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"Tighter integration between scientific workflows and file 

management is necessary to enable the systematic maintenance of data 

provenance." 

(KOOP et al., 2010a)  



 

 

RESUMO 

Experimentos científicos representados como workflows científicos podem criar, 

alterar ou acessar dados não explicitamente referenciados na especificação do workflow, 

levando a fluxos de dados implícitos. A falta de conhecimento a respeito de fluxos de dados 

implícitos dificulta o entendimento e a reprodutibilidade de experimentos. Nesse trabalho, 

apresentamos o ProvMonitor, uma abordagem que identifica a criação, alteração e acessos aos 

dados mesmo em fluxos de dados implícitos. Além disso, ProvMonitor relaciona as 

informações capturadas com a atividade do workflow que as produziu, permitindo aos 

cientistas comparar os dados produzidos durante uma execução ou entre diferentes execuções 

do mesmo workflow. Essa comparação permite identificar efeitos colaterais na evolução dos 

dados provocados por  fluxos de dados implícitos. O ProvMonitor foi avaliado e foi possível 

identificar sua capacidade de responder a consultas de proveniência em cenários que 

demandam conhecimentos específicos a respeito da proveniência de fluxos de dados 

implícitos.  

 

Palavras-chave: workflows científicos, sistemas gerenciadores de workflows científicos, 

proveniência, fluxo implícito de dados, proveniência retrospectiva, proveniência 

implícita, gerência de configuração, sistemas de controle de versão. 

  



 

 

ABSTRACT 

Scientific experiments represented as scientific workflows may create, change, or 

access data products not explicitly referenced in the workflow specification, leading to 

implicit data flows. The lack of knowledge about implicit data flows makes it hard to 

understand and reproduce the experiments. In this work, we present ProvMonitor, an 

approach that identifies the creation, changing, or access of data products even within implicit 

data flows. Additionally, ProvMonitor links this information with the workflow activity that 

generated it, allowing scientists to compare data products within and throughout trials of the 

same workflow, identifying side effects on data evolution caused by implicit data flows. We 

evaluated ProvMonitor and observed that it is able to answer queries for scenarios that 

demand specific knowledge related to implicit provenance.  

 

Keywords: scientific workflow, scientific workflow management systems, provenance, 

implicit data flow, retrospective provenance, implicit provenance, configuration 

management, version control systems. 
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CHAPTER 1 – INTRODUCTION 

1.1 CONTEXT 

Scientific experiments based on simulations usually consume and produce large 

amounts of data (HEY; TOLLE, 2009). In these experiments, scientists may use different 

programs to perform specific activities. Data produced by one activity may be the input to 

other activities, thus creating data flows. This chain of activities that composes a scientific 

experiment is usually modeled as a scientific workflow (DEELMAN et al., 2009; MATTOSO 

et al., 2010). Complex engines called Scientific Workflow Management Systems (SWfMS) 

(DEELMAN et al., 2009) manage scientific workflows. 

In this context, data provenance helps scientists to answer queries related to 

experiment data transformation (e.g., “How were data generated or changed?”). Just as on art 

artifacts provenance, data provenance is the historical information about data ownership and 

transformations. It is the metadata associated to the workflow specification and the workflow 

executions, such as activity configurations, parameter values, as well as consumed and 

produced data products. Provenance data helps scientists to confirm or refute their scientific 

hypothesis associated to their workflow executions (FREIRE et al., 2008).  

Another important use of provenance is reproducibility, which is one of the key 

aspects related to scientific experiments modeled as scientific workflows (DA CRUZ et al., 

2011). An experiment is “scientific” only if it can be reproducible. To reproduce a scientific 

experiment, scientists analyze provenance information. This reinforces the usefulness of 

provenance information on scientific experiments. 

There are two forms of provenance in the context of scientific experiments (FREIRE 

et al., 2008): prospective and retrospective provenance. Prospective provenance refers to the 

workflow specification. It identifies the activities (i.e., steps or tasks) to be executed to 

generate the expected results. On the other hand, retrospective provenance refers to the 

workflow execution (i.e., trial). It captures executed activities and may include information 

about the environment used for data transformation. It works as an experiment execution log 

enriched by semantic information. 

There are three main strategies for provenance gathering that could be used to classify 

provenance-gathering mechanisms (FREIRE et al., 2008). The first (workflow-based) is to 

inspect the workflow during each trial to register produced and consumed data. The second 

(operation system-based) is to inspect the operating system to capture all system calls during a 
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trial (not directly related with the workflow notation). Finally, the third (activity-based) is 

through instrumentation of each workflow activity to correlate produced data with the activity 

responsible for the data production. Workflow-based mechanisms are the built-in 

infrastructure for provenance gathering in SWfMS. In this case, the SWfMS becomes 

responsible for gathering provenance information. By knowing the workflow specification 

and controlling its execution, these approaches are capable of capturing both prospective and 

retrospective provenance. However, they are SWfMS dependent. Then, it is difficult to 

integrate provenance collected from different workflows (in different SWfMS) that compose 

the same experiment. Moreover, these approaches can only capture provenance related to data 

that were explicitly specified in the workflow, thus missing provenance of implicit data flows. 

Operating system-based (OS) mechanisms rely only on the OS environment’s ability 

to capture data and dependencies among processes and data. These approaches are SWfMS 

independent, do not require any workflow adaptation, and are able to capture provenance even 

when implicit data flows are in place. However, they only capture retrospective provenance. 

Gathering provenance trough OS leads to fine-grained information about all system calls and 

files touched during the trial. The large amount of retrospective data can make these 

approaches prohibitive when scientists want to understand the experiment trial in terms of the 

activities specified in the workflow (i.e., prospective provenance). 

Finally, activity-based mechanisms adapt workflow activities, making them able to 

gather their own provenance. These approaches are capable of gathering both prospective and 

retrospective provenance and can be SWfMS independent. However, some activities are not 

easily adaptable, so they are wrapped as black boxes. In such situation, the content of an 

activity and its input and output data may not be explicitly specified, also leading to implicit 

data flows misses during provenance gathering. Additionally, this mechanism suffers from 

activity’s instrumentation difficulties and overhead. It is possible to minimize the 

instrumentation overhead with the adoption of mechanisms capable of automatic 

instrumentations of the workflow activities, such as ProvManager (MARINHO et al., 2011b). 

1.2 BACKGROUND: ACTIVITY INSTRUMENTATION WITH PROVMANAGER 

ProvManager (MARINHO et al., 2011b) is an approach that operates by adapting 

workflow activities, allowing the adapted activities to gather provenance by themselves 

during a workflow trial. It minimizes the overhead of activities instrumentation via an 

automatic adaptation process. Additionally, by gathering provenance with an activity-based 

strategy, ProvManager can gather provenance even on workflows that use different SWfMS at 
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the same time, thus promoting the provenance gathering from workflow level to the 

experiment level (workflow compositions).  

To be able to automatically instrument workflows activities, ProvManager relies on 

instrumentation plug-ins. Each plug-in is able to handle with a different SWfMS. Then, 

through new plug-ins, it is possible to extend ProvManager’s SWfMS support. 

During the workflow instrumentation, ProvManager collects prospective provenance 

and automatically wraps the workflow activities into composite activities. These composite 

activities consist on the original activity and some provenance-gathering activities (PGA). 

The PGA are responsible to gather retrospective provenance during the workflow trial. By 

doing this, the workflow maintains its original specification appearance (i.e., data 

dependencies amongst activities and number of parameters), although with provenance-

gathering capabilities. 

It works as follows: the scientist uploads the workflow specification to the 

ProvManager. The prospective provenance is gathered while workflow activities are 

automatically wrapped with PGA. Then, scientists download the instrumented workflow 

specification, which is used to execute the experiment. During the trial, the wrapped activities 

gather the retrospective provenance through the PGA and send it to the ProvManager central 

provenance repository. 

Although ProvManager minimizes the overhead of activity instrumentation (through 

automatic instrumentation), it works only with is specified in the workflow specification. 

Thus, it is not capable of gathering provenance of implicit data flows. Actually, even the 

content of files referenced in the workflow specification is missed. 

1.3 MOTIVATION: IMPLICIT PROVENANCE 

Despite the best efforts of scientists to specify all the experiment details (i.e., 

activities, data files, data dependencies, etc.) into the workflow, sometimes the workflow 

specification is not complete in terms of consumed and produced data. For example, the 

workflow specification may reference a directory, but may not specify which data files in the 

directory are used. In such situations, some activities can read and write data that are not 

explicitly mentioned in the workflow specification, thus leading to implicit data flows within 

the specified workflow (MARINHO et al., 2011a). Provenance related to this implicit data 

flow, which is ignored by all SWfMS (ALTINTAS; BARNEY; JAEGER-FRANK, 2006; 

FREIRE et al., 2008; KOOP et al., 2010b; MARINHO et al., 2011a, 2011b), is called implicit 

provenance (MARINHO et al., 2011a). Implicit provenance can be useful to help scientists to 
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identify and understand the influence of these implicit data flows.  Since they occur implicitly 

and can influence experiment results, their effects commonly remain hidden from scientists, 

leading to misleading analysis. OS-based provenance gathering approaches (DAVISON, 

2012; FREW; METZGER; SLAUGHTER, 2008; MUNISWAMY-REDDY et al., 2006) 

manage to capture part of this provenance. However, they do not relate prospective and 

retrospective provenance. 

This is even worse when the same data product (e.g., file) is overwritten by several 

activities during a trial, hiding all traces of temporary contents consumed by some activities. 

Indeed, file overwrites is another problem that can lead to misleading analysis if not 

adequately treated even on explicit data flows (we show a real example of a workflow that is 

impacted by this problem in Chapter 3). This problem becomes harder in workflows that run 

in parallel, where parameter sweeps (WALKER; GUIANG, 2007) are performed and several 

workflow trials take place concurrently. On parameter sweeps, the same workflow is executed 

repeatedly with minor changes in its parameters, and provenance helps to explain the obtained 

results. Thus, this scenario imposes an additional requirement: versioning of intermediate data 

products that belong to explicit and implicit data flows. 

Let us illustrate the implicit data flow scenario using two real workflow examples 

from different research groups. The first one is a VisTrails workflow that was downloaded 

from Crowdlabs (id 101)
1
 and aims at visualizing salinity from Columbia River. In one 

activity, the scientists specified a Pythonsource module (which allows scientists to write their 

own Python code) that receives a data file path as input, generates a different data file, and 

sends its path as output. One problem here is that other data files can be produced or modified 

within the Pythonsource. In such cases, VisTrails is unaware of this information. Another 

example is a VisTrails bioinformatics workflow provided by Cruz et al. (2008). In this 

workflow there is one activity named DatFrag that divides the input data file into small 

fragments that are processed in parallel. However, only the output directory is informed, thus 

VisTrails is not aware of the data products generated by this activity. Although Pythonsource 

modules in VisTrails improve flexibility in the workflow specification, they can influence in 

the provenance management since they may hide implicit provenance. Note that this is a 

problem, since their use is quite common: 79 of the 201 (39.3%) workflows published in 

Crowdlabs use Pythonsource modules. 

                                                 
1
 http://www.crowdlabs.org/vistrails/workflows/details/101/ 
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To illustrate some “incomplete” specifications that may affect provenance 

management, Figure 1 presents a synthetic workflow, intentionally simple for didactic 

reasons. The UnzipFile activity sends data to the ApplyFilter activity through a shared file 

(Img.bmp). The workflow specification, however, does not register this information (this is 

hard-coded into the activities). Activities ApplyFilter and CutInterestingArea also exchange 

information through the same file. Again, the workflow specification does not register this 

information. Instead, it only specifies that activity ApplyFilter sends a pair of parameter 

values (i.e., filtervalues = {“circle”, 2}) to activity CutInteresingArea. In this case, another 

problem arises: the consecutive changes over the same file may overwrite temporary data 

generated by the previously executed activities. Finally, activities CutInteresingArea and 

IdentifyPhenomenon illustrate the ideal scenario for provenance management, since the file 

they use is explicitly defined in the workflow specification (“c:\wksp\ImgCut.bmp”). In this 

last case, some problems may still arise. Again, if scientists execute the same workflow many 

times and they do not change the data file name (or path) for each execution, all the data 

generated in previous executions will be lost or altered. 

 

Figure 1: Implicit provenance example 

Furthermore, Figure 1 illustrates that two data flows can take place in parallel when 

the workflow specification does not explicitly declare all manipulated data. One executes as 

specified in the SWfMS (i.e., in the workflow domain) and presents data that are explicitly 

declared by the workflow and collected by the SWfMS. The other takes place out of the 

control of the SWfMS (i.e., in the OS domain). It is an implicit data flow, as it is not declared 

in the workflow specification, but it still influences the results of the workflow. Since it 

occurs implicitly, its effects remain hidden from scientists. For example, when data files are 

overwritten during a workflow trial, all traces of temporary contents consumed by some 

activities are lost. Implicit provenance can be useful to help scientists identifying or 
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understanding this possible hidden influence of implicit data flows on workflow results. In 

addition, implicit provenance serves as an evidence of implicit dependencies amongst 

workflow activities. Identifying such dependencies can provide hints for experiment analysis.  

In this work, we claim that it is fundamental to identify the relationship amongst 

workflow activities and the data products they implicitly changed because it is a key element 

to solve the implicit data flow problems. Thus, an implicit provenance gathering mechanism 

must rely on both workflow and OS domains. Actually, a tighter integration between 

scientific workflows and file management (OS domain) is necessary to enable the systematic 

maintenance of data provenance (KOOP et al., 2010b). 

1.4 GOALS 

Given the aforementioned motivation, the aim of this work is to present an approach 

for gathering implicit provenance, relating it to the workflow activity that produced it, and 

being capable of gathering and versioning intermediate data files. The goal is to identify 

implicit data flows on files and gather provenance related to theses implicit data flows, 

allowing the scientist to identify the influence of such data flows on each activity execution 

and at the experiment results.  

Thus, this work proposes a novel “hybrid” approach, which operates on both workflow 

and OS domains, for managing implicit provenance in scientific workflows through 

Configuration Management (CM). CM is a discipline used for controlling software evolution 

(DART, 1991). It is capable of identifying and registering changes on configuration items 

(i.e., artifacts under CM), relating these changes with the issue that motivated them. By seeing 

experiment data as configuration items, it is possible to identify some similarities between 

provenance management and CM. Indeed, provenance is about identifying changes on 

experiment data (configuration items, in the CM terminology) that were motivated or 

generated by experiment activities (issues, in the CM terminology). Looking through this 

perspective, CM becomes a promising approach to provenance management. 

The proposed approach, named ProvMonitor, goes in this direction, using the 

workflow specification as a source of issues to be tracked and employing a version control 

system (VCS) (ROCHKIND, 1975) and file system monitoring techniques to detect accesses 

(creations, changes, readings, and deletions) on files, relating them to the workflow activities 

that triggered these accesses. The use of a VCS allows ProvMonitor to file versioning and to 

gather the implicit provenance of the versions of files. Thus, ProvMonitor is able to 

distinguish the effects of each workflow activity over the data product versions. Thus, 
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ProvMonitor keeps a complete history of the data product changes associated to workflow 

activities executions. 

1.5 RESEARCH QUESTIONS 

The main objective of the proposed approach and its evaluation is to answer the 

following research question (RQ) and its secondary questions (SQ): 

RQ: Does the implicit provenance gathering improve the perception about the impact 

of implicit data flow over activities executions and experiment results? 

SQ: Does the implicit provenance gathering contribute to a more precise analysis 

about the experiment execution? 

SQ: Does gathering of intermediate file content improve implicit provenance analysis? 

SQ: Is it possible to make existing SWfMS aware of implicit provenance? 

SQ: Does the overhead imposed by the implicit provenance gathering preclude its 

adoption? 

