento, chamado M5AIE
(acrônimo para: M edial Axis transformation, Adapted AGEX, ASIFT, Aligned Images,
e E stimation), que utiliza cores e informação de profundidade.

Contudo, para filtrar parte do montante inútil de informação em imagens, primeiro é
necessário tratar a tarefa de subtração de fundo. Câmeras de profundidade devem oferecer
uma alternativa para abordagens nessa tarefa, pois informações de profundidade parecem
ser mais adequadas para subtração de fundo. O M5AIE preenche este espaço ao examinar
alguns dos mais conhecidos algoritmos de subtração de fundo para serem utilizados com
informações de profundidade.

O método M5AIE aplica a abordagem de distância acumulativa extrema (AGEX) para
detecção de pontos candidatos a partes do corpo. O M5AIE faz uso do algoritmo ASIFT
para extração de caracteŕısticas e adapta o método convencional de correspondências para
fazer o rastreamento e rotulação das partes do corpo em sequências de imagens que contêm
informações de cores e profundidade.

Depois, são endereçados os algoritmos de previsão para classificar poses humanas.
Algoritmos de classificação tornaram-se importantes em jogos, principalmente por causa
da introdução de novos paradigmas de interação como a Interface Natural de Usuário
(Natural User Interface – NUI). É posśıvel de encontrar vários trabalhos que fazem uso
de algoritmos de classificação, na literatura, mas eles ainda não apresentam estudos que
comparam diferentes algoritmos no contexto de classificação de poses humanas.

Também, é proposto uma análise de algoritmos de classificação, utilizando nosso
método M5AIE para detecção e rastreamento de partes do corpo, com diferentes algo-
ritmos: C4.5 Árvore de Decisão de Ganho de razão, Classificador Näıve Bayes e algoritmo
de vizinhança KNN. Como consequência do nosso estudo, são apresentados os resultados
que podem auxiliar pesquisadores na escolha entre os algoritmos selecionados a serem
utilizados na classificação de poses humanas no contexto de jogos digitais.



Abstract

The automatic detection and tracking of human body parts in color images is highly sen-
sitive to appearance features such as illumination, skin color and clothes. As a result, the
use of depth information has been shown to be an attractive alternative to color images
due to its invariance to lighting conditions. Also, body part detection and tracking is still a
challenging problem, mainly because the shape and depth of the imaged body can change
depending on the perspective. This thesis presents a body part detection and track-
ing method, called M5AIE (acronym for M edial Axis transformation, Adapted AGEX,
ASIFT, Aligned Images, and E stimation), that uses both color and depth information.

However, to filter part of the useless amount of information in images, the M5AIE first
addresses how it handles the background subtraction task. Depth cameras might offer a
compelling alternative to background subtraction approaches, because depth information
seems to be better suited for the task. The M5AIE fills this gap by examining some well
known background subtraction algorithms for the use with depth images.

The M5AIE method has applied a modified Accumulative Geodesic Extrema (AGEX)
approach for detecting body part candidates. It also has used the Affine-SIFT (ASIFT)
algorithm for feature extraction, and has an adapted conventional matching method to
perform tracking and labeling of body parts in a sequence of images that has color and
depth information.

Afterwards, the prediction algorithms are addressed to classify human poses. Clas-
sification algorithms became an important subject in games, mainly because of the in-
troduction of new interaction paradigms such as the Natural User Interfaces (NUI). It is
possible to find many works that make use of classification algorithms in the literature,
but they still do not provide any study that compares different classification algorithms
in the context of human pose classification.

Also a detailed classification algorithms analysis is proposed, using the M5AIE method
with different algorithms: C4.5 Gain Ratio Decision Tree, Näıve Bayes Classifier and K-
Nearest Neighbor (KNN) Algorithm. As a consequence of this study, results are provided
to help researchers to choose among the selected algorithms to use in human pose classi-
fication in digital games context.
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Chapter 1

Introduction

Over the past few years, important advances have been achieved in Computer Vision

research, especially in gesture recognition. Those advances have created many new possi-

bilities of applications of Human-Computer Interaction, health-care and digital games [1].

Some approaches use photosensitive tags to decode optical signals and can capture

the location of each point, its orientation, incident illumination and reflectance [2]. The

photosensitive tags are markers that are imperceptible. However, the need to use tags

can complicate their application in a digital game context. Beyond data-driven pose

estimation approaches, there are some different classifications of movement recognition

approaches: marker-based motion-capture (MoCap) that require retro-reflective mark-

ers or LEDs [3], bare-hand tracking [4, 5], hand-tracking with instrumented gloves (for

example, Cyberglave) and, finally, color markers [6]. The retro-reflective markers are ob-

trusive, and another problem is the difficulties that are related to the financial cost of

using instrumented gloves. Some work that is related to bare-hand tracking [4, 5] re-

quires computationally expensive inference algorithms that search the high-dimensional

pose space of the hand. Last, color markers [6] have demonstrated applications in limited

domains or for short motion sequences [7].

An inexpensive approach is described in [7], in which the authors propose an easy-

to-use color glove. In that case, however, the color gloves are inexpensive, but it was

necessary to use instrumented gloves in the construction of the database, and its applica-

tion performs hand virtual reconstruction, which is unnecessary in our proposal.

There are some approaches that apply a two-dimensional image as an input and

estimate the three-dimension coordinates of the selected keypoints [8, 9]. Moreover, the

definition of Poselets is presented as a specific part of the human pose under a given
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viewpoint. It is defined with a set of examples that are close in 3D configuration space.

The main contribution of [8, 9] is a notion of a part, a “poselet” and an algorithm for

selecting good poselets. The authors constructed a dataset of humans in 3D (H3D),

which provides the annotation of 15 types of regions of a person and 19 types of keypoint

annotations, including joints, eyes, nose, and self-occlusion treatment. In our work, we

do not use Poselets. Instead, we combine depth and RGB information to generate the

RGB-D images.

1.1 Motivation

The use of games with movement recognition systems is an active research area. Among

the many applications of these techniques, we can remark on the rehabilitation of pa-

tients using serious games. Applications can focus on rehabilitation while dividing the

treatment into parts. Some examples of body-part rehabilitation can be found for balance

rehabilitation [10], upper limb rehabilitation [11] and wrist rehabilitation [12].

The work of Schönauer et al. [13] describes a full body input for rehabilitation. The

contribution of their work includes the implementation of a serious game that targets the

rehabilitation of patients who have chronic pain in the lower back and neck. Schönauer et

al. argue that the tracker used for their motion capture system, which is an io-tracker [14],

is a passive marker that is based on an infrared optical motion-tracking system.

Another related study that addresses movements is the interactive dancing game pre-

sented by Tang et al. [15]. This game follows the design principle of a good game should

be easy to play but difficult to master [16]. There are two modes in the game: the training

mode and the freestyle mode. The dance moves are composed of various difficulty levels

that are suitable for both novices and skilled players.

The related work presented good arguments to use movement recognition in games.

Based on these statements, we decided to develop a game that is designed for children with

Down syndrome, called Jecripe [17]. The Jecripe game is a previously developed system

that inspired this thesis. This game has a main character, called Betinho, and it consists

of a set of different activities that stimulate different cognitive abilities. The Jecripe game

stimulates the movements of children with Down syndrome through imitating Betinho

(see Figure 1.1).

The imitation ability is stimulated in tasks created for Jecripe in a virtual place called

The Music House. In this house, the game demands the imitation of simple movements
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Figure 1.1: Music’s House: Betinho is dancing to music inside the house.

of the body, which are accompanied by singing interactive popular songs presented by the

software.

We first demonstrated our intention to include movement recognition in the Jecripe

game in 2009 [18]. This game was officially presented for the first time in 2010 [17]. A

further study about communicability was also conducted [19] using the Semiotic Inspec-

tion method [20]. However, until the end of this thesis, it was not possible to integrate

movement recognition in the Jecripe game. However, this game inspired all of the re-

search that was performed for this work. This study presents each of the challenges that

were addressed for pose recognition in image sequences. The following section provides a

summary of the stages of this study.

1.2 Thesis Statement

The launch of low-cost capture devices of depth images promoted facilities in gesture

recognition research. In 2010, Microsoft Kinect was launched, and it is described in [1].

This paper presents how the device works and its applicability to digital games. The

authors selected the possible user’s playing movements (driving, kicking, running, and

navigating menus), which are applied in Xbox 360 console games. The selected movements

characterize a paradigm for interaction, which is the Natural User Interface (NUI).
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In our work, we used Kinect to collect sequences of images. However, this study is

not completely tied to the Microsoft sensor. Any other device that can combine color

and depth information can be used in our work. This study is limited to indoor environ-

ments, static backgrounds, the static position and orientation of the sensor and single-user

segmentation.

The context of body part detection and tracking requires information filtering to

address only the necessary information. To filter the information, it is necessary to ac-

complish some tasks. The first task is to remove the most basic useless information, which

is the background. Without the background, we can then handle the human body pixels.

However, body part detection does not need all of the human body pixels. We decided

to apply the Medial Axis transformation to filter an even larger amount of pixels. The

Medial Axis provides the number of pixels that enable detection of the five main body

parts. Then, a tracking method must be developed. We used a feature extraction and

matching method to track each of the body parts from one image to the next image in a

sequence.

Body part detection and tracking in image sequences is challenging because this

task requires information filtering to bring about the use of less information. The

resulting information must be structured because it will provide the detection of

the body parts. The body parts are tracked with an algorithm, frame by frame,

to store time sequence information. It is possible to use a feature extraction and

matching algorithm as part of a tracking method because it compares two input

images. Once there are human poses to be identified, it is possible to use the

position of each body part in each image in a sequence to define the human poses

that can be applied to classification algorithms for prediction purposes.

This thesis is composed of three stages, which we implemented to perform background

subtraction, body part detection, and tracking and human pose classification. The fol-

lowing sections provide a description of each stage.

1.2.1 Background Subtraction

Depth sensors have been used for a wide variety of problems, including skeleton track-

ing [21], gesture recognition [22], activity monitoring, collision detection [23], 3D recon-

struction [24] and robotics. The task of background subtraction appears to be facilitated
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with the depth information that is available. It is, therefore, quite surprising to see

that only a few studies on this subject can be found that use depth information for a

background subtraction task. Early publications address background subtraction using

stereoscopic cameras [25, 26]. There are papers that address Kinect and that mention the

use of background subtraction [21, 27, 22, 28]; however, there were only small contribu-

tions that address the topic directly. In this task, we describe how we filled this gap, and

we provide a starting point for further research.

1.2.2 Body Part Detection and Tracking

The task of human body part detection and tracking is not trivial. Addressing the human

body is challenging because its shape can be very different from one person to another.

Additionally, humans have different skin colors, and clothes can vary in both their colors

and shapes. These reasons, among others, make body part detection a complex task.

Because body part detection can be used for body part tracking, certain aspects must

be considered, such as the human skeleton and medial axis. Even knowing the human

skeleton’s profile, we must assume that there are many degrees of freedom [29].

Reliable results on body part detection and tracking tasks have been achieved by

using depth information. Depth information outperforms intensity images in the sense

that they intrinsically remove appearance features, such as the color of the skin, the color

of the clothes and different background appearances, which can vary for different objects

and colors [29]. Additionally, depth images provide extra information about the imaged

objects, i.e., their actual geometry.

The object’s geometry is given with the point distances between these objects and the

sensor that forms a point cloud. The points of the point cloud can be used for body part

detection, as vertices of a graph, and they can be connected with weighted edges. The

weight of each edge is the Euclidian distance between the connected points. The generated

graph can be used to detect body parts in the extremes of a graph. This approach is used

in a method that is described by Plageman et al [29], for which the interesting points are

called the Accumulative Geodesic EXtrema Points (AGEX).

The proposed solution is based on the key observation that once the body parts are

detected in one frame, the same body parts can be used by matching methods for tracking

each of them in the next frame. For this task, we describe the M5AIE Method, which

detects and tracks the body parts. The name M5AIE is an acronym for each of the

used concepts in our approach: M edial Axis transformation, for data filtering; Adapted
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AGEX, for the body part detection; ASIFT, for the body parts tracking, Aligned Images

(RGB-D), and E stimation, also for tracking.

The main contributions on this topic include the following:

• The combination of the AGEX and ASIFT methods using aligned RGB and depth

images for labeling five major defined body parts (hands, feet and head); and

• Track each of the body parts by using an adapted ASIFT matching algorithm.

1.2.3 Human Pose Classification

The application of movement recognition in games has many different approaches. Many

of the movement recognition technologies apply video as an input to a recognition system.

The literature provides a few studies that compare classification algorithms in the context

of games. Huang et al. [30] compared Näıve Bayes, Decision Trees, and Support Vector

Machines (SVMs) to evaluate which is the best measure to use when classification algo-

rithms are compared. In [30], the authors used binary datasets and compared the use of

two different measures: accuracy and Area Under the Curve (AUC). We use the accuracy

measure in the experiments to evaluate the selected classification algorithms. Amor et

al. [31] used intrusion detection system datasets to compare Näıve Bayes and Decision

Trees. Amor et al. described how a Näıve Bayes classification algorithm can provide

competitive results. The authors of the two studies [30, 31] did not consider datasets on

human pose classification in their experiments.

