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Resumo

Algoritmos que mapeiam cada elemento de entrada para um único elemento de saída
podem facilmente utilizar todo o massivo poder de processamento paralelo oferecido pelas
GPUs atuais. Por outro lado, algoritmos que precisam seletivamente descartar entradas ou
mapeá-las para um ou mais elementos de saída, processo que é chamado de compactação
e expansão de stream, são difíceis de serem implementados na GPU. Neste trabalho, uma
estrutura de dados chamada Histogram Pyramid (também conhecida como HistoPyramid)
será apresentada como uma solução e�ciente para implementar esse tipo de reorganização
de dados na GPU.

O Marching Cubes é um algoritmo tradicional de computação grá�ca que pode se
bene�ciar dessa estrutura de dados. Ele é usado para extrair uma malha de triângulos
a partir de uma função implícita. Ele pode ser usado, por exemplo, como uma maneira
rápida para se visualizar simulações de �uidos baseadas no método de Smoothed Particle
Hydrodynamics. Este trabalho vai explorar uma implementação do algoritmo Marching
Cubes baseada em HistoPyramid e também compará-la com a implementação equivalente
utilizando o geometry shader. Um solver de �uidos que roda completamente na GPU
também será apresentado. Ele usa a HistoPyramid para deixar partículas vizinhas orde-
nadas de maneira próxima na memória, o que é essencial para uma boa performance de
simulação. Ambos os algoritmos podem ser utilizados em conjunto, formando uma bibli-
oteca completa para simulação e renderização de �uidos em GPU. Técnicas avançadas do
OpenGL 4.3, como os compute shaders, foram usadas para maximizar a performance e a
�exibilidade dos algoritmos desenvolvidos.

Palavras-chave: Histogram Pyramid, Marching Cubes, Smoothed Particle Hydrodynam-
ics.



Abstract

Algorithms that map each input element to a unique corresponding output can easily
harness all the massive parallel processing power o�ered by today's GPUs. On the other
hand, algorithms that need to selectively discard inputs or map them to one or more
output elements, what is called stream compaction and expansion, are di�cult to im-
plement on the GPU. In this work, a data structure called Histogram Pyramid (also
known as HistoPyramid) will be presented as a solution to implement this kind of data
re-organization e�ciently on the GPU.

The Marching Cubes is a traditional computer graphics algorithm that can bene�t
from this data structure. It is used to extract a triangle mesh from an implicit func-
tion. It can be used, for instance, as a fast way to visualize �uid simulations based on
the Smoothed Particle Hydrodynamics method. This work will explore a HistoPyramid
implementation of the Marching Cubes algorithm and also compare it with its geometry
shader based counterpart. A �uid solver that runs fully on the GPU will also be presented.
It also takes advantage of the HistoPyramid in order to sort neighbor particles close to-
gether in memory, which is essential for good simulation performance. Both algorithms
can be used in conjunction, forming a complete GPU accelerated framework to simulate
and render �uids. Advanced OpenGL 4.3 techniques, like compute shaders, were used to
maximize the performance and �exibility of the algorithms developed.

Keywords: Histogram Pyramid, Marching Cubes, Smoothed Particle Hydrodynamics.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is an increasingly popular research area in the last

few decades. This is due to the many applications it has in the most diverse �elds, such as

engineering, medicine, illustration and entertainment. For instance, among other things,

it is useful for simulating air�ow around an aircraft, blood �ow in the human body and

to create realistic water bodies both in movies and interactively in games.

One of the biggest challenges of this area comes from the complexity of the physical

behavior of �uids. To model convincingly the way a �uid moves and reacts to external

forces in the real world requires complex mathematics and plenty of processing power.

This fact severely limits the quality and scale of real-time interactive �uid simulations.

In the last years, graphics processing units (GPUs) have gotten progressively more

�exible and programmable. This has allowed the processing of a wide range of applications

to be accelerated by them. But despite current generation GPUs o�ering extremely

high performance, often in the range of a few tera�ops (trillion �oating point operations

per second), they have a unique massively parallel architecture, which makes certain

algorithms really hard to implement on them in an e�cient manner.

Some architecture limitations include the need to use specialized parallel data struc-

tures and deal with possible race conditions, reduced global memory throughput if coales-

cent access patterns are not used while reading or writing data, and also weak divergent

control �ow performance [32].

On the other hand, there are the so called embarrassingly parallel algorithms, which

are more straightforward to implement on massively parallel processors. Examples of

such algorithms are most graphics and image processing tasks (GPUs were designed for

them after all). Grid based �uid simulations are also embarrassingly parallel. But in spite
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Figure 1.1: The classic dam break �ow simulation. Time passes from left to right.

of being a better �t for the current GPUs architecture, grid based methods need huge

amounts of memory to simulate large �uid bodies and in addition they are only able to

handle a limited region of space. In other words, they only operate on a �xed domain.

Particle based simulations are another way to model �uid �ows. They generally

employ a method called Smoothed Particle Hydrodynamics (SPH) [24], use less memory

and allow the �uid to exist in an in�nite domain, where it can move freely to anywhere in

space. The SPH method also trivially adapts to topological changes in the �uid surface.

Despite these advantages, they are very hard to implement e�ciently on GPUs because

they exhibit non-coalescent memory access patterns, specially when particles need to

search for their neighbours. To alleviate this situation, particles need to be spatially

sorted into memory. A lot of research have been done in this area in the last few years

and there are some successful SPH implementations on the GPU [14, 8, 20]. In this work,

a particle sorting solution using the HistoPyramid data structure will be proposed.

It is also important to consider how to render the simulation data in a realistic,

convincing and precise way. There are many ways to do it: some methods are screen

space based, some are mesh based, among others. For this work the Marching Cubes

algorithm [22], which is a mesh based solution, was chosen. Figure 1.1 illustrates how the

visualization looks like. This method has some advantages. For instance, the generated

mesh represents the geometry of the �uid surface and it also can be post-processed in

many ways.

Both the particle sorting and the Marching Cubes algorithms can be seen as stream

compaction and expansion problems, which are hard to implement well on the GPU.

Graphics processors usually process data in arrays or grids, and the output count is

exactly the same as the input count. However, in this kind of problems, each input

element can be either discarded or used to calculate one or more outputs. This is clearly

a hard type of task to parallelize, as a naive implementation will almost always not be

able to evenly balance the computing load among the GPU threads, which is detrimental

performance wise.
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This work will explore a data structure called Histogram Pyramid (also known as

HistoPyramid) and the associated parallel algorithms used to build and traverse it in

order to implement algorithms that need this kind of data re-organization e�ciently on

the GPU. In particular, both a particle sorting algorithm and a Marching Cubes version

that take advantage of the HistoPyramid will be presented. This will lead to a complete

�uid framework with both simulation and rendering being executed fully on the GPU.

Furthermore, aiming to maximize the performance and �exibility of the algorithms

developed, advanced OpenGL 4.3 techniques like compute shaders and the draw indirect

idiom were used.

1.1 Contributions

The main contributions of the present work are:

� A compute shader based 3D HistoPyramid implementation. It can process input

elements from a 3D array of data.

� A GPU bucket sort algorithm based on the 3D HistoPyramid data structure and

tailored for sorting SPH neighbouring particles into GPU memory to allow fast

coalesced memory access.

� A weakly compressible SPH simulator that runs fully on the GPU, using compute

shaders and the aforementioned bucket sort.

� A Marching Cubes implementation based on the 3D HistoPyramid.

� A comparison between the HistoPyramid based Marching Cubes and a more tra-

ditional GPU version of it that uses the geometry shader to perform the stream

compaction and expansion.

� An application that puts together the SPH simulator and the Marching Cubes

renderer, providing a complete real-time �uid simulator.
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1.2 Dissertation Structure

The remainder of this dissertation is structured as follows. Chapter 2 provides an overview

of previous and related works. Chapter 3 will describe the HistoPyramid data structure

and the algorithms needed to build and traverse it. Next, Chapter 4 will talk about �uid

simulation, explaining in detail the SPH method that was used in this work and also

how it was implemented on the GPU. After that, Chapter 5 will explore �uid rendering

techniques, giving special attention to the Marching Cubes algorithm. Chapter 6 discusses

the results obtained in this work. Finally, Chapter 7 concludes this dissertation and also

proposes future improvements to this work.



Chapter 2

Related Work

The Navier-Stokes equations are the basis used to describe the dynamics of �uids. There

are two approaches to solve them and track the motion of a �uid: the Eulerian viewpoint

and the Lagrangian viewpoint [2].

The Eulerian approach is grid based and looks at �xed points in space to see how

measurements of �uid quantities, such as density and velocity, at those points change in

time. Foster and Metaxas [11] employed this approach to successfully model the motion

of a hot, turbulent gas. Later, Stam [34] proposed an unconditionally stable model which

still produced complex �uid-like �ows even when large simulation time steps were used.

His work was an important step towards real-time simulation of �uids. More recently,

Chentanez and Müller [3] presented a new Eulerian �uid simulation method that uses

a special kind of grid, called the restricted tall cell grid, to allow real-time simulations

of large scale three dimensional liquids. Chentanez and Müller [4] also presented a GPU

friendly purely Eulerian liquid simulator that is able to conserve mass locally and globally.

The Lagrangian approach is particle based and it is an irregular discretization of the

continuum. It measures �uid quantities at particle locations and the particles freely move

with the �uid �ow. Examples of Lagrangian methods are the Moving-Particle Semi-

Implicit (MPS) [19, 30] and the Smoothed Particle Hydrodynamics (SPH), which was

developed by Gingold and Monaghan [13] and independently by Lucy [23] mainly for

astronomy simulations of large gas dynamics. The SPH method uses smoothing kernels

for the Navier-Stokes discretization. It has been used in the most diverse research �elds.

For instance, Müller et al. [26] created an interactive blood simulation for virtual

surgery to allow medical training. In fact, Müller et al. [24] were the �rst to develop a

fast enough SPH solver that was suitable to be used in interactive systems and allow user
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manipulation. Many of the interactive SPH implementations that followed were based on

their work, including the model used in the present work.

In the �eld of super�cial �ows over terrains, Kipfer and Westermann [18] employed

the SPH model to create physically realistic simulations of rivers in real-time, allowing it

to be used in games and virtual reality environments. Regarding �uid-solid interactions,

Solenthaler et al. [33] described a SPH based model to simulate liquids and deformable

solids and their interactions. The model described by their work is also useful to simulate

multi-phase �ows (liquid-solid), as was also demonstrated by Hu and Adams [16].

One challenging problem that particle based �uid simulations have to deal with is

high compressibility and oscillations, which are undesired properties that look unnatural

and particularly strange in liquid simulations. Becker and Teschner [1] proposed to use

the Tait equation to make a weakly compressible �uid formulation with very low density

�uctuations. They have also addressed surface tension, which plays an important role to

handle small details in the simulations.