1.6 CONTRIBUTIONS 

The main contribution of this work is the gathering of implicit provenance with the 

intermediate files versions. Additionally, doing it through a CM perspective aware of the 

SWfMS behavior during the workflow trial opens some new interesting opportunities. It is a 

step forward compared to using CM tools only as storage of data or using it only to support 

the workflow development steps (such as versioning the workflow specification). 

Therefore, this work presents a novel approach for managing implicit provenance in 

scientific workflows through CM. We discuss several ideas on how to use VCS to capture 

implicit provenance. Moreover, we present a thorough evaluation of ProvMonitor using a real 

large-scale bioinformatics workflow named SciPhy (OCAÑA et al., 2011), which was 

modeled in SciCumulus (OLIVEIRA et al., 2010) and executed in a public cloud. Results 

show that ProvMonitor can answer queries adapted from the Provenance Challenges, which 

demand specific knowledge related to implicit provenance. 

Note that ProvMonitor is not a SWfMS by itself; it is a module for managing implicit 

provenance that can be coupled to existing SWfMS. ProvMonitor enriches the SWfMS’s 

provenance repositories by adding information about implicit data flows. In fact, we have 

already coupled ProvMonitor with VisTrails (CALLAHAN et al., 2006) and SciCumulus. 

Therefore, other workflow execution engines can also benefit from the proposed approach.  
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1.7 ORGANIZATION 

This work is organized in five chapters. Chapter 2 presents the proposed approach 

named ProvMonitor. This chapter describes the main concepts behind the approach. It starts 

by describing the basic ideas of the approach and outlines an explanation about the 

instrumentation process, since ProvMonitor relies on such instrumentation concepts. After 

that, the general behavior of ProvMonitor gathering mechanism and analysis resources is 

presented, followed by a deeper discussion about the concepts that ProvMonitor relies on. 

Finally, the provenance model used and the architecture of the prototype are presented. 

Chapter 3 presents a case study using a real workflow of the Bioinformatics domain. It 

describes the workflow, outlines the SWfMS used (SciCumulus), and describes the analysis 

performed to evaluate the approach. The evaluation aims at answering the research questions, 

evaluating the implicit provenance gathering capabilities of the proposed approach, the 

benefits of implicit provenance gathering and the overhead on implicit provenance gathering 

imposed in the workflow trial. 

Chapter 4 outlines the related work. It presents existing approaches for provenance 

gathering that gather implicit provenance on some level. It also describes approaches that use 

VCS someway as support for provenance management (storage systems or to workflow 

specification versioning). Finally, it presents a comparison of the features available on each of 

the identified related work, regarding to implicit provenance gathering and VCS usage on 

provenance management, with the features of ProvMonitor. 

Finally, Chapter 5 concludes this work. It describes the conclusions reached by the 

evaluation and discusses the contributions of this work. It also describes the limitations 

identified during the evaluation. Finally, it presents a set of opportunities for future work. 
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CHAPTER 2 – PROVMONITOR APPROACH 

2.1 INTRODUCTION 

The perception of implicit data flows relies on the knowledge of the explicit data flow. 

In fact, implicit provenance can be defined as the retrospective implicit data flow provenance 

related to its prospective provenance. Thus, an implicit provenance gathering mechanism 

must rely on both workflow and OS domains. According to Koop et al. (2010b), a tighter 

integration between scientific workflows and file management (OS domain) is necessary to 

enable the systematic maintenance of data provenance. Provenance maintenance entails 

avoiding provenance loss in multiple consecutive trials that overwrite files and preserving 

data generated during the workflow trial. 

File management (or at least data management) is a target of different areas such as 

databases and CM. In the CM field, VCS are responsible for managing the different versions 

of configuration items (artifacts under management, e.g., file), which is done by managing a 

workspace for the configuration items. According to Koop et al. (2010b) VCS capture the 

changes, but not why these changes occurred. Indeed, CM uses another system for storing 

such information: issue-tracking systems. Usually, each issue (the representation of a change 

specification, e.g., a task) is associated with the configuration item versions produced during 

the issue fix. This integrated CM infrastructure can lead to a complete perception of when, 

how, where, what, why, and by who a configuration item version was created (DANTAS; 

MURTA; WERNER, 2007). In the context of workflow provenance data, the workflow 

specification defines the issues that motivate changing artifacts. Then, relating provenance 

data with the workflow activity that generated it is equivalent to relating a VCS check-in 

(VCS command that produces a commit, versioning the artifact) with its respective issue in 

the issue-tracking system.  

It is interesting that, in practice, the workflow execution is somehow analogous to 

software development, if looked through the provenance gathering perspective, since in both 

cases there is a set of issues that motivates changes on data. On both cases, it is of interest to 

keep the trace of changes. This reinforces the benefits of relating prospective and 

retrospective provenance, since that relating prospective and retrospective provenance allows 

a complete perception of when, how, where, what, why, and by who (workflow step/activity) 

a change occurred during a workflow trial.  
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In software development, the challenge of CM is to guarantee that the software 

evolves in a controlled way. Thus, it is necessary to provide isolation for the developer when 

working on an issue to avoid interference with other developer (e.g., changing the same file at 

the same time). However, after finishing the work on the issue, the changes made in parallel 

must be combined, allowing the inclusion of multiple issues in the next release.  

The development process relies on VCS repositories that store the source code of the 

software being developed to share the same code base among multiple developers. However, 

the developers do not change files directly on the repository. Instead, in order to obtain 

isolation during the work on an issue, the developers copy the code base to their own 

workspace. The workspace is a directory in the developer computer. The workspace 

preparation involves retrieving files from an existing repository (clone command). After 

finishing the work on an issue, the developer must check-in the changed files (commit 

command), which gathers all changes in the workspace and generate a version id to identify 

the new versions of files. By operating in workspaces, different developers may work upon 

the same versions of files at the same time, without working over the same instance of the 

same files, avoiding conflicts that could lead to inconsistency. Finally, the developer may 

need to share the changes with other developers. This is done by pushing back the new 

versions of files to the central repository (push command).  

Different developers may change the same version of the same files concurrently. In 

such situation, pushing back the changes to the repository forks the history of the files 

changes in different branches. It occurs because two different versions of files are created 

from a common ancestor instead of one being a direct evolution of the other. For some 

reasons, the history of changes may be explicitly branched (branch command). For example, 

if a subset of developers want to work on a set of coupled issues sharing code only between 

them. Thus, there are different types of branches. The implicit branches (created by pushes 

with concurrent changes over the same files versions) and the named branches (created 

explicitly through the branch command). The named branch is a branch explicitly created 

with a name as an annotation, facilitating references to the branch. Different branches may be 

combined to restore a single evolution line to the software development history (merge 

command). Finally, it is possible to mark a set of versions of files. It could be done using tags. 

A tag works as an annotation that identifies a specific configuration of files versions in the 

repository.  

Some work (DAVISON, 2012; GUO; SELTZER, 2012) already used VCS to support 

the workflow development by versioning workflow specification and inputs/outputs of each 
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version, or even for storing files. However, as this work focuses on the implicit provenance 

gathering (i.e., implicit data flows provenance) the focus is on the trial (execution) instead of 

other moments during a workflow life cycle (e.g., composition and analysis) (MATTOSO et 

al., 2010). 

Therefore, there are four main steps for provenance management through CM: identify 

the issues to be tracked (prospective provenance register), generate an experiment execution 

identifier (i.e., trial id), prepare the workspace for the execution, and gather the retrospective 

provenance, relating it to corresponding prospective provenance. First, prospective 

provenance must be gathered. Once identified, workflow activities can be treated as issues 

that motivated the changes gathered as retrospective provenance. Then, a trial identifier must 

be generated to be possible to identify the tuple {trial id, activity id} that produced the 

retrospective data during the trial. After that, the workspace must be prepared to allow 

retrospective provenance gathering on files. The workspace preparation involves creating a 

new workspace or retrieving files from an existing one (such as from a central repository 

through a clone command), and generating an annotation to identify the trial (through a 

branch command). Finally, at the end of each activity the new version of every changed 

artifact must be registered (through a commit command) and related to the tuple {trial id, 

activity id}. The use of the pointed commands (VCS commands) by the approach is better 

explained on Sections 2.3 and 2.5. 

This vision of provenance management through CM motivated us to conceive a novel 

approach called ProvMonitor. The ProvMonitor approach was thought to be SWfMS-

independent, and so it works by gathering provenance via an activity-based mechanism. 

However, to be capable of gathering implicit provenance, the gathering mechanism must also 

rely on the OS environment. Thus, ProvMonitor is a hybrid mechanism for provenance 

gathering, based on both activity and OS based mechanisms, capable of relating prospective 

and retrospective provenance. 

It is important to highlight that an activity-based provenance gathering mechanism 

may impose work overhead to the scientist, caused by the activity instrumentation process. To 

minimize such effect, the ProvMonitor implementation was thought to be compatible with 

ProvManager (MARINHO et al., 2011b), an activity-based provenance gathering mechanism 

that works through automatic workflow instrumentation. This way, each activity becomes 

responsible for gathering its own provenance and the automatic instrumentation reduces the 

overhead of activities adaptation imposed to the scientist.  
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In order to explain the provenance management with ProvMonitor it is possible to split 

provenance management description in three different moments: workflow instrumentation, 

provenance gathering, and provenance analysis. First, to execute ProvMonitor during the 

workflow trial the workflow must be instrumented with provenance activities that call 

ProvMonitor. Then, during the trial, the instrumented activities call to ProvMonitor allows 

ProvMonitor to gather retrospective provenance and relate to the “caller activity”. Finally, it is 

possible to query the gathered provenance to analyses the experiment execution. 

The remaining of this Chapter presents and explains the ideas of ProvMonitor with 

more details presenting an overview of the approach. To do so, it provides an explanation 

about workflow instrumentation on ProvMonitor. After that, the Chapter presents a discussion 

about provenance gathering and provenance analysis with ProvMonitor. Then, the Chapter 

follows by a deeper discussion about the concepts behind ProvMonitor (isolation strategies). 

Finally, the provenance model and the prototype architecture and implementation are 

presented.   

2.2 WORKFLOW INSTRUMENTATION 

As ProvMonitor is SWfMS-independent, it relies on instrumented workflow activities 

with specific provenance gathering mechanisms. To do so, the instrumentation step 

instruments the workflow injecting two “provenance activities” around the original activity, 

one before and another after the original activity. These “provenance activities” retrieve the 

files required by the activity, creating the workspace and committing the generated/modified 

files, respectively. 

The idea of ProvManager integration is that during prospective provenance gathering, 

performed by ProvManager, the plug-in responsible for the instrumentation adapts the 

workflow with ProvMonitor’s CM commands embedded in the PGA. This allows 

ProvMonitor to work during the workflow trial, gathering the retrospective provenance and 

associating it with the previously collected prospective provenance. 

It is important to highlight that ProvManager alone is not capable of gathering implicit 

provenance. Actually, even the content of files referenced in the workflow specification is 

missed. ProvMonitor may be coupled to ProvManager as an extension of the ProvManager 

gathering mechanism that fixes such limitations. While fixing ProvManager limitations, 

ProvMonitor also benefits from the automatic adaptation process of ProvManager. Thus, our 

approach introduces implicit provenance aware PGA in ProvManager. 
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Figure 2 illustrates the instrumentation process for capturing implicit provenance in 

the theoretical workflow used as example in Chapter 1. Figure 2(A) shows the original 

workflow implemented in VisTrails. Figure 2(B) shows the instrumented workflow of Figure 

2(A). It maintains the original appearance, except for two new activities: PGA0 and PGA1. 

PGA0 is responsible for preparing the ProvMonitor infrastructure to gather provenance. 

PGA1 is responsible for wrapping up the provenance data and pushing it back to a central 

repository. Finally, Figure 2(C) shows the details of the adapted activity ApplyFilter. The 

original activity together with three PGA composes the new (adapted) activity. PGA2 is 

responsible for preparing the workspace for the activity execution (this can vary depending on 

the used strategy - see Section 2.5). PGA3 is responsible for identifying and gathering 

changes and accesses to the workspace at the end of the activity execution. Finally, depending 

on which SWfMS or provenance mechanism is coupled with ProvMonitor, other PGA not 

specific for ProvMonitor may be employed to gather provenance data not related to file 

changes and accesses. For example, if coupled with ProvManager, PGA4 may be employed to 

gather activity parameters.  

 

Figure 2: Original (A) and instrumented (B) workflow, and instrumented activity (C) 
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2.3 PROVENANCE GATHERING 

ProvMonitor operates at runtime. Therefore, it assumes the prospective provenance 

has been already gathered, and the instrumented activities already points to an identifier of the 

instance of the respective activity. The gathering of prospective provenance occurs during the 

instrumentation process and can be done manually or automatically. The automatic capture 

and instrumentation may be done by ProvManager, other provenance mechanism or even by a 

SWfMS coupled with ProvMonitor. Whatever the process (manual or automatic) used for 

instrumentation and prospective provenance gathering, the only requirement is to provide an 

identifier for each instance of each activity inside the workflow. This is important to allow 

ProvMonitor to link the retrospective provenance with the prospective provenance already 

stored. 

To operate on the OS domains, ProvMonitor relies on the file system, using two 

different resources. The first is files metadata. ProvMonitor verifies metadata to identify files 

access during the workflow trial. The second is a VCS. The VCS manages the workspace 

where the workflow executes, gathering all changes in files in the workspace during the trial. 

By managing the entire workspace, ProvMonitor is capable of gathering changes even when 

these changes are not explicit in the workflow specification, thus being able to capture 

implicit provenance. More details about the workspace manipulation are given on Section 2.5. 

Gathering provenance at the OS domain may lead to a huge amount of provenance 

data. Additionally, the provenance data may include provenance not directly related to de 

workflow trial. Even when related to the trial, by relying only on the OS environment it is not 

possible, or at least not straightforward, to identify which workflow activity produced the 

effect gathered by OS domain provenance mechanism. Then, to be able to relate provenance 

gathered at the OS domain with the workflow activity that produced the effect observed in the 

OS domain, the provenance mechanism must also rely on the workflow domain, knowing the 

workflow activities being executed. 

With this understanding, the ProvMonitor gathering mechanism works through 

activities instrumentation (detailed on Section 2.2). When an instrumented activity executes, it 

triggers the ProvMonitor OS mechanisms to gather provenance in the workspace. Doing so, 

ProvMonitor operates at the OS domains, but “surrounded” by workflows activities. Because 

it is triggered by an instrumented workflow activity, before and after the original activity 

execution, ProvMonitor is able to associate the provenance gathered in the workspace (OS 

domain) with the activity (workflow domain) that produced the changes in the workspace (the 
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activity that triggered the OS provenance mechanism). Operating at the OS domain 

surrounded by the workflows activities (workflow domain) has two benefits. The first one is 

the capability of associating prospective (workflow activity) and retrospective provenance 

(workspace changes). The second is to restrict the amount of provenance gathered at the OS 

domain to only provenance related to the workflow trial. 

The gathering mechanism works by monitoring the experiment workspace, which is a 

directory in the computer where the workflow executes its activities. If necessary, one can use 

chroot command to set the workspace as the root directory, preventing accesses to other files 

in the computer. ProvMonitor uses VCS for managing the experiment workspace, capturing 

and storing file changes, including implicit provenance. All file changes or accesses are 

associated with the prospective provenance in the provenance database. To do so, file version 

ids (generated by the VCS) related to the version of each data file are associated with the 

activity that generated them. This allows for queries that relate both data and metadata. For 

example, one could ask which files were changed by a specific activity, or which activities 

accessed the files produced by other activities. File changes are gathered through VCS by 

comparing the state of a workspace on different moments in time. File accesses are identified 

by the comparison of access timestamps before and after the activities executions. 