To the best of our knowledge, no work in the literature has made a comparison among

the classification algorithms in human pose recognition in the context of games. In this

task, we propose an analysis of classification algorithms that use the M5AIE method: the

C4.5 Gain Ratio Decision Tree [32], Näıve Bayes Classifier [33] and K-Nearest Neighbor

(KNN) Classifier [34]. As a consequence of this study, the results can help researchers

to choose among the selected algorithms for use in human pose classification in a digital

games context. The main contribution on this topic is a comparative analysis of three

classification algorithms in human pose classification.

1.3 Thesis Outline

This thesis is organized as follows:
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• Chapter 2 presents a study of background subtraction algorithms. In this study,

algorithms that use only RGB information were adapted to also use depth infor-

mation. The experiments and results from our selected background subtraction

algorithm are used in the following stages in this research.

• Chapter 3 presents our M5AIE Method. This method is used as the main method for

the detection and tracking of body parts. The M5AIE method filters the information

on images in sequences using the selected background subtraction for human body

detection, which is the foreground. More information is filtered using the medial axis

to generate a graph. This graph is used to detect five main body parts: head, hands

and feet. The ASIFT method is used for tracking the objectives of the detected

body parts. The relative positions of each of the body parts define human poses.

• Chapter 4 describes an analysis of three different classification algorithms in the

context of human pose prediction. The use of the M5AIE method provides the

relative positions of the five main body parts. These positions generate tuples that

are used to evaluate the classification algorithms.

• Chapter 5 presents the concluding remarks and suggested future work.



Chapter 2

Background Subtraction: Information

Reduction for Human Body Part Detec-

tion

The release of Microsoft’s Kinect had an important impact on computer vision. This

device changed the face of many problems, such as gesture recognition [22], activity moni-

toring, 3D reconstruction [24] and Simultaneously Localization and Mapping (SLAM) [35,

36].

The fusion of different sensors combined with a very low price makes Kinect an ex-

cellent choice for many applications. Certainly, its most interesting sensor is the depth

camera, which Microsoft used to make a quality gesture control product for the Xbox

360. Since then, Kinect has been used for a wide variety of problems, including skeleton

tracking [21], gesture recognition [22], activity monitoring, collision detection [23], 3D

reconstruction [24] and robotics.

Many applications, especially those from the field of human computer interaction,

utilize a static camera to track moving persons or objects. Those applications greatly

benefit from background subtraction algorithms, which separate the foreground (objects of

interest) from the potentially disturbing background (see Figure 2.1). This preprocessing

step is well known in computer vision (for an overview, see [37]) and helps to reduce the

complexity of further analysis; it can increase the quality of the overall result.

Additionally, the task of background subtraction is easier with a depth image at

hand. It is, therefore, quite surprising to see that only a few studies on the subject can

be found. Early publications address background subtraction based on the use of Kalman

Filters [38]. Cheung and Kamath [39] provided a classical approach in urban traffic
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Figure 2.1: Foreground objects (right) are detected in depth images (left) taken by a
static depth camera

videos for performing background subtraction and moving object tracking. Stereoscopic

cameras were also used for background subtraction [25, 26]. There are studies that use a

depth sensor, which mention the use of background subtraction [21, 40, 22, 28]; however,

until the end of 2011, there was no publication that directly addressed this topic. This

chapter describes a study that was presented in [41], and it is part of a previous stage for

human body part detection. One of the goals of the study described in this chapter is to

compare four different background subtraction algorithms. We provide results that can

help to understand why the use of depth information can facilitate the task of background

subtraction. To prove this premise, in this chapter, the used images were produced with

depth information only. The background subtraction is an image information reduction

stage in the M5AIE method described in Chapter 3. Background subtraction includes

how we make human body detection because the foreground is the human body in our

context.

This chapter describes how we addressed the background subtraction task. Section 2.1

presents a characteristics analysis of the Kinect depth sensor. The impact of Kinect’s

depth sensor on the background subtraction problem is described in Section 2.2. Sec-

tion 2.3 describes the selected four background subtraction algorithms. Adaptations on

the algorithms to the domain of the depth images are presented in Section 2.4. Sec-

tion 2.5 describes the experiments and results, which were made only for the background
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subtraction problem.

2.1 Kinect Depth Image Characteristics

We start this section with an overview of the distinct characteristics of depth images

provided by Kinect. These characteristics will provide the basis for analyzing the problems

that are associated with the task of background subtraction. The functional principles of

the Kinect will not be discussed in this work (Refer to [42] instead).

Although the Kinect’s depth image resolution is 640 × 480 pixels, the effective reso-

lution is much lower because the depth calculation depends on small pixel clusters. The

detection range is between 50 centimeters and approximately 5 meters, with a field of

view of approximately 58°. Depth information is encoded by using 11 bits for the depth

information and 1 bit to indicate an undefined value.

The most important property is the use of distance information and the possibility

of combining it with color intensities. The use of the distance, or depth, information

provides the possibility of making the image independent of the illumination, texture and

color. However, direct sunlight can outshine the projected pattern, turning many pixels

to undefined. Certain types of material properties can also hinder obtaining stable depth

recognition, including high reflectiveness and transparency or dark colors.

An image that is generated using depth information only is, in this work, called a

depth image. The depth image contains different types of disturbances and noise. We

characterize the pixels according to those errors as follows:

• Stable: A fixed depth value with only a small variance; the value increases quadrat-

ically with the range (see [42]).

• Undefined: A special value that means that no depth information is available.

This circumstance is typical for object shadows, direct sunlight, and objects that

are below the minimum range of 50 centimeters. Shadowing occurs when the depth

information of the background cannot be captured by the sensor because, for exam-

ple, an object or a person blocks the capturing of this information. Each captured

noise pixel and each pixel of the shadow receive a zero value.

• Uncertain: Switching in a random manner between the undefined and stable state.

This circumstance is often the case for boundaries of undefined regions, reflections,

transparencies, very dark objects, and fine-structured objects (e.g., hair).
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• Alternating: Switching between two different stable values.

Occasionally, there are pixels that have “uncertain” and “alternating” characteristics,

i.e., they switch between two different stable values and the undefined state. It is also

important to note that alternation and uncertainty do not usually occur pixel-wise but

instead tend to occur cluster-wise; therefore, contours can differ substantially from frame

to frame.

2.2 Background Subtraction Challenges

Next, we give a summary of challenges faced by background subtraction algorithms (also

referred to as foreground detection) that work on depth images. The list is based on a

more detailed summary of [43]. We recited only the challenges that are related to depth

images, and we also modified the descriptions to better reflect the characteristics of depth

images as provided by the Kinect sensor.

Moved Objects: The method should be able to adapt to changes in the background,

such as a moved chair or a closed door.

Time of Day: Direct sunlight can outshine the infrared patterns that are used for depth

estimation, resulting in undefined pixels in the corresponding regions. If the illumi-

nation changes, then the state of the pixels in the affected regions might also change

(to stable or undefined), which results in the pixel classification of “uncertain” (see

Section 2.1). This circumstance is similar to the moved object problem.

Dynamic Background This problem, originally referred to as waving trees in [43], can

be caused by any constantly moving background object, e.g., slowly pivoting fans.

Bootstrapping: In some environments, it is necessary to learn a background model in

the presence of objects.

Foreground Aperture: When a homogeneous background object moves, changes in

the inner part might not be detected by a frame-to-frame difference algorithm. This

scenario is especially true for depth images because there is no color and texture.

Shadows and Uncertainty: The system is required to handle undefined and uncertain

pixels (see Section 2.1) both in the foreground and in the background. Additionally,
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foreground objects often cast shadows, which should not be considered to be fore-

ground. This problem behaves differently with the Kinect because only the inherent

shadow casting of the sensor is relevant. Additionally, these shadows always result

in an undefined value, which makes it easy to rule them out as foreground.

There are more challenges listed by Toyama et al. in [43] and omitted in our work

because they are out of our scope. The omitted challenges are: “Light Switch”, “Sleeping

Person”, “Waking Person” and “Camouflage”. We omitted the point “Light Switch” as

artificial lighting because it does not affect the Kinect system. Furthermore, the chal-

lenges “Sleeping Person” and “Waking Person” were dropped because we believe that this

task is better solved at a higher level that includes semantic knowledge1. Finally, the

“Camouflage” problem was also omitted because the depth images lack both color and

texture.

2.3 Basic Methods

Many background subtraction (and foreground detection) algorithms have been proposed.

Cannons [44] provides an overview of the subject. Most of those algorithms were created

with color images in mind. In this work, we chose four standard methods and adapted

them to the segmentation of depth images, which allowed us to achieve three suitable

and high quality possible solutions. The four methods were compared, and the method

that had the best results was identified. The winner algorithm is used as the background

subtraction algorithm, which is the previous stage of body part detection and tracking

(Chapter 3).

The experiments and results were made specifically to know which of the four back-

ground subtraction algorithms have the best results for use as a previous stage in body

part detection and tracking. The experiments did not aim to evaluate the used gestures

or occlusions in any of the sequences. These experiments were used to choose the best

background subtraction algorithm. Chapter 3 describes how the selected method is used

in the M5AIE method, which uses RGB-D images. The experiments made at this stage

were performed by using images that were generated only from depth information because

this information is used for RGB-D image generation.

The selected methods are described in the following:

1For an in-depth discussion please refer to [43]
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First Frame Subtraction: In this method, the first frame of the sequence is subtracted

from every other frame. Absolute values that exceed a threshold are marked as

foreground.

Single Gaussian: In this method, Wren et al. [45] represent the 2D regions by clusters

of points that are represented by spatial means and covariance matrices. In Wren et

al.’s work, the environment is similar to ours: a single user and a static background.

The authors represent the user and scene, with each having a different model. The

scene is modeled as a texture, and each pixel of this model is associated with a mean

color value and a distribution about that mean. Each pixel has a color distribution

that is modeled with a Gaussian that models the scene. Because a human occludes

the scene, the color distribution will vary frame by frame. Then, the human pixels

will affect the scene model. The human’s model and his/her pixels with the scene

model make it possible to distinguish which pixels are part of the human and which

pixels are part of the background. Because the background is considered to be class

zero, only human pixels are considered in an image for the purpose of identifying a

moving body. More details of the Single Gaussian method are in [45].

Codebook Model: This more elaborate model was presented by Kim et al. [46]. It

aggregates the sample values for each pixel into codewords. The Codebook model

considers background values over a long image sequence. The background is mod-

eled according to the clustering method proposed by Kohonen [47]. The number of

Codebooks is the number of pixels in each image in the sequence. Thus, each pixel

constructs a codebook that is based on codewords. The codewords are composed by

color and brightness values at each instant. The model is constructed without mak-

ing parametric assumptions such as a Gaussian distribution. After the construction

of the background model, each pixel of an image is compared to the model. A pixel

is classified as background if: “(1) the color distortion to some codeword is less than

the detection threshold, and (2) its brightness lies within the brightness range of

that codeword” [46].

Minimum Background: The minimum background is one of the first models that was

developed solely for depth images. The Minimum Background Subtraction algo-

rithm is composed of training and subtraction stages. During the training stage,

this approach limits the background values while considering the following assump-

tions: indoor environment, static background, and static position and orientation of

the sensor. At this stage, a lookup matrix with the same size as the depth image is
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created to store the minimum depth values that are assumed by each pixel during a

frame sequence that captures only the background elements. The subtraction stage

is applied to every subsequence frame. By comparing the stored minimum values

with the current depth values, the approach is capable of distinguishing background

and foreground pixels [40].

2.4 Adaptations

The presented methods must be adapted to work for depth images only. As a result, we

developed and included different improvements: Uncertainty Treatment, Filling the Gaps

and Post-Processing.

Uncertainty Treatment: Treating the undefined value (zero) as normal depth in-

formation leads to problems with almost every model (e.g., turning most shadows into

foreground). Thus, the question arises: how do we treat the undefined values? Shadow

pixels are certainly not foreground, but sometimes the shadow of an object falls onto

the foreground. For example, a hand in front of the torso yields a shadow on the torso

that is part of the foreground. The foreground can also contain undefined regions that are

caused by reflective objects (glass, for example). These problems illustrate that, on a pixel

level, it is impossible to decide whether an undefined value belongs to the foreground or

not. This decision clearly requires additional knowledge (other sensory input, the region

around the pixel). However, it is not the task of a background subtraction algorithm to

perform complex reasoning. Background subtraction should merely be a preprocessing

step (see Principle 1 in [43]). Thus, we decided to treat all of the undefined values as

background for all of the presented methods.

Filling in the Gaps: Undefined pixel values can lead to gaps within the background

model that is learned by each presented algorithm. Those gaps can lead to errors because

every “defined” pixel value differs from an undefined background. Thus, depending on

the chosen policy, they will either lead to false positives or to false negatives. To close

the gaps, an image reconstruction algorithm (as in [48]) that attempts to estimate the

correct values for the undefined regions can be used. This approach can obviously only

reduce the errors that are induced by those gaps and does not completely eliminate them.

