
UNIVERSIDADE FEDERAL FLUMINENSE

UÉVERTON DOS SANTOS SOUZA

Multivariate Investigation of NP-Hard Problems:
Boundaries Between Parameterized

Tractability and Intractability

NITERÓI
2014

UNIVERSIDADE FEDERAL FLUMINENSE

UÉVERTON DOS SANTOS SOUZA

Multivariate Investigation of
NP-Hard Problems: Boundaries Between

Parameterized Tractability and Intractability

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.

Advisors:
Fábio Protti

Maise Dantas da Silva
Dieter Rautenbach

NITERÓI
2014

Multivariate Investigation of NP-Hard Problems: Boundaries Between
Parameterized Tractability and Intractability

Uéverton dos Santos Souza

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.

Aproved by:

Prof. Fábio Protti / IC-UFF (Presidente)

Prof. Maise Dantas da Silva / RCM-UFF

Prof. Carlos Alberto de Jesus Martinhon / IC-UFF

Prof. Jayme Luiz Szwarcfiter / NCE-UFRJ

Prof. Sulamita Klein / DCC-UFRJ

Prof. Vinícius Gusmão Pereira de Sá / DCC-UFRJ

Niterói, May 7th 2014.

Commit your way to the Lord; Trust him, and he will act.
(Psalms 37:5)

i

To my mother, Iracemar dos Santos Souza.

ii

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Fábio Protti, for all
his patience and all the opportunities he gives me every day to grow as a researcher and as
a person. I also want to thank my co-advisor Professor Maise Dantas da Silva for all his
technical knowledge that he shared with me since the beginning of our cooperation. I also
want to express my gratitude to Professor Michael Fellows and the committee members
for the important contributions and suggestions that helped to improve the quality of
this thesis. I would like to express, in particular, my special gratitude to Professors
Dieter Rautenbach and Lucia Draque Penso for accepting me as an external researcher at
Universität Ulm for four months in Ulm, Germany.

I would like to thank my family for the unconditional love and everything you have
done for me.

I also would like to thank my friends and the members of CEDERJ, ITR-UFRRJ,
and IC-UFF, students, employees, and professors, for the support, the infra-structure,
the companionship, and the advices.

Finally, I would like to acknowledge CAPES and DAAD for financial support.

Resumo

O principal objetivo ao utilizar computação para solucionar um problema é desenvolver
um mecanismo para solucioná-lo de forma eficiente. Em geral, essa eficiência é associada
com solucionabilidade em tempo polinomial. A teoria de NP-completude foi desenvolvida
para mostrar quais problemas provavelmente não possuem algoritmos de tempo polino-
mial para solucioná-los. No entanto, muitos problemas NP-difíceis e NP-completos ainda
devem ser solucionados na prática, sendo assim natural perguntar se estes problemas
admitem um algoritmo cuja complexidade de tempo não-polinomial seja puramente uma
função de algum subconjunto de seus aspectos. Questões sobre a existência de tais algorit-
mos são tratadas pela teoria da complexidade computacional parametrizada, desenvolvida
por Downey e Fellows.

Nesta tese, apresentamos uma investigação multivariada da complexidade de alguns
problemas NP-difíceis. Primeiro, fazemos uma análise sistemática da complexidade
desses problemas, analisando seus subproblemas e mapeando quais destes pertencem a
cada um dos lados de uma “fronteira imaginária” entre tratabilidade e intratabilidade
(considerando-se como medida de eficiência a complexidade polinomial). Em seguida,
analisamos quais conjuntos de aspectos destes problemas são fontes de intratabilidade, ou
seja, conjuntos de aspectos para os quais existe um algoritmo para resolver o problema
associado cuja complexidade de tempo não-polinomial é puramente uma função desses
conjuntos. Desta forma, usamos complexidade computacional clássica e parametrizada
de forma alternante e complementar, para mostrar quais subproblemas dos problemas
apresentados são NP-difíceis, e por último para diagnosticar para quais conjuntos de
parâmetros (aspectos encapsulados) os problemas são tratáveis por parâmetros fixos.

Esta tese exibe uma análise clássica e parametrizada de diferentes grupos de proble-
mas NP-difíceis. Os problemas abordados estão divididos em quatro grupos de natureza
distinta, no contexto de estruturas de dados, jogos combinatórios e teoria dos grafos: (i)

solução para grafos e/ou e suas variantes; (II) jogos de inundação; (iii) problemas rel-
ativos à convexidade P3 em grafos; (iv) problemas sobre emparelhamento induzido em
grafos.

iv

Palavras-Chave

1. Complexidade Computacional

2. Tratabilidade por Parâmetro Fixo

3. Método de Redução a um Núcleo

4. Intratabilidade Parametrizada

5. Solução para Grafos E/Ou

6. Inundação em Grafos

7. Convexidade P3

8. Emparelhamento Induzido

Abstract

The main goal when using computing to solve a problem is to develop a mechanism to
solve it efficiently. In general, this efficiency is associated with solvability in polynomial
time. The theory of NP-completeness was developed to show which problems probably
do not have polynomial time algorithms. However, many NP-hard and NP-complete
problems must still be solved in practice; therefore it is natural to ask if each of these
problems admits an algorithm whose non-polynomial time complexity is purely a function
of some subset of its aspects. Questions about the existence of such algorithms are
addressed within the theory of parameterized computational complexity developed by
Downey and Fellows.

In this thesis we present a multivariate investigation of the complexity of some NP-
hard problems, i.e., we first develop a systematic complexity analysis of these problems,
defining its subproblems and mapping which one belongs to each side of an “imaginary
boundary” between polynomial time solvability and intractability. After that, we analyze
which sets of aspects of these problems are sources of their intractability, that is, subsets
of aspects for which there exists an algorithm to solve the associated problem, whose non-
polynomial time complexity is purely a function of those sets. Thus, we use classical and
parameterized computational complexity in an alternate and complementary approach,
to show which subproblems of the given problems are NP-hard and latter to diagnose for
which sets of parameters the problems are fixed-parameter tractable, or in FPT.

This thesis exhibits a classical and parameterized complexity analysis of different
groups of NP-hard problems. The addressed problems are divided into four groups of
distinct nature, in the context of data structures, combinatorial games, and graph theory:
(i) and/or graph solution and its variants; (ii) flooding-filling games; (iii) problems on
P3-convexity; (iv) problems on induced matchings.

vi

Keywords

1. Computational Complexity

2. Fixed-Parameter Tractability

3. Kernelization

4. Parameterized Intractability

5. And/Or Graph Solution

6. Flood-filling Games on Graphs

7. P3-Convexity

8. Induced Matching

vii

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Parameterized Tractability in Pratice 3
1.1.2 Multivariate Investigation . 4

1.2 Organization of this Thesis . 8

2 Parameterized Complexity 12
2.1 Bounded Search Tree Technique . 13
2.2 Kernelization . 14
2.3 Parameterized Intractability . 16

2.3.1 Analog of Cook’s Theorem . 17
2.4 Infeasibility of Polynomial Kernels . 18

3 Complexity of And/Or Graph Solution 21
3.1 NP-hardness Results . 25
3.2 Parameterized Complexity Results . 27
3.3 Infeasibility of Polynomial Kernels . 37
3.4 Open Problem . 38

4 Flooding Graphs 39
4.1 Flood-it on Trees . 43

4.1.1 Analogous Problems . 45
4.1.2 Phylogenetic Colored Trees . 48
4.1.3 Weighted-Flood-it . 51
4.1.4 Flood-it on 3-colored Trees . 51
4.1.5 Multi-Flood-it on Trees . 52
4.1.6 Free-Flood-it on Trees . 54

4.2 Flood-Filling Games on Power Graphs . 56
4.2.1 Flood-it on Circular Boards . 57
4.2.2 Free-Flood-it on Powers of Cycles 60

4.3 The Size of a Minimum Vertex Cover as Parameter 65
4.3.1 Polynomial Kernelization . 67

4.4 Final Considerations . 68
4.4.1 Open Problems . 69

5 On P3-convexity 71
5.0.2 Planar SAT-am3 . 72

5.1 P3-Hull Set . 74

viii

Contents ix

5.2 P3-Geodetic Set . 82
5.2.1 Parameters . 84

5.3 Open Problem . 85

6 Induced Matchings close to Maximum Matchings 86
6.1 Graphs G with ν(G) = ν2(G) . 87
6.2 Graphs G with ν(G)− ν2(G) ≤ k . 90

6.2.1 Structure . 90
6.2.2 Recognition . 91

6.3 Open Problem . 96

7 Conclusions 97

Bibliography 100

List of Figures

1.1 One possible state of knowledge about subproblems of an NP-complete
problem Π. An arrow from Π1 to Π2 signifies that Π1 is a subproblem of
Π2. 5

3.1 (a) A weighted and/or graph; (b) A weighted x-y graph. 22
3.2 A graph G and the corresponding and/or graph G′. 26
3.3 (a) A graph G, (b) the corresponding instance of Min-and/or0(k). . . . 29
3.4 FPT-reduction of graph Q in (a) to x-y graph G in (b). 31
3.5 Example of application of Rule 4a . 32
3.6 Example of application of Rule 4b . 33
3.7 Example of application of Rule 4c . 34
3.8 Example of application of Rule 4d . 35
3.9 Example of application of Rule 6 . 36
4.1 An optimal sequence of moves to flood a 3× 3 grid. 40
4.2 (a) A graph G; (b) tree T obtained from G. 44
4.3 Cpc-tree T ′ obtained from the pc-tree presented in Figure 4.2(b). 50
4.4 (a) A 2× n d-board B. (b) A subgraph of the hypergraph H of B. 58
4.5 (a) 2× n circular grid for even n; (b) 2× n circular grid for odd n. 60
4.6 (a) an edge ei; (b) gadget corresponding to ei. 61
4.7 (a) a graph G; (b) the graph Q; (c) the graph C2

n obtained from GQ 62
4.8 A sequence of moves to flood the arms of the gadget presented in Fig. 4(b). 63
4.9 States of the graph in Figure 5(c) during an optimal flooding 64
5.1 Gadget Gxi . 76
5.2 Gadget Gcj . 77
5.3 Graph obtained from F = (x1)(x2)(x1 + x̄2 + x3)(x̄1 + x̄2 + x̄3)(x̄3). 78
5.4 Gadget Gxi and its subgraph Bxi inside the rectangle. The white vertices

are pendant vertices in G and are not contained in Bxi 79
5.5 Six internal vertices to contaminate a gadget gui 81
5.6 Two vertices in {uj, uj+1, uj+2, uj+3} are contaminated implying to use only

five internal vertices to contaminate the gadget gui 81
5.7 (a) − (d) Choices of vertices in SA that imply in at least 5 vertices to be

added to SA; thicker edges mean that one of its endpoints must be added
to SA; (e) − (h) Choices of vertices in SA that imply in exactly 4 vertices
to be added to SA. 83

5.8 (a) Satisfiable boolean formula F = (x1)(x2)(x1 + ¬x2)(¬x1 + ¬x2 +
¬x3)(¬x3); (b) Graph G constructed from F 84

x

Chapter 1

Introduction

The question “P = NP?” is the most important open question in computer science,
and the theory of NP-completeness was developed to show which problems probably do not
have polynomial-time algorithms. However, many NP-hard and NP-complete problems
must still be solved in practice; therefore it is natural to ask if each of these problems
admits an algorithm whose non-polynomial time complexity is purely a function of some
subset of its aspects. Questions about the existence of such algorithms are addressed
within the theory of parameterized computational complexity developed by Downey and
Fellows.

In this thesis we develop a systematic complexity analysis of these problems, defining
its subproblems and mapping which one belongs to each side of an “imaginary boundary”
between polynomial-time solvability and intractability. After that, we analyze which
sets of aspects of these problems are sources of their intractability, that is, subsets of
aspects for which there exists an algorithm to solve the associated problem, whose non-
polynomial time complexity is purely a function of these sets. Thus, we use classical and
parameterized computational complexity in an alternate and complementary approach,
to show which subproblems of the given problems are NP-hard and latter to diagnose for
which sets of parameters the problems are fixed-parameter tractable, or in FPT.

This thesis exhibits a classical and parameterized complexity analysis of different
groups of NP-hard problems. The addressed problems are divided into four groups of
distinct nature, in the context of data structures, combinatorial games, and graph theory:
(i) and/or graph solution and its variants; (ii) flooding-filling games; (iii) problems on
P3-convexity; (iv) problems on induced matchings.

The first group of problems involve two important data structures used for modeling
many real-word applications, and/or graphs and x-y graphs. An and/or graph is an acyclic
digraph containing a source, such that every vertex v ∈ V (G) has a label f(v) ∈ {and,or}.
X-y graphs are a generalization of and/or graphs: every vertex vi of an x-y graph has
a label xi-yi meaning that vi depends on xi of its yi out-neighbors. We investigate the

1

1.1. Background 2

complexity of finding a solution subgraph H of such digraphs, which must contain the
source and obey the following rule: if a vertex is included in H then xi of its out-edges
must also be included in H, where an and-vertex has xi = yi, and an or-vertex has xi = 1.

The second group of problems consists of variants of a one-player combinatorial game
known as the Flood-Filling Game, which is played on a colored board and whose objective
is to make the board monochromatic (“flood the board”) with the minimum number of
flood moves. A flood move consists of assigning a new color ci to the a pivot tile p and
also to all the tiles connected to p by a monochromatic path immediately before the move.
The flood-filling game where all moves use the same pivot p is denoted by Flood-It. When
the player can freely choose which tile will be the pivot of each move the game is denoted
by Free-Flood-It.

The third group comprises some problems on P3-convexity. More specifically we are
interested in identifying either the minimum P3-geodetic set or the minimum P3-hull set
S of a graph, from which the whole vertex set of G is obtained either after one or eventual
iterations, respectively. Each iteration adds to a set S ′ of vertices all the vertices of
V (G) \ S ′ with two neighbors in S ′.

The last group of problems studied in this thesis focus on a classical topic in graph
theory. These problems are related to maximum matchings, maximum induced matchings,
and the distance between them in a graph. The matching number ν(G) of G is the
maximum cardinality of a matching in G, and a matching with ν(G) edges is a maximum
matching of G. An induced matching is a set M ′ of edges of G at pairwise distance
at least 2. The induced matching number ν2(G) of G is the maximum cardinality of an
induced matching in G, and an induced matching with ν2(G) edges is a maximum induced
matching. The distance between a maximum matching of a graph G and its maximum
induced matching is the difference between the cardinality of these sets (ν(G)− ν2(G)).

For each group of problems above, there is a chapter in this thesis devoted to it. A
brief abstract of our work and the obtained results will be presented at the beginning of
each chapter.

1.1 Background

A computational problem is a question to be answered, typically containing several
variables whose values are unspecified. An instance of a problem is created by specifying
particular values for its variables. A problem is described by specifying both its instances
and the nature of solutions for those instances.

A decision problem Π consists of a set DΠ of instances and a set YΠ ⊆ DΠ of yes-
instances. A decision problem is described informally by specifying: (i) a generic instance
in terms of its variables; (ii) a yes-no question stated in terms of the generic instance.

1.1. Background 3

An optimization problem Π consists of a set DΠ of instances and a set SΠ ⊆ DΠ of
solutions such that for each I ∈ DΠ, there is an associated set SΠ[I] ⊆ SΠ of solutions for
I. An optimization problem is described informally by specifying: (i) a generic instance in
terms of its variables; (ii) an objective function g to be calculated, and the properties that
must be satisfied by any solution associated with an instance created from the generic
instance. An optimal solution SΠ[I] is a solution which maximizes/minimizes the value
g(SΠ[I]).

An algorithm A for a problem Π is a finite sequence of instructions for some computer
which solves Π. A polynomial time algorithm is defined to be one whose time complexity
function is O(p(n)) for some polynomial function p, where n is used to denote the input
length [41].

Definition 1.1.1. A problem Π belongs to class P if and only if Π can be solved in
polynomial time by a deterministic algorithm.

Definition 1.1.2. A problem Π belongs to class NP if and only if for a given certificate
(a string that certifies the answer to a computation), there is a deterministic algorithm
which verifies its validity in polynomial time.

Definition 1.1.3. Given two problems Π and Π′, Π ∝ Π′ (Π is reducible to Π′ in poly-
nomial time) if there exists an algorithm that, given an instance I of Π, constructs an
instance I ′ of Π′ in polynomial time in |I| such that from a subroutine to I ′, a correct
answer for I is output.

Definition 1.1.4. A problem Π′ is NP-hard if for all problems Π ∈ NP , Π ∝ Π′; if Π′

is also in NP, then Π′ is NP-complete.

It is easy to see that Π ∈ P implies Π ∈ NP . If any single NP-hard problem can be
solved in polynomial time, then all problems in NP can also be solved in polynomial time.
If any problem in NP cannot be solved in polynomial time, then so neither can all NP-
complete problems. An NP-complete problem Π, therefore, has the following property:
Π ∈ P if and only if P = NP . The question “P = NP?” is the most important open
question in computer science.

An algorithm is efficient if its complexity function satisfies some criterion, e.g., the
complexity function is a polynomial in the instance size. A problem is tractable if it has
an efficient algorithm; otherwise, the problem is said to be intractable. As there are many
possible criteria which can be used to define efficiency, there are many possible types of
tractability and intractability [91].

1.1.1 Parameterized Tractability in Pratice

The theory of NP-completeness was developed to show which problems do not probably
have polynomial time algorithms. Since the beginning of this theory in 1971, thousands

1.1. Background 4

of other problems have been shown to be NP-hard and NP-complete. Though it is nice
to know that such problems do not have polynomial time algorithms unless P = NP , a
inconvenient fact remains: these problems (especially those with real-world applications)
must still be solved. Thus, the following question emerges:

“How does one solve NP-complete problems efficiently in practice?”

Firstly, we have two possibilities:

× - Try to construct a polynomial time algorithm (implies P = NP).

√
- Invoke some type of polynomial-time heuristic algorithm.

However, in pratice some set of aspects of the problem has bounded size or value.
There are another approaches:

× - Invoke some type of “brute force” optimal-solution technique, that in effect runs in
polynomial time because its time complexity function is O(nf(k)), where n is used to
denote the input length and k is some aspect with bounded size or value. However,
when the instances to be solved are large, this approach may not be feasible.

√
- Invoke a non-polynomial time algorithm such that its non-polynomial time complex-

ity is purely a function of some subset of aspects of the problem that are of bounded
size or value in practice.

This last approach immediately suggests the following questions:

1. Given a problem and a subset of aspects of that problem, is there an algorithm for
that problem whose non-polynomial time complexity is purely a function of those
aspects?

2. Relatively to which aspects of that problem do such algorithms exist?

If a problem Π for a set K of its aspects admits such algorithms described in (1), i.e.
solvable in f(K).nO(1) time, then Π ∈ FPT with respect toK (the class of fixed-parameter
tractable problems). Alternatively, one can show that such algorithm probably does not
exist by establishing a intractability of this version of the problem.

1.1.2 Multivariate Investigation

According to Garey and Johnson [41], whenever we are confronted with a new problem,
a natural first question to ask is: Can it be solved via a polynomial time algorithm? We
can concentrate our efforts on trying to find a polynomial time algorithm as efficient as

1.1. Background 5

possible. However, if no polynomial time algorithm is apparent, an appropriate second
question to ask is: “Is the problem NP-complete?”. Suppose now we have just succeeded
in demonstrating that our initial problem is NP-complete. Even though this answers
the two questions which began our analysis, there are still many appropriate follow-up
questions that could be asked. The problem we have been analyzing is often distilled
from a less elegant applied problem, and some of the details that were dropped in the
distillation process might alter the problem enough to make it polynomially solvable. If
not, there still might be significant special cases that can be solved in polynomial time.
Such possibilities can be investigated by analyzing subproblems of our original problem.

It should be apparent that, even though a problem Π is NP-complete, each of the
subproblems of Π might independently be either NP-complete or polynomially solvable.
Assuming that P 6= NP , we can view the subproblems of any NP-complete problem Π as
lying on different sides of an imaginary “boundary” between polynomial time solvability
and intractability [41].

Figure 1.1 [41] gives a schematic representation for one possible “current state of knowl-
edge” about a collection of subproblems of a problem Π.

Π
Subproblems of Π

NP-complete problems

Open problems
(the “frontier”)

Problems in P

Figure 1.1: One possible state of knowledge about subproblems of an NP-complete prob-
lem Π. An arrow from Π1 to Π2 signifies that Π1 is a subproblem of Π2.

In this thesis, our first goal when analyzing a problem is to determine which subprob-
lems lie on each side.

1.1. Background 6

Intractability Mapping

Any problem Π contains a domain D that is the set of all instances of Π. A problem
Π′ is a subproblem of Π if it asks the same question as Π, but only over a subset of the
domain of Π.

Definition 1.1.5. Let Π be a problem with domain D and let C = {a1, a2, . . . , a`} be a
subset of aspects of Π. We denote by:

• [a1=c′1,a2=c′2,. . .,a`=c′`]-Π the subproblem of Π with domain D′ such that each in-
stance in D′ has aspects a1, a2, . . . , a` bounded by the constants c′1, c′2, . . . , c′` respec-
tively.

• [a1,a2,. . .,a`]-Π, or [C]-Π, the family of variants of Π such that every aspect in C is
bounded by some constant.

Given an NP-hard problem Π and a subset C of its aspects, a systematic complexity
analysis starts from the following steps.

1. Verify if [C]-Π is in P , or NP-hard.

2. If [C]-Π is in P , determine each minimal subset C ′ of C such that [C ′]-Π is in P .

3. If [C]-Π is NP-hard, determine for which values of the aspects in C the problem is
solvable in polynomial time or remains NP-hard.

In a systematic complexity analysis of a problem Π, it is very common to identify
subproblems of Π which can be solved in polynomial time. In general, it can be shown by
some exhaustive algorithm in time O(nf(k)), where n is used to denote the input length
and k is some aspect with bounded size or value. Note that, when the instances to be
solved are large, this approach may not be feasible in practice.

A parameter is a function which extracts a particular aspect or set of aspects of a
problem from instances of that problem; it can also be considered as that set of aspects.
As such, a parameter is both a mechanism for isolating an aspect of a problem and the
“container” in which these aspects are packaged for subsequent manipulation [91].

Definition 1.1.6. A parameterized problem Π is described informally by specifying:

• A generic instance in terms of its variables.

• The aspects of an instance that comprise the parameter.

• A question stated in terms of the generic instance.

Definition 1.1.7. Let Π be a NP-hard problem and let S = {a1, a2, . . . , a`} be a subset
of aspects of Π. We denote by:

1.1. Background 7

• Π(a1, a2, . . . , a`), or Π(S), the parameterized version of Π where the aspects in S

are fixed as parameters.

Definition 1.1.8. [31] A parameterized problem Π(S) belongs to the class XP if there
exists an algorithm to solve Π(S) in time f(S).ng(S), where n is used to denote the input
length and f and g are arbitrary functions.

Observation 1.1.1.

1. [S]-Π and Π(S) are different problems. The instances of [S]-Π has the aspects in
S with size bounded by constants, while in Π(S) the parameters are just a mecha-
nism for isolating aspects for subsequent manipulation (in this case, the aspects not
necessarily have bounded size).

Lemma 1.1.1. Given an NP-hard problem Π and a subset S of its aspects, if [S]-Π
remains NP-hard, then the parameterized problem Π(S) is not in XP , unless P = NP .

Proof. If Π is in XP then by definition this problem is solved by an algorithm that
runs in time f(S)ng(S) for some functions f and g. When the value of every aspect in
S is fixed, the values of f(S) and g(S) become constants and this running time becomes
polynomial in n. As this algorithm also solves [S]-Π and [S]-Π is NP-hard then P = NP .

Corollary 1.1.1. If P 6= NP , then Π(S) is in XP if and only if [S]-Π is solvable in
polynomial time.

Given a problem Π and some subset S = {s1, . . . , sn} of the aspects of Π, there are
3n different basic families of variants of the problem, based on which of the aspects is
declared as either:

1. an unrestricted part of the input,

2. part of the aggregate parameterization, or

3. a fixed constant (yielding part of the indexing of the family of parameterized prob-
lems).

Let Π be problem and let S = {s1, . . . , sn} be a subset of the aspects of Π. [S1]-Π(S2)

is the family of parameterized problems where the aspects in S1 ⊆ S are fixed constants
and the aspects in S2 ⊆ S are aggregate parameters.

A parameterized problem Π(S) belongs to the class FPT , or fixed-parameter
tractable, if there exists an algorithm to solve Π(S) in time f(S).nO(1), where
n is used to denote the input length and f is an arbitrary function.

1.2. Organization of this Thesis 8

Individual parameterized results are very good at establishing whether or not a given
problem has an FPT-algorithm for a particular set of aspects of that problem. However, if
one is interested in fully characterizing the set of FPT-algorithms for parameterized ver-
sions of a NP-hard problem, individual results are not sufficient because a fixed-parameter
tractability (intractability) result says nothing about which subsets (supersets) of its as-
pects also render fixed-parameter tractability (intractability) [91]. In this case, it is neces-
sary to make a systematic parameterized complexity analysis of the problem, determining
the parameterized complexity relative to all non-empty subset of aspects of the problem.

A list of parameterized results produced by a systematic parameterized complexity
analysis relative to some set of aspects S for a problem Π can be visualized as a poly-
nomial time intractability map that shows which sets of aspects of the problem can be
said to be responsible for (and hence are sources of) that problem’s polynomial time
intractability [91].

Definition 1.1.9. [91] Given a NP-hard problem Π and some subset S of aspects of Π,
S is a source of polynomial-time intractability for Π, if Π(S) is in FPT.

“ In parameterized complexity, the focus is not on whether a problem is hard,
the theory starts from the assumption that most interesting problems are
intractable when considered classically. The focus is on the question: What
makes the problem computationally difficult? ”. [31]

In this thesis, one of the goals it is to make an analysis on the sources of polynomial
time intractability of some problems, that are “minimal” in the sense that their associated
FPT-algorithms are not trivial extensions of other FPT-algorithms.

1.2 Organization of this Thesis

The remainder of this work is organized as follows.
In Chapter 2, we present a more detailed review of the theory of parameterized com-

plexity, where the concepts and some techniques of fixed-parameter tractability and in-
tractability will be discussed. We also present the concept of polynomial kernel.

Chapter 3 presents a study on two data structures that have been used to model
several problems in computer science: and/or graphs and x-y graphs. We analyze the
classical and parameterized complexity of the optimization problems Min-and/or and
Min-x-y, which consist of finding solution subgraphs of optimal weight for and/or and
x-y graphs, respectively. The first results presented in this chapter have been published
in the paper [88]:

1.2. Organization of this Thesis 9

U. S. Souza, F. Protti and M. Dantas da Silva, “Revisiting the Complexity of
And/Or Graph Solution”, Journal of Computer and System Sciences,
79-7, 2013, 1156-1163.

We prove that:

1. Min-and/or remains NP-hard even for a very restricted family of and/or graphs
where edges have weight one and or-vertices have out-degree at most two;

2. deciding whether there is a solution subtree with weight exactly k of a given x-y
tree is also NP-hard;

3. the parameterized problem Min-and/or0(k), whose domain includes and/or graphs
allowing zero-weight edges, is W[2]-hard;

4. the parameterized problem Min-x-y(k) is W[1]-hard.

In the end of Chapter 3, we close the main open question which still remained open
in [88]: “Is the problem of finding a solution subgraph of cost at most k (where k is a
fixed parameter) in FPT?”. We answer affirmatively to this question, via kernelization
techniques. Also, using a framework developed by Bodlaender et al. (2009) and Fortnow
and Santhanam (2011), based upon the notion of compositionality, we show that the above
parameterized problem does not admit a polynomial kernel unless NP ⊆ coNP/poly .

These last results have been previously presented in the extended abstract [86]:

U. S. Souza, F. Protti and M. Dantas da Silva, “Parameterized And/Or Graph
Solution”, 12th Cologne Twente Workshop on Graphs and Combina-
torial Optimization, CTW 2013, 205-208.

In addition, during our research, we have also published the following works on appli-
cations of and/or graphs [84, 66]:

R. P. Medeiros, U. S. Souza, F. Protti, L. G. P. Murta, “Optimal Variability
Selection in Product Line Engineering”, Proc. of the 24th International
Conference on Software Engineering and Knowledge Engineering -
SEKE 2012, 635-640.

U. S. Souza, F. Protti, M. Dantas da Silva, “Complexidade Parametrizada para
Problemas em Grafos E/OU”, Pesquisa Operacional para o Desenvolvi-
mento, 4-2, 2012, 160-174.

Chapter 4 presents new results on flood-filling games, Flood-It and Free-Flood-It, in
which the player aims to make the board monochromatic with a minimum number of
flooding moves.

1.2. Organization of this Thesis 10

First, a complete mapping of the complexity of flood-filling games on trees is made,
charting the consequences of single and aggregate parameterizations by: number of colors,
number of moves, maximum distance of the pivot, maximum orbit, number of leaves, and
number of “bad moves”.

We present some polynomial time and parameterized tractability and intractability
results. We also show that Flood-It on trees and Restricted Shortest Common Superse-
quence (RSCS) are analogous problems, in the sense that they can be translated from
one to another, keeping complexity features; this implies that Flood-It on trees inherits
several complexity results already proved for RSCS, such as some interesting FPT and
W[1]-hard cases. In addition, we prove that Flood-It remains NP-hard when played on
3-colored trees, which closes an open question. We also present a general framework for
reducibility from Flood-It to Free-Flood-It; some NP-hard cases for Free-Flood-It on trees
can be derived using this approach.

