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ABSTRACT 

We derive estimates of the elastic properties of rock samples using their tomographic 

images. These estimates are achieved through a numerical simulation of the elastostatic 

equation, solving it with the finite element method and applying boundary conditions 

associated to the uniaxial compression test. The simulation software is developed and 

described. It uses CPU parallelization techniques, and is object oriented. The used computer 

language is C++, but we focus on the main algorithms description and computational 

decisions. The software is validated using exact analytical equations and approximate models. 

A real rock sample is used to analyze porosity and pore geometry influence on the elastic 

properties.  The rock sample level of isotropy is also quantized. This still can be considered a 

work in progress, and the future research paths and possible consequences of these analyses 

are described along the text.  

 

Keywords: Rock physics, Petrophysics, C++, Microtomography, Images, Numerical 

simulation 
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INTRODUCTION 

Rock physics can be defined as the study of rock properties and their interactions with 

fluids. Petrophysics is the application of Rock Physics to Hydrocarbon Industry [12,39].  The 

geologic material inside a petroleum reservoir contains a three dimension network of 

interconnected pores through which a fluid flows. Knowledge of the physical properties 

associated to this pore network leads to the efficient design of the injection-production system 

of the reservoir, for economy of energy and maximization of hydrocarbon production.  

 

Digital Rock Physics (DRP) is an interdisciplinary area that consists in imaging and 

digitizing the pore space and mineral matrix of a natural rock and then, numerically, 

simulating its physical processes. These numerical experiments can describe several types of 

rock macroscopic properties such as permeability, electrical conductivity and elastic module 

[3]. DRP is still an emerging technology which adds a numerical approach to the study of a 

reservoir structure and allows a better understanding to correlations between pore 

microstructure and physical properties of rocks [28].   

 

This work scope is limited to elastic properties of rocks. These properties are used to 

drilling design, well completion and field development programs in the oil reservoir [39]. In 

general, these mechanical properties are acquired from laboratory experiments, or are 

estimated with oversimplified approximate models [3].  As we can expect, the laboratory 

experiments provide richer and more useful information which can also be compared to real 

geological phenomena, despite the fact of being executed on a totally different scale and time 

length [12]. This comparison makes accurate relationships between pore structure and elastic 

properties of rocks a fundamental and long standing problem in geophysics [5].  

 

Therefore, laboratory experiments to obtain elastic properties of rocks have direct 

applications in geology and oil industry. The possibility to perform these tests in a computer 

simulated environment has the following advantages: 

 

 Computer tests are cheaper; 

 It is possible to create mechanical tests with the same rock sample and different 

conditions. This cannot be reproduced in the physical world; 
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 Digital analysis does not require big rock samples. The data can be damaged and can 

be obtained from reservoir areas in which a traditional laboratory analysis is not 

possible.  

 

We can identify three steps in Digital Rock Physics: 

 

 Image acquisition and segmentation; 

 Numerical simulation; 

 Interpretation of results. 

 

In the next chapters we consider each one of these steps. Image acquisition is assumed, 

using Martin Blunt's examples from Imperial College [7]. These examples can be downloaded 

from the university web site. 

 

Recently, the “Universidade Federal Fluminense”, sponsored by the British Gas 

Company [23], acquired tomographic equipment with which it is possible to image real 

samples of rocks. These images can be used as input data to rock physics computer software 

that simulates its physical properties. Our present work represents a starting point in this 

objective, describing the details of an implementation of a computer program that calculates 

the elastic rock properties. Even though there are other implementations [14], we made a new 

cross-platform approach in C++ language. We strongly believe that this leads to a better 

understanding of these technologies development.  

 

The numerical simulations solve the mechanical based differential equation known as 

elastostatic equation. It is solved using the method of finite elements. In Chapter 1 we 

describe the numerical and mechanical background for this modeling.  Chapter 2 is the most 

technical of all, describing the implementation details. The chosen language is C++, with 

parallel technologies such as OpenMP and modern CPU vectorization [38]. We do not 

describe language issues, and try to focalize in the algorithms using high level considerations.  

In Chapter 3 we become users of the developed software, executing experiments with 

synthetic and real rock sample images.  
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CHAPTER 1. BASIC CONCEPTS 

1.1 BIBLIOGRAPHIC REVIEW 

 

The different steps in digital petrophysics workflow are described in [4,3]. In general, 

the first step is to process the microtomographic images with basic digital image processing 

techniques. Sometimes this processing is limited to distinguish pore from rock material 

(biphasic samples). After this processing, a three dimension model of the rock sample is 

produced. This model is suitable to a numerical method application, such as finite element 

method (for mechanic properties), finite difference methods (for electrical properties) and 

other discrete methods. As we focus on elastic properties, our workflow handles 3D mesh 

models suitable for the finite element method.    

 

The current state of the art in computer memory and speed makes it possible to handle 

the large set of data that a 3D image based finite element model contains [35]. To obtain 

elastic properties, the preferred numerical tool is the Galerkin finite element method [24]. 

This is the best method to solve the associated elastostatic equation as it minimizes the 

displacement energy potential [29,34].    

 

The set of computational tools that are necessary for this numerical approach has been 

developed by Garboczi in Fortran language and it has been used for rock sample image 

resolutions that can be evaluated in common workstations [14,35]. As far as we know, larger 

distributed computer systems have not been used to solve these models.   

 

Reitbergen et al. [42] describe the mathematical techniques and memory 

representation of large regular finite element meshes. They use the classical “element-by-

element” finite element method [24], which suits very well to these kinds of data structures. 

Their range of applications includes medical, imaging human bones to obtain their elastic 

module.  

 

 For more than fifty years, a lot of research has been produced to obtain relationships 

between rock porosity (ratio between pore and material volume) and elastic properties.  
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 This research makes an estimation of the elastic module based on simplistic pore 

geometries, providing precise lower and upper boundaries [18,20,19] or only approximations 

[32,11,25]. Despite the simplified assumptions these analyses make, they provide 

approximations with relative errors of less than 20% [9]. As we will show later, these simple 

pore geometries are very easy to reproduce in a computer generated model, providing an 

adequate mechanism to validate our computational results.  

 

 In this work we are focused in reproducing real laboratory rock physics experiments in 

a computer simulation. One of the simplest test is the unconfined compression test [30], 

designed to get the elastic module of a rock sample [37,35]. There are also other tests, suitable 

for similar numerical techniques [27].  

 

 The random placement of pores can be captured by the micro-tomographic images and 

has a direct influence on the sample elastic module. If there is enough number of pores inside 

the sample, the laboratory unconfined test will give an adequate estimation of the media 

global module and it will not be necessary to consider periodic boundary conditions, in which 

the numerical method is applied as if the rock sample were a repeated pattern. Despite they 

cannot be reproduced in real laboratory tests, in most cases, periodic conditions are assumed 

to improve the estimation [5].  This work does not apply periodic boundary conditions, as it 

cannot be reproduced in the laboratory. In a future work, a comparison between using or not 

periodic conditions will be performed. 

  

 It is a well proven fact that all rock physical properties can be obtained from the 

microtomographic images [5].  The main focus in this work is three dimension analyses for 

which there are very few analytical exact expressions. One of them is given by Hashin [18], 

for a dilute concentration of spherical inclusions inside a matrix.  Hashin also deduces the 

most precise upper and lower limits for the Young module [19,20,21]. Nevertheless it is 

almost impossible to find exact analytical expressions for the Young modulus for different 

porosities and arbitrary pore geometry and distributions [22].  This is the reason for which the 

numerical simulation is the only reasonable alternative.  

 

  



17 

 

1.2 IMAGE ACQUISITION 

 

To simulate our physical experiment, we require a sequence of images of the rock 

sample. These images must be large enough to capture the different rock pore geometries. The 

micro-scale x-ray computed tomography enables the measurement of the local x-ray 

absorption in a small, rock sample, with a typical volume of a few cube millimeters or less. 

The resolution can be as small as 3 µm [7]. The obtained radiographs are used to create a 

sequence of gray scale images, in which the brightness is proportional to the x-ray level of 

absorption of the pixel [31]. We can identify these brightness levels with different kinds of 

rock materials. In other words, each pixel color is used to tag and identify mineral phases 

within the sample. In many cases we consider only two phases: pore and material. This is the 

biphasic dry sample in which the three dimensional model of the sample contains only one set 

of mechanical characteristics.  It can be visualized as a simple 3D image made of binary 

voxels (Figure 1). The resolution of these images can be of        voxels in some devices 

[7]. 

 

It is obvious that in order to obtain a numerical model, it is not enough to get the 

microtomograph output, but the images must be processed in order to suppress noise and ring 

artifacts using 3D digital image processing techniques: morphology, cluster analysis and 

segmentation algorithms [3]. The method with which the mesh is created is described in 

Chapter 2. 

 

Figure 1. Three dimensional model of a rock sample. This three dimension model is 

generated with a PLY mesh file whose faces are the border faces of the border 

elements.  
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In this work we consider this sequence of images as an input to our workflow. This 

input can be viewed as a unique 3D image made of voxels, or as a sequence of 2D images 

made of pixels.  

 

1.3 MATHEMATICAL MODEL 

1.3.1 HOOKE'S LAW 

 

In the theory of solid mechanics, bodies are considered deformable. This deformation 

depends on their internal forces which are modeled by stresses. The average stress on a cross-

section area    is defined as the ratio       where     is the force applied on this area [34]. 

If        is a cross-section area perpendicular to  -axis, then the three components of 

stress are defined as: 

       
     

   

   
                             

     

   

   
 

  

       
     

   

   
 

 

Where the first sub index denotes the direction of the force, and the second denotes the 

normal vector of the surface where it is being applied. There are three possible normal vectors 

in a three dimensional system, and at the same time, three different force directions.  