2.1 Smoothed Particle Hydrodynamics on GPUs

Recently, some researchers started to study ways to implement the SPH algorithm on

GPUs. The simulation can be made many times faster by exploring their massive compu-

tational power. However, due to their unique architecture, this is not a straightforward

task. The algorithm to �nd the neighbours of a given particle, which is necessary to calcu-

late the forces acting on it, is specially hard to implement on the GPU. Harada et al. [14]

were one of the �rst able to implement a SPH simulation running fully on the GPU.

Silva Junior et al. [9, 8] developed a heterogeneous system to leverage both GPU and

multi-core CPU processing power for real-time �uid and rigid body simulation supporting

two-way interactions. Krog [20] investigated how to create an interactive snow avalanche

simulation, using the Nvidia CUDA technology to program the GPU. He started with a

simple SPH model, which was suitable for simulating low-viscosity incompressible New-

tonian �uids (e.g. water-like �uids). Then he made a more complex SPH model, which is

more accurate and has support for simulating non-Newtonian �uids with viscosities deter-

mined by empirical models. Using this model he was able to simulate �owing avalanches

on a terrain at interactive frame rates.
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2.2 Fluid Rendering

Modeling the physics that govern the movement of a �uid is only half of what is necessary

to make a complete simulation. Another important aspect is how to create images from

the abstract mathematical representation of the �uid. This is addressed by the research

of �uid rendering algorithms, which calculate how light interacts with the �uid surface

and interior.

There are a number of ways to render a �uid. Some are more realistic and show a

greater amount of details; others have faster performance and thus are more suitable for

real-time applications. This work is based on a traditional and straightforward approach

called isosurface extraction. A GPU version of the Marching Cubes algorithm is used to

create a 3D mesh representing the �uid surface.

The Marching Cubes algorithm was originally developed by Lorensen and Cline [22]

in 1987 as a way to create triangle models of constant density surfaces from 3D medical

data. This algorithm is widely used until today and many extensions and improvements

have been proposed by several authors. Newman and Yi [27] have done a survey of the

most representative derived works. Custódio et al. [7] implemented a variant of Marching

Cubes that tries to generate topologically correct manifold meshes for any input data.

Müller et al. [25] proposed an alternative to render particle-based �uid models called

screen space meshes. This method allows the generation and rendering of surfaces de�ned

by the boundary of a 3D point cloud. It �rst creates a 2D screen space triangle mesh that

later is transformed back to 3D world space for the computation of lighting and shading

e�ects. It is worth noting that this algorithm only generates visible surfaces and o�ers

view-dependent level of detail for free.

More recently, van der Laan et al. [36] presented a screen space rendering approach

that is not based on polygonization and as such avoids tessellation artifacts. It alleviates

sudden changes in curvature between the particles to create a continuous and smooth

surface and prevent it from looking �blobby� or jelly-like. Also, like the screen space

meshes method, it only renders visible surfaces and has inherent view-dependent level of

detail.

Other techniques that are suitable for �uid visualization are Surface Raycasting [17],

Volume Rendering [12] and Ray-Tracing [29].
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2.3 The HistoPyramid Data Structure

The HistoPyramid has been successfully employed to implement many stream compaction

and expansion problems on the GPU. Dyken et al. [10] presented a reformulation of

the Marching Cubes algorithm as a data compaction and expansion process and took

advantage of the HistoPyramid to make an implementation that outperformed all other

known GPU-based isosurface extraction algorithms in direct rendering for sparse or large

volumes at the time their work was published. It only required OpenGL 2.0 and in order to

do so it used a �at 3D layout to store the HistoPyramid data, i.e., a large tiled 2D texture

to represent the 3D scalar �eld and output count data. The present work Marching Cubes

implementation is based on Dyken's approach. However, it utilizes modern OpenGL 4.3

features (e.g. compute shaders) to implement a truly 3D HistoPyramid.

Ziegler et al. [38] showed how a HistoPyramid can be utilized as an implicit indexing

data structure, allowing them to convert a sparse 3D volume into a point cloud entirely on

the graphics hardware. Their method can be used to create visual e�ects, such as particle

explosions of arbitrary geometry models. It is also able to accelerate feature detection,

pixel classi�cation and binning, and enable high-speed sparse matrix compression.

As far as the author knows, there is no article in the literature discussing how to apply

the HistoPyramid in the context of sorting neighbour particles for the SPH algorithm.



Chapter 3

The HistoPyramid Data Structure

Some algorithms process each input element always generating a unique corresponding

output. However, in many other cases, the ability to selectively discard inputs or map

them to one or more output elements is required. This type of processing is called stream

compaction and expansion and is di�cult to implement properly on the GPU, as a naive

implementation will almost always not be able to evenly balance the computing load

among the GPU threads and so will not take advantage of its full processing power.

The HistoPyramid [10], short for Histogram Pyramid, is a data structure that allows

e�cient implementation of stream compaction and expansion algorithms on parallel archi-

tectures. Many problems may be modeled in this way and can bene�t from this approach,

as discussed in the related works section. In this work, the capabilities of this data struc-

ture will be leveraged to implement both an e�cient GPU particle sorting method for

a �uid simulator and also the Marching Cubes polygonization algorithm that is used to

create a visualization of the �uid surface.

Instead of iterating through the input elements and discarding them or generating

their corresponding output straight away, an algorithm must be split in two main exe-

cution phases in order to be able to use the HistoPyramid. After the data structure is

allocated appropriately in GPU memory, the �rst phase kicks in and �lls it using a pred-

icate function to determine each input element multiplicity, i.e., how many outputs each

input will generate. After that, a parallel reduce operation is performed and calculates the

total number of outputs. Then, the second phase allocates one GPU thread per output

element. Each thread traverses the HistoPyramid to �nd out for what input element and

for which of its outputs it is responsible for. Then it can solve the original problem for

that particular item and write the result in an appropriate location of the GPU memory.
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3.1 Data Structure Description

The HistoPyramid is a stack of textures that looks a lot like a standard mipmap pyra-

mid [37] and also exhibits similar memory access patterns, thus taking full advantage of

all GPU optimizations related to mipmapping, such as the dedicated texture caches.

The array of input elements, also known as the input stream, may be an 1D, 2D or

3D array. The texture that sits at the base level of the HistoPyramid must have the same

number of dimensions as the input stream and the length of each of its sides must be at

least as large as the same side is in the input array. In addition, the length of all of its

sides must be equal and also a power of two. Input arrays with asymmetric or non power

of two side lengths require appropriate padding to be applied (often it is enough for the

predicate function to return zero for the output count of the extra non-existent elements).

The texel count of the base level represents the maximum number of input elements that

a given HistoPyramid can handle. The value contained in each texel of the base level

encodes the output count of a given input element.

Similarly to the layout of a traditional mipmap stack, at each subsequent level of the

HistoPyramid the texture dimensions are halved until the top of the stack is reached.

There resides a texture with a single texel, which is called the top element. The value

stored in the top element is the �nal output stream length, i.e., the total number of

elements contained in the output stream.

Note that it is actually possible to process a 3D array of input elements with a 2D

HistoPyramid by using what is called a �at 3D layout [15], i.e., 3D data laid out as slices

tiled in a 2D texture. However, this approach adds extra burden and complexity to the

implementation, as extra code is necessary to remap the texture coordinates. Hence, in

spite of being a useful technique for older hardware, it is not really needed anymore.

OpenGL 4.3 hardware and newer o�ers not only compute shaders which can natively

dispatch 3D work groups to the GPU but also the ability to perform arbitrary image store

operations that allow shaders to directly write data to a speci�c texel of a 3D texture [6].

These modern OpenGL features allow a more straightforward implementation of a truly

3D HistoPyramid.

Another interesting layout modi�cation is called the 2D vec4-HistoPyramid [38]. In-

stead of using a single channel texture and storing only one value per texel, a four channel

RGBA texture is used to store four values per texel. This halves the texture sizes along

both dimensions, allowing bigger HistoPyramids to be built under the same hardware
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limitations (each GPU has a maximum texture size limit). It also cuts texture fetches by

a factor of 4 during the HistoPyramid processing and on top of that, given the fact that

graphics hardware is extremely optimized to fetch RGBA values, it generally improves

the performance of the algorithm.

Figure 3.1: Sample input and output streams.

Figure 3.1 shows an example of input stream and also the corresponding output stream

it generates after processed. It can be observed that the �rst element of this input stream

allocates zero outputs for itself. It means this element is discarded, or in other words, that

stream compaction will be performed. The second element allocates exactly one output,

which means that stream passthrough will be performed and the stream size will not be

a�ected by this particular case. On the other hand, the fourth input element allocates

three outputs, thus performing stream expansion.

Looking by the side of the output stream, after the HistoPyramid traversal is per-

formed, some conclusions can be reached. For instance, the source used to calculate the

�rst output element is the second input element. Other observation is that the �fth out-

put element is the �rst output generated by the sixth input element; and the sixth output

element comes from the second output created by the sixth input element.

Figure 3.2 shows the HistoPyramid that was built and used while processing the

example above. Each value of the base level represents the output count of a given input

element. At each new level, the texture size is halved and the output counts are summed.

This process continues until the top level is reached. This last level only contains one

element which is the total output count of the algorithm. Or in other words, it is the size

that the output stream will have.
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Figure 3.2: Sample 1D HistoPyramid.

Note that in this simplistic 1D example, only two elements of the previous levels are

summed to generate an element of a subsequent level, which only halves the texture size.

In the 2D case, a 2 x 2 square is considered (4 elements) and both the texture width and

height are halved. So the next level of a 2D pyramid actually has only one fourth of the

number of elements of the previous one. Finally, in the 3D case, a 2 x 2 x 2 cube is taken

into account (8 elements) and the depth of the texture is also halved. Therefore, each

subsequent level of a 3D pyramid only has one eighth of the element count of its previous

level.

3.2 Data Structure Initialization

Algorithm 1 describes the steps that are necessary to initialize the HistoPyramid data

structure on GPU memory. First, all the compute shaders that are required to build and

traverse the data structure should be compiled and loaded into GPU memory. Next, the

largest length of all of the input stream dimensions must be determined. Then, based

on this, a length is chosen for the side of the base level of the HistoPyramid. It must

be a power of two and ensure that all of the input stream elements will �t into the data

structure. After that, it is possible to calculate how many levels the HistoPyramid will

have by using a simple logarithmic formula.
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Algorithm 1 Data Structure Initialization
1: Load the required compute shaders on the GPU;

2: largestDimension⇐ max(inputWidth, inputHeight, inputDepth)− 1;

3: hpBaseSideLength⇐ 1;

4: while hpBaseSideLength < largestDimension do

5: hpBaseSideLength⇐ hpBaseSideLength× 2;

6: end while

7: hpLevels⇐ (ln(hpBaseSideLength)÷ ln(2)) + 1;

8: Allocate the HistoPyramid texture on the GPU memory;

Tex Dimensions = hpBaseSideLength×hpBaseSideLength×hpBaseSideLength;
Tex Mipmap Levels = hpLevels;

9: Fill the HistoPyramid texture base level with zeros; {using a compute shader.}

10: ⇒ The HistoPyramid is now ready to be used.

