
UNIVERSIDADE FEDERAL FLUMINENSE

BRUNO JOSÉ DEMBOGURSKI

Adaptive Hierarchical Mesh Detail Mapping and

Deformation

NITERÓI

2014

UNIVERSIDADE FEDERAL FLUMINENSE

BRUNO JOSÉ DEMBOGURSKI

Adaptive Hierarchical Mesh Detail Mapping and

Deformation

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial ful�llment of the require-
ments for the degree of Doctor of Science.
Area: Computer Graphics

Advisor:

ANSELMO ANTUNES MONTENEGRO

NITERÓI

2014

BRUNO JOSÉ DEMBOGURSKI

ADAPTIVE HIERARCHICAL MESH DETAIL MAPPING AND DEFORMATION

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial ful�llment of the require-

ments for the degree of Doctor of Science.

Area: Computer Graphics

Approved in July of 2014.

Prof. Anselmo Antunes Montenegro - Advisor, UFF

Prof. Esteban Walter Gonzalez Clua, UFF

Prof. Leandro Augusto Frata Fernandes, UFF

Prof. Waldemar Celes Filho, PUC-Rio

Prof. André de Almeida Maximo, GE GRC

Niterói

2014

"I would rather discover a single fact, than to debate the great issues at length, without

discovering anything."

Galileo Galilei

To my family for their love and support.

Acknowledgment

First of all, I would like to thank God for giving me the opportunity, strength and

perseverance to complete this work.

I would like to thank everyone who contributed to the completion of this thesis.

My adviser, Anselmo Antunes Montenegro, for all the patience, support and countless

hours of dedication to help me �nish this work.

Professors of the IC-UFF (Institute of Computing) for the valuable classes that helped

me better understand my �eld of expertise.

I thank my family: my mother Maria and my brother Renan, for the unconditional

support that help me through the di�cult times.

I thank my �ance Vivian, for standing by my side and cheer for me through all this

time.

I thank my friends, Carlos Henrique (Carlão!), Edelberto and Gustavo for all we went

through while sharing an apartment since the beginning of this work.

I thank all my friends, José Luiz, Tadeu, Rafael Barra, Frederico Kniest (Fanboy!),

Felipe Gomes (Cabral!) for all the nights talking, laughing and having fun online. Also,

Fernando Magalhães and Raphael Khoury for all the fun we had working together and

for all the words of motivation.

I thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for

the �nancial support during this doctorate.

Resumo

Neste trabalho apresentamos um novo método para a adição de detalhes, gerados por
funções de ruído, a superfícies de genus arbitrário, utilizando uma representação baseada
em malhas de resolução variável, as quais generalizam malhas multiresolução. A entrada
de dados é uma superfície originalmente representada por uma malha poligonal densa e
um conjunto de parâmetros que guia a deformação e inserção de detalhes nos diferentes
níveis de resolução e localização espacial. A estrutura de multiresolução é construída por
um processo de simpli�cação que gera concomitantemente uma parametrização hierar-
quizada da malha. O nível mais grosseiro da representação de�ne o domínio base, o qual
armazena a geometria original através de um processo de parametrização local. Aplicamos
modi�cações locais a esse domínio base de acordo com funções pré-de�nidas (i.e ruído de
Perlin, ruído de Gabor ou uma deformação local especí�ca) e a propagamos para a malha
original. O processo de decimação e parametrização local, utilizados na construção da rep-
resentação, são feitos simultaneamente utilizando-se operações estelares. Nossa principal
contribuição é um método que explora todo o poder de estruturas hierárquicas adapta-
tivas para gerar detalhes com maior grau de controle. Além disso, o método proposto
preserva as características da malha original com maior intensidade via um processo de
decimação sensível a feições. As mesmas feições detectadas são utilizadas juntamente com
informações sobre a geometria discreta para guiar a geração e mapeamento do ruído.

Palavras-chave: Mapeamento de Detalhes em Malhas, Malhas Hierárquicas, Decimação
Sensível à Feições, Parametrização de Malhas, Processamento de Malhas, Deformação de
Malhas, Geração Procedural, Ruído Procedural.

Abstract

In this work, we present a new method for adding details generated by noise functions
to arbitrary genus surfaces using a representation based on variable resolution meshes,
which generalizes multiresolution meshes. The input data is a surface originally repre-
sented by a dense polygonal mesh and a set of parameters that guide the deformation
and detail generation both in di�erent levels of resolution and spatial location. The hi-
erarchical adaptive structure is constructed by an iterative simpli�cation process that
concomitantly generates a hierarchical parametrization of the mesh. The coarsest level of
the representation de�nes the base domain which stores the original geometry via a local
parameterization process. We apply local modi�cations to this base domain according to
prede�ned functions (i.e. Perlin noise, Gabor Noise or a speci�c localized deformation)
and propagate it to the original mesh. The decimation process and the local parame-
terization are done simultaneously using stellar operations. Our main contribution is a
method that explores the power of adaptive hierarchical structures to generate detail with
a greater degree of control. Also, the proposed method preserves the characteristics of
the original mesh with more intensity through a process of decimation, which is sensitive
to features. The same detected features are used along with discrete geometry properties
to guide the generation and mapping of the noise.

Keywords: Detail Mapping on Meshes, Hierarchical Meshes, Feature-sensitive Decima-
tion, Mesh Processing, Mesh Deformation, Procedural Generation, Procedural Noise

List of Figures

1.1 Process Overview . 4

2.1 Heightmap over a Plane . 10

3.1 Computing Per-vertex Normals . 17

3.2 Tree of an Enclosing Hierarchy . 20

3.3 Stellar operators . 24

3.4 Construction Methods . 25

3.5 Four-face Cluster . 28

3.6 General Edge Collapse . 28

3.7 Perlin Lattice . 33

3.8 Simple Perlin Noise . 34

3.9 Amplitude and Frequency Examples . 34

3.10 Gabor Kernel . 37

4.1 Method Example . 39

4.2 Flowchart Describing Our Method Operations 41

4.3 Stellar Operations . 42

4.4 Feature Lines . 45

4.5 Decimation Vertex Distributions . 46

4.6 Parameterization and Base Domain . 48

4.7 Noise Parametrization Correction Comparison 50

4.8 Noise at Torus Center Comparison . 50

4.9 Re�nement and Reparametrization . 52

4.10 Re�nement Vertex Positioning Fix . 53

List of Figures viii

4.11 Input Models - Sphere . 53

4.12 Degree Fixing . 54

4.13 Input Models - Tri-torus . 54

4.14 Degree Fixing . 55

4.15 Subdivision Steps . 57

4.16 Sphere Subdivision . 57

4.17 Loop Weights . 58

4.18 Smoothing with Subdivision . 58

4.19 Tapering Operator . 59

4.20 Twisting Operator . 60

4.21 Turbulence on a Sphere . 62

4.22 Noise Parameter Variation . 62

4.23 Marble on a Sphere . 63

4.24 Multifractal Sphere . 64

4.25 Wood/Organic Sphere . 64

4.26 Gabor Impulses per Kernel Comparison . 65

4.27 Gabor Noise Directions . 66

4.28 Feature-based Operator . 66

5.1 Local Modi�cations on the Torus . 71

5.2 Femur Wearing . 71

5.3 Femur Aggressive Wearing . 72

5.4 Smoothed Dragon . 74

5.5 Sphere Subdivision . 75

5.6 Virus . 75

5.7 Mushroom Planet . 77

5.8 Skull Details . 78

List of Figures ix

5.9 Sphere tentacles . 79

5.10 Skull Complete Deformation . 80

5.11 Di�usion �ow map . 81

5.12 Di�usion Dragon Unguided . 82

5.13 Di�usion Dragon Guided . 83

5.14 Femur Curvatures . 84

5.15 Input models - Dragon . 85

List of Tables

5.1 Deformation parameters for the noise propagation used in the femur example. 73

Acronyms and Abbreviations

DAG : Discrete Acyclic Graph;

LOD : Level of Detail;

NVC : Neighboring Vertex Coincidence;

PRN : Pseudo-Random Number;

ROI : Region of Interest;

Contents

1 Introduction 1

1.1 Investigated problem . 1

1.2 Objective . 2

1.3 Hypothesis . 2

1.4 Overview of the methodology . 2

1.5 Contributions . 5

1.6 Thesis Organization . 5

2 Related Work 7

2.1 Surface Representation . 7

2.2 Procedural Generation . 9

2.3 Mesh Deformation . 12

3 Background 15

3.1 Object Representations . 15

3.1.1 Polyhedral Meshes . 15

3.1.2 Geometric Operators Operators on Meshes 16

3.1.2.1 Normal Vectors . 16

3.1.2.2 Gradients . 17

3.1.2.3 Discrete Mean Curvature 17

3.1.3 Topological Data-structures . 18

3.1.4 Representation of Meshes at Multiple Levels of Detail 19

Contents xiii

3.1.4.1 Non-Adaptive Hierarchical Structures 20

3.1.4.2 Adaptive Hierarchical Structure 21

Hierarchical Triangulation 21

4-k Meshes . 22

4-8 Tessellations and Meshes 24

3.1.5 Simpli�cation . 26

3.1.6 Simpli�cation based on the quadric error metric 26

3.1.7 Simpli�cation based on four-face clusters 27

3.2 Parametrization . 29

3.2.1 Triangle Mesh Parametrization . 29

3.2.2 Barycentric Parametrization . 30

3.2.3 Parametrization Based on Conformal Mapping 31

3.3 Procedural Noise Functions . 32

3.3.1 Lattice Gradient Noises . 33

3.3.1.1 Perlin Noise . 33

3.3.1.2 Other Lattice Gradient Noises 35

3.3.2 Sparse Convolution Approaches . 35

3.3.2.1 Sparse Convolution Noise 35

3.3.2.2 Spot Noise . 36

3.3.2.3 Gabor Noise . 36

4 Adaptive Hierarchical Mesh Detail Mapping and Deformation 38

4.1 Problem de�nition . 38

4.2 Metodology . 38

4.3 Proposed Method . 40

4.4 Variable Resolution Hierarchical Mesh . 42

4.4.1 Mesh Simpli�cation . 42

Contents xiv

4.4.1.1 Feature analysis on meshes 43

4.4.1.2 Mesh parameterization guided by simpli�cation 47

4.5 Detail Generation . 48

4.5.1 Parameterization update after deformation 49

4.6 Adaptive Re�nement . 51

4.7 Operators . 56

4.7.1 Subdivision and Smoothing Operator 56

4.7.1.1 Subdivision Operator . 56

4.7.1.2 Smoothing Operator . 57

4.7.2 Geometric Operators . 57

4.7.2.1 Tapering . 58

4.7.2.2 Twisting . 60

4.7.3 Procedural Detail Operators . 61

4.7.3.1 Perlin Noise Operator . 61

4.7.3.2 Gabor Noise Operator . 65

4.7.4 Feature-based Operator . 66

4.7.5 Composite Operators . 67

4.7.5.1 Organic Operator . 68

4.7.5.2 Variation Operator . 68

5 Results 70

5.1 Results . 70

5.1.1 Deformation Variation Across Surfaces 70

5.1.2 Feature Vertex Deformation . 71

5.2 Subdivision and Smoothing Operator Usage 73

5.2.0.1 Deformation Based on the Data Structure Properties . . . 73

5.2.1 Examples Illustrating the Entire Process 78

Contents xv

5.2.2 Di�usion Flow Images and Curvature Analysis 80

5.3 Final Comments . 86

6 Conclusion and Future Works 87

6.0.1 Limitations . 88

References 89

Chapter 1

Introduction

In Geometric Modeling and Computer Graphics, polygonal meshes are the most com-

mon representation for shapes and objects [1]. The recent evolution of laser scanning

techniques and geometry processing algorithms has made the research related to dense

meshes, with high complexity, a topic of great interest in the graphics and modeling

community. This can be partially explained by the challenges posed by issues regarding

storage, transmission and rendering. Such models are highly oversampled and the sheer

amount of data in their representations can easily overwhelm most applications.

An important issue is mesh geometry �ne editing, which can be burdensome con-

sidering the high amount of vertices that must be moved in order to make an impactful

change [2]. Modifying such meshes in order to generate sharp details, such as a terrain spe-

ci�c erosion/topography, local bone wearing or any other common representation we �nd

in nature, is a demanding task. This is even more di�cult when dealing with arbitrary

genus surfaces, where mapping these details, considering the majority of the available

methods, is tightly related to the need of solving global parametrization problems. An-

other aspect arises when the mesh is rather plain lacking appalling details that must be

added for a greater impactful e�ect. This is one of the main aspects we are concerned

here.

1.1 Investigated problem

In few words, we can say that in this work we investigate the problem of adding de-

tails, speci�cally, procedurally generated details, onto meshes with arbitrary genuses with

considerable level of control on the insertion process.

1.2 Objective 2

1.2 Objective

Our main objective is to tackle issues concerning detail manipulation on meshes by propos-

ing a method that enables greater control when adding details both in space and scale of

the mesh representation. We also require that the process of detail addition and manip-

ulation can be applied to meshes with arbitrary topology regardless of its genuses.

1.3 Hypothesis

Our hypothesis is that tools from geometric modeling and geometry processing, as well as

hierarchical representation and parameterization, are the essential components to achieve

the desired results concerning both easiness of manipulation and control in the process

of detail addition. We believe that an adaptive hierarchical representation is the way to

cope with the complexity of dense meshes and parameterization is what leads us to deal

with the problem in a simpler way by mapping the surface represented by the mesh onto

a set of local Euclidean bidimensional spaces described by a triangulated coarse mesh.

1.4 Overview of the methodology

The proposed methodology is based on building a pipeline of geometry modeling and

processing techniques applied to an appropriate representation and parameterization of

the considered mesh. Such pipeline relies heavily on hierarchical mesh representation,

feature sensitive decimation, parametrization, procedural noise generation and subdivi-

sion schemes. All these tools were carefully chosen, adapted, modi�ed and assembled

to produce a new method for dealing with the problem of detail editing on meshes with

complex topology. We show the feasibility of our approach by adding di�erent kinds of

detail to di�erent meshes that may vary in geometry and topology. Examples of localized

detail addition in space and scale are presented in the results chapter. We also show re-

sults illustrating feature guided detail addition. A brief analysis of the impact of sensitive

feature decimation to the base domain generation and its impact on the parameterization

is also described in the same chapter.

There are many advantages of using variable resolution approaches for representing

meshes. These include:

� possibility of adaptive mesh simpli�cation;

1.4 Overview of the methodology 3

� progressive display;

� level of detail control;

� more importantly, multiresolution editing.

The latter is one of the most important, as details usually appear in di�erent scales and

require the matching of the detail scale with the level of detail of the geometry being

processed.

Adaptive hierarchical data structures can be used to construct a generalization of

a multiresolution mesh obtained by subdivision. The mesh representation used in this

work is based on [3], which presents a mesh simpli�cation method that generates a

variable resolution hierarchical structure called 4-K mesh. This method is based on simple

local operators for mesh modi�cation, which are applied in parallel to an independent

set of four-face clusters. We also construct a smooth parametrization of the original

mesh over the base domain, where the parametrization is de�ned by a composition of

a sequence of mappings built during the simpli�cation process. This approach was �rst

introduced by [4] and our method is based on it (a detailed description can be found in

section 4.4.1). Although our method is based on [3] and [4] we can cite some characteristics

that distinguish our approach from them. We build the 4-k mesh using a feature sensitive

decimation process which enables us to build base meshes closer to the original one. By

using 4-k meshes, our parameterization, in spite of being similar to [3], relies heavily on

stellar operation which makes the process simpler than in [4].

This work relies on procedural noise generation approaches and subdivision schemes

combined with the previous described techniques in order to produce rich details and also

enable some sort of control over the pseudo-random appearance of the applied noise. The

two main noise functions discussed here are the Perlin noise [5] and the Gabor noise [6].

The subdivision technique used here inspired by Loop's [7] scheme, which provides a

nice manipulation tool when dealing with the problem of inserting band limited noise

which is not compatible with the resolution or desired level of detail of the mesh. It is

also a powerful tool for local manipulation as will be presented in Chapter 5. We must

emphasize that we do not use Loop's approach here, but a mesh re�nement and smoothing

scheme based on it. A full demonstration of our approach and methodology can be seen

in Figure 1.1.

The process described in Figure 1.1 starts with an input dense mesh with approxi-

mately 40k vertices. A decimation process then is performed, creating an adaptive hier-

1.4 Overview of the methodology 4

Figure 1.1: Steps representing our approach and methodology, where an input mesh is
simpli�ed, deformed and re�ned. Model obtained from [8].

1.5 Contributions 5

archical structure through successive parametrizations, reducing the number of vertices

by a factor of 40. The mapping of the parameterized points can also be seen in Figure 1.1

(fourth and �fth skulls). At a given resolution level (this level is user de�ned), a deforma-

tion is performed and a correction of the parametrization is applied (�fth skull). Then,

the re�nement process is initiated. One can notice that skulls six (11k vertices) and seven

(40k vertices) are really similar, indicating that the input mesh is oversampled. All the

steps and procedures mentioned previously will be explained in the following chapters of

this thesis.

1.5 Contributions

The main contributions of this work are:

� a new method based on a combination of variable resolution mesh representations,

procedural noise generation and subdivision schemes for adding details to meshes

with arbitrary genuses with control over the noise scales and mesh local resolution.

The insertion is done in a controlled way by matching the details in the di�er-

ent scales of the procedurally generated signal (a noise) with the meshes' levels of

resolution.

� a novel way to build 4-k meshes without relying on storing local combinatorial

operations. We simply store the original vertices in the base domain and re�ne it

by inserting the vertices in the decimation order. To achieve this, we apply a vertex

degree �x algorithm, which approximates the original geometry.

� an improvement in the 4-k base domain generation by using feature guided decima-

tion.

� a new way to map details onto meshes using features and geometric properties of

the mesh to guide the detail generation.

1.6 Thesis Organization

This work is organized as follows: the Chapter 2 presents a review of the related works,

which are the basis for the development of this thesis; Chapter 3 presents a background

overview, including summary of the fundamentals and main �ndings in the literature,

which will serve as base to the models and methods that are presented in the next chapter;

1.6 Thesis Organization 6

Chapter 4 describes our work and its details, covering all contributions made; Chapter

5 shows the results obtained through our experiments; Finally, Chapter 6, traces future

works for this research; After all chapters, we list the references cited throughout the text.

Chapter 2

Related Work

We classify the works related to the one presented here into three main categories: surface

representation, procedural model or detail generation and mesh deformation.

In the surface representation category, the hierarchical structures that were considered

more important for this work are reviewed, focusing on techniques that provide variable

resolution representations, including the ones used as the basis for the design of algorithms

proposed in this thesis.

In the procedural detail generation category, algorithms related to the procedural

noise generation are analyzed. Many works are important, but we focus here in the two

most commonly used: Perlin noise and the Gabor noise.

Finally, an overview of the mesh deformation approaches are presented. These include

methods based on procedural approaches and the most relevant alternatives.

2.1 Surface Representation

Polygonal meshes are the main and de facto form of surface representation used in Com-

puter Graphics. They can represent meshes of arbitrary topology, and resolve �ne details

when a su�cient amount of polygons is used. For an extremely dense mesh, interactive

manipulation is a challenge. This is due to the considerable number of operations re-

quired to modify thousands or millions of vertex, edge and/or face information. In such

situations, mesh simpli�cation algorithms can provide a possible answer [9].