 

Therefore, these combined stresses cannot be represented by a single vector. It is 

represented by a     matrix in which the first subindex denotes the number of the axis, and 

the second subindex, the normal vector of the surface (Figure 2): 
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Figure 2. Stress tensor diagram. The motion equation is obtained supposing 

linearity inside this infinitesimal size box [37].  

 

Let us suppose that       are the displacement fields of the differential element as 

functions of        in each axis. Then, these displacements can be written linearly as: 
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The matrix of partial derivatives can be decomposed in its symmetric and 

antisymmetric parts: 
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The symmetric part is called “Symmetric strain tensor” [37] and the antisymmetric 

part, the “Rotation tensor” [24]. The symmetric tensor entries are denoted by     (    

             ).  

 

From now, we will use index notation in which double repeated index implies 

summation, and differentiation is denoted by a comma. When an index is not repeated, it 

denotes vector entries [24]. We define              . Then, the symmetric strain tensor 

can be described by the following abbreviated equation: 

 

           
 

 
            

 

 

(1.3.1) 

 

Hooke´s law establishes a relationship between the symmetric strain tensor and the 

symmetric stress tensor.  In index notation it is written as: 

 

             (1.3.2) 

    

Where the coefficients       constitute what is called the stiffness tensor. It is 

important to check the units of these equations.  

 

The values of     do not have units, because it is a division between two lengths. As 

stress tensor has units      (Newton per square meter) in the international system then the 

constants       units are       too.  In Voigt notation, Hooke´s law is written avoiding 

repetition of symmetric components, in the following way [30]: 
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Hooke´s law can be simplified, considering an isotropic medium, in which only two 

constants are necessary to specify stress-strain relation.   Taking this into account, we get the 

simpler relation: 

  

 

 
 
 

    
 
 
 
 
 

 
    

 
 
 
 

 
 

    
 
 
 

     
 
 
 
 
 

     
 
 
 
 
 

     
 
 
 
 
  

 
 
 

        

 

(1.3.3) 

 

 

The     matrix   is a simpler way to represent the stiffness tensor. The constants   

and   are called Lamé constants,   is the shear modulus or Lamé´s second parameter and   is 

the Lamé first parameter [37]. All these constants have international unit:     .  Under these 

new assumptions, Hooke´s law takes the following form: 

 

                  (1.3.4) 

  

This is called the isotropic form of Hooke’s law [30]. Here          ,     

          and     is a sum over repeated index.  

 

1.3.2 LINEAR ELASTOSTATIC EQUATION 

 

To numerically reproduce our experimental test, the differential elastostatic equation 

must be solved. This equation models the material as continua. In each point of the domain 

(the three dimension rock sample) the second law of Newton must be accomplished. In the 

context of the elastostatic equation, this means that the addition of all forces must be zero. 

Using index notation, we have [24]: 
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Where    is an external stress. This equation is deduced by using linearity in each infinitesimal 

domain element [37]. In our case, there are no sources of stress in any point of the domain. 

This implies that     . The equation, then, becomes: 

 

          (1.3.5) 

 

This is called the motion equation. All stresses are unknown variables, and this 

equation represents a system of 3 equations. Therefore, here we have 3 equations and 6 

unknown variables (stress tensor is symmetric).  

 

Now, we consider boundary conditions. They are important to produce more equations 

and make the system solvable. In our experiment, boundary conditions have an physical 

interpretation: 

 

 Boundary points in which the displacement is known. These are the points in the rock 

samples that make contact with the stress device, that is, the lower and upper part of 

the rock. These points will be denoted by   . 

 Boundary points in which the stress is known. These are the boundary points in which 

no stress is applied. These points will be denoted by   . 

 

So, we have a new set of equations: 

  

                   (1.3.6) 

 

Where    is a boundary displacement. We also have: 

 

                   (1.3.7) 

 

Where    are the entries of the normal vector of the surface. These equations produce 

a new set of 6 equations. But we have added three unknown variables: the displacement 

vector entries   . All these equations represent a set of 9 equations with 9 unknown variables. 

This means that the system is solvable, but this only happens in the domain boundary.  
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We are going to analyze what happens in the domain inner points.  Hooke´s law 

creates a set of 6 more equations (because of the symmetry). 

 

             (1.3.8) 

 

But at the same time, the displacement tensor adds 6 unknown variables. The relation:  

 

    
 

 
            

(1.3.9) 

 

Creates 6 more equations and 3 unknown variables. At the inner points of the domain we have 

15 equations and 15 unknown variables, so, the system is solvable.  These systems of 

equations are globally called the elastostatic linear equation. The solution of this system in 

each domain point provides the displacement vector field, the displacement tensors and the 

stress symmetric tensor. It is supposed that all the functions involved are continuous and 

differentiable.  

 

1.3.3 FINITE ELEMENT METHOD 

 

It is obvious that solving the continuous elastostatic equation for each domain point is 

not computationally feasible. To make the problem, computationally tractable, it must be 

completely discretized. A level of discretization is achieved by supposing that the solutions 

can be approximated by linear combinations of simpler functions. We take the displacement 

vector field    and approximate it by    : 

 

                        

 

   

                             

 

 

(1.3.10) 

 

Without adding on index  . The functions     are simpler scalar functions that have 

numerical desirable properties which will be described later. They are called shape functions. 

The function    satisfies the boundary conditions in   .  
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This approximation can be visualized as an orthographic projection in which the 

function    is approximated in the space of functions   generated by                and    [29].  

 

In this set of generated functions, there’s only one that best approximates    [29]. This 

best approximation has a geometrical interpretation.  As we show in Figure 3, in finite 

dimension inner product vector spaces, the best approximation for    is given by the 

orthogonal projection, defined by the constants     as shown in Equation (1.3.10). In our case, 

the space dimension of   is   (the number of shape functions) and    is not contained in it.  

To get the best approximation of    in  , we only have to find    scalars    . This is the 

geometric idea that sustains the finite element method [29].   

 

 

Figure 3. A typical 3D ortographic projection to a plane. The finite element method 

can be viewed as an ortographic projection in many dimensions.   

 

The shape functions    , in general, do not depend on the index  . That is     

      .  Therefore, Equation (1.3.10) can be written as: 

 

                                  

 

   

           

 

Nevertheless, the inner product must depend on the index  . For a shape function   , 

we define: 
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And the matrix: 

 

       
      

 

(1.3.11) 

 

Where the matrix    is the same matrix we use in Equations (1.3.3) and (1.3.4). The integral 

is calculated for every entry of the     matrix     [24].   

 

The inner product            is defined as the entry       of the matrix    . Even for  

general functions    , it can be shown that this inner product definition is equivalent to [24]: 

 

                         (1.3.12)  

 

Where: 

       
          

 
 

 

And the scalars       are Hooke’s law coefficients (Equation (1.3.2)) [37]. We now consider 

the difference        and apply the orthographic property to obtain the scalars    . That is: 

 

                                     

 

Using the Hooke’s law for    (Equations (1.3.2), (1.3.3),(1.3.4) and (1.3.4)) we have 

that: 

                                                  

 

Integrating by parts: 
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But we supposed that   is the solution of the elastostatic equation. Therefore         

and         in   . These conditions simplify  the equation system. The border conditions in 

   are different, because in this zone, the displacement is already known.  

 

We suppose that       on   . This implies            . This forces    to satisfy 

the boundary conditions on   : 

 

                                         

 

   Also,                          . The inner product becomes: 

 

                        
               

 

Where: 

   
                      

 

   

 

 

 We get the  equation: 

 

          
               (1.3.13) 

 

The Equation (1.3.13) applies for each    , obtaining a system of    equations.  It is 

called the weak form of the elastostatic equation. When there are no restrictions on the space 

of shape functions the solution of the weak form is the same as the solution of the elastostatic 

equation [29,24]. The function    is a combination of shape functions that are not zero in   . 

We denote this space of functions by    
. 

 

                

     

 

 

If we take the function    
 , expand it in Equation (1.3.13) and substitute the expansion 

of    we get: 
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(1.3.14) 

 

This is the expanded weak form of the elastostatic equation. Despite these equations 

allow to obtain the scalars    , this set of equations is still semi-discrete because the inner 

products are made of continuous integrals. The complete discretization of the problem 

requires a precise definition of the shape functions and a method to calculate the inner 

products. This is described in the following section. 

 

1.3.4 MESHING 

 

The only restriction we imposed to the space of shape functions for the finite element 

method was       on   .  In our three dimension model, the shape functions are defined as 

translations and dilations of the tensorial product of the hat function, which, in one dimension, 

is defined as: 

 

      
                

             
  

 

The hat function in three dimensions is defined as                        and 

in two dimensions as                  (Figure 4).  

 

 

Figure 4. Two dimension hat function. The three dimension volumetric hash 

function cannot be plotted, but has analogous characteristics 
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We define the shape functions as: 

 

             
    

  
 
    

  
 
    

  
  

(1.3.15) 

 

The point            is called nodal point or node. The hat basis functions have the 

following interpolating property in each internal node: 

 

                              

 

   

                                  

 

In the finite element method, the domain is subdivided into a grid of nodes, each one 

defining a shape function. This grid is arranged in sub domains, called elements which 

contain node arrays.  In our three dimension model, these sub domains are built with 8 nodes, 

forming a tetrahedral domain.  

 

The process of defining the elements and the nodes is called meshing [24]. In our case, 

our elements will be hexahedrons with eight numbered nodes (Figure 5). 

 

 

Figure 5. Hexahedral element equivalence. The jacobian makes a variable change to 

calculate the integral in a normalized element.  