According to the experiments, the method from [48] works quite well in practice.

Post-Processing: As discussed earlier, the depth images as generated by Kinect

contain a substantial amount of noise. This consideration leads to a large number of false
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positives in the form of very small blobs and thin edges around the objects. The desired

foreground (i.e., humans), on the other hand, appears always quite large because of the

range of constraints of the Kinect sensor. Therefore, morphological filters are an easy way

of improving the final result. We experimented with the erode-dilate-operation and the

median filter, but both of them change the contour of the desired foreground. A connected

component analysis, on the other hand, combined with an area threshold is suitable to

remove the false positive regions while keeping the foreground intact. This threshold can

be quite high for most applications (1000 pixels in our case). This filtering is applied as

a post-processing step to all of the presented methods. However, we also evaluate each of

them without any filtering.

2.5 Experiments and Results

To evaluate the different approaches, we recorded a set of three typical sequences for the

application of human body tracking. All of them were recorded indoors at 30 fps and with

a resolution of 640 × 480. Every sequence contains at least 100 training frames of pure

background. Figure 2.2 illustrates an example training image with pure background.

Gesturing 1 : The camera shows a wall at a distance of approximately 3 meters for a

few seconds. Then, a person enters and stands in front of the sensor performing

some gestures (641 frames).

Gesturing 2 : The same as in the first sequence, but the background contains a large

number of edges (643 frames).

(a) RGB image (b) Depth image

Figure 2.2: Examples of training images that have pure background.
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Gesturing 1 Gesturing 2 Occlusion

NBG = 179, 896, 685 NBG = 160, 009, 777 NBG = 164, 507, 583

NFG = 17, 018, 515 NFG = 37, 519, 823 NFG = 9, 674, 817

plain, filtered, plain, filtered, plain, filtered,

in % in % in % in % in % in %

First Frame e+ 8.83 2.67 0.71 0.02 1.75 0.09

Subtraction e− 0.00 0.05 0.00 0.37 0.91 1.58

Single e+ 0.52 0.19 1.91 0.07 2.40 0.85

Gaussian e− 8.33 9.15 9.98 13.55 6.42 9.02

Codebook e+ 0.06 0.01 0.04 0.01 0.24 0.07

Model e− 0.00 0.03 0.00 0.30 1.32 1.84

Minimum e+ 0.06 0.00 0.04 0.00 0.19 0.07

Background e− 0.00 0.02 0.00 0.37 1.20 1.94

Table 2.1: The results for the algorithms run on the test sequences. The rows with e+ and
e− represent false positives and false negatives respectively. The values are specified with
respect to the total number of background pixels in the ground truth data. The lowest
positive and negative errors are highlighted for each test sequence.

Occlusion : This sequence shows an office that has some chairs; then, a person enters

and walks between the chairs. The ideal foreground for this sequence is marked

manually in every frame (567 frames).

The Kinect depth sensor produces data that has a large amount of noise at the edges of

the objects. For this type of noise, a single frame evaluation would not be representative.

Therefore, we created ground truth videos that contain the ideal foreground segmentation

for each sequence. The first two sequences were recorded in such a way that simple distance

truncation cleanly separates the foreground. In the third sequence, the foreground was

marked manually in each frame.

We measured the error of every algorithm using the absolute number of false positives

Ne+ (background that was marked as foreground) and false negatives Ne− (foreground

that was marked as background). To establish some comparability we also measured an

error ratio for every sequence, which is

e+ =
Ne+

NBG
and e− =

Ne−

NFG
(2.1)

respectively, where NBG and NFG are the total number of background and foreground

pixels in the ground truth sequence. The results can be found in Table 2.1, and some

selected frames for every video and method are shown in Figure 2.3.
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Figure 2.3: Sample images from the segmentation for all of the methods and all of the
sequences. Every image is presented with and without filtering (see Post-Processing in
Section 2.4).

The First Frame Subtraction performs surprisingly well. Unfiltered, it produces the

smallest false negative ratio among all of the considered algorithms. However, it is sensitive

to all types of noise; as a result, depending on the background, there can be many false

positives.

The statistical approach used by the Single Gaussian method is affected by the high

variances of alternating pixels on the one hand and the low variance of stable pixels on

the other hand. If the constant multiplied by the standard deviation is high, then there

will be false negatives when a foreground object occludes a high variance region. If the

constant is small, then stable pixels will emit a large amount of noise. Consequently, we

concluded that the depth values provided by Kinect cannot be modeled effectively by a

single Gaussian distribution.
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The best overall results are achieved by the Codebook Model and the simple Mini-

mum Background method. Both methods manage to eliminate the errors of uncertain

and alternating regions without missing the desired foreground. Because the Minimum

Background method is faster and simpler, we found it to be the best choice among the

algorithms that we have considered.

2.6 Discussion

In this chapter, we described how to apply adaptations of four different approaches of

background subtraction to depth images. These approaches were evaluated on three

different test sequences using ground truth data. We have identified a simple and fast

algorithm, the Minimum Background algorithm, which gave close to perfect results in

our experiments. Thus, for the scenario of a static Kinect and a static background, the

problem of background subtraction could be considered to be solved in the context of the

present work. This finding clearly shows that the task of background subtraction is much

easier when using only depth information compared with color images.

Nevertheless, there are still some open questions for future work in the context of

background subtraction. Scenarios that have a moving Kinect or a dynamic background

require more sophisticated algorithms. For the problem of bootstrapping, we suggest test-

ing more complex background subtraction techniques, e.g., optical-flow, which attempts

to handle foreground clutter during the training phase. The described results in this

chapter were presented in [41]. Finally, the color camera of the Kinect could complement

the depth camera for the task of background subtraction. The combination of depth and

color information yields images that are referred to as RGB-D images. The next chapter

describes how RGB-D image sequences can be used for body part detection and tracking.



Chapter 3

M5AIE: The Body Part Detection and

Tracking Method

Human body part detection, tracking and pose classification are challenging tasks because

a human’s shape varies from one person to another. However, depth information outper-

forms intensity images in the sense that it intrinsically removes appearance features such

as the color of the imaged objects [29]. Additionally, depth provides extra information

about the scene, such as the actual geometry of the objects. RGB information is also

used for detecting and tracking human body parts. The combination of RGB and depth

information can be a powerful tool in this context.

RGB and depth images captured from the real world contain a large amount of infor-

mation. Much of this information is irrelevant to human body part detection and pose

recognition. Therefore, filtering the data is an important task to reduce the computational

load of the body part detection. Another issue in this context is how to track the body

parts in a video sequence. Knowledge about each body part position yields information

on pose recognition.

Several methods exist for body part detection; most of these methods are for inten-

sity cameras. Moeslund et al. [49] describe 350 related studies in the Computer Vision

field. However, the present study takes advantage of the use of depth information, the

Accumulative Geodesic Extrema, or AGEX, which is described by Plagemann et al. [29].

The AGEX points are detected through a graph construction that uses the human body’s

pixels. The Dijkstra algorithm [50] is applied to finding the extreme points of the gener-

ated graph. These extremes are considered to be the main body parts: head, hands and

feet. The authors of AGEX use the results as an input for a motion capture system in a

later study [51]. Baak et al. [52] also use the geodesic extrema points as one of the stages
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for full body pose reconstruction.

After the human body part detection and labeling, it is possible to track each of the

parts. We use the ASIFT algorithm, which takes advantage of the SIFT method. The

SIFT method was proposed by Lowe [53], and it provides matching between different

images by extracting features that are invariant to rotation, illumination and isotropic

scale. Yu and Morel [54, 55] made improvements to the SIFT method and proposed

the Affine-Invariant SIFT (ASIFT) method. Both methods were originally applied to

grayscale images.

This chapter presents a method for performing data filtering and body part detec-

tion and tracking. In this work (see Figure 3.1), independent RGB pixels and depth

information of a frame are taken and produce an RGB-D image. Next, the background

subtraction algorithm (selected from the study described in Chapter 2) reduces the image

to foreground information only. In this case, the foreground is a person. To reduce even

more the amount of data that is used in the pose estimation, a medial axis transformation

is applied. The output of this stage will then be used to detect and label human body

parts. With the labeled body parts in hand, it is possible to track each of them in the

video sequence and to estimate the positions of the body parts according to their velocity.

The name M5AIE is an acronym for each of the used concepts in our approach: M edial

Axis transformation, for data filtering; Adapted AGEX, for the body part detection;

ASIFT, for the body parts tracking, Aligned Images (RGB-D), and E stimation, also for

tracking.

This chapter is organized as follows: Section 3.1 presents some of the related stud-

ies. Section 3.2 describes the M5AIE method. The results are presented in Section 3.3.

Section 4.5 concludes the chapter.

3.1 Related Work

Several Computer Vision studies have solved movement recognition problems using either

RGB or depth images. If both RGB and depth values captured by a specific sensor are

combined, the possibility of correctly handling pose-recognition issues increases. In this

work, we use depth information for background subtraction. The RGB information is

used to produce RGB-D images. Because the ASIFT method requires grayscale images,

the RGB-D images are converted to grayscale, when the ASIFT tracking method is called

by the M5AIE method.
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Regarding human pose recognition, Shotton et al. [1] have described an approach

that is based on single depth images captured with a Microsoft Kinect sensor. The main

contribution of Shotton’s work is to treat pose estimation as object recognition, using an

intermediate body parts representation to find the joints with high accuracy.

An accurate pose estimator from single-depth images was described by Ye et al. [56].

The authors used a dataset as input to make the pose estimation and presented a pose

refinement scheme that can handle pose and body size differences. In their work, they

also proposed a pose detection algorithm that is view independent.

Shotton et al. [1] and Ye et al. [56] do not make use of RGB with depth information.

A combination of RGB and depth images (RGB-D) has been used for different purposes.

Henry et al. [57] presented how the RGB-D images can be used to build 3D maps of indoor

environments. Lai et al. [58] also used RGB-D data to recognize instances of a previously

trained object. Endres et al. [59] used feature descriptors to provide simultaneously the

localization and mapping (SLAM) of RGB-D cameras. Their approach was evaluated

using SIFT [53], SURF [60], and ORB [61] descriptors. We use depth data in background

subtraction and RGB-D images in body part detection. The pixel intensities computed

from the RGB-D values are also used for tracking.

The use of geodesic distances in human body part detection was proposed by Plageman

et al. [29] as part of the AGEX points. Ganapathi et al. [51] used AGEX for performing

real-time motion capture from depth images. Both studies used depth sensors that were

based on a time-of-flight camera to capture the depth data. AGEX was also used by Baak

et al. [52] for full body pose reconstruction. Although these studies are very accurate when

detecting major body parts (head, hands and feet), the detection of joints in [29, 51, 52]

is performed as a näıve estimation of their position with respect to the five main body

regions, i.e., head, hands and feet. Such an approach might fail when the imaged person

is holding objects such as rackets, balls or other video game gadgets. To avoid estimation

problems, we use only the positions of each major body part, which are first mapped to

exactly where the parts are, without any estimation. Considering the challenges of our

motivational game (the Jecripe game), which is the context of our technique, this study

shows that the five main body parts are sufficient for pose classification.

AGEX point detections are usually performed while considering the whole imaged

body. In contrast to the conventional approach, the M5AIE method estimates the AGEX

points from the pixels of a person’s discrete medial axis. It also performs tracking by

extracting ASIFT features and matching them between frames. Silberman and Fergus [62]
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used the SIFT algorithm on depth images for indoor scene segmentation. The main goal

of Silberman and Fergus was to label objects (bed, bookshelf, floor, sofa, and table) in a

scene, while combining the depth and color images to obtain satisfactory results. Another

study that uses SIFT and depth images was presented by May et al. [63]. The main goal

in [63] is to perform environment mapping.

3.2 The M5AIE Method

The M5AIE method aggregates different concepts; some of them were not originally de-

veloped for detecting and tracking. The computational flow of the M5AIE algorithm is

illustrated in Figure 3.1. After the alignment of the RGB (Figure 3.2a) and depth (Fig-

ure 3.2b) images of a given frame, the M5AIE uses the Minimum Background Subtraction

algorithm to address most of the unnecessary information in the frame (Chapter 2). In

turn, the area of the person facing the sensor (Figure 3.3a) is replaced by the few pixels

that define its discrete medial axis (Figure 3.3b) transformation (Subsection 3.2.1). The

detection of body part candidates begins by building a graph in which each pixel of the

medial axis is seen as a vertex that is connected to its neighbors by weighted edges; each

weight is given by the Euclidean distance between a pair of pixels (Subsection 3.2.2).

Using this graph, body part candidates are detected through AGEX point detections (red

points in Figure 3.3, Subsection 3.2.3). A labeling step is performed to relate the AGEX

points to their respective body parts (Subsection 3.2.4). When the labeling fails, the in-

formation computed in the previous frame is used in combination with the ASIFT method

for tracking the body parts into the current frame (Subsection 3.2.5).

