
Universidade Federal Fluminense

Christian Frantz Ruff

Dynamic per Object Ray Caching Textures for

Ray Tracing

NITERÓI

2013

Universidade Federal Fluminense

Christian Frantz Ruff

Dynamic per Object Ray Caching Textures for

Ray Tracing

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Master of Science.
Topic Area: Visual Computing.

Advisor:

Prof. D.Sc. Esteban Walter Gonzalez Clua

Co-advisor:

Prof. D.Sc. Leandro Augusto Frata Fernandes

NITERÓI

2013

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

R922 Ruff, Christian Frantz

 Dynamic per object ray caching textures for ray tracing / Christian

Frantz Ruff. – Niterói, RJ : [s.n.], 2013.

69 f.

Dissertação (Mestrado em Computação) - Universidade Federal

Fluminense, 2013.

Orientadores: Esteban Walter Gonzalez Clua, Leandro Augusto

Frata Fernandes.

1. Computação gráfica. 2. Traçado de raios. 3. Tempo real. I.

Título.

CDD 006.6

Dynamic per Object Ray Caching Textures for Ray Tracing

Christian Frantz Ruff

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial fulfillment of the require-

ments for the degree of Master of Science.

Topic Area: Visual Computing.

Approved by:

Prof. D.Sc. Esteban Walter Gonzalez Clua / IC-UFF

(Advisor)

Prof. D.Sc. Leandro Augusto Frata Fernandes / IC-UFF

(Co-advisor)

Prof. D.Sc. Anselmo Antunes Montenegro / IC-UFF

Prof. Ph.D. Manuel Menezes de Oliveira Neto / UFRGS

Niterói, December 09th, 2013.

“Anyone who has never made a mistake

has never tried anything new.”

Albert Einstein

Acknowledgments

I would like to thank my parents, André Fernando Ruff and Patŕıcia Frantz Ruff, and my

sister, Priscila Frantz Ruff, for all the support and love given. I would never get this far

without your help. I love you very much!

To Esteban Walter Gonzalez Clua and Leandro Augusto Frata Fernandes, for all your

patience and support. Thank you for believing in me and helping me finish my masters

degree.

To my roomates, André Luiz Brandão and Giancarlo Taveira, for your friendship and

support throughout these three years.

To all my colleagues at MediaLab, for helping me in many problems that I had along

the way. Thank you all!

To Thales Luis Sabino, for lending me his ray tracing hybrid solution that was used

in this work. Thank you for all the tips and advice given about your work.

To my colleagues and superiors of the navy simulator, for the acquired experience and

for the opportunity to be an employee in such an amazing project.

To Universidade Federal Fluminense, for providing me a work environment, and

CAPES, for the scholarship.

To everyone else that supported me, thank you!

Resumo

A técnica de traçado de raios torna posśıvel a renderização de cenas com intensas in-
terações de luz. A abordagem se baseia na ideia de que a reflexão, refração e sombra
podem ser computadas ao seguirmos recursivamente o caminho que a luz percorre dentro
de um ambiente. No entanto, apesar do conceito parecer simples, o traçado de raios é uma
tarefa de alto custo computacional. Além disso, otimizar o gerenciamento de memória
para aumentar a eficiência desta técnica é dif́ıcil, pois o acesso coerente no espaço tridi-
mensional não garante o acesso coerente à memória.

Este trabalho apresenta uma nova estratégia que utiliza cache de texturas para o
traçado de raios, capaz de armazenar dados gerados em quadros anteriores, tornando
posśıvel o acesso coerente à memória uma vez que os dados são utilizados em quadros
subsequentes. Ao armazenarmos os resultados dos raios traçados em um cubemap que
está atrelado a cada objeto na cena, nós mostramos que é posśıvel explorar o mecanismo
de amostragem eficiente da memória fornecido pelo hardware gráfico com o intuito de
aumentar a taxa de quadros por segundo da renderização. A técnica de cache de raios
é utilizada com duas estratégias diferentes. A primeira armazena somente a informação
de cor do traçado de raios, com procedimentos simples para armazenar e recuperar a
informação. A segunda, armazena a cor e a profundidade do reflexo e usa a técnica de
mapeamento com relevo para armazenar e recuperar a informação.

A técnica proposta pode ser utilizada em cenas estáticas e pode prevenir a profunda
interação dos raios com a cena, bem como permitir a computação śıncrona dos raios em
arquiteturas paralelas. Além disso, ambas as estratégias podem ser facilmente integradas
a qualquer solução de traçado de raios já existente.

Palavras-chave: traçado de raios, memória reserva, mapeamento cúbico, ma-
peamento com relevo, tempo real.

Abstract

Ray tracing allows scenes with very complex light interactions to be rendered. It is
based on the idea that reflection, refraction and shadows can be modeled by recursively
following the path that light takes as it bounces through an environment. However, de-
spite its conceptual simplicity, tracing individual rays is a computationally intensive task.
Additionally, optimizing memory management to increase efficiency is difficult because
coherent access in 3-dimensions does not guarantee coherent memory access.

This work proposes a ray caching technique suitable for interactive and real-time ray
tracing that is capable of storing the data generated in previous frames in such a way
that coherent memory access is achieved while the data are reused by subsequent frames.
By storing the light bounce results of previously traced rays in a cubemap attached to
each scene object, we show that it is possible to explore the efficient memory sampling
mechanism provided by the graphics hardware to increase the frame rate. The ray caching
technique is used in two different strategies. The first one only stores the color information
of the ray tracing, with simple storage and retrieval procedures. The second one stores
the color and the depth of the reflection information and uses relief mapping to store and
retrieve the information, which improves parallax effects.

Our technique is suitable for static scenes and may prevent deep interactions of rays
with the scene as well as enable the synchronous computation of rays in parallelized
architectures. Additionally, both strategies can be easily integrated into any existing ray
tracing solutions, especially those that require real time or interactive frame rates.

Keywords: ray tracing, cache memory, cube mapping, relief mapping, real
time.

Contents

Glossary viii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Main Idea . 3

1.2 Contributions . 4

1.3 Demonstration and Validation . 6

2 Related Work 7

2.1 Structure and Geometry-Based Optimizations 9

2.2 Memory-Based Optimizations . 9

2.3 Hybrid Optimization . 10

2.4 Texture-Based Techniques . 12

3 Per Object Ray Caching 15

3.1 The Caching Textures . 16

3.2 Caching Cube Setup . 17

3.3 Caching the Reflection Information . 18

3.4 Using the Cached Values . 22

3.5 Discussion . 24

Contents vii

4 Color and Depth Caching Technique 26

4.1 Relief Mapping . 27

4.2 Relief Mapping in Orthogonal and Perspective Depth Images 28

4.3 Relief Mapping Adaptation . 31

4.4 Caching the Reflection Information . 33

4.5 Using the Cached Values . 35

4.6 Discussion . 37

5 Results 39

5.1 Visual Quality and Performance . 40

5.1.1 Texture Size . 40

5.1.2 Color Caching Technique . 41

5.1.3 Color and Depth Caching Technique 44

5.2 Update Rate . 48

5.3 Limitations . 49

6 Conclusions and Future Work 51

6.1 Future Work . 52

Bibliography 54

Glossary

BVH : Bounding Volume Hierarchy

CCT : Color Caching Technique

CDCT : Color and Depth Caching Technique

FPS : Frames Per Second

GLSL : OpenGL Shading Language

GPU : Graphics Processing Unit

LBVH : Linear Bounding Volume Hierarchy

RGB : Red, Green and Blue Channels

RGBA : Red, Green, Blue and Alpha Channels

SBVH : Split Bounding Volume Hierarchy

List of Figures

1.1 A comparison between ray tracing and the two proposed strategies. 6

2.1 The ray tracing algorithm. 8

2.2 The hybrid pipeline overview. 12

2.3 The cube mapping technique. 13

3.1 The cubemap box of each reflection object. 18

3.2 The path of a primary ray traced from the camera to the scene. 20

3.3 The color information stored in the caching cube. 21

3.4 A comparison between the result of a conventional ray tracing and the

results of the ray tracing with the CCT. 23

3.5 The parallax effect comparison between the ray tracing and CCT. 25

4.1 The relief mapping technique for a certain ray. 28

4.2 The comparison between relief mapping and other techniques. 29

4.3 The difference between capturing information using orthogonal and per-

spective projections. 29

4.4 Relief mapping in orthogonal and perspective images. 31

4.5 The difference between walking on the ray in an orthogonal and perspective

image. 32

4.6 The relief mapping technique in perspective depth images. 34

4.7 The new technique used to store the information. 35

4.8 The comparison between the two ways used to store the reflection information. 37

5.1 Comparison between a hybrid ray tracing with and without the CCT. . . . 41

5.2 Scenes used in the performance comparison between the hybrid ray tracing

with and without the CCT. 41

List of Figures x

5.3 The relative performance comparison between the CCT and the hybrid ray

tracing. 43

5.4 The image subtraction between the standard ray tracing and the CCT. . . 44

5.5 Another image subtraction between the standard ray tracing and the CCT. 45

5.6 The scenes used to test the CDCT. 46

5.7 The image subtraction between the standard ray tracing and the CDCT. . 47

5.8 Another image subtraction between the standard ray tracing and the CDCT. 47

5.9 The amount of outdated texels in the caching textures before a sequence

of frames. 48

5.10 Some other results of the CCT. 50

5.11 A concave object rendered using the CCT and the hybrid ray tracing. . . . 50

List of Tables

3.1 The OpenGL’s cubemap arrangement table. 20

5.1 The performance comparison between the hybrid ray tracing solution run-

ning with and without the CCT. 42

5.2 The performance comparison between a conventional ray tracing system

running with and without the CCT. 43

5.3 The performance comparison between the CCT technique, a conventional

ray tracing solution and the CDCT. 45

Chapter 1

Introduction

Computer-generated images of outstanding quality and unsurpassed realism have been

created through the use of ray tracing [Whitted 1980]. This technique is based on the

idea of tracing the path of individual light rays from the eye into the scene and calculating

the effects of their interactions with the environment. The recursive task of tracing a ray

consists of traversing the 3-dimensional space until the ray hits an object and generates

up to three new types of rays leaving the intersection point: a reflected ray continues on

in the mirror-reflection direction from a shiny surface, a transmitted ray travels through

transparent materials, and a shadow ray is used to test if a surface is visible to a light

source. For each ray-surface interaction, an intensity is computed, added to the color

of the pixel related to the ray, and some energy is lost. The creation of the reflected

and transmitted rays stops when the computed intensity becomes less than a certain

threshold. While the technique is capable of producing a high degree of visual realism,

the large number of rays, intersections and recursive calls has a large computational cost.

For this reason, ray tracing has been best suited for applications that do not require real-

time or interactive frame rates, such as still image creation and cinematography visual

effects.

Because light beams can be treated independently from each other, ray tracing can

be trivially parallelized using threads in a näıve way. However, the incoherence of the

direction of neighboring rays makes it difficult to coalesce memory access and data ar-

rangement. Additionally, the independence of the rays’ computation naturally leads to

different efforts when calculating paths and usually results in idle threads. Because the

rays related to neighbor pixels travel through different levels of the data structure used to

arrange the objects (e.g., octree), the algorithm is prone to high a degree of thread dispar-

ity, making the optimization of the code in the Graphics Process Unit (GPU) architecture

1 Introduction 2

a difficult task. The existence of efficient ray-caching mechanisms to ensure memory co-

herence and to avoid inter-frame redundant ray computation could significantly increase

the performance of ray tracing algorithms by making the different rays shot towards the

same object return synchronously, reducing the number of threads and the time they are

kept in an idle state and maximizing the efficiency of the GPU.

In this work, we introduce a novel and efficient technique that manages caching tex-

tures of rays. This technique explores the idea that, in a specific frame, many reflexive

and transparent recursive rays are recomputed, although they were already calculated in

previous frames. Our approach, entitled Per Object Ray Caching, is capable of storing

the reflection information computed by tracing the rays in previous frames and reusing it

while producing the next frames of the sequence. Although our technique can be used in

any ray tracing approach, it is especially suitable for real time and GPU based renderers.

The main idea is to assign to each reflective object a cubemap, i.e., six textures that are

mapped onto a cube to create a 360 degree panorama, to store the reflection information

calculated by the rays leaving the object in a given direction. The cached information is

dynamically completed in the render time and then used in subsequent frames to avoid

retracing redundant reflected and refracted rays. Thus, before casting new rays into the

environment, the technique tries to fetch the reflection information in the ray’s direction

from the caching cubemap textures. If the information is available, the algorithm returns

the color, and the recursive tracing of the respective ray stops. When the reflection infor-

mation is not available, the ray tracing proceeds normally, and the resulting color is used

to update the caching textures.