Finally, the HistoPyramid texture can be allocated on the GPU memory with the

appropriate dimensions and the given number of mipmap levels. Details about how the

texture allocation was implemented are given in Section 3.5.

The last step required to run before the HistoPyramid is ready to be used is the

execution of a compute shader to write zeros to the whole base level of the texture. Due

to the requirements of the data structure (all sides being of equal length and also a power

of two length), the number of entries in the HistoPyramid may be greater than the number

of input elements. In this case, as was noted before, it is enough to apply proper padding,

which generally means making the predicate function return zero for the output count of

the extra non-existent elements. However, for performance reasons, the predicate function

is not even run for the extra elements at the building phase. So, in order to everything

work correctly, the texture must be entirely �lled with zeros from the very beginning.

This manual step is necessary because usually there are no guarantees about the memory

returned by the graphics driver and it may contain random data from previously used

memory.

It is possible to calculate the fraction of the HistoPyramid base that is actually being

used to process the input stream elements by using the following formula:

f =
e

m
,

where f is the used fraction, e is the number of elements present in the input stream and
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m is the maximum element count supported by the HistoPyramid. In the 3D case, for

instance, m = s3, where s is the length of the side of the base level of the texture.

3.3 Building Phase

After the data structure is properly initialized, the �rst execution phase can run to update

its contents and �nally build the HistoPyramid. Algorithm 2 describes this process. At

�rst, a compute shader is dispatched to update the base level by performing a simple task

in parallel for each input element: applying the predicate function and writing the result

at the correct location of the texture.

The predicate function is unique to each stream expansion and compaction problem

and it calculates the multiplicity of each input element, i.e., how many output elements

each input element will generate.

Next, a compute shader is dispatched for each level starting from level 1 (which is the

�rst above the base level) up to the top level in order to update its contents. To do so,

it performs a parallel reduction operation on each previous level. This reduction involves

summing the values of 2, 4 or 8 elements of the previous level, according to how many

dimensions the HistoPyramid has.

Algorithm 2 HistoPyramid Building Phase
1: Dispatch a compute shader to update the HistoPyramid base level;

{The work done in parallel by the shader is equivalent to the following loop:}

2: for all input elements do

3: Apply the predicate function to each element to calculate its multiplicity;

4: Write the result into the appropriate location of the base level of the texture;

5: end for

{The following steps are executed regularly on the CPU:}

6: currentLevel⇐ 1;

7: while currentLevel < hpLevels do

8: Dispatch a compute shader to update the current level of the texture by performing

reduction on the previous one;

9: currentLevel⇐ currentLevel + 1;

10: end while
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At this point, all the HistoPyramid levels up to the top element are updated and

ready to be traversed during the second phase of the algorithm. Also, the value of the

top element is now the total output count of the algorithm.

3.4 Traversal Phase

This phase balances the workload evenly among the GPU threads. Given that the total

number of output elements is already known, a bu�er can be allocated on GPU memory

to hold the output stream and it is possible to dispatch a compute shader to execute

the desired algorithm with enough threads to fully utilize the GPU processing resources.

Algorithm 3 shows in detail all the steps that are performed during the traversal phase.

In order to spawn the appropriate number of compute threads, the top element of

the HistoPyramid must be accessed. Traditionally, the CPU needed to read back this

value and then issue a rendering command. However, a readback almost always stall the

graphics pipeline, forcing the CPU to wait idle while the GPU �nishes all its processing.

Fortunately, there is a newer approach available in modern graphics cards which yields

better performance and completely avoids any readbacks. It is called indirect compute

dispatch and allows the GPU to source the parameters used to dispatch the compute

shader from a bu�er on its own memory. Further details about this technique are explained

in Section 3.5.

Each GPU thread will execute the work necessary to generate a single output ele-

ment. This work begins with the traversal of the HistoPyramid data structure in order

to determine for what input element and for which one of its outputs each thread will be

responsible for. In other words, traversal is performed once for each output element. It

starts by initializing some important variables: currentLevel stores at which level of the

HistoPyramid the traversal currently is and it is initialized pointing to one level below the

top level of the data structure. The top level can be skipped because it always contains

only one element and so there is only one way to traverse it. Traversal goes recursively

down and �nishes when then base level is reached. currentTexCoord points to a speci�c

texel in the current level. Conceptually, it starts pointing to the center of the single texel

at the top level. However, as the presented algorithm actually begins the traversal in the

following level, it is initialized pointing to the middle of the elements one level below the

top. In addition, as this work uses integer texture coordinates instead of normalized ones,

it is not really possible to point to a location between texels. So what is actually stored is
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the integer texture coordinate of the element immediately to the left of where the traversal

is targeting. In the 2D and 3D versions, the coordinate stored is from the element imme-

diately to the left, top and front of the real coordinate. The currentTexCoord variable

keeps being updated during the traversal and, at the end, it points to the input element

that generated this output.

Each instance of the compute shader that is executed has a unique linearly increasing

index, that is stored in the outputElementIndex variable and is used to point to a speci�c

entry in the output stream. The localIndex variable is also initialized to this value, but

it keeps getting updated during traversal. In the end, in case of stream expansion, it tells

which one of the multiple outputs should be processed by this thread. In case of stream

passthrough, its value is always 0 (zero).

In the 1D HistoPyramid, at each level visited, two texels must be read. They are

labeled a and b and their values are used to de�ne two ranges named A and B. And so

the traversal may follow two di�erent paths, according to which range the localIndex falls

into. Then, both the currentTexCoord and the localIndex variables must be updated

conforming to the chosen path. currentTexCoord points to the new direction in which

the traversal will proceed and is also multiplied by 2, as integer texture coordinates are

being used and the next level will have twice as many texels in each dimension. There

is an exception: at the base level this multiplication by 2 is not needed. In addition, the

value of the start of the chosen range is subtracted from the localIndex.

This process continues recursively until the base level is reached. When this happens,

the traversal is complete and both currentTexCoord and localIndex have their �nal

values, so the compute thread can �nally perform the calculations speci�c to the algorithm

been executed to generate a given output element and then write it to the appropriate

location of the output stream on the GPU memory.

Note that at each level of a 2D or 3D HistoPyramid that is visited, respectively, four

or eight texels must be read. In the 2D case the texels are read and labeled in the following

order:

a b

c d

Accordingly, four ranges A,B,C and D are de�ned. The 3D case is similar, with eight

ranges de�ned and the frontmost layer of texels always read �rst.
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Algorithm 3 HistoPyramid Traversal Phase
1: hpTopLevel⇐ hpLevels− 1;

2: Dispatch a compute shader to generate the output stream;

{One GPU thread is spawned to process each output element.}

3: for all output elements do

4: currentLevel⇐ hpTopLevel − 1;

5: currentTexCoord⇐ 0;

6: localIndex⇐ outputElementIndex;

7: while currentLevel ≥ 0 do

8: Fetch texel a from the HistoPyramid texture at the currentLevel and using

currentTexCoord as the texture coordinate;

9: Fetch texel b from the HistoPyramid texture at the currentLevel and using

currentTexCoord+ 1 as the texture coordinate;

10: Set the following ranges:

A = [0, a)

B = [a, a+ b)

11: if localIndex falls into B then

12: currentTexCoord⇐ currentTexCoord+ 1;

13: localIndex⇐ localIndex− a;
14: end if

15: if currentLevel 6= 0 then

16: currentTexCoord⇐ currentTexCoord× 2;

17: end if

18: currentLevel⇐ currentLevel − 1;

19: end while

{The traversal is �nished by now and at this point the variable currentTexCoord

references the input element that gave origin to this output. Also, in case of stream

expansion, localIndex now tells which of the outputs should be processed by this

thread.}

20: Calculate this output element according to the algorithm being executed.

21: Write the result to the appropriate location of the output stream array.

22: end for
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For the sake of clarity, the 2D ranges are laid out as follows:

A = [0, a)

B = [a, a+ b)

C = [a+ b, a+ b+ c)

D = [a+ b+ c, a+ b+ c+ d)

Also, as an illustrative example, let's examine step by step the traversal for the third

output element from Figure 3.1. By looking at the HistoPyramid in Figure 3.2, it is possi-

ble to determine that currentLevel is initialized with the value 2, currentTexCoord starts

as 0 and the localIndex, which begins with the same value of the outputElementIndex,

is equal to 2. The two texels from level 2 form the ranges:

A = [0, 4)

B = [4, 6)

The localIndex falls into range A and the traversal can descend to level 1 and proceed

to the left, where the two texels read have values 1 and 3, respectively. They de�ne the

following new ranges:

A = [0, 1)

B = [1, 4)

At this time, localIndex falls into range B and the traversal should continue to the

right. The currentTexCoord is updated to 2 and the localIndex is updated to 1. Finally,

the traversal reaches the base level. The two texels read (0 and 3) form the ranges:

A = (0, 0)

B = [0, 3)

Again, localIndex falls into range B. The currentTexCoord is updated to 3 and

localIndex �nishes with the value 1. Now the traversal is complete and it is possible to

infer that the third element from the output stream comes from the second output (as

indicated by localIndex) of the fourth element from the input stream (as indicated by the

currentTexCoord). Please note that the actual implementation uses zero based indexes

and that is why a localIndex value of 1 actually means the second output.
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3.5 Implementation Details

In this work, all textures are allocated using the glTexStorage3D method (or its 1D or 2D

counterparts), which was introduced by OpenGL 4.2 and allows the allocation of the so

called immutable textures. This type of texture has all of its storage allocated up-front

(including everything needed for all of its mipmap levels). Thus, its format and dimensions

are immutable at runtime. Only the contents of the image may be modi�ed. This helps

to lessen the graphics driver runtime validation overhead and therefore leads to improved

application performance [6]. Its contents must be speci�ed by the glTexSubImage3D

method, as invoking glTexImage3D would allow the user to alter the dimensions or format

of the texture, and so it is an illegal operation on this kind of texture.

