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“Take the risk of thinking for yourself, much more happiness, truth, beauty 

and wisdom will come to you that way.” 

Christopher Hitchens  



 

 

The amount of fat on the surroundings of the heart is correlated to health risk factors 

such as carotid stiffness, coronary artery calcification, atrial fibrillation, atherosclerosis and 

other health conditions. Furthermore, cardiac fat deposits vary unrelated to the overall fat of 

the patient which, therefore, reinforces the idea of a direct quantitative analysis as being 

essential. However, manual quantification has not been widely employed in clinical practice 

due to the required human workload. 

Clinical decision support systems are computer programs capable of evaluating data 

and providing a corresponding diagnosis or information to complement the physicians’ 

analyses. The objective of this work is to propose a method capable of fully automatically 

segmenting two types of cardiac adipose tissues that stand apart from each other by the 

pericardium. The source for segmentation are CT images which, in turn, were obtained by the 

standard acquisition protocol used for coronary calcium scoring. Much effort was devoted to 

promote minimal user intervention and easiness of reproducibility. 

The proposed segmentation methodology consists of an intersubject registration that 

roughly standardize images of distinct patients, an extraction of features of the registered 

images and, finally, an appliance of classification algorithms. The classification algorithm 

predicts if an incoming pixel corresponds to a certain type of cardiac fat based on the extracted 

features. Furthermore, we extensively evaluate the performance of several algorithms on this 

task and discuss which ones provided better predictive models. Experimental results regarding 

both epicardial and mediastinal fats have shown that the mean accuracy for the proposed 

method is 98.4% with a mean true positive rate of 96.2%. In average, the Dice similarity index 

has been equal to 96.8%. 

 

Keywords: epicardial, mediastinal, segmentation, automatic, classification, Random 

Forest, cardiac, fat, adipose tissue, registration, intersubject 
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An increasing demand for medical diagnosis support systems has been observed jointly 

to the computational evolution on the last years. Systems of this kind speed up the tedious 

and meticulous analysis done by physicians or technicians on patients’ medical data, where, 

in many cases, a huge amount of data have to be analyzed and, therefore, the diagnosis may 

lack precision and suffer noticeable inter and intra-observer variation [1]. 

The cardiac epicardial and mediastinal (also termed pericardial) fats are correlated to 

several cardiovascular risk factors [2]. At the present, three techniques (i.e., modalities) 

appear suitable for the quantification of these adipose tissues, namely Magnetic Resonance 

Imaging (MRI), Echocardiography and Computed Tomography (CT). Each one of these 

modalities have been used in several medical studies in the literature [3,4,5]. However, 

computed tomography provides a more accurate evaluation of fat tissues due to its higher 

spatial resolution if compared to ultrasound and MRI [6]. In addition, CT is also widely used 

for evaluating coronary calcium score [5]. 

This work is entirely based on the processing and evaluation of images that belong to 

the axial plane and compose the standard non-contrasted CT acquisition protocol. More 

information about CT and the axial plane can be found in Appendix A and B. 

 

The automated quantitative analysis of the epicardial and mediastinal fats may add a 

prognostic value to cardiac CT trials, ensuring an improvement on its cost-effectiveness. 

Besides, that automation diminishes the variability introduced by different observers. In fact, 

as previously mentioned, quantifying these data by direct user interaction is highly prone to 

inter and intra-observer variability. Thus, evaluated samples may not be associated to a 

unified  sense of segmentation. Iacobellis et al. [7] have shown that the epicardial fat thickness 

and coronary artery disease, for instance, correlate independently of obesity. This evidence 
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supports the individual segmentation and further quantification of the adipose tissues rather 

than merely and simply estimating that volume based on the overall fat of the patient. 

The objective of this work is to develop a unified method capable of fully automatic 

segmenting both epicardial and mediastinal fats on CT images. To the extent of our 

knowledge, there is currently no unified method in the literature capable of both types of 

automatic segmentations. On the entire extent of the proposed methods for cardiac fat 

segmentation [6,8,9,10,11], the addressed issue is specifically the segmentation of the 

epicardial fat, whereas no work attempted to segment the mediastinal fat. Besides, we resolve 

this issue diverging greatly with respect to the basis of the approaches proposed by the 

authors of the current related works. This divergence is given by employing machine learning 

classification algorithms to produce the segmentation. 