One of the �rst works dealing with hierarchical triangulations was presented by Flo-

riani and Puppo [10], which consists of a subdivision scheme of the plane domain into

nested triangulations and where the hierarchical structure is described by a tree. They

2.1 Surface Representation 8

also discuss details regarding hierarchical triangulations, and provide a multiresolution

surface model. Later, Puppo et al. [11] presented a generalization of the multiresolution

class, extending the concepts presented in [12]. This generalization introduced the idea

of variable resolution structures, where an application could extract a representation of

minimum size for an arbitrary LOD (level of detail) in linear time.

In this work speci�cally, we make use of a variable resolution structure called hi-

erarchical 4-k mesh, which is a powerful representation for non-uniform level of detail.

This structure is based on the Variable Resolution 4-k Meshes introduced by Velho and

Gomes [13] and is a specialization of the general variable resolution structure. To obtain

such structure a hierarchical mesh simpli�cation process is done [3].

This representation is ideal to our work, which focus on manipulating variable resolu-

tion meshes through procedural methods. This is a direct result of the characteristics of

this structure, which can code all possible mesh hierarchies that can be generated from a

sequence of local modi�cations. As presented by [11], the e�ectiveness of a variable resolu-

tion structure can be analyzed by three criteria: expressive power, depth and growth rate.

4-k meshes posses all these desirable properties. In Section 4.4, a detailed description of

this structure is presented and for a more in-depth description we suggest reading [13].

On each step of the simpli�cation process, a local parametrization process is per-

formed, where the removed vertex is mapped to a lower resolution level face. In essence,

this hierarchical parametrization is similar to the work presented by Lee in [4], but, as

will be shown in Section 4.4.1, it has key di�erences when compared to our method.

Lee introduced an algorithm to compute smooth parameterizations of dense 2-manifold

meshes with arbitrary topology, which is used for adaptive hierarchical remeshing of these

arbitrary meshes into subdivision meshes.

In [1] Maximo et al. presents an adaptive multiresolution mesh representation explor-

ing the computational di�erences of the CPU and the GPU. This work considers a dense

input mesh and simplify it to a base domain, similar to the work presented in [4], but

here using an atlas structure. It also uses stellar operators in order to perform both, the

simpli�cation and the re�nement processes. It's main objective is to show the adaptive

control of the mesh resolution in CPU-GPU coupled applications. While our work is sim-

ilar to Maximo's in the way the mesh representation is constructed, we can point out one

key di�erence. Here we used a 4-k adaptation scheme instead of 4-8 used by Maximo and

this choice is explained for two reasons: �rst we were not concerned with GPU processing;

second, the use of feature decimation has led us to use 4-k meshes because of the distri-

2.2 Procedural Generation 9

bution of the valency of the vertices of the meshes we obtained, which made complicated

the use of 4-8 meshes. Besides, in this thesis we focus in the use of 4-k structures in the

problem of detail insertion. Maximo's work is also able to deal with such problem, but

his approach is a more general one and not focused speci�cally in the aspect of detail

generation. As they represent a mesh as a multiresolution atlas structure that can be

used as a multiresolution grid parameterization of the mesh, general geometric processing

techniques can be applied. The use of the techniques proposed here is a possibility, but

this requires further investigation, in particular, how to consider feature decimation in

the construction of their mesh representation. Due to the characteristics of our main

objective, which is detail insertion, and not the extraction of all possible representations

in the adaptive hierarchical representation, we do not store local modi�cation operations

as in the classical 4-8 and 4-k mesh. On the one hand, we only store the sequence of

decimated vertices in order to navigate and manipulate the structure. On the other hand,

this has obliged us to devise a new way to correct the re�ned mesh as we reinsert the

vertices, which is our vertex valency �x algorithm. By doing this we made a trade o�

between local modi�cation storage as a graph and procedural correction of the vertex �x.

More about this issue will be discussed in the description of our method in Chapter 4.

2.2 Procedural Generation

Procedural methods have a great appeal and this can be explained by its characteristics.

As presented by Ebert, in [14], the most important one is abstraction. In a procedural

approach, every detail is abstracted into a function or an algorithm. This allows us to

gain parametric control, making the manipulation of speci�c details an easier task, making

procedural generation a powerful tool in texturing and modeling.

A variety of di�erent e�ects can be produced by procedural techniques. Among them,

the most basic one, is the generation of primitives with random (or pseudo-random)

parameters. A plane with a randomly generated heightmap is an example of this technique

and can be seen in Figure 2.1. Also, considering pseudo-random functions, it is possible to

generate noise in order to create textures and natural looking formations [5]. The process

of creating organic structures, such as a tree, a snow �ake or a mountain silhouette can be

achieved through fractal algorithms or even L-Systems. In their book, Ebert et al. [14],

outline the most important features of procedural techniques: abstraction , parametric

control and �exibility.

2.2 Procedural Generation 10

(a) (b)

Figure 2.1: (a) Pseudo-random heightmap generated over a plane. (b) Resulting defor-
mation when applying the heightmap to modify the plane geometry.

In a procedural approach, any complex data is usually abstracted into a function or

algorithm. This di�ers from non-procedural techniques, where all the data is explicitly

speci�ed and all complex detail of a scene is previously stored. This enables an on-the-

�y evaluation of this function or algorithm to create the desired e�ect, also enabling

the creation of inherent multiresolution models and textures that we can evaluate to the

required resolution [14].

The parametric control is related to how the parameters represent information. These

are de�ned and adjusted to match certain objectives or behavior of the procedural function

or algorithm, an example is a variable that de�nes how rough or �at a terrain will be.

This control allows the user to create as many as needed parameters amplifying its choices

and possibilities for modeling or generating detail.

The �exibility of a procedural model is related to the possibility of designing an e�ect

or structure without being bound to the real-world physics related to it. The process

(algorithm or function) can capture the essence of the object being modeled and then, if

necessary, insert the desired level of �delity regarding the laws of physics.

These characteristics draw the attention of di�erent industries, such as games and

movies. These are always battling to meet the expectations of the public with great

concern regarding the expenses to be invested for this purpose. In order to solve this

issue, the most common methodology used to take care of consumer demand has always

been to essentially expand the amount of artists to create more itemized, detailed and

realistic content. Nonetheless, increasing the artistic pipeline does not necessarily imply

in scaling the production [15].

A potential solution for the content creation problem is the application of procedu-

2.2 Procedural Generation 11

ral techniques. These techniques have been used for over 25 years in the �eld of com-

puter graphics [14] for a wide range of applications: adding noise to existing textures

and/or meshes [5], duplicate the appearance of natural materials such as marble and

wood through 3D textures [16], creating and modeling life-like models of various tree and

plant species [17] and generating detailed cellular textures such as skin or bark [18]. Entire

procedural worlds are now possible and this is demonstrated in the MojoWorld [19] ap-

plication, where assets including realistic natural features such as terrain, lakes, trees and

shrubs are all generated using procedural techniques. Also, recent procedural applications

have been expanded further, in order to simulate special e�ects including particle systems,

water, and even the natural physical movements of assets [20]. Complex scenes contain-

ing many di�erent models would normally take months to manually construct; now vast

sections of these scenes can be created using speci�c procedural generation packages [21]

that can generate detailed and varied models in minutes. Procedural generation is a time

saving method of rapidly and e�ciently generating content that can help to alleviate and

potentially solve the problems of escalating content creation costs [22]. There are sev-

eral works that deal with the procedural generation of terrains, which is one of the most

discussed application of procedural techniques [23].

Existing procedural solutions primarily apply procedural techniques to the generation

of natural phenomena, but many of the same techniques have obvious applications in the

generation of man-made arti�cial phenomena.

An example are cityscapes, which presents many challenges to modeling. They are rich

in visual and functional complexity, and are a result of development and evolution over

hundreds of years under the in�uence of countless factors. Some of the major in�uential

factors a�ecting cities include population, transport, environment, elevation, vegetation,

geology and cultural in�uence. It is a formidable challenge for researchers and developers

to create a realistic model of such a large and complex system [22].

In this scope, noise generation has always been of great importance to this end as it

is one of the means to introduce randomized non-correlated features to the geometry or

distribution of objects in scene. Speci�cally, Perlin noise [5] was one of the most used and

explored one. Perlin in [24], deals with the important issue of controlling the appearance of

the noise. This is done through spectral control and in [24] this is achieved by a weighted

sum of band-limited octaves of noise. Although, this may not be the best solution, it is

only a means of controlling the power spectrum of the noise. Later, Perlin [25] improved

his noise by �xing discontinuities of the second order interpolation and optimizing the

2.3 Mesh Deformation 12

gradient computation.

We consider noise control a key element to this work, and a noise generation approach

that provides more of such control is presented by Lagae et al. [6]. He introduced a proce-

dural noise using sparse Gabor convolution which provides accurate spectral control using

Gabor kernels. Also, this approach has two qualities: it does not have the regularity and

discontinuity problems of Perlin's noise function and at the same time enables anisotropic

noise generation. Later, Lagae et al. in [26] presented a �ltered version of the Gabor noise,

where a slicing approach is introduced in order to preserve continuity across sharp edges.

He also deals with the issue of keeping the anisotropic feature in a sliced solid noise. More

recently, in [27], a generalization of the Gabor noise is introduced by Galerne, where a

bandwidth-quantized Gabor noise with arbitrary power spectra is presented. This enables

a robust parameter estimation and e�cient procedural evaluation.

2.3 Mesh Deformation

Mesh deformation is a challenging topic, since the techniques involved must encapsulate

complex mathematical formulations into an intuitive user interface and, more importantly,

must be developed to achieve e�ciency and robustness, allowing real-time interactions and

manipulations.

Shape editing has been an extremely active �eld ever since the early beginnings of

computer graphics and accordingly a variety of approaches exist ranging from classical

splines to multiresolution techniques and space deformations. We will give only a brief

overview of the principal approaches here and refer for a more general review of shape

editing to [28] and [29].

Tensor product splines are nowadays the prevailing representation for surfaces in com-

puter aided design. In many applications, surfaces are created from scratch in this rep-

resentation. Spline basis functions have a number of desirable properties, e.g. local

support and positive partition of unity that give linear coe�cients - the control points -

an intuitive interpretation and thus simplify subsequent editing. Conversion of large un-

structured point clouds or triangle meshes as acquired by scanning devices or photometric

stereo into a spline based representation is, however, di�cult and still an active topic of

research. Large or complex surfaces usually require tensor product spline patches with

several hundreds of degrees of freedom. Except for changes to small details, the editing

of such surfaces thus involves modi�cations of many control points and is therefore often

2.3 Mesh Deformation 13

tedious and troublesome.

To overcome restrictions of tensor product spline surfaces, a second class of ap-

proaches [30, 31, 32] is based on what is called transformation propagation. The user

initializes the editing process by selecting a subset of the surface as region-of-interest

(ROI) R. Within this region, he then selects two further subsets: a �xed subset F and a

handle subset H. The points in the handle subset H are then transformed interactively

by some user speci�ed transformation (usually translation, rotation and scaling). The

deformable model interactively computes positions for the remaining surface points in the

region-of-interest. This general editing metaphor introduced by [30] and [33] is also used

in shape editing based on deformation potentials that will be discussed below. In trans-

formation propagation approaches, the handle transformation is propagated through the

regions of interest until it reaches the �xed subset F . Each point within R is transformed

with an interpolation of the handle transformation and the original �xed transformation

at F according to some function of its distance to these regions. As demonstrated in [29]

transformation propagation does not necessarily lead to intuitive deformations.

Multiresolution deformation techniques decompose the original surface into a low-pass

�ltered coarse approximation and high-frequency details. The actual parameters of the

�lter can be con�gured by the user to select the level-of-detail of interest. Modi�cations

are then applied to the coarse version of the surface e.g. by transformation propagation

or any arbitrary editing technique. Finally, the stored high-frequency details are added

on top of the edited version of the coarse approximation. Approaches di�er, �rst of all,

in the way high frequency detail is represented and fused with the edited coarse mesh.

In all surface-based deformation techniques the quality of deformations is inherently

linked to mesh quality. Problems in the triangulation like cracks or degenerate trian-

gles inevitably lead to deformation artifacts. Furthermore, the speed of such methods

decreases with the mesh resolution so that very high mesh resolutions result in non-

interactive frame rates. Space deformation methods avoid these problems by deforming

the space surrounding the object. The embedded surface is deformed by applying this

space deformation to every point. Space deformations can for example be de�ned by ten-

sor product splines, radial basis functions or specially designed cages around the surface

in question. The complexity of the deformation then only depends on the complexity

of the control structure, e.g. the number of control points or cage cells. As the actual

surface mesh is not involved in the computations, space deformation approaches handle

meshing problems gracefully and can equally be applied to point sets. On the downside,

2.3 Mesh Deformation 14

special care must be taken to ensure su�cient resolution and correct topology of control

structures.

Finally, another class of approaches minimizes surface-based deformation potentials

for shape editing. For user interaction the same general editing metaphor is used as with

transformation propagation based editing. In contrast to transformation propagation, the

unconstrained surface within the region-of-interest is updated by minimizing a potential

functional on the surface. Possible choices of the potential functional include linear ap-

proximations of the elastic energy discussed in Section 3.2.1. Apart from these, mesh

editing methods based on di�erential representations, as they have become very popu-

lar in the last years, also naturally lead to deformation potentials and can therefore be

subsumed into this class of approaches.

In our scope, an important work is presented by Velho in [34] where he introduce a

framework that integrates procedural shape synthesis on a modeling system. This is done

using multiresolution analysis through surface subdivision based on Catmull-Clark [35].

This is a key di�erence in relation to our work, in which a variable resolution structure is

used, where we guarantee feature preservation in the base domain. This last characteristic

has some advantages, enabling, for instance, the creation of level of detail structures with

better quality. Regarding feature guided mesh editing, Biermman [36] describe a method

to introduce sharp features and trim regions on a surface. Similarly to Velho's work, he

uses a multiresolution representation also using Catmull-Clark subdivision scheme.

The subdivision surfaces mentioned before, are de�ned by progressive re�nement rules

applied to an initial polygonal mesh (in some cases a base domain). For example, Catmull-

Clark subdivision inserts new vertices at the center of each edge and face, and then

displaces the vertices based on simple linear weights. Considering a initial quad-mesh,

this process converges to a bi-cubic B-spline surface de�ned by this mesh [37]. However,

this scheme lacks the adaptive feature of a variable resolution representation.

In this chapter we presented the most important references that relates to our problem

and solution, including relevant surface representation methods, procedural detail genera-

tion algorithms and mesh deformation approaches. In the next Chapter, all the necessary

background information, needed for a better understanding of the rest of this thesis, will

be presented. Including object representations, parametrization and procedural noise

functions.

Chapter 3

Background

This chapter presents the basic information needed to the comprehension of this thesis.

The main objective is to expose the technical and theoretical background, establishing

the basis for the methodology that will be described to solve the problem.

Here, we will focus on the following topics: representation of geometric data using

meshes and the types of geometric and topological operators used by the majority of

the problems of geometry processing; construction of topological data structures in vari-

able resolution; simpli�cation strategies, parameterization methods and procedural noise

functions, considered in the methodology we propose.

3.1 Object Representations

In geometry processing, identifying the most prominent set of operators by which the

computation is dominated is paramount to every problem. This leads to the de�nition

of the most appropriate data structure used to support the e�cient implementation of

these operators. In this work, all objects can be approximated by polyhedral surfaces [38],

which can be understood as geometric realizations of 2D meshes, which are usually used

to describe the topology of a subdivision of two-dimensional domains.

3.1.1 Polyhedral Meshes

According to algebraic topology, a mesh M can be de�ned as a pair (K,V), where K is a

simplicial complex that represents the connectivity of vertex, edges and faces, determining

the topological type of the mesh. Thus, V is a set of vertex positions {v1, ..., vn} , vi ∈ R3,

which de�nes the mesh geometry.

3.1 Object Representations 16

A simplicial complex K is a vertex set {1, ..., n}, composed by a �nite number of

simplexes, which are non-empty subsets of these vertices. 0 − simplexes {i} ∈ K are

vertices, 1 − simplexes {i, j} ∈ K are edges and 2 − simplexes {i, j, k} ∈ K are faces

(triangles). In general, n− simplexes are polytopes with n+1 vertices.

One of the main mesh types used in geometry and graphics processing is the tri-

angle mesh. Triangles have several properties that justify the previous statement. One

of the most important, among such properties, is the ability to de�ne coordinate sys-

tems in the mesh structure using barycentric coordinates. This allows the construction of

parametrizations for surfaces with disk topology, solving both the problem of representa-

tion and reconstruction.

3.1.2 Geometric Operators Operators on Meshes

Since polygonal meshes are piecewise linear surfaces, the approximation of di�erential

properties of the underlying surface can be obtained from the mesh data. This is due

to the fact that meshes can be interpreted as piecewise linear approximations of smooth

surfaces. The following de�nitions present the most basic operators and are based on

Botsch's et al. [39].

3.1.2.1 Normal Vectors

Calculating normal vectors to either faces or vertices, is critical for most methods of ge-

ometry processing. For triangles described by vertices (xi, xj, xk), the normalized normal

vector can be obtained by equation 3.1.

n(T) =
(xj − xi)× (xk − xi)
‖(xj − xi)× (xk − xi)‖

(3.1)

The normal vector at a vertex v can be calculated by a weighted average of the normals

for each incident face n(T) in a neighborhood N1 of v, with weights given by α(T).

n(v) =

∑
T∈N1(v)

αTn(T)∥∥∥∑T∈N1(v)
αTn(T)

∥∥∥ (3.2)

Botsch et al. [39] discuss several possibilities for weights. Here we follow them closely:

� Uniform (α(T) = 1) : it is e�cient, but produces counter-intuitive results, since it

does not consider edge lengths, triangle area or angle at the vertex. In other words,

3.1 Object Representations 17

it does not consider the geometry of the mesh.

� Based on the triangle area (α(T) = AT): also e�cient, but can also lead to counter-

intuitive results(Figure 3.1).

� Based on the incident angle of the triangle (α(T) = θT): corresponds to mean values

computed in small geodesic disks; generally produces the best results.

Figure 3.1: Di�erent methods are used to compute per-vertex normals. Using constant
and area weights yields the result in the center, while the results using angle weights can
be seen on the right. Figure obtained from the book Polygon Mesh Processing [39].

3.1.2.2 Gradients

The discrete gradient of a piecewise linear function fi de�ned at each vertex vi, can be

computed from Equation 3.3. In Equation 3.3, fi = f(vi) = f(xi) = f(ui) and u = (u, v)

is an ordered pair in the conformal parameter space.

∇f(u) = (fj − fi)
(xi − xk)⊥

2AT
+ (fk − fi)

(xj − xk)⊥

2AT
(3.3)

3.1.2.3 Discrete Mean Curvature

The Laplace-Beltrami operator presented by Taubin [40] (see Equation 3.4), when applied

to the coordinate xi of a vertex vi, yields a discrete approximation of the mean curvature.

∇f(vi) =
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cot βi,j)(fj − fi) (3.4)

3.1 Object Representations 18

Therefore, it is possible to set the absolute mean curvature as:

H(vi) =
1

2
‖∆x+ i‖ (3.5)

For the Gaussian curvature, it is possible to use the following expression, based on

the Gauss-Bonet theorem, where θj is the angle of the incident triangles of vi:

K(vi) =
1

Ai

2π −
∑

vj∈N1(vi)

θj

 (3.6)

Given the formulas for the discrete mean and Gaussian curvatures, it is possible to

compute the principal curvatures k1 and k2 from the formula:

k1,2 = H(vi)±
√
H(vi)2 −K(vi) (3.7)

To end this section, we can mention the following works that present, in greater depth,

the various discrete operators and their properties and characteristics, such as convergence

and robustness: [41, 42, 43, 44], and [45].

