
Universidade Federal Fluminense

Diego Passos

Flow-Based Interference-Aware Routing in

Multihop Wireless Networks

NITERÓI

2013

Universidade Federal Fluminense

Diego Passos

Flow-Based Interference-Aware Routing in

Multihop Wireless Networks

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.

Advisor:

Prof. Célio Albuquerque, Ph.D.

NITERÓI

2013

Flow-Based Interference-Aware Routing in Multihop Wireless Networks

Diego Passos

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial fulfillment of the require-

ments for the degree of Doctor of Science.

Aproved by:

Prof. Célio Albuquerque, Ph.D. / IC-UFF (Advisor)

Prof. Artur Ziviani, Ph.D. / LNCC

Profa. Débora Christina Muchaluat Saade, D.Sc. / IC-UFF

Prof. José Ferreira de Rezende, Ph.D / COPPE-UFRJ

Profa. Lúcia Maria de Assumpção Drummond, D.Sc. /

IC-UFF

Niterói, September 19th 2013.

I firmly believe that any man’s finest hour,

the greatest fulfillment of all that he holds

dear, is that moment when he has worked his

heart out in a good cause and lies exhausted

on the field of battle – victorious.

(Vince Lombardi)

To my parents, Rubem and Rita, and my wife, Fernanda.

Acknowledgments

This thesis would not be possible without the assistance and support of a number

of individuals and institutions. Although there are far too many to cite individually, I

believe some special thanks are due.

First and foremost, I would like to thank my family. My father, Rubem, is my role

model, my primary reference for honesty, hard work, and dedication. He is possibly the

proudest person for this work, and rightfully so: he taught me to persevere and thrive

during difficult times, an essential skill during the past four years. My mother, Rita,

is the sweetest person I know: someone who is always available to provide comforting

words, to help, and to take care. Together and with a lot of effort, they provided me

with everything I needed to pursue my dreams: financial support, education, freedom,

and love. I also would like to thank my sister, Thais, whom I could not visit during all

these years. And finally my wife, Fernanda, who always supports me, even in my worst

days.

I would like to thank all the professors at IC-UFF for sharing their vast knowledge, not

only through their classes, but also on a daily basis. Special thanks are due to Professor

Célio Albuquerque, who has been my advisor for the past eight years and whom I look

up to as a researcher and a lecturer.

I also would like to thank the members of Laboratório MidiaCom, students, employees,

and professors, for the support, the infra-structure, the companionship, and the advices.

Specially, I would like to thank Marister Outão, Joacir Silva, and Helga Balbi, for always

being willing to help without asking for anything in return. I would like to thank Clayton

Reis, a good friend who could always make me laugh, even during the most stressful days.

Finally, I would like to thank Professors Ricardo Carrano and Juliano Kazienko, with

whom I could share this experience of being a graduate student. They both provided me

with uncountable hours of technical and philosophical input for this thesis, as well as for

the academic life in general.

Finally, I would like to acknowledge CAPES for the scholarship that provided the

financial support without which this thesis would have been impossible.

Resumo

Redes sem fio de múltiplos saltos são empregadas em vários tipos de cenários e ambientes.

Elas são utilizadas em redes móveis, redes de acesso em locais sem infra-estrutura prévia

e redes de sensores. Um dos mecanismos de maior importância neste tipo de rede é o

roteamento, devido à posśıvel existência de múltiplos caminhos entre quaisquer dois nós

da rede. No entanto, diferentemente do que ocorre nas redes cabeadas, a qualidade de um

caminho não é dependente apenas das qualidades individuais dos enlaces que o compõem

e do estado das filas dos nós intermediários. Dada a natureza de difusão do meio sem fio,

o desempenho de um caminho pode ser afetado pelo uso de outros enlaces, o que introduz

mais complexidade ao problema de encontrar rotas ótimas. Este fenômeno, no qual o

desempenho de um enlace ou caminho é afetado pelo uso simultâneo de outros enlaces, é

conhecido como auto-interferência.

Uma técnica já estudada na literatura que tem o potencial de mitigar os efeitos da

auto-interferência é a codificação de rede. Através desta técnica, nós da rede podem

combinar pacotes distintos em uma única mensagem de tamanho similar, reduzindo o

número de transmissões necessárias para uma dada comunicação.

O objetivo desta tese é estudar o problema da auto-interferência do ponto de vista da

seleção de rotas em redes sem fio de múltiplos saltos. Especificamente, esta tese introduz

um novo método de seleção de rotas que leva em consideração a auto-interferência entre

os fluxos de rede, bem como a possibilidade de utilizar codificação de rede para mitigar

este problema. Diferentemente de outras propostas encontradas na literatura, este método

utiliza uma abordagem nova que emprega uma visão global dos fluxos de rede, em oposição

aos algoritmos de seleção de rotas tradicionais que analisam fluxos separadamente.

O método proposto foi implementado tanto em um ambiente simulado, quanto em

ambiente real. Experimentos conduzidos no ambiente simulado demonstram a capacidade

do mecanismo de encontrar conjuntos de rotas alternativos que resultam em ganhos de até

90% em termos de vazão agregada. Por outro lado, os testes no ambiente real mostram

a viabilidade da proposta na prática, mesmo quando implementada em equipamentos de

prateleira com severas restrições de processamento e armazenamento.

Palavras-Chave

1. Roteamento.

2. Redes Sem Fio de Múltiplos Saltos.

3. Interferência.

4. Codificação de Rede.

Abstract

Multihop wireless networks are employed in a wide range of scenarios and environments.

They are used for mobile networks, ad hoc wireless access networks, and sensor networks.

Routing is a core function in this kind of network due to the possible existence of multiple

paths between any pair of nodes. Differently from wired networks, though, the quality of a

path is not determined only by the individual links’ qualities and the state of intermediate

nodes’ buffers. Given the shared nature of the wireless medium, the performance of a path

may be affected by the usage of other links, further complicating the problem of finding

the optimal routes. This phenomenon, in which the performance of a link or path is

affected by the simultaneous usage of other links, is known as self interference.

A technique that has already been studied in the literature and has the potential to

mitigate self interference is network coding. Through the employment of this technique,

network nodes can combine distinct packets into a single message of similar size, reducing

the number of transmissions required to establish a certain communication.

The goal of this thesis is to study the self interference problem from the standpoint

of route selection in multihop wireless networks. Specifically, this thesis introduces a

novel method for selecting routes that takes into account the self interference between

network flows, as well as the possibility of employing network coding to mitigate this

issue. Differently from other proposals found in the literature, this method employs an

approach that uses a global view of the network flows, in contrast with the traditional

route selection algorithms that analyze each flow separately.

The proposed method was implemented in both simulated and real environments. Ex-

periments on simulated environments demonstrate the ability of our mechanism to finding

alternative path sets that result in gains up to 90% in terms of aggregated throughput. On

the other hand, tests on the real environment show that the method is viable in practice,

even when implemented on off-the-shelf equipment with severe processing and memory

constraints.

Keywords

1. Routing.

2. Multihop Wireless Networks.

3. Interference.

4. Network Coding.

Acronyms

ACK : Acknoledgement

AL : Activity Level

AODV : Adhoc On-demand Distance Vector

ARQ : Automatic Repeat Request

BSSID : Basic Service Set Identifier

CBR : Constant Bit Rate

CPTT : Coding-aware Path Transmission Time

CRM : Coding-aware Routing Metric

CSMA/CA : Carrier Sense Multiple Access with Collision Avoidance

CTS : Clear To Send

DCAR : Distributed Coding-Aware Routing

DSDV : Destination Sequenced Distance Vector

DSR : Dynamic Source Routing

ETX : Expected Transmission Count

EWMA : Exponentially Weighted Moving Average

HLCR : Heuristic Load-balanced Coding-aware Routing

HOP : Hop Count

IAR : Interference-Aware Routing

ICAR : Interference and Coding-Aware Routing

IEEE : Institute of Electrical and Electronics Engineers

IRU : Interference-aware Resource Usage

MAC : Medium Access Control

MARA : Metric Aware Rate Adaptation

MARIA : Mesh Admission control and qos Routing with Interference Awareness

ML : Minimum Loss

MPR : MultiPoint Relay

MTU : Maximum Transmission Unit

ns-2 : Network Simulator 2

OLSR : Optimized Link State Routing

Acronyms x

QoS : Quality of Service

RREP : Route Reply

RREQ : Route Request

RTS : Request To Send

SINR : Signal to Interference plus Noise Ratio

SNR : Signal to Noise Ratio

SLSP : Simple Link State Protocol

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

XOR : Exclusive Bitwise OR

WCETT : Weighted Cumulative Expected Transmission Time

WETCC : Weighted Expected Transmission Count with Coding

Contents

List of Figures xv

List of Tables xix

List of Algorithms xx

1 Introduction 1

1.1 Conventions and Formal Problem Description 7

1.2 Text Outline . 9

2 Related Work 11

2.1 Traditional Routing . 11

2.2 Interference Aware Routing . 17

2.2.1 Theoretical Results . 17

2.2.2 Practical Proposals . 19

2.2.2.1 Multi-radio Networks . 19

2.2.2.2 Single Radio Networks . 22

2.3 Coding Aware Routing . 25

2.3.1 Applications of Network Coding . 27

2.3.1.1 Unicast Flows . 27

2.3.1.2 Multihop Wireless Networks 28

2.3.2 Coding Aware Routing Protocols and Metrics 34

2.3.2.1 Opportunistic Routing . 42

Contents xii

2.4 Discussion . 46

3 Proposed Routing Algorithm 49

3.1 Link State versus Distance Vector . 50

3.2 Aggregated Throughput Estimation Function 52

3.2.1 Conflict Graph and Link Blocking 59

3.2.2 Medium Access Priorities . 62

3.2.3 Link Transmission Delay . 65

3.2.4 Steady State Cycle Detection . 66

3.2.4.1 Limited versus Unlimited Buffers 72

3.2.4.2 Throughput and Packet Loss 75

3.2.5 Adding Network Coding to the Model 76

3.2.6 Asymptotic Complexity Analysis 79

3.2.7 Optimizations and Heuristic Stop Criteria 81

3.3 Candidate Generation Method . 84

3.3.1 Heuristic Candidate Generation . 85

4 Practical Aspects 91

4.1 Flow Detection . 91

4.1.1 Initial Routes for New Flows . 92

4.2 Coded Packet Transmission Methods . 93

4.2.1 Methods Found on the Literature 94

4.2.2 Deterministic Pseudo-Broadcast . 95

4.2.3 Experimental Evaluation . 96

4.2.4 Consequences for the Route Evaluation Algorithm 99

4.3 Collision Probability for Probe Packets . 100

4.3.1 Proposed Method . 101

Contents xiii

4.3.2 Discussion on the Precision of the Method 104

4.4 Delayed Execution of the Route Selection Algorithm 106

5 Performance Evaluation 108

5.1 Simulations . 110

5.1.1 Basic Scenarios . 111

5.1.1.1 Pro-Interference Scenario 111

5.1.1.2 Pro-Coding Scenario . 118

5.1.1.3 Grid Scenario . 125

5.1.2 Generic Scenarios . 131

5.1.2.1 Unidirectional CBR Flows 133

5.1.2.2 Symmetric Bidirectional CBR Flows 137

5.1.3 Asymmetric CBR Flows . 140

5.1.4 TCP Streams . 144

5.1.4.1 Unidirectional TCP Streams 145

5.1.4.2 Bidirectional TCP Streams 145

5.1.5 Impact of Imprecise Link Quality Estimates 152

5.2 Real Testbed . 156

6 Conclusion 162

6.1 Future Work . 164

Appendix A -- Packet Losses Under Heavy Loads 167

A.1 Experimental Analysis . 168

A.1.1 First Experiment: Routing Protocol 168

A.1.2 Second Experiment: Generic Client-Server Application 171

A.1.3 Third Experiment: Unicast Frames 172

A.1.4 Fourth Experiment: Probability Drop vs. Network Load 174

Contents xiv

A.1.5 Fifth Experiment: Infra-Structured Mode 175

A.1.6 Collisions at the Sniffer vs. Collisions at Node a 176

A.2 Discussion . 179

Appendix B -- Joint Reception Probability Estimation 181

B.1 Experimental Evidences . 183

B.2 Estimating Joint Probabilities . 185

References 187

List of Figures

1.1 Example of self interference in a multihop wireless network 2

1.2 Example of self interference affecting path evaluation 3

1.3 Example of network coding in a multihop wireless network 4

2.1 Example of the difference between choices made by IRU and ETT 23

2.2 Maximum flow between a source node and a single destination in the But-

terfly Network . 26

2.3 Maximum flows achieved in the Butterfly Network with and without net-

work coding. 27

2.4 Examples of wireless network scenarios with coding opportunities. 29

2.5 Example of a topology that may favor opportunistic routing. 42

3.1 Proposed workflow for the execution of the link state routing protocol used

with IAR and ICAR. 51

3.2 Examples of scenarios that help illustrating the definitions related to the

steady state of a simulation . 52

3.3 Example of a simple scenario that illustrates the problem of priority inversion. 64

3.4 Example of the simulation of a simple scenario with three flows 67

3.5 Example of a simulation with unlimited buffers 72

4.1 Topology of the wireless mesh network used in the experiments. 96

4.2 Comparison results for the three mechanisms for transmitting coded packets 98

4.3 Example of node distribution that can lead the collision probability adjust-

ment method to underestimate the collision probability 105

5.1 Architecture used for implementing COPE in the real testbed 110

5.2 Representation of the Pro-Interference Scenario 112

List of Figures xvi

5.3 Aggregated throughput in the Pro-Interference Scenario without network

coding . 113

5.4 Route selection in the Pro-Interference Scenario without coding 114

5.5 Causes of packet losses in the Pro-Interference Scenario without network

coding . 115

5.6 Average delay in the Pro-Interference Scenario without network coding . . 116

5.7 Aggregated throughput in the Pro-Interference Scenario with coding using

Simple Broadcast . 117

5.8 Route selection in the Pro-Interference Scenario with network coding using

Simple Broadcast . 118

5.9 Causes of packet losses in the Pro-Interference Scenario with network cod-

ing using Simple Broadcast . 119

5.10 Average delay in the Pro-Interference Scenario with network coding using

Simple Broadcast . 119

5.11 Representation of the Pro-Coding Scenario 120

5.12 Aggregated throughput in the Pro-Coding Scenario 121

5.13 Representation of the Grid Scenario . 125

5.14 Aggregated throughput in the Grid Scenario with and without network

coding . 128

5.15 Comparison of IAR with and without the probability adjustment 129

5.16 Random Topology I . 130

5.17 Random Topology II . 132

5.18 Aggregated throughput in the Random Topology I with unidirectional CBR

flows . 133

5.19 Aggregated throughput vs. time in the Random Topology I with unidirec-

tional CBR flows . 134

5.20 Aggregated throughput in Random Topology II for the symmetric bidirec-

tional CBR flow 9⇔ 24 . 137

List of Figures xvii

5.21 Comparison between IAR and ETX in the Random Topology II with an

asymmetric unidirectional flow . 141

5.22 Comparison between IAR, ETX, and ML in the Pro-Coding Scenario with

asymmetric flows . 143

5.23 Comparison between the reasons for frame losses in the Pro-Interference

Scenario with CBR flows and TCP streams 147

5.24 Aggregated throughput as a function of the transmission rate for each CBR

flow in the Pro-Interference Scenario . 148

5.25 Aggregated load generated by TCP in the Pro-Interference Scenario with

a bidirectional stream . 149

5.26 Aggregated throughput as a function of the number of TCP streams in

each direction in the Pro-Interference Scenario 150

5.27 Percentage of segments dropped due to buffer overflow as a function of the

number of TCP streams in each direction in the Pro-Interference Scenario . 151

5.28 Percentage gains obtained by SIAR with respect to the results obtained by

IAR in the same scenarios . 154

5.29 Comparison between IAR, ICAR, SIAR, and SICAR in the Pro-Coding

Scenario . 155

5.30 Node distribution in the real testbed representation of the Pro-Interference

Scenario. 156

5.31 Comparison between IAR and ETX in the real testbed representation of

the Pro-Interference Scenario. 158

5.32 Comparison between the route choices made by IAR and ETX in the real

testbed representation of the Pro-Interference Scenario 159

A.1 Scenario used as a testbed for the first set of experiments. 169

A.2 Delivery probabilities reported by the sniffer and by OLSR in the direction

a→ b. 170

A.3 Delivery probabilities reported by the sniffer and by OLSR in the direction

b→ a. 171

List of Figures xviii

A.4 Evolution of the delivery probability estimated by node a of the link b→ a

as a function of time in the second experiment. 172

A.5 Average values of the delivery probability of the link b→ a for each round

of the experiment, with and without concurrent traffic. 173

A.6 Estimate of delivery probability for nodes a and b from the sniffer point of

view during the third experiment. 174

A.7 Evolution of the delivery probability of the link b → a as a function time

with varying transmission load at node a. 175

A.8 Average delivery probability of the link b→ a for each different transmis-

sion load for node a. 176

A.9 Average delivery probability of the link b→ a as a function of time in the

fifth experiment. 177

B.1 Example of interference sources affecting nodes of a wireless network 182

List of Tables

5.1 Configuration Parameters for SLSP . 109

5.2 Propagation parameters used for all simulation scenarios. 111

5.3 Most frequent routes in the Pro-Coding Scenario 122

5.4 Breakdown of throughputs for individual flows in the Pro-Coding Scenario 123

5.5 Most frequent path sets in the Grid Scenario 127

5.6 Most frequent path sets selected in the Random Topology I with unidirec-

tional CBR flows . 135

5.7 Breakdown of throughputs for individual flows in the Random Topology I

with unidirectional CBR flows . 136

5.8 Most frequent path sets selected in the Random Scenario II for symmetric

bidirectional flow 9⇔ 24 . 139

5.9 Breakdown of throughputs for each direction in the Random Topology II

with symmetric bidirectional flow 9⇔ 24 140

5.10 Aggregated throughput in Pro-Interference Scenario with a single unidirec-

tional TCP stream . 145

5.11 Aggregated throughput in Pro-Interference Scenario with a bidirectional

TCP stream . 146

5.12 Breakdown of the reasons for losses in Pro-Interference Scenario with a

bidirectional TCP stream . 146

5.13 Static routes chosen by SIAR and SICAR for each scenario 153

A.1 Distribution of the causes for packet losses by node a 178

B.1 Estimates for the joint probabilities, for pairs of receivers, obtained in the

experiments . 185

List of Algorithms

2.1 Packet selection algorithm in the COPE architecture 32

3.1 Framework for the proposed route selection algorithms. 50

3.2 Macro vision of the aggregated throughput estimation function. 57

3.3 Procedure that builds a conflict graph for a network. 60

3.4 Procedure that chooses which nodes can use the wireless medium at a given

moment. 63

3.5 Brute force approach to function GenerateCandidates. 85

3.6 Overview of the Perturbation Heuristic candidate generation procedure. . . 86

3.7 Pseudocode of the PerturbationHeuristicNonCoding function. 89

3.8 Pseudocode of the PerturbationHeuristicCoding function. 90

A.1 Algorithm used to classify the types of losses 178

Chapter 1

Introduction

Multihop wireless networks have motivated research interest for at least 37 years [33].

Due to their capacity of covering large areas and the possibility of being deployed in

regions without much previous infrastructure, those networks are employed by a number

of different applications. This flexibility resulted in the creation of many specialized

variations, such as Wireless Mesh Networks [4], Mobile Ad Hoc Networks [85] and Wireless

Sensor Networks [2].

One of the core issues in multihop wireless networks is the problem of routing [4].

In this kind of network, routing poses a number of challenges, including the evaluation

of link quality [17], the reduction of inter-flow interference [90], and the reduction of the

control traffic overhead [80]. Given the possibility of an exponential number of paths

between a given pair of nodes (with respect to the number of nodes in the network) and

the variability of quality among these paths, routing decisions have a deep influence in

network performance [4, 2, 3, 5].

One of the characteristics that most differentiate the problem of routing in multihop

wireless networks from its counterpart in wired networks is the possibility of nodes inter-

fering with one another. Due to the broadcast nature of the wireless medium, whenever

a node transmits a frame, it effectively acts as an interference source for any other com-

munication attempt within its interference radius, i.e., the region within which the signal

generated by this node is still strong enough to disrupt another transmission or reception.

Consider, for example, the situation depicted in Figure 1.1. Suppose the interference

radius for node 0 is delimited by the dashed circumference. While node 0 transmits a

frame to node 2, node 5 cannot transmit to node 1, because both signals would be mixed,

making node 1 unable to decode the desired frame. Moreover, if a carrier sense based

protocol is employed at the MAC layer, a transmission from node 1 to node 5 would not

be possible as well, since node 1 would detect the ongoing transmission and would wait

1 Introduction 2

0

1

2

5

3

4

Interference

Radius

P0

Figure 1.1: Example of a situation in which the usage of a link can affect other links of a
multihop wireless network. While node 0 transmits packet P0 to node 2, node 1, within
the interference radius, cannot receive or transmit packets.

until the medium becomes idle again. Effectively, the usage of link 0 → 2 conflicts with

both links 5→ 1 (both packets would collide at node 1) and 1→ 5 (node 1 would detect

the ongoing transmission and would defer its own transmission), i.e., these links cannot

be used simultaneously.

The previous example illustrates the generic phenomenon of a link (or node) interfering

with others in the same network, hereinafter referred to as self interference1. Depending

on the specific case, however, one may categorize this self interference as either an intra-

flow interference or an inter-flow interference. The intra-flow interference happens when

the usage of a certain link prevents the usage of one or more other links along the same

path (for a given flow). The inter-flow interference is characterized by the usage of a link

preventing the usage of one or more links on other paths.

In any case, the existence of self interference in multihop wireless networks can com-

plicate the evaluation of the performance of a given path by a routing protocol. Consider,

for instance, the situation depicted in Figure 1.2. The figure shows two disjoint paths con-

necting nodes 0 and 4, and nodes 5 and 9. The weight shown for each arrow represents

the average total delay for a frame to be successfully transmitted through each link in

milliseconds (estimated by a routing metric). The figure also shows the spacing between

nodes. If we assume the interference radius of each node to be 10 meters, it is possible

to conclude that nodes from Path 1 interfere with other nodes from the same path, as

well as with nodes from Path 2. Under these circumstances, we would like to quantify

the quality of each path. Since the individual link delays are available (as discussed on

1Notice that some authors use this term to refer only to the case in which the usage of a link conflicts
with the usage of another hop in the same path, such as in [15]. In this thesis, we opted for using this
term in a broader sense, while using the terms intra-flow interference and inter-flow interference for the
more specific cases.

1 Introduction 3

0 1 2 3 4

5 7 8 9

5 m 5 m 5 m 5 m

3 m

6

Path 1 Path 2

5 2 6 1

4 3 2 2

Figure 1.2: Example of a situation in which self interference affects the evaluation of
the quality of a path. Once we acknowledge the existence of flows in both paths, the
performance of each path may not be the same as it would if only individual flows were
considered. Even in the case of a single flow, it is difficult to exactly quantify the quality
of a path due to the possibility of intra-flow interference.

Chapter 2, it is possible to estimate this information in practice), one could try to use

the average end-to-end delay as a metric for this task.

A first simple approach would be to simply sum the weights of all links for each

path, to which one would obtain the values of 11 ms and 14 ms for Paths 1 and 2,

respectively. Notice, however, that link 5 → 6 cannot be used simultaneously with link

0→ 1. Therefore, if two packets 2 are generated at the same time by the flows on paths

1 and 2, one of them would have to gain exclusive access to the medium, leading the

other packet to wait its turn. For this reason, if one analyzes this situation considering

that both paths will transmit packets concurrently, the resultant end-to-end delay must

be higher than in the case in which paths are considered individually.

But even if one chooses to consider each flow in this example individually, this eval-

uation still poses further challenges. If we consider a single packet flowing through the

nodes of Path 1, its expected end-to-end delay will, indeed, be 11 ms (the sum of the indi-

vidual link delays), disregarding eventual processing delays within each node. In terms of

throughput, by looking only at the first packet of the flow, the average during that span

is of 1/11 ≈ 0.09 packets per millisecond. But by analyzing this same path considering

now the existence of multiple packets for this flow backlogged at node 0, the conclusion

changes. After the first packet reaches node 1, there will be a dispute for the wireless

medium because links 0 → 1 (needed by the second packet) and 1 → 2 (needed by the

first packet) cannot be used simultaneously. Assume that, somehow, packet 1 always has

priority over packet 2. Under these conditions, packet 1 will be transmitted to node 2,

2In this thesis, we employ the term frame in the context of transmissions at the link layer, while the
term packet is used in all other contexts.

1 Introduction 4

0 1 2

(a) Without network coding

0 1 2

(b) With network coding

Figure 1.3: Example of a scenario in which a simple network coding strategy may yield
considerable gains. In this example throughput can be increased by 25% under ideal
conditions.

while packet 2 still waits its turn on node 0. After another dispute for the usage of the

wireless medium (notice that link 0 → 1 cannot be used while node 2 is transmitting),

packet 1 reaches node 3 at time t = 9 ms. At that moment, it is finally possible for

packet 2 to be transmitted because links 0 → 1 and 3 → 4 do not interfere with each

other. After two more milliseconds, at time t = 11 ms, packet 1 is delivered, at which

point packet 2 is still being transmitted. Notice, however, that there are only 2 ms re-

maining for packet 2 to arrive at node 1. Assuming packet 2 has priority over packet 3,

it will require only 2 + 3 + 2 + 2 = 9 ms to be delivered for its final destination after

the first packet has been delivered. By extending this procedure to the next packets of

the flow, it is possible to conclude that the moments of arrival for each packet will be

t = 11, 20, 29, 38, 47, As the number of sent packets increases, the average throughput

also increases, asymptotically approaching 1/9 ≈ 0.11 packets per millisecond.

Another issue that can further add complexity to the process of evaluating the per-

formance of multiple paths in a multihop wireless network is network coding. Network

coding is a new routing paradigm first proposed by Ahlswede et al. [1]. The traditional

routing paradigm defines that the forwarding process consists in replicating a packet re-

ceived through an input link to one or more output links. However, except for eventual

changes in some control fields in the lower layers, packets’ contents are never altered. Net-

work coding, on the other hand, allows packets to be altered in order to improve network

performance. Specifically, under the paradigm of network coding, two or more packets

in an intermediate node’s buffer can be combined resulting in a single message, called a

coded packet (as opposed to native packets, which are the original non-coded packets).

The coded packet, which has roughly the same size as its correspondent native packets,

is then transmitted through one or more links, so that it can be eventually received by

the destinations of the original native packets. Assuming some given conditions are met,

1 Introduction 5

these destinations are able to decode the packet, thus retrieving their correspondent native

packets.

In order to combine native packets into a coded one, it is necessary to use a prede-

termined code, i.e., an operation to be performed over the native packets that can be

uniquely reversed provided that the necessary parameters are available. One common

such operation is the XOR (Exclusive Bitwise Or). Figure 1.3 illustrates how this opera-

tion can be employed in order to improve the performance of a specific scenario. In this

scenario, nodes 0 and 2 exchange packets through node 1. Suppose in a given moment,

both nodes 0 and 2 have packets in their buffers to be transmitted (respectively, packets

P1 and P0). Links 0→ 1 and 2→ 1 cannot be used simultaneously. Therefore, one of the

packets gets to be transmitted first (say packet P0), while the other is transmitted later.

Suppose that the scheduling in which the transmissions occur is such that, after the first

two transmissions, node 1 has both P0 and P1 in its buffer. At this point, if the network

does not employ network coding, each packet will have to be sent separately, as shown by

Figure 1.3a, resulting in a total of 4 transmissions. However, if the network is capable of

performing network coding, node 1 can compute a new coded packet Pc = P0⊕P1, i.e., a

combination of both native packets. As shown in Figure 1.3b, Pc is transmitted to both

nodes 0 and 2, which can be done in a single transmission given the broadcast nature

of the wireless medium. Once node 0 receives Pc, it can obtain P0 by simply computing

P0 = Pc⊕P1 (assuming it still has P1 stored in its memory). Likewise, node 2 can retrieve

P1, provided P0 is still known.

In the previous example, the number of transmissions required to complete the bidi-

rectional communication between nodes 0 and 2 drops from 4 to 3 with the usage of

network coding, a gain of 25% in terms of aggregated throughput, assuming all transmis-

sions take the same amount of time. Although the feasibility of network coding depends

on a number of aspects (e.g., the availability of useful packets in a node’s buffer and the

capability of the receiving nodes to decode coded packets), there are already in the liter-

ature methods that dynamically detect cases that fulfill the necessary conditions (called

Coding Opportunities) and combine packets accordingly [56].

Notice that there is a connection between network coding and the problem of inter-

flow interference in multihop wireless networks. In the scenario depicted in Figure 1.3a, for

example, individually, each flow has an end-to-end delay equivalent to two transmissions.

However, the two paths are completely interfering, which results in a lack of opportuni-

ties for parallel transmissions. Ultimately, this lack of parallelism leads to an aggregated

1 Introduction 6

throughput 50% lower than would be obtained if those two paths were completely inde-

pendent. By using network coding, it is possible to mitigate this issue by “transforming”

links 1 → 0 and 1 → 2 (which interfere with each other) in a single link, thus reducing

the level of interference both paths produce on each other.

This leads to the interesting question of whether a coding-aware routing protocol —

i.e., a protocol that is aware of the coding capabilities of the network — could provide

performance gains by proactively routing flows through paths that result in network coding

opportunities in order to reduce inter-flow interference. In fact, there are already proposals

of full routing protocols that try to achieve such gains [30, 58, 61, 87, 88, 101].

One shortcoming of these proposals, though, is that they do not integrate network

coding with other resources to reduce self interference (such as simply separating flows).

This reduces the scope of the achievable gains, since those proposals have limited re-

sources to reroute flows in order to avoid interference, as will be shown in greater detail

throughout this thesis. On the other hand, there is a group of proposals that do not take

network coding into consideration and instead explores only the possibility of choosing

less interfering paths by further separating flows. Besides not considering network cod-

ing as a valuable tool for avoiding inter-flow interference, many of those proposals are

based on complex models which are infeasible in practice (such as models based on linear

programming [10]), due to the time constraints involved in computing routes on such

networks. Other more practical proposals exist, but they employ traditional path finding

algorithms that cannot properly handle the effects that flows have on one another.

The goal of this thesis is, therefore, to tackle the problem of route selection in multihop

wireless networks taking into consideration the issue of self interference (both of the inter

and intra-flow kinds). Specifically, we develop a framework for interference aware routing

algorithms. Within this framework, we explore both the cases of networks with the capa-

bility of performing network coding — resulting in a proposal called ICAR (Interference

and Coding-Aware Routing) — and of networks with no coding capabilities — resulting

in IAR (Interference Aware Routing). For the purposes of this thesis, we define as the

objective of the routing problem the selection of a set of paths that can deliver packets

from all active network flows with the maximum aggregated throughput. We take a novel

approach to this problem, based on a new path selection algorithm which is capable of

taking into consideration the effect that the selection of a given path has on other paths.

The adoption of such algorithm allows us to solve the problem of route selection having

a global vision of all flows, instead of using traditional shortest path algorithms.

1.1 Conventions and Formal Problem Description 7

We further investigate some practical issues regarding the implementation of path

selection methods in multihop wireless networks, such as the effect of data traffic on the

estimates of link qualities taken by routing protocols. Based on our investigations, we are

able to propose practical solutions to such problems, further increasing the gains of our

proposal. We also study issues regarding the implementation of network coding in real

networks, providing optimizations and solutions to these problems.

In order to evaluate the performance of IAR and ICAR, we implement them in both

simulated and real network environments. Through experiments in both environments, we

demonstrate the importance of considering the route selection problem under the prism

of the existent network flows, as well as the efficiency of our proposals in recognizing

the situations in which it is possible to obtain gains by selecting path sets that differ

from the set of individual optima. In simulated environments, we demonstrate that our

routing selection method can increase the network aggregated throughput up to 90% in

comparison to traditional routing mechanisms. We also show that gains can stem from a

number of different network topologies with different characteristics. On the other hand,

we provide an implementation of our method that can be used in real networks deployed

with off-the-shelf hardware with limited resources. This implementation allows us to

demonstrate the viability of our proposal even in such a constrained environment.

1.1 Conventions and Formal Problem Description

Throughout this thesis, we employ the following notations and conventions. A network

topology is represented by a graph G = (V,E), where V is the set of network nodes and E

is the set of links formed between them. The graph G is usually considered to be directed,

although in some cases we employ undirected graphs because the weights in each direction

are considered to be equal or very similar. Throughout the text, nodes are represented

by numbers, starting always from 0, or italic lowercase letters (especially when referring

to a generic node).

A flow between two nodes a and b is represented by a⇒ b, which must not be confused

with a link between nodes a and b, in this case represented by a→ b. Notice that a flow

can be bidirectional, in which case it is represented as in a ⇔ b. A path from node a to

node c using node b as a relay is denoted by a→ b→ c. Every flow f has a source node,

denoted by src(f), as well as a destination, denoted by dst(f). The same applies to any

1.1 Conventions and Formal Problem Description 8

path P3.

Neither IAR or ICAR assume a special type of multihop wireless network to work.

However, in this thesis we maintain as a focus the case of wireless mesh networks. Specifi-

cally, all our experiments are performed in static multihop wireless networks (in opposition

to mobile ad hoc networks) and our discussions about the computational costs of our so-

lution assume the typical computing power of an off-the-shelf IEEE 802.11 router (in

opposition to a typical low power sensor node). Due to limitations in the current state

of art in terms of network coding (that will be discussed in more depth in Chapters 2

and 3), we assume each node to use a single fixed transmission rate.

Both the simulated and real environments used for evaluation in this thesis are based

on nodes with IEEE 802.11 wireless interfaces. Although IAR and ICAR can be used

with other MAC and physical layer protocols, we assume that the MAC layer uses ARQ

(Automatic Repeat Request) as a mechanism for transmitting unicast frames with a

maximum number of k retries. We also assume that broadcast frames are transmitted a

single time.

Regarding the flows, we assume all network flows are backlogged, i.e., all flows gen-

erate packets at a rate that is sufficient to saturate any path. In Chapter 5 we further

discuss this assumption. A flow is defined as the set of packets that share common source

and destination nodes. In other words, all packets transmitted from a given node a to a

given node b are considered to belong to the same flow, regardless of concepts from higher

layers, such as connections, transport protocols or ports.

It is beyond the scope of this thesis to find the optimal scheduling for transmissions

in the MAC layer. We assume a fair and deterministic scheduling, in which all nodes have

equal opportunities to transmit (with respect to their neighbors). More details about this

scheduling are given in Chapter 3.

A formal description of the problem studied by this thesis can be stated as follows.

Let G = (V,E) be a graph representing the current state of the network (in terms of

nodes and links). Let the weights associated with each edge on the graph represent the

delivery probability of the respective link. Let F denote the set of flows currently active

in the network. Under these conditions, find a path set PS such that:

• for every flow f ∈ F , there is a correspondent path P ∈ PS, such that src(f) =

3For the sake of clarity, in this work a generic path is always referred to as P, as opposed to a
probability p and a packet P .

1.2 Text Outline 9

src(P) and dst(f) = dst(P), as long as it is feasible (i.e., that there actually is at

least one such path in the network);

• the sum of the throughputs for all flows achieved using PS must be maximum.

The evaluation of the aggregated throughput achievable with path set PS must take

into account the self interference generated by each link in the solution, as well as the

network coding capabilities of the network.

1.2 Text Outline

The rest of this thesis is organized as follows. Chapter 2 presents the state of art regarding

the topic studied by this thesis. The chapter covers traditional routing approaches for

multihop wireless networks, approaches aware of inter and intra-flow interferences, as well

as network coding and coding aware routing protocols.

Chapter 3 presents our proposal for solving the problem of routing in multihop wire-

less networks. In this chapter, we present the algorithms employed by IAR and ICAR

divided in two groups: evaluation of the performance of a given path set and generation

of candidate sets. The algorithms are analyzed in terms computational complexity and

we also discuss their accuracy in choosing the best path set. We also further discuss some

of the assumptions made in this work, as well as project decisions that had to be made.

Chapter 4 discusses practical aspects of the implementation of IAR and ICAR. We

consider issues such as detecting and announcing the existence of network flows, the

transmission of coded packets in the MAC layer and the estimation of the links’ qualities.

Chapter 5 presents the evaluation of both proposals in terms of network performance.

We present and discuss experiments conducted in both simulated and real testbeds. Our

experiments cover a range of aspects, using both especially crafted scenarios and generic

topologies.

In Chapter 6, we summarize the main findings and contributions of this work. Ideas

for future work are also presented.

Appendix A shows some interesting and unexpected results regarding the errors in the

estimate of links’ qualities on networks under heavy loads. Our results suggest a common

hardware deficiency in implementations of the IEEE 802.11 standard that causes higher

estimation errors than expected.

1.2 Text Outline 10

Finally, Appendix B describes a technique for estimating the joint reception proba-

bility for a coded packet (i.e., the probability that all intended destinations of a coded

packet correctly receive it).

Chapter 2

Related Work

In this chapter, we discuss the current state of the research in the area of routing in

multihop wireless networks. This discussion is organized in three major parts:

• traditional routing;

• interference aware routing; and

• coding aware routing.

We begin by presenting a historical overview of the evolution of some of the most

relevant proposals in terms of traditional routing mechanisms, including routing protocols

and routing metrics. We proceed by presenting proposals that specifically target to choose

paths with low intra-flow and inter-flow interference. Finally, we approach the area of

network coding, with the main focus on coding aware routing, i.e., routing protocols and

metrics that use network coding to improve network performance.

2.1 Traditional Routing

There is a vast literature on routing in multihop wireless networks. Most of the traditional

routing protocols were proposed during the late 1990s or early 2000s.

Perhaps one of the first widely adopted routing protocols was DSDV [81] (Destination-

Sequenced Distance Vector), a proactive protocol: it proactively maintains a table con-

taining routes for all network nodes. DSDV is said to be a distance vector protocol,

because it uses the Bellman-Ford algorithm [22].

Another distance vector-based protocol is AODV [82] (Adhoc On-demand Distance

Vector). One major difference between AODV and DSDV is the fact that AODV is a

2.1 Traditional Routing 12

reactive protocol, meaning that routes are only computed when necessary. Whenever a

new flow is started, its source node triggers a route discovery process by broadcasting a

route request. This request is diffused by network nodes (recording the sequence of nodes

it has traversed) until it reaches the destination (possibly multiple times, using different

paths) or an intermediate node that already has a valid route to the destination. In both

cases, a route reply is returned to the source node, containing the route just found.

DSR [52] (Dynamic Source Routing) is similar to AODV in the sense that both are

reactive protocols and use route discovery mechanisms based on flooding. However, DSR is

based on source routing, i.e., once the source node learns the best route for the destination,

it includes this path in all data packets. Hence, intermediate nodes do not need to store

route information, instead they find the information of the next hop in the packet itself.

Another traditional protocol is OLSR [21] (Optimized Link State Routing). Similarly

to DSDV, OLSR is proactive, constantly maintaining routes for all network nodes. How-

ever, OLSR is a link state protocol, meaning it relies on keeping a complete view of the

network in each node. Nodes detect their neighborhood by periodically broadcasting hello

packets (when a node receives a hello packet, it recognizes the sender as its neighbor).

Also periodically, an OLSR node broadcasts topology packets containing its current view

of the neighborhood. Differently from hello packets, topology packets are retransmitted

by other nodes, flooding the network. This results in all nodes having knowledge of the

complete network topology. Whenever a change is detected in the topology (as internally

known by nodes), OLSR executes the well-known Dijkstra algorithm [26] to find the new

best routes.

Possibly, the main goal of those and other proposed routing protocols for multihop

wireless networks was reducing the overhead of finding and maintaining routes. For ex-

ample, as a reactive protocol, AODV has the advantage of only consuming network band-

width when a new flow is started for which there is no previously known route. As another

example, OLSR employes the concept of Multipoint Relays (MPR) [21]. An MPR set is

a subset of neighbors such that any two-hop neighbor (i.e., nodes that cannot be reached

directly, but by using a single relay) can be reached in two hops through a node of this set.

Although the complete set of neighbors fits the definition of MPR, there usually exists

another smaller subset for which the property holds. In OLSR, whenever a node receives

a control packet that has to be flooded through the network (such as a topology packet),

it only performs a retransmission if it belongs to the MPR set of the last hop traversed

by the packet. With this strategy, OLSR can reduce the overhead of the flooding, while

2.1 Traditional Routing 13

still guaranteeing that all nodes receive the information (not considering possible packet

losses).

Although other routing protocols have been proposed more recently (such as [16, 67]),

those traditional protocols established many techniques and frameworks that can be seen

in most modern proposals. One aspect that has deeply evolved, though, regards the

routing metrics, i.e., the mathematical models used to classify the quality of links and

routes in order to provide the basis for selecting the best paths. As originally proposed,

those traditional routing protocols all employed the same simplified approach to route

quality evaluation that often resulted in poor routing decisions. This simplified approach

consisted in employing a routing metric known as Hop Count, which, as the name implies,

simply classifies a route based on its number of hops. As will be further discussed in this

chapter, the number of hops can have a low correlation with the actual performance of

a path (in terms of metrics such as end-to-end delay, throughput and packet loss rate).

Since Hop Count could result in low performance, much work has been done in proposing

alternative routing metrics [17].

The Expected Transmission Count [24, 23, 25] (ETX) metric is possibly the most

important proposal in terms of routing metrics. Although there are newer proposals which

are capable of outperforming ETX, it still serves as the base for many other methods in

multihop wireless networks in general.

The ETX metric classifies links and paths according to the expected number of link

layer transmissions needed to transmit a packet (through a single link or the complete

path). To this end, ETX first estimates the delivery probability of each network link by

periodically broadcasting probe packets. Whenever a node receives a probe from one of its

neighbors, it updates a statistic of the percentage of probes successfully received for that

neighbor among a window of the last w probes (where w is a configurable parameter).

Nodes periodically report their computed estimates for the delivery probabilities back

to their neighbors (usually by simply adding them to the probes). By applying this

method, a node a always has relatively up-to-date estimates of da→b and db→a, the delivery

probabilities in each direction1 for its link for any neighbor b.

Since the successful transmission of a unicast frame according to the IEEE 802.11

standard (the main focus of the work that proposes ETX) requires an acknowledgment

frame to be received back by the transmitter, Couto et al. [24] define the success proba-

1Although they represent probabilities, in this thesis we opted for representing the delivery probability
of a link with the letter d, instead of p, to differentiate it from other kinds of probabilities associated with
network links

2.1 Traditional Routing 14

bility in one link layer transmission attempt through a link a→ b as:

pa→b = da→b × db→a. (2.1)

Authors also assume that the transmitter keeps retrying to transmit a packet until

the first success. Hence, the number of transmissions until the first success on a generic

link a → b can be modeled as a geometric random variable with probability pa→b. The

ETX metric for the link a→ b is then given by:

ETXa→b =
1

pa→b
=

1

da→b × db→a
. (2.2)

For a complete path composed of multiple links, the ETX metric is defined as the sum of

the individual links’ ETX values.

One of the underlying assumptions of the ETX metric is that paths that need less

link layer transmissions to deliver a packet will offer better throughput. If all network

links had the same delivery probabilities, then the ETX metric would be equivalent to the

Hop Count metric. However, since that is seldom the case in real topologies, ETX often

outperforms Hop Count, due to the latter tending to include very long and lossy links in

its paths.

Despite its superiority with respect to Hop Count, a number of issues can be pointed

out in the formulation of the ETX metric. One such issue is the size of the probe packets

used to estimate the delivery probabilities. Couto et al. [24] suggest that hello packets,

used by most protocols to discover neighborhood, can be used as probes, avoiding the

necessity of creating and transmitting another set of control packets. However, they do

not define the size of the probes. In practice, it is common to find implementations of the

ETX metric that simply use variable probe sizes (i.e., the size of each probe is defined by

its contents, which usually vary with the number of neighbors of each node). The result is

that the delivery probabilities used by ETX may be computed with different probe sizes,

even though the packet size directly affects it [75]. Incidentally, nodes with few neighbors

may have their links’ qualities overestimated with respect to those from nodes in more

dense regions of the network. A related issue is that of using the same value da→b for

the delivery probability of an acknowledgment frame and a data frame (possibly much

larger).

Finally, the ETX metric is completely oblivious to the data rate of each link. The

IEEE 802.11g standard, for example, defines 8 different transmission rates, varying from

2.1 Traditional Routing 15

6 Mb/s up to 54 Mb/s [49] and usually wireless interfaces implement some kind of rate

adaptation algorithm, such as the ones found in [45, 40, 100, 57, 79, 12, 53]. That

disregard for the link layer transmission rate results in two problems. The first is the

potential mismatch between the estimates for the delivery probabilities as computed by

ETX (usually performed at the lowest available transmission rate due to the use of broad-

cast probes) and the actual links’ delivery probabilities (at the transmission rate used

at the link layer). As a rule of thumb, higher transmission rates result in lower deliv-

ery probabilities [75]. Hence, when evaluating a link operating at a high transmission

rate, ETX has the tendency to overestimate the delivery probability. On the other hand,

if multiple transmission rates are available, it is possible that different links operate at

different transmission rates within the same network. In this case, ETX may evaluate

two links with the same estimated delivery probability as being equally good when, in

fact, one of them operates with a much higher transmission rate, thus resulting in higher

throughput.

The Expected Transmission Time metric [28] (ETT) is an evolution of the ETX

metric that aims at correcting the issue of ignoring the transmission rate of the link when

computing its cost. The idea is to divide the ETX of the link by its transmission rate,

thus obtaining a value that roughly represents the time necessary until the first success

in a unicast frame transmission. To this end, two different implementations are proposed:

one by Draves et al. [28] and another by Bicket et al. [13].