This work contributes mainly to the field of visual computing but also to the medical 

and machine learning field by, namely: (1) proposing an accurate intersubject registration for 

cardiac CT images, (2) proposing and analyzing a hybrid similarity measure that was applied 

within the registration procedure, (3) proposing a new feature based on the Gaussian Kernel, 

(4) corroborating on the appliance of classification algorithms for image segmentation, (5) 

analyzing the performance and accuracy of various classifiers for the problem, (6) creating a 

ground truth for cardiac fats available online and, finally, by (7) proposing a unified and fully 

automatic segmentation method for both epicardial and mediastinal fats on cardiac CT 

images.  

 

The topics of this work are distributed on the following manner. On the next Chapter 

we present an overview of the literature on the fields of cardiac anatomy, health related risks 

associated to the cardiac adipose tissue, cardiac fat segmentation, CT related information such 

as the adipose tissue range in Hounsfield Units (HU) and information on the DICOM standard. 

Furthermore, we address a brief review of image registration and classification algorithms, 

which are the two main steps employed in the proposed method. 

The Chapter 3 consists of our entire methodology. At first, we address the proposed 

registration. Later on, the feature extraction as well as the appliance of the classification 
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algorithms to the problem are addressed on the second main section of the same chapter. 

The registration itself can be seen as a preprocessing step and the remaining as the actual 

segmentator. In our work, features can be viewed as characteristics of a certain pixel or 

surrounding area that help to define its class. Moreover, classification algorithms can be 

roughly viewed as learners that assemble predictive models trained on specific data, as to this 

work, on the extracted features. The demographics of the patients regarded in this work is 

also presented in the Chapter 3. 

The Chapter 4 presents the achieved results with regard to the registration, features 

extraction and classification algorithms. Furthermore, on the same chapter, the achieved 

results are compared to the three mainly related works that have already attempted to semi 

or fully automatic segment the epicardial fat. In addition, the downsides of the current 

comparisons are discussed. 

The final chapter addresses the conclusions, further improvements that can be applied 

and some technical details of the computers, libraries and programing languages regarded in 

this work. 

 

This work was approved by the ethics and research committee of HUCFF/UFRJ 

(protocol number 069/10) and of the Brazilian National Institute of Cardiology (protocol 

number 0324/04-04-2001). All patients were enlightened as to the objectives of this work and 

were required to sign a consent form. 
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In this chapter, we provide some literature-related information along with a more 

extensive introduction to our work. At first, we discuss about cardiac anatomy and highlight 

the structures that are significant for us. Later on, we discuss about health risks and diseases 

associated to the cardiac adipose tissue. Furthermore, we address other works in the 

literature that have already proposed segmentation approaches for the cardiac fat, comparing 

and discussing their methodology. Finally, a brief discussion about how CT data can be 

accessed and handled as well as a review on image registration and classification algorithms 

are addressed. 

 

The human heart is enclosed in the pericardium, a fibroserous sac comprising three 

concentric layers as shown in Figure 1. The outermost layer is a densely fibrous, tough and 

inelastic structure (fibrous pericardium). Inside the fibrous pericardium is the serous 

pericardium, which consists of two layers; the outer of these (which is firmly applied to the 

inner surface of the fibrous pericardium) is termed the parietal layer. This layer is reflected 

around the roots of the great vessels to become continuous with the visceral layer 

(epicardium), which covers the internal surface of the heart and is firmly applied to it [12]. 

 

Figure 1: Outermost layers of the heart [13]. 
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Sacks et al. [14] define the epicardium or visceral layer of the pericardium as a 

population of mesothelial cells that migrate onto the surface of the heart from the area of the 

septum transversum (the embryological source of the diaphragm). Furthermore, they define 

that, in the normal adult, epicardial fat is concentrated in the atrioventricular and 

interventricular grooves and along the major branches of the coronary arteries and, to a lesser 

extent, around the atria, over the free wall of the right ventricle and over the apex of the left 

ventricle. In addition, the authors define pericardial fat as all the epicardial and the paracardial 

fat and, consequently, define that paracardial is the fat located on the external surface of the 

parietal pericardium (also within the mediastinum). They also highlight that the paracardial 

fat has been alternatively termed mediastinal fat in the literature. The mediastinal area is 

shown in Figure 2. 

 

Figure 2: Mediastinal space [13]. 