3.1.3 Topological Data-structures

The representation of an object by a polygonal mesh is the problem of describing a con-

tinuous model by a �nite set of primitives. This process must guarantee that topological

and geometrical characteristics of the original object are maintained. There is also, when

dealing with the computational side of this problem, the implementation issues related to

data structure de�nitions, in order to store such information.

The main issue to be dealt with is the de�nition of operations supposed to be per-

formed on the models, which can be implemented as algorithms associated with such

data structures. In the literature, there are many works that deal with this matter, as

seen in Chapter 2, where each method seeks to meet a set of properties that vary ac-

cording to the application or problem which it is intended to deal with. Nevertheless,

there exists key requirements that every structure for mesh representation must be con-

formed with: minimize redundancy; e�cient use of storage space; ability to respond to

spatial and topological queries e�ciently; ability to describe levels of detail and hierarchy

relationships.

3.1 Object Representations 19

Velho et al. in [38], makes a parallel between a structure for mesh representation and

a geometric database, due to the need to e�ciently respond to geometrical and topological

queries. This is of major importance when designing such data structure, where queries

like boundary of a face or a vertex star must be answered in optimal time.

Indeed, these are the most common operations that can be applied to a mesh structure,

but there are other ones that must be considered, for example, re�nement and smoothing

operations on surfaces, which are the result of subdivision processes ([7, 46, 47, 48, 49]);

application of discrete di�erential operators, application of topological operators; and

operations to manipulate levels of detail (local changes) ([10]).

In the literature, one can �nd many di�erent topological data structures, usually

proposed to solve a speci�c problem or problems that incorporate a variety of properties

expanding precursor data structures. Although initially topological data structures have

been created in order to represent subdivisions and objects with the topology of the

sphere, these have evolved to deal with more complex problems.

Considering the most in�uential works related to the construction of such structures,

we can name the Winged-Edge Baumgart [50] and Mäntylä's Half-Edge [51]. Also, others

that should be cited in the text, are: the Corner Table [52], a compact and e�cient

structure to describe triangulations based on indexes and integer arithmetic operations;

the Lage's [53] CHE and Gurung's [54] sQuad.

3.1.4 Representation of Meshes at Multiple Levels of Detail

In this thesis, the necessity of representing objects at di�erent levels of detail is paramount.

Also, it is important to have the ability to manipulate objects considering a greater

level of detail in some areas than in others. This is also a concern in the geometry

processing area, leading to an investigation of data structure algorithms that can support

such functionality.

Due to the characteristics of the concept of level of detail, one can create a relation

with the notion of hierarchy. Thus, according to Velho and Gomes in [13], hierarchical

data structures are a natural option to give computational support to representations

with multiple levels of detail. Still according to them, hierarchical data structures are the

materialization of abstraction mechanisms used to deal with complexity and relationships

between entities at di�erent levels, where these relations depend on the application and

the context of the problem.

3.1 Object Representations 20

Velho and Gomes de�ne a mesh hierarchy as a sequence of meshes H = M j, j =

1..., n − 1, such that the size of a mesh M j monotonically increases with the index j.

It is important to mention that, the mesh hierarchy must capture and maintain the

dependency relationships between faces of two consecutive levels j and j+1, whose support

overlap. These are constructed through operations denominated local movements, which

can both re�ne and simplify an initial mesh. Examples of operators that can perform

local movements are stellar operators. The type of the local modi�cation operator de�nes

the properties of the hierarchy, which can be adaptive or non-adaptive.

3.1.4.1 Non-Adaptive Hierarchical Structures

A non-adaptive hierarchical structure de�nes a single mesh hierarchy [13]. Multiresolution

and Progressive Meshes are typical examples of non-adaptive hierarchical data structures.

On the one hand, multiresolution meshes are characterized by the fact that operations

are applied in parallel on a whole set of independent regions covering the whole mesh,

changing the resolution globally. On the other hand, progressive meshes apply these

modi�cations sequentially to each speci�c region separately.

A tree data structure is used to capture the structure and relationships of a multires-

olution mesh, which is usually built via multiresolution re�nement(Figure 3.2).

Figure 3.2: Tree representation of an enclosing hierarchy. Figure obtained from [10].

Di�erently, on progressive meshes, the corresponding data structure is a list data

structure which is usually constructed via simpli�cation.

3.1 Object Representations 21

3.1.4.2 Adaptive Hierarchical Structure

Adaptive hierarchical structures construct a family of mesh hierarchies. An example of

this structure is a variable resolution mesh and the data structure for representing it

is a DAG (Discrete Acyclic Graph). Such structures can be created either by re�ning

or simpli�cation processes, also known as decimation. In such data structures, local

modi�cation operations are applied to independent region sets, but they do not necessarily

cover the entire mesh, with the constraint that the edges de�ning the boundary of the

region must not be changed, generating the concept of minimally compatible local changes.

In the sequel, three hierarchical structures for meshes are presented, two adaptive

ones and one non-adaptive structure.

Hierarchical Triangulation

Floriani and Puppo [10] introduced the idea of hierarchical triangulations, which is

an example of multiresolution hierarchical structure. The proposed de�nition for this

triangulation is a triple TH = (Tr,E, l) representing a tree, where Tr are the nodes

corresponding to a sequence of triangulations, E is a set of labeled arcs that connect

the di�erent triangulations according to the hierarchical relationships and l is a labeling

function. Figure 3.2 shows exactly this type of structure.

Formally de�ned as:

� Tr = {τ0, τ1, ..., τh} ,∀j = 0, ..., h, τj = {Vj, Ej, Tj} with Tj > 1 and ∀j > 0 there is

only one triangle tj ∈ Ti, for some i < j, tj = D(Tj) where D(Tj) is the domain of

the triangulation τj, de�ned by the union of the triangles in Tj.

� E = (τi, τj), τi, τj ∈ Tr,∃tj ∈ Ti, tj = D(Tj) where E is a set of labeled arcs

connecting two triangulations τi and τj where τj is the re�nement of a triangle in

Ti.

� l : E → ∪{i=0,...,h} Ti, l(τi, τj) = tj if tj ∈ Ti and tj = D(Tj). Every triangle in l(E)

is a macrotriangle, while triangles that do not belong to l(E) are considered simple

triangles.

The data structure used to code a hierarchical triangulation is based on the Edels-

brunner's graph of incidence [55]. Thus, let GI = {GI0, GI1, ..., GIh} be a collection of

3.1 Object Representations 22

incidence graphs. Hence, a hierarchical graph of incidence is a triple GIH = {GI,Eg, lg}
where:

� Eg = {(GIj, GIi)|(τi, τj) ∈ E}

� lg : Eg → ∪{i=0,...,h}NTi, lg(GIj, GIi) = η−1T (l(τi, τj))

To search for the neighbors, the structure proposed by Floriani stores a set of arcs

linking neighbors in the structure, which are called strings. The construction of the

hierarchical graph of incidence is presented in details in [55].

4-k Meshes

A variable resolution 4-k mesh, proposed by Gomes and Velho, is a hierarchical struc-

ture that contains at each level approximately half of its vertices of valence four and other

vertices of arbitrary valence k.

Variable resolution triangulations are based on the concept of minimally compat-

ible local changes. The descriptions presented here are based on Gomes and Velho's

work [13].

De�nition 1 (Minimally Compatible Local Changes). "A minimally compat-

ible local change W (Ki), applied to a submesh M i ⊂ M of a mesh M = (V,E, F),

is a substitution of M i by W (M i), which satis�es the following properties:

Edges of the border of M i are not altered.

Interior edges of M i are replaced by new edges."

The submeshes Ki and W (M i) are the pre-image and image of the local modi�cation

operator W .

De�nition 2 (Compatible mesh sequence). "A mesh sequence {M0,M1,M2, ...,

Mn}, generated by applying a sequence of operators {W1,W2, ...,Wn}, starting

with a initial mesh M0, generates a compatible mesh sequence. The sequence

generated by this approach is given by {M0,W1(M
1), ..., Wn(Mn)} where M j =

Wj−1(Wj−2(...W1(M
1))), j > 0".

3.1 Object Representations 23

A fundamental di�erence between a mesh structure with variable resolution and a

multiresolution structure is that, given a intermediate mesh Mm and two compatible

operationsWi andWj, it is possible to generate two new distinct meshesMm+1 = Wi(M
i)

or Mm+1 = Wj(M
j),M i,M j ⊂Mm.

The purpose of a variable resolution structure is being able to code all possible mesh

hierarchies through a valid sequence of minimally compatible local changes.

De�nition 3 (Variable resolution mesh). "A mesh M = (M0,W,≤) is de�ned

by a initial meshM0, a set of operatorsW = {W0,W1, ...,Wn} and a relation of par-
tial order ≤, de�ned over the operators satisfying dependency and non redundancy

properties. Dependency implies that, if f ∈ Fi, on the pre-image M i of Wi(Mi) and

also belongs to Wj(M
j) then Wi precedes Wj. The non-redundancy implies the fact

that, if f ∈ Fi of Wi(Mi), then f /∈ Fj of Wj(Mj) for all i 6= j".

The 4-k structure was proposed by Gomes and Velho through the specialization of the

model described by Puppo for triangulations based on a 4-8 mesh, which itself is based

on Laves tilings[4.82]. As will be presented in the next section, on regular 4-8 meshes,

vertices always have valency 4 or 8, on semi-regular 4-8 meshes it is possible to �nd

isolated extraordinary vertices, and on quasi-regular 4-8 meshes there are extraordinary

vertices that are not necessarily isolated.

The 4-8 meshes are re�nable and it is possible to build a multiresolution structure

based on subdivision operators, which can be quaternary or interleaved binaries, the latter

being the most widely used. The multiresolution representation for 4-8 meshes is done

through a quaternary or binary tree structure, depending on the operator type.

On the other hand, 4-k meshes are hierarchical structures, with variable resolution,

in which approximately half of the vertices have valency 4 and the other half has valency

k. The local modi�cation operators are restrained to clusters of two triangles forming a

convex structure and can be of two types: edge split and edge swap(�ip) (see Figure 3.3).

In the implementation of the 4-k mesh, a combination of elements of edge and face

types are used. The edge split operator is a re�nement operator, which makes the edge

that separates two faces to be subdivided, making two faces give rise to four new faces.

Therefore, the data structure for edges must maintain a pointer to the two faces thereto

adjacent, and each face must maintain two pointers to their faces' children, which in turn

points to the parent faces. The edge swap operator does not subdivide edges, then one of

the pointers of the face structure is kept as null.

3.1 Object Representations 24

(a) (b)

Figure 3.3: Stellar operators:(a) Face split and face weld. (b) Edge split and edge weld.

An example of variable resolution mesh structure is the 4-k structure. The 4-k meshes

have good expressiveness power, derived in part of some properties it shares with 4-

8 meshes. Besides that, it is possible to easily implement, in the structure, variable

resolution query operations and adaptive mesh extraction.

4-8 Tessellations and Meshes

A 4-8 tessellation is a re�nable tiling. It exploits the self-similarity subdivision charac-

teristic of a [4.82]. Therefore, it is possible to construct a multiresolution 4-8 tessellation

using re�nement. In this structure we can name some advantages:

� The [4.82] Laves tiling is a triangulated quadrangulation, thus it combines the ad-

vantage of both triangular and quadrilateral meshes;

� They can generate adaptive tessellations in variable resolution, due to the support

of both uniform and non-uniform re�nement;

� Both available construction methods are intuitive and easy to implement.

There are two alternative construction methods: quaternary subdivision and inter-

leaved binary subdivision.

The quaternary subdivision re�nement algorithm for a given 4-8 mesh M = (V,E, F)

is shown in Algorithm 1 and is represented in Figure 3.4(a):

Algorithm 1. Quaternary Subdivision

1. Split all edges e ∈ E at their midpoints m;

3.1 Object Representations 25

Figure 3.4: (a) Binary subdivision. (b) Quaternary subdivision. Image based on an image
presented in [48]

2. Subdivide all faces f ∈ F into four new faces, linking the degree four vertex,

v ∈ V4, to the midpoint m of the opposite edge.

3. Link m to the midpoints of the two other edges.

The interleaved binary subdivision is as follows and can be seen in Figure 3.4(b):

Algorithm 2. Interleaved Binary Subdivision

Repeat two times:

1. Split all edges e = (vi, vj) ∈ E that are formed by two vertices of valence 8,

vi, vj ∈ V8;

2. Subdivide all faces f ∈ F into two sub-faces, by linking the degree 4 vertex,

v ∈ V4, to the midpoint m of the opposing edge.

A multiresolution 4-8 mesh can be represented through a tree structure of triangles.

Depending on the type of re�nement used, this tree is a binary or quaternary one.

We have three types of 4-8 meshes: Regular 4-8 meshes, Semi-Regular 4-8 meshes

and Quasi-Regular 4-8 meshes. A Regular 4-8 mesh is homogeneous simplicial com-

plex that has the same connectivity of a [4.82] tiling [13], meaning that all vertices in this

representation has valence 4 or 8 and are all regular vertices. Another important charac-

teristic is that all valence 4 vertices have only valence 8 neighbors(1-neighborhood), and

all valence 8 vertices have neighbors consisting of vertices with alternating valences 4 and

8. A Semi-Regular 4-8 mesh is a tessellation that has isolated extraordinary vertices,

whose valence is di�erent than 4 or 8. Usually these meshes are created from a coarse

irregular mesh by applying a semi-regular 4-8 re�nement method that introduces only

3.1 Object Representations 26

regular vertices [56]. Finally, a Quasi-Regular 4-8 mesh is a tessellation where, di�er-

ently from the previously mentioned representation, irregular vertices are not guaranteed

to be isolated.

3.1.5 Simpli�cation

A mesh simpli�cation describes a class of algorithms that has the aim of transforming a

mesh into another with fewer faces, edges and vertices [57]. There are two ways of de�ning

this problem: a �rst approach that aims to generate a mesh of �xed size and a second one

that seeks the best geometric approximation. Solving the simpli�cation problem is also

the starting point of the solution of other problems, like the construction of hierarchies,

which is part of the proposal of this work.

The optimal solution of the simpli�cation problem is not always possible, since it is

NP-Hard, thus interactive heuristic methods were developed in order to achieve a de�ned

criterion. This is done by applying a simpli�cation operator onto the mesh.

In the literature, there are several approaches regarding the mesh simpli�cation. Ini-

tially, as mentioned in [39], the complexity reduction can be done as a one-step operation

or by an interactive process. These approaches are de�ned, by Paul Heckbert in [58] as:

vertex clustering algorithms, incremental decimation algorithms, resampling algorithms

and mesh approximation algorithms.

Also, an important observation is that all simplicial complexes can be transformed

into a simpler one, through a simple sequence of edge swap and edge collapse operators,

allowing the de�nition of simpli�cation operators that preserve the mesh topology, a major

concept to this work.

3.1.6 Simpli�cation based on the quadric error metric

In order to provide a powerful, yet simple approach for a mesh simpli�cation, Garland

and Heckbert introduced an algorithm based on the vertex pair contraction [58]. This

is one of the most common methods and is de�ned by selecting two vertices v1 and v2,

and performing a contraction operation, where both vertices are moved to a new position

v. Then, all incident edges connected to v1 and v2 are removed. Any face that becomes

degenerated is removed, guaranteeing the model consistency.

The success of the pair contraction operation directly depends on the choice of which

3.1 Object Representations 27

vertex pairs should be contracted at each simpli�cation step. Garland and Heckbert in-

troduced a quadric error metric, that is associated to each pair, this gives an e�cient way

to estimate the geometric error between the original and simpli�ed surfaces [3]. Specif-

ically, for each vertex vi, a symmetric matrix Q, of order 4 × 4, that encodes a quadric

surface, and the error measured in vi is given by the quadric form ∆vi = vTi Qvi. Thus, to

determine which pair to be chosen, we de�ne the cost of the contraction operation of two

vertices (v1, v2)→ v by the form ∆v = vT (Q1 +Q2)v, where Q1 and Q2 are the quadrics

associated to v1 and v2 respectively.

This algorithm has useful properties, given the local nature of its modi�cation oper-

ator. It is possible, for example, to generate a sequence of models (Mn,Mn−1, ...,Mg),

based on a certain level of simpli�cation, that can build a progressive mesh structure.

This idea is really similar to Hoppe's algorithm de�ned in [9].

The simpli�cation algorithm can be resumed in the following pseudo-code:

Algorithm 1. Simpli�cation based on the quadric error metric

1. Determine all Qi matrices for all initial vertices vi;

2. Select all valid pairs {typically all vertices connected by an edge};

3. Determine the optimal vij positioning of each contraction pair vi, vj, considering

the contraction cost of each pair is given by vTij(Qi, Qj)vij;

4. Insert all pairs into a heap structure, where the key will be de�ned by the

contraction cost;

5. Iteratively remove each pair (vi, vj) associated with the lower heap cost and

update all costs of pairs related to v1.

3.1.7 Simpli�cation based on four-face clusters

As it will be seen in Chapter 4, in this work we use a simpli�cation algorithm denominated

four-face clusters mesh simpli�cation [3].

This algorithm focus on removing vertices that has a valence equal to four. In its �rst

step, all vertices of the mesh are associated with a removal cost. The de�nition of this

metric is based on the con�guration of the simpli�cation operator, which is a combination

of edge swaps and degree 4 vertex removal (the vertex removal can be achieved through

a stellar edge-weld operation as Figure 3.6 shows). Thus, the error E(v), which is the

3.1 Object Representations 28

Figure 3.5: Four face cluster.

result of the removal of the vertex v, is computed as the sum of costs of performing the

mentioned operations, as described in Equation 3.8:

E(v) = αC(v) + βS(v), (3.8)

where C(v) is the cost of removing the vertex v and S(v) is the cost of edge swaps

necessary to make v a vertex of valence four [3]. This is equivalent to the vertex pair

contraction cost used by Garland and Heckbert [58], meaning that, both, C(v) and S(v)

are measured following Garland and Heckbert quadric error.

Algorithm 2. Simpli�cation using four-face clusters

1. Order all vertices based on a quality criteria;

2. Select an independent set of four-face clusters that covers most of the mesh;

3. Simplify the four-face clusters using edge swaps and removal of vertices with

degree equal to four.

Figure 3.6: Edge contraction operation using edge swaps and edge weld.

3.2 Parametrization 29

This algorithm performs the sequence of operations in parallel, thus, to cover most of

the mesh, Velho and Gomes in [3] introduced a cluster marking strategy, that creates an

independent set of face clusters. To achieve this, vertices are �st stored in a priority queue

ordered by the error E(v). While the queue is not empty, the �rst vertex (associated with

the lowest error) is removed, and if it is not marked, a sequence of edge swaps is applied

to make the degree of v equal to four. The vertices on the star of the cluster surrounding

v are marked to allow the construction of an independent set. Finally, the third step of

the algorithm, all vertices in the center of the independent sets are removed in parallel,

generating one level of simpli�cation.

3.2 Parametrization

As presented by Botsch et al. in [39], the notion of parametrization attaches a geometric

coordinate system to an object, which facilitates the conversion from one mesh repre-

sentation to another. There are several applications of a mesh parametrization, such as:

texture mapping, re-meshing algorithms and conversion from one mesh representation to

an alternative one.