Draves et al. [28] suggest that the transmission rate of the link should be estimated

using a technique known as packet-pair probing, in which two probes are sent, one immedi-

ately after the other. The receiver then calculates the time difference between the arrival

of both probes and uses this value to estimate the link’s transmission rate. Bicket et

al. [13], on the other hand, suggest that probes should be sent at every transmission rate

available at the link layer and the respective delivery probabilities computed. The ETT

metric would then be computed for each transmission rate (using its respective delivery

probability) and the lowest value (the best one) should be used as the link cost.

The implementation suggested by Draves et al. [28] has the disadvantage of possibly

using a wrong estimate for the link’s delivery probability, since they are computed based

on probe data sent at the basic rate irrespective of the actual link transmission rate. On

the other hand, the method proposed by Bicket et al. [13] introduces a greater overhead

due to the probes at many different transmission rates. Another issue with the former

method is the assumption that the link layer transmission rate will actually match the

2.1 Traditional Routing 16

transmission rate that yields the best ETT value. Since there is no coordination between

the metric and the rate adaptation algorithm (assuming there is one), the link may use a

different rate, resulting in a wrong evaluation of the link quality.

The Metric Aware Rate Adaptation (MARA) mechanism [75] does not fit the tradi-

tional definition of routing metric. It is actually a joint solution for two problems: routing

metric and rate adaptation. From the routing metric perspective, this mechanism tries to

solve the implementation issues with the ETT metric by employing a different strategy.

Similarly to the implementation proposed by Bicket et al. [13], MARA estimates the

delivery probabilities in every available transmission rate. However, instead of sending

probe packets at all rates, MARA is able to do so using fewer probes (for example, with

4 of the 12 transmission rates of the IEEE 802.11b/g mixed mode). With the estimates

at each rate of this subset, MARA employs a probability conversion technique to obtain

estimates for the remaining rates.

MARA then proceeds to compute the link cost at each transmission rate and chooses

the lowest value as the definitive cost. Since MARA performs both routing and rate adap-

tation decisions, the rate that yields the lowest cost is assigned to the link, guaranteeing

the consistency between the routing metric estimates and the actual link parameters. Like

the previously cited metrics, though, MARA does not consider any intra-flow or inter-flow

interference effects during route choices.

In [75], the performance of MARA is evaluated using a basic link state routing protocol

called SLSP (Simple Link State Protocol). This protocol is proposed and implemented

in [75], with the goal of being easily extensible with respect to routing metrics.

The Minimum Loss metric [78] (ML) uses a different approach for classifying links

and routes. Instead of trying to model the delay like the previously presented proposals

(notice that ETX uses the number of link layer transmissions as an estimator for the

delay), ML tries to achieve better performance by minimizing the end-to-end packet loss.

To this end, ML assigns as the cost for each link a → b the success probability for a

single attempt of transmission at the link layer, as computed by the ETX metric (basically,

the reciprocal of the ETX metric for the link). The cost of a path composed of multiple

links is then defined as the product of the individual link costs.

The rationale behind the ML metric is that wireless links can become very lossy, which

reduces their effective throughput. The formulation of the metric would make it avoid

such lossy links (if possible), possibly resulting in good throughput.

2.2 Interference Aware Routing 17

All the issues related to the disregard for the transmission rate found in the ETX

formulation apply to ML as well. Another issue with ML is its lack of sensitivity in

terms of the number of hops: a very long path composed only of perfect links (i.e., with

delivery probability of 1) is preferred by ML over another shorter option containing a

single non-perfect link. In some scenarios, this may result in ML choosing paths with

more hops than other metrics, possibly accentuating issues such as inter-flow and intra-

flow interference [75].

2.2 Interference Aware Routing

Traditional routing metrics such as ETX and ETT are still the most widely adopted op-

tions in practical implementations. Nevertheless, there are already a number of proposals

in the literature of routing metrics and protocols that are aware of intra and inter-flow

interference and try to avoid them. In the next few sections some of the most relevant

work in that regard is discussed.

2.2.1 Theoretical Results

Many works have discussed the theoretical aspects regarding the effects of interference

on the achievable throughput in multihop wireless networks. Gupta and Kumar [39]

provide bounds for the per node throughput assuming random node placement and that

each node communicates with exactly one other node. Li et al. [62] extend the work of

Gupta and Kumar by analyzing different traffic patterns and the effect of the usage of

the IEEE 802.11 medium access schedule instead of a global schedule scheme.

Jain et al. [50] explore a different approach. Instead of looking at networks with

random node placements and traffic patterns, they create mathematical models that can

be applied to specific networks (given their topologies) and specific traffic demands. Their

models, based on linear and integer programming, are able to output the optimum routes

and optimum medium access schedule for a given instance. They consider mostly the

case of a single source/destination pair, but discuss how the model can be extended for

multiple pairs. They present models for multipath routing (i.e., assuming the flow can be

split between multiple paths) and also for the single path case, which they argue is more

useful in practice.

In the same work, Jain et al. also discuss how to find upper and lower bounds for the

throughput based on a structure called Conflict Graph, since solving their models may be

2.2 Interference Aware Routing 18

computationally unfeasible for larger networks. A conflict graph is a representation of the

relationships between the links of a network in terms of interference. In a conflict graph,

each link of a network becomes a vertex and two vertices are connected if, and only if,

they cannot be used simultaneously (i.e., they interfere with each other). Jain et al. prove

that, if all links have the same capacity R, the sum of the used capacities for all links

forming a clique in the conflict graph of a network cannot exceed R. This effectively places

an upper bound in the maximum achievable network throughput considering interference.

Authors, however, show that this upper bound is not always tight, i.e., they cannot give

guarantees for how close this bound is to the actual maximum throughput.

The method presented by Jain et al. is not supposed to be used as a practical route

selection mechanism for a number of reasons. First, it can only find optimal routes

assuming the scheduling for the access of the wireless medium can be globally controlled

in order to correspond to the schedule output by the solution of their model. Under

a distributed non-deterministic schedule (such as the one obtained by employing the

IEEE 802.11 standard), the routes may not be optimal. Moreover, in order to find the

optimal results, their method needs the computation of all maximal independent sets of

the network conflict graph. Not only this is an NP-Hard problem [32], but the number

of independent sets may grow exponentially, further increasing the complexity of solving

their mathematical programming models. Nevertheless, by using simulations, authors

are able to demonstrate that optimal routes found using their models can double the

throughput in some scenarios, with respect to traditional routing.

The work by Jain et al. suggests that there is a strong synergy between routing choices

and the scheduling of link usage at the link layer. In fact, there is a vast literature on the

topic of link scheduling in multihop wireless networks [38, 35, 36, 37]. In [38], Grönkvist

and Hansson compare two approaches for assigning a schedule for the usage of links. The

first, known as graph model, is based only on knowledge of the network topology, while

the second considers knowledge of propagation characteristics of each link (e.g., the level

of received signal for the receiver of a link). Using simulations, they show that the second

approach tends to result in more aggressive schedules (i.e., schedules with more links

being used simultaneously), which may yield better network performance. Gore et al.

provide an algorithm to find the best schedule under the graph model.

Goussevskaia et al. [36] tackles the issue of finding good schedules in networks capa-

ble of operating with multiple rates at the link layer. In a later paper, Goussevskaia and

Wattenhofer [37] study the scheduling problem in networks that employ a method known

2.2 Interference Aware Routing 19

as Successive Interference Cancellation. Under this method, when two or more packets

collide at a node, it might be able to decode the strongest signal provided that it is suffi-

ciently stronger than the others. After the respective packet is retrieved, the node might

be able to subtract the corresponding signal from the total received signal in the digital

domain. The remaining signal can then be reevaluated, in order for another packet to be

decoded. In theory, assuming favorable conditions and enough hardware resolution, it is

possible for a node to receive multiple packets at the same time. Under these conditions,

more links can be schedule simultaneously.

Notice that, although link scheduling is an active research area, as explained in Chap-

ter 1, in this thesis we assume predefined medium access rules, instead of trying to deter-

mine the optimal scheduling.

2.2.2 Practical Proposals

In addition to the theoretical results, the literature contains a number of practical propos-

als of protocols and metrics for the problem of interference aware routing. For the sake

of organization, we divide these proposals in two groups: the ones targeted at multi-radio

networks and the ones for single radio networks.

2.2.2.1 Multi-radio Networks

Although there are exceptions, most proposals of the protocols and metrics for the

interference-aware version of the routing problem consider the case of multi-radio net-

works [28, 91, 90]. In this kind of network, each node possesses multiple radio interfaces

capable of operating at different non-interfering channels. Thus, there might be multiple

links connecting a given pair of nodes. At the same time, when representing the topology

of this kind of network, the channel for each link must also be known.

Draves et al. [28] propose a routing solution for the problem of intra-flow interference

aware routing in multi-radio networks that consists of using a routing metric that ex-

tends the ETT metric to include information regarding the channel diversity of the path.

This new metric, called Weighted Cumulative Expected Transmission Time (WCETT),

is defined for a path composed of n links as:

WCETTn = (1− β) ·
n∑
l=1

ETTl + β ·max(Xj), for 1 ≤ j ≤ k and 0 ≤ β ≤ 1. (2.3)

2.2 Interference Aware Routing 20

In the expression, k denotes the number of available channels and Xj is the sum of ETT

values for all links in the j-th channel. The expression is simply an average (weighted

by the adjustable parameter β) between the traditional ETT of the path and a second

component that depends on the distribution of the channel selection through the path. A

path using all links in the same channel receives a WCETT value equivalent to its ETT

value. However, as links with different channels are used, the total cost decreases due

to the second term. By having a tendency to find paths with channel diversity, authors

expect to reduce intra-flow interference, achieving higher throughputs.

One issue with the formulation of the WCETT metric is the lack of isotonicity. This

mathematical property states that, given two paths P1 and P2 such that the cost of P1 is

greater than the cost of P2, the addition of a new link l to each path cannot change the

relative order of the costs. In other words, the new path P1 → l cannot have a lower cost

than the new path P2 → l [28]. Traditional algorithms for the problem of shortest paths in

graphs, such as the algorithms by Dijkstra and Bellman-Ford [22, 26], usually require the

metric to be isotonic. If this property is not respected, those algorithms cannot guarantee

the optimal solution [89]. Therefore, these traditional algorithms are not sufficient to

find the optimal solution considering the WCETT metric. Authors acknowledge that,

but they opt for using the Dijkstra algorithm regardless. Despite this issue, Draves et al.

show performance improvements of WCETT with respect to more traditional metrics in

their evaluation.

Notice that WCETT is only different from ETT in multi-radio networks. Authors do

not propose a solution for the case of single radio networks. In this thesis, we chose to

evaluate the single radio scenario, which does not benefit from the usage of WCETT.

In [91], authors also explore the problem of routing in multi-radio networks. Differ-

ently from the work of WCETT, Tang et al. [91] split the problem in two separate issues:

channel assignment and routing. They propose a channel assignment heuristic that con-

structs a multi-channel topology with, hopefully, low potential interference (i.e., nearby

links tend to use different channels, allowing them to be used simultaneously without

interfering with each other).

After channels are assigned, authors propose the usage of a QoS-aware routing method

devised in the same paper. This method is based on a linear programming model created

by the authors with the objective of minimizing the sum of interfering traffic. For each

network link, authors define a set of interfering links. Given the amount of traffic allocated

to a given flow, authors define the amount of interfering traffic for that link as the product

2.2 Interference Aware Routing 21

of the total traffic amount of the link by the number of interfering links. The goal of the

linear programming formulation is then to minimize the summation of this value for all

network links. Notice, however, that this formulation uses the concept of data as fluid,

meaning that data can be split arbitrarily among multiple paths. Since authors base their

work in packet networks, they propose a heuristic for finding a single path solution for

the routing problem.

The work by Tang et al. is interesting from a theoretical standpoint, but it presents

some practical issues. For instance, authors define the capacity of a wireless link as simply

the link layer transmission rate. They do not take into account, for example, the effect

of the delivery probability in the actual achievable throughput. They also disregard the

fact that links with lower delivery probabilities occupy the medium for a longer period of

time (due to retransmissions), increasing the interference.

Subramanian and Buddhikot [90] also tackle the problem of interference aware routing

in the context of multi-radio networks. To this end, they propose the iAWARE routing

metric which is strongly based on WCETT. They define the cost of a link as the ratio

between its ETT and a value called IR (Interference Ratio) defined for a link a→ b as:

IRa→b =
SINRa→b

SNRa→b
, (2.4)

where SNRa→b is the Signal to Noise Ratio of the link, while SINRa→b represents the

Signal To Interference plus Noise Ratio. To compute the second term, authors sum the

background noise and the signal strength for all links that can be overheard by node b

(i.e., links that can potentially interfere with transmissions to node b), weighted by the

percentage of time each link is used. For a path composed of multiple links, Subramanian

and Buddhikot use the same formulation employed by Draves et al. in the WCETT

metric, but substituting the ETT of the links by their new metric iAWARE.

Due to their resemblance, the iAWARE metric and the WCETT metric share most

virtues and issues. The most relevant difference between them is the fact that iAWARE

puts more emphasis on avoiding links that are currently more affected by other interfering

links. This makes iAWARE useful for usage on single radio networks, differently from

WCETT that becomes identical to the ETT metric in this case.

One potential issue with iAWARE is the possibility of instability in the routing de-

cisions. Whenever a new flow begins, it starts sending packets through the links that

compose the path selected by iAWARE. The fact that those links are now in use will

2.2 Interference Aware Routing 22

probably change their usage rate, which is an information used by the metric. Once that

information is updated by the routing protocol, it might change the route selection, re-

sulting in new routes. To the best of our knowledge, however, there are no studies on the

stability of the route selections by iAWARE.

2.2.2.2 Single Radio Networks

Yang et al. propose an interference aware routing metric called Interference-aware Re-

source Usage (IRU) [102]. For computing the cost of a link a → b, authors define the

metric IRU as:

IRUa→b = ETTa→b · |Na ∪Nb|, (2.5)

where Na and Nb represent the set of neighbors of nodes a and b, respectively. In the model

considered by Yang et al., a node that is neighbor of a or b cannot transmit simultaneously

with transmissions on link a → b. For that reason, IRUa→b represents the total amount

of time that a transmission on link a → b would consume of the medium usage time

available for those neighbors. By finding paths that minimize the sum of IRU values for

their individual links, Yang et al. expect to minimize the amount of network resources

used by the path.

An issue with the IRU metric is that it is oblivious to the actual existent network

flows. It always chooses paths that use low amount of network resources, even if there

are no other flows that would benefit from those savings. For instance, Yang et al. use

the example depicted in Figure 2.1 to illustrate a case where IRU is able to find a better

route than ETT would. In this example, authors assume that ETT0→2 is slightly lower

than ETT0→1 (Figure 2.1a), which would cause node 0 to route all its traffic through

relay 2. Due to interference, that would decrease the performance of both flows 0 ⇒ 3

and 4 ⇒ 5. Since node 1 has less interfering neighbors, IRU would choose 1 as a relay

(Figure 2.1b), which would lead to better performance by reducing interference. Notice,

however, that IRU does not take into account whether flow 4 ⇒ 5 actually exists in the

network, rerouting flow 0⇒ 3 through a worse path regardless.

Cheng et al. propose a method for admission control and QoS routing in wireless

mesh networks called MARIA (Mesh Admission control and qos Routing with Interference

Awareness) [19]. Their method uses the concept of Conflict Graph in order to evaluate

the bandwidth available for a given node.

2.2 Interference Aware Routing 23

0

4

32

1

5

(a)

0

4

32

1

5

(b)

Figure 2.1: Example of a network topology in which the IRU and ETT metrics might
result in different route choices. Figure 2.1a shows a possible choice made by ETT,
assuming link 0 → 2 has a slightly lower ETT than link 0 → 1. Figure 2.1b shows the
choice made by IRU under the same conditions.

The method proposed by Cheng et al. works as follows. When a new flow begins,

the source node starts a route discovery and bandwidth allocation process. This source

node assembles a local conflict graph (i.e., containing only two hop information), based

on information obtained through previously exchanged hello packets. The node then

computes the cost of all maximal cliques it belongs to and checks if the available bandwidth

is enough for the new flow. If it is, the source node broadcasts a route request packet.

Otherwise, the flow is rejected. Upon receiving a route request packet, an intermediate

node computes its available bandwidth using the same process. If the bandwidth is enough

to allocate the new flow, the node forwards the route request by rebroadcasting it. Each

node traversed by the route request records its current available bandwidth in the packet.

When the destination node receives multiple route requests (by multiple paths) it chooses

the one with the highest minimum bandwidth and informs the path back to the source.

Notice that MARIA does not have as a goal finding the path set that provides the

highest aggregated throughput for the current network flows. Its objective, then, is dif-

ferent from the proposal presented in this thesis. MARIA simply seeks to guarantee that

enough bandwidth will be available to each network flow. One issue with this work is that

MARIA may allow flows to be allocated in situations where there is not enough available

bandwidth. This happens because the maximal cliques only provide an upper bound on

the available bandwidth, i.e., the fact that the costs of all cliques are lower than the

2.2 Interference Aware Routing 24

capacity R is necessary but not sufficient to guarantee that the bandwidth is available to

the new flow [50]. However, Cheng et al. do not discuss this possibility of allocating flows

to paths with insufficient resources. Another issue with this proposal is the lack of usage

of delivery probability information when computing the available bandwidth of a path.

Ashraf et al. propose the Expected Link Performance metric (ELP) [6], which also

takes into account interference in its formulation. Authors define the ELP metric for a

link a→ b as:

ELPa→b =
1

αda→b + (1− α)db→a
× Max(IFa, IFb)

1 +Max(IFa, IFb)
, (2.6)

where da→b and db→a are the delivery probabilities for links a → b and b → a, α is an

adjustable weight between 0.5 and 1, and IFa and IFb are Interference Factors for nodes

a and b, respectively. The interference factor for a node is defined by Ashraf et al. as the

percentage of time a node sees the medium occupied (either due to a reception or because

it is reserved for another node).

The first factor in the expression of the ELP metric is similar to the ETX of the

link. However, instead of multiplying the delivery probabilities in each direction, Ashraf

et al. use a weighted average between these values. The rationale for this approach

is that data packets are usually much larger than the acknowledgments, resulting in

a higher loss probability. For this reason, authors consider that the estimates for the

delivery probability obtained through probing are more representative for data packets

than for ACK frames. Consequently, they argue that, by selecting an appropriate value

for parameter α, it is possible to obtain a more precise estimate for the probability of

success of a unicast transmission than by simply multiplying the delivery probabilities in

each direction.

Therefore, according to the authors, the meaning of the first factor is the same of

the ETX metric: the expected number of transmission attempts necessary until the first

success in a unicast frame transmission. Nevertheless, this value is weighted by the second

factor which is a monotonically increasing function on Max(IFa, IFb) (the maximum

value between the interference factors of nodes a and b). The idea is that, if link a → b

is currently being heavily interfered by other network links, values IFa and IFb will be

high. In that case, the cost of the ELP metric increases, even if its ETX remains low.

There are a number of issues with the ELP metric. Firstly, authors do not approach

the issue of the existence of multiple transmission rates in the link layer. By using ETX as

2.3 Coding Aware Routing 25

a base for their metric (instead of ETT, for instance), their proposal completely disregards

possible differences in links in terms of transmission rate. Moreover, similarly to iAWARE,

ELP uses information that is directly affected by the route selection. For instance, consider

a link a → b that belongs to a path that is selected by ELP. Assume that prior to the

selection of that path, IFa and IFb were very close to zero (i.e., there was almost no

network traffic near those nodes). Once a flow starts to send traffic through the path, IFb

is rapidly increased due to the usage of link a→ b, which would directly affect the cost of

the link. Authors do not discuss the implications of such sensitivity in the route selection

stability. Moreover, notice that if the network does not have active flows, the interference

factors for all nodes are very close to zero. Since the interference factor is multiplied by

ETX, the precision of the representation used for metric ELP becomes an issue: a low

precision representation could result in most links being evaluated as being equally good,

possibly leading to bad routing choices.

2.3 Coding Aware Routing

The concept of network coding was introduced by Ahlswede et al. [1]. In that work,

authors define the network coding paradigm and study the Maximum Flow problem for

a single data source. Authors argue that the traditional vision of information as fluid

flowing through the network is not valid in the general case. That happens because,

contrary to fluids, that can only be routed in the intermediate nodes, information can also

be replicated and combined. That opens a range of new possibilities for data networks.

The paper shows a series of example networks in which the theoretical maximum

flow given by the Max-Flow Min-Cut theorem [29] cannot be reached by employing the

traditional routing paradigm. In those same examples, however, it is possible to achieve

the theoretical limit by using network coding strategies.

Consider, for instance, the network illustrated in Figure 2.2a. This topology is com-

monly known in the literature as the Butterfly Network [43] and is frequently used to

illustrate network coding on a wired network. The value associated with each link shows

the number of bits it is able to transmit per unit of time. The maximum flow between

nodes s and t1, according to the theorem, is 2 (the lowest capacity among all s-t cuts). The

same is valid for nodes s and t2. In fact, considering a unicast flow directed at only one of

the destination nodes (for instance, t1), it is possible to send two simultaneous bits. One

possible transmission order to achieve this maximum flow is illustrated in Figures 2.2b

2.3 Coding Aware Routing 26

s

5

4

3

1 1

1

1 1

1 1

1 1

2

(a)

s

5

4

32

(b)

s

5

4

32

(c)

Figure 2.2: Maximum flow between a source node and a single destination in the Butterfly
Network. The leftmost figure shows the capacity of each link, while the other two show
the transmissions necessary to achieve the maximum theoretical flow (which is 2).

and 2.2c (for destinations t1 and t2, respectively).

However, when one considers a multicast flow addressed to nodes t1 and t2 simulta-

neously, it is not possible to achieve the maximum flow of two bits for both using the

traditional routing paradigm. Figure 2.3a illustrates an attempt to do so. Indeed, with

the transmission schedule illustrated in the figure, one of the nodes receives only half of

the flow (1 bit). In order to achieve a flow of two bits for both destinations simultane-

ously, it is necessary that nodes 2 and 3 received distinct bits from the source. Hence,

links 2 → t1 and 3 → t2 necessarily carry distinct bits. Therefore, the missing bit for

each destination must come from the nodes in the middle of the network (nodes 4 and

5). Nevertheless, since there is an intersection between the paths 3 → 4 → 5 → t1 and

2 → 4 → 5 → t2, only one bit per time can be sent. In conclusion, it is impossible for

both destinations to receive two bits simultaneously.

This limitation can be overcome by the employment of network coding, as shown in

Figure 2.3b. The scheduling of the transmissions in each link is similar to that of the

previous example. A notable difference is in the bit transported by links 4 → 5, 5 → t1

and 5 → t2. When node 4 receives bits b1 and b2, they are combined using a XOR

operation. The result is transmitted to node 5, which in turn replicates it to both nodes

t1 and t2. The destination nodes, then, recover their respective necessary bits by using

another XOR operation (using the bit they received from the other path).

2.3 Coding Aware Routing 27

s

5

4

32

(a)

s

5

4

32

(b)

Figure 2.3: Maximum flows achieved in the Butterfly Network with and without network
coding.

2.3.1 Applications of Network Coding

Although the first efforts in the area of network coding were very theoretical, there is now

a vast literature on concrete solutions and studies on practical implementation issues [43].

In the next sections some of this work will be discussed.

2.3.1.1 Unicast Flows

The initial efforts in the network coding area focused mostly in multicast transmissions [44,

42, 20, 105, 34, 41, 97, 98, 99]. The reason for that is the fact that, at first glance, it

is not obvious how to obtain gains from the network coding paradigm for unicast flows.

In terms of maximum flow, for example, it is a known fact that network coding does not

result in gains for unicast flows [1, 64, 63].

There are, however, papers that explore the usage of random network coding for

unicast traffic in lossy networks [64, 65, 66]. In those papers, authors demonstrate that

the usage of random network coding can arbitrarily decrease the message loss probability

for a unicast flow with the increase in the number of coded packets.

Unicast flows can also take advantage from network coding when one considers mul-

tiple concurrent flows. That is illustrated in the example from Figure 1.3, presented in

Chapter 1. In this example, two concurrent flows pass, on different directions, through

2.3 Coding Aware Routing 28

three nodes in sequence, 0, 1, and 2. By forcing that nodes 0 and 2 keep their origi-

nal packets in memory after transmitting them, node 1 can code packets from each flow

together, obtaining a single message to be transmitted, as explained in Chapter 1.

It is interesting to notice, however, that the gains resultant from network coding in

this case are global, instead of local. For instance, if we consider the delay and throughput

of the flow from node 0 to node 2, assuming there are no other concurrent flows, there is

no gain from the usage of network coding. The gain is only perceivable when we consider

the aggregated throughput of both flows. Generally speaking, the gain obtained with

network coding can be measured as the ratio between the number of transmissions made

by all flows with and with and without network coding [56]. In the example of Figure 1.3,

for instance, this gain is 4
3

= 1.3̄.

2.3.1.2 Multihop Wireless Networks

In the specific case of multihop wireless networks (e.g., ad hoc networks, wireless mesh

networks), the potential gains of network coding are promising. The diffusion nature of

the wireless medium results in a series of possible scenarios with coding opportunities.

Besides the case illustrated in Chapter 1, other coding opportunities may arise from the

promiscuous reception of frames by nodes [56].

For instance, consider the topology illustrated in Figure 2.4a. In this topology, known

in the literature as the cross topology [56], there are two flows: 3 ⇒ 4 and 2 ⇒ 0. Both

flows use central node 1 as a relay. It is assumed that all transmissions made by node

3 can be received by both nodes 1 and 0. Similarly, transmissions by node 2 reach both

nodes 1 and 4.

In this topology, there is a coding opportunity at node 1. This node can code together

packets from each flow (using an bitwise XOR operation, for example) and forward both

of them in a single broadcast transmission of the coded packet. Assume, for instance,

that node 1 has two packets in its buffer: packet P3⇒4 (from flow 3 ⇒ 4) and packet

P2⇒0 (from flow 2 ⇒ 0). Since node 4 can overhear transmissions by node 2, it could

have stored packet P2⇒0 when the latter was transmitted from node 2 to node 1. The

same applies to node 0 and packet P3⇒4. Hence, if node 1 codes both packets together

and transmits the results (packet P3⇒4 ⊕ P2⇒0), both nodes 0 and 4 could decode it and

obtain their respective packets. The coding gain in this example is 4/3 = 1.3̄.

A similar approach can be applied to the scenario illustrated in Figure 2.4b. In the

2.3 Coding Aware Routing 29

3

2

4

0 1

(a) (b)

Figure 2.4: Examples of wireless network scenarios with coding opportunities.

topology, known in the literature as wheel topology [56], there is a central node that is

used as a relay for the communication of n other nodes (for any even value n) forming a

circle around it. Each of the n nodes in the circle communicates with its diametrically

opposite counterpart. For each pair of diametrically opposing nodes, there are always

flows in both directions. In this topology, it is assumed that, when a node transmits, all

other nodes are able to receive the frame, except for its diametrically opposite counterpart

(the central node can be heard by all other nodes).

This scenario presents the following coding opportunity. Assume that each of the n

nodes in the circle transmits the first packet of the flow it sources. After these n initial

transmissions, the central node has in its buffer the first packet of all flows. Similarly,

nodes from the circle have overheard all packets, except for the one actually addressed to

them. Therefore, the central node can code all packets together (again, using a simple

XOR) and transmit the resultant coded message in broadcast. Assuming all nodes in

the circle receive this message, they can decode it by simply executing the XOR of the

coded message with each of the n−1 packets previously overheard during their neighbors’

transmissions.

Without network coding, it takes a total of 2n transmissions to accomplish all commu-

nications (considering a single packet per flow). With network coding, this number drops

to n + 1 transmissions. As n increases, the network coding gains arbitrarily approach

2. Katti et al. also notice another benefit from the usage of network coding in this sce-

2.3 Coding Aware Routing 30

nario [56]. Assuming the link layer provides an approximately fair share of transmission

opportunities among nodes, the central node receives a number of transmission opportu-

nities comparable to that of the other nodes. However, since the central node acts as a

relay for all network flows, it actually needs n times more transmission opportunities than

its peers. If that is not the case, this node becomes a bottleneck for network performance.

By using network coding as described, the central node ceases to be a bottleneck, since

each of its transmission opportunities is equivalent to n transmissions without coding.

Based on this line of thought, Katti et al. define another metric to evaluate coding

gains, called Coding+MAC Gain. This metric is defined as the ratio between the number

of packets removed from the queue of the bottleneck node in each transmission opportunity

with and without network coding. In the example of the wheel topology, this gain is n
1

= n.

In this case, as the number of nodes around the central node increases, the Coding+MAC

gain also increases arbitrarily [56]. However, in [60], Le et al. demonstrate that, in

practice, this scenario is not feasible for any value of n. Assuming signal propagation

has euclidean geometrical properties, authors show that the maximum number of packets

coded by the central node is limited by the expression:

L =
π

arccos(r/(r + δ))
(2.7)

In the expression, L is the maximum number of packets coded by the central node

(this number is based on the number of packets that can actually be decoded by the

destination nodes). The value r represents the distance between each node in the circle

and the central node (in other words, it is the radius of the circle). Finally, δ is defined

by the authors as the difference between the circle radius and the distance at which the

reception probability of a frame becomes too low. In other words, authors assume that a

link between two nodes distanced by at most r has a “good” delivery success probability.

On the other hand, when the distance is larger than r, the delivery success probability of

the link becomes too low, according to some predefined criterion.

In any case, the broadcast nature of the wireless medium makes it very favorable to

the network coding paradigm. In a multihop wireless network, it is usually possible to

identify several subgraphs homeomorph to the graphs of the topologies of the previous

examples. Depending on the network flows, coding opportunities can be common.

The question, in this case, is exactly how to identify these opportunities. In several

applications of network coding, it is reasonable to assume that the topology, as well as the

2.3 Coding Aware Routing 31

data flows, are static (at least during a sufficiently long interval). Hence, a preliminary

setup of the rules for each node to choose which packets to code is feasible. On multihop

wireless networks, though, that may not be the case, since the network topology is highly

dynamic, both due to nodes’ movements and due to instability in links’ quality [78]. The

flows in this kind of network can also be short, resulting in frequent alterations in the set

of active network flows.

In order to make network coding feasible in this kind of scenario, an alternative form

of coding, known as Opportunistic Network Coding, was proposed in [56]. The basic idea

is somewhat simple: instead of trying to establishing a predefined static set of rules for

each node to choose which packets to code, an algorithm is used to automatically and

dynamically detect coding opportunities. Each time a node gains control of the wireless

medium to transmit, this algorithm is executed to select the packet to be transmitted.

The node’s buffer is traversed in search of sets of packets that can be combined. A set

of packets can be combined only if all respective destinations have a high probability of

being able to decode the potential coded packet.

The main proposal in this area was presented by Katti et al., in [55, 56]. In this

work, authors propose COPE, a complete architecture for implementing opportunistic

network coding in multihop wireless networks. In the paper, authors approach a series of

practical issues on the implementation of this kind of network coding. However, the main

contribution of the paper is the algorithm for deciding the set of packets to be coded at

each transmission opportunity by a node.

The packet selection procedure used by COPE is described in Algorithm 2.1. Among

the variables manipulated by the algorithm, there are two sets: Native, the set of native

packets that are coded during the procedure, and NextHops, the set of destination nodes

for the resultant coded packet (the next hops for the native packets).

Aside from the actual packet queue, the node must organize the packets in its buffer

in other auxiliary data structures. Specifically, a node must keep two queues for each

neighbor: one for small packets (defined by Katti et al. as packets of 100 bytes or

less), and another for large packets (of more than 100 bytes). In Algorithm 2.1, this

auxiliary queues are accessed using the notation Q(i, queue), where i represents a neighbor

and queue represents the queue of small packets (for queue = 0) or large packets (for

queue = 1). One last data structure stored by each node is the Packet Pool, a buffer of

known packets stored during a predefined period of time to be possibly used in future

decodings. Whenever a node forwards a packet or overhears a transmission made by a

2.3 Coding Aware Routing 32

Algorithm 2.1 Packet selection algorithm in the COPE architecture [56]

1: Choose the first packet P in the node’s buffer.
2: Native← {P}
3: NextHops← {NextHop(P)}
4: if size(P) > 100 bytes then
5: queue← 1
6: else
7: queue← 0
8: end if
9: for Neighbor i← 1 until M do

10: Choose packet Pi from the beginning of virtual queue Q(i, queue).
11: if ∀n ∈ (NestHops ∪ {i}), p[n can decode P ⊕ Pi] ≥ G then
12: P ← P ⊕ Pi
13: Native← Native ∪ {Pi}
14: NextHops← NextHops ∪ {i}
15: end if
16: end for
17: queue← (queue+ 1) mod 2
18: for Neighbor i← 1 until M do
19: Choose packet Pi from the beginning of virtual queue Q(i, queue).
20: if ∀n ∈ (NextHops ∪ {i}), p[n can decode P ⊕ Pi] ≥ G then
21: P ← P ⊕ Pi
22: Native← Native ∪ {Pi}
23: NextHops← NextHops ∪ {i}
24: end if
25: end for
26: Return p.

neighbor, it stores the packet in the packet pool so that it can be used in the future, if

needed.

The algorithm always chooses the first packet of the actual packet queue for trans-

mitting (line 1). Afterwards, it identifies the size class to which the packet belongs (lines

4 to 8). Initially, only packets from the same class are considered for coding. For each

of the M neighbors, the algorithm verifies if the first packet of the respective queue, pi,

can be coded with the other already selected packets in the set Native (lines 9 to 16).

To make this decision, the algorithm supposes the packet will be coded and checks if all

nodes from the set NextHop (including the possible next hop i) have a high probability

of being able to decode the resultant coded message (line 11).

Katti et al. define the probability of a node being able to decode a coded message pD

composed of n packets (besides the desired packet) as:

pD = p1 × p2 × · · · × pn, (2.8)

2.3 Coding Aware Routing 33

where p1, p2, . . . , pn denote the probabilities of the node having already received each of

the n packets. To compute the probability of a node having received a given packet, Katti

et al. suggest that two cases must be accounted for. The first happens when a node was

used as a previous hop for the packet. In this case, the probability is considered to be 1.

Otherwise (i.e., in the second case), COPE assumes the existence of a routing protocol

capable of providing packet delivery probability information for all links. In this case,

COPE assumes that the only way the node could know the packet is if it has overheard

a previous transmission. Specifically, COPE considers only the last transmission of the

packet, evaluating the link delivery probability between the last hop and the node in

question.

COPE defines a constant value G for the lowest acceptable decoding probability

(in [56], authors suggest a default value of G = 0.8). When evaluating the feasibility

of adding a native packet Pi (addressed to neighbor i) to a coded message, if the decoding

probability for the potential coded message is below G for any of the potential receivers

(members of the set NextHop ∪ {i}), packet Pi is considered unfeasible and disregarded

for coding (at least, for this transmission). Otherwise, the algorithm codes Pi with the

other already selected packets, adds it to the Native set, and adds i to the NextHop set.

The option for giving priority for coding packets of the same size class seeks to maxi-

mize the coding gains. When two packets with very different sizes are coded together, the

resultant message becomes much larger than the smaller native packet (the resultant size

will always be that of the largest native packet). Therefore, the gains obtained by this

type of coding will not be as expressive for the smaller packet as they would, had it been

coded with another small packet. On the other hand, coding packets of different sizes

still results in gains (i.e., the total time needed to transmit the complete set of native

packets is larger than the time needed to transmit a single coded packet, regardless of

their sizes). For this reason, once all possible coding partners of similar size have been

evaluated, COPE repeats the process for the other size class (lines 18 to 25).

Katti et al. state that this algorithm is scalable because its asymptotic time com-

plexity is linear with respect to the number of neighbors of the node that executes it.

However, in the worst case (when all neighbors have a packet selected for coding), the

complexity of the algorithm becomes a cubic function of the number of neighbors (the

conditions tested at lines 11 and 20 are, actually, two nested repetitions dependent of

the number of neighbors due to the usage of the operator for all and the nature of the

computation of the decoding probability). In any case, assuming the number of neighbors

2.3 Coding Aware Routing 34

of a node in a multihop wireless network is typically small (e.g., not larger than 20), the

practical time complexity of this algorithm is not very relevant.

One important detail is that the algorithm used by COPE is not optimal. This sub-

optimality is due to the fact that, at a given execution, it only evaluates the first packet of

each virtual queue for each neighbor. It is possible, however, that better native packet sets

feasible for coding could be found if the algorithm would check all packets in the buffer.

On the other hand, an algorithm based on an exhaustive search would certainly result in

a higher complexity, possibly causing the processing overhead to become an issue.

In the experiments shown by Katti et al. in [55, 56], authors report gains of 70% for

TCP flows and up to 4 times for UDP flows, in terms of aggregated throughput, with the

usage of COPE (with respect to the same scenario without the usage of the architecture).

The experiments were performed in a real wireless mesh network, which brings further

confidence in the feasibility of the employment of network coding in practice.

One limitation of the work by Katti et al. is the absence of a modeling that considers

multiple transmission rates. Authors do not approach this issue with their proposal and,

during their experiments, network nodes had their transmission rates fixed at 6 Mb/s,

both for experiments with COPE and without it. Hence, the gains reported by Katti

et al. show the superiority of COPE in a network without automatic rate adaptation.

Authors do not discuss whether their proposal would result in gains if compared with a

network without network coding but capable of using higher transmission rates.

2.3.2 Coding Aware Routing Protocols and Metrics

After the work by Katti et al. [56], the usage of network coding in multihop wireless

networks became more feasible. The results reported by that work have shown that this

paradigm can, indeed, result in considerable gains in terms of capacity in this kind of

network. This has motivated the appearance of a new line of research related to network

coding: the coding aware routing protocols.

Although COPE results in high gains in terms of aggregated throughput, it just

explores coding opportunities that arise in the network. In other words, the coding

opportunities explored by COPE are random (from COPE’s point of view).

There are two factors that determine the occurrence of coding opportunities in a

network: the traffic demands and routes used by each flow. In general, there is no way to

control the traffic demands. They result from the usage patterns of the network by the

2.3 Coding Aware Routing 35

users. However, the route used for each network flow is determined by the choices made

by the routing protocol.

In the work by Katti et al., the routing protocol is treated as a completely orthogonal

mechanism, being totally unaware of the existence of COPE. However, if the routing

protocol was aware of the coding capability of the network, it could manipulate its routing

choices in order to force flows to “cross” in certain regions of the network topology, thus

provoking more coding opportunities. With more coding opportunities, one could expect

the gains obtained by opportunistic network coding mechanisms to be improved.

Routing protocols usually choose routes based on traditional performance metrics,

such as the loss probability or the end-to-end delay [17]. The manipulation of routes with

the objective of increasing the number of coding opportunities has the side effect of result-

ing in suboptimal choices according to these traditional metrics. Hence, the challenge of

this kind of protocol is to guarantee a reasonable trade-off between the traditional routing

metrics and coding opportunities.

In [87], Sengupta et al. perform a theoretical evaluation of the gains obtained by op-

portunistic network coding methods for multihop wireless networks, such as COPE. The

authors describe a mathematical model for such networks, in the form of a linear pro-

gramming problem with the goal of maximizing the aggregated throughput. Through this

analysis, authors conclude that routing choices have a relevant impact in the performance

of opportunistic network coding.

One of the issues with the evaluation performed by Sengupta et al. is the simplicity

of the model of the medium access layer considered in this work. This model assumes,

for instance, that two neighbors can transmit simultaneously granted that there is no

intersection between the sets of receivers for each transmission and that the receivers of

one transmitter are not within the interference range of the other. In medium access pro-

tocols based on the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)

technique, such as the ones found in the many versions of the IEEE 802.11 standard [49],

two neighbors should not transmit simultaneously, even under those conditions.

Although one could try to use the linear programming model proposed by Sengupta

et al. to find the best routes for a given network (according to their model), this is not

practical. The first reason is the fact that the model assumes the knowledge of many

parameters regarding the network itself and the data flow demands. Another issue is the

relatively high complexity of the model, which demands high computational power and

long execution times to be solved.

2.3 Coding Aware Routing 36

In [61], authors present a proposal of a practical coding aware routing protocol. The

protocol, referred to as DCAR (Distributed Coding-Aware Routing), is a variation of the

traditional DSR (Dynamic Source Routing) routing protocol [52].

When a new flow is detected, a process of route discovery is started with the broadcast

of a RREQ (Route Request) packet. Upon receiving such a packet, a node includes in it

a list of its “good” neighbors (i.e., neighbors for which it has a link with a high delivery

probability). Authors suggest that a good link could be defined as one with a delivery

probability higher or equal to 0.8 (not coincidentally, the default value for the constant G

used by COPE). The motivation for including this list in the RREQ packet is that these

neighbors would be able (with high probability) to overhear transmissions of this flow

(assuming the node is actually chosen as part of the route), possibly allowing network

coding to happen in the next hop of the path. Another information added to the RREQ

is the node identifier, stored so that the path traversed by the RREQ is known at the end

of the process.

Eventually, one would expect the destination node for the new flow to receive one

or more RREQ packets. For each received RREQ, the destination generates an RREP

(Route Reply) packet, transmitted in unicast by the reverse of the path traversed by

the RREQ. The RREP contains the list of nodes of the found path. When an RREP is

received by an intermediate node, it calculates a routing metric defined by the authors,

called CRM (Coding-aware Routing Metric). The CRM metric of a link l is defined as:

CRMl =
1 +MIQd(l)

1− pl
(2.9)

On this equation, pl is the packet loss probability for the link l. The reciprocal of

1 − pl is an estimate for the expected number of retransmissions needed until the first

successful transmission of a frame through link l. The term MIQd(l) is defined by Le

et al. [61] as the sum of the current sizes of the queues for all nodes that belong to the

same collision domain as the link l, considering possible coding opportunities with the

new flow.

The idea of the authors is to consider the queue size for each node as part of the

routing metric. When a node computes the metric for a link, it checks which packets

currently in its buffer could be coded with packets from the new flow. Packets that could

be coded with a packet from the new flow are decremented from the current queue size,

since one can consider their transmission as being “free”, given that it would be performed

2.3 Coding Aware Routing 37

along with the transmission of a packet from the new flow. The node must also consider

the coding opportunities among other packets currently in the buffer, reducing even more

the effective queue length. The result of this computation is an estimate for the number

of transmissions needed to empty the node’s current buffer. The sum of this value for all

nodes belonging to the same collision domain results in the value MIQd(l).

Once the receiving node of an RREP packet has computed the CRM metric for its

link, it adds this information to the packet and transmits it to the next hop of the reverse

path. Eventually, the RREP packet is received by the source of the new flow. After

waiting for a predefined amount of time in order to possibly receive multiple RREPs, the

source node chooses the path with the lowest sum of the CRM metric for all its links.

There are a number of issues with the proposal presented by Le et al. The authors

present a method for computing the value MIQd(l). This method builds a graph in which

each vertex represents a flow that currently traverses the node, while each edge indicates

that packets from two flows (vertices) can be coded together. Authors argue that the

best set of flows to be coded together is represented by the maximum clique in the graph.

However, they state that finding such cliques would not be feasible in practice, since the

maximum clique problem is NP-hard. For this reason, Le et al. propose an approximative

method for computing MIQd(l). The problem with this method is that it involves the

solution of a sub-problem that, by itself, it is also NP-Hard [32]. Authors argue that the

maximum number of flows that can be coded, in practice, is small, which would render

the computational cost of the proposed approximative method irrelevant. It is not clear,

however, why the same argument is not valid for the exact method (based on solving the

clique problem).

The approximative method also has a serious flaw. Authors consider that packets from

flows with edges for the new flow can be all subtracted from the computation of MIQd,

even if this set of flows do not form a clique. However, if a clique is not formed, one can

not code all the packets together because the resultant message would not be decodable

by the receivers. Only a subset of flows (for which a clique is indeed formed) should be

chosen. Therefore, the value MIQd could be lower than what it should represent.

Le et al. also do not take into account the possibility of multiple transmission rates

being available at the link layer. The model presented by authors does not deal with

this issue at any point. Although not explicitly indicated by the authors, simulation

results presented in this work suggest that the transmission rate for the nodes was fixed

at 1 Mb/s.

2.3 Coding Aware Routing 38

Finally, there is the issue of the reception probability for a coded packet. The CRM

message uses only the individual reception probability for the link l, even if it considers

the coding of many packets for different receivers.

A second proposal of a practical coding aware routing protocol is presented by Fan

et al. in [30]. The authors propose a protocol called HLCR (Heuristic Load-balanced

Coding-aware Routing), very similar to DCAR. Among the differences are a mechanism

for controlling the flooding of RREQ messages and the routing metric.

The proposed routing metric is called WETCC (Weighted Expected Transmission

Count with Coding). Like CRM, WETCC takes into account three aspects: the load of

the nodes composing a path, the link quality and network coding opportunities. The load

of a node is represented by an expression proposed by the authors called Activity Level

(AL) defined for a node a as:

AL(a) = 1 +
QL(a)× |Na|∑
b∈Na

QL(b)
, (2.10)

where QL(a) represents the length of the node’s queue and Na represents the set of

neighbors of a. Intuitively, the value AL(a) represents the current queue length of a in

comparison to the average size of the neighbors’ queues.

Under those conditions, the WETCC metric for a link a→ b is defined by the authors

using the following expression:

WETCCa→b =


AL(a)× (ETXa→b −min(ETXa→b, ETXa→c × da→b)) if a→ b is a

coding link

AL(a)× ETXa→b otherwise

(2.11)

In this expression, ETXa→b denotes the value of the Expected Transmission Count

metric for the link a → b. The value da→b represents the delivery probability of the link

a→ b. Link a→ b is considered a coding link if there is another link a→ c from node a

used in the path of a previously established flow such that the packets for the currently

evaluated flow can be coded together.