 

Figure 3: ProvMonitor provenance gathering overview 

Figure 3 presents an overview of ProvMonitor gathering mechanism execution process 

that follows the steps described at Figure 4 during the execution of the sample workflow 

illustrated at Figure 1. As illustrated, at the beginning of the instrumented workflow trial (Step 

1 – clone at Figure 3 and Start ProvMonitor Infra at Figure 4), ProvMonitor generates a trial 
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ID, prepares the workspace by cloning the necessary input files from a central repository 

(VCS repository at Figure 3) and generates a named branch for the current trial. Then, at the 

end of each activity execution (Workflow Activity Execution at Figure 4), ProvMonitor 

identifies the accessed files (Identify Accessed Files at Figure 4) and gathers all changes in the 

workspace. Then, ProvMonitor associates, in the provenance database, the accessed and 

changed files with the activity that triggered ProvMonitor (Step 2 - commit at Figure 3 and 

Gather changes into workspace at Figure 4). At the end, all changes in data files are pushed 

back to the central repository (VCS repository), making it available for further analysis (Step 3 

– push at Figure 3 and Push back to the Repository at Figure 4). By managing the workspace, 

every change in the configuration items is caught by ProvMonitor, versioning every changed 

file after an activity execution, even if it is not explicitly defined in the workflow 

specification. It is important to highlight that ProvMonitor does all workspace manipulation 

automatically and transparently from the user. Therefore, scientists access provenance and the 

different versions of files content only at the repository, where all data of all trials are 

centralized. 

 

Figure 4: ProvMonitor gathering process 

2.4 PROVENANCE ANALYSIS 

A sample of an expected result of a workflow trial is shown at Figure 5. The workflow 

is shown at the top of the image. Below, the parallel lines connected to file names represent 

the history line of each file. The white and black dots represent access and changes to the 

files, respectively. It is important to note that every time a file is changed (black dot) a new 

version of it is created. For example, looking at the history line of file Img.bmp at trial 1 (lines 

above the dashed line), it is possible to identify that this file was changed by the activity 

UnizipFile, creating the first version of this file (V1trial1). Then, activity ApplyFilter makes 

another change, creating the second version of the file (V2trial1). Finally, activity 

CutInterestingArea reads the file, so ProvMonitor does not create a new version of it. As 
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previously discussed, this workflow has implicit data flows that could lead scientists to a 

misleading analysis. However, at the end of each activity execution, ProvMonitor catches all 

changes inside the workspace and identifies each file accessed during the activity execution. 

 

Figure 5: Activities executions changes through trials   

Besides supporting coarse grain analysis, ProvMonitor also supports fine grain 

analysis considering the file contents. Therefore, ProvMonitor open opportunities for intra-

trial and inter-trial analysis. The first one compares changes produced by two different 

activities at the same trial. The second compares changes produced by the same activity but in 

different trials. As we adopt VCS underneath ProvMonitor, it is possible to compute an on 

demand diff over any file version. For example, we can check exactly how an activity 

changed a specific file (i.e., which lines were added and removed – intra-trial analysis). This 

opens opportunity to use syntactic diff (CONRADI; WESTFECHTEL, 1998) with specialized 

diff algorithms (COBENA; S. ABITEBOUL; MARIAN, 2002; HUNT; MCILROY, 1976; 

OHST; WELLE; KELTER, 2003; SILVA JUNIOR et al., 2012) that are able to deal with 

different file types (XML, models, images, etc.). Moreover, we can contrast two trials and 

check how each file differs in these trials (inter-trial analysis). For instance, specialized diff 

algorithms could be used to compare V1trial 1 and V1trial n of ImgCut.bmp file. Both versions 

were produced by the CutInterestingArea activity, but in different trials. Consequently, they 

were stored in different branches. This kind of analysis is useful to comprehend the effects of 

parameter sweeping on intermediate data. 



31 

 

2.5 ISOLATION STRATEGIES 

The key perception behind ProvMonitor is the need for isolation in scientific 

workflows. We deal with three different levels of isolation inspired by CM: workflow, 

activity, and trial. At the workflow level, we allow the user to elect (during the 

instrumentation process) the experiment workspace. The workspace stores all files that are 

changed or accessed by the workflow, isolated from other files. ProvMonitor is able to 

register snapshots of such workspace in an efficient way through a VCS commit command, 

which computes the difference amongst the past and the current version of files in the 

workspace and stores this content difference in the repository. The sequence of snapshots 

constitutes retrospective provenance at file system level.  

At the activity level, we isolate an activity from the remaining activities in the 

workflow trial. This isolation enables the identification of files produced by each activity. To 

do so, ProvMonitor adds a VCS commit command after the execution of each activity. This 

delimits a transaction per activity and registers all files changed or accessed within the 

transaction. ProvMonitor also can create a new isolated workspace for each activity 

execution. This new workspace is created using VCS clone command, which efficiently 

retrieves the workspace content. After the activity execution, the workspaces are shared 

through the VCS push command. Therefore, ProvMonitor allows activities to execute 

simultaneously, without one interfering with another.  

At the execution level, we isolate different trials of the same workflow since there are 

several experiments that require multiple executions of the same workflow with different 

parameters values (e.g., parameter sweep). ProvMonitor uses the VCS branch command to 

isolate one trial from the others. This way, each trial forks the repository history, creating a 

branch that evolves in a completely independent way of the remaining branches. Each branch 

has a name, thus allowing a precise identification of which trial produced which files. When 

necessary, branches can be combined back with VCS merge command. Branching can be 

used not only to isolate a trial from others, but also to isolate the history of concurrent 

activities in the same trial. Combining these histories (i.e., merging the branches back) allows 

restoring the history line for the subsequent activity. 

Table 1 summarizes the VCS resources used to achieve each isolation level. For 

workflow isolation, workspaces are used. For activity isolation, commit command, 

workspaces and branches are used. Finally, for trial isolation, ProvMonitor also uses 

branches. 
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Table 1: Isolation level versus VCS resource 

Isolation level VCS resource used 

Workflow Workspace 

Activity 
Check-in (Commit) / 

Workspace / Branches 

Execution (trial) Branches 

The remaining of this section presents a deeper discussion about different strategies 

for using ProvMonitor. We discuss three different strategies used to provide isolation in 

ProvMonitor: workspace per workflow with a branch per trial, workspace per activity with a 

branch per trial, and workspace per activity with a branch per activity. These strategies tailor 

ProvMonitor to work with the idiosyncrasies of each SWfMS, and provide different effects in 

terms of provenance gathering and analysis. The strategies are presented from the simplest to 

the more complex one, regarding the complexity of VCS resources used.  

2.5.1 WORKSPACE PER WORKFLOW WITH A BRANCH PER TRIAL 

The first strategy creates a workspace for the entire workflow. After each activity 

execution, a commit is triggered at the workspace, identifying and gathering all file changes. 

This strategy is effective for a linear workflow, where all activities operate in sequence over 

the same workspace. Figure 6 shows the repository history after two successive trials. As it 

can be seen, branches are formed at the repository (blue and pink dots denote different 

branches). This occurs because each trial forks the history, using the same files versions as 

input (“canonicalBranch”), and has its own transformation sequence.  

 

Figure 6: Workspace per workflow with a branch per trial (visualized using 

SourceTree
2
) 

                                                 
2
 http://www.sourcetreeapp.com/ 
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To mark the initial set of the workspace, a special branch named “canonicalBranch” is 

created. The “canonicalBranch” is used to facilitate restoring original files content. Thus, 

each new trial works upon the initial dataset instead of working on a dataset changed by the 

previous trials. As shown at Figure 6 the “canonicalBranch” is the fork point for each trial 

branch. 

In fact, considering CM concepts, the “canonicalBranch” works more as tag than as 

branch, as it works as an annotation that identifies a specific configuration of files versions 

into the repository. Then, it is also possible to create tags for different set of files versions, for 

example, to the files versions after a trial (the results of the execution). Thus, the results of a 

trial may be used as input for subsequent trials, instead of using the original files as input for 

every trial. This could be useful on scenarios of iterative workflows, where the results of a 

trial are used as input of the subsequent trials. 

ProvMonitor automatically names each trial branch with the trial ID, as shown in 

Figure 6 (see the highlighted names inside blue and pink boxes) to ease the identification of a 

trial branch. Through the named branches it is possible to identify the history of changes on a 

given trial isolated from other trials. This is useful for both analysis and storage, since named 

branches can be removed from the repository if desired. 

2.5.2 WORKSPACE PER ACTIVITY WITH A BRANCH PER TRIAL 

Some SWfMS may be incompatible with the previous strategy. For example, 

SciCumulus (OLIVEIRA et al., 2010) was designed to execute in the cloud, allowing the 

execution of different activities in parallel in different virtual machines. Each parallel 

execution of an activity is called “cloud activity”. Every time a cloud activity is about to start, 

SciCumulus creates a specific directory for it and the required files are copied to the new 

directory.  

In such situations, the use of a single workspace (as a “root” of every cloud activities 

directories) for the entire trial may lead to data duplication inside the workspace. The same 

file may appear as two different files, each one of them on different paths. The files are 

treated as independent files and not considering that, one is a new version of the previous. 

Then, the file trace (history of file changes) is lost. The scenario described above was thought 

using workspaces on a shared area, for example, a shared storage. However, cloud based 

SWfMS or even distributed SWfMS may also uses different physical disks on different nodes 

on a cluster/grid to set the workspaces. Distributed configurations completely prevent the 

usage of a single workspace. 
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Thus, to work with SciCumulus, ProvMonitor has to create one workspace per 

activity, managing the workspace together with the SWfMS. The activities are isolated from 

each other in independent workspaces. ProvMonitor captures all file changes and accesses 

inside the workspace and relates them with the corresponding activity in the provenance 

database.   

In this strategy, the workspace is cloned with all files produced by the previous 

activities, setting a managed workspace at the activities directory. At the end of each activity 

execution, the workspace is analyzed and all detected changes are committed and pushed back 

to the central repository, making them available to other activities. The use of this strategy on 

linear workflows generates the same results illustrated at Figure 6. It is important to notice 

that by using this strategy, the data linkage is not lost, since editions, moves, renames, and 

copies are done over the management of ProvMonitor. 

2.5.3 WORKSPACE PER ACTIVITY WITH A BRANCH PER ACTIVITY 

Using the strategy of a workspace per activity requires some special attention. When 

workflow activities are parallelized, they can make concurrent changes into the same file, 

leading to a file’s history branching. Working on isolated workspaces, these changes occur at 

the working copies of the files, thus not influencing or interfering with the concurrent 

executions. However, at the end of the activities executions, the commit and push back 

propagates the branch history to the repository, leading to a scenario of workspace per activity 

with a branch per activity.  

 

Figure 7: Workflow per activity with a branch per activity 

Figure 7 illustrates how this history is stored in the repository. It is possible to identify 

that not every branch of the history continues. For example, three instances of the activity 
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ApplyFilter are executed concurrently (ApplyFilter, ApplyFilter2 and ApplyFilter3) – the 

group of three lines highlighted in Figure 7. The figure shows that tree branches are created, 

representing the history of each one of the concurrent activities isolated. 

Figure 8 presents a representation of these activities based on the provenance gathered 

and stored into the repository shown in Figure 7. The activities are represented by the 

rectangles and the arrows represent the data flow between the activities. It illustrates that only 

the first ApplyFilter has its execution line complete until the end of the workflow. The 

ApplyFilter2 branch ends its evolution after the CutInterestingArea2 execution, and the 

ApplyFilter3 does not even start an instance of the CutInterestingArea activity. 

This is interesting in several aspects. First, it helps to evidence activities that 

effectively contributed to the results of a trial. Second, it indicates the critical path of 

transformations, performed to the original files until their last version. Therefore, after the 

analysis process, if the scientist only desires to store the essential provenance information, it 

is easy to identify information that could be discarded. 

 

Figure 8: Workflow with concurrent activities execution sample 

In the example illustrated at Figure 8, another aspect may be observed about 

workflows trials. During a trial, activities may produce a fork in the data flow, executing it 

concurrently or even sequentially. In the above situation, the forks, once created, flows until 

the end of the trial as independent branches. However, concurrently data flows may be 

combined to reintegrate a single data flow. This combination may lead to merge situations, 

which are discussed in the next section. 

2.5.4 DATA FLOW MERGE ISSUE 

Concurrent data flows may be combined, leading to a single data flow. This 

combination process may occur through the selection of one of the branches in detriment of 

others. A branch selection may produce a similar execution scenario as illustrated in Figure 8. 

However, instead of a branch selection, a complex combination of files from any of the 
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concurrent data flows may occur, for example, on MapRreduce workflows (DEAN; 

GHEMAWAT, 2008). 

 

Figure 9: Workflow with concurrent data flows merge 

Figure 9 illustrates a scenario of concurrent data flows merge. Both the activities 

instances ApplyFilter and ApplyFilter2 contribute with inputs to the activity 

CutInterestingArea. Then, the workspace used as input to the CutInterestingArea has to be a 

merge of the outputs of the both instances ApplyFilter and ApplyFilter2. 

The merge of concurrent data flows may lead to complex situations. For example, 

ApplyFilter and ApplyFilter2 may produce, as output, files with the same names. How to 

decide what files must be used? It could be the joining of all files outputted by all data flows. 

Files of the first execution to finish may be used or the last execution to finish may overwrite 

the files of the first one. It could be a combination of files of both data flows (merge) with a 

file from each data flow. Alternatively, it could be a combination of each single file of each 

one of the data flows (merging each one of the files). In fact, the answer to this question relies 

on the semantic of the activities involved. Therefore, to automatic merge concurrent data 

flows, the semantics of the workflow has to be considered. Some SWfMS may provide 

special control flow activities that can help to solve this issue, such as decision points or 

synchronization points.  

Despite the relevance of this issue, more elaborate merge strategies present 

complexities that need to be more carefully examined and are out of the scope of this work, 

opening opportunities for future work. 

2.6  PROVENANCE MODEL 

ProvMonitor was thought to be compatible with ProvManager, being coupled as an 

extension of ProvManager gathering mechanism to gather implicit provenance and files 

content. Thus, ProvMonitor inherits the ProvManager provenance model. The ProvManager 

provenance model is based on the Open Provenance Model (OPM) (MOREAU et al., 2008). 
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However, it extends OPM to support prospective provenance. Despite the fact that 

ProvMonitor inherits ProvManager OPM-based provenance model, it is also possible to map 

the OPM-based provenance model to a PROV-based (LUC MOREAU; PAOLO MISSIER, 

2012) provenance model (BIVAR et al., 2013). 

As ProvMonitor operates at runtime, it assumes the prospective provenance has been 

already gathered. Thus, the prospective provenance model used must be the prospective 

provenance model of the mechanism used on the automatic process of instrumentation and 

prospective provenance gathering. For the manual process, the scientist may use the model 

more suited for its needs. Whatever the process (manual or automatic) used for 

instrumentation and prospective provenance gathering, the only requirement is that the 

prospective model provides an identifier for each instance of each activity inside the 

workflow. This is important to allow ProvMonitor to associate the retrospective provenance 

with the prospective provenance already stored. In this work, we considered the ProvManager 

model to cover the prospective provenance. 

ProvMonitor extends ProvManager provenance model (MARINHO et al., 2011b) to 

capture implicit provenance in files and file contents. Our extension adds two new entities: 

Element Execution File Access and Element Execution Commit. Additionally, ProvMonitor 

uses the Element Execution entity from the ProvManager provenance model.  

 

Figure 10: ProvMonitor provenance model 

Figure 10 illustrates ProvMonitor provenance model, represented in a UML class 

diagram (OMG 2010). The ProvManager inherited entity is marked as a filled class (grey). 

The ProvMonitor entities are the white ones. The descriptions of these entities are as follows. 



38 

 

 The Element Execution entity stores information about a workflow element (i.e., 

activity) execution on a given trial of the experiment; 

 The Element Execution Commit entity stores all commit hashes (Commit ID 

attribute) triggered by each activity, registering the moment the commit was 

triggered, e.g., start of the activity or end of the activity;  

 The Element Execution File Access entity stores the access type (create, change, 

delete, or read) and the accessed files of each commit, which is related to each 

activity execution in the workflow. 