3.2.1 Discrete Medial Axis Through Distance Transformation

The 2D medial axis transform constitutes finding the centers of the maximum disks that

can fit inside of an object [64]. A disk is maximal if it is not contained by any other such

disk. The set of all centers is called the medial axis. When working with digital images,

the discrete medial axis of a shape can be computed from the ridge of the discrete distance

transformation [65]. Because the discrete medial axis of a discrete object is a connected

structure that is composed of a small number of pixels inside that object, the M5AIE

method uses such a structure to reduce the number of pixels that are to be considered as

vertices in the graph computation (Section 3.2.2).

The M5AIE has performed discrete medial axis extraction by computing the discrete
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Figure 3.1: Flowchart of the proposed M5AIE approach applied to RGB-D images to
identify the pose of the imaged subject. See Section 3.2 for details. The question mark
after the AGEX Point Detection stage verifies whether the Labeling stage of the algorithm
can be performed.

distance transform of the binary image that results from the Minimum Background Sub-

traction (Chapter 2). In turn, we have applied mean-C adaptive local thresholding [65] to

identify a superset of the pixels that represent the ridge of the distance transform. From

the superset, one could extract the ridge pixels. However, in practice, the exact ridge

pixels are not necessary in subsequent steps of our algorithm because the cardinality of

the superset is already much smaller than the cardinality of the original set of pixels that

represent the user’s body. A segmented image and the result of the discrete medial axis

(superset) extraction through a distance transformation are presented by Figure 3.3. The

following code illustrates a simplified example of how the Medial Axis can be implemented

using OpenCV.

def MedialAxis( img ):

grayImg = convertToGrayScale(img)
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(a) RGB image (b) False-color depth information

Figure 3.2: A pair of images related to the same frame of a sequence: (a) RGB informa-
tion is used to color the foreground pixels and in the tracking stages of our algorithm.
(b) Depth information (displayed with false-color) is used to distinguish the background
and foreground pixels.

cv.Threshold( grayImg, grayImg, 0, 255, cv.CV_THRESH_BINARY)

cv.Erode(grayImg,grayImg, None, 2) #3

imgToTransform = cv.CreateImage( cv.GetSize(grayImg),

cv.IPL_DEPTH_32F, 1);

imgToScale = cv.CreateImage( cv.GetSize(grayImg),

cv.IPL_DEPTH_8U, 1);

cv.DistTransform(grayImg, imgToTransform,

distance_type=cv.CV_DIST_L2, mask_size=cv.CV_DIST_MASK_PRECISE,

mask=0.0, labels=None)

cv.ConvertScale( imgToTransform, imgToScale, 1.0, 0);

cloneScale = cv.CloneImage (imgToScale);

cv.AdaptiveThreshold (imgToScale, cloneScale, 255,

cv.CV_ADAPTIVE_THRESH_MEAN_C, cv.CV_THRESH_BINARY, 9, 0 );

cv.Dilate(cloneScale,cloneScale, None, 1)

cv.Erode(cloneScale,cloneScale, None, 2) #3

return cloneScale
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3.2.2 Graph Construction Based on RGB-D Images

Image pixel coordinates were used to build a graph in linear time, as implemented in

Schwarz et al. [66]. In such a case, two vertices are considered to be neighbors if the

corresponding pixels are separated by a maximum distance threshold δ. The graph is

represented as Gt = (Vt, Et), where Vt are the vertices that are related to pixels in the

image plane, and Et are the edges that connect the vertices. We follow Plagemann et

al.’s strategy [29] to connect two vertices and Schwarz et al.’s scheme to weight the edges

with the Euclidean distance of the imaged surface points related to the vertices. Formally,

Schwarz et al. define the edges as:

Et = {(xij, ykl) ∈ Vt × Vt | �xij − xkl�2 < δ ∧
��(i, j)T − (k, l)T

��
∞ ≤ 1

�
, (3.1)

where �·�2 is the Euclidean distance, �·�∞ is the maximum norm, and (i, j)T and (k, l)T

are the 2D coordinates of the points xij and xkl in the depth image. As a consequence of

computing the medial axis, the original body can be represented by patches of unconnected

pixels. To solve this problem, we used a δ value that connects the disconnected parts. The

value of δ was obtained from experiments in which the distance between the unconnected

pixels was measured.

3.2.3 Accumulative Geodesic Extrema Points

Figure 3.3 illustrates a segmented RGB-D image (Figure 3.3a), which is used as input

to a discrete medial axis transform. Figure 3.3b illustrates the image from the prepro-

cessing stage that is used to generate the graph. The Accumulative Geodesic Extrema

Points (AGEX) are selected while considering the distances of the points according to the

edges that connect the vertices in the graph Gt [29]. This method maximizes the distances

of the points using the Dijkstra algorithm [50]. To accomplish this goal, the first AGEX

point (AGEX1) is chosen to be the closest point to the centroid (ct) of the human body.

The shortest distance between ct and all of the other vertices that belong to graph Gt are

calculated with Dijkstra’s algorithm, and the vertex with the longest distance among all

of the shortest distances is selected as AGEX2.

Once the second AGEX point is selected, a zero cost edge between AGEX1 and

AGEX2 is added to graph Gt. The aim of adding this edge is to not allow the selection

of the same point in a subsequent call of the Dijkstra algorithm. The steps of finding the

vertex that has the longest distance in all of the shortest distances that are calculated and
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adding a zero edge between the two points are repeated considering AGEX2 instead of

AGEX1, and so on until AGEX6 can be found. The red points in Figure 3.3 correspond

to the AGEX points of the imaged subject.

Schwarz et al. [66] approximate the geodesic distances of AGEXk−1 and AGEXk by

dG =
�

e∈SP (x,y)

w(e), (3.2)

where SP (x, y) contains all of the edges along the shortest path between the vertices x

and y.

3.2.4 Body Part Labeling

The initialization step for body part labeling comprises a person facing the camera for a

few seconds and taking a snapshot on a T-pose (the T-pose can be seen in Figures 3.2

and 3.3). The first six AGEX points correspond to the centroid, head, hands and feet,

not necessarily selected in that order. They are labeled according to the position relative

to the centroid (AGEX1). Until this stage of the process, the hands, feet and head have

not been labeled.

Because AGEX1 is the centroid (ct), the lower and upper parts of the body can

be defined and labeled (from AGEX2 to AGEX6) according to their coordinate values.

Assuming the T-pose, the point that has the highest upper value compared with the

centroid is considered to be the head. The two points below the centroid are the right

and left feet. Finally, the other two points are the right and left hands. These labeled

points are considered in the initialization step, and they are detected at the beginning

of the image sequence. As long as this configuration remains unchanged, the AGEX

method is used to detect and label each of the body parts. However, when the described

configuration changes, then the M5AIE starts to use the ASIFT method, using time

sequence information that is based on point estimations to track labels from one frame to

another, as described in the next subsection.

3.2.5 ASIFT-Based Tracking of AGEX Points

The ASIFT algorithm was proposed by Morel and Yu [54] for affine-invariant image-

feature extraction. The ASIFT method expects grayscale images as input. The technique

transforms the input image by applying tilts and rotations for a small number of latitude
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(a) Segmented RGB-D image (b) Input image for graph generation

Figure 3.3: A discrete medial axis transformation (b) is applied in the segmented RGB-
D image (a) to reduce the number of pixels to be considered during the AGEX-graph
construction. The red pixels in (a) and (b) are the AGEX points.

angles. Those transformations make ASIFT features affine invariant. Each transformed

image is submitted to feature extraction using the SIFT algorithm.

The ASIFT simulates many angles of an object in a given image. The simulation

is described as the Affine Camera Model and Tilts. Morel and Yu describe that digital

image acquisition of a flat object can be described as:

u = S1G1Aτu0 (3.3)

According to Morel and Yu, u is a digital image and u0 is an infinite resolution frontal

view of the flat object. τ is a plane translation and A is a planar projective map due to

the camera motion. G1 is a Gaussian convolution modeling the optical blur, and S1 is

the standard sampling operator on a regular grid. A major difficulty of the recognition

problem is that the Gaussian convolution G1, which becomes a broad convolution kernel

when the image is zoomed out, does not commute with the planar projective map A.

The ASIFT method simplifies the cited model, by reducing A to an affine map. The

Affine Camera Model makes the reduction of A which considers the deformation of objects

when a real camera moves its position to capture an image of the same object, however,

in a different point of view. Transition tilts is a concept that illustrates transition tilts

between a frontal view and a slanted view of the same object in different images. These

tilts are also considered to extract features and match points between two images. Then,

the SIFT method [53] is used. See [54] for more details about the ASIFT method.
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In the tracking strategy, ASIFT is used to identify the features in the frame t that are

related to the AGEX points identified in frame t− 1. However, ASIFT cannot be used

directly in tracking due to some practical issues: (i) in the case of background segmented

images, ASIFT detects too many features in the border of the foreground region; (ii) there

is not necessarily a matching feature for every pixel from one image to another; (iii) the

time execution increases as the input images become larger; and (iv) ASIFT can match two

features whose positions are far away from an expected conservative maximum distance.

These problems are addressed using the following heuristics.

3.2.5.1 Diffusion in the background of sub-images

With the background pixels colored with black and the RGB color of the body pixels

converted to a grayscale, the ASIFT method usually detects features only at the frontier

between the foreground and the background regions. To solve this issue, the background

pixels of the sub-images are filled with the diffusion of the RGB values that are computed

according to their colored neighbor pixels. The diffusion process makes the sub-images

have smoother transitions in their intensities among the foreground and background pixels.

As a result, the contrast inside the portions of the image that are related to the person’s

body become more significant, which improves the detection of ASIFT features inside the

foreground region. Examples of background-diffused sub-images are shown in Figure 3.6.

These examples were computed based on the sub-images in Figure 3.5. The background-

diffused images are the input for the ASIFT, after they are converted to grayscale. The

diffusion method is performed as follows:

Step 1: Create a list of background pixels and keep it sorted in descending order with regard

to the number of foreground (black) 8-connected neighbor pixels of each entry.

Step 2: Replace the RGB value of the first pixel in the list by the mean RGB values of

its neighboring foreground pixels. Remove such a pixel from the list, treat it as a

foreground pixel and update the order of the remaining pixels.

Step 3: Go to the first step or stop when there are no more background pixels to be pro-

cessed.

3.2.5.2 Searching in a region instead of searching for coordinates only

This heuristic is related to the problem that there is not necessarily a matching feature

for every pixel from one image to another. As a consequence of this assumption, a body
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part position can be lost if only its coordinates are considered. This problem was handled

in the following way: if there is no body part matching feature from the sub-image at

t − 1 with the sub-image at t, then the method searches for the point P , which is the

nearest body feature in t − 1 that has a match in t. The M5AIE method filters the

matching result, considering P to be the body part and its matching feature in t as the

final result. As shown in Figure 3.1, the ASIFT method is composed by two stages: the

ASIFT features extraction and the Features Matching. We filter the Features Matching

results to have only one matching feature for each pair of images. Figure 3.4 illustrates all

the matching feateres (Figure 3.4 (a)) and the filtered result (Figure 3.4 (b)). The white

lines in Figure 3.4 (a) are the matching features and the only white line in Figure 3.4 (b)

is the filtered result.

(a) All matching features (b) Filtered Re-
sult

Figure 3.4: Filtering the matching result.

Considering the person’s movement, the body part in frame t− 1 can be located

anywhere in a region of the frame t. The region is delimited according to a distance from

the point in t− 1 and the frame at t. This adaptation is not in the ASIFT method, but

it is in the matching point output. The reference implementation provided by Morel and

Yu [54] returns all of the matching ASIFT features from an image in t− 1 and t. The

specialized matching scheme, on the other hand, returns only a single feature in a region

in t− 1 that is related to a feature in t.

3.2.5.3 Use of tiny images instead of complete frames

To avoid the heavy computational load of ASIFT applied to the whole image, the M5AIE

method applies ASIFT on five tiny images that contain the body parts in frame t− 1

and the sub-images of the regions in which the same body parts can possibly be found in
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frame t. It is important to note that the location and labeling of the body parts in frame

t− 1 is always known. In the case of the first frame, the T-pose will guarantee the success

of the labeling process. In subsequent frames, the body parts will be found by labeling or

tracking processes that are performed in the functions of frame t− 2. Figure 3.5 illustrates

the five sub-images at frame t− 1. We assume that each body part does not move too

much from one frame to the next frame. Each of the tiny images has a different body

part in it, which allows the matching features provided by ASIFT to be in approximately

the same region from one image to another.

3.2.5.4 Body-parts position estimation

To assert the consistency of the matching of ASIFT features in the sub-images of consec-

utive frames, the M5AIE estimates the expected location of the feature in frame t using

the uniform linear motion equation considering its location in frames t− 1 and t− 2. The

estimation is made using the following equation:

st = st−1 + v t, (3.4)

where st−1 is a coordinate value (x or y) of the feature in the previous frame, v is the

velocity value calculated from (3.5), and t is a constant related to time. The velocity

value is computed as:

v =
∆S

∆T
, (3.5)

where ∆T is constant for this case.