Parametrization is of major importance to this work, due to the possibility of trans-

forming complex 3D modeling problems into a 2D space where, usually, they are easier to

solve. De�ning it more formally as presented in [39]: "a parametrization of a 3D surface

is a function putting this surface in one-to-one correspondence with a 2D domain."

Parameterization methods belong to two main classes: local parametrizations which

build the parameterization considering only the local aspects of the surface and the global

parameterization that works on it as a whole. The description of all these methods is

beyond the purpose of this thesis and here we only present two examples of such methods,

the Floater's barycentric parameterization [59] and the Duchamp's parametrization based

on conformal mapping [60].

3.2.1 Triangle Mesh Parametrization

Triangle surfaces can be de�ned by a mesh M and a set of positions p1, ..., pn. The mesh

M is de�ned by the triplet (V,E, T), where V is a set of vertices, E is a set of edges and

T is a set of triangular faces. These are naturally parameterized using piecewise linear

functions, whose pieces, in this case, are related to the triangles of the surface. This

associates to each point p an ordered pair u, v in the parameter space. At a given point

3.2 Parametrization 30

(u, v), in the parameter space, the parametrization is given by:

x(u, v) = αpi + βpj + γpk (3.9)

where pi, pj and pk are the the vertices of the triangle t ∈ T , that contains the point (u, v),

and α, β and γ are barycentric coordinates in relation to t. Also, in order to guarantee

a valid parametrization, the image of the surface in the parameter space must have no

self-intersections.

3.2.2 Barycentric Parametrization

The barycentric map is one of the most used methods in the literature for constructing

a parametrization of a triangulated surface [39]. It was proposed by Floater [59] and is

based on Tutte's theorem [61], from Graph Theory. The theorem states the following:

Theorem [61]. "Given a triangulated surface homeomorphic to a disk, if the (u, v)

coordinates at the boundary vertices lie on a convex polygon, and if the coordinates

of the internal vertices are a convex combination of their neighbors, then the (u, v)

coordinates form a valid parameterization (without self-intersections)."

The second condition of this theorem, as presented in [39], is expressed mathematically

by:

∀i ∈ {1, ..., Nint} : −ai,j
(
ui
vi

)
=
∑
j 6=i

ai,j

(
uj
vi

)
(3.10)

where the vertices are ordered such that {1, ..., Nint} correspond to the indexes of the inner
and vertices {Nint + 1, ..., N} are the indexes of the vertices of the border. Furthermore,

the coe�cients ai,j are de�ned according to the following rule:

ai,j > 0, if vi and vj are connected by an edge,

ai,i = −
∑

j 6=i ai,j

ai,j = 0, otherwise.

Thus, the solution of the parameterization problem can be obtained by solving the

following system, whose solution sets the coordinates in the parameter space of the interior

3.2 Parametrization 31

vertices, once determined the coordinates of the vertices of the edge.

∀i ∈ {1, ..., Nint} :



Nint∑
j=1

ai,juj = ui = −
N∑

j=Nint+1

ai,juj

Nint∑
j=1

ai,jvj = vi = −
N∑

j=Nint+1

ai,jvj

(3.11)

3.2.3 Parametrization Based on Conformal Mapping

The idea of parametrization is related to the problem of de�ning and computing a good

map between two surfaces. A straight forward approach is to �nd a map that minimizes

angular distortions, leading to the preservation of local surface geometry. Hence, a natural

choice are conformal maps. These are tightly related to complex analysis. It relies on

the conformality condition, which de�nes a criterion with enough rigidity to o�er good

extrapolation capabilities that can compute natural boundaries [39].

In Lee et al. [4], a conformal mapping za is de�ned, which minimizes the distortion

metric to map the neighborhood of a vertex to the plane. The advantages of a conformal

mapping are that it always exists from any surface with a disk topology to a 2D planar

domain, which is one-to-one, onto, and angle preserving.

According to Lee et al. [4], a conformal mapping is de�ned as follows: Let {i} be
a vertex to be removed. Cyclically enumerate the n vertices that belong to the 1-ring

N {i} = {jk|1 ≤ k ≤ n} so that {jk−1, i, jk} be a triangle of the original triangulation and

such that j0 = jn. A linear piecewise approximation of za is given by µi, which is de�ned

for {i} and its neighbors in N {i} according to the following expression:

µi(pi) = 0

µi(pjk) = rαk e
iθkα

(3.12)

where:

3.3 Procedural Noise Functions 32

rk = ‖pi − pjk‖

θk =
k∑
l=1

∠(pjl−1
, pi, pji)

a = 2π/θn

(3.13)

When the vertex is an edge vertex, the mapping is a semi-disk and, therefore, a =

π/θn, assuming that j1 = jn and θ1 = 0.

3.3 Procedural Noise Functions

Procedural noise functions are widely used in Computer Graphics due to its ability to add

rich visual detail to synthetic images, what has always been one of the major challenges of

this research area. Furthermore, procedural noise functions have many desirable qualities,

such as: fast evaluation of complex patterns in real-time; it has a very low memory cost,

which is ideal for compactly generating complex visual detail; parametrization, meaning

that a large variety of patterns can be created with a suitable set of parameters; indepen-

dent evaluation, where every point can be processed independently and in parallel, making

this property of great importance when working in a massively parallel environment, like

modern GPU's systems [62].

According to Lagae et al. in [62], a procedural noise function is a "procedural technique

for simulating and evaluating noise". Thus, a de�nition of noise is needed, which is also

presented by the same work: "A noise is a stationary and normal random process. Control

of the power spectrum is provided, either directly, or through the summation of a number

of independent scaled instances of (typically band-limited) noise."

This noise description is based on the various de�nitions from random process and

Fourier analysis described in [63, 64]. Also, the main purpose of this de�nition is to

summarize the properties of most existing noise functions and not de�ne how these were

designed.

The next sections follow the same classi�cation presented in [62].

3.3 Procedural Noise Functions 33

3.3.1 Lattice Gradient Noises

A noise generated by the interpolation of values and/or gradients, which are speci�ed at

the point of an integer lattice is called lattice gradient noise. Considering this de�nition,

the �rst noise that comes to mind is the Perlin noise, which is one of the �rst and most

successful procedural noises.

3.3.1.1 Perlin Noise

Considering an integer cubic lattice in Figure 3.7, Perlin noise determines the noise of a

point p computing eight pseudo-random gradients, one for each of the nearest vertices and

then proceeds with an interpolation, de�ned by a spline function. The interpolant must

guarantee a continuous noise derivative, so Perlin chose a quintic polynomial, an hermite

curve function of the form:

f(x) = 6x5 − 15x4 + 10x3. (3.14)

This function has both �rst and second derivatives of 0.0 at 0.0 and 1.0, ensuring C2

continuity.

In order to create a pseudo-random selection of the gradient vectors, lattice points are

hashed by successive application of a pseudo-random permutation to the coordinates and

the result is used to choose a gradient from an array. The set of gradients consists of the

12 vectors de�ned by the directions from the center of a cube to its edges [25]. In three

dimensions, there are eight surrounding grid points. A trilinear interpolation is required

to combine their respective in�uences (linear interpolation in each of three dimensions).

Figure 3.7: Three dimensional example of eight surrounding grid points [16].

3.3 Procedural Noise Functions 34

Thus, the noise of a point p is given by the function

N(p) =
+∞∑
i=−∞

ai ∗ fN(f i ∗ p), (3.15)

where the stochastic function fN is a procedural noise as described earlier, a is the am-

plitude and f is the principal frequency which is related by a factor of two. An example

of the appearance of this noise can be seen in Figure 3.8.

Figure 3.8: Example obtained performing a 2D Perlin noise.

In Figure 3.9, we can see the de�nition of amplitude and frequency. For example,

given a sinusoidal wave (Figure 3.9 (a)), the amplitude is de�ned as the wave height and

the frequency as 1/wavelength. Considering now a noise function, the amplitude can

be de�ned as the di�erence between the maximum and the minimum this function could

achieve. In this case, the wavelength is the distance from one point to another and the

frequency relation remains the same.

(a) (b)

Figure 3.9: (a) Amplitude and frequency de�nition on a sin wave. (b) A noise function
example. Figure recreated from [65]

3.3 Procedural Noise Functions 35

3.3.1.2 Other Lattice Gradient Noises

There are several other noise functions based on lattices. For instance, in [66] a lattice

convolution noise is presented, which uses a non-integer lattice, represented by a more

densely and evenly packed grid, based on sphere packing. In [67] simplex noise is intro-

duced, which is based on a simplex grid. Perlin and Neyret [68] presented �ow noise,

that deals with time-varying �ow textures. We can also name, curl noise [69] and better

gradient noise [70]. A more in-depth description of the many di�erent lattice noises can

be found in [62].

3.3.2 Sparse Convolution Approaches

Sparse convolution noises use other methods to generate noise that are not based on a

regular lattice of pseudo-random number (PRN). Speci�cally, noise is generated as the

sum of randomly positioned and weighted kernels.

3.3.2.1 Sparse Convolution Noise

This method of generating noise involves taking random samples from a set of PRNs and

�ltering. Control over the power spectrum is provided in the �lter parameters. The term

sparse here is related to the random sampling of the PRNs, which is considered a sparse

form of white noise. One draw back to this method over a lattice convolution noise is

that the search space is increased for each call of the algorithm, which is computationally

expensive.

Aiming for a better control over the noise power spectrum, Lewis [71] introduced the

sparse convolution noise, where a three dimensional noise is synthesized by the convolution

(∗) of a three dimensional kernel h with a Poisson noise process γ. Lewis presents an

extensive mathematical framework regarding this in [71]. We strongly recommend it

in order to better understand the following sections. The following noise equation is

presented in his work:

f(p) = h ∗ γ(p) (3.16)

This Poisson process consist of impulses of uncorrelated intensity ak distributed at

uncorrelated locations pk in space, which Lewis calls sparse white noise [71]:

γ(p) =
∑

akδ(p−pk), (3.17)

3.3 Procedural Noise Functions 36

where pk is the location of the kth impulse and δ(p−pk) = (x− xk, y − yk, z − zk).

For the function h, Lewis proposed a smooth cosine kernel presented in Equation 3.18,

but, according to [72], this function has the problem of generating a second derivative at

d = 1 that is di�erent from zero: h′′1(1) = π2/2. This can be problematic in speci�c

applications, such as hypertexturing generation, which needs to enforce C2 continuity

in order to create smooth surfaces. Regardless, the synthesis proposed by Lewis has

a low computational cost without requiring sampling. Also, the noise quality can be

manipulated by varying the Poisson process [71].

h1(d) = (1 + cos(π ∗ d))/2, (|d| ≤ 1). (3.18)

Lewis procedurally evaluates sparse convolution noise by introducing a grid, and gen-

erating the positions and weights of the kernels in each cell on the �y. The grid reduces

the evaluation of the noise to the grid cells close to the point of evaluation.

The convolution integral can then be simpli�ed to a basic summation over the im-

pulses, this is due the impulsive nature of the noise, leading to the following equation:

f(p) =
∑

akh(p− pk). (3.19)

3.3.2.2 Spot Noise

Spot noise is unique in that it shares properties of both sparse convolution noise and

explicit noise. It is particularly useful for mapping textures to parametric surfaces as well

as generating textures over curved surfaces [73].

3.3.2.3 Gabor Noise

This method follows the similar idea of convolution, but is unique in its choice of kernel.

One of the drawbacks to sparse convolution noise is that more often than not a poor kernel

is generated that reveals structure in the noise; violating the ideal noise requirements.

Gabor noise solves this problem by using a kernel that is a combination of a Gaussian

curve and a sinusoidal curve, both in two-dimensions.

Considering these characteristics, Lagae [6], proposed an anisotropic noise with accu-

rate spectral control, which is able to provide a setup-free surface texturing. This noise is

achieved by a sparse Gabor convolution which is an extension of the previously presented

3.3 Procedural Noise Functions 37

sparse convolution noise. A band-pass Gabor noise presented in [6] is de�ned as:

N(p) =
∑
i

wig(Ki, ai, F0,i, ω0,i; p− pi), (3.20)

where wi are the random weights, K represents the amplitude, ai is the bandwidth, F0

and ω0 are the frequency and the orientation of the cosine in the kernel as presented in

Equation 3.21 and represented in Figure 3.10. g is the Gabor kernel proposed in [6]. It

is possible to visualize that we have the same options to manipulate the Gabor noise as

done with the Perlin noise. Also, the random positions pi are distributed according to a

Poisson process with mean λ. In this context g is de�ned as

g(p) = Ke−πa
2|p|2cos [2πF0 (px cosω0 + py sinω0)] , (3.21)

Basically, the kernel is a multiplication of a circular Gaussian and a cosine. The anisotropic

feature of the Gabor Noise is paramount to the generation of detail aligned or guided by

the features of a mesh as it will be shown later in this thesis.

(a) (b) (c)

Figure 3.10: (a) Gaussian. (b) Cosine. (c) Gabor Kernel. Figures obtained from [6]

In this chapter an extensive review of techniques covering representation of geometric

data, topological operators, topological data structures for variable resolution, simpli�ca-

tion strategies, parametrization methods and procedural noise functions was presented. In

the following chapter our method will be presented, which utilizes most of the techniques

described herein.

Chapter 4

Adaptive Hierarchical Mesh Detail Map-

ping and Deformation

In this chapter we describe our method for mapping procedurally generated details onto

arbitrary meshes. We start by posing a formulation for the problem we will solve in

section 4.1. Later, in section 4.2, we describe the methodology used to solve the problem

and, in section 4.3, we outline an overview of the method. In sections 4.4, 4.5 and 4.6,

we describe each of the main steps of the method: section 4.4 describes the construction

of the hierarchical parameterized mesh representation, section 4.5 describes the detail

mapping approach using the data structure and �nally, section 4.6 explains the adaptive

re�nement step used tho reconstruct the mesh after detail and deformation are applied

to the input mesh.

4.1 Problem de�nition

Given a surface S represented by a meshM = (V,E, F) compute a new meshM ′(V ′, E ′, F ′)

by adding a detail function f : V → R3, de�ned on vertices v ∈ V , such that the details

in di�erent scales of f are added in a controllable way in di�erent levels of detail of the

geometry that describes M . An example of our method can be seen in Figure 4.1, where

given an input mesh our method performs a local deformation.

4.2 Metodology

One of the most typical ways to solve the problem of adding details to a mesh in di�erent

scales is by using multiresolution analysis. Wavelets analysis [74] is one of the best choices

4.2 Metodology 39

(a) (b)

Figure 4.1: (a) An input skull mesh, with approximately 30k vertices. (b) Resulting
appearance after deforming its upper part with our method. Here, the head is deformed
using a basic Perlin noise function in conjunction with a smoothing step to create the
hair. Model obtained from [8].

because it represents functions both in scale and space, enabling a controlled way of adding

the desired details.

A multiresolution analysis of a mesh is usually constructed by re�nable scaling func-

tions in order to obtain a set of nested linear spaces[74]. This also requires de�ning analysis

and synthesis �ltering operators that satisfy a set of properties required by multiresolution

analysis.

The re�nable scaling functions for meshes are typically de�ned in the context of

subdivision surfaces. Computing a base domain which describes the coarsest level can

be done by using several di�erent decimation strategies. On the other hand, the step of

reconstructing the original meshM from the base domainM0, using subdivision, requires

storing the details at each level, that is the di�erence between the reconstruction from

level M l, using re�nement, to level M l−1, where l represents the current resolution level.

The work in [75] follows this strategy. One of the drawbacks with this approach, is that it

produces a representation of the mesh in the coarsest level obtained by low pass �ltering,

which may discard part of its features. In our proposal, we have an original mesh M

whose features we want to preserve in the coarser level as much as possible. Preserving

the most important features at the coarsest level would enable us to interactively edit the

mesh, modifying the geometry of a base mesh, with a better overall description of the

shape, achieving a more localized e�ect. The use of multiresolution analysis also does not

4.3 Proposed Method 40

yield a natural way to apply adaptive strategies for detail creation. Although it is possible

to insert detail in space and scale in a localized way using multiresolution analysis, one

has to deal with how the mesh tessellation adapts in the neighborhood of the inserted

features. This does not seem to be a trivial issue to solve in the usual representations for

multiresolution analysis. For example, the work in [75], which describes a multiresolution

approach for algorithmic shape modeling based on subdivision surfaces, uses the DK

data structure [76]. The DK data structure, although capable of codifying hierarchical

triangulations, is not so powerful and easy to manipulate as adaptive 4-k meshes (or

simply a4-k meshes).

Hence, for all the reasons presented above, we opted to use a simpler strategy in which

we do not compute a multiresolution analysis of the mesh based on coe�cients of basis

functions as, for example, using Wavelets tools. Instead, we represent the mesh via a

variable resolution hierarchical data structure which describes a family of representations

of the mesh in di�erent local levels of detail. Each vertex v belongs to a level of detail

given by an integer number l. The application of the detail uses l to modulate the intensity

of the deformation caused by the detail de�ned by f . As the detail function f may be

de�ned also in terms of its own scale and amplitude parameters, we may also combine

then to achieve multiple e�ects.

As it will become evident in the sequel, our work is more focused in the controlled

mapping of procedural detail generation onto meshes and does not have the general char-

acter of the work presented in [1]. In this context, our aims and emphasis are closer to

those of [75] which has used a di�erent approach. The details of our methodology to solve

the stated problem are presented in the next subsections.

4.3 Proposed Method

Now we present an overview of our method which can be described diagrammatically in

Figure 4.2. Initially, considering the mesh geometry, we must ensure that the input mesh

is a triquad, in order to perform the the four-face cluster simpli�cation process. If the

mesh is not a triquad, we run an algorithm that make the necessary geometry changes.

The decimation/parameterization step is the one in which we build the mesh repre-

sentation as a 4-k mesh. Here, the mesh is simpli�ed according to speci�c user de�ned

parameters, building the hierarchy through successive parameterizations of the removed

vertices and previously removed ones. These parameters are: the minimum number of

4.3 Proposed Method 41

vertices and the maximum error allowed(see Section 4.4.1). Also, the simpli�cation can be

done via levels, where the user can simplify the mesh de�ning the same error mentioned

before and then proceed by making any amount of simpli�cation steps until the desired

coarse level is achieved. For achieving our proposals, we extended the four-faced cluster

method so that it is also feature sensitive and also developed a simpler way to perform

the construction of the hierarchy without relying on the storage of the local movement

operators explicitly codi�ed in a DAG structure. In both cases stellar operations are used.

More details are described in section 4.5.

The adaptive re�nement stage is the one in which the structure is navigated through

its many levels, from the base domain towards the �nest resolution level, and vertices

are inserted performing the reconstruction of the mesh via the parameterization. At each

re�nement step, one mesh level is reconstructed. During each re�nement step, detail

generation can be introduced making the approach very �exible.

One aspect to be noticed is that the detail generation step can be accessed at any

time after the mesh representation is built. This is due to the fact that at any given step

a deformation or modi�cation can be applied(see Section 4.5). Accordingly, this also gives

the user the ability to modify both the original and the �nal mesh.

Figure 4.2: Flowchart showing all steps performed in our method. In red we have the
initial and �nal states, in green a step that is performed once and in blue steps that are
repeatable.

4.4 Variable Resolution Hierarchical Mesh 42

4.4 Variable Resolution Hierarchical Mesh

Our mesh representation is based on the variable resolution a4-k structure introduced by

Velho in [13]. This is a powerful structure for the representation of objects at multiple

levels of detail. The hierarchical structure of the variable resolution a4-k mesh is built

from a restricted set of local modi�cations de�ned on a cluster of two triangle faces [13].