In our work, we chose to create two different strategies for the Per Object Ray Caching

technique. In the first one, entitled the Color Caching Technique (CCT), the only infor-

mation stored is the color of the reflection. In the second strategy, called the Color and

Depth Caching Technique (CDCT), we also store the depth information in addition to

the color information. Because the information in these caching textures is not the same,

the way that we store and retrieve data from them is also different.

Ray tracing is a very well-known technique that can render scenes with complex

light interactions. Because of that, many techniques have been created to make the ray

tracing algorithm less computationally intensive. Some of them focus on the geometry,

creating new data structures so that the rays can travel more efficiently through the

scene and detect intersections more quickly [Glassner 1984, Foley and Sugerman 2005,

van Reeth et al. 1996, Stich et al. 2009, Lauterbach et al. 2009]. Some are more inter-

1.1 Main Idea 3

ested in guaranteeing coherent memory access through methods such as improving the

cache performance [Pharr et al. 1997, Aila and Karras 2010, Yang et al. 2013]. Other re-

searchers, such as Sabino et al. [Sabino et al. 2012], are interested in optimizing the ray

tracing algorithm itself, using the GPU’s high level of parallelism to create a hybrid ras-

terized and ray tracing algorithm. Chapter 2 presents these related works. It discusses

the techniques for optimizing ray tracing, previous attempts to achieve coherent access to

3-dimensional space and memory, and the local storage of rendered data for computing

lighting effects.

1.1 Main Idea

Ray tracing techniques have a high computational cost because of the large number of

rays, intersections and recursive calls computed. This work proposes the use of an efficient

caching technique to store the information computed by a ray tracing solution and to use

this information in later frames to avoid the computing of redundant rays. The key

observation is that “less rays to be computed will make the ray tracing technique a less

intensive task.” Thus, it is intuitive that the frame rate will increase. However, the

quality of the reflection can be affected. Therefore, this work intends to present two

different strategies (CCT and CDCT) for the cached information, to show that the Per

Object Ray Caching technique can be used to eliminate the computation of redundant

rays in a ray tracing solution. We also intend to analyze the quality of the reflections

produced by each of proposed strategies.

Some of the primary challenges include the following:

• Storing and retrieving the color information of the ray tracing using the Color

Caching Technique (CCT).

• Storing and retrieving the color and depth information of the ray tracing using the

Color and Depth Caching Technique (CDCT).

• Combining these two approaches with an interactive ray tracing solution, completely

based in the GPU.

The structure used to store and retrieve the information is a cubic box attached to

each one of the reflective objects in the scene. The cubic boxes have six faces, and a

caching texture is assigned to each one of these faces. These textures store the reflection

1.2 Contributions 4

information from the ray tracing. The first proposed approach, the CCT, has a very simple

caching strategy. It retrieves and stores the color information of a given ray direction in

the respective texel of the caching texture. The proposed structure and the Color Caching

Technique are described in Chapter 3.

Our second strategy presented, the Color and Depth Caching Technique, uses the

same cubic structure described earlier. The difference is that the depth information is

also stored with the color. The information is stored in the same way as in the CCT

strategy. In the CDCT, the technique known as relief mapping, proposed by Policarpo et

al. [Policarpo et al. 2005], is used to retrieve the information from the caching structure.

The relief mapping creates an augmented texture that generates a tridimensional detailed

surface for the current view, which, in our case, will be the center of the object. The

relief mapping had to be adapted because it was designed to work with texture with

depth information captured from an orthogonal projection, rather than from a perspective

projection, as utilized in our technique. These subjects are discussed in Chapter 4.

The two proposed strategies, the CCT and the CDCT, are inserted and executed in

a ray tracing solution. When executing the ray tracing technique, after we calculate the

direction of the reflection/refraction ray, instead of tracing it, we check if the information

is available in our structure. If it is, we return that information without tracing the ray.

Otherwise, the ray tracing executes normally and returns the color of the reflection, which

is later stored in our structure. The idea is to completely fill the textures, avoiding the

retracing of redundant rays by the ray tracing.

1.2 Contributions

The main contribution of this work is the ray caching technique, entitled Per Object Ray

Caching [Ruff et al. 2013]. It provides a dynamic construction and usage of cubemaps

attached to scene objects to store rendered generated data for use in subsequent frames

of ray tracing frame sequences. This simple but effective strategy prevents the creation

of redundant rays and deep interactions with the environment within subsequent frames.

Our approach allows the synchronous computation of rays cast to the same object, max-

imizing the efficiency of the GPU. The approach also improves memory coalescence by

converting the task of traversing the scene into the simpler problem of fetching coalescent

regions of textures as in rasterization-based reflection mapping rendering. We have im-

plemented and tested the solution to demonstrate that our approach works well in static

1.2 Contributions 5

scenes with convex objects and that it is suitable for rendering in ray tracing systems,

especially when real time is required.

Ray tracing in static scenes can be useful in many situations, such as walkthrough in

indoor scenes, rendering and inspection of large polygon datasets, such as oil platforms.

Video games traditionally separate and mark objects that are static for a specific treat-

ment, being able to include at them specific optimizations, such as the proposed in this

work.

In this context, the contributions of this work include the following:

• A caching technique that avoids the computation of redundant rays of a ray tracing

solution.

• A simple caching technique that stores the color information using the proposed

approach.

• A caching technique that stores the color and depth information using the proposed

approach based on the relief mapping technique.

In addition to these original contributions, assertions about the proposed approach

include the following:

• Although we focus on real time ray tracing systems, the two proposed caching

techniques can be easily combined with any ray tracing solution, optimized or not.

• The relief mapping technique can be used with depth textures captured with per-

spective projection.

It is important to emphasize that our caching approach is not dependent on any of the

previous works and that it can be considered an optimization of the ray tracing algorithm.

The concept of using textures or data structures to store information of any type and use

it later is widespread in the community.

Finally, we believe that this work provides enough information to show that the

proposed ray caching technique can be used to achieve the same quality as a state-of-the-

art ray tracing solution with a better frame rate, allowing complex scenes to be rendered

faster.

1.3 Demonstration and Validation 6

1.3 Demonstration and Validation

The CCT and the CDCT were tested with a variety of scenes containing diffuse mate-

rials, reflective materials and objects with many shapes and sizes. The techniques were

implemented in two different ray tracing solutions. The first one is a state-of-the-art ray

tracing solution implemented over a ray tracer engine [Parker et al. 2010]. The second

is a ray tracing optimization exclusively executed in a GPU [Sabino et al. 2012]. The

intention is to show that our technique can be easily combined with other ray tracing

solutions. Figure 1.1 shows the comparison between a standard ray tracing solution, the

CCT and the CDCT.

(a) Conventional (b) CCT (c) CDCT

Figure 1.1: A comparison between ray tracing and the two proposed strategies. In (a),
we have the results of the conventional ray tracing technique. In (b) and (c), we have the
results of the ray tracing combined with the CCT and with the CDCT, respectively.

To evaluate the two proposed strategies, the Per Object Ray Caching technique de-

scribed in this work was compared against the solutions used as base for our implementa-

tion. The aspects compared between them were the frame rate and the reflection quality.

For the frame rate comparison, several scenes were created and tested with each one of

these techniques. The quality of the reflection was compared by subtracting the output

generated from the base ray tracing solutions with the output of our techniques. The

results generated an image that represents the differences between the outputs, based on

the color of the texels. These subjects are presented in Chapter 5.

Chapter 2

Related Work

The ray casting technique was proposed by Appel [Appel 1968]. The idea behind this

technique is to shoot rays from the camera, one for each pixel of the image, and to

find the closest object that intercepts its path. Using the material property and lighting

properties in the scene, this technique can determine whether that specific pixel is in a

shadow or not. Thus, if a ray cast from the surface intercepts the light source, the light

will reach that surface and not be blocked or in shadow.

A ray tracing algorithm was first presented by Whitted [Whitted 1980]. The research

breakthrough of this work is that after a ray hit an object, the light ray may continue

in a recursive process. After a ray strikes a surface, it can generate three types of rays:

reflection, refraction, and shadow. The reflection continues in the mirror-reflection direc-

tion from a shiny surface. Refraction rays traveling through transparent material work

similarly, although the refractive ray could be entering or exiting a material. The shadow

ray is used to test if the surface is visible to light. If the surface is in a shadow, the tracing

of recursive rays will be avoided. If the surface faces a light, a ray is traced between this

intersection point and the light. If any opaque object is found in between the surface and

the light source, the surface is in shadow, so the light does not contribute directly to its

shade.

In the ray tracing technique, the resulting color of each pixel in the visualization

area is determined by the adopted illumination model, which is flexible enough to add or

remove components as needed. In [Phong 1975], the author presents a very basic model

that has been improved over the years with the addition of new components.

Figure 2.1 illustrates the ray tracing algorithm. C is the camera from which the ray

originates, and P represents the sampled pixel in the visualization area. L is the light

2 Related Work 8

source, and S indicates shadow rays that are traced to check if the surface is facing the

light source. R represents the reflection rays that continue in the mirror-reflected direction

from a reflective object.

C

P

L

R

R

S
S

IMAGE PLANE

Figure 2.1: The ray tracing algorithm. A ray originating at the camera C through pixel
P hits an object in the scene. R represents the reflection rays that continues on in the
mirror-reflected direction from a reflective object. A ray S is also shot to check if the
pixel is facing the light source L.

The ray tracing technique is known for the complexity of light interactions that it can

render in scenes. Unfortunately, it has a very high computation cost. Because of the cost,

many studies have tried to make the ray tracing algorithm less computationally intensive.

Some have focused on the geometry, creating data structures to make rays travel more

efficiently throughout the scene and detect intersections more efficiently [Glassner 1984,

Foley and Sugerman 2005, van Reeth et al. 1996, Lauterbach et al. 2009]. These types

of optimization will be described in Section 2.1. Some other studies, were more in-

terested in guaranteeing coherent memory access, such as improving the cache perfor-

mance [Pharr et al. 1997, Aila and Karras 2010, Yang et al. 2013]. Works related to mem-

ory optimization techniques will be described in Section 2.2. Another work, performed by

Sabino et al. [Sabino et al. 2012], was more interested in the high level of parallelism of the

GPU by creating a hybrid rasterized and ray tracing optimization. This particular work

was one of the projects used in combination with our implementation and developed by the

same group. The hybrid solution created by Sabino et al. will be described in Section 2.3.

The concept of using textures or data structures to store information of any type and

be consulted them later is seen in many works [Catmull 1974, Ward 1994, Jensen 2001],

which will be described in Section 2.4.

2.1 Structure and Geometry-Based Optimizations 9

2.1 Structure and Geometry-Based Optimizations

Spatial data structures have been widely used to optimize the interaction between traced

rays and scene objects. In [Glassner 1984], the author proposed the traversal of an oc-

tree while computing the intersection of rays and the environment. Foley and Suger-

man [Foley and Sugerman 2005] were the first to demonstrate k-d tree traversal algo-

rithms suitable for the programmable rendering pipeline of GPUs and to integrate them

into a streaming ray tracer. Complete GPU implementations of ray tracers that use an

octree as an acceleration structure were also developed in the CUDA architecture by

Barboza and Clua [Barboza and Clua 2011]. Interactive ray tracing of moderate-sized

animated scenes was achieved by Wald et al. [Wald et al. 2006] by traversing frustum-

bounded packets of coherent rays through uniform grids. Regular grids and quadtree

structures were also investigated by van Reeth et al. [van Reeth et al. 1996].

The ability to efficiently rebuild the grid on every frame enabled the treatment of

fully dynamic scenes that are typically challenging for k-d tree or octree-based architec-

tures. However, state-of-the-art ray tracing engines such as OptiX [Parker et al. 2010]

use more sophisticated acceleration algorithms, such as the Bounding Volume Hierar-

chy (BVH). Of these algorithms, the Split Bounding Volume Hierarchy (SBVH) algo-

rithm [Stich et al. 2009] has been used because its data structure is simple to construct,

it has low memory footprint, it allows refitting in animations, and it works well with

packet tracing techniques. The idea behind this structure is to split a given node us-

ing either object list partitioning or spatial partitioning by selecting the more cost-

effective scheme. In the same way, the Linear Bounding Volume Hierarchy (LBVH)

algorithm [Lauterbach et al. 2009] has recently been attracting increased attention be-

cause it is focused on minimizing the cost of construction, while still producing BVHs of

good quality. It uses spatial Morton codes to reduce the BVH construction problem to a

sorting problem. The splits of the hierarchy are executed in parallel, removing many of

the existent bottlenecks in the construction algorithm.