The meaning of the expression for the WETCC metric can be explained as follows. If

a→ b is not a coding link, (i.e., if the new flow passing through this link cannot be coded

2.3 Coding Aware Routing 39

with other flows), the cost is simply the product of the node load (AL(a)) and the quality

of the link (ETXa→b). In this case, there are no coding effects to be considered. On the

other hand, if a→ b is a coding link, it is possible that not all packets of the new flow will

need transmissions, because some of them will possibly be sent coded with packets from

other flows. To quantify how many transmissions will be saved due to network coding,

WETCC multiplies the ETX of the link a → c (i.e., the number of transmissions, on

average, used for sending each packet through the link a → c) by the probability that

each of the transmissions is successfully received by node b. This value is then subtracted

from the ETX of the link a → b. However, if the link a → c is much worse than link

a→ b, it is possible that the resultant value is negative. In this case, WETCC considers

that the amount of transmissions needed for the new flow is 0.

When the RREP packets traverse the inverse path towards the source of the new

flow, each intermediate node computes the WETCC metric for its link. As with the CRM

metric, the total cost of a path in the WETCC metric is given by the sum of the costs of

the component links.

A disadvantage of the WETCC metric with respect to the CRM metric is the fact that

the former does not consider coding opportunities involving more than two flows. Fan

et al. assume in their work that packets are transmitted natively (i.e., without coding)

or coded with a single other packet. This assumption limits somewhat the scope of the

WETCC metric.

A deficiency common to both CRM and WETCC is the fact that neither takes into

account the arrival rate of flows to be coded together at a given node. For instance,

suppose that a given flow f1 uses some node a as a relay and the routing protocol wishes

to evaluate the cost of a route using node a for a given flow f2. In this case, the CRM

metric always considers that there will be pairs of packets from flows f1 and f2 to be

coded together. On the other hand, metric WETCC evaluates the possibility of coding

packets from f1 with f2 only based on the ETX of link a→ c and the success probability

da→b. However, it is possible that the arrival rates for each flow at node a are considerably

different due to different generation rates at the sources or available throughput in the

subpaths leading to a. In any case, differences in those arrival rates result in imperfect

pairing of the packets for coding and the necessity of sending some of the packets natively.

Ding et al. [27] propose a coding aware routing metric which has the goal of being

applicable to traditional routing mechanisms (protocols and path selection algorithms).

The metric is defined as the number of transmissions needed so that the packets of the

2.3 Coding Aware Routing 40

new flow are sent from the source to the destination. To this end, authors consider that

network coding only occurs when two flows share a sequence of, at least, three nodes

in their respective paths, traversed in opposite directions. In this case, considering the

complete path between the source s and destination t, the reduction in the number of

transmissions for a flow s⇒ t caused by the usage of network coding is defined by authors

as:

R[Ps⇒t] =
∑

(i→j→k)∈Ps⇒t

min(Ts⇒t, T (fk→j→i))

di→j + dj→k − dj→kdi→j
. (2.12)

In this equation, Ps⇒t denotes the path being evaluated, while i, j and k are any

three consecutive nodes on this path. Ts⇒t is defined by the authors as the amount of

traffic from the new flow (for example, in a window of one second). T (fk→j→i) denotes

the amount of aggregated traffic that currently traverses the subpath i → j → k. The

terms di→j and dj→k denote, respectively, the frame delivery probabilities for links i→ j

and j → k. Notice that in this work, Ding et al. consider all links to be symmetrical, i.e.,

di→j = dj→i for any two nodes i and j.

Assuming that the events of receiving a packet through links i → j and j → k are

independent, the denominator of the fraction presented in Equation (2.12) represents the

probability that at least one of the destinations receive the coded packet. The reciprocal

of this value is the expected number of retransmissions until the packet is received by at

least one of the destinations. The numerator indicates the amount of traffic that can be

coded at node i (with respect to flow s ⇒ t). The product of these values, therefore, is

the expected amount of transmissions for a coded packet, but requiring only the reception

by one of the destinations. Is not clear in [27] why the authors consider this equivalent to

the reduction in the total number of transmissions for flow s⇒ t due to network coding.

In any case, given the value R[Ps⇒t], Ding et al. define the total cost of a path for a

flow s⇒ t as:

w[Ps⇒t] =
∑

(i→j)∈Ps⇒t

Ts⇒t
di→j

−R[Ps⇒t]. (2.13)

In other words, the cost of a path for the flow is given by the total number of trans-

missions needed to send all packets for this flow without network coding, subtracted from

the number of transmissions saved due to network coding.

An interesting contribution of this work is the adaptation of the proposed metric to

2.3 Coding Aware Routing 41

traditional routing mechanisms. Ding et al. argue that the proposed metric does not

have the mathematical property of isotonicity. Therefore, traditional algorithms for the

problem of shortest paths in graphs cannot guarantee the optimal solution.

In the specific case of the metric presented by Ding et al., the lack of isotonicity results

from the fact that the cost of adding a new link to a path varies according to whether

or not the current node is intermediate. If a node is a terminal in the path of a flow, it

cannot perform network coding with packets from this flow. On the other hand, if the

node is intermediate, it might be able to code the flow, reducing its the contribution for

the total cost of the path.

To avoid this problem, Ding et al. propose a scheme for mapping the graph of the

real network topology to a graph of a virtual topology. In this virtual topology, each real

node is mapped to many virtual nodes. For instance, a node a is mapped to, at least,

two virtual nodes a+ and a−. In the virtual topology, node a+ is used only for data flows

originated at the real node a. Similarly, node a− is responsible for data flows addressed

to node a. When a is used as an intermediate node in a path, more virtual nodes are

created. For each type of virtual node, authors present a set of rules to create edges with

their respective costs.

The virtual topology graph created through this mapping process can be used as an

input for a shortest path algorithm, such as Dijkstra’s algorithm. In this case, it is possible

to guarantee that the algorithm is able to find the optimal solutions for the problem.

A more recent proposal is the Coding-aware Path Transmission Time metric (CPTT),

introduced by Yue et al. [104]. The idea of CPTT is to assign as the cost for a path the

throughput of its bottleneck link. In order to evaluate the throughput of each link, Yue

et al. employ the concept of conflict graph and use the cliques to estimate an upper

bound. The possibility of coding is taken into account by extending the concepts of links

and conflict graph into hyperlinks (links with single sources and multiple destinations)

and hyperlink conflict graphs. For a given real link, the throughput is approximated as

the maximum between its throughput upper bound and the maximum throughput of any

hyperlink containing it.

Although Yue et al. show good results when comparing CPTT with other coding-

aware metrics, authors do not address important practical aspects of their proposal.

Namely, they do not explain how an algorithm for finding the best routes would work

with their metric. CPTT is a non-isotonic metric and thus it requires non-traditional

path finder algorithms or the employment of virtual graphs. Even more serious, though,

2.3 Coding Aware Routing 42

1

2

0 3

0.5

0.4

0.4

0.5

Figure 2.5: Example of a topology that may favor opportunistic routing.

is the lack of a complexity analysis for computing the costs for each link. This computa-

tion requires all maximal cliques to be found for each link in the conflict graph, a problem

which is known to be NP-Hard [32].

2.3.2.1 Opportunistic Routing

Another branch of the coding aware routing protocols uses the concept of Opportunistic

Routing [14]. In this kind of routing, the idea is to try to take advantage of the broadcast

nature of the wireless medium to increase the delivery probability of the data packets.

Instead of determining a single node as the next hop for a given packet, an oppor-

tunistic routing protocol determines a set of neighbors that can efficiently act as relays

for that packet, i.e., a set of next hop candidates. When a node wishes to send a packet,

it chooses a subset of nodes among its neighbors that are closer to the destination node

than itself (according to some routing metric). The packet is then sent in broadcast and

any neighbor that belongs to that subset may perform the forwarding of the packet. The

probability that at least one of the candidates receive the packet and is able to continue

the process of forwarding is always greater or equal to the probability that only the best

one does it.

For instance, consider the topology illustrated in Figure 2.5. In this figure, the value

associated with each edge shows the delivery probability for the respective link. Suppose

node 0 wishes to send a packet to node 3. However, 0 is not able to reach 3 directly.

It is necessary that one of the intermediate nodes 1 and 2 is used as a relay. In the

traditional routing, node 0 would choose one of the intermediate nodes and send the

packet to it. In the opportunistic routing, node 0 only includes nodes 1 and 2 among the

2.3 Coding Aware Routing 43

next hop candidates. In this case, the probability that at least one of the intermediate

nodes receives the packet is [1− (1− 0.5)× (1− 0.4)] = 70%.

Generally speaking, a transmitting node associates a forwarding priority with each

next hop candidate. In other words, the closer a candidate is to the destination, the higher

its priority to forward the packet. This priority is used so that lower quality candidates

are only used if the better candidates do not receive the packet. In the case illustrated

by Figure 2.5, the highest priority would be given to node 2, assuming the criterion was

the link delivery probability.

Previous work, such as the one by Biswas and Morris [14], show that opportunistic

routing can bring gains in terms of throughput, if compared with traditional routing.

Specifically, in dense topologies with low quality links, opportunistic routing can result

in increased throughput by reducing the packet loss probability (since a packet needs to

be lost by all candidates to be considered definitely lost). There are, however, still open

questions such as the coordination of the candidate nodes. In other words, how can one

avoid that two or more candidates transmit the same packet redundantly? This situation

can be illustrated in Figure 2.5 assuming, for instance, that nodes 1 and 2 are not within

communication range from one another. In this case, even if node 2 has the forwarding

priority over node 1, it is not possible to avoid node 1 from making a possibly useless

transmission since this node is never able to detect that node 2 has already forwarded the

packet.

The first proposal of an opportunistic coding aware routing protocol was MORE [18].

The idea of this proposal is to combine opportunistic routing with random network coding.

The source node for a data flow divides the flow into blocks of k packets. The source

then proceeds with the transmission of the first block, by sending multiple random linear

combinations of the packets that compose the block. Each coded packet contains the

information of the coefficients used for the combination and the list of the candidate

forwarding nodes. However, differently from the traditional opportunistic routing, MORE

does not associate priorities with each candidate. Whenever a node receives a packet

and verifies it is among the forwarding candidates, it checks whether this received linear

combination is independent from the others it has already received. If that is the case,

the node generates another random linear combination and broadcasts it for its own set

of forwarding candidates. The source only stops transmitting new linear combinations

for the current block when the destination node sends a confirmation that the block was

decoded successfully.

2.3 Coding Aware Routing 44

The main advantage of MORE with respect to the traditional opportunistic routing is

the fact that this protocol does not need to deal with the priorities for the candidates. In

traditional opportunistic routing protocols, such priorities were handled by modifying the

MAC layer by imposing a fixed scheduling for using the wireless medium, which would

reduce the spatial reuse of the spectrum [18].

Koutsonikolas et al. proposed an optimization for MORE (which could be adapted to

any other similar mechanism), based on acknowledgment packets between intermediate

nodes [58]. In the original proposal of MORE, Chachulski et al. [18] suggest that for each

new linear combination received, an intermediate node (assuming it belongs to the set of

forwarding candidates) should generate and transmit a number of new linear combinations

that is a function of the delivery probability of this node to the nodes in its own set of

candidates. Koutsonikolas et al. [58] argue that this strategy can result in an excessive

amount of retransmissions, rendering the wireless medium unnecessarily busy. For this

reason, authors suggest the usage of hop-by-hop ACKs.

The idea is that each candidate sends an ACK to the previous hop letting it know

that it already has enough linear combinations (assuming that each block is composed

of k packets, ideally an intermediate node should receive k independent combinations).

When a node receives ACKs from all its forwarding candidates, it ceases to transmit.

The main contribution of the work by Koutsonikolas et al. however, is not the capa-

bility of candidates to ask the previous hop to stop transmitting. Besides this information,

ACKs can also contain data regarding already received linear combination. By receiving

back ACKs containing information regarding known combinations by each of its forward-

ing candidates, a node is able to generate and transmit more useful linear combinations,

reducing the number of necessary transmissions. An interesting aspect of the scheme

proposed by Koutsonikolas et al. is the fact that the ACKs do not need to contain the

actual coefficients for all combinations received by a candidate. Instead, it is sufficient

that a node includes only a vector za that satisfies the following property:

za · v = 0,∀v ∈ B, (2.14)

where B denotes the set of all known linear combinations (represented by their respective

coefficient vectors) and “·” denotes the operation of dot product. The advantage of

this method is the reduction of the overhead caused by the ACK. Instead of sending a

potentially large set of coefficient vectors, a node only needs to send a single vector that

satisfies this property.

2.3 Coding Aware Routing 45

Radunović et al. [84] also present a coding aware opportunistic routing protocol [84].

Similarly to MORE, this work uses random network coding. However, this proposal tries

to better control the diffusion of the linear combinations of the packets for each block

by using a system of credits. In this proposal, one credit corresponds to a permission to

transmit one linear combination of a given block. When an intermediate node receives a

credit referring to a given block, it becomes authorized to generate and send a new linear

combination of the packets of the block. The proposed protocol uses the concept of back

pressure to assign the credits of a block among network nodes.

One of the limitations of the work by Radunović et al. are the strong assumptions

adopted by the authors to simplify the execution and analysis of the proposal. One such

assumption is the existence of an independent communication channel between network

nodes used to transfer credits. Authors assume this channel is ideal in the sense that

there are no losses or significant delay. If losses are allowed in this channel, credits may

be lost, which would possibly cause the number of linear combinations delivered to the

destination node to be insufficient for decoding.

Although most proposals of coding aware opportunistic routing protocols employ ran-

dom network coding, there is at least one exception in the literature. Yan et al. propose

a protocol called CORE [101]. CORE uses hop-by-hop network coding with packets from

different flows, similarly to COPE. The set of forwarding candidates is chosen according

to the criterion of geographical proximity: all neighbors that are closer to the destination

than the current node are included in the candidate set. Once the packet is received by

a set of candidates, the priority selection is done based on the coding opportunities. To

this end, each candidate calculates a backoff time which is inversely proportional to the

number of packets that can be coded together with the received packet.

An interesting aspect of the CORE protocol is that it uses an algorithm for selecting

packets to be coded together that is different from the one proposed with COPE. While

COPE looks for coding opportunities only among the first packets of each virtual queues

associated with each neighbor, with CORE this approach makes little sense, since in op-

portunistic routing there is not a single defined next hop for a given packet. By using

opportunistic routing, each native packet has a set of receivers (all nodes from the for-

warding candidate set). Hence, the algorithm for selecting packets for coding must take

into account if all forwarding candidates of a native packet are able to decode a potential

coded message. Incidentally, Yan et al. define that their algorithm searches the first k

packets of the queue looking for coding opportunities.

2.4 Discussion 46

Although authors do not present a formal description of their packet selection algo-

rithm, they state that the proposed method has an asymptotic complexity of O(2kD),

where D is the mean degree of the network nodes. Authors argue that, for practical

purposes, this complexity is not much different from the complexity of the algorithm used

by COPE, since it is parametrized by parameter k, which can be adjusted. However, the

term 2k grows very fast even for low values of k. Unfortunately, authors do not provide an

evaluation of how the processing overhead affects the performance of the proposal. The

evaluation presented in [101] is based only on simulations, which makes the presented

results oblivious to this overhead.

2.4 Discussion

There is a large literature on traditional routing in multihop wireless networks. While

protocols and metrics aware of interference or network coding exist, the traditional obliv-

ious mechanisms (i.e., those that do not consider neither interference or network coding)

are still the most widely used in practice [68, 92, 69]. Most traditional metrics are based

on ETX and ETT (which, itself, is based on ETX).

In terms of interference-aware metrics and protocols, most proposals assume the ex-

istence of multiple network interfaces in each node [28, 91, 90]. In this case, the problem

becomes somewhat easier due to the fact that a metric may simply explore the diversity of

channels in its paths. Assuming the available channels are non-interfering, this procedure

effectively reduces the intra-flow interference.

Among the interference aware proposals that consider the scenario with a single chan-

nel, a common problem is the lack of a complete vision of the network considering all

existent flows. Those proposals tend to consider flows individually, either by keeping the

same route choices for older flows once new flows start [6], or by assuming flows exist,

even when they do not, leading to an unnecessary usage of a worse path that is not going

to avoid interference [102].

Based on the revision of the literature on the theme of coding aware routing protocols,

it was also possible to identify some specific deficiencies which are common to many of

the proposals. These deficiencies can be summarized in the following points:

1. over-simplified medium access models;

2. disregard for the arrival rate of packets from each flow to a coding node;

2.4 Discussion 47

3. disregard for the MAC layer transmission rate;

4. impossibility or high delay for rerouting previously established flows in case of the

appearance of new flows; and

5. assumption of independence or total dependence in the events of reception of a

coded packet by many receivers.

The excessive simplicity of the models for the medium access is noticeable in the

proposals that employ mathematical programming [87]. Generally speaking, these sim-

plifications allow events that are impossible in practice, such as the transmission of two

packets simultaneously by nodes that belong to the same collision domain.

The arrival rate for packets of different flows is commonly ignored by proposals of

practical routing protocols [61, 30]. The metrics used by such protocols, in general,

implicitly assume that two or more flows coded together always have packets available

for coding. In other words, if there is a packet from a flow to be transmitted in a given

moment in the buffer of a node, there are also correspondent packets from other flows to

be coded together. This assumption is only true if the arrival rates for the different flows

at the node match one another.

Another common issue for most of the proposals is the availability of multiple trans-

mission rates in the link layer. The proposals usually assume that the transmission rate

is fixed and equal for all nodes [61]. In practice, however, it is common that wireless

network devices are able to operate at different transmission rates. Notice that part of

the reason why transmission rates are not considered by those protocols and metrics is

due to a difficulty regarding network coding itself. In a network that supports multiple

rates, when a coded packet is to be transmitted in the link layer addressed to two or more

neighbors, it is necessary to choose which transmission rate to use. This choice, however,

may not be trivial, especially if the links associated with each intended receiver have

very different qualities. While there are simplistic approaches, such as simply choosing

the lowest transmission rate among those used for unicast transmissions for each of the

receivers, the literature on network coding still lacks a deeper study in that regard.

Most of the practical proposals employ the framework of a reactive routing proto-

col [61]. Whenever a new flow is detected, the routing protocol triggers a process of route

discovery. During this process, the existence of other flows transmitting packets through

their previously established routes is taken into account for deciding the route for the new

flow. However, those protocols are not capable of rerouting those previous flows in order

2.4 Discussion 48

to find better overall routes, assuming one might exist. For this reason, the set of routes

selected by such protocols might not be globally optimal.

Finally, the last identified point refers to the process of transmitting a coded packet

for a set of receivers. The proposals found on the literature intrinsically assume the

independence or complete dependence of the reception events in each of the receivers [61].

In practice, however, as shown in Appendix B, this assumption is not always valid [76, 74].

Chapter 3

Proposed Routing Algorithm

In this chapter we describe the core contribution of this thesis: a novel framework of

routing algorithms that seek to find a set of paths that maximizes the aggregated network

throughput taking into account the self-interference among flows and, possibly, resorting

to the usage of network coding. From this general framework, we derive two specific

routing algorithms: IAR and ICAR.

Algorithm 3.1 shows the general idea for our proposed framework. This algorithm is

based on two auxiliary functions: EstimateThroughput and GenerateCandidates. The idea

is to generate a list of candidate solutions (i.e., a list of sets of paths for the currently active

network flows) and loop through this list evaluating the resultant aggregated throughput

for each candidate. This evaluation is done by the auxiliary function EstimateThroughput.

After traversing the complete list of candidates, the candidate that yields the highest

aggregated throughput is returned.

This algorithm receives as an input a graph G = (V,E) representing the topology of

the network, as well as a set F of the currently active flows. As will be further discussed

in the following sections, the EstimateThroughput function requires the information of the

delivery probability to be associated with each edge on G. We assume this information

is provided by the routing protocol, as it would be for common routing metrics, such as

ETX. We also assume, however, that these delivery probabilities are good estimates for

the actual delivery probabilities of the data packets. Since data packets tend to be large –

with sizes similar to the MTU (Maximum Transmission Unit) of the interface – a possible

implementation is to use large probes for estimating such delivery probabilities.

In the next sections, we further detail each of those functions, as well as some project

decisions that were made. Those sections are organized so that we first present an exact

version of the algorithm and then present heuristic mechanisms to reduce the complexity

3.1 Link State versus Distance Vector 50

Algorithm 3.1 Framework for the proposed route selection algorithms.

1: function RouteSelection(Graph G, Flow set F)
2: CandidateList← GenerateCandidates(G,F)
3: BestCandidate← First element of CandidateList
4: BestThroughput← EstimateThroughput(G,F,BestCandidate)
5: while CandidateList is not empty do
6: NextCandidate← Next element of CandidateList
7: NextThroughput← EstimateThroughput(G,F,NextCandidate)
8: if NextThroughput > BestThroughput then
9: BestCandidate← NextCandidate

10: BestThroughput← NextThroughput
11: end if
12: end while
13: Return BestCandidate.
14: end function

of the solution, allowing it to be employed for real time route selection.

3.1 Link State versus Distance Vector

An important decision when designing a routing solution is whether to deploy a protocol

based on link state or distance vector. Distance vector protocols have the advantages

of requiring less state information to be stored in each node and of avoiding flooding

the network with control packets. Nodes only need to store information regarding the

known routes and control traffic is only sent locally. The processing complexity for com-

puting routes using distance vectors is also lower than in the link state case, due to the

employment of a distributed version of the Bellman-Ford algorithm [11].

All these characteristics make the distance vector approach interesting, especially con-

sidering the implementation on resource constrained devices. Nevertheless, one advantage

of the link state approach is the availability of a global network view for the routing al-

gorithm. While maintaining this consistent network view is more expensive, it provides

more information for the route selection algorithm. In the specific case of the proposal

presented in this thesis, it requires this global network view due to the necessity of com-

puting an estimate for the aggregated network throughput, as depicted in Algorithm 3.1.

Moreover, differently from other approaches listed in Chapter 2 that choose routes in a

more incremental way, the proposal presented in this thesis allows previously established

flows to be rerouted easily, in case that leads to a better solution when a new flow is

started. For these reasons, we assume the usage of a link state routing protocol.

3.1 Link State versus Distance Vector 51

Candidate
Generation

Any Candidates
Left?

Evaluate Next
Candidate

No

Yes

Route Selection

Wait for Events

Send Hello
Packet

Send Topology
Packet

Update Global
Topology Vision

Update Routing
Table with

Best Candidate

Update Local
Neighborhood

Perform
Forwarding

Update Global
Flow Table

Update Local
Flow TableExecution Workflow

for each Node

Topology
Packet is
Received

Hello
Packet is
Received

Data Packet
is Received

Topology
Timer

Hello
Timer

Figure 3.1: Proposed workflow for the execution of the link state routing protocol used
with IAR and ICAR. The functions delimited by the dashed line represent basic func-
tionalities found on any link state routing protocol. The gray box illustrates the routines
concerning route selection.

Figure 3.1 illustrates the workflow for the routing protocol executed in each network

node. All functionalities enclosed by the dashed line are typical routines for a link state

routing protocol, such as maintaining local and global visions of the network topology and

periodically sending control packets. To those basic functionalities, we also added routines

for maintaining two flow tables: a local flow table (containing information regarding flows

originated at the local node) and a global flow table (which stores information about all

current network flows). The manipulation of these flow tables is explained in more detail

in Chapter 4. A considerable portion of the workflow is highlighted in gray. This box

represents the route selection procedure. In a classical link state routing protocol, this box

would contain a call to a traditional shortest path algorithm, such as Dijkstra algorithm.

In this case, the routines represent the same procedure shown in Algorithm 3.1.

3.2 Aggregated Throughput Estimation Function 52

0 1
10

(a)

0 1
10

2 3
6

(b)

1 2

543

0
5

3 4

2

(c)

Figure 3.2: Examples of simple scenarios that help to illustrate the definitions of steady
state of a simulation, transient state of a simulation and steady state cycle length. Figure
(a) shows a scenario with a single flow, while the two other figures illustrate scenarios
with two flows (differentiated by different kinds of arrows).

3.2 Aggregated Throughput Estimation Function

Function EstimateThroughput, called by Algorithm 3.1, receives three arguments: the

graph G representing the network topology, the set of currently active flows F and a

candidate solution, i.e., a path set containing paths for all flows in set F . The goal of this

function is to return an estimate of the aggregated throughput that would be achieved if

the specified path set is employed.

To this end, function EstimateThroughput performs a simulation of the sequence of

events (transmissions, packet queuing, dequeuing and discards) that would occur in the

network by employing the paths of the candidate solution. During this simulation, the

function tries to find a good estimate for the long term aggregated throughput. By long

term, we refer to the average network throughput once the transient effects at the begin-

ning of the flows are over. For instance, in Chapter 1, a simple scenario with two flows

was presented, illustrated in Figure 1.2. In that scenario, assuming a given schedule of

transmissions in the MAC layer, the delay of the first packet to traverse one of the paths

(Path 1) was 11 ms, while the following packets would be delivered with intervals of 9 ms.

If one simulates that scenario and considers the interval from t = 0 to t = 20, the average

throughput would be of 2/20 = 0.1 packets per unit of time. As the sampling interval

3.2 Aggregated Throughput Estimation Function 53

increases, throughput asymptotically approaches 1/9 ≈ 0.111 packets per unit of time.

By adopting the long term aggregated throughput, we are implicitly assuming network

flows to have a long duration.

In that specific scenario, considering the deterministic scheduling used in the example

(where a packet always has priority for using the medium over the ones generated later),

immediately after t = 11, network events start to repeat themselves in cycles. As a result,

the intervals for the arrival of the packets to the destination node also become repetitive.

With that characteristic in mind, we present the following definitions.

Definition 3.1 Steady State of a Simulation. Given a network topology, a set of flows, a

set of paths used by the flows, and a deterministic medium access schedule, the simulation

is said to be in steady state if and only if all events from that point on repeat themselves

for later packets in the same order and time intervals.

Definition 3.2 Transient State of a Simulation. Given a network topology, a set of

flows, a set of paths used by the flows, and a deterministic medium access schedule, the

simulation is said to be in transient state if and only if it has not yet reached a steady

state.

Definition 3.3 Steady State Cycle. In a simulation that has reached the steady state, the

cycle is the shortest sequence of events that repeats itself indefinitely.

Definition 3.4 Steady State Cycle Length. In a simulation that has reached the steady

state, the cycle length is the time difference between the occurrences of correspondent

events in consecutive occurrences of the cycle.

Figure 3.2 shows a number of simple scenarios that help illustrating these definitions.

In all figures, the weights of the edges represent the transmission delay for the respective

link. In Figure 3.2a, at time t = 0, the first packet of the flow 0 ⇒ 1 starts to be

transmitted. After 10 units of time, it arrives at node 1, while the second packet starts

to be transmitted (assuming the flow is backlogged at node 0). This cycle repeats itself

indefinitely. Hence, in Figure 3.2a the steady state starts at t = 0, which means there is

no transient state, and the length of the steady state cycle, which is composed of a single

transmission event, is equal to 10 time units.

In Figure 3.2b two different interpretations can be made, depending on whether links

0→ 1 and 2→ 3 are interfering or not. Assuming that they do interfere with each other,

3.2 Aggregated Throughput Estimation Function 54

at time t = 0 one of the two source nodes obtains the right to access the medium, say

node 0. Node 0, then, proceeds to start the transmission, while node 2 waits its turn.

This transmission lasts 10 units of time, after which there is another dispute for the usage

of the wireless medium. Assume the schedule of transmissions is perfectly fair, meaning

that now node 2 gains the right to transmit. This new transmission takes 6 units of time,

after which node 0 can transmit again. Assuming the links will continue to be used in

a perfectly alternate manner, this scenario presents a cycle length of 16 time units, with

the steady state starting at t = 0, meaning again that there is no transient state. If one

assumes, however, that both links 0→ 1 and 2→ 3 can be used simultaneously, than the

following events will occur:

1. At t = 0, both links 0→ 1 and 2→ 3 start to transmit.

2. At t = 6, the first packet of flow 2⇒ 3 arrives at the destination, while the second

packet starts to be transmitted at link 2 → 3. Link 0 → 1 is still transmitting its

respective first packet.

3. At t = 10, the first packet of flow 0⇒ 1 arrives at the destination, while the second

packet starts to be transmitted at link 0 → 1. Link 2 → 3 is still transmitting its

respective second packet.

4. At t = 12, the second packet of flow 2 ⇒ 3 arrives at the destination, while the

third packet starts to be transmitted at link 2→ 3. Link 0→ 1 is still transmitting

its respective second packet.

5. At t = 18, the third packet of flow 2⇒ 3 arrives at the destination, while the fourth

packet starts to be transmitted at link 2 → 3. Link 0 → 1 is still transmitting its

respective second packet.

6. At t = 20, the second packet of flow 0 ⇒ 1 arrives at the destination, while the

third packet starts to be transmitted at link 0→ 1. Link 2→ 3 is still transmitting

its respective fourth packet.

7. At t = 24, the fourth packet of flow 2⇒ 3 arrives at the destination, while the fifth

packet starts to be transmitted at link 2 → 3. Link 0 → 1 is still transmitting its

respective third packet.

8. At t = 30 both the fifth packet of flow 2 ⇒ 3 and the third packet of flow 0 ⇒ 1

arrive at their respective destinations. The transmissions of the sixth packet of flow

2⇒ 3 and seventh packet of flow 0⇒ 1 start.

3.2 Aggregated Throughput Estimation Function 55

Notice that at time t = 30, transmission events start to repeat the same cycle that

started at t = 0. Therefore, in this case, the steady state is reached in time t = 0, with

cycles of 30 time units.

The example illustrated in Figure 3.2c is the most complicated of the three. For this

example, assume that links 0→ 1 and 4→ 5 can be used simultaneously. Similarly, links

3 → 4 and 1 → 2 do not interfere with each other. For any other combination of links,

simultaneous transmissions are impossible. At time t = 0, both nodes 0 and 3 compete

for the wireless medium. Assume that in this case, node 0 has the priority over node 3.

Node 0 will, then, perform its transmission to node 1, which will last for 5 units of time.

At that moment, three nodes will have packets to transmit, nodes 0, 1, and 3. Since node

3 has been waiting for the longest time, assume it receives the right to transmit. Since

link 1 → 2 does not interfere with link 3 → 4, node 1 can transmit as well. After two

more units of time (at t = 7), the first packet of flow 0⇒ 2 arrives at its destination. The

link layer transmission from node 3 to node 4 is only completed at time t = 8, though. At

that point, nodes 0, 3, and 4 will compete for the right to transmit. Again, lets assume

the node waiting for the longest time (node 0) is awarded. Since links 0 → 1 and 4 → 5

are non-interfering, node 4 can transmit as well. At t = 12, the first packet of the flow

3 ⇒ 5 arrives at its destination. One time unit later, at t = 13, the transmission from

node 0 to node 1 is over and now there are 3 nodes trying to access the medium: 0, 1,

and 3, with node 3 being the one waiting for the longest time. Notice that this situation

is exactly equal to the situation at time t = 5 (after the first transmission performed

by node 0). Assuming the medium access schedule is deterministic and stays the same,

the same sequence of transmissions will be repeated, culminating in the same simulation

state at time t = 21. According to the previously presented definitions, the simulation

has reached the steady state at t = 5, with a cycle length of 8 units of time. Differently

from the previous examples, all events that happen before t = 5 constitute a transient

state for this simulation.

Another definition that will be useful for the remainder of this chapter is the definition

of Steady State Throughput :

Definition 3.5 Steady State Throughput. In a simulation that has reached the steady

state, the steady state throughput is the average aggregated network throughput considering

the time interval between the moment when the steady state was reached until a time

tf → ∞. In other words, it is the average aggregated network throughput for a infinitely

long simulation, disregarding the initial transient state.

3.2 Aggregated Throughput Estimation Function 56

With regard to this last definition, the following proposition can be stated and demon-

strated:

Proposition 3.6 The steady state throughput is equal to the average throughput of a

single steady state cycle.

Proof Let the moment the simulation reaches the steady state be denoted by ts. Let

L denote the length of one steady state cycle. Finally, let D be the number of packets

delivered for their respective destination nodes within each steady state cycle and Tc =

D/L the throughput during a single steady state cycle. For a given, finite value of tf (the

end of the simulation), there are two possibilities: either tf − ts is a multiple of the steady

state cycle length L or it is not.

If tf − ts is a multiple of L, then this interval is only composed of complete steady

state cycles. In this case, exactly D× (tf − ts)/L packets were delivery during the steady

state and the steady state throughput Ts is given by:

Ts = D × tf − ts
L

× 1

tf − ts
=
D

L
= Tc (3.7)

On the other hand, if tf − ts is not a multiple of L, then the last cycle within that

time interval is incomplete. In other words, there is a residue at the end of the interval

during which nothing can be stated in the general case. Let Tr denote the unknown

throughput during this residue and Lr = (tf − ts) mod L be the residue length. Under

these circumstances, the steady state throughput is given by the weighted average:

Ts =
Lr

tf − ts
× Tr +

tf − ts − Lr
tf − ts

× Tc (3.8)

Since Lr is always lower than Lc, as tf − ts →∞, the first term arbitrarily approaches

0, while the second approaches Tc. Therefore, the steady state throughput is equal to the

throughput of a single steady state cycle.

In this thesis, we argue that the steady state throughput (assuming the simulation

ever enters such state) is a better (fairer) metric for evaluating the aggregated network

throughput resultant from the usage of a given path set than the throughput considering

any other arbitrary time interval starting at t = 0. If the network flows are sufficiently

long, the transient state might not represent well the resultant network throughput be-

cause it can be either much higher or much lower. On the other hand, assuming flows

3.2 Aggregated Throughput Estimation Function 57

Algorithm 3.2 Macro vision of the aggregated throughput estimation function.

1: function EstimateThroughput(Graph G, Flow set F , Path set C)
2: Initialize variables t← 0, AL← ∅, and WT ← ∅
3: for all flow f ∈ F do
4: Add packet first packet of flow f to the buffer of node src(f)
5: WT ← WT ∪ {src(f)}
6: end for
7: for all node i ∈ WT , sorted according to medium access priority do
8: P ← first packet in the queue of node i
9: f ← flow of packet P

10: l← first hop of path in C for the flow f
11: if l is not blocked by any link with higher priority then
12: AL← AL ∪ {l}
13: TransmissionEndl ← t+ Transmission delay of l
14: if the queue of node i is now empty then
15: WT ← WT − {i}
16: end if
17: end if
18: end for
19: while simulation steady state is not reached do
20: t← min

l∈AL
TransmissionEndl

21: for all link l ∈ AL s.t. TransmissionEndl = t do
22: P ← packet just carried by link l
23: f ← flow of packet P
24: AL← AL− {l}
25: if dst(f) 6= dst(l) then
26: Add packet P to the buffer of node dst(l)
27: WT ← WT ∪ {dst(l)}
28: end if
29: if src(f) = src(l) then
30: Add next packet of flow f to the buffer of node src(f)
31: WT ← WT ∪ {src(f)}
32: end if
33: end for
34: Repeat actions from steps 7 through 18
35: end while
36: Return the throughput of a cycle
37: end function

3.2 Aggregated Throughput Estimation Function 58

are sufficiently long, the overall network throughput (including the transient state), con-

verges to the steady state throughput with time. Although in this thesis we do not assume

knowledge of the actual duration of the flows, we do assume that they are long in com-

parison with the length of the transient state, so that the steady state throughput is a

good approximation for the overall network throughput.

It is, therefore, the goal of our aggregated throughput estimation function to find and

return the steady state throughput. To this end, this function performs the macro steps

listed in Algorithm 3.2. This function uses three main control variables, namely t, the

simulation time, AL, the set of currently active links, and WT , the set of nodes that want

to transmit (i.e., that currently have packets in their buffers).

After initializing the main control variables, the function proceeds by generating the

first packet of each flow and adding it to the correspondent source node buffer (lines 3

through 6). Once those packets are generated, the function triggers the initial transmis-

sions (lines 7 through 18). This is done by traversing the set WT according to the medium

access priority taking the first packet from each node’s buffer and checking whether the

required link can be used. If a link l is not blocked (i.e., if it can be used), the function

computes the transmission delay for that link, adds it to the current time and stores

the result on variable TransmissionEndl. If the packet just removed from the corre-

spondent’s node buffer was the only packet currently there, the node no longer wants to

transmit, and therefore must be removed from the set WT . Notice, however, that this

is not always the case even at the beginning of the simulation, since multiple flows may

share the same source node.

At this point, the function reaches the main loop (lines 19 through 35). Each iteration

of this loop can be divided in three tasks: updating the simulation time (line 20), consol-

idating the transmissions that are currently ending (lines 21 through 33), and triggering

new transmissions (line 34).

To update the simulation time, it suffices to find the lowest value of the variables

TransmissionEndl among all active links l. Since all possible transmissions were sched-

uled previously, no other network event is possible until at least one active link finishes

its transmission.

In order to consolidate the transmissions currently ending, the function loops through

all links of the AL set, checking if their respective TransmissionEndl is equal to the

value of the control variable t. Whenever that is the case (and it has to be the case for at

least one link), link l is removed from the AL set, and if the destination of the link is not

3.2 Aggregated Throughput Estimation Function 59

the final destination of the packet, the packet is added to the buffer of the next hop. A

special case is when the link just carried a packet from the source of the respective flow.

In that case, once the packet has just traversed its first link, the next packet from the flow

must be created on the source node’s buffer (thus, maintaining the source backlogged).

Finally, all possible new transmissions (if any) are triggered by executing the same

steps already described in lines 7 through 18.

The main loop ends when the function detects that the simulation has reached the

steady state. At that point, the function discovers what is the length of the steady state

cycle and the number of packets delivered within a cycle so that it can compute the steady

state throughput. This value is then returned.

Notice that this is a very preliminary description of the aggregated throughput esti-

mation function, in which many details (e.g., how the medium access priorities work, and

how does the algorithm detects that the simulation has reached the steady state) have

been left out for the sake of readability. On the next subsections, these details will be

explained.

3.2.1 Conflict Graph and Link Blocking

Line 11 (and, consequently, line 34) of Algorithm 3.2 performs a test to verify if a given

link can currently be used. This test is put in place in order to avoid activating two links

that block each other. By blocking, we mean two links that, for some reason, cannot or

should not be used together. In this thesis, we consider that two links l1 and l2 cannot or

should not be used simultaneously in the following cases:

• both links share the same source node;

• both links share the same destination node;

• the destination for one of the links is among the neighbors of the source node for

the other link; or

• the source node for one of the links is a neighbor of the source node for the other

link.

The first two cases are obvious, since a node cannot receive or transmit two packets

simultaneously. The third case stems from the fact that, given the shared nature of the

3.2 Aggregated Throughput Estimation Function 60

Algorithm 3.3 Procedure that builds a conflict graph for a network.

1: function BuildConflictGraph(Graph G, Path set C)
2: Initialize conflict graph CG with all links used in C as nodes, but no edges.
3: for all path Pi ∈ C do
4: for all link li ∈ Pi do
5: for all path Pj ∈ C do
6: for all link lj ∈ Pj do
7: d← delivery probability for link src(li)→ src(lj)
8: if d > NeighborhoodThreshold then
9: Add edge between li and lj in CG

10: else
11: d← delivery probability for link src(lj)→ src(li)
12: if d > NeighborhoodThreshold then
13: Add edge between li and lj in CG
14: else
15: d← delivery probability for link src(li)→ dst(lj)
16: if d > NeighborhoodThreshold then
17: Add edge between li and lj in CG
18: else
19: d← delivery probability for link src(lj)→ dst(li)
20: if d > NeighborhoodThreshold then
21: Add edge between li and lj in CG
22: end if
23: end if
24: end if
25: end if
26: end for
27: end for
28: end for
29: end for
30: Return CG
31: end function

wireless medium, if a node starts transmitting while one of its neighbors is currently

receiving another frame, the two signals will mix, probably resulting in a collision (i.e.,

the receiving node might fail to receive its intended packet). Finally, the fourth case

disallows two neighbor nodes to transmit simultaneously. While there are no physical

constraints on this kind of event, there are important MAC layer protocols based on the

CSMA/CA technique, which forbids both transmissions to happen simultaneously (one

of the nodes would sense the medium as being busy, postponing its transmission1).

1There is one exception to this rule which happens when both transmitters are completely synchro-
nized. In that case, both can sense the wireless medium as being idle at the exact same time, leading
them to transmit simultaneously. However, this total synchronization is usually considered an undesirable
casual event for CSMA/CA.

3.2 Aggregated Throughput Estimation Function 61

It is a common practice in the literature the usage of an interference range [87]. The

interference range is the region within which a node’s transmission may disturb receptions

by other nodes. Most works adopt an interference range in terms of a radius centered

at the node and it is common for this radius to be considered twice the size of the one

for the transmission range [87]. It is not difficult, however, to find examples of how this

strategy can fail to model the actual interference caused by a node. One such example

is the possible existence of multiple transmission rates at the link layer. In that case,

the transmission range is dependent on the used transmission rate [75]. If a node uses a

higher transmission rate, it might decrease its effective transmission range. However, as

long as the transmission power is kept constant, its ability to interfere with other nodes’

receptions is maintained. Due to this definition being somewhat arbitrary, in this thesis

we opted to employ a more concrete set of rules, considering only neighbors to be affected

by the transmissions of a node.

In any case, given the cases in which two links cannot be used simultaneously, it is

possible to build a conflict graph [50]. As explained in Chapter 2, this data structure

represents the relationships between network links in terms of whether they can be used

simultaneously or not in the form of a graph. In this graph, each network link is repre-

sented by a node, while an edge between two nodes (links) exists if, and only if, these

links cannot be used together.

Before starting the simulation, function EstimateThroughput actually builds such

a conflict graph using the steps depicted in Algorithm 3.3. Although the conditions for

simultaneous usage could be tested during the simulation only when needed, having this

information cached in the form of a conflict graph helps decreasing the complexity of the

simulation when the number of simulated events grows. The algorithm tests the cases

listed in the beginning of this section by using the information of the delivery probability,

which must be associated with each edge of graph G. For a given pair of links, lines 8

and 12 check whether both source nodes are neighbors. We implicitly assume that the

delivery probability from a node to itself is always 1, which make those two conditions

also cover the case of both links sharing the same source node. Lines 16 and 20 test

whether the source for one link may interfere with the receiver of the other link. Notice

that this includes the case of both links sharing the same destination node, since, in that

case, the source of a link is a neighbor of the destination node of the other link.

Notice that this procedure does not build a conflict graph for all network links. In-

stead, only links that belong to one of the paths in the currently tested path set are

3.2 Aggregated Throughput Estimation Function 62

added to the conflict graph, because those are the only links that will be needed dur-

ing the simulation. It is also important to notice the employment of a parameter called

NeighborhoodThreshold to evaluate if two nodes are neighbors. We only consider two

nodes to be neighbors if the delivery probability between them is higher than this thresh-

old. This helps avoiding that very bad links impact the decision of whether two links

interfere with each other, specially when large windows are used to compute an estimate

for the delivery probability.

3.2.2 Medium Access Priorities

During a simulation, ideally, whenever a node has packets to transmit, it would be granted

access to the wireless medium to perform its next transmission. However, since the usage

of a link may block the usage of other network links, the EstimateThroughput function

is required to employ a well-defined policy to choose a subset of unblocked links for

transmission at each new iteration. This is done through the establishment of a set of

rules for determining the order of priority for each node to access the wireless medium.

In this thesis, one requirement for this set of rules is that the long term characteristics

of the medium access would resemble those of real wireless MAC protocols, so that the

results of the simulations can be representative of the actual network performance. Since

there are many different wireless MAC protocols being used in practice [49, 47, 48, 83],

we choose to focus on the one defined by the IEEE 802.11 standard [49]. Notice that the

IEEE 802.11 MAC protocol uses CSMA/CA with a random exponential backoff, which

inserts a probabilistic component into the medium access sharing policy. For the purposes

of our route selection algorithm, we cannot resort to probabilistic components since it is

important that the algorithm yields the same results given the same inputs (we assume

the usage of a link state routing protocol, in which each node must have a complete

network view so that they can employ the same route selection algorithm and reach the

same results). Since the IEEE 802.11 MAC protocol tends to achieve an even distribution

of the medium usage in the long term [56], we propose that function EstimateThroughput

uses a set of deterministic rules that guarantee an uniformly distributed medium access

share for all network nodes.

With that goal in mind, the EstimateThroughput function employs the steps described

in Algorithm 3.4 for choosing the nodes that will be allowed to transmit in a given

moment. This transmitter selection procedure takes into account four main variables:

the precomputed conflict graph CG, the set of nodes that want to transmit WT , and two

3.2 Aggregated Throughput Estimation Function 63

Algorithm 3.4 Procedure that chooses which nodes can use the wireless medium at a
given moment.

1: function ChooseTransmitters(Conflict Graph CG, Set of Nodes that Want to
Transmit WT , Set of Blocked Links BL, Set of Priority Blocked Links PBL)

2: for all nodes i ∈ WT , sorted by how long they have been waiting do
3: P ← first packet in node i’s buffer
4: l← link needed by packet P
5: if l 6∈ BL and l 6∈ PBL then
6: Output node i as a new transmitter
7: for all link lj s.t. an arrow between l and lj exists in CG do
8: BL← BL ∪ {lj}
9: end for

10: else
11: for all link lj s.t. an arrow between l and lj exists in CG do
12: PBL← PBL ∪ {lj}
13: end for
14: end if
15: end for
16: end function

sets of blocked links, BL and PBL.

Nodes are given priority based on how long they have been waiting to transmit. To

this end, whenever nodes are added to the WT in Algorithm 3.2, they are also implicitly

added to a linked list, so that the order in which they requested the usage of the wireless

medium can be preserved. Whenever this transmitter selection procedure is called, it

traverses this list analyzing the feasibility of allowing each node to transmit. To do so, it

retrieves the first packet in the node’s buffer and the necessary link l for the transmission.

It then checks whether l belongs to either of the sets BL or PBL. If it does not, the

procedure allows the node to transmit and blocks all links that are connected to l in the

conflict graph, by adding them to the set BL. Otherwise, the node is not allowed to

transmit, but, still, the procedure adds l to the auxiliary set PBL.

The set BL is the set of links that are currently blocked because another conflicting

link is already in use. On the other hand, links on the set PBL are blocked because there

is a high priority node that could not gain access to the wireless medium that would have

used a conflicting link. The set PBL is needed because otherwise the medium access

schedule might result in priority inversion for certain nodes, i.e., they would be denied

access because they would be blocked by nodes with lower priorities.