 

Consider a canonical element defined in the interval                      with 

locally numbered nodes    
    

    
               .  
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The node positions are numbered as in the red tetrahedron in Figure 5, centered in 

        and     
    

    
             . In this canonical element, eight shape functions are 

not zero, and they are given by: 

 

          
 

 
                      

 

(1.3.16) 

 

Where       and    can take the values    in all combinations. For example, 

           . In general, the elements will not have canonical form, but they can be 

transformed (Figure 5) facilitating the calculation of all inner products integrals, restricting 

them to the canonical element. In finite element method the inner product is obtained by 

integrating all inner products in each element sub-domain, and then, adding all results 

together.  

 

The transformation to get the coordinates of a general element with nodes 

                      is given by [24]: 

 

                     

 

   

                                                       

 

   

 

 

                     

 

   

   

 

With the Jacobian matrix: 

 

   

         

         

         

  

 

With these tools we can calculate the inner product between two shape functions    

and    for all degrees of freedom on a particular element  .  
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After constructing the matrix of functions   
     shown in Equation (1.3.11), then 

each entry   of this matrix is integrated on the canonical element, with the following change 

of variables: 

 

                                                       
 

  

 

  

 

  
 

 

 

(1.3.17) 

With the shape functions defined in Equation (1.3.15) and the change of variables of 

Equation (1.3.16) the result of Equation (1.3.17) can be calculated analytically. This finishes 

the process of the discretization of the elastostatic equation.  

 

The integrals associated to the inner products can be obtained with the Gaussian 

Quadrature. This can be written as [29,24]: 

 

           
 

                

 

   

    

 

Where    is the approximation error. This approximation is exact when the function 

         is a polynomial of a degree      that depends on the rule type. The eight point 

Gaussian Quadrature in three dimensions makes this relation exact (    ) for the shape 

functions described in Equation (1.3.16).  

 

1.3.5 ONE ELEMENT PER VOXEL 

 

The final step of the orthographic process described in Equations (1.3.13) is to 

produce a linear system of equations:  

  

       (1.3.18) 

 

Where   is a matrix of inner products that is also called Stiffness matrix. The vector    

is the vector of scalars     and the vector    is called the force vector. The Equation (1.3.18) is 

called the model equation [24]. The size of this system of equations depends on the number of 
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shape functions (associated to the number of nodes and elements in the mesh model). The 

matrix   is very sparse. The number of elements different of zero per each line of the matrix 

is called the bandwidth of the matrix. The limited matrix bandwidth is a very useful property 

for an efficient computational representation of   [40,6]. 

 

Figure 6. A     array of tetrahedral elements. The central element is surrounded 

by 26 elements.  

 

As we show in Figure 6, according to the mesh model we described before, and the 

shape functions we are using, each element has at most 8 neighbors and each node is affected 

by only 27 neighbors (including itself). Therefore, the bandwidth of the matrix is        . 

This can be the simplest approach to construct the mesh, taking advantage of the 

discretization of the proper image voxels. Every image voxel is considered an element, and 

each one of these elements is made of eight nodes. We can say at least three advantages of 

this meshing procedure: 

 

1. The mesh is very easy to construct. There is no need to construct the mesh with 

computationally expensive procedures.  

2. The mesh precision is directly associated with the discretization process in which the 

image was acquired 

3. Each pixel color can be easily characterized by different Lame constants (different 

mechanical properties associated to each color).  

 

The main disadvantage of this kind of mesh is that the number of elements and the size 

of the equation scales very quickly. For example, for a very small 3D image          we 

have a system of              equations. The stiffness matrix, with its bandwidth    
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will contain                   different real numbers (which requires a large amount 

of memory of       just for the matrix). With a slightly larger image             it is 

necessary to solve a system of 3 millions of equations, with a stiffness matrix with 243 

millions of real numbers that requires a memory of 0.9 GB.  In the next chapter we will 

describe how to overcome these computational problems. 

 

1.4 UNIAXIAL COMPRESSION TEST 

 

The final result of our FEM implementation is not the displacement vector for each 

node. The final result is a Lame constant, the Young module, obtained from the uniaxial 

compression test. To get this number, it is necessary to integrate the stress tensor on one of 

the faces of the rock sample.  

 

This is done by passing through each element on the upper face, integrating the 

applied force using the displacement function at Equation (1.3.10) and the Hooke law of 

Equation (1.3.8). At the end, all forces are added together to get the total force necessary to 

deform the rock sample. The uniaxial stress is given by this force divided by the total upper 

part area of the rock. By using Hooke´s law shown in Equation (1.4.1) we can get the Young 

Modulus of the rock sample  . The equation is: 

 

     (1.4.1) 

 

Where   is called the uniaxial stress, and   is the rock sample deformation. The 

constant   is called the Young modulus and it is a measure of rock resistance to deformation 

during linear behavior. When the value of   is larger, the Young modulus is not a constant and 

the stress-strain relation is not linear. We show this tendency in Figure 7. 

 

So, the rock sample is loaded along one of its axis, assuming linear behavior, 

producing a specified deformation [17].  In general the axis in which the force is applied is the 

Y-axis.  
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Figure 7. A typical stress-strain curve. The relation is linear, until the strain reaches 

the value 1. After value 2, the stress remains constant.  

 

 

Figure 8. Uniaxial compression test. The boundary conditions impose zero 

displacement in the y-axis of the lower nodes, and a fixed displacement in this same 

axis in the upper nodes.   

 

A schematic of the test is shown in Figure 8:  A small displacement    is applied 

along the y-axis, applying a normal stress to the surface. There are no restrictions on material 

displacement, except in the lower part of the sample. Therefore, there will be a displacement 

of the material along z and x-axis. The total force applied to produce the controlled 

displacement along y-axis can be obtained and all data to get the Young modulus are known. 

We have: 

 

  
  

 
 

 

Where    is the applied displacement and   is the rock sample height. We also have 

the total force applied   and if   denotes the upper area of the rock is sample, then: 
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CHAPTER 2. COMPUTATIONAL  IMPLEMENTATION 

2.1 WORKFLOW 

 

In the following sections we describe our computational implementation of the 

numerical simulation of  uniaxial compression test based on the finite element method. Most 

computational decisions are supported by adequate references, but other aspects are purely 

technical details and they are not justified (because it is not necessary). Some of these aspects 

are the file extensions (.rw3, .rw3,.bmm) and the module names. These are just a mechanism 

to classify our methodology and are used to identify our data workflow. They do not pretend 

to define a standard.  

 

Almost all aspects of our workflow were implemented from scratch, using the C++ 

computer language and some basic CPU parallelization techniques. We do not pretend this to 

be the best implementation, but a new one in the set of existing software.  

 

 

2.1.1 DATA PROCESSING 

 

In this section we describe our computational workflow. It starts with a sequence of 

images and ends with a number. This number is the elastic module, whose value is justified 

by the numerical simulation. Our workflow is shown in Figure 9. Each step is associated with 

a file extension that facilitates a standardized format. Also, each step is associated to a small 

program or module. Our modules are: 

 

 PIX: to handle basic digital image processing algorithms 

 MESH: to construct a finite element method mesh 

 FEM: to obtain the displacement vector for each node  
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Figure 9. FEM processing modules and file extensions. Each one of these modules 

work as an independent computer program.   

 

We use a cross-platform external library, SFML, to manipulate standard image 

formats: png, jpg,etc.  OpenMP extensions are also used, to facilitate parallel processing. The 

chosen language is standard C++ and the code is compiled with GCC and Miscrosoft 

compiler.  

 

2.1.2 MODULE PIX 

 

As shown in Figure 9, the first step in this workflow consists in taking a sequence of 

images to construct a mesh. The input images can be interpreted as sequences of 1’s and 0’s, 

or as a sequence grayscale rectangular pixel arrays in which each color interval is associated 

to a different rock material (with its corresponding Lamé constants).  After the grayscale array 

has been established, a mesh structure, suitable for finite element method, is constructed.  

 

To start from a common point, we convert any kind of image sequence to a raw binary 

file, containing gray scale information, size and sample dimension. We use the extensions 

'rw3' and 'rw2' for these file structures.   

 

 

•Input: jpg, bmp, 
png, dat, etc 

•Output: rw3 or 
rw2 

PIX 

•Input: rw3 or rw2 

 

•Output: bmm or 
bum 

MESH 
•Input: bmm 

 

•Output: bmm 

FEM 
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Table 1. File structure for extensions rw3 and rw2 

TYPE UNIT BYTE SIZE LENGTH DATA TYPE 

Header 

Unsigned int 4 1 Dimension 

Unsigned int 4 1 Width (W) 

Unsigned int 4 1 Height (H) 

Unsigned int 4 1 Depth (D) 

Data 

Unsigned char 1 Width   Height   Depth Image color 

 

We show in Table 1 the structure of these raw files. The main data is the image’s color 

information, which is simply a sequence of unsigned char types. It represents a gray tone in 

the integer interval              .  Each row of voxels is stored contiguously, and later, each 

image is stored contiguously. Therefore, the color at the coordinate         of the image is 

located in the file position          of the binary file list, where: 

 

                     

 

Where   is the image width and   the image height.  The module PIX contains 

simple image processing functions and is capable of calculating rock porosity by counting the 

number   of voxels whose color is less or equal to an upper bound     PIX calculates porosity   

    as: 

 

   
 

     
 

 

Where the values  ,   and   define the image resolution (Table 1). PIX can also take 

sub volume samples from the original image, reduce the image size using linear average and 

create study cases based on spherical pores. To produce a smaller version of a 3D image 

whose original size is         PIX only calculates averages. If the resized image size is 

        where       ,       and      , then, the color of the voxel         of the 

smaller image is the average of the voxels located in the box limited by the vertices      