The uniform linear motion displacement of each coordinate is computed using:

∆S = st−2 − st−1, (3.6)

In the M5AIE method, the acquisition of the color and depth images is performed by

the same apparatus (a Kinect), and the RGB-D image alignment is performed by Kinect’s

SDK. However, because of the asynchronous nature of the image sensors, the final aligned

RGB-D image can be ill-formed. As a result, background color pixels can be incorrectly

mapped to foreground regions. Figure 3.7 illustrates an extreme case in which many depth

pixels of the human body were painted with color information from the background.

To make the proposed matching procedure suitable for tracking, four major situations

were identified to be handled: (i) the matched ASIFT feature and the point estimated

with equation (3.4) correspond to well-mapped background pixels; (ii) the matched ASIFT
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(a) head (b) left hand (c) right hand (d) left foot (e) right foot

Figure 3.5: Sub-images of the detected five main body parts.

(a) head (b) left hand (c) right hand (d) left foot (e) right foot

Figure 3.6: Background-diffused version of the sub-images presented in Figure 3.5.

feature resides in the well-mapped background while the estimated point is part of the

user’s body; (iii) the matched ASIFT feature belongs to the human body, and the esti-

mated point is part of the background; and (iv) both the matched ASIFT feature and the

estimated point correspond to the actual body.

In the first case, the method searches the body part pixel that is closest to the ASIFT

feature found. The second case is when the resulting ASIFT feature is part of the back-

ground and the estimated point is part of the body, which generates two sub-cases: (a) if

the distance between the two points is smaller than a threshold, then the estimated point

will be the final result; and (b) if the distance between the two points is larger than a

threshold, then the nearest point from the ASIFT feature that belongs to the human body

will be the result.

The third case occurs when the ASIFT feature belongs to the human body and the

estimated point belongs to the background. In this case, there are two sub-cases, which

are similar to the previous case: (i) if the distance between the two points is smaller

than the threshold, then the ASIFT matching feature will be the final result; and (ii) if

the distance between the two points is larger than the threshold, then the nearest point

from the ASIFT feature that belongs to the human body will be the result. Finally, the

fourth case is when the ASIFT matching feature and the estimated point belong to the

human body and, again, there are two sub-cases: (i) if the distance between the two

points is smaller than the threshold, then the ASIFT feature is the final result; and (ii) if

the distance between the two points is larger than the threshold, then a point whose
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Figure 3.7: Kinect performs asynchronous acquisition of RGB and depth images. As a
result, the quality of the RGB-D alignment procedure performed by Kinect’s API can
be affected by rapid movements of the user, which leads to inconsistent RGB-D image
formation.

coordinates are the average of the two points is generated, and this middle point will be

the final result.

The four defined heuristics are necessary because the alignment of the RGB and

the depth information could consider images that are acquired at different times. This

alignment is provided by the apparatus. If there was no interval for aligning RGB and

depth information, the presented heuristics would be unnecessary.

3.3 Experiments and Results

The described approach was implemented in Python and was evaluated on real image

sequences. The ASIFT algorithm was implemented in C++. We used the reference

implementation provided by Yu and Morel at [55]. We used OpenCV to perform the

distance transform, adaptive thresholding and other basic image processing procedures.

The image sequences were collected using a Kinect sensor, which provides both depth and

color images with a 640× 480 pixel resolution. The resolution of the tiny images was set

to 80× 80. The goal of this experimental evaluation is to demonstrate the following:

• The modified AGEX can be used for body part detection and labeling in all of the

frames of the sequence that have the expected AGEX point configuration described

in Section 3.2;
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(a) T-pose (b) Dancing

Figure 3.8: Illustration of T-pose and dancing human poses in a game developed by our
research group that inspired our experiments.

(a) Play guitar (b) Play flute

Figure 3.9: Illustration of Play guitar and Play drums human poses.

• The ASIFT algorithm can be used for tracking goals.

We previously collected 14 sequences with human poses that were inspired in the

Jecripe game [17, 19]. The poses are: T-pose, dancing (left hand on hip and right hand

on head), playing guitar, playing flute and playing drums (see Figure 3.8, Figure 3.9

and Figure 3.10). Two other movements, which were not related to the game, were also

included: punching and kicking.

In all of the sequences, the person moved from the initial T-pose to one of the other four

poses. Table 3.1 illustrates the results of detection and tracking. The first three sequences

were made for the dancing pose; they have 140, 116 and 140 frames, respectively. The

dancing movement had the best results for the detecting and tracking tasks; every body

part was tracked successfully until the end of the sequence.
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Figure 3.10: Illustration of the Play drums human pose.

The playing guitar sequences were tested in the next two sequences of the table (se-

quences 4 and 5). Both of them had 140 frames. In sequence 4, one of the body parts

was lost during the tracking. This loss occurred when one body part was detected in the

background in one image and the matching point was lost. As was mentioned in Subsec-

tion 3.2.5, this type of situation is possible because color and depth information could be

acquired at different times by the apparatus. Sometimes, this interval causes an error in

the coloring of the foreground pixels with background color information. In sequence 5,

no problem was observed while tracking body parts until the moment that a self-occlusion

occurred. The self-occlusion occurred when one of the hands was placed in front of the

torso, and all of the matching points were detected at the torso instead of at the moving

hand.

The sequences that range from 6 to 9 in Table 3.1, in which we tested playing drums

and playing flute, had exactly the same problem as sequence 5. All of the body parts were

correctly tracked until a self-occlusion occurred (a hand in front of the torso). Sequence 10

had the same problem as sequence 4, in which there was a problem in tracking one of the

body parts, which was caused by the error of coloring foreground pixels with background

color information. As seen, the dancing movement (sequences 1, 2 and 3) did not have

any type of self-occlusion and, consequently, had the best results on the tracking.

Other types of tests were made with punching and kicking sequences, where the person

moved much faster from the original T-pose to the other tested positions. The velocity
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Table 3.1: Image sequence evaluation.
Sequence Movement Number Tracking

Number of Images Until The End

Sequence 1 dancing 140 yes
Sequence 2 dancing 116 yes
Sequence 3 dancing 100 yes
Sequence 4 playing guitar 140 no
Sequence 5 playing guitar 140 yes*
Sequence 6 playing drums 190 yes*
Sequence 7 playing drums 130 yes*
Sequence 8 playing drums 130 yes*
Sequence 9 playing flute 140 yes*
Sequence 10 playing flute 190 no
Sequence 11 punching 84 no
Sequence 12 punching 81 yes**
Sequence 13 kicking 53 no
Sequence 14 kicking 66 yes
*Tracked until the end of the sequence; however there was a problem
in the presence of self-occlusion.
**Problem caused by movement velocity.

of the movements influenced the number of frames, which was less than 100. Sequences

11 and 12 tested the punching pose. Sequence 11 had the same problem as sequences 4

and 10, which was similar to Figure 3.7. Sequence 12 had a problem with tracking the

punching hand, and the tracked points moved from the hand to the elbow. This problem

might be caused by the velocity of the movement, which causes larger changes from one

image to the following image and could lead to this problem.

Other types of tests were made with punching and kicking sequences, where the person

moved much faster from the original T-pose to the other tested positions. The velocity of

the movements influenced the number of frames, which was less than 100. Sequences 11

and 12 tested the punching pose. Sequence 11 had the same problem as sequences 4

and 10, which was similar to Figure 3.7. Sequence 12 had a problem with tracking the

punching hand, and the tracked points moved from the hand to the elbow. This problem

may be caused due the velocity of the movement, that caused larger changes from one

image to the following image, leading to this problem.

The kicking movements are represented by sequences 13 and 14. Sequence 13 had

exactly the same problem as sequence 11. However, the body parts were correctly tracked

in sequence 14. After we had identified that the M5AIE method had problems with

self-occlusions, we made more experiments with no self-occlusions at all. The mentioned

experiments are presented in Section 4.4.
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3.4 Discussion

This chapter presented the M5AIE method for detecting and tracking the five main parts

of the human body (head, hands and feet) in sequences of RGB-D images. The method

generates tuples with each body part position. The proposed approach combines an

effective background subtraction method, the discrete medial axis transformation in the

construction of simpler graphs to be used in the detection of AGEX points, heuristics for

labeling, and ASIFT-based tracking of labeled structures.

We investigated how to adapt the ASIFT method for tracking objectives and showed

that it is possible to achieve good results with the tested movements. The key insights of

this investigation are the following:

• ASIFT and estimation can be combined and used for tracking the objectives of

movements without self-occlusions;

• It is necessary to make improvements in the tracking method to use it with move-

ments in which there is a body part occlusion; and

• The RGB-D aligning procedure caused the loss of one of the body parts during track-

ing. This type of problem might not occur in the future through the synchronous

acquisition of color and depth information.

The proposed M5AIE algorithm was implemented in proof-of-concept programs. We

did not consider the computational load of this specific implementation to be a funda-

mental requirement because the main goal in the experiments is to assert the possibility

of using a hybrid technique for body part detection, tracking and pose classification. The

bottlenecks for real-time results are the Medial Axis and the ASIFT algorithm. Pinto

and Freitas [67] showed real-time results for the Medial Axis Transform. In 2013, Chiu

et al. [68] presented a fast SIFT design for real-time visual feature extraction. Because

ASIFT depends on the SIFT results, we believe that the M5AIE can be efficiently imple-

mented and used as part of real-time tracking solutions that are applied to games.

The M5AIE method is limited to an indoor environment, static background, static po-

sition and orientation of the sensor and to single-user segmentation. Experiments showed

that, to be correctly tracked, the sequences must not have body part occlusions. The

next chapter introduces a study that has different classification algorithms: the C4.5

Gain Ratio Decision Tree, Näıve Bayes Classifier and KNN Classifier.



Chapter 4

Analysis of the Classification Algorithms

Using M5AIE-Extracted Human Poses

This chapter describes the context of human pose recognition research and also presents

an analysis of different classifiers in pose prediction. As was mentioned previously, depth

sensor devices provide better options for the development of interaction paradigms such

as a Natural User Interface (NUI). Shotton et al. presented how the device works and its

applicability in digital games. Recently, Shotton et al. [69] described new approaches to

human pose estimation and used tree structures.

Tang et al. [15] describe a study that uses an interactive dancing game with real-time

recognition of continuous dance moves from 3D human motion capture. The authors

describe positive feedback from the users’ experiences. Tang et al. also describe the

development of their own motion recognition algorithm for dance moves.

Rogez et al. [70] address human pose recognition as a classification problem. In their

work, the authors describe a pose detection algorithm that is based on tree structures.

Shotton et al. [1, 69], Tang et al. [15], Rogez et al. [70] and many other related studies

mention the used classification algorithm. However, the authors do not explain why they

chose each of their options, and they do not compare their algorithms with traditional

classification algorithms.

To the best of our knowledge, there is no work in the literature that performs a com-

parison among classification algorithms in human pose recognition in the context of games.

Huang et al. [30] compared Näıve Bayes, Decision Trees, and Support Vector Machines

(SVMs), to evaluate which is the best measure to use when classification algorithms are

compared. In [30], the authors used datasets that had only two classes (binary datasets)

and compare the use of two different measures: accuracy and Area Under the Curve
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(AUC). In this thesis, the accuracy measure was used in the experiments (Section 3.3) to

evaluate the selected classification algorithms. Amor et al. [31] used intrusion detection

system datasets to compare Näıve Bayes and Decision Trees. Amor et al. described how

a Näıve Bayes classification algorithm can provide competitive results. The authors of

the two studies [30, 31] did not consider datasets in human pose classification in their

experiments.

This chapter describes a detailed analysis, using the M5AIE method (Chapter 3) with

different algorithms: C4.5 Gain Ratio Decision Tree [32], Näıve Bayes Classifier [33] and

K-Nearest Neighbor (KNN) Classifier [34]. The results could help researchers to choose

among the selected algorithms to use in human pose classification in the context of digital

games. The experiments and results were published in [71].

This chapter is organized as follows: Section 4.1 presents some of the related studies.

Section 4.2 describes the selected classification algorithms for this study. Section 4.3

describes how we adress the position of each of the body parts. The experiments and

results are presented in Section 4.4. Section 4.5 concludes the work with a discussion and

future directions for the research.

4.1 Related Work

Human action recognition is a related area of Computer Vision that addresses motion in

videos. Mota et al. [72] introduced a video motion indexing scheme that was based on

modeling optical flow. In their work, the authors proposed a global motion tensor descrip-

tor for video sequences, and optical flow was described with a polynomial representation.

In contrast to Mota et al.’s work, this work is concerned with the detection and tracking

of body parts in RGB-D image sequences and with pose identification in single frames of

the sequence.

Movement recognition in games has many different approaches. Many of the move-

ment recognition technologies apply video or frames in real time as an input of a recog-

nition system. A low-cost approach is described by Wang and Popović [7]; these authors

propose an easy-to-use color glove. In that case, even the color gloves are inexpensive;

it was necessary to use instrumented gloves in the construction of the database. The

database is used to recognize letters in sign language. Nevertheless, Wang and Popović’s

work performs pose virtual reconstruction, which is unnecessary in the context of this

work. Wang and Popović applied their work on sign language finger spelling. Figueiredo
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et al. [73] also make use of gloves, and their study made use of a yellow gloves, which

were applied to interaction only, without pose or movement recognition. Almeida [74], as

Wang and Popović, worked with sign language and they made use of a depth sensor to

capture the movements. Wang and Popović and Almeida use classifiers but they did not

detail the used classifiers. Figueiredo et al.’s work do not use classifier because their focus

is on interaction.