Sicari et al. [3] define that the cardiac fat can be distinguished in two deposits: (1) the 

epicardial adipose tissue, which they describe exactly with the same words as the definition 

of Sacks et al. [14] and, (2) the pericardial adipose tissue, which they define as being the fat 

situated on the external surface of the parietal pericardium within the mediastinum 

(alternatively termed mediastinal or intrathoracic fat). Nevertheless, Rosito et al. [2], Dey et 

al. [11] and Nichols et al. [15], for instance, describe the pericardial fat as being any adipose 

tissue within the pericardial sac.  
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Marwam et al. [16], however, addressed the fact that the terminology used to define 

fat deposits surrounding the heart in the current literature is diverse and, to some extent, 

confusing. The authors state that the term pericardial fat is frequent in most of the published 

literature as referring to the adipose tissue enclosed within the pericardial sac. Despite of 

being a widely used definition, they state that the more accurate term would be epicardial fat, 

given its location on the internal epicardial surface of the heart. Shahzad et al. [8] also 

mentioned this confusion with relation to the terminology within the literature. 

In summary, the majority of the published works [3,6,8,9,10,14,16,17,18,19] 

[20,21,22,23,24] agree on the epicardial fat terminology as being correct for the fat contained 

within the epicardium and, therefore, also within the pericardium. On the other hand, to the 

extent of our knowledge, the only work that has been out of that agreement on the epicardial 

fat definition is the one from Mahabadi’s et al. [25]. Nevertheless, there is an accentuated 

disagreement on the pericardial fat terminology amongst various works. In fact, some works 

[2,8,11,15,26,27] support the idea that the pericardial fat is merely the fat that is enclosed by 

the pericardium sac, which is analogous to the epicardial fat definition. Others 

[3,18,21,28,29,30] support that the pericardial fat terminology defines the adipose tissue 

located on the external surface of the parietal pericardium, within the mediastinum. 

Moreover, some works [14,22,31,32,33] even define the pericardial fat as being equivalent to 

all the adipose tissues within the mediastinum, including the pericardial or epicardial fats. 

In conclusion, due to the fact that the terminology for the cardiac fats is currently not 

properly established in the literature, we will define the fat located within the epicardium as 

epicardial, corroborating with the majority of published works, and by following the same 

“first outer anatomical container” logic, we conclude that mediastinal fat is the best definition 

for the fat located on the external surface of the heart or of the fibrous pericardium. In other 

words, by taking Figure 2 as a reference, the mediastinal fat is located within the pink, blue 

and green colored areas, and is mediastinal as long as it is not epicardial (i.e., as long as it is 

not located within the epicardium). 
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Some studies [24,33] associate the amount of epicardial adipose tissue to the 

progression of coronary artery calcification. Schlett et al. [26], for instance, found that the 

epicardial fat volume is nearly twice as high in patients with high-risk coronary lesions as 

compared to those without coronary artery calcification. Several studies also correlate other 

cardiovascular risk factors and outcomes to the epicardial adipose tissue volume, such as 

diastolic filling [18], myocardial infarction [25], atrial fibrillation and ablation outcome [26], 

carotid stiffness [32], atherosclerosis [19,20,21], and many others [2,25,30,31,34]. 

Furthermore, Wei-Ta et al. [35] have also shown that high coronary artery calcium score is 

associated to a higher general cancer incidence. 

In addition, some studies address the importance of the mediastinal fat (due to the 

previously discussed inconsistency some authors call it pericardial fat) and its correlation with 

pathogenic profiles, health risk factors and diseases [29,36,37]. Some [21,32] associate the 

mediastinal fat, along with the epicardial fat, to carotid stiffness. Others [21,33] associate 

them to atherosclerosis and coronary artery calcification. Sicari et al. [3] have also shown how 

mediastinal fat rather than epicardial fat is a cardiometabolic risk marker. 

Moreover, a 16-year study [38] that assessed a total of 384 597 patients associated a 

rate of approximately 38.4% of death in the subsequent 28 days of individuals that have had 

their first major coronary event. The same study also concludes that fatal cases is slightly less 

associated to female individuals. Another study ranks cardiovascular accidents as the most 

common cause of sudden natural death [39]. Therefore, the practice of automatically 

evaluating the amount of fat related to the heart may contribute greatly to avoid such 

outcomes. 

 

The Digital Imaging and Communications in Medicine (DICOM) standard, originally 

published as the American College of Radiology – National Electrical Manufacturers 

Association Standard for Digital Imaging and Communications in Medicine, now maintained 

by the multi-specialty DICOM Standards Committee, specifies a nonproprietary data 
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interchange protocol, digital image format, file structure for biomedical images and image-

related information [40]. 