Although the VCS repository stores provenance data in an unstructured way, with this 

extension of the provenance model, provenance information gathered by ProvMonitor is 

stored together on the same provenance database. Thus, scientists only need to access the 

VCS repository when they need to analyze file content. All other provenance queries can be 

executed directly over the provenance database. 

2.7 IMPLEMENTATION 

The prototype implementation of ProvMonitor uses Java. The choice of Java was for 

portability issues. Making ProvMonitor portable along different OS makes it easier to couple 

it to different environments. The VCS used was Git (CHACON, 2009). The choice of Git was 

because it is a distributed VCS with growing use on open-source projects and because it has 

references available to support development. Additionally, there are some interesting features 

supported by Git that could be used during the experiments. These features are related to 

performance optimizations during commits and repository storage optimizations, such as 

repository compression and versioning of file contents separated from file paths (two files 

with the same content but on different paths points to the same content object into the 

repository), reducing the amount of disk space used.  

ProvMonitor provides a command-line interface (CLI) to facilitate interoperability 

with other systems, allowing the coupling of ProvMonitor as an external application. Thus, 

there is no need to change the SWfMS or the provenance mechanism when using 

ProvMonitor. However, ProvMonitor may also be included as a library (.jar) on Java 

applications, providing methods to the SWfMS to invoke ProvMonitor execution during the 

workflow trial. 

Figure 11 presents the prototype architecture, with the main elements separated on 

layers related to their role into the architecture. The definitions of these layers are as follows.  
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 Interface: this layer represents the interface for interoperability with ProvMonitor. 

It presents a CLI, which allows SWfMS or provenance systems to invoke 

ProvMonitor as an external application. The methods supported by ProvMonitor 

are prepare to start an experiment execution; notify the end of an experiment 

execution; prepare to the start of an activity execution; and notify the end of an 

activity execution. It also presents an application programming interface (API) to 

be possible to couple ProvMonitor as a library (e.g., including a .jar of 

ProvMonitor on Java applications) on other systems (Provenance Systems or 

SWfMS). When coupled as a library, the Retrospective Business Services provides 

the interface for invoking the provenance gathering methods supported by 

ProvMonitor 

 Control: this layer represents the controller for the gathering methods supported 

by ProvMonitor. The Retrospective Business Services implements the supported 

gathering methods, and is responsible for orchestrating the execution of 

ProvMonitor’s provenance gathering mechanism (Provenance gathering layer) and 

the communication between the provenance gathering layer and the persistence 

layer. It also provides the interface for invoking the provenance gathering methods 

from the API 

 Provenance gathering layer: this layer represents the provenance gathering 

mechanisms used by ProvMonitor. Two interfaces compose this layer: a 

Workspace Access Reader and a VCS Manager. The Workspace Access Reader is 

responsible for reading the workspace files metadata in order to identify accesses 

to workspaces files. The VCS Manager is responsible for gathering changes 

(creation, removing, or changing of files) in the workspace and for storing all the 

gathered changes versioning the workspace. Both rely on the Operating System 

File system. This layer relies on interfaces to abstract the implementation of each 

one of the gathering mechanisms. Thus, it is possible to offer support for different 

VCS or File Systems. For instance, the current VCS implementation is Git and the 

implementation of the Workspace Access Reader relies on the Java 7 “nio” 

package that provides an abstraction of the file system metadata through Java 

Virtual Machine (JVM), improving portability.  

 Persistence: this layer represents the persistence capabilities of ProvMonitor. The 

Provenance model is part of this layer. The persistence layer relies on two 
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interfaces: Provenance Database and the VCS Manager. The Provenance 

Database is responsible for the persistence of the provenance data gathered, 

according to the defined Provenance Model. It may be accessed through Database 

Access Objects (DAO) interfaces, thus allowing abstracting the Database 

implementation. Indeed, ProvMonitor also allows the use of a web service (such as 

proposed by ProvManager) for provenance persistence instead of direct access to 

the database instance. The VCS Manager is responsible for storing the workspace 

file contents, and the different files versions generated during a trial. Through the 

Provenance Model the information stored by both interfaces are related. 

 

Figure 11: ProvMonitor architecture 

Additionally, ProvMonitor has a property manager (working as a descriptor), which is 

not represented in the layers view (to simplify the image), used to parameterize some 

behaviors. The parameterized behaviors are the database used (e.g., MySQL, PostegreSQL), 

the database connection string, the type of branching strategy (e.g., branching per activity or 

branching per trial), the VCS implementation to be used (e.g., Git, Hg), and the ProvMonitor 

internal log level (e.g., Debug, Measure, Warning, Fatal, and others). 

2.8 FINAL REMARKS 

This chapter presented the ProvMonitor approach. The main objective of the approach 

is to gather implicit provenance while versioning intermediate data files. The proposal is to 
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do it through a CM perspective. ProvMonitor is a step forward on the gathering of implicit 

provenance. It is also a step forward on the usage of a CM perspective on the provenance 

gathering, more specifically, to use VCS during a workflow trial, following the behavior of 

the trial, instead of using a VCS only as storage or to versioning workflow specifications.  

The next chapter presents the evaluation of the proposed approach through a study 

case conducted with the objective of answering the research question and secondary questions 

of this work.   
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CHAPTER 3 – EVALUATION 

3.1 INTRODUCTION 

ProvMonitor was evaluated through a case study in the bioinformatics domain. The 

main objective was to find evidences of the benefits of gathering implicit provenance, to 

evaluate the proposed approach for gathering implicit provenance, and to evaluate how it 

could be useful for the scientist or someone analyzing or understating the execution of a 

scientific workflow. To do so, ProvMonitor was coupled with the SciCumulus (OLIVEIRA et 

al., 2010) SWfMS to execute a scientific workflow related to phylogenetic analysis named 

SciPhy (OCAÑA et al., 2011). 

The choice of SciPhy was based on the availability of a specialist (pharmaceutical 

researcher) to assist on the evaluation about the semantic benefits of implicit provenance 

analysis. The choice of SciCumulus was also related to availability, since the current 

workflow implementation used by the specialist was built on SciCumulus. Additionally, 

coupling ProvMonitor with SciCumulus presented an opportunity to try a more complex and 

complete isolation strategy then using Vistrails. This also allowed us to evaluate the 

adaptability and generality of the concepts behind ProvMonitor.  

To evaluate ProvMonitor we conducted both effectiveness and efficiency analysis. In 

the effectiveness evaluation, we analyzed if ProvMonitor was able to capture implicit 

provenance and evaluated how the gathered provenance can aid the scientists’ workflow 

analysis. Some different aspects were considered regarding the research and secondary 

questions of this work: (i) is ProvMonitor able to capture implicit provenance? Is it possible 

to make existing SWfMS aware of implicit provenance?  (ii) is ProvMonitor able to version 

intermediate files? Does gathering of intermediate file content improve implicit provenance 

analysis? (iii) does the implicit provenance gathering improve the perception about the impact 

of implicit data flow over activities executions and experiment results? and (iv) does the 

implicit provenance gathering contribute to a more precise analysis about the experiment 

execution? For this evaluation, we used adaptations of queries already used to evaluate 

SciPhy (OCAÑA et al., 2014). These queries were adaptations of the First and Second 

Provenance Challenges. We have just considered queries related to data file production, on 

situations that are useful to SciPhy, since this may involve implicit data flows and is where 

approaches that do not gather implicit provenance usually fail. In the efficiency evaluation, 

we analyze the performance and the overhead introduced by ProvMonitor to SciCumulus 
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regarding time-consumption and storage overheads during SciPhy execution over 

SciCumulus. The objective is to answer the secondary question: does the overhead imposed 

by the implicit provenance gathering preclude its adoption? 

All experiments presented in this section were performed in the Amazon EC2 

environment using Amazon’s large VMs (EC2 ID: m1.large – 7.5 GB RAM, 850 GB storage, 

2 cores). Each instantiated VM in the phylogenetic experiments presented in this work uses 

Linux Cent OS 5 (64-bit). To execute SciPhy, our experiments use a dataset of multi-fasta 

files of protein sequences extracted from RefSeq release 48. This dataset is formed by 200 

multi-fasta files and each multi-fasta file is constituted by an average of 10 biological 

sequences. To perform phylogenetic analysis, each input multi-fasta file is processed using 

MAFFT version 6.857, ModelGenerator version 0.85, and RAxML-7.2.8-ALPHA. For this 

case study, ProvMonitor operated with the PostgreSQL database, since this is the database 

used by SciCumulus. 

In this chapter, we first introduce SciCumulus and then present the specification of the 

SciPhy workflow. Then, we detail how SciPhy was modeled and executed in SciCumulus. 

Next, we present the effectiveness and the efficiency analysis of the performance of 

ProvMonitor while capturing implicit provenance.  

3.2 SCICUMULUS WORKFLOW ENGINE 

SciCumulus is an important component since it executes the workflows to be 

monitored by ProvMonitor. It is important to highlight that other workflow execution engines, 

besides SciCumulus, can also benefit from the proposed approach.  

SciCumulus is an engine that manages the parallel execution of scientific workflows in 

clouds, such as Amazon EC2
3
 or Microsoft Azure

4
. Four tiers compose SciCumulus 

architecture: Client tier, Distribution tier, Execution tier, and Data tier. Figure 12 summarizes 

a high-level conceptual architecture.  

SciCumulus client tier is responsible for initiating the execution of workflow activities 

in the cloud. The components of this tier are deployed in the scientist desktop or within a 

SWfMS, such as VisTrails (CALLAHAN et al., 2006) or Kepler (ALTINTAS; BARNEY; 

JAEGER-FRANK, 2006). The distribution tier manages the execution of the several cloud 

activities. This tier is responsible for creating the scheduling plan for the cloud activities to be 

executed in the different virtual machines that are part of the execution tier. The execution tier 

                                                 
3
 http://aws.amazon.com/pt/ec2/ - Jun/2014 

4
 https://www.windowsazure.com/en-us/ - Jun/2014 
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is responsible for invoking executable codes (i.e., programs that are part of the workflow) in 

the several allocated virtual machines. Finally, the data tier has the provenance repository and 

the file system that stores all files produced and consumed during a trial.  

 

Figure 12: SciCumulus Conceptual Architecture (GONÇALVES et al., 2012) 

To understand SciCumulus architecture it is important to understand an important 

concept that is cloud activity. In SciCumulus, algebraic operators that consume and produce 

sets of tuples (relations) rules workflow activities, as proposed by (OGASAWARA et al., 

2011). This way, SciCumulus uses a declarative workflow representation in which each 

workflow activity produces and consumes relations. Since in parallel trials the same activity 

can execute several times varying parameters and input data, SciCumulus has to manage these 

several executions. To support such execution, SciCumulus is based on the concept of cloud 

activity, inspired by database tuple activations (BOUGANIM; FLORESCU; VALDURIEZ, 

1996). The concept of cloud activity is critical to make a workflow representation able to 

execute in large-scale cloud environments. A cloud activity is a self-contained object that 

stores all information needed for a specific executable (i.e., the program to be invoked and the 

portion of data to be consumed) to execute an activity at any virtual machine. Cloud activities 

contain the finer unit of data needed by an activity to execute (BOUGANIM; FLORESCU; 

VALDURIEZ, 1996). Cloud activities are processed in SciCumulus following a 3-step 

procedure: instrumentation – where the parameter values are gathered to prepare the program 

invocation; program invocation – where the executable code is effectively executed; and 

output extraction – where result data is extracted and stored in the provenance database.  
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Figure 13: Example of Cloud Activity generation (OLIVEIRA, 2012) 

Figure 13 presents a generic example of the cloud activity generation. In this example, 

the workflow starts with a split activity and then there are two merge activities. These three 

activities cannot execute in parallel. However, the other activities can execute in parallel, thus 

SciCumulus creates a different cloud activity for each different input data file to be consumed 

(Cloud Activity View). The generated cloud activity is then scheduled to execute in the 

several allocated virtual machines. For more information about SciCumulus please refer to 

(OLIVEIRA et al., 2010). 

3.3 SCIPHY  

SciPhy is a scientific workflow for phylogenetic analysis. Phylogenetic analysis aims 

at producing phylogenetic trees to represent existing evolutionary relationships. The analysis 

is done by consuming several input data files containing a set of DNA, RNA, or amino acid 

sequences. It requires a complex workflow composed by several data and computing-

intensive activities that may consume considerable time to produce the desired result. SciPhy 

is illustrated in Figure 14, where each rectangle indicates an activity, solid lines represent data 

dependency between activities, and dashed lines represent consumed and produced data 

products. 
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Figure 14. SciPhy workflow adapted from Gonçalves et al. (2012)  

The first activity of the workflow (Figure 14) consumes a set of multi-fasta files 

(MFS) and produces a set of alignment files (MSA). Similarly, the second activity consumes a 

set of MSA and produces phylip files (PH). However, there are more steps involved in the 

workflow trial than the ones represented in the workflow specification. For example, Activity 

1 produces MSA files but also modifies some of the MFS input files, which are consumed by 

Activity 2. This data dependency (MFS as input to Activity 2) is not explicitly represented in 

the workflow specification, nor is the changes to MFS. In fact, there are different versions of 

MFS files involved in this experiment. Every time Activity 1 modifies one MFS file, it 

generates a new version of it. The problem is that old versions may be overwritten by new 

versions, and provenance data related to this change is lost. ProvMonitor solves this problem 

by storing all the versions of a data item, thus keeping the history of changes. Since scientists 

do not specify the modifications performed by Activity 1 in the MFS files and their posterior 

uses in Activity 2, this scenario characterizes the aforementioned implicit data flow.  

SciPhy workflow is composed of four main activities: Multiple Sequence Alignment 

(MSA) construction, MSA format conversion, a search for the best evolutionary model, and 

phylogenetic tree construction. They respectively execute the following bioinformatics 

applications: MAFFT (KATOH; TOH, 2010), ReadSeq (GILBERT, 2003), ModelGenerator 

(KEANE et al., 2006), and RAxML (ROKAS, 2011). Figure 15 presents the SciPhy 

conceptual view. The first activity of SciPhy constructs an individual MSA with the MAFFT 

MSA program. MAFFT receives a multi-fasta file as an input from a set of given multi-fasta 

files (e.g., from the RefSeq (PRUITT et al., 2009) biological database) and then produces an 

MSA file as output. In the second activity, the MSA is converted to the PHYLIP format 

1. Run Sequence Alignment
For each mf in MFS set

call {mafft, probcons, kalign, 
muscle, clustalw}(mf)

2. Run Phylip Conversion
For each ms in MSA Set

call readseq(ms)

Shared disk

4. Run Phylogenetic Tree Generation
For each em in EM Set, ph in phylip files, 

call RAxML(em,ph)

Alignment (MSA)
files

Multi-fasta set (MFS) 
(chains of biological sequences)

MSA files

Phylip files (PH)

3. Run Model Election
For each md in Model files, ph in PH 

set call modelgenerator(md,ph)

Elected model files (EM)

Phylip files, Model files

EM files, phylip files

Tree files



47 

 

(FELSENSTEIN, 1989, 2005) using ReadSeq and then tested in the third activity to find the 

best evolutionary model using ModelGenerator. Both the individual MSA and the 

evolutionary model are necessary for the fourth activity to generate phylogenetic trees using 

RAxML. 

 

Figure 15: SciPhy workflow conceptual view adapted from Ocaña et al. (2011) 

Thus, SciPhy allows scientists to:  

i. Infer phylogeny and to delineate evolutionary relationships between the 

species (taxa) used in the study and; 

ii. Explore genomes for searching/inferring new candidates for drug targets, such 

as enzymes, based on the tree taxa position.  

The large amount of reliable trees obtained during exploratory analysis can represent 

valuable phylogenetic information between species and genomes. The SciPhy workflow is 

much more complex than the conceptual view detailed in Figure 14 and Figure 15. It can be 

executed multiple times (one trial for each set of parameter values) as required, depending on 

the parameter sweep strategy defined in the workflow. Thus, all trials produce a huge amount 

of versions of different formats of files. Ocaña et al. (2011) present more details about the 

SciPhy workflow. 