Figure 3.3 illustrates this situation. Consider a network (or part of the topology)

with nodes distributed as shown in Figure 3.3a. There are three nodes initially trying

3.2 Aggregated Throughput Estimation Function 64

2 3
1

4

01

5

7

5

(a)

0 1

2 3

5 4

(b)

Figure 3.3: Example of a simple scenario that illustrates the problem of priority inversion
that could happen without the employment of a priority block policy. The leftmost figure
shows an hypothetical topology with three transmitting links, while the rightmost figure
shows the relevant portion of the conflict graph.

to access the wireless medium: nodes 0, 2, and 5. Assume the relevant links form the

conflict graph shown in Figure 3.3b and that all transmitters are backlogged. Assume

also that the node which has been waiting for a transmission opportunity for the longest

time is node 0, followed by nodes 2 and 5 (in that order). By employing the steps listed in

Algorithm 3.4, node 0 is granted access to the wireless medium, which blocks the access

from node 2. However, if we ignore the contents of the set PBL, node 5, which had a lower

priority, is granted access as well. After five units of time, node 5 finishes its transmission

and function EstimateThroughput reevaluates the medium access schedule. Node 5 will

again compete with node 2 for using the medium, and it will win again, despite having a

lower priority (node 2 is still blocked by the transmission of node 0). When node 0 finally

finishes its transmission, node 2 has another opportunity to compete for the medium, but

it will lose again because it is now blocked by node 5, while node 0 is not. In fact, in this

example, node 0 will transmit 5 times, while node 5 will transmit 7 times before node 2

has a chance to transmit.

By employing a second blocking system, based on priorities, we effectively avoid that

priority inversion issue, creating a fairer schedule for all nodes. One could argue that,

in an actual IEEE 802.11 based network, node 2 would indeed receive less opportunities

to transmit than the other two nodes because of its position. While that is true, it

is necessary to bear in mind the fact that function EstimateThroughput only simulates

complete link layer transmissions (comprising all retransmission attempts). In reality,

nodes compete for the medium for every retransmission attempt, which mitigates this

problem, reducing the time a node (such as node 2 in the example) would have to wait

for an opportunity.

3.2 Aggregated Throughput Estimation Function 65

Notice that the procedure shown in Algorithm 3.4 relies on the maintenance of the

value of set BL between executions (a link that is blocked will remain blocked until all

conflict links stop transmitting). The same is not true with the set PBL: this set is

emptied between executions of this procedure.

One final note regarding the medium access priorities used by function EstimateThrough-

put is the initial order of the priority link. At the beginning of the simulation, all nodes

that are source of any flows are added to the WT set and, therefore, are also inserted

in the linked list that maintains the order that defines the priority of each node. We

implicitly assume that all flows are given an index before function EstimateThroughput

and the order defined by that index defines the order in which nodes are traversed initially

for insertion on the WT set.

3.2.3 Link Transmission Delay

One important question regarding the simulation performed by function EstimateThrough-

put is how to compute the transmission delay of a given link. Whenever a link is chosen

to transmit at a certain point of the simulation, function EstimateThroughput computes

its transmission delay in order to schedule the moment when the transmission will be over

(line 13 of Algorithm 3.2).

As explained in the beginning of this chapter, we assume that the topology graph G

contains the information of the delivery probability for all network links. Since in this

work we also assume that all nodes transmit at the same fixed transmission rate, we

adopt the expected number of link layer retransmissions as the metric for evaluating the

transmission delay for a link. Although the idea is similar to the ETX metric of a link,

in this work we resort to a different approach to compute this value.

The IEEE 802.11 standard defines the use of the ARQ technique. Whenever a node

attempts to transmit a frame at the link layer, it waits for a predefined period for an

acknowledgment frame, indicating that the transmission was successful. If this acknowl-

edgment is not received, the sender tries to retransmit the original frame. The standard,

however, defines a limit to the number of retries: 4 times for “large” packets (above 100

bytes), and 7 times for “small” packets (100 bytes or less). The original ETX metric

disregards this limit, e.g., if the ETX for a link is found to be 15, that value will be used

regardless of the retry limit at the link layer.

In the routing algorithm presented in this thesis, we take into account the fact that

3.2 Aggregated Throughput Estimation Function 66

no frame can be retransmitted more than k times and we compute the expected number

of retransmissions accordingly. To this end, the transmission delay for a link a → b is

defined by the following expression:

TDa→b =
k∑
i=1

i · (da→b · db→a) · [1− da→b · db→a](i−1) + k · [1− da→b · db→a]k , (3.9)

where da→b and db→a denote, respectively, the delivery probabilities for links a → b and

b→ a. This expression is basically an average of the k+ 1 cases that can happen (success

in 1, . . . , k transmissions, and failure after k attempts). Specifically, for the performance

evaluation presented in Chapter 4, we adopt k = 4, in order to model a IEEE 802.11

network, considering “large” packets.

Limiting the maximum transmission delay for a link is important because in our route

selection algorithm it affects not only that particular link, but also any link that conflicts

with it. Suppose for example that function EstimateThroughput is trying to evaluate a

set of paths that make use of a link a → b with da→b = db→a = 0.25. The ETX of this

link is, then, 16. If this value was to be used in the simulations, not only it would impact

the performance for link a → b (due to the transmission requiring 16 units of time), but

it would also mean conflicting links would be unusable for 16 units of time. In practice,

though, after the fourth retry, the MAC layer would give up (regardless of whether the

packet was successfully transmitted), allowing other nodes to gain access to the wireless

medium. Our expression, thus, is capable of representing this.

3.2.4 Steady State Cycle Detection

One final functionality needed by function EstimateThroughput is the capability of de-

tecting that the simulation has reached the steady state and discovering the size of the

steady state cycle and the number of packets delivered during a cycle. According to Def-

inition 3.1, the steady state of a simulation is reached when the transmission events start

to repeat themselves in the same sequence indefinitely. One initial approach for detecting

whether the simulation has reached the steady state, then, is to monitor all transmissions

and try to detect repetitions in the transmission sequences.

One problem with that approach is how to guarantee that the next expected transmis-

sion events will follow knowing only that the last few transmission events were repeated.

Consider, for example, the situation illustrated in Figure 3.4. The figure shows a simple

3.2 Aggregated Throughput Estimation Function 67

1 2

5

4

0
5

4

2

6

3

Transmission Events
t = 0: 0 1
t = 5: 3 4
t = 8: 1 5
t = 12: 0 1
t = 17: 3 4
t = 20: 1 2
t = 22: 0 1
t = 27: 3 4
t = 30: 1 5

t = 34: 2 6
t = 37: 0 1
t = 42: 3 4
t = 45: 1 2
t = 47: 0 1
t = 52: 3 4
t = 55: 1 2
t = 57: 2 6
t = 60: 0 1

Queue State for Node 1
t = 0: 1
t = 5: 1, 0
t = 8: 1, 0
t = 12: 0, 1
t = 17: 0, 1, 0
t = 20: 0, 1, 0
t = 22: 1, 0
t = 27: 1, 0, 0
t = 30: 1, 0, 0

t = 34: 0, 0, 1
t = 37: 0, 0, 1
t = 42: 0, 0, 1, 0
t = 45: 0, 0, 1, 0
t = 47: 0, 1, 0
t = 50: 0, 1, 0, 0
t = 55: 0, 1, 0, 0
t = 58: 1, 0, 0
t = 60: 1, 0, 0

Medium Access Priority
t = 0: 0, 3, 1
t = 5: 3, 1, 0
t = 8: 1, 0, 3
t = 12: 0, 3, 1
t = 17: 3, 1, 0
t = 20: 1, 0, 3
t = 22: 0, 3, 1, 2
t = 27: 3, 1, 2, 0
t = 30: 1, 2, 0, 3

t = 34: 2, 0, 3, 1
t = 37: 0, 3, 1
t = 42: 3, 1, 0
t = 45: 1, 0, 3
t = 47: 0, 3, 1, 2
t = 52: 3, 1, 2, 0
t = 55: 1, 2, 0, 3
t = 57: 2, 0, 3, 1
t = 60: 0, 3, 1, 2

3
3

0
1
2

Figure 3.4: Example of the simulation of a simple scenario with three flows. Different
arrows are used with each different flow. The top-right box shows the sequence of trans-
mission events, while the bottom-left and bottom-right boxes represent, respectively, the
state of the queue of node 1 at each moment in time and the evolution of the medium
access priority list.

network with three active flows (denoted by the three different types of arrows). The box

to the right of the network shows a possible sequence of transmission events, assuming all

used links conflict with each other. Those transmission events were generated using the

medium access rules described previously in this chapter. The figure also shows the evo-

lution of the queue state for node 1, as well as the evolution of the medium access priority

list. If we start keeping track of the transmissions from time t = 0 looking for repeated

patterns, it is possible to notice that the fourth and fifth simulation events match the first

and second, respectively. This might suggest that the simulation is in steady state and

the steady state cycle is formed by the three first simulation events. However, the sixth

simulation event does not match the third, which means either that the simulation has

not reached steady state or that the original steady state cycle is different from the one

originally predicted (in fact, in this example, the steady state is not reached for any of

the shown events).

This method fails because it misses an important information when trying to predict

whether events will repeat themselves: the current state of the nodes’ buffers. Specifically,

in the example of Figure 3.4 the third and sixth events do not match because the state of

the buffer of node 1 was different in at each of those moments. While at t = 8 the buffer

3.2 Aggregated Throughput Estimation Function 68

contained a packet from flow 1 ⇒ 5 followed by a packet from flow 0 ⇒ 6, at t = 20 the

first packet in node one’s buffer is from flow 0⇒ 6, causing link 1→ 2 to be used instead.

Another relevant information when trying to assess the steady state is the current

order of priority for nodes trying to access the wireless medium. Consider for example,

the situation at time t = 34 with the situation at time t = 12. At both moments, the last

three transmission events match (transmissions using links 0 → 1, 3 → 4, and 1 → 5).

At time t = 12, the transmission event that follows is the usage of link 0 → 1. Notice

that the queue state of node 0 at time t = 34 matches that of time t = 12 (in both cases,

the queue contains a single packet from flow 0 ⇒ 6). However, the event that follows

at t = 34 is a transmission through the link 2 → 6. That happens because the medium

access priority list was different at those two moments, with node 2 being the next in line

to gain access to the medium in the latter.

The example shown in Figure 3.4 suggests three relevant information for determining

whether or not the transmissions events in a simulation will actually repeat themselves

indefinitely: the sequence of transmissions, the state of the queue for each node, and the

medium access priority list. Based on that, we present the following definition that will

be useful for the remainder of this section:

Definition 3.10 State of a Simulation. The state of a simulation (or simulation state) is

formed by the currently ongoing transmissions with their respective remaining times, the

content of the buffer for all nodes that are traversed by any active path on the evaluated

path set (including the source for a flow, but not including the destination) and the current

medium access priority list.

Notice that the word “state” is employed in a somewhat more specific sense in this

definition than for the definitions of steady state and transient states. In the case of the

state of a simulation, we refer to the set of characteristics that, along with the topology

graph and the set of paths currently being evaluated, completely determines a point within

the simulation. In other words, given the topology graph, the current path set and any

state of a simulation, it is possible to continue the execution of that simulation from that

point in time, without having to process all previous events.

Various examples of states of a simulation are given in Figure 3.4. For each time t

shown by the boxes on that figure, we have information regarding ongoing transmissions,

queue state and medium access priority. In that case, though, the presented state is only

partial, because it is missing the queues for nodes 0, 3, and 2, as well as the remaining

3.2 Aggregated Throughput Estimation Function 69

time for each ongoing transmission.

Not all combinations of values for the fields of a simulation state are feasible. For

instance, on the example presented in Figure 3.4 it would not be feasible to have a

simulation state in which both links 0→ 1 and 1→ 2 are active. It is also impossible to

have a simulation state in which node 1 stores a packet from flow 3 ⇒ 4, since the path

being evaluate for that flow does not contain node 1. With that in mind, we reach the

following definitions:

Definition 3.11 Valid Simulation State. We say that a simulation state is valid if, and

only if, the following conditions are met:

• the list of active links does not contain links that interfere with each other;

• the remaining time of any active transmission is not greater than the transmission

delay of its respective link;

• for each flow, packets only exist in the buffers of nodes that are part of the respective

path being currently evaluated;

• each node appears, at most, once in the medium access priority list; and

• the medium access priority list contains only nodes with non-empty queues.

Definition 3.12 Initial Simulation State. The initial simulation state for a given simu-

lation has all links inactive, a single packet of each flow placed on their respective source

nodes’ buffers, and a medium access priority list containing exactly the nodes that are

source for any of the flows appearing at exactly once.

An initial simulation state is clearly a valid simulation state. Function EstimateThrough-

put always generates an initial simulation state as its first state. At each iteration, it pro-

ceeds applying a transition based on the characteristics of the network and the path sets,

which generates other valid simulation states. A sequence of iterations, thus, generates a

sequence of valid simulation states. One final definition presented on this section is the

following:

Definition 3.13 Reachable Simulation State. A simulation state is said to be reachable

if, and only if, it is produced by function EstimateThroughput after zero or more iterations,

starting with a given initial simulation state.

3.2 Aggregated Throughput Estimation Function 70

In simple terms, reachable states are simply the states that are produced during the

execution of the function EstimateThroughput. Notice that, for a given simulation, there

can be valid states that there are, nevertheless, unreachable.

These definitions are relevant because they allow us to demonstrate that it is possible

to detect the steady state within a simulation performed by function EstimateThroughput

by simply checking whether a repeated simulation state was generated. To this end, we

first demonstrate that, starting at a given simulation state, function EstimateThroughput

will always generate the same sequence of simulation states (Propositions 3.14 and 3.15).

As a consequence, whenever a repeated simulation state is found the sequence of generated

states that lead to the repetition will repeat itself indefinitely (Corollary 3.16).

Proposition 3.14 Let t0 and t1 be two simulation times within a simulation performed

by function EstimateThroughput. Let St0 and St1 denote their respective simulation states.

Finally, let S+1
t0 and S+1

t1 denote the next states generated by function EstimateThroughput

immediately (with one more iteration) after St0 and St1, respectively. If St0 = St1, then

S+1
t0 = S+1

t1 .

Proof At both times (immediately after states St0 and St1), function EstimateThroughput

advances until the moment when the current active transmission with the lower remaining

time (there might be multiple) will be over. Since states St0 and St1 are equal, the time

offset will be equal in both cases and the set of transmissions that will be over will also

be the same. Since the finished transmissions will be the same, the same packets will be

added to the end of the same buffers in both cases. Since the buffers were also equal in

both St0 and St1 , the final state of every node’s buffer will be equal as well, causing all

possible changes (additions to the medium access priority list) to be the same.

Given that the same time offset occurs in both cases, the links that remain active

from St0 to S+1
t0 and from St1 to S+1

t1 will have their remaining times decreased by the

same value. Since the states of the nodes’ buffers, the medium access priority list, and

the currently blocked links are all the same, the same set of new active links will be

added to both states S+1
t0 and S+1

t1 , which, in turn, will result in the same modifications

to the buffers and medium access priority list. Therefore, both states S+1
t0 and S+1

t1 are

identical.

Proposition 3.15 Let t0 and t1 be two simulation times within a simulation performed

by function EstimateThroughput. Let St0 and St1 denote their respective simulation states.

3.2 Aggregated Throughput Estimation Function 71

Finally, let S+k
t0 and S+k

t1 denote the next states generated by function EstimateThroughput

with k more iterations after St0 and St1, respectively (for any value of k). If St0 = St1,

then S+k
t0 = S+k

t1 .

Proof This proof follows directly from applying Proposition 3.14 k times. We start with

states St0 and St1 and apply Proposition 3.14 once, guaranteeing that states S+1
t0 and S+1

t1

are identical. We proceed a second time, but now applying Proposition 3.14 to S+1
t0 and

S+1
t1 , obtaining states S+2

t0 and S+2
t1 , also guaranteed to be identical. After k steps, we

reach states S+k
t0 and S+k

t1 , which are also certainly equal to each other.

Corollary 3.16 Let t0 and t1 be two simulation times within a simulation performed by

function EstimateThroughput. Let St0 and St1 denote their respective simulation states.

If St0 = St1, then the simulation has reached steady state. Moreover, if no other state Sti

correspondent to a simulation time ti such that t0 < ti < t1 is equal to St0, then the steady

state cycle length is t1 − t0.

Proof If St0 = St1 , Proposition 3.15 guarantees that, for any k, the states S+k
t0 = S+k

t1

generated after k iterations of the function EstimateThroughput will be equal to each

other. Since St1 is an achievable state generated after St0 , there is a number k′ of iterations

such that S+k′

t0 = St1 = St0 . Therefore, state St0 will be generated indefinitely many times,

along with all intermediate states between St0 and St1 , which means the simulation has

reached the steady state.

If there is no other repetition of state St0 between t1 and t0, then the sequence of

transmission events that happen between these two moments must be the shortest se-

quence that repeats itself indefinitely. In other words, this sequence must be the steady

state cycle. By definition, its length is t1 − t0.

These last results are at the core of the method used by function EstimateThrough-

put to detect whether the steady state has been reached in a simulation. Basically,

function EstimateThroughput keeps track of every simulation state it generates at the

end of each iteration. Whenever a new state is generated, function EstimateThroughput

searches this history, checking whether this state has already been generated before. If a

repeated state is found, the simulation is declared to be in steady state. Since function

EstimateThroughput stops at the first occurrence of a repeated state, then the difference

between the current time and time of the first occurrence of the repeated state is the

cycle length. Similarly, the difference between the total number of packets delivery for all

3.2 Aggregated Throughput Estimation Function 72

1 2

5

0
5

4

2

Transmission Events
t = 0: 0 1
t = 5: 1 5
t = 9: 0 1
t = 14: 1 2
t = 16: 0 1
t = 21: 1 5
t = 25: 0 1
t = 30: 1 2
t = 32: 0 1

t = 37: 1 2
t = 39: 0 1
t = 44: 1 5
t = 48: 0 1
t = 53: 1 2
t = 55: 0 1
t = 60: 1 2
t = 62: 0 1
t = 67: 1 2

Queue State for Node 1
t = 0: 1
t = 5: 1, 0
t = 9: 0, 1
t = 14: 0, 1, 0
t = 16: 1, 0
t = 21: 1, 0, 0
t = 25: 0, 0, 1
t = 30: 0, 0, 1, 0
t = 32: 0, 1, 0

t = 37: 0, 1, 0, 0
t = 39: 1, 0, 0
t = 44: 1, 0, 0, 0
t = 48: 0, 0, 0, 1
t = 53: 0, 0, 0, 1, 0
t = 55: 0, 0, 1, 0
t = 60: 0, 0, 1, 0, 0
t = 62: 0, 1, 0, 0
t = 67: 0, 1, 0, 0, 0

Medium Access Priority
t = 0: 0, 1
t = 5: 1, 0
t = 9: 0, 1
t = 14: 1, 0
t = 16: 0, 1
t = 21: 1, 0
t = 25: 0, 1
t = 30: 1, 0
t = 32: 0, 1

t = 37: 1, 0
t = 39: 0, 1
t = 44: 1, 0
t = 48: 0, 1
t = 53: 1, 0
t = 55: 0, 1
t = 60: 1, 0
t = 62: 0, 1
t = 67: 1, 0

0
1

Figure 3.5: Example of the simulation of a simple scenario with two flows and unlimited
buffers. By continuing to execute function EstimateThroughput on this scenario, node
one’s buffer grows without bounds, indefinitely generating new different states.

flows at each occurrence of the repeated state is equal to the number of packets delivered

during a steady state cycle. With these two values at hand, function EstimateThroughput

can compute the steady state throughput (according to Proposition 3.6).

In terms of implementation, since a simulation state can be a large structure, it is

important to employ efficient methods for comparing and storing it. In terms of storage,

bitmaps can be employed for representing active links, reducing the size of the structure.

Hashing can be used to speedup the comparison process, avoiding comparing complete

states unnecessarily. Notice that the states must be stored along with their respective oc-

currence time, as well as the number of packets delivered up to that point, so that function

EstimateThroughput is able to retrieve that data in order to compute the throughput.

3.2.4.1 Limited versus Unlimited Buffers

One question that arises, though, is whether any instance provided to function Esti-

mateThroughput necessarily constitutes a simulation scenario that eventually reaches the

steady state. In other words, are there cases in which function EstimateThroughput enters

an infinite loop looking for a repetition of states that will never happen?

We will tackle that question by looking at a correlated issue: given a generic instance

3.2 Aggregated Throughput Estimation Function 73

provided for function EstimateThroughput, how many reachable states are there? The

answer lies in the structure of the simulation state. As discussed before, a simulation

state is comprised of three components: currently active links, the current medium access

priority list, and the state of the nodes’ buffers. The length of the list of active links is

clearly bounded by the number of network links. In fact, since a reachable state is also

a valid state, then this number is bounded by the size of the largest independent set of

the conflict graph. The medium access priority link is also bounded by the number of

nodes that are part of some path in the evaluated path set. While the sizes of these two

first components are clearly finite, the state of the nodes’ buffers is not limited by any of

the definitions presented so far. Under these conditions, it is possible to demonstrate the

following proposition:

Proposition 3.17 Let G, F , and C denote, respectively, a graph, a flow set, and a path

set used as an input for the function EstimateThroughput. If the simulation allows nodes

to have unlimited buffers, there may be an infinite number of reachable states.

Proof We prove this proposition by presenting an example. Consider the scenario illus-

trated in Figure 3.5. It represents a simpler version of the scenario in Figure 3.4 with only

two flows and less nodes. In the initial state, the queue for node 1 has a single packet,

the first packet of flow 1⇒ 5. As the simulation progresses, the queue’s length increases,

because node 1 needs more bandwidth than node 0 (it relays two flows), but it receives

the same number of transmission opportunities. Since the rules that govern the medium

access priorities do not change and there are no other elements to the simulation (flows

or nodes), this trend is maintained and node 1 keeps receiving more packets than it is

capable of forwarding.

Specifically, for every opportunity node 1 has of transmitting a packet of flow 1⇒ 5,

the number of packets from flow 0⇒ 2 waiting on its buffer is increased by 1: 1 at t = 5,

2 at t = 21, 3 at t = 44, and so on. Therefore, as long as the simulation continues, new

different states are generated, resulting in an infinite number of reachable states.

Corollary 3.18 If a simulation allows unlimited buffers, there are instances in which

function EstimateThroughput enters an infinite loop.

Proof This proof follows directly from the fact that Proposition 3.17 guarantees the

existence of instances with an infinite number of reachable states. For those instances,

3.2 Aggregated Throughput Estimation Function 74

since new states continue to be reached, simulation never reaches steady state. Thus, the

main loop of function EstimateThroughput never ends.

From these two last results, it becomes evident that a simulation with unlimited

buffers is not viable for the purposes of this thesis. In order to be useful for employment

in a route selection algorithm, the simulation must have a guaranteed finite execution

time. The question, thus, is whether limiting the size of the buffers for the simulation

guarantees this finite execution time regardless of the instance. For this reason, we present

the following result:

Proposition 3.19 Let G = (V,E), F , and C denote, respectively, a graph, a flow set,

and a path set used as an input for the function EstimateThroughput. Assume G has

a finite number of edges and vertices. If the simulation employs a hard limit for the

maximum number of packets that can be stored in each node’s buffer, there is always a

finite number of reachable states.

Proof Let QLmax denote the maximum length allowed for the queue of a node in the

simulation in packets. For a given node, the total number of possible states for its

buffer is limited by (|F |+ 1)QLmax . Since a simulation cannot have more than |V | nodes,

the number of different states considering all simulation nodes must be less or equal to[
(|F |+ 1)QLmax

]|V |
.

Let ALmax denote the maximum number of simultaneously active links for the path

set C. Then, the following inequality holds:

ALmax <= |E| (3.20)

In that case, the maximum number of different lists of active links in a given simulation

is bounded by 2|E|.

Let PLmax denote the maximum length of the medium access priority list. Then, the

following inequality must be true:

PLmax <= |V | (3.21)

Similarly to the list of active links, the number of different medium access priority lists

cannot exceed 2|V |.

Under these circumstances, the maximum number of different valid simulation states

is bounded by 2|V | × 2|E| ×
[
(|F |+ 1)QLmax

]|V |
, which must be a finite number.

3.2 Aggregated Throughput Estimation Function 75

Corollary 3.22 If a simulation only allows limited buffers, function EstimateThroughput

always finishes in finite time.

Proof Since Proposition 3.19 guarantees that the number of states is always finite, then

function EstimateThroughput must eventually find a repeated state, at which point the

steady state of the simulation is reached, and the function returns.

Therefore, as long as we fix a maximum length for the buffers of the nodes, function

EstimateThroughput is guaranteed to find the steady state throughput in finite time. For

the purposes of this thesis, we always consider the maximum size of the nodes’ buffer to

be twice the maximum number of flows that pass through a node in the given path set.

3.2.4.2 Throughput and Packet Loss

As explained in Section 3.2.3, function EstimateThroughput requires that the graph G

of the network provides information regarding the delivery probability of each link, so

that it is possible to compute an estimate for the link transmission delay. However, the

information of the delivery probabilities is also employed by function EstimateThroughput

for a different purpose.

An obvious drawback of using a hard limit for the estimate of the link transmission

delay is the fact that links with very different qualities (in terms of delivery probability)

can be assigned similar costs. Consider as an example a link a → b with da→b = db→a =

0.4. According to Equation 3.9, the transmission delay for that link is 3.14. Now suppose

there is another link c→ d with dc→d = dd→c = 0.2. For this link, the transmission delay

will be 3.76. While there is obviously a difference between the values of transmission delay,

it is not a large difference considering that one delivery probability is half of the other

(for comparison, under the ETX metric, those costs would be 6.25 and 25, respectively).

The most important difference between those two links is not the expected transmis-

sion delay, though. Both links are expected to have delays close to 4, given that both

have low delivery probabilities and 4 is the link layer retransmission limit. However, the

probability that a packet transmitted through each of the links is actually received at the

other end with, at most, 4 transmissions is much different for each link. For link a → b,

this probability is 1− (1− 0.4)4 = 0.87, against 1− (1− 0.2)4 = 0.59 for link c→ d.

Differently from other works, in this thesis, we argue that transmission delay and

packet loss rates must be accounted for separately. While the delivery probability of a

3.2 Aggregated Throughput Estimation Function 76

link has influence over the transmission delay (and, in the case of the routing algorithm

presented in this thesis, over the amount of time a link interferes with other links), it

also causes a separate effect on the actual probability that the packet is received. Clas-

sical routing metrics tend to consider only one of those effects: either they model the

transmission delay (such as ETX and ETT), or the packet loss rates (such as ML).

To cope with this secondary effect of the delivery probabilities, function EstimateThrough-

put computes, for each path of the candidate path set, an estimate for its end-to-end

packet delivery probability by applying the following expression:

p[packet is lost on path P] = 1−
∏

a→b∈P

1− (1− da→b)4 (3.23)

Notice that Equation 3.23 only uses the link delivery probability in the forward direc-

tion. In other words, we do not account for the reception of the acknowledgment frame

for each link. The reason is that, for a given link a → b, if node b receives the packet

in one of the transmission attempts, it will proceed with the forwarding (or reception) of

the packet regardless of whether node a received the acknowledgment frame. If by any

chance, node a does not receive an acknowledgment frame relative to a successful trans-

mission attempt, the only consequence is that a will (possibly) perform a retransmission.

That consequence, however, is already captured in the calculation of the link transmission

delay.

During a simulation, once a packet is delivered to its final destination, function Es-

timateThroughput increments a counter to keep track of how many packets have already

been delivered (which is used once the steady state is found for computing the through-

put). Instead of simply adding 1 to the number of delivered packets, function Esti-

mateThroughput increments this counter by the end-to-end delivery probability of the

respective path, as given by the complement of Equation 3.23. This is equivalent to

multiplying the number of packets delivered for each flow by their respective end-to-end

delivery probability (i.e., the expected number of delivered packets for that flow) and

summing the resultant values.

3.2.5 Adding Network Coding to the Model

So far, all the details presented about the function EstimateThroughput consider only the

case of simulating a network without network coding. Nevertheless, the structure of our

proposed solution lends itself well to the incorporation of the network coding case, as will

3.2 Aggregated Throughput Estimation Function 77

be discussed in this section.

In order to add network coding to the model developed so far, it is necessary to

alter only three aspects of function EstimateThroughput : the selection of packets for

transmission (whenever a node gains access to the wireless medium), the computation of

the transmission delay for coded packets, and the computation of the end-to-end packet

delivery probability.

The selection of packets for transmission follows the same basic algorithm used by

COPE [56]. Whenever a node gets the opportunity to transmit, the first overall packet

in its buffer is selected for transmission. Function EstimateThroughput, then, looks for

coding partners among the remaining packets. If there are no packets that can be coded

together (according to the requirements specified by COPE), the packet is transmitted

natively, respecting all the details previously presented in this chapter.

Assuming, however, that there are coding partners, it is necessary to model the trans-

mission of a coded packet. While Chapter 4 discusses some alternative methods for the

transmission of such packets, in this chapter we limit the scope to a basic method known

as Simple Broadcast. In the Simple Broadcast, a coded packet is mapped to a broadcast

frame at the link layer. This frame is transmitted in broadcast for all neighbors that

should filter whether or not the coded packet was originally addressed to them.

Notice that a packet transmitted using the Simple Broadcast method has always a

fixed transmission delay of 1. Since there are no acknowledgment frames to report the

success of the transmission, there are also no retransmission attempts. Therefore, if a

node transmits a coded packet, function EstimateThroughput schedules the end of the

transmission to one unit of time ahead, instead of relying on Equation 3.9.

Another difference between the transmission of a native packet and of a coded packet

using Simple Broadcast is the probability that the packet is received at the other end of

the link. While in a unicast transmission of a native packet there are multiple retries,

increasing the probability of success, with Simple Broadcast there is always a single at-

tempt, making the probability of the coded packet being received by a given node equal

to the delivery probability of the respective link. For example, suppose node a codes

together two packets Pb and Pc, which have as next hops nodes b and c, respectively. The

probability that node b receives the coded packet is, then, given by da→b, while for node

c this probability is da→c.

Moreover, it is still necessary to take into account whether nodes b and c are ac-

3.2 Aggregated Throughput Estimation Function 78

tually capable of decoding the message to retrieve their respective originally addressed

native packets. Each packet coded together with the packet addressed to each node, must

be known by that node so that decoding is possible. Given the probabilities of a node

knowing each of the packets necessary for decoding, the product of these values can be

computed as the probability of that node being able to decode the message. Function

EstimateThroughput employs the same methodology used by COPE to compute the de-

coding probability for each receiver of a coded transmission (as explained in details in

Chapter 2).

Under these circumstances, the probability of a coded packet being successfully trans-

mitted from a node a to a node b is given by:

p[coded packet is received by b from a] = da→b × p[b can decode] (3.24)

Notice, however, that, during the course of a simulation, packets from a given flow

can traverse a certain hop of the path currently being evaluated both natively and coded

with other packets. Since the success probabilities involved in each case may be different,

there is not a single end-to-end success probability associated with each path. Therefore,

when a packet is delivered to its final destination it would be necessary to evaluate in what

conditions each of the hops of the path were traversed in order to compute the end-to-end

probability for that specific packet.

To cope with that issue, function EstimateThroughput appends to each simulated

packet a delivery probability that is initialized at 1 when the packet is created. As the

packet traverses the evaluated path, for each link a→ b, that probability is multiplied by

the expression:

p[packet is received by b] =

1− (1− da→b)4 if native transmission

da→b × p[b can decode] otherwise
(3.25)

When a packet reaches its final destination, its delivery probability field contains the

delivery probability for the specific conditions it has faced during the traversal of the

path. This value can be added directly to the total number of packets delivered, in order

to be used for computing the steady state throughput.

For the remainder of this thesis, we will consider two separated versions of our routing

3.2 Aggregated Throughput Estimation Function 79

selection algorithm: one that does not consider network coding, hereinafter referred to as

IAR (Interference Aware Routing), and another that does incorporate network coding in

its model, hereinafter called ICAR (Interference and Coding Aware Routing). During our

evaluations, we will consider both the cases of coding enabled and disabled networks.

3.2.6 Asymptotic Complexity Analysis

One important characteristic of both IAR and ICAR is that they do not employ the

traditional Dijkstra algorithm for path selection. Instead, they use a completely novel

algorithm that has the advantage of evaluating paths for all flows together, instead of

looking at each flow separately. As expected, though, there is a trade-off in doing so,

as this novel algorithm is more expensive in computational terms than the classical Di-

jkstra. While this chapter still has not presented all components of IAR and ICAR

(Section 3.3 discusses function GenerateCandidates), a core element of these algorithms

(function EstimateThroughput) was already described in all its details. If the execution

of function EstimateThroughput is not viable in practice due to high computational costs,

then the routing selection algorithms as a whole are not feasible as well. For this rea-

son, in this section we analyze the asymptotic complexities involved in executing function

EstimateThroughput.

The function, described in Algorithm 3.2, can be divided in two main stages: an

initialization and a main loop. We start by analyzing the time complexity of the initial-

ization.

During this first stage, the main control variables (time t, the set of active links AL,

and the set of nodes that wish to transmit WT) are initialized. This step clearly takes

constant time. From that point until line 6, the initial packets for each flow are generated,

placed on the buffers of the source nodes which, in turn, are added to the set of nodes

that wish to transmit. All those steps take time proportional to the number of flows |F |.
Another initialization that is done implicitly is the construction of the conflict graph,

which is done by the procedure depicted in Algorithm 3.3. This procedure checks every

link of every path of the currently evaluated path set against each other, looking for

conflicts. In the absolute worst case, all network links will be used in the path set, leading

this procedure to have a worst case complexity of O(|E|2).

At that point, the initial state of the simulation has already been build. From lines 7

to 18 the second state is built by the scheduling of the first transmissions. To that end,

set WT is traversed (actually, the structure that is traversed is a linked list that is sorted

3.2 Aggregated Throughput Estimation Function 80

according to the medium access priority) and, for each node, it is necessary to check

whether the required link l is blocked. Assuming the worst case, in which all network

links are in use and l conflicts with all of them, even a naive implementation would

result in a complexity of O(|E|2). If a link is not blocked, it is necessary to compute

the transmission delay of the link and, eventually, remove the node from the set WT ,

both actions which can be performed in constant time. A caveat at this point, though, is

that, if network coding is used, we also have to look for a coding partner for the packet.

Since we employ the same basic procedure proposed by Katti et al. [56] for COPE, the

time complexity is a cubic function of the number of neighbors of the node (for which the

node has packets to transmit). In the simulation that value is bounded by the number

of flows, resulting in a worst case complexity of O(|F |3) for that case. By considering

the complexities of all those steps, the overall asymptotic complexity of the repetition

executed between lines 7 and 18 is O(|V | · |E|2 · |F |3).

By the time function EstimateThroughput reaches line 18, the initialization stage is

finished, having accumulated an asymptotic complexity of O(|V | · |E|2 · |F |3). At the next

line, the function begins its main loop, which is composed of two nested loops: one for

managing packets that are arriving, and another for scheduling new transmissions.

The loop that manages packets that are arriving iterates through all active links,

checking which ones are scheduled to finish their transmissions at the current time. For

each link under this condition, a series of simple set and buffer manipulations are per-

formed (e.g., packets are placed at nodes’ buffers, nodes are added to or removed from

the WT set). By using adequate data structures, each iteration can, thus, be executed

in constant time, resulting in a total worst case time complexity for the complete loop of

O(|E|) (assuming all network links are currently under use and scheduled to finish at the

same time).

The loop that is responsible for scheduling new transmissions executes the same steps

of lines 7 through 18, resulting in the worst case time complexity: O(|V | · |E|2 · |F |3).

Another component that introduces complexity to the main loop is the test of the stop

criterion. Implicitly, that test is done by assembling the current network state (gathering

information regarding the active transmissions, the current state of nodes’ buffers and the

current medium access priority list) and comparing it to previous states. The assembly of

the current state can be done in worst case time O(|E|+ |V |+ |F | · |V |). The comparison,

though, is more complicated to evaluate since it depends on the quality of the hash

function used to store the states, as well as the number of states generated until the

3.2 Aggregated Throughput Estimation Function 81

steady state is found. It is also important to notice that the number of iterations of the

main loop is also equal to the number of states generated through the simulation. Let GS

denote the number of generated states until the steady state is reached in a simulation.

The total asymptotic time complexity of the main loop is bounded by O(|V | · |E|2 · |F |3 +

(|E| + |V | + |F | · |V |) · GS + GS2), which is clearly the overall dominant component of

the time complexity of the complete algorithm of function EstimateThroughput.

It is possible to put that complexity only in terms of |V | (the number of nodes in

the graph) and GS, by using |V |2 as an upper bound for both |E| and |F |. In that case,

we obtain O[|V |11 + (|V |3 + |V |2 + |V |) · GS + GS2]. Notice that we have not employed

particularly tight upper bounds for deriving this complexity expression, which possibly

resulted in a higher exponent for the term |V | than actually necessary. The goal of this

section, though, is simply to demonstrate that, if the number GS of generated states

is polynomial on the number of network nodes, so will be the overall asymptotic time

complexity of function EstimateThroughput.

Regarding the value of GS, during the proof of Proposition 3.19 an upper bound was

provided for the maximum number of different valid simulation states. While the number

of reachable simulation states tends to be lower than the number of valid simulation

states and the bound provided for that proof was also not particularly tight, it is worth

noticing that the expression found includes exponential functions on |V |. Indeed, we

performed preliminary experiments with function EstimateThroughput and found that,

for some instances, the number of generated states was high, leading to execution times

in the order of seconds, rendering its application on real time protocols unfeasible. For this

reason, in the next section we present optimizations and heuristics for reducing the number

of generated and stored states during the execution of function EstimateThroughput.

3.2.7 Optimizations and Heuristic Stop Criteria

As discussed in the previous section, the challenge for the practical employment of function

EstimateThroughput lays on the number of generated states necessary to find the steady

state. In order to allow this function to be used in practice with generic instances, we

propose the usage of a cycle detection procedure comprising three different stop criteria

— one optimal and two heuristic. Each criterion uses a different condition to evaluate

whether or not the main loop of function EstimateThroughput should stop. When at

least one of them flags that the loop should stop, function EstimateThroughput returns

the computed throughput. The idea is to complement the search for the steady state with

3.2 Aggregated Throughput Estimation Function 82

other stop criteria that allow function EstimateThroughput to find good approximations

for the long term aggregated throughput, while maintaining the number of iterations in

an acceptable level.

The optimal stop criterion is simply the one originally presented in Section 3.2.4:

states are generated and stored at the end of each iteration of the main loop. Whenever a

new state is generated, function EstimateThroughput looks for an equal state previously

stored. The simulation is declared to be in steady state if this search is successful. In

this case, the main loop is stopped and the exact value for the steady state throughput is

returned. While our preliminary results show that this method can lead to unacceptable

execution times for certain instances, they also show that in many practical cases it can

rapidly detect the steady state, while providing the exact result.

This optimal criterion, however, can be improved with a slight modification. When

the steady state is reached, the steady state cycle will be repeated indefinitely. Each

repetition of this cycle may correspond to one or more iterations of the main loop of

function EstimateThroughput, which is equivalent to say that one or more states will be

generated for each repetition of the cycle. If we knew before hand that a given state

would be generated during the steady state cycle, we could concentrate only on finding

that specific state. While we do not know such a state, we do know some characteristics

of some of the states that will be generated during the steady state cycle. One such

characteristic is that the link correspondent to the first hop of each flow will be used in

at least one of the states generated during the steady state cycle. That is true because

the source nodes for the flows will always generate new packets that will eventually be

transmitted through the first link of the path.

It is reasonable to assume function EstimateThroughput will always be called to sim-

ulate a scenario with at least one flow (otherwise, there is nothing to be simulated).

Therefore, for any input received by this function, it is possible to conclude that, what-

ever the steady cycle may be, it will comprise at least one reachable state containing the

first link of the first path of the path set beginning to transmit. With that information,

function EstimateThroughput can store and compare states only for iterations in which

that link was scheduled to start transmitting.

While that optimization does not reduce the number of iterations of the main loop

(all states still need to be generated until the simulation reaches the steady state), it does

reduce the number of states that are stored. This not only reduces the amount of memory

used by the function, but it also reduces the complexity of checking whether a given state

3.2 Aggregated Throughput Estimation Function 83

was previously stored (because there are less stored states). Moreover, it reduces the

number of times function EstimateThroughput has to perform such search.

The first heuristic criterion is based on an observation made on our preliminary results:

the steady state cycle is usually comprised by at least one event of end-to-end packet

delivery for each flow (in other words, usually no flows suffer starvation). With that in

mind, we present the following definition:

Definition 3.26 Delivery Cycle of a Simulation. A delivery cycle of a simulation is the

shortest sequence of events within which at least one packet from each flow is delivered to

its final destination.

The delivery cycle of a simulation can be seen as the heuristic version of the steady

state cycle. It is an attempt to approximate the concept of steady state cycle in order to

accelerate the process of finding the steady state throughput. The idea of the first heuristic

mechanism is, thus, to keep track of delivery cycles, using the throughput during those

cycles to approximate the steady state throughput.

During our preliminary results, we were able to verify that, as simulations approached

their steady state, the average throughput of the delivery cycles approached that of the

steady state cycle. Hence, as the simulation unfolds, for each new delivery cycle found,

function EstimateThroughput computes the average cycle throughput. That value is then

applied to an exponentially weighted average of the throughputs of all delivery cycles

found so far with weight α given to the newest sample. After β delivery cycles are found,

this heuristic criterion declares the steady state found and the steady state throughput

is approximated by the current value of the weighted average. This criterion can also

be reached if the percentage difference between the current and previous values of the

weighted average is less than γ. The option of using the current value of the weighted

average instead of the average throughput of the last cycle has the goal of minimizing

eventual variations of the delivery cycles. Although the delivery cycles tend to approach

the steady state cycle, some fluctuations might occur. Hence, we consider the average to

be a more reliable estimator.

Our preliminary results show that these first two stop criteria are sufficient to guaran-

tee feasible execution times for the majority of the evaluated cases. There are, however,

some special cases in which the execution times grow beyond what is acceptable for real

time routing, even considering the first heuristic criterion. For that reason, we employ a

second heuristic criterion that is based simply on counting the number of generated states.

3.3 Candidate Generation Method 84

When that number reaches a specified threshold λ, the function is stopped and the steady

state throughput is approximated by the average throughput of the complete simulation

up to that point. While this criterion uses the poorest approximation for the steady

state throughput, it provides a hard limit based on a constant number of saved states,

which assures that the total asymptotic time complexity of function EstimateThroughput

is polynomial on the number of network nodes.

Hereinafter, for all results and discussions regarding function EstimateThroughput, we

will use the values of α = 0.8, β = 100, γ = 1%, and λ = 1000, all chosen after preliminary

experiments. While we do not provide a performance evaluation of the impact of each

of these parameters on the precision and execution time of function EstimateThroughput,

we argue that they do result in satisfactory performance in both aspects, as shown in

Chapter 5.

We do, however, provide a rationale for the choice of values for each of those param-

eters. The choice for λ = 1000 was motivated purely by time constraints. During our

preliminary experiments, this value resulted in the route selection procedure being always

executed in less than one second for all evaluated instances in our computing environ-

ment. When β = 100, all flows have delivered at least 100 packets. In other words, in

this case function EstimateThroughput would have a sample of at least 100 packets per

flow to approximate the long term aggregated throughput. The idea of parameter γ is to

evaluate whether the delivery cycles are converging. Therefore, lower values of γ result in

stricter rules for declaring convergence. It is interesting to notice that we opted for using

α > 0.5, i.e., we give more weight to the last sample, than to the historical average. This

increases the variability of the moving average when the cycle throughput samples are

also very variable. Together, the values chosen for α and γ impose a quite strict constraint

for the stop criterion to be met.

3.3 Candidate Generation Method

Up to this point, this chapter has mostly discussed function EstimateThroughput, that

receives a given path set (a candidate solution for the routing problem) and outputs an

estimate for the long term aggregated throughput. However, as shown by Algorithm 3.1,

IAR and ICAR also make use of a second auxiliary function called GenerateCandidates.

This function receives as arguments the graph that represents the network topology and

the set of currently active flows. It, then, outputs a list of candidate solutions to be

3.3 Candidate Generation Method 85

evaluated by function EstimateThroughput. This section, thus, focuses on discussing how

to implement such candidate generation procedure.

A first approach to function GenerateCandidates would be to simply output all com-

binations of all possible paths for all flows. This can be implemented by the employ-

ment of Yen’s algorithm [103]. This algorithm can find the k shortest loop-less paths (in

terms of the sum of edges) between two given nodes of a graph with time complexity

of O(k · |V | · (|E| + |V | · log |V |)). It can also be adapted to find all possible loop-less

paths for a given pair of nodes (argument k is set to infinite). In that last case, the time

complexity remains the same, except for the fact that k represents the total number of

available loop-less paths. By using Yen’s algorithm, it is possible to write the brute force

version of the function GenerateCandidates shown in Algorithm 3.5.

Algorithm 3.5 Brute force approach to function GenerateCandidates.

1: function BruteForceGenerateCandidates(Graph G, Flow set F)
2: for all flow f ∈ F do
3: pathListf ← Y en(G, src(f), dst(f),∞)
4: end for
5: Return all possible combinations with the paths of the path lists.
6: end function

One issue with the brute force version of function GenerateCandidates is that it may

generate an exponential number of candidate solutions with respect to the number of

network nodes (for a complete graph, for example, any two pairs of nodes are connected

by approximately e · (|V | − 2)! paths). In that case, it will be necessary to call function

EstimateThroughput an exponential number of times, which will render the usage of the

routing algorithms unfeasible for real time routing. In the next subsection, an alternative

version for the function GenerateCandidates will be presented.