DICOM provides detailed engineering information that can be used to enable network 

connectivity among a variety of manufacturers’ products. This standard also describes how to 

format and exchange medical images and associated information, both within and outside the 

hospital (e.g., tele-radiology, telemedicine). DICOM interfaces and protocols are available for 

sharing and storing any combination of the following categories of digital imaging devices: (a) 

image acquisition equipment (e.g., computed tomography, ultrasonography, and nuclear 

medicine scanners); (b) image archives; (c) image processing devices and image display 

workstations; (d) hard-copy output devices (e.g., photographic transparency film and paper 

printers) [40]. 

The DICOM standard offers a comprehensive specification of information content, 

structure and encoding for electronic interchange of diagnostic and therapeutic images. In 

other words, DICOM is a complete specification “from top to bottom” of the elements 

required to achieve a practical level of automatic interoperation [40]. All the CT data accessed 

and processed in this work were gathered from DICOM files as 512x512 pixels-wide images. 

The acquisition procedure, the way that CT data is stored and accessed in a DICOM file are 

described within the Appendix A – Accessing CT Data from DICOM Files. 

 

Image registration can be defined as the process of matching characteristics from 

images in order to minimize the variation between overlapping pixels or areas of pixels [41]. 

Such processes are included in panoramas assemblages, medical images such as shown in 

Figure 3, time series [42,43] and many others processes. Registration is also alternatively seen 

as an optimization problem with the goal of finding the spatial mapping that brings images, 

parts of them, or even a combination of these parts into minimal variation. The image stitching 

terminology is also used in the literature [44,45] and consists of the same fundamentals from 

the registration yet usually associated to panoramas generation, which, in turn, usually 

involves more than just two images as input and some additional considerations [45]. 
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Figure 3: A registration process.  

The ITK framework [46] is a well-known and robust framework in the area of visual 

computing. It establishes its registration method based on the diagram depicted in Figure 4. 

The registration procedure is composed of a Fixed Image 𝐹(𝑃) and a Moving Image 𝑀(𝑃) as 

input data, where 𝑃 represents a position in 𝑁-dimensional space. The Transform component 

𝑇 represents the spatial mapping of values from 𝐹(𝑃) to 𝑀(𝑃) [47]. 

 

Figure 4: The basic components of the ITK registration framework. 

By a simple analogy we can suppose that the perfect registration or transformation 𝑇 

is achieved when the statement 𝑇(𝑃) = 𝐹(𝑃)  becomes true, assuming that 𝑇(𝑃)  is the 
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transformed image. When comparing 𝐹(𝑃)  to 𝑇(𝑃) , the image 𝑇(𝑃)  should have been 

already interpolated. That is, the actual process of drawing pixels from the transformed image 

function 𝑇(𝑃) to an image file or to the screen (i.e., to a raster) is often called rasterization 

and, for doing so, interpolations are required. 

The interpolation can be done in two general ways. On the (1) forward method, each 

pixel from the transformed image function 𝑇(𝑃) is directly mapped to a discrete pixel of the 

raster’s grid. Therefore, the forward method can produce holes or overlaps on the output 

image due to rounding and ordering of the draws. On the (2) backward method, a single 

position of the grid is mapped to a set of points of 𝑇(𝑃). In this case, neither holes nor overlaps 

occur on the outputted image. Therefore, as being the most concise, the backward method is 

the most commonly used type of interpolation [48].  

In addition, the Measure component 𝑆(𝐹, 𝑀 ○ 𝑇) provides a measure of how well the 

images 𝐹(𝑃) and 𝑀(𝑃) are matching. This measurement forms the quantitative criterion to 

be maximized by the Optimizer component. Thus, at each iteration of the loop, the Optimizer 

evaluates the obtained measurement of similarity and changes the parameters of the 

transformation in order to raise it, also deciding when and whether to stop [46]. 

 

The terms registration, as well as fusion, matching, integration, correlation, and others, 

appear polysemously in the literature, either referring to a single step or to the whole of the 

modality integration process [42]. Patients may undergo various MR, CT, SPECT and other 

studies for anatomical or general reference of a single organ, for instance. Thus, registration 

of images from practically any combination of modalities will benefit the physician’s analysis. 

A second example concerns radiotherapy treatment, where both CT and MR can be employed. 

The former is needed to compute the radiation dose accurately, while the latter is usually 

better suited for delineation of tumor tissues. This type of registration is usually termed 

multimodality [42]. 