3.4 EFFECTIVENESS EVALUATION 

We processed 150 of the aforementioned 200 multi-fasta files using SciCumulus. 

Based on the results, we performed two analyses. The first one verifies if ProvMonitor was 

able to answer the proposed queries. The second shows how implicit provenance management 

can aid scientists to better explore their results for assessing biological hypotheses. The first 

and second Provenance Challenge (PC1 and PC2) (MILES, 2006a, 2006b) defined a series of 

provenance queries for Pan-STARRS workflow (ARAGON; RUNGE, 2009). We describe 
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three adapted provenance queries (in English and SQL), which are executable over our 

database schema, to demonstrate querying capabilities of ProvMonitor. We also discuss how 

each one of the answers can aid scientists. 

Query 1 (Q1). During the experiment, SciPhy workflow is executed more than once. 

Several intermediate files are commonly generated by SciPhy workflow activities. If the 

scientist runs a trial by varying the bootstrap replication parameter (e.g., 50, 100), it could be 

interesting to compare the trees obtained with this variation to indicate if different bootstraps 

can influence in the trees’ topology or bootstrap values and in what manner. Thus, varying 

bootstrap replication values in RAxML parameters can lead to differences in phylogenetic 

trees, which consequently could influence biological or computational inferences. Does 

ProvMonitor find the differences between data products generated by several workflow trials, 

for each activity? This is an adaptation of Query 7 of the PC1, which aims at comparing two 

or more trials (inter-trial analysis). ProvMonitor is able to answer this question, and it uses the 

SQL query shown in Table 2 for this, together with diff operations in Git.  

Table 2: Q1 SQL and expected results 

SQL: 

SELECT PATH, ID_COMMIT, COMMIT_TIME FROM 

ELEMENT_EXECUTION_COMMIT; 

ANSWER:  

This query returns the commit hashes of every commit done by every activity of 

every trial, allowing us to locate all file versions created after each one of the 

activities. A diff operation in Git over the commits with these ids answers the 

second part of the query. 

This answer allows scientists to compare results among different trials, comparing the 

trees obtained with the bootstrap replication variation and identifying when the variation 

leaded to differences in phylogenetic trees. For example, Figure 16 shows phylogenetic trees 

constructed with different bootstrap replication values. Tree A was built with bootstrap of 50 

and Tree B with 100. Both trees show the same topology, but they present different bootstrap 

replication values, as Tree B presents lower values than Tree A. For example, they present the 

most representative monophyletic clade formed by species 4, 7, 6, and 2. Starting from the 

most external to the terminal nodes, Tree A presents bootstraps of 100, 84, and 96, while Tree 

B presents bootstraps of 99, 80, and 94. Thus, varying bootstrap replication values in RAxML 

parameters can lead to differences in phylogenetic trees, which consequently could influence 

biological or computational inferences. 
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(Tree A) Bootstrap 50 

(Tree B) Bootstrap 100 

Figure 16: Phylogenetic trees with bootstrap values related to the “Phylogenetic Tree 

Construction” activity adapted from Ocaña et al. (2013) 

Query 2 (Q2). In biological scenarios, knowledge about all generated files is an 

important issue, since it allows scientists to have the control of their trial process. For 

example, RAxML may automatically reduce phylip files. This decision usually depends on 

some features characterizing the multi-fasta files, e.g., due the presence of almost equal fasta 

sequences or if any fasta sequence is too different to the rest. In this scenario, RAxML 

automatically produces the “i.phylip.reduce” file from the original “i.phylip”. Since the 

modification over the “i.phylip” file was not defined by any parameter in SciPhy, scientists 

cannot predict this behavior, as it is hard-coded in RAxML program. As RAxML reduces the 

original “i.phylip” file, a different phylogenetic tree can be obtained by using the 

“i.phylip.reduce” file. For a given constructed phylogenetic tree, what was the input phylip 

file from which the tree was produced? Can ProvMonitor detect this behavior and point out 
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the difference between the “i.phylip” and “i.phylip.reduce” files? This query is similar to 

Query 5 of PC1 and PC2. The query shown in Table 3 answers this question.  

Table 3: Q2 SQL and expected results 

 

 

 

This answer opens some interesting opportunities allowing scientist to compare and 

identify changes on files at the same trial (intra-trial analysis). Figure 17 shows an example of 

an “i.phylip” file and a correspondent “i.phylip.reduce” file. It is possible to identify the 

exclusion of some lines from the original file (Phylip A), leading to a file with a reduced 

number of lines (Phylip B). This perception, gives the scientist opportunity to identify exactly 

which lines were removed, helping to understand the effect of a given activity and allowing 

exploratory tasks, for example, evaluating the effects of computing the removed lines.  

 

 

 

(Phylip A – i.phylip) 

 

 

 

 

(Phylip B – i.phylip.reduce) 

Figure 17: Phylip files related to the “MSA Construction” activity 

SQL:  

SELECT EFS.FILE_PATH, EFS.FILE_ACCESS_TYPE, EFS.FILE_ACCESS_TIME, 

EC.ID_COMMIT 

FROM ELEMENT_EXECUTION_FILE_ACCESS EFS 

LEFT JOIN ELEMENT_EXECUTION_COMMIT EC ON EFS.ELEMENT_PATH 

LIKE EC.PATH 

WHERE UPPER(EFS.FILE_PATH) LIKE UPPER('%i.phylip.reduced%') 

ANSWER:  

This query returns all “i.phylip.reduced” creations and changes, the timestamp when it 

occurred and the commit hashes to the file version, allowing us to recover the related 

files and compare them. 
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Indeed, this answer also allows identifying which one of the files was consumed by 

the next activity: the original file or the reduced one. This is important, since that, besides the 

generation of a different file (Phylip B), it may not exist any guarantee of which of the files 

would be consumed on the remaining of the trial. Thus, identifying the consumed file helps to 

understand the effect and influence of intermediate files upon the following trial execution. 

Query 3 (Q3). Programs MAFFT and ReadSeq consume the same fasta file. However, 

the “MSA Construction” activity can behave in two different ways: (i) it only consumes the 

input fasta files or (ii) it modifies the input fasta files by removing sequences to provide load 

balancing. As some sequences were removed from the fasta file, the MAFFT program in the 

“MSA Construction” activity constructs a reduced MSA instead of the total MSA with all 

original fasta sequences. The obtained result directly influences in the following “MSA 

Format Conversion” activity, because it will use the reduced MSA instead of the total MSA. 

Then, depending on the chosen behavior, the “MSA Format Conversion” activity may 

consume the original or the overwritten fasta file. Is ProvMonitor able to detect all 

modifications? Where are they performed? This is the only query that has no equivalent in 

PC1 and PC2, since this query is related to implicit provenance. Query 3 presents the 

traditional implicit provenance case. The query shown in Table 4 answers this question. 

Table 4: Q3 SQL and expected results 

SQL:  

SELECT * 

FROM ELEMENT_EXECUTION_COMMIT EC 

WHERE EC.PATH LIKE '%TRIAL_ID%ACTIVITY_ID%'; 

ANSWER:  

This query returns the commit hashes of every commit after each specified activity 

(ACTVITY_ID) on each specified trial (TRIAL_ID), thus allowing to compare the files 

before and after the activity that changed it with diff algorithms (textual or specialized diffs). 

With this answer, the scientist may identify exactly the version of a file used to 

generate other files. Figure 18 shows an example of such perception. The “MSA 

Construction” activity changed the original “fasta” file (Fasta A) by reducing sequences. 

Then, as some sequences were removed (Figure 18 Fasta B) from the “fasta” file, the MAFFT 

program in the “MSA Construction” activity constructs a reduced MSA (Figure 18 Alignment 

B) instead of the total MSA with all original fasta sequences (Alignment A). 
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(Fasta A) 

 

 

 

 

 

(Fasta B) 

 

 

(Alignment A) 

 

 

 

 

(Alignment B) 

Figure 18: Fasta and alignment files content to the “MSA Construction” activity 

It is interesting to highlight that ProvMonitor capability of identify every changed file 

after an activity execution allows scientist to evaluate the workflow specification. It is 

possible to identify if every file specified at the workflow specification is actually accessed, 

and if every file accessed or created are specified at the workflow specification. Thus, by 

contrasting files access (read or write) described as prospective provenance with files accesses 

(read or write) gathered as retrospective provenance via SQL, it is possible to identify every 

workflow activity that participates in an implicit data flow, i.e., that produce implicit 

provenance, just querying the provenance database. 
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3.5 EFFICIENCY EVALUATION 

We conducted two different experiments to analyze the influence of ProvMonitor in 

the workflow trial: the first one identifies the execution time overhead and the second one 

identifies the overhead imposed in storage. Since ProvMonitor uses instrumented activities in 

SciCumulus (in this experiment, instrumentation was performed manually), it introduces a 

certain overhead in each cloud activity execution. To analyze the impact of ProvMonitor we 

executed the SciPhy workflow consuming 150 of the 200 input multi-fasta files set in a single 

virtual machine in Amazon EC2 cloud, using the third isolation strategy (workspace per 

activity with a branch per activity). We measured the needed time to execute SciPhy in 

SciCumulus with and without using ProvMonitor. As expected, ProvMonitor instrumentations 

in SciCumulus cloud activities impact in the performance, turning them more time-

consuming. However, the impact of ProvMonitor depends on the type of activity in the 

workflow. In SciPhy, we have two types of activities: short-term and long-term activities. The 

first two activities are short-term activities. Each execution of these activities demands few 

seconds to finish. On the other hand, the last two activities are long-term activities. Each 

cloud activity associated to these activities demands at least 10 minutes to finish. 

 

Figure 19: Boxplot of ProvMonitor overhead over SciPhy activities 

Figure 19 shows boxplots of this experiment, where the x-axis represents the cloud 

activity execution with (PM) or without (SC) ProvMonitor and the y-axis represents its 

execution time distribution in seconds for a given mean (μ) and standard deviation (σ). This is 

also shown on Table 5 - using ProvMonitor (labeled ProvMonitor) and without using 

ProvMonitor (labeled SciCumulus). In average, each short-term cloud activity using 
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ProvMonitor needs from 5.39 to 7.08 more time than when we are not using it. Although it 

looks like a high overhead, actually, ProvMonitor adds nearly constants 4 seconds (to prepare 

the workspace – I/O on files, Git manipulation, and gathering and storing metadata) in each 

short-term activity. Since each short-term cloud activity executes for less than one second 

(0.74 seconds in average), the impact is large for this kind of activity. 

When we analyze the impact in the long-term cloud activities, we can state that, in 

average, each long-term activity using ProvMonitor needs from 1.16 to 1.28 more time than 

when we are not using ProvMonitor. Here the impact of ProvMonitor in the cloud activities is 

not critical when compared to the necessary time to execute the program by the cloud activity. 

Table 5: Mean and standard deviation of Cloud activities execution times for 100 

input files 

Workflow 

activities 

ProvMonitor SciCumulus 

μ σ μ σ 

MAFFT 3.95 0.10 0.56 0.36 

ReadSeq 4.26 0.12 0.79 0.21 

MG 506.29 56.19 433.45 51.18 

RAxML 101.76 46.88 79.68 37.64 

Table 5 evidences some interesting behaviors related to the execution time overhead. 

For example, the standard deviation of activities MAFF and ReadSeq are smaller with 

ProvMonitor. This may be explained by the strategy used to compose the workflow. In this 

experiment, to simplify the workspace management, the workspace contains all the files used 

by all trials. Then, ProvMonitor introduces a nearly constant 4 seconds of time overhead per 

activation in this activities. Without ProvMonitor SciCumulus still needs to copy files 

however, the files are copied by demand instead of the entire workspace. As the number and 

size of the files may vary, this explains a higher standard deviation without ProvMonitor. 

On the other hand, MG and RAxML activities present a higher standard deviation with 

ProvMonitor. At a first look, this may not make sense. However, these two activities are the 

last ones to execute, thus we have to consider that during a trial, environment degradation 

may occur (e.g., less disk space available) caused by the previously executed activities. For 

example, when the first MG executes for 100 input files, 100 MAFFT and 100 ReadSeq 

activities had already been executed. Therefore, in practice, the first MG is the 201
st
 activity 

to be executed. Although this analysis appears to make sense, there are many other factors 

beyond our control when running on Virtual Machines (VM) over management of specific 
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services such as Amazon, that do not guarantee exactly the same performance (but a 

performance inside a range). For example, a VM may be physically migrated during 

execution (live migration), which leads to environment degradation. Such factors make it 

difficult to find the precise reasons for the aforementioned standard deviation differences with 

and without ProvMonitor.  

Other interesting behavior is the execution times variation of MG and RAxML 

activities with ProvMonitor being larger than the aforementioned “nearly constants” 4 

seconds. Indeed, being the last activities to be executed, they execute over a workspace 

composed by the new intermediate files and metadata generated by the previous activities 

during the workflow trial. The new workspace composition being compound by a larger 

amount of files and metadata may consume more time to be cloned, explaining a higher 

execution time variation. Again, the environment degradation may be the main influence of 

such divergence. 

 

Figure 20: ProvMonitor overhead in the entire workflow trial time 

Even though the added time in each cloud activity may be small in absolute values, we 

have to analyze the impact in the overall trial. We have varied the amount of input data files 

to be processed in each trial. We executed SciPhy consuming 25, 50, 100, 150, and 200 multi-

fasta files using ProvMonitor and without using ProvMonitor. Figure 20 presents the total 

execution time of SciPhy in the y-axis and the amount of processed data files in x-axis. By 

analyzing Figure 20, we can state that in this scenario ProvMonitor severely affected the 



56 

 

workflow trial. For example, when we processed 200 multi-fasta files using ProvMonitor we 

needed 7 more hours than when we did not use ProvMonitor (26% increase). 

Actually, this overhead tends to increase according to the size of the workflow, i.e., 

the more cloud activities to process, the more time ProvMonitor needs. In the scenario 

presented in Figure 20, the total execution time difference is harvest by the short-term 

activities. Since each short-term activity is 7 times slower in average, the execution of the first 

two activities of the workflow produced a negative impact in the overall execution. If we only 

consider the performance aspect, the use of ProvMonitor is more suitable for workflows that 

present medium and long-term activities. However, when we consider the benefits of 

analyzing implicit and hidden provenance, this performance loss is justified. 

We also analyzed the storage overhead of ProvMonitor. We measured the necessary 

disk space for executing SciCumulus with ProvMonitor. In addition, we also measured the 

necessary disk space for the resultant central repository (that contains all versions of all files 

involved in the trial). To analyze this overhead we executed SciPhy consuming 25, 50, 100, 

and 150 multi-fasta files – these set of files constitute a small dataset (less than 1 MB – that 

goes to less than 5 MB under Git management). Table 6 presents the disk space needed during 

and after execution for each number of processed input data files. 

Results show that, even for the small dataset, ProvMonitor needed more than 4 GB 

during the trial for processing 150 input data files. The cause is ProvMonitor’s execution that 

replicates the input data files for each cloud activity. This is done due to the chosen isolation 

strategy, the workflow characteristics, and the SciCumulus behavior, since it stores data of all 

trials concurrently - “first activity first” execution - that consumes more disk space. In 

addition, Git replicates several data files to accelerate the version control. However, 

SciCumulus behavior is probably one of the main reasons of this overhead, since that 

removing intermediate workspaces after use, or at least, creating less concurrent workspaces 

at the same time would lead to a significant decrease of the amount of disk space needed. 