These results have been published in the paper [87]:

U. S. Souza, F. Protti and M. Dantas da Silva, “Parameterized Complexity of
Flood-Filling Games on Trees”, 19th International Computing & Com-
binatorics Conference, COCOON 2013, LNCS 7936, 531-542.

We also analyze the behavior of these games when played on other classes of boards,
such as powers of cycles, circular grids and graphs with bounded vertex cover. We describe
polynomial time algorithms to play Flood-it on C2

n (the second power of a cycle on n

vertices), 2 × n circular grids, and some types of d-boards (grids with a monochromatic
column). We also show that Free-Flood-it is NP-hard on C2

n and 2× n circular grids.
These last results have been presented in [85]:

U. S. Souza, F. Protti and M. Dantas da Silva, “Inundação em Grafos”, 16th
Congreso Latino Iberoamericano de Investigación Operativa & 44th
Simpósio Brasileiro de Pesquisa Operacional, CLAIO/SBPO 2012.

Moreover, in Chapter 4 we also study the parameterized complexity of such problem
considering the size of the minimum vertex cover as parameter. We show that Flood-it is
fixed-parameter tractable when parameterized by the size of the minimum vertex cover,
and admits a polynomial kernelization when considering the number of colors as a second
parameter.

In the following chapters, I describe the works done in cooperation with professors Di-
eter Rautenbach and Lucia Draque Penso during the doctoral internship at the University
of Ulm, Germany, in the period November, 2013 to February, 2014.

In Chapter 5 we study new complexity aspects of P3-convexity restricted to graphs
with bounded maximum degree. More specifically we are interested in identifying either
the minimum P3-geodetic set or the minimum P3-hull set of such graphs. We prove that:

1.2. Organization of this Thesis 11

1. the minimum P3-hull set of a graph G can be found in polynomial time when
δ(G) ≥ n(G)

c
(for some constant c);

2. determining the size of the minimum P3-hull set of a graph remains NP-hard even
on planar graphs with maximum degree four;

3. the minimum P3-hull set of a cubic graph can be found in polynomial time;

4. determining the size of the minimum P3-hull set of a graph remains NP-hard even
on planar graphs with maximum degree three;

5. the minimum P3-hull set can be found in polynomial time in graphs with minimum
feedback vertex set of bounded size and no vertex of degree two;

6. it is NP-hard to determine the size of the minimum P3-geodetic set of a planar graph
with maximum degree three.

The results comprised in this chapter are contained in the following paper [76]:

L. D. Penso, F. Protti, D. Rautenbach, U. S. Souza, “On P3-convexity of
Graphs with Bounded Degree”, 10th International Conference on Algo-
rithmic Aspects of Information and Management, AAIM 2014.

In Chapter 6 we study graphs G with ν(G)−ν2(G) ≤ k, where ν(G) is the cardinality
of the maximum matching of G, and ν2(G) is the cardinality of its maximum induced
matching. We show that the recognition of these graphs can be done in polynomial time
for fixed k, and it is fixed parameter tractable when parameterized by k for graphs of
bounded maximum degree. Finally, we extend some of Cameron and Walker’s results to
k-matchings in graphs of sufficiently large girth.

Chapter 2

Parameterized Complexity

"Half of science is asking the right
questions."

Roger Bacon

Classical complexity views a problem as an instance and a question, where
the running time is specified by the input’s size. However, when a problem
comes from “real life” we always know more about the problem. The problem is
planar, the problem has small width, the problem only concerns small values of
the parameters. Thus, why not have a complexity theory which exploits these
structural parameters? Why not have a complexity theory more fine-tuned to
actual applications? [31]

The Parameterized Complexity Theory was proposed by Downey and Fellows [31] as
a promising alternative to deal with NP-hard problems described by the following general
form [75]: given an object x and a nonnegative integer k, does x have some property that
depends only on k (and not on the size of x)? In parameterized complexity theory, k is
set as the parameter, considered to be small in comparison with the size |x| of object x.
It may be of high interest for some problems to ask whether they admit deterministic
algorithms whose running times are exponential with respect to k but polynomial with
respect to |x|.

As is common in complexity theory, we describe problems as languages over finite
alphabets Σ. To distinguish them from parameterized problems, we refer to sets Π ⊆ Σ∗

of strings over Σ (nonempty) as classical problems [37].

Definition 2.0.1. [37] Let Σ be a finite alphabet.

1. A parametrization of Σ∗ is a mapping k : Σ∗ → N that is polynomial time com-
putable.

12

2.1. Bounded Search Tree Technique 13

2. A parameterized problem (over Σ) is a pair (Π, k) = Π(k), consisting of a set Π ⊆ Σ∗

and a parametrization k of Σ∗.

Example. Let Sat denote the set of all satisfiable propositional formulas, where
propositional formulas are encoded as strings over some finite alphabet Σ. Let k : Σ∗ → N
be the parameterization defined by:

k =

number of variables of x, if x is a formula with at least one variable,

1, otherwise.

(2.1)
If Π(k) is a parameterized problem over the alphabet Σ, then we call strings x ∈

Σ∗ instances of Π(k) and k, the the corresponding parameter. Usually, we represent a
parameterized problem Π(k) in the form:

Instance: x ∈ Σ.
Parameter: k
Problem: Decide whether x ∈ Π(k).

In the same way that the notion of polynomial time is central to the classical for-
mulation of computational complexity, a central notion to parameterized complexity is
fixed-parameter tractability.

Definition 2.0.2. [37] A parameterized problem Π(k) is fixed-parameter tractable, or
FPT, if the question “x ∈ Π(k)?” can be decided in running time f(k).|x|O(1), where f
is an arbitrary function on nonnegative integers. The corresponding complexity class is
called FPT.

2.1 Bounded Search Tree Technique

According to Downey and Fellows [31], the method of bounded search trees is probably
the easiest to apply and is based on the following facts. Many combinatorial problems
can be solved by algorithms that can be decomposed into two distinct parts:

• First, within the algorithm we compute, perhaps inefficiently, some search space
which is often an exponential-size search tree.

• Thereafter, we run some relatively efficient algorithm on each branch of the tree
simply based upon, say, depth first search.

The exponential worst-case complexity of such algorithms comes from problem in-
stances where we need complete tree traversal. For our purposes, the critical observation

2.2. Kernelization 14

is that for many parameterized problems, the size of the tree depends only upon the pa-
rameter. Then, for a fixed k, the search space becomes constant in size and the algorithm
is then efficient for each fixed k [31].

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident
to at least one vertex of the set. The problem of finding a minimum vertex cover is a
classical optimization problem in computer science. Its decision version, Vertex Cover,
was one of Karp’s 21 NP-complete problems.

Example. [31] Vertex Cover is solvable in time O(2k.nO(1)), where it is asked if a
graph G has a vertex cover of size k.

Proof. We construct a binary tree of height k as follows. Label the root of the tree
with the empty set and the graph G. Choose an edge (u, v) ∈ E. In any vertex cover
V C of G, we must have either u ∈ V C or v ∈ V C, so we create children of the root node
corresponding to these two possibilities. Thus, the first child is labeled with {u} and
G − u, and the second child is labeled with {v} and G − v. The set of vertices labeling
a node represents a “possible” vertex cover, and the graph labeling the node represents
what remains to be covered in G. In general, for a node labeled with the set of vertices
S and the subgraph H of G, we choose an edge (u, v) ∈ E(H) and create two child nodes
labeled, respectively, S ∪ {u} and H − u, and S ∪ {v} and H − v. If we create a node at
height at most k in the tree that is labeled with a graph having no edges, then a vertex
cover of cardinality at most k has been found. There is no need to explore the tree beyond
height k. �

2.2 Kernelization

According to [11], a fundamental and very powerful technique in designing FPT al-
gorithms is kernelization. In a nutshell, a kernelization algorithm for a parameterized
problem is a polynomial-time transformation that transforms any given instance to an
equivalent instance of the same problem with size and parameter bounded by a function
of the parameter in the input. Typically this is done using so-called reduction rules,
which allow the safe reduction of the instance to an equivalent “smaller” instance. In this
sense, kernelization can be viewed as polynomial-time preprocessing which has universal
applicability, not only in the design of efficient FPT algorithms, but also in the design of
approximation and heuristic algorithms [46].

Definition 2.2.1. [37] Let Π = (I, k) be a parameterized problem, where instance I is
asked to have a solution of size k. Reduction to problem kernel means to replace instance
(I, k) by a reduced instance (I’, k’) (called problem kernel, or just kernel) such that k′ ≤ ck

for a constant c, |I ′| ≤ g(k) for some function g only depending on k, and (I, k) ∈ Π if

2.2. Kernelization 15

and only if (I ′, k′) ∈ Π. Furthermore, the reduction from (I, k) to (I ′, k′) is computable
in polynomial time.

Example. [31] Vertex Cover admits a kernel of size O(k2), where k is the parameter
corresponding to the size of a vertex cover.

Proof. Observe that for a simple graph G any vertex of degree greater than k must
belong to every k-element vertex cover of G.

Step 1: Locate all vertices in G of degree greater than k; let p be the number of
such vertices. If p > k, there is no k-vertex cover. Otherwise, let k′ = k − p.

Step 2: Discard all p vertices found in step 1 and the edges incident with them. If
the resulting graph G′ has more than k′(k + 1) vertices, reject.

Step 3: If G′ has no k′-vertex cover, reject. Otherwise, any k′-vertex cover of G′

plus the p vertices from step 1 constitutes a k-vertex cover of H.

The bound k′(k + 1) in step 2 is jutisfied by the fact that a simple graph with a k′-
vertex cover and degree bounded by k has no more than k′(k+ 1) vertices. As we can see
in step 3, G′ is a kernel for the problem. �

Lemma 2.2.1. [9] Let Π be a parameterized problem. Then Π belongs to the class FPT
if and only if Π is decidable and Π has a kernel.

There are also generalizations of the above definition that have appeared in the litera-
ture. Most notably is the generalization which allows the kernelization algorithm to map
the input instance to an instance of a different language [11].

Definition 2.2.2. [11] A generalized kernelization algorithm from a parameterized prob-
lem Π(k) to another parameterized problem Π′(k′), where k′ ≤ f(k), is an algorithm that
given an instance x of Π′(k′), outputs in polynomial time on (|x| + k) an instance x′ of
Π′(k′) such that:

1. x ∈ Π(k) if and only if x′ ∈ Π′(k′),

2. |x′| ≤ f(k).

While the latter definition can prove useful in certain cases, where one can, for instance,
generalize the problem at hand in order to obtain additional combinatorial leverage, the
former definition is the more natural one [11].

2.3. Parameterized Intractability 16

2.3 Parameterized Intractability

To establish that a parameterized problem is fixed-parameter intractable we need the
following additional definitions.

Definition 2.3.1. [37] Let Π(k) and Π′(k′) be parameterized problems over alphabets Σ

and Σ′, respectively, where k′ ≤ g(k) for some computable function g : N→ N. An FPT-
reduction (or parametric reduction) from Π(k) to Π(k′) is a mapping R : Σ∗ → (Σ′)∗ such
that:

1. For all x ∈ Σ∗, it holds that x ∈ Π(k) if and only if R(x) ∈ Π′(k′);

2. R is computable by an FPT-algorithm (with respect to k);

If a parametric reduction exists between Π and Π′ then Π parametrically reduces to
Π′.

Lemma 2.3.1. (transitivity) Given parameterized problems Π, Π′ and Π′′, if Π paramet-
rically reduces to Π′ and Π′ parametrically reduces to Π′′ then Π parametrically reduces to
Π′′.

Lemma 2.3.2. (preservation of fixed-parameter tractability) Given parameterized prob-
lems Π and Π′, if Π parametrically reduces to Π′ and Π′ is fixed-parameter tractable then
Π is fixed-parameter tractable.

The following definitions give the parameterized analogs of the class NP in the theory
of NP -completeness. These classes are, for the most part, based on a series of successively
more powerful solution-checking circuits in which solutions are encoded as input vectors
to these circuits and parameters are encoded in the weights of these input vectors [91].

Definition 2.3.2. [31] Let C be a decision circuit with input variables x1, . . . , xn. The
weft of C is defined to be the maximum number of large gates on any path from the input
variables to the output line. (A gate is called large if its fan-in exceeds some preagreed
bound, in general two)

Definition 2.3.3. The weight of an assignment to the variables of a boolean circuit C
(for short, an assignment to C) is the number of 1′s in that assignment.

Weighted Weft t Depth h Circuit Satisfiability - WCS(t,h)
Instance: A weft t depth h decision circuit C.
Parameter: A positive integer k.
Question: Does C have a satisfying assignment with weight k?

Definition 2.3.4. [31] We define a parameterized problem Π to be in the class W[t] if
and only if Π is FPT-reducible to WCS(t,h).

2.3. Parameterized Intractability 17

Definition 2.3.5. (The W-hierarchy) We term the union of these W [t] classes together
with three other classes W [SAT] ⊆ W [P] ⊆ XP , the W -hierarchy. Here, W [P] denotes
the class obtained by having no restriction on depth, i.e., P -size circuits, and W [SAT]

denotes the restriction to boolean circuits of P -size. Hence, the W -hierachy is

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT] ⊆ W [P] ⊆ XP.

Downey and Fellows have conjectured that each of the containments in the W-
hierarchy is proper [31].

Observation 2.3.1. To prove that a parameterized problem Π belongs to a class W[t],
t ≥ 1, it is sufficient to show a FPT-reduction to some parameterized problem in W[t].
See Lemma 2.3.1.

In addition to the W-hierarchy, in parameterized complexity there are another hier-
archies of classes of parameterized problems, such as the M-hierarchy and A-hierarchy.
However, the results presented in this thesis focus only on the W-hierarchy.

In parameterized complexity, we define Q-hardness and Q-completeness of a param-
eterized problem Π(k) with respect to a complexity class Q, as in classical complexity
theory: Π(k) is Q-hard under FPT-reductions if every problem in Q is FPT-reducible to
Π(k); Π(k) is Q-complete under FTP-reductions if Π(k) ∈ Q and Π(k) is Q-hard.

2.3.1 Analog of Cook’s Theorem

Downey and Fellows [31] proved an analog of Cook’s Theorem by proving that a
number of combinatorial problems are of the same fixed-parameter complexity as a generic
problem about nondeterministic Turing machines. The key underlying problems are the
following.

Short Turing Machine Acceptance
Instance: A nondeterministic Turing machine M and a string x.
Parameter: A positive integer k.
Question: Does M have a computation path accepting x in at most k steps?

Weighted q-CNF Satisfiability
Instance: A boolean expression F in conjunctive normal form (CNF) such that each
clause has no more than q literals (q ≥ 2).
Parameter: A positive integer k.
Question: Does F have a satisfying truth assignment of weight k?

Theorem 2.3.1. [31] (Analog of Cook’s Theorem) The following are complete for W[1]:

1. Short Turing Machine Acceptance.

2.4. Infeasibility of Polynomial Kernels 18

2. Weighted q-CNF Satisfiability.

From Theorem 2.3.1 many other parameterized problems have been proved to be W[1]-
complete, such as Clique(k) and Independet Set(k), where k is the parameter for the size
of the subsets.

The Analog of Cook’s Theorem can be used as a tool to show W[1]-hardness and W[1]-
completeness of parameterized problems. To establish some results about W[t] classes
for t ≥ 2, Downey and Fellows presented a higher-level version of Cook’s theorem, the
Normalization Theorem.

Definition 2.3.6. We say that a propositional formula F is t-normalized if F is of the
form products-of-sums-of-products. . . of literals with t-alternations.

Note that a formula 2-normalized is the same as CNF.

Weighted t-normalized Satisfiability
Instance: A t-normalized boolean expression F (t ≥ 2).
Parameter: A positive integer k.
Question: Does F have a satisfying truth assignment of weight no more than k?

Theorem 2.3.2. [31] (The Normalization Theorem) Weighted t-normalized Satis-
fiability is complete for W[t], for all t ≥ 2.

Using this last theorem many other parameterized problems were shown to be W[t]-
hard or W[t]-complete, for some t ≥ 2. As example, the parameterized problem Dom-

inating set(k) (k is the size of the dominating set) was shown to be W[2]-complete.
Several other results can be found in [31].

2.4 Infeasibility of Polynomial Kernels

Since every FPT problem has a kernelization algorithm, it is interesting to study
problems which allow kernelization algorithms that reduce instances to a size which is
polynomially bounded by the parameter. Such problems are said to have a polynomial
kernelization algorithm, or a polynomial kernel. While positive kernelization results have
appeared regularly over the last two decades, the first results establishing infeasibility
of polynomial kernels for specific problems have appeared only recently. In particular,
Bodlaender et al. [11] and Fortnow and Santhanam [38] have developed a framework
based upon the notion of compositionality, for showing that a problem does not admit
a polynomial kernel unless NP ⊆ coNP/poly, implying a collapse of the polynomial
hierarchy to the third level (PH = Σ3

p), which is deemed unlikely.
Fortnow and Santhanam [38] first showed the infeasibility of compressing what they

called OR-SAT. Let φi, 1 ≤ i ≤ t, be instances of SAT, which is the standard language of

2.4. Infeasibility of Polynomial Kernels 19

propositional Boolean formulas. OR-SAT asks if there is a function f that, given as input
m boolean formulas φ1, . . . , φm where each φi has length at most n, outputs a boolean
formula, and has the following properties:

• f is computable in time polynomial in m and n,

• f(φ1, . . . , φm) is satisfiable if and only if at least one of the φi is satisfiable,

• |f(φ1, . . . , φm)| is bounded by a polynomial in n.

As in [70], any compression routine for OR-SAT can be thought of as an algorithm
that accepts multiple instances of SAT and returns a small formula equivalent to the “or”
of the input formulas. A Or-distillation algorithm for a given problem is designed to act
as a “Boolean OR of problem-instances”, it receives as input a sequence of instances, and
produces a YES-instance if and only if at least one of the instances in the sequences is also
a YES-instance. Although the algorithm is allowed to run in time polynomial in the total
length of the sequence, its output is required to be an instance whose size is polynomially
bounded by the size of the maximum-size instance in its input sequence. Formally, we
have the following:

Definition 2.4.1. (Or-distillation [11]) Let Π be an NP-complete problem. An Or-
distillation of Π is a polynomial time algorithm D that receives as input a series of m
instances of Π, and outputs one instance of Π, such that

• If D has as input m instances, each of size at most n, then D uses time polynomial
in m and n, and its output is bounded by a function that is polynomial in n.

• If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ Π if and only if
∃1≤i≤mxi ∈ Π.

Theorem 2.4.1. ([11]) If any NP-complete problem has an Or-distillation algorithm then
NP ⊆ coNP/poly.

Combined with Yap’s theorem [92] (NP ⊆ coNP/poly ⇒ PH ⊆ Σp
3), this will also

imply that a distillation algorithm for an NP-complete problem implies a collapse of the
polynomial hierarchy to the third level.

Definition 2.4.2. (Or-composition [11]) Let Π ⊆ L∗×N be a parameterized problem. An
Or-composition of Π is a polynomial time algorithm D that receives as input a sequence
((x1, k), (x2, k), . . . (xm, k)), with each (xi, k) ∈ L∗ × N , and outputs a pair (x′, k′), such
that

• the algorithm uses time polynomial in
∑

1≤i≤m |xi|+ k;

• k′ is bounded by a polinomial in k;

2.4. Infeasibility of Polynomial Kernels 20

• (x′, k′) ∈ Π if and only if ∃1≤i≤m(xi, k) ∈ Π.

A parameterized problem is or-compositional if it has an or-composition algorithm. If
the parameterized version of an NP-complete problem admits both a composition and a
polynomial kernel, then it also has a distillation. This will imply that if a parameterized
problem has a composition algorithm, then it has no polynomial kernel unless NP ⊆
coNP/poly, due to Theorem 2.4.1.

Theorem 2.4.2. ([11]) Let Π(k) be an or-compositional parameterized problem such that
Π is NP-complete. If Π has a polynomial kernel, then Π also has an or-distillation algo-
rithm.

Algorithms that compose multiple instances of a problem into a single instance have
been developed for various problems [11, 70, 12, 10]. Examples of the or-composition
technique can be found in [70]: composition by disjoint union, composition using IDs,
composition with colors and IDs, and composition as dynamic programming.

Chapter 3

Complexity of And/Or Graph Solution

"They did not know it was
impossible, so they did it."

Jean Cocteau

An and/or graph is an acyclic, edge-weighted directed graph containing a
single source vertex such that every vertex v has a label f(v) ∈ {and,or}. A
solution subgraph H of an and/or-graph must contain the source and obey
the following rule: if an and-vertex (resp. or-vertex) is included in H then all
(resp. one) of its out-edges must also be included in H. X-y graphs are defined
as a natural generalization of and/or graphs. In this chapter we first present
the results published in the paper [U. S. Souza, F. Protti, M. Dantas da Silva,
Revisiting the complexity of and/or graph solution, J. Comput. Syst. Sci. 79:7
(2013) 1156-1163] where we have investigated the complexity of such problems
under various aspects, including parameterized versions of it. However, this
article kept the main open question still open: Is the problem of finding a
solution subgraph of cost at most k (where k is a fixed parameter) in FPT?
We finish this work finally presenting a positive answer to this question, via
kernelization techniques. Also, using a framework developed by Bodlaender
et al. (2009) and Fortnow and Santhanam (2011), based upon the notion
of compositionality, we show that the above parameterized problem does not
admit a polynomial kernel unless NP ⊆ coNP/poly .

In this chapter we consider the complexity of problems involving two important data
structures, and/or graphs and x-y graphs. An and/or graph is an acyclic digraph con-
taining a source (a vertex that reaches all other vertices by directed paths), such that
every vertex v ∈ V (G) has a label f(v) ∈ {and,or}. In such digraphs, edges represent

21

22

dependency relations between vertices: a vertex labeled and depends on all of its out-
neighbors (conjunctive dependency), while a vertex labeled or depends on only one of its
out-neighbors (disjunctive dependency).

We define x-y graphs as a generalization of and/or graphs: every vertex vi of an x-y
graph has a label xi-yi to mean that vi depends on xi of its yi out-neighbors. Given an
and/or graph G, an equivalent x-y graph G′ is easily constructed as follows: sinks of G
are vertices with xi = yi = 0; and-vertices satisfy xi = yi; and or-vertices satisfy xi = 1.

In representations of and/or graphs, and-vertices have an arc around its out-edges.
Figure 3.1 shows in (a) an example of and/or graph, and in (b) an example of x-y graph.

And/or graphs were used for modeling problems originated in the 60’s within the do-
main of Artificial Intelligence [55, 83]. Since then, they have successfully been applied
to other fields, such as Operations Research, Automation, Robotics, Game Theory, and
Software Engineering, to model cutting problems [71], interference tests [53], failure de-
pendencies [6], robotic task plans [20], assembly/disassembly sequences [30], game trees
[58], software versioning [27], and evaluation of boolean formulas [59]. With respect to x-y
graphs, they correspond to the x-out-of-y model of resource sharing in distributed systems
[5].

In addition to the above applications, special directed hypergraphs named F-graphs are
equivalent to and/or graphs [40]. An F-graph is a directed hypergraph where hyperarcs
are called F-arcs (for forward arcs), which are of the form Ei = (Si, Ti) with |Si| = 1.
An F-graph H can be easily transformed into an and/or graph as follows: for each vertex
v ∈ V (H) do f(v)=or; for each F -arc Ei = (Si, Ti), where |Ti| ≥ 2, do: create an
and-vertex vi, add an edge (u, vi) where {u} = Si, and add an edge (vi, wj) for all wj ∈ Ti.

2-3

3-41-2 2-2

1-1 2-2 1-2 1-1

0-0 0-0

1
3

1

2 3 3 2
3

32

4

1 4 3 51
1

1 1
4

3

1 4

5 3

23 1 1 4 3

2 2

1

(a) (b)

Figure 3.1: (a) A weighted and/or graph; (b) A weighted x-y graph.

In this work, we denote by Ov and Iv, respectively, the subsets of out-neighbors and
in-neighbors of a vertex v. Also, τ(e) denotes the weight of an edge e, and we define the

23

weight of a graph as the sum of the weights of its edges. We assume |V (G)| = n and
|E(G)| = m.

The optimization problems associated with and/or graphs and x-y graphs are formally
defined below.

Min-and/or

Instance: An and/or graph G = (V,E) where each edge e has an integer weight τ(e) > 0.
Goal: Determine the minimum weight of a subdigraph H = (V ′, E ′) of G (solution
subgraph) satisfying the following properties:
• s ∈ V ′;
• if a non-sink node v is in V ′ and f(v)=and then every out-edge of v belongs to E ′;
• if a non-sink node v is in V ′ and f(v)=or then exactly one out-edge of v belongs to E ′.

Min-x-y

Instance: An x-y graph G = (V,E) where each edge e has an integer weight τ(e) > 0.
Goal: Determine the minimum weight of a subdigraph H = (V ′, E ′) of G satisfying the
following properties:
• s ∈ V ′;
• for every non-sink node vi in V ′, exactly xi of its yi out-edges belong to E ′.

In 1974, Sahni [81] showed that Min-and/or is NP-hard via a reduction from 3-Sat.
Therefore, Min-x-y is also NP-hard.

There are three trivial cases for which Min-and/or can be solved in polynomial time:

1. All vertices of G are and-vertices. In this case, G is the solution subgraph.

2. All vertices of G are or-vertices. In this case, the optimal solution subgraph is a
shortest path between s and a sink.

3. G is a tree (and/or tree). In this case, the weight of the optimal solution subgraph
of G, given by c(s), can be obtained in O(n) time via the recurrence relation below:

c(vi) =

0, if vi is a sink;∑
vj∈Ovi

(τ(vi, vj) + c(vj)), if f(vi) = and;

min
vj∈Ovi

{τ(vi, vj) + c(vj)}, if f(vi) = or.

Other three trivial cases of Min-and/or can be listed: if every or-vertex has out-
degree one then or-vertices can be converted into and-vertices, and case 1 above applies;
if every and-vertex has out-degree one then and-vertices can be converted into or-vertices,
and case 2 applies; finally, if every vertex with in-degree greater than 1 is a sink then the
recurrence presented in the case 3 can be used.

24

As noted by Adelson-Velsky in [1], the problem Min-and/or has interesting con-
nections with real-word applications in scheduling. An example is the work [1], which
employs and/or graphs to model real-time scheduling of tasks in computer communica-
tion systems. Such a scheduling problem (And/or-scheduling) generalizes the clas-
sical shortest-path and critical-path problems in graphs [1]. Given a weighted and/or
graph, And/or-scheduling consists of finding the earliest starting times t(vi), for all
vi ∈ V (G), satisfying the following conditions:

• t(vi) = 0, if vi is a sink;

• t(vi) ≥ max
vj∈Ovi

{τ(vi, vj) + t(vj)}, if f(vi) = and;

• t(vi) ≥ min
vj∈Ovi

{τ(vi, vj) + t(vj)}, if f(vi) = or.

Min-and/or can thus be viewed as a variant of And/or-scheduling: while the
latter aims at determining the minimum time necessary to perform a task, the former
aims at determining the minimum cost to perform it. Since And/or-scheduling is
solvable in polynomial time [1], its solution can be used as a practical lower bound for
Min-and/or. In addition, the recurrence equations for and/or trees lead to a bottom-up
dynamic programming algorithm to find in polynomial time a feasible solution (and hence
an upper bound) of Min-and/or.

An x-y tree is an x-y graph where no two vertices share a common out-neighbor. As
for Min-and/or, Min-x-y can be solved in O(n) time when the input x-y graph is an
x-y tree T = (V,E). To show this, observe first that the minimum weight of a solution
subtree is given by a similar recurrence (shown below), since the optimal solution of an
x-y tree rooted at a vertex vi is obtained by xi subtrees of vi:

c(vi) =

0, if vi is a sink;

min
X⊆Ovi , |X|=xi

{∑
x∈X

(τ(vi, x) + c(x))

}
For each non-sink vi, we need to compute the sum of the xi smallest values τ(vi, x) +

c(x) among its children; determining the xi-th smallest value takes O(yi) time, and thus
selecting the xi smallest values takes O(yi) time as well. Then the entire bottom-up
procedure takes overall

∑n
i=1O(yi) = O(n) time.

Motivated by the large applicability as well as the hardness of Min-and/or and
Min-x-y, we study new complexity aspects of such problems, both from a classical and
a parameterized point of view. The latter is justified by the fact that many applications
are concerned with satisfying a low cost limit. The remainder of this chapter is organized
as follows. In Section 3.1, we prove that Min-and/or remains NP-hard even for a very

3.1. NP-hardness Results 25

restricted family of and/or graphs where edges have weight one and or-vertices have out-
degree at most two (apart from another property related to some in-degrees), and that
deciding whether there is a solution subtree with weight exactly k of a given x-y tree is
NP-hard. In Section 3.2, we show that: (i) the parameterized problem Min-and/or(k, r),
which asks whether there is a solution subgraph of weight at most k where every or-vertex
has at most r out-edges with the same weight, is FPT; (ii) the parameterized problem
Min-and/or0(k), whose domain includes and/or graphs allowing zero-weight edges, is
W[2]-hard; (iii) the parameterized problem Min-x-y(k) is W[1]-hard. Finally, we prove
that Min-and/or(k) is also fixed-parameter tractable.