2.2 Memory-Based Optimizations

Unfortunately, efficient spatial data structures may not guarantee coherent memory ac-

cess, because the rays may bounce in random directions. In the literature, it is possible to

find several ray tracers developed with this goal. Pharr et al. [Pharr et al. 1997] described

algorithms that use caching and lazy creation of texture and geometry to manage scene

2.3 Hybrid Optimization 10

complexity. To improve the cache performance, they increased locality of references by dy-

namically reordering the rendering computation based on the contents of the conventional

cache. Aila and Karras [Aila and Karras 2010] proposed a massively parallel hardware

architecture based on a hierarchical treelet subdivision of the acceleration structure and

the repeated queuing and postponing of rays to reduce cache pressure (i.e., the shortage

of cache memory). As a result, the authors reduced the total memory bandwidth. In a

recent work, Yang et al. [Yang et al. 2013] presented efficient data and task management

schemes designed for GPU-based ray tracing. Their approach uses fuzzy spatial analy-

sis, a two-level ray sorting method, and a ray bucket structure to reorganize ray data.

By doing so, the threads can be scheduled to achieve coherent access to the geometry

and to reduce the memory bandwidth. Our approach uses the spatial data structures

provided by OptiX to handle geometry, and no data reordering is necessary to achieve

coherent access to the rays cached in previous frames. We explore the existing texture

mapping functionalities of the GPU to store and sample the cached rays using textures

in a rasterization-based rendering.

The techniques presented in Section 2.1 and 2.2 intend to optimize the spatial data

structure or the geometry of the scene using trees and others structures to do so. Alter-

natively, our approach is focused on optimizing the ray tracing by eliminating redundant

rays. These two types of optimization have no dependencies on each other, meaning that

all the referred techniques can be combined with our approach to achieve even greater

results. In fact, the LBVH and the SBVH techniques were used in several of our tests

because they are easy to use and already built in to the OptiX engine.

2.3 Hybrid Optimization

While many works are interested in optimizing ray tracing by using new data struc-

tures and geometry arrangement, others are interested in different approaches, such

as using the GPU high parallelism of the rasterization pipeline as part of the process.

[Sabino et al. 2012] created a hybrid rasterized and ray tracing algorithm completely ex-

ecuted in a GPU. The basic idea is to use the deferred rasterization-based technique to

compute the shading of the primary rays, followed by a ray tracing phase that computes

the recursive ray effects such as transparency and specular reflection. Each stage produces

an individual image as output, requiring one more stage for combining the two generated

images to achieve the final result. The resulting image contains ray traced effects that

are not trivially obtained with rasterization, such as reflections, refractions and shadows.

2.3 Hybrid Optimization 11

The hybrid rasterized and ray tracing pipeline proposed by Sabino et al. has a se-

quence of phases. Figure 2.2 illustrates the partial results of each one of these phases

described below:

• Deferred rendering and primary ray computation: The first phase consists

of the rendering of the scene using the deferred shading, filling the G-Buffer with

information. This G-Buffer is a collection of the scene’s information that is being

rendered in the pipeline, including position, normals, depth and albedo. After the

G-Buffer has been filled, it contains information about the visible fragments and can

be considered the resulting image of the primary rays in a conventional ray tracing

(see Figure 2.2a).

• Shadows: With the information from the G-Buffer, shadow rays are generated only

for valid points. A valid point is one that represents surface information; invalid

points are those that represent the background. In Figure 2.2a, invalid points are

those that must be illuminated with the ambient map, represented by the blue

points. The result of this phase can be seen Figure 2.2b.

• Reflections and refractions: In this phase, ray tracing is used to trace the re-

flections and refractions through the scene. The resulting image is represented in

Figure 2.2c. Note that the floor has a reflective material, used to illustrate the

application of the reflection effects.

• Final composition: The final phase of the algorithm is the composition of the

stages represented by Figures 2.2a and 2.2c, i.e., the deferred rendering calculation

and the reflection/refraction computation. The two images are composed using a

shader program, taking advantage of the GPU hardware specialized in this task.

The final image can be seen in Figure 2.2d.

The results achieved by this technique are impressive. The average speed up is ap-

proximately two times the frame rate achieved by a conventional GPU ray tracing. There

are no differences when comparing the quality of the final images produced with the con-

ventional and hybrid approaches. Because there is no simplification in the ray tracing

technique. All the existing features in the conventional ray tracing are also present in the

hybrid implementation.

In the Chapter 5, many of the tests of our approach were performed by combining

the hybrid technique with our strategy and then comparing it with the standard hybrid

technique. The implementation was done using the OptiX ray tracing engine.

2.4 Texture-Based Techniques 12

Figure 2.2: The hybrid pipeline overview [Sabino et al. 2012]. In (a), we have the trace
of the primary rays, done by the rasterization-based deferred rendering technique. In (b),
the shadow rays are computed and in (c), the ray tracing algorithm is used to compute
the rest of the rays. In (d), we have the final result, created by a composition of (a) and
(c).

2.4 Texture-Based Techniques

The idea of storing information in textures and using it for computing lighting effects

is widespread. In 1974, Catmull [Catmull 1974] developed a new algorithm for render-

ing images of bivariate patches. Years later, Blinn and Newell [Blinn and Newell 1976]

presented an extension of the algorithm in the areas of texture simulation and lighting

models, developing the environment mapping. It can even now be considered an effi-

cient image-based lighting technique for approximating the look of a reflective surface by

means of a pre-computed texture image. This texture is used to store the image of the

distant environment surrounding the rendered object. There are several ways to handle

the environment information as textures. The first technique was the sphere mapping

proposed by Blinn and Newell, in which a single texture contains the image of the sur-

roundings as reflected on a mirror ball. It has been almost entirely surpassed by cube

2.4 Texture-Based Techniques 13

mapping [Greene 1986], in which the environment is projected onto the six faces of a cube

and stored as six square textures or unfolded into six square regions of a single texture.

Figure 2.3 illustrates the cube mapping process. A ray launched from the camera hits the

object at a certain point. A reflected ray continues on in the mirror-reflection direction.

This direction is then used to sample the information of the cube mapping. The sampled

texel will be the pixel seen by the camera.

Camera Ray

Normal

Reflected
Ray

Pixel Seen by
Camera Ray

Object

Figure 2.3: The cube mapping technique. A ray that comes from the camera hits the
target. The reflected ray is created by rotating the camera ray around the normal. The
pixel seen by the camera ray will be mapped onto the surface of the object.

The environment mapping is an efficient image-based lighting technique used to ap-

proximate the appearance of a reflective surface. The reflection color used in the shading

computation at a pixel is determined by calculating the reflection vector at the point on the

object and mapping it to the texel in the environment map. This technique often produces

results that are superficially similar to those generated by ray tracing, but it is less compu-

tationally expensive because a texture lookup is much simpler than following the recursive

rays traced through the scene geometry. The main drawback of this technique is that the

environment around the object is the only aspect mapped. Additionally, there is no self-

reflection or reflection of a nearby object. Miller and Hoffman [Miller and Hoffman 1984]

extended Blinn and Newell’s work to cover a wider class of reflectance models. Panoramic

images of environments were used as illumination maps that were blurred and transformed

to create reflection maps. Miller and Hoffman were the first to use perspective projection

onto cube faces. A couple years later, Greene [Greene 1986] created the well-known cube

mapping. The main difference between the conventional cube mapping and our approach

is that in the cube mapping, the textures are filled with information in a preprocessing

2.4 Texture-Based Techniques 14

stage, while in ours, the textures are dynamically filled with the ray tracing information

that is being computed on-the-fly.

The storage of the rendered data on the object’s surface was explored in [Ward 1994],

that describes a physically based rendering system to create the radiance effect on objects.

In that case, the information of the radiance is stored in structures to be later combined

with the objects in the scene. Jensen [Jensen 2001] developed the photon mapping tech-

nique that enable the efficient simulation of global illumination in complex scenes. It is

divided into two stages, the construction of the photon map and the rendering. In the

first stage, the light sources send light packets called photons into the scene. When a

photon intersects an object, this intersection point and the incoming direction are stored

in a cache called the photonmap. In the second step, the photon map created is used to

calculate the radiance of every pixel in the final image. The ray tracing technique is used

to find the closest surface of intersection. The photon mapping can simulate caustics, dif-

fuse inter-reflections, and participating media such as clouds and smoke. The information

of these effects is stored in temporary data structures to be used later to generate the

final image. In contrast to these techniques, our approach writes the traced rays in the

proposed cached memory. Additionally, the data are generated and updated in render

time.

Chapter 3

Per Object Ray Caching

The approach uses 2-dimensional caching textures (Section 3.1) to store the color of

recursive rays calculated by a ray tracer. Each reflective object of the scene contains a

particular set of six caching textures, which we call a caching cube (Section 3.2). For

each frame, before tracing a ray leaving the object, the algorithm verifies whether the

color information for that ray is already available or not using the caching cube of the

object. If the color is not available, the ray tracer calculates the ray’s color using the

conventional ray tracing technique and updates the caching cube with the new color

information (Section 3.3). However, when updated color information is available in the

caching cube, the algorithm returns the stored color, and the ray tracing does not need

to be evaluated for that ray (Section 3.4). The algorithm for the technique can be seen

in Algorithm 1. Because we are storing information for later use, it is clear that the more

the camera moves around the scene, the more stored information we will have, allowing

us to increasingly avoid the ray tracing calculation after some scene navigation.

The caching technique proposed in this work can be considered a simplification of

the plenoptic function, defined by Adelson and Bergen [Adelson and Bergen 1991] for the

subspace of the reflective points. The plenoptic function is a parametric function that

describes everything that is possible to see, from anywhere in the scene, at any time. In

McMillan and Bishop [McMillan and Bishop 1995] this function is defined by:

p = P (θ, φ, λ, Vx, Vy, Vz, t) (3.1)

where (Vx, Vy, Vz) is the position from where the observer is at, θ and φ are the azimuth

and elevation angles, and λ is the light frequency to be observed. For dynamic scenes, t

describes the time.

3.1 The Caching Textures 16

It can be said that this function is able to describe all possible views of a given scene.

Implement such function for a real-time ray tracing would be impractical. In our work,

since we use only static scenes, t is constant. Also, the values Vx, Vy and Vz are constants,

because we do not store the position from where the information was taken. The values

of θ and φ describe the direction where we store and retrieve the information, and λ is

the information stored. For this reason, we assume that the information stored in the

textures are an approximation of the values calculated by a ray tracing solution, but for

the purpose of real-time, the obverser can hardly notice the difference because the results

achieved are very coherent.

The process of consulting a texel on the caching cube is much faster than computing

the color information through a ray tracing procedure. Because the ray tracing algorithm

will be executed more often in the first frames than the simpler texture lookup, it is

supposed that when a new reflective object appears before the camera, there will be a

decrease in the frame rate. However, as ray tracing fills the textures of the object’s caching

cube, the fetching procedure returns valid results so that the number of ray tracing calls

reduces. Stochastically, new reflective objects will appear at the camera frustum in a well

distributed manner, so that while new objects will require ray tracing calls, older ones

will primarily use the cached rays. The technique presented in this chapter, as well as

some of the results of Chapter 5, was published in [Ruff et al. 2013].

Algorithm 1: The algorithm of the Per Object Ray Caching technique.

input : rayDirection
output : reflexColor
rayDirection: The direction of the reflected ray
reflexColor : The reflection color stored in caching cube

1 info← RetrieveInformation(rayDirection)
2 if info is valid then
3 reflexColor ← info
4 else
5 reflexColor ← RayTracing(rayDirection)
6 StoreInformation(reflexColor, rayDirection)

7 end

3.1 The Caching Textures

In this work, we use 2-dimensional RGBA textures to store the color information of the

ray tracing. The color information that is stored in these textures is the pure color of the

3.2 Caching Cube Setup 17

reflection in addition to the shadow information, which means that the specular highlight

will not affect the stored information. Since static scenes do not have dynamic lights,

the shadow information will also be stored in the same way light maps deal with. The

specular highlight however, will be ignored because it depends on the position of the

observer and the light so that, if the camera moves around the scene, the position of the

specular highlight will change, leading to inconsistency in the results. For the caching

technique described in this chapter (the CCT), the alpha channel of the textures will not

be used for transparency, because the reflection colors have no transparency at all. The

alpha channel will store a flag to identify whether the stored information is valid. For

alpha equal to zero, the information is invalid and if it is equal to one, the information is

valid. This is important because we are filling the textures dynamically, and thus, all the

textures need to be initially marked as invalid. After storing a valid color in the texture,

we change the flag identification to valid, so when retrieving the information, we only

do so for a valid color. The size of these textures will greatly affect the quality of the

reflection. The chosen values are between 128 by 128 and 512 by 512. Below 128 by 128,

the quality of the reflection returns very poor results, and above 512 by 512 there is little

observable difference, but the memory used for allocation increases greatly.