Although the consumed disk space is acceptable if we consider the today’s disk 

capacity and the final size of the repository, ProvMonitor introduced storage overhead when 

executing the workflow. This had a reduced impact since we used the Amazon S3 storage 

where each bucket has 273 TB of data, which is considerably large even for large-scale 

workflow executions. For scientific workflows that consume gigabytes of input datasets the 

necessary disk space could be an issue, unless large-scale storages such as S3 are used, or a 

smaller number of trials is executed simultaneously. 
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Table 6: Disk space overhead with ProvMonitor 

Number of 

input multi-

fasta files 

SciCumulus without 

ProvMonitor 
SciCumulus with ProvMonitor 

Disk space during 

execution (MB) 

Resultant 

output 

(MB) 

Disk space 

during 

execution 

(MB) 

Resultant 

central 

repository 

(MB) 

Resultant 

central 

repository after 

Git 

optimization 

(MB) 

25 5.6 4.9 770 4.1 2.0 

50 12.1 9.8 1,600 5.5 2.5 

100 27.4 19.5 3,100 8.6 3.4 

150 63 27.3 4,700 11 4.5 

Although Git provides an optimization mechanism (“gc --aggressive” command) that 

reduces the amount of necessary disk space (last column of Table 6), this optimization can 

only be performed after the workflow completion. This way, it is interesting to test other 

strategies for larger experiments. One option is to use different workspace and branch 

strategies, for example, exploring other VCS capabilities such as bare repositories or avoiding 

data replication on each trial. Another option is to explore environments that could benefit 

from VCS clone optimizations through hard links instead of replicating data. Another one is 

to explore Git optimizations through shared repositories.  

Table 7 presents some results of using such Git optimizations on a Linux environment 

with support to hard links. For the evaluation, we used a repository with 100 input files and 

100 branches. The repository was measured before a “git gc --aggressive” (column Input) 

consuming 2.2 MB of disk space and after a “git gc --aggressive” (column Input GC) 

consuming 1.6 MB of disk space. The “gc” command produces an optimization on Git 

repository storage, by compressing the history files and by maximizing objects reuse (Git 

identifies similar files storing the content once and creating different references for the same 

data objet into the repository). The line labeled as “Normal clone” shows the results of 

cloning repositories without optimizations, such as what was done during the evaluation of 

ProvMonitor presented in this chapter. The line labeled as “Hard links” shows the results of 

cloning repositories by benefiting of hard links for the original repository instead of copying 

the files. With hard links, files are copied only when modified, since in this moment the 
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modified file is different from the referenced one. Finally, the line labeled as “Share” shows 

the results of cloning without copying the Git repository. The target repository objects are 

references to the source repository. Only the files of the workspace are copied.  

Results on Table 7 show that both strategies (hard links or shared repository) present 

optimizations on storage consumption. However, the shared repository strategy also seems to 

optimize the execution time consumed during the clone operation. Such results indicate that, 

when running workflows on local files, or even on storages, without cloning over networks, 

these optimizations mechanisms of Git may help minimize the overhead imposed by 

ProvMonitor during the workflow trial. 

Table 7: Git clone optimizations on execution time and storage 

Cloning 

optimizations 

Input (2.2 MB) Input GC (1.6 MB) 

Time Storage Time Storage 

Normal clone 0.181s 2.2 MB 0.061s 1.6 MB 

Hard links 0.063s 1.6 MB 0.068s  1.3 MB 

Share 0.053s 1.6 MB 0.045s 1.3MB 

Results on Table 7 also show that ProvMonitor’s overhead is not imposed exclusively 

by the VCS usage. Indeed, there are other steps performed by ProvMonitor that contribute to 

the overhead, such as accessing file metadata to identify files accesses and communication 

with database. Although performance optimizations were not one of the prototype 

development premises, results showed that some optimizations should be addressed to 

minimize the overhead. For example, a more efficient strategy to identify files access (read 

access) instead of sequentially reading metadata and independent threads to database 

communication are some of such possible optimizations. 

Finally, it is important to highlight that besides consuming more disk space during the 

workflow trial, ProvMonitor optimizes the storage of the results (columns 3, 5, and 6 of Table 

6). This is because SciCumulus alone does not control files from a trial. Therefore, the 

scientist needs to specify, in the workflow, the copy of files to an output directory. This opens 

two possible problems: overwrite (if the same output directory is used for every trial) or files 

replication (if different directories are used for different trials). ProvMonitor optimizes that by 

versioning files and identifying the trial that generated each files version. 

3.6 FINAL REMARKS 

This chapter presented the evaluation of the proposed approach. Results showed the 

effectiveness of the approach on the implicit provenance gathering, and some benefits of 
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implicit provenance gathering on the experiment analysis. However, results also highlighted 

that some overhead may be imposed during the implicit provenance gathering, thus, the ideas 

proposed by this work has to be carefully applied to avoid that the overhead overcomes the 

benefits of implicit provenance gathering. 

The next chapter presents an overview on the state of the art on implicit provenance 

gathering and VCS usage on provenance gathering. 
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CHAPTER 4 – RELATED WORK 

4.1 INTRODUCTION 

Implicit provenance has received little attention in the literature. Actually, implicit 

provenance of implicit data flows is not considered by existing provenance management 

approaches (CALLAHAN et al., 2006; MARINHO et al., 2011b; MOUALLEM et al., 2009; 

OLIVEIRA et al., 2010). OS-based provenance gathering approaches (FREW; METZGER; 

SLAUGHTER, 2008; MUNISWAMY-REDDY et al., 2006) are the ones that capture part of 

this provenance. However, generally speaking, they do not relate prospective and 

retrospective provenance and may produce a large amount of provenance not directly related 

to the workflow trial on a fine-grained and low-level representation such as OS process IDs. 

This large amount of information may be distractive or even prohibitive to scientists’ analysis. 

Following, we present some approaches that relate to ProvMonitor in some level. They 

were identified through a literature review study. This literature review aims at answering a 

research question (RQ) and some secondary questions (SQ) described below.  

RQ: How to capture implicit provenance? How to deal with it? 

SQ1: How to gather implicit provenance using configuration management? 

SQ2: How to use version control systems to support provenance gathering? 

The research started from a set of already known papers (CHIRIGATI; SHASHA; 

FREIRE, 2013; DAVISON, 2012; DE NIES et al., 2013, p. 2; FREIRE et al., 2008; KOOP et 

al., 2010b; MARINHO et al., 2009, 2010, 2011a, 2011b; MATTOSO et al., 2008). Then the 

references of this initial set of papers, whenever related to this work, were included (backward 

snowballing). Additionally papers that references this initial set of papers, whenever related to 

this work, were also included (forward snowballing). The process was repeated recursively 

with the new set of papers. To identify the references two search-engines were used: Scopus 

and Google Scholar.  

It was considered related to this works any approach, product, or paper that deals with 

at least one of the secondary questions or the research question. It is important to highlight 

that ProvMonitor works with implicit provenance on files. It does not gather implicit 

provenance on other resources such as services, network (streaming), databases, etc. 

Therefore, the selected works were the ones related to implicit provenance on files. Some 

works that could potentially deal with implicit provenance on other environments were not 

included in this literature review. For example, the Wing/Pegasus system (KIM et al., 2008) 
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can gather retrospective provenance that allows it to identify why the workflow trial was 

different from the specification. However, these differences are related to Pegasus running 

optimizations and not to implicit data flows effects. Approaches like that were not included. It 

is also important to highlight that ProvMonitor implicit provenance support is related to 

implicit data flows. There are other situations related to implicit provenance such as in the 

domain data. For example, SciCumulus (OLIVEIRA et al., 2010) uses its extractor to track 

implicit values in the domain data. The works we review in this chapter were the ones related 

to implicit provenance of implicit data flows and not from other situations such as implicit 

values in the domain data. Work whose description and information was not publicly 

accessible or available on the databases accessible for us through CAPES, such as ACM 

Digital Library and IEEE Xplore, were also not included. 

The remaining of this chapter presents the identified related work. Finally, at the end, 

Section 4.12 presents a comparison between the related works. 

4.2 PASS 

The Provenance-Aware Storage System (PASS) is a storage system that automatically 

collects, stores, manages, and provides search for provenance information (MUNISWAMY-

REDDY et al., 2006). It is a file and file-system oriented approach that collect provenance at 

the system level (operating system and file system), identifying operating system, library 

versions, and the environment information (e.g. environment variables) present on objects 

(e.g. files) creation. PASS automatically records command-line argument and the relationship 

between the various versions of the program and the performance results.  

PASS collects provenance for every process, because it cannot know in advance, 

which processes might write to a PASS volume. Therefore, the amount of provenance 

gathered can be large, and not all of them directly related to the workflow trial, such as 

libraries and processes dependencies. A large amount of provenance information could be 

good to a system designer and to reproducibility; or bad (as distraction) to a user, such as a 

scientist. 

PASS allows comparison of provenance of two pieces of derived data, such as 

simulation results, to reveal changes between two program invocations. It is capable of using 

provenance to identify the particular workflow that produced a document (provides a tight 

coupling between workflow management and information life-cycle management). 

PASS tracks provenance at the file granularity. Data is considered to be either new 

data or the output of some process. Doing so, PASS is capable of gathering implicit 
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provenance. The provenance of a process output, on PASS, must include a unique reference to 

the particular instance of the executable (program) that created it; references to all input files; 

a complete description of the hardware platform on which the output was produced; and a 

complete description of the operating system and system libraries that produced the output. 

Additionally, it also includes the command line (OS command that invokes the program); the 

process environment; parameters to the process (frequently encapsulated in the command line 

or input files); and other data necessary to make pseudo-random computation repeatable. 

PASS defines provenance that the system never sees as opaque provenance. This 

provenance is related to data from a non-PASS source, such as user, other computer, or other 

file system that is not provenance-aware (PASS has PASTA as its internal file system, which 

was developed using FiST, a toolkit for Linux to layer PASTA on top of any conventional file 

system). ProvMonitor also suffers from the limitation of data outside its management. 

Although, by relying on a VCS, ProvMonitor is more flexible on using different file systems. 

Indeed, by using VCS, ProvMonitor turns not provenance-aware file systems into 

provenance-aware ones.  

It is important to highlight that PASS do not run on a VCS and besides retaining 

provenance information of old versions of files, it does not retain the old versions of files 

themselves (file content). Keeping provenance information of old versions of files is 

important to identify implicit provenance, however, losing these old versions of files contents 

make it harder to understand the effect of implicit provenance, unless the gathered provenance 

includes the description of what changed in the file. So, that way, by using the last version of 

the file and "reversing" the gathered changes, the old version of the file could be restored. 

Another important point is that PASS maintains provenance information in memory 

and on disk. However, the two representations do not map one-to-one, since in memory PASS 

must account for processes and other objects that are not materialized in the file system (such 

as pipes and sockets). PASS does not track explicit data flow within a process, so all data a 

process accesses are gathered, since it can potentially affect the process’ outputs. This strategy 

makes PASS aware of implicit provenance, however may significantly increase the amount of 

gathered provenance information. 

PASS presents provenance management as a task for storage systems. Besides the 

improved provenance gathering capabilities by gathering provenance on storage systems, this 

gathering by itself can lead to a huge amount of provenance data, making it hard to scientist 

analysis. The analysis difficulty is hardened by the inexistence of a correlation between 

provenance and an abstract representation of the experiment such as activities of a workflow. 
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Summarizing, although capable of gathering implicit provenance, PASS has as main 

disadvantages the file system dependency, the large amount of captured provenance as a 

scientist distraction, provenance gathered that is not related to a more “user-friendly” abstract 

representation of the workflow (like on SWfMS), and the loss of old versions of files. 

ProvMonitor restrict the amount of provenance gathered to the scope of a workspace during a 

trial, relates the provenance gathered with workflow activities (abstraction representation 

defined by the scientist on the SWfMS), do file versioning, not losing old versions of files, 

and relies on a VCS. Although ProvMonitor has a VCS dependency, such dependency is less 

“environment-coupled” than a file system dependency. 

4.3 ES3 

The Earth System Science Server (ES3) project (FREW; METZGER; SLAUGHTER, 

2008) focuses on Earth science data products derived from satellite remote sensing. It 

provides a local computing infrastructure to the scientist supporting exploratory 

computational science and operational product generation and dissemination. Provenance 

gathering on ES3 occurs at science process (workflow) execution time on the OS level. Thus, 

ES3 is able to gather provenance from any analysis software the scientist happens to be using. 

It automatically extracts provenance information by monitoring applications interactions 

(arguments, file I/O, system calls, and others) with the environment. The gathered information 

is then logged (post hoc) to the ES3 database, which stores the information as provenance 

graphs, represented in XML.  

ES3 may use three different gathering strategies individually or together: passive 

monitoring, overriding, and instrumentation. The passive monitoring strategy traces the 

processes interactions with its environment. It does not involve any modifications to the 

process or environment. The overriding strategy replaces portions of the execution 

environment (such as shared libraries) with instrumented ones to explicit gather provenance 

information. It does not modify the science process itself, but requires detailed knowledge and 

access to the execution environment. Finally, the instrumentation strategy inserts specific 

instructions for provenance gathering into the science process. This strategy needs knowledge 

and access to the science process. Despite being more intrusive, this last strategy is more 

selective than the others are. 

ES3 manages provenance through two components. The probulator, which is designed 

to monitor the execution of scientific applications non-intrusively, and the ES3 core, which 

decomposes the execution reports into object references and linkages between objects. The 
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ES3 core is capable of reconstructing the provenance graph at arbitrary starting points in time 

(forward and backward). 

The main advantages of ES3 are to be SWfMS-independent, to be able to gather 

implicit provenance through OS, and to be capable of more selective gathering (through more 

intrusive strategies) when compared to gathering all OS system calls. However, ES3 has no 

notion of explicit workflow state and does not capture prospective provenance. Therefore, all 

gathered retrospective provenance is not related to any kind of abstract workflow 

representation. Finally, despite being more selective, gathering provenance at the OS level 

through system calls can lead to a large amount of provenance information, which may be 

prohibitive depending on the complexity of the analysis. 

4.4 ASTRO-WISE 

ASTRO-WISE (MWEBAZE; BOXHOORN; VALENTIJN, 2009) is a framework for 

data processing and data lineage for astronomical applications. It works by loading data into a 

database and making the database an integral part of all processing. With ASTRO-WISE, data 

can only be manipulated through interaction with the database. Access to the database is 

provided through persistence classes implemented on Python. The database has a schema 

(object attributes and method definitions) that can be extended through inheritance and 

polymorphism. To support the new persistent data products that may be created by the user, 

ASTRO-WISE allows the definition and addition of new processing routines. Therefore, users 

can modify functionality in modules, insert them into the system, or add modules on top of 

the already created ones, since these modules obey the standard data model. 

The Python source code (that could be seen as the experiment specification) is stored 

in a VCS. However, a VCS cannot distinguish between method and classes in the source 

code, and it is the connection between classes and created objects that is tracked. Therefore, 

ASTRO-WISE assigns versions to classes, through an attribute, and uses class descriptors to 

track version changes, storing everything with the object (object versioning). ASTRO-WISE 

has been designed to compare versions of data and classes. If an object is identified as 

outdated, a request is triggered to compute the object “on-the-fly”. 

Forcing all data accesses to be through the database, and by versioning data, ASTRO-

WISE is capable of gathering implicit provenance. However, provenance gathered (versioned 

on the database) is related to the persistence class (versioned on a VCS with metadata on the 

database). Thus, to relate the gathered provenance with a more abstract representation of the 

workflow, users have to extend the persistence classes. Such process may require high 
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knowledge about ASTRO-WISE model and persistence classes’ structure, which may be hard 

for a user such as a scientist. ASTRO-WISE uses a VCS only to versioning the persistence 

classes. With this strategy, ASTRO-WISE uses a VCS only as storage to script versioning, 

since provenance is gathered through other mechanisms. This use of VCS is quite different 

from the ProvMonitor’s use, which employs a VCS to gather provenance during the workflow 

trial and is aware of the workflow behavior, going beyond a storage system. 

4.5 STRONG LINKS 

The Strong links approach (KOOP et al., 2010b) posits that a “tighter integration 

between scientific workflows and file management is necessary to enable the systematic 

maintenance of data provenance”. The approach presents a framework that couples 

provenance with the versioning of data produced and consumed by the workflow. Then, it 

captures the actual changes to data and detailed information about these changes.  