Bourdev and Malik [8] and Bourdev et al. [9] apply a two dimensional image as input

and estimates the three dimension coordinates of the selected keypoints. Moreover, it

is presented the definition of Poselets as a particular part of the human pose under a

given viewpoint. This approach is defined with a set of examples that are close in 3D

configuration space. The main contribution of [8, 9] is the notion of a part of a pose, a

“poselet”, and an algorithm for selecting good poselets. Each poselet provides examples

for training a linear SVM classifier. However, none of these studies detailed why they

chose the selected classifier.

Bleiweiss et al. [75] describe a real-time framework that blends the player’s actual

movements, which are tracked using a depth sensor, with pre-defined animation sequences.

According to the authors, their depth-based framework enables an enhanced visual feed-

back mechanism by understanding the player’s full body motion and seamlessly blending

it with pre-animated content. Bleiweiss et al. made use of a full body tracking algorithm

proposed by Ganapathi et al. [51]. In [75], the authors presented a system whose skeleton

mimics the player’s movements.

The work of Schönauer et al. [13] describes a full body input for rehabilitation. The

contribution of their work includes the implementation of serious game targeting rehabil-

itation of patients with chronic pain of the lower back and neck. Schönauer et al. argue

that the tracker used for their motion capture system, which is an io-tracker [14], is marker

based and uses an infrared optical motion tracking system. In [13], Schönauer et al. used

a classification tree for posture estimation and did not compare the classifier with any

other algorithm.

An interactive dancing game was presented by Tang et al. [15]. The motion recognition

algorithm was developed based on a finite state machine representation and a Block

Matching Cost. The game uses motion templates, and the Block Matching Cost calculates

the cost for matching a frame of the player’s move with a frame of a template move.

Tian et al. [76] presented a semantic feature to represent characteristics of different

human motion classes. Cimen et al. [77] describe how they classify human motion with
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descriptors that are related to emotion classification. Sun et al. [78] show how conditional

regression forests can be used in human pose estimation.

In this chapter, we do not consider action recognition or virtual reconstruction, and we

also do not consider their interaction. We focus on a comparison of different algorithms

for human pose classification in the game context. The Kinect system was chosen to

collect the image sequences of a single player who makes game movements. There are

available technologies to integrate Kinect with the Unity3D engine, which was used in the

development of the Jecripe game [17]. This game inspired the selected movements in the

experiments.

4.2 Pose Classification

Classification techniques were used in this study to identify categorical labels such as

“Pose A” and “Pose B” for the current subject, according to the position of each of the

body parts that are detected or tracked in a given image of the sequence.

The human pose classification was performed using three different algorithms: the

C4.5 Gain Ratio Decision Tree [32], the Näıve Bayes classifier [33] and the K-Nearest

Neighbor (KNN) classifier [34]. These algorithms were selected due to their low compu-

tational load and simplicity, which makes them suitable for real-time applications.

4.2.1 C4.5 Gain Ratio Decision Tree

Decision trees follow the “divide and conquer” approach. According to Amor et al. [31],

the decision tree structure is composed of the following elements: (i) decision node, which

specifies a test attribute that is responsible for the comparison of an attribute value with

a constant; (ii) an edge that is one of the possible attribute values (the test attribute is

placed here); and (iii) leaf nodes that give the classification to which the object belongs.

Decision trees have two stages: building the tree and the classification itself. Building

the tree constitutes selecting the test value for each decision node and the classification

labels of each leaf. Decision trees are built based on a given training set. The classification

stage is made starting from the root of the decision tree. To go down the tree, tests are

made to achieve one of the leaf nodes.

Many algorithms were developed for the construction of decision trees for the classi-

fication task. In the experiments, the considered decision tree was the C4.5 Gain Ratio
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Decision Tree algorithm developed by Quinlan [32]. The C4.5 Gain Ratio Decision Tree

selects the attribute that has the largest number of possible values to be assumed as the

current node in the tree construction. This criterion is an extension to information gain.

The gain ratio is defined as:

GainRatio(A) =
Gain(A)

SplitInfo(A)
(4.1)

However, the Gain Ratio applies a normalization to information gain “using a split

information”, defined as:.

SplitInfoA(D) =
v�

j=1

|Dj|
|D| × log2

�
|Dj|
|D|

�
, (4.2)

where D is a set of tuples and |D| is the number of tuples in D. Additionally, |Dj| is the
number of times that tuple Dj appears in D. In equation 4.1, we have Gain(A) which is

the information gain. Gain(A) defines how much is gained if the attribute A is used as

the branching node in the decision tree structure. The information gain is defined as:

Gain(A) = Info(D)− InfoA(D) , (4.3)

where InfoA is the information value needed to have a testing tuple arriving at an exact

classification using a value of attribute A. A classification value is the value of the attribute

which defines the class of each tuple. Info(D) is the information gain value computed

for each value of the attribute class. The information gain is defined as:

InfoA(D) =
v�

j=1

|Dj|
|D| × Info(Dj). (4.4)

Then, the selection of an attribute to be the current node in the tree is defined on the

maximum gain ratio value as the splitting attribute. For more details about decision tree

structures, see [79].

4.2.2 Naïve Bayes Classifier

Näıve Bayes makes a strong independence relation in which the features are independent

in the context of a session class [31, 33]. The Näıve Bayesian classifier works, basically, as

follows: (i) the training set is composed of tuples, and these tuples are attribute values in
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a predefined order; (ii) for each class, a conditional probability can be calculated based

on the used training set; and (iii) the likelihood of a testing tuple is defined based on the

calculated conditional probabilities of each class. The following working flow of the Näıve

Bayes Classifier is described in [79].

Step 1: Let D be a training set of tuples and each tuple with its class label. Each tuple is

represented by a predefined sequence of n attribute values (A1, A2, ..., An), such as

X = (x1, x2, ..., xn)).

Step 2: Considerm classes (C1, C2, ..., Cm). For each tuple, X, the classifier will predict each

class of tuple Xi belongs to the class having the highest probability, conditioned on

X.

Step 3: As P (X) is the same for all classes, only P (X|Ci)P (Ci) need be maximized. If

the class a priori probabilities, P (Ci), are not known, then it is assumed that

the classes are equally likely, and we maximize P (X|Ci). Otherwise we maximize

P (X|Ci)P (Ci).

Step 4: The values of the attributes are conditionally independent of one to another, given

the class label of the sample. Then an evaluation is done considering if the attribute

is categorical or continuous valued.

Step 5: The classifier predicts that the class label of X is Ci if it is the class that maximizes

P (X|Ci)P (Ci).

The main difference between the two mentioned classifiers is that while C4.5 is a deci-

sion tree classifier, the Näıve Bayes is based on the Bayes rule of conditional probabilities.

In decision trees, the attributes are tested, and the final classifications are at the leaves.

In this approach, the attributes have a high level of dependency on each other. However,

the Näıve Bayes classifier evaluates each attribute individually, considering them to be

independent.

4.2.3 K-Nearest Neighbor Classifier

In 1967, Cover and Hart [34] introduced the k-Nearest Neighbor as a pattern classifier.

A training set is built by tuples and a tuple X, whose class is unknown, is then tested.

The tuple X is compared with each of the training tuples. The k closest tuples to X

are considered to predict its class. “Closeness” is considered a distance metric, and it
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can be calculated, for example, with the Manhattan, Chebyshev or Euclidean distance.

The three distances were selected because they use the vertical and horizontal coordinates

system, which is used by the M5AIE method to generate tuples. The unknown class of X

is assigned to the most common class among its k nearest neighbors.

4.3 Bounding Box and Grid

In this work, the algorithms receive as input the labels and the locations of the body

parts according to an N ×N grid that is defined inside the bounding box that contains

the whole body of the imaged subject. Figure 4.1 shows the grid squares with N = 8.

A bounding box was used to identify the cell number of the body parts. The bounding

box provides the relative positions according to the detected human body. This approach

makes it possible to identify the cell number of the body parts, independently of their

occupied positions in the whole segmented image.

Figure 4.1: A bounding box limits the human body, and it is divided into N ×N cells.
In this example, N = 8.

The considered classification algorithms (C4.5, Näıve Bayes and KNN) require the

execution of a training stage to build a model to be used during the classification of the

poses (see Figure 4.2). In our work, the dataset is used both for training and testing.

The class of each tuple comprises the cell-coordinates in the grid that body parts assume



4.3 Bounding Box and Grid 44

at each image in a sequence. The pose classification of each training tuple was made

manually in each frame. In the classification procedure, a tuple constitutes a sequence in

which the cell position of every individual body part is described in the same order as the

order that appears in the attributes definition. The following code illustrates an example

of how the attributes are declared and a few training tuples:

@relation poses

@attribute headx NUMERIC

@attribute heady NUMERIC

@attribute rightFootx NUMERIC

@attribute rightFooty NUMERIC

@attribute leftFootx NUMERIC

@attribute leftFooty NUMERIC

@attribute leftHandx NUMERIC

@attribute leftHandy NUMERIC

@attribute rightHandx NUMERIC

@attribute rightHandy NUMERIC

@attribute pose {tpose, dancing, guitar, drum, kick, punch, kickAndPunch}

@data

0, 3, 7, 5, 7, 3, 1, 0, 1, 7, tpose

0, 4, 7, 5, 7, 3, 1, 0, 1, 7, tpose

0, 4, 7, 6, 7, 1, 0, 0, 3, 7, dancing

0, 3, 7, 5, 7, 2, 0, 0, 3, 7, dancing

0, 5, 7, 6, 7, 3, 1, 0, 3, 7, guitar

0, 3, 7, 5, 7, 3, 3, 0, 3, 7, drum

...

Classifier Data 
Training 

Training 
Tuples 

Classifier Model 

Figure 4.2: The aim of the training stage is to build a classification model.
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Classifier Model Testing 
Tuple 

Testing Tuple With 
Predictied Class 

Figure 4.3: The classification model is used to predict the class of the tuples that are
being tested.

The testing tuples are the input for the classification model (see Figure 4.3). This

classification model predicts the class of each testing tuple based on the training data set.

In the classification procedure, a tuple constitutes a sequence in which the cell position of

every individual body part is described in the same order that appears in the attributes

definition.

4.4 Experiments and Results

The classification algorithms were evaluated using the data mining tool WEKA 3.6.8

(Waikato Environment for Knowledge Analysis) [80]. To adopt the traditional classifiers

C4.5 Gain Ratio Decision Tree, Näıve Bayes and KNN, we used the J48, Näıve Bayes and

Ibk implementations that are available in the WEKA tool, respectively.

We used k-fold cross-validation in our test. In this approach, the dataset is randomly

partitioned into k subsets. Only one subset is used as validation data for testing the model.

The other k − 1 subsets are used for training the classification model. The cross-validation

process is repeated k times. Each of the k subsets is used only once for validation. The

final result is the average of the results obtained at each round. In our experiments, we

used k = 10.

4.4.1 Testing Categorical Attributes

We first describe how the first experiments were made as a proof of concept. We tested

human pose classification for each frame using the C4.5 Gain Ratio Decision Tree [32]

and the Näıve Bayes Classifier [33]. In these first tests, the input information for the

classification stage is a set of five categorical attributes, which have the cells’ numbers

(“Cell 1”, “Cell 2”, ..., “Cell N”) that contain the tracked body parts of the subject. The

main goal of using categorical labels for the body parts attributes was to prove that it is
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Table 4.1: Confusion Matrix for Näıve Classifier.
a b c d e f g Classified As

100 0 0 0 0 0 0 a = tpose
1 223 0 0 0 0 0 b = dancing
0 0 61 0 0 0 0 c = guitar
0 0 0 0 0 0 0 d = flute
2 6 0 0 135 0 0 e = drum
2 0 2 0 0 11 0 f = kick
3 0 0 0 1 0 41 g = punch

possible to use different classification algorithms in the M5AIE method.

The used sequences were exactly the same as shown in Table 3.1. Here, a bounding

box that defines the position of the person’s full body was made for each of the segmented

input images. To organize the dataset, this bounding box is divided into eight columns

and eight rows (8× 8), which results in 64 cells. Each of the detected body parts is in one

of the cells. Sequences of cells that stand in a pre-defined order are the dataset tuples.

In these experiments, we used six categorical attributes: head, right foot, left foot, left

hand, right hand, and pose. The first five attributes are the body parts, and the values

to be assumed are the cell indexes (which range from 0 to 63) where the body parts are

located. All of the body part attributes were defined as categorical values. The pose

attribute corresponds to the relation and can assume 7 categorical values: tpose, dancing,

guitar, flute, drum, kick, and punch.