Another useful technique is the indirect compute dispatch. As discussed before in Sec-

tion 3.4, it allows the traversal phase to be implemented in a more e�cient way by avoid-

ing a CPU readback that stalls the graphics pipeline. Note that apart from the perfor-

mance gains on dispatching the work for the GPU, everything in shader execution behaves

identically as the traditional approach. Instead of reading back the top element of the

HistoPyramid by using the glGetTexImage method and then calling glDispatchCompute

passing the number of work groups as a parameter, a slightly di�erent code setup is re-

quired. First, a tiny extra bu�er called the dispatch indirect bu�er must be allocated

on GPU memory at program initialization. Also, a small extra compute shader must be

executed before the traversal phase. It is dispatched with a single work group containing

only one element (i.e. it will only be executed once) and its sole task is to read the top

element from the HistoPyramid texture and populate the dispatch indirect bu�er directly

from the GPU. Now the traversal phase can be dispatched, but this time by calling the

glDispatchComputeIndirect method. This method does not require the CPU to know in

advance the number of work groups that will be executed. At the right time, the GPU

itself will source this information from the bu�er that resides in its own memory.

There are also indirect draw calls that source their execution parameters from draw

indirect bu�ers. If the output stream will contain vertices from a mesh and the user

just wants to render it without saving the data to a bu�er, an indirect draw call may be

executed in place of the compute shader to perform the traversal phase. The implementa-

tion is very similar to the compute case. For instance, the glDrawArraysIndirect method

should be used as an alternative to glDrawArrays [6].
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It is possible that multiple shader invocations that were previously dispatched to be

queued simultaneously for asynchronous execution on the GPU. In some situations, like

in the reduce operation of the HistoPyramid building phase, it is critical to ensure the

proper ordering of memory operations with the objective of avoiding data access hazards

(e.g. a read after write hazard, where one pass of the algorithm tries to read data of a

previous pass that has not yet been written to memory, and it ends up getting incorrect

junk data). The glMemoryBarrier command was used to de�ne barriers ordering the

memory transactions, thus avoiding this kind of problem [6].

Both 1D and 2D HistoPyramids can be easily implemented on older hardware using

standard render-to-texture approaches. A 3D HistoPyramid could also be implemented

in a similar way. However, its e�ciency would be greatly reduced. That is because each

slice of the data structure would have to be rendered individually, one at a time, slice

by slice, requiring a huge number of render target switches, which is extremely expensive

performance-wise. On the other hand, compute shaders along with the image load/store

ability of OpenGL 4.2 (which lets shaders read from and write to arbitrary texels of a

texture) allow a more e�cient way of dispatching this type of computing work to the

GPU.

In addition, it is possible to make an implementation using normalized texture coor-

dinates instead of integer coordinates. An integer texture coordinate i can be converted

into a normalized texture coordinate c by using the following formula:

c =
i+ 0.5

n
,

where n is the length of the texture in a given axis. The opposite conversion can be done

as follows:

i = (c · n)− 0.5



Chapter 4

Fluid Simulation

The Smoothed Particle Hydrodynamics (SPH) method [24] was the Computational Fluid

Dynamics (CFD) model chosen for this work. It is a Lagrangian approach, which means

it is based on particles whose locations are used to measure various �uid properties. The

particles can move freely with the �uid �ow, which brings some advantages to this method

such as the ability to naturally deal with topological changes without the need for any kind

of special treatment and also the ease to simulate �ows with a free boundary. In addition,

this method has a plausible adaptation to parallel architectures, as will be discussed in

Section 4.3.

4.1 Smoothed Particle Hydrodynamics

This section will explain the basics of the SPH model described by Müller et al. [24], like

the discrete representation of the �uid which is approximated by particles and the use of

smoothing kernels to interpolate �uid properties across space. Moreover, some extensions

and modi�cations proposed by the current work will be presented.

The SPH method represents the physical model of the �uid through a particle system,

which is a �nite set of elements. Each particle is located at a discrete position of the space

and contain certain properties, like mass, density, pressure and velocity.

The initial condition of the particles (starting value of their properties) may be

changed in order to create di�erent �ow animations. However, all the particles should

have the exact same mass and for the sake of simulation stability, this mass should remain

constant throughout the whole simulation. The initial positions depend on the geometric

shape of the domain. The particles may be distributed over a regular grid inside the space
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of the domain or in random positions. Or even using other sampling techniques.

Boundary conditions are enforced during the simulation. They de�ne how to handle

particles that eventually leave the simulation domain. Furthermore, it is important to note

that the foundations of SPH lie in interpolation theory. In that sense, it allows quantities

of a �eld that are only de�ned at discrete positions to be evaluated at any position in

space. To do this, the SPH distributes these quantities over a local neighbourhood of

de�ned radius using the so called smoothing kernels. These kernels are mathematical

functions employed during the update of the particles properties at every new step of the

simulation and they de�ne how each particle interacts with its neighbours.

The �uid motion is described by the SPH through the Navier-Stokes equations [24]:

ρ
D~v

Dt
= ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇p+ ρ~g + µ∆~v, (4.1)

where ~v stands for velocity, ρ is the density, p is the pressure, ~g means any external forces

(like gravity) and µ is the viscosity of the �uid.

For instance, to calculate the density the following equation is used:

〈ρ (x)〉 =
N∑
j=1

mjW (x− xj, h) , (4.2)

where N is the particle count, mj is the mass of particle j and W is the smoothing

kernel employed by the SPH to perform interpolation. Pressure and viscosity forces are

calculated in an analogous manner to the density. However, for each particle property

a di�erent smoothing kernel can be chosen, always aiming to improve the simulation

stability.

The di�erential equations that represent the physical laws governing the simulation

are solved using the Leapfrog integration scheme [31, 5].
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One improvement made over the model described by Müller's work [24] is in how

the pressure �eld is evaluated. Before the forces caused by the pressure gradient can be

updated, the pressure at each particle location must be known. Originally, to calculate the

pressure �rst the density at the location of each particle was obtained through equation 4.2

and then the pressure could be computed with a modi�ed version of the ideal gas equation:

p = k (ρ− ρ0) , (4.3)

where k is a gas constant that depends on the temperature and ρ0 is the rest density. How-

ever, this formulation results in a rather high compressibility of the �uid which regularly

creates unrealistic �ow animations. In contrast, the current work uses the Tait equation

which enforces very low density variation and is e�cient to compute. The equation is

used as proposed by Becker [1] in his weakly compressible SPH model:

p = b

((
ρ

ρ0

)γ
− 1

)
, (4.4)

with γ = 7 and where b is a pressure constant that governs the relative density �uctuation
|ρ− ρ0|
ρ0

. The full procedure to determine values for b is a bit involved and can be found

in Becker's paper [1].

Figure 4.1 shows a common CFD test scenario called the dam break. It consists of a

column of �uid falling under the force of gravity.

Figure 4.1: A dam break animation.
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The dam break is an excellent example to show the bene�ts of the Tait equation for

the pressure update. Figure 4.2 makes a comparison of the animation performed with

both equations. It is clear that with the Tait equation the density �uctuations in the �uid

are much lower at all times, which yields a way more natural and realistic animation.

Figure 4.2: Comparison between the ideal gas equation (left column) and the Tait equation
(right column). Time advances from top to bottom. The �rst row depicts the beginning of
the �ow; the middle one shows the splash and the bottom row illustrates the �uid at rest
in the end of the animation. Density is color coded (bright red for high density particles
and a pale blue for low density ones). The size of the particle points is also greater in
highly compressed areas.
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Another improvement over the original model is the addition of the surface tension

force. It plays a key role to add �ner details to �ow animations, especially in thin sheets

of �uid. The surface tension approach chosen is also based on Becker's work [1]. It relies

on cohesion forces and is inspired by a microscopic view, since on a molecular level the

surface tension arises due to attractive forces between molecules. These attractive forces

are scaled using the smoothing kernel W as a weighting function:

D~vi
Dt

= − κ

mi

N∑
j=1

mjW (xi − xj, h) · (xi − xj) , (4.5)

where κ is a constant that controls how strong the surface tension will be, mi and mj

are the masses of particles i and j, N is the particle count, xi and xj are the positions of

particles i and j, respectively, and h is the smoothing kernel radius.

This method allows the surface tension computation in an e�cient manner, does not

rely on the simulation of a second �uid phase and is well suited for free surface problems

with high curvatures.

Figure 4.3 illustrates the surface tension in action. The initial state of the �uid

is a cube �oating in zero gravity. As the simulation progresses and the �uid reaches

equilibrium, a perfectly round sphere is formed. Di�erent values of b for the Tait equation

result in spheres of various densities.

Figure 4.3: Surface tension in�uence in a zero gravity environment. The solver had the
smoothing kernel radius set to 8 and di�erent values of b were tested for the Tait equation.



4.2 Implementation Details 26

4.2 Implementation Details

The simulation domain can be either in�nite allowing the particles to go anywhere or

closed with the shape of a rectangular parallelepiped. In the latter case, a boundary

condition that makes particles bounce o� the domain walls is applied.

Neighbour particle lookups are an essential part of the SPH algorithm and a special-

ized data structure is used to accelerate this task. The fact that the smoothing kernels

have compact support (i.e. a limited range), which is de�ned by the radius h, allows

the particles to be distributed over a uniform grid containing cubic cells of side h. In

this way, all the particles that interact with a given particle i and thus are needed to

calculate its physical quantities will be either on the same cell as particle i is or in the

immediate neighbour cells. This scheme reduces the computational complexity of �nding

the neighbour particles from O (n2) to O (nm), where n is the total particle count and m

is the average particle count per cell of the uniform grid. In general, n is much greater

than m. Figure 4.4 shows a visualization of the data structure described above.

Figure 4.4: Uniform grid used to accelerate the neighbour particle lookups.

The uniform grid is a �nite data structure and so it cannot natively handle particles

in an in�nite domain. In order to do so, a technique called Spatial Hashing [35] must

be used. This technique enables sparse �uids in large environments by employing a

hash function to map an in�nite abstract 3D grid into a �nite concrete grid. This work
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uses a very intuitive hash function that maps an abstract cell (x, y, z) to a concrete cell

(x%w, y%h, z%d), where % is the modulus operator, w is the width, h is its height and d

is the depth of the concrete grid. Neighbour searching is fast and simple as an abstract

neighbour cell (x+ dx, y+ dy, z+ dz) maps to the concrete cell ((x+ dx)%w, (y+ dy)%h,

(z + dz)%d). Sometimes cells will contain particles that are far away from each other in

the domain. However, this does not pose a problem because as the smoothing kernels

have limited support, the contributions from far away particles to any calculations end

up being canceled.

The simulation is initialized as shown in Algorithm 4. Then, all steps described in

Algorithm 5 are executed for each iteration of the SPH method.