3.1 NP-hardness Results

We now consider a very restricted family of and/or graphs, defined as follows: Let F
be the set of all and/or graphs G satisfying the following properties: every edge in E(G)

has weight one; every or-vertex in V (G) has out-degree at most two; and vertices in V (G)

with in-degree greater than one are within distance at most one of a sink. We show that
even for such and/or graphs the problem Min-and/or remains NP-hard.

Theorem 3.1.1. Min-and/or restricted to F is NP-hard.

Proof. The proof uses a reduction from Vertex Cover, shown to be NP-hard by Karp
in [56]. Given a graph G = (V,E), we construct an and/or graph G′ = (V ′, E ′) in F as
follows. Suppose V = {v1, . . . , vn} and E = {e1, . . . , em}. Create a source s ∈ V ′ with
f(s) =and. For each edge ei ∈ E create an out-neighbor wei ∈ V ′ of s with f(wei) =or.
For each vertex vj ∈ V create a vertex wvj ∈ V ′ with f(wvj) =or, and add an edge
(wei , wvj) in E ′ if and only if ei is incident to vj. Finally, create an out-neighbor tvj for
each vertex wvj ∈ V ′ and assign τ(e) = 1 for all e ∈ E ′. Figure 3.2 illustrates in (a) a
graph G and in (b) the and/or graph G′ obtained by the construction above.

We now show that there is a vertex cover of size at most k in G if and only if there is a
solution subgraph of weight at most 2m+k in G′. Suppose first that G has a vertex cover
C of size at most k. A suitable solution subgraph H of G′ can be obtained as follows.
Vertex s must belong to V (H) by definition. Since s is an and-vertex, its m out-edges
must belong to E(H). But every out-neighbor wei of s is an or-vertex; then exactly one of
its out-edges in G′, say (wei , wvj), must also belong to E(H). We choose edge (wei , wvj) if
and only if vj ∈ C. At this point, at most |C| vertices wvj belong to V (H). Now each wvj
has exactly one out-neighbor which is a sink; then for each wvj we add only one additional
out-edge of it. Hence H has weight 2m+ |C| ≤ 2m+ k.

Conversely, suppose that G′ contains a solution subgraph H of weight at most 2m+k.
By construction, m out-edges of s belong to E(H), and for each vertex wei in V (H)

exactly one of its out-edges is in E(H). Since each vertex wvj in V (H) must have one

3.1. NP-hardness Results 26

out-neighbor, V (H) contains at most k vertices wvj . Let X be the subset of vertices of the
form wvj in V (H), and C a subset of vertices of G such that vj ∈ C if and only if wvj ∈ X.
Every vertex wei in V (H) has an out-neighbor wvj in V (H), and by construction of G′ a
vertex wei is an in-neighbor of wvj if and only if ei is incident to vj in G. Since every wei
in V (H) has an out-neighbor wvj ∈ X, every edge ei in G is incident to a vertex vj ∈ C.
Hence C is a vertex cover of G and |C| = |X| ≤ k. �

v2

v3

v4 v5

v1

v6

v7

e1

e2

e4

e3

e5

e6

e7

we1 we2 we3 we4 we5 we6 we7

wv1 wv2 wv3 wv4 wv5 wv6 wv7

tv1 tv2 tv3 tv4 tv5 tv6 tv7

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

s

1
1

1 1 1
1

1

(a) (b)

Figure 3.2: A graph G and the corresponding and/or graph G′.

To conclude this section, we show an interesting result concerning x-y trees. Although
Min-x-y can be solved in linear time when restricted to x-y trees, deciding whether there
is a solution subtree with weight exactly k of a given x-y tree is NP-hard. The following
problem is useful:

p-subset sum

Instance: Finite set Z, integer size s(z) > 0 for each z ∈ Z, positive integers p and q.
Question: Is there a subset Z ′ ⊆ Z such that |Z ′| = p and

∑
z∈Z′ s(z) = q?

Lemma 3.1.1. The problem p-subset sum is NP-hard.

Proof. The proof uses a reduction from the Subset sum problem, shown to be NP-
hard by Karp in [56]. Consider an instance of Subset sum, formed by: (i) a finite set A
such that |A| = n and each a ∈ A has an integer size t(a) > 0; (ii) a positive integer b.
Construct an instance of p-subset sum as follows:

• set p = n and q = b+ n;

• set Z = A ∪ A′, where A′ is a set consisting of n new elements;

• set s(z) = t(z) + 1 if z ∈ A;

3.2. Parameterized Complexity Results 27

• set s(z) = 1 if z ∈ A′.

It is easy to see that there is a subset X ⊆ A with
∑

x∈X t(x) = b if and only if there
is a subset Z ′ ⊆ Z with |Z ′| = p and

∑
z∈Z′ s(z) = q. �

Theorem 3.1.2. Let T be an x-y tree. Deciding whether there is a solution subtree T ′ of
T with weight exactly k is NP-hard.

Proof. The proof uses a reduction from the p-subset sum problem. Given a finite set
Z, integer sizes s(z) > 0 for each z ∈ Z, and positive integers p, q, we construct an x-y
tree T = (V,E) such that there is a solution subtree T ′ of T of weight exactly k = q + p

if and only if there is a subset Z ′ of Z such that |Z ′| = p and the sum of the sizes of the
elements in Z ′ equals q. The construction is as follows. Create a source vertex v ∈ V (T)

with label p-n. For each element z ∈ Z, create a vertex uz ∈ V (T) with label 1-1 and add
an edge ez = (v, uz) ∈ E(T) where τ(ez) = 1. Finally, for each element z ∈ Z, create a
vertex wz with label 0-0 and add an edge fz = (uz, wz) with τ(fz) = s(z).

Suppose that there is a subset Z ′ of Z such that |Z ′| = p and the sum of sizes of
its elements equals q. Since the source vertex v has label p-n, a solution subtree T ′ is
constructed as follows: v ∈ V (T ′), and for each z ∈ Z ′ add edges (v, uz) and (uz, wz)

to E(T ′), where uz and wz are vertices associated with z by construction. Observe that
each out-edge e of v satisfies τ(e) = 1, and each edge fz = (uz, wz) satisfies τ(fz) = s(z).
Hence the weight of T ′ is k = q + p.

Conversely, suppose that there is a solution subtree T ′ of T with weight p + q. By
definition, v ∈ V (T ′), and there are p out-edges of v belonging to E(T ′), each one with
weight equal to 1. Let E ′ be the subset of edges of the form fz = (uz, wz) in E(T ′). Note
that |E ′| = p and

∑
fz∈E′ τ(fz) = q. Define Z ′ = {z ∈ Z | fz = (uz, wz) ∈ E ′}. Clearly,

|Z ′| = p and
∑

z∈Z′ z = q. �

3.2 Parameterized Complexity Results

The problem Min-and/or(k, r)

By Theorem 3.1.1, Min-and/or remains NP-hard even when each or-vertex has at
most two out-neighbors. Let Min-and/or(k, r) stand for the parameterized version of
Min-and/or where every or-vertex of the input graph has at most r out-edges with
the same weight and it is asked whether there is a solution subgraph of weight at most
k. Note that the restriction “at most r out-edges with the same weight” imposed on or-
vertices is in fact a far more general situation than simply restricting the out-degree of
vertices to a constant. (We observe that, in real applications modeled by and/or-graphs,
dependency relations usually lead to graphs with out-degrees bounded by a constant.) In
this subsection, we show that Min-and/or(k, r) is in FPT for parameters k and r.

3.2. Parameterized Complexity Results 28

Theorem 3.2.1. Min-and/or(k, r) is reducible to a problem kernel in time O(m).

Proof. The proof is based on some correct reduction rules that must be applied once in
the order given below:

1. for each and-vertex vi, if
∑

vj∈Ovi
τ(vi, vj) > k then remove it;

2. for each edge e ∈ E(G), if τ(e) > k then remove it;

3. for every vertex vi 6= s, if the weight of a shortest path from s to vi is greater than
k then remove it;

4. if some vertex becomes unreachable from s then remove it;

5. remove every vertex which has become a sink;

6. remove each and-vertex such that some of its out-edges have been removed;

7. repeat rules 5 and 6 while needed.

Let G′ be the graph obtained by applying the above reduction rules. The reduction
rules have removed only vertices and edges that could not be part of a solution subgraph
of maximum weight k in G and vice-versa. Thus, if S is a solution subgraph of weight at
most k in G′ then S is also a solution subgraph of weight at most k in G. Note that the
running time to apply the above reduction rules is O(m), since G is acyclic.

In G′ the longest shortest-path from s to a sink has cost at most k, and each vertex has
at most kr out-neighbors. Thus, G′ will have a maximum number of vertices if: (i) all its
non-sink vertices have out-degree equal to kr, (ii) no vertex shares a same out-neighbor
with another vertex, and (iii) the cost of the shortest path from s to any sink is k. Hence
the number of vertices at distance i from s is at most (kr)i, that is, the total number of
the vertices in G′ is at most O((kr)k+1).

Since (a) the reduction rules can be applied in O(m) time, (b) the size of G′ is a
function of the parameters k and r, and (c) a solution subgraph of maximum weight k
in G′ is also a solution subgraph of maximum weight k in G, we conclude that G′ is a
kernel for Min-and/or(k, r). Hence Min-and/or(k, r) is reducible to a problem kernel
in O(m) time. �

Corollary 3.2.1. Min-and/or(k, r) is in FPT. �

And/or graphs with zero-weight edges

In this subsection, we consider the family Z of and/or graphs where zero-weight edges
are allowed. This can model practical situations in which some decisions can be taken at

3.2. Parameterized Complexity Results 29

no cost, although in the original definition of Min-and/or [81] all edges have positive
weights. Let Min-and/or0(k) stand for the parameterized version of Min-and/or ap-
plied to and/or graphs in Z, and Dominating Set(c) for the W[2]-hard parameterized
problem where it is asked whether an input graph Q has a dominating set of size at most
c (see [31]).

Theorem 3.2.2. Dominating Set(c) is FPT-reducible to Min-and/or0(k).

Proof. Given an instance (Q, c) of Dominating Set(c), we construct an instance
(G, k) of Min-and/or0(k) as follows: (a) create a source vertex s in G where f(s) =and;
(b) for each vertex vi ∈ V (Q), create three associated vertices ui, wi, ti where f(ui) =or,
f(wi) =and, f(ti) =or; (c) for each vertex ui ∈ V (G), add an edge (s, ui) with τ(s, ui) = 0,
and add an edge (ui, wj) with τ(ui, wj) = 0 if and only if i = j or (vi, vj) ∈ E(Q); (d)
create an edge (wi, ti) ∈ E(G) with τ(wi, ti) = 1 for all i ∈ {1, . . . , n}; (e) finally, set
k = c.

If Q contains a dominating set C such that |C| ≤ c then it is possible to construct a
solution subgraph H of G with weight at most k as follows: s and all of its out-neighbors
belong to V (H); for each vertex ui ∈ V (H), include in V (H) an out-neighbor wj of ui if
and only if vj ∈ C; and for each vertex wj ∈ V (H), add an edge (wj, tj) to E(H). Since
|C| ≤ c = k then at most k edges (wj, tj) belong to E(H). Hence H has weight at most
k.

Conversely, if G has a solution subgraph H with weight at most k then it is possible to
obtain a dominating set C of Q as follows: a vertex vi of Q belongs to C if and only if wi
belongs to V (H). Since H is a solution subgraph, by definition every non-sink or-vertex
has exactly one out-neighbor. Hence H has at most k vertices wi and |C| ≤ k. �

Figure 3.3 illustrates in (a) an instance of Dominating Set and in (b) the corre-
sponding instance of Min-and/or0(k) obtained by the construction above.

v2

v3

v4 v5

v1

v6

v7

s

t2 t4 t3t1 t7t6 t5

w1 w2 w3w4 w5w6 w7

u1 u2 u3u4 u5u6 u7

1
1 1

1
1

1
1

0
0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0

0

0
000

0

0

(a) (b)

Figure 3.3: (a) A graph G, (b) the corresponding instance of Min-and/or0(k).

3.2. Parameterized Complexity Results 30

Corollary 3.2.2. Min-and/or0(k) is W[2]-hard. �

3.3 The problem Min-x-y(k)

Let Min-x-y(k) stand for the parameterized version of Min-x-y, where it is asked
whether there is a solution subgraph of weight at most k, and Clique(c) for the W[1]-
hard parameterized problem where it is asked whether the input graph Q has a clique of
size c (see [31]).

Theorem 3.2.3. Clique(c) is FPT-reducible to Min-x-y(k).

Proof. Given an instance (Q, c) of Clique(c), we construct an instance (G, k) of Min-

x-y(k) as follows:

- create a source vertex s in G;

- create a set {u1, u2, ..., un} of out-neighbors of s, where n = |V (Q)| (vertex ui of G
is associated with vertex vi in Q);

- for each vertex ui, create two out-neighbors zi and wi of ui;

- for each vertex zi, create an edge (zi, wj) if and only if vj and vi are neighbors in Q;

- for each vertex wi, create an out-neighbor ti of wi (ti is a sink);

- if vi ∈ V (Q) has degree less than or equal to c − 1 then τ(s, ui) = c2 + 3c + 1 else
τ(s, ui) = 1; for all other edges in G their weights are 1;

- s has label c-n;

- every vertex ui has label 2-2;

- every vertex wi has label 1-1;

- every vertex ti has label 0-0;

- for each vertex zi, if d(vi) ≥ c − 1 then zi is labeled (c − 1)-d(vi), otherwise zi is
labeled d(vi)-d(vi) (where d(vi) is the number of neighbors of vi in Q);

- set k = c2 + 3c.

Figure 3.4 illustrates in (a) a graph Q, and in (b) the corresponding graph G.
Observe that the construction of G can be done in O(m) time, since |V (G)| =

4|V (Q)| + 1. We show that Q contains a clique of size c if and only if G contains a
solution subgraph of size less than or equal to k.

If Q contains a set of vertices {v1, v2, ..., vc} forming a clique C of size c, then a
solution subgraph H of G is constructed as follows. Since s is a vertex with label c-n,

3.2. Parameterized Complexity Results 31

choose {u1, u2, ..., uc} to be the out-neighbors of s in H. Now each vertex ui has label 2-2,
and thus vertices w1, w2, . . . , wc and z1, z2, . . . , zc are also part of the solution subgraph H.
This implies that vertices t1, t2, . . . , tc belong to V (H) as well. At this point, H already
contains 4c edges of weight 1. Since each vertex zi depends on c−1 out-neighbors, choose
an out-neighbor wj of zi if and only if vj ∈ C. Note that out-edges of vertices z1, z2, . . . , zc

add weight c(c−1) to H. In addition, selected out-neighbors of each vertex zi were already
in H before their choice. Hence the weight of H is c(c− 1) + 4c = c2 + 3c = k.

Conversely, suppose that G contains an optimal solution subgraph H of weight at
most k ≤ c2 + 3c. Note that H is a solution subgraph such that: (i) s has c out-neighbors
ui; (ii) each out-neighbor ui of s has two out-neighbors zi and wi; (iii) each one of the c
vertices zi has c − 1 out-neighbors. From these observations, H contains so far at least
c2 + 2c edges, that is, H contains at most c vertices wi. By construction, if wi ∈ V (H)

then vertices ui and zi also belong to V (H); but since there is no edge between zi and
wi, H contains exactly c vertices wi, and (zi, wj) ∈ E(H) for all wj 6= wi belonging to
V (H). Let C be the subset of vertices vi ∈ V (Q) such that vi ∈ C if and only if wi ∈ H.
Since ui, zi, wi in G are associated with vi in Q and out-edges of zi in G represent the
neighborhood of vi in Q, we conclude that C is a clique of size c in Q. Hence Clique(c)

is FTP-reducible to Min-x-y(k). �

Corollary 3.2.3. Min-x-y(k) is W[1]-hard. �

v1 v2 v3

v4 v5

(a)

(b)

3-5

19

t1t2t3t4t5

w1w2w3w4w5

z1 z2 z3 z4 z5

u1 u2 u3 u4 u5

s

0-0 0-0 0-0 0-0 0-0

1-1 1-1 1-1 1-1 1-1

2-2 2-2 2-2 2-2 2-2

1-1 2-2 2-2 2-3 2-4

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1

1
1 1

111

1

1

1

1
1

1

1

Figure 3.4: FPT-reduction of graph Q in (a) to x-y graph G in (b).

Souza, Protti and Dantas da Silva [88], in the paper “Revisiting the Complexity of
And/Or Graph Solution” (Journal of Computer and System Sciences 79-7, 2013 1156-
1163), published the previous results. Table 3.1 illustrates published parameterized results
on Min-and/or and its variations.

3.2. Parameterized Complexity Results 32

FPT W[1]-hard W[2]-hard
Min-and/or(k, r) X – –
Min-and/or(k) ? ? ?
Min-x-y(k) – X –
Min-and/or0(k) – – X

Table 3.1: Results on variations of Min-and/or(k)

As we can observe, the question of classifying the parameterized problem Min-

and/or(k) was open up to now. The following theorem closes this question, using a
reduction to a problem kernel.

Theorem 3.2.4. Min-and/or(k) is fixed-parameter tractable.

Proof. The proof is based on the following reduction rules, that must be applied once
in the order given below.

The property key of this kernelization consists of restricting to at most k the number
of out-neighbors of each or-vertex at a distance at most k of the source s. This property
is assured by the application of the Rules 1,2,3,4,5,6 and 7. During the application of this
rules, whithout loss of generality, auxiliary vertices and edges are created. Edges with the
same coloring represent a single edge in the original intance and auxiliary vertices may
represent a set of similar vertices in the original graph.

To clarify the kernelization, pictures illustrating steps of the aplication of some rules
is shown after the description.

1. For every or-vertex, select an edge pointing to a sink with minimum weight (if there
exists) and remove all other out-edges pointing to a sink.

2. Assign label and to every sink.

3. Color each edge e with a distinct color ce and define the flag of ce as the weight of
e.

1

2
1

2
3

V

S1 S2 S3 S4 S5

Or

U

1
And

…

(a)

S2

S3

S4

S5
S1

U

V
1

1

2

3

2

1

And

Or

…

(b)

Figure 3.5: Example of application of Rule 4a

3.2. Parameterized Complexity Results 33

4. For each and-vertex v having one or-in-neighbor, u, with more than k out-edges do:

(a) Let Evs = {es1 , . . . , est} be the set of out-edges of v pointing to a sink. If t > 1

then: (i) replace the edges of Evs by a path P of length t from v to a new
vertex, where each internal vertex of P is also a new vertex; (ii) for each edge
of P assign the same color and weight of a distinct edge of Evs .

(b) Let Av = {v1, . . . , vt} be the set of and-out-neighbors of v. If t > 1 then:
(i) for each vertex vj ∈ Av create a new and-vertex wj; (ii) create the edges
(v, w1) and (wj, wj+1) for all j < t; (iii) assign the same color and weight of
(v, vj) to the edge pointing to wj; (iv) for every edge (vj, r) where vj ∈ Av,
create an edge (wt, r) with the same color and weight as (vj, r); (v) remove all
and-out-edges of v distinct from (v, w1).

1
2 1 2

3

d e b

And

c

1 2 3 2 1 3

V

V1 V2 V3 V4 V5
And And And And And

Or
U

a

(a)

1
2 1 2

3

d e b

And

c

1 2 3 2 1 3

V

V1 V2 V3 V4 V5
And And And And And

Or
U

a

1 W5

1 2 3 2
And

 W1 W2 W3 W4

And And And And

(b)

d e b

And

c

1 2 3 2 1 3

V

V1 V2 V3 V4 V5
And And And And And

Or
U

a

1 W5

1 2 3 2
And

 W1 W2 W3 W4

And And And And

(c)

d e b a

V2

V3

V4

V5

V1

c

1
2

3

2

1

3

1

2

2

1

3

3
And

And

And

And

And

And

V

Or
U

1

W5
1 2 3 2

And

 W1
 W2

 W3
 W4

And And And And

(d)

Figure 3.6: Example of application of Rule 4b

(c) if v has only one and-out-neighbor vj and some or-out-neighbors then: (i)
create a new and-vertex w and an edge e = (v, w) with the same color and
weight as (v, vj); (ii) for every out-neighbor z of vj create an edge (w, z) with
the same color and weight as (vj, z); (iii) for every edge (v, r) where r is an
or-vertex, create an edge (w, r) with the same color and weight as (v, r); (iv)
remove the out-edges of v distinct from (v, w).

3.2. Parameterized Complexity Results 34

c a b

3 2

V

V1

V2
Or Or

Or
U

3

e d

3 2

V4 V5 Or Or

2 3

2

1
2

And

And

V3

1

(a)

c a b

3 2

V

V1

V2
Or Or

Or
U

3

e d

3 2

V4 V5 Or Or

2 3

2

1
2

And

And
1

3

2

And

V3

1 W

(b)

c a b

3 2

V

V1

V2
Or Or

Or
U

3

e d

3 2

V4 V5 Or Or

2 3

2

1
2

And

And
1

3

2

And

V3

W

(c)

c a b

3 2

V

V1

V2 V3
Or Or

U

3

e d

3 2

V4 V5
Or Or

2
3

2

1

2
And

And
1

3

2

And

Or

W

(d)

Figure 3.7: Example of application of Rule 4c

(d) if v has only or-out-neighbors then: (i) select an or-out-neighbor w (non-sink)
with minimum out-degree; (ii) for each edge (w,wj), create a new and-vertex
w′j and edges (v, w′j), (w′j, wj), where (w′j, wj) has the same color and weight as
(w,wj), and (v, w′j) has the same color and weight as (v, w); (iii) for each edge
(v, z) (w 6= z), create an edge (w′j, z) (for all j) with the same color and weight
as (v, z); (iv) remove all out-edges of v pointing to or-vertices. (v) assign label
or to v;

3.2. Parameterized Complexity Results 35

a
Or

Or

U

c
Or

Or
Or

1

1

3

Or

1 2

1 2

Or Or
Or

3 4

6 5

V

Or

4

W
b

W1 W2

a2 a1
b1 b2 c2 c1

2

And
And And

And

(a)

a
Or

Or

U

c
Or

Or
Or

1

1

3

Or

1 2

1 2

Or Or
Or

3 4

6 5

V

Or

4

W
b

W1 W2

a2 a1
b1 b2 c2 c1

2

W1 W2

2 2

And

And And

And And

And

3

4

’ ’

(b)

a
Or

Or

U

c
Or

Or
Or

1

Or

1 2

1 2

Or Or
Or

3 4

6 5

V

Or
W

b

W1 W2

a2 a1
b1 b2 c2 c1

W1 W2

2
2

And

And And

And And

And

3

3

4

4 1 1

3

4

’ ’

(c)

a
Or

Or

U

c
Or

Or
Or

1

Or

1 2

1 2

Or Or
Or

3 4

6 5

V

Or
W

b

W1 W2

a2 a1
b1 b2 c2 c1

W1 W2

2
2

And

And And

And And

Or

3

3

4

4 1 1

3

4

’ ’

(d)

Figure 3.8: Example of application of Rule 4d

5. Assign label or to every and-vertex with only one out-neighbor.

6. For each or-vertex v with more than k out-edges do: (i) create k or-vertices
w1, . . . , wk; (ii) for each edge (v, vj) such that τ(v, vj) = i and i ≤ k, create an
edge (v, wi) with weight i and same color as (v, vj); (iii) for each out-neighbor vj of
v such that τ(v, vj) = i, i ≤ k, and vj 6= wi, do: for each edge (vj, z) create an edge
(wi, z) with the same color and weight as (vj, z); (iv) remove every out-edge of v
not created in this step.

3.2. Parameterized Complexity Results 36

Or

3

d

1 2

V

V1 V4 Or
Or

Or

a

1

2

b c

V2 V3 Or

3
4

2 2

(a)

Or

3

d

1 2

V

V1 V4 Or
Or

Or

a

1

2

b c

V2 V3 Or

3
4

2 2

W1
w2 w3

Or

Or
W2

W3
Or

(b)

Or

3

d

1 2

V

V1 V4 Or
Or

Or

a

1

2

b c

V2 V3 Or

3
4

2 2

W1 w2 w3

Or Or
W2 W3

Or

1

(c)

Or

3

d

1 2

V

V1 V4 Or
Or

Or

a

1

2

b c

V2 V3 Or

3
4

W1 w2 w3

Or

Or W2 W3
Or

1

2

3
4

2

(d)

Or

d

1 2

V

V1 V4 Or
Or

Or

a

1

2

b c

V2 V3 Or

3
4

W1
w2 w3

Or

Or W2 W3

Or

1

2

3
4

2

3

2

(e)

Figure 3.9: Example of application of Rule 6

7. While there are or-vertices with more than k out-neighbors at a distance at most k
from s, do: repeat Rules 4,5 and 6.

8. For each and-vertex vi, if the sum of weights of its out-edges is greater than k then
remove it.

9. For each edge e ∈ E(G), if τ(e) > k then remove it.

10. For every vertex vi, if the weight of a shortest path from s to vi is greater than k
then remove it.

11. If some vertex has become unreachable from s then remove it.

3.3. Infeasibility of Polynomial Kernels 37

12. Remove every vertex which has become a sink.

13. Remove each and-vertex such that some of its out-edges have been removed.

14. Repeat rules 12 and 13 while needed.

At this point, each vertex has at most k out-neighbors and it is at a distance at
most k from s, therefore the graph has O(kk+1) vertices. On the other hand, the graph
may contain a large number of edges due to the existence of parallel edges created by
previous rules. Say that two colors assigned to the same subset of edges (by disregarding
parallelism of edges) are in the same group of colors. Since the graph has O(kk+1) vertices,
the number of distinct groups of colors is bounded by a function of k.

15. For each group of colors, select a color with minimum flag and remove all edges
(v, w) colored with another color of this group such that v is an or-vertex.

Now, we have obtained a generalized kernelization algorithm from Min-And/Or to
a variant that allows parallel and colored edges. The following rule returns the kernel to
the original problem.

16. As parallel edges and edges with the same color have been created by rules 4,5 and
6, apply successively rules 4, 5, 6 reversibly until the graph has no parallel edges
and only one edge per color.

After applying the rules, the final graph has size bounded by a function of k. Only
vertices and edges redundant or not belonging to a solution subgraph of cost at most k
have been removed, and a solution subgraph of cost k in this graph implies a solution
subgraph of cost k in the original graph. Thus, the above reduction rules obtain a kernel
to the problem, i.e., Min-and/or(k) is fixed-parameter tractable. �

3.3 Infeasibility of Polynomial Kernels

At this point, it will be demonstrated by the following theorem that Min-and/or

does not have polynomial kernel unless NP ⊆ coNP/poly.

Theorem 3.3.1. Min-and/or(k) is Or-compositional.

Proof. Suppose the input sequence:

q = (G1, k), (G2, k), . . . , (Gm, k).

It is possible to obtain an output as follows:

3.4. Open Problem 38

• let G′ be the disjoint union of all the graphs of q;

• add a new vertex s′ to G′;

• for each graph Gi, add in G′ a 1-weight edge from s′ to si, where si is the source
vertex of Gi;

• set k′ as k + 1.

• provide the pair (G′, k′) as output.

As the source vertex of G′ is s′, clearly G′ has a solution subgraph of cost at most k′

if and only if there is a graph Gi in q with a solution subgraph of cost at most k. �

Corollary 3.3.1. Min-and/or(k) has no polynomial kernel unless NP ⊆ coNP/poly

and consequently PH ⊆ Σp
3.

Proof. Follows from Theorems 3.3.1, 2.4.2 and 2.4.1. �

3.4 Open Problem

In this chapter we show that Min-and/or(k) is fixed-parameter tractable, but does
not have polynomial kernel unless NP ⊆ coNP/poly. At this point we ask.

• For which parameters Min-and/or(k) is fixed-parameter tractable and admits
polynomial kernelization?

Chapter 4

Flooding Graphs

"Imagination is more important than
knowledge."

Albert Einstein

In this chapter, we present new results on flood-filling games, Flood-it and
Free-Flood-it. A complete mapping of the complexity of flood-filling games
on trees is made, charting the consequences of single and aggregate parame-
terizations by number of colors, number of moves, maximum distance of the
pivot, maximum orbit, number of leaves, and number of “bad moves”. Fur-
thermore, we show that Flood-It on trees and Restricted Shortest Common
Supersequence (RSCS) are analogous problems, which proves some FPT and
W[1]-hard of cases of Flood-it. In addition, we prove that Flood-It remains
NP-hard when played on 3-colored trees, which closes an open question. We
also present a general framework for reducibility from Flood-It to Free-Flood-
It; some NP-hard cases for Free-Flood-It on trees can be derived using this
approach. Analyzing the behavior of these games when played on other classes
of boards, such as powers of cycles, powers of paths, and circular grids, we
describe polynomial time algorithms to play Flood-it on C2

n and 2×n circular
grids, and we show that Free-Flood-it is NP-hard on C2

n and 2 × n circular
grids. Finally, we show that Flood-it is fixed-parameter tractable when the
size of a minimum vertex cover is a parameter, and it admits a polynomial
kernelization if the number of colors is a second parameter.