  

 
     

  

 
     

  

 
   and      

  

 
     

  

 
     

  

 
  in the larger image. 
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Table 2. File description for extensions bmm 

TYPE UNIT BYTE SIZE LENGTH DATA TYPE 

Header 

Unsigned int 4 1 Space dimension   (   or   ) 

Unsigned int 4 1 Number of degrees of freedom   

Bool 1 1 A flag that tells if the model is solved 

Unsigned int 4 1 Number of nodes per element   

Unsigned int 4 1 Total number of nodes    

Unsigned int 4 1 Total number of elements    

Unsigned int 4 3 Image resolution                      

Double 8 3 Sample real dimensions 

Node list. Repeat for every node,    times 

Int 4 1 Node index 

Double   S Node position coordinates 

Unsigned int 4 1 Node flags (Boundary conditions) 

Double 8 S Boundary conditions 

Double 8 S Node field conditions 

Double 8 D Node displacement 

Element list. Repeat for every element,    times 

Int 4 1 Element index 

Int 4 T Node indices contained in the element 

Int 4 1 
Coefficient index of the matrix associated to 

the element 

Unsigned int 4 1 Element flags (position in the array) 

Stiffness matrix description (only once) 

Unsigned int 4 1 Number of rows for each matrix   

Unsigned int 4 1 Number of columns for each matrix   

Unsigned int 4 1 Total number of stiffness matrices    

Stiffness matrix list. Repeat for every matrix 

Unsigned int 4 1 Matrix index 

Double 8     Matrix entries 
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2.1.3 MODULE MESH 

 

Once a file with extensions “rw2” or “rw3” is produced, an input mesh for the finite 

element method should be generated. Once again, we describe the mesh with raw binary files, 

using extensions “bmm” and “bum” to distinguish them. We associate the extension “bmm”  

to any kind of mesh or simplicial complex, usually made of tetrahedrons [2]. The extension 

“bum” is associated to a file which takes advantage of the mesh uniformity (if every voxel is 

an element, then all elements are of the same shape and size).  The program “MESH” takes a 

3D or 2D file as described in Table 1 and produces a model, as described  in Table 2. Even 

though there are other standardized formats to store Finite Element Meshes in files, we use 

this simple and straightforward approach adapted to our needs [36].  

 

We note that the structure shown in Table 2 can be used to describe any kind of mesh, 

regular and non-regular. When the mesh consists of a regular structure of elements, the node 

position can be obtained simply from the position of its parent elements. Therefore, the 

position of a node can be characterized by an integer index. This concept is applied in our file 

extension “bum”, in which the sequence of real numbers that characterize the node position is 

replaced by an integer index.  

 

2.1.4 MODULE FEM 

 

The program FEM takes the mesh file with extension “bmm” (or “bum”) and  

produces a file with the same structure, but with the displacement field solved.  The 

information contained in an unsolved “bmm” file is enough to apply the numerical finite 

element method to solve the node displacement and this information can be stored in the same 

file. In other words, FEM takes an unsolved “bmm” file as input and produces a solved 

“bmm” file. This is the most resource and time consuming module in the workflow.  

 

When FEM reads an input “bmm” file, it passes through each one of the elements, 

calculating the inner product of the associated shape functions. These inner products are 

assembled in the large sparse matrix  , shown in Equation (1.3.18). Also, the node 

displacements are enumerated and assembled in a single vector of unknowns   .  Once the 
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system        is mounted, the linear algebra numerical method of the conjugate gradient is 

used to solve the linear system [40]. The method is convergent and applicable because the 

matrix   is symmetrical and diagonally dominant [40,24].  

 

Specifically, the method we chose to solve the linear system is the conjugate residual 

with Jacobi preconditioner [40].  The solved file is constructed with the enumerated nodes 

taking its displacement value from the vector   .  

 

With the node displacement, a new mesh model can be produced where the position of 

the each node   is given by: 

 

  
    

     
  

 

Where    
  is the calculated node displacement. For each degree of freedom  , the 

value of    
  is contained in the displacement vector    or in the boundary conditions   . 

(Equation (1.3.6)). These new positions provide a new model of the rock after the 

compression test (Figure 10). We remark that elementary cubic voxels can be deformed after 

the displacement, and they do not necessarily maintain its cubic shape. 

 

 

Figure 10. A simple rock sample mesh before and after deformation. The second 

mesh is obtained by adding the displacements    
   to each node position. We note 

that the hexahedral elements can lose its initial symmetrical shape.  

 

The symmetric "bum" files are processed by another module which has the same 

functions of FEM but is optimized for symmetry (using the element by element technique, 
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which we describe later).  We call this module BUMFEM and it is equivalent to FEM in all 

its functionality.  

 

2.1.5 MODULE DP  

 

Calculating petrophysical constants is only a matter to take a solved 'bmm" file and 

interpret its results. This is done in an external program called "DP" (which does not appear in 

Figure 9).  This program makes a numerical integration in the upper part of the rock sample, 

calculating the necessary force to establish the displacement. The Young module can be 

obtained by dividing this force between the area of the sample and the deformation rate.  

 

2.2 MEMORY AND NUMERICAL ISSUES 

2.2.1 MATRIX REPRESENTATION 

 

In our C++ implementation, we use several namespaces to limit the scope of the 

different matrix types. These namespaces are "sparse", "full" and "sm" (small). They 

encompass the three kinds of matrices (and vectors) we use in our code: 

 

1. Small matrices and vectors, whose function is to calculate local inner products per 

element, establish node positions and store Jacobian matrices.  

2. Large sparse matrices to iteratively solve the large main system of the model:       .  

3. Large full vectors whose function is to store nodal displacements (vectors    and    of 

the system       ).  

 

We do not use large full matrices in our code. 

 

The small matrix and small vector information is stored in a simple adjacent memory 

array of size  . The value of   is the memory required to store them. We suppose this 

number is never very large. For example the elementary Lamé constants matrix size is     

(    ). As we suppose the memory these kinds of matrices and vectors use is small, then it 

does not require to be shared. Each small matrix and each small vector frees and assigns its 
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own memory, and the copy operator simply copies explicitly one memory zone to another.  

These matrices must overload common operators for matrices like addition, difference, scalar 

product, matrix product, matrix-vector product, determinant, transposition and inversion.  

 

On the other hand, large full vectors store a lot of information. Their size   is very 

large and every entry must be explicitly stored. In our algorithms, copies and redefinitions are 

common for these kinds of vectors [15]. For example let’s consider the following redefinition 

for  vectors       ,       and a scalar  : 

 

         

         
 

(2.2.1) 

  

We use these redefinitions in the conjugate gradient algorithm [40].  A naive 

implementation of this would do the following: first, the vector    is assigned to vector        

executing a copy operator. Then, the result of         (which involves two copies) is 

reassigned to vector   . A total of 4 copies are performed in these simple two steps. If we 

handled these copies the same way as small vectors and matrices, then these simple operations 

would require to pass large amounts  of  data from one memory zone to another, affecting 

performance.  To avoid this, we overload the copy operators for full vectors. When a vector is 

assigned to another then, only its array pointer is copied. This adds the possibility that the 

same array pointer coexist within several vectors and therefore it is necessary to have a 

control about the number of copies in which each pointer is shared. This is done using an 

external host of pointer references.    

 

When a vector is modified and its data pointer is shared, a copy is unavoidable. In this 

case, a new array is created inside the local vector, and all current information copied. Only 

after this, the data modification is executed. To have a strict control over memory copies and 

modifications, full vectors have access operators that handle these situations.  

 

Using these copy operators and defining functions for arithmetic common operations, 

the number of copies in Equation (2.2.1) is reduced to only one.  The operators in Equation 

(2.2.1) work in the following way: 
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1. Copy operator:          . The data pointer contained in    is copied to       . Now the two 

vectors share the same unique data. 

2. Arithmetic operator:          . This is done through a call to a unique function that 

handles operations of type          . This is an access operator which requires scalars 

   and    and a reference to vector   . Before modifying its own data, vector    “notes” 

that its data is being shared with another vector, and therefore proceeds to copy its 

data to a new local pointer. After doing this, the operation is executed on the new data 

pointer.   

 

It is not necessary to check shared data if the vector data is being read. In case of 

Equation (2.2.1), vector     is not affected by this overhead. This is a consequence of the 

shared memory architecture [8].  

 

In our finite element method, only a big sparse matrix object is required. This is the 

limited bandwidth matrix   of the system of Equations (1.3.18). The most important operator 

for this kind of matrix is the product of matrix by vector. It is necessary for the iterations of 

the conjugate gradient method that ultimately solves the system       . To optimize this 

product, the data in this matrix is arranged in a real number memory block of length     

where   is the matrix bandwidth and   is the matrix number of rows.  

 

The column position of these matrix entries is stored in an integer memory block of 

the same size. Each index row is sorted, in order to facilitate its search (in logarithmic 

complexity) during insertion of new terms.  All matrix access operations are based on the 

Binary Search Algorithm [10]. The memory can be divided in   rows, each one containing   

slots to enter an index and a real number. We show these processes in Table 3. 

 

For a bandwidth  , the complexity of reading operators per row is         and the 

insertion is at most     . This is highly efficient because, in our case, the number   is   . A 

typical search will require at most   iterations. The efficiency of these operations is important 

to write data on the matrix, when it is being assembled with the inner product of functions in 

the finite element method.  
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Table 3. Sparse matrix access operators 

Operation Method 

Creation 
The matrix is created assigning 0 to all real entries and -1 to all index entries. This negative 

value indicates that the slot is empty 

Insert a non 

zero value in 

position       

Use binary search to 

find index   at row   

Index found. Replace current value with new value 

Index not found. Use binary 

search  to find first empty slot, an 

index with the value -1, but with a 

preceding index positive.  