Algorithm 4 SPH simulation initialization.
1: Initialize two copies of the uniform grid data structure;

2: dx⇐ 1.4; {dx is the initial spacing between particles.}

3: x⇐ y ⇐ z ⇐ dx÷ 2;

4: maxx ⇐ 48;

5: maxy ⇐ 20;

6: maxz ⇐ 24;

7: while z < maxz do

8: while y < maxy do

9: while x < maxx do

10: Create particle at position (x, y, z);

11: Allocate the particle in the �rst uniform grid;

12: x⇐ x+ dx;

13: end while

14: y ⇐ y + dx;

15: end while

16: z ⇐ z + dx;

17: end while

18: time⇐ 0; {Time that the simulation is running in milliseconds.}
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Algorithm 5 SPH method iteration.
1: while simulating do

2: gamma⇐ 40; {gamma is the integration timestep.}

3: time⇐ time+ gamma; {Advances 40 milliseconds in time.}

4: for every cell of the �rst uniform grid do

5: if the current cell is not empty then

6: L⇐ List of neighbour particles;

7: for each particle P contained in the current grid cell do

8: UpdateParticle(P , L); {See Algorithm 6 for details.}

9: end for

10: end if

11: end for

12: for every cell of the �rst uniform grid do

13: if the current cell is not empty then

14: for each particle P contained in the current grid cell do

15: Reallocate the particle in the second uniform grid;

16: end for

17: Clear this cell in the �rst uniform grid;

18: end if

19: end for

20: Switch the �rst grid with the second one;

21: end while

Algorithm 6 details how each particle is updated. It is now that the smoothing kernels

described in Section 4.1 are used to update the physical properties of each particle. In

order to do so, a list of neighbours of each particle being updated is built. All particles

within the distance of the smoothing kernel radius are considered to be neighbours. They

are the ones which will have an impact on the calculations. A common length chosen for

the smoothing radius is 4. In addition, the length of the side of each cube of the uniform

grid data structure is usually the same as the smoothing kernel radius because it makes

the search for neighbours faster and more intuitive.
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Algorithm 6 Method UpdateParticle (particle, list of neighbours).
1: P = particle;

2: Update the density of P ;

3: Update the pressure at P ;

4: Calculate the pressure force;

5: Calculate the gravity force;

6: Calculate the viscosity force;

7: Calculate the surface tension force;

8: Calculate the acceleration of P by summing all the forces that are acting over P ;

9: Update the velocity of P based in the acceleration of P ;

10: Update the position of P based in the velocity of P ;

11: Enforce the boundary conditions;

4.3 GPU Implementation

The SPH algorithm needs massive arithmetic power to run with good quality and at

an acceptable performance level, especially when it is being used to create real time

animations and simulations. Thus, it is a good �t to be executed by the GPU. On the

other hand, as the average number of neighbours per each particle varies a lot, it is

di�cult to come up with an e�cient GPU SPH implementation. This variation makes it

harder not only to balance the processing workload properly across the GPU execution

resources, but also to make an e�cient and simple data structure to gather each particle

neighbours. Such a data structure should be easily accessible in parallel by multiple

threads without requiring any kind of expensive synchronization and ideally it also should

not use any pointers, which do not perform well with the GPU memory architecture. The

HistoPyramid presents itself as a GPU friendly data structure which is suitable to make

an e�cient particle sorting implementation that allows quick neighbour searching.

The GPU based SPH is initialized in a similar way to its CPU counterpart. However,

instead of using two copies of an uniform grid data structure, two linear memory bu�ers

are allocated on the GPU. Each of these bu�ers will contain an array of particle structs.

These arrays are used in a ping pong fashion as the uniform grids were. That is, in a

given iteration of the simulation, the particles will be read from the �rst array, updated

and then sorted and copied into the second array. After that, the arrays are swapped so

that everything is ready for the next iteration. The particle struct just de�nes a standard

and tightly packed format for storing all particle properties in memory (e.g. position,
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velocity, density, etc). In the very beginning, a compute shader is dispatched to seed the

initial particles, which are also sorted and have their densities calculated for the �rst time

before the simulation is able to start.

Algorithm 7 describes a high level overview of one SPH iteration on the GPU.

Algorithm 7 SPH method iteration on the GPU.
1: while simulating do

2: gamma⇐ 40; {gamma is the integration timestep.}

3: time⇐ time+ gamma; {Advances 40 milliseconds in time.}

4: Dispatch a compute shader to update the particles;

{One GPU thread is spawned to process each particle.}

5: Dispatch a compute shader to handle the domain boundary conditions;

6: Swap the particle bu�ers;

7: Sort the particles for neighbour search; {See details in Algorithm 8.}

8: end while

Steps 4 and 5 of the above algorithm are performing exactly the same work that is

done by the CPU on Algorithm 6. After the particles are updated, they might have

moved and thus they cannot be considered to be spatially sorted anymore, so the particle

bu�ers need to be swapped. The bu�er that previously contained the array of spatially

sorted particles is now bound to the GPU as the unsorted one and vice-versa. This is

done in preparation to the last step which consists of �nally sorting the particles from

the unsorted bu�er and writing the results into the other bu�er. In essence, the particles

are simultaneously sorted and copied from one bu�er to the other. After this process if

�nished, everything is ready to proceed to the next simulation iteration.

The compute shader that update the particles is able to search for each particle

neighbours by looking at three data structures: a 3D HistoPyramid, a 3D o�sets texture

and the sorted particles bu�er. The 3D HistoPyramid dimensions are equal to the uniform

grid dimensions. Each element at the base of the HistoPyramid stores the particle count

of a given grid cell. The o�sets texture is an auxiliary texture pyramid with the same

dimensions of the HistoPyramid that encodes in which memory location of the sorted

particles bu�er the �rst particle of a given grid cell is stored.

These data structures make it possible to easily �nd every particle contained in a grid

cell. It is as simple as reading from the sorted bu�er as many particles as is determined

by the particle count in the HistoPyramid base, starting from the memory location of the
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�rst particle contained in that cell, as indicated by the o�sets texture. To gather all the

neighbours of a given particle is a matter of collecting all the particles from the nearby

grid cells.

In order for all this to work properly, �rst these data structures must have been

built and updated. In addition to that, the particles must already have been sorted.

Algorithm 8 details how these processes are done.

Algorithm 8 Preparing the required data structures for particle sorting.
1: Fill the HistoPyramid base level with zeros;

2: Update the HistoPyramid base level;

3: Reduce the HistoPyramid;

4: Update the o�sets texture;

5: Sort the particles and also copy them from the unsorted bu�er to the sorted one;

At the beginning, the HistoPyramid base level is cleared by having zeros written to

all its elements. Next, a compute shader is dispatched to update the HistoPyramid base.

One GPU thread is spawned per particle with the sole job of determining in which grid

cell each particle falls and then using atomic addition to increase by one the corresponding

element in the HistoPyramid base. After this, the remaining levels of the HistoPyramid

are built as usual by reducing the previous levels.

The HistoPyramid traversal used in this algorithm, however, is performed with a

slightly di�erent objective than usual. Here it is done incrementally in order to update

the o�sets texture level by level, starting from the top level and continuing until the base

is reached. For each level of the o�sets texture that is being updated, both its previous

level and the HistoPyramid are used to calculate the new o�sets. When this process

�nishes, each element of the base level of the o�sets texture points to the exact location

of the sorted particles bu�er that will store the �rst particle of a given grid cell. The

remaining particles of each grid cell are stored adjacently and immediately after the �rst

one.

Finally, a compute shader can be dispatched to e�ectively sort the particles. One

GPU thread is spawned for each particle on the unsorted bu�er. The grid cell that each

particle belongs to is determined. By looking at the appropriate location of the o�sets

texture it is possible to know where in the sorted particles bu�er the particles belonging

to a given grid cell should be stored. In addition to this, atomic additions are used to �nd

a unique location to store each particle, as multiple threads may try to simultaneously
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allocate space for di�erent particles lying in a same cell. Then, with a de�nitive location

resolved, the particle can be copied to the sorted bu�er straight into the right place.

After this is done, the sorted particles bu�er contains all the �uid particles again and

is ready to be used in the next iteration of the simulation.



Chapter 5

Fluid Rendering

The Marching Cubes algorithm is used to create a triangle mesh representing the �uid

surface. Later, this mesh can be rendered using traditional shading techniques. This

algorithm is a well known method used to create polygonal surfaces approximating an

isosurface from a scalar �eld. As the SPH particles de�ne a density scalar �eld for the

�uid being simulated, this method is suitable to create a graphic visualization of the �uid

model used in this work.

Among other techniques available to create images for a SPH simulation, this one

presents some advantages, such as outputting a regular triangle mesh which can be ren-

dered and manipulated by a wide range of existing computer graphics algorithms. Addi-

tionally, it can be adapted in a relatively straightforward way to run in parallel architec-

tures and the resolution of the extracted mesh can be easily adjusted to make a trade-o�

between quality and performance, which helps in the creation of real-time animations

that look the most realistic way that is possible within a minimum acceptable frame rate.

Section 5.1 will explain the basics of the algorithm and Section 5.2 will detail two viable

GPU implementations for it. The �rst one is older and based on geometry shaders and

the second one is a new approach based on the HistoPyramid data structure.

5.1 The Marching Cubes Algorithm

This algorithm is grid based and the grid is usually uniform. The main objective of the

algorithm is to convert an implicit representation of a mesh into a parametric one. The

�uid density scalar �eld can be seen as an implicit representation of its surface while the

generated triangle mesh can be seen as a parametric representation.
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First of all, it is important to de�ne what is an isosurface. Consider a function

f(x, y, z) that de�nes a scalar �eld in 3D space. An isosurface S is the set of points that

satis�es the following implicit equation:

f(x, y, z) = c,

where c is a constant called isovalue. Figure 5.1 shows an example of isolines, which are

the analogous to isosurfaces in the 2D space.

Figure 5.1: A 2D scalar �eld with an isoline highlighted in red. On the left the isovalue
is set to 0.2 and on the right it is set to 0.45.

Algorithm 9 lists the steps performed by the Marching Cubes isosurface extraction

procedure.

Algorithm 9 Marching Cubes steps.
1: Set the isovalue as desired;

2: Sample the function f(x, y, z) at all vertices of a 3D uniform grid;

3: for every vertex of the uniform grid do

4: Test if the vertex is inside or outside of the isosurface;

5: end for

6: for every cube of the uniform grid do

7: if the surface intersects the current cube then

8: Approximate the surface inside the current cube by a set of triangles;

9: end if

10: end for
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The algorithm starts by evaluating the function f(x, y, z) at the position of every

vertex of a 3D uniform grid. Next, each vertex undergoes a test to verify if it is inside or

outside of the isosurface. If the value sampled at the vertex position is greater than the

chosen isovalue, then the vertex is considered to be inside of the isosurface. On the other

hand, if the sample value is less than the isovalue, the vertex is considered to be on the

outside.