Table 3.1 presents errors in sequences 4, 9, 10, 11, and 13. Because of these errors,

we decided to not consider data from these sequences. Sequences 5, 6, 7, 8, 9 and 12 had

problems with tracking when there was self-occlusion. However, we considered the frames

when the person was already in a pose, and the error did not occur. In sequences 1, 2,

3 and 14, the tracking was made correctly. We also did not make any tuple for playing

flute movements because of the large number of images that had self-occlusions. With

Table 4.2: Confusion Matrix for C4.5 Gain Ratio Decision Tree.
a b c d e f g Classified As

99 0 0 0 1 0 0 a = tpose
0 224 0 0 0 0 0 b = dancing
0 0 61 0 0 0 0 c = guitar
0 0 0 0 0 0 0 d = flute
2 0 0 0 140 0 1 e = drum
0 0 1 0 0 14 0 f = kick
0 0 0 0 1 0 44 g = punch
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the mentioned restrictions, the dataset for pose classification training and testing was

composed of 588 tuples altogether.

The output of the testing procedure is a confusion matrix for each classification al-

gorithm. Tables 4.1 and 4.2 illustrate the confusion matrix for Näıve Bayes and the

C4.5 Gain Ratio Decision Tree, respectively. The Näıve Bayes Classifier correctly classi-

fied 97.1088% of the instances (571 altogether) and incorrectly classified only 2.8912% of

them (17 tuples).

The C4.5 Gain Ratio Decision Tree Classifier correctly classified 98.9796% of the

instances (582 tuples), and only 1.0204% of the instances (6 of them) were incorrectly

classified. These results show that the dataset that was used produces a very high number

of correctly classified instances with both classifiers. As a result, it is possible to conclude

that the cell division, when assuming a grid of 8× 8 cells, is adequate for the poses that

were used and that the bounding box that was used for localization purposes was adequate

as well.

4.4.2 Testing Numerical Attributes

After we showed convincing results that it is possible to use different classifiers while

using the M5AIE method, we then used a set of ten numeric attributes. Each of these

attributes is related to a coordinate of the considered body parts. The pose attribute

is the only attribute that is categorical. The training data begins with the label @data.

Each attribute is separated by a comma. The last attribute is the testing class.

The goal of these experiments is to answer the following questions:

1. Can the classifiers make correct predictions with different poses and the same class?

2. Is there any difference in the results when using different users to build the data

set?

3. Which is the best value for N in the grid N ×N?

4. Which of the three considered classification algorithms is the best for human pose

prediction in the game context?

As in Section 3.3, we previously collected sequences with human poses that were

inspired by the Jecripe game [17, 19]. The poses define the classes, and they can assume

the following values: T-pose, dancing, play guitar, and play drums. Nevertheless, in
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these experiments, three other movements, which were not related to the game, were also

included: punch, kick and kick + punch.

We characterize the classes as the following: The T-pose constitutes a person with

both arms and hands at the same level as the shoulders. In the dancing class, one of

the hands is on the head; the other hand is on the hip, and one or both feet are on the

ground. As a consequence, we have six combinations of poses for the class dancing : (i) left

hand on the head and feet on the ground; (ii) left hand on the head and moving left foot;

(iii) left hand on the head and moving right foot; (iv) right hand on the head and feet on

the ground; (v) right hand on the head and moving right foot; and (vi) right hand on the

head and moving left foot. All of the six poses have the same class, which is dancing.

In the playing guitar class, the user imitates the moves of playing an instrument,

shaking the right hand while the left hand stays at the same level as his/her shoulders.

The playing drums class is when the user shakes his/her hands up and down alternately.

There are two possible poses for the punch class, both of which have feet on the ground:

(I) right hand and (II) left hand. Similar to the punch, the kick class can be made with:

(a) right foot and (b) left foot, with both hands below the centroid. The kick + punch

class can be made in four different poses: (A) kick with left foot and punch with left hand;

(B) kick with left foot and punch with right hand; (C) kick with right foot and punch

with right hand; and (D) kick with right foot and punch with left hand.

We used three different volunteers in our experiments: A, B and C. For each user,

we collected a different number of sequences. Volunteer A is male, 1.76 meters tall, and

has dark hair. Table 4.3 shows the collected sequences with Volunteer A. We collected 17

sequences with all of the classes.

Volunteer B is male, 1.90 meters tall and has blond hair. Volunteer B made 14 different

sequences in four classes, all of them without self-occlusion. All of the possible poses for

each of the four classes were collected. Table 4.4 details each of the collected poses from

Volunteer B.

Volunteer C is female, 1.66 meters tall and has dark hair. Similar to Volunteer B, we

collected sequences of four different classes with Volunteer C. Additionally, no problem

was detected during the collection of the poses, which shows that the M5AIE method

works well in sequences that do not have self-occlusions. We collected 13 sequences with

Volunteer C because we wanted to test fewer training tuples with the pose kick + punch

(A).
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Table 4.3: Image sequence evaluation for Volunteer A.
Sequence Movement Number Tracking

Number of Images Until the End

Sequence A1 dancing (i) 140 yes
Sequence A2 dancing (i) 116 yes
Sequence A3 dancing (ii) 100 yes
Sequence A4 playing guitar 140 yes*
Sequence A5 playing drums 190 yes*
Sequence A6 playing drums 130 yes*
Sequence A7 playing drums 130 yes*
Sequence A8 punch (I) 84 yes
Sequence A9 punch (I) 81 yes**
Sequence A10 kick (a) 66 yes
Sequence A11 dancing (iii) 58 yes
Sequence A12 dancing (ii) 68 yes
Sequence A13 kick + punch (A) 57 yes
Sequence A14 dancing (iv) 104 yes
Sequence A15 dancing (v) 152 yes
Sequence A16 dancing (vi) 98 yes
Sequence A17 kick + punch (D) 55 yes
*Tracked until the end of the sequence, but there was a problem
in the presence of self-occlusion.
**Problem caused by movement velocity.

We observed that the M5AIE method had problems with poses that had self-occlusions.

The problems were detected in the playing guitar and playing drums poses. This prob-

lem detection was crucial for the collection of the other users’ sequences; as a result, we

avoided collecting these poses. However, we kept the results to make the tuples and test

the classification algorithms. In only one sequence, the tracking method had problems

that were caused by the movement velocity, but the pose classification was not affected.

The dataset that was used for both the training and testing comprises the grid-

coordinates that body parts assume at each frame of a set of image sequences that were

produced for this work and the manual classification of the pose in each frame. We var-

ied the number of cells of the grid in each frame, as follows: 8 × 8 (Table 4.6), 16 × 16

(Table 4.7), 32× 32 (Table 4.8) and 64× 64 (Table 4.9).

The set of k values for the KNN algorithm is {1, 3, 5, 7, 9, 11}, and different distances

were used in our experiments. We combined the set of k values with the Manhattan,

Chebyshev and Euclidean distances. For each of the N values of the grids N × N , we

made a data set that had all of the tuples from the three different users that made the

described poses and 2128 tuples.
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Table 4.4: Image sequence evaluation for Volunteer B.
Sequence Movement Number Tracking

Number of Images Until the End

Sequence B1 dancing (i) 99 yes
Sequence B2 dancing (iv) 84 yes
Sequence B3 dancing (iii) 84 yes
Sequence B4 dancing (ii) 62 yes
Sequence B5 dancing (v) 72 yes
Sequence B6 dancing (vi) 79 yes
Sequence B7 punch (I) 65 yes
Sequence B8 punch (II) 75 yes
Sequence B9 kick (b) 70 yes
Sequence B10 kick (a) 79 yes
Sequence B11 kick + punch (C) 73 yes
Sequence B12 kick + punch (D) 74 yes
Sequence B13 kick + punch (B) 99 yes
Sequence B14 kick + punch (A) 97 yes

Table 4.6, whereN = 8, shows that the Näıve Bayes Classifier gave the highest number

of incorrectly classified instances (21.22%). For all of the other classifiers, the percentage

of instances that were correctly classified were above 93%. The C4.5 Gain Ratio Decision

Tree had similar results as the KNN algorithm when k >= 3. As the k value increased,

the percentage of correctly classified instances decreased. Nevertheless, the Manhattan

distance had the best results for every k value. The best of all of the results in Table 4.6

were with K = 1, primarily from using the Manhattan distance, with a 98.24% correct.

Most of the errors made by the classifier were from confusing dancing with punch and

kick + punch classes.

ConsideringN = 16 (Table 4.7), once more, the Näıve Bayes Classifier gave the highest

percentage of incorrectly classified instances, with 28.74%. For all the other classifications,

the incorrectly classified instances were less than 8%. The C4.5 Gain Ratio Decision Tree

had only similar results with k >= 7 considering the Manhattan and Euclidean distances.

If we consider only the values with the same value k, the Chebyshev distance gave the

worst results. On the other hand, the Manhattan distance gave the best results. We could

observe that the best results were obtained again with k = 1 and the Manhattan distance.

Again, increasing the value of k, the results become worse for all of the used distances.

The best percentage of correctness with N = 16 (98.84%) was slightly better than with

N = 8 (98.24%), when both used k = 1 and the Manhattan distance. The dancing class

was confused with the playing guitar, punch and kick + punch classes.

With N = 32, similar to with N = 8 and N = 16, the Näıve Bayes classifier gave the
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Table 4.5: Image sequence evaluation for Volunteer C.
Sequence Movement Number Tracking

Number of Images Until the End

Sequence C1 dancing (i) 48 yes
Sequence C2 dancing (iv) 69 yes
Sequence C3 dancing (iii) 45 yes
Sequence C4 dancing (ii) 54 yes
Sequence C5 dancing (v) 54 yes
Sequence C6 dancing (vi) 45 yes
Sequence C7 punch (I) 90 yes
Sequence C8 punch (II) 88 yes
Sequence C9 kick (b) 49 yes
Sequence C10 kick (a) 54 yes
Sequence C11 kick + punch (C) 90 yes
Sequence C12 kick + punch (D) 100 yes
Sequence C13 kick + punch (B) 85 yes

smallest percentage of correctly classified instances (76.17%). All of the other results had

more than 95% correctness on instances of classification. If we compare the C4.5 algorithm

with KNN (without the Chebyshev distance), we obtain similar results to when k >= 9.

The best results were with K = 1 but with the Euclidean distance (99.77%), which was

followed very closely by the Manhattan distance (99.72%). This result is even better than

the best result in Table 4.7. Most of the incorrectly classified instances occurred with

instances of dancing, punch and kick + punch. Table 4.8 shows the results for N = 32.

Table 4.9 shows the results with N = 64. As was expected, the Näıve Bayes had

22.98% incorrectly classified instances, followed by KNN with k = 11 and the Chebyshev

distance, which had 5.45% incorrect. All of the others gave more than 94% correctly

classified instances. The C4.5 algorithm had similar results with only KNN when k = 11.

Similar to the other best results, in Table 4.9, KNN with k = 1 gave the best results with

both distances, Manhattan and Euclidean, with exactly the same value, 99.81%. Because

the results are very close to 100% using N = 64, we could observe a relatively high number

of errors using Näıve Bayes, which gave errors in the classes dancing, punch and kick +

punch.

Until this point, we exposed the results, showing each table in an isolated way. How-

ever, we can observe additional results by comparing the tables with one another. All of

the algorithms had similar results while considering the same algorithm with different N

values. In all of the cases, the worst results came from the Näıve Bayes Classifier. The

C4.5 had similar results with KNN depending on the k value of each Table. Although the

results are very similar from one table to another, we can see that the results of the C4.5
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Table 4.6: Results for N = 8.
Classification with Grid 8 × 8 Correct* Incorrect**

C4.5 Gain Ratio Decision Tree 97.26% 2.74%
Näıve Bayes 78.78% 21.22%
KNN with K=1 and Manhattan Distance 98.24% 1.76%
KNN with K=1 and Chebyshev Distance 98.07% 1.93%
KNN with K=1 and Euclidean Distance 98.24% 1.76%
KNN with K=3 and Manhattan Distance 97.79% 2.21%
KNN with K=3 and Chebyshev Distance 97.01% 2.99%
KNN with K=3 and Euclidean Distance 97.66% 2.34%
KNN with K=5 and Manhattan Distance 96.89% 3.11%
KNN with K=5 and Chebyshev Distance 95.94% 4.06%
KNN with K=5 and Euclidean Distance 96.60% 3.40%
KNN with K=7 and Manhattan Distance 96.23% 3.77%
KNN with K=7 and Chebyshev Distance 94.22% 5.78%
KNN with K=7 and Euclidean Distance 95.99% 4.01%
KNN with K=9 and Manhattan Distance 95.94% 4.06%
KNN with K=9 and Chebyshev Distance 93.32% 6.68%
KNN with K=9 and Euclidean Distance 95.86% 4.14%
KNN with K=11 and Manhattan Distance 96.31% 3.69%
KNN with K=11 and Chebyshev Distance 93.20% 6.80%
KNN with K=11 and Euclidean Distance 96.15% 3.85%
*Correctly Classified Instances
**Incorrectly Classified Instances

algorithm and KNN become better when N becomes higher. Considering the distances,

in general, the Manhattan gave the best results if we compare the same k value in every

Table. The Euclidean distance gave very similar results to the Manhattan, and only once

the results from the Euclidean distance were better than the Manhattan distance. In all of

the KNN experiments, the Chebyshev distance gave a percentage of incorrectly classified

instances that was higher than for the other two considered distances.