Flood-It is a one-player combinatorial game, originally played on a colored board
consisting of an n × m grid, where each tile of the board has an initial color from a
fixed color set. In the classic game, two tiles are neighboring tiles if they lie in the same
row (resp. column) and in consecutive columns (resp. rows). A sequence C of tiles

39

40

is a path when every pair of consecutive tiles in C is formed by neighboring tiles. A
monochromatic path is a path in which all the tiles have the same color. Two tiles a and b
are m-connected when there is a monochromatic path between them. In Flood-It, a move
consists of assigning a new color ci to the top left tile p (the pivot) and also to all the tiles
m-connected to p immediately before the move. The objective of the game is to make the
board monochromatic (“flood the board”) with the minimum number of moves. Figure
4.1 shows a sequence of moves to flood a 3× 3 grid colored with five colors.

Figure 4.1: An optimal sequence of moves to flood a 3× 3 grid.

A variation of Flood-It is Free-Flood-It, where the player can freely choose which tile
will be the pivot of each move. In addition, these games can easily be generalized to be
played on any graph with an initial coloring.

Many complexity issues on Flood-It and Free-Flood-It have recently been investigated.
In [2], Arthur, Clifford, Jalsenius, Montanaro, and Sach show that Flood-It and Free-
Flood-It are NP-hard on n × n grids colored with at least three colors. Meeks and
Scott [67] prove that Free-Flood-It is solvable in polynomial time on 1 × n grids and on
2-colored graphs, and also that Flood-It and Free-Flood-It remain NP-hard on 3×n grids
colored with at least four colors. Up to the authors’ knowledge, the complexity of Flood-It
on 3× n grids colored with three colors remains as an open question. Clifford, Jalsenius,
Montanaro, and Sach present in [26] a polynomial-time algorithm for Flood-It on 2 × n
grids. In [68], Meeks and Scott show that Free-Flood-It remains NP-hard on 2× n grids.
Fleischer and Woeginger [78] proved that Flood-It is NP-hard on trees.

Flood-filling games in bioinformatics. Since the 90’s, an increasing number of papers
on biological applications have been dealt with as combinatorial problems. Vertex-colored
graph problems have several applications in bioinformatics [34]. The Colored Interval
Sandwich Problem has applications in DNA physical mapping [36, 43] and in perfect
phylogeny [65]; vertex-recoloring problems appear in protein-protein interaction networks
and phylogenetic analysis [25, 72]; the Graph Motif Problem [34] was introduced in the
context of metabolic network analysis [60]; the Intervalizing Colored Graphs Problem [13]
models DNA physical mapping [36]; and the Triangulating Colored Graph Problem [13]
is polynomially equivalent to the Perfect Phylogeny Problem [47].

Flood-Filling games on colored graphs are also related to many problems in bioinfor-
matics. As shown in this paper, Flood-It played on trees is analogous to a restricted case
of the Shortest Common Supersequence Problem [48]. Consequently, these games inherit
from the Shortest Common Supersequence Problem many applications in bioinformatics,
such as: microarray production [79], DNA sequence assembly [7], and a close relation-

41

ship to multiple sequence alignment [82]. In addition, some disease spreading models,
described in [3], work in a similar way to flood-filling games.

Additional definitions and notation.

• Neighboring tiles naturally correspond to neighboring vertices of a graph G repre-
senting the board; therefore, from now on, we use the term vertex instead of tile. A
subgraph H of G is adjacent to a vertex v ∈ V (G) if v has a neighbor in V (H).

• A flood move, or just move, is a pair m = (p, c) where p is the pivot of m (the vertex
chosen to have its color changed by m), and c is the new color assigned to p; in this
case, we also say that color c is played in move m. In Flood-It all moves have the
same pivot.

• A subgraph H is said to be flooded when H becomes monochromatic. A vertex v is
flooded by a move m if the color of v is played in m and v becomes m-connected to
new vertices after playing m. We say that a move m floods a vertex v by a vertex w
if v and w are neighbors and move m changes the color of w to flood v.

• A (free-)flooding is a sequence of moves in (Free-)Flood-It which floods G (the entire
board). An optimal (free-)flooding is a flooding with minimum number of moves.

• A move m = (p, c) is played on subgraph H if p ∈ V (H).

• A monochromatic subgraph H ′ of a subgraph H is abbreviated a mcs of H.

• An island is a vertex v colored with a color c such that no neighbor of v is colored
with c.

• Let Gn be a graph with n vertices, the k-th power of Gn, denoted by Gk
n, is the

graph formed by Gn plus edges between vertices at a distance at most k. Thus, P k
n

and Ck
n is the k-th power of a path Pn and a cycle Cn, respectively.

• A circular grid is an n×m grid with the additional property that the first and the
last tiles in a same row are neighboring tiles.

• We denote by Π ∝f Π′ a reduction from a problem Π to a problem Π′ via a com-
putable function f .

We present below the formal definitions of the two flood-filling games studied in this
chapter.

Flood-It (decision version)
Instance: A colored graph G with a pivot vertex p, an integer λ.
Question: Is there a sequence of at most λ flood moves which makes the graph
monochromatic, using p as the pivot in all moves?

42

Free-Flood-It (decision version)
Instance: A colored graph G with a pivot vertex p, an integer λ.
Question: Is there a sequence of at most λ flood moves which makes the graph
monochromatic?

It is easy to see that both problems belong to NP. Therefore in the proofs of NP-
completeness presented in this paper will be demonstrated only the NP-hardness of the
problems.

Parameters of flood-filling games on trees.

Definition 4.0.1. Let Π be a flood-filling game and let S = {s1, . . . , sn} be a subset of
the aspects of Π. [S1]-Π(S2) is the family of parameterized problems where the aspects in
S1 ⊆ S are fixed constants and the aspects in S2 ⊆ S are aggregate parameters.

As an example, [d]-Flood-It(c) is the family of parameterized problems where d is a
fixed constant and c (number of colors) is the parameter.

In this chapter, we develop a multivariate investigation of the complexity of Flood-
It and Free-Flood-It when played on trees. We analyze the complexity consequences of
parameterizing flood-filling problems in various ways. We consider the following aspects
of the problem:

c - number of colors
λ - number of moves
d - maximum distance of the pivot
o - maximum orbit
k - number of leaves
r - number of bad moves, r = (λ− c)

Given a vertex-colored tree T , the orbit of a color b in T , ob, is the number of occur-
rences of b in T . We say the the maximum orbit of a vertex-colored tree T is the maximum
orbit of a color used in T . A good move for a color ca is a move that floods all non-flooded
vertices with color ca. A move that is not good is a bad move. As in Free-Flood-It there
is no fixed pivot, for such a game the parameter d stands for the diameter of the graph.

Our results. In Section 2, we prove that Flood-It remains NP-hard on trees whose
maximum orbit is 4 and whose leaves are at distance at most d = 2 from the pivot.
Furthermore, we show that Flood-It is in FPT when parameterized by the number of
colors c in such trees. Also in Section 2 we show that Flood-It on trees and Restricted
Shortest Common Supersequence (RSCS) are analogous problems, in the sense that they
can be translated from one to another, keeping complexity features; this implies that
Flood-It on trees inherits several complexity results already proved for RSCS, such as
some interesting FPT and W[1]-hard cases. In addition, we prove that Flood-It played

4.1. Flood-it on Trees 43

on general graphs can be solved in polynomial time when considering r as the parameter.
Restricting attention to trees where each symbol occurs at most once in any path from
the pivot to a leaf (each such path is analogous to a phylogenetic sequence [35]), we prove
the NP-hardness of Flood-It even when restricted to such trees, and the fixed-parameter
tractability of the game played on such trees when considering the number of bad moves or
the maximum orbit as a parameter. In addition, we prove that Flood-It remains NP-hard
when played on 3-colored trees, which closes an open question. We conclude Section 2 by
introducing a new variant of Flood-It, called Multi-Flood-It, where each move is played
on a set of fixed pivots; we consider Multi-Flood-It played on trees where the pivots are
the leaves, and derive some complexity results.

In Section 3, we present a general framework for reducibility from Flood-It to Free-
Flood-It, by defining a special graph operator ψ such that Flood-It played on a graph
class F is reducible to Free-Flood-It played on the image of F via ψ. An interesting
particular case occurs when F is closed under ψ (for instance, trees are closed under ψ).
Some NP-hard cases for Free-Flood-It on trees can be derived using this approach. We
conclude Section 3 by showing some results on parameterized complexity for Free-Flood-
It played on pc-trees (phylogenetic colored trees). A colored rooted tree is a pc-tree if no
color occurs more than once in any path from the root to a leaf. We prove that some
results valid for Flood-It on pc-trees can be inherited by Free-Flood-It on pc-trees, using
another type of reducibility framework.

An extended abstract containing part of this work has previously appeared in [87].

4.1 Flood-it on Trees

We start this section by remarking that Flood-It played on a tree is equivalent to
Flood-It played on a rooted tree whose root is the pivot.

Theorem 4.1.1. [d]-Flood-It on trees remains NP-hard when d = 2.

Proof. The proof uses a reduction from the Vertex Cover Problem. We show that there
is a vertex cover of size k in a graph G if and only if there is a flooding with n+ k moves
in the associated tree T . Given a graph G = (V,E) with |V | = n and |E| = m, construct
a tree T as follows:

- create a pivot root s with color cs;

- for each edge ei = uv of G, add to T a subset of vertices Ei = {u′i, v′i, u′′i , v′′i } such
that u′i, v′i are children of s, v′′i is a child of u′i, and u′′i is a child of v′i;

- define a distinct color cu for each u ∈ V (G), and color all vertices of the form u′i, u
′′
i

(for all i) with the color cu.

4.1. Flood-it on Trees 44

(a) (b)

e1

e2

e3
e4 u1’ u3’ u4’z1’ z2’ v4’w2’ w3’

u1” u3” u4”z1” z2” v4”w2” w3”

u

z

v w

s

Figure 4.2: (a) A graph G; (b) tree T obtained from G.

Figure 4.2 shows a graph G and its associated tree T .
Suppose that G has a vertex cover V ′ of size k. By construction, the set of vertices

not flooded have n colors. By playing n moves (using all the n colors, one for each move),
each subset Ei still contains a vertex not m-connected to s. Thus we can play these n
moves in the following order: initially, moves played on colors assigned to vertices of V ′,
and then other moves. Since every edge in G contains at least one of its endpoints in V ′,
after these n moves the vertices in T not m-connected to s have colors associated with
vertices of V ′. Since |V ′| = k, we will need at most k additional moves, and therefore the
flooding will have n+ k moves, as required.

Now assume that T has a flooding with n + k moves. Initially, T contains only the
color cs and n other colors forming a set C of colors. Hence, each color of C is played at
least once. We divide the colors of C into two groups: the first group is formed by the
colors played more than once, and the second group by colors played only once. In order
to flood the subset Ei, the first and the last moves played on it are moves played on colors
of the first group. Hence, without loss of generality, we can assume that the n+ k moves
are played in the following order: (a) the first move of all colors in the first group, (b)
the moves of the colors in the second group, and (c) the remaining moves of the colors
in the first group. Thus, after playing the moves corresponding to (a) and (b) (note that
these are n moves, one for each color), one vertex in each subset Ei remains unflooded.
In addition, vertices not m-connected to s have k colors. Since each color in T represents
a distinct vertex in G and in the construction each Ei is associated with a distinct edge in
G, these k colors correspond to a subset of vertices in G of size k that are a vertex cover
of G. �

Theorem 4.1.2. [d]-Flood-It(c) is in FPT and admits a polynomial kernelization.

Proof. Let T be a tree with n vertices and pivot p. We show below how to find a
polynomial kernel (i.e., a kernel whose size is bounded by a polynomial in c) for the
problem, in O(n) time. Apply the following kernelization algorithm:

1. set T ′ = T ;

4.1. Flood-it on Trees 45

2. contract all children of p in T ′ with color ci into a single vertex of color ci. Note
that this rule can be applied since the contracted vertices will always be flooded by
the same move in T ;

3. recursively repeat the previous step for each non-leaf child of p in T ′.

After applying the above algorithm, each vertex in T ′ has at most c children. Thus,
T ′ has at most cd vertices and is a polynomial kernel for the problem. �

Corollary 4.1.1. [o, d]-Flood-It on trees remains NP-hard even when o = 4 and d = 2.

Proof. Garey, Johnson, and Stockmeyer proved that Vertex Cover remains NP-complete
even for cubic graphs [42]. By restricting the reduction presented in Theorem 4.1.1 to
cubic graphs, we can also conclude that Food-it remains NP-hard even on trees whose
maximum orbit is equal to six (o = 6) and whose leaves are at distance at most two from
the pivot (d = 2). To decrease the maximum orbit to 4, just contract all children of s
with color ci into a single vertex of color ci. �

When Flood-It is played on trees, there are classes of equivalent trees. Given two
instances Ti and Tj of Flood-It on trees, they are equivalent if and only if every flooding
for Ti is also a flooding for Tj, and vice-versa. In other words, Ti and Tj are equivalent if
and only if by applying the algorithm presented in Theorem 4.1.2 to Ti and Tj in order
to obtain T ′i and T ′j , and next contracting the maximal monochromatic subgraphs of T ′i
and T ′j , the resulting trees are identical.

4.1.1 Analogous Problems

Definition 4.1.1. Two optimization problems Π and Π′ are said to be analogous if there
exist linear-time reductions f, g such that:

1. Π ∝f Π′ and Π′ ∝g Π;

2. every feasible solution s for an instance I of Π implies a feasible solution s′ for f(I)

such that size(s) = size(s′);

3. every feasible solution s′ for an instance I ′ of Π′ implies a feasible solution s for
g(I ′) such that size(s′) = size(s).

Next we have an equivalent definition for decision problems. Denote by Y (Π) the set
of all instances I of Π yielding a yes-answer for the question “I ∈ Y (Π)?”.

Definition 4.1.2. Two decision problems Π and Π′ in NP are said to be analogous if
there exist linear-time reductions f, g such that:

1. Π ∝f Π′ and Π′ ∝g Π;

4.1. Flood-it on Trees 46

2. every easy checkable certificate C for the yes-answer of the question “I ∈ Y (Π) ?”
implies an easy checkable certificate C ′ for the yes-answer of the question “f(I) ∈
Y (Π′) ?” such that size(C) = size(C ′);

3. every easy checkable certificate C ′ for the yes-answer of the question “I ′ ∈ Y (Π′) ?”
implies an easy checkable certificate C for the yes-answer of the question “g(I ′) ∈
Y (Π) ?” such that size(C ′) = size(C).

Definition 4.1.3. Let Π and Π′ be analogous decision problems. The parameterized
problems Π(k1, . . . , kt) and Π′(k′1, . . . , k

′
t) are said to be p-analogous if there exist FPT

reductions f, g and a one-to-one correspondence ki ↔ k′i such that:

1. Π(k1, . . . , kt) ∝f Π′(k′1, . . . , k
′
t) and Π′(k′1, . . . , k

′
t) ∝g Π(k1, . . . , kt);

2. every easy checkable certificate C for the yes-answer of the question “I ∈ Y (Π(k1, . . . , kt))?”
implies an easy checkable certificate C ′ for the yes-answer of the question “f(I) ∈
Y (Π′(k′1, . . . , k

′
t))?” such that k′i = ϕ′i(ki) for some function ϕ′i (1 ≤ i ≤ t);

3. every easy checkable certificate C ′ for the yes-answer of the question “I ′ ∈
Y (Π′(k′1, . . . , k

′
t))?” implies an easy checkable certificate C for the yes-answer of the

question “g(I ′) ∈ Y (Π(k1, . . . , kt))?” such that ki = ϕi(k
′
i) for some function ϕi

(1 ≤ i ≤ t).

Two easy consequences of the above definitions are: (a) if Π and Π′ are analogous
problems then Π is in P (is NP-hard) if and only if Π′ is in P (is NP-hard); (b) if
Π(k1, . . . , k`) and Π′(k′1, . . . , k

′
`) are p-analogous problems then Π(k1, . . . , k`) is in FTP

(admits a polynomial kernel/is W[1]-hard) if and only if Π′(k′1, . . . , k
′
`) is in FTP (admits

a polynomial kernel/is W[1]-hard).
Fleischer and Woeginger used a reduction from the Fixed Alphabet Shortest Common

Supersequence Problem [78] to prove that Flood-It on trees is NP-hard even when the
number of colors is fixed.

We show that Flood-It on trees and Restricted Shortest Common Supersequence(RSCS)
are analogous problems. RSCS is a variant of SCS - Shortest Common Supersequence [35].

Shortest Common Supersequence (SCS)
(decision version)
Instance: A set of strings S = s1, . . . , s` over an alphabet Σ, an integer Λ.
Question: Does there exist a string s ∈ Σ of length at most Λ that is a supersequence
of each string in S?

4.1. Flood-it on Trees 47

Restricted Shortest Common Supersequence (RSCS)
(decision version)
Instance: A set of ρ-strings R = r1, . . . , r` over an alphabet Σ, an integer Λ. (A ρ-string
is a string with no identical consecutive symbols.)
Question: Does there exist a string r ∈ Σ of length at most Λ that is a supersequence
of each ρ-string in R?

Let SCS(|Σ1|, `1) stand for the SCS problem parameterized by |Σ1| and `1 (`1 is the
number of strings). The notation RCSC(|Σ2|, `2) is used similarly.

Theorem 4.1.3. SCS(|Σ1|, `1) is FPT-reducible to RSCS(|Σ2|, `2).

Proof. Let I be an instance of SCS(|Σ1|, `1). Create an instance I ′ of problem
RSCS(|Σ2|, `2) as follows: for each string si of I define a ρ-string ri of I ′ by inserting
a new symbol ci after each symbol of si. After this construction, I ′ contains `2 = `1

ρ-strings over an alphabet Σ2 such that |Σ2| = |Σ1| + `1. At this point, it is easy to see
that I contains a supersequence of length L if only if I ′ contains a supersequence of length
|s1|+ ...+ |s`1|+ L. �

Theorem 4.1.4.
(a) Flood-It on trees and RSCS are analogous problems.
(b) Flood-It(c, k, λ) on trees is p-analogous to RSCS(|Σ|, `,Λ).

Proof. We prove only item (a), the proof of (b) is similar. Given an instance I of RSCS,
we create a colored tree T as follows: (i) each position of a string in I is converted into a
vertex of T ; (ii) if a position of a string in I contains a character ci then the corresponding
vertex of T receives color ci; (iii) an edge is added between two vertices of T if and only
if they represent consecutive positions of the same string; (iv) a pivot vertex p is created
in T with a new color; (v) an edge (p, v) is added to T if v represents the first position of
a string in I.

After this construction, note that if I admits a supersequence of length L then T has
a flooding with L moves, obtained by traversing the supersequence and playing color ci
in the jth-move if character ci is in the jth-position of the supersequence. Similarly, given
a flooding F of T with k moves, we can construct a supersequence s of length k for I, by
just adding character ci in position j of s if and only if color ci is played in the jth-move
of F .

On the other hand, given an instance T of Flood-It on trees, we create an instance
I of RSCS as follows: (i) each color in T is associated with a character of the alphabet
Σ over which strings in I are defined; (ii) for each path P from the pivot to a leaf in T ,
a string r(P) of I is created by first contracting each maximal monochromatic subgraph
of P into a single vertex with the same color, and then by adding character ci in the

4.1. Flood-it on Trees 48

jth-position of r(P) if the vertex in P at distance j > 0 from the pivot has color ci. If T
has a flooding with k moves then I admits a supersequence of length k, since, in order to
flood a leaf, one needs to flood the path that connects it to the pivot. As previously, if
I admits a supersequence of length L then T has a flooding with L moves, obtained by
traversing the supersequence and playing color ci in the jth-move if character ci is in the
jth-position of the supersequence. �

Observation. By Theorem 4.1.2 and Theorem 4.1.4(b), the problem RSCS parameter-
ized by |Σ|, where ρ-strings have length bounded by a constant l, admits a polynomial
kernel, namely, a data structure known as trie [39] constructed from the input ρ-strings.
Such a data structure is a prefix tree with at most |Σ|l nodes.

Corollary 4.1.2. Flood-It on paths with arbitrary pivot is analogous to RSCS for k ≤
2. �

By Theorem 4.1.4, results valid for RSCS can be inherited by Flood-It on trees:

Corollary 4.1.3. [k]-Flood-It on trees is solvable in polynomial time.

Proof. Follows from Theorem 4.1.4(a) and the analogous result in [64]: SCS (and thus
RSCS) is solvable in polynomial time for a constant number of strings. �

Corollary 4.1.4. Flood-It(k, c) on trees is W[1]-hard.

Proof. Follows from Theorems 4.1.3, Theorem 4.1.4(b), and the analogous result in [77]:
SCS(|Σ1|, k1) is W[1]-hard. �

4.1.2 Phylogenetic Colored Trees

Flood-It played on trees can be applied to scheduling. Each color corresponds to an
operation in the sequential process of manufacturing an object. In the input tree T , paths
from the pivot to the leaves correspond to the manufacturing sequences for a number of
different objects that share the same production line. A flooding to T then corresponds
to a schedule of operations for the production line that allows all of the different objects
to be manufactured. It may reasonably be the case that each object to be manufactured
requires any given operation to be applied at most once.

Restricting attention to phylogenetic colored trees, we have significant effects on prob-
lem complexity.

Theorem 4.1.5. [r]-Flood-It on general graphs can be solved in polynomial time.

Proof. There are cr possibilities of arrangement of colors for the sequence of r bad
moves. Given a sequence of r bad moves, in order to check whether it is possible to flood
the input graph using these bad moves, just before and after each bad move apply all
possible good moves. �

4.1. Flood-it on Trees 49

Definition 4.1.4. A colored rooted tree is a pc-tree (phylogenetic colored tree) if no color
occurs more than once in any path from the root to a leaf.

Corollary 4.1.5. Flood-It on trees remains NP-hard even when restricted to pc-trees with
pivot root.

Proof. Follows from Theorem 4.1.4(a) and the analogous result in [35]: SCS (and also
RSCS) is NP-hard even for strings where no symbol occurs more than once. �

Corollary 4.1.6. Flood-It(k) on pc-trees with pivot root is W[1]-hard.

Proof. Follows from Theorem 4.1.4(b) and the analogous result in [35]: SCS (and also
RSCS) restricted to strings where no symbol occurs more than once is W[1]-hard when
parameterized by the number of strings. �

Definition 4.1.5. A pc-tree T is a cpc-tree (complete pc-tree) if each color occurs exactly
once in any path from the root to a leaf.

Cpc-trees are a special subclass of pc-trees. Many hard cases of Flood-It on pc-trees
are easy to solve when restricted to cpc-trees; for example, while Flood-It on pc-trees
remains NP-hard when d is the parameter, Flood-It on cpc-trees is trivially solved in
FPT time.

As in biological applications the phylogenetic sequences are often complete, the com-
plexity of flood-filling games for complete pc-trees is an interesting issue.

Theorem 4.1.6. Flood-It on trees remains NP-hard even when restricted to cpc-trees with
pivot root.

Proof. The proof is based on modifying the construction shown in Theorem 4.1.1. Let
T be a tree obtained as in Theorem 4.1.1. We can construct a cpc-tree T ′ from T as
follows:

• initially, set T ′ = T ;

• replace each edge ei = (p, vi) (where p is the pivot) by a path gi containing 3n+k−1

vertices;

• add an edge from p to the first vertex of gi, and another from vi to the last neighbor
of gi;

• Let {c1, c2, . . . , cn} be the set of colors in T (disregarding the pivot color). For each
path gi = w1, w2, . . . , w3n+k+1, assign to w1, w2, . . . , wn−2 the colors c1, c2, . . . , cn,
respectively (disregarding the color of vi and its children);

• For j = n− 1, . . . , 3n+ k − 1, assign to the vertices in level j + 1 a new color cj.

4.1. Flood-it on Trees 50

Figure 4.3 illustrates the cpc-tree T ′ obtained from the pc-tree presented in Fig-
ure 4.2(b).

Let G be the graph from which T was constructed. It is easy to see that G has a
vertex cover of size k if and only if T ′ has a flooding of size 4n+ 2k + 1. �

Figure 4.3: Cpc-tree T ′ obtained from the pc-tree presented in Figure 4.2(b).

In Theorem 4.1.1 we proved that Flood-It remains NP-hard even when restricted to
pc-trees with maximum orbit 4. Theorem 4.1.7 shows that Flood-It on cpc-trees can be
solved in polynomial time when considering the maximum orbit as the parameter.

Lemma 4.1.1. Sibling leaves of a cpc-tree have the same color.

Proof. Let w be an internal vertex of a cpc-tree T with two leaf children v and u, and
assume that v and u have distinct colors. As T is a cpc-tree, the color of u occurs once
in the path from the pivot to v. Consequently, in the path from the pivot to u, the color
of u occurs twice, which is a contradiction. �

Theorem 4.1.7. [o]-Flood-It on cpc-trees can be solved in polynomial time.

Proof. Given a cpc-tree T , we first apply to T the algorithm presented in Theorem 4.1.2,
obtaining a reduced tree T ′. If T ′ has at most two colors, clearly the maximum orbit is
equal to the number of leaves (o = k). Now, assume that for every reduced cpc-tree with
j − 1 colors the maximum orbit is equal to the number of leaves. Now we prove that if
T ′ has j colors then the maximum orbit is equal to the number of leaves, in the following
way: select a color ci with minimum orbit (different than the pivot color); for each vertex

4.1. Flood-it on Trees 51

v with color ci, remove it and add edges between the parent of v and the children of v.
After this step, T ′ is a cpc-tree with j−1 colors, and consequently o = k. By Lemma 4.1.1,
we observe that returning the removed vertices does not increase the number of leaves,
and T ′ has o = k leaves. Hence, by Corollary 4.1.3, the theorem follows. �

4.1.3 Weighted-Flood-it

At this point, we define a natural generalization of Flood-It where each color ci of the
board has cost ω(ci) to be played, and we search for the flooding which minimizes the
sum of the costs of its moves.

Weighted-Flood-It (decision version)
Instance: A graph G colored over a set C of colors, a pivot vertex p ∈ V (G), an integer
K, and a cost function ω : C → Z+.
Question: Does there exist a sequence of moves S with cost at most K which makes
the graph monochromatic, using p as the pivot in all moves? The cost of a sequence S
is defined as:

ω(S) =
∑
mci∈S

(ω(ci))

where mci is a move played on color ci ∈ C.

Corollary 4.1.7. Weighted-Flood-It on cpc-trees with pivot root is in FPT when it is
asked whether there is a flooding with cost at most c+K, where c is the number of colors
and K is the parameter.

Proof. Follows from Theorem 4.1.4(b) and the analogous result in [35]: SCS (and thus
RSCS) is in FPT when every symbol occurs exactly once in each string, and the question
is whether there is a common supersequence of cost bounded by |Σ|+K, where K is the
parameter. �

Corollary 4.1.8. Flood-It(r) on cpc-trees with pivot root is in FPT.

Proof. Follows from Corollary 4.1.7. �

4.1.4 Flood-it on 3-colored Trees

Flood-It on 2-colored graphs is trivially solvable. Fleischer and Woeginger [78] proved
that Flood-It remains NP-hard when restricted to 4-colored trees. Raiha and Ukkonen [80]
proved that Shortest Common Supersequence over a binary alphabet is NP-complete, and
Middendorf [69] proved that Shortest Common Supersequence over a binary alphabet
remains NP-complete even if the given strings have the same length and each string
contains exactly two ones.

4.1. Flood-it on Trees 52

In Middendorf’s proof the instances of Shortest Common Supersequence do not have
two consecutive ones; hence, without loss of generality, we can assume that the last
character of each input string is ‘0’ (since after each ‘1’ there is a ‘0’). We can then define
the following NP-complete problem:

q-Shortest Common Supersequence over {0,1} (q-SCS)
(decision version)
Instance: A set of strings S = s1, . . . , s` over the alphabet {0, 1}, all ending in ‘0’, and
containing exactly two non-consecutive ones, and two integers Λ and q (q ≤ Λ− 2).
Question: Does there exist a string s of length at most Λ that is a supersequence of
each string in S and contains at least q zeros?

Now we have all the elements to state the following theorem:

Theorem 4.1.8. [c]-Flood-It on trees remains NP-hard when c = 3.

Proof. We use a reduction from q-SCS. Given an instance I of q-SCS, we construct an
instance I ′ of RSCS by adding a new string r of size q composed only by the character
‘0’, and then inserting for every string the character ‘2’ after each occurrence of a ‘0’.

If for I there is a supersequence of length Λ containing q zeros then there is a super-
sequence of length Λ + q for I ′. If for I ′ there is a supersequence s′ of length Λ + q then
s′ contains, say, Λ + q− 2q′ ones and q′ zeros. Removing from s′ the occurrences of ‘2’ we
obtain a supersequence s for I containing Λ + q − 2q′ ones and q′ zeros. As r has q zeros
then q′ ≥ q, and consequently s is a supersequence for I of length less than or equal to Λ

and containing at least q zeros.
Given the instance I ′ of RSCS, an associated 3-colored tree can be constructed assign-

ing the color ‘2’ to the pivot. �

Theorem 4.1.9. [c]-Flood-It(d) on trees is in FPT when c = 3.

Proof. Given a 3-colored tree whose leaves are at distance at most d from the pivot,
just apply the algorithm presented in Theorem 4.1.2 to obtain T ′, and next contract the
maximal monochromatic subgraphs of T ′. The resulting 3-colored tree is a kernel of size
2d. �

4.1.5 Multi-Flood-it on Trees

In this subsection we deal with a new variant of Flood-It, Multi-Flood-It, where each
move is played on a set of fixed pivots. We assume that, before a move m, all the pivots
have the same color. The effect of playing a color ci in move m is assigning ci to the
pivots and to every vertex m-connected to some pivot immediately before playing m.