3.2 Caching Cube Setup

We define a cubic box for each reflective object in the scene. This box will not be affected

by the rotation of the object, so if the object inside moves around the scene and rotates

around itself or around other objects, the box will follow the object’s position but not the

orientation. Additionally, both object and box are centered on the origin of the object

coordinate system. Figure 3.1 shows a representation of the cubic box around a reflective

sphere. The faces of the box are oriented according to the cubemap texture convention,

i.e., the faces’ normals pointing inside the cube. In our implementation, the cubic box is

not created as a piece of geometry. It is only a convention about the geometrical relation

between the object and its respective caching cube.

The caching cube setup consists of creating six caching textures, one for each face

of the box. It is easy to see that our technique uses more memory than a common ray

tracing. The greater the number of reflective objects in the scene, the greater the memory

used to store these textures. The use of the caching cube is a trade-off between speed

and memory in favor of speed. However, we remark that these textures remain in the

GPU memory, which is abundant in modern architectures. Actually, for this reason, many

3.3 Caching the Reflection Information 18

Figure 3.1: An axis-aligned cubic box assigned to a reflective sphere in object space during
the loading of the scene. The faces of the box coincide with the faces of the caching cube.

other optimization techniques currently use extra textures. In Chapter 5, we discuss the

frame rates and the quality of images produced by conventional ray tracing and by the

use of caching cubes having different resolutions.

3.3 Caching the Reflection Information

Once the caching cube is created and initialized, it is ready to store the reflection infor-

mation. The caching procedure is performed with the ray tracing. For each ray leaving

the object, we compute the direction of the reflected (3.2) or refracted (3.3) ray using

standard formulas [Pharr and Humphreys 2004]:

~r =~i+ 2~n cos θi (3.2)

~t = η~i+
(
η cos θi −

√
cos2 θt

)
~n (3.3)

where ~i is the direction of the unitary incident ray pointing to the surface, and ~n is the

unitary surface normal. θi and θt are, respectively, the angles of incidence (3.4) and

transmission (3.5), leading to:

cos θi = −
(
~i · ~n

)
(3.4)

cos2 θt = 1− η2
(
1− cos2 θi

)
(3.5)

3.3 Caching the Reflection Information 19

In (3.3), η = η1/η2, where η1 and η2 are the indices of refraction of each medium. Notice

that we assume that the rays are leaving the object while updating the caching cube. So,

for refracted rays, the first refraction and internal refractions must be calculated by the

standard ray tracing technique. Eventually, when some of these reflection rays leave the

object, the caching cube will store only the information from that point on. That is why

we assume that the first refraction and internal reflections are already solved.

We update the caching cube only for rays whose stored information is invalid (i.e., A-

channel equals zero). The current state of the cached information is retrieved for a given

ray ~r by fetching the texture position related to the cubic box and the coordinates of a ray

rs traced from the center of the box in the reflection direction ~s (~s is equal to ~r (3.2) or

~t (3.3), depending of the type of ray leaving the object). Based on the largest magnitude

coordinate of the ray, we calculate which of the six textures of the caching cube has to

be used to store the reflection information. The details are described later in this section.

In the case of invalid data, the standard ray tracing procedure is evaluated for ~r leaving

the surface of the object to compute its color.

Figure 3.2 shows the process of storing the reflection color for the CCT (Color Caching

Technique). It shows a simplified 2-dimensional view of a complete ray tracing procedure.

First, the ray r0 is traced from the camera to the scene and hits a spherical object at

point P0. In turn, the reflected ray r1 is created and shot into the environment, hitting

a square object at point P1. The recursive ray tracing continues until the ray hits a

non-reflective object or another stop condition is achieved. In this example, the reflection

color to be stored is computed as the intensities accumulated along rk, for k > 1. The

location in which the reflection color is stored in the caching square is computed from the

intersection of the ray rs leaving the center C of the square with the same direction as

r1. In Figure 3.2, rs hits the square box at P2. In our implementation, all rays traveling

from the camera (red arrows in Figure 3.2) only intercept renderable objects in the scene

because the caching cubes do not have geometry.

The face texture that stores the current ray’s color (RGB) and state (A) is selected

based on the largest magnitude coordinate direction of the reflected ray (see r1 in Fig-

ure 3.2). The texture coordinates to be used in the selected texture are computed as

follows:

tu =
1

2

(
t′u
|m|

+ 1

)
, and tv =

1

2

(
t′v
|m|

+ 1

)
(3.6)

where m is the coordinate value related to the major axis direction of ~s in object space,

and t′u and t′v are defined according to Table 3.1. It is important to comment that this is

3.3 Caching the Reflection Information 20

r1

sr P
P2

1

C
r2

r0

P0

Figure 3.2: The path of a primary ray traced from the camera to the scene is defined by
its interactions with the scene objects. In this 2-dimensional example, the primary ray r0
intersects the yellow spherical object at point P0, producing the reflected ray r1, which,
in turn, hits a squared object at point P1. The resulting reflected ray r2 keeps interacting
with the scene until some stop condition is achieved. With our approach, the creation of
r1 is prevented if the caching square (the green box) has the updated color information
at point P2, denoted by the intersection between one of the faces of the box. The ray rs
is cast from the center C in the direction of r1.

the procedure adopted for selecting the face of a cubemap in OpenGL. More information

about this process can be found in [Shreiner and Group 2009]. We assume the nearest-

neighbor interpolation while sampling the rays from the caching textures because the

writing operation is also performed on the texel’s exact location.

Table 3.1: The OpenGL’s cubemap arrangement table. The values will be used in (3.6)
while computing the caching coordinates.

Major Axis m t′u t′v
+x ~sx −~sz −~sy
−x ~sx +~sz −~sy
+y ~sy +~sx +~sz
−y ~sy +~sx −~sz
+z ~sz +~sx −~sy
−z ~sz −~sx −~sy

The texture selection and the computation of the texture coordinates have been de-

fined to be consistent with DirectX’s and OpenGL’s cubemap arrangements. However, it

is important to comment that we had to implement those operations as part of our pro-

3.3 Caching the Reflection Information 21

grams because the ray tracing engine adopted in this work (OptiX 2.6) does not support

native environment mapping techniques.

We choose the cube mapping approach instead of the sphere mapping simply because

our technique may resemble the environment mapping, which currently uses the cube

mapping approach to store the surroundings. Another reason for not using the sphere

mapping is that the degree of deformation near the poles of the sphere is very high, causing

a significant loss in the quality of the reflection. Despite that, there are no constraints

that invalidate the use of a caching sphere with our technique.

Figure 3.3: The color information stored in the caching cube from a reflective sphere after
executing the first frame of the application (top) and after moving the camera around the
object (bottom). The right side of both images shows the caching cube opened to show
the cached information from the spheres on the left side. In this particular example, we
chose to store only the pure color of the reflex and not shadow information.

Figure 3.3 (top) shows the data from the caching cube proposed by our approach when

using the CCT strategy. Black texels represent outdated information. After moving the

camera and completing a rotation of approximately 30 degrees around the object, all the

texels of the caching cube were filled with updated information (see Figure 3.3 (bottom)).

3.4 Using the Cached Values 22

As previously explained, the reflection, shadowing and specular highlight for the current

object are computed separately and then combined together, so as we can see in this

example, the caching textures are only storing the pure color of the reflex, and not the

shadow or specular highlight. However, in our technique the pure color is stored along

with the shadow information.

A simplified version of the algorithm used to store the color information can be seen

in Algorithm 2. In this pseudo-code we only present the calculation of a single face of

the cube. Note that the algorithm barely changes for the other faces. In fact, the only

difference is that, depending on the face, the values of m, t′u and t′v will change, according

to Table 3.1.

Algorithm 2: The algorithm for storing the information. A simplified version
only for the positive X axis. Note that this code uses the information of the first
row of Table 3.1.

input : rayDirection, reflexColor
texelPos : The non-normalized position of the texel
m : The coordinate value of the major axis direction
textureSize : The size of the cubemap’s texture
cubemap pos x: The bidimensional array that represents the texture

1 if x is the major axis direction then
2 m← Absolute (rayDirection.x)
3 if x is positive then
4 float2 texelPos← (−s.z,−s.y)
5 uint t← 0.5 ∗ ((texelPos/m) + 1.0) ∗ textureSize
6 cubemap pos x[t]← reflexColor

7 end

8 end

3.4 Using the Cached Values

The process of retrieving information from the caching cube using the CCT strategy is

performed every time a ray hits the object and produces a reflected or transmitted ray

whose direction (~s) is defined by Equation (3.2) or Equation (3.3), respectively. The

2-dimensional texture of the caching cube and the texture coordinates in which the ray

information resides are computed using Equation (3.6) and are implemented with a minor

change to Algorithm 2. The only difference is that instead of storing the information, we

retrieve it and assign the retrieved color information to the reflexColor variable. Once

changed, this block of pseudo-code now represents the retrieveInformation() procedure

3.4 Using the Cached Values 23

from Algorithm 1. When the stored information is valid (i.e., A-channel equals one), the

recursive ray tracing of the ray leaving the object is avoided, and the cached information

is combined with the shadow ray to compose the final intensity of the incoming ray.

When we retrieve valid information, the creation and tracing of all secondary rays is

avoided and replaced by a simpler texture fetching procedure. Thus, because it is hard to

achieve coalescent memory access in the ray tracing technique, as two neighboring rays

can travel to different places in the scene, it is more likely that threads related only to

primary rays will not be idle for long periods. In GPU-based ray tracing architectures,

this tends to maximize the efficiency of the GPU.

The technique is implemented inside an object’s material process, which can be as-

signed to any objects in the scene. It contains all the information needed for the ray

tracing to calculate the reflection and refraction of the object, such as ambient, diffuse,

specular and reflectivity coefficients. After assigning this material to one or more objects

in the scene, we only need to run the application to see the results. A comparison between

a result produced by a traditional ray tracing and our technique can be seen in Figure 3.4.

(a) Ray Tracing (b) Color Caching

Figure 3.4: A comparison between the result of a conventional ray tracing (a) and the
results of the ray tracing with the CCT (b). The scene is composed of a grid of 32 spheres.
Note that despite some minor differences in the recursive reflection, the CCT strategy can
generate similar results.

The results achieved by our technique look very similar to those of ray tracing. There

are some minor differences that can be noticed when closely analysing Figure 3.4a and

Figure 3.4b. In the first figure, we can see that the qualities of the reflection of the objects

that are very close to the main sphere look a little more realistic and accurate than in the

second figure. The main reason for this phenomenon is that, the caching textures have a

3.5 Discussion 24

fixed size and they use nearest-neighbor interpolation, so if we zoom in close enough, we

will start to see a pixelated reflection in our technique but not in the ray tracing.

3.5 Discussion

One of the main limitations of the CCT strategy is that when we store the color infor-

mation of the reflection, the information is taken from a certain point of view. In a later

frame, if we try to retrieve the information from another point of view, the color infor-

mation stored will look planar, without tridimensionality. As a consequence, the parallax

effect (i.e., the difference in the apparent position of an object viewed along two different

lines of sight) will not occur. Thus, distinct objects that are close to or far from our

object will look like they are at the same distance, giving the impression that they are

glued together. Figure 3.5 shows that the parallax effect does not occur when using our

technique.

Note that in Figure 3.5a, because the sphere is closer to the object in question and the

plane is farther, when the camera moves around the scene, the effect known as parallax

will occur. Note that from Figure 3.5a (left) to Figure 3.5a (right), a gap appeared

between the sphere and the plane. That happens because in the parallax effect, closer

objects seem to move faster than farther objects. However, in Figure 3.5b, the camera

moves in the same path as before, but no gap appears between the plane and the sphere

between Figure 3.5b (left) and Figure 3.5b (right). The reason why the parallax effect

did not occur is because we are assuming that the depth of the information stored in the

textures is all the same, as if every object is infinitely distant from the center of the cube.

A possible solution for that problem would be to store the depth information of the

reflection and then use a technique that can, based on this information, warp the texels

in such a way that the parallax effect can occur. To fix this issue, we included a technique

called relief mapping [Policarpo et al. 2005] in our approach. In the next chapter, the

relief mapping technique will be described in detail, and afterwards, we present our second

ray caching strategy, the CDCT (Color and Depth Caching Technique).

3.5 Discussion 25

(a) Ray Tracing

(b) Color Caching

Figure 3.5: The parallax effect comparison between the ray tracing and CCT. The scene
is composed of two spheres facing each other. In (a), we have the ray tracing technique
and when the camera moves around, the parallax occurs normally. In (b), we have the
CCT, and because there is no depth information on the textures, when the camera moves
around, the parallax effect does not occur.