The �nal step is to visit every cube of the uniform grid and verify if the surface

intersects it. This is done by checking every edge of a given cube. If any edge of the cube

has a vertex inside the isosurface and the other one on the outside, then the edge must

be intersecting the surface. And thus, this cube also intersects the surface.

Triangles are created inside all the cubes that intersect the surface. Every cube has 8

vertices that can be either inside or outside the isosurface. The state of each vertex can

be encoded in one bit. The state of all 8 vertices of a cube can be encoded in a byte. So

there are 256 basic ways in which the surface can interact with any given cube. This byte

is used to search a lookup table in order to retrieve the appropriate triangles that must

be generated for each case. This table maps each case to a set of edges. Each three edges

that are present for any case encode a triangle that must be created. Each vertex of this

triangle must lie in one of the encoded edges. There are multiple methods to determine

the exact position where each vertex will be created. The simplest one is called midpoint

and consists of just creating each vertex exactly at the middle of an edge. This yields

a very poor approximation of the original surface. The most widely used method is the

linear interpolation, which considers the scalar �eld values at each vertex of a given edge

to determine the optimum location to create the vertex. Figure 5.2 shows a comparison

between these two methods using as an example a 2D scalar �eld. Note that in this

case the Marching Squares algorithm is used and lines are created instead of triangles.

However, the same principles from the 3D case apply.

It is important to observe that there are only 15 unique Marching Cubes cases. It is

due to the fact that there are a lot of symmetries (like re�ections and mirroring) among

the 256 original cases. Figure 5.3 illustrates these 15 unique cases.

Figure 5.4 shows the Marching Cubes algorithm being used to render a zero gravity

�uid drop.
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Figure 5.2: A 2D scalar �eld with an isoline highlighted in yellow. On the left the line
segments were created using the midpoint method. On the right, linear interpolation was
used. Usage of the latter method clearly results in a better approximation of the contour.

Figure 5.3: Marching Cubes unique cases [21].
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Figure 5.4: A mesh created by the Marching Cubes algorithm of a zero gravity �uid drop.
Left: original SPH particles. Middle: the shaded mesh. Right: a wireframe view.

Some of the 256 basic cases have multiple possible triangulations. Extra calculations

must be performed to solve these ambiguous cases and additional support lookup tables

need to be queried in order to determine the correct triangulation for these cubes. Using

only the standard lookup table, which is only able to encode one default triangulation for

each one of these ambiguous cases, may eventually lead to small cracks and inconsistent

topology in the generated meshes. In spite of this, it was the approach chosen for this

work. The ambiguity resolution process may help create topologically correct meshes,

however, as some cases require extensive calculations to be disambiguated properly, it

also comes with a huge computational cost. In particular, the processing load required

by each cube is highly imbalanced, which makes it much harder to create a good parallel

implementation. Signi�cant e�orts were put into adapting existing disambiguation pro-

cedures to be more GPU friendly, but a full topologically consistent implementation was

left as an improvement for a future work. A detailed discussion about this topic can be

found in Custódio et al. [7].

5.2 GPU Implementation

At �rst it seems that it is straightforward to parallelize the Marching Cubes algorithm.

It appears that it is enough to distribute all the cubes that have to be processed evenly

among the available processors. However, for each cube a di�erent case from the lookup

table may apply, leading to zero, one or more triangles being generated for that cube.

This variability in the number of triangles outputted per cube creates an imbalance in

processing load that makes it harder to create an e�cient parallel implementation. There

are two main approaches to handle this workload on the GPU, as will be explained next.
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5.2.1 Geometry Shader Implementation

The �rst approach relies on the built-in geometry shader and takes advantage of its

capability to output zero or more primitives, e�ectively discarding or amplifying the

geometry that is passed into it.

Algorithm 10 describes the steps required by this approach. First, a 3D texture must

be allocated on the GPU memory to hold the 3D scalar �eld values. This texture may

be updated either manually by uploading data from the CPU or by a compute shader

running on the GPU itself. In addition, the case table is also uploaded to the GPU as

a texture. Then, a draw call is made instructing the GPU to render one point for each

cube that will be processed. Specially designed vertex and geometry shaders are active

during this draw call.

Algorithm 10 Geometry Shader Marching Cubes Implementation.
1: Set the isovalue as desired;

2: Update the 3D scalar �eld texture; {This can be done via CPU or GPU.}

3: Setup the appropriate shaders and upload the case table to the GPU as a texture;

4: Dispatch a draw call to render one point for each cube to be processed;

{The following steps are executed on the GPU for each point:}

5: The vertex shader calculates the position of each cube in space and passes both the

cube index and position to the geometry shader;

{The following steps are executed by the geometry shader:}

6: Fetch the scalar �eld values at each corner of the cube from the 3D texture;

7: Calculates the position of each corner;

8: Test if each vertex of the cube is inside or outside of the isosurface;

9: Determine the Marching Cubes case;

10: Look up the appropriate entry of the case table;

11: if the surface intersects the current cube then

12: for each set of 3 edges on the retrieved table entry do

13: Create a triangle whose vertices lie in these 3 edges;

14: end for

15: end if

{The following step is executed immediately after the geometry shader:}

16: Use transform feedback to store the generated triangles into a bu�er object for later

usage or let the rasterization process continue in order to draw the triangles straight

to screen;
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The vertex shader starts by calculating the position of each cube in space and passes

this information along with the cube index to the geometry shader, which is con�gured

to take points as input and to produce triangles as its output. The �rst thing that the

geometry shader does is to use the current cube index to fetch all the required scalar �eld

values from the 3D texture. It also calculates the position in space of each corner of the

cube. After this is done, each vertex of the cube is tested to �nd out if it is inside or

outside of the isosurface. Then, the state of all the 8 vertices can be encoded in a byte in

order to determine to which Marching Cubes case this particular cube belongs.

Now a lookup is performed in the case table. If the entry for the current case is empty,

it means that the surface does not intersect the current cube and so the geometry shader

instructs the GPU to discard this input primitive, not generating any triangles at all.

This only happens if, at the same time, the 8 vertices are either all inside or all outside of

the surface. For all the other cases, the surface intersects the current cube and the data

retrieved from the table entry must be processed further.

For each set of three edges found on the table entry, a triangle must be generated.

The vertices of this triangle must lie each somewhere in one of the edges from the set.

The exact position where each vertex will be depends if the midpoint method or linear

interpolation is being used, as was explained in Section 5.1.

In addition, normals are generated for each vertex using a �nite di�erence method.

This makes the generated mesh ready for the lighting calculations that will happen in the

later stages of the graphics pipeline. Both forward and central di�erences can be used.

The implementation of the former requires less calculations and thus yields a slightly

better performance while the latter o�ers greater quality.

After the geometry shader execution �nishes, the triangles that were created by it may

have two destinations. They can either be stored into a bu�er object on GPU memory

through the transform feedback functionality or they can be passed down directly to the

rest of the pipeline for immediate rasterization on screen.

5.2.2 HistoPyramid Based Implementation

The other approach to implement the Marching Cubes algorithm on the GPU is based

on the HistoPyramid data structure that was presented in Chapter 3. Algorithm 11 lists

the steps performed by this implementation.
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Algorithm 11 HistoPyramid Based Marching Cubes Implementation.

1: Initialize the HistoPyramid data structure;

2: Set the isovalue as desired;

3: Update the 3D scalar �eld texture; {This can be done via CPU or GPU.}

4: Setup the appropriate shaders and upload the case table to the GPU as a texture;

5: Upload the auxiliary vertex count table to the GPU as a texture;

{First HistoPyramid execution phase:}

6: Dispatch a compute shader to update the HistoPyramid base level;

{These steps are executed by the previously invoked compute shader:}

7: for each cube to be processed do

8: Fetch the scalar �eld values at each corner of the cube from the 3D texture;

9: Test if each vertex of the cube is inside or outside of the isosurface;

10: Determine the Marching Cubes case;

11: Look up the appropriate entry of the auxiliary vertex count table;

12: Store both the case number and how many vertices this cube will output in the

correct place of the HistoPyramid base level;

13: end for

14: Perform reduction on the HistoPyramid;

{Second HistoPyramid execution phase:}

15: if the draw indirect technique is enabled then

16: Dispatch a compute shader to setup the draw indirect bu�er;

17: else

18: Read back the total vertex count from the top element of the HistoPyramid;

19: end if

20: Dispatch an appropriate draw call to render the entire triangle mesh;

{The following steps are executed by the vertex shader:}

21: Traverse the HistoPyramid in order to determine which vertex outputted from what

cube should be processed;

22: Retrieve the case number of the current cube;

23: Look up the case table to �nd out the correct edge where this vertex should lie;

24: Calculate the vertex position;

{The following step is executed after the vertex shader and primitive assembly:}

25: Use transform feedback to store the generated triangles into a bu�er object for later

usage or let the rasterization process continue in order to draw the triangles straight

to screen;
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The �rst step is to initialize the HistoPyramid data structure as was described by

Algorithm 1. Then, in a similar way to the other implementation, a 3D texture must be

allocated on GPU memory to hold the 3D scalar �eld values. As before, this texture may

be updated either manually by uploading data from the CPU or by a compute shader

running on the GPU itself. After this, both the case table and a new auxiliary vertex

count table are uploaded to the GPU memory as textures. The vertex count table stores

how many vertices each Marching Cubes case outputs.

Next, the �rst phase of the HistoPyramid execution starts. This is the building phase

and its general steps were outlined in Algorithm 2. It starts by dispatching a compute

shader in order to update the base level. One GPU thread is spawned for each cube that

needs to be processed. Each processing thread fetches from GPU memory the scalar �eld

values at the corners of the cube its responsible for. Then, it tests each vertex to see if

it is inside or outside of the isosurface and determines which Marching Cubes case apply.

After this, the appropriate entry of the vertex count table is retrieved in order to �nd

out how many vertices will have to be created inside this cube to polygonize the surface.

The last thing each GPU thread does in this phase is to store both the case number and

the vertex output count it computed in the correct place of the HistoPyramid base level.

Caching the case number in this way will avoid the need to recompute it later. And

�nally, to complete this phase parallel reduction is performed on the data structure, as

was described earlier in Section 3.3.

Now, the second HistoPyramid execution phase can start. This phase is when the

processing is actually done. One GPU thread is needed to process each output element,

i.e., each vertex that will be generated for the �nal mesh. To determine the appropriate

number of threads to spawn, the total vertex count must be retrieved from the top element

of the data structure. As was discussed in Section 3.4, there are two ways to do this. The

�rst one relies on the draw indirect technique, which yields better performance but only

works on newer hardware. If the GPU supports this technique, then a compute shader

is dispatched to setup the draw indirect bu�er and after that an indirect draw call can

be dispatched. Otherwise, as a fallback, the CPU reads back the top element from the

HistoPyramid texture and dispatches a traditional draw call to render the appropriate

number of vertices.