We consider Multi-Flood-It played on trees where the pivots are precisely the leaves,
called Multi-Flood-It on trees for short.

4.1. Flood-it on Trees 53

Theorem 4.1.10. Flood-It on trees with pivot root is reducible to Multi-Flood-It on trees.

Proof. Let T be an instance of Flood-It on trees with pivot root. We create an instance
T ′ of Multi-Flood-It on trees with leaf pivots as follows:

• for each path pi in T from the root to a leaf li do:

1. create two copies p1
i and p2

i of pi, keeping the same colors of the vertices in pi,

2. let rji and l
j
i denote, respectively, the copy of the root of T in pji and the copy

of li in pji , j = 1, 2,

3. add edge (l1i , l
2
i);

• contract the vertices r1
i (for all i) into a single vertex r;

• create a new vertex u with the same color as r, and add edge (u, r).

At this point, it is easy to see that T has a flooding of size λ using the pivot root if
and only if T ′ has a flooding of size λ using the leaf pivots. �

Corollary 4.1.9. Multi-Flood-It on trees is NP-hard.

Proof. Follows from Theorems 4.1.1 and 4.1.10. �

Corollary 4.1.10. Multi-Flood-It(k, c) on trees is W[1]-hard.

Proof. From Theorem 4.1.10 it is easy to see that Flood-It on trees and Multi-Flood-It on
trees, both parameterized by the number of leaves and number of colors, are p-analogous.
Thus, by Corollary 4.1.4, the result follows. �

Theorem 4.1.11. Multi-Flood-It(k, r) on trees is in FPT.

Proof. Suppose the color ca is chosen for a move of the game. For each path pi from a
leaf li to the root, one of the following statements must be true: (1) color ca is the first
color of pi (different from the pivot color) and does not otherwise occur in pi; (2) color
ca does not occur in pi; (3) color ca occurs in pi, but is not the first color. If for a move
of the game only (1) and (2) occur, we call this a good move. A move that is not good is
bad. Our algorithm is based on the following straightforward claims:

Claim 1. If at least r bad moves are played then T has a flooding with at least c + r

moves.

Claim 2. For any yes-instance of the problem, there is a flooding with at most r bad
moves.

As in [35], we can describe an FPT-algorithm based on the method of search trees [32].
By Claim 2, if the answer is “yes” then there is a game that completes with no more than
r bad moves. The algorithm is as follows:

4.1. Flood-it on Trees 54

(0) The root node of the search tree is labeled with the given input.

(1) A node of the search tree is expanded by making a sequence of good moves (ar-
bitrarily) until no good move is possible. For each possible nontrivial bad move
(i.e., one that floods at least one vertex), create a child node labeled with the set of
sequences that result after this bad move.

(2) If a node is labeled by the set of empty sequences, then answer “yes”.

(3) If a node has depth r in the search tree, then do not expand it any further.

The correctness of the algorithm follows from Claims 1 and 2, and the fact that the
sequence of good moves in step (1) can be made in any order without increasing the
number of moves. The running time of the algorithm is bounded by O(krn). �

Corollary 4.1.11. Flood-It(k, r) on trees is in FPT.

Proof. It is easy to see that we can extend the FPT-algorithm in Theorem 4.1.11 to
Flood-It on trees with pivot root. �

4.1.6 Free-Flood-it on Trees

Theorem 4.1.12. [r]-Free-Flood-It on general graphs can be solved in polynomial time.

Proof. The proof is similar to the proof presented in Theorem 4.1.5. �

Now we present a general framework for reducibility from Flood-It to Free-Flood-It.

Definition 4.1.6. Let G be a graph, v ∈ V (G), and ` a positive integer. The graph
ψ(G, v, `) is constructed as follows: (i) create ` disjoint copies G1, . . . , G` of G; (ii) con-
tract the copies v1, v2, . . . , v` of v into a single vertex v∗.

Definition 4.1.7. Let F be a class of graphs. Then:

ψ(F) = {G | G = ψ(G′, v, `) for some triple (G′ ∈ F , v ∈ V (G′), ` > 0) }.

Definition 4.1.8. A class F of graphs is closed under operator ψ if ψ(F) ⊆ F .

Examples of classes closed under ψ are chordal graphs and bipartite graphs.

Theorem 4.1.13. Flood-It played on F is reducible in polynomial time to Free-Flood-It
played on ψ(F).

Proof. Let G be an instance of Flood-It on F (with pivot p). Assume |V (G)| = n. We
create an instance for Free-Flood-It on ψ(F) by constructing the graph G′ = ψ(G, p, n)

and coloring a vertex wi in copy Gi with the same initial color of its corresponding vertex

4.1. Flood-it on Trees 55

w ∈ V (G). Now we show that there is a flooding for G with at most λ moves if and only
if there is a free-flooding for G′ with at most λ moves, as follows. First, note that every
flooding F for G implies a free-flooding F ′ for G′ with the same number of moves as F ,
by simply using p∗ as the pivot of all moves in F ′ and repeating the same sequence of
colors played in F . Conversely, if there is a flooding F ′ for G′ with at most λ moves, then:
(i) If on every subgraph Gi (1 ≤ i ≤ n) of G′ a move is played that does not change the
color of p∗ then λ ≥ |F ′| ≥ n; in this case, it is easy to see that there is a flooding for G
with at most λ moves, since |V (G)| = n and thus n − 1 moves suffice to flood G. (ii) If
there is a subgraph Gi such that every move played on Gi changes the color of p∗ then,
without loss of generality, the same sequence of colors played in such moves can be used
to flood G, using p as a fixed pivot. �

Corollary 4.1.12. Let F be a class of graphs closed under ψ. Then Flood-It played on
F is reducible in polynomial time to Free-Flood-It played on F .

NP-hardness results valid for Flood-It can be inherited by Free-Flood-It:

Corollary 4.1.13. [d]-Free-Flood-It on trees remains NP-hard even when d = 4.

Proof. Follows from Theorem 4.1.13 and Theorem 4.1.1. �

Corollary 4.1.14. Free-Flood-It on cpc-trees is NP-hard.

Proof. Follows from Corollary 4.1.12 and Corollary 4.1.6. �

Corollary 4.1.15. [c]-Free-Flood-It on trees remains NP-hard even when c = 3.

Proof. Follows from Corollary 4.1.12 and Theorem 4.1.8. �

Theorem 4.1.14. In Free-Flood-It on pc-trees, there always exists an optimal free-flooding
which is a flooding with pivot root.

Proof. Let T be a pc-tree with root p. Let h(T) denote the height of T , and let
C = {c1, c2, . . . , ck} be the set of colors assigned to the leaves at level h = h(T) (the root
is at level 0). We use induction on h(T). The result is clearly valid when h(T) = 1, since
the sequence of moves (p, c1), (p, c2), . . . , (p, ck) is an optimal free-flooding of T which is a
flooding with pivot p. Now assume that the result is valid for all pc-trees with height at
most h− 1. By induction, there is an optimal free-flooding F ′ of the subtree T ′ obtained
from T by removing all the leaves at level h in T , such that F ′ is a flooding with pivot p.
Consider the flooding F of T by appending to F ′ each move (p, ci), where ci is the color
of a non-flooded leaf. Then F is an optimal free-flooding of T which is a flooding with
pivot p. �

The above theorem implies that Flood-It on pc-trees and Free-Flood-It on pc-trees
are analogous, and parameterized versions of these problems are p-analogous. Thus:

4.2. Flood-Filling Games on Power Graphs 56

Corollary 4.1.16. Free-Flood-It(k) on pc-trees is W[1]-hard.

Proof. Follows from Theorem 4.1.14 and Corollary 4.1.6. �

Corollary 4.1.17. Free-Flood-It(k, r) on pc-trees with pivot root is in FPT.

Proof. Follows from Theorem 4.1.14 and Corollary 4.1.11. �

Corollary 4.1.18. Free-Flood-It(r) on cpc-trees with pivot root is in FPT.

Proof. Follows from Theorem 4.1.14 and Corollary 4.1.8. �

4.2 Flood-Filling Games on Power Graphs

Flood-filling games played on graphs is a powerful model for several real world appli-
cations, mainly in Bioinformatics. In [87], for instance, Souza, Protti and Dantas da Silva
show that Flood-it played on trees is analogous to an important subcase of the Shortest
Common Supersequence problem, which is a classical problem from the realm of string
analysis. Consequently, these games inherit many implications in bioinformatics, such
as: microarray production [79], DNA sequence assembly [7], and a close relationship to
multiple sequence alignment [82]. In addition, some disease spreading models described
in [3] work in a similar way to flood-filling games on general graphs.

Analysing the complexity of Flood-it on non-grid graphs, Fleischer and Woeginger [78]
proved that Flood-it (denoted by Honey-Bee-Solitaire) remains NP-hard even restricted
to trees or split graphs, but it is polynomial-time solvable on co-comparability graphs.
When Flood-it is played on paths (1×n grids) the problem is trivially solvable if the pivot
has degree one, however, allowing to the pivot be any vertex of the path, the problem
is analogous to Shortest Common Supersequence problem (SCS) for two sequences [87],
which is a very well-studied problem that does not have a known linear-time algorithm.
Consequently, it is easy to see that Flood-it on cycles can be solved in polynomial time.
In [67], Meeks and Scott show that Free-Flood-it on paths can be solved in O(n6) time.
Thus, by the approach of removing the last vertex that will be flooded, we obtain an
algorithm to solve Free-Flood-it on cycles in O(n7) time.

The main goal of this section is to analise the complexity of flood-filling games played
on simple structures. We study the complexity of Flood-it and Free-Flood-it on others
classes of boards, such as power of paths, powers of cycles and circular grids. We describe
polynomial time algorithms to play Flood-it on C2

n (the second power of a cycle on n

vertices), 2× n circular grids (2× n grids where the first and last tiles in a same row are
neighboring tiles), 2× n d-boards (2× n grids where the dth column is monochromatic),
and 2×n circular d-boards. We also show that Free-Flood-it is NP-hard on C2

n and 2×n
circular grids.

4.2. Flood-Filling Games on Power Graphs 57

4.2.1 Flood-it on Circular Boards

A d-board is an n ×m grid where the dth column is monochromatic. Thus Flood-it
on a d-board consists of playing the game using column d as the pivot. Observe that
Flood-it on 2×m d-boards is a generalization of Flood-it on 2×m boards (take d = 1),
and Flood-it on paths (where any vertex can be the fixed pivot) is equivalent to Flood-it
on 1× n d-boards. We denote by Bl (resp. Br) of a d-board B the board composed by d
and all tiles to the left (resp. right) of d.

In this paper, we show a framework based on d-boards to solve Flood-it on circular
grids.

Lemma 4.2.1. Given a 2×n d-board B, and vertices vl ∈ Bl and vr ∈ Br, the minimum
number of moves to connect vl and vr can be found in O(n2) time.

Proof. Let L,R be maximum mcs of Bl and Br containing d, respectively. We can
think on L and R as “dynamic subgraphs” in the sense that they modify after each move.
Observe that vl will be flooded by a vertex which is either in the same column of vl or in a
column to the right of a. Therefore, columns to the left of vl do not need to be analyzed.
An analogous reasoning applies to vr. Thus in order to choose which color must be played
in each move, we only need to know the leftmost (resp. rightmost) vertex (or two vertices)
of L (resp. R). This set of one or two vertices defines a configuration of L (or R).

At this point, we construct a directed acyclic hypergraph H as follows:

• create a vertex for each possible configuration of L or R;

• given configurations S1, T1 and S2, T2 of L and R, respectively, add a directed edge
({S1, S2}, {T1, T2}) labeled with color c if by playing color c it is possible to simul-
taneously change the configuration of L from S1 to T1 and the configuration of R
from S2 to T2;

• given configurations S1, T1 of L (or R), add a directed hyperedge
({S1}, {T1}) labeled with color c if by playing color c it is possible to change the
configuration of L (or R) from S1 to T1;

• collapse the vertices representing the initial configurations of L and R into a single
vertex s.

Each hyperedge of H represents a possible move of the game. A hyperedge of the form
({S1, S2}, {T1, T2}) represents a move connecting vertices of L and R. For example, the
hyperedge ({{e}, {i}}, {{c}, {j}}) in Figure 4.4 shows that by playing the color green we
connect the tiles c and j via e and i. Finding the minimum number of moves to connect
vl and vr amounts to finding the minimum number of hyperedges needed to construct

4.2. Flood-Filling Games on Power Graphs 58

paths between s and vertices representing configurations containing vl and vr. Since the
number of hyperedges of H is O(n2), where n = V (B), it is easy to see that we can find
the minimum number of moves to connect vl and vr in O(n2) time. �

Figure 4.4 shows a 2 × n d-board B and a subgraph of the hypergraph H obtained
from B which contains the minimum moving to connect a and h.

d
a b

c e

f g h

i j l

{ e }

{ i }

{ c }

{ j }

{a,c}

{ l }

{ b } { a }

{ f } { g } { h }

{l,h}
s

(a) (b)

Figure 4.4: (a) A 2× n d-board B. (b) A subgraph of the hypergraph H of B.

Theorem 4.2.1. Flood-it can be solved in polynomial time on 2 × n d-boards. More
precisely, in O(kn2) time, where k is the number of colors.

Proof. Suppose that B is a 2× n d-board and k is the number of colors. We say that a
tile t on L (resp. R) is marked if it has color ct and no other tile in the columns strictly
to the left (resp. right) of t has the color ct . A column is marked if it contains a marked
tile. As in [26], the key property which holds on 2 × n d-boards is that if the marked
tiles are flooded then so is the whole board B. To see this, note that when a marked
tile t of color ct in L (resp. R) is flooded, all other tiles of color ct in L (resp. R) that
have not yet been flooded are to the right (resp. left) of t and therefore adjacent to the
flooded region. Hence they will be flooded when t is flooded. Thus, we iteratively ask
for the shortest sequence of moves to connect the rightmost non-flooded marked tile of
L with the leftmost non-flooded marked tile of R until all marked tiles of L and R are
connected. Hence, the minimum number of moves needed to flood B can be obtained in
time O(kn2). �

Theorem 4.2.2. Flood-it can be solved in O(kn4) time on 2× n circular d-boards, where
k is the number of colors.

Proof. Let d, c1, c2, . . . , cn−1 be the columns of a 2× n circular d-board B. Let S be an
optimal sequence of moves to flood B. Let us say that v ∈ ci is right-flooded by S if either
i = 1 or i ≤ n − 2, and before playing the move m ∈ S which floods v there is a path
from d to v such that every internal vertex of such a path belongs to the maximum mcs
containing the pivot and is right-flooded. On the other hand, a vertex v is left-flooded by

4.2. Flood-Filling Games on Power Graphs 59

S if it is not right-flooded. A column ci is said to be right-flooded (left-flooded) by S if its
two vertices are right-flooded (left-flooded) by S. Note that even by removing all edges
connecting right-flooded vertices to left-flooded vertices, the sequence S still floods B.

Let ci be the right-flooded column with maximum index i, and vj be a right-flooded
vertex lying in a column j such that j is maximum (j ≥ i). Let Hr (resp., H`) be the
subgraph induced by the vertices in d plus the right-flooded (resp. left-flooded) vertices.
By removing all edges between Hr and H`, we can naturally define a 2× n d-board B′ (if
after removing the edges some column d′ is left with only one vertex w, replace d′ by a
monochromatic column with the same color as w). Note that an optimal flooding of B′

corresponds to an optimal flooding of B. Since ci and vj are not previously known, we
must execute this process for each possibility (there are O(n2) many of them). Hence, we
can solve Flood-it on 2× n circular d-boards in O(kn4) time. �

Corollary 4.2.1. Flood-it is solvable in polynomial time on 2× n circular grids.

Proof. Follows from Theorem 4.2.2, by replacing the column c containing the pivot by
three consecutive columns c1, d, c2, where c1 and c2 are copies of c, and d is a monochro-
matic column with the same color of the pivot of c. �

Lemma 4.2.2. Flood-it on C2
n is a particular case of Flood-it on circular grids.

Proof. Let v1, v2, . . . , vn be the vertices of a graph C2
n. Then, by taking circular indices,

the neighborhood of vi is {vi−2, vi−1, vi+1, vi+2}. We can create a 2 × n circular grid T

equivalent to C2
n as follows:

• For n even: (i) define qa1 , qb1 , qa3 , qb3 , . . . , qan−1 , qbn−1 as the first row; (ii) define
qbn , qa2 , qb2 , qa4 , qb4 , . . . , qan−2 , qbn−2 , qan as the second row.

• For n odd: (i) define qa1 , qa3 , qb3 , qa5 , qb5 , . . . , qan−2 , qbn−2 , qan as the first row; (ii)
define qb1 , qa2 , qa4 , qb4 , . . . , qan−1 , qbn−1 as the second row.

In both constructions tiles qai and qbi (if it exists) receive the same color as vi. See
Figure 4.5.

By assuming that the “component” {qai , qbi} (or {qai}, for n odd and i = 2 or i = n)
represent vertex vi, we observe that: (i) for n even, a tile of color c is adjacent to {qai , qbi}
if and only if vi has a neighbor of color c; (ii) for n odd, the same property above is
valid, except for {qa2} and {qan}; however, both are adjacent to component {qa1 , qb1} that
represents the pivot vertex v1. Thus, in Flood-it, Cn

2 can be represented as a 2×n circular
grid. �

Corollary 4.2.2. Flood-it can be solved in polynomial time on C2
n.

Proof. Follows from Lemma 4.2.2 and Corollary 4.2.1. �

4.2. Flood-Filling Games on Power Graphs 60

(a) (b)

v1 v1
v2 v2

v3
v3

v4 v4

v5

v5

v6

v6

v7

qa1
qa1

qa2

qa2qa3 qa3

qa4 qa4

qa5 qa5

qa6
qa6

qa7
qb1

qb1

qb2

qb3 qb3

qb4 qb4

qb5 qb5

qb6 qb6

Figure 4.5: (a) 2× n circular grid for even n; (b) 2× n circular grid for odd n.

Corollary 4.2.3. Flood-it can be solved in polynomial time on P 2
n .

Proof. Follows from a similar construction of Lemma 4.2.2 (desconsidering some edges
and retorting a few tiles) and Corollary 4.2.2. �

4.2.2 Free-Flood-it on Powers of Cycles

Flood-it on paths can be easily solved in O(n2) time by a dynamic programming [87],
and as show in this paper, the problem remains polynomially solvable when played on
circular grids, C2

n and P 2
n . Although Free-Flood-it can be solved in polynomial time when

played on paths and cycles, in this section, we show that Free-Flood-it is NP-hard when
played on C2

n, P 2
n or circular grids.

Theorem 4.2.3. Free-Flood-it remains NP-hard on C2
n.

Proof. This proof uses a reduction from Vertex Cover. Let Q be a graph formed
by vertices x1, x2, x3, x4 and edges ea = (x1, x2), eb = (x1, x3), ec = (x2, x4). Note that Q
contains a minimum cover formed by x1 and x2; this cover contains the two endpoints of
ea. It is clear that Vertex Cover remains NP-hard for all graphs containing Q as an
isolated component. Thus let GQ = G ∪ Q be such a graph, where G is a graph with n
vertices, m edges and a vertex cover of size k. Clearly, GQ has a vertex cover of size k+2.

From GQ we will construct a graph H isomorphic to a 2-power of a cycle.

• for each edge ei = (u, v) in GQ create a gadget gi in H as follows:

– create vertices uei1 , u
ei
2 , u

ei
3 , v

ei
1 , v

ei
2 , v

ei
3 and edges (vei3 , u

ei
2), (uei2 , u

ei
1),

(uei1 , v
ei
1), (vei1 , v

ei
2), (vei2 , u

ei
3);

– create vertices zei1 , z
ei
2 , z

ei
3 , . . . , z

ei
m, edges (zeij , z

ei
j+1), 1 ≤ j ≤ m − 1, and edge

(zei1 , v
ei
3);

– create vertices yei1 , y
ei
2 , y

ei
3 , . . . , y

ei
m, edges (yeij , y

ei
j+1), 1 ≤ j ≤ m − 1, and edge

(yei1 , u
ei
3);

– add an edge between vertices x, y of gi whenever they are at distance 2;

4.2. Flood-Filling Games on Power Graphs 61

– color uei1 , u
ei
2 , u

ei
3 with color cu; vei1 , v

ei
2 , v

ei
3 with color cv; and for every 1 ≤ j ≤

m, vertices zeij and yeij with color ceij .

• after constructing the gadgets, for all 1 ≤ i ≤ m+ 2, add (zei
m
, yei+1

m
);

• add edge (zem+3
m

, ye1
m

);

• add an edge between x and y in H whenever they are at distance 2.

Each gadget gi of H is divided into three parts: the core, consisting of the vertices
uei1 , u

ei
2 , u

ei
3 , v

ei
1 , v

ei
2 , v

ei
3 ; the z-arm, consisting of zei1 , . . . , z

ei
m; and the y-arm, consisting of

yei1 , . . . , y
ei
m. We denote by ga, gb, gc the gadgets associated with edges ea, eb, ec, respectively.

Figure 4.6 shows a gadget according to the construction above. Its core and arms are
shown in detail. Figure 4.7 shows in (a) a graph G, in (b) the graph Q, and in (c) the
power of cycle obtained from GQ. Each detailed gadget, gi, in (c) is equivalent to an edge
ei in GQ, i ∈ {1, 2, 3, a, b, c}.

(a) (b)

eiu v

yz
core

zei1zei2
zei3

zeim−1

zeim

yei1 yei2
yei3

yeim−1

yeim

uei
1uei

2 uei
3

vei1 v
ei
2vei3

V ′

Figure 4.6: (a) an edge ei; (b) gadget corresponding to ei.

First, we will prove that if GQ contains a vertex cover V ′ of size k+2 (i.e., G contains a
vertex cover of size k) then the constructed graphH has a free-flooding withm2+5m+k+5

moves.
By construction, in every gadget gi of H vertices zeij and yeij have the same color.

Thus to make the arms of each gadget gi 6= ga monochromatic in only m moves, we play
one move in its core such that five vertices become colored with the same color. The
remaining vertex (with another color) will be associated with a vertex of the cover in GQ.
After this move, we play m moves, starting from the core, to flood the arms. Figure 4.8
illustrates, as described above, a sequence of m + 1 moves to flood the gadget presented
in Figure 4.6(b).

At this point, m2 + 3m + 2 moves were played and each gadget gi 6= ga has only two
colors, the color of its maximum mcs (denote by hi this mcs) and the color of an island
representing a vertex of V ′. Figure 4.9(a) illustrates the graph presented in Figure 4.7(c)

after these m2 + 3m+ 2. Note that none move was played in the gadget ga.

4.2. Flood-Filling Games on Power Graphs 62

ea

eceb

g1

g2g3

(b)

(c)

e1

e2e3

(a)

gb
ga

gc

Figure 4.7: (a) a graph G; (b) the graph Q; (c) the graph C2
n obtained from GQ

By playingm+1 additional moves we create a big mcs H ′ from the hi’s, and by playing
more m moves we obtain an mcs H ′′ which contains H ′ and both arms of ga. Figure 4.9(b)

illustrates the graph presented in Figure 4.7(c) after created H ′, and Figure 4.9(b) shows
the graph after created H ′′.

Now vertices that do not belong to H ′′ are vertices of the core of ga or islands of other
gadgets. Since both endpoints of edge ea lie in a minimum cover of Q, and assuming that
the islands in gb and gc represent vertices x1 and x2, more two moves suffice to flood ga,
gb and gc.

As each gadget in H represent an edge in GQ, and each color in a core represent a
vertex in a edge, by construction, the coloring of the remaining islands represent a vertex
cover of G. Considering that these remaining islands represent the minimum vertex cover
of G, H can be flooded in at most k final moves. This gives a free-flooding of H in at
most m2 + 5m+ k + 5 moves.

Conversely, assume that H has an optimal free-flooding S with m2 +5m+k+5 moves.
For two vertices a, b belonging, respectively, to the z-arm and the y-arm of a gadget gi,
note that a and b can be flooded by the same move m if and only if a and b have the same
color c and, immediately before move m, there exists an mcs H ′ adjacent to a and b with
color c′ 6= c . When such an mcs H ′ exists we have two cases: (i) H ′ contains vertices of
the core of gi (H ′ is of type 1); (ii) H ′ is not of type 1, but contains vertices of the arms
and the core of all the other gadgets (H ′ is of type 2).

4.2. Flood-Filling Games on Power Graphs 63

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.8: A sequence of moves to flood the arms of the gadget presented in Fig. 4(b).

It is easy to see that during the flooding only one gadget of H, say gf , can contain
vertices a, b such that: (1) a, b lie in distinct arms of gf ; (2) a, b are flooded by the same
move, m, played on an mcs of type 2.

Hence, at least m+ 2 gadgets forming a collection U contain no pair a, b of vertices as
described. In each gadget gj in U , the minimum number of moves required to create an
mcs containing all vertices of its arms is m+ 1, where one of the moves exclusively floods
vertices in the core of gj. Since S is an optimal free-flooding, without loss of generality
we can assume that these subsequences of m + 1 moves for each gadget in U correspond
to the first (m + 2)(m + 1) moves in S. Figure 4.9(a) illustrates the graph presented in
Figure 4.7(c) after a possible sequence of m2 + 3m+ 2 moves, as described.

After playing these moves, each gadget in U contains an mcs and an island. Now at
least m + 1 moves are necessary to join all the m + 2 mcs’s created so far into a single
one. Thus there still remain m + k + 2 moves to be analyzed. Observe that joining the
m + 2 mcs’s, we can use only m moves to flood all vertices in the arms of the remaining
gadget, gf , (gadget whith no flooded vertex). Note that gf must exist to the free-flooding
to be optimal.

At this point, let W ′ be the subset of vertices of H not yet flooded. They either lie in
gf ’s core or are islands in the core of other gadgets. As these vertices are flooded in k+ 2

4.2. Flood-Filling Games on Power Graphs 64

(a) Islands

(b)
Islands

(c)
Colors representing

the vertex cover

Figure 4.9: States of the graph in Figure 5(c) during an optimal flooding

4.3. The Size of a Minimum Vertex Cover as Parameter 65

moves, since each gadget in H represents an edge of GQ and vertices lying in the core of
a gadget are associated with vertices of GQ, by construction, the colors of the vertices in
W ′ correspond to a vertex cover of GQ of size k+ 2. This gives a vertex cover of G of size
at most k. �

Corollary 4.2.4. Free-Flood-it remains NP-hard on P 2
n .

Proof. First of all, construct a second power of a path, P 2
n , using a similar construction

of Theorem 4.2.3 without the component Q, and desconsidering the first and the last
gadgets as neighbors. After that, we similarly can show that P 2

n has a free-flooding of size
m2 + 2m+ k − 1 if and only if G has a vertex cover of size k. �

Corollary 4.2.5. Free-Flood-it remains NP-hard on 2× n circular grids.

Proof. Use the construction in Lemma 4.2.2 (for n even) and Theorem 4.2.3. �

4.3 The Size of a Minimum Vertex Cover as Parameter

On the parameterized complexity point of view, we analize the complexity of Flood-it
game played on graphs with bounded minimum vertex cover. We describe an FPT-
algorithm for Flood-it when fixed the size of the minimum vertex cover as parameter.
In addition, we present a polynomial kernelization algorithm when besides the minimum
vertex cover, it is fixed the number of colors as parameter.

In the literature, there exists some results considering bounded values for different
parameters of Flood-it. For instance, Flood-It is NP-hard on n× n grids colored with at
least three colors [2], and it is also NP-hard on trees with diameter at most four [87]. In
[87], Souza et al show some parameterized complexity results on Flood-it on trees, such
as: Flood-it is W[1]-hard on trees whose the number of leaves and number of colors are
parameters. On the other hand, it is easy to verify in O(kk) time whether Flood-it has a
solution of size at most k, and to obtain a kernel of size O(cd) where c and d are parameters
to the number of colors and the diameter of the graph, respectively. At this point, we
analyze the parameterized complexity of Flood-it game considering the minimum vertex
cover of the board (graph) as parameter.

Theorem 4.3.1. Flood-it on graphs is fixed-parameter tractable, FPT, when parameter-
ized by the size of the minimum vertex cover (k).

Proof. Let G = (V,E) be the board of the game, where V (G) = n and E(G) = m.
First of all, we must observe the following statements:

• Enumerating all vertex covers of size at most k can be done in O(2k.n) time by the
method of bounded search trees [31];

4.3. The Size of a Minimum Vertex Cover as Parameter 66

• It is possible to flood a vertex cover of a graph G just playing a subset of moves of
any flooding of G;

• After to flood a vertex cover of G, each color is played at most one more time in
any optimal flooding of G.

In this proof, we assume that a vertex v of G is flooded by a vertex u if and only if
u was the first neighbor of v to be flooded in G, if v is neighbor of the pivot p then v is
flooded by p. If v is flooded by u we say that u is a link to v.

As it is possible to obtain a minimum vertex cover C of G in O(2k.n) time, the main
idea of this proof is to construct in f(k).nO(1) time a subgraph G′ of G, consisting of: (i)
the pivot vertex p; (ii) a minimum vertex cover C of G; (iii) possible and non-redundant
links to flood C in G. The construction of G′ is presented below.

1. G′= G;

2. For each subset of vertices with the same color and the same neighborhood in
V (G′) \ {C ∪ {p}} do: select one vertex and remove all the others.