Chapter 4

Color and Depth Caching Technique

As we have seen in the previous chapter, despite the similar results achieved by the CCT,

some problems appeared. The loss of the parallax effect highlights the bidimensional

nature of the cache. To solve this problem, we will use the relief mapping (Section 4.1)

developed by [Policarpo et al. 2005], a texture mapping technique used to render surface

details of three dimensional objects. This technique generates the correct views of 3-

dimensional meshes by augmenting textures with per texel depth information. To use

the relief mapping, we need a different caching strategy, the Color and Depth Caching

Technique (CDCT). This caching strategy has some differences from the CCT presented

in the previous chapter. The first difference is the information that we store in the caching

textures. The relief mapping technique requires the depth information of each one of the

texels in the texture, so this information must be added to our caching cube textures.

Because the three color channels cannot be changed, the simpler solution is to store the

depth information in the alpha channel, where we previously stored the outdated and

updated flag information. Another possible solution would be to create an extra texture

to store only the depth information, but that would only increase the amount of memory

used by our technique.

The relief caching cube will be the same as the caching cube. We will have an axis-

aligned cubic box, centered at the origin of the object coordinate system, following the

object’s position but not the rotation. The faces of the box will also be oriented according

to the cubemap texture convention, i.e., with the faces’ normals pointing inside the cube.

The only difference between the relief caching cube and the caching cube is that the cubic

box needs to have coordinates in the object coordinate system. To achieve that, we will

always create a box with coordinate values that contains the object, but again, these are

just values for the intersection calculation between the box and the rays. The geometry

4.1 Relief Mapping 27

of the box is not really on the scene. The reason why the box needs coordinates in the

local coordinate system is because the relief mapping needs a starting point in the space

to move along the face of the cube. To calculate this starting point, we will compute the

intersection point between the ray and the relief caching cube.

With the new caching strategy created and the relief caching cube setup, we need to

adapt the way that we store (Section 4.4) and retrieve (Section 4.5) the information of the

textures in the methods StoreInformation() andRetrieveInformation() of Algorithm 1.

The first will require a simple modification, while in the second, we will implement the

relief mapping technique. Unfortunately, the relief mapping technique cannot be used in

its standard version, so we must adapt it. The problem is in the textures that the relief

mapping samples for the information. The standard relief mapping samples the color and

depth in a texture produced through orthogonal projection, while in our work, we use

perspective projection to fill the texture in rendering time. Later in this chapter, we will

explain the adaptation of the relief mapping technique in detail.

4.1 Relief Mapping

The relief mapping technique has the ability to simulate a detailed tridimensional mesh in

a scene using only a 2-dimensional texture with depth information and coarse geometry.

The technique starts when a ray intercepts the coarse geometric object and, based on a

linear and binary search, computes the intersection point between the ray and the depth

information of the corresponding texel. At the end, it returns the correct color and depth

values to be sampled, giving the user a feeling that there are 3-dimensional details where

there is only an augmented texture mapped into a few geometric primitives.

The process is illustrated in Figure 4.1. At point A, the depth is 0 (zero), and in B,

the depth is 1 (one). The first stage of the technique consists of a linear search until the

depth value of the texture is smaller than the ray’s depth. It starts at point 1, which

represents an offset of δ in relation to A. After that, it compares the depth of point

1 with the depth of the texture at that particular point. Because the depth value in

point 1 is smaller than the texture depth, it repeats the process of offsetting the ray and

calculating the depth until it arrives at point 3. The ray’s depth at point 3 is bigger than

the texture’s depth, so the algorithm moves to the next stage, the binary search. In this

stage, it calculates the midpoint between the last two ray positions (2 and 3), resulting in

point 4. After that, it continues to compare the depth between the ray and the texture

4.2 Relief Mapping in Orthogonal and Perspective Depth Images 28

Aeye

A

B

1

2

3

4
5

0.0

1.0

depth

δ

δ

δ

Figure 4.1: The relief mapping technique. The process starts with a linear search followed
by a binary search. The linear search stops when the depth of the ray gets bigger than
the depth of the texture (3), and the binary search stops when the threshold gets smaller
than a certain value (5). The points 1, 2 and 3 are done by the linear search, and the
points 4 and 5 are done by the binary search.

in the current position. The binary search stops when the length between the two last

points gets smaller than a certain threshold, called ε. The values of δ and ε are previously

established by the user. For small values of δ and ε, more steps of the linear and binary

search will be executed. This will lead to more precise results, because the error and the

offset are smaller. Unfortunately, they will also greatly increase the computational cost.

In Figure 4.2, Policarpo et al. [Policarpo et al. 2005] compare the results produced

by the relief mapping and other methods. In Figure 4.2a, we have the bump mapping,

in Figure 4.2b, the parallax mapping and in Figure 4.2c, the relief mapping with self-

shadowing. Notice that the technique generates impressive results if we consider that

there is only one quad (two triangles) being rendered in the screen.

4.2 Relief Mapping in Orthogonal and Perspective

Depth Images

The relief mapping described in Section 4.1 uses a 2-dimensional texture with depth

information captured with orthogonal projection. Because our objective is to capture all

4.2 Relief Mapping in Orthogonal and Perspective Depth Images 29

Figure 4.2: A quad rendered from the same point-of-view using three different techniques:
(a) bump mapping, (b) parallax mapping and (c) relief mapping with self-shadowing.
Source: [Policarpo et al. 2005].

the reflection information around a certain object, we face a problem: The orthogonal

capture is not capable of capturing the entire environment around an object. We have

only six textures, one on each face of the relief caching cube that contains the object.

Each one of these faces will be used to store the information outside the cube. By using

orthogonal projections, some parts of the environment will not be captured, illustrated by

the red regions in Figure 4.3a. One possible solution is to use perspective projections to

capture all the surrounding information. Unfortunately, the perspective projection does

not preserve the size and form of the objects when storing them in the textures. However,

it can capture the whole environment around an object, as shown in Figure 4.3b.

Figure 4.3: A simplified 2-dimensional view of the difference between capturing infor-
mation using orthogonal and perspective projections. In these images, the center of
projection is the center of the white square, and the textures are over the edges. In (a),
the environment is being captured using the orthogonal projection, so objects in the red
regions will not be captured. In (b), we have the perspective projection. Notice that there
are no red regions.

4.2 Relief Mapping in Orthogonal and Perspective Depth Images 30

Many of the features that an orthogonal projection has cannot be seen in a perspective

projection, including the following:

• The size of the objects: In the orthogonal projection, objects of the same size

will always have the same size, regardless of the distance between them and the

point of view. In the perspective projection however, objects close to the center of

projection will look bigger, and objects far from it will look smaller.

• The form of the objects: Because closer objects look bigger and distant objects

look smaller, a piece of the object that is closer to the camera will look bigger, and

the other pieces that are not so close will look smaller. Additionally, parallel lines

that go to one of the vanishing points of the projection will not remain parallel;

hence, their projections intercept themselves in the infinite.

• The field-of-view deformation: Because we have a center of projection, depend-

ing on the aperture angle from the center of projection to the projection plane, the

information stored can suffer a large deformation. Additionally, information near

the center of the projection plane suffers minor deformation, but information near

the edges of the projection plane may have major deformation.

The perspective projection has some limitations, but what allow us to use the per-

spective projection to capture the depth information is that, the straight lines in the

scene will keep being straight lines in the perspective projection. In fact, this is the only

property maintained by the perspective projection. Thus, a ray traced in the scene that

intersects the cube’s face and penetrates the depth of the image will itself remain a line

segment, and the relief mapping algorithm will work properly.

The main difference between the relief mapping in orthogonal depth images and per-

spective depth images is the procedure that retrieves the information. In an orthogonal

image, each coordinate pair s and t of the texture stores the depth information of that

same point, where the r is the exact depth, as we can see in Figure 4.4a. In contrast,

perspective depth images suffer from deformation in the storage process, so each coordi-

nate pair s and t stores the depth information of another point in space, as we can see in

Figure 4.4b. As previously explained, the deformation caused by the perspective capture

is not constant. Given that:

d0 = (s1 − s3, t1 − t3) (4.1)

d1 = (s2 − s4, t2 − t4), (4.2)

4.3 Relief Mapping Adaptation 31

where d0 and d1 are the distances between the coordinate values and the depth values,

and the texture coordinates (s1, t1), (s2, t2), (s3, t3) and (s4, t4) are the points shown in

Figure 4.4b, it is easy to notice that:

|d1| > |d0| (4.3)

where the point (s2, t2) is closer to the edge of the face and it suffers a greater deformation,

so the distance between the texture point and the point in space increases when comparing

texels with the same depth information.

texture texture(s , t)1 1

r1 r2 r1 r2

2(s , t)21 1(s , t)

2 2(s , t) (s , t)1 1 2 2(s , t)

4(s , t)43 3(s , t)

(a) (b)

Figure 4.4: Relief mapping difference between the orthogonal projection (a) and the per-
spective projection (b). Note that in the orthogonal projection, if we want to sample
the depth of point (s1, t1), the depth information r1 is in the same point (s1, t1). How-
ever, in the perspective projection, when sampling the depth of point (s1, t1), the depth
information r1 is actually stored in the point (s3, t3).

4.3 Relief Mapping Adaptation

The standard relief mapping technique cannot be used to retrieve the information from the

CDCT and must be adapted. The main problem is that in the orthogonal textures, when

a step is taken into the texture because there is no deformation, the s and t coordinates

from where we must sample are the exact same s and t coordinates where the ray is, as

shown in Figure 4.5a. However, when perspective depth images are used, because of the

deformation suffered, if we sample the texture from the s and t coordinates from where

the ray is, we will not get correct depth information, leading to inaccurate results. For

the relief mapping to work, we must find a way to calculate the texel that is storing the

correct information, as shown in Figure 4.5b. Moreover, because the degree of deformation

varies depending on the distance to the center, there is no simple way we can input the

coordinate where the ray is located to get the correct coordinate from which we must

sample.

To find the correct texel to sample the texture, we first need the center of the pro-

jection that, in our case, will always be the center of the object (the origin of the object

4.3 Relief Mapping Adaptation 32

texture

1(s , t)1

1 1(s , t)

(a)

2(s , t)2

2 2(s , t)

3(s , t)3

3 3(s , t)

4(s , t)4

4 4(s , t)

texture

(b)

1(s', t')1

1 1(s , t)

2(s', t')2

2 2(s , t)

3(s', t')3

3 3(s , t)

4(s', t')4

4 4(s , t)

5(s', t')5

5 5(s , t)

(s,t)

(s,t)

Figure 4.5: The difference between walking on the ray in an orthogonal depth image and a
perspective depth image. Notice that in (a), the coordinates where the relief must sample
are the same. However, in (b), the coordinates are not the same because of the distortion
of the perspective images.

coordinate system). This point will be converted into the world coordinates system. For

each step of the relief mapping, when the ray penetrates a little further into the texture,

we will create a line segment that starts in the center of the object and ends at a certain

step along the ray. This line segment must be normalized, and then, we will use Equa-

tion (3.6) and Algorithm 3 to retrieve the information from the cubemap information and

assigned it to the reflexColor variable.

The detailed process can be seen in Figure 4.6. The relief mapping process starts at

point Pt0 , and by walking a small distance along the ray, we arrive at Pr1 . This is the point

where we will compare the depth of the ray with the depth Pd1 of the texture at point

Pt1 . To find the correct depth, we need to create the vector
→

CPr1 and use its direction

to sample the cubemap. The largest magnitude coordinate of this vector will define what

face we are sampling, and the other two values will be used to find where in the face to

sample using Equation (3.6). With the point Pt1 in hand, we only need to compare the

values between the alpha channel (which is represented by the point Pd1) and the depth

of the ray. If the depth of the ray is smaller than the depth of the texture point Pt1 , we

4.4 Caching the Reflection Information 33

continue to walk along the ray; otherwise, we stop. This process will continue until the

depth of the ray is bigger than the depth of the texture. Once this condition is achieved,

we stop and return the correct point to sample the texture.

Algorithm 3: The algorithm for retrieving the information. A simplified version
only for the positive X axis. Note that this code uses the information of the first
row of Table 3.1.

input : rayDirection
output : reflexColor
texelPos : The non-normalized position of the texel
m : The coordinate value of the major axis direction
textureSize : The size of the cubemap’s texture
cubemap pos x: The bidimensional array that represents the texture

1 if x is the major axis direction then
2 m← Absolute (rayDirection.x)
3 if x is positive then
4 float2 texelPos← (−s.z,−s.y)
5 uint t← 0.5 ∗ ((texelPos/m) + 1.0) ∗ textureSize
6 reflexColor ← cubemap pos x[t]

7 end

8 end

The relief mapping technique is based on a linear search followed by a binary search.