Regardless of the method that generated the draw call, it will spawn one GPU thread

to process each vertex of the mesh. Each thread starts by traversing the HistoPyramid

as was described in Algorithm 3. After the traversal is done, it knows which vertex
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outputted from what cube it should process. The next step is to retrieve the case number

of the cube, which was previously stored in the base level. Then, a lookup is performed

in the case table to determine the correct edge where the vertex being processed should

lie. Knowing this, it is possible to calculate the vertex position using either the midpoint

method or linear interpolation. Also, the vertex normal is generated using the same �nite

di�erence method that was used in the geometry shader based implementation.

Finally, after the vertices have been processed they are assembled into triangles that

can be either stored into a bu�er object on GPU memory via the transform feedback

mechanism or they can be passed down directly to the rest of the graphics pipeline for

immediate rasterization on screen.
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Results and Discussion

Some experiments were performed with the objective of assessing the e�ciency of the

HistoPyramid based algorithms which were developed in this work. To make sense and

compensate for the implementation e�orts, these new algorithms must perform better and

more e�ciently than the ones that were previously available.

Although the algorithms were built to work together as a fully �edged �uid simulation

framework, it is essential to �rst evaluate their e�ciency separately. So, the initial set

of experiments will focus on testing both the simulation and rendering algorithms as

isolated from each other as possible. Later, a �nal experiment will assess the combined

performance of the whole framework.

6.1 Methodology of the Experiments

All tests were carried on a computer with an Intel Core 2 Quad Q6600 CPU running at

2.4 Ghz, 4 GB of RAM and a Nvidia GeForce GTX 560 GPU with 1 GB of dedicated

video memory. On the software side, the operating system used was the 64-bit edition of

Windows 7. The Nvidia graphics driver version 335.23 was installed.

Each experiment consists of a previously speci�ed scenario with well de�ned initial

conditions. Most parameters remain �xed with a few exceptions. The ones that change are

key parameters which are incrementally modi�ed in order to create problems of increasing

computational complexity. The objective is to make comparisons that illustrate how well

each algorithm scales in relation to each other.
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All scenarios are based on the dam break animation, which is a classic CFD test case

as was discussed in Section 4.1. Every measurement was performed three times and the

resulting timings were averaged. The speci�c setup of each scenario will be discussed in

the remainder of this chapter.

An existing limitation is that the compute shader work group sizes were kept �xed

across the tests. The heuristics described in a best practices guide by Nvidia [28] were

investigated and used to pick sensible default values. One dimensional compute shaders

are dispatched with a work group size of 256 and the three dimensional ones with work

groups of 8×8×8 elements. These values were selected striving to achieve good hardware

occupancy, i.e., keeping the GPU processing resources as busy as possible, for all the

compute shaders that were used.

Ideally the occupancy should be calculated on a shader by shader basis in order to

determine the most optimized work group size for each compute dispatch. However, such

a detailed analysis was beyond the scope of this work and thus was left as an exercise

for a future work. The main reason behind this choice was that such a thorough study

would require the use of specialized techniques and pro�ling tools on several parts of the

code, which would be extremely time consuming. In addition, this kind of optimization

is speci�c to each GPU architecture and must be redone for every other architecture.

The other types of shaders are free from this hassle, as they are automatically managed

by the graphics driver.

6.2 Experiments

The �rst experiment is about �uid simulation and aims to compare a standard single-

threaded CPU implementation of the SPH method with the GPU HistoPyramid based

one. Then, a second experiment deals with the HistoPyramid Marching Cubes algorithm,

evaluating how well it fares against the geometry shader based implementation. Finally,

one last test addresses the combined performance of both GPU HistoPyramid based al-

gorithms working together to simulate and render a complete �uid animation. Details

about each experiment will be discussed next.
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6.2.1 SPH Comparison: CPU vs GPU Implementation

The objective of this experiment is to verify if the proposed GPU SPH algorithm is indeed

more e�cient than a standard single-threaded CPU SPH implementation. To accomplish

this, similar dam break simulations were executed using both algorithms and the average

times they needed to compute each step of a simulation were measured and compared.

Figure 6.1 illustrates this experiment in action. Marching Cubes was disabled and the

particles were rendered in the simplest way possible (i.e. like points) in order to interfere

as little as possible with the processing loads. In this test, the variable parameter was the

particle count and it was incrementally increased to see how well each algorithm could

perform with the greater amount of computation necessary to run an animation smoothly

in real-time. More particles were created by raising the height of the dam.

Figure 6.1: Three dam break simulations performed by the SPH algorithm using a varying
number of particles. The one on the top row was made with only 4, 096 particles. On
the middle row, 16, 384 particles were used and on the bottom row 65, 536 particles were
being animated. Notice that the highest the particle count is, the tallest the initial dam
height must be. This is pictured on the left column. The middle column shows the �uid
falling due to gravity and the right one depicts its resting state.
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Table 6.1: SPH comparison: average execution times for various particle counts over 2,000
simulation steps.

Particle Count CPU Time (ms) GPU Time (ms) Speedup
4, 096 26.0 2.2 11.8×
8, 192 70.2 3.2 21.9×
16, 384 227.2 5.9 38.5×
32, 768 494.1 10.2 48.4×
65, 536 943.2 20.2 46.7×

The other simulation parameters were kept constant throughout the tests, including,

for instance, gravity, viscosity, the integration timestep, the smoothing kernel radius, etc.

Table 6.1 lists the average time that each algorithm spent on a single simulation step.

This average was taken over 2, 000 steps, which is generally enough for the �uid to reach

its resting state.

It is possible to observe that up to 32, 768 particles, the greater the particle count,

the more e�cient the GPU algorithm turns to be. This is probably due to the hugely

increased arithmetic power required to compute the force interactions between pairs of

particles.

It was con�rmed that both implementations are able to run simulations with up to

262, 144 particles �awlessly.

6.2.2 Marching Cubes Comparison: Geometry Shader vs
HistoPyramid Implementation

This test aims to con�rm if the HistoPyramid based Marching Cubes is more e�cient

than the older, geometry shader based algorithm. To do this, a single frame of a �uid

simulation with 16, 384 particles was chosen to be polygonized by both of the algorithms

using various grid resolutions to see how well they could cope with bigger scalar �elds.

For each case tested, the �uid was rendered for a while and the average time needed

to render each frame was measured. Note that as the simulation was frozen, the contents

of the scalar �eld were not being updated. However, it was indeed being polygonized

every frame. In addition, the wireframe mode was used in order to use as little �ll rate

as possible from the GPU. The focus was strictly on comparing the performance of the

conversion of the scalar �eld into a triangle mesh. The draw indirect technique was

enabled on the HistoPyramid implementation.
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Figure 6.2: Meshes generated by the Marching Cubes algorithm during this experiment.
The following grid resolutions were used: 35×67×35 on the top row; 99×195×99 on the
middle row and 163× 323× 163 on the bottom row. On the left, the polygonized mesh is
shown in wireframe. On the right, a shaded version with per pixel lighting is presented.

Some of the meshes generated during the tests are shown in Figure 6.2, ranging

from lower to higher resolution ones. Table 6.2 summarizes the results, comparing the

e�ciency of both Marching Cubes implementations. Except for the lowest resolution

grid, signi�cant speedups were obtained. In this case that requires a smaller amount of

processing, the overhead of the HistoPyramid algorithm outweighed the bene�ts of the

increased parallelism it o�ers and the execution ended up being slower.

Additional tests were done to analyze the impact of the draw indirect technique on

the HistoPyramid version. Speedups ranging from 1.08 to 1.19× were obtained with the

technique enabled, as can be observed in Table 6.3.
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Table 6.2: Marching Cubes comparison: average execution times for various grid res-
olutions over 2,000 rendered frames. The draw indirect technique was enabled for the
HistoPyramid version.

Grid Resolution GPU GS Time (ms) GPU HP Time (ms) Speedup
35× 67× 35 0.65 0.97 0.67×
67× 131× 67 2.21 1.09 2.03×
99× 195× 99 5.92 1.54 3.84×

131× 259× 131 12.82 1.89 6.78×
163× 323× 163 22.22 2.40 9.26×

Table 6.3: HistoPyramid Marching Cubes comparison: average execution times for various
grid resolutions over 2,000 rendered frames. Using standard readback (RB) vs the draw
indirect technique (DI).

Grid Resolution GPU RB HP Time (ms) GPU DI HP Time (ms) Speedup
35× 67× 35 1.15 0.97 1.19×
67× 131× 67 1.28 1.09 1.17×
99× 195× 99 1.71 1.54 1.11×

131× 259× 131 2.05 1.89 1.08×
163× 323× 163 2.63 2.40 1.10×

6.2.3 Combined Experiment

This experiment was concerned with running both the HistoPyramid based simulation and

rendering algorithms together and investigating how to load balance the computational

costs between them in order to achieve a smooth fully shaded real-time animation running

at a �xed 30 frames per second. Increasing the processing required by one of the algorithms

diminishes the headroom left for the other. Table 6.4 lists some con�gurations that yielded

the target frame rate.

Table 6.4: Con�gurations of the simulation and rendering HistoPyramid algorithms that
were able to achieve a smooth 30 frames per second animation.

Grid Resolution Polygonized Cubes Particle Count
35× 147× 35 168, 776 73, 728
67× 247× 67 1, 071, 576 62, 464
99× 243× 99 2, 324, 168 40, 960

131× 195× 131 3, 278, 600 24, 576
163× 151× 163 3, 936, 600 15, 104
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Figure 6.3 shows a plot of the data from Table 6.4.

Figure 6.3: A plot with pairs of parameters that can be used to create animations that
run consistently at 30 frames per second. A linear trend line is shown.



Chapter 7

Conclusions and Future Work

This work employed the Histogram Pyramid data structure in order to successfully im-

plement an e�cient GPU accelerated framework to simulate and render �uids. This data

structure proved to be extremely useful as it enables an entire kind of new problems to

be properly parallelized to run on the GPU. In particular, stream compaction and expan-

sion algorithms can now take advantage of the massive computational power o�ered by

modern GPUs.

For instance, the Smoothed Particle Hydrodynamics �uid simulation method greatly

bene�ts from using the HistoPyramid. It requires a huge amount of arithmetic calculations

and thus is a good candidate to be computed on the GPU, but there is a caveat to

implement it e�ciently. Neighbour particle lookups, which are an essential part of the

SPH method, need to retrieve a variable number of particles from seemingly random

memory positions. This adversely a�ects performance as GPUs need data accesses to be as

coalescent as possible to perform well. The present work made an e�cient implementation

possible by using the HistoPyramid to implement a GPU bucket sort algorithm, which is

able to store nearby particles close together in memory by spatially sorting them.