3.3.1 Heuristic Candidate Generation

In this section, we present an heuristic version of the candidate generation procedure that

greatly reduces the computational cost of IAR and ICAR. Called Perturbation Heuristic,

this candidate generation procedure receives an initial path set and perturbs the solution

in order to obtain a new candidate. To this end, this heuristic executes two different

disturbing routines: one specific for avoiding interference by using traditional strategies

(i.e., by separating flows further apart), and another for trying to find coding prone path

sets (by actively making flows cross with one another).

3.3 Candidate Generation Method 86

Algorithm 3.6 Overview of the Perturbation Heuristic candidate generation procedure.

1: function PerturbationHeuristicGenerateCandidates(Graph G, Flow set F)
2: initialList← PerturbationHeuristicNonCoding(G,F)
3: finalList← PerturbationHeuristicCoding(G,F, initialList)
4: Return finalList
5: end function

Algorithm 3.6 presents an overview of how this heuristic works. It delegates the

task of generating candidates to two sub-routines: PerturbationHeuristicNonCoding and

PerturbationHeuristicCoding. The function PerturbationHeuristicNonCoding generates a

number of candidates considering only the possibility of placing flows further apart in

order to decrease interference. After it returns the list of generated candidates, this list is

passed as an argument for function PerturbationHeuristicCoding that will perturb each

candidate by forcing flows to cross, trying to create coding opportunities. By adding these

newly generated candidates to the list, the final list of candidates is obtained and finally

returned.

Algorithm 3.7 illustrates function PerturbationHeuristicNonCoding. The idea of this

function is to assemble path sets finding paths for one flow at a time, but avoiding nodes

that suffer much interference from other previously selected paths. To this end, it loops

through a maximum number of iterations generating permutations of the flows. Each

permutation establishes an order in which a new path set will be built (i.e., an order in

which paths will be found for each flow).

The process of building a path set starts by reseting some control variables and struc-

tures. Associated with each node of the graph G, there is a data structure that determines

whether the node is enabled or disabled. When a node is disabled, all operations performed

over the graph behave as if the node did not exist. For example, this data structure allows

the algorithm to look for paths between given source and destination nodes without using

the disabled nodes. At the beginning of each iteration, all nodes are re-enabled. The

algorithm also keeps track of the score of each node: an integer variable that stores the

number of links in the current path set that interfere with the given node (if a link is

found in multiple paths in the path set, it is counted multiple times for each interfering

node). Notice that, in this heuristic, we employ the concept of a link interfering with a

node. We say that a link l interferes with a node a if a is not able to transmit (in any of its

links) if l is active. Finally, associated with each flow there is a tolerance level. Whenever

the algorithm tries to find a route for a given flow, it first disables all nodes with score

higher than the tolerance level for that flow.

3.3 Candidate Generation Method 87

Once these main data structures are initialized, the algorithm resorts to a nested loop

that will perform the actual assembly of the path set (lines 10 to 30). Every iteration of

this loop refers to the search for a path for the i-th flow of the current permutation α.

The search starts by computing the score of all network nodes, considering the current

state of the path set being assembled. Once all nodes have their scores computed, nodes

with score higher than the current tolerance level for the flow are disabled. The Dijkstra

algorithm is then called in order to find a path for the current flow. If such path exists, it

gets added to the current path set. If the path set is complete, it is added to the output

list of candidates. Otherwise, the loop is repeated for the next flow in the permutation.

If a path cannot be found for the current flow, the algorithm tries to relax the graph

restrictions by increasing the tolerance for that flow and re-executing the loop. If the

tolerance is already higher than any node’s score, then it is impossible to find a path

connecting the current flow.

The generation of multiple different permutations allows the algorithm to find poten-

tially different candidates. If a single permutation was used, then the path found for the

first flow would always be the optimal path according to the ETX metric. By using mul-

tiple permutations, flows are traversed in different orders, possibly resulting in multiple

different candidates.

Algorithm 3.8 shows the steps executed by function PerturbationHeuristicCoding to

generate new coding prone candidates based on the initial candidate list generated by

function PerturbationHeuristicNonCoding. For each candidate of the original list, the

function tries — up to max times— to generate a coding prone version of it. To this end,

the function first finds the two closest nodes a and b contained in the path set, such that

the nodes belong to different paths and are different. The function proceeds by finding

the closest path that connects a and b (according to ETX). Finally, the middle node c

is identified, i.e., the intermediate node in the shortest path between a and b such that

the cost from a to c in that path is closest to half the total cost of the path. The idea of

finding this node c is that it represents the middle point between the two paths P1 and

P2 that contain nodes a and b. Node c is then used as a reference for joining the two

paths. This is done by finding the paths between the source nodes of each flow and c, as

well as from c to the destination nodes. The prefixes and suffixes for each path are then

concatenated, forming the new pair of paths.

Notice that, although Algorithm 3.8 makes multiple calls to the Dijkstra Algorithm,

those can be replaced by queries to a pre-computed distance table assembled, for example,

3.3 Candidate Generation Method 88

with the Bellman-Ford Algorithm. This alternative possibly reduces the overall compu-

tational cost of the algorithm due to the large number of queries. Specifically, in the

implementations of this heuristic used in the results shown in this thesis, that was the

chosen strategy.

As one final note, when this heuristic is used for IAR, only the first step — i.e.,

the execution of function PerturbationHeuristicNonCoding — is executed. Since IAR is

oblivious to network coding, it does not make sense to generate the second set of coding

prone candidates.

During the development of this thesis, other alternative heuristics were also explored.

One such alternative was an heuristic that would generate only the k best paths for each

flow (according to the sum of the ETX values of each link), thus resulting in a maximum

of kf candidates. The problem of this approach is that, as the number of flows increase,

the total number of candidates becomes exponentially high. A second approach was

an heuristic that would take the paths output by the Dijkstra Algorithm as an initial

solution. At each new iteration, the solution would be modified, resulting in a new

candidate. To this end, the heuristic would build a conflict graph, find an approximation

for the maximum clique and would substitute the worst link that belonged to that clique

for an alternative path. By breaking the worst cliques, this heuristic potentially created

candidates with less interference. However, since this heuristic did not take network

coding directly in consideration, it usually did not generate good coding prone candidates.

Overall, our preliminary results indicated that the Perturbation Heuristic offered the best

trade-off between computational complexity and quality of generated candidates.

3.3 Candidate Generation Method 89

Algorithm 3.7 Pseudocode of the PerturbationHeuristicNonCoding function.

1: function PerturbationHeuristicNonCoding(Graph G, Flow set F , Maximum
Number of Iterations max)

2: Zero outputList
3: while max > 0 do
4: α← new permutation of the flows
5: currentPathSet← ∅
6: for i = 1→ |F | do
7: tolerancei ← 0
8: end for
9: i = 1

10: while i ≤ |F | do
11: Compute nodes’ score based on elements of currentPathSet
12: Re-enable all nodes in graph G
13: Disable all nodes with score higher than tolerancei
14: f ← α[i]
15: P ← Dijkstra(G, src(f), dst(f))
16: if P exists then
17: currentPathSet← currentPathSet ∪ {P}
18: if i < |F | then
19: i← i+ 1
20: else
21: Add currentPathSet to outputList
22: end if
23: else
24: if tolerancei is higher than all nodes’ score then
25: Return null
26: else
27: tolerancei ← tolerancei + 1
28: end if
29: end if
30: end while
31: max← max− 1
32: end while
33: Return outputList
34: end function

3.3 Candidate Generation Method 90

Algorithm 3.8 Pseudocode of the PerturbationHeuristicCoding function.

1: function PerturbationHeuristicCoding(Graph G, Flow set F , Candidate List
CL, Maximum Number of Iterations max)

2: for all path sets PS in CL do
3: for i = 1→ max do
4: Find the two closest nodes a and b s.t. a and b belong to different paths
P1,P2 ∈ PS and a 6= b

5: patha,b ← Dijkstra(G, a, b)
6: targetCost← cost(patha,b)/2
7: Find node c in patha,b s.t. cost from a to c is closest to targetCost
8: prefix1 ← Dijkstra(G, src(P1), c)
9: suffix1 ← Dijkstra(G, c, dst(P1))

10: P∗1 ← concatenate prefix1 and suffix1 and remove any loops.
11: prefix2 ← Dijkstra(G, src(P2), c)
12: suffix2 ← Dijkstra(G, c, dst(P2))
13: P∗2 ← concatenate prefix2 and suffix2 and remove any loops.
14: Create PS∗ with all paths from PS, replacing P1 and P2 for P∗1 and P∗2
15: Add PS∗ to CL, if it does not exist.
16: PS ← PS∗

17: end for
18: end for
19: Return CL
20: end function

Chapter 4

Practical Aspects

Chapter 3 presented IAR and ICAR, two novel route selection algorithms. However,

that chapter only discussed theoretical aspects, such as the pseudocode for the routines

involved in computing the best paths. Since IAR and ICAR take a different approach to

the problem of route selection (in comparison to the traditional solutions of the literature),

there are non-trivial practical issues that must be addressed in a real implementation. In

this chapter we list those issues and present solutions to allow the usage IAR and ICAR

in real networks.

4.1 Flow Detection

The most fundamental difference between the proposals presented in this thesis and the

traditional routing algorithms is the fact that IAR and ICAR must know the set of flows

currently active in the network. Traditional solutions based on classical algorithms such

as Dijkstra’s or Bellman-Ford are oblivious to which flows are actually active: they simply

find routes connecting every possible pair of nodes in the network. On the other hand,

IAR and ICAR must know exactly which flows are in use, so that paths with low inter-

flow interference can be found. To this end, a practical implementation of these route

selection algorithms must be able to keep track of all current flows, as well as detecting

whenever a new flow is started and released.

In this thesis, we propose the following method for achieving this goal. Each node

should maintain a local flow table, i.e., a table of the currently active flows originated at

the local node. Each entry of the local flow table has a timestamp associated with it,

indicating the time when the last packet of that flow has been sent. Whenever a packet

is routed, the node checks whether the packet was generated locally (i.e., by the node

4.1 Flow Detection 92

itself). If that is the case, the node adds or updated the correspondent entry in its local

flow table. Periodically, the table is traversed so that old entries can be removed. An

entry is considered to be old if the difference between the current time and its timestamp

is greater than a configurable parameter, hereinafter called local flow table timeout.

Since in this thesis we assume the usage of a link state routing protocol, periodically

each node generates a control packet containing information regarding the locally known

network links. This packet, usually called a topology packet, is then diffused through the

network so that all nodes know that set of links. This same control packet can be used to

propagate the information contained in the local flow table for all other network nodes.

Nodes then store a second table, called a global flow table, which contains information

regarding all active flows (network wise). This table is built with the information received

in the topology packets and each entry has a lifetime that is equal to the lifetime of the

topology information of its correspondent packet.

Similarly to a traditional link state routing protocol, that relies on coherence of the

link state information with the current network state and among all network nodes, IAR

and ICAR rely as well on the coherence of the global flow table. It is, thus, susceptible

to similar issues (e.g., route loops) whenever that coherence is not maintained.

One aspect that deserves special attention is the order in which flows are passed to

the route selection routines of IAR and ICAR. As explained in Chapter 3, it is assumed

that there is some implicit order in which the flow set is traversed by those routines. In

practice, the flow set is passed to the route selection routines as an array or a linked

list, providing that implicit order. Notice, however, that the solutions found by IAR and

ICAR can be dependent on that order, in some cases. Therefore, in order to guarantee

that all nodes will find the same set of routes as the best solution (assuming they all have

the same data on the state of the network), it is necessary that all nodes pass the flow

set with the same order to the route selection routines. That can be easily achieved by

maintaining the list of flows sorted by some deterministic criterion. One such criterion is

to sort the flows by source node address, with ties solved by the destination node address.

4.1.1 Initial Routes for New Flows

Another issue related to flow detection is the setup of initial routes. Obviously, a flow can

only be detected once its first packet is routed by the source node. Even if we assume the

routing protocol running at the source node will immediately update its local information

and run the route selection routines for IAR and ICAR, other network nodes will only

4.2 Coded Packet Transmission Methods 93

have knowledge of the new flow once the next topology packet reaches them. Since in this

thesis we do not assume the usage of source routing, the first packets of each new flow

would be lost until all nodes were aware of its existence.

To avoid this issue, we propose the usage of two different routing tables: a main

table and a fallback table. The main table is used to store the routes yielded by IAR

and ICAR, while the fallback table is built based on the traditional ETX metric and the

classical Dijkstra Algorithm. For each packet to be routed, a node would first identify

its flow. If the flow is found on the main table, then the respective next hop is retrieved

and the packet is forwarded accordingly. Otherwise, the fallback table is queried and a

fallback route is used.

The idea of this scheme with two different routing tables is to minimize the effects of

the delay in propagating the information of the new flow to all network nodes. While the

initial routes might not be optimal, they at least provide a viable path while the network

state is updated throughout the network.

One last important detail regarding the routing tables is the format of the main table.

A routing table usually is indexed only by the destination node of the packet. In the cases

of IAR and ICAR, though, it is important that the main routing table is indexed by both

source and destination nodes of a packet (or of a flow). That is due to the fact that IAR

and ICAR allow two flows with the same destination node to use a same intermediate

node, but with different path suffixes. For example, suppose that in a given network,

there are two active flows a ⇒ b and c ⇒ b. Due to the way candidate solutions are

built, it is possible that IAR or ICAR would select two paths passing through a same

node d, such that the subpaths from d to b are different for each flow. To allow the usage

of the correct paths for each flow, node d must have in each entry of its main routing

table both the source and destination nodes, in order to differentiate between the packets

for flows a ⇒ b and c ⇒ b. Notice that, while routing tables based on source addresses

are less common, there are implementations readily available for them in major operating

systems [46].

4.2 Coded Packet Transmission Methods

An important issue for network coding is how to actually perform the transmission of

coded packets. This subject has already been briefly discussed in Chapter 3, but in

this section we approach this issue more deeply. We first review two known methods

4.2 Coded Packet Transmission Methods 94

from the literature and discuss their characteristics. Then, we introduce a new method

that overcomes some of the issues with the previous proposals. Finally, we discuss the

consequences of using this proposed method in the models used by ICAR.

4.2.1 Methods Found on the Literature

The simplest idea to transmit a coded packet is to simply encapsulate it in a link layer

broadcast frame. The broadcast frame would then be transmitted by the link layer proto-

col as usual. Upon the reception of such a packet, a node would check whether it belongs

to the set of intended receivers. In this case, the node would try to decode the packet and,

if successful, send it to the upper layers. Otherwise, the packet would simply be ignored.

This method, known as Simple Broadcast [56], has a very simple implementation.

Nevertheless, its employment results in very different characteristics for the transmission

of coded and native packets. While native (unicast) packets are usually transmitted using

the ARQ technique, the employment of broadcast frames for coded packets results in a

single transmission attempt. As a result, the transmission of a native packet in the link

layer tends to be much more resilient to losses than its counterpart for coded packets. On

the other hand, the transmission of a coded packet always occupies the wireless medium

for the least amount of time, since no retransmissions are allowed and since there is no

acknowledgment frame to be received.

A perhaps more interesting method found in the literature is the so called Pseudo-

Broadcast [56]. In this method, each coded packet is mapped into a unicast frame at the

link layer. Since a unicast frame needs a unicast destination MAC address, this address is

chosen by Pseudo-Broadcast among the addresses of the intended receivers for the coded

packet. The policy for choosing this destination MAC address is random, i.e., the address

is randomly selected among those of the intended receivers.

The Pseudo-Broadcast is widely considered in the literature as an improvement with

respect to Simple Broadcast. The improvement stems from the possibly higher delivery

probability achieved by Pseudo-Broadcast given the employment of error recovery tech-

niques, such as ARQ, available directly from the link layer to unicast frames. While

Pseudo-Broadcast tends to result in longer periods of medium occupation (due to the

possibility of retransmission), it is usually assumed that the upper layers have considered

this side effect when choosing the paths and that set of packets to be coded together. Un-

der this assumption, the rationale behind Pseudo-Broadcast is that, if a higher protocol

decided to code together a given set of native packets, then the link layer must make the

4.2 Coded Packet Transmission Methods 95

best effort possible to transmit that coded packet successfully for all intended receivers.

One issue with the Pseudo-Broadcast method is that it lacks a well defined criterion

to choose the destination address. Suppose, for instance, that a given coded packet to

be transmitted by node a is intended to two receivers b and c. Assume that the delivery

probability of link a→ b is 1, while the one for link a→ c is 0.5. If the random selection

performed by Pseudo-Broadcast results in node c being chosen as the destination MAC

address for the unicast frame, then node b will certainly receive the coded packet, while

node c will have a probability of 1 − 0.5k of receiving it (where k denotes the maximum

number of transmission attempts at the link layer). If k is 4 (as it is defined in the

IEEE 802.11 standard), this probability reaches 93.75%, for example. On the other hand,

if b is chosen as the destination node, only one transmission attempt will be made by

node a (since b always receives successfully the attempts by a, and assuming the delivery

probability for the ACK is also 1). In that case, the probability that c receives the coded

packet drops to 50%.

That example, while simple, is useful to demonstrate how sub-optimal performance

may result from the usage of the random policy employed by Pseudo-Broadcast (from the

point of view of the delivery probability of coded packets). In the next section, we will

present a proposal of a simple variation of the Pseudo-Broadcast that will maximize the

performance in that regard.

4.2.2 Deterministic Pseudo-Broadcast

We argue that the adoption of a simple deterministic criterion can improve the perfor-

mance of Pseudo-Broadcast. Similarly to the original proposal of the Pseudo-Broadcast

method, we assume that the goal of transmitting a coded packet is that all receivers can

successfully receive it. In other words, denoting by Sucx the event of a coded packet being

successfully received by node x, we would like to maximize the joint reception probability

P (Suca, Sucb, . . .), where the intended receivers are nodes a, b,

When using the Pseudo-Broadcast technique, one of the intended receivers is used as

the destination for the unicast frame and, thus, there is a confirmation when this node

correctly receives the coded packet (assuming this occurs within the predefined limit of

retransmissions). Denoting the chosen node by α, we wish to maximize the following

expression:

P (Suca, Sucb, . . . |Sucα) =
P (Suca, Sucb, . . .)

P (Sucα)
(4.1)

4.2 Coded Packet Transmission Methods 96

9 (one floor above)

0
1

23

4

5

6

7

8

110 m

Figure 4.1: Topology of the wireless mesh network used in the experiments.

The numerator of the expression depends only on the intended receivers for the coded

packet. Hence it is independent of the choice for the destination of the unicast frame.

Therefore, to maximize the expression, it is necessary to minimize the value of the denom-

inator. As a consequence, the choice that maximizes the joint reception probability for all

receivers is the node with the lowest individual delivery probability with respect to the

transmitter. Notice that by using this criterion, we are not artificially introducing a bad

link that may be prone to channel outages and other side effects. By definition, node α is

already among the receivers. Therefore, the correspondent link will be used regardless of

the choice for the destination of the unicast frame. Since the individual delivery probabil-

ities are usually already computed by most traditional routing protocols (and assumed to

be available for the routing algorithm presented in this thesis), this strategy, hereinafter

called Deterministic Pseudo-Broadcast1, can be easily implemented.

The fact that the choice for the “worst” receiver as the destination address of the

unicast frame maximizes the joint reception probability for all intended receivers is some-

what intuitive. By doing so, we are choosing the destination address that maximizes the

expected number of retries in the link layer. With more retransmissions, all intended

receivers have more opportunities to receive the coded packet, leading to an improved

overall joint reception probability.

4.2.3 Experimental Evaluation

To evaluate the proposed mechanism, experiments were conducted in an indoor network,

composed of 10 nodes deployed in two floors of a building. This network testbed has been

used in previous work [17, 75]. Figure 4.1 illustrates the topology. The lines between nodes

1In this thesis, from this point on, we will always refer to the original Pseudo-Broadcast method as
the Random Pseudo-Broadcast in order to avoid confusion

4.2 Coded Packet Transmission Methods 97

represent links frequently available in the network. Each network node is an off-the-shelf

Linksys WRT54g router running the Linux-based OpenWrt operating system.

Three different mechanisms were implemented as plugins of the OLSR routing pro-

tocol [68]: the Simple Broadcast (encapsulate the coded packet in a link layer broadcast

frame), the Random Pseudo-Broadcast and the Deterministic Pseudo-Broadcast.

When loaded, each plugin creates a virtual network interface, using Linux TUN/TAP

support. When a packet is sent by a local application through an interface of this type,

the local kernel delivers the packet to the application that owns the interface. Hence, the

plugin is able to intercept packets transmitted to the subnetwork of the virtual interface

and choose the best destination for the link layer frame according to the currently selected

mechanism.

In this set of experiments, an application in the source node sends a sequence of packets

to the broadcast address of the subnetwork of the virtual interface. Upon the reception

of such a packet, the plugin generates a link layer frame with the chosen destination

address. This frame is then passed to the wireless adapter which performs the actual

transmission. The neighbors, on the other hand, run another application which waits

for the packets and generates a log file containing the received sequence numbers. In

total 3000 packets of 1500 bytes are sent with 100 ms intervals from each other. To

increase the fairness of the experiment, all three compared mechanisms were executed

simultaneously (our plugin is able to create three different TUN/TAP interfaces, each

attached to a different transmission mechanism), guaranteeing that all mechanisms had

the same network conditions.

The graphs in Figure 4.2 summarize the results obtained for two topology nodes (5

and 8) acting as sources of the data flow. Figure 4.2a shows that the Deterministic

Pseudo-Broadcast achieved a delivery rate considerably superior to those of the other two

mechanisms, considering 7, 6 and 5 receivers. By adding these three cases, we conclude

that the Deterministic Pseudo-Broadcast could deliver the packets to at least 5 neighbors

86.5% of the time. The second best performance, in this case, was obtained with the

Random Pseudo-Broadcast, which achieved only 45% of delivery, in the same conditions.

Finally, the Simple Broadcast achieved a delivery rate of only 19%. By analyzing the fre-

quency each neighbor was chosen as the destination for the link layer frame (Figure 4.2c),

we notice the Deterministic Pseudo-Broadcast opted for node 8 in 96% of the time. The

Random Pseudo-Broadcast, as expected, distributed its choices uniformly, ignoring the

necessary retransmissions.

4.2 Coded Packet Transmission Methods 98

0 1 2 3 4 5 6 7

Deterministic
Random
Simple Broadcast

Number of Receivers

D
el
iv
er
ed

P
ac
ke
ts

(%
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Delivery distribution for node 5

0 1 2 3 4

Deterministic
Random
Simple Broadcast

Number of Receivers

D
el
iv
er
ed

P
ac
ke
ts

(%
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Delivery distribution for node 8

1 2 3 4 6 7 8

Deterministic
Random

Destination Node

S
en
t
P
ac
ke
ts

(%
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Destination distribution for node 5

5 6 7 9

Deterministic
Random

Destination Node

S
en
t
P
ac
ke
ts

(%
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Destination Distribution for node 8

Figure 4.2: Comparison results for the three mechanisms for transmitting coded packets.
The two graphs above show the distribution of the number of neighbors that correctly
received the transmitted packets. The two graphs bellow show the distribution of the
destination addresses used by each mechanism for the link layer frames.

4.2 Coded Packet Transmission Methods 99

Most of the obtained results for other source nodes were quite similar in trend to the

ones obtained for node 5. The only exception was node 8. As illustrated in Figure 4.2d,

for this source node the Deterministic Pseudo-Broadcast mechanism presented a much

even distribution in terms of destinations, approaching the choices made by the Random

Pseudo-Broadcast (with the exception of node 7, which was never selected). The reason

for this behavior is the high variability of quality of the output links for node 8. This

variability causes the worst output link to change several times during the experiment.

As a consequence, both mechanisms (Random and Deterministic Pseudo-Broadcast) had

similar results in terms of delivery rate. Nevertheless the delivery rate considering 4

neighbors was higher using the Deterministic Pseudo-Broadcast (30.5% against 25% by

the Random Pseudo-Broadcast).

4.2.4 Consequences for the Route Evaluation Algorithm

As previously explained, one side effect of the Deterministic Pseudo-Broadcast (and, to a

lesser degree, of the Random Pseudo-Broadcast as well) is that the link layer transmissions

of coded packets tend to use the medium for longer periods than with Simple Broadcast.

Despite this trade-off, we argue that maximizing the joint reception probability of a coded

packet is desirable, especially since the transmission of the native packet associated with

the link selected by the Deterministic Pseudo-Broadcast would required the same amount

of medium usage. In other words, if a coding oblivious routing protocol chooses that link

to be used for a given flow, it is already considering that amount of medium usage in its

decisions.

Nevertheless, it is particularly important for ICAR to know exactly how the trans-

mission of coded packets is performed in order to evaluate the medium usage required by

a give transmission, as well as the resultant delivery probability for each native packet

coded together. In Chapter 3, we assumed the usage of Simple Broadcast, which resulted

in the model presented then. While we present the Deterministic Random Broadcast as

an alternative to Simple Broadcast and argue that it can improve the performance of

network coding (assuming proper modeling is employed by the route selection algorithm),

we assume such modeling is outside the scope of this thesis. We do, however, provide

some insight on how that modeling can be done.

There are two components of the model employed by ICAR that would be affected

by the usage of the Deterministic Pseudo-Broadcast. The first one is the medium usage

time, which can be simply calculated by applying the same formula used in a native packet

4.3 Collision Probability for Probe Packets 100

transmission (see Equation 3.9) considering the link from the transmitter to the receiver

α — the one with the worst delivery probability with respect to the transmitter. Notice

that a similar approach can be used if the Random Pseudo-Broadcast is applied, with the

difference that the final medium usage time has to be the average considering the cases

when each intended receiver is chosen as the destination address.

The second affected component is more complicated, though. This component is the

one that estimates the probability that a coded packet is received by a given intended

receiver. With Simple Broadcast, this probability was simply the delivery probability

of the receiver with respect to the transmitter. However, for Pseudo-Broadcast (both

the random and the deterministic versions), multiple retries may be attempted by the

transmitter. A simplified approach to this issue would be to compute the expected number

of attempts (which is already done for estimating the medium usage) and simply calculate

the reception probability for each intended receiver based on this number and on the

respective delivery probability. The problem with this approach is that, as shown in

Appendix B, the reception events for different intended receivers of a coded packet are

not necessarily independent. In other words, the probability that an intended receiver a

receives a coded packet that was correctly received by node b whose address was used for

the unicast frame can be different from the probability of a receiving the packet in the

same number of attempts regardless of what happened to node b. While the information

shown in Appendix B can be used as a foundation, we do not attempt to provide a

complete model in this thesis.

4.3 Collision Probability for Probe Packets

A third practical aspect that is important to consider when implementing IAR and ICAR

is the collision probability of the probe packets used to estimate the delivery probabil-

ity of each link. Both IAR and ICAR depend on the availability of estimates for the

delivery probability information for all network links, from which other information is

derived. The assumption that this information is available for the routing protocol is

reasonable in practice, since most current routing metrics rely on this probability in one

form or another, as shown in Chapter 2. However, those estimates may be susceptible to

considerable measurement errors due to the probability of collision between probes and

data packets [23]. In other words, whenever data flows start to traverse the network, the

delivery probability estimates obtained by the routing protocols start to decrease, due to

probe packets colliding with the increased amount of data packets.

4.3 Collision Probability for Probe Packets 101

One could argue that the effect of the measured delivery probability for a wireless link

dropping under traffic is desirable. In other words, if this drop is caused by an increase in

the number of collisions in the wireless medium, it reflects the true state of the link, since

data packets transmitted through that link will be susceptible to the same conditions.

However, the goal of many mechanisms that rely on those estimates is to measure only

the wireless link quality itself, and not other phenomena that could influence its delivery

probability. On [23], for example, the work that originally proposes the ETX metric,

the author clearly states that the sensitivity of its probing mechanism to traffic load is a

design flaw.

While the measurement errors in the delivery probabilities may affect the performance

of traditional routing metrics, in this thesis, we argue that its effect on IAR and ICAR

is potentially stronger. The reason for that is two folded. On one hand, IAR and ICAR

derive two different values from these estimates (link transmission delay and packet receiv-

ing probability). On the other hand, they already take into account the impossibility of

two interfering links transmitting at the same time by not allowing them to be scheduled

simultaneously during the simulation that evaluates a given path set.

It is, therefore, important that not only the estimates for the links’ delivery proba-

bilities are as precise as possible, but also that they are as orthogonal as possible to the

collision probability. In order to try to improve these two characteristics, in the next

section we present a proposal for mitigating the collision component of the estimates

provided by the usage of broadcast probes, hereinafter referred to as collision probability

adjustment.

4.3.1 Proposed Method

The collision probability adjustment method is based on the following premise. If the

routing protocol was able to somehow find out what the current collision probability

is for all network links, it would be possible to compute an estimate for the delivery

probability orthogonal to collision (denoted by d′, as opposed to the traditional estimate

d) using the following expression:

d′a→b = min

(
s

w × (1− pcola→b
)
, 1

)
, (4.2)

where s denotes the number of successfully received probes for a window of w probes, and

pcola→b
is the average collision probability at node b for probes sent by node a during the

4.3 Collision Probability for Probe Packets 102

current window. Basically, what this expression does is compute the expected number

of probes that are not lost due to collision and use it as the denominator for the ratio

of received packets. Since this value is only an expected number, it is possible that less

probes are actually lost due to collision and the total number of received probes during

the window (s) is greater than the denominator. In that case, the expression becomes

limited by 1 so that it represents a valid probability value.

The key to isolate the collision probability from the delivery probability, then, is to

know — or to estimate — the probability pcola→b
. Generally speaking, a collision may

arise from two different causes:

• two or more nodes start to transmit at the same time (or very close to that); or

• a node cannot detect that a transmission is already taking place and starts its own

transmission.

The IEEE 802.11 standard, for example, tries to mitigate the first cause by employing

a random backoff value chosen from an exponentially growing window [49]. The second

cause, known in the literature as the hidden terminal problem [96], can be solved in infra-

structured networks by the employment of RTS/CTS frames (Request To Send and Clear

To Send) [54]. Notice, however, that RTS frames are never sent before broadcast frames

due to the existence of multiple receivers, rendering this method ineffective against colli-

sions involving this kind of frame. In other words, in a network that employs RTS/CTS

frames, the collision probability for probe packets may be higher than that for unicast

data packets. Moreover, in this work we do not assume the usage of RTS/CTS by the

network nodes. For this reason, the collision probability adjustment method presented on

this thesis focus on the second case.

The collisions caused by the hidden terminal problem are exacerbated by the amount

of traffic on the network. For instance, assume that a given network has very low traffic

usage at a given moment in time. If a node a wishes to send a packet to node b, the

probability that another node c — hidden, from the point of view of a — is already

transmitting is low. On the other hand, if the network, or specifically node c, is under

heavy load, then the probability that node c is already transmitting while a tries to

send a packet to b increases, also increasing the overall collision probability. Therefore,

the collision probability caused by hidden terminals is a function of both the number of

hidden terminals and their respective medium usage. Specifically, the collision probability

for a link a→ b due to hidden terminals is equivalent to the probability that node a tries

4.3 Collision Probability for Probe Packets 103

to transmit while any of the terminals hidden from a that can affect that transmission is

already transmitting.

With that in mind, we propose the following approximation for the collision proba-

bility of a probe sent from node a to node b:

pcola→b
=

1− idleb∑
i∈Nb

AirT imei
×

∑
i∈Nb,i 6=a

AirT imei · (1− di→a). (4.3)

In the expression, idleb represents the percentage of time node b has detected the wireless

medium as being idle, AirT imei is the percentage of time node i has used the medium,

and Nb is the set of neighbors of node b. The idea of this expression is to approximate

the collision probability with the percentage of time in which potential hidden terminals

are transmitting. We consider a node i to definitely be a hidden terminal for link a→ b

if it is neighbor of b, but not a neighbor of a (di→a = 0). However, due to the existence of

time-varying fading [86], we also take into account the possibility that, in a given moment,

a neighbor of a node a can also act as a hidden terminal. To this end, we sum the values

of AirT ime for all neighbors of b weighted by the complement of their respective delivery

probability with respect to a. The result of that summation is them normalized so that

the sum of AirT ime values for all neighbors of b correspond to the actual percentage of

time node b has detected the wireless medium as being occupied (notice that multiple

neighbors of b may transmit at the same time, resulting in that sum being greater than

(1− idleb)).

Values idle and AirT imemay not be as commonly available to routing protocols as the

neighborhood information and the delivery probability for each network link. However,

it is still feasible to obtain such values in a practical implementation. The idle value for

a node is provided by some popular drivers for IEEE 802.11 wireless cards such as [7]

and can be retrieved by software through standard API calls in Linux. The AirT ime

value can be obtained by either monitoring the total number of bytes transmitted by

the wireless interface (including retransmissions), or estimated at the routing layer by

monitoring each packet that leaves the queue considering the ETX of the respective link

as the number of retransmissions (or 1 for broadcast frames). Each node should monitor

the behavior of these parameters in samples during a given time interval (in this thesis we

employ measurement intervals of 10 seconds) and broadcast its AirT ime value within the

hello packets. Whenever a node b has to compute the adjusted delivery probability from

a neighbor a to itself, it computes the collision probability of that link using Equation 4.3

4.3 Collision Probability for Probe Packets 104

based on the values of AirT ime it has received from its neighbors, on the unadjusted

delivery probabilities calculated from the reception of the probes, and its own idle value.

One important detail on this method is that the estimate of the collision probability

changes relatively fast with changes in the load of the network, since it uses samples for

the values of idle and AirT ime. On the other hand, the delivery probability itself tends to

change slowly, since it results from the average of multiple samples (probe transmissions).

Suppose, for instance, that each node samples AirT ime and idle every 10 seconds, while

probes are transmitted every 5 seconds and the window used for the average comprises

the last 100 probes. In that case, while AirT ime and idle correspond to the state of

the network in the past 10 seconds (or a few more seconds because of the delay for the

information to propagate through the neighbors), the unadjusted delivery probability

conveys information of the last 500 seconds. To avoid this mismatch, instead of using

directly the value provided by Equation 4.3 as the collision probability in Equation 4.2,

the collision probability adjustment method uses a moving average of these values. The

parameters of the average (e.g., the number of samples) are chosen so that the period

of time from which the samples of collision probability are taken matches the period

of time from which the probes are considered for computing the delivery probability in

Equation 4.2. Specifically, in this thesis, we opted for adopting an Exponentially Weighted

Moving Average (EWMA) instead of the traditional moving average so that less state has

to be stored — the EWMA requires only that the current average value is stored, in

contrast to all the currently used samples. Therefore, the value used as the collision

probability in Equation 4.2 is given by:

pcola→b
= θ · pcola→b

+ (1− θ) · pcola→b
, (4.4)

where pcola→b
is the new sample value of the collision probability (as given by Equation 4.3)

and θ is the exponent for the EWMA — hereinafter referred to as collision probability

exponent. This exponent, therefore, has to be chosen such that the amortization rate of

the two means — for the average collision probability and for the delivery probability —

are similar.

4.3.2 Discussion on the Precision of the Method

The collision probability adjustment method proposed in this thesis is an approximation

for the computing of the delivery probability orthogonal to the collision probability. As

with any approximation, precision issues must be considered.

4.3 Collision Probability for Probe Packets 105

0

1

2

3

Figure 4.3: Example of a node distribution that might lead the collision probability ad-
justment method to underestimate the collision probability. The dotted circle around
node 0 illustrates the hypothetical transmission radius of the node. Node 3 cannot over-
hear the transmissions by node 0, while nodes 1 and 2 can. In this example, we would like
to compute the collision probability for link 3 → 2, assuming nodes 0 and 1 have their
respective buffers backlogged.

The first source of imprecision in this method is considering only collisions that stem

from hidden terminals. Although the usage of random backoff by wireless MAC layer

protocols (IEEE 802.11, specifically) mitigates the occurrence of collisions between trans-

mitters that can overhear each other, this technique is still susceptible to nodes casually

synchronizing their transmissions, resulting in collisions.

Another simplification is the simple summation of the values of AirT ime for the po-

tential hidden terminals. Since multiple nodes (among those potential hidden terminals)

may transmit at the same time, the summation may be an overestimate of the actual

medium occupation fraction. We try to account for that by normalizing this sum with

respect to the complement of the actual idle time, as perceived by the receiving node, but

we cannot guarantee that this procedure results in the correct value in the general case.

Moreover, the usage of the unadjusted delivery probability as a weight in order to capture

the possible effects of fading on the capability of the sender’s carrier sense to detect an

ongoing transmission may not correlate perfectly with the physical phenomenon.

Finally, there is the issue of the dependency between the events of transmission in

a multihop wireless network network. Consider, for instance, the example illustrated by

Figure 4.3. Suppose a multihop wireless network has that distribution of nodes and we

would like to estimate the collision probability for probes sent by link 3 → 2, assuming

nodes 0 and 1 have their respective buffers backlogged. Assume also that the carrier

sense performed by node 3 is always unable to detect transmissions by node 0, but can

perfectly detect transmissions by node 1. Similarly, node 1 is capable of detecting when

4.4 Delayed Execution of the Route Selection Algorithm 106

node 0 transmits. Under these circumstances, whenever node 0 starts to transmit, node

1 does not transmit, but the CSMA/CA protocol running on node 3 allows it to transmit

simultaneously. If the transmitted packet is addressed to node 2, a collision will happen.

In this case, the fact that node 0 is not a hidden terminal for node 1 introduces a bias

in the collision probability by creating a dependency between the times at which node

0 is transmitting and the times at which node 3 will find the medium to be free. With

more nodes distributed in random ways, more complex patterns of dependency may arise,

which are not covered by the proposed collision probability adjustment method.

Despite these simplifications and sources of imprecisions, we argue that the proposed

method can mitigate the effect of collisions in the delivery probability estimates, resulting

in more stability for the route selection algorithms. In Chapter 5, we provide experimental

data to support this claim.

4.4 Delayed Execution of the Route Selection Algo-

rithm

While the route selection algorithms presented in Chapter 3 make use of heuristics and

can be used to find routes in real time, it is still more complex, in terms of computational

cost, than traditional routing algorithms. Usually, routing protocols for multihop wireless

networks recompute routes any time they receive new information (through topology

packets) that change their current view of the network — which might result in different

routes. However, due to the relatively short intervals between the generation of topology

packets — usually in the order of a few seconds — a network with a high number of nodes

may result in a node receiving various different topology packets in short time intervals

(less than a second), which leads the routing protocol to call the route selection algorithm

many times in sequence. This problem is aggravated because some protocols generate

new sporadic topology packets when they detect changes in their neighborhood. In other

words, when a change happens in a given neighborhood, all affected nodes will generate

new topology packets in a short time interval.

With this characteristic in mind, in this thesis we adopt a delayed execution strategy

for reducing the CPU usage of network nodes. The idea is that, whenever a node receives

a topology packet containing changes in the link state, it delays the execution of the route

selection algorithm for a short period of time, instead of executing it immediately. During

that time span, if other packets are received, the protocol’s network vision is updated, but

4.4 Delayed Execution of the Route Selection Algorithm 107

the route selection algorithm is not called. This way, multiple changes to the topology

are aggregated and only one execution of the route selection algorithm is required.

The trade-off of this strategy is clear: while it reduces the number of executions of

the route selection algorithm, it also introduces a delay for nodes to find new routes

when the network state changes. Nevertheless, in preliminary experiments we verified

that using short delays (of one second, for example), the network was able to sustain

good performance (as shown in the results presented in Chapter 5), while considerably

reducing CPU usage.

Chapter 5

Performance Evaluation

This chapter describes the experiments conducted to evaluate the performance of IAR

and ICAR, as well as their results. Differently from the results presented in Chapter 4,

in this chapter we focus in network performance parameters (such as throughput, end-

to-end delay and packet loss), considering how all parts of the proposal work under real

conditions. To this end, the experiments were divided in two groups: simulations with

the well-known ns-2 simulator [93] and experiments in a real testbed. While simulations

allow one to easily reproduce network conditions and explore different scenarios, a real

testbed provides all the characteristic complexities of the wireless medium, as well as the

real-time processing requirements for the route computations.

In both cases, IAR and ICAR were implemented on top of the SLSP routing proto-

col [71, 75] (Simple Link State Protocol). For the real testbed, the original code from

SLSP was modified to support the proposals. Afterwards, the resulting code was ported

and adapted to work as a routing agent for ns-2. Besides IAR and ICAR, the ETX,

ML and Hop Count route selection methods1 are also implemented in SLSP and, thus,

available for this evaluation. For all experiments (simulated or real), the protocol was

configured to use the parameters listed in Table 5.1.

As of the writing of this thesis, to the best of our knowledge there are no implemen-

tations of COPE (or similar techniques) for ns-2. For this reason, we also implemented a

simplified version of COPE for the simulator by creating modified versions of the Drop-

Tail queuing policy and of the IEEE 802.11 MAC layer. The Drop-Tail queuing was

modified to include COPE’s routine for finding possible coding partners for a packet, to

implement a Packet Pool (a buffer of native packets transmitted or received to be possibly

used for decoding in the future), as well as to implement coding and decoding routines.

1Although ETX, ML, and Hop Count are routing metrics, in this chapter we employ the more generic
term route selection method so that we can refer to those metrics in the same context of IAR and ICAR.

5 Performance Evaluation 109

Table 5.1: Configuration parameters used during the experiments for the routing protocol.
The names listed in the table represent the names of the parameters as used by the
implementations of the SLSP protocol.

Name Description Value
hello interval Interval between Hello packets 5 s

topology interval Interval between Topology packets 10 s
hello life time Validity of each Hello packet 510 s
lq window size Number of Hello packets used for estimat-

ing link quality
100

topology life time Validity of each Topology packet 50 s
idle interval Interval between samples of the

IEEE 802.11 Idle Counter
10 s

airtime interval Interval between samples of queue esti-
mate of Used Air Time

10 s

collision prob exponent Exponent of the EWMA for the collision
probability

0.975

The IEEE 802.11 MAC layer was modified to include a coding header in each packet,

to store received packets not addressed to the local node in the Packet Pool and to call

the decoding routines when necessary. Notice that we chose to use the dei80211mr [9]

implementation of the IEEE 802.11 standard instead of the one that comes with ns-2 by

default due to the various improvements brought by this version (such as a SINR-based

packet error model and the capture model). All modified or implemented components of

the simulation environment used in this evaluation are available at [72].

For the real testbed, the same simplified version of COPE was implemented as a

module of the SLSP routing protocol. Since SLSP is implemented in the user space, it

was necessary to create an architecture to allow coding routines to be implemented without

access to the kernel space. To this end, SLSP creates a TUN interface [59], which should be

used by the host applications to send and receive all network traffic. All outgoing packets

are then received by SLSP through the TUN interface and forwarded to the actual physical

wireless interface. By using this architecture, SLSP is capable of performing queuing for

the traffic, which allows it to implement COPE’s coding capabilities, as well as to monitor

the transmissions in order to collect statistics for the probability adjustment technique.

Since a non-standard header must be added for all packets (a coding header) and since

COPE requires even frames that are not addressed to a node to be stored by it, SLSP also

puts the wireless interface in monitor mode and opens a raw socket in order to receive

and transmit packets. Figure 5.1 summarizes this architecture.

It is important to point out that this solution includes a greater overhead to the

5.1 Simulations 110

User Space

Kernel Space

Routing Routines

Applications SLSP

Physical Interface

TUN InterfaceSockets Raw Socket

Figure 5.1: Architecture used for implementing COPE in the real testbed. Arrows
indicate the directions in which data packets flow from one component to the other.
Ellipses represent means of communication between the kernel and user space processes.

routing process in comparison to an ideal implementation completely within the kernel

space. Most of the added overhead is due to the increase in the number of context

switches (i.e., from the user space to the kernel space and the other way around) needed

to transmit or receive a packet. A packet transmitted by an application, for example, goes

to the kernel space, comes back to the user space (to SLSP), and then is re-injected into

the kernel space through the raw socket. Even for forwarding a packet, it first needs to be

received by the SLSP process for later to be returned to the kernel space. Nevertheless,

despite the increase in overhead, the proposed implementation is a functional prototype

and we argue it is sufficient for the evaluation purposes of this thesis. The source code

for the version of the SLSP protocol used for this evaluation along with the implemented

modules are available at [73].

5.1 Simulations

Since simulations allow one to easily vary scenarios, in this section we tried to explore

a number of different topologies covering a range of characteristics. We employed both

especially designed topologies with the goal of demonstrating particular characteristics of

each proposal, as well as more generic and random topologies.

5.1 Simulations 111

Table 5.2: Propagation parameters used for all simulation scenarios.

Parameter Value
Propagation Model Shadowing [86]
Path Loss Exponent 4.1

Shadowing Reference Distance 1.0 m
Shadowing Standard Deviation 3.0 dB

Node’s Transmission Power 19.5 dBm
Transmission Frequency 2437 MHz

A total of 6 different network topologies were created for this evaluation. Unless

otherwise specified, all of them employ the same propagation parameters, summarized in

Table 5.2, chosen after preliminary measurements such that the propagation environment

would resemble that of the indoor wireless mesh testbed of the ReMoTE Project [75]. In

all simulations, RTS/CTS frames were disabled and data rate was fixed at 1 Mb/s.

5.1.1 Basic Scenarios

For an initial evaluation, we employed four basic scenarios in order to analyze specific

aspects of IAR and ICAR, as well as deficiencies of traditional route selection methods.

In the next sections, we describe each one in detail, along with their respective simulation

results.

5.1.1.1 Pro-Interference Scenario

The Pro-Interference scenario consists of 12 nodes deployed as depicted by Figure 5.2.

When nodes 0 and 1, located at the extremes of the topology, perform a bidirectional

communication, the distribution of the nodes suggests two different basic options for

each flow: the “upper line” (passing through nodes 2 to 6) and the “lower line” (passing

through nodes 7 to 11). Due to the distances between both lines, upper nodes do not

interfere with the lower ones.