They discuss that VCS can track changes and determine which changes effectively 

occurred, but are not capable of identifying how these changes occurred. On the other hand, 

provenance-enabled workflow systems are able to capture how changes occurred. However, 

they do not provide a systematic mechanism for maintain data, e.g., given a file, they may not 

be capable of determining the workflow instance that generated it. 

This discussion goes to the same direction of the concepts behind the ProvMonitor 

approach. Indeed, in software engineering, more specifically in the CM area, a VCS tracks 

what changed but not why a change occurred. To understand the “why”, CM relies on issue 

tracking systems. Issue tracking systems are systems that describe issues that motivated a 

change. Therefore, to be capable of answering what changed and why a changed occurred, it 

is necessary to relate VCS gathered changes with the issues that motivated the change.  

At the provenance scenario, it is the workflow specification that describes why and 

how a changed occurred. Thus, analogously, to be capable of answering what changed and 

why a changed occurred, it is necessary to relate the retrospective provenance (gathered 

through a VCS, for example) with the prospective provenance. This understanding guides the 

main concepts behind ProvMonitor. 

In this same direction, the Strong Links approach uses a VCS to create strong links 

between the experiment and its provenance data. It is able to capture referenced file content, 

but it does not capture implicit provenance when workflow specification does not explicitly 

references the files as parameters. Relying on Git hash mechanism to identify changes on file 

contents, Strong Links adopts a cache mechanism to optimize workflow trials. ProvMonitor 
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also uses Git for storing file content separated from the workspace structure, optimizing 

persistence and being able to detect file moves. The main difference is that ProvMonitor is 

able to capture retrospective provenance even when it is not specified in the prospective 

provenance (that is, ProvMonitor captures implicit provenance). However, ProvMonitor does 

not present a cache mechanism. Cache mechanisms are a great improvement on deterministic 

scenarios, but on scenarios with implicit data flow it is risky to rely on a cache mechanism 

(that supposes some level of determinism). Thus, it is a tradeoff to rely on cache mechanism 

optimizations or to be implicit provenance aware. 

4.6 CDE 

CDE (GUO; ENGLER, 2011) is a system that monitors program execution of x86-

Linux programs using ptrace. It packages the code, data, and environment required to run 

them on other x86-Linux machines. The creation of CDE package is completely automatic. 

Running programs within a package requires no installation, configuration, or root 

permissions. CDE is intended to be used in both academia and industry. However, there is no 

guarantee that all the dependencies required to run a package will be found. Therefore, it is up 

to the user to insert additional files into the package if necessary. 

Using Linux ptrace to monitor the target program’s system calls and to copy all of its 

accessed files, CDE is capable of gathering files implicitly touched during the program 

execution. However, CDE focus is on reproducibility. It does not present a provenance model, 

and do not relate the gathered information to any kind of representation of a workflow. Even 

more, by gathering all system calls it can gather OS and libraries dependencies of computer 

resources not related to the specialized system being executed (workflow). This is useful for 

reproducibility but not necessarily for scientist analysis. This is different of ProvMonitor 

target, which does not focus on packing the experiment. Instead, ProvMonitor focus on 

identifying implicit data flows and gathering its provenance, relating the gathered provenance 

with a workflow representation in a way that helps scientists’ perception and understanding 

about implicit data flow occurrence and effects on the trial. 

4.7 BURRITO 

BURRITO (GUO; SELTZER, 2012) is a linux-based system that automatically 

captures researcher’s computational activities during scripts-based experiments development 

and execution. It provides user interfaces to annotate the captured provenance and then allows 

making queries such as “Which script versions and command-line parameters generated the 
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output graph that this note refers to?” BURRITO consists of two parts: an extensible platform 

that automatically captures provenance and user activity context and a set of applications that 

allow the user to annotate and query the captured metadata stream. 

BURRITO platform consists of a set of plugins that gather user activities on the user 

machine and integrates the gathered information on a MongoDB database. It uses a versioning 

file system (NILFS (KONISHI et al., 2006)) for versioning of source code and data files. 

BURRITO also works at the OS level, gathering OS process access to files (I/O). Additionally 

it has a graphic user interface (GUI) trace daemon to gather user context information on GUI 

interactions such as “which application windows the user is viewing at all times while 

working on the experiments?” Through plug-in, BURRITO can capture user activities within 

specific applications. 

As BURRITO gathers provenance during the workflow (script) development and 

execution, it might gather a high amount of provenance information not directly related to the 

trial. Additionally, as it works with scripts, it does not relate the gathered provenance with a 

user “abstract level of representation” of the experiment, such as workflow activities in a 

SWfMS. However, such limitation could be softened through relating gathered provenance 

with user-defined functions in the scripts. Names of user-defined functions may be closer to 

an abstraction representation of the workflow than other generic functions used in a script, 

even not being as closer as a workflow activity in a SWfMS might be. 

ProvMonitor focuses on gathering provenance during the workflow trial and relates 

gathered provenance (retrospective) on the OS level (file system) with the correspondent 

workflow activity (prospective). Doing so, ProvMonitor relates provenance and file contents 

with the semantics used by the scientist during the workflow creation (workflows activities 

abstraction). Although ProvMonitor may imposes a high storage overhead during a trial, at 

the end ProvMonitor tends to store fewer amounts of provenance and more closed related to 

workflows activities execution than all process (OS) calls on user machine such as what is 

done by BURRITO. 

4.8 SUMATRA 

Sumatra (DAVISON, 2012) presents a set of best practices to simplify reproducibility. 

Among these practices are consistent and repeatable environment, version control, and 

separate code from configuration. Sumatra is a Python library for creating reproducible 

workflows. Operating with script-based workflows, it focuses on reproducibility and works 

by versioning the workflow specification and gathering environment information (such as 
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hardware configuration, operating system information, source code, among others), inputs, 

and outputs of the trial.  

Sumatra uses a VCS for tracking and versioning the workflow specification and stores 

the outputs and parameters using a database. This is different from the main behavior of 

ProvMonitor, which does not focus on versioning of the workflow specification. Instead, 

ProvMonitor focus on following the workflow trial, gathering the changes on files produced 

by data flows during the execution. Thus, ProvMonitor uses VCS as part of the mechanism to 

support the workflow trial. Somehow, ProvMonitor operates as a complement of the SWfMS 

engine. 

Sumatra is composed by two interfaces: a command-line, used to capture the context, 

input, and output of the workflow, and a web browser-based interface for viewing, searching, 

and annotating provenance. Although it uses a VCS, it does not relate the captured implicit 

provenance (using file versions) with prospective provenance data. 

4.9 REPROZIP 

ReproZip (CHIRIGATI; SHASHA; FREIRE, 2013) is an approach similar to CDE. It 

tracks OS calls from script-based workflows (command-line) and creates a package that 

contains all the binaries, files, and dependencies required to execute the workflow. Then, from 

the gathered retrospective provenance, ReproZip infers a workflow specification (it is not the 

prospective provenance) to prepare a package to be executed on Vistrails. After that, it is 

possible to extract the package on another environment, allowing the execution of the 

workflow in a new environment. 

ReproZip only gathers retrospective provenance. Although the zip file contains part of 

the implicit provenance (it does not consider versions of files), VisTrails is not aware of this 

fact. Again, the focus of the approach is on packaging for reproducibility, while ProvMonitor 

focus is on understanding of the workflow trial and on identifying the effects of each 

workflow activity execution. Additionally, ignoring prospective provenance compromises the 

perception of the effects of implicit data flows, since without knowing what the workflow was 

supposed to do, it is not possible to identify a different behavior. Freire et al. (2008) also 

discuss the importance of gathering both prospective and retrospective provenance. 

4.10 NOWORKFLOW 

Not Only Workflow (noWorkflow) (MURTA et al., 2014) is an approach to gather 

provenance on experiments executed as scripts. It is a command line tool, which transparently 
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captures provenance of scripts, including control flow information and library dependencies. 

NoWorkflow is non-intrusive and relies on Software Engineering techniques, including 

abstract syntax tree analysis, reflection, and profiling, to collect different types of provenance. 

The approach was developed for Python, a language with significant adoption by the 

scientific community. However, the ideas presented by the approach are language-

independent and can be applied to other scripting languages. 

The Main difference of noWorkflow approach compared to other script approaches is 

to be non-intrusive (it does not require users to change the way they work) and capable of 

gathering the equivalent of prospective and retrospective provenance (respectively definition 

and execution provenances). In fact, noWorkflow gather three different types of provenance: 

definition provenance, deployment provenance, and execution provenance. Definition 

provenance captures the structure of the script. It is equivalent to the prospective provenance. 

Deployment provenance captures the execution environment information. Finally, execution 

provenance captures the execution log for the script. It is equivalent to the retrospective 

provenance. 

To gather execution provenance, noWorkflow implements specific methods of the 

Python profiling API and registers itself as a listener. During an execution, the profiler 

notifies the tool of all function activations in the source code. Such strategy may lead to a 

huge amount of provenance information. To minimize that, noWorkflow only registers 

function activations related to user-defined functions. Additionally, to be able of gather file 

access, noWorkflow overwrites the system’s open function, altering its behavior to capture 

the content of the file, store it, call the original open system call, and then capture and store 

the file’s content again. Indeed, noWorkflow waits the thread until the open function is about 

to end its scope, before gathering the file content. Therefore, noWorkflow waits by the file 

changes done by the open function. This allows noWorkflow to identify changes on files, 

including on implicit data flows, and relate the change with the function that triggered the 

change. It is similar to what is gathered by ProvMonitor. However, ProvMonitor works with a 

SWfMS and relates the changes on files with the correspondent workflow activities, which is 

more related to an annotation or abstraction representation of a workflow step than the name 

of a function in a script. 

To store the gathered provenance, noWorkflow includes an embedded storage 

mechanism that does not require any installation or configuration. It is composed by a 

relational database and a database for file contents. Provenance on the two databases is related 

through the SHA1 hash codes of the content of files. 
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The main difference between noWorkflow and ProvMonitor is that noWorkflow 

operates over scripts. While ProvMonitor can also operate with scripts, its focus is to operate 

coupled with a SWfMS. Additionally, ProvMonitor relies on a VCS to manage the 

workspace. By relying on an overwrite of a system function, noWorkflow is capable of gather 

all access to files, thus, gathering provenance with a finer grain than the activity granularity 

used by ProvMonitor. However, gathering all file access may lead to information of files 

accesses not related to the workflow trial, thus, increasing the amount of “non-useful” 

provenance gathered. Additionally, by relying on workspaces ProvMonitor relies on and 

provides isolation to the activities/trials executions, preventing conflicts between concurrent 

activities/trials trying to access or change the same versions of files. Finally, relying on VCS 

opens opportunities to use specialized diff algorithms with ProvMonitor to analyze the history 

of changes on files on intra-trial and inter-trial analysis. 

4.11 PROB 

PROB (KOROLEV; JOSHI, 2014) is a system for ensuring provenance and 

reproducibility of Big Data workflows, with the MapReduce model, considering access to 

strictly controlled data. It uses a Git extension (Git-annex) to deal with very large files. Git-

annex stores only hashes of datasets on the main repository and keep the content on a 

separated repository. It allows sharing only the hashes of the datasets without sharing datasets 

content itself. This is important on some scenarios, because some datasets of genetic 

information related to human subjects has strict access control through NCBI and institutional 

IRBs. Therefore, by sharing only files hashes, it is possible to guarantee that the scientists 

have the desired datasets even without sharing the content. Then scientists need to obtain 

datasets directly from the source authority through the appropriate protocols and directly 

inject it into their repository. This allows the workflow sharing without violating the terms of 

dataset usage. 

PROB uses Git2Prov (DE NIES et al., 2013) to extract and store provenance 

information from Git repository into the provenance database. The provenance database for 

the workflow description (built upon PIG (GATES et al., 2009)) (prospective provenance) 

follows the PROV W3C model (LUC MOREAU; PAOLO MISSIER, 2012). This way PROB 

can gather prospective and retrospective provenance information and store them together, 

relating them. 

PROB was developed to work with PIG. PIG is an environment to MapReduce 

workflows that uses Hadoop (APACHE, 2013), an open-source MapReduce implementation. 
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PIG has a specific language (PIG-latin (OLSTON et al., 2008)) to allow the creation of 

MapReduce workflows in a higher abstraction level instead of manipulating directly the 

MapReduce implementations. 

Before starting the workflow trial, PROB needs all nodes with Git-annex and the 

datasets repositories configured with references to each other. Manually configuring 

repositories on each node, referencing each other through remote repositories reference 

settings, may impose a high overhead to scientists. At the beginning and end of each step 

(workflow activity), the repositories states are gathered on each node involved in the step.  

The usage of PIG (or MapReduce workflows) may demand more programming 

knowledge by the scientist then using the abstraction provided by SWfMS (that theoretically 

facilitates workflow development by scientists, since they do not demand improved 

programming skills). On PROB, the scientist needs to know, explicitly, they are using Git 

(specifically Git-annex extension) since the repositories need to be configured and datasets 

contents need to be injected into the repositories on each node. However, the paper that 

presents PROB does not present a more deeply discussion about how each branch is 

manipulated with Git. This may be a problem, since if it uses implicit branching on Git, when 

a repository is pushed to other repositories, Git may reject the push to prevent branches with 

multiple heads. Additionally, the MapReduce parallel data flows may be reduced and 

combined into a single data flow. The paper does not describe any details related to these 

merge situations and what happens with the provenance trace (versioned datasets traces) in 

such circumstances. 

Although built to work on Big Data MapReduce workflows using PIG (upon Hadoop), 

the ideas behind PROB are generic and may be re-used on other scientific workflows tools. 

Indeed, compared with ProvMonitor, the ideas of PROB may be seen as another isolation 

strategy that presents interesting results to MapReduce workflows, especially with datasets 

access restrictions. 

Our work, besides presenting a prototype that uses the ProvMonitor approach, also 

presents a more generic discussion about isolation strategies for workflows trials. The 

ProvMonitor approach proposes to look into the provenance issues through a CM perspective. 

Therefore, isolation strategies are one of the parts of this perspective related to provenance 

gathering. However, there are other aspects related to this provenance perspective through 

CM such as: to keep data traces; to manage data versions and to relate each version with an 

abstraction representation of the workflow created by the scientist (workflow activities on the 

SWfMS perspective); and to answer not only what changed, but also, why it changed. 
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Using Git, PROB can work on provenance gathering, on local dataset management 

(since the files are only references to remote repositories), and even on implicit provenance 

gathering over not explicitly specified accesses to the datasets in the local repositories. 

However, PROB relates the gathered provenance with the abstraction provided by PIG, which 

is closely related to scripts. Although it is possible to adapt PROB, there is no mention about 

dealing with abstractions used by scientists during workflow creation, such as the activities 

representation on workflows developed using SWfMS. 

Concluding, the main difference from ProvMonitor is that ProvMonitor was designed 

to be more generic (not exclusive to MapReduce workflows), and being used coupled to 

SWfMS (e.g., Vistrails and SciCumulus) or other provenance systems (e.g., ProvManager). 

ProvMonitor focus is to gather implicit provenance on workflows developed on SWfMS. 

Finally, as mentioned, PROB strategy might be seen as another specific isolation strategy 

with interesting results on Map-reduce workflows with strictly controlled datasets accesses. 

However, the main idea of the ProvMonitor approach is to set the needed repositories 

automatically, not demanding manual configuration of each repository. 

4.12 RELATED WORK COMPARISON 

The identified approaches presented some general behaviors related to the research 

and secondary questions. To compare these behaviors, some dimensions were observed with 

some possible values. These dimensions are described below, and a comparison of the related 

work through these dimensions is presented in Table 8. 

 Implicit provenance aware/gathering: Indicates if the approach can gather implicit 

provenance or gather provenance of implicit data flows. Possible values are “Yes” or 

“No”; 

 Intermediate data versioning: Indicates if the approach gathers intermediate data 

and if it keeps all versions gathered, even when versioning is not explicitly used. 