This modi�cations are made through stellar operators and cause minimum changes in a

local neighborhood.

These operators are of great importance to this work. The basic con�guration of an

a4-k mesh is a sub-mesh composed by two adjacent faces sharing an edge. This sub-mesh

can be produced by the removal of a vertex with degree (valency) equal to four. Here

these two operations are represented in Figure 4.3.

(a) (b)

Figure 4.3: (a) Edge �ip operation. (b) Weld operation. Figure recreated from [3].

In our case, the vertex removal is done by a restricted half-edge collapse, which points

to a degree four vertex. One of the reasons for choosing this mesh structure is the fact

that it uses simple local modi�cations, which forms a complete set of topology preserving

mesh simpli�cation and re�nement operators.

The hierarchical structure used in this work is constructed through a mesh simpli�-

cation algorithm.

4.4.1 Mesh Simpli�cation

Our mesh simpli�cation algorithm is similar to the four-face cluster technique presented

in [3], but also extends it by using a feature-line sensitive approach. The idea is to apply

only stellar weld operations to the mesh, creating local modi�cations, which alters its

resolution in a minimum way without removing important characteristics (features).

This approach ranks vertices based on mesh quality criteria, which, in our speci�c

case, is a combination of the removal error and the edge �ip error. Both are measured

4.4 Variable Resolution Hierarchical Mesh 43

based on a quadric error metric and in our experiments the total error for a vertex removal

uses the following weights: 0.75 for the removal error (re) and 0.25 for the swap error

(se). This choice produced the best results in our experiments.

total error = 0.75× re + 0.25× se. (4.1)

Feature lines are one of the most prominent characteristics of a surface, where sharp

details usually appear. These are extremely important to this work, since it is possible

to use such measures to preserve the most interesting features of a mesh through the

simpli�cation process. We will also use features to guide the addition of procedural

details onto the mesh.

4.4.1.1 Feature analysis on meshes

In a tensor-based feature analysis, given a 2D manifold M(V,E, F), where V is a vertex

set, E an edge set and F a face set, feature analysis is done on local structure tensors.

These are usually used to detect local features of a mesh based on the information they

contain [77]. In our case, an extraction method based on eigen analysis for normal voting

tensors is used to e�ectively extract feature details from mesh models. A normal voting

tensor T (vi) of a vertex vi can be computed as the sum of the weighted covariance matrices,

T (vi) =
∑

tj∈Nt(vi)

µjntjn
T
tj
, (4.2)

where tj is triangle, Nt(vi) is a set of triangles neighboring vi, the normal of the triangle

tj is given by ntj , and µj is the weight coe�cient. In order to deal with meshes with long

and narrow triangles, we modify the weight µj according to [78]:

µj =
area(tj)

areamax
exp

(
− ‖cj − vi‖
‖cj − vi‖max

)
, (4.3)

where the area(tj) is the area of triangle tj, areamax is the maximum area among the

triangles neighboring vi, cj is the barycenter of the triangle tj, and ‖cj − vi‖max is the

maximum value among the neighboring triangles of vi. It is easy to see that the weight

µj depends on the distance between cj and vi.

By making use of the eigen-analysis [79] of the normal voting tensor in Equation 4.2

and also considering the neighbor relationship previously presented, it is possible to ex-

4.4 Variable Resolution Hierarchical Mesh 44

tract and analyze features of a mesh based on the classi�cation proposed by [80], which

extends the multi-type feature classi�cation proposed in [78].

Considering the importance of the relative di�erence between eigenvalues λ1, λ2 and

λ3, these are normalized to guarantee the consistency when dealing with di�erent data.

This is achieved by λi√
λ21+λ

2
2+λ

2
3

, for i = 1, 2, 3. From now on, every eigenvalue is considered

to be normalized.

Vertex type classi�cation is done through the following algorithm:

for All vertices vi do

if λ3 > 0.1 then

Mark vi as corner vertex;

end

if λ2 < 0.02 then

Mark vi as face vertex;

end

if λ2 > 0.1 && λ3 < 0.02 then

Mark vi as strong-edge vertex;

end

if (λ2 ≥ 0.02 && λ2 ≤ 0.1) && λ3 < 0.02 && NVC then

Mark vi as weak-feature vertex;

end

end

Algorithm 1: Vertex type classi�cation

The neighboring vertex coincidence(NVC) criterion, introduced by Wang in [78], sep-

arates weak-edge vertices from noise vertices as seen in Algorithm 1. This concept takes

into account the neighboring vertices of a noise vertex, that usually have di�erent prin-

cipal di�usion directions, which is de�ned by the eigenvector associated by the smallest

eigenvalue [80]. Thus, given a vertex vi (that is not a face vertex), we try to �nd, along

its principal di�usion direction, neighboring non-face vertices which have similar princi-

pal di�usion direction. This is achieved by verifying the intersecting angle of these two

vectors. If the angle is less than 15 degrees, then the vertex is marked and the process

moves to a new one. If the number of found coincidences is larger than 2, we can a�rm

that the vertex vi satis�es the NVC criterion. The values used in this classi�cation are

the same presented in [78] and produced good results. Two examples can be observed in

Figure 4.4.

In our approach, we follow the simple idea of not removing a vertex if we want it

in the base domain. Thus, we mark any feature we want preserved as unremovable. By

doing this, we guarantee that a speci�c feature will be preserved through the simpli�cation

procedure.

After this process, an independent set of clusters that covers most of the mesh is se-

4.4 Variable Resolution Hierarchical Mesh 45

(a) (b)

Figure 4.4: Feature lines detected using our implementation where blue lines represent
strong edge features and the red points are corner vertices. (a) Octa�ower feature detec-
tion. (b) And fandisk.

lected. During this step, every vertex that is related to an important feature of the surface

is marked as unremovable and is not included in the cluster list, thus maintaining feature

lines and corners untouched. The cluster simpli�cation creates a geometric modi�cation

in the 1-ring neighborhood of the faces of the vertex being removed, meaning that both

boundary vertices and edges remain unchanged.

The feature preservation scheme creates a less uniform distribution of valences across

the mesh. This is one of the reasons for using an a4-k mesh, since the maintenance of

a a4-8 structure under this circumstance would be a hard task. The charts presented in

Figure 4.5, shows the vertices valence distribution in the torus, fandisk and dragon mod-

els before and after the decimation process. In this speci�c case, the torus had, initially,

approximately 18k vertices and was decimated to roughly 350. One might consider con-

verting the base mesh back to its a4-8 form, but the cost of reparameterizing the entire

mesh structure is really high and usually not an option.

Similarly to [3], a combination of edge �ips and welds are used to perform the simpli�-

cation process. Applying these operators can drastically change the surface and analyzing

the error incurred by applying them is necessary. The edge �ip operator is used to better

approximate the original surface, in the case of choosing an interior edge to apply an

edge weld; or to match the vertex degree requirement for the simpli�cation, setting the

vertex degree to 4 (four) in order to apply a weld operation. Regardless of the operation

being processed, the error associated with these operations is estimated using quadric and

dihedral error metrics.

4.4 Variable Resolution Hierarchical Mesh 46

Figure 4.5: (left Column) A typical 4-8 vertex distribution for the input mesh, where the
majority of the vertices have degree 4 or 8. (right Column) After the decimation process,
the 4-8 structure is lost and the vertex valencies are spread across di�erent values.

4.4 Variable Resolution Hierarchical Mesh 47

4.4.1.2 Mesh parameterization guided by simpli�cation

Each simpli�cation step, moving from the actual mesh level KL to KL−1, consists of

removing a maximally independent set of vertices with degree four, where every removed

vertex is parameterized on a simpli�ed face in the level KL−1. This creates a hierarchical

parametrization of the surface that is propagated through each simpli�cation step. This is

done through the re-mapping of previously mapped vertices using barycentric coordinates.

Here we include the explanation from [4] to make the text more comprehensive.

"Consider KL an original mesh and K0 a base mesh obtained through this simpli�ca-

tion process. Also, considering ϕ(KL) and ϕ(K0) as the geometric realizations of KL and

K0. A parametrization Ψ can be obtained from the bijection Π : ϕ(KL) → ϕ(K0), such

that Π(p) = αpi + βpj + γpk for all p ∈ KL, where pi, pj, pk are vertices i, j, k coordinates

of a triangle in K0 and α, β and γ are the barycentric coordinates, in the triangle {i, j, k}.
Finally, Ψ = Π−1ϕ(K0).

This parametrization can be constructed concomitantly with the hierarchy, through

simpli�cation, by building successive bijections Π : ϕ(KL) → ϕ(K l), being the �rst

bijection of the process ΠL = I (identity) and the last Π0 = Π. Assume a given bijection

Πl, it is possible to obtain Πl−1 for each vertex {i} ∈ KLconsidering the following three

categories:

� {i} ∈ K l−1: the vertex {i} was not removed. In this case, Πl(pi) = Πl−1(pi) = pi

� {i} ∈ K l \K l−1: the vertex {i} was removed from level l to l − 1; Determine the

conformal mapping µi(pi) at {i} and, after the vertex removal followed by a mesh

recon�guration (in our case a stellar movement), the 1-ring �attening origin will be

mapped to a triangle t = {j, k,m} ∈ K l−1 with barycentric coordinates α, β, γ. In

this case, Πl−1(pi) = αpj + βpk + γpm

� {i} ∈ KL \K l: {i} was removed in a previous stage. Thus, Πl(pi) = α′pj′ +

β′pk′ + γ′pm′ will be mapped to a triangle t′ = {j′ + k′ + m′} ∈ K l. If t′ ∈ K l−1,

then nothing needs to be done, otherwise it is necessary to reparameterize {i}.
Considering that this hierarchical construction is done through the removal of an

independent set of vertices at each level l, then it can be stated that only one of

the vertices of the triangle was removed, i.e. {j′}. Let µj′ be the mapping related

to the {j′} removal. Then, after the mesh recon�guration, µj′(pi) will be mapped

to a triangle t = {j, k,m} ∈ K l−1 with barycentric coordinates α, β, γ leading to a

parametrization Πl−1(pi) = αpj + βpk + γpm."

4.5 Detail Generation 48

This is presented by Lee et al. in [4] on page 5.

After the simpli�cation process, the resulting structure is a base domain containing a

locally parametrized dense mesh as shown in Figure 4.6.

(a) (b) (c)

Figure 4.6: (a) Original dense mesh. (b) Torus base domain ϕ(K0). (c) Smooth
parametrization over the base domain, where each point from the original mesh is shown
with a dot.

4.5 Detail Generation

Given a base domain, we can start manipulating its geometry through detail generation

using a general procedural function or a speci�c local deformation. A typical approach is

to align the noise scale with the level of detail of the mesh geometry; this can be done in

many di�erent ways.

We must make it clear that in our problem de�nition, the deformation is only applied

to the vertices of the mesh. Nevertheless, by using noise functions we can create details

inside the meshes' faces using a approach based on di�erent mapping strategies such as,

i.e., normal mapping or relief textures. This approach is used by [6], but they do not deal

with the aspects concerning the level of detail of the geometry as we do.

The deformation operator can be de�ned by the following function:

D(V S ⊂ V, l, f(p0, p1, ..., pn)) (4.4)

where, V S is a set containing one or more vertices of the mesh, l is the level of detail of

the vertex in the variable resolution representation, and f is an arbitrary function de�ned

on a list of parameters p0, ..., pn. This parameter list can also include a vertex v and/or

a level l. One might notice that V S de�nes the area where the detail will be inserted.

Observe that noise functions are particular cases of the function f . Here we investigate

4.5 Detail Generation 49

the use of two powerful noise functions: the Perlin and Gabor noise functions.

A simple example can be obtained by regulating the noise intensity based on the mesh

resolution level. Deformation results can be easily achieved by moving a vertex towards

the normal direction ~n(p) according to the noise level (nl), i.e. given a point p, with

coordinates (x, y, z) at a level l, a deformation can be computed using:

p← p+ (nl/l)~n(p) (4.5)

Here, the base domain will be less modi�ed and the original mesh will su�er the

most signi�cant changes. We also mark a vertex as noised to avoid accumulating these

modi�cations, but its also possible to combine noise values generated in di�erent levels

to achieve a particular result.

Using noise functions has many advantages, most of them related to its procedural

nature. Lagae [6] points the three principal ones related to our work: compactness,

described by few parameters and can be quickly evaluated at any point in space. Since

noise is mainly used to add details to surfaces it was a natural choice to our approach.

Also, the parameter manipulation can be a powerful tool when combined with our variable

resolution approach.

The generation of visually rich and appealing content from noise is not a simple task.

The random nature of the noise is a di�cult problem to work with, also preventing the

prediction of the function results [62]. Since controlling the appearance of the noise is of

great importance to our manipulation scheme, de�ning a framework for controlling it is a

primary goal. Interestingly enough, the power spectrum of the noise provides part of such

control. For instance, Perlin achieves spectral control using a weighted sum of band-pass

octaves of noise [5].

4.5.1 Parameterization update after deformation

After applying any deformation to the mesh, we must update the parametrization and

stored coordinate values, since applying changes to the vertices coordinates results in

changes in the barycentric coordinates previously de�ned. This can be done performing

a simple check, verifying whether a vertex in the current triangle is noised or not. In

case of a�rmative, we must update all triangles that share that vertex. This update is

performed once, immediately after the completion of the noise process.

This correction is important, mainly because, after a mesh deformation process is

4.5 Detail Generation 50

(a) (b)

Figure 4.7: (a) Re�nement step without the coordinate update after a noise process. (b)
Noised mesh after a re�nement step with correct parametrization over the surface.

applied, any original coordinate stored in the structure during the parametrization step

loses its meaning. This has a direct impact on the re�nement process, where the vertex

positioning depends on the stored values in order to re-insert a vertex. As mentioned pre-

viously, this is done by retrieving the vertex coordinates using the barycentric information

stored. After a deformation this information changes and must be updated in order to

present correct results. An example of this issue can be seen in Figures 4.7 and 4.8.

(a) (b)

Figure 4.8: (a) Parametrization problems at the torus center, when re�ning without
coordinate correction. (b) Close-up view of the torus center after a noise process and
with correct parametrization over the surface.

4.6 Adaptive Re�nement 51

4.6 Adaptive Re�nement

In order to reconstruct the original or modi�ed mesh we follow a simple approach. At

a certain level K l, to reconstruct a level K l+1 we walk across the current level triangles

checking which vertices in the parametrized structure needs to be re-inserted in the current

mesh level. Each triangle posses a multimap data structure containing its parameterized

vertices, where the access key is the vertex original level l. Notice that a multimap can

handle duplicated keys, which �ts perfectly in our vertex storage scheme. Thus, to obtain

the vertices that must be re-inserted at each level l, we only need to recover the entries

with that key value. These vertices are then stored in a temporary queue ordered by

their removal order. This guarantees that the insertion will happen according to the

simpli�cation process, avoiding geometric errors that could happen in a random insertion

approach.

Data: Vertex vi from the queue
Result: Edge to be split
getBarycentricCoordinate(vi);
for All edges of the current triangle do

Find the euclidian distance of the barycentric coordinate of vi to the
currentEdge middle point;
if diantance < lowerDistance then

closerEdge = currentEdge
end

end
return closerEdge;

Algorithm 2: Selection of the edge to be split

As mentioned before, the simpli�cation process is associated with a stellar weld pro-

cess, more speci�cally with an edge weld operation, where a vertex is decimated. Intu-

itively, in order to re-insert a vertex, an edge split operation is an obvious choice. Also,

each vertex being inserted has its parametrization based on barycentric coordinates with

relation to the vertices of a triangle at the current level (Figure 4.9), meaning that it is

trivial to decide which edge must be split. This can be achieved by an Euclidean distance

check from the parameterized point to the triangle edges and choosing the closer one as

shown in Algorithm 2.

A clear advantage in using stellar subdivision is that the adaptive mechanism can be

completely general. Here we have two options for an adaptation function, a simpli�cation

step based on vertex decimation through edge weld and a re�nement one associated with

edge split. As mentioned before, this function can evaluate and rank a region according to

4.6 Adaptive Re�nement 52

(a) (b)

Figure 4.9: (a) Local view of the parametrization on a triangle, where the colors represent
the level of each vertex. (b) Re�nement step with the current level vertex insertion and
reparameterizing all remaining vertices.

a prede�ned criteria (i.e a vertex removal error or an edge �ip restriction). Also, di�erently

from other similar works, our approach does not store any operation performed in any

previous step; the entire re�nement process is done on-the-�y using the described method.

Considering the parameterization, there is a special issue regarding the vertices of

some triangles of the input mesh that are mapped (parameterized) during the simpli�-

cation process to di�erent triangles in the base domain. These singular cases generate

overlapping edges during the re�nement process and must be dealt with in order to prop-

erly rebuild the original geometry. A common approach is subdividing such triangles,

mapped onto the base mesh, until all vertices that belong to the same triangle are repa-

rameterized to the same triangle in the base domain [1].

Another approach, used in this work, is checking, during the insertion step, whether

the distance from the current vertex pv position to the center of the edge e to be split is

greater than the length of any of the edges (et1 , et2 , et3) of the new triangle t. Just in case

this occurs, we must search for the right insertion edge ent, which, usually, is in one of

the neighboring triangles nt. Figure 4.10(a) presents this idea, where the red edge is the

edge to be split and the red dot is the vertex to be inserted. In (b) the blue lines identify

the lengths we must verify in order to check the insertion. This algorithm does not �x

overlaps in the parameterization, but during the insertion operation.

There are many challenges regarding the process of reconstructing the original surface.

A particularly tough one is how to represent the original mesh state, when operations of

vertex valence correction were needed. Intuitively, while re�ning, we want the vertex

degree to be the same as before it was when removed. To achieve that, a vertex degree

check must be performed, verifying if the inserted vertex has its original degree and

performing the necessary neighborhood adjustment to achieve that. Notice that, when

4.6 Adaptive Re�nement 53

(a) (b)

Figure 4.10: (a) In red, the edge that is going to be split. (b) In blue, all edges that must
be tested before inserting the vertex.

correcting a vertex degree while re�ning, we approximate that region geometry to the

original input mesh.

The Figure 4.11, an example of the importance of the degree �x approach is presented.

At the right side, we can see a comparison of both �nal meshes, without degree �x and with

it respectively. From these results, we can see that approximating the original geometry

during the re�nement process is essential for the correctness of the method when dealing

with a4-k meshes.

(a) (b)

Figure 4.11: (a) Input triangle mesh (left) and 4-k Mesh representation (right). (b)
Re�nement without �ip veri�cation (left). Vertex degree correction(right).

Obviously, we must not generalize such solution, since it does not need to be applied

in every situation. For instance, when dealing with a 4-8 mesh, where the simpli�ca-

tion scheme will remove vertices usually without the need of �ipping, this veri�cation is

not necessary. Basically, we need this check when our input structure is a 4-k mesh. Fig-

ure 4.12(a) show the normal degree �x for the simpli�cation process and, in Figure 4.12(b),

how it is possible to obtain the same con�guration while reconstructing each level.

A more complex example can be seen in Figure 4.13, where at the top left, we have an

input mesh, in this case a tri-torus(zoomed in to facilitate the visualization of the mesh).

4.6 Adaptive Re�nement 54

(a)

(b)

Figure 4.12: (a) Vertex removal process. (b) Re�nement step with degree check and �x.