Figure 4.6 only shows the concept of walking along the ray into the texture and comparing

the depth values of the ray and the texture. The linear search will also come first and

will be followed by a binary search in the adapted relief mapping. The overall process is

not changed, so it will be the same as previously explained and shown in Figure 4.1. The

only aspect needing to be changed is the way in which we walk along the ray and consult

the depth of point in the texture.

4.4 Caching the Reflection Information

With the adaptation to the relief mapping, the technique used to store the information

in the textures also needs to be changed. The procedure used in the previous chapter

(Figure 3.2) to store the information will no longer work because if we stored the in-

formation in the direction from where the ray leaves the object, the relief mapping will

return inaccurate results, as detailed in Section 4.6. The new procedure used to store the

information is shown in Figure 4.7. The path of a ray traced from the camera into the

scene executes in the same way as before. After a certain ray is traced, the ray tracing

technique will return the color of the reflection. Now, instead of creating the ray rs as

4.4 Caching the Reflection Information 34

texture
ray

C

tP1tP2tP3

Pd1
Pd2

Pd3

rP1rP2

rP3

tP0

Figure 4.6: The relief mapping technique in perspective depth images. The points Pt0 ,
Pt1 , Pt2 and Pt3 represent the texture points where the correct depth is stored. The points
Pr1 , Pr2 and Pr3 represent the points along the ray that we are walking on. The points
Pd1 , Pd2 and Pd3 represent the depth value of the corresponding point Pt.

shown in Figure 3.2 (in the same direction as r1), rs will now represent the direction from

the center C to the point P1. This direction is calculated by subtracting the point P1

from the center of the object C. The resulting vector is then normalized, creating rs. The

ray rs hits the caching cube at P2. To calculate P2 we use again the largest magnitude

coordinate of the vector rs to detect which face we need to store and use in Equation (3.6)

to calculate the coordinates for the respective texture.

Because we wish to use the reflection information with the relief mapping technique,

we also need to store the depth information. The alpha channel of the texture stores the

distance from point C to point P1. The value stored will not be normalized, i.e., between 0

and 1, as in the standard relief mapping shown in Figure 4.1. Because the alpha channel is

used to store the valid/invalid information, the change is simple. Positive values indicate

valid information, and negative values indicate invalid information (i.e., all the textures

will start with alpha equal to minus one). The texture used in our implementation will

store the non-normalized distance. The reason for not using the normalized depths is

because they are stored dynamically, so we do not know the minimum and maximum

depth values for each one of the objects, making it time consuming to normalize them.

4.5 Using the Cached Values 35

r1

sr
PP2 1

C
r2

r0

P0

Figure 4.7: The path of a primary ray as traced from the camera to the scene is defined
by its interactions with scene objects. In this 2-dimensional simplification, the ray tracing
is executed normally until the end. The ray rs is cast from the center C in the direction
of P1, hitting P2, the point where the reflection information will be stored.

The algorithm used to store the information with the relief mapping is the same one

utilized for storage without it (Algorithm 2). The only difference is that the direction

represented by rayDirection will not be the same, as explained earlier.

4.5 Using the Cached Values

The algorithm for retrieving the information of the textures is represented in Algorithm 4.

The first step in the algorithm of the adapted relief mapping is to calculate the initial point

where the relief will start. For that, we need to obtain the intersection between the line

that starts where the ray hit the object in question and ends where the reflection/refraction

ray hit any other object in the scene. Next, we need to store our current point for later

use. We also need to walk along the ray a short distance and sample the cubemap. With

the depth value of the texture in hand, we can compare it to the ray’s depth. This step

will continue until the depth of the ray is larger than the depth of the texture. Once this

step is over, the binary search will start to subdivide the last offset taken, using the last

and current coordinates of the point. This process will last until the last step taken is

4.5 Using the Cached Values 36

Algorithm 4: The storing technique with the adapted relief mapping. The
process starts with a linear search followed by a binary search. By decreasing
the value of the offset and threshold variables the algorithm can return more
precise results, but the computational cost will significantly increase.

input : rayDirection
output : correctPoint
currentPoint : The current point along the ray to be checked
objectCenter: The coordinates of object’s center
sample : The RGBA value retrieved from the caching cube
offset : The value added to the ray at each step
threshold : The error allowed in the binary search
rayDirection : The direction of the ray in the current step
correctPoint : The correct point to sample from the texture

1 currentPoint← GetIntersection (line, box)
2 for i← 1 to steps do
3 lastPoint← currentPoint
4 currentPoint← currentPoint+ offset
5 rayDirection← currentPoint− objectCenter
6 sample← RetrieveInformation (rayDirection)
7 if sample.w ≤ Length (rayDirection) then
8 currentError ← Absolute (sample.w− Length (rayDirection)
9 offset← offset/2

10 currentPoint← lastPoint+ offset
11 while currentError ≥ threshold do
12 rayDirection← currentPoint− objectCenter
13 sample← RetrieveInformation (rayDirection)
14 offset← offset/2
15 if sample.w ≤ Length (rayDirection then
16 currentPoint← currentPoint− offset
17 else
18 currentPoint← currentPoint+ offset
19 end
20 currentError ← Length (currentPoint− lastPoint)
21 end
22 correctPoint← currentPoint
23 break

24 end

25 end

smaller than a certain threshold. The for statement in Algorithm 4 represents the linear

search. Notice that every time we compare the depths in the following if statement. The

while statement represents the binary search, which will continue until a certain threshold

is achieved. Notice that the binary search is only executed if the linear search found a

point where the depth of the ray is greater than the depth of the texture.

4.6 Discussion 37

4.6 Discussion

The CCT proposed in Chapter 3 has undergone several adaptations, leading to the cre-

ation of the CDCT presented in this chapter. We have adapted the textures, the way

that we store and retrieve the information from the caching cube and the relief mapping

technique. The quality and frame rate comparison between our strategies and the other

state-of-the-art techniques are presented in Chapter 5.

The intersection between the line segment that represents the reflection ray and the

caching cube was not in the first version of the technique (i.e., the CCT). Because we

only use the coordinates of the reflection vector to determine where we must store the

information, there is no need to calculate the intersection point between this ray and the

caching cube. In Chapter 3, the technique without relief mapping do not use it. In fact,

the only reason why this intersection is calculated is because we need to find the starting

point for the relief mapping technique. As we can see in Algorithm 4, the intersection

calculation is only done in the first step of the relief mapping, and it is never used again.

The caching cube was not supposed to have coordinates in the object space, but because

of this intersection calculation, some coordinates had to be assigned to it.

r1

sr PP2
1

C

P0

r1

sr
PP2 1

C

P0

(a) (b)

Figure 4.8: The comparison between the two ways used to store the reflection information.
In (a), rs is in the same direction as r1, and using the adapted relief mapping will lead to
inaccurate results, because the point P2 will never be found. In (b), the rs is created in
the direction of P1, and it is possible for the relief mapping to find the correct depth of
P1 that is stored in P2. The black dashed lines represent each step of the adapted relief
mapping.

In this work, we used an incremental development. In Chapter 3, the technique to

store and retrieve information was very simple. We finished implementing it, and when

analyzing the initial results, they showed us exactly what we were expecting, accurate

results with no parallax effect. The relief mapping was introduced to solve the lack of

4.6 Discussion 38

parallax effect and to enhance the results. When implementing it, we had to adapt it to

work properly. Using the technique presented in Chapter 3 to store the information using

the same direction of the reflection/refraction ray leaving the object presented us with

inaccurate results. As we can see in Figure 4.8a, if we store the depth information of P1 in

P2, when executing the relief mapping (where the black dashed lines each represent one of

the steps), it will stop before hitting P2. This means that the correct depth information

will never be found. However, if we use the new storage technique, it will be possible to

find the point P2, as we can see in Figure 4.8b, which is the main reason for a change

to the technique used to store the information when using the adapted relief mapping.

After some tests, we realized that in the strategy without relief mapping, both ways to

retrieve the information, i.e., the one represented in Figure 3.2 and the one in Figure 4.7,

will generate similar visual and performance results.

Chapter 5

Results

We have implemented our technique using C++ with OpenGL 4.3, CUDA 4.0, and Op-

tiX 2.6. We have used the Assimp [Assimp 2011] library to load the 3-dimensional scenes

and the DevIL [Woods et al. 2001] library to load the environment maps. The experi-

ments were performed on a 3.40 GHz Intel Core i7-2600K machine with 8 GB of RAM

and a NVIDIA GTX680 graphics card with 2048 MB of memory. Microsoft Windows 7

(64-bit) was used as the operating system.

To the best of our knowledge, the proposed ray caching strategy can be integrated

into any existing ray tracing solution. In our experiments, we have integrated it with two

different ray tracing solutions. The first one, a hybrid raster and ray tracing framework

developed by Sabino et al. [Sabino et al. 2012], totally executed at the GPU. It was

implemented using the same programming languages adopted by our solution, except for

the use of GLSL as a shading language, which it is not required by our approach. The

framework of Sabino et al. uses the raster deferred shading technique [Deering et al. 1988,

Saito and Takahashi 1990] to prevent the computation of primary rays hitting diffuse

objects in the scene. In a subsequent step, the hybrid solution applies conventional

ray tracing to compute and add visual effects such as reflection and transmission for

pixels neglected in the previous step. The last stage of Sabino’s technique consists of the

composition of the images created by the raster and by the ray tracing stages. The second

ray tracing solution is a conventional ray tracing implemented with OptiX.

Experiments were performed using the two caching strategies developed in our work.

The first one, the CCT, was introduced in Chapter 3. This technique was combined with

the hybrid ray tracing and with the standard ray tracing. The idea was to prove that the

Per Object Ray Caching technique can be easily combined with both an optimized and

a non-optimized ray tracing solution. For the second strategy, the CDCT, presented in

5.1 Visual Quality and Performance 40

Chapter 4, the experiments were made only with the standard ray tracing implementation,

and not with the hybrid solution, because we believe that the type of ray tracing solution

used would not influence the speed up of the process.

5.1 Visual Quality and Performance

The visual quality of reflections and refractions are dependent on many factors. The first

is the size of the texture used to stored the reflection information. The influence of the

texture size in the reflection quality will be described in Section 5.1.1. Another factor

that influences the quality of the results is the strategy used to stored and retrieve this

information. Because the two proposed approaches use different procedures to store and

retrieve the information, the results produced by the CCT (Section 5.1.2) and the CDCT

(Section 5.1.3) are not the same.

5.1.1 Texture Size

The size of the textures used as the faces of the caching cube had a large influence on the

quality of the results in both strategies created in our work, i.e., the CCT and the CDCT.

Figure 5.1 presents the quality comparison between the rendering of two scenes using

the CCT on a hybrid ray tracing solution. The first one (Figure 5.1, top) is composed

of 10 objects that have diffuse materials and a reflective sphere facing the camera. The

second one is composed of 33 reflective spheres. From left to right, the first three pairs of

images were produced using the proposed CCT, while the last pair was generated by the

hybrid ray tracing. The resolutions of the 2-dimensional caching textures used in these

examples are, 128× 128, 256× 256, and 512× 512 pixels. The resolution of the output

images is 1024× 1024 pixels. Closer inspections of the resulting renders are presented

in the detailed image insets. Notice that in Figure 5.1a, the edges of the objects are

clearly bumpy. In Figure 5.1b, the texture size was increased, leading to slightly better

results. By comparing the detailed views of Figures 5.1c and 5.1d, it can be seen that the

use of 512× 512 caching textures produced results that are visually equivalent to those

produced by ray tracing.

In this Chapter, all the performance results were achieved by using caching textures

completely filled and the resolution of 512× 512 because after the caching cube has been

filled, the frame rates achieved with different resolutions of the caching textures for both

the CCT and CDCT are the same.

5.1 Visual Quality and Performance 41

(a) 128× 128 (b) 256× 256 (c) 512× 512 (d) Hybrid Ray Tracing

Figure 5.1: Images produced by ray tracing two scenes while using the hybrid ray tracing
with the CCT (a)-(c) and without it (d). The quality of the resulting images increases
with the resolution of the proposed caching structure. Notice that caching textures having
512× 512 texels (c) generated images equivalent to the standard ray tracing (d). As seen
in Table 5.1, for the images on the bottom, the CCT has the advantage of producing
results such as (a)-(c) at 42 fps, while (d) is rendered at 12 fps.

5.1.2 Color Caching Technique

The performance of the CCT was evaluated by comparing the frame rates of the standard

implementation of the framework developed by Sabino et al. with the same framework

enhanced with the proposed technique. The measurements were made using the scenes

presented in Figure 5.2. All these scenes are composed of a main reflective sphere facing

the camera and of a set of reflective spheres placed behind the observer. This setup makes

the extra spheres visible only from their reflection in the main sphere.