Slot found: According to the 

value j, shift current indices to 

preserve order. After this, insert 

value 

Slot not found. Bandwidth full. 

Create a new copy of the matrix 

with larger bandwidth 

Insert zero in 

position       

Use binary search to 

find index   at row   

Index found. Translate back all next indices in the row, filling with -1 

the last positive index 

Index not found. Do nothing 

Return value 

in position (i,j) 

Use binary search to 

find index   at row   

Index found. Return associated value 

Index not found. Return 0.  

 

 

 

2.2.2 PARALLELIZATION 

 

Almost all FEM operations are involved with matrix operations. Therefore, it is 

important, not only to optimize its memory representation but its arithmetic operators as well. 

The multi-core architecture, nowadays common in many computers, allows simple parallel 

application development and OpenMP provides its language extensions and tools. There are 

other technologies that provide more scalability (like MPI) but OpenMP provides more 

control and transparency [8,38].  
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As our simulations will be run, in most cases, in common workstations, we choose 

OpenMP. Another level of parallelism must be considered, exploiting Streaming SIMD 

Extensions, a technology supported in most modern compilers and microprocessors [8].  

 

Therefore, we identify two levels of CPU parallelization: 

 

1. SIMD parallelization: Single instruction multiple data. Based on SSE2 instructions.  

2. MP parallelization: based on OpenMP, it exploits multi-core processors 

 

There are several steps in the Finite Element Method implementation that can exploit 

both kinds of parallelization, others steps can handle only one and others cannot use any of 

them.  

 

One of the first limitations of the SIMD parallelization is that it can only be applied 

with maximum efficiency in aligned memory blocks. This means that the associated pointer in 

which an arithmetic operator is applied must be a muiltiple of               . This can 

be easily done by defining a template ´scalar´ which is a single or double precision floating 

point number with the compiler specific directive that aligns its declaration.  

 

The SIMD SSE2 operators effectively calculate a sequence of 2 or 4 floating point 

operations in only one function call. All small matrix operations (described in Section 2.2.1) 

can make use of these extensions. This reduces the number of flops in every matrix operation 

by a factor of 4 (single precision) or 2 (double precision). MP parallelization is not applicable 

on small matrices because the overhead of creating and using the associated threads does not 

compensate parallelization in small dimensions. SIMD parallelization optimizes: 

 

1. Small matrix and vector addition and subtraction; 

2. Matrix by matrix  products. 

 

Matrix transposition, determinant, solution of linear systems (using Cramer´s rule) and 

matrix by vector product are not SIMD parallelized because they do not access adjacent 

memory.  
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Matrix operators in large vectors can be parallelized in both levels. Addition, 

subtraction and sparse matrix by vector operators are distributed across the machine 

processors and the basic internal operations are parallelized because its memory is adjacent. 

For example, if sized   vectors    and      are added and the result assigned to   , the 

pseudocode is shown in Figure 11.  

 

 

Figure 11. Parallelization of vector addition. This kind of parallelization is easy to 

define in MP and SIMD level.  

MP parallelization is applied across   threads, then each thread only has to execute 
 

  
  

flops in single precision, using SIMD parallelization.   

 

Reduction operators such as dot product are parallelized by assigning an auxiliary 

variable to each thread. The thread  executes only one section of the dot product additions. 

Each variable is updated independently and at the end, these auxiliary variables are reduced to 

only one.  If   is the number of threads, we show the dot product operation        in Figure 12. 

 

 

Figure 12. Parallelization of vector dot product. This is a common reduction 

operator which is parallelized with an auxiliary variable per thread.  

MP parellelization.  

Distribute across CPU cores 

for i =0 to N; i+=4; 

 

SIMD parallelization. Execute in only one 
flop.  

s(i....i+4)=a(i....i+4)+b(i....i+4) 
 

 

This code is executed in each particular 
thread t 

for i = t*N/T:(t+1)*N/T 

There is one variable r(:) for each working 
thread 

r(t)=r(t)+a(i)*b(i) 

Every individual result of each thread is 
finally added: 

for t=1:T 

r = r + r(t) 
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All other basic vector operations can be described as variations of these two basic 

operations. Step 2 in Figure 12 is reduced even more by using SIMD parallelization. The 

products       are calculated in groups of four (for single precision numbers), but the 

additions must be executed one by one.  

 

The heaviest parallel operation in the finite element method is matrix by vector 

product. This is necessary to execute the conjugate gradient method to solve the system 

      . As we discussed earlier, the matrix  , whose size is    , is stored as an array   of 

size     where   is the bandwidth of the sparse matrix. The function that associates each 

element of this array to its corresponding entry in   is denoted by   . This means that if   is 

the memory position of row  , then         denotes the  real column in the row   of the matrix 

  in which the entry is located. This is because in general, memory position and real position 

do not match.  

 

The MP parallelization distributes the job of multiplying scalars across the rows of 

matrix  , and the SIMD parallelization decreases, in performance, the size of the bandwidth 

 . This is shown in Figure 13. The group                is not adjacent in memory, but 

this can be solved with an additional local copy.  

 

The process of mounting the matrix   is associated with the calculation of inner 

product functions in Equations (1.3.13). These inner products are used to update and modify 

the entries of this matrix. The natural mechanism is to parallelize the process in groups of 

elements. Each element produces a modification to  , and this is a source of memory conflict.  

 

To avoid this conflict, the main inner product process (numerical integration, matrix 

products, etc) are processed inside each thread, but the update is done inside a critical zone 

[8]. To reduce the performance impact of this, we take into account the optimizations shown 

in Table 3. This is a MP parallelization.  

 

The complexity in memory access for numerical integration and inner products 

evaluation makes it difficult to optimize with SIMD parallelization and therefore it is not 

applied. Nevertheless, it is used internally by the small matrices and their basic operators.      
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Figure 13. Parallel sparse matrix – vector product. The MP parallelization is 

applied in matrix rows and the SIMD parallelization is used to reduce the number 

of flops associated to the bandwidth.  

 

2.2.3 SINGLE AND DOUBLE PRECISION 

 

 The code of all programs shown in Figure 9 can be compiled to use single precision 

floating point arithmetic or double precision floating point arithmetic. The first thing to take 

into account is the limited precision of both schemas which only produce rational numbers 

[15]. The basis on both representations is 2, which means that a number   is expanded as: 

 

     
 

 
   

 

  
     

 

  
    

(2.2.2) 

 

 

Usually      and     for single precision representation. Another bit is used to 

distinguish positive and negative numbers, giving    bits (4 bytes).  If a difference between 

two numbers is smaller than             
 

 
 
  

 then it will not be adequately represented 

by Equation (2.2.2) [26]. Taking this into account, we consider that two real numbers in 

single precision are equal if their absolute value difference is smaller than           . 

This means that single precision will provide roughly 6 correct digits.  

 

For double precision, we have          . In this case            , so we 

take            . We get 15 correct digits.  

 

MP parallelization is used for 
matrix rows 

for i=1:N 

 
SIMD parallelization is used to 

"reduce" badnwdidth 

for j = 1:B; j+=4 

Execute product in groups of 
four 

r(i)=A(i,j...j+4)*v(lf(i,j..j+4)) 
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The choice between double and single precision is not obvious. In our examples, we 

are considering very large vectors and finite element mesh models. Double precision 

representation requires 4 more bytes, which means an important memory issue, not for a 

simple 3D vector representation, but for thousands of entries in a large full vector. In Section 

2.3 we illustrate the precision differences with an example. In general it is less than 1%, 

which is not representative in most practical cases (Chapter 3).  

 

The code is parallelized in a better way using single precision number representation. 

The SIMD commands will execute four operations simultaneously, which will produce a 

slightly faster program.  Despite the conjugate gradient method to solve the system shown in 

Equation  (1.3.18) uses MP and SIMD parallelization, this is the slowest and most 

computationally intensive part of our program. This is due to the number of iterations that 

must be applied to get the solution vector and the large size of the matrices involved.  

 

2.2.4 CONJUGATE GRADIENT METHOD 

 

To solve the system of Equation (1.3.18) we use a variation of the conjugate gradient 

method, called the Conjugate Residual. According to [13] this method is preferred for 

physical data, when it is not justifiable to seek a solution beyond its accuracy. The solution 

should match the error of the input data and the design of the upper limit  . The algorithm is 

shown in Table 4.  

Table 4. Conjugate residual method 
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We try to approximate the absolute difference        where    is the solution of the 

system. If we suppose all data of matrix   has a tolerance  , then we can say that: 

 

                               

 

We guarantee that the difference        in displacement is inside the tolerance   if 

                .  

 

This is our convergence criterion, because this implies that: 

 

      

   
   

  

The adequate choice of   depends on the mechanical parameter to be determined. This 

is not always easy. We show in Figure 14 a typical curve of the normal force on a rock sample, 

changing with the number of iterations. This curve was produced with the sample S1, we use 

in the Chapter 3.  

 

 

Figure 14. A typical normal force vs iterations. A very small percentage of the 

matrix rows is usually an enough number of iterations. The force is displayed in 

Newtons.  
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We should try to reach the curve when it becomes almost constant. As the 

petrophysical parameters can be diverse, we use an empirical rule in which the iteration 

process can be stopped after a certain number of iterations, and then check the variation of the 

estimated parameters. As shown in Figure 14, the stopping criterion should be surpassed, but 

never anticipated.  