The best possible path selection is to assign flow 1→ 0 to one line and flow 0→ 1 to

the other. Specifically, given the distances between nodes in each line and the propagation

parameters, the best possible path is to select all nodes of a line in sequence (e.g., 0 →
2 → 3 → 4 → 5 → 6 → 1), in order to avoid links with high loss rates. By assigning

different lines for each flow, they will only interfere with each other at the extreme nodes 0

and 1. If, however, one chooses to assign both flows to the same line, then the interference

5.1 Simulations 112

0 1
10 m 10 m 10 m 10 m

14 m

14 m

3 m

2 3 4 5 6

7 8 9 1 0 11

Source/Destination

Figure 5.2: Pro-Interference Scenario: a scenario that presents a clear opportunity for
avoiding interference by re-routing a flow through an alternative path.

will be much higher, reducing aggregated throughput.

Therefore, this scenario clearly favors an approach that is aware of inter-flow inter-

ference, such as IAR. To evaluate whether IAR can actually find the optimal path in this

scenario, we performed a series of simulations with the two unidirectional CBR (Constant

Bit Rate) flows 0 → 1 and 1 → 0 (i.e., data flows both from 0 to 1 and 1 to 0). The

flow consisted of 1450-byte packets sent at a rate of 200 Kb/s in each direction during

1000 seconds. This rate was chosen in order to saturate the capacity of the paths. Before

the flows start, we let the routing protocol run during 500 seconds so that link quality

information can converge.

Figure 5.3 shows the results obtained in terms of aggregated throughput for simula-

tions without network coding. The bars represent the average of 5 runs with different

seeds and, to avoid transients, we discard the first 100 seconds of the flows. The error

bars represent the 95% confidence interval for the average. While IAR achieved more

than 130 Kb/s of aggregated throughput, ML, the second best route selection method in

this scenario, resulted in an average throughput of 69.77 Kb/s.

As expected, IAR was able to take advantage of the node distribution in order to

choose mostly non-interfering paths. Figure 5.4 shows the fraction of time that IAR and

the other evaluated route selection methods choose each of the most common sets of paths

during the simulations. Specifically, the two sets of paths most frequently chosen by IAR

5.1 Simulations 113

IAR ETX ML HOP

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0

30

60

90

120

150

Figure 5.3: Comparison between IAR, ETX, ML, and Hop Count in terms of aggregated
throughput in the Pro-Interference Scenario without network coding.

were {0 → 2 → 3 → 4 → 5 → 6 → 1, 1 → 11 → 10 → 9 → 8 → 7 → 0} (40.5% of the

time) and {0 → 7 → 8 → 9 → 10 → 11 → 1, 1 → 6 → 5 → 4 → 3 → 2 → 0} (25.7% of

the time). On the other hand, ETX, ML and Hop Count tend to choose symmetric paths

because the expression they use to attribute weights to links is identical irrespective of

the direction of the link. Indeed, Figure 5.4 shows that this is the case. Both ETX and

ML chose symmetric routes for more than 85% of the time, leading to roughly half the

throughput obtained by IAR. With respect to Hop Count, not only the metric tends to

choose symmetric paths, but it also selects very long links. In fact, Hop Count was unable

to select one of the four most common sets of paths throughout the simulation, which,

ultimately, led to the worst result in terms of aggregated throughput.

Figure 5.5 shows the percentage of lost packets for each route selection method, as

well as a breakdown of the causes that accounted for those losses. Except for Hop Count,

all route selection methods resulted in some losses due to routing loops. However, loops

only caused losses for a very low percentage of the transmitted packets (the highest was

0.3% for ETX) and, thus, are not visible in the Figure. As expected, most of the losses

are due to buffer overflow because the transmission rate of the flows saturated capacity

of the paths, which resulted in queuing at the source nodes and, consequently, discards.

5.1 Simulations 114

IAR ETX ML HOP

1→ 6→ 5→ 4→ 3→ 2→ 0
0→ 7→ 8→ 9→ 10→ 11→ 1

1→ 11→ 10→ 9→ 8→ 7→ 0
0→ 2→ 3→ 4→ 5→ 6→ 1

1→ 6→ 5→ 4→ 3→ 2→ 0
0→ 2→ 3→ 4→ 5→ 6→ 1

1→ 11→ 10→ 9→ 8→ 7→ 0
0→ 7→ 8→ 9→ 10→ 11→ 1

Route Selection Method

P
er
ce
n
ta
ge

of
T
im

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.4: Comparison between the routes selected by IAR, ETX, ML, and Hop Count
in the Pro-Interference Scenario without network coding. The graph shows the percentage
of time in which each route selection method selected each of the four most common path
sets.

It is interesting to notice, however, that both Hop Count and IAR had considerably less

losses due to buffer overflow than ETX and ML. For Hop Count, that happens because

it chooses shorter paths than the other route selection methods (in terms of hops) and

worse links (so that most packets are lost in the first hop due to an excessive number

of retries). These two factors combined result in more available medium access time for

the source nodes to transmit, leading to less packet discards due to buffer overflow. IAR,

on the other hand, tends to choose path sets with more available aggregate bandwidth,

lessing the issue of queuing in the source nodes. Moreover, since IAR tends to separate

the two flows, it also reduces the probability of buffer overflow in the intermediate nodes,

since there is less sharing of resources (in this case, buffer space).

Another interesting point shown by this graph is the loss rate due to excessive number

of retries (i.e., packets that were actually lost due to phenomena of the wireless medium).

IAR actually had more such losses than ETX and ML. Notice, however, that IAR also

had more packets than ETX and ML that got the opportunity to be transmitted in the

wireless medium, since it resulted in fewer losses due to buffer overflow. By computing the

5.1 Simulations 115

IAR ETX ML HOP

Routing Loop
Retry Limit
Buffer Overflow

Route Selection Method

P
er

ce
n
ta

ge
of

L
os

t
P

ac
ke

ts

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 5.5: Breakdown of packet loss causes for each route selection method in the Pro-
Interference Scenario without network coding.

percentage of losses during actual wireless transmissions with respect to the total number

of packets that were not lost due to other causes, we conclude that IAR had a loss rate of

35.39% in this case, against 40.81% and 40.29% from ETX and ML, respectively. That

is also an expected result, since, by choosing non-interfering paths for each flow more

frequently, IAR tends to reduce losses due to collision. Since paths are symmetric, there

is no difference in frame loss probability due to other wireless phenomena.

Figure 5.6 shows the average delay for each route selection method. IAR and Hop

Count achieved the lowest averages, which is consistent with their lower levels of losses

due to buffer overflow (although Hop Count does so at the expense of the packet loss

rates). Both ETX and ML achieved similar averages, 73.5% and 70.3% higher than IAR,

respectively. Again, as expected, this is a result of the higher levels of dispute for the

wireless medium among network nodes.

Two interesting questions that arise from this scenario are how ICAR would perform if

network coding was enabled and whether coding could improve the performance achieved

by the other route selection methods to the levels achieved by IAR without it. To answer

those questions, we repeated this set of simulations, but now we enabled network coding

5.1 Simulations 116

IAR ETX ML HOP

Route Selection Method

A
ve
ra
ge

D
el
ay

(s
)

0
2

4
6

8
10

12

Figure 5.6: Comparison between IAR, ETX, ML, and Hop Count in terms of average
delay in the Pro-Interference Scenario without network coding.

using Simple Broadcast as the method for transmitting coded packets. Notice that COPE,

the employed method for network coding in this evaluation, cannot be used jointly with

Hop Count since the latter does not provide the necessary link quality estimates for

evaluating whether coding is possible. Therefore, for all results involving network coding,

we do not consider Hop Count.

Figure 5.7 shows the average aggregated throughput obtained by ICAR and each of

the other available route selection methods. For comparison, the result obtained with

IAR without network coding is also presented. While the performances for ETX and

ML greatly improved with respect to the case without network coding (85% and 84.2%,

respectively), they still could not perform to the same level as IAR without it (without

network coding, IAR achieved an aggregated throughput 10% and 5.3% higher than ETX

and ML with network coding, respectively). On the other hand, ICAR with network

coding achieved the best overall performance, improving IAR without network coding by

14.6%.

While network coding has lessen the issues associated with choosing interfering paths

for both flows, thus increasing the performances of ETX and ML, it is still not the best

5.1 Simulations 117

IAR (No Coding) ICAR ETX ML

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
50

10
0

15
0

Figure 5.7: Comparison between IAR, ETX, ML, and Hop Count in terms of aggregated
throughput in the Pro-Interference Scenario with network coding using Simple Broadcast.
For comparison, the graph also includes the result obtained with IAR in this same scenario,
but without network coding.

option for the scenario, as it increases the loss probability for packets transmitted in the

wireless medium (since, with Simple Broadcast, it decreases the number of retransmission

attempts to 1). In fact, the route choices by ICAR were very similar to those by IAR,

as shown in Figure 5.8, indicating that even with the availability of network coding, the

model predicted more often that the best option was still to separate the flows. The

gain obtained by ICAR with respect to IAR is due to the fact that network coding lesses

the drop in aggregated throughput whenever ICAR mistakenly evaluates that the flows

should be assigned to interfering paths.

Figure 5.9 shows the breakdown of the frequencies for each reason for lost packets.

All route selection methods presented considerably less losses due to buffer overflow in

comparison to the results obtained without network coding. It is interesting to notice that

this drop is more accentuated for ETX and ML than it is for ICAR (with respect to the

results of IAR in simulations without network coding). This is due to the fact that ETX

and ML choose more frequently interfering paths, and thus suffer a greater effect from

network coding. Notice also that, by enabling network coding, ETX and ML achieve even

5.1 Simulations 118

ICAR ETX ML

1→ 6→ 5→ 4→ 3→ 2→ 0
0→ 7→ 8→ 9→ 10→ 11→ 1

1→ 11→ 10→ 9→ 8→ 7→ 0
0→ 2→ 3→ 4→ 5→ 6→ 1

1→ 6→ 5→ 4→ 3→ 2→ 0
0→ 2→ 3→ 4→ 5→ 6→ 1

1→ 11→ 10→ 9→ 8→ 7→ 0
0→ 7→ 8→ 9→ 10→ 11→ 1

Route Selection Method

P
er
ce
n
ta
ge

of
T
im

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.8: Comparison between the routes selected by ICAR, ETX, and ML in the
Pro-Interference Scenario with network coding using Simple Broadcast. The graph shows
the percentage of time in which each route selection method selected each of the four most
common path sets.

lower levels losses due to buffer overflow than IAR did in the first set of simulations. That

is due to the reduction in the medium usage with network coding, since Simple Broadcast

transmits each coded packet at most one time. That, however, leads to a greater number

of losses of coded packets in the wireless medium.

Figure 5.10 shows the average values of delay obtained by each route selection method.

Both ETX and ML greatly reduced their average end-to-end delay with the employment

of network coding. ICAR also presents a lower average end-to-end delay with respect to

the previous results by IAR for the same reasons, albeit in a much smaller proportion.

5.1.1.2 Pro-Coding Scenario

The previous section discussed a scenario which presents a clear opportunity for avoiding

interference by rerouting flows in order to spatially separate them. Similarly, this section

presents a scenario with characteristics that force the ideal routing to reroute flows in

order to bring them closer to each other, creating more coding opportunities (assuming

the network has the capability of performing network coding). This scenario, depicted in

5.1 Simulations 119

ICAR ETX ML

Routing Loop
Coded Packet Loss
Retry Limit
Buffer Overflow

Route Selection Method

P
er

ce
n
ta

ge
of

L
os

t
P

ac
ke

ts

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.9: Breakdown of packet loss causes for each route selection method in the Pro-
Interference Scenario with network coding using Simple Broadcast.

ICAR ETX ML

Route Selection Method

A
ve
ra
ge

D
el
ay

(s
)

0
1

2
3

4

Figure 5.10: Comparison between IAR, ETX, ML, and Hop Count in terms of average
delay in the Pro-Interference Scenario with network coding using Simple Broadcast.

5.1 Simulations 120

0 1 2 3 4

5 6 7 8 9

1 0 11

Destination

1 5 1 41 3

1 2

Source

10 m 10 m 10 m 10 m

10 m 10 m 10 m 10 m

10 m

10 m

16

10 m

10 m

Figure 5.11: Pro-Coding Scenario: a scenario that presents a clear opportunity for
avoiding interference with network coding by re-routing two flows through alternative
paths, leaving more frequent transmission opportunities for nodes 13 and 15.

Figure 5.11, will be referred to hereinafter as the Pro-Coding Scenario.

The Pro-Coding Scenario consists of 17 nodes and three network flows: 0⇒ 4, 9⇒ 5

and 13 ⇒ 14. The paths that result in the best individual throughputs for each flow in

this scenario are 0 → 1 → 2 → 3 → 4, 9 → 8 → 7 → 6 → 5, and 13 → 15 → 14.

However, the distance of 20 meters between nodes from the path 13→ 15→ 14 to their

counterparts in the path 9→ 8→ 7→ 6→ 5 would make both flows interfere with each

other, resulting in lower than expected throughput. By the same token, flow 0⇒ 4 would

also interfere with flow 9⇒ 5.

One way of improving the aggregated throughput, assuming the network is capable

of network coding, is to reroute flows 0 ⇒ 4 and 9 ⇒ 5 through nodes 10, 11 and 12,

resulting in paths 0 → 10 → 11 → 12 → 4, and 9 → 12 → 11 → 10 → 5. That

would cause coding opportunities to happen both deterministically (at node 11) and

5.1 Simulations 121

IAR ICAR ETX ML

Simple Broadcast
Random
Deterministic

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

30
0

34
0

38
0

42
0

Figure 5.12: Comparison between IAR, ICAR, ETX, and ML in terms of aggregated
throughput in the Pro-Coding Scenario. The graph shows results for each of the three
transmission methods available for coded packets.

probabilistically (at nodes 10 and 12). Moreover, that change would also increase the

distance between flow 13⇒ 14 and flow 9⇒ 5, decreasing the interference caused by the

latter on the former. All those factors combined, result in higher aggregated throughput.

The questions we would like to answer in this scenario, therefore, are whether ICAR

is able to detect this opportunity of using network coding and if it can actually conclude

that deviating flows from their optimal paths (in individual terms) is better for the overall

throughput. To this end, we conducted a series of simulations as follows. Flows 0 ⇒ 4

and 9 ⇒ 5 are generated at a rate of 500 Kb/s using 1450-byte packets. Since viable

paths for flow 13 ⇒ 14 tend to be shorter, in our simulations this flow is generated at

1000 Kb/s. All flows start at 500 seconds and end at 1500 seconds. The first 500 seconds

are used for the routing information to converge. For each route selection method, the

simulations were repeated 5 times, using different seeds. As with the previous scenario,

we discarded the first 100 seconds of each flow. In all cases, network coding was enabled.

Figure 5.12 shows the results of aggregated throughput for all available route selection

methods under three different methods for transmitting coded packets: Simple Broad-

cast, Random Pseudo-Broadcast, Deterministic Pseudo-Broadcast. The gains obtained

5.1 Simulations 122

Table 5.3: Comparison between the routes more frequently chosen by each route selection
method in the Pro-Coding Scenario for the flow 9 ⇒ 5. These values correspond to the
set of simulations with network coding enabled using Simple Broadcast.

Rank IAR ICAR

1
9→ 12→ 11→ 10→ 5 9→ 12→ 11→ 10→ 5

(62.5%) (52.8%)

2
9→ 8→ 7→ 6→ 5 9→ 8→ 7→ 6→ 5

(23.3%) (25.5%)

3
9→ 8→ 12→ 11→ 10→ 5 9→ 12→ 11→ 10→ 6→ 5

(10.5%) (8.1%)

4
9→ 8→ 12→ 11→ 10→ 6→ 5 9→ 8→ 12→ 11→ 10→ 5

(1.6%) (6.8%)

Rank ETX ML

1
9→ 8→ 7→ 6→ 5 9→ 8→ 7→ 6→ 5

(91.0%) (99.6%)

2
9→ 8→ 12→ 11→ 10→ 5 9→ 8→ 12→ 11→ 10→ 6→ 5

(5.5%) (0.4%)

3
9→ 8→ 12→ 11→ 10→ 6→ 5 –

(3.5%) –

4
– –
– –

by ICAR, in comparison to the results by ETX and ML (14.8% and 15.7%, respectively,

using Simple Broadcast), suggest that, indeed, ICAR took advantage of the scenario and

managed to reduce the interference on flow 13⇒ 14. However, it is interesting to notice

that, although not by as much as ICAR, IAR was also able to outperform ETX and ML

(11.2% and 12.1%, respectively, using Simple Broadcast). That result is somewhat sur-

prising given that IAR is not aware of the coding capabilities of the network and, therefore,

should not be able to find the path set described at the beginning of this section.

The gains of IAR in this scenario with respect to the performances of ETX and ML

can be explained by Table 5.3. This table shows the four most frequent routes chosen by

each of the route selection methods for the flow 9 ⇒ 5 for the simulations using Simple

Broadcast. As shown by the table, both IAR and ICAR rerouted flow 9⇒ 5 through nodes

12, 11, and 10 more than 67% of the time (IAR chose such routes even more frequently

than ICAR). The difference, however, was that since IAR was not aware of the coding

capabilities of the network, it resulted in flow 0 ⇒ 4 using path 0 → 1 → 2 → 3 → 4

98.8% of the time. Hence, IAR was able to find a solution that outperformed ETX and

ML by reducing the interference on flow 13 ⇒ 14 without resorting to network coding.

This solution, nevertheless, was not as efficient as the one found by ICAR due to the

5.1 Simulations 123

Table 5.4: Breakdown of the throughputs obtained by each individual flow during the
simulations in the Pro-Coding Scenario with network coding using Simple Broadcast. The
last row of the table lists, for each route selection method, the resultant Jain’s Fairness
Index.

Flow IAR ICAR ETX ML
0⇒ 4 57.83 Kb/s 70.61 Kb/s 81.49 Kb/s 82.82 Kb /s
9⇒ 5 36.22 Kb/s 35.69 Kb/s 19.34 Kb/s 17.62 Kb/s

13⇒ 14 297.82 Kb/s 304.34 Kb/s 253.63 Kb/s 249.99 Kb/s

J (0⇒ 4, 9⇒ 5, 13⇒ 14) 0.548 0.568 0.587 0.588

latter’s ability to consider the possibility of coding packets together.

Another interesting aspect of the results in Figure 5.12 is the comparison between the

throughput obtained by each route selection method with each method of transmission

of coded packets. ETX and ML selected only paths that did not result in any coding

opportunities, while IAR provoked very few of them. But since ICAR relied more heavily

on network coding, it shows a greater variation between the throughput achieved by

each transmission method. As Chapter 4 and the literature on network coding suggest,

Simple Broadcast should result in worse performance than Pseudo-Broadcast (Random

or Deterministic) because the latter uses the capability of the MAC layer to retransmit

packets, thus reducing packet losses. However, our results do not show any gains in this

scenario for the Pseudo-Broadcast variations with respect to the Simple Broadcast (it

even shows a slight advantage in favor of Simple Broadcast if one disregards the confidence

intervals).

When analyzing these results, it is important to bear in mind that ICAR assumes the

usage of Simple Broadcast (i.e., it always considers the transmissions of coded packets to

have the duration and probability of success of a single transmission attempt). That is

very different from what actually happens when Pseudo-Broadcast is used, since, in this

case, the duration of the transmission can be higher than one attempt and the probability

of success tends to be higher given the possibility of retries.

Since the routes selected by ICAR are biased in favor of Simple Broadcast (in the

sense that the model is not appropriate for Pseudo-Broadcast), these experiments alone

cannot be used to compare the performance of the three transmission methods. For the

same reason, hereinafter, all simulations with network coding enabled will use only Simple

Broadcast2.

2In future work, we intend to extend the network coding model developed in this thesis to consider
the other transmission mechanisms.

5.1 Simulations 124

As one final result from this scenario, Table 5.4 shows a breakdown of the individual

throughputs obtained by each flow with each of the available route selection methods. All

results correspond to the simulations with Simple Broadcast. As expected, both IAR and

ICAR have achieved higher throughputs for flow 13⇒ 14 than ETX and ML, since, most

of the time, they selected path sets that placed flow 9⇒ 5 further away. It is interesting,

however, that this move has also improved the individual throughput from flow 9 ⇒ 5,

since it also suffers less interference from 13⇒ 14.

The difference between IAR and ICAR becomes obvious when one looks at flow 0⇒ 4.

While both IAR and ICAR cause this flow’s performance to drop, with IAR this drop is

much more pronounced, since, in this case, this flow suffers more interference from flow

9⇒ 5. ICAR manages to mitigate this effect by also rerouting 0⇒ 4 to provoke coding

opportunities.

One issue that arises with moving flows away from their individual optimal paths

(i.e., the path that results in the highest throughput when the flow is the only one in the

network) is what happens in terms of fairness. In other words, do ICAR and IAR cause

an unfair division of the network resources among flows due to their objective of achieving

the optimal aggregated throughput? In the specific case of this scenario, both IAR and

ICAR improved the throughput of a high throughput flow (13 ⇒ 14) at the expense of

the performance of a lower throughput one (0 ⇒ 4). On the other hand, the flow with

the worst throughput of the three was improved as well.

As a tool for a more objective analysis, one can resort to Jain’s Fairness Index [51],

which is shown at the last row of the table for each route selection mechanism. This index

can assume values in the range
(
1
n
, 1
]

(where n is the number of flows), with 1 meaning

a perfectly fair division of resources. In the context of throughput of multiple flows, it is

computed using the following expression:

J (f1, . . . , fn) =

(
n∑
i=1

Ti

)2

n ·
n∑
i=1

T 2
i

(5.1)

As shown by the fairness values from ML and ETX, this scenario does not provide

a very fair division in terms of throughput, which is expected since nodes 13 and 14 are

closer to each other than 0 is of 4 or 9 is of 5. The index suggests, indeed, a drop in

fairness with the usage of IAR and ICAR, but this drop is not as dramatic as one could

5.1 Simulations 125

Source Destination

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

4

9

14

19

24

10 m

10 m

10 m

10 m

10 m 10 m 10 m 10 m

Figure 5.13: Grid Scenario: a neutral topology that presents no clear opportunity for
avoiding interference, either by forcing network coding or by separating flows.

expect due to the increase in the throughput of flow 9⇒ 5.

5.1.1.3 Grid Scenario

The first two basic scenarios used in this evaluation present clear advantages for route

selection methods that are either aware of inter-flow interference or network coding. The

third scenario, on the other hand, is completely neutral in this regard. It is a grid topology

in which there are two flows as shown in Figure 5.13. The grid is composed by 25 nodes

spaced from each other by 10 meters in each dimension.

Differently from the other scenarios used in this evaluation, this topology has slightly

different propagation parameters. The path loss exponent was decreased to 3.7, while the

shadowing standard deviation was increased to 5.5 dB. The idea was to create a scenario

5.1 Simulations 126

with a greater variability in terms of links’ qualities.

The two flows on this scenario are 0 ⇒ 24 and 23 ⇒ 5. The distance between nodes

and the propagation parameters result in links between consecutive nodes in a diagonal

(e.g., 0 → 6, 3 → 9) having relatively low delivery probability (around 0.85). For links

between non-consecutive nodes in a diagonal, that probability drops rapidly (e.g., around

0.02 for link 0→ 12).

Under these conditions, one intuitive path set would be {0 → 6 → 12 → 18 →
24, 23 → 17 → 11 → 5}. By empirically evaluating static path sets in our simulation

environment, it was possible to verify that this path set is, indeed, the best possible in this

scenario, even with network coding. This happens because this scenario does not provide

good enough alternative paths so that it is worth increasing the number of hops or the

packet loss probability in order to avoid interference (neither by distancing the flows nor

by bringing them closer to one another and relying on coding).

Therefore, the challenge of this scenario is not to find the optimal path set, but instead

to maintain that solution selected during the longest period possible. This task is made

harder by the high variability in link quality measurements due to both the propagation

parameters (with a high shadowing standard deviation) and the density of the network

(which can lead to high collision probabilities). The reason for employing such scenario in

this evaluation is to assess how sensitive IAR and ICAR are to variations on link quality

measurements with respect to the other available route selection methods.

The simulations and post-processing of this scenario were conducted similarly to the

ones of the previous scenarios. Both flows were CBR and configured for generating packets

at a rate of 200 Kb/s. Flows started at 500 seconds and ended at 1500 seconds. For the

averages, the first 100 seconds of the simulation were discarded. Each simulation was

repeated 6 times using different seeds.

Figure 5.14 shows the average aggregated throughput for each route selection method

with and without network coding. With network coding, both IAR and ICAR achieved

considerably higher average throughputs than the other route selection methods (32.9%

and 18.2% higher, respectively, than ML, the third best in this case). Without network

coding, IAR resulted in good performance as well, achieving an aggregated throughput

40.9% higher than ETX. However, ICAR had a much worse performance in this case, being

only 3.2% better than ETX (which is not representative, given the confidence intervals).

Table 5.5 provides some insight to the reason why ICAR performs so poorly in com-

5.1 Simulations 127

Table 5.5: Comparison between the path sets more frequently chosen by each route selec-
tion method in the Pro-Coding Scenario. These values correspond to the set of simulations
with network coding enabled using Simple Broadcast.

Rank IAR ICAR

1

{
0→ 6→ 12→ 18→ 24

23→ 17→ 11→ 5

} {
0→ 6→ 12→ 18→ 24
23→ 18→ 12→ 6→ 5

}
(22.7%) (11.0%)

2

{
0→ 1→ 7→ 13→ 19→ 24

23→ 22→ 16→ 10→ 5

} {
0→ 6→ 12→ 18→ 24
23→ 18→ 12→ 11→ 5

}
(9.8%) (8.5%)

3

{
0→ 1→ 7→ 13→ 19→ 24

23→ 17→ 11→ 5

} {
0→ 1→ 2→ 3→ 9→ 14→ 19→ 24

23→ 22→ 16→ 10→ 5

}
(9.2%) (6.9%)

4

{
0→ 6→ 7→ 13→ 19→ 24

23→ 17→ 11→ 5

} {
0→ 6→ 12→ 18→ 24

23→ 17→ 11→ 5

}
(8.7%) (6.7%)

Rank ETX ML

1

{
0→ 6→ 12→ 18→ 24

23→ 17→ 11→ 5

} {
0→ 5→ 11→ 12→ 17→ 23→ 24

23→ 17→ 12→ 11→ 5

}
(10.6%) (4.0%)

2

{
0→ 6→ 11→ 17→ 23→ 24

23→ 17→ 11→ 5

} {
0→ 1→ 2→ 3→ 9→ 14→ 19→ 24

23→ 22→ 17→ 11→ 5

}
(7.2%) (3.9%)

3

{
0→ 1→ 7→ 12→ 17→ 18→ 24

23→ 17→ 12→ 7→ 6→ 5

} {
0→ 6→ 11→ 16→ 22→ 23→ 24

23→ 22→ 16→ 11→ 6→ 5

}
(5.7%) (3.7%)

4

{
0→ 6→ 11→ 12→ 18→ 24

23→ 18→ 12→ 11→ 5

} {
0→ 1→ 2→ 7→ 12→ 17→ 23→ 24

23→ 17→ 12→ 7→ 6→ 5

}
(5.4%) (3.2%)

5.1 Simulations 128

IAR ICAR ETX ML HOP

No Coding
Coding

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
20

40
60

80
10
0

12
0

Figure 5.14: Comparison between IAR, ICAR, ETX, ML, and Hop Count in terms of
aggregated throughput in the Grid Scenario. Results are shown for both coding-enabled
and coding-disabled simulations. In the coding-enabled cases, the Simple Broadcast was
used.

parison to IAR when network coding is enabled in this scenario. The table shows the

four most used path sets chosen by each route selection method. As expected, all route

selection methods suffered from the great variability of this scenario, with the four most

frequent routes chosen by ML representing only 14.8% of the time, for example. Neverthe-

less, it is possible to see that IAR could sustain the optimal choice for the longest period.

ICAR, on the other hand, has chosen the optimal path only 6.7% of the time. In fact, the

optimal route was not even the most frequently chosen route for ICAR. Instead, its two

most frequent selections were two routes that involved network coding. In the simulations

in which network coding was available, ICAR actually had good performance, in compar-

ison to ETX and ML (although it was already considerably lower than the throughput

obtained by IAR), as shown by Figure 5.14. However, when network coding was disabled,

the choice for those paths deeply affected the performance of ICAR.

The fact that ICAR had a worse performance when network coding was disabled is not

unexpected, given that its model assumes a coding capable network. However, the fact

that ICAR could not identify the optimal path set as being actually optimal as frequently

5.1 Simulations 129

IAR IARwoA

No Coding
Coding

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
50

10
0

15
0

Figure 5.15: Comparison between IAR with and without the probability adjustment
technique. The graph shows results of aggregated throughput with and without network
coding enabled.

as IAR suggests that the former is more sensitive to variations and errors in link quality

measurements than the latter. This is somewhat expected, given the greater complexity

of the model used by ICAR, as well as the larger pool of candidates generated by its

heuristic for evaluation.

In any case, the results show that both IAR and ICAR (when the network actually

supports network coding) could sustain better performance than the other route selection

methods in a scenario with great variability. We argue that one of the reasons for such

result is the employment of the collision probability adjustment technique, presented on

Chapter 4. Figure 5.15 provides data to support such claim. The graph compares the

results obtained by IAR in the Grid Scenario with and without network coding against

the same setup, but without the collision probability adjustment technique (identified

as IARwoA). As the graph shows, the performance of IAR drops considerably without

the collision probability adjustment technique: 26.6% without network coding and 11%

with it. Although these values are still on par with the other route selection methods (or

even better, in the coding enabled case), they suggest the collision probability adjustment

technique brings more stability, as expected.

5.1 Simulations 130

0 20 40 60 80 100

0
20

40
60

80
10
0

X Coordinate (m)

Y
C
o
or
d
in
at
e
(m

)

0

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

Figure 5.16: Representation of Random Topology I. All 30 nodes are distributed in an
area of 100 m X 100 m.

5.1 Simulations 131

5.1.2 Generic Scenarios

All the scenarios presented so far can be considered simple and one could argue they are

not common in practice. Although all those scenarios have been useful for evaluating the

performance of IAR and ICAR under certain specific conditions, the question of whether

IAR and ICAR can provide gains in more practical scenarios remains.

For this reason, in this section we present simulation results of IAR and ICAR in

less structured scenarios, designed to represent more closely the characteristics of a real

multihop wireless network. The goal of this section is, thus, to demonstrate that even in

more generic scenarios, not specially crafted for presenting specific interference character-

istics, there are opportunities for IAR and ICAR to find alternative path sets (i.e., path

sets that are not considered optimal by traditional route selection methods) that lead to

performance improvement.

To achieve this goal, we generated topologies using the well-known tool setdest,

which is provided as part of the standard distribution of ns-2. This tool randomly gen-

erates wireless network topologies based on simple parameters such as the dimensions of

the scenario and the number of nodes. It can also generate mobility patterns based on

the random waypoint model. The topologies generated for this evaluation, however, are

all static, since mobility is beyond the scope of this thesis.

Two random topologies were generated, from this point on referred to as Random

Topology I and Random Topology II. Both topologies were generated with the same pa-

rameters, namely: 30 nodes within an area of 100 m X 100 m. The resultant topologies

can be seen in Figures 5.16 and 5.17.

Although randomly generated, Random Topology I actually presents an interesting

distribution. Nodes can be somewhat grouped in three clusters. The first cluster comprises

nodes of the top half of the topology (above node 1). The second includes nodes from

the bottom-left of the scenario (bellow node 8 and to the left of node 24). The remaining

nodes compose the third cluster. While Random Topology II does not present such

obvious clustering properties, it does have an interesting feature: there is a circular “gap”

around coordinates (60, 40), i.e., a circular region of considerable area without any nodes.

The following sections discuss how IAR and ICAR handle unidirectional and bidirec-

tional CBR flows in these two topologies.

5.1 Simulations 132

0 20 40 60 80 100

0
20

40
60

80
10
0

X Coordinate (m)

Y
C
o
or
d
in
at
e
(m

)

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

Figure 5.17: Representation of Random Topology II. All 30 nodes are distributed in an
area of 100 m X 100 m.

5.1 Simulations 133

IAR ICAR ETX ML HOP

No Coding
Coding

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
10

20
30

40
50

60
70

Figure 5.18: Comparison between IAR, ICAR, ETX, ML, and Hop Count in terms of
aggregated throughput in the Random Topology I. Results are shown for both coding-
enabled and coding-disabled simulations. In the coding-enabled cases, the Simple Broad-
cast was used.

5.1.2.1 Unidirectional CBR Flows

The first case analyzed in the generic scenarios is that of the unidirectional CBR flows,

that is, a scenario with multiple CBR flows each of which has packets flowing in a single

direction. To this end, we ran a series of simulations in the Random Topology I with two

flows: 12 ⇒ 23 and 13 ⇒ 5. Both flows were configured to generate 1450-byte packets

at a rate of 100 Kb/s, which is enough to saturate the capacity of the network. As with

other experiments, both flows started at 500 seconds and ended at 1500 seconds. For

the statistical analysis that follows, we discard the first 100 seconds of each flow. Each

simulation was repeated 6 times with different seeds.

Figure 5.18 shows the average aggregated throughput obtained by each route selection

method with and without network coding (using Simple Broadcast). Except for ML,

network coding did not result in much different throughput in this scenario. Actually,

those results consistently show slightly better performance without network coding. In

any case, IAR and ICAR clearly improved aggregated throughput with respect to the

5.1 Simulations 134

600 800 1000 1200 1400

0
20

40
60

80

Time (s)

T
h
ro
u
gh

p
u
t
(K

b
/s
)

IAR
ML
ETX

Figure 5.19: Comparison between the behavior of the aggregated throughput obtained by
IAR, ETX, and ML during one of the simulations in the Random Topology I. Results are
shown for coding-disabled simulations.

other route selection methods. When comparing results from simulations without network

coding, for example, IAR showed an improvement of 76.7% with respect to ETX (which

obtained the third best result in this case).

The similar results obtained by ICAR with and without network coding suggest that

the solutions found by this method (and, consequently, by IAR) did not involve bringing

the flows together for coding. Instead, both IAR and ICAR took advantage of an op-

portunity to reduce inter-flow interference by separating the flows. That can be seen in

Table 5.6, which shows the four most frequently chosen path sets for each route selection

method. All four path sets chosen by ETX present a similar trend: for establishing a

route between nodes 12 (which is located in the top cluster) and 23 (which is located in

the bottom right-cluster), ETX chooses more frequently to pass through nodes from the

bottom-left cluster (such as 29, 27, 15 and 24), in order to avoid link 7→ 9, which is long

and lossy. The problem with such choice is that the best path for flow 13 ⇒ 5 also uses

nodes from the bottom-left cluster, meaning both flows have to share resources, thus in-

terfering with each other. On the other hand, both IAR and ICAR opt for rerouting flow

12 ⇒ 23 through links 7 → 9, 7 → 14 or 21 → 9, avoiding the bottom-left cluster. This

5.1 Simulations 135

Table 5.6: Comparison between the path sets more frequently chosen by each route se-
lection method in the Random Topology I with unidirectional CBR flows. These values
correspond to the set of simulations without network coding.

Rank IAR ICAR

1

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 9→ 14→ 23

} {
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 9→ 14→ 23

}
(48.2%) (58.0%)

2

{
13→ 24→ 15→ 27→ 29→ 1→ 6→ 5

12→ 7→ 9→ 14→ 23

} {
13→ 24→ 15→ 27→ 29→ 1→ 6→ 5

12→ 7→ 9→ 14→ 23

}
(15.1%) (9.9%)

3

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 21→ 9→ 14→ 23

} {
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 21→ 9→ 14→ 23

}
(9.9%) (8.5%)

4

{
13→ 24→ 15→ 27→ 29→ 1→ 6→ 5

12→ 7→ 21→ 9→ 14→ 23

} {
13→ 24→ 15→ 27→ 29→ 1→ 6→ 5

12→ 7→ 14→ 23

}
(6.5%) (4.0%)

Rank ETX

1

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 21→ 2→ 1→ 6→ 5→ 8→ 29→ 27→ 15→ 24→ 13→ 26→ 11→ 14→ 23

}
(63.3%)

2

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 21→ 2→ 1→ 29→ 27→ 15→ 24→ 13→ 26→ 11→ 14→ 23

}
(12.0%)

3

{
13→ 24→ 15→ 27→ 29→ 1→ 6→ 5

12→ 7→ 21→ 2→ 1→ 29→ 27→ 15→ 24→ 13→ 26→ 11→ 14→ 23

}
(7.3%)

4

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 9→ 14→ 23

}
(6.4%)

Rank ML Hop Count

1

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 7→ 9→ 14→ 23

} {
13→ 27→ 5
12→ 9→ 23

}
(33.2%) (18.9%)

2

{
13→ 27→ 29→ 8→ 5
12→ 7→ 9→ 14→ 23

} {
13→ 24→ 8→ 5

12→ 9→ 23

}
(11.7%) (12.3%)

3

{
13→ 24→ 15→ 27→ 29→ 8→ 5

12→ 9→ 14→ 23

} {
13→ 24→ 29→ 5

12→ 9→ 23

}
(6.6%) (12.0%)

4

{
13→ 28→ 21→ 2→ 1→ 6→ 5

12→ 7→ 9→ 14→ 23

} {
13→ 27→ 5

12→ 7→ 9→ 23

}
(6.4%) (9.4%)

5.1 Simulations 136

Table 5.7: Breakdown of the throughputs obtained by each individual flow during the
simulations in the Random Topology I with unidirectional CBR flows. These values
correspond to the simulations without network coding. The last row of the table lists, for
each route selection method, the resultant Jain’s Fairness Index.

Flow IAR ICAR ETX ML HOP
12⇒ 23 25.43 Kb/s 24.05 Kb/s 15.16 Kb/s 17.77 Kb/s 5.70 Kb/s
13⇒ 5 34.34 Kb/s 36.13 Kb/s 18.81 Kb/s 15.99 Kb/s 2.31 Kb/s

J (12⇒ 23, 13⇒ 5) 0.978 0.961 0.989 0.997 0.848

reduces the interference between flows, increasing aggregated throughput. Hop Count

also takes this strategy, although it selects very long links, resulting in poor performance

anyway.

Another interesting information shown by Table 5.6 concerns the choices made by ML.

Except for the fourth most frequent path set, ML’s choices resemble those made by IAR

and ICAR in the sense that they all separate both flows, reducing interference between

them. Nevertheless, as Figure 5.18 shows, ML had an average aggregated throughput

very similar to the obtained by ETX. Figure 5.19 provides further insight into this issue.

It shows the behavior of the aggregated throughput as a function of the time for the

simulations with IAR, ETX, and ML without network coding and using one specific seed.

The graph also shows a horizontal line marking the value of average aggregated throughput

obtained by ML overall. It is possible to see that, while ML could, at times, reach the

same level of performance achieved by IAR (from 1000 seconds to 1250 seconds), at other

moments it would make choices that would cause its performance to drop considerably

bellow its own average (from 500 seconds to 950 seconds). ETX, on the other hand, had a

much more stable performance, presenting a small oscillation throughout the simulation.

The reason for the bad performance by ML during intervals such as the one shown in

Figure 5.19 is the option for path sets that involve both flows avoiding the bottom-left

cluster. In that case, not only both paths would use lossy links such as 9 → 7, but they

would also interfere with each other, resulting in very low aggregated throughput.

Table 5.7 shows the individual throughput values obtained by each route selection

method for each flow in this scenario. The last row of the table shows the Jain’s Fairness

Index obtained by each method. Once again, IAR and ICAR resulted in lower fairness

indexes than the other methods. However, it is interesting to notice that the strategy

adopted by IAR and ICAR was able to greatly improve the throughput of both flows,

only not uniformly. In other words, although IAR and ICAR rerouted flow 12 ⇒ 23

5.1 Simulations 137

IAR ICAR ETX ML HOP

No Coding
Coding

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
10

20
30

40
50

Figure 5.20: Comparison between the average aggregated throughputs obtained by IAR,
ICAR, ETX, ML, and Hop Count during simulations in the Random Topology II for the
symmetric bidirectional CBR flow 9 ⇔ 24. Results are shown for both coding-enabled
and disabled simulations.

through a path that is not optimal (in terms of that individual flow), this choice led to

an improvement for both flows in terms of throughput.

5.1.2.2 Symmetric Bidirectional CBR Flows

The last section presented a scenario in which IAR and ICAR were able to improve

network aggregated throughput by increasing the distance between two distinct unidirec-

tional flows. In that case, it was somewhat easy to increase the distance between those

flows, partially because both flows were completely unrelated, i.e., neither the source or

destination nodes from one flow were source or destination of the other.

However, a common trait of many network flows in practice is the bidirectionality,

meaning that in these flows data is sent in both directions. This raises the question of

whether IAR and ICAR are able to find alternative paths for one or both directions in

order to avoid interference between them so that the performance can be improved.

In this section, we analyze scenarios containing symmetric bidirectional CBR flows.

5.1 Simulations 138

In this context, the word symmetric is used to refer to bidirectional flows that generate

packets at the same rate in both directions. To this end, we created a scenario based on

Random Topology II containing a single symmetric bidirectional flow between nodes 9

and 24. For these simulations, the flow was configured to generate packets at a rate of

100 Kb/s in both directions. As with the previous experiments, the flow was initiated

at 500 seconds and ended at 1500 seconds, while the first 100 seconds were discarded for

computing statistics. Each simulation was repeated 4 times with different seeds.

Figure 5.20 shows results of aggregated throughput obtained with and without net-

work coding. As in the results presented in the previous section, IAR and ICAR performed

very similarly both with and without network coding. Therefore, this again suggests that

the routing solutions they found for this scenario likely do not rely on network coding.

Both with and without network coding, though, IAR and ICAR were able to perform

considerably better than ETX, the third best route selection method in this scenario. For

example, without network coding, IAR and ICAR resulted in gains of 16.6% and 18.9%,

respectively, with respect to ETX.

To help understanding what led to the difference in performance between IAR (and

ICAR) and ETX, Table 5.8 shows the 4 most frequent routes chosen by IAR, ETX, ML,

and Hop Count in this scenario during the coding-disabled simulations. As expected,

ETX has mostly opted for symmetrical paths. Its three most frequent path sets all follow

the same pattern: both routes circulate the gap of the topology by its upper side. The

fourth most frequent path set is also symmetrical, but instead uses nodes below the gap.

In both cases, though, packets from each direction of the flow compete with each other

both for medium usage and for buffer space in the intermediate nodes.

IAR, on the other hand, was able to find alternative path sets that took advantage

from the scenario to spread each direction of the flow through different regions of the

topology. In fact, all four most frequent path sets employed by IAR present that same

characteristic. That led to a decrease in inter-flow interference, resulting in improved

aggregated throughput.

As Table 5.9 shows (specifically for the simulations without network coding), the

choice for non-interfering paths for each direction of the flow improved the throughput of

both flows, even if, at times, one of the flows had to use a non-optimal path (individually

speaking). That had already happened in the scenario used to evaluate unidirectional

flows and reinforces the concept that treating flows individually in multi-flow scenarios

may lead to suboptimal performance, not only globally, but also for each individual flow.

5.1 Simulations 139

Table 5.8: Comparison between the path sets more frequently chosen for symmetric bidi-
rectional flow 9⇔ 24 in the Random Topology II without network coding.

Rank IAR

1

{
24→ 19→ 1→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}
(27.1%)

2

{
24→ 21→ 8→ 2→ 15→ 12→ 26→ 16→ 10→ 9
9→ 25→ 14→ 11→ 29→ 5→ 17→ 1→ 19→ 24

}
(8.8%)

3

{
24→ 19→ 20→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}
(7.3%)

4

{
24→ 21→ 8→ 2→ 15→ 12→ 26→ 16→ 10→ 9

9→ 25→ 14→ 11→ 29→ 6→ 1→ 19→ 24

}
(7.3%)

Rank ETX

1

{
24→ 19→ 1→ 6→ 29→ 11→ 14→ 25→ 9
9→ 25→ 14→ 11→ 29→ 6→ 1→ 19→ 24

}
(43.7%)

2

{
24→ 19→ 6→ 29→ 11→ 14→ 25→ 9
9→ 25→ 14→ 11→ 29→ 6→ 19→ 24

}
(10.2%)

3

{
24→ 19→ 20→ 6→ 29→ 11→ 14→ 25→ 9
9→ 25→ 14→ 11→ 29→ 6→ 20→ 19→ 24

}
(8.4%)

4

{
24→ 21→ 8→ 27→ 22→ 28→ 25→ 9
9→ 25→ 28→ 22→ 27→ 8→ 21→ 24

}
(7.7%)

Rank ML

1

{
24→ 19→ 18→ 25→ 9
9→ 25→ 20→ 19→ 24

}
(24.6%)

2

{
24→ 19→ 20→ 18→ 25→ 9
9→ 25→ 18→ 20→ 19→ 24

}
(8.7%)

3

{
24→ 19→ 20→ 18→ 25→ 9

9→ 25→ 18→ 6→ 20→ 19→ 24

}
(8.0%)

4

{
24→ 19→ 18→ 25→ 9

9→ 25→ 18→ 6→ 20→ 1→ 19→ 24

}
(4.3%)

Rank HOP

1

{
24→ 19→ 1→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}
(27.1%)

2

{
24→ 21→ 8→ 2→ 15→ 12→ 26→ 16→ 10→ 9
9→ 25→ 14→ 11→ 29→ 5→ 17→ 1→ 19→ 24

}
(8.8%)

3

{
24→ 19→ 20→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}
(7.3%)

4

{
24→ 21→ 8→ 2→ 15→ 12→ 26→ 16→ 10→ 9

9→ 25→ 14→ 11→ 29→ 6→ 1→ 19→ 24

}
(7.3%)

5.1 Simulations 140

Table 5.9: Breakdown of the throughputs obtained by each individual flow during the
simulations in the Random Topology II with symmetric bidirectional flow 9⇔ 24. These
values correspond to the simulations without network coding. The last row of the table
lists, for each route selection method, the resultant Jain’s Fairness Index.