Figure 5.2: Scenes used in the performance comparison between the CCT implemented
as part of the hybrid ray tracing solution and the standard implementation of the same
framework. The complexity of the scenes varies from the left to the right. The scenes
include a sphere with our technique and, respectively, 1, 2, 4, 8, 16, and 32 additional
reflective spheres placed behind the camera. They can be observed from their reflections
in the main object. The resulting frames rates are presented in Table 5.1 and Figure 5.3.

5.1 Visual Quality and Performance 42

From the left to the right, the sets of additional objects are composed of, respectively,

1, 2, 4, 8, 16 and 32 spheres. The material of the main sphere implements the proposed

CCT. The material of the additional objects uses conventional ray tracing. The resolution

of the output images is 1024× 1024 pixels. The frame rates were taken after the caching

textures had been filled. The update rate at different caching resolutions is discussed

in Section 5.2. Table 5.1 presents the performance of the compared implementations

(columns 2 and 3) and the increasing speed achieved by the use of the caching textures

having resolutions of 512× 512 pixels (column 4).

Table 5.1: The performance comparison between the hybrid ray tracing solution running
with and without the CCT.

Additional Hybrid Ray Tracing
Speed UpReflective

Standard
Color Caching

Objects Technique
1 63 fps 120 fps ∼ 1.90x
2 59 fps 117 fps ∼ 1.98x
4 49 fps 98 fps ∼ 2.00x
8 38 fps 85 fps ∼ 2.24x
16 23 fps 63 fps ∼ 2.74x
32 12 fps 42 fps ∼ 3.50x

Each scene in Figure 5.2 is related to a row of Table 5.1. Notice that the greater

the number of reflective objects in the scene, the greater the increase in speed with the

CCT. This happens because, in contrast to the proposed approach, the computational

cost of the ray tracing technique is proportional to the number of bounces performed by

the rays, which is dependent on the number of objects. Figure 5.3 complements Table 5.1

by showing that the relative performance between the CCT and the hybrid solution has

an approximately linear relationship to the number of additional objects in the scene.

In Table 5.1, an interesting fact is that the frame rate values of the column 3 are not

the same for every scene tested. That would be expected, since the observer is looking

only at one object, while the other objects are placed behind him. That did not happened

in our tests because we used LBVH and SBVH structures to optimize the intersection

computation between rays and objects in the scene. These structures are updated on-

the-fly, because they support dynamic scenes. Unfortunatelly, in our case, they hindered

our results because with more objects in the scene, these structures consume more time

to be updated.

The conventional OptiX ray tracing implementation was also used to compare the

frame rate between the standard ray tracing algorithm and the algorithm with the CCT.

5.1 Visual Quality and Performance 43

0 1 2 4 8 16 32
1

1.5

2

2.5

3

3.5

Number of Additional Reflective Objects

P
e
rf

o
rm

a
n
c
e

R
a
te

(P
ro

p
o
s
e
d

/
S

ta
n
d
a
rd

)

Figure 5.3: The relative performance comparison between the CCT and the hybrid ray
tracing. The ray caching approach increases linearly in relation to the number of objects
in the scene. See Table 5.1.

Table 5.2 presents this comparison. The scene used for this test contains a group of

spheres with our technique, arranged like a grid in front of the camera (see Figure 1.1).

As expected, the speed up was smaller than with the hybrid technique. In the hybrid

approach, the primary rays are shot by the raterization-based graphics pipeline. The

actual ray tracing is performed only for secondary and higher order rays. Thus, every ray

in the hybrid approach will be replaced by our caching technique. This is in contrast to

the conventional ray tracing, in which all the primary rays are traced, and many of them

may hit a diffuse object or do not hit an object at all. These rays will not be replaced by

our Color Caching Technique, providing no increased performance speed.

Table 5.2: The performance comparison between a conventional ray tracing system run-
ning with and without the CCT.

Additional Conventional Ray Tracing
Speed UpReflective

Standard
Color Caching

Objects Technique
1 56.7 fps 57.8 fps ∼ 1.02x
2 52.0 fps 55.6 fps ∼ 1.07x
4 44.7 fps 51.8 fps ∼ 1.15x
8 32.8 fps 43.5 fps ∼ 1.32x
16 17.1 fps 33.4 fps ∼ 1.95x
32 8.0 fps 21.5 fps ∼ 2.68x

To evaluate the quality of the reflection, we used a color subtraction strategy. This

consists of calculating the absolute value of the subtraction between the color information

(the RGB channels) of the output image of the ray tracing and the output image of the

CCT. This absolute subtraction is computed pixel by pixel, and the result is stored in

5.1 Visual Quality and Performance 44

another image, called the subtraction image. In this image, a blue pixel means that the

color information from both images is the same. A red pixel indicates that the colors

are totally different from each other. Intermediate values are displayed by different colors

that are represented according to a color bar attached on the right side of the subtraction

image. A value is also assign, where zero means same colors and one totally different

colors.

A subtraction image between the standard ray tracing solution and the CCT can be

seen in Figure 5.4c and in Figure 5.5c. In the first one, the subtraction image is practically

blue. There are some minor differences between the output of the ray tracing and our

output. Note that the camera is a considerable distance from the objects of the scene.

However, if we get close enough to the objects, as in Figure 5.5, there are more noticeable

differences. Note that in Figure 5.5c the number of different pixels is greater than in

Figure 5.4c. For example, the checkerboard pattern presents some inaccurate information

when changing from one color to another. Additionally, the reflections of the objects

around the main sphere have many distinct pixel colors. This happens primarily because

of the nearest-neighbor interpolation and also because of the lack of precision from some

near-the-edge rays.

(a) Ray Tracing (b) Color Caching Technique (c) Subtraction

Figure 5.4: The image subtraction between the standard ray tracing and the CCT. In (a),
we have the results of the ray tracing technique, in (b), we have the results of the Color
Caching Technique, and, in (c), we have the subtraction image.

5.1.3 Color and Depth Caching Technique

The performance of the CDCT was evaluated only against the conventional ray tracing

solution. The reason is that because the only difference between the two techniques is the

addition of the relief mapping, the ray tracing solution used, whether standard or hybrid,

will not influence the complexity of the relief mapping process, the quality of the results,

5.1 Visual Quality and Performance 45

(a) Ray Tracing (b) Color Caching Technique (c) Subtraction

Figure 5.5: Another image subtraction between the standard ray tracing and the CCT.
In (a), we have the results of the ray tracing technique, in (b), we have the results of the
Color Caching Technique, and, in (c), we have the subtraction image.

or even any speed up of the technique. Note that there is no reason for speed up to

vary because the relief mapping is calculated only when retrieving the information. This

procedure would be executed the same number of times for any given ray tracing solution

with the same configuration, such as texture size, output image and scene. Table 5.3

shows the comparison between the frame rates produced by the conventional ray tracing

implementation and the CDCT for several values of δ and ε, where δ is the step taken

into the relief texture, and ε the threshold. The depth of the information in the textures

is represented between 0 and 100 units. Any ray that has a depth outside this range was

stored with a depth of 100 units. The values of each step (δ), varied between 2 and 0.02

units, and the error threshold (ε) varied between 0.2 and 0.002 units. Table 5.3 also shows

that for smaller values of δ and ε, the computational cost increases because more linear

and binary steps will be executed to achieve the required goal.

Table 5.3: The performance comparison between the CCT technique, a conventional ray
tracing solution and the CDCT.

Scenes
Color Caching Standard

Color and Depth

Technique Ray Tracing
Caching Technique

δ = 2 δ = 0.4 δ = 0.2 δ = 0.02
ε = 0.2 ε = 0.05 ε = 0.02 ε = 0.002

Diffuse 76.0 fps 69.6 fps 49.5 fps 35.3 fps 30.7 fps 19.0 fps
Reflective 68.2 fps 30.1 fps 13.5 fps 12.7 fps 12.1 fps 9.5 fps

Figure 5.6 shows the two scenes used to test the CDCT. In the first scene, the “Dif-

fuse” in Table 5.3, we have one reflective sphere with our technique and 31 other spheres

with a diffuse material (see Figure 5.6a). The second scene, the “Reflective” in Table 5.3,

is composed of 32 reflective spheres, all of them with the proposed technique (see Fig-

ure 5.6b). As we can see in Table 5.3, the best frame rate was achieved by the CCT,

5.1 Visual Quality and Performance 46

(a) Diffuse Scene (b) Reflective Scene

Figure 5.6: The scenes used to test the CDCT. In (a), we have a diffuse scene with one
reflective sphere and 31 diffuse spheres. In (b), the reflective scene has 32 reflective spheres
with the CDCT.

followed by the standard ray tracing solution. The worst results came from the CDCT.

Each one of the textures has 512× 512 pixels, and the output images have 1920× 1080

pixels. The resulting image generated from the CDCT can be seen in Figure 5.6.

Unfortunately, the CDCT did not produce good frame rate results. The visual quality

of the reflexes was lowered. We believe that are many factors involved. These factors

include the following:

• No native cubemap: As mentioned before, the OptiX ray tracer engine does not

support native cubemaps. That affected the CDCT more than the CCT because

the relief mapping performs much more texel sampling when walking along the ray.

• Nearest-neighbor interpolation: The lower quality of the results may have hap-

pened due to the nearest neighbor interpolation. The proposed technique does not

perform any type of filtering when sampling the caching textures. As an example,

Figure 5.6a and Figure 5.6b show that the reflection of the surroundings on a spe-

cific object is suffering some type of noise, caused by an inaccurate calculation when

retrieving the information from the relief mapping. The result of nearest neighbor

interpolation was also aggravated by the deformation caused by the perspective

projection used in the relief mapping.

• Idle threads: The relief mapping uses linear and binary searches to find the correct

texel to sample. Some of these searches can be finished very quickly, and others re-

quire more time. This leads to idle threads in the GPU pipeline and can significantly

increase the time spent to render a frame.

• Sampling not calculated in blocks: In a conventional rasterization process, close

fragments are calculated in blocks. That increases the efficiency of the rasterization

5.1 Visual Quality and Performance 47

process. In our case, because we are sampling with our own procedure, we cannot

guarantee that the rays are casted in blocks. That could significantly speed up the

CDCT because we sample the texture several times before finding the correct texel.

To evaluate the quality of the reflection of the CDCT, we also used the color sub-

traction strategy. The results are presented in Figure 5.7 and Figure 5.8. Note that the

subtraction image from the CDCT shows that there are more distinct pixels between the

CDCT and the conventional ray tracing than with the Color Caching Technique. The

noise generated by the CDCT is clearly seen when the camera is close to the object, as

in Figure 5.8b.

(a) Ray Tracing (b) CDCT (c) Subtraction

Figure 5.7: The image subtraction between the standard ray tracing and the CDCT. In
(a), we have the results of the ray tracing technique, in (b), we have the results of the
CDCT, and, in (c), we have the subtraction image.

(a) Ray Tracing (b) CDCT (c) Subtraction

Figure 5.8: Another image subtraction between the standard ray tracing and the CDCT.
In (a), we have the results of the ray tracing technique, in (b), we have the results of the
CDCT, and, in (c), we have the subtraction image.

5.2 Update Rate 48

5.2 Update Rate

The update rates of the caching cubes with different resolutions were measured by placing

a spherical reflective object in front of the camera and panning the camera around it with

nine regular steps of 10/3 degrees each. The number of outdated texels were recorded

every step before the rays were cast into the scene. The results are presented in Figure 5.9

for caching textures with, respectively, 128× 128, 256× 256, and 512× 512 pixels.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

x 10
4

Frame Index

N
u
m

b
e
r

o
f
T
e
x
e
ls

100%

3% 2% 1% 1% 1% 1% 0% 0%

Outdated Texels

(a) 128x128

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

Frame Index

N
u

m
b

e
r

o
f
T
e

x
e

ls

100%

31%

4% 3% 2% 2% 1% 0% 0%

Outdated Texels

(b) 256x256

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

x 10
5

Frame Index

N
u
m

b
e
r

o
f
T
e
x
e
ls

100%

73%

19%

10%
5% 4% 3% 2% 1%

Outdated Texels

(c) 512x512

Figure 5.9: The amount of outdated texels in the caching textures before each frame in a
sequence of nine panning steps of 10/3 degrees each.