3. Let S be the set of colors of G′ that is not in {C ∪ {p}}. For each subset Q of S
consisting of colors with the same number of vertices with the same neighborhood
do:

• select one color q ∈ Q and remove all vertices colored with a color in {Q\{q}}.

The step 2 of the construction remove of G′ some redundant vertices, and the step 3
remove of the graph some redundat colors, because if q, r ∈ Q and a vertex with color r
is a link to flood a vertex v in C then we can construct another flooding with at most the
same number of moves using a vertex with color q as link to flood v.

As we can observe, the construction of G′ is done in polynomial time. Now, we must
analyse the cardinality of G′.

• By the step 2, there are O(2k) vertices with the same coloring in G′.

• By the step 3, there are O(2k
2k

) colors in G′.

• Consequently, there are O(2k
2k+1

) vertices in G′.

At this point, we present the following FPT-algorithm to solve Flood-it on graphs
parameterized by the size of the minimum vertex cover.

1. To obtain a minimum vertex cover C in FPT-time;

2. construct the graph G′ in polynomial time;

4.3. The Size of a Minimum Vertex Cover as Parameter 67

3. exhaustively analyse all the possible sequences of moves to flood C in G′;

4. For each possible flooding F ′i of C in G′, create a flooding Fi of G applying F ′i and
after, playing each color at most once until to flood G.

5. Set S = min(Fi).

As G′ has O(2k
2k+1

) vertices, the exhaustive analysis of all the possible sequences
of moves to flood C can be done in f(k) time, and consequently S can be obtained in
f(k).nO(1) time. By the costruction of G′ we can conclude that S is a optimal flooding of
G. �

4.3.1 Polynomial Kernelization

Since every FPT problem has a kernelization algorithm, it is interesting to study
problems which allow kernelization algorithms that reduce instances to a size which is
polynomially bounded by the parameter. Such problems are said to have a polynomial
kernelization algorithm, or a polynomial kernel.

Theorem 4.3.2. Flood-it on graphs admits a polynomial kernelization when parameter-
ized by the size of the minimum vertex cover (k) and the number of colors (c).

Proof. First, we must obtain the minimum vertex cover C of the instance G. The graph
G is composed by at most four disjont subset of vertices: {p}, C \ {p}, A, and B, where
A contains the vertices adjacents to p and vertices in C \ {p} (A can be empty), and B
contains the vertices adjacents only to vertices in C \ {p}. Given these definitions we
construct a polynomial kernel H of G as follows.

1. set V (H) = {p} ∪ C \ {p} ∪ A;

If a vertex v ∈ C was flooded by a vertex x ∈ B then x has a color i and was flooded
by a vertex w 6= v and w ∈ C.

2. for each vertex v ∈ C, for each vertex w ∈ C (w can be v), and for each color i do:

• select, if exists, a vertex x ∈ B of color i neighbor of v and w and set V (H) =

V (H) ∪ {x}

3. set H = G[V (H)]

4. contract all children of p in H with color ci into a single vertex of color ci. Note
that this rule can be applied since the contracted vertices will always be flooded by
the same move in H;

4.4. Final Considerations 68

Note that:

• |C| ≤ k;

• A ≤ c (by rule 4);

• |B| ≤ k.(k.c) = ck2 (by rule 2);

• |V (H)| ≤ ck2 + c+ k + 1.

If a vertex z ∈ B not belongs to V (H) then for each pair v, w of neighbors of z there
is a vertex yi ∈ V (H) neighbor of v, w with the same color than z which also belongs to
B. Consequently, any flooding of H is a flooding of G where z will be flooded in the same
move than a vertex yi. As |V (H)| ≤ ck2 + c+ k + 1, then H is a polynomial kernel. �

4.4 Final Considerations

In this work, we first develop a multivariate investigation on the complexity of Flood-
It and Free-Flood-It when played on trees, analyzing the complexity consequences of
parameterizing flood-filling problems by one or two of the following parameters: c - number
of colors; λ - number of moves; d - maximum distance of the pivot (or diameter, in
the case of Free-Flood-It); o - maximum orbit; k - number of leaves; r - number of
bad moves. During our analysis we have shown that Flood-It on trees is analogous to
Restricted Shortest Common Supersequence, and Flood-It remains NP-hard on 3-colored
trees, closing an open question. We also present a general framework for reducibility from
Flood-It to Free-Flood-It. The obtained results are summarized in the table below. The
trivial cases presented in the table easily remain fixed-parameter tractable for Free-Flood-
It.

4.4. Final Considerations 69

COMPLEXITY OF FLOOD-FILLING GAMES ON TREES
Problem Instance Fixed constant Parameters Complexity Reference

Flood-It

cpc-trees – NP-hard Theor. 4.1.6
trees c ≥ 3 – NP-hard Theor. 4.1.8

pc-trees c FPT Trivial
graphs λ FPT Trivial
cpc-trees d FPT Trivial
cpc-trees o – Polynomial Theor. 4.1.7
pc-trees k W[1]-hard Corol. 4.1.6
graphs r – Polynomial Theor. 4.1.5
cpc-trees r FPT Corol. 4.1.8
trees c, d FPT Theor. 4.1.2
graphs c, o FPT Trivial
trees c, k W[1]-hard Corol. 4.1.4
trees c, r FPT Trivial

pc-trees d ≥ 2, o ≥ 4 – NP-hard Coroll. 4.1.1
trees d, k FPT Trivial
trees o, k W[1]-hard Corol. 4.1.6
trees k, r FPT Corol. 4.1.11

Free-Flood-It

cpc-trees – NP-hard Corol. 4.1.14
trees c ≥ 3 – NP-hard Coroll. 4.1.15
trees d ≥ 4 – NP-hard Corol. 4.1.13

pc-trees k W[1]-hard Corol. 4.1.16
cpc-trees r FPT Coroll. 4.1.18
graphs r – Polynomial Theor. 4.1.12
trees o, k W[1]-hard Corol. 4.1.16

pc-trees k, r FPT Corol. 4.1.17

Many complexity issues on Flood-It and Free-Flood-It have recently been investigated,
and these games have presented interesting behavior when are played on non-grid graphs.

Analyzing the computational complexity of these games on classes of graphs shuch as
power of paths, power of cycles, circular grids and graphs with bounded vertex cover, we
conclude that: (i) Flood-it can be solved in polynomial time on P 2

n , C2
n, 2 × n circular

grids; (ii) Free-Flood-it is NP-hard on P 2
n , C2

n and 2× n circular grids.
On the parameterized complexity point of view, we conclude that: Flood-it game

played on graphs with bounded minimum vertex cover is fixed-parameter tractable. In
addition, we show a polynomial kernelization algorithm for Flood-it when besides the
minimum vertex cover, it is fixed the number of colors as parameter.

4.4.1 Open Problems

In Subsection 4.1.3 it was shown, using Corollary 4.1.7 or Corollary 4.1.8, that
Weighted-Flood-It and Flood-It on cpc-trees are fixed-parameter tractable when con-
sidering the number of bad moves (r) as the parameter. We present two open problems

4.4. Final Considerations 70

on flood-filling games:

• Does Flood-It(r) remain fixed-parameter tractable on general pc-trees?

• Does Weighted-Flood-It(r) remain fixed-parameter tractable on general pc-trees?

Both questions seem to be reasonable conjectures, but in [35] it was shown within the
scope of Shortest Common Supersequence that if the analog version of Flood-It(r) on
pc-trees (denoted Bounded Duplication SCS III) is fixed-parameter tractable then
Directed Feedback Vertex Set is also in FPT, which is apparently unlikely. [31].

Chapter 5

On P3-convexity

"The only place success comes before
work is in the dictionary."

Vince Lombardi

In this chapter, we study new complexity aspects of P3-convexity restricted
to graphs with bounded maximum degree. More specifically we are interested
in identifying either the minimum P3-geodetic set or the minimum P3-hull set
of such graphs, from which the whole vertex set of G is obtained either after
one or eventual iterations, respectively. Each iteration adds to a set S all
vertices of V (G)\S with two neighbors in S. We prove that: (i) the minimum
P3-hull set of a graph G can be found in polynomial time when δ(G) ≥ n(G)

c

(for some constant c); (ii) determining the size of the minimum P3-hull set of
a graph remains NP-hard even on planar graphs with maximum degree four;
(iii) the minimum P3-hull set of a cubic graph can be found in polynomial
time; (iv) the minimum P3-hull set can be found in polynomial time in graphs
with minimum feedback vertex set of bounded size and no vertex of degree
two; (v) it is NP-hard to determine the size of the minimum P3-geodetic set
of a planar graph with maximum degree three.

Let G = (V,E) be a graph. For U ⊆ V , let the interval I[U] of U in G be the set
U ∪ {u ∈ V (G) \ U | |NG(u) ∩ U | ≥ 2}. A set S of vertices of G is P3-geodetic if I[S]

contains all vertices of G. The P3-geodetic number gP3(G) of a graph G is defined as the
minimum cardinality of a P3-geodetic set. The decision problem related to determining
the P3-geodetic number is known to be NP-complete for general graphs, and coincides
with the well-studied 2-domination number [51, 49, 29, 50, 23].

A P3-hull set U of G is a set of vertices such that:

• U0 = U

71

72

• Uk = I[Uk−1], for k ≥ 1.

• ∃ k ≥ 0 | Uk = V (G)

We define HG(S) ⊆ V (G) as I[S]k+1 such that I[S]k+1 = I[S]k, k ≥ 0. The cardinality
of a minimum P3-hull set of G is the P3-hull number of G, denoted by hp3(G). Again,
the decision problem related to determining the P3-hull number of a graph is still a well
known NP-complete problem [21].

According to [22], as one of the most elementary models of the spreading of a property
within a network – like sharing an idea or disseminating a virus – one can consider a graph
G, a set U of vertices of G that initially possesses the property, and an iterative process
whereby new vertices u are added to U whenever sufficiently many neighbors of u are
already in U . The simplest choice leads to the irreversible 2-threshold processes by Dreyer
and Roberts [54]. Similar models were studied in various contexts, such as statistical
physics, social networks, marketing, and distributed computing under different names
such as bootstrap percolation, influence dynamics, local majority processes, irreversible
dynamic monopolies, catastrophic fault patterns, and many others [4, 52, 8, 21, 22, 54].

In the next sections, we analyze the complexity of these problems when some parame-
ters related to the maximum and minimum degree of a graph are known. In the following
subsection we review some results on planar satisfiability problems. In Section 2 we
present some results on finding a minimum P3-hull set of graphs with bounded degree.
Finally, in Section 3 we analyze complexity aspects of finding a minimum P3-geodetic set
on planar graphs with bounded degree.

5.0.2 Planar SAT-am3

SAT-am3 [42]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set X =

{x1, x2, . . . , xn} of boolean variables, such that each clause contains at most three
literals, each variable appears at most three times, and each literal occurs at most
twice.
Question: Is there a truth assignment to the variables in X that satisfies F?

SAT-am3 is an NP-complete problem [42]. In [42] the problem was not defined with
the restriction of each literal occurs at most twice, but without loss of generality, if a literal
l occurs three times, the clauses containing l can be considered satisfied and removed from

73

the formula F to be analyzed. Another variant of SAT is described below.

Planar 3-SAT [42]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set X =

{x1, x2, . . . , xn} of boolean variables, where each clause contains at most three lit-
erals, and the bipartite graph HF = (V,E) such that V = {wc1 , wc2 , . . . , wcm} ∪
{vx1 , vx2 , . . . , vxn} and E contains exactly those pairs (wci , vxj) such that either xj
or ¬xj belongs to the clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Note that not every instance of SAT-am3 is an instance of Planar 3-SAT. For
example, F = (¬x1 +x2 +x3)(x2 +¬x3 +¬x5)(x1 +¬x2 +x4)(x3 +¬x4)(¬x1 +x5) is non-
planar. However, it is well known [42, 61] that Planar 3-SAT is also an NP-complete
problem.

At this point, we describe an intersection of these problems.

Planar SAT-am3

Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set X =

{x1, x2, . . . , xn} of boolean variables, where each clause contains at most three literals,
each variable appears at most three times, each literal occurs at most twice, and the
bipartite graph HF = (V,E) such that V = {wc1 , wc2 , . . . , wcm} ∪ {vx1 , vx2 , . . . , vxn}
and E contains exactly those pairs (wci , vxj) such that either xj or ¬xj belongs to the
clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Lemma 5.0.1. Planar SAT-am3 is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove the hardness, we per-
form a reduction from Planar 3-SAT. Consider a general Planar 3-SAT expression F
in which xi appears ki times. Assign F ′ = F , and for each xi in F ′ replace the first oc-
currence of xi by x1

i , the second by x2
i , and so on, where x1

i , x
2
i , . . . , x

ki
i are new variables.

Add (¬x1
i , x

2
i), (¬x2

i , x
3
i), . . . , (¬x

ki
i , x

1
i) to F ′. Clearly, F ′ is satisfiable if and only if F is

satisfiable.
By Kuratowski’s theorem a finite graph is planar if and only if it does not contain a

subgraph that is a subdivision of K5 or K3,3. To show that HF ′ is planar, just observe
that if HF ′ contains a subgraph that is a subdivision of K5 or K3,3, we can construct
a subgraph of HF that is a subdivision of K5 or K3,3 replacing paths composed of new
variables and clauses by original edges, which gives us a contradiction. �

5.1. P3-Hull Set 74

5.1 P3-Hull Set

In this section we consider both search and decision problems on P3-hull sets.

P3-Hull Set

Instance: A graph G.
Goal: Find a P3-hull set of G with minimum cardinality.

P3-Hull Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-hull set with cardinality at most k.

Note that P3-Hull Number is clearly in NP. Moreover, it is easy to see that if
P3-Hull Number is NP-complete then P3-Hull Set is NP-hard.

Let n(G) be the number of vertices of G, NG(x) the neighborhood of a vertex x in G,
dG(x) = |NG(x)| the degree of vertex x in G, δ(G) and ∆(G) the minimum and maximum
degree of a vertex in G, respectively, and U ∈

(
V (G)
k

)
a subset of V (G) such that |U | = k.

Lemma 5.1.1. Let k be a positive integer. If G is a graph, then

∆k(G) := max

{∣∣∣∣∣⋂
x∈U

NG(x)

∣∣∣∣∣ : U ∈
(
V (G)

k

)}
≥ n(G)

(
δ(G)
k

)(
n(G)
k

) .
Proof. Let R =

{
(u, U) : u ∈ V (G), U ∈

(
V (G)
k

)
, u ∈

⋂
x∈U NG(x)

}
. Since for every

vertex v of G there are
(
dG(v)
k

)
≥
(
δ(G)
k

)
pairs (u, U) in R with u = v, we have |R| ≥

n(G)
(
δ(G)
k

)
. Conversely, by the definition of ∆k(G), for every set V ∈

(
V (G)
k

)
, there are at

most ∆k(G) pairs (u, U) in R with U = V , which implies |R| ≤ ∆k(G)
(
n(G)
k

)
. �

Theorem 5.1.1. Let c be a positive integer.
If G is a graph with δ(G) ≥ n(G)

c
, then

hP3(G) ≤ 2

⌈
log(2c)

log
(

2c2

2c2−1

)⌉+ 2c3.

Proof. In order to construct a small P3-hull set ofG we describe an inductive construction
of a sequence G1, . . . , Gk of induced subgraphs of G such that

• Gi = G−HG(Si−1) for a set Si−1 of at most 2(i− 1) vertices of G,

• n(Gi) ≤ n(G)
(
1− 1

2c2

)i−1, and

• δ(Gi) ≥ n(Gi)
c

for i ∈ [k].

5.1. P3-Hull Set 75

Let G1 = G and S0 = ∅.
Now let i be such that Gi and Si−1 are defined. If Gi is complete or n(Gi) < 2c3, then

terminate the construction of the sequence and set k to i. Since

hP3(G) ≤ |Sk−1|+ hP3(Gk) ≤ 2(k − 1) + 2c3,

it suffices to bound k in order to complete the proof.
Therefore, we may assume that Gi is not complete and that n(Gi) ≥ 2c3. By Lemma

5.1.1, there are two vertices ui and vi of Gi with at least

n(Gi)

(
δ(Gi)

2

)(
n(Gi)

2

) ≥ n(Gi)

(n(Gi)

c
2

)(
n(Gi)

2

) =
n(Gi)(n(Gi)− c)
c2(n(Gi)− 1)

≥ n(Gi)

2c2

common neighbors. Let Si = Si−1 ∪ {ui, vi} and Gi+1 = G−HG(Si). We obtain

n(Gi+1) = n(G)− |HG(Si)|

≤ n(G)− |HG(Si−1) ∪HGi
({ui, vi})|

≤ n(G)− |HG(Si−1)| − |HGi
({ui, vi})|

= n(Gi)− |HGi
({ui, vi})|

≤ n(Gi)−
n(Gi)

2c2

= n(Gi)

(
1− 1

2c2

)
≤ n(G)

(
1− 1

2c2

)i
.

Since Gi+1 = G−HG(Si), we have δ(Gi+1) ≥ δ(G)− 1 ≥ n(G)
c
− 1. Therefore,

δ(Gi+1)

n(Gi+1)
≥

n(G)
c
− 1

n(Gi)
(
1− 1

2c2

) ≥ n(Gi)
c
− 1

n(Gi)
(
1− 1

2c2

) ≥ 1

c
.

Since the minimum degree of all graphs Gi in the sequence is at least δ − 1, the value of
k is less than or equal to the smallest integer r with

n(G)

(
1− 1

2c2

)r−1

≤ n(G)

c
− 1.

Since n(G)
c
− 1 ≥ n(G)

2c
, we obtain

k ≤

⌈
log(2c)

log
(

2c2

2c2−1

)⌉+ 1,

5.1. P3-Hull Set 76

which completes the proof. �

Corollary 5.1.1. A minimum P3-hull set of a graph G with δ(G) ≥ n(G)
c

(for some
constant c) can be found in polynomial time.

Proof. The proof follows immediately from Theorem 5.1.1. �

Theorem 5.1.2. P3-Hull Number remains NP-complete on planar graphs with maxi-
mum degree four.

Proof. To prove that deciding whether the P3-hull number of a graph G is less than
or equal to k is NP-complete, we perform a reduction from Planar SAT-am3, proved
to be NP-complete in Lemma 5.0.1. Here cross edges are meant in the usual sense of a
planar graph: edges crossing other edges in a specific embedding of a graph in the plane.

Given an instance F of Planar SAT-am3 we construct an instance G of P3-Hull

Set as follows:

• For each variable xi of F , create a gadget Gxi composed of 62 vertices as illustrated
in Figure 5.1. Note that Gxi is composed of two subgadgets gxi and gx̄i which
represent the literals xi and x̄i respectively.

a1xi
a2xi

a3xi

a4xi

a5xi

a6xi

a7xi

a8xi

a9xi
a10xi

a1x̄i
a2x̄i

a3x̄i

a4x̄i

a5x̄i

a6x̄i

a7x̄i

a8x̄i

a9x̄i a10x̄i

gx̄igxi

Figure 5.1: Gadget Gxi .

• For each clause Cj of F , create a gadget Gcj composed of the cycle b1
cj
, b2

cj
, b3

cj
,

b4
cj
, b5

cj
, b6

cj
, b7

cj
, b8

cj
plus the vertices b9

cj
, b10

cj
, b11

cj
, b12

cj
, b13

cj
, b14

cj
, b15

cj
, b16

cj
and edges

(b1
cj
, b9
cj

), (b2
cj
, b10cj), (b

3
cj
, b11cj), (b

4
cj
, b12
cj

), (b5
cj
, b13
cj

), (b6
cj
, b14
cj

), (b7
cj
, b15
cj

), (b8
cj
, b16
cj

). Fig-
ure 5.2 illustrates a gadget Gcj .

• If the literal xi occurs twice in F then create the vertices f 1
xi
, f 2

xi
, and add edges

(f 1
xi
, a7

xi
), (f 2

xi
, a8

xi
). Otherwise, create only f 1

xi
and add (f 1

xi
, a7

xi
).

5.1. P3-Hull Set 77

b1cj

b2cj

b3cj

b4cj

b5cj

b6cj

b7cj

b8cj

Figure 5.2: Gadget Gcj .

• If the literal x̄i occurs twice in F then create the vertices f 1
x̄i
, f 2

x̄i
, and add edges

(f 1
x̄i
, a7

x̄i
), (f 2

x̄i
, a8

x̄i
). Otherwise, create only f 1

x̄i
and add (f 1

x̄i
, a7

x̄i
).

• For each clause Cj do:

1. if xi is the first literal of Cj then: if Cj contains the first occurrence of xi then
add edges (a7

xi
, b1
cj

), (a9
xi
, b2
cj

); else add edges (a10
xi
, b1
cj

), (a8
xi
, b2
cj

).

2. if xi is the second literal of Cj then: if Cj contains the first occurrence of xi
then add edges (a7

xi
, b5
cj

), (a9
xi
, b6
cj

); else add edges (a10
xi
, b5
cj

), (a8
xi
, b6
cj

).

3. if xi is the third literal of Cj then: if Cj contains the first occurrence of xi
then add edges (a7

xi
, b7
cj

), (a9
xi
, b8
cj

); else add edges (a10
xi
, b7
cj

), (a8
xi
, b8
cj

). If this
step generates cross edges, remove the newly created edges, and repeat this
step replacing b7

cj
and b8

cj
by b3

cj
and b4

cj
, respectively. This operation keeps the

graph planar, as one can check by verifying all possible configurations.

4. if x̄i is the first literal of Cj then: if Cj contains the first occurrence of x̄i then
add edges (a7

x̄i
, b2
cj

), (a9
x̄i
, b1
cj

); else add edges (a10
x̄i
, b2
cj

), (a8
x̄i
, b1
cj

).

5. if x̄i is the second literal of Cj then: if Cj contains the first occurrence of x̄i
then add edges (a7

x̄i
, b6
cj

), (a9
x̄i
, b5
cj

); else add edges (a10
x̄i
, b6
cj

), (a8
x̄i
, b5
cj

).

6. if x̄i is the third literal of Cj then: if Cj contains the first occurrence of x̄i
then add edges (a7

x̄i
, b8
cj

), (a9
x̄i
, b7
cj

); else add edges (a10
x̄i
, b8
cj

), (a8
x̄i
, b7
cj

). If this
step generates cross edges, remove the newly created edges, and repeat this
step replacing b7

cj
and b8

cj
by b3

cj
and b4

cj
, respectively. As above, this operation

keeps the graph planar, as one can check by verifying all possible configurations.

Figure 5.3 shows a graph constructed from F = (x1)(x2)(x1+x̄2+x3)(x̄1+x̄2+x̄3)(x̄3).

5.1. P3-Hull Set 78

gx̄1gx1 gx̄2gx2 gx̄3gx3

C1

C2

C3

C4

C5

Figure 5.3: Graph obtained from F = (x1)(x2)(x1 + x̄2 + x3)(x̄1 + x̄2 + x̄3)(x̄3).

Let G be the graph obtained by the construction above from an instance F of Planar

SAT-am3. At this point, we will prove that F is satisfiable if and only if G has a hull set
of size 8m + 23n, where m is the number of clauses, and n is the number of variables of
F .

If F is satisfiable then we can obtain a P3-hull set S of G by first adding all the
pendant vertices of G to S. Note that G has 8m+22n pendant vertices. Let A be a truth
assignment of F . If xi = true in A we add a2

xi
to S, else we add a2

x̄i
to S. As A is a truth

assignment of F , each gadget Gcj will be contaminated and consequently all vertices of
G will be contaminated. Hence S is a P3-hull set of size 8m+ 23n.

Conversely, if G has a P3-hull set S of size 8m + 23n, S contains 8m + 22n pendant
vertices and n non-pendant vertices of G. As we can observe in each gadget Gxi of G,
there is a subgraph Bxi such that every vertex v of Bxi is not a pendant vertex and either
it is adjacent to only one leaf and has no non-pendant neighbor outside Bxi , or v has
only one neighbor outside Bxi . Figure 5.4 illustrates a gadget Gxi and its subgraph Bxi .
Consequently, each subgraph Bxi must have exactly one vertex in S, otherwise either S

5.1. P3-Hull Set 79

is not a P3-hull set or S has size greater than 8m + 23n. At this point we can construct
an assignment A of F by setting xi = true if and only if S ∩ V (gxi) ∩ Bxi 6= ∅. By
construction, we can see that A is a truth assignment of F . �

Figure 5.4: Gadget Gxi and its subgraph Bxi inside the rectangle. The white vertices are
pendant vertices in G and are not contained in Bxi .

Lemma 5.1.2. Let G be a cubic graph. S ⊆ V (G) is a P3-hull set of G if and only if S
is also a feedback vertex set of G.

Proof. Let G be a graph with maximum degree three and S be a P3-hull set of G. If
G[V \ S] has a cycle C then each vertex v ∈ C has at most one neighbor outside C, and
consequently C is not in the hull of S, which is a contradiction because S is a P3-hull set
of G.

Conversely, let B be a feedback vertex set of G. As G[V \B] is a forest and G is cubic,
all pendant vertices of G[V \ B] are in HG(B); by removing these pendant vertices of
G[V \B] we obtain a forest T where each leaf of T has two neighbors in HG(B). Applying
this step recursively we can see that all vertices of G[V \B] are in HG(B). �

Lemma 5.1.3. [90] A minimum feedback vertex set of a graph G with maximum degree
at most three can be found in polynomial time.

Corollary 5.1.2. A minimum P3-hull set of a cubic graph can be found in polynomial
time.

Proof. The proof follows immediately from Lemma 5.1.2 and Lemma 5.1.3. �

Theorem 5.1.3. Let F be the class of graphs with no vertex of degree two and with
minimum feedback vertex set of size bounded by a constant c. Then P3-Hull Set on F

can be solved in polynomial time.

5.1. P3-Hull Set 80

Proof. Let G ∈ F . As G has minimum feedback vertex set of size bounded by a
constant c, we can find a minimum feedback vertex set B of G in polynomial time. Let
L be the set of pendant vertices in G, and let T = G \ {B ∪L}. Since G has no vertex of
degree two, each leaf of T has at least two neighbors in {B ∪ L} and just as in the proof
of Lemma 5.1.2, {B ∪L} is a hull set of G. As L is in any hull set of G, it is sufficient to
examine all subset of vertices in V (G) \L of size at most c to find a minimum P3-hull set
of G. �

Corollary 5.1.3. P3-Hull Number remains NP-complete on planar graphs with maxi-
mum degree three.

Proof. In Theorem 5.1.2 we show that P3-Hull Set remains NP-complete on planar
graphs with maximum degree four.

Let G be a graph with n vertices, maximum degree four, and containing ` vertices with
degree four. We construct a graph G′ with maximum degree three and n + 18` vertices
such that G has a P3-hull set of size k if and only if G′ has a P3-hull set of size k + 5`.
The construction is described below.

• set G′ = G;

• for each vertex ui ∈ V (G), create in G′ a gadget gui composed of a cycle
v1
ui
, v2
ui
, v3
ui
, v4
ui
, . . . , v18

ui
(formed by new vertices), plus the edges (v1

ui
, v3
ui

), (v5
ui
, v7
ui

),
(v10
ui
, v12
ui

),(v14
ui
, v16
ui

),(v8
ui
, v18
ui

), (v9
ui
, v1
ui

7).

• let uj, uj+1, uj+2, uj+3 be the neighbours of ui in G; add to G′ the edges (uj, v
2
ui

),-
(uj+1, v

6
ui

),(uj+2, v
1
ui

1),(uj+3, v
1
ui

5), and remove ui.

Note that G′ is a graph with maximum degree three. As G′ has maximum degree
three, for each cycle inside G′ at least one vertex must be in any P3-hull set of G′, which
implies that any gadget gui of G′ has at least five vertices in any P3-hull set of G′.

As illustrated in Figure 5.5, six internal vertices are enough to contaminate a gad-
get gui of G′. Note that for a gadget gui in G′, even when one vertex of the subset
{uj, uj+1, uj+2, uj+3} is contaminated, it is still necessary to use six internal vertices
to contaminate the gadget gui . On the other hand, if any two vertices of the subset
{uj, uj+1, uj+2, uj+3} are contaminated then it is necessary to use only five internal ver-
tices to contaminate the gadget gui . See Figure 5.6.

Thus, if there is a P3-hull set D of G with size k then there is a P3-hull set D′ of G′

with size k + 5` using the vertices in D ∩ V (G′) plus 5 vertices for each gadget gui such
that ui /∈ D and 6 vertices for each gadget gui such that ui ∈ D. Conversely, if G′ has a
P3-hull set D′ of size k+ 5` then we construct a P3-hull set D of G of size at most k using
the vertices D′ ∩ V (G) and adding ui if and only if V (gui) ∩D′ = 6 (for every i). �

5.1. P3-Hull Set 81

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

Figure 5.5: Six internal vertices to contaminate a gadget gui .

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

(a)

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

(b)

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

(c)

Figure 5.6: Two vertices in {uj, uj+1, uj+2, uj+3} are contaminated implying to use only
five internal vertices to contaminate the gadget gui .

5.2. P3-Geodetic Set 82

5.2 P3-Geodetic Set

Now we consider the following decision problem:

P3-Geodetic Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-geodetic set with cardinality at most k.