Returning to the main goals of the experiments, we can conclude that:

1. With the exception of the Näıve Bayes, all of the other classifiers had at least 92%

of the instances classified correctly. With this result, we consider that the tested

classifiers can make correct predictions with different poses of the same class.

2. Even using three different users to build our data set, we had a high number of

instances correctly classified. Thus, we consider that the usage of different volunteers

in our experiments did not affect the results. Moreover, these results showed that

the use of the M5AIE method for body part detection and tracking works properly

in movements without self-occlusions. Further experiments should be performed
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Table 4.7: Results for N = 16.
Classification with Grid 16 × 16 Correct* Incorrect**

C4.5 Gain Ratio Decision Tree 97.39% 2.61%
Näıve Bayes 71.26% 28.74%
KNN with K=1 and Manhattan Distance 98.84% 1.16%
KNN with K=1 and Chebyshev Distance 98.31% 1.69%
KNN with K=1 and Euclidean Distance 98.79% 1.21%
KNN with K=3 and Manhattan Distance 98.36% 1.64%
KNN with K=3 and Chebyshev Distance 96.33% 3.67%
KNN with K=3 and Euclidean Distance 97.97% 2.03%
KNN with K=5 and Manhattan Distance 98.02% 1.98%
KNN with K=5 and Chebyshev Distance 95.60% 4.40%
KNN with K=5 and Euclidean Distance 97.58% 2.42%
KNN with K=7 and Manhattan Distance 97.39% 2.61%
KNN with K=7 and Chebyshev Distance 95.22% 4.78%
KNN with K=7 and Euclidean Distance 97.29% 2.71%
KNN with K=9 and Manhattan Distance 97.20% 2.80%
KNN with K=9 and Chebyshev Distance 94.30% 5.70%
KNN with K=9 and Euclidean Distance 96.86% 3.14%
KNN with K=11 and Manhattan Distance 96.47% 3.53%
KNN with K=11 and Chebyshev Distance 92.90% 7.10%
KNN with K=11 and Euclidean Distance 96.18% 3.82%
*Correctly Classified Instances
**Incorrectly Classified Instances

using dozens (or maybe hundreds) of volunteers to check whether the classification

models would be affected. If this results are similar with a much larger number of

volunteers, then the classification models are good for additional volunteers.

3. Because the results were improved with increasing values of N , the best results were

given with N = 64. However, if we continue to increase the value of N , the results

could be improved until a certain value. However, there is a possibility that, from a

certain value on, the results might not become any better or they even might start

to become worse. The last assumption is justified because the number of grids can

become so large that each pixel could occupy more than one cell in the grid. Again,

further experiments should be performed to find the exact value of N for which the

results obtain the best percentage of instances that are correctly classified.

4. The classification algorithm with the best results was the KNN algorithm with k = 1

while using the Manhattan distance.

As mentioned in 3, we believe that if we continue to increase the value of N , it could

improve the results even more until a certain limit value is obtained. From that limit
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Table 4.8: Results for N = 32.
Classification with Grid 32 × 32 Correct* Incorrect**

C4.5 Gain Ratio Decision Tree 98.59% 1.41%
Näıve Bayes 76.17% 23.83%
KNN with K=1 and Manhattan Distance 99.72% 0.28%
KNN with K=1 and Chebyshev Distance 99.58% 0.42%
KNN with K=1 and Euclidean Distance 99.77% 0.24%
KNN with K=3 and Manhattan Distance 99.39% 0.61%
KNN with K=3 and Chebyshev Distance 98.45% 1.55%
KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 99.34% 0.66%
KNN with K=5 and Chebyshev Distance 97.93% 2.07%
KNN with K=5 and Euclidean Distance 98.83% 1.17%
KNN with K=7 and Manhattan Distance 99.15% 0.85%
KNN with K=7 and Chebyshev Distance 97.32% 2.68%
KNN with K=7 and Euclidean Distance 98.64% 1.36%
KNN with K=9 and Manhattan Distance 98.73% 1.27%
KNN with K=9 and Chebyshev Distance 95.82% 4.18%
KNN with K=9 and Euclidean Distance 98.03% 1.97%
KNN with K=11 and Manhattan Distance 98.26% 1.74%
KNN with K=11 and Chebyshev Distance 95.21% 4.79%
KNN with K=11 and Euclidean Distance 97.37% 2.63%
*Correctly Classified Instances
**Incorrectly Classified Instances

value for N onward, the results could start to become worse. Perhaps if we normalized

the coordinates according to the bounding box instead of a grid divided into cells, we could

obtain the best results. We observed that, for all experiments with the KNN Classifier,

as the k value increased, the percentage of correctly classified instances decreased. This

happens because if we consider a high number of nearest points, we start to observe points

that are not so near to the considered point and the final result is affected of an amount

of very different points from the current point. Then, the best results came with k = 1,

in all the experiments of the KNN Classifier. We consider the KNN with k = 1 and the

Manhattan distance as the winning algorithm in our experiments.

According to the concept of each distance measure, our inference for why we ob-

tained the worst results using the Chebyshev distance is that this distance undervalues

the distance between the body parts in each frame and the classifier makes mistakes when

making its predictions. The Chebyshev distance gives the longest distance considering all

of the axis distances from point A to another point B. Then, the body parts can be closer

than they actually are to each other. However, the Manhattan and Euclidean distances

can be more realistic for human movements. This last assumption should be the reason
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Table 4.9: Results for N = 64.
Classification with Grid 64 × 64 Correct* Incorrect**

C4.5 Gain Ratio Decision Tree 98.54% 1.46%
Näıve Bayes 77.02% 22.98%
KNN with K=1 and Manhattan Distance 99.81% 0.19%
KNN with K=1 and Chebyshev Distance 99.62% 0.38%
KNN with K=1 and Euclidean Distance 99.81% 0.19%
KNN with K=3 and Manhattan Distance 99.62% 0.38%
KNN with K=3 and Chebyshev Distance 98.26% 1.74%
KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 99.44% 0.56%
KNN with K=5 and Chebyshev Distance 97.23% 2.77%
KNN with K=5 and Euclidean Distance 99.20% 0.80%
KNN with K=7 and Manhattan Distance 99.25% 0.75%
KNN with K=7 and Chebyshev Distance 96.76% 3.24%
KNN with K=7 and Euclidean Distance 98.92% 1.08%
KNN with K=9 and Manhattan Distance 99.01% 0.99%
KNN with K=9 and Chebyshev Distance 95.39% 4.61%
KNN with K=9 and Euclidean Distance 98.50% 1.50%
KNN with K=11 and Manhattan Distance 98.50% 1.50%
KNN with K=11 and Chebyshev Distance 94.55% 5.45%
KNN with K=11 and Euclidean Distance 97.84% 2.16%
*Correctly Classified Instances
**Incorrectly Classified Instances

for the best results for the Manhattan distance, and the Euclidean distance gives very

similar results in comparison to the Manhattan distance.

4.5 Discussion

We made a comparison among different classification algorithms in human pose recogni-

tion and the game context. In this work, we proposed and developed a detailed analysis

using our own pose detection and tracking method, called M5AIE, while using different

algorithms: the C4.5 Gain Ratio Decision Tree [32], Näıve Bayes Classifier [33] and K-

Nearest Neighbor (KNN) Classifier [34]. The selected pose classes were inspired by the

Jecripe game [17] and we added three more poses in our experiments.

In the experiments with categorical attributes, the C4.5 and Näıve Bayes worked well,

judging by the fact that they correctly classified more than 97% of the instances. This

result shows that the output of the tracking and labeling stages produces qualified tuples

that can be used with the adopted classification techniques. This result also provided

the decision to continue to make more experiments with classifiers. Additionally, we are
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convinced that the used classifiers are suitable for pose classification purposes.

In the experiments with numerical attributes, we used three volunteers that had very

different biotypes to collect the pose sequences with variations in the numbers of images

and poses. In addition to the different classification algorithms, we tested three types

of distances: Manhattan, Chebyshev and Euclidean. In all the experiments with the

KNN Classifier, as the k value increased, the percentage of correctly classified instances

decreased. This happens because if we consider a high number of nearest points, we start

to observe very different points that could be far away from the considered point and

they affect the final result. We consider KNN with k = 1 and the Manhattan distance

as the winner because it provided the best results in all of the experiments. We believe

that the coordinates of the five main body parts can be normalized in the bounding box

because, in our experiments, as long as we increased the division of the used grid (8, 16,

32 and 64), the results became better. However, we also believe that there is a limit when

dividing the grid. Further experiments should be performed to find the value for which

the division does not make sense anymore. Additionally, further experiments should be

performed to prove that normalized coordinates could be a good choice in the usage of a

bounding box for cell definition. We presented the results of this chapter in [71].



Chapter 5

Conclusions and Future Directions

The focus of this thesis is on Computer Vision and Digital Games research. In fact, the pri-

mary motivation for this work is to contribute research that makes it easier to implement

different concepts in Natural User Interfaces. Since the beginning of the development of

the Jecripe game [17], there was the intention to stimulate the movements of children with

Down syndrome throght NUI [18]. However, it was not possible to integrate the presented

method for human body part detection, tracking and human pose classification with the

aforementioned game. We presented several studies that are related to each of the chal-

lenges that we had to address. The first challenge that we addressed was the background

subtraction task. We presented a study in which we described a comparison among four

different background subtraction algorithms. This study included adaptations on three

methods that were not developed to address depth information. This study motivated us

to use the Minimum Background algorithm and we published this work in [41].

This thesis describes the M5AIE method for detecting and tracking five main parts

of the human body (head, hands and feet) in sequences of RGB-D images. The proposed

approach combines an effective background subtraction method, the discrete medial axis

transformation, in the construction of simpler graphs to be used in the detection of AGEX

points, heuristics for labeling, and ASIFT-based tracking of labeled structures.

The proposed M5AIE algorithm was implemented in proof-of-concept programs. We

did not consider the computational load of this specific implementation to be a funda-

mental requirement because the main goal in the experiments was to assert the possibility

of using a hybrid technique for body part detection, tracking and pose classification. The

bottleneck for real-time results computing the Medial Axis and the ASIFT algorithm.

Pinto and Freitas [67] showed real-time results for the Medial Axis Transform. In 2013,

Chiu et al. [68] presented a fast SIFT design for real-time visual feature extraction. Be-
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cause ASIFT depends on the SIFT results, we believe that the M5AIE can be efficiently

implemented and used as part of real-time tracking solutions that are applied to games.

To prove that the M5AIE method is effective, including on the human pose prediction

task, we made a comparison among the classification algorithms when applied to human

pose recognition in the game context. In this study, we proposed and developed a de-

tailed analysis using the M5AIE with different algorithms: the C4.5 Gain Ratio Decision

Tree [32], Näıve Bayes Classifier [33] and K-Nearest Neighbor (KNN) Classifier [34]. We

used three volunteers with very different biotypes to collect the pose sequences, using

variations in the numbers of images and poses. In addition to the different classification

algorithms, we tested three types of distances: Manhattan, Chebyshev and Euclidean.

We consider KNN with k = 1 and the Manhattan distance to be the winner because it

provided the best results in all of the experiments. We believe that the coordinates of the

five main body parts can be normalized in the bounding box because, in our experiments,

as long as we increased the division of the used grid (8, 16, 32 and 64), the results im-

proved. However, we also believe that there is a limit on dividing the grid. We presented

the study of the classification algorithms in [71].

We believe that the contributions of this work are as follows:

• A comparison among different background subtraction algorithms;

• The combination of the AGEX and ASIFT methods using aligned RGB and depth

images for labeling five major defined body parts (hands, feet and head);

• Tracking each of the body parts using an adapted ASIFT matching algorithm;

• Description of how different classification algorithms can be used in human pose

classification in the digital games context; and

• A comparative analysis of three classification algorithms in human pose classifica-

tion.

5.1 Future Work

Concerning the background subtraction task, we identified some open questions for future

work in this area. Scenarios with a moving Kinect or a dynamic background require more

sophisticated algorithms. Examples of dynamic background include moving trees and

moving background (the window of a train, for instance).
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Future work will also include the application of the M5AIE method with a partial

occlusion treatment between two users and the use and comparison of more classifiers for

pose recognition with multiple subjects. The occlusion treatment is a very large challenge

in Computer Vision. The solution of self-occlusions and occlusions between two or more

people could change research in human-computer interaction, digital games and several

other research areas.

With regards to the classification study, further experiments should be performed to

determine the N value (which divides a bounding box), whose division is no longer logical.

Additionally, further experiments should be performed to demonstrate that normalized

coordinates could be a good choice in using a bounding box for cell definition. Moreover,

further experiments should be performed using dozens (or maybe hundreds) of volunteers

to check if the classification models would be affected. If the results using considerably

more volunteers are similar to our experiments, then the classification models are good

and are independent of the number of volunteers.

Returning to the considerations of games research, an important contribution involves

the integration of the M5AIE method into digital games. This integration could provide

more studies with disabled people, including rehabilitation and health care contributions.

More contributions are possible on e-learning and human-computer interaction. This

study is the first study of several projects that will include NUI to help people with

different profiles.
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