In all three cases, the caching cubes were initialized with invalid information (100% at

the beginning of frame 1). According to Figure 5.9a, for 128× 128, only 3% of the texels

had invalid information after the first frame. After the end of the seventh frame, the

caching textures achieved almost 100% valid data. For the texture with 256× 256 pix-

els, the convergence rate is virtually the same as for the previous example. After the

first frame, 31% of the texels had invalid information, but after the seventh frame, the

caching textures are almost filled. For the case depicted in Figure 5.9c, as expected, the

convergence rate was slightly slower than the previous cases. After the first frame, 73%

of the texels had invalid information, but after 8 frames, only 1% of the texels were not

yet updated. These tests show that the caching cubes can be quickly filled, even if they

have high resolutions. A quick update is a desirable feature that promotes the reuse of

stored information.

The update rates for both the CCT and CDCT are the same. The only difference

is that because the relief mapping retrieves information from several texels for depth

comparison, if one of the texels in the ray’s texture path has invalid information, the

relief mapping stops and the ray tracing is computed normally. This will make the relief

mapping initially less efficient because even if we have the correct information for the

ray, a single texel with invalid information during the relief mapping computation will

5.3 Limitations 49

prevent the technique from finding the correct information. To solve this problem, we

could simply continue if invalid information is found, but after some tests, we found that

invalid information can introduce some convergence problems into the binary search.

5.3 Limitations

Unfortunately, the proposed approach have some limitations. They include:

• Dynamic scenes can generate invalid reflexes: The proposed approach is

tailored to static scenes. Because we are storing the previous ray tracing information

of the scene around a certain object, it is easy to see that any movement on the

scene objects would generate inconsistencies in the cached data.

• Scenes with a massive number of reflective objects can consume the GPU

memory: The proposed approach will create a caching cube on the reflective objects

in a scene. For each one of these objects, we create 6 textures with up to 512× 512

pixels. Because the memory of the GPU is limited, scenes with a massive number of

reflective objects may need more memory than the GPU has, making the memory

allocation an impossible task.

• Concave objects can generate conflicting rays, leading to inconsistent

reflection information: The technique is also tailored to be used with convex

objects and auto-reflection features. Figure 5.10 shows that when the reflective

object is convex, the resulting reflections are plausible and comparable to those

produced by conventional ray tracing solutions. However, as seen in Figure 5.11, a

concave object will generate ambiguous rays that hit different surfaces of the scene.

As a result, some cached rays fetched from the caching cube may be inconsistent at

a particular view point. See the impulsive noise in the detailed views of Figure 5.11.

5.3 Limitations 50

(a) 512× 512 (b) 512× 512

Figure 5.10: Images (a) and (b) show a cone and a cylinder whose material implements
the CCT for the hybrid ray tracing solution. In both cases, the resolution of the caching
textures was set to 512× 512 pixels.

(a) Color Caching Technique (b) Hybrid Ray Tracing

Figure 5.11: A concave object rendered using the CCT with 512× 512 caching tex-
tures (a), and the hybrid ray tracing (b). For this type of object, conflicting rays leaving
the object may have different targets.

Chapter 6

Conclusions and Future Work

Ray tracing is a very well-known technique that can produce images with a high level of

realism. Although conceptually simple, tracing rays that bounce through the entire scene

can be a very intensive task. That is the reason why many techniques have been created

to make the ray tracing algorithm less computationally intensive.

We have presented an efficient cache strategy that improves the locality of the storage

of rays computed in previous frames and the locality of cached rays’ retrieval in subse-

quent frames as rendered by ray tracing algorithms. The approach uses 2-dimensional

textures attached to the scene objects in a cubic arrangement as a cache structure. The

outdated data in a given direction of the caching cube are replaced in runtime by the

color of rays cast from the object’s surface into the environment in that direction. When

the cached data are up-to-date, the proposed approach replaces the computationally ex-

pensive bouncing of the rays leaving the object with the texture sampling mechanism

of the GPU. Our local cache system has also enhanced the coherent memory access of

the first interaction of those rays related to neighbor image pixels and has thus improved

performance in that regard. We demonstrate the effectiveness of the proposed technique

by implementing it as part of a ray tracing rendering system. Our results show increases

of up to 250% in the frame rate of scenes composed of several reflecting objects. The

relief mapping technique was adapted and combined with our technique to improve the

visual quality of the results. Unfortunately, the visual quality was not improved, and the

frame rate drops to values smaller than the standard ray tracing.

The two proposed strategies (CCT and CDCT) were tested with a variety of scenes.

It was implemented in a state-of-the-art ray tracing solution and in a hybrid ray tracing

pipeline. By doing so, we show that our techniques can be easily combined with other ray

tracing solutions. To evaluate the two proposed strategies, they were compared against

6.1 Future Work 52

the same two ray tracing solutions that we implemented our strategies on. The aspects

compared were the frame rate and reflection quality.

Improving performance by gathering related rays together in an object-driven cache

memory is a powerful technique. We believe that this idea will lead to further benefits in

the development of real-time ray tracing architectures for video games and virtual reality.

6.1 Future Work

Some of the limitations of our approach can be solved. For the static scene limitation,

one possible solution would be to flush the information on the caching cube of objects

that can be “seen” by moving elements. That could be managed by a visibility-graph-like

structure that connects all of the objects that have reflection information of each other.

Thus, when a given object moves, only the caching data of objects that are connected to

that particular entity need to be marked as outdated.

The proposed approach has the limitation of only working well with convex objects.

For concave objects, a possible solution would be to break them into convex parts.

The problem of insufficient memory of the GPU, caused by scenes with a massive

number of objects, could be solved by implementing dynamic changes of the resolution,

according to the distance and projected size of the reflective object. We could also have

a caching cube that contains a group of objects, instead of only the individual caching

cubes. Self-reflection would be a problem, but for small objects in the scene, it could

generate coherent results. Another possible solution would be to use smaller texture sizes

for objects that have specific reflectance properties, such as glossy or blurry materials.

To solve the problems of the invalid information when executing the relief mapping

algorithm, one possible solution would be to rasterize the scene before the application

starts, to store initial values of color and depth in the textures of the cube. That would

make the relief mapping always return a valid color information, even if the ray tracing

is not calculated for that particular point.

As a future work, we intend to analize the idle threads problem so that it could

be avoided. To test if they really are the bottleneck of the relief mapping, we must have

control of these threads. Unfortunately, the OptiX engine do not let us control the threads

individually. When executing the ray tracing, we simply trace rays and the engine call

threads, control them, and calculate possible intersection between the ray and the objects

6.1 Future Work 53

in the scene. A possible solution would be to find a tool that can control the call of these

threads, or to implement our technique in a ray tracing engine that gives us the power to

control the threads individually.

A promising area of future work is to use not only the rays leaving but also the rays

hitting the object to populate the caching memory. The idea is to trace two new rays for

each ray that hits the object, one in the reflection direction, and one in the direction of the

incoming ray. This is possible due to the bidirectional nature of reflectance distribution

functions [Pharr and Humphreys 2004]. By doing so, we believe that the update rate of

cached rays (Figure 5.9) may increase significantly.

Bibliography

[Adelson and Bergen 1991] Adelson, E. H. and Bergen, J. R. (1991). The plenoptic func-

tion and the elements of early vision. In Computational Models of Visual Processing,

pages 3–20. MIT Press.

[Aila and Karras 2010] Aila, T. and Karras, T. (2010). Architecture considerations for

tracing incoherent rays. In Proceedings of the Conference on High Performance Graph-

ics, pages 113–122.

[Appel 1968] Appel, A. (1968). Some techniques for shading machine renderings of solids.

In Proceedings of AFIPS, pages 37–45.

[Assimp 2011] Assimp (2011). Open asset import library.

[Barboza and Clua 2011] Barboza, D. C. and Clua, E. W. G. (2011). GPU-based data

structure for a parallel ray tracing illumination algorithm. In Proceedings of Brazilian

Symposium on Games and Digital Entertainment, pages 11–16.

[Blinn and Newell 1976] Blinn, J. F. and Newell, M. E. (1976). Texture and reflection in

computer generated images. Communications of the ACM, 19(10):542–547.

[Catmull 1974] Catmull, E. E. (1974). A subdivision algorithm for computer display of

curved surfaces. PhD thesis, University of Utah.

[Deering et al. 1988] Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N.

(1988). The triangle processor and normal vector shader: a VLSI system for high

performance graphics. In Proceedings of ACM SIGGRAPH, pages 21–30.

[Foley and Sugerman 2005] Foley, T. and Sugerman, J. (2005). KD-tree acceleration

structures for a GPU raytracer. In Proceedings of ACM SIGGRAPH/EUROGRAPH-

ICS Conference on Graphics Hardware, pages 15–22.

[Glassner 1984] Glassner, A. S. (1984). Space subdivision for fast ray tracing. IEEE

Computer Graphics and Applications, 4(10):15–24.

BIBLIOGRAPHY 55

[Greene 1986] Greene, N. (1986). Environment mapping and other applications of world

projections. IEEE Computer Graphics and Applications, 6(11):21–29.

[Jensen 2001] Jensen, H. W. (2001). Realistic Image Synthesis Using Photon Mapping.

A. K. Peters, Ltd.

[Lauterbach et al. 2009] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and

Manocha, D. (2009). Fast BVH construction on GPUs. In Proceedings of Eurographics,

pages 375–384.

[McMillan and Bishop 1995] McMillan, L. and Bishop, G. (1995). Plenoptic modeling:

An image-based rendering system. In Proceedings of the 22Nd Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages 39–46, New

York, NY, USA. ACM.

[Miller and Hoffman 1984] Miller, G. S. and Hoffman, C. R. (1984). Illumination and

reflection maps: simulated objects in simulated and real environments. In Proceedings

of ACM SIGGRAPH.

[Parker et al. 2010] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J.,

Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. (2010).

OptiX: a general purpose ray tracing engine. In Proceedings of ACM SIGGRAPH, page

Article No. 66.

[Pharr and Humphreys 2004] Pharr, M. and Humphreys, G. (2004). Physically Based

Rendering: From Theory to Implementation. Morgan Kaufmann.

[Pharr et al. 1997] Pharr, M., Kolb, C., Gershbein, R., and Hanrahan, P. (1997). Ren-

dering complex scenes with memory-coherent ray tracing. In Proceedings of ACM

SIGGRAPH, pages 101–108.

[Phong 1975] Phong, B. T. (1975). Illumination for computer generated pictures. Com-

munications of the ACM, 18(6):311–317.

[Policarpo et al. 2005] Policarpo, F., Oliveira, M. M., and Comba, J. L. D. (2005). Real-

time relief mapping on arbitrary polygonal surfaces. In Proceedings of ACM I3D, pages

155–162.

[Ruff et al. 2013] Ruff, C. F., Clua, E. W. G., and Fernandes, L. A. F. (2013). Dynamic

per object ray caching textures for real-time ray tracing. In Conference on Graphics,

Patterns and Images, 26 (SIBGRAPI).

BIBLIOGRAPHY 56

[Sabino et al. 2012] Sabino, T. L., Andrade, P., Clua, E. W. G., Montenegro, A., and

Pagliosa, P. (2012). A hybrid GPU rasterized and ray traced rendering pipeline for real

time rendering of per pixel effects. In Entertainment Computing – ICEC, volume 7522

of LNCS, pages 292–305. Springer.

[Saito and Takahashi 1990] Saito, T. and Takahashi, T. (1990). Comprehensible render-

ing of 3-D shapes. In Proceedings of ACM SIGGRAPH, pages 197–206.

[Shreiner and Group 2009] Shreiner, D. and Group, T. K. O. A. W. (2009). OpenGL

Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1.

Addison-Wesley Professional, 7th edition.

[Stich et al. 2009] Stich, M., Friedrich, H., and Dietrich, A. (2009). Spatial splits in

bounding volume hierarchies. In Proceedings of High-Performance Graphics, pages 7–

13.

[van Reeth et al. 1996] van Reeth, F., Monsieurs, P., Bekaert, P., and Flerackers, E.

(1996). Ray tracing optimization utilizing projective methods. In Proceedings of Com-

puter Graphics International, pages 47–53.

[Wald et al. 2006] Wald, I., Ize, T., Kensler, A., Knoll, A., and Parker, S. G. (2006).

Ray tracing animated scenes using coherent grid traversal. In Proceedings of ACM

SIGGRAPH, pages 485–493.

[Ward 1994] Ward, G. J. (1994). The radiance lighting simulation and rendering system.

In Proceedings of ACM SIGGRAPH, pages 459–472.

[Whitted 1980] Whitted, T. (1980). An improved illumination model for shaded display.

Communications of the ACM, 23(6):343–349.

[Woods et al. 2001] Woods, D., Weber, N., and Dario, M. (2001). Developer’s image

library. Webpage.

[Yang et al. 2013] Yang, X., Xu, D., and Zhao, L. (2013). Efficient data management for

incoherent ray tracing. Applied Soft Computing, 13(1):1–8.