At the top right, we can see how the re�nement process can change the original geometry.

At the bottom left, the result of the degree �x which is performed at each re�nement step.

Figure 4.13: Vertex degree �x. At the top left an input mesh. At the top right, changed
geometry through re�nement. At the bottom left, the resulting mesh after degree �x.
The �nal mesh after a noise process at the bottom right.

The algorithm behind this check is presented in the Algorithm 3. The threshold is a

variable used to �nd which edges should be �ipped in order to increase the vertex degree.

After the edge split operation, the newly created vertex always has degree four. We verify

if that vertex has the correct valence for the current resolution and proceed accordingly.

We also show in Figure 4.13(bottom right), the resulting deformation using a turbulence

function with the following parameters: 4 octaves, 0.5 gain and 2.0 lacunarity.

For example, given a new inserted vertex, whose original degree for the current level

is �ve, we must �nd a link edge to �ip in order to increase its degree. In this particular

4.6 Adaptive Re�nement 55

(a) (b) (c)

Figure 4.14: (a) Fandisk feature detection, where blue represents strong-edge vertices, red
are corner vertices white are weak-edge vertices and green represents face vertices. (b) A
mesh simpli�cation process where the mesh prominent characteristics are not preserved.
(c) Simpli�cation result when preserving features.

example, the threshold can be set to �nd an edge that is opposite to an angle higher than

90 degrees, because vertices with valency equal to four (4) will have approximately 90

degrees between each edge in its star. So after inserting a vertex, if we �nd such angle

after positioning it, we also �nd a suitable edge to be �ipped in order to increase the

vertex degree (see Figure 4.12(b)).

Data: Input vertex v to have its degree �xed
Result: Vertex with correct degree for the current mesh level
for All edges in the star of v do

Find the angle α between the edges that share that vertex;
if α > threshold then

Put the link edge, the one at the opposite side in relation to the angle α, in
an ordered temporary array

end

end
while Vertex degree is lower than the correct degree do

Extract an edge from the temporary array;
Flip that edge in order to increase the vertex degree;
if array == empty then

break;
end

end

Algorithm 3: Vertex degree �x

Another important result is related to the feature guided simpli�cation. In Figure 4.14,

an example of the simpli�cation process, guided by the mesh features, is presented. As

mentioned previously, to maintain the most prominent characteristics of the input mesh,

we just mark strong-edge and corner vertices as non-removable.

4.7 Operators 56

Naturally, a feature based decimation can produce thin triangles (with bad aspect

ratio) for the parametrization process. This is due the rules presented earlier that prevents

important vertices and edges to be removed during the decimation step. We do not solve

this issue in this work, but we believe that a possible approach to minimize this problem

is to perform a subdivision scheme (i.e.
√

2) in the neighborhood of the feature, creating

smooth transitions and less clustered triangles with a better aspect ratio.

4.7 Operators

This section presents the main operators created and used in this thesis in order to produce

our results. These are further divided into categories according to its characteristics and

applications, and each one has common and speci�c parameters. The main ones are:

subdivision and smoothing operator; geometric operator; procedural detail operators and

Feature-based Operator.

4.7.1 Subdivision and Smoothing Operator

The intent of the subdivision and smoothing operators is to provide mesh manipulation

options that can assist all other operators. Thus, the main advantage of them is their

ability to be combined with any other deformation operator. The following sections

describe its de�nitions and applications.

4.7.1.1 Subdivision Operator

The main objective of the subdivision operator is to create an area with higher local

resolution, in which other operators will be applied. The motivation behind this is the

possible need to insert rich details at lower resolution levels, which is a di�cult task when

dealing with an extremely simple mesh that has only a few number of vertices.

The subdivision is based on a locally 4-8 mesh structure, where the process follows a

concentric pattern based on a valence four vertex and proceeds re�ning from its link edges

moving inward. One might notice in Figure 4.15 that this approach only modi�es the 1-

ring of the selected vertex. In this case, V S (shown in Equation 4.4) is an independent

vertex set.

4.7 Operators 57

Figure 4.15: (a) Input example of a degree four neighborhood. (b) One step of subdivision,
where all link edges (green) are split. (c) Second step, where all even edges (red) are
split. Every step following this one, switches between even (red) and odd edges (blue) for
splitting.

Figure 4.16: An overview of the sphere with many subdivided areas.

4.7.1.2 Smoothing Operator

In order to create speci�c and smooth deformations at global or local ranges, we make

use of the masks proposed by Loop in [7]. These are described in Figure 4.17 and create

a gaussian look when applied to an area.

In general for local modi�cations, to create a desirable appearance, this operator is

used together with the subdivision operator. This is due the number of vertices needed

to apply Loops's mask, the more vertices available at a neighborhood the better is the

result.

4.7.2 Geometric Operators

The geometric operators de�ned here focus on modifying an area, creating wide details.

Thus, V S, in this case, will be a set of connected vertices that forms a ROI. The pa-

4.7 Operators 58

Figure 4.17: Loop's proposed masks for vertex positioning.

Figure 4.18: High frequency peaks being smoothed locally, using subdivision to obtain
better results.

rameters for this operator will be a scale that controls the intensity of the deformation

and a level l that de�nes the resolution level, in which these modi�cation will be applied.

Here, we present the tapering and twisting operations as special cases of the function f

de�ned at the deformation operator in Equation 4.4. The main objective of this operator

is to create wide deformations across considerable areas of the mesh, although it could be

applied to a more restricted area.

Below, we show two examples of operators that are integrated with the adaptive

multiresolution properties of the data structure we use in this work.

4.7.2.1 Tapering

The tapering operation is relatively similar to scaling, but di�erentially from it, changes

the length of two components without changing the length of the third. Equation 4.6 shows

a deformation operation that creates modi�cations along the axis X and Y according to

4.7 Operators 59

a function based on z coordinates [81].

r = g(z),

X = rx,

Y = ry,

Z = z.

(4.6)

In the speci�c case of Figure 4.19, r is de�ned according to Equation 4.7:

g(z) = (1 + z)/scale, (4.7)

where the scale dictates how strong the deformation will be. Also, depending on how

the coordinate system is de�ned, changes must be made to create a better result. For

example, if z is de�ned between −1 and 1, the Equation 4.7 will produce a coherent

appearance, but if z has a di�erent range it might be necessary to normalize it. It is

desirable to use this tapering operator to deform coarse meshes, since it creates a wide

deformation moving many points at once, usually, without high frequencies.

Figure 4.19: Example of a local tapering deformation simulating hair appearance.

One can notice that the deformation in Figure 4.19 only a�ects part of the model,

that can be achieved through a coordinate restriction, where the operator is only applied

at certain regions of the model.

4.7 Operators 60

4.7.2.2 Twisting

For some deformations, it is useful to simulate the twisting of an object. A twist can be

approximated as a di�erential rotation, similarly as tapering is a di�erential scaling [81].

We also choose two deformation directions and maintain the third unchanged, just like

mentioned before.

A global twisting around the z axis can be produced by the following equations:

θ = g(z),

Cθ = cos (θ) ,

Sθ = sin (θ)

(4.8)

X = xCθ − ySθ,

Y = xSθ + yCθ,

Z = z.

(4.9)

In this work, g(z) is given by g(z) = (z ∗ scale)π/180, where the scale dictates how

far the twist will bend towards the z axis. An example of this approach can be seen in

Figure 4.20, where we use the exact same functions presented in Equations 4.8 and 4.9.

This is also a wide deformation and can be used in conjunction with the tapering operator.

In Figure 4.19, the curl details that can be seen on the hair of the skull were created using

this twisting operator and also follow the coordinate restrictions mentioned earlier.

Figure 4.20: Example of a global twisting operator, giving a ghostly appearance to the
skull.

4.7 Operators 61

These operators can be used together with all other deformation schemes presented

so far, which makes them useful tools in order to create powerful manipulations across

our meshes.

4.7.3 Procedural Detail Operators

Procedural detail operators follow the same idea presented in Equation 4.5, where we

manipulate each function according to the mesh resolution level and attributes, such as

curvatures and features. Each procedural noise function presented here can be used in

the deformation operator, but each has speci�c results according to the restrictions and

parameters de�ned according to Equation 4.4.

4.7.3.1 Perlin Noise Operator

Following this idea, a deformation e�ect can be obtained by modifying the noise parame-

ters according to the resolution level. In the noise function proposed by Perlin, presented

in Equation 3.15, we can manipulate the noise amplitude a, frequency f , gain and lacu-

narity parameters in accordance to the resolution level. Usually, the modulation of the

amplitude and the frequency is de�ned as the Persistence of the noise.

Considering the weighted sum of band-pass noises, the lacunarity and gain are the

rate at which the frequency and amplitude changes per octave. The lacunarity must be

between 1.0 and 3.0 for the noise to be considered fractal. Values outside this range can

lead to a result that becomes similar to a white noise (static). The gain value is normally

set as the inverse of the lacunarity. For example, de�ning the lacunarity value as 2.0

would imply in a gain value of 0.5. Keeping this ratio is not mandatory, but the noise

might otherwise lose its fractal properties.

A good result can be obtained using the turbulence function (see Equation 4.10), also

presented by Perlin, through the modulation of the amplitude according to the multires-

olution scale. Since we are dealing with the fractal sum of the absolute value of the noise,

we can change the gain amount to dictate how the amplitude will impact the resulting

noise value. We can also manipulate the lacunarity, which expresses how tightly the

wavenumbers are packed together along the progression. The most common value used

4.7 Operators 62

for the lacunarity is 2.0 and is also used by Perlin in his work [5].

N(p) =
∑
i

∣∣∣∣f(2ipx, 2
ipy, 2

ipz)

2i

∣∣∣∣ (4.10)

Using this number speci�cally causes wavenumbers to be successive octaves along the

spacial frequency spectrum. However, keeping this value leads to an arti�cial alignment

of surface features across scales, Hence, the manipulation of the lacunarity is critical when

the aim is to apply di�erent deformations to a surface without such artifacts. Results of

such scheme, with usual parameter values as mentioned earlier, can be seen in Figure 4.21.

(a) (b)

Figure 4.21: (a) Turbulence texture with a 0.5 gain and 2.0 lacunarity. (b) Noise mapping
and deformation over a sphere model with approximately 20k vertices.

The lacunarity change must be soft since it can really change the surface appearance.

In our experiments, given a mesh level l, setting this value to 1.1 + (l+ 1/10) presented a

nice mountainous result combined with a 0.8/(l+1) gain value when applying a turbulence

modi�er. As we can see in Figure 4.22, when applying these modi�ers to the function we

obtain a more diversi�ed result (Figure 4.22(b)).

(a) (b)

Figure 4.22: (a) Noised surface with a �xed 0.6 gain and 2.0 lacunarity. (b) Varying gain
and lacunarity as mentioned in section 4.5.

4.7 Operators 63

A di�erent result can be obtained through the manipulation of the turbulence function

with a sinusoidal component, as presented in Equation 4.11 and in Figure 4.23. This

pattern resembles marble stripes and can be used used to achieve deformations with wide

amplitude and low frequencies. These are useful for manipulating meshes with a low

amount of vertices.

N(p) = (sin(px + 4 +

(∑
i

∣∣∣∣f(2i(px/2), 2i(py/2), 2i(pz/2))

2i

∣∣∣∣
)
∗ 4.0) + 1) ∗ 0.5; (4.11)

(a) (b)

Figure 4.23: (a) Marble texture using the turbulence function with 0.5 gain and 2.0 la-
cunarity as parameters and a sinusoidal component, where each coordinate is weighted
by the value 0.5. (b) Mapping and deformation of over a sphere. This kind of deforma-
tion is interesting for coarser resolution levels, since it has a higher amplitude and low
frequencies.

Of course, it is possible to think in di�erent forms to manipulate the geometry. An

example is a multifractal approach that creates nice mountains across the entire surface.

The Equation 4.12 represents such modi�cation:

N(p) =
∑
i

[∣∣d− f(2ipx, 2
ipy, 2

ipz)
∣∣]2 aiN(prev), (4.12)

where d is an o�set, a is the amplitude and N(prev) is the value of the previous iteration.

Figure 4.24 shows how this function can be used to create interesting shapes for mountain

and valleys.

A really interesting pattern, resembling wood, can be achieved using a similar function

represented in Equation 4.13, where the noise is obtained by the di�erence of the function

4.7 Operators 64

(a) (b)

Figure 4.24: (a) Multifractal texture with a 0.5 gain, 2.0 lacunarity and o�set 1.0. (b)
Resulting appearance after deforming the sphere.

N(p) with its integer part and then scaled by a factor of ten.

N(p) =
∣∣f(2ipx, 2

ipy, 2
ipz)
∣∣ ∗ 10− int

(∣∣f(2ipx, 2
ipy, 2

ipz)
∣∣ ∗ 10

)
. (4.13)

The resulting model, presented in Figure 4.25, has a really unique look that can be

classi�ed as di�erent objects, like a wood sphere or an organic organism. It is possi-

ble to see that such extensive modi�cation is a challenge to the simpli�cation and the

parametrization algorithms due to its high complexity.

(a) (b)

Figure 4.25: (a) Wood/Organic texture de�ned by a basic noise function. (b) The pattern
created in this mesh is similar to a wood object, an organic organism or even an alien
planet.

4.7 Operators 65

(a - 32 impulses/kernel) (b - 64 impulses/kernel) (c - 256 impulses/kernel) (d - 1024 impulses/kernel)

Figure 4.26: We can observe the variation created by each impulse density in a 2D texture
representation and the same function applied to deform a 3D mesh.

4.7.3.2 Gabor Noise Operator

According to the Gabor noise description presented in Chapter 3, we can either modify

the noise function directly or change the phase-augmented Gabor kernel. Perturbing the

Gabor kernel can be done by regulating the K, a, ω variables, all at once or individually,

according to the resolution level, which is similar to what is proposed for the turbulence

and other functions. We also can modify the number of impulses per kernel according to

this method, moving this value always as a power of two.

The idea is to �nd a nice relation between the many levels of resolution. Intuitively,

for a better distribution, a higher number of impulses is preferred while manipulating the

coarser levels, since the higher frequencies will be a dominant force. Also, this is a valuable

tool for controlling which frequencies we want at each scale. The main objective here is

to show the frequency variation according to the parameter settings, this is presented in

Figure 4.26.

Another important characteristic of the Gabor noise is its manipulable directionality.

This is a really important tool while dealing with features, mainly because we might want

to guide the noise across the main characteristics of the model. These directions are

obtained manipulating the kernel cosine orientation, using the ω0 variable.

4.7 Operators 66

(a) (b) (c)

Figure 4.27: (a) Kernel with orientation ωi as π/4.0. (b) Orientation ωi as π/8.0 (c)
Orientation ωi as π/5.0

4.7.4 Feature-based Operator

This operator explores the meshes' feature information to create details. There are two

main ways to use this: the �rst one focus on modi�cations speci�cally over the features,

meaning that the surrounding areas will not su�er any deformation; the second is the

opposite, only areas that are not considered as features will be modi�ed. One can see

that the classi�cation of a vertex or edge as a feature becomes an input parameter to

Equation 4.4.

Figure 4.28: Example of deformation restricted to the feature line area. Bottom left we
see a erosion on the fandisk across feature lines and, at the bottom right, a deformation
to create a kneaded e�ect.

4.7 Operators 67

This operator inserts, in Equation 4.4 parameters, restrictions that are tied to the

feature detection. For instance, a simple example of this can be achieved by �ltering

vertices that will be added to the set of vertices V S, de�ned in general deformation

equation, in order to perform the deformation. In Figure 4.28, V S is composed by vertices

that are considered as features, more speci�cally, strong-edge vertices.

This operator can also be combined with all the previous presented operators and

also has the propagation capabilities, but with improved control. Instead of just prop-

agating the deformation, through modulation of the function used through distance or

neighborhood, we can, with this operator, propagate the feature information, creating

entire areas that can be seen as modi�able or non-modi�able. This propagation is de�ned

in Algorithm 4.

Data: Input vertex v to be veri�ed
Result: True if can insert into the priority queue or false otherwise
bool insert = true;
for All mesh vertices do

if v is not in an important feature then
int counter;
for All vertices in the star of v do

if Any of these is in an important feature then
insert = false;
++counter;

end

end
if counter ≥ 2 then

v becomes an important feature
end

else
insert = false;

end

end
if insert then

v is inserted into the simpli�cation queue
end

Algorithm 4: Feature veri�cation for conditional removal.

4.7.5 Composite Operators

The intent of these operators is to produce visually complex results, through the combi-

nation of two or more of the previously presented operators.

Here, we show two of these, which were used to produce several results presented in

4.7 Operators 68

Chapter 5.

4.7.5.1 Organic Operator

The objective of this operator, as its name suggests, is to create organic looking structures.

It relies on the subdivision and smoothing operators to create some of its forms, but, for

more general purposes, can be used without them.

Usually, this operator has two steps, a global one and a local one, but, if needed,

one of the steps can be suppressed. The global step generates a deformation that gives

the mesh an speci�c appearance, i.e. the patterns obtained through the noise functions

presented before (marble, wood and so on). The local step is a more speci�c manipulation

and produce better results when a subdivision operator is applied, since the objective is

to create a sharp detail (tree, rock, foliage etc). Of course, this also depends on the

resolution level in which this operator is applied.

Algorithm 5 shows an implementation example of the organic operator, which is used

to create some of our results in Chapter 5.

Data: Input vertex v to be noised

Result: Noised vertex with propagation and a k − ring re�nement

for Each v to be noised do

noise(v);

propagateNoise(k − ring of v);

apply n passes of: re�neNeighborhood(v);

�nd a new direction d in the 1− ring of v;

pointNoise(d);

end

Algorithm 5: Creating extensions with the organic operator.

This algorithm, apply a deformation at a vertex and propagate its e�ect to the 2-ring

around the center of modi�cation, Also, modifying the direction of the extension choosing

a random point and pick its normal to guide this new direction.

4.7.5.2 Variation Operator

The main purpose of this operator is to create detail variation across the surface of the

object and its many levels of resolution. This is achieved by modulating the frequency

and the amplitude of the noise function, through each resolution level, in order to obtain

the desirable level of detail.

This is the direct application of Equation 4.5, but we can also use, as shown in

4.7 Operators 69

Chapter 5, a slight variation of it, as presented in Equation 4.14.

p← p+ (nl/l)(−~n(p)) (4.14)

This operator can explore the 4-k mesh structure by using a neighborhood relationship

to propagate the noise and increase or decrease its in�uence according to a distance metric.

This is achieved by modifying the previous equations as follows:

p← p+ (nl(1/d)/l)(−~n(p)), (4.15)

where d is a distance value obtained by a function, an example of d is the Euclidean

distance between the original vertex v and its neighbor. One might notice that the

neighborhood can be de�ned by the user, i.e. 1-ring, 2-ring and so on.

Chapter 5

Results

In this Chapter we present our results, analysis and future works. Our testes were per-

formed in a Asus GT50vt laptop with an Intel Core 2 Duo CPU with 4GB of RAM

and a nVidia 9800M GTS GPU with 512MB. Many deformations were performed, using

di�erent models with varying resolutions, genuses and complexity.

5.1 Results

This section will be divided according to the detail created or/and the method used to

produce each speci�c result.