Possible values are “Yes” or “No”; 

 Relates Prospective and Retrospective provenances: Indicates if the approach 

relates prospective and retrospective provenance. Possible values are “Yes” or “No”; 

 VCS uses: Indicates how the approach uses a VCS. Possible values are “None” if the 

approach does not use a VCS; “Source control” for the approaches that uses VCS for 

versioning the source code of the experiment; “Data” for approaches that uses VCS for 

versioning data files; “Workspace control” for approaches that uses VCS to control a 

specific workspace; 
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 Gather mechanism (level): Indicates the provenance gathering mechanism used by 

the approach. Possible values are “OS” for approaches relying on OS capabilities to 

gather provenance; “OS through libraries (such as Python libraries)” for approaches 

relying on OS capabilities, but using libraries to access OS gathering resources; 

“Workflow” for approaches that gather provenance on the workflow level, e.g. 

through a SWfMS; “Database” to approaches relying on database storage capabilities 

and resources monitoring (e.g., services monitoring) to gather provenance; “VCS” for 

approaches relying on VCS gathering capabilities; “Versioning file system” for 

approaches relying on file systems with versioning capabilities to gather provenance; 

 Experiment representation: Indicates the kind of workflow representation that the 

approach deals with. Possible values are “None” for approaches that completely 

ignore the scientific workflow concept; “OS process” for approaches that represent an 

execution based on the OS resources abstraction such as process and service IDs; 

“Script” for approaches whose workflow representation is based on scripts, using 

methods and classes as notation; “Workflow” for approaches that deal with the 

abstract representation of workflows such as what is done by SWfMS; “Generated 

Workflow” as the same as “Workflow”, but to approaches that references not the 

original workflow but a self-made one, calculated somehow; 

 Gathering moment: Indicates when provenance is gathered. It is important 

information, because it provides hints about the amount of provenance collected and 

the moment the provenance gathered is related. For example, provenance gathered 

during workflow development my help analysis about workflow evolution, 

provenance gathered all time may help analysis about environment, and provenance 

gathered during the workflow trial may help analysis about data flows and workflows 

results. Possible values are “All time” for approaches that gather provenance all time, 

about everything happening on the environment; “Execution” for approaches that 

gather provenance during the trial or when the workflow is just about to start the trial; 

“Development” for approaches that gather provenance during the workflow 

development; “Workflow instrumentation” for approaches that gather provenance 

during workflow instrumentations/modifications, after workflow development and 

before workflow running; 
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Table 8: Related work comparison 

Related 

Work 

Comparison dimensions 

Implicit 

provenan

ce aware 

/ 

gathering 

Intermediat

e data 

versioning 

Relates 

Prospective 

and 

Retrospective 

provenances 

VCS uses 

Gather 

mechanism 

(level) 

Experiment 

representation 

Gathering 

moment 

PASS Yes No No None OS OS Process All time 

ES3 Yes No No None OS OS Process Execution 

ASTRO-WISE Yes Yes Yes 

Persistence 

classes 

track 

Database Script Execution 

STRONGLINKS No Yes Yes Data VCS Workflow Execution 

CDE Yes Yes No None OS None Execution 

BURRITO Yes Yes Yes none  

OS and 

Versioning 

file system 

Script / OS 

Process 
All time 

SUMATRA Yes Yes No 
Source 

Code 

VCS / OS 

through 

Python 

Libraries 

Script 
Development 

and Execution 

REPROZIP Yes No No None 

OS through 

Python 

Libraries 

Script / 

Generated 

Workflow 

Execution 

NOWORKFLOW Yes Yes Yes None 

Python 

Libraries 

and OS 

Script Execution 

PROB Yes Yes Yes 
Workspace 

control 
VCS Script Execution 

PROVMONITOR Yes Yes Yes 
Workspace 

control 

VCS / OS 

through file 

system 

metadata 

Workflow 

Workflow 

instrumentation 

and Execution 

4.13 FINAL REMARKS 

The main difference between these approaches and ProvMonitor is that ProvMonitor 

works on both workflow and OS domains, being capable of associate provenance captured at 

OS level with the workflow activities that produced them. Additionally ProvMonitor uses 

VCS to follow the workflow trial, not only as a storage system or for workflow versioning, 
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and uses configuration management techniques (such as VCS capabilities) to help on the 

gathering, storage, and analysis of such data. Thus, it helps scientists to understand data 

transformations along the trial. 

The exception is the PROB approach, which is the closer related to the ProvMonitor 

approach. As discussed, ProvMonitor presents a more generic discussion about isolation 

strategies, focusing on gathering implicit provenance on workflows developed using SWfMS 

workflows representations, and designed to be coupled with SWfMS or provenance systems. 

Therefore, PROB strategy may be seen as another isolation strategy, specific to MapReduce 

workflows with strictly controlled dataset accesses. 

The next Chapter presents the conclusion of this work.  
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CHAPTER 5 – CONCLUSION 

5.1 CONTRIBUTIONS 

Provenance has still many open issues to be tackled, especially those related to 

intermediate data versioning and implicit data flow provenance. The main contribution of this 

work is the introduction of a new approach to gather implicit provenance while versioning 

intermediate data, through a CM perspective, entitled ProvMonitor. The CM perspective 

helped to identify the need of isolation on the gathering of provenance during a workflow 

trial. This approach works as a hybrid approach, operating on both workflow and OS domains 

considering context isolation (workflow through workspaces and version history through 

branches), gathering provenance related to implicit data flow and relating the gathered 

provenance with the abstract representation of the workflow (workflow activities) that 

produced such provenance. The concepts of the approach are general and could be applied on 

different SWfMS. Indeed, ProvMonitor successfully added implicit provenance awareness on 

SciCumlus SWfMS and Vistrails. 

The approach was evaluated by a case study on a real scientific workflow (SciPhy). 

An expert researcher (pharmaceutical scientist) supported the evaluation. The objective was to 

evaluate the effectiveness and the efficiency of the approach, evaluating the benefits of 

gathering implicit provenance on the workflow analysis and results understanding. The 

effectiveness evaluation targeted on evaluating the approach gathering capabilities, query 

capabilities over the gathered information, and how the scientist could benefit from querying 

the gathered information. The efficiency evaluation targeted to evaluate the overhead imposed 

by the approach on a workflow trial over two different dimensions: execution time and 

storage consumption. 

Experimental results have shown the effectiveness of the approach on the implicit 

provenance gathering by considering context isolation and relating provenance information 

gathered in each domain. This effectiveness, in addition with related work that also use VCS 

to support provenance gathering and storage, shows that CM presents an interesting 

perspective to deal with the provenance issues. Indeed, the understanding about the several 

presented strategies shows that a provenance gathering strategy that is aware of the workflow 

trial behavior can contribute more than just capturing provenance. This is another contribution 

of this work: to apply a CM perspective on the gathering of provenance information during 
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workflow trials, instead of using CM tools only as storage of data or to support the workflow 

development steps, such as versioning the workflow specification.  

Thus, the strategy we proposed allows the gathering of provenance information even 

on implicit data flows. Additionally, by manipulating data on a controlled way, it is also 

possible to achieve data management capabilities, such as data versioning, historical data 

storage control, support for data transfer, and more. By managing both data and provenance it 

is possible to achieve a tighter coupling between data and its provenance when compared to 

approaches that manage provenance and data separately (MUNISWAMY-REDDY et al., 

2006).  

Finally, relating prospective and retrospective provenance, while controlling implicit 

provenance, opens some interesting analysis possibilities inspired on CM. It is possible to 

validate a workflow by verifying: if everything that was specified is being executed and if 

everything that is being executed was specified, or, at least, if it is being observed and 

analyzed. Such perception allows the scientist to identify the influence of implicit data flows 

or even the influence of intermediate data over the results. Yet, under the CM perspective, it is 

also possible to perform intra-trial and inter-trial analysis. The first one compares changes 

produced by two different activities at the same trial. The second compares changes produced 

by the same activity but in different trials. All of this grants to the scientists opportunity to 

improve their own understanding about the trial, observing the impact of implicit data flows 

and parameters changes on each workflow activity and on the workflow results. 

5.2 LIMITATIONS 

Our experiments also highlighted the overhead imposed during workflow trials, 

evidencing that some gathering strategies can be prohibitive in some situations. Although we 

are convinced of the benefits of using VCS on the provenance gathering and storage 

processes, results has shown that ProvMonitor has to be more carefully tailored to the 

SWfMS due to the imposed overhead. Part of this overhead is due to the chosen gathering 

strategy. However, other factors may influence the results. For example, identification of file 

accesses is done by accessing and reading each file metadata. Although ProvMonitor tries to 

optimize it by accessing files only inside accessed directories, some accessed directories may 

present a large number of files to be verified. Thus, a more efficient way of identifying file 

accesses should be explored. 

To minimize the overhead imposed by ProvMonitor, some Git optimizations 

mechanisms may be explored. Git provides support to hard-links (over file systems which 
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support them) to avoid unnecessary data replication. Through hard links, a copy of the content 

of a file is done only when some change occurs, since at this moment different references to 

the same file start to point to different files contents. Other interesting mechanism provided by 

Git is repository sharing. Through this resource, two different workspaces may share the same 

repository (content objects). However, repository sharing has to be used only locally 

(workspaces at the same disk/storage). Both hard-links and repository sharing may provide 

two benefits: avoid data replication and speed up the workspace setup.  

To minimize the overhead imposed by identifying files access, instead of sequentially 

verifying accesses to files after each activity, a listener, tied to the operating system, could be 

used to monitor the workspace. The listener would react to OS notifications of accesses on 

workspace files in the moment of the accesses, thus eliminating the need of scanning the 

entire workspace after each activity, avoiding overhead of execution time spent on workspace 

scanning. Indeed, Java 7 provides an API called WatchService (ORACLE, 2014) that could 

be explored. This API offers a listener that operates over the Java Virtual Machine (JVM) 

providing abstraction about the file system and the OS. 

It is important to highlight that ProvMonitor works at the scope of a workspace. Thus, 

it is important to guarantee that the experiment will work only inside the workspace. This 

could be achieved by coupling the SWfMS together with ProvMonitor, as we did with 

SciCumulus in this work. Another option is using a workflow isolation strategy, setting the 

workspace on a root directory, but this can decrease the quality of provenance gathered by 

sacrificing isolation. Finally, it is also possible to use OS resources such as the “chroot” 

command that redirect access from a directory to another, allowing redirecting file system 

accesses to the desired workspace. 

Another limitation of the approach is related to its gathering granularity. ProvMonitor 

works by gathering provenance considering the granularity of a workflow activity. Through a 

CM perspective, it seems reasonable to consider activity as a milestone of a workflow 

computation completion, since an activity represents an abstract annotation (done by the 

scientist that specified the workflow) about a workflow computation/step. Thus, gathering 

provenance about an activity seems to present an interesting grain, not too fine neither too 

coarse. However, some workflow activities may execute more than one computation, 

presenting its own “internal” implicit data flow. By gathering provenance at the activity 

granularity, only the result of an activity execution is gathered. The activity “internal” implicit 

data flow is lost. Thus, it could be interesting to achieve a finer grain of provenance gathering 

in some situations like debugging an activity. Again, the use of a listener could benefit of OS 
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notifications to react on changes into the workspace, triggering VCS commits at the 

workspace in the moment that the changes occur, not only at the end of an activity execution. 

Thus, it could allow provenance gathering during the workflow activity execution, not just at 

the end of it. This could be a strategy to achieve finer grain provenance gathering (other than 

the workflow activity). 

Another benefit of a listener is to explore OS monitoring capabilities instead of 

building upon the application layer. Monitoring the workspace with a listener, allows the 

system to react on every change into the workspace, for example, by gathering the changed 

file and storing it on a separated repository. This strategy is similar to what is done by the 

Strong Links approach (KOOP et al., 2010b). The difference is that Strong Links operates 

only with what is defined in the workflow specification, while the listener operates at the OS 

domain and is aware of implicit data flows in the managed workspace. Additionally, isolating 

the repository from the workspace would avoid data replication/redundancy. This could also 

be achieved through a central VCS (e.g., SVN) instead of a distributed VCS (e.g., Git) or 

cloning with the Git share capabilities. However, relying on a listener instead of a VCS to 

manage the workspace improves the flexibility of the workspace setup and management at the 

price of the responsibility to support the benefits provided by a VCS. Thus, the gathering 

mechanism would need to manage the workspace, relying on some of the same foundations of 

VCS (isolation of workspace, isolation of history, and separating working copy of 

history/versions) instead of using a VCS to manage the workspace directly. This could also be 

improved by enriching the provenance model with some capabilities of some VCS (used as a 

central repository) to identify objects’ similarities. Identifying similarities between files could 

provide hints about a file origin, transformations, and about file relationships. 

Finally, the discussion about isolation and gathering strategies showed that following 

the workflow trial might lead to forks and merges situations related to data flows during a 

trial. However, the current version of ProvMonitor cannot deal with more complex merge 

situations. It is only capable of dealing with forks that do not merge back to a single data flow 

or to deal with concurrent data flows that go back to a single data flow through the selection 

of one data flow (in detriment of the others). Thus, support to data flows merge is a limitation 

of this work. 

5.3 FUTURE WORK 

We could identify some improvements and research possibilities to extend the 

provenance gathering capabilities and to better explore and query the gathered provenance. In 
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the remaining of this section, we describe some possible researches and improvements in the 

ProvMonitor approach. 

ProvMonitor is a hybrid approach that relies on the workflow and OS domains. 

However, the action over the OS domain is restricted to files. Thus, an interesting research 

opportunity is to extend the implicit gathering capabilities beyond the files. For example, 

gathering implicit provenance over networks, streaming, or database accesses, but identifying 

ways of relating the gathered provenance with the workflow activities or workflow 

representation that produced the gathered provenance.  

This work presented some different isolation strategies that could be used on different 

provenance gathering strategies. On the other hand, the PROB approach (KOROLEV; JOSHI, 

2014) presented a different strategy that seems to be efficient to MapReduce workflows with 

data access restrictions. Yet there are other specific workflows situations that could benefit of 

specific isolation and gathering strategies. Thus, a research opportunity is to explore the 

concepts behind the ProvMonitor approach to develop and improve isolation and provenance 

gathering strategies to specific situations among specific workflows domains. 

In this direction, following the trial behavior and data flow can lead to merge 

situations. As discussed, ProvMonitor merge capabilities are quite limited. Thus, a research 

opportunity that may present challenging obstacles is to identify strategies to provide support 

to automatic merge of data flows. Following the data flow and managing merge of data flows 

may evidence the critical path of data that effectively contributed to the workflow result and 

data that do not presented any kind of influence over the results. Such perception may be 

explored together with VCS pruning capabilities, as a strategy to control provenance 

explosion in the provenance repository (one of the open issues related to provenance 

management) discarding provenance of irrelevant data flows or not related to the workflow 

result (“junk provenance”). Alternatively, instead of discarding provenance, some provenance 

compression techniques may be developed. 

Finally, after gathered, provenance must be queried and analyzed to be useful. Thus, a 

user-friendly query and exploratory mechanism must be developed to help scientists to 

explore data provenance in a useful fashion. Such query mechanism must be capable of 

querying over different provenance databases (e.g., provenance in the relational databases or 

VCS repository), providing an abstraction of the persistence resources being used. It must 

allow the scientists to worry only about the workflow abstraction, querying about workflow 

activities and produced/consumed files, instead of different database implementations, 

specific VCS repository resources, and other specific implementation resources such as VCS 
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branches. Therefore, the resources of the gathering mechanism must be seen only as the 

plumbing of a “provenance suit”. Thus, it would allow the scientists to look at the workflows 

trials, results, and provenance over the abstraction of the workflow representation. In other 

words, it would allows scientist to look at workflows as files and executions/trials, instead of 

OS process, branches, repositories, and other “low level" resources. Indeed, such query 

mechanism may be coupled together with ProvMonitor and ProvManager, composing a 

provenance suit, independent of SWfMS, but capable of operating together with any SWfMS. 
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