Note that P3-Geodetic Number is clearly in NP.
As Dominating Set is NP-complete even restricted to planar graphs with maximum

degree three [42], it is easy to see that P3-Geodetic Number problem remains NP-
complete on planar graphs with maximum degree four. Just take an instance G of such
restricted Dominating Set problem and construct a graph G′ by adding a new vertex
wv and a new edge (v, wv) for each vertex v of G. Note that G has a dominating set of
size k if and only if G′ has a P3-geodetic set of size n + k. As G is a planar graph with
maximum degree 3, G′ is a planar graph with maximum degree 4.

As P3-Geodetic Number is NP-complete on planar graphs with maximum degree
four, and trivially solvable in polynomial time on graphs with maximum degree two, it is
natural to ask about the complexity of P3-Geodetic Set on planar graphs with maximum
degree 3.

Theorem 5.2.1. P3-Geodetic Number remains NP-complete on planar graphs with
maximum degree three.

Proof. Deciding whether the P3-geodetic number of a graph G is less than or equal
to k is clearly a problem in NP. To prove the NP-hardness we perform a reduction from
Planar SAT-am3, proved to be NP-complete in Lemma 5.0.1. Given an instance F of
Planar SAT-am3 we construct an instance G of P3-Geodetic Set as follows:

• for each variable xi do: create inG a gadget gxi composed of a cycle f 1
xi
,t1xi ,a

1
xi
,a2
xi
,f 2
xi
,-

t2xi ,a
3
xi
,a4
xi
;

• for each clause Ci containing at most two literals do: create in G a gadget gci
composed of the vertices c1

i , c2
i and edge (c1

i , c
2
i);

• for each clause Cj containing exactly three literals do: create in G a gadget gcj
composed of the vertices c1

j , c
2
j , c

3
j , l

1
j , l

2
j and the edges (c1

j , c
2
j), (c

1
j , c

3
j), (c

1
j , l

1
j), (c

3
j , l

2
j);

• for each clause Cj of F do:

1. add an edge (c2
j , t

p
xi

) if xi is the first or second literal of Cj and it is the p-th
occurrency of xi (1 ≤ p ≤ 2);

2. add an edge (c2
j , f

p
xi

) if ¬xi is the first or second literal of Cj and it is the p-th
occurrency of ¬xi (1 ≤ p ≤ 2);

5.2. P3-Geodetic Set 83

3. add an edge (c3
j , t

p
xi

) if xi is the third literal of Cj and it is the p-th occurrency
of xi (1 ≤ p ≤ 2);

4. add an edge (c3
j , f

p
xi

) if ¬xi is the third literal of Cj and it is the p-th occurrency
of ¬xi (1 ≤ p ≤ 2).

At this point, we show that given an instance F of SAT-am3, where n is the number
of variables, m1 the number of clauses with at most two literals, and m2 the number of
clauses with three literals, by the construction above we obtain a graph G such that: F
is satisfiable if and only if G has a P3-geodetic set S of size k, where k = 4n+m1 + 3m2.

(a) (b) (c) (d)

(e) (f) (g) (h)

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

Figure 5.7: (a) − (d) Choices of vertices in SA that imply in at least 5 vertices to be
added to SA; thicker edges mean that one of its endpoints must be added to SA; (e)− (h)
Choices of vertices in SA that imply in exactly 4 vertices to be added to SA.

Let F be a satisfiable formula and A be a truth assignment of F . We obtain a P3-
geodetic set SA of G from A as follows: (i) every vertex with degree one is added to SA;
(ii) if xi = true in A then t1xi , t

2
xi
, a2

xi
, a4

xi
are added to SA; (iii) if xi = f alse in A then

f 1
xi
, f 2
xi
, a1

xi
, a3

xi
are added to SA; (iv) for each clause Ci with three literals, if c3

i has two
neighbors in SA then c2

i is added to SA, otherwise c1
i is added to SA. As A is a truth

assignment of F , each gadget gci of G has at least one neighbor in SA ∩ {
⋃n

1 V (gxi)};
consequently, SA is a P3-geodetic set of G of size k = 4n+m1 + 3m2.

Conversely, Let SA be a P3-geodetic set of G of size k = 4n+m1 + 3m2. We construct
a truth assignment A for the variables x1, x2, . . . , xn that satisfies all the clauses in F as
follows. Any P3-geodetic set of G contains: (i) at least one vertex of each gadget gci if
Ci has at most two literals; (ii) at least three vertices of each gadget gci if Ci has three
literals; (iii) at least four vertices of each gadget gxi . As SA has size k, each gadget gxi
has exactly four vertices in SA, and at most two of these vertices has degree three in G:
either t1xi and t2xi}, or f

1
xi

and f 2
xi
}. See Figure 5.7. At this point, we can construct a

truth assignment A of F by assigning xi = true if and only if t1xi ∈ SA or t2xi ∈ SA and

5.2. P3-Geodetic Set 84

t2xi has degree three in G. By (i) and (ii), each gadget gci must have at least one neighbor
in SA, otherwise either SA would not be a P3-geodetic set or we would have |SA| > k.
Consequently, by the construction of G and A, if SA is a P3-geodetic set of G of size k
then A is a truth assignment of F .

Figure 5.8 illustrates a boolean formula F and the graph G obtained from F by the
construction above. A possible P3-geodetic set SA is colored red.

x1 x2 x3

c1 c4 c5c2 c3

f1
x1

a4x1
a3x1

t2x1

f2
x1

a2x1
a1x1

t1x1

f1
x2

a4x2
a3x2

t2x2

f2
x2

a2x2
a1x2

t1x2

f1
x3

a4x3
a3x3

t2x3

f2
x3

a2x3
a1x3

t1x3

c11

c21

c12

c22

c13

c23

c14

c24

c34

l14

l24

c15

c25

Figure 5.8: (a) Satisfiable boolean formula F = (x1)(x2)(x1+¬x2)(¬x1+¬x2+¬x3)(¬x3);
(b) Graph G constructed from F .

It is easy to see that G has maximum degree three. To show that G is planar, we can
split G in two subgraphs Gx = {

⋃n
1 gxi} and Gc = {

⋃m
1 gcj}. Note that Gx and Gc are

both planar graphs. By contracting each graph gxi and each gadget gcj of G into a single
vertex, we obtain the bipartite graph HF which by assumption is planar. Hence, G is also
a planar graph. �

5.2.1 Parameters

Now, we will analyze the complexity of finding a P3-geodetic set of size at most k,
where k is fixed as parameter. For short, we denote this parameterized version by P3-

geodetic set(k).

Lemma 5.2.1. P3-geodetic set(k) is W[2]-hard.

Proof. We use a reduction from Dominating set(k′), a well known W[2]-complete
problem [31]. Given an instance (G′, k′) of Dominating set(k′) we construct an instance
(G, k) of P3-geodetic set(k) as follows.

5.3. Open Problem 85

• let H be a K3-graph where V (H) = a, b, c;

• set G = G′ ∪H;

• add in G an edge from a to each vertex in V (G) ∩ V (G′);

• assign k = k′ + 2.

At this point, it is easy to see that G′ has a dominating set of size k′ if and only if G
has a P3-geodetic set of size k, where k = k′ + 2. �

Given that P3-geodetic set remains NP-complete even on planar graphs with maxi-
mum degree three (Theorem 5.2.1) and P3-geodetic set(k) is W[2]-hard (Lemma 5.2.1).
It is natural to ask about the complexity of finding in a graph G a P3-geodetic set of size
at most k, where k and the maximum degree of G are fixed as parameters. For short, we
denote this parameterized version by P3-geodetic set(k,∆).

Lemma 5.2.2. P3-geodetic set(k,∆) is fixed-parameter tractable.

Proof. Let G be an instance of P3-geodetic set(k,∆). As G has maximum degree
bounded by ∆, if G has a P3-geodetic set S of size k then |V \ S| ≤ k.∆ because S
dominates only k.∆ vertices. Thus, if |V (G)| ≤ k + k.∆ then G can be exhaustively
analysed in FPT-time, otherwise G does not have a P3-geodetic set S of size k. �

5.3 Open Problem

In this chapter we analyze the complexity of problems related to convexity P3 of
graphs. The results show that the maximum degree is not a source of polynomial time
intractability for P3-Geodetic Number and P3-Hull Number. Thus we have the
following question.

• Which sets of parameters are sources of polynomial time intractability of the pro-
blems related to convexity P3? In other words, for which parameters the problems
become fixed-parameter tractable?

Chapter 6

Induced Matchings close to Maximum
Matchings

"Success consists of going from failure
to failure without loss of enthusiasm."

Winston Churchill

Extending results of Kobler and Rotics (Finding maximum induced match-
ings in subclasses of claw-free and P5-free graphs, and in graphs with matching
and induced matching of equal maximum size, Algorithmica 37 (2003) 327-
346), Cameron and Walker (The graphs with maximum induced matching and
maximum matching the same size, Discrete Math. 299 (2005) 49-55) gave a
complete structural description of the graphs G where the matching number
ν(G) equals the induced matching number ν2(G). We present a short proof
of their result and use it to study graphs G with ν(G)− ν2(G) ≤ k. We show
that the recognition of these graphs can be done in polynomial time for fixed
k, and is fixed parameter tractable when parameterized by k for graphs of
bounded maximum degree.

We consider finite, simple, and undirected graphs, and use standard terminology and
notation [62]. For a graph G, the vertex set and the edge set are denote by V (G) and
E(G), respectively. For two sets X and Y of vertices of G, the distance between X and Y
in G is the minimum number of edges of a path in G between a vertex in X and a vertex
in Y . Considering an edge as a set containing two distinct vertices, this defines distances
of edges. A matching of a graph G is a setM of edges of G at pairwise distance at least 1.
The matching number ν(G) of G is the maximum cardinality of a matching in G, and a
matching with ν(G) edges is a maximum matching of G. Matchings in graphs are among
the most classical topics in graph theory [62]. Stockmeyer and Vazirani [89] introduced

86

6.1. Graphs G with ν(G) = ν2(G) 87

the notion of an induced matching as a set M of edges of G at pairwise distance at least
2. Equivalently, a matching M is induced if the graph (V (G),M) has maximum degree
at most 1. The induced matching number ν2(G) of G is the maximum cardinality of an
induced matching in G, and an induced matching with ν2(G) edges is a maximum induced
matching. More generally, if k is a positive integer, then a set M of edges of a graph G
is a k-matching of G if the edges in M have pairwise distance at least k. The k-matching
number νk(G) of G is the maximum cardinality of a k-matching in G, and a k-matching
with νk(G) edges is a maximum k-matching.

While maximum matchings can be found efficiently [62], it is algorithmically hard to
find a maximum induced matching [89, 16]. It is even hard to approximate the induced
matching number under substantial restrictions, and efficient exact and approximation
algorithms have been proposed for several special graph classes (cf. [28, 73] for a detailed
discussion). The fixed parameter tractability [75] of induced matchings when parameter-
ized by their cardinality was studied in [74, 73, 28]. While this problem is W [1]-hard in
general, it was shown to be fixed parameter tractable for several restricted graph classes.

In the present paper we study graphs where the matching number is not much larger
than the induced matching number. Kobler and Rotics [57] showed that the graphs
where these two numbers coincide, can be recognized efficiently. Cameron and Walker
[19] extended this result and gave a complete structural description of these graphs. In
Section 6.1 we review the results from [57, 19] and present shorter proofs. In Section
6.2 we study graphs G where ν(G) − ν2(G) ≤ k. We show that the recognition of these
graphs can be done in polynomial time for fixed k and is fixed parameter tractable when
parameterized by k for graphs of bounded maximum degree.

6.1 Graphs G with ν(G) = ν2(G)

In this section we review the results from [57, 19] and present shorter proofs.
A vertex of degree 1 in a graph G is a leaf of G. An edge of a graph G that is incident

with a leaf of G is a leaf edge. An edge uv of a graph G such that uv belongs to a triangle
in G, and u and v have degree 2 in G is a triangle edge.

The following lemma is a key observation from [57, 19]. For the sake of completeness,
we include its short proof.

Lemma 6.1.1 (Kobler and Rotics [57], Cameron and Walker [19]). If G is a connected
graph with ν(G) = ν2(G) ≥ 2, then every edge in a maximum induced matching is a leaf
edge or a triangle edge.

Proof. Let M2 be a maximum induced matching of G. Let e be an edge in M2. We may
assume that e is not a leaf edge. If all other edges in M2 are at distance at least 3 from e,
then adding to M2 an edge at distance 1 from e yields a matching of G with more edges

6.1. Graphs G with ν(G) = ν2(G) 88

than M2, which is a contradiction. Hence, there is an edge f in M2 at distance exactly 2

from e. Let P : v0v1v2v3v4 be a path in G with e = v0v1 and f = v3v4. Since e is not a
leaf edge and M2 is an induced matching, the vertex v0 has a neighbor u that is distinct
from v1, v3, and v4. If u is distinct from v2, then (M2 \ {v0v1})∪{v1v2, v0u} is a matching
of G with more edges than M2, which is a contradiction. Hence the only neighbors of v0

are v1 and v2. Considering the path Q : v1v0v2v3v4 instead of P , it follows, by symmetry,
that the only neighbors of v1 are v0 and v2, that is, the edge e is a triangle edge. �

We proceed to Cameron and Walker’s structural description of the graphs G with ν(G) =

ν2(G).
If G is a connected graph of order at least 3, and V1, V2, V3, and V4 are four disjoint

and possibly empty sets that partition the vertex set of G, then (V1, V2, V3, V4) is a CW-
partition of G if

• V1, V2, and V3 are independent,

• V4 induces a 1-regular subgraph G[V4] of G,

• V1 is the set of leaves of G,

• V2 is the set of neighbors of the vertices in V1,

• every edge uv between vertices in V4 is a triangle edge and the common neighbor of
u and v lies in V3.

Note that all edges between V1 and V2 are leaf edges, every vertex of V2 is incident with
at least one leaf edge, and V2 ∪ V3 induces a connected bipartite graph with partite sets
V2 and V3. If V3 is empty, then V2 contains exactly one vertex, V4 is empty, and G is a
star whose center is the unique vertex in V2. If V1 is empty, then V2 is empty, V3 contains
exactly one vertex, V4 contains exactly two vertices, and G is a triangle. A setM of edges
of a graph G with a CW-partition as above is a CW-matching of G if, for every triangle C
of G, the set M contains exactly one triangle edge of G that belongs to C, and, for every
vertex v in V2, the set M contains exactly one leaf edge incident with v. For the complete
graph K2 of order 2, its unique edge is considered a CW-matching of K2. A graph G is a
CW-graph if every component of G either has order at most 2 or has a CW-partition. It
follows immediately that CW-graphs can be recognized efficiently.

A matching M of a graph G is light if no edge uv in M is adjacent to an edge vw of
G such that M̃ with M̃ = (M \ {uv}) ∪ {vw} is a matching of G and the degree of w
is smaller than the degree of u. Note that the degree sum over all vertices incident with
the edges in M̃ is smaller than that of M . Therefore, every matching can be transformed
efficiently into a light matching with the same number of edges by a polynomial number
of exchange operations.

The next result corresponds to the “if”-part of Theorem 1 in [19].

6.1. Graphs G with ν(G) = ν2(G) 89

Lemma 6.1.2 (Cameron and Walker [19]). If G is a connected CW-graph, then ν2(G) =

ν(G), and an induced matching of G is maximum if and only if it is a CW-matching.

Proof. Clearly, we may assume that G is neither a star nor a triangle. Let (V1, V2, V3, V4)

be a CW-partition of G. LetM be a light maximum matching of G. IfM contains an edge
e incident with a vertex in V2, then e is a leaf edge. If M contains an edge e that belongs
to a triangle of G, then e is a triangle edge. Note that the sets {uv ∈ E(G) : u ∈ V2} of
the edges of G incident with the vertices in V2 together with the sets {uv, vw,wu} of the
edges of the triangles uvwu of G partition the edge set of G. Since every CW-matching of
G contains exactly one edge from each of these sets, every CW-matching of G contains at
least as many edges as M . Since every CW-matching is an induced matching, it follows
that ν2(G) = ν(G) and every CW-matching of G is a maximum (induced) matching of
G. If some maximum induced matching M of G is not a CW-matching of G, then it
contains an edge e incident with a vertex v in V3. Let M̃ be a CW-matching of G. Since
G is not a triangle, the set M̃ contains at least 2 edges, say e1 and e2, at distance 1 from
v. Since M is induced, the set (M \ {e}) ∪ {e1, e2} is a matching of G with more edges
than M , which is a contradiction. Hence every maximum induced matching of G is a
CW-matching, which completes the proof. �

The reason for the relevance of the notion of a light matching in this context is that a
maximum matching of a connected CW-graph is a CW-matching if and only if it is light.
By Lemma 6.1.2, this implies that a maximum induced matching of a CW-graph can be
found efficiently.

The main result of Cameron and Walker [19] is the following.

Theorem 6.1.1 (Cameron and Walker [19]). If G is a graph, then ν2(G) = ν(G) if and
only if G is a CW-graph.

Proof. Since the sufficiency follows from Lemma 6.1.2, we proceed to the proof of the
necessity. Clearly, we may assume that G is a connected graph with ν(G) = ν2(G) ≥ 2.
Let M2 be a maximum induced matching of G. By Lemma 6.1.1, all edges in M2 are leaf
edges or triangle edges. Let V1 be the set of leaves of G. Let V ′1 be the set of leaves of
G that are incident with an edge in M2. Let V2 be the set of neighbors of the vertices
in V ′1 . Let V4 be the set of vertices that are incident with a triangle edge in M2. Let
V3 = V (G) \ (V1 ∪ V2 ∪ V4). Since M2 is an induced matching, the set V2 is independent,
and the common neighbor of adjacent vertices in V4 lies in V3. Since G is connected and
ν2(G) ≥ 2, the set V2 contains no leaf. If x is a leaf of G whose neighbor y is not in V2,
then y is not in V4, and thus M2 ∪ {xy} is a matching of G with more edges than M2,
which is a contradiction. Hence, V2 is the set of neighbors of the vertices in V1. If xy is
an edge between two vertices in V3, then M2 ∪ {xy} is a matching of G with more edges
than M2, which is a contradiction. Hence, the set V3 is independent. This completes the
proof. �

6.2. Graphs G with ν(G)− ν2(G) ≤ k 90

6.2 Graphs G with ν(G)− ν2(G) ≤ k

In this section we study graphs G with ν(G)− ν2(G) ≤ k. We collect some structural
properties of these graphs in Section 6.2.1 and consider their recognition in Section 6.2.2.

6.2.1 Structure

Let G be a graph with ν(G)− ν2(G) ≤ k for some non-negative integer k.
Let M1 be a maximum matching of G and let M2 be a maximum induced matching

of G.
Let H = (V (G),M1∆M2).
If some component of H is a path with 2 edges, say e1 ∈ M1 and e2 ∈ M2, then

(M1 \ {e1}) ∪ {e2} is a maximum matching of G having more edges in common with M2

than M1. Iteratively applying this exchange operation to M1, we may assume that no
component of H is a path with 2 edges. In this case we say that the maximum matching
M1 is close to the maximum induced matchingM2. For the rest of the section, we assume
that M1 is close to M2.

Lemma 6.2.1. The components of H are

• isolated vertices,

• paths of length 1 whose edge belongs to M1 \M2, and

• paths of length 3 whose two leaf edges belong to M1 \M2 and whose middle edges
belong to M2 \M1.

Furthermore, H has exactly ν(G)− ν2(G) non-trivial components.

Proof. Since M1 and M2 are matchings, all components of H are M1-M2-alternating
paths and cycles. Since M2 is an induced matching, the graph H contains no path of
length at least 4 and no cycle. Since M1 is close to M2, and M1 is a maximum matching,
the components of H are as stated. Since every non-trivial component of H contains
exactly one more edge from M1 than from M2, it follows that H has exactly ν(G)−ν2(G)

non-trivial components. �

Let V0 be the set of vertices of G that belong to a non-trivial component of H. Since
every non-trivial component of H has order at most 4, Lemma 6.2.1 implies |V0| ≤ 4k.

Let V ′ = V (G) \ V0, G0 = G[V0], and G′ = G[V ′].

Lemma 6.2.2. G′ is a CW-graph.

Proof. Since no edge in M1 ∪M2 is between V0 and V ′, we have |Mi| = |Mi ∩E(G0)|+
|Mi ∩ E(G′)| for i ∈ {1, 2}. Note that |M1 ∩ E(G0)| = |M2 ∩ E(G0)| + (ν(G) − ν2(G)),

6.2. Graphs G with ν(G)− ν2(G) ≤ k 91

|M1 ∩E(G′)| = |M2 ∩E(G′)|, and that M2 ∩E(G′) is an induced matching of G′. If G′ is
not a CW-graph and N ′1 is a maximum matching of G′, then, by Theorem 6.1.1, we have
|N ′1| = ν(G′) > ν2(G′) ≥ |M2 ∩E(G′)|. Now N1 = (M1 ∩E(G0))∪N ′1 is a matching of G
and hence

ν(G) ≥ |N1|

= |M1 ∩ E(G0)|+ |N ′1|

= |M2 ∩ E(G0)|+ (ν(G)− ν2(G)) + |N ′1|

> |M2 ∩ E(G0)|+ (ν(G)− ν2(G)) + |M2 ∩ E(G′)|

= |M2|+ (ν(G)− ν2(G))

= ν(G),

which is a contradiction. �

6.2.2 Recognition

Theorem 6.2.1. For a fixed non-negative integer k, the graphs G with ν(G)− ν2(G) ≤ k

can be recognized in polynomial time.

Proof. Let G be a graph of order n. Let M1 be a maximum matching of G and M2 be a
maximum induced matching of G such that M1 is close to M2. If ν(G)− ν2(G) ≤ k, then
Lemma 6.2.1 implies |M1 \M2| ≤ 2k and |M2 \M1| ≤ k, and we can consider all nO(k)

potential choices for (M1 \M2,M2 \M1). Clearly, the components of (V (G),M1∆M2)

must be as in Lemma 6.2.1. Furthermore, if ν(G) − ν2(G) ≤ k, then, by Lemmas 6.2.1
and 6.2.2, there must be a choice for (M1 \M2,M2 \M1) such that the graph G′ that
arises from G by removing all vertices that are incident with an edge in M1∆M2 has the
following properties:

(i) G′ is a CW-graph.

(ii) There is a matching M ′ of G′ such that

(a) M ′ is the union of CW-matchings of the components of G′.

(b) (M2 \M1) ∪M ′ is an induced matching of G.

(c) (M1 \M2) ∪M ′ is a maximum matching of G.

As observed above, property (i) can be checked efficiently. Considering the edges between
V (G′) and the set of vertices of G that are incident with edges in M2 \M1, it can be
checked efficiently, if G′ has a matching M ′ that satisfies (ii)(a) and (ii)(b). In fact, the
necessary and sufficient conditions for the existence of such a matching are as follows:
Every triangle of G′ must contain a triangle edge that is not at distance 1 from any edge

6.2. Graphs G with ν(G)− ν2(G) ≤ k 92

in M2 \M1, and every vertex v that is incident with a leaf edge in G′ must be incident
with some leaf edge of G′ that is not at distance 1 from any edge in M2 \M1. Since all
CW-matchings of a connected CW-graph have the same cardinality, the cardinality of M ′

is uniquely determined by G′ and property (ii)(a). This implies that property (ii)(c) can
be checked efficiently. If ν(G)−ν2(G) ≤ k, then one of the choices for (M1 \M2,M2 \M1)

must lead to an induced matching (M2 \M1) ∪M ′ of G with at least ν(G) − k edges,
certifying that ν(G) − ν2(G) ≤ k. Conversely, if ν(G) − ν2(G) > k, then this does not
happen, which completes the proof. �

Our next result states that the recognition of those graphs G with ν(G)− ν2(G) ≤ k that
are of bounded maximum degree is fixed parameter tractable when parameterized by k.

Theorem 6.2.2. Let ∆ and k be positive integers. The graphs G with ν(G)− ν2(G) ≤ k

of maximum degree at most ∆ can be recognized in f(k,∆)nc time where the constant c
does not depend on ∆ or k.

Proof. Let G be a graph of maximum degree at most ∆ and let k be a positive integer.
We consider an unknown yet fixed maximum induced matching M2 of G. Our approach
to decide whether ν(G)− ν2(G) ≤ k relies on the construction of a rooted search tree T
whose order is bounded in terms of k and ∆. With every vertex s of T , we associate a
pair (M1(s),P(s)), where

• M1(s) is a maximum matching of G, and

• P(s) is a collection of paths in G of lengths 1 and 3 whose leaf edges all belong to
M1(s).

Let V (P(s)) be the union of the vertex sets of the paths in P(s), let M1(P(s)) be the set
of leaf edges of the paths in P(s), and let M2(P(s)) be the set of non-leaf edges of the
paths in P(s). Note that M1(P(s)) is a perfect matching of the graph G[V (P(s))]. Let
G′(s) = G [V (G) \ V (P(s))] and M ′

1(s) = M1(s) \M1(P(s)).
The collection P(s) encodes a potential choice for a collection of some non-trivial

components of the graphH considered in Section 6.2.1, that is, in all situations represented
by s and its descendants in T , we assume that

• M2(P(s)) is a (known) subset of the (unknown) matching M2,

• M1(P(s)) is a subset of some maximum matching M1 of G that is close to M2, and

• the paths in P(s) are components of (V (G),M1∆M2).

Note that M1 is allowed to differ from M1(s) within G′(s).
Clearly, the set M ′

1(s) is a maximum matching of G′(s).

6.2. Graphs G with ν(G)− ν2(G) ≤ k 93

As an additional property of the pair (M1(s),P(s)) associated with s, we will ensure
that M ′

1(s) is a light maximum matching of G′(s). As observed above, if (M1(s),P(s)) is
such thatM ′

1(s) is not a light maximum matching of G′(s), thenM ′
1(s) can be transformed

efficiently into a light maximum matching M̃ ′
1(s) of G′(s). Replacing M1(s) with M̃1(s)

where M̃1(s) = (M1(s) \M ′
1(s)) ∪ M̃ ′

1(s) ensures the desired lightness. For simplicity we
say that M̃1(s) arises by lightening M1(s).

With the root r of T , we associate the pair (M1(r), ∅) where M1(r) is any light maxi-
mum matching of G. If t is a child of s in T , then P(t) contains exactly one more path
than P(s). A vertex s of T is a leaf of T if and only if

(i) either P(s) contains at most k paths, the graph G′(s) is a CW-graph, and G′(s)

has a maximum induced matching M ′
2(s) such that the set M2(s) with M2(s) =

M2(P(s)) ∪M ′
2(s) is an induced matching of G,

(ii) or P(s) contains exactly k + 1 paths. Let M2(s) = ∅ in this case.

Note that no leaf of T has depth larger than k+1. The construction of T will ensure that

ν(G)− ν2(G) ≤ k ⇔ max {|M2(s)| : s is a leaf of T} ≥ ν(G)− k. (6.1)

If ν(G) − ν2(G) ≤ k, then the largest induced matching of the form M2(s) where s is a
leaf of T will certify ν(G)− ν2(G) ≤ k.

In order to complete the proof, we will describe the construction of T in such a way
that

• (6.1) holds and

• for every vertex s of T ,

– (M1(s),P(s)) can be determined in time O(nc) where c is a suitable constant,

– the number of children of s is bounded in terms of ∆, and

– if s is a leaf of T that satisfies (i), then M ′
2(s) can be found in time O(nc).

Let s be a vertex of T that does not satisfy (i) or (ii), that is, s will not be a leaf of T .
We consider two cases

Case 1 G′(s) is not a CW-graph.

In this case, since M ′
1(s) is a maximum matching of G′(s), Theorem 6.1.1 implies that

M ′
1(s) is not induced. Therefore, there is a path v1v2v3v4 in G′(s) such that v1v2, v3v4 ∈

M ′
1(s).
It is possible that the edge v2v3 belongs to M2. In this case v1v2v3v4 is a path of

length 3 in (V (G),M1(s)∆M2). This possibility is reflected by creating a child t of s such

6.2. Graphs G with ν(G)− ν2(G) ≤ k 94

that P(t) = P(s) ∪ {v1v2v3v4} and M1(t) arises by lightening M1(s). For the remaining
children of s yet to be created in this case, we may assume that v2v3 does not belong to
M2. Since M2 is an induced matching, this implies that one of the two vertices v2 and v3

is not incident with an edge in M2. By symmetry, we may assume that v2 is not incident
with an edge in M2; for the children of s yet to be created in this case, the tree T will
contain symmetric children of s reflecting the possibility that v3 is not incident with an
edge in M2.

It is possible that no edge incident with v1 belongs to M2. In this case v1v2 is a path
of length 1 in (V (G),M1(s)∆M2). This possibility is reflected by creating a child t of s
such that such that P(t) = P(s) ∪ {v1v2} and M1(t) arises by lightening M1(s). For the
remaining children yet to be created in this case, we may assume that some edge e∗ of M2

is incident with v1. Let N1 be the set of neighbors v of v1 in G′(s) that are incident with
an edge vv′ in M ′

1(s). Let N2 be the set of neighbors of v1 in G′(s) that are not in N1.
For every v in N1, it is possible that e∗ is the edge v1v. In this case v2v1vv

′ is a path of
length 3 in (V (G),M1(s)∆M2). This possibility is reflected by creating a child t of s such
that P(t) = P(s) ∪ {v2v1vv

′} and M1(t) arises by lightening M1(s). For the remaining
children yet to be created in this case, we may assume that e∗ = v1v for some v in N2.