The Marching Cubes algorithm, which is used to polygonize the �uid surface, is

another example of process that can be improved by the HistoPyramid. In the experiments

realized, the geometry shader based Marching Cubes was consistently outperformed by

the HistoPyramid based implementation, especially in large datasets. The only exception

to this rule occurred when processing the smallest dataset tested, where the overhead of

setting up the data structure was to big for the little amount of work being processed and

the geometry shader implementation ended up being a bit faster.
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It may be argued that the geometry shader should also be capable of handling any

kind of stream compaction and expansion problem, as it is also capable of discarding and

amplifying data. However, it was not designed to be adequate to all kinds of problems. It

also has hard limits on the maximum output count per input element because of limited

on-chip hardware bu�ers. In addition, some GPU architectures in spite of being able to

execute geometry shaders cannot handle them very well.

Another challenge imposed by the Marching Cubes algorithm to the geometry shader

architecture is that the amount of work per invocation varies greatly, resulting in extremely

poor parallelism. Some shader instances will create a lot of triangles while others will

output just a few or none. The HistoPyramid version creates a more balanced workload.

Beyond that, one more reason for why the HistoPyramid polygonization is faster

is because it is able to completely skip all empty cells after it has determined during

the building phase that they will not generate any outputs. This is especially bene�cial

because in most �uid simulations the majority of cells is either entirely inside or outside

the �uid and thus empty.

The experiments have also shown that the draw indirect technique was able to deliver

some small but noticeable performance gains.

Finally, by using compute shaders it was possible to create a truly 3D HistoPyramid

implementation for the GPU in a �exible way that was not possible before by any other

means. In spite of this, it is still possible to implement a 3D HistoPyramid on older

hardware, although not so cleanly and only with the use of many workarounds.

7.1 Future Work

The current Marching Cubes implementation is not topologically consistent, which means

that occasionally small cracks and holes may appear in the generated meshes. As discussed

in the end of Section 5.1, signi�cant e�orts were put into solving this problem. The work by

Custódio et al. [7] would help address this issue. However, an appropriate parallel version

of the algorithms proposed by her must be devised. As far as the author knows, a GPU

accelerated Marching Cubes algorithm that guarantees the generation of topologically

correct meshes for any input data is still an open research problem.
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Section 6.1 mentioned a limitation in how the work group sizes of the compute shaders

were chosen. A possible solution to this lies in the implementation of a fully featured GPU

pro�ler, such as the one described in the OpenGL Insights book [6]. This would allow

precise measurements of individual parts of each algorithm, possibly exposing hotspots in

the code that could be further optimized. By exploring and pro�ling varying work group

sizes, it would be possible to verify in practice which ones work best for each compute

shader. In addition, the execution con�guration optimizations proposed by Nvidia [28]

could be investigated in more depth. Sparse textures could possibly be used to improve

HistoPyramid memory usage for the cases where the input array is asymmetric or has

non power of two side lengths.

Furthermore, the rendering algorithms deserve more attention. In particular, the im-

plementation of a more detailed lighting pipeline would substantially improve the quality

of the images generated.



Bibliography

[1] Becker, M.; Teschner, M. Weakly compressible sph for free surface �ows. In
SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics
Association, pp. 209�217.

[2] Bridson, R. Fluid Simulation for Computer Graphics. A K Peters, 2008.

[3] Chentanez, N.; Müller, M. Real-time eulerian water simulation using a restricted
tall cell grid. ACM Trans. Graph. 30 (August 2011), 82:1�82:10.

[4] Chentanez, N.; Müller, M. Mass-conserving eulerian liquid simulation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2012), SCA '12, Eurographics Association,
pp. 245�254.

[5] Chiu, C.-W.; Chuang, J.-H.; Lin, C.-C.; Yu, J.-B. Modeling highly-deformable
liquid. In International Computer Symposium (2002).

[6] Cozzi, P.; Riccio, C. OpenGL Insights. CRC Press, July 2012. http://www.

openglinsights.com/.

[7] Custódio, L.; Etiene, T.; Pesco, S.; Silva, C. Practical considerations on
marching cubes 33 topological correctness. Computers & Graphics 37, 7 (2013),
840�850.

[8] da Silva Junior, J. R. Simulação computacional em tempo real de �uidos uti-
lizando o método sph em ambiente heterogêneo cpu/gpu. Master's thesis, Universi-
dade Federal Fluminense, 2010.

[9] da Silva Junior, J. R.; Clua, E. W. G.; Montenegro, A.; Lage, M.; de An-

drade Dreux, M.; Joselli, M.; Pagliosa, P. A.; Kuryla, C. L. A heteroge-
neous system based on gpu and multi-core cpu for real-time �uid and rigid body sim-
ulation. International Journal of Computational Fluid Dynamics (Print) 26 (2012),
193�204.

[10] Dyken, C.; Ziegler, G.; Theobalt, C.; Seidel, H.-P. High-speed marching
cubes using histopyramids. Computer Graphics Forum 27, 8 (2008), 2028�2039.

[11] Foster, N.; Metaxas, D. Modeling the motion of a hot, turbulent gas. In SIG-
GRAPH '97: Proceedings of the 24th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 1997), ACM Press/Addison-Wesley
Publishing Co., pp. 181�188.



Bibliography 54

[12] Fraedrich, R.; Auer, S.; Westermann, R. E�cient high-quality volume ren-
dering of sph data. IEEE Transactions on Visualization and Computer Graphics 16,
6 (nov 2010), 1533�1540.

[13] Gingold, R. A.; Monaghan, J. J. Smoothed particle hydrodynamics - theory and
application to non-spherical stars. In Royal Astronomical Society, Monthly Notices,
vol. 181 (1977), pp. 375�389.

[14] Harada, T.; Koshizuka, S.; Kawaguchi, Y. Smoothed particle hydrodynamics
on gpus. In Computer Graphics International (2007), pp. 63�70.

[15] Harris, M. J.; Baxter, W. V.; Scheuermann, T.; Lastra, A. Sim-
ulation of cloud dynamics on graphics hardware. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (Aire-la-Ville,
Switzerland, Switzerland, 2003), HWWS '03, Eurographics Association, pp. 92�101.

[16] Hu, X. Y.; Adams, N. A. A multi-phase sph method for macroscopic and meso-
scopic �ows. J. Comput. Phys. 213, 2 (2006), 844�861.

[17] Inácio, R. T.; Nobrega, T.; Carvalho, D. D. B.; von Wangenheim, A. In-
teractive simulation and visualization of �uids with surface raycasting. In SIBGRAPI
(2010), IEEE Computer Society, pp. 142�148.

[18] Kipfer, P.; Westermann, R. Realistic and interactive simulation of rivers. In
GI '06: Proceedings of Graphics Interface 2006 (2006), Canadian Human-Computer
Communications Society, pp. 41�48.

[19] Koshizuka, S.; Oka, Y. Moving-particle semi-implicit method for fragmentation
of incompressible �uid. Nuclear Science and Engineering Volume 123, 3 (jul 1996),
421�434.

[20] Krog, O. E. Gpu-based real-time snow avalanche simulations. Master's thesis,
Norwegian University of Science and Technology, 2010.

[21] Lewiner, T.; Lopes, H.; Vieira, A. W.; Tavares, G. E�cient implementation
of marching cubes cases with topological guarantees. Journal of Graphics Tools 8, 2
(december 2003), 1�15.

[22] Lorensen, W. E.; Cline, H. E. Marching cubes: A high resolution 3d surface
construction algorithm. COMPUTER GRAPHICS 21, 4 (1987), 163�169.

[23] Lucy, L. B. A numerical approach to the testing of the �ssion hypothesis. In
Astronomical Journal, vol. 82 (1977), pp. 1013�1024.

[24] Müller, M.; Charypar, D.; Gross, M. Particle-based �uid simulation
for interactive applications. In SCA '03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (Aire-la-Ville, Switzer-
land, Switzerland, 2003), Eurographics Association, pp. 154�159.

[25] Müller, M.; Schirm, S.; Duthaler, S. Screen space meshes. In Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation (Aire-
la-Ville, Switzerland, Switzerland, 2007), SCA '07, Eurographics Association, pp. 9�
15.



Bibliography 55

[26] Müller, M.; Schirm, S.; Teschner, M. Interactive blood simulation for virtual
surgery based on smoothed particle hydrodynamics. Technol. Health Care 12, 1
(2004), 25�31.

[27] Newman, T. S.; Yi, H. A survey of the marching cubes algorithm. Computers &
Graphics 30, 5 (oct 2006), 854�879.

[28] NVIDIA Corporation. CUDA C Best Practices Guide, August 2014.

[29] Pharr, M.; Humphreys, G. Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[30] Premoze, S.; Tasdizen, T.; Bigler, J.; Lefohn, A.; Whitaker, R. T.

Particle-based simulation of �uids, 2003. EUROGRAPHICS.

[31] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.

Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge University
Press, New York, NY, USA, 1992.

[32] Rhu, M.; Erez, M. The dual-path execution model for e�cient gpu control �ow. In
Proceedings of the 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA) (Washington, DC, USA, 2013), HPCA '13, IEEE
Computer Society, pp. 591�602.

[33] Solenthaler, B.; Schläfli, J.; Pajarola, R. A uni�ed particle model for �uid-
solid interactions. Computer Animation and Virtual Worlds 18, 1 (2007), 69�82.

[34] Stam, J. Stable �uids. In SIGGRAPH '99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques (August 1999), pp. 121�128.

[35] Teschner, M.; Heidelberger, B.; Mueller, M.; Pomeranets, D.; Gross,
M. Optimized spatial hashing for collision detection of deformable objects. In In
Proceedings of VMV'03 (2003), pp. 47�54.

[36] van der Laan, W. J.; Green, S.; Sainz, M. Screen space �uid rendering with
curvature �ow. In Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games (New York, NY, USA, 2009), I3D '09, ACM, pp. 91�98.

[37] Williams, L. Pyramidal parametrics. SIGGRAPH Comput. Graph. 17, 3 (July
1983), 1�11.

[38] Ziegler, G.; Tevs, A.; Theobalt, C.; Seidel, H.-P. On-the-�y point clouds
through histogram pyramids. In 11th International Fall Workshop on Vision, Mod-
eling and Visualization 2006 (VMV2006) (Aachen, Germany, 2006), L. Kobbelt,
T. Kuhlen, T. Aach, and R. Westermann, Eds., European Association for Computer
Graphics (Eurographics), Aka, pp. 137�144.