 

2.3 CODE VALIDATION 

 

The easiest way to validate the code is to take a non-porous model of a rock. It is 

completely uniform and all elements have the same Lame constants. In this section we give an 

example about how to input data in the finite element method. We take the following 

constants: 

 

                

      
 

(2.3.1) 

  

An average of silica common ceramics [33]. These two constants are enough to define the 

other Lamé constants [37]. We first multiply   by a constant that nullifies its units. As   

contains length and force, we define: 

         

       

We define: 

       
         

 

To define the matrix   in Equation (1.3.3) we must obtain   and   Lamé constants: 
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We apply these Lamé constants to a regular element array of size       (Figure 15). 

After all the workflow shown in Section 2.1 we recover the value: 

 

          

 

To recover the original units we should multiply this result by   
    

  .  This is solved 

exactly after 63 iterations in the conjugate gradient method. The relative error of this 

procedure is less than       . The sources of this error are diverse: rounding procedure for 

the finite element definition, single precision representation and numerical integration.  

 

If double precision is used to solve this same problem, the precision errors is almost 

imperceptible (less than 0.00034%) but the choice between single and double precision should 

not be based only on this criteria. Memory issues could be more important, especially for 

large examples (Section 2.2.3). Besides, in this example, reaching the solution with 15 correct 

decimals, took 97 iterations in the conjugate gradient method (an increment of 35%).  

 

Figure 15. An       array of uniform non porous elements.  
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2.4 THE STIFFNESS MATRIX PROBLEM: ELEMENT BY ELEMENT 

 

One of the most important issues in our current finite element method is the stiffness 

matrix  . Despite its bandwidth is relatively small, as we discussed in Section 1.3.4, its size 

can be enough to easily consume all computer memory.   

 

To avoid this, we can suppress the representation of the matrix, by making the matrix-

vector product     in the mesh model, element by element, without representing the stiffness 

matrix.  

 

This can be a formidable task, from a computer point of view, but in our mesh 

representation we can take advantage of two key characteristics: 

 

 All elements in the mesh are of the same size.  

 The matrix of inner function products by element is the same, and only differs by the 

phase material 

 

This means that the inner products per element must be calculated only once. The 

procedure of solving the system        in the Element by Element technique [24], consists in 

multiplying the vector    in each iteration in each one of the elements. Instead of storing the 

inner products in the global stiffness matrix, they are applied directly to the vector. This 

happens for every matrix product    . As we said, this would be a formidable computational 

task if the elements were not the same size and the inner product matrices were not calculated 

previously.  

 

To parallelize this product, each thread takes control of a subset of elements. Each one 

of these elements changes the vector   . This means that each thread has to update the same 

vector, and this can produce collisions. Using a critical zone for each vector update is a recipe 

for bad performance, considering the large number of elements that are being used (according 

to our tests, the critical zone costs about 20% to 130% more time per iteration, depending on 

the number of processors). We prefer to define one vector          for each thread.   
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At the end, the resultant vector    is given by: 

 

           

 

   

 

 

For vectors of very large size and a big number of possible threads, this can produce 

memory issues (because a new vector must be constructed for each thread). We prefer, then, 

to exploit less computer processors and maintain this architecture. This is not a waste, because 

in many modern computers, the number of processors is duplicated by hyper threading.  

 

Our parallel element by element finite element method is significantly slower than the 

direct method, because of the large number of elements. On the other hand it requires 

significantly less amount of memory and it becomes the only alternative for very large rock 

models (more than             elements).  
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CHAPTER 3. NUMERICAL EXPERIMENTS 

3.1 MECHANICAL PROPERTIES AS FUNCTION OF POROSITY 

3.1.1 EXACT RELATIONS 

 

Our porous rock samples are modeled as two or more phases of material types bonded 

together along with empty pore space. Pores can also be modeled as another material type 

whose mechanical properties are zero. A naïve computational implementation can model their 

geometry in this way, but to avoid unnecessary calculations, we prefer not to include its 

associated voxels in the adjacency FEM mesh structure. The pore is modeled as real empty 

space. As we described in Section 1.2, each color in the microtomographic image sequence 

can be associated to a different phase. The number of gray tones the module PIX can handle is 

at most 255, which is fair enough in most cases where only two phases are considered [22].  

We also can assume that each phase is isotropic and uniform, specifying these properties in 

the elementary matrix    at Equation (1.3.11). Yet, our FEM module does not restrict the 

choice of this matrix.  

 

In general, real rock microtomographic images do not have restrictions on the shapes 

of the material or pore inclusions, which makes it impossible to get a general analytical 

solution for the internal stress field as a function of porosity; except for simple cases and 

geometries which could never be produced in a natural process of rock formation 

[22,19,32,25]. Despite this limitation, analytical boundaries or approximations to Young 

module as a function of porosity have been produced along many years of research, providing 

elastic module approximations with a relative difference of less than 20% respect to their real 

or FEM simulated counterparts, for a certain range of porosities and arbitrary pore shape [9].  

 

The most precise upper and lower limit for the Young modulus in a material with 

several phases are the Voigt and Reuss limits [30].  If the rock sample contains   phases with 

Young modules            and porosities         , then the maximum and minimum 

Young modules           satisfy the following  equations: 
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The composed Young module can easily reach these upper and lower limits, using the 

configuration shown in Figure 16. They represent two kinds of material immersed inside the 

rock sample (with different mechanical constants). In both cases, the blue phase occupies     

of the total volume of the area of the image. The same pattern is repeated along Z-axis, 

providing the volume shape.  The left configuration gives the Young modulus value      and 

the right one gives     . These configurations are not realistic and are never presented in 

natural formed  rock samples. 

 

 

Figure 16. Configuration of material types. These patterns are repeated along the Z-

axis, producing a voxelized image in which 1/8 of its volume is blue and the rest is 

yellow material. 

 

 Let us suppose we have only two phases      , with     . This can be used as a 

simplified model for porous media. In this case        and          . This allows us to 

conclude the following:  

 

1. The porous rock samples (with one of the phases equal to 0) produce a large 

imprecision in Voigt and Reuss limits.  

 

2. The rock sample Young module is smaller than the phase Young module. We should 

expect that this tendency is accentuated according to porosity (given by        ).  

 

We validate our code using analytical estimates provided along many years of 

research, in which the Elastic Coefficients are expressed as functions of porosity [22].  
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3.1.2 DILUTE SPHERICAL INCLUSIONS 

 

One of the few three dimension exact analytical solutions for simple pore geometries 

is given by Hashin [18,14].  The rock material is supposed to be biphasic, with Lamé 

constants       for the solid phase and       for a set of spherical inclusions. 

 

 With these constants, we can calculate the following Lamé constants [37]: 

 

   
           

     

      
 

 
  

 

 

For      . The result of Hashin [18] establishes that the bulk and shear modulus of the 

sample are given by the following linear relations: 

 

                

                
 

 

(3.1.1) 

 

Where: 

    
       

       

    
     

     

 

And   is the porosity. Also: 

 

   
  

 
 
       

      
 

 

The Young modulus of the sample is obtained using these constants: 
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According to this equation, the Young module is not linear with porosity but the bulk 

and shear modules are. The physical interpretation Hashin assumes for this result are the 

following: 

 

1. The inclusions are spherical 

2. The inclusions are distributed uniformly inside the matrix (a perfectly isotropic pore 

distribution).  

3. The strain tensor in any inclusion is not affected by the strain of the others.  Their 

behavior is like if they were inside an infinite matrix body.   

 

The last two points are equivalent to say that the pore inclusions are diluted inside the 

matrix. To model these strong conditions, we take a completely uniform distribution of pores 

inside a matrix with Lame constants            . The pore constants are:    
  

 
    

  

 
.  These magnitudes are multiplied by        , but this factor suppressed. This is a way to 

nullify dimensions in the Finite Element method. We give more details on this procedure in 

the next sections. We take an  array of 27 pores and the distance between them is the same in 

all directions. This is a small, unrealistic perfect dilute rock model. The WorkFlow shown in 

Figure 9 is capable of providing these simple cases, by approximating the spherical pore by a 

voxelized image (Figure 17). The definition of pores, their position and the size of the image 

are specified in a text file whose structure is shown in Table 5. The program PIX generates an 

"rw3" three dimension image based on these specifications. 

 

Figure 17. Spherical uniform array. The spherical inclusions model a perfectly 

isotropic dilute rock sample. The mesh resolution is             
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Table 5. Description of sphere array 

Entry Description 

            
The values of     and   are integer numbers that 

describe the size, in pixels, of the 3D image 

List of pores 

             

The values       and    describe the center of 

the pore, and the value  , its radius. The list of 

pores does not have limits and they can intersect 

 

By uniformly changing the radius of the spherical pores, the porosity of the sample 

can be changed and with these data we approximate the linear relation of Equation (3.1.1). In 

the first few cases the error is less than 1.5%, except when the porosity makes the inclusions 

so large that they form connected shapes (Figure 18). In this case, the linear relation is not 

satisfied and the relative mismatch goes from 5% to 24%.   

 

Figure 18. The simulated data is created with the Lamé constants         
         and                 with inclusions                 and 

                . All results in the Young modulus axis must be multiplied 

by         . The porosity oscillates from     to    .  When the spherical 

inclusions become very large (for larger porosities), they connect each other. 

 

3.1.3 APPROXIMATED RELATIONS 

 

There are also boundaries for the Elastic module based on empirical approaches. 

Sometimes, they contradict the analytical approach and are not in direct accordance to our 
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FEM model [9]. The mechanical properties do not depend only on porosity, but on pore 

shape, location and interconnection. As we said before, there is no theoretical model that can 

handle all these details. On the other hand, analytical models, provide approximations that 

only have a range of validity [14].  

 

Some analytical approaches use completely idealized models whose pore geometry is 

physically impossible in real cases, but give upper and lower boundaries, or approximations 

to numerically modeled or real cases [19].  