For every v in N2, it is possible that e∗ is the edge v1v. Since M ′
1(s) is a light

maximum matching of G′(s), the neighborhood of v in G′(s) is not a subset of {v1, v2}.
This implies that v has a neighbor v′ in V (G′(s)) \ {v1, v2}. If v′ is not incident with an
edge in M ′

1(s), then M ′
1(s) ∪ {vv′} is a matching of G′(s) with more edges than M ′

1(s),
which is a contradiction. Hence v′ is incident with an edge v′v′′ in M ′

1(s). Note that
(M1(s) \ {v′v′′}) ∪ {vv′} is a maximum matching of G′(s). The possibility that e∗ is the
edge v1v is reflected by creating a child t of s such that P(t) = P(s)∪{v2v1vv

′} andM1(t)

arises by lightening (M1(s) \ {v′v′′}) ∪ {vv′}.

Case 2 G′(s) is a CW-graph.

Since M ′
1(s) is a light maximum matching of G′(s), it is the union of CW-matchings

of the components of G′(s). Since s does not satisfy (i) or (ii), the graph G′(s) does
not have a maximum induced matching M ′

2(s) such that the set M2(s) with M2(s) =

M2(P(s))∪M ′
2(s) is an induced matching of G. This implies that there is some component

H ′(s) of G′(s) such that every CW-matching of H ′(s) contains an edge at distance 1 from
an edge inM2(P(s)). Since this property can be checked in O(nc) time, such a component
H ′(s) can be found efficiently.

First we assume that H ′(s) is a star or a triangle. In this case no edge of H ′(s) can
belong to M2 but exactly one edge uv of H ′(s) belongs to M ′

1(s). We create a child t of
s such that P(t) = P(s) ∪ {uv} and M1(t) arises by lightening M1(s). Hence, we may
assume that H ′(s) is neither a star nor a triangle, which implies that it has order at least
4.

6.2. Graphs G with ν(G)− ν2(G) ≤ k 95

Next we assume that some triangle edge uv of H ′(s) is at distance 1 from an edge in
M2(P(s)). Let w be the common neighbor of u and v in H ′(s). It is possible that M2

contains neither uw not vw. In this case uv is a path of length 1 in (V (G),M1(s)∆M2).
This possibility is reflected by creating a child t of s such that P(t) = P(s) ∪ {uv} and
M1(t) arises by lightening M1(s). For the remaining children yet to be created in this
subcase, we may assume, by symmetry, that vw belongs to M2. Since H ′(s) is a CW-
graph of order at least 4 andM ′

1(s) is a light maximum matching of H ′(s), there is a path
uvwxy in H ′(s) such that xy ∈M ′

1(s) and (M ′
1(s)\{xy})∪{xw} is a maximum matching

of H ′(s). The possibility that vw belongs to M2 is reflected by creating a child t of s such
that P(t) = P(s)∪{uvwx} and M1(t) arises by lightening (M ′

1(s)\{xy})∪{xw}. Hence,
we may assume that no triangle edge of H ′(s) is at distance 1 from an edge in M2(P(s)).
Let V1 be the set of leaves of H ′(s) and let V2 be the set of neighbors in H ′(s) of the
vertices in V1.

Next we assume that some vertex v in V2 is at distance 1 from an edge in M2(P(s)).
Clearly, M ′

1(s) contains an edge uv incident with v. Now uv is a path of length 1 in
(V (G),M1(s)∆M2). This possibility is reflected by creating a child t of s such that
P(t) = P(s) ∪ {uv} and M1(t) arises by lightening M1(s). Hence, we may assume that
no vertex in V2 is at distance 1 from an edge in M2(P(s)). Since G′(s) does not have a
maximum induced matching M ′

2(s) as in (i), this implies that there is some vertex v in V2

such that all neighbors of v in V1 are at distance 1 from an edge in M2(P(s)). Let uv be
the edge of M ′

1(s) incident with v. It is possible that M2 contains no edge incident with
v. In this case uv is a path of length 1 in (V (G),M1(s)∆M2). This possibility is reflected
by creating a child t of s such that P(t) = P(s) ∪ {uv} and M1(t) arises by lightening
M1(s). For the remaining children yet to be created in this subcase, we may assume that
v is incident with an edge e∗ in M2.

For every neighbor w of v in H ′(s) such that w is not a leaf of H ′(s), it is possible
that e∗ is the edge vw. Since H ′(s) is a CW-graph of order at least 4 and M ′

1(s) is a light
maximum matching of H ′(s), there is a path uvwxy in H ′(s) such that xy ∈ M ′

1(s) and
(M ′

1(s) \ {xy}) ∪ {xw} is a maximum matching of H ′(s). The possibility that e∗ is the
edge vw is reflected by creating a child t of s such that P(t) = P(s)∪ {uvwx} and M1(t)

arises by lightening (M ′
1(s) \ {xy}) ∪ {xw}.

This completes the construction of T . The number of children of every vertex of T
is bounded in terms of ∆ and on every child we spent O(nc) time. Since the created
children exhaust all possibilities, Lemmas 6.2.1 and 6.2.2 imply that (6.1) holds, which
completes the proof. �

6.3. Open Problem 96

6.3 Open Problem

In Theorem 6.2.2 we show that the graphs G with ν(G) − ν2(G) ≤ k of maximum
degree at most ∆ can be recognized in f(k,∆).nc time where the constant c does not
depend on ∆ or k. Considering the maximum degree as unrestricted part of the input,
we have the following open question.

• Can the graphs G with with ν(G)− ν2(G) ≤ k be recognized in f(k).nc time?

Chapter 7

Conclusions

In this thesis, a multivariate investigation of NP-hard problems has been carried out
as a systematic application of classical and parameterized complexity techniques. This
approach focused on drawing for each analyzed problem its boundaries between: (i)
polynomial-time solvable and NP-hard subproblems; (ii) tractable and intractable pa-
rameterized versions. This strategy presents a more refined analysis of the complexity
of problems, as well as their possibilities of solvability in practice. The idea is to map
out when a problem Π becomes polynomial-time intractable and the sets of aspects that
are responsible for this NP-hardness, i.e., the sets of aspects for which we can isolate its
non-polynomial time complexity to solve Π as a purely function of them.

The tools used in this systematic analysis are first and foremost methods for algorithm
design, or polynomial-time reductions (Karp reductions), to demonstrate polynomial time
solvability or NP-hardness of a given problem, respectively. To show that a problem is
fixed-parameter tractable, or in FPT, with respect to a set of parameters, we apply the
bounded search tree and problem kernel (kernelization) methods. In another direction,
we apply FPT-reductions (parametric reductions) to identify the level of parameterized
intractability (W[t]-hardness, t ≥ 1) of parameterized problems. Since every problem
in FPT has a kernelization algorithm, we also analyze whether an FPT problem has a
kernel of polynomial size with respect to its parameters. We establish the infeasibility of
polynomial kernels for parameterized problems by a framework developed by Bodlaender
et al. [11] and Fortnow and Santhanam [38], based upon the notion of or-compositionality,
which shows that a problem does not admit a polynomial kernel unless NP ⊆ coNP/poly .

This thesis make a multivariate investigation of different groups of NP-hard problems:
(i) and/or graph solution and its variants; (ii) flooding-filling games; (iii) problems on
P3-convexity; (iv) problems on induced matchings.

1. And/or graph solution and its variants. We have proved that the problem
Min-and/or remains NP-hard even for and/or graphs where edges have weight
one, or-vertices have out-degree at most two, and vertices with in-degree greater

97

98

than one are within distance at most one of a sink; and that deciding whether there
is a solution subtree with weight exactly k of a given x-y tree is also NP-hard. In
a parameterized point of view, we have shown that Min-and/or0(k) is W[2]-hard,
and Min-x-y(k) is W[1]-hard. We also deal with the main question: “Is Min-

and/or(k) ∈ FPT?”. We answer positively to this question via a reduction to a
problem kernel. Finally, we analyze whether Min-and/or(k) admits a polynomial
kernelization algorithm, and using the framework based upon the notion of or-
compositionality, we show that Min-and/or(k) does not admit a polynomial kernel
unless NP ⊆ coNP/poly .

2. Flood-filling games. We analyze the complexity consequences of parameterizing
Flood-it and Free-Flood-it by one or two of the following parameters: c - number
of colors; λ - number of moves; d - maximum distance of the pivot (or diameter, in
the case of Free-Flood-It); o - maximum orbit; k - number of leaves; r - number of
bad moves. During our analysis we have shown that Flood-It on trees is analogous
to Restricted Shortest Common Supersequence, and Flood-It remains NP-hard on
3-colored trees, closing an open question. We also present a general framework for
reducibility from Flood-It to Free-Flood-It. Analyzing the computational complex-
ity of these games on other classes of graphs such as powers of paths, power of cycles,
circular grids, and graphs with bounded vertex cover, we conclude that: (i) Flood-it
can be solved in polynomial time when played on P 2

n , C2
n, and 2× n circular grids;

(ii) Free-Flood-it is NP-hard when played on P 2
n , C2

n; and 2 × n circular grids. Fi-
nally, we prove that Flood-it on graphs is fixed-parameter tractable considering the
size of a minimum vertex cover as the parameter; in addition, we show a polynomial
kernelization algorithm for Flood-it when, besides the minimum vertex cover, the
number of colors is also a parameter.

3. Problems on P3-convexity. We prove that: (i) a minimum P3-hull set of a
graph G can be found in polynomial time when δ(G) ≥ n(G)

c
(for some constant c);

(ii) deciding if the size of a minimum P3-hull set of a graph is at most k remains
NP-complete even on planar graphs with maximum degree four; (iii) a minimum
P3-hull set of a cubic graph can be found in polynomial time; (iv) a minimum P3-
hull set can be found in polynomial time in graphs with minimum feedback vertex
set of bounded size and with no vertices of degree two; (v) deciding if the size of a
minimum P3-geodetic set of a planar graph with maximum degree three is at most
k is NP-complete. Some trivial parameterized results on P3-geodetic sets are also
shown.

4. Problems on induced matchings. We present a short proof of a structural
description of the graphs G where the matching number ν(G) equals the induced

99

matching number ν2(G), and use it to study graphs G with ν(G)− ν2(G) ≤ k. We
show that the recognition of these graphs can be done in polynomial time for fixed
k, and is fixed parameter tractable when parameterized by k for graphs of bounded
maximum degree. Finally, we extend some of Cameron and Walker’s results to
k-matchings in graphs of sufficiently large girth.

Bibliography

[1] Adelson-Velsky, G. M. ; Gelbukh, A. F. ; Levner, E. A Fast Scheduling
Algorithm in AND-OR Graphs. In Topics in Applied and Theoretical Mathematics
and Computer Science. WSEAS Press, 2001, 170–175.

[2] Arthur, D. ; Clifford, R. ; Jalsenius, M. ; Montanaro, A. ; Sach, B. The
Complexity of Flood-Filling Games. 5th International Conference on Fun with Al-
gorithms, FUN, Lecture Notes in Computer Science 6099 (2010), 307–318.

[3] Aschwanden, C. Spatial Simulation Model for Infectious Viral Disease with Focus
on SARS and the Common Flu. 37th Annual Hawaii International Conference on
System Sciences, HICSS (2004).

[4] Balister, P. ; Bollobás, B. ; Johnson, J. ; Walters, M. Random Majority
Percolation. Random Structures and Algorithms 36 (2010), 315–340.

[5] Barbosa, V. C. The Combinatorics of Resource Sharing. In Models for Parallel and
Distributed Computation: Theory, Algorithmic Techniques and Applications. Kluwer
Academic Publishers, 2002.

[6] Barnett, J. A. ; Verma, T. Intelligent Reliability Analysis. 10th IEEE Conference
on Artificial Intelligence for Applications (1994), 428–433.

[7] Barone, P. ; Bonizzoni, P. ; Vedova, G. D. ; Mauri, G. An Approximation Algo-
rithm for the Shortest Common Supersequence Problem: An Experimental Analysis.
ACM Symposium on Applied Computing (2001), 56–60.

[8] Bermond, J.-C. ; Bond, J. ; Peleg, D. ; Perennes, S. The Power of Small
Coalitions in Graphs. Discrete Applied Mathematics 127 (2003), 399–414.

[9] Boadlaender, H. L. Kernelization: New Upper and Lower Bound Techniques. 4th
International Workshop on Parameterized and Exact Computation", IWPEC 2009,
Lecture Notes in Computer Science 5987 (2009), 17–37.

[10] Boadlaender, H. L. ; Bart, M. P. J. ; Kratsch, S. Kernel Bounds for Path and
Cycle Problems. Theoretical Computer Science 511, 4 (2013).

100

Bibliography 101

[11] Boadlaender, H. L. ; Downey, R. G. ; Fellows, M. R. ; Hermelin, D. On
Problems Without Polynomial Kernels. Journal of Computer and System Sciences
75 (2009), 423–434.

[12] Boadlaender, H. L. ; Thomassé, S. ; Yeo, A. Kernel Bounds for Disjoint Cycles
and Disjoint Paths. Theoretical Computer Science 412 (2011), 4570–4578.

[13] Bodlaender, H. L. ; Fellows, M. R. ; Hallett, M. T. ; Wareham, T. ;
Warnow, T. The Hardness of Perfect Phylogeny, Feasible Register Assignment
and other Problems on Thin Colored Graphs. Theoretical Computer Science 244
(2000), 167–188.

[14] Brandstädt, A. ; Hoáng, C. Maximum Induced Matchings for Chordal Graphs
in Linear Time. Algorithmica 52 (2008), 440–447.

[15] Brandstädt, A. ; Mosca, R. On Distance-3 Matchings and Induced Matchings.
Discrete Applied Mathematics 159 (2011), 509–520.

[16] Cameron, K. Induced Matchings. Discrete Applied Mathematics 24 (1989), 97–102.

[17] Cameron, K. Induced Matchings in Intersection Graphs. Discrete Applied Mathe-
matics 278 (2004), 1–9.

[18] Cameron, K. ; Sritharan, R. ; Tang, Y. Finding a Maximum Induced Matching
in Weakly Chordal Graphs. Discrete Applied Mathematics 266 (2003), 133–142.

[19] Cameron, K. ; Walker, T. The Graphs with Maximum Induced Matching and
MaximumMatching the Same Size. Discrete Applied Mathematics 299 (2005), 49–55.

[20] Cao, T. ; Sanderson, A. C. And/or Net Representation for Robotic Task Sequence
Planning. IEEE Trans. Systems Man Cybernet, Part C: Applications and Reviews
28 (1998), 204–218.

[21] Centeno, C. C. ; Dourado, M. C. ; Penso, L. D. ; Rautenbach, D. ; Szwarc-

fiter, J. L. Irreversible Conversion of Graphs. Theoretical Computer Science 412
(2011), 3693–3700.

[22] Centeno, C. C. ; Penso, L. D. ; Rautenbach, D. ; de Sá, V. G. P. Imme-
diate Versus Eventual Conversion: Comparing Geodetic and Hull Numbers in P3-
Convexity. 39th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG, Lecture Notes in Computer Science 7551 (2012), 262–273.

[23] Centeno, C. C. ; Penso, L. D. ; Rautenbach, D. ; de Sá, V. G. P. Geodetic
Number versus Hull Number in P3-Convexity. SIAM Journal on Discrete Mathe-
matics 27, 2 (2013), 717–731.

Bibliography 102

[24] Chang, J.-M. Induced Matchings in Asteroidal Triple-Free Graphs. Discrete Applied
Mathematics 132 (2003), 67–78.

[25] Chor, B. ; Fellows, M. R. ; Ragan, M. A. ; Rosamond, F. A. ; Snir, S. Con-
nected Coloring Completion for General Graphs: Algorithms and complexity. 13th
Conference on Computing and Combinatorics, COCOON, Lecture Notes in Com-
puter Science 4598 (2007), 75–85.

[26] Clifford, R. ; Jalsenius, M. ; Montanaro, A. ; Sach, B. The Complexity of
Flood-Filling Games. Theory of Computing Systems 50, 1 (2012), 72–92.

[27] Corandi, R. ; Westfechtel, B. Version Models for Software Configuration Man-
agement. ACM Computing Surveys 30 (1998), 233–282.

[28] Dabrowski, K. K. ; Demange, M. ; Lozin, V. New Results on Maximum Induced
Matchings in Bipartite Graphs and Beyond. Theoretical Computer Science 478
(2013), 33–40.

[29] DeLaVina, E. ; Goddard, W. ; Henning, M. A. ; Pepper, R. ; Vaughan, E. R.
Bounds on the k-domination number of a graph. Applied Mathematics Letters 24, 6
(2011), 996–998.

[30] DeMello, L. S. H. ; Sanderson, A. C. A Correct and Complete Algorithm for
the Generation of Mechanical Assembly Sequences. IEEE Trans. Robotics and Au-
tomation 7 (1991), 228–240.

[31] Downey, R. ; Fellows, M. Parameterized Complexity. Springer-Verlag, 1999.

[32] Downey, R. G. ; Fellows, M. R. Parametrized Computational Feasibility.
Progress in Computer Science and Applied Logic, Feasible Mathematics II 13.

[33] Duckworth, W. ; Manlove, D. ; Zito, M. On the Approximability of the Maxi-
mum Induced Matching Problem. Journal of Discrete Algorithms 3 (2005), 79–91.

[34] Fellows, M. R. ; Fertin, G. ; Hermelin, D. ; Vialette, S. Sharp Tractability
Borderlines for Finding Connected Motifs in Vertex-Colored Graphs. 34th Inter-
national Colloquium on Automata, Languages and Programming, ICALP, Lecture
Notes in Computer Science 4596.

[35] Fellows, M. R. ; Hallett, M. T. ; Stege, U. Analogs and Duals of the MAST
problem for Sequences and Trees. Journal of Algorithms 49, 1 (2003), 192–216.

[36] Fellows, M. R. ; Hallett, M. T. ; Wareham, H. T. DNA Physical Mapping:
Three Ways Difficult. 1st Annual European Symposium on Algorithms, ESA, Lecture
Notes in Computer Science 726 (1993), 157–168.

Bibliography 103

[37] Flum, J. ; Grohe, M. Parameterized Complexity Theory. Springer, 2006.

[38] Fortnow, L. ; Santhanam, R. Infeasibility of Instance Compression and Succinct
PCPs for NP. Journal of Computer and System Sciences 77 (2011), 91–106.

[39] Fredkin, E. Trie Memory. Communications of the ACM 3 (1960), 490–499.

[40] Gallo, G. ; Longo, G. ; Nguyen, S. ; Pallottino, S. Directed Hypergraphs and
Applications. Discrete Applied Mathematics 42 (1993), 177–201.

[41] Garey, M. R. ; Johnson, D. S. Computer and intractability. A Guide to the NP-
Completeness. Ney York, NY: WH Freeman and Company., 1979.

[42] Garey, M. R. ; Johnson, D. S. ; Stockmeyer, L. Some Simplified NP-complete
Problems. 6th Annual ACM Symposium on Theory of Computing (1974), 47–63.

[43] Golumbic, M. ; Kaplan, H. ; Shamir, R. On the Complexity of DNA Physical
Mapping. Advances in Applied Mathematics 15 (1994), 251–261.

[44] Golumbic, M. ; Lewenstein, M. New Results on Induced Matchings. Discrete
Applied Mathematics 101 (2000), 157–165.

[45] Gotthilf, Z. ; Lewenstein, M. Tighter Approximations for Maximum Induced
Matchings in Regular Graphs. 3rd Workshop on Approximation and Online Algo-
rithms, WAOA, Lecture Notes in Computer Science 3879 (2006), 270–281.

[46] Guo, J. ; Niedermeier, R. Invitation to Data Reduction and Problem Kerneliza-
tion. ACM SIGACT News 38 (2007), 31–45.

[47] Gusfield, D. Efficient Algorithms for Inferring Evolutionary Tree. Networks 21
(1981), 19–28.

[48] Hallett, M. T. An Integrated Complexity Analysis of Problems from Computational
Biology, University of Victoria, Diss., 1996.

[49] Hansberg, A. ; Volkmann, L. On graphs with equal domination and 2-domination
numbers. Discrete Mathematics 308, 11 (2008), 2277–2281.

[50] Hansberg, A. ; Volkmann, L. On 2-domination and independence domination
numbers of graphs. Ars Combinatoria 101 (2011), 405–415.

[51] Haynes, T. ; Hedetniemi, S. ; Slater, P. Fundamentals of Domination in Graphs.
CRC Press, 1998.

[52] J. Balogh, B. B. Sharp Thresholds in Bootstrap Percolation. Physica A: Statistical
Mechanics and its Applications 326 (2003), 305–312.

Bibliography 104

[53] Jiménez, P. ; Torras, C. Speeding up Interference Detection Between Polyhedra.
IEEE International Conference on Robotics and Automation 2 (1996), 1485–1492.

[54] Jr, P. D. ; Roberts, F. Irreversible k-Threshold Processes: Graph-Theoretical
Threshold Models of the Spread of Disease and of Opinion. Discrete Applied Math-
ematics 157 (2009), 1615–1627.

[55] Karp, R. M. Problem-Reduction Representations. In Problem Solving Methods in
Artificial Intelligence. McGraw-Hill, 1971.

[56] Karp, R. M. Reducibility Among Combinatorial Problems. In Miller, R. E. (Hrsg.)
; Thatcher, J. W. (Hrsg.): Complexity of Computer Computations. Plenum Press,
1972.

[57] Kobler, D. ; Rotics, U. Finding maximum induced matchings in subclasses of
claw-free and P5-free graphs, and in graphs with matching and induced matching of
equal maximum size. Algorithmica 37 (2003), 327–346.

[58] Kumar, V. ; Kanal, L. N. Parallel Branch-and-Bound Formulations for And/Or
Tree Search. Pattern Analysis and Machine Intelligence, PAMI, IEEE Transactions
6 (1984), 768–778.

[59] Laber, E. S. A Randomized Competitive Algorithm for Evaluating Priced And/Or
Trees. Theorical Computer Science 401, 1 (2008), 120–130.

[60] Lacroix, V. ; Fernandes, C. G. ; Sagot, M. F. Motif Search in Graphs: Appli-
cation to Metabolic Networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 3, 4 (2006), 360–368.

[61] Lichtenstein, D. Planar Satisfiability and its Uses. SIAM Journal on Computing
11 (1982), 329–343.

[62] Lovász, L. ; Plummer, M. Matching Theory. 29. Annals of Discrete Mathematics,
North-Holland, Amsterdam, 1986.

[63] Lozin, V. On Maximum Induced Matchings in Bipartite Graphs. Information
Processing Letters 81 (2002), 7–11.

[64] Maier, D. The Complexity of Some Problems on Subsequences and Supersequences.
Journal of the ACM 25, 2 (1978), 322–336.

[65] McMorris, F. R. ; Warnow, T. J. ; Wimer, T. Triangulating Vertex-Colored
Graphs. SIAM Journal on Discrete Mathematics 7, 2 (1994), 296–306.

Bibliography 105

[66] Medeiros, R. P. ; Souza, U. S. ; Protti, F. ; Murta, L. G. P. Optimal Variability
Selection in Product Line Engineering. In Proc. of the 24th International Conference
on Software Engineering and Knowledge Engineering - SEKE 2012, (2012), pp. 635–
640.

[67] Meeks, K. ; Scott, A. The Complexity of Flood-Filling Games on Graphs. Discrete
Applied Mathematics 160 (2012), 959–969.

[68] Meeks, K. ; Scott, A. The Complexity of Free-Flood-It on 2× n Boards. Theo-
retical Computer Science 500 (2013), 25–43.

[69] Middendorf, M. More on the Complexity of Common Superstring and Superse-
quence Problems. Theoretical Computer Science 125 (1994), 205–228.

[70] Misra, N. ; Raman, V. ; Saurabh, S. Lower Bounds on Kernelization. Discrete
Optimization 8 (2011), 110–128.

[71] Morabito, R. ; Pureza, V. A Heuristic Approach Based on Dynamic Programming
and And/Or-Graph Search for the Constrained Two-Dimensional Guillotine Cutting
Problem. Annals of Operation Research 179 (2010), 297–315.

[72] Moran, S. ; Snir, S. Convex Recolorings of Strings and Trees: Definitions, Hard-
ness Results and Algorithms. 9th International Workshop on Algorithms and Data
Structures, WADS, Lecture Notes in Computer Science 3608 (2005), 218–232.

[73] Moser, H. ; Sikdar, S. The Parameterized Complexity of the Induced Matching
Problem. Discrete Applied Mathematics 157 (2009), 715–727.

[74] Moser, H. ; Thilikos, D. Parameterized Complexity of Finding Regular Induced
Subgraphs. Journal of Discrete Algorithms 7 (2009), 181–190.

[75] Niedermeier, R. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, Oxford University Press, 2006.

[76] Penso, L. D. ; Protti, F. ; Rautenbach, D. ; Souza, U. S. On P3-convexity
of Graphs with Bounded Degree. In 10th International Conference on Algorithmic
Aspects of Information and Management, AAIM 2014, (2014), pp.

[77] Pietrzak, K. On the Parameterized Complexity of the Fixed Alphabet Shortest
Common Supersequence and Longest Common Subsequence Problems. Journal of
Computer and System Sciences 67 (4), 757–771.

[78] R. Fleischer, G. J. W. An Algorithmic Analysis of the Honey-Bee Game. Theo-
retical Computer Science 452 (2012), 75–87.

Bibliography 106

[79] Rahmann, S. The Shortest Common Supersequence Problem in a Microarray Pro-
duction Setting. Bioinformatics 19, Suppl. 2 (2003), ii156–ii161.

[80] Raiha, K.-J. ; Ukkonen, E. The shortest Common Supersequence Problem Over
Binary Alphabet is NP-complete. Theoretical Computer Science 16 (1981), 187–198.

[81] Sahni, S. Computationally Related Problems. SIAM Journal on Computing 3, 4
(1974), 262–279.

[82] Sim, J. ; Park, K. The Consensus String Problem for a Metric is NP-complete.
Journal of Discrete Algorithms 1, 1 (2003), 111–117.

[83] Simon, R. ; Lee, R. C. T. On the Optimal Solution of And/Or Series Parallel
Graphs. Journal of Association for Computing Machinery 18, 3 (1971), 354–372.

[84] Souza, U. S. ; Protti, F. ; Dantas da Silva, M. Complexidade Parametrizada
para Problemas em Grafos E/OU. Pesquisa Operacional para o Desenvolvimento 4,
2 (2012).

[85] Souza, U. S. ; Protti, F. ; Dantas da Silva, M. Inundação em Grafos. In
Proc. of the 16th Congreso Latino Iberoamericano de Investigación Operativa & 44th
Simpósio Brasileiro de Pesquisa Operacional, CLAIO/SBPO 2012, (2012), pp.

[86] Souza, U. S. ; Protti, F. ; Dantas da Silva, M. Parameterized And/Or Graph
Solution. In Proc. of the 12th Cologne Twente Workshop on Graphs and Combina-
torial Optimization - CTW 2013, (2013), pp. 205–208.

[87] Souza, U. S. ; Protti, F. ; Dantas da Silva, M. Parameterized Complexity of
Flood-Filling Games on Trees. 19th International Computing and Combinatorics
Conference, COCOON, Lecture Notes in Computer Science 7936 (2013), 531–542.

[88] Souza, U. S. ; Protti, F. ; Dantas da Silva, M. Revisiting the Complexity
of And/Or Graph Solution. Journal of Computer and System Sciences 79 (2013),
1156–1163.

[89] Stockmeyer, L. ; Vazirani, V. NP-Completeness of Some Generalizations of the
Maximum Matching Problem. Information Processing Letters 15 (1982), 14–19.

[90] Ueno, S. ; Kajitani, Y. ; Gotoh, S. On the Nonseparating Independent Set
Problem and Feedback Set Problem for Graphs with no Vertex Degree Exceeding
Three. Discrete Mathematics 38 (1988), 355–360.

[91] Wareham, H. T. Systematic parameterized complexity analysis in computational
phonology, University of Victoria, Diss., 1999.

Bibliography 107

[92] Yap, C.-K. Some Consequences of Non-Uniform Conditions on Uniform Classes.
Theoretical Computer Science 26 (1983), 287–300.

	Introduction
	Background
	Parameterized Tractability in Pratice
	Multivariate Investigation

	Organization of this Thesis

	Parameterized Complexity
	Bounded Search Tree Technique
	Kernelization
	Parameterized Intractability
	Analog of Cook's Theorem

	Infeasibility of Polynomial Kernels

	Complexity of And/Or Graph Solution
	NP-hardness Results
	Parameterized Complexity Results
	Infeasibility of Polynomial Kernels
	Open Problem

	Flooding Graphs
	Flood-it on Trees
	Analogous Problems
	Phylogenetic Colored Trees
	Weighted-Flood-it
	Flood-it on 3-colored Trees
	Multi-Flood-it on Trees
	Free-Flood-it on Trees

	Flood-Filling Games on Power Graphs
	Flood-it on Circular Boards
	Free-Flood-it on Powers of Cycles

	The Size of a Minimum Vertex Cover as Parameter
	Polynomial Kernelization

	Final Considerations
	Open Problems

	On P3-convexity
	Planar SAT-am3
	P3-Hull Set
	P3-Geodetic Set
	Parameters

	Open Problem

	Induced Matchings close to Maximum Matchings
	Graphs G with (G)=2(G)
	Graphs G with (G)-2(G)k
	Structure
	Recognition

	Open Problem

	Conclusions
	Bibliography