Flow IAR ETX ML HOP
9⇒ 24 19.07 Kb/s 15.40 Kb/s 3.11 Kb/s 0.39 Kb/s
24⇒ 9 20.05 Kb/s 17.92 Kb/s 2.62 Kb/s 0.24 Kb/s

J (9⇒ 24, 24⇒ 9) 0.999 0.994 0.993 0.947

Interestingly, IAR actually resulted in a better fairness index for this scenario, albeit by

a small margin.

5.1.3 Asymmetric CBR Flows

Up to this point, most scenarios used in this evaluation have employed symmetric flows,

in the sense that all flows generate packets at the same rate. In this section we study the

effect of asymmetry in the performance of IAR and ICAR for both the unidirectional and

the bidirectional cases. Specifically, we seek to answer whether the usage of asymmetrical

traffic can decrease the gains obtained by IAR and ICAR or even make their route selec-

tion decisions worse than those made by other route selection methods. As discussed in

Chapter 3, the model adopted by IAR and ICAR supposes the flows’ sources are always

backlogged. If a flow does not generate packets at a sufficient rate, that may have an

impact in route selection because that flow may not be generating enough interference on

others so that it is worth to reroute it (or the other flows suffering interference from it) to

an alternative path. This may also affect ICAR’s model for network coding, since a low

rate flow may result in fewer coding opportunities than predicted during route selection.

To evaluate the impact of asymmetry in the performances of IAR and ICAR, we revisit

two scenarios already used in this evaluation. First, we analyze the impact of asymmetry

in the Random Topology II, in the same scenario used in Section 5.1.2.2. To this end, we

repeat the set of simulations performed in that section without network coding with the

same basic methodology. However, this time, instead of fixating both flows at 100 Kb/s,

we decrease the rate for the direction 24⇒ 9 in steps to verify what is the impact to the

aggregated throughput for each route selection method.

The graphs in Figure 5.21 show the results obtained in this scenario. Since ML and

Hop Count obtained much worse results than ETX and IAR in this scenario, they were

left out of those graphs to improve legibility. Each point of the graphs corresponds to the

5.1 Simulations 141

Transmisssion Rate in Direction 24⇒ 9 (Kb/s)

T
h
ro
u
gh

p
u
t
(K

b
/s
)

0 20 40 60 80 100

30
35

40
45

50

IAR
ETX

(a) Aggregated

Transmisssion Rate in Direction 24⇒ 9 (Kb/s)

T
h
ro
u
gh

p
u
t
(K

b
/s
)

0 20 40 60 80 100

15
25

35
45

IAR
ETX

(b) 9⇒ 24

Transmisssion Rate in Direction 24⇒ 9 (Kb/s)

T
h
ro
u
gh

p
u
t
(K

b
/s
)

0 20 40 60 80 100

0
10

20

IAR
ETX

(c) 24⇒ 9

Figure 5.21: Comparison between IAR and ETX in the Random Topology II with the
asymmetric flow 9⇔ 24. The transmission rate was kept constant in the direction 9⇒ 24
but varied between 1 Kb/s and 100 Kb/s for the opposite one. The top graph shows the
aggregated throughput, while the two others show the throughput in each direction.

5.1 Simulations 142

average of 20 simulations with different seeds. As shown by Figure 5.21b, when the rate

for direction 24 ⇒ 9 is lower than 30 Kb/s, ETX actually obtains a higher throughput

for flow 9 ⇒ 24, which results in a higher aggregated throughput (Figure 5.21a). This

happens because IAR disregards the actual transmission rate of the flows in its model

and deviates one or both flows from their individual optimal paths. Since the interference

caused by flow 24⇒ 9 on flow 9⇒ 24 is low (due to the low rate), keeping the latter on

its individual optimal path is actually the best option.

As the rate for flow 24 ⇒ 9 increases, the throughput for flow 9 ⇒ 24 decreases for

both IAR and ETX. However, the decreasing rate is different for both route selection

methods. Since ETX tends to choose symmetrical paths, it suffers more intensely due to

interference. For this reason, when the rate for flow 24⇒ 9 reaches 30 Kb/s, IAR achieves

better throughput results for the flow 9 ⇒ 24 and for the aggregated result. The gap

between results obtained by IAR and ETX continues to grow until the transmission rate

reaches 100 Kb/s, at which point the paths are already saturated for both route selection

methods.

These results demonstrate that, indeed, asymmetry can lead IAR to obtain sub-

optimal performance. Nevertheless, IAR only started to perform worse than ETX in this

scenario for highly asymmetric transmission rates.

As a second experiment involving asymmetric flows, we revisit the Pro-Coding Sce-

nario to evaluate how asymmetry affects the performance of path sets based on network

coding. In this case, flows 13 ⇒ 14 and 9 ⇒ 5 kept their original packet generation

rates (1000 Kb/s and 500 Kb/s, respectively), while flow 0⇒ 4 had its rate ranging from

1 Kb/s to 400 Kb/s. All simulations were run with network coding enabled and were

repeated 20 times with different seeds.

The throughput results for this scenario can be seen on the graphs in Figure 5.22.

When flow 0⇒ 4 has a low rate, the graphs show that ICAR still outperforms both ETX

and ML by a considerable margin (by 39.62% and 27.10%, respectively). Although the low

transmission rate decreases the number of coding opportunities (which is not predicted

by ICAR), flow 9 ⇒ 5 is still rerouted away from flow 13 ⇒ 14, causing both flows to

perform better than they do with ETX and ML (as shown in Figures 5.22b and 5.22d).

As the rate for flow 0⇒ 4 increases, the throughput for flow 9⇒ 5 decreases due to

an increase in interference. This decrease in throughput happens approximately at the

same rate for ICAR, ETX and ML, which maintains the performance gap for this flow.

Although ICAR routes flow 9 ⇒ 5 closer to flow 0 ⇒ 4 than ETX and ML, the increase

5.1 Simulations 143

Rate of Flow 0⇒ 4 (Kb/s)

T
h
ro
u
gh

p
u
t

(K
b
/s
)

0 100 200 300 400

25
0

35
0

45
0

ICAR ETX ML

(a) Aggregated

Rate of Flow 0⇒ 4 (Kb/s)

T
h
ro
u
gh

p
u
t

(K
b
/s
)

0 100 200 300 400

18
0

24
0

30
0

ICAR ETX ML

(b) 13⇒ 14

Rate of Flow 0⇒ 4 (Kb/s)

T
h
ro
u
gh

p
u
t

(K
b
/s
)

0 100 200 300 400

0
70

14
0

ICAR ETX ML

(c) 0⇒ 4

Rate of Flow 0⇒ 4 (Kb/s)

T
h
ro
u
gh

p
u
t

(K
b
/s
)

0 100 200 300 400

20
60

10
0

ICAR ETX ML

(d) 9⇒ 5

Figure 5.22: Comparison between IAR, ETX, and ML in the Pro-Coding Scenario with
asymmetric flows. Rate was varied from 1 Kb/s to 400 Kb/s for flow 0⇒ 4.

5.1 Simulations 144

in interference is mitigated by the increase in coding opportunities. When flow 0 ⇒ 4

reaches 200 Kb/s, throughput is maximum for flow 0 ⇒ 4, regardless of route selection

method. Beyond that point, the network becomes saturated and performance drops due

to node 0 competing more for accessing the wireless medium.

Another interesting information shown by these graphs, is that the gap in performance

between ICAR and the other two methods is lower for heavier loads of 0 ⇒ 4 than it is

for lighter ones. This happens mostly due to an increase in performance for flow 13⇒ 14

for ETX and ML. As the rate of flow 0 ⇒ 4 increases, it creates more interference for

flow 9⇒ 5. As a consequence, the amount of time which flow 9⇒ 5 can use to transmit

its packets decreases, leading not only to a decrease in its own performance, but also to

an increase in the performance of flow 13 ⇒ 14 due to less competition. Although this

phenomenon also happens with ICAR, it is less pronounced in this case, given that flow

9⇒ 5 has less impact on flow 13⇒ 14 due to the alternative path used by the former.

5.1.4 TCP Streams

All results presented so far were obtained by simulating CBR flows. Nevertheless, a

representative share of networking applications run on the top of TCP streams [94]. A

TCP stream presents different characteristics, if compared to CBR flows. For one, TCP

streams are naturally bidirectional, even in the absence of data in one of the directions,

due to the transmission of ACK segments. In this case, a TCP stream would be better

classified as an asymmetric bidirectional flow, since ACK segments tend to be much

smaller than data segments. But there is yet another relevant difference: while CBR

flows, by definition, generate packets at constant rate, TCP tries to adapt its transmission

rate to the capacity of the network, thus resulting in a rate that varies with time.

At first glance, the adaptive operation of TCP could interact well with the model

adopted by IAR and ICAR, because it intrinsically assumes each flow is transmitted

at the highest transmission supported by the path. However, TCP usually transmits

in bursts, which is not predicted by the model. Moreover, traditional versions of TCP

are known to underperform in wireless networks due to their algorithms being unable to

discern between losses caused by wireless phenomena and by network congestion [95]. In

those cases, TCP is not able to reach or sustain transmission rates close to the actual

path capacity.

Due to all those reasons, the conclusions found so far in this chapter cannot be au-

tomatically extended to the cases involving TCP streams. Therefore, in this section we

5.1 Simulations 145

Table 5.10: Comparison between IAR, ETX, ML, and Hop Count in terms of aggregated
throughput in the Pro-Interference Scenario with a single unidirectional TCP stream from
node 0 to node 1. These results correspond to simulations without network coding.

IAR ETX ML Hop Count
129.48 ± 2.17 125.72 ± 2.11 126.32 ± 2.12 0.02 ± 0.004

extend our analysis to these cases. In the next sections, results will be presented concern-

ing both unidirectional and bidirectional TCP streams.

5.1.4.1 Unidirectional TCP Streams

As a first experiment with unidirectional TCP streams, we use a variation of the Pro-

Interference scenario. Instead of using two streams, though, we employ a single FTP agent

transmitting data on top of the standard TCP agent implemented by ns-2 from node 0 to

node 1. As discussed before, this is not a completely unidirectional communication, since

there is a small flow of ACKs from node 1 back to node 0.

Table 5.10 shows a summary of the obtained results in terms of aggregated throughput

(i.e., considering both the data flow and the ACK flow). The intervals presented on the

table correspond to the 95% confidence intervals. For each route selection method, the

simulation was repeated 30 times. In all cases, network coding was disabled. It is possible

to see that IAR resulted in a slightly higher throughput (2.5% better than ML, the

second best in this scenario), in comparison to the other route selection methods. This

is somewhat expected, due to the bidirectional nature of TCP streams. Naturally, since

the ACK flow is of a much lower rate than the data flow, the gains are very limited. In

any case, the usage of less interfering paths by IAR still resulted in better performance

in comparison to the more traditional approach.

5.1.4.2 Bidirectional TCP Streams

As a second experiment regarding TCP streams, we use a slightly modified version of the

previous scenario. The only difference is the addition of a second TCP stream, from node

1 to node 0, such that there are both data and ACKs flowing in both directions. In other

words, in this scenario we consider the case of a bidirectional TCP stream.

As shown in Table 5.11, the results obtained by each route selection method are very

close, with the exception from Hop Count, which, as expected, performed poorly. As with

5.1 Simulations 146

Table 5.11: Comparison between IAR, ETX, ML, and Hop Count in terms of aggregated
throughput in the Pro-Interference Scenario with a bidirectional TCP stream between
nodes 0 and 1. These results correspond to simulations without network coding.

IAR ETX ML Hop Count
136.40 ± 3.42 130.27 ± 3.08 132.05 ± 3.15 0.01 ± 0.005

Table 5.12: Comparison between IAR, ETX, ML, and Hop Count in terms of lost TCP
segments in the Pro-Interference Scenario with a bidirectional TCP stream between nodes
0 and 1. These results correspond to simulations without network coding. The percentage
values are computed with respect to the total number of segments generated by TCP.

Reason IAR ETX ML Hop Count
Loop 0.002% 0% 0% 0%

Excess of Retries 3.0% 2.9% 3.0% 76.8%
Buffer Overflow 0% 0% 0% 0%

the unidirectional case, there is a slightly advantage for IAR, but not as expressive as in

the case with CBR flows (3.3% with respect to ML).

The explanation for the lower gains obtained by IAR in the TCP case actually involves

two different phenomena. Table 5.12 provides information regarding the reasons for lost

TCP segments during the simulations in this scenario. While IAR was the only route

selection method to result in losses due to routing loop, the percentage is very small.

In terms of losses caused by excessive retries by the MAC layer, except for Hop Count,

all methods resulted in similar figures. What is interesting, though, is the lack of losses

due to buffer overflow. The absence of such losses indicates that TCP was never able

to saturate the capacity of the paths, thus underusing the available bandwidth. That is

a consequence of the well-known deficiency of TCP in wireless networks, in which losses

due to medium related phenomena are confused with losses due to congestion, leading

TCP to wrongly decrease its transmission rate. In any case, this data suggests that the

aggregated throughput obtained by all route selection methods could be higher had TCP

been able to better use the available resources.

Still, it is somewhat surprising the aggregated throughput obtained by ETX and ML

with the TCP streams, given that their results with CBR flows were much lower. The

reason for the better results obtained with TCP is explained by the graph in Figure 5.23.

The graph shows, for all route selection methods in both the CBR and TCP scenarios, the

percentage of lost frames (with respect to the total number of MAC layer transmission

attempts) divided in two causes: collisions and decode failure. With the exception of Hop

5.1 Simulations 147

IAR ETX ML HOP

Decode Failure (CBR)
Decode Failure (TCP)
Collision (CBR)
Collision (TCP)

Route Selection Method

P
er
ce
n
ta
ge

of
L
os
t
P
ac
ke
ts

0
10

20
30

40
50

60
70

Figure 5.23: Comparison between TCP streams and CBR flows in the Pro-Interference
Scenario in terms of the reasons for frame losses. The graph show percentage values
computed with respect to the total number of MAC layer transmission attempts. Frame
loss reasons are clustered in two groups: collision and decode failure (due to any other
reason). All results represent data from simulations without network coding.

Count (which has a much lower sample size with TCP), all methods presented very similar

loss percentages due to decode failure in the CBR and TCP cases. This is expected, since

the path set choices for a given route selection method should not be much different

whether TCP streams or CBR flows are used (although they might affect link quality

estimates differently). On the other hand, the percentage of losses due to collision was

much higher (roughly doubled) in the CBR case for all methods. This information suggests

a much higher competition for the wireless medium, which is likely caused by a higher

rate of packet generation in the CBR case.

These results indicate that, while TCP was unable to reach the maximum possible

throughput (because of the lack of discards due to buffer overflow), its resultant aggregated

throughput was actually better than with CBR flows because it did not cause as many

losses due to collision. Figure 5.24 provides further evidence supporting this claim. The

graph shows the behavior of the aggregated throughput as a function of the transmission

rate of each direction of the CBR flow (i.e., the aggregated transmission rate is the

5.1 Simulations 148

50 100 150 200 250

40
60

80
10
0

12
0

14
0

16
0

18
0

Transmission Rate (Kb/s)

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

IAR
ETX
ML

Figure 5.24: Aggregated throughput as a function of the transmission rate for each CBR
flow in the Pro-Interference Scenario for each route selection method. All results are for
simulations without network coding.

double of the value of the x-coordinate). Each point of the graph is the average of 20

repetitions with different seeds. The graph shows that ETX and ML reach the maximum

aggregated throughput in this scenario when each direction transmits packets at a rate

around 95 Kb/s. After that, further increasing the transmission rate rapidly decreases

the aggregated throughput due to more collisions until approximately 200 Kb/s, at which

point the results do not change much. IAR follows a similar trend, but due to the different

path set selection profile, its maximum throughput is achieved at a higher transmission

rate (at approximately 110 Kb/s). The highest throughput achieved by IAR is also higher

than with any other method (10.5% more than the maximum obtained by ML, the second

highest). Another interesting characteristic of IAR is that its aggregated throughput drops

much less than the obtained by the other methods after reaching its maximum. That is

also a byproduct of its selection of less interfering paths, and it explains the large gains

found on the previous CBR simulations.

For comparison, Figure 5.25 shows the evolution of the aggregated transmission rates

for both TCP streams during simulations with a specific seed for IAR, ETX and ML.

Each point in the graph represents the average of the previous 5 seconds. As shown

5.1 Simulations 149

600 800 1000 1200 1400

0
50

10
0

15
0

20
0

Time (s)

A
gg
re
ga
te
d
T
C
P
R
at
e

(K
b
/s
)

(a) IAR

600 800 1000 1200 1400

0
50

10
0

15
0

20
0

Time (s)

A
gg
re
ga
te
d
T
C
P
R
at
e

(K
b
/s
)

(b) ETX

600 800 1000 1200 1400

0
50

10
0

15
0

20
0

Time (s)

A
gg
re
ga
te
d
T
C
P
R
at
e

(K
b
/s
)

(c) ML

Figure 5.25: Aggregated load generated by TCP in the Pro-Interference Scenario for each
route selection method. All results are for simulations without network coding.

5.1 Simulations 150

0 5 10 15 20 25 30

12
0

12
5

13
0

13
5

14
0

14
5

15
0

Number of Streams

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

IAR ETX ML

Figure 5.26: Aggregated throughput as a function of the number of TCP streams in
each direction in the Pro-Interference Scenario for IAR, ETX, and ML. All results are for
simulations without network coding.

by the graphs, for all three route selection methods, the average transmission rate is

kept near 150 Kb/s throughout the simulation (although IAR seems to result in higher

variation, reaching slightly higher values), which, given the symmetry of the scenario,

suggests a rate of approximately 75 Kb/s in each direction. According to the information

provided by the graph in Figure 5.24, for CBR flows, that transmission rate resulted in

aggregated throughputs of 139.49 Kb/s, 138.90 Kb/s and 138.92 Kb/s for IAR, ETX, and

ML, respectively. Those values are 19.85%, 11.50%, and 11.77% lower than the respective

maximum throughputs obtained by each method. Hence, these data further support the

hypothesis that TCP is unable to use the available bandwidth for any of the route selection

methods.

One way to mitigate this deficiency by TCP is to use multiple streams in each direc-

tion. This way, the random losses caused by the wireless medium are going to be spread

among the multiple flows, limiting the scope of the decrease in the window size, i.e., each

loss due to wireless phenomena will cause only its respective stream to react negatively,

allowing the other streams to keep increasing their windows. With that in mind, we

repeated the experiment with bidirectional TCP streams varying the number of streams

5.1 Simulations 151

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Streams

P
ac

ke
ts

L
os

t
D

u
e

to
B

u
ff

er
O

ve
rfl

ow
(%

)

IAR ETX ML

Figure 5.27: Percentage of TCP segments dropped due to buffer overflow as a function
of the number of TCP streams in each direction in the Pro-Interference Scenario for IAR,
ETX, and ML. All results are for simulations without network coding.

going in each direction to evaluate if that strategy is indeed able achieve throughput

values closer to the maximums showed in Figure 5.24.

Figure 5.26 shows the average aggregated throughput as a function of the number of

TCP streams in each direction for IAR, ETX, and ML. Each point in the graph represents

the average for 30 executions of the respective simulation with different seeds. Once again,

Hop Count was left out the graph to improve legibility, due to its result being much worse

than the others. By increasing the number of streams in each direction from one to

five, there is a slight increase in aggregated throughput for all route selection methods

(4.20%, 3.48%, and 3.83% for IAR, ETX, and ML, respectively). The graph suggests a

slight increase trend for up to five streams, although, considering the error bars, it is not

possible to definitively make such statement. Beyond five streams, the situation seems to

stabilize, in the sense that adding new streams do not further increase throughput. Notice

that the gap in performance between IAR and the other two methods also increases from

one to two streams (from 3.00% to 5.80% for ETX, respectively).

Figure 5.27 shows the percentage of TCP segments dropped (with respect to the total

number of segments generated) due to buffer overflow as a function of the number of TCP

5.1 Simulations 152

streams in each directions. As the graph shows, only with more than 10 streams in each

direction, TCP starts to cause a small fraction of the segments to be lost due to buffer

overflow, suggesting an approach to the saturation point of the paths.

5.1.5 Impact of Imprecise Link Quality Estimates

The last aspect analyzed through simulations in this thesis is the impact of the imprecision

in link quality estimates over the performance obtained by IAR and ICAR. This topic has

already been briefly discussed in this evaluation in Section 5.1.1.3, where it was shown that

the usage of the collision probability adjustment technique could improve performance in

high variability scenarios. However, as discussed in Chapter 4, the technique is not perfect,

and as such, IAR and ICAR are still susceptible to variations and imprecisions in the link

quality estimates which, in turn, may lead both route selection methods to make bad

decisions.

In this section, we seek to quantify (at least, within the available scenarios) how much

performance is lost by IAR and ICAR due to these imprecisions. To this end, the fol-

lowing methodology is employed. For each of the basic scenarios and the scenarios with

symmetric CBR flows in the random topologies, we run simulations during 500 seconds,

until routing information converges. At that point, we take a snapshot of the current

information a certain node has of the network links’ quality (we arbitrarily choose node

0 in all scenarios). This snapshot is used as the input for the algorithms of IAR and

ICAR along with the flows for the specific scenario. The output of that single execution

of the algorithms is then stored and used as a static routing table for various repetitions

of the simulation with different seeds. The rationale behind this procedure is that the

information available to the routing protocol at that point (immediately before the be-

ginning of the flows) is the most reliable. Therefore, it represents the ideal conditions

for both IAR and ICAR. In the remaining of this section, to differentiate IAR and ICAR

from these static versions, they will be referred to as SIAR and SICAR. Notice that SIAR

and SICAR are not actually feasible in practice, since a protocol must be able to handle

dynamic network conditions. But they serve as a proper baseline to evaluate how much

IAR and ICAR could be further improved with the development of better techniques to

solve imprecisions in link quality estimates.

Table 5.13 shows the routes found using the methodology described above for both

SIAR and SICAR. Except for the Pro-Coding scenario, SIAR and SICAR have chosen

the exact same routes. That happens because, of the five scenarios in the table, the Pro-

5.1 Simulations 153

Table 5.13: Static routes chosen by SIAR and SICAR for each scenario.

Pro-Interference

SIAR

{
0→ 7→ 8→ 9→ 10→ 11→ 1
1→ 6→ 5→ 4→ 3→ 2→ 0

}
SICAR

{
0→ 7→ 8→ 9→ 10→ 11→ 1
1→ 6→ 5→ 4→ 3→ 2→ 0

}
Pro-Coding

SIAR


0→ 2→ 4

9→ 12→ 11→ 10→ 5
13→ 15→ 14


SICAR


0→ 1→ 2→ 3→ 4

9→ 12→ 2→ 10→ 5
13→ 15→ 14


Grid

SIAR

{
0→ 6→ 12→ 18→ 24

23→ 17→ 11→ 5

}
SICAR

{
0→ 6→ 12→ 18→ 24

23→ 17→ 11→ 5

}
Random Topology I

SIAR

{
12→ 7→ 9→ 14→ 23

13→ 24→ 15→ 27→ 29→ 8→ 5

}
SICAR

{
12→ 7→ 9→ 14→ 23

13→ 24→ 15→ 27→ 29→ 8→ 5

}
Random Topology II

SIAR

{
24→ 19→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}
SICAR

{
24→ 19→ 6→ 29→ 11→ 14→ 25→ 9

9→ 10→ 16→ 26→ 12→ 15→ 2→ 8→ 21→ 24

}

Coding is the only one where coding can bring gains over simply separating flows to avoid

interference.

As expected, in all scenarios, SIAR and SICAR improved the results obtained by IAR

and ICAR, respectively. Figure 5.28 shows the percentage improvements obtained by

SIAR (with respect to the results by IAR) in the Pro-Interference, Grid, Random Topology

I and Random Topology II scenarios. In all cases, network coding was disabled. The lowest

gain was of 12.3% and happened in the Random Topology I, while the largest gain was

from the Pro-Interference Scenario at 30.8%. The difference between IAR and SIAR is

lower in the scenarios of the two random topologies because, in those cases, separating

the flows to avoid interference is a much better option than any other alternative path

set. Although the route selection by IAR oscillated on those scenarios due to errors and

variation in the link quality estimates, the most important characteristic was maintained

5.1 Simulations 154

Pro-Interference Grid
Random

Topology I
Random

Topology II

Scenario

G
ai
n
b
y
S
ta
ti
c
R
ou

te
s
(%

)

0
10

20
30

40

Figure 5.28: Gains obtained by SIAR with respect to the results obtained by IAR in the
same scenarios. The reported values represent the percentage of improvement obtained
by SIAR in terms of aggregated throughput. All values are based on simulations without
network coding.

most of the time in its path selections: choosing disjoint paths to reduce interference.

The same does not apply to the Grid Scenario. In this scenario, there is no way to

improve performance by distancing flows. Therefore, the best paths are very dependent

on the individual link qualities and, as such, relatively small variations in the measure-

ments may result in a link being replaced, leading to sub-optimal choices. Moreover,

the propagation parameters of these scenarios were specially chosen as to result in high

variation.

Although the Pro-Interference Scenario is similar to the scenarios with random topolo-

gies (in the sense that separating flows through the two disjoint paths results in much

better performance than keeping them together), it actually presents an extra challenge

due to the symmetry of the topology. Given this symmetry, both correspondent paths in

each side of the topology have exactly the same quality. Nevertheless, due to the prob-

abilistic nature of link quality measurements, the estimates vary and, therefore, the best

path (as evaluated by the routing protocol) tends to oscillate. For IAR, while most of

the time each flow is going to be routed by different sides of the topology, this oscillation

5.1 Simulations 155

IAR SIAR ICAR SICAR

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
10
0

20
0

30
0

40
0

50
0

Figure 5.29: Comparison between IAR, ICAR, SIAR, and SICAR in the Pro-Coding
Scenario with network coding enabled.

might result in frequent route flapping (i.e., each flow is rerouted to the opposite of its

current side). Since IAR uses a distributed route computation algorithm, once a flow is

rerouted to the other side, there can be a delay before the other flow is rerouted as well,

resulting in both flows taking interfering paths. SIAR does not change paths throughout

the simulation. Thus it can achieve a much higher throughput.

Figure 5.29 shows the results obtained by SIAR and SICAR in the Pro-Coding Sce-

nario, along with the respective results by IAR and ICAR. Those results correspond to

simulations with network coding. In this scenario, both IAR and ICAR were improved

by their respective static versions. What is more interesting, though, is the fact that

the improvement of SICAR with respect to ICAR is considerably higher than the im-

provement of SIAR with respect to IAR (28.5% versus 14.8%). That result shows that

ICAR’s performance is being more affected by the imprecisions in link quality estimates

than IAR’s. One reason for such behavior is the fact that ICAR’s model for evaluating

path sets is more complex than its counterpart in IAR. Since ICAR considers network

coding, path sets that are considered to be much worse than the optimal by IAR may be

evaluated as being much more similar. That increases the probability that small changes

in links’ qualities result in sub-optimal path selections.

5.2 Real Testbed 156

Figure 5.30: Node distribution in the real testbed representation of the Pro-Interference
Scenario.

Another issue that makes ICAR more sensitive to link quality variations than IAR is

the sub-routine of the candidate generation heuristic for generating candidate path sets

with coding opportunities. That sub-routine is highly dependent on link quality estimates,

since after choosing a node a as a coding point, it reconnects the paths using the shortest

paths (in terms of ETX) from the source and destination nodes to a. By inspecting the

logs from the simulations, we could notice a number of instances in which ICAR would

choose a sub-optimal path set not because the optimal one was wrongly evaluated as being

worse, but because it was actually never generated by the sub-routine due to imprecisions

in link quality estimates.

5.2 Real Testbed

While simulations provide flexibility of scenarios and repeatability of conditions for the

experiments, they may not fully capture all the aspects involved in a system as complex

as a multihop wireless network. Moreover, the feasibility of implementation and usage of

a solution in a simulated environment does not necessarily imply the same feasibility in

a real network. For that reason, in this thesis we also provide experimental performance

results based on a real testbed as a means to validate our simulation results and as a

proof of concept of the viability of using IAR and ICAR and a real network composed of

nodes with severe processing and storage restrictions.

Due to the difficulties of assembling and maintaining a real testbed in a controlled

environment that can provide a reasonable degree of repeatability for the experiments,

the results presented in this section are not as extensive as the ones based on simulations.

5.2 Real Testbed 157

Nevertheless, we believe we have achieved the goals of validation and proof of concept by

reproducing one of the topologies used in the simulation environments with real wireless

routers. With this topology, we attempted to recreate the Pro-Interference Scenario in

the real testbed.

Figure 5.30 shows the distribution of the routers during one of the experiments.

Twelve TP-Link TL-WR740N wireless routers were placed in one of the laboratories

of the Telecommunications Engineering Department of Universidade Federal Fluminense,

disposed in such a way that two logical “lines” connected the two extreme nodes, a place-

ment similar to the one shown by Figure 5.2. The difference, however, is the distance

between each node. Given the dimensions of the room, nodes had to be placed closer

to each other. For example, each two consecutive nodes of a line were spaced by 0.95

meters from each other, instead of the 10 meters used for the simulations. Even using the

lowest transmission power available at the routers (0 dB), the smaller dimensions caused

all nodes to be able to communicate directly. Since the resultant topology did not meet

the requirements of the Pro-Interference Scenario, special boxes were build of paperboard

covered in aluminium foil to accommodate each router, as shown in Figure 5.30. By

placing the routers within the boxes, the necessary attenuation for reaching a topology

similar to the one used for simulations was achieved.

In order to obtain more information from the experiments, a passive sniffer was placed

in the center of the topology, capturing all packets transmitted within the BSSID (Basic

Service Set Identification) of the test network. The TP-Link TL-WR740N operates in

the 2.4 GHz band and, while it was impossible to completely isolate the test network

from interference from other networks, we chose the least occupied channel at the time

for the experiments (in terms of received signal strength). Each router is equipped with

an Atheros IEEE 802.11n compliant wireless card, a 400 MHz CPU, 4 MB of non-volatile

memory (flash), and 32 MB of RAM. The original firmware was replaced with a custom

image of the OpenWRT Linux Distribution version 12.09-rc2 [70].

The procedure adopted for the experiments performed in the real testbed was very

similar to the ones employed in the simulated environment. Each experiment consisted

of generating CBR flows on the top of the UDP transport protocol. Both flows, sourced

at each of the extreme nodes of the topology, generated packets at a rate of 200 Kb/s.

An experiment always begins with 500 seconds of silence, so that the routing information

can converge and the best routes are found. This initial interval is followed by the start

of the flows, that run for 500 seconds. All routers had their transmission rates fixed at

5.2 Real Testbed 158

IAR ETX

Route Selection Method

A
gg
re
ga
te
d
T
h
ro
u
gh

p
u
t
(K

b
/s
)

0
10

20
30

40
50

60
70

Figure 5.31: Comparison between IAR and ETX in a real testbed representation of the
Pro-Interference Scenario without network coding.

1 Mb/s.

Since the ETX metric obtained the best results (or very close) among the traditional

route selection methods during the simulations, we decided to limit the experiments to a

comparison between IAR and ETX. Since the Pro-Interference Scenario does not present

a clear alternative route solution based on network coding, all experiments were executed

without it — thus the exclusion of ICAR from these experiments.

Figure 5.31 shows aggregated throughput results obtained for the Pro-Interference

Scenario in the real testbed. The results are shown in the form of an average of throughput

samples taken at intervals of 1 second. The error bars represent the 95% confidence

intervals with respect to the mean. As in the case of the simulated environment, IAR

was able to outperform ETX. While the percentage difference was not as large as in the

simulations (IAR was 34.8% better than ETX in the real testbed), it still represents an

improvement beyond the bounds provided by the confidence intervals.

The graphs in Figure 5.32 provide more information on this experiments. The two

graphs show, for IAR (top) and ETX (bottom), the utilization of network links — for

each flow — separated in two groups: links belonging to the “upper line” of the topology

5.2 Real Testbed 159

Time (s)

Flow 0⇒ 1
Flow 1⇒ 0

0 50 100 150 200 250 300 350 400 450 500

L
ow

er
L
in
e

50
%

of
th
e

T
im

e
E
ac
h

U
p
p
er

L
in
e

(a) IAR

Time (s)

Flow 0⇒ 1
Flow 1⇒ 0

0 50 100 150 200 250 300 350 400 450 500

L
ow

er
L
in
e

50
%

of
th
e

T
im

e
E
ac
h

U
p
p
er

L
in
e

(b) ETX

Figure 5.32: Comparison between the route choices made by IAR and ETX in the real
testbed representation of the Pro-Interference Scenario. Each graph represents the frac-
tion of links used on the upper side of the topology in comparison the fraction of links
used in the lower side, as a function of time. For a given point of the graph, if it is closer
to the label “Upper Line” in the y-axis, for example, then, during that sample, more links
of the upper line of the topology were used for the respective flow.A point in the middle
of the y-axis indicates that 50% of the links used during the sample were from the lower
line, while the other 50% were from the upper line.

5.2 Real Testbed 160

and those from the “lower line”. Each point used to plot those graphs represent a window

of 20 seconds during the respective experiments. During such a window, we isolated

the transmissions captured by the sniffer according to the flow to which the respective

packets belong. Then, for each captured transmission, the used link was determined and

that information was used to classify the transmission between “upper line” and “lower

line”. Finally, for each flow, we computed the percentage of transmissions in each line.

The y-coordinate of a point in the graph, thus, represents this proportion for that specific

sample of the respective flow. The closer the point is from the “Upper Line” label (with

respect to its y-coordinate value), the higher is the proportion of transmissions for that

flow that used links of the upper line of the topology. Likewise, the closer the point is

from the “lower line”, the higher is the proportion of transmissions in the lower line of

the topology. A point in the middle represents a window in which the same amount of

transmissions were performed on both lines.

In an ideal scenario where both lines are equally good (such as the one used in the

simulated environment), the best possible path selection routes each flow in a different

line. Even if the selection varies with time (i.e., the line assigned to each flow changes),

the route selection will still be optimal as long as two flows do not share one of the lines at

any time. In terms of the graphs shown in Figure 5.32, that would be represented by the

curves for each flow always staying at different ends of the y-axis (although they might

alternate throughout the time).

Neither Figure 5.32a nor Figure 5.32b show that perfect behavior. In fact, both graphs

show a strong bias towards choosing paths comprised of links from the lower line of the

topology. The reason for that is the imperfection of the Pro-Interference Scenario built

on the real testbed with respect to the symmetry of the topology. Due to various sources

of asymmetry, such as possible subtle differences in the assembly of the boxes, different

objects nearby the routers and small errors in the placement of nodes, the resultant

topology of the real testbed presented asymmetrical lines in terms of performance.

Nevertheless, while ETX only attempted to use the upper line at two occasions during

its experiment, IAR tried the alternative route more frequently, concluding from time to

time that, even if one of the paths results in worse performance, it is still better (in terms

of aggregated network throughput) to separate both flows. That indicates that, even in a

real scenario with complex phenomena affecting links’ qualities, IAR was able to find path

sets that differed from the common choices made by traditional route selection methods in

order to reduce interference. As suggested by the results in Figure 5.31 those alternative

5.2 Real Testbed 161

choices indeed resulted in better aggregated throughput. Moreover, IAR was able to do

so in real time, even running on top of a constrained hardware.

Chapter 6

Conclusion

In this thesis we studied the problem of route selection taking into account the effects

of self interference and considering the possibility of using network coding, if available

for the network. Specifically, we proposed an interference-aware route selection algorithm

and, as a natural extension, an interference and coding-aware route selection algorithm,

called IAR and ICAR, respectively.

Both algorithms use a novel approach to the problem of route selection, based on

complete view of the network’s active data flows, and perform a simplified simulation of

the behavior of the network with the usage of a given set of paths for the current flow

demands. This simulation is capable of determining the long term aggregated network

throughput resultant from the usage of the specified path set, assuming deterministic

medium access scheduling rules that resemble the long term statistical characteristics of

practical MAC layer protocols used in multihop wireless networks. We mathematically

prove that, given the models used by our route selection algorithms, they always converge

to a solution and that the aggregated throughput found by this method is always the long

term average, unaffected by any possible short term transient effects.

This novel approach allowed the algorithms to tackle the problem of route selection

with a global view of all flows, i.e., how flows interact with each other, possibly reducing

each others performances. This global view made it possible that both IAR and ICAR

could be successful at choosing routes with low self interference.

Throughout this thesis, we reiterate the objective of obtaining practical route selection

algorithms, which lead to the creation of multiple auxiliary heuristics, in order to keep

the computational complexity of our proposal low enough so that it could be deployed

in off-the-shelf equipments with low processing capabilities. This practical vision towards

the implementation of the proposed route selection algorithms also resulted in multiple

6 Conclusion 163

practical aspects of how to implement IAR and ICAR in a real link state routing protocol

being approached in Chapter 4. Specifically, this chapter discussed how to detect and

propagate the information of the existent network flows for all nodes, how to reduce the

initial delay until the establishment of the optimal routes, how to transmit coded packets

in best possible way, and how to improve the estimates of the links’ delivery probabilities

by decoupling them from the collision probabilities. This last method has been proved

to be especially useful (in terms of increasing network performance) in the experiments

presented in Chapter 5.

This thesis also provided two practical implementations for both IAR and ICAR —

one for the ns-2 simulator and another for Linux. We presented an extensive experimen-

tal evaluation of the proposals, comparing their performances with the ones provided by

traditional and widely adopted routing metrics. Various different characteristics of IAR

and ICAR were evaluated, including their behavior in scenarios with clear opportunities

for avoiding interference — either by placing concurrent flows apart or by joining flows

and exploring network coding — as well as random scenarios and scenarios with partic-

ularly high variability. The performance of IAR and ICAR in those multiple scenarios

demonstrated that, as expected, they were able to find alternative path sets that resulted

in less interference, increasing the aggregated network throughput.

While one of the hypothesis considered by both IAR and ICAR is that flows are

always backlogged and transmitting at the highest possible rate, we also evaluated their

performance in scenarios with lower transmission rates and with TCP flows. With those

experiments, we demonstrate that both algorithms still can provide gains for those cases,

although the well-known deficiency of TCP on lossy wireless networks reduced those gains.

We also extended the results obtained through simulations by recreating one of the

topologies in a real testbed composed of simple off-the-shelf routers. The results show that

the premises of our algorithms hold even in a real scenario, resulting in better aggregated

throughput than the traditional metrics. Moreover, we demonstrated the viability of

executing those algorithms in real time even in equipments with severe memory and

processing power restrictions.

The importance of the results obtained in the real testbed are two folded. On one

hand, they prove the viability of running IAR and ICAR under real circumstances. On

the other hand, they prove the feasibility of the more general concept of selecting routes

based on the simulation routine provided by this thesis. While IAR and ICAR have

shown good results, the second consequence is arguably more important, since the same

6.1 Future Work 164

framework used by these algorithms can be used and extended with different models in-

corporating new or more characteristics. One example of the power of this route selection

framework is how IAR and ICAR can separate the effects of the link delivery probability

into two components: the link transmission delay and the link packet loss. By treating

those components separately and, later, combining them, IAR and ICAR can find a di-

rect estimate for individual and aggregated throughput. Traditional routing metrics, by

contrast, employ indirect metrics that only correlate with throughput, such as end-to-end

delay and packet loss (separately).

This thesis also provided an extensive revision on the literature of routing in mul-

tihop wireless networks, including traditional routing protocols and metrics, as well as

interference-aware and coding-aware proposals.

Finally, the appendices of the thesis provide some interesting results regarding the

estimation of delivery probabilities for unicast links, as well as for multicast links (in

the case of the transmission of a coded packet). We present non-expected experimental

results that suggest that hardware limitations may cause packets to be unexpectedly

dropped when network interfaces are under heavy loads. We also discuss the issue of

whether the reception events of a single coded packet transmission at different receivers

are independent. We found that those events are not always independent, which diverges

from assumptions found commonly on the literature. Under the light of this finding, we

propose a method for estimating the joint delivery probability for a coded packet addressed

to multiple receivers that does not rely on any assumption regarding the independence of

the receiving events.

6.1 Future Work

There are many possible future research paths following the work developed in this thesis.

One of them is to explore in more depth the issue of the stability of the links’ delivery

probability estimates under heavy network traffic. As shown in Chapter 5, while the

collision probability adjustment method was able to mitigate the effects of the collisions

on the estimates, there is still considerable room for improvement.

Another issue that deserves more investigation is the design of different models for the

case of network coding working with different methods for transmitting coded packets.

While this thesis provides a general path for creating such models for Random Pseudo-

Broadcast and Deterministic Pseudo-Broadcast, the issue of how to estimate the reception

6.1 Future Work 165

probability component is still an open question. It is important to create such models so

that a fairer comparison between Simple Broadcast and the other two methods can be

carried out.

It is also possible to explore different concepts for what defines a flow for IAR and

ICAR. For instance, instead of grouping all packets with the same source and destination

nodes, individual flows could be created based on transport protocol or application type.

With changes in the model of the path set evaluation routine, QoS requirements might

be added to the route selection process. This could also be used to include load balancing

capabilities in IAR and ICAR.

Still regarding flow information, one clear path for improvement of both IAR and

ICAR is taking into consideration the actual rate of packet generation for UDP flows. As

shown in Chapter 5, a deficiency of both proposals is the lack of consideration for this

parameter. Both algorithms may deviate flows from their individual optimal paths even

if other potentially interfering flows have low rates. In that case, knowing that the level of

interference is low, IAR and ICAR could avoid rerouting flows, reaching better aggregated

throughput. Another possible optimization in this regard would be to disregard short-

lived flows. As stated in Chapter 3, IAR and ICAR implicitly assume flows to be long in

terms of duration. If it was possible to differentiate flows according to their durations (or

expected durations), IAR and ICAR could ignore them during route selection, assuming

their short duration would not have a great effect on the performance of other flows.

Support for multiple transmission rates is also an important investigation point. Both

IAR and ICAR were modeled assuming that all network nodes use the same transmis-

sion rate (which is also assumed to be the same transmission rate in which link delivery

probability estimates were obtained). In general, this is not true: it is common for mul-

tiple transmission rates to be available and be selected dynamically by a rate adaptation

algorithm. Notice, however, that IAR could be easily extended to include multiple rate

information. In order to do so, it is simply necessary to know, for every link, the current

transmission rate among with an estimate for the delivery probability. This could be

done by integrating IAR with MARA [75]. In that case, MARA would be responsible

for selecting the best transmission rate for each link, while also providing the necessary

information for IAR, which would then compute the best routes accordingly. From IAR’s

point of view, the only difference would be in computing the transmission delay for each

link (the time they occupy the wireless medium, on average).

For ICAR, the addition of support for multiple transmission rates is not as straight-

6.1 Future Work 166

forward. The first issue, in this case, is how to select the transmission rate for a coded

packet. While some authors suggest the simple employment of the lowest transmission

rate among those selected for each intended receiver, which would guarantee that all re-

ceivers would be able to receive the transmitted packet, it has been shown that a lower

rate is not always more robust than a higher one [75]. Thus, this question is still open.

Moreover, for Deterministic and Random Pseudo-Broadcast, there would be the issue of

how to compute the joint reception probabilities at multiple transmission rates.

Finally, in terms of performance evaluation, it would be important to explore in more

depth the effects of some of the parameters used by IAR and ICAR on the performance

of both route selection algorithms. In this thesis, the main focus of the performance

evaluation was to demonstrate the viability of these algorithms in practice and that they

are able to find paths that result in considerable gains in practical scenarios. For that

reason, parameters were only evaluated in preliminary experiments so that reasonable

values could be found. A deeper investigation could define how those parameters relate

to the characteristics of each scenario, resulting in optimizations. Another aspect that

deserves a deeper evaluation is the issue scalability. It is important to extend the evalua-

tion scenarios to use more flows in order to analyze how the proposed algorithms behave.

Furthermore, the performance evaluation could be extended to include topologies of real

wireless mesh networks.

167

APPENDIX A -- Packet Losses Under Heavy

Loads

As discussed throughput this thesis, a traditional mechanism for measuring the delivery

probability of a wireless link is the use of periodical probes [75, 23, 78, 12]. Nodes

periodically transmit probes in broadcast (to avoid retransmissions) containing, among

other fields, a sequence number. Based on this sequence number, each neighbor can detect

probe losses (missing sequence numbers) in order to compute an estimate for the delivery

probability, which is then sent back to the source of the probes.

It is well documented in the literature, especially on routing metrics for multihop

wireless networks, the fact that, under heavier loads, the delivery probability of network

links (as measured by periodical probes) tends to decrease [75, 17, 23]. Two commonly

accepted explanations for this phenomenon are:

1. losses of probes due to buffer overflow; and

2. losses of probes due to an increase in the number of collisions.

The first explanation explores the fact that under heavy traffic the network congestion

increases, causing the backlog on nodes’ queues to increase as well, eventually leading to

packet discards. Among the discarded packets, there would be a share of probes. There-

fore, a lower number of probes would reach the wireless interface to actually probe the

wireless medium. Since a neighbor cannot distinguish between a loss due to degradation

of the wireless medium or due to buffer overflow, both cases would account for a decrease

in the perceived delivery probability of the link. The second explanation is based mostly

on the problem of hidden terminals, a characteristic which is specially accentuated in

multihop wireless networks [4].

As discussed in this thesis, however, it is not always desirable that the estimates for

the delivery probability include factors other than the link quality itself. For this reason,

A.1 Experimental Analysis 168

in this appendix, we analyze the true causes of the decrease in delivery probability, as

measured by periodical probing, under heavy traffic loads. Our analysis specifically tar-

gets IEEE 802.11 [49] based networks, since this technology is widely adopted in a wide

range of applications. We present results from a number of experiments conducted in a

real testbed using implementations of the standard by different vendors. Our results show

that the increases in collisions and congestion are not the only causes for this phenomenon.

Specifically, the presented results suggest that the simple increase in the amount of time

a wireless interface spends on the transmission state decreases its capacity of receiving

frames from its neighbors [77]. Incidentally, we show that this decrease in the deliv-

ery probability happens in both infra-structured and ad hoc modes of the IEEE 802.11

standard. Moreover, our results are consistent throughout all evaluated interfaces, regard-

less of vendor. Therefore, we believe the results reported in this appendix demonstrate

an unexpected hardware limitation in commercial off-the-shelf implementations of the

IEEE 802.11 standard.