 

An example of this, the Ramakrishnan approximation [32] makes the following 

assumptions: 

 

1. The pores are spherical 

2. The pores are inside spherical containers of rock solid material. 

3. The ratio between pore and material rock container is the same, even though the pores 

and their containers can have different sizes.  

4. The holes between rock containers are filled with material.  

 

The program PIX can produce an idealized model with these characteristics. The 

program tries to place these pores by choosing randomly a center and a container sphere 

radius. If this space is free (its voxels do not correspond to any other sphere) then the sphere is 

placed, along with its corresponding pore (according to the ratio pore-material). If the sphere 

cannot be placed, the algorithm tries to find another random choice of position and radios. 

Depending on the number of pores specified, some of them can never be placed, so the 

number of tries must be limited. In our case, this limit is a linear function of the sample size. 

We show in Table 6 the parameters of PIX to configure spherical pore placement.  

 

The work of Ramarkishnan validates its formula with the Finite Element Method, but 

with a different mesh, adapted to this kind of pore geometry. We use a voxelized 

approximation (Figure 19). To change the porosity we manipulate the pore radios interval, the 

number of pores and their sphere inclusions ratio.  This produces a set of highly randomic 

rock samples. When only a few larges pores are placed in the rock sample, this sample is not 

taken into account in our experimental plot, because these few pores will not produce a 

certain degree of uniformity in the pore distribution (isotropy hypothesis). 
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Table 6. Parameters to configure pore placement 

Parameter Format Interpretation 

-rndcheese Numeric (integer) Total number of pores to place 

-size            
Size of the sample in pixels and enclosed between 

parentheses 

-hollow Numeric (float) 
Specifies the ratio of the pore and the container 

material. 

-out String Output filename (configuration) 

-rad             Range of pore radios (between parenthesis) 

 

  To run these tests we take the following Lamé constants:          
 

  
 and 

      . These could be associated to certain kind of ceramics [33]. To nullify dimensions 

we multiply our physical magnitudes by adequate constants. We choose: 

 

                          

 

And set: 

       
     

       

So, we obtain: 

 

   
  

           
            

   
 

      
             

 

With these constants we construct the matrix of Equation (1.3.3). We suppose the 

resolution is    , for an image of size         . This means that the total size is 

         . The length is set by multiplying by   . We get a resolution of     for the 

length. The rock sample size is             units.  
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Figure 19. Theoretical pore placement and simulated pore placement in the rock 

sample 

 

Figure 20. Comparison between Ramakrishnan approximation and our FEM 

simulation. The Hashin exact model applied to a porous media is also plotted for 

comparison purposes. The relative error between the simulated result and 

Ramakrishnan is plotted with its tendency line, called Linear (Error).  

  

 The results of this experiment are shown in Figure 20. For porosities of less than 45%, 

the relative difference between Ramakrishnan model and our simulation is less than 20% 

which is considered a good approximation [9]. The plotted Ramakrishnan function is: 

 

  

 
 

      

    
 

 



62 

 

Where, according to this analysis, the value of   is contained in the interval         . 

We got the best approximation with            .  For comparison purposes, we show in 

this Figure 20, the linear model that Hashin proposed and we used in Section 3.1.2, setting the 

elastic constants for the pores to zero.  This model offers a very good approximation for low 

porosities, with a relative mismatch of less than 10%. After approximately 25% porosity, it 

does not capture the rock sample behavior (even with this idealized model), producing larger 

relative errors.  

 

One of the most used approximations is given by Hashin-Shtrikman [19,9,30]. For 

biphasic materials the upper and lower bounds for the bulk and Poisson modulus are given by: 

 

       
  

                
 
    

   

       
  

                             
 
     

    

 

Where the index   denotes the Lame constants of the matrix, and the index  , denotes 

the Lame constants of the voids. The values of    and    denote the respective volume 

proportion. By interchanging the indices 1 and 2, we get the upper and lower limits. To 

calculate the Young modulus we use the following relation: 

 

  
   

    
 

 

In which the values of   and   are chosen to maximize or minimize the value of  .  

This procedure can be plotted and compared with random porous rock samples, generated 

with the same method we illustrated in Figure 19. The result is shown in Figure 21. We also 

show the linear model of Section 3.1.2 for comparison purposes. This linear model is 

adequate only for low porosities, and the random samples Young modules are always 

contained within the Hashin-Shtrikman limits. This figure is obtained with the following 

mechanical properties: 
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And:  

   
  

 
          

  

 
 

 

We use the same normalizer constants         and         .  This satisfies 

Hashin hypothesis according to which the mechanical constants do not differ by a proportion 

larger than 10.  

 

The Reuss and Hashin lower limit become zero when one set of Lame constants is 

zero. This means that these limits are very wide for porous media.  

 

Hashin-Shtrikman limits are not adequate for porous rocks, in which pores are 

modeled as zero constant elements. The lower limit becomes zero, giving a very wide error 

interval.  

 

 

Figure 21. The Hashin-Strikhman upper and lower limits are displayed along with 

our simulated results. The Voigt-Reuss inferior bound is displayed. All data are 

normalized with the upper Voigt-Reuss limit.  Hashin linear approximation is also 

displayed.  
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3.2 SANDSTONE ELASTIC MODULUS 

3.2.1 CASE STUDY 

 

 In this section and forward we will consider a real example of a sandstone. We will 

suppose it is biphasic with the following mechanical properties 

 

             

       

 We nullify the dimensions by setting: 

 

       

         

 Getting: 

       
     

        

 

 The Lamé constants that are useful for the local stiffness matrix are given by: 

 

  
    

             
   

  
  

       
   

 

 The rock sample size is         per voxel, and a resolution of             . 

The total size of the rock sample is:                           .  

 

We nullify the dimensions of these lengths by setting: 

 

     
           

 

 With a resolution of        units per voxel length. Our case will be the Blunt image 

S1.dat. The unconfined compression test for this image, whose porosity is          for a 

displacement of     units gives the result, for the elastic modulus of the rock sample: 
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               units. That is                     This takes about   hours of 

CPU time. The finite element mesh contains more than 23 millions of elements with almost 

70 millions degrees of freedom. This is a large number of unknown variables for the 

conjugate gradient to solve.  

 

Let us consider a different approach. We divide the rock sample in 8 sections of the 

same volume. The size of each section is             voxels. We show in Table 7 the 

porosity and Young modulus in each one of these rock sample sections. These results were 

taken by applying an unconfined compression test in each subsample with a     units 

displacement. 

 

Table 7. Young modulus for sample's different spatial sections 

Front Section Back section 

Porosity: 0.137 

Young Modulus: 3.363 

Porosity: 0.161 

Young Modulus: 3.047 

Porosity: 0.150 

Young Modulus: 3.125 

Porosity: 0.154 

Young Modulus: 3.017 

Porosity: 0.129 

Young Modulus: 3.512 

Porosity: 0.134 

Young Modulus: 3.183 

Porosity: 0.130 

Young Modulus: 3.457 

Porosity: 0.135 

Young Modulus: 3.335 

 

Each rock section has similar pore characteristics respect the entire sample, giving a 

similar Young module. The relative difference in the elasticity modulus of each area is always 

less than    . In these kinds of tests, this is considered a good approximation [9]. We can 

say that this sample has a high degree of homogeneity, and subsamples of size      capture it 

adequately. Solving this resolutions takes about 30 minutes of CPU time.  Considering these 

results, we take a subsample of the image, centered at the voxel position               and 

size            . The subsample volume is                      cubic units. We 

show a sequence of four images in Figure 22 . Once again, an upper displacement of     

units is applied.  
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Figure 22. A sequence of sandstone S1 images. These are the first four images of the 

sequence. 

 

 This rock sample produces a linear system with 21 886 790 unknown variables. The 

porosity of the subsample is 0.1400671 and the Young modulus we obtain, after 45 minutes 

of CPU time, is            units.  

 

 We show in Figure 23, the convergence curve of the integrated force according to the 

number of iterations. The stop criterion is a relative difference of 0.05% between these values.  

  

 The 3 dimension problem scales very quickly. A relatively small system         

    contains about       unknown variables, but a             problem contains 

almost an additional order of magnitude,        unknown variables. This issue makes 

necessary the use of the "element by element" approach we show in Section 2.4, in most 

workstations.  
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Figure 23. Integrated force (in N) as function of the number of iterations.  

 

3.2.2 MESH SIMPLIFICATION 

We can try to build a three dimension mesh with fewer elements, capturing the actual 

pore geometry. This can be done with some variations of Voronoi algorithms, placing nodes 

in key positions [1]. Another approach is to use simple digital image processing algorithms 

[16], to change input image resolution, and maintaining the same policy we have used so far 

(each voxel is an element).  

 

We take the input image of the last example. The large size of the pores (Figure 22) may 

allow the definition of a larger voxel size, producing less precision in pore representation. We 

use a 3D image of size            , obtained by a reduction interpolation method. This 

means that the rock sample size will be the same, but in this case, each voxel will have a 

length of        units. To calculate the voxel color       in the smaller image, we use the 

following procedure: 

 

1. Calculate the color average    of the box enclosed by voxels               in the 

original image. 

2. Define       as pore if       and as rock material if      . The value of    is 

chosen in such a way that the new image porosity be approximately the same of the 

original image.  
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In this case, we choose        for a porosity of         . The relative difference 

between the larger image porosity and its reduction is   . We show in Figure 24 some of 

these new smaller images. With this new size, the memory space of four images in the larger 

image is now occupied by 8 images. This is a significant reduction. The new system size is of 

2 848 698 unknown variables and it is solved in 3 minutes of CPU time.  

 

 

 

Figure 24. The first 8 images of sandstone S1, with less resolution. The image size is 

           , which means that the memory space of 4 images can now be 

occupied by 8 images.  