5.1.1 Deformation Variation Across Surfaces

Figure 5.1 presents an example of our deformation scheme. We �rst show a deformation

variation across the torus surface, using the variation operator (presented in Section 4.7.5),

representing di�erent kinds of manipulation over its body. Basically, in Figure 5.1(a) we

show a default turbulence noise perturbation with lacunarity = 2.0 and gain = 0.6. And,

in Figure 5.1(b), a demonstration of how our previously de�ned method can alter the

con�guration and distribution of the detail over the surface, which follows the de�nitions

presented in Section 4.5. Since, at a coarser level, the noise attenuation is greater, it

implies that the frequency is also decreased. There is a match between a mesh level

l and the in�uence of the lacunarity, since this information represents how tightly the

wavenumbers are packed together, a greater resolution is needed to better map high

frequency levels. Thus, we attenuate its in�uence while moving to coarser levels. This

concept is valid due to the low amount of vertices of the mesh at such resolution, resulting

5.1 Results 71

in wide deformations with low frequencies such as the ones presented in Figure 5.1(b).

After a few re�nement steps, where the noise attenuation is lower, a new deformation

is applied to regions that have not been modi�ed in any previous step, creating high

frequency peaks at the a�ected area. It is easy to observe the in�uence variation over the

surface, when the noise is applied in di�erent resolutions with speci�c local con�gurations.

(a) (b)

Figure 5.1: (a) Lateral view of a torus perturbation with default turbulence noise con�g-
uration. (b) Overview of a multiscale noise modi�cation.

(a) (b)

Figure 5.2: (a) A femur bone model with feature vertices highlighted in blue and red colors,
these are areas more sensible to wearing and friction damage. (b) Wearing simulation,
using Perlin noise to represent fraying or local damage.

5.1.2 Feature Vertex Deformation

We also present a speci�c modi�cation to a femur bone model, where we used feature-based

operator (presented in Section 4.7.4) to perform our deformation. This is an interesting

application of our method, that shows the wearing out process of the bone. It could also

represent the smooth articular cartilage that lies at the end of the femur being damaged

by repetitive micro-traumas or fraction (these traumas could be related to daily activities,

sports, work or a genetic predisposition). Here we use Equation 4.14.

5.1 Results 72

Figure 5.2(a) shows the mapping of these characteristics, which were used to perform

the deformation in (b). In this speci�c example, we used that blue vertex as a deformation

center and propagated the noise towards the 2-ring of it. In a certain way, this is a kind

of region of interest(ROI) deformation in which the ROI is de�ned by a combination of

metric and topological information (the use of the 2-ring of a feature vertex). According

to the distance, an attenuation factor lowers the noise in�uence over the current vertex

to avoid random spread across the original vertex neighborhood. In this speci�c example,

we used the Gabor noise, all the chosen values and in�uence area can be observed in

Table 5.1. Figure 5.3 show two examples of how the deformation can represent a more

destructive problem on the femur head. To achieve this result we use the same arguments

presented in Table 5.1, but also augmented the noise in�uence by a factor of two, based

on the Equation 4.5. Figure 5.2(c) shows the �nal result of the entire mesh.

Figure 5.3: (a) Femur with a more intense erosion on the left side. (b) Focusing the
erosion on the right side of the bone. (c) Overview of the entire mesh. Model obtained
from [8].

5.2 Subdivision and Smoothing Operator Usage 73

Neighborhood Noise In�uence K a w
1-ring 80% 1.0 0.05 0.0625
2-ring 50% 0.8 0.04 0.0625
3-ring 25% 0.6 0.03 0.0625
4-ring 10% 0.4 0.02 0.0625

Table 5.1: Deformation parameters for the noise propagation used in the femur example.

5.2 Subdivision and Smoothing Operator Usage

An interesting application of these operators is presented in Figure 5.4. In this exam-

ple, we make use of the procedural operator (presented in Section 4.7.3) with the Gabor

noise function, the feature detection as a constraint and the smoothing operator (see Sec-

tion 4.7.1). Given an input mesh, in this case a dragon, we initiate with the detection

of the feature lines, to obtain the most signi�cant areas. With this calculation, we also

obtain the di�usion �ow which we will use in order to guide the direction of the noise.

With this information we proceed extrapolating these ROI and after a signi�cant amount

of deformation is done we perform an smoothing step across the mesh. Note that the

smoothing step does not recognize important features, thus making them more evident,

provides enough strength for them to survive the smoothing process. This method pro-

vides a di�erent approach regarding mesh deformation. The result in Figure 5.4(b) is

really di�erent when compared with the input mesh, but it can be a creative alternative

to produce detail. Figure 5.4(c), shows how the dragon would look like without our local-

ized enhancement. Notice that most of the details are lost and the dragon is pretty much

a plain smooth surface. This can be understood as a process of abstraction, where we take

a detailed model and preserve only those considered relevant with small modi�cations.

Another example combining the subdivision and the organic operators can be seen in

Figure 5.5. The process, initially, subdivide the selected areas of the mesh, in this speci�c

case, an independent set of vertices. These are the basic input of both subdivision and

procedural operators. After this step, we use the organic operator, using the resolution

level to modulate the amplitude and the frequency, following the idea of Equation 4.5.

Usually, we start with a lacunarity of 2.0 and a gain of 0.5.

5.2.0.1 Deformation Based on the Data Structure Properties

We can also explore the data structure proposed here to reach our objectives. For instance,

in Figure 5.6 we exploit the neighborhood relationship to position these di�erent details

5.2 Subdivision and Smoothing Operator Usage 74

Figure 5.4: (Top) Input dragon with extrapolated areas. (Middle) Resulting appearance
after the smoothing process, note that the horns, teeth and scales remain (smoothed)
as details across the mesh. (Bottom) Resulting smoothing process without local feature
enhancement. Model obtained from [8].

5.2 Subdivision and Smoothing Operator Usage 75

Figure 5.5: Applying the subdivision and procedural operators to create organic shapes.

using the organic operator. Speci�cally, we create a list containing all the vertices of the

mesh and loop through this structure to obtain our deformation points. For each selected

vertex, we search in the list for all vertices belonging to its 2-ring and remove them. This

guarantees an even distribution across the mesh surface since we are selecting independent

clusters.

Figure 5.6: Virus looking surface with black coloring at the deformed areas to give a more
threatening look. Deformation performed using the Equation 4.5.

A valid analysis is comparing some of our results with Velho et al. [75] work, which

in its essence is similar to ours. In this �rst example, presented in Figure 5.7(a), Velho

creates a mushroom planet inspired on the planet from The Little Prince of Saint-Exupery.

In Figure 5.7(b) we can see a similar positioning for some details following the same idea

of (a) and �nally in (c) we can produce similar results using a noise function.

5.2 Subdivision and Smoothing Operator Usage 76

For this speci�c example, as it uses the organic operator, there are several steps to

achieve this appearance. First, we must select the desired points and deform them and

their 2-ring neighborhood area. Here, we apply a procedural operator, moving the vertex

in the direction of its normal and then propagate this value to the neighboring area with

the weights de�ned as noise value divided by 1.5 for the 1-ring and noise value divided

by 2.0 for the 2-ring vertices. The objective of this displacement is used to create a hill

with a smooth appearance. The next deformation is used to move the vertices to opposite

directions creating a wide area at the top of the hill. Obviously, this area will vary from

vertex to vertex due the pseudo-random nature of the noise, which is desirable to create

an heterogeneous look among each detail. After this stage, a procedural operator where f

is a turbulence function, with high frequency and low amplitude, is used to create the idea

of trees and bumpy ground, for this function we chose as the values 6.0 for the lacunarity

and 0.3 for the gain. The result can be seen in Figure 5.7(c).

Another comparison is done in Figure 5.8. In [75], to achieve the results seen in

(Figure 5.8(a)) they realize a local feature placement at the same resolution level. In this

example, we explore the mesh coordinates in order to position the detail, more speci�cally,

we use the vertical component as a parameter constraint while constructing our V S in

Equation 4.4. We explored a variation of frequencies across the head to make the resulting

detail more appealing. In this case, we selected an independent set of vertices to be dis-

placed, which is also a constraint to the V S, and de�ned a random shift at each in�uence

area. One can notice that there are spots relatively �at in comparison to its neighborhood.

To control the appearance, we changed the lacunarity and the amplitude using this shift

value. Here, the initial values for them were 2.0 and 0.5 respectively, with a shift of 0.5

plus the noise contribution for the lacunarity and 0.1 plus the noise contribution for the

amplitude (Figure 5.8(b)). In (c), we explored a more homogeneous approach to obtain a

hair or hood aspect, for that we just removed the shift from formula and used a procedural

operator with Gabor noise function, using the parameters de�ned in Equation 3.20, and

the deformation approach described by Equation 4.5.

It is also possible to create a more organic looks using local modi�cations and re�n-

ing the neighborhood around that region, this is done using an organic operator, which

combine procedural and subdivision operators, as presented in Figure 5.9(Top Left). In

this example, we also perform a selective decimation process, where only vertices that are

not considered as details are candidates for removal. This guarantees that the created

detail will be presented across the many resolution levels, if the user wishes so. Any

extension or detail (blue and red) are kept unchanged. Note that only the yellow area

5.2 Subdivision and Smoothing Operator Usage 77

Figure 5.7: (Top Left) Mushroom planet using a mushroom cloud approach introduced
by Velho et al. in [75]. (Top Right) Simple example o randomly placed small mushrooms
using our approach. (Bottom) Complex example of a mushroom planet using guided
positioning (similar to the description of Figure 5.6) and multiple displacement steps.

has parametrization vertices, creating variable resolution areas (Figure 5.9(Bottom). The

pseudo-code that describes these extensions can be seen in Algorithm 5.

Here, we raise a valid discussion regarding the decimation and parametrization of the

generated detail. Since forms and patterns are procedurally generated (i.e. it could be

created using a geometry shader and not even be represented on the mesh), it might not

make sense to decimate and parametrize such information. Also, considering that the

detail can be created at any level, its maximum resolution will be the same as the current

level, making it hard to create sharp details at certain mesh levels. A possible solution

could be a subdivision scheme that, when applied to the deformed area, creates a more

smooth appearance, but increases its geometric complexity.

Another example of using features, in order to guide the simpli�cation process, can be

observed in Figure 5.9(Top Right). Here, we noticed that some detail, added through a

5.2 Subdivision and Smoothing Operator Usage 78

(a) (b) (c)

Figure 5.8: (a) Original skull presented by Velho et al. in [75]. (b and c) Resulting mesh
created using our approach, in this case the detail positioning was guided by the vertex
position in space.

deformation process, might need to remain unchanged throughout the various resolutions.

Upon �nding a ROI and, detecting an important feature, if we want to maintain such

structure and keep its neighborhood untouched, we must guarantee that none of those

vertices will be removed. This is done by propagating the feature to its neighborhood, thus

making it unremovable. To achieve this we follow the strategy de�ned in Algorithm 4.

5.2.1 Examples Illustrating the Entire Process

In Figure 5.15, the whole process can be observed, where an input dense dragon is sim-

pli�ed (middle right). In this example, we decided to maintain all vertices classi�ed as

corner vertices in order to apply a more sharp modi�cation. At the top right, parameter-

ized points are highlighted in order to show the surface mapping.

We show an example using the geometric operator combined with the variation op-

erator and also explore the curvature detection for a more speci�c and localized result.

Speci�cally, we use a geometric operator using the tapering operation, followed by a twist-

ing and a �nal touch is done using a procedural modi�cation through the turbulence noise

function.

In Figure 5.10, we use as an input a skull with its mean curvature calculated, where

the color variation indicates the curvature values. It is easy to spot the areas around the

eyes, nose and teeth. In this particular example, we want to create a beard e�ect, without

deforming the area of the teeth, and also to give a hair appearance to this bald model.

5.2 Subdivision and Smoothing Operator Usage 79

Figure 5.9: (Top left) An sphere with extensions creating a more organic look. (Top right)
Feature detection used in a di�erent fashion, with region propagation. The extensions
(horns) are in blue. (Bottom) Example of a simpli�cation process, where only the yel-
low area was allowed to be simpli�ed. Any extension or detail (blue and red) are kept
unchanged.

This variation operator does not use the propagation method mentioned in Chapter 4,

since we need many high frequency points, we let each point be processed individually

at a high resolution with almost no change at lower resolution levels. The geometric

operator is applied, using a tapering operation at a lower resolution level modifying the

x and y coordinates while maintaining z untouched. After enough re�nement steps, the

geometric operator performs a twisting operation in order to create a curl e�ect, to give

the impression of a combed hair. The twisting follows the same rules set for the tapering

operation.

5.2 Subdivision and Smoothing Operator Usage 80

Figure 5.10: Complete example of the operators usage with a curvature detection as
restriction to the noise deformation.

5.2.2 Di�usion Flow Images and Curvature Analysis

Feature detection provides yet another useful information in the mesh, in this case, the

di�usion �ow across the triangles as we can see in Figure 5.11. Using this metric alone

is not ideal, since it does not provide all the information necessary to locally deform the

mesh (although, one can still use it for other means). For a better result, combining the

di�usion direction with the normal direction (cross product) usually provides a better

angle between the surface and the displacement direction, this comparison can be seen in

Figures 5.12 and 5.13. This together with feature lines can lead to a good visual, without

creating the random look that is common to noise approaches.

Our work focus on exploring the many ways of analyzing the input mesh in order

to deform it. An interesting result of our research is how the simpli�cation process can

5.2 Subdivision and Smoothing Operator Usage 81

Figure 5.11: Here we can see how the �ow is distributed along two di�erent meshes, a
fandisk model and an overview of these directions on the dragon. These are already used
in the calculation of the feature lines in order to di�erentiate weak vertices from noise
ones. We use this information to guide our detail generation and move it along features.

help us detect a region we want to manipulate. This is better explained with the help

of Figure 5.14, where we see the comparison of the Gaussian curvature over the femur

model. Reddish areas represent negative curvatures, and one can notice that at the head

of the bone a few small regions are detected with such values (Figure 5.14(a)). This is

due minimal di�erences in the height of the triangles, but after applying the simpli�cation

process that problem is drastically reduced or even eliminated (Figure 5.14(b, c and d)).

One step of simpli�cation is presented in (b), removing approximately 1/4 of the vertices,

interest regions become more evident, but some unimportant areas are still visible. In (c),

the only location left to be removed is the reddish area at the body of the bone (almost

�at area). Finally, Base mesh, with approximately 1% of the original mesh shows a way

5.2 Subdivision and Smoothing Operator Usage 82

Figure 5.12: Comparison of the normal direction in�uence. (top) Original input dragon
mesh. (bottom) Procedural operator using only the di�usion direction.

5.2 Subdivision and Smoothing Operator Usage 83

Figure 5.13: Comparison of the di�usion direction in�uence. (top) Procedural operator
using only the di�usion direction. (bottom) Now, using the normal and di�usion direction
combined to guide the deformation.

5.2 Subdivision and Smoothing Operator Usage 84

better selection of the area of interest. Figures 5.14(e and f), demonstrate the resulting

deformation, creating a thin area where the Gaussian curvature has the de�ned threshold.

This is of great interest to this work, since the area detection must be precise in order

to apply a coherent local deformation. We must emphasize that we can use di�erent

curvatures, such as the mean, maximum and minimum curvatures.

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: (a) Full resolution bone, where detecting the speci�c area (below the bone
head) is not fully possible. (b) Bone mesh after one simpli�cation step. (c) The only
location left to be removed in red. (d) Base mesh, with approximately 1% of the original
mesh. (e) Resulting view of the local deformation. (f) Same resulting, new viewing from
below. Model obtained from [8].

5.2 Subdivision and Smoothing Operator Usage 85

Figure 5.15: Input dense triangle mesh ≈ 70k triangles (top left). Parametrization map
over the dragon mesh after the simpli�cation steps (top right). Features marked as strong-
edges and corner vertices (middle left). Dragon after simpli�cation process ≈ 700 triangles
(middle right). Features vertices at the base mesh (bottom left). Small detail modi�cation,
where we just sharpened the tail, claws, teeth and horns (bottom right). Model obtained
from [8].

5.3 Final Comments 86

5.3 Final Comments

This chapter has shown several possibilities of using our method to deal with the prob-

lem of detail generation onto meshes of arbitrary genuses. By using an appropriate mesh

representation, and choosing the appropriate primitive procedural and geometric opera-

tors, we could devise new di�erent operators, integrated with our mesh representation,

that supports better control in the deformation and detail insertion in the many levels

of resolution and spatial locations of the mesh. We have also shown in the results the

ways our operators can be combined to obtain many di�erent e�ects granting a much

better control to the modeler than with previous approaches. A �nal challenge remains

regarding the problem of designing novel interactive ways to de�ne and apply our detail

and deformation generation pipeline.

Chapter 6

Conclusion and Future Works

In this thesis we presented a new method for adding details generated by noise func-

tions to arbitrary genus surfaces using adaptive multiresolution mesh representations.

We introduce forms of matching the noise parameters with the adaptive level of the mesh

and also many deformation aspects using procedural approaches. The results obtained

through this method are compatible to the proposed objectives and presents a new way

of manipulating the di�erent noise information through a variable resolution scheme.

We described a new method based on a combination of variable resolution mesh

representations and procedural noise function for adding details to meshes with arbitrary

genuses with control over the noise scales and mesh local resolution. Also, introduced a

novel way to build 4-k meshes without relying on storing local combinatorial operations,

by simply storing the original vertices in the base domain and re�ne it by inserting the

vertices in the decimation order. This is achieved through a vertex degree �x algorithm,

which approximates the original geometry. In order to obtain a better decimation process

we introduced an improvement in the 4-k base domain generation by using a feature

guided decimation. And, �nally, for a more precise control over the detail generation

process a new way to map these onto meshes, using features and geometric properties, is

described.

We believe that our methods show promising results and presents many possibilities

for future researches. One direction of our work is to study new ways of matching the

noise parameters with the levels of detail. Also, �nd mechanisms for iterative deformation

through the base mesh vertex manipulation using for example, bending, twist and tapper

operations. Finally, use a manifold based representation in order to guarantee a smooth

transition through di�erent charts of with triangles in di�erent levels of detail.

6 Conclusion and Future Works 88

Also, an implementation that contemplates shaders for geometry and tessellation is

something that we must pursue in further investigations. The latter can be done via

software, but the tessellation implemented by hardware can generate an incredible amount

of visual detail, including support for displacement mapping (which is important to this

work), without adding the visual detail to the model sizes and hindering refresh rates.

Following this idea, the usage of a relief mapping in order to map the noise inside the

triangles could generate richer results for the representation of 3D surface detail, producing

self-occlusion, self-shadowing, view-motion parallax, and silhouettes.

Another interesting idea is to explore spectral characteristics of the mesh, which can

be combined with the spectral nature of the noise functions, which, in result, expand the

number of operators that can be created.

6.0.1 Limitations

It is important to recognize the limitations of our approach. Initially, we can point

that the mesh quality is an issue, since quality of the triangles can directly a�ect the

parametrization. Thus, dealing with these meshes can be troublesome for our approach.

Preprocessing the mesh might solve this problem, but it is an additional step in the

process.

The detail generation always present a certain challenge level. Although an extensive

description of ways to control the random nature of the noise was presented, this step

requires a some training in order to achieve spectral control(as was described in many

works in the literature, including [14, 6, 62]). We have also not dealt with the problem

of detecting auto-intersection in the surface as a consequence of detail generation. This

limitation must be overcome in further works.

References

[1] MAXIMO, A.; VELHO, L.; SIQUEIRA, M. Adaptive Multi-chart and Multiresolution
Mesh Representation. Computers and Graphics, Elsevier Inc., v. 38, n. 0, p. 332�340,
2014. ISSN 0097-8493.