A.1 Experimental Analysis

The starting point of our analysis is a very simplified scenario composed of two wireless

nodes running a multihop wireless network routing protocol. On this scenario, depicted

in Figure A.1, nodes a and b run olsrd [68], a widely adopted implementation of the

OLSR [21] (Optimized Link-State Routing) protocol. In addition, node c, a passive

element of the testbed, runs a sniffer capturing traffic of the network, providing a way

to monitor the packets transmitted during the experiments. Due to the proximity of

nodes, we assume that any collisions at nodes a or b would also affect node c with high

probability. In Section A.1.6 we present experimental data that validates this hypothesis.

Unless noted otherwise, the wireless interfaces from nodes a and b are configure to operate

in IEEE 802.11 ad hoc mode. This basic scenario is employed for all experiments, with

only small modifications in each case.

A.1.1 First Experiment: Routing Protocol

In this experiment, nodes a and b are two identical laptops with a Pentium M processor

at 1.7 GHz and 512 MB of RAM, running Ubuntu (Linux Kernel version 2.6.32). Node

c is also a laptop with a Core2Duo processor at 2.53 GHz and 3 GB of RAM, running

Backtrack Linux 5 (Linux Kernel version 2.6.39). Nodes a and b use a D-Link DWA-

A.1 Experimental Analysis 169

a

AirPcap

Sniffer

OLSR Nodes
Generated Traffic:
- OLSR Control

 (TC, Hello, etc)
- 2Mb/s UDP

Generated Traffic:
- OLSR Control

 (TC, Hello, etc)

Generated Traffic:
- None

b

c

Figure A.1: Scenario used as a testbed for the first set of experiments.

110 IEEE 802.11b/g USB adapter as their wireless interfaces. This adapter is based on

the RaLink RT73 chipset. Node c uses an AirPcap USB adapter, a wireless interface

specifically designed to be used as a sniffer. All nodes are placed close to each other, so

that the delivery probability can be as high as possible between them. The interfaces of

both nodes a and b were configured to use only the basic rate of 1 Mb/s, so that it would

be easier to saturate the network capacity during the tests.

This first experiment consists of switching on and off a UDP flow of 2 Mb/s (so

that the link becomes saturated), from node a to node b, generated with the well-known

bandwidth measurement tool iperf. Since the path between nodes a and b is comprised

of a single hop, there is no intra-flow interference to cause the number of collisions to

increase. Therefore, the only effect of the UDP flow in the probes of the routing protocol

would be in terms of increasing congestion and perhaps causing probe losses due to buffer

overflow. Hence, the expected behavior for this experiment would be that the delivery

probability (as measured by the routing protocol) would decrease only in the direction

a→ b (i.e., from source to destination of the UDP flow).

Figure A.2 shows a plot of the evolution of the measured delivery probability measured

by OLSR (the solid line). The graph also presents the same information, but as measured

by the Sniffer (node c, dashed line). During the first 120 seconds of the experiment, the

UDP flow was disabled, so that OLSR could converge to the actual probability. From that

point on, the UDP traffic was activated and deactivated in periods of 150 seconds. As the

graph shows, the UDP traffic had little influence in the measured probability throughout

the experiment. This suggests that losses due to buffer overflow do not influence (at least,

not to a great extent) the measurements of the routing protocol1.

1To further validate this conclusion, we repeated this experiment giving priority to OLSR traffic over
any other type of traffic and the results were very similar.

A.1 Experimental Analysis 170

120 270 420 570 720 870 1020 1170

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

D
el

iv
er

y
P

ro
b
ab

il
it

y

Measured at Node b
Measured at Sniffer

Figure A.2: Delivery probabilities reported by the sniffer and by OLSR in the direction
a→ b.

Figure A.3 shows the same information, but in the opposite direction (i.e., for the

probes transmitted from node b to node a). In this case, we can clearly see an accentuated

drop in the delivery probability during the periods of activity of the UDP flow (e.g., from

120 to 270 seconds), followed by an increase back to the normal levels during the periods

of inactivity (e.g., from 270 to 420 seconds). It is interesting to notice, however, that

the probability measured at the sniffer suffers a much smaller variation. Actually, the

perceived variation in the graph for the reception at the sniffer is due to an increase in

jitter, rather than a decrease in the delivery probability. The plotted values are based on

the exponentially weighted moving average method used by OLSR that penalizes jitter.

If a probe is not received within a given interval, OLSR decreases its estimate of the

delivery probability. Under heavier loads, transmissions tend to present higher jitter due

to contention, leading the estimated delivery probability to be decreased more frequently.

This difference between the delivery probabilities indicates that node b is indeed able

to transmit OLSR probes and that the corresponding frames are not being lost due to

collision (as will be discussed in more depth in Section A.1.6). Due to what appears to

be hardware implementation constrains, when node a has more traffic to transmit, its

capacity of receiving OLSR probes diminishes.

A.1 Experimental Analysis 171

120 270 420 570 720 870 1020 1170

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

D
el

iv
er

y
P

ro
b
ab

il
it

y

Measured at Node a
Measured at Sniffer

Figure A.3: Delivery probabilities reported by the sniffer and by OLSR in the direction
b→ a.

A.1.2 Second Experiment: Generic Client-Server Application

To guarantee that these results are not an artifact of an implementation issue of olsrd,

we performed a new experiment in the same basic scenario, with a few modifications. The

OLSR protocol was replaced by a simple client/server application. The client generates a

constant bit-rate traffic giving each packet a unique sequence number. The server receives

these packets and log their sequence numbers. Packets are always 1500 bytes long. Node

b runs an instance of the client sending broadcast packets every 500 ms. Node a runs an

instance of the server, generating a log file for post-processing so that the evolution of the

delivery probability with time can be computed.

At the beginning of the experiment, node a also runs an instance of the client for

600 seconds, constantly generating unicast traffic addressed to node b (i.e., the interval

between transmissions is 0). After 600 seconds of silence, the instance of the client at node

a is restarted. This process is repeated for 6 rounds. To guarantee that the processing

overhead of the client at node a does not cause the server to lose packets sent by b, the

server process is executed with the highest priority available for the FIFO scheduler in

Linux.

A.1 Experimental Analysis 172

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

D
el
iv
er
y
P
ro
b
ab

il
it
y

1200 2400 3600 4800 6000 7200

Figure A.4: Evolution of the delivery probability estimated by node a of the link b → a
as a function of time in the second experiment.

Figure A.4 shows the behavior of the delivery probability of link b → a throughout

the experiment. As with the first experiment, without the presence of traffic from node a

to node b, the delivery probability for node a was around 90% or more. However, during

the intervals in which node a produced traffic, the probability drops considerably.

Figure A.5 shows the same data, but summarized by each of the six rounds. Even

considering the 95% confidence intervals (shown for each average), the probability drops

at least 5 percentage points in all rounds when the client instance at node a is restarted.

A.1.3 Third Experiment: Unicast Frames

A question that arises from the first two experiments is whether this behavior is limited

to broadcast frames. In other words, if the traffic transmitted by node b to node a was

composed of unicast frames, would the same drop in the delivery probability of a happen

as well? To answer this question, we conducted a third experiment as follows. Both

nodes a and b generate unicast UDP flows addressed to each other during 300 seconds

with iperf. The sniffer at node c logs all frames, including retransmissions. The delivery

probability is then estimated as the ratio between the number of unique frames and the

A.1 Experimental Analysis 173

1 2 3 4 5 6

Rounds

D
el

iv
er

y
P

ro
b
ab

il
it

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With Traffic
Without Traffic

Figure A.5: Average values of the delivery probability of the link b→ a for each round of
the experiment, with and without concurrent traffic.

total transmissions (including retransmissions) received by the sniffer. Notice that this

summarizes frames from both flows into a single average, weighted by the number of

packets transmitted by each node (which was roughly equal in our experiments).

This experiment was repeated in two modes: unidirectional and bidirectional. In the

bidirectional mode, both flows are started at the same time and thus compete with each

other. In the unidirectional mode, first the flow from a to b is started and only after it

ends, the second flow begins.

After four runs of both modes of this experiment, the data presented in Figure A.6

was obtained. We repeated this experiment for four different interfaces manufactured

by different vendors: Atheros 2313 WiSoC, Intel 5100 AGN, Broadcom 5352 and Ralink

RT2501USB. In all four cases the results were similar: the delivery probability drops

significantly in the bidirectional mode. Notice that, according to our assumption, this drop

cannot be attributed to collisions between the transmissions of the two nodes, because

the frames are being correctly received by the sniffer.

A.1 Experimental Analysis 174

Atheros Intel Broadcom Ralink

Vendor

D
el
iv
er
y
P
ro
b
ab

il
it
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unidirectional
Bidirectional

Figure A.6: Estimate of delivery probability for nodes a and b from the sniffer point of
view during the third experiment.

A.1.4 Fourth Experiment: Probability Drop vs. Network Load

It is interesting to evaluate how the drop in the delivery probability relates with the

transmission load of the interface. To do so, we proposed a fourth experiment. Basically,

we repeated the second experiment, but varying the transmission interval for the client

process at node a. This experiment lasted 3600 seconds, divided in 6 windows of 600

seconds each. In the first window, there was no instance of the client process running at

node a. In the second window, the client was configured to send one packet every 22 ms.

For each of the next windows, the interval between packets was decreased in 2 ms. This

procedure resulted in loads of 0, 545, 600, 667, 750 and 857 Kb/s, respectively.

Figure A.7 shows the evolution of the delivery probability for the link b→ a through-

out the experiment. Although there are short term variations, it is possible to see a

downwards trend from the first window (lowest load) to the second and from the fourth

window to the end of the test (heaviest load). It is easier to see these trends in Figure A.8,

which presents a summary of the average of each window along with the correspondent

95% confidence interval. Although, on average, the delivery probability slightly drops

from the second window to the third and from the third to the fourth, the variation is

A.1 Experimental Analysis 175

0 600 1200 1800 2400 3000 3600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

D
el
iv
er
y
P
ro
b
ab

il
it
y

Figure A.7: Evolution of the delivery probability of the link b → a as a function time
with varying transmission load at node a.

very small, considering the confidence interval. However, it is possible to state with 95%

of confidence that the probability decreases with the increase of the transmission load for

the last 3 windows.

A.1.5 Fifth Experiment: Infra-Structured Mode

All the results presented so far were obtained in networks operating in IEEE 802.11 ad

hoc mode. This brings the question of whether this phenomenon affects also interfaces

operating in the infra-structured mode of the standard, since this mode is the most widely

used. To evaluate this hypothesis, we performed one more experiment that consisted in

repeating the second experiment, but with the interfaces configured to operate in the

infra-structured mode. In this setup, node a was configured to operate as an Access

Point, while node b acts as an associated client.

Notice that in infra-structured mode, when a client transmits a broadcast frame, it

is actually first transmitted in unicast to the access point, which, in turn, retransmits it

in broadcast. This means that such frames are susceptible to retransmissions by the link

layer of node b. Therefore, to accurately measure the delivery probability we use data

A.1 Experimental Analysis 176

No Load 22 ms 20 ms 18 ms 16 ms 14 ms

Transmission Interval for CBR

D
el
iv
er
y
P
ro
b
ab

il
it
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.8: Average delivery probability of the link b→ a for each different transmission
load for node a.

captured by node c (the sniffer), as described in Section A.1.3. Similarly to the third

experiment, then, we define the delivery probability as the ratio between the number

of unique frames and the total number of transmissions (including retransmissions), as

reported by node c.

Figure A.9 shows the results obtained for the Atheros wireless interfaces. The graph

shows that during the intervals in which the concurrent traffic is off (e.g., from 600 to 1200

seconds), node a receives the frames from node b with probability very close to 1 (i.e.,

there are very few retransmissions). On the other hand, during the intervals in which

there is concurrent traffic (e.g., from 0 to 600 seconds), the delivery probability visibly

drops to around 90%. This behavior is very similar to the one reported in all previous

experiments, suggesting that the infra-structured mode is also prone to the phenomenon.

A.1.6 Collisions at the Sniffer vs. Collisions at Node a

Throughout our experiments, we always assume that when a packet is lost due to collision

at node a, it should, with high probability, also be lost due to collision at the sniffer.

However, if two packets are transmitted at the same time but one of them reaches a

A.1 Experimental Analysis 177

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

D
el
iv
er
y
P
ro
b
ab

il
it
y

Figure A.9: Average delivery probability of the link b → a as a function of time in the
fifth experiment.

receiver with much higher power than the other, the receiver might be able to correctly

receive the first. This is known in the literature as the capture effect [31]. Hence, in

general, a packet may be lost due to collision at one receiver and, yet, be correctly received

by another. However, we argue that in our scenario, given the physical disposition of the

nodes (i.e., the proximity of the nodes), our assumption is valid.

To prove the validity of our assumption in our scenario, we conducted an experiment

as follows. Node a transmits a UDP flow to node b generating packets as fast as it can

(i.e., node a’s interface constantly has packets to transmit). On the other hand, node b

generates a constant bit-rate traffic with 1 packet transmitted every 100 ms addressed to

node a. The sniffer captures packets from both flows and stores them in a file. Both flows

have the same duration of 600 seconds. Node a also stores a sequence number for each

packet received from b.

By the end of the experiment, node b had transmitted a total of 5994 packets from

which 918 packets were lost by node a but successfully received by the sniffer. For each of

those 918 packets, we applied the procedure depicted in Algorithm A.1. This procedure

goes through the file generated by sniffer and classifies a packet lost by node a according

A.1 Experimental Analysis 178

Table A.1: Distribution of the causes for packet losses by node a.

Cause No Collision Possible Collision
Percentual 93,14% 6,86%

to a set of rules.

Algorithm A.1 Algorithm used to classify the types of losses.

1: function ClassifyLoss(Sequence Number s)
2: Find p, the packet from flow b→ a with sequence number s
3: Find pbefore, the last packet from flow a→ b on the log before p
4: Find pafter, the first packet from flow a→ b on the log after p
5: if Sequence Number of pafter = Sequence Number of pbefore + 1 then return no

collision
6: elsereturn possible collision
7: end if
8: end function

Algorithm A.1 yields two different kinds of classifications: possible collision or no

collision. The algorithm starts by looking for packet p with sequence number s from the

flow b ⇒ a. Once p is found, the algorithm looks for two packets from the flow a ⇒ b:

packet pbefore received by the sniffer immediately before packet p and the packet pafter

received immediately after p. Suppose packet p is lost by node a due to collision, but,

because of the capture effect, the sniffer can correctly decode it. Let x be the sequence

number of the packet px from the flow a ⇒ b that collided with p. Packet px cannot

have been received by the sniffer, since the sniffer captured packet p. Hence, the sequence

number from pbefore has to be, at most, x − 1, while the sequence number from pafter

has to be, at least, x + 1. It follows, then, that the difference between the sequence

numbers from pbefore and pafter has to be, at least, 2. If this is not the case (i.e., if the

sequence numbers are consecutive), the loss cannot have been due to collision. Therefore,

Algorithm A.1 returns no collision. Notice that, even when the algorithm yields a possible

collision classification, it is still doubtful that the loss was actually due to collision.

The results obtained by applying Algorithm A.1 to the traces generated by this ex-

periment are summarized in Table A.1. The table shows that, during this experiment,

whenever a packet was lost by node a but successfully received by the sniffer, there was a

chance of more than 93% that the loss could not have happened due to collision. There-

fore, this experiment demonstrates that our assumption is reasonable in our scenario.

A.2 Discussion 179

A.2 Discussion

During the first experiment presented in Section A.1, the routing protocol clearly expe-

rienced the effect of decrease in the estimated delivery probability under heavy traffic.

Although this result is expected given the previous reports in the literature, the causes of

this decrease are somewhat unexpected.

As the results show, the losses of the probes are not caused by buffer overflows, given

that, contrary to intuition, the most noticeable drops in delivery probability happened

in the opposite direction of the concurrent data flow. Another potential explanation for

the phenomenon, the losses due to collision are not causing this behavior, given that the

sniffer was able to correctly decode the probe packets generated by both nodes. As show

in Section A.1.6, in our scenario, whenever the sniffer is able to receive a packet, it is

possible to discard the possibility of collision at node a with high probability.

As the fourth experiment shows, there is a correlation between the transmission load

of the interface and its capability of receiving a frame. This implies that when the interface

is in the transmission state (or in one of its sub-states), it is unable to receive frames,

at least as efficiently as it would under lighter loads. Notice that by transmission state

we do not refer to the actual physical transmission of the frame through the medium. If

that was the case, frames would have been lost due to collision, leading our sniffer to fail

to receive the frames as well. Therefore, we refer to the sub-states of the transmission

process, such as carrier sensing and backoff.

This kind of behavior exists in simpler radios as well. One such example is ATMEL’s

AT86RF230 [8], which implements the IEEE 802.15.4 standard [48]. In the specific case

of this radio, the hardware contains only one buffer to store frames for reception and

transmission. Hence, when a frame is in the buffer to be transmitted, the radio cannot

receive another frame while it expects the medium to be free, as this would override the

bits of the outgoing frame. In the case of the results reported in Section A.1, though,

it is not possible to pinpoint the exact limitation in the implementations that cause

the unexpected behavior since the documentation for the evaluated chipsets is scarce.

Nevertheless, the presented results clearly point out the existence of such limitation.

We contacted some vendors that develop IEEE 802.11 network interfaces regarding

the obtained results. However, the only information we received was that recent projects

of IEEE 802.11n radios include more buffers in the reception and transmission chains.

Independently of its cause, this behavior can potentially have a number of implica-

A.2 Discussion 180

tions. The most obvious issue is the reduction of links’ performance under bidirectional

traffic. As shown by the results of the third experiment of Section A.1, since both nodes

are transmitting, both have a lower capacity of receiving frames, thus decreasing the deliv-

ery probability on both directions. This increases the packet loss rate at the higher layers,

as well as the effective link transmission delay (considering all necessary retransmission

attempts).

Another issue concerns rate adaptation algorithms. Some of those algorithms, such

as ARF (Auto Rate Fallback) [53], rely heavily on the assumption that the lower the

bitrate used by the physical layer, the more robust it is and most of them use frame

losses as an indication of degradation of the link quality. Under bidirectional load, the

delivery probability decreases, which would lead a rate adaptation algorithm such as

ARF to lower the interface bitrate. However, by lowering this bitrate, the rate adaptation

algorithm would be only aggravating the issue, since this would be equivalent to increase

the transmission load of the interface.

181

APPENDIX B -- Joint Reception Probability

Estimation

There are a number of factors which affect the result (success or failure) of the reception

of a packet. Among them, one can cite:

• transmission power of the source;

• transmission rate of the packet (modulation and symbol rate);

• reception sensitivity of the receiver’s radio;

• noise and interference in the receiver’s location;

• distance, obstacles and propagation paths.

Considering a given coded transmission attempt, the power and rate are fixed for every

intended receiver. The radio sensitivity, however, may differ among different network

nodes. Nevertheless, the sensitivity values reported by manufactures for radios of the

same technology are usually similar. Hence, for a generic evaluation, it is reasonable to

consider that this parameter is also fixed for all receivers.

The last two factors are the ones that, indeed, present the most variability among

different receivers. Since each receiver occupies a different position in space, they are

prone to different sources and magnitudes of interference. Likewise, in most real envi-

ronments, there are different obstacles in the propagation path between the source and

each receiver, resulting in different levels of signal attenuation. For this reason, links for

different receivers present different reception probabilities.

However, these two factors are directly related to the physical position of the nodes.

Figure B.1 shows an example. In this hypothetical situation, the gray squares represent

interference sources (e.g., electronic devices generating noise in the network frequency or

Appendix B -- Joint Reception Probability Estimation 182

d

Interference

Sources

a

b

c

Network Nodes

Figure B.1: Example of interference sources affecting nodes of a wireless network. Closer
nodes tend to suffer effects from the same sources, with similar intensity. Distant nodes,
in general, suffer effects from distinct sources.

nodes from other networks using the same channel). The concentric circles around the

interference sources illustrate the interference zone caused by the signal generated by these

devices. The remaining circles show the position of each network node. In this scenario,

it is reasonable to assume that the interference sources that affect node a (such as the

rightmost source) are very similar to the ones that affect node b, because both nodes are

close. On the other hand, the interference sources that affect node c (such as the leftmost

source) may be completely different, since c is distant from a and b.

Suppose node d wishes to send a coded packet for nodes a and c. In a given transmis-

sion attempt, it is possible that the leftmost interference source is generating lower noise,

allowing c to correctly receive the packet. At the same time, the level of noise generated

by the rightmost source can be high enough so that a is not able to correctly decode it.

Hence, in this case, the hypothesis of independent reception probabilities is reasonable.

However, the situation changes when we consider a and b as the packet receivers. If the

rightmost interference source stops generating noise at the moment of transmission of the

packet, both a and b are favored. Conversely, if this interference source generates high

levels of noise during the transmission, both nodes have lower probability of decoding the

packet.

B.1 Experimental Evidences 183

It is possible to look at this situation from another point of view. If a is able to

correctly decode a transmission performed by d, this means that the noise level generated

by the rightmost interference source was low enough. In this case, the reception probability

of node b for the same transmission attempt increases. On the other hand, given that a was

not able to correctly decode the transmission, we can assume the environment noise was

excessively high. Therefore, the reception probability of b for this transmission attempt

decreases. Mathematically, assuming both nodes have non-zero reception probabilities,

we can write:

P (Sucb|Suca) > P (Sucb|¬Suca), (B.1)

where Suca and Sucb denote the events of successful reception of the coded packet by a

and b, respectively. It follows that:

P (Sucb|Suca) 6= P (Sucb) (B.2)

or

P (Sucb|¬Suca) 6= P (Sucb) (B.3)

Therefore, the occurrence or not of the reception event at node a makes the occurrence

of the reception event at node b more or less likely. It follows that, under these conditions,

the two events are not independent. This argument can be easily extended for more than

two nodes.

B.1 Experimental Evidences

Although the previous example clearly favors the argument of dependence between re-

ception events in specific scenarios, it is not clear whether in practice this situation is

common. To evaluate this, we performed experiments in a real wireless mesh network.

The employed network is a the same indoor topology used in Chapter 4 to evaluate the

methods for sending coded packets, illustrated in Figure 4.1. The lines between nodes

represent links frequently available in the network. Each network node is an off-the-shelf

Linksys WRT54g router running the Linux-based OpenWrt operating system.

The experiment consists of sending, from a single source node, a sequence of broadcast

packets (representing coded packets for all neighbors). Upon the reception of such a

packet, a node registers the received sequence number in a log file. At the end of the

experiment, logs for all neighbors are crossed to estimate the probabilities associated

with the various reception events. The experiment was repeated 10 times, so that each

B.1 Experimental Evidences 184

network node could be used once as a source node. The interval between packets was set

to 100 ms and each repetition ran for 300 s, resulting in a total of 3000 packets of 1500

bytes. While processing the logs, empty files were discarded and the associated nodes

were not considered neighbors. From the remaining files, the joint reception probabilities

were computed for each pair of neighbors. This resulted in 71 tuples of the form <

source, receiver A, receiver B >.

Table B.1 shows a subset of the tuples. The upper half of the table shows tuples for

which we detected high dependence between reception events, while the lower half shows

tuples for which low dependence was detected. We define a tuple with high dependence

as one for which either |P (a|b)−P (a)| >= 0.1 or |P (b|a)−P (b)| >= 0.1. Otherwise, the

tuple is considered to present low dependence.

In the upper half, we can see the tuples < 2, 3, 5 >, < 3, 7, 6 > and < 7, 5, 3 >, for

which both receivers have an average individual reception probability (between 37% and

59.5%), but which increases considerably when we look at the conditional events (varying

from 14 to 20 percent points of increase in these cases). In these 3 cases there is a certain

proximity between the receivers, which suggests that both are prone to similar interference

conditions, as in the example of Figure B.1. The other two cases in this half of the table

show situations in which one receiver has a reasonable reception probability (above 61%),

whereas the other has a low reception probability (below 38%). In these cases, it is worth

noting the significant increase in the reception probability for the most likely receiver,

given that the least likely receives the packet. For the tuple < 8, 5, 6 >, for instance, the

reception probability for node 6 increases more that 20 percent points, given that node 5

receives the packet, becoming an almost certain event. Once again, the proximity of both

receivers causes a large intersection between the reception events for both nodes.

Regarding the lower half of the table, in almost all cases the tuples have a “central”

source node and diametrically opposed receivers. Specifically, node 5 appears in 3 tuples

as the source node. Indeed, this node is located in the middle of the topology and is

able to communicate with a large number of neighbors. For these tuples, there is a

small intersection between reception events for the two receivers. In other words, as

expected, the reception events are independent (or present very low dependence). The

tuple < 2, 5, 4 >, however, presents two relatively close receivers. In fact, the disposition

of the nodes of this tuple is very similar to those of the tuples found in the upper half

of the table. Nevertheless, the joint probabilities do not present an increase higher than

6 percent points in comparison to the individual probabilities. In this case, some other

B.2 Estimating Joint Probabilities 185

Table B.1: Estimates for the joint probabilities, for pairs of receivers, obtained in the
experiments. Column s represents the source, whereas a and b represent the two receivers.

s a b P(a) P(b) P(a ∩ b) P(a|b) P(b|a)
High Dependence

2 3 5 0.391 0.370 0.197 0.533 0.504
3 7 6 0.595 0.648 0.473 0.730 0.795
7 5 3 0.537 0.555 0.406 0.732 0.756
5 7 8 0.610 0.079 0.074 0.937 0.122
8 5 6 0.380 0.760 0.367 0.482 0.964

Low Dependence
2 5 4 0.391 0.281 0.126 0.450 0.323
3 6 2 0.648 0.369 0.245 0.663 0.378
3 7 2 0.595 0.369 0.212 0.575 0.357
5 7 4 0.610 0.976 0.594 0.609 0.974
5 7 3 0.610 0.722 0.441 0.611 0.722
5 8 2 0.079 0.123 0.011 0.087 0.134
6 8 4 0.361 0.065 0.022 0.333 0.060
6 8 3 0.361 0.456 0.141 0.309 0.391

propagation particularity has more influence over the results than simply the physical

distribution of the nodes.

These results show that, in many cases, is not reasonable to ignore the dependence

between the reception events. Even in a real environment, these dependences can appear

at different degrees, requiring a more accurate model not to negatively estimate coding

and routing performances.

B.2 Estimating Joint Probabilities

As shown in this appendix, the reception events for a coded packet in two or more different

receivers is not always independent. This is an important result because the literature

on network coding usually assumes this independence, specially for computing the joint

reception probability — i.e., the individual delivery probabilities are multiplied and the

result is considered to be the joint probability.

Since that is not always true, it is important to devise a method that can estimate the

joint reception probability more accurately. We argue that this estimate can be obtained

using basically the same resources employed to compute the individual probabilities.

The vast majority of routing protocols use those probes to derive statistics about link

quality, such as the individual reception probabilities [17]. To compute these probabilities,

B.2 Estimating Joint Probabilities 186

nodes keep, for every neighbor, information about received probes within a predefined

window (of the last n probes). Prior to broadcasting its own probe, a node computes the

reception probability regarding each neighbor and includes this information in the probe

packet.

The method we propose here slightly changes this process. Instead of including the

precomputed value of the reception probability in its probes, a node includes a bitmap for

each neighbor representing the results (success or failure) for the reception of each probe

within the current probe window. In this case, once a node receives the probes from its

neighbors, it can compute not only the individual receiving probabilities, but also the

joint receiving probabilities for any subset of neighbors by simply performing a bitwise

and operation between the bitmaps. It is important to notice that the received bitmaps

can be misaligned due to loss of probes and differences between the moments when each

node transmits its probes. Therefore, when including a bitmap in a probe, nodes append

the sequence number of the probe associated with the first position of the bitmap. Before

computing the and operation over two bitmaps, it is necessary to shift them to obtain a

correct alignment.

In terms of overhead, this solution does not increase the amount of transmitted probes.

On the other hand, the size of each probe is increased. To represent a bitmap for the

last n probes, n bits are necessary, whereas the precomputed reception probability can

be encoded using only log2(n) bits (assuming a predefined size for the probe window). In

practice, however, the number of probes used for computing the reception probabilities is

relatively small. For instance, in the implementation of the OLSR (Optimized Link State

Routing) protocol available in [68], the default size for the window is 20 probes. For a

window of this size, less bits are necessary to encode the bitmap than to represent a single

precision float point value using the IEEE 754 standard.

References

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Trans-
actions on Information Theory, 46(4):1204–1216, 2000.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393–422, 2002.

[3] I. F. Akyildiz and X. Wang. A survey on wireless mesh networks. IEEE Communi-
cations Magazine, 43(9):S23–S30, 2005.

[4] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey. Computer
networks, 47(4):445–487, 2005.

[5] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks:
a survey. IEEE Wireless Communications, 11(6):6–28, 2004.

[6] U. Ashraf, S. Abdellatif, and G. Juanole. An interference and link-quality aware
routing metric for wireless mesh networks. In IEEE 68th Vehicular Technology
Conference (VTC 2008-Fall), pages 1–5. IEEE, 2008.

[7] ath9k – Linux Wireless. http://wireless.kernel.org/en/users/Drivers/

ath9k, 2013. Accessed in 06/26/2013.

[8] Atmel Corporation. AT86RF230: Low power 2.4 GHz transceiver for ZigBee, IEEE
802.15.4, 6LoWPAN, RF4CE and ISM applications, 2009.

[9] N. Baldo, F. Maguolo, and S. Merlin. dei80211mr: an enhanced 802.11 implemen-
tation for ns2 and nsmiracle, 2013. Available at http://telecom.dei.unipd.it/

media/download/225.

[10] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network
Flows. Wiley, 3◦edition, 2004.

[11] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1987.

[12] J. Bicket. Bit-rate selection in wireless networks. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Feb. 2005.

[13] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and evaluation of an
unplanned 802.11b mesh network. In Proceedings of the 11th Annual International
Conference on Mobile Computing and Networking (MobiCom 2005), pages 31–42,
2005.

[14] S. Biswas and R. Morris. Opportunistic routing in multi-hop wireless networks.
ACM SIGCOMM Computer Communication Review, 34(1):69–74, 2004.

References 188

[15] J. Boyer, D. D. Falconer, and H. Yanikomeroglu. Multihop diversity in wireless
relaying channels. IEEE Transactions on Communications, 52(10):1820–1830, 2004.

[16] M. E. M. Campista, L. H. M. K. Costa, and O. C. Duarte. A routing proto-
col suitable for backhaul access in wireless mesh networks. Computer Networks,
56(2):703–718, 2012.

[17] M. E. M. Campista, D. Passos, P. M. Esposito, I. M. Moraes, C. V. N. Albuquerque,
D. C. M. Saade, M. G. Rubinstein, L. H. M. K. Costa, and O. C. M. B. Duarte.
Routing metrics and protocols for wireless mesh networks. IEEE Network, 22(1):6–
12, Jan./Feb. 2008.

[18] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for ran-
domness in wireless opportunistic routing. In Proceedings of the 2007 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM 2007), pages 169–180. ACM, 2007.

[19] X. Cheng, P. Mohapatra, S.-J. Lee, and S. Banerjee. Maria: Interference-aware
admission control and qos routing in wireless mesh networks. In Proceedings of the
IEEE International Conference on Communications (ICC 2008), pages 2865–2870.
IEEE, 2008.

[20] P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Proceedings of the
41st Annual Allerton Conference on Communication Control and Computing, pages
40–49, 2003.

[21] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC
3626, Oct. 2003.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2◦edition, 2001.

[23] D. S. J. D. Couto. High-throughput routing for multi-hop wireless networks. PhD
thesis, Massachusetts Institute of Technology, 2004.

[24] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. In Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking (MobiCom 2003), pages 134–146,
2003.

[25] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. Wireless Networks, 11(4):419–434, 2005.

[26] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[27] X. Ding, X. Zhang, M. Fan, and Y. Yang. Coding-aware routing for unicast sessions
in wireless networks. In Proceedings of the 5th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM 2009), pages 1–4,
Sept. 2009.

References 189

[28] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh
networks. In Proceedings of the 10th Annual International Conference on Mobile
Computing and Networking (MobiCom 2004), pages 114–128. ACM, 2004.

[29] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a
network. IRE Transactions on Information Theory, 2(4):117–119, Dec. 1956.

[30] K. Fan, X. Wei, and D. Long. A load-balanced route selection for network coding
in wireless mesh networks. In Proceedings of the IEEE International Conference on
Communications (ICC 2009), pages 1–6, June 2009.

[31] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng. Methods for
restoring mac layer fairness in ieee 802.11 networks with physical layer capture.
In Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks:
From Theory To Reality (REALMAN 2006), pages 7–14, New York, NY, USA, 2006.
ACM.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W.
H. Freeman, 1979.

[33] I. Gitman, R. V. Slyke, and H. Frank. Routing in packet-switching broadcast radio
networks. IEEE Transactions on Communications, 24(8):926–930, 1976.

[34] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content distri-
bution. In Proceedings of the 24th IEEE International Conference on Computer
Communications (INFOCOM 2005), pages 2235–2245, 2005.

[35] A. D. Gore, A. Karandikar, and S. Jagabathula. On high spatial reuse link schedul-
ing in stdma wireless ad hoc networks. In Proceedings of the IEEE Global Telecom-
munications Conference (GLOBECOM 2007), pages 736–741, 2007.

[36] O. Goussevskaia, L. Vieira, and M. Vieira. Wireless multi-rate scheduling: From
physical interference to disk graphs. In Proceedings of the 37th IEEE Conference
on Local Computer Networks (LCN 2012), pages 651–658, 2012.

[37] O. Goussevskaia and R. Wattenhofer. Scheduling with interference decoding: Com-
plexity and algorithms. Ad Hoc Networks, 11(6):1732–1745, 2013.

[38] J. Grönkvist and A. Hansson. Comparison between graph-based and interference-
based STDMA scheduling. In Proceedings of the 2nd ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 2001), pages 255–258,
2001.

[39] P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, 46(2):388–404, 2000.

[40] J. Ha, K. Lee, H. Kim, and I. Kang. A snooping rate adaptation algorithm for IEEE
802.11 WLANs. In Proceedings of the 3rd International Symposium on Wireless
Pervasive Computing (ISWPC 2008), pages 606–609, 2008.

References 190

[41] X. Hei, Y. Liu, and K. W. Ross. Inferring network-wide quality in p2p live streaming
systems. IEEE Journal on Selected Areas in Communications, 25(9):1640–1654,
Dec. 2007.

[42] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros. The benefits of coding
over routing in a randomized setting. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2003), pages 442–442, 2003.

[43] T. Ho and D. S. Lun. Network Coding: An Introduction. Cambridge University
Press, 2008.

[44] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger. On randomized network
coding. In Proceedings of the 41st Annual Allerton Conference on Communication
Control and Computing, pages 11–20, 2003.

[45] G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive MAC protocol for multi-hop
wireless networks. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MobiCom 2001), pages 236–251, 2001.

[46] B. Hubert. Linux advanced routing & traffic control HOWTO. Online, Oct. 2003.
Available: http://ds9a.nl/2.4Networking/lartc.pdf.

[47] IEEE LAN/MAN Standards Committee. 802.16-2009 IEEE standard for local and
metropolitan area networks – part 16: Air interface for broadband wireless access
systems, 2009.

[48] IEEE LAN/MAN Standards Committee. 802.15.4-2011 IEEE standard for local and
metropolitan area networks – part 15.4: Low-rate wireless personal area networks
(LR-WPANs), 2011.

[49] IEEE LAN/MAN Standards Committee. 802.11-2012 IEEE standard for informa-
tion technology – lan/man – specific requirements – part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specification, 2012.

[50] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on
multi-hop wireless network performance. In Proceedings of the 9th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom 2003), pages
66–80. ACM, 2003.

[51] R. Jain, D.-M. Chiu, and W. Hawe. A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer systems. Technical report, DEC
Research Report TR-30, Sept. 1984.

[52] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. In Ad Hoc Networking, chapter 5,
pages 139–172. Addison-Wesley, 2001.

[53] A. Kamerman and L. Monteban. WaveLAN-II: A high-performance wireless LAN
for the unlicensed band. Bell System Technical Journal, 2(3):118–133, 1997.

[54] P. Karn. Maca-a new channel access method for packet radio. In Proceedings of the
ARRL/CRRL Amateur Radio 9th Computer Networking Conference, volume 140,
pages 134–140, 1990.

References 191

[55] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. XORs in
the air: practical network coding. In Proceedings of the 2006 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM 2006), 2006.

[56] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. XORs in the
air: practical wireless network coding. IEEE/ACM Transactions on Networking,
16(3):497–510, June 2008.

[57] J. Kim, S. Kim, S. Choi, and D. Qiao. CARA: Collision-aware rate adaptation for
IEEE 802.11 WLANs. In Proceedings of the 25th IEEE International Conference
on Computer Communications (INFOCOM 2006), pages 1–11, 2006.

[58] D. Koutsonikolas, C.-C. Wang, and Y. C. Hu. CCACK: Efficient network coding
based opportunistic routing through cumulative coded acknowledgments. In Pro-
ceedings of the 29th IEEE International Conference on Computer Communications
(INFOCOM 2010), pages 1–9, march 2010.

[59] M. Krasnyansky. Universal TUN/TAP device driver. Documentation, Linux Kernel,
2000. Available at https://www.kernel.org/doc/Documentation/networking/

tuntap.txt.

[60] J. Le, J. C. S. Lui, and D. M. Chiu. How many packets can we encode? an analysis
of practical wireless network coding. In Proceedings of the 27th IEEE International
Conference on Computer Communications (INFOCOM 2008), pages 371–375, Apr.
2008.

[61] J. Le, J. C. S. Lui, and D.-M. Chiu. DCAR: Distributed coding-aware routing in
wireless networks. IEEE Transactions on Mobile Computing, 9(4):596–608, Apr.
2010.

[62] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Capacity of ad hoc
wireless networks. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MobiCom 2001), pages 61–69. ACM, 2001.

[63] Z. Li and B. Li. Network coding in undirected networks. In Proceedings of the
38th Annual Conference on Information Sciences and Systems (CISS 2004), pages
257–262, 2004.

[64] D. S. Lun, M. Médard, and R. Koetter. Efficient operation of wireless packet
networks using network coding. In Proceedings of the International Workshop on
Convergent Technologies (IWCT 2005), 2005.

[65] D. S. Lun, M. Médard, R. Koetter, and M. Effros. Further results on coding for reli-
able communication over packet networks. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2005), pages 1848–1852, Sept. 2005.

[66] D. S. Lun, M. Médard, R. Koetter, and M. Effros. On coding for reliable commu-
nication over packet networks. Physical Communication, 1(1):3–20, 2008.

References 192

[67] S. Nelakuditi, S. Lee, Y. Yu, J. Wang, Z. Zhong, G.-H. Lu, and Z.-L. Zhang.
Blacklist-aided forwarding in static multihop wireless networks. In Proceedings of
the IEEE International Conference on Sensing, Communication, and Networking
(SECON 2005), pages 252–262, 2005.

[68] OLSRD. http://www.olsr.org, 2013. Accessed in 05/06/2013.

[69] Open-Mesh. http://www.open-mesh.org/projects/open-mesh/wiki, 2013. Ac-
cessed in 05/06/2013.

[70] OpenWrt. http://www.openwrt.org, 2011. Accessed in 08/07/2013.

[71] D. Passos. Uma abordagem unificada para métricas de roteamento e adaptação
automática de taxa em redes em malha sem fio. Master’s thesis, Universidade
Federal Fluminense, Niterói, 2010. In Portuguese.

[72] D. Passos. IAR and ICAR implementations for ns-2, 2013. Available at http:

//www.midiacom.uff.br/~diego/SLSPCodingNS.tar.gz.

[73] D. Passos. IAR and ICAR implementations for openwrt, 2013. Available at http:
//www.midiacom.uff.br/~diego/SLSPCoding.tar.gz.

[74] D. Passos and C. V. N. Albuquerque. Probabilidade condicional de sucesso no envio
de pacotes codificados aplicada a roteamento ciente de codificação em redes sem fio
de múltiplos saltos. In 29◦Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribúıdos, pages 103–116, May 2011. In Portuguese.

[75] D. Passos and C. V. N. Albuquerque. A joint approach to routing metrics and rate
adaptation in wireless mesh networks. IEEE/ACM Transactions on Networking,
20(4):999–1009, Aug. 2012.

[76] D. Passos and C. V. N. Albuquerque. Modeling the transmission of coded packets
for coding aware routing. In Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM 2012), pages 136–142, 2012.

[77] D. Passos, R. Carrano, and C. V. N. Albuquerque. On the decrease in frame recep-
tion probability under heavy transmission loads in ieee 802.11 networks. Computer
Standards & Interfaces, 35:374–379, 2013.

[78] D. Passos, C. V. N. de Albuquerque, M. E. M. Campista, L. H. M. K. Costa, and
O. C. M. B. Duarte. Minimum loss multiplicative routing metrics for wireless mesh
networks. Journal of Internet Services and Applications, 1(3), Feb. 2011.

[79] J. Pavon and S. Choi. Link adaptation strategy for IEEE 802.11 WLAN via received
signal strength measurement. In Proceedings of the IEEE International Conference
on Communications (ICC 2003), volume 2, pages 1108–1113, 2003.

[80] W. Peng and X.-C. Lu. On the reduction of broadcast redundancy in mobile ad hoc
networks. In Proceedings of the 1th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2000), pages 129–130, Piscataway, NJ,
USA, 2000. IEEE Press.

References 193

[81] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers. ACM SIGCOMM Computer Commu-
nication Review, 24(4):234–244, 1994.

[82] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In
Proceedings of the Second IEEE Workshop on Mobile Computing Systems and Ap-
plications (WMCSA 1999), pages 90–100. IEEE, 1999.

[83] Promoter Members of Bluetooth SIG, Inc. Specification of the bluetooth system –
master table of contents & compliance requirements – covered core package version:
4.0, 2010.

[84] B. Radunovic, C. Gkantsidis, P. Key, and P. Rodriguez. Toward practical oppor-
tunistic routing with intra-session network coding for mesh networks. IEEE/ACM
Transactions on Networking, 18(2):420–433, Apr. 2010.

[85] R. Rajaraman. Topology control and routing in ad hoc networks: a survey. SIGACT
News, 33(2):60–73, June 2002.

[86] T. S. Rappaport. Wireless communications: principles and practice, volume 2.
Prentice Hall PTR New Jersey, 1996.

[87] S. Sengupta, S. Rayanchu, and S. Banerjee. An analysis of wireless network coding
for unicast sessions: The case for coding-aware routing. In Proceedings of the 26th
IEEE International Conference on Computer Communications (INFOCOM 2007),
pages 1028–1036, May 2007.

[88] S. Sengupta, S. Rayanchu, and S. Banerjee. Network coding-aware routing in wire-
less networks. IEEE/ACM Transactions on Networking, 18(4):1158–1170, Aug.
2010.

[89] J. L. Sobrinho. Algebra and algorithms for qos path computation and hop-by-hop
routing in the internet. IEEE/ACM Transactions on Networking, 10(4):541–550,
Aug. 2002.

[90] A. P. Subramanian, M. M. Buddhikot, and S. Miller. Interference aware routing in
multi-radio wireless mesh networks. In Proceedings of the 2nd IEEE Workshop on
Wireless Mesh Networks (WiMesh 2006), pages 55–63, 2006.

[91] J. Tang, G. Xue, and W. Zhang. Interference-aware topology control and qos routing
in multi-channel wireless mesh networks. In Proceedings of the 6th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005),
pages 68–77. ACM, 2005.

[92] The Click Modular Router Project. http://www.read.cs.ucla.edu/click/click,
2011. Accessed in 05/06/2013.

[93] The Network Simulator - ns-2. http://isi.edu/nsnam/ns/, 2011. Accessed in
08/07/2013.

[94] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and
characteristics. IEEE Network, 11(6):10–23, 1997.

References 194

[95] Y. Tian, K. Xu, and N. Ansari. Tcp in wireless environments: problems and solu-
tions. IEEE Communications Magazine, 43(3):S27–S32, 2005.

[96] F. Tobagi and L. Kleinrock. Packet switching in radio channels: Part ii–the hidden
terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE
Transactions on Communications, 23(12):1417–1433, 1975.

[97] M. Wang and B. Li. Lava: A reality check of network coding in peer-to-peer live
streaming. In Proceedings of the 26th IEEE International Conference on Computer
Communications (INFOCOM 2007), pages 1082–1090, May 2007.

[98] M. Wang and B. Li. Network coding in live peer-to-peer streaming. IEEE Trans-
actions on Multimedia, 9(8):1554–1567, Dec. 2007.

[99] M. Wang and B. Li. R2: Random push with random network coding in live peer-to-
peer streaming. IEEE Journal on Selected Areas in Communications, 25(9):1655–
1666, Dec. 2007.

[100] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation for
802.11 wireless networks. In Proceedings of the 12nd Annual International Confer-
ence on Mobile Computing and Networking (MobiCom 2006), pages 146–157, 2006.

[101] Y. Yan, B. Zhang, J. Zheng, and J. Ma. Core: a coding-aware opportunistic routing
mechanism for wireless mesh networks. IEEE Wireless Communications, 17:96–103,
June 2010.

[102] Y. Yang, J. Wang, and R. Kravets. Interference-aware load balancing for multihop
wireless networks. Technical report, University of Illinois at Urbana-Champaign,
2009.

[103] J. Y. Yen. An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quarterly of Applied Mathematics, 27(4):526–530,
1970.

[104] H. Yue, X. Zhu, C. Zhang, and Y. Fang. Cptt: A high-throughput coding-aware
routing metric for multi-hop wireless networks. In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM 2012), pages 5687–5692, 2012.

[105] Y. Zhu, B. Li, and J. Guo. Multicast with network coding in application-layer
overlay networks. IEEE Journal on Selected Areas in Communications, 22(1):107–
120, 2004.