 

With this new model, the Young modulus we get is             
    

  .  Despite the 

huge simplification we just described, the relative difference between the first and second 

resolution is only     .  

 

We proceed to make another simplification, reducing the original mesh to       

   voxels. In this case we get a Young modulus             
    

  . The relative 

difference between  the original sample resolution and this is less than 6 . We can say that 

the image resolution has lost much precision , but even with this enormous simplification, the 

difference is not very dramatic.    

 

As a final test, we resize the image to         . We get             
    

   

with a relative difference of    . We can conclude that this reduction technique shows a 

relationship between pore geometry and Young modulus, without considering porosity. Each 

reduction sample has the same approximate porosity of the original rock sample, but the 

reduction produces unavoidable pore geometry changes (which are more important if the pore 

contains only a few voxels).   
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The resizing factor must not always be an integer. We can resize the original image to 

any size using simple linear interpolation [16].  We show in Figure 25 the convergence 

process to a the fixed value according to the image resolution. As shown in this figure, in all 

cases the porosity remains practically the same. The image resolution is different in each 

point, as well as the precision with which the pore geometry is captured by this resolution.  

 

 

Figure 25. Estimated Young modulus error with respect the original size and in 

different resolutions. The almost constant porosity is displayed.  

 

From this plot we can make the following conclusions: 

 

1. Even using large fractional resizing factors (for example      
 

 
 for the size 

           ), the linear interpolation of fraction resizing seems to induce an 

important error, comparable to the      
 

 
  factor reduction of the sample       

  .  

2. The element by voxel  philosophy can be dramatically simplified, without producing 

dramatic changes in mechanical properties estimation.  

3. Porosity is still the most important factor in mechanical parameters estimation. Even 

with large simplifications (for example 
 

  
 for a size         ) the relative 

difference with respect the largest resolution is less than    .  
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We can use computer graphic techniques (variations of Delaunay Triangulations in 

three dimensions [1]) to create a simplified mesh and capture the essential pore shape. This 

will produce a computationally feasible problem and is a path for new research.  

 

3.2.3 CHANGING ROCK POROSITY 

 

Classical digital image processing algorithms such as erosion and dilation can be used 

to change rock sample porosity without significantly alter pore geometry. In its most 

simplistic form, these algorithms can be applied in each image of the rock sample [16]. We 

show in Figure 27 consecutive erosions and two consecutive dilations of the first image of the 

rock sample.  This kind of sample manipulation allows us to get a curve for the Young 

modulus and not only one approximation.  As opposed to the last case, here we are changing 

rock porosity and the pore geometry remains essentially the same. We apply the same 

mechanical displacement we applied in Section 3.2.1, and the image resolution remains the 

same:             in all cases. Two dilations and two erosions are applied.   

 

 We show in Figure 26 the simulated results, compared with the Ramakrishnan 

estimation (using      ). In all cases the relative difference is below 6 . It is important to 

remark that Ramakrishnan approximation depends only on porosity and not on pore 

geometry.  

 

Figure 26. Porosity change in Sandstone case study. The simulated results are 

compared with Ramakrishnan estimate and Hashin upper limit for porous media. 

The displayed relative difference is with respect to Ramakrishnan model. It is 

almost constant.  
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Figure 27. Sandstone dilation and erosion. The kernel in all cases is a simple square. 

Two successive dilations and two successive erosions are applied.  

 

 We conclude that the most determinant aspect of the Young module is porosity. This 

gives us the general path to a smaller, more computationally feasible mesh for mechanical 

simulations. If the rock sample pores are big enough, the mesh can be simplified dramatically. 

This simplification should not alter the porosity.  The pore geometry can be approximated 

with less precision, using simple averages. Determining an adequate mesh has a direct 

incidence on the technique applicability, as a large number of unnecessary elements consume 

a lot of CPU time.  
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3.2.4 ANISOTROPY 

 

 We cannot say that any rock sample is completely anisotropic, but we can try to 

measure the level of uniformity in pore distribution, using mechanical tests. We propose to 

apply a variation of the unconfined compression at different rotation angles of the rock 

sample. As the sample is cubic, this is physically impossible. Therefore, we cut a cylindrical 

piece of the cubic sample rock. This can be easily rotated across the transversal axis (axis Z) 

at several angles. The force is applied along the upper part cylinder perimeter, applying a 

specified diameter contraction. This is similar to Brazilian test, in which the applied linear 

model is unable to detect rock fracture [27].  We show in Figure 28 the three dimension shape 

of the rock sample.  

 

Figure 28. Cylindrical shape rock sample 

 

The rotation is achieved by applying classical digital image processing techniques in 

each image of the sample. We apply the shear rotation method to rotate the image sample at 

angles of 45 degrees multiples, suppressing all information outside the cylinder [41]. The 

rotation can be applied to the mesh model, as well, but applying image rotation it is easier to 

establish border conditions, using the natural error induced by the voxel discretization.  
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Figure 29. Successive image rotations in 45 degrees multiples 

 

 We show in Figure 29 the different rotation angles applied to the first image of the 

rock sample. The sample size is            . Despite the geometrical conditions 

change, the force necessary to contract the cylinder diameter in 12 units does not change in 

more than    . The chaotic behavior of the force for the different angles is shown in Figure 

30. 

 

 

Figure 30. Force applied to the cylindrical sample in function of angles 

 

 The complementary value (approximately    ) can be considered a measure of the 

sample anisotropy  degree. The exact influence of this factor in the rock mechanical properties 

is an open problem and a future research path.  
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CONCLUSIONS 

This works represents a starting point in implementing computer software tools for 

digital petrophysics. All developed tools are classical, and they do not represent a novelty in 

the finite element method or in the simulation techniques. Nevertheless, our development 

applies these classical methods in the particular context of  the microtomographic images and 

elastic modulus estimation.  

 

One of our first choices is to define one finite element per voxel (or pixel) and four 

adjacent nodes in each one of them. This seems to be a common choice in most 

implementations, because of its simplicity and precision: the finite element method mesh that 

is created with this mechanism has the same precision of the image acquiring device.  But as 

we have shown in Chapter 2, this choice has a drawback in terms of performance. The other 

alternative we described (mounting an explicit matrix with a sparse structure) requires a lot of 

memory to represent the sparse matrix (even using adequate data structures). But it is 

considerably faster.  This second alternative is useful for small meshes. But, as we have 

shown in Chapter 3, the element per voxel policy can be considerably simplified. This defines 

a research path: a mechanism to create a mesh that captures pore geometry and rock porosity, 

simple enough to be computationally feasible, solvable in a few seconds.  This would not be a 

symmetric mesh, and the element by element technique is not applicable, or could be 

extremely inefficient. In this case, the large stiffness matrix must be assembled. Another 

consideration here is that the microtomographic image should capture pore geometry with a 

good resolution. A pore characterized by only a few voxels is not suitable to be simplified nor 

should be considered a good approximation of the physical pore.  

 

Our proposed workflow begins with a sequence of microtomographic images and ends 

with a mechanical Lame constant: the Young modulus. These images are not necessarily 

static and can be submitted to different processes. In CHAPTER 3, we have shown two of 

them: image reduction and porosity manipulation.  This kind of image manipulations allows 

us to isolate two key concepts in digital rock physics: porosity (the ratio between pore and 

solid material) and pore shape. The separation of these two properties is only possible in a 

simulated computer environment. It can't be done physically.  
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We believe that finding a method to create a simplified finite element mesh that 

captures adequately pore geometry while preserving its porosity is a way to understand the 

influence of pore geometry and borders in the mechanical parameters estimation. An open 

problem is to determine if the voxelized discretization is the best mesh representation for the 

finite element method or if it can be modified by purely geometrical techniques in order to get 

better approximations of pore contours. These kinds of comparisons should be performed 

with real laboratory data.  

 

There are also some technological issues. We have created an implementation of the 

FEM method, applicable to Digital Rock Physics in CHAPTER 2. This implementation leads 

to a deeper understanding of the different steps in digital rock physics and the different 

choices we can make. One of them is not to use periodic boundary conditions. This is 

assumed in almost all implementations, but we are not using them. They can't be reproduced 

physically in mechanical laboratory experiments. This forces us to use large rock samples, 

that capture the general rock pore distribution. A future research path is to distinguish this 

difference and determine precisely the need of periodic boundary conditions in certain cases.  

 

Another technological choice is the way all numerical methods were parallelized. This 

was done at CPU level, using SIMD and MP parallelization. We did not note any significant 

gain in simply passing some  of these processes (vector addition, product, matrix operations, 

etc) to GPU. Also, the large size of our models limits the GPU applicability. But the most 

efficient alternative should not be to use one technique or another, but both, complementing 

each other according to their efficiency in each specific step. This should improve our 

implementation performance.  

 

The methodology we have illustrated in CHAPTER 3 uses digital image processing 

techniques to obtain more information from the rock sample images. With simple erosion and 

dilation techniques, we can get a curve of the Young modulus estimate as a function of 

porosity. This allows the comparison of  several Elastic Modulus values for different 

porosities, with analytical estimates. Determining the estimation curve parameters that better 

adjust to simulated data, can lead to a better understanding of rock elastic properties. Another 

Digital Image Processing technique is the image rotation, manipulating the geometry of how 

the uniaxial test is applied. This allows a measure of the level of pore isotropy in the rock 
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sample. This level of isotropy depends on the test being applied. As far as we know, these 

kinds of techniques have not been used in Digital Rock Physics.  

 

The future research paths we have described are natural consequences of our current 

state. But there is no doubt that this topic has a lot of interesting and useful trends that can be 

applied in different contexts.  
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