[2] ECK, M.; DEROSE, T.; DUCHAMP, T.; HOPPE, H.; LOUNSBERY, M.; STUET-
ZLE, W. Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques. New York, NY,
USA: ACM, 1995. (SIGGRAPH '95), p. 173�182.

[3] VELHO, L. Mesh simpli�cation using four-face clusters. In: Shape Modeling Interna-
tional. [S.l.]: IEEE Computer Society, 2001. p. 200�208. ISBN 0-7695-0853-7.

[4] LEE, A. W. F.; SWELDENS, W.; SCHRöDER, P.; COWSAR, L.; DOBKIN, D.
Maps: Multiresolution adaptive parameterization of surfaces. In: Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1998. (SIGGRAPH '98), p. 95�104. ISBN 0-89791-999-8.

[5] PERLIN, K. An image synthesizer. In: Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques. New York, NY, USA: ACM, 1985.
(SIGGRAPH '85), p. 287�296.

[6] LAGAE, A.; LEFEBVRE, S.; DRETTAKIS, G.; DUTRÉ, P. Procedural noise using
sparse gabor convolution. In: ACM SIGGRAPH 2009 Papers. New York, NY, USA:
ACM, 2009. (SIGGRAPH '09), p. 54:1�54:10. ISBN 978-1-60558-726-4.

[7] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. [S.l.]: Department of
Mathematics, University of Utah, 1987.

[8] VISIONAIR. A World-class Infrastructure for Advanced 3D Visualization-
based Research. Jun 2014. Disponível em: <http://shapes.aimat-
shape.net/ontologies/shapes/viewmodels.jsp>.

[9] HOPPE, H. Progressive meshes. In: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques. New York, NY, USA: ACM, 1996.
(SIGGRAPH '96), p. 99�108. ISBN 0-89791-746-4.

[10] FLORIANI, L. D.; PUPPO, E. Hierarchical triangulation for multiresolution surface
description. ACM Transactions on Graphics, v. 14, p. 363�411, 1995.

[11] PUPPO, E. Variable resolution triangulations. Computational Geometry, v. 11, n. 3-
4, p. 219238, 1998. ISSN 0925-7721.

References 90

[12] FLORIANI, L. D.; MAGILLO, P.; PUPPO, E. E�cient implementation of multi-
triangulations. In: Proceedings of the Conference on Visualization '98. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1998. (VIS '98), p. 43�50. ISBN 1-58113-106-
2.

[13] VELHO, L.; GOMES, J. Variable resolution 4-k meshes: Concepts and applications.
Comput. Graph. Forum, v. 19, n. 4, p. 195�212, 2000.

[14] EBERT, D. S.; MUSGRAVE, F. K.; PEACHEY, D.; PERLIN, K.; WORLEY, S.
Texturing and Modeling: A Procedural Approach. 3rd. ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002. ISBN 1558608486.

[15] KELLY, G.; MCCABE, H. A Survey of Procedural Techniques for City Generation.
[S.l.], 2010.

[16] PERLIN, K. Making Noise. 1999. Http://www.noisemachine.com/talk1/index.html.

[17] PRUSINKIEWICZ, P.; LINDENMAYER, A. The Algorithmic Beauty of Plants. New
York, NY, USA: Springer-Verlag New York, Inc., 1990. ISBN 0-387-97297-8.

[18] SPITZER, J.; GREEN, S. Noise and Procedural Techniques. 2003. In Proceedings of
Game Developers Conference.

[19] MUSGRAVE, K. Pandromeda. 2006. Mojo World Applications.
http://www.pandromeda.com/products/.

[20] INTERACTIVE Data Visualization Inc. SpeedTree RT. 2006.
Http://www.speedtree.com.

[21] SIDE E�ects Software. Manufacturer of Houdini. 2005. Http://www.sidefx.com.

[22] KELLY, G.; MCCABE, H. ITB Journal A Survey of Procedural Techniques for City
Generation. 87 - 130 p.

[23] DEMBOGURSKI, B. J. GeraÃ�Ã¿o Procedural de Terrenos atravÃ©s de Ex-
traÃ�Ã¿o de IsosuperfÃcies na GPU. Thesis (Master) � Instituto de ComputaÃ�Ã¿o,
Universidade Federal Fluminense, MarÃ�o 2009.

[24] PERLIN, K.; HOFFERT, E. M. Hypertexture. In: Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques. New York, NY, USA:
ACM, 1989. (SIGGRAPH '89), p. 253�262. ISBN 0-89791-312-4.

[25] PERLIN, K. Improving noise. In: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques. New York, NY, USA: ACM, 2002.
(SIGGRAPH '02), p. 681�682. ISBN 1-58113-521-1.

[26] LAGAE, A.; DRETTAKIS, G. Filtering solid gabor noise. In: ACM SIGGRAPH
2011 Papers. New York, NY, USA: ACM, 2011. (SIGGRAPH '11), p. 1�6. ISBN 978-
1-4503-0943-1.

[27] GALERNE, B.; LAGAE, A.; LEFEBVRE, S.; DRETTAKIS, G. Gabor noise by
example. ACM Trans. Graph., v. 31, n. 4, p. 73, 2012.

References 91

[28] BOTSCH, M.; PAULY, M.; ROSSL, C.; BISCHOFF, S.; KOBBELT, L. Geometric
modeling based on triangle meshes. In: ACM SIGGRAPH 2006 Courses. New York,
NY, USA: ACM, 2006. (SIGGRAPH '06). ISBN 1-59593-364-6.

[29] SORKINE, O.; BOTSCH, M. Tutorial: Interactive shape modeling and deformation.
In: EUROGRAPHICS. [S.l.: s.n.], 2009.

[30] BENDELS, G. H.; KLEIN, R.; SCHILLING, A. Image and 3d-object editing with
precisely speci�ed editing regions. In: ERTL, T.; GIROD, B.; GREINER, G.; NIE-
MANN, H.; SEIDEL, H.-P.; STEINBACH, E.; WESTERMANN, R. (Ed.). Vision,
Modeling and Visualisation 2003. [S.l.]: Akademische Verlagsgesellschaft Aka GmbH,
Berlin, 2003. p. 451�460. ISBN 3-89838-048-3.

[31] PAULY, M.; KEISER, R.; KOBBELT, L. P.; GROSS, M. Shape modeling with point-
sampled geometry. In: ACM SIGGRAPH 2003 Papers. New York, NY, USA: ACM,
2003. (SIGGRAPH '03), p. 641�650. ISBN 1-58113-709-5.

[32] ZAYER, R.; RÃ¶SSL, C.; KARNI, Z.; SEIDEL, H.-P. Harmonic guidance for surface
deformation. Comput. Graph. Forum, v. 24, n. 3, p. 601�609, 2005.

[33] BOTSCH, M.; KOBBELT, L. An intuitive framework for real-time freeform mod-
eling. In: ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM, 2004. (SIG-
GRAPH '04), p. 630�634.

[34] VELHO, L.; PERLIN, K.; BIERMANN, H.; YING, L. Algorithmic shape modeling
with subdivision surfaces. Computers and Graphics, v. 26, n. 6, p. 865�875, 2002.

[35] CATMULL, E.; CLARK, J. Seminal graphics. In: . New York, NY, USA: ACM,
1998. chap. Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes,
p. 183�188. ISBN 1-58113-052-X.

[36] BIERMANN, H.; MARTIN, I. M.; ZORIN, D.; BERNARDINI, F. Sharp features on
multiresolution subdivision surfaces. Graphical Models, v. 64, n. 2, p. 61�77, 2002.

[37] SCHMIDT, R. Part-Based Representation and Editing of 3D Surface Models. Thesis
(PhD) � University of Toronto, Canada, 2010.

[38] VELHO, L.; GOMES, J. Fundamentos da computaÃ�Ã¿o grÃ½�ca. In: . [S.l.]:
IMPA, 2008. (SÃ©rie ComputaÃ�Ã¿o e MatemÃ½tica).

[39] BOTSCH, M.; KOBBELT, L.; PAULY, M.; ALLIEZ, P.; LEVY, B. Polygon Mesh
Processing. Taylor & Francis, 2010. (Ak Peters Series). ISBN 9781568814261. Disponível
em: <http://books.google.com.br/books?id=8zX-2VRqBAkC>.

[40] TAUBIN, G. A signal processing approach to fair surface design. In: Proceedings of
the 22Nd Annual Conference on Computer Graphics and Interactive Techniques. New
York, NY, USA: ACM, 1995. (SIGGRAPH '95), p. 351�358. ISBN 0-89791-701-4.

[41] HILDEBRANDT, K.; POLTHIER, K.; WARDETZKY, M. On the convergence of
metric and geometric properties of polyhedral surfaces. GEOMETRIAE DEDICATA,
v. 123, p. 89�112, 2005.

References 92

[42] GRINSPUN, E.; DESBRUN, M. (Ed.). Discrete di�erential geometry: an applied
introduction, (ACM SIGGRAPH Courses Notes). [S.l.]: ACM Press New York, NY,
USA, 2006.

[43] WARDETZKY, M. Convergence of the Cotangent Formula: An Overview. 2008.

[44] WARDETZKY, M.; MATHUR, S.; KALBERER, F.; GRINSPUN, E. Discrete
laplace operators: No free lunch. In: Proceedings of the Fifth Eurographics Sympo-
sium on Geometry Processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2007. (SGP 07), p. 33�37. ISBN 978-3-905673-46-3.

[45] ALEXA, M.; WARDETZKY, M. Discrete laplacians on general polygonal meshes.
In: ACM SIGGRAPH 2011 Papers. New York, NY, USA: ACM, 2011. (SIGGRAPH
11), p. 102:1�102:10. ISBN 978-1-4503-0943-1.

[46] ZORIN, D.; SCHRöDER, P. Subdivision for Modeling and Animation. [S.l.], 2000.
Course Notes.

[47] STAM, J. Exact evaluation of catmull-clark subdivision surfaces at arbitrary pa-
rameter values. In: Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques. New York, NY, USA: ACM, 1998. (SIGGRAPH '98), p.
395�404. ISBN 0-89791-999-8.

[48] VELHO, L.; ZORIN, D. 4�8 subdivision. Computer Aided Geometric Design, Else-
vier, v. 18, n. 5, p. 397�427, 2001.

[49] STAM, J.; LOOP, C. Quad/triangle subdivision. Computer Graphics Forum, Black-
well Publishing, Inc, v. 22, n. 1, p. 79�85, 2003. ISSN 1467-8659.

[50] BAUMGART, B. G. Winged Edge Polyhedron Representation. Stanford, CA, USA,
1972.

[51] MäNTYLä, M. An Introduction to Solid Modeling. New York, NY, USA: Computer
Science Press, Inc., 1987. ISBN 0-88175-108-1.

[52] ROSSIGNAC, J.; SAFONOVA, A.; SZYMCZAK, A. Edgebreaker on a Corner Table:
A simple technique for representing and compressing triangulated surfaces. 2002.

[53] LAGE, M.; LEWINER, T.; LOPES, H.; VELHO, L. CHE: A scalable topological
data structure for triangular meshes. [S.l.], May 2005.

[54] GURUNG, T.; LANEY, D. E.; LINDSTROM, P.; ROSSIGNAC, J. Squad: Compact
representation for triangle meshes. Comput. Graph. Forum, v. 30, n. 2, p. 355�364,
2011.

[55] EDELSBRUNNER, H. Algorithms in Combinatorial Geometry. Springer, 1987.
(European Association for Theoretical Computer Science: EATCS mono-
graphs on theoretical computer science). ISBN 9783540137221. Disponível em:
<http://books.google.com.br/books?id=mxugg47mzK4C>.

[56] VELHO, L. Semi-regular 4-8 re�nement and box spline surfaces. In: SIBGRAPI.
[S.l.]: IEEE Computer Society, 2000. p. 131�138. ISBN 0-7695-0878-2.

References 93

[57] GOTSMAN, C.; GUMHOLD, S.; KOBBELT, L. Simpli�cation and compression
of 3d meshes. In: In Proceedings of the European Summer School on Principles of
Multiresolution in Geometric Modelling (PRIMUS. [S.l.]: Springer, 1998. p. 319�361.

[58] HECKBERT, P. S.; GARLAND, M. Survey of Polygonal Surface Simpli�cation Al-
gorithms. 1997.

[59] FLOATER, M. S. Parametrization and smooth approximation of surface triangula-
tions. Comput. Aided Geom. Des., Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, The Netherlands, v. 14, n. 3, p. 231�250, apr. 1997. ISSN 0167-8396.

[60] DUCHAMP, T.; CERTAIN, A.; DEROSE, A.; STUETZLE, W. Hierarchical Com-
putation Of Pl Harmonic Embeddings. [S.l.], 1997.

[61] TUTTE, W. Convex Representation of Graphs. [S.l.], 1960. 304�20 p.

[62] LAGAE, A.; LEFEBVRE, S.; COOK, R.; DEROSE, T.; DRETTAKIS, G.; EBERT,
D. S.; LEWIS, J. P.; PERLIN, K.; ZWICKER, M. A survey of procedural noise func-
tions. Comput. Graph. Forum, v. 29, n. 8, p. 2579�2600, 2010.

[63] PAPOULIS, A. Probability, Random Variables, and Stochastic Processes. [S.l.]: Mc-
Graw Hill, 2002.

[64] BRACEWELL, R. The Fourier Transform and Its Applications. McGraw-Hill Higher
Education, 2000. (Electrical engineering series). ISBN 9780073039381. Disponível em:
<http://books.google.com.br/books?id=ZNQQAQAAIAAJ>.

[65] ELIAS, H. Perlin Noise. Jun 2014. Disponível em:
<http://freespace.virgin.net/hugo.elias/models/m_perlin.htm>.

[66] WYVILL, G.; NOVINS, K. Filtered noise and the fourth dimension. In: ACM SIG-
GRAPH 99 Conference Abstracts and Applications. New York, NY, USA: ACM, 1999.
(SIGGRAPH '99), p. 242�. ISBN 1-58113-103-8.

[67] OLANO, M.; HART, J. C.; HEIDRICH, W.; MARK, B.; PERLIN, K. Real-time
shading languages. In: ACM SIGGRAPH 2002 Courses. New York, NY, USA: ACM,
2002. (SIGGRAPH '02).

[68] PERLIN, K.; NEYRET, F. Flow noise. In: Siggraph Technical Sketches and Appli-
cations. [S.l.: s.n.], 2001. p. 187.

[69] BRIDSON, R.; HOURIHAM, J.; NORDENSTAM, M. Curl-noise for procedural �uid
�ow. In: ACM SIGGRAPH 2007 Papers. New York, NY, USA: ACM, 2007. (SIG-
GRAPH '07).

[70] KENSLER, A.; KNOLL, A.; SHIRLEY, P. Better Gradient Noise. [S.l.], 2008.

[71] LEWIS, J. P. Algorithms for solid noise synthesis. In: Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques. New York, NY, USA:
ACM, 1989. (SIGGRAPH '89), p. 263�270. ISBN 0-89791-312-4.

[72] GAMITO, M. Techniques for Stochastic Implicit Surface Modelling and Rendering.
[S.l.]: University of She�eld, Department of Computer Science, 2009.

References 94

[73] WIJK, J. J. van. Spot noise texture synthesis for data visualization. SIGGRAPH
Comput. Graph., ACM, New York, NY, USA, v. 25, n. 4, p. 309�318, jul. 1991. ISSN
0097-8930. Disponível em: <http://doi.acm.org/10.1145/127719.122751>.

[74] STOLLNITZ, E. J.; DEROSE, T. D.; SALESIN, D. H.Wavelets for Computer Graph-
ics: Theory and Applications. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1996. ISBN 1-55860-375-1.

[75] VELHO, L.; PERLIN, K.; BIERMANN, H.; YING, L. Algorithmic shape modeling
with subdivision surfaces. Computers and Graphics, v. 26, n. 6, p. 865�875, 2002.

[76] DOBKIN, D. P.; KIRKPATRICK, D. G. A linear algorithm for de-
termining the separation of convex polyhedra. Journal of Algorithms,
v. 6, n. 3, p. 381 � 392, 1985. ISSN 0196-6774. Disponível em:
<http://www.sciencedirect.com/science/article/pii/0196677485900070>.

[77] MEDIONI, G.; TANG, C.-K.; LEE, M.-S. Tensor Voting: Theory and Applications.
In: Proceedings of RFIA. [S.l.: s.n.], 2000.

[78] WANG, S.; HOU, T.; SU, Z.; QIN, H. Di�usion Tensor Weighted Harmonic Fields
for Feature Classi�cation. In: . [S.l.: s.n.], 2011. p. 93�98.

[79] KIM, H. S.; CHOI, H. K.; LEE, K. H. Feature detection of triangular meshes based
on tensor voting theory. Comput. Aided Des., Butterworth-Heinemann, Newton, MA,
USA, v. 41, n. 1, p. 47�58, jan. 2009. ISSN 0010-4485.

[80] WANG, S.; HOU, T.; LI, S.; SU, Z.; QIN, H. Hierarchical feature subspace for
structure-preserving deformation. Computer-Aided Design, v. 45, n. 2, p. 545�550, 2013.

[81] BARR, A. H. Global and local deformations of solid primitives. In: Proceedings of the
11th Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1984. (SIGGRAPH '84), p. 21�30. ISBN 0-89791-138-5. Disponível
em: <http://doi.acm.org/10.1145/800031.808573>.

	Introduction
	Investigated problem
	Objective
	Hypothesis
	Overview of the methodology
	Contributions
	Thesis Organization

	Related Work
	Surface Representation
	Procedural Generation
	Mesh Deformation

	Background
	Object Representations
	Polyhedral Meshes
	Geometric Operators Operators on Meshes
	Normal Vectors
	Gradients
	Discrete Mean Curvature

	Topological Data-structures
	Representation of Meshes at Multiple Levels of Detail
	Non-Adaptive Hierarchical Structures
	Adaptive Hierarchical Structure
	Hierarchical Triangulation
	4-k Meshes
	4-8 Tessellations and Meshes

	Simplification
	Simplification based on the quadric error metric
	Simplification based on four-face clusters

	Parametrization
	Triangle Mesh Parametrization
	Barycentric Parametrization
	Parametrization Based on Conformal Mapping

	Procedural Noise Functions
	Lattice Gradient Noises
	Perlin Noise
	Other Lattice Gradient Noises

	Sparse Convolution Approaches
	Sparse Convolution Noise
	Spot Noise
	Gabor Noise

	Adaptive Hierarchical Mesh Detail Mapping and Deformation
	Problem definition
	Metodology
	Proposed Method
	Variable Resolution Hierarchical Mesh
	Mesh Simplification
	Feature analysis on meshes
	Mesh parameterization guided by simplification

	Detail Generation
	Parameterization update after deformation

	Adaptive Refinement
	Operators
	Subdivision and Smoothing Operator
	Subdivision Operator
	Smoothing Operator

	Geometric Operators
	Tapering
	Twisting

	Procedural Detail Operators
	Perlin Noise Operator
	Gabor Noise Operator

	Feature-based Operator
	Composite Operators
	Organic Operator
	Variation Operator

	Results
	Results
	Deformation Variation Across Surfaces
	Feature Vertex Deformation

	Subdivision and Smoothing Operator Usage
	Deformation Based on the Data Structure Properties
	Examples Illustrating the Entire Process
	Diffusion Flow Images and Curvature Analysis

	Final Comments

	Conclusion and Future Works
	Limitations

	References