Besides the multimodality registrations, important application areas exist in 

monomodality registration (i.e., when only one modality or type of acquisition is considered). 

The multimodality refers to cases when a patient is scanned in successive intervals (time 
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series) or when an organ of several patients are scanned using a single modality, for instance. 

Other examples include treatment verification by comparison of ictal and inter-ictal SPECT 

images and growth monitoring (e.g., using time series of MR scans or termographic images on 

tumors, X-ray time series on specific bones and others) [43]. Due to the high degree of 

similarity between images of the same modality, proposing a registration method of this type 

is usually simpler than in multimodality applications [42]. 

According to Maintz et al. [42], the nature of registrations is divided in three main 

categories: (1) the extrinsic, (2) the intrinsic and (3) non-image based. On the extrinsic 

registrations, artificial objects (e.g., markers) are attached to the patient, which are designed 

to be well visible and accurately detectable in all of the pertinent modalities. As such, the 

registration of the acquired images is comparatively fast, easy, can virtually always be 

automated and, since the parameters of the registration can often be computed explicitly, 

registrations of this kind do not require complex optimization algorithms. On the (2) intrinsic 

registration, the corresponding methods rely only on the image-related content of the patient. 

The intrinsic registration can be based on a limited set of identified salient points (landmarks), 

on the alignment of segmented binary structures (segmentation based) yet it is most 

commonly based on object’s surfaces or directly onto measures computed from the image 

grey values. Alternatively, it can also be (3) non-image based. Although it seems paradoxical 

for a multimodality registration to be non-image based it is actually possible if the imaging 

coordinate systems of the two scanners involved are somehow calibrated to each other. This 

type of registration usually requires the scanners to be brought into the same physical 

location, and to assume that the patient remains motionless between acquisitions. 

 

Matinz et al. [42] also explains that when all the involved images are acquired from a 

single patient this is referred to as intrasubject registration. If the registration is accomplished 

using two different patients (or a patient and a model), this is referred to as intersubject 

registration. If one image is acquired from a single patient and the other image is somehow 

constructed from a dataset obtained from imaging of many subjects, then it is called atlas 

registration. They also state that many registrations of a patient image to an image of a 
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‘normal’ subject are termed atlas registration. However, the authors prefer to define this type 

of registration as intersubject instead. 

 

Rigid Transformation is a type of transformation where the distance between every 

pair of points is preserved [49,50]. Thus, the Rigid Transformation comprises operations like 

rotations, translations and reflections or a combination of these operations [42]. Affine 

Transformations are functions between affine spaces that preserve points, straight lines and 

planes [51,52]. Affine Transformations comprise operations such as translations, scaling, 

homogeneous and inhomogeneous dilations, similarity transformations, reflections, 

rotations, shear mapping and compositions of these operations [53]. The transformations 

usually employed within the medical registration field are divided in the categories depicted 

on the following Figure 5 [42]. The overall nature of the transformations can be either (1) 

global, i.e., applied to the entire image, or (2) local, i.e., applied to a certain area and further 

fused with other transformations or parts of the input image. 

 

Figure 5: Categories of transformations usually used in the medical registration. 
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The definition of each type of transformations shown in Figure 5 can be simplified as 

(1) rigid, if only translations and rotations are allowed; (2) affine, if the transformation maps 

any parallel lines of the image into parallel lines; (3) projective, if it maps lines into lines or (4) 

curved or elastic, if it maps lines into curves [42,52]. 

In this work, we will just use affine transformations. Affine transformations are 

expressed in the form of a linear matrix multiplication. The Equation (1) demonstrates a 

transformation 𝑇 where 𝐴 is the coefficient matrix, 𝐵 is the displacement matrix and [
𝑥
𝑦] is 

the vector (or coordinates of the pixel) we want to transform [54,55,52]. 

 

 
𝑇 = [

𝑥′
𝑦′

] = 𝐴 [
𝑥
𝑦] + 𝐵 (1) 

  

In ℝ², the usual way to represent an affine transformation 𝑇 is by using a 2𝑥3 matrix 

with homogeneous coordinates as shown in Equation (2). 

 

 
𝐴 = [

𝑎0,0 𝑎0,1

𝑎1,0 𝑎1,1
] , 𝐵 = [

𝑏0,0

𝑏0,1
]. 

[
𝑥′
𝑦′
1

] = [
𝑎0,0 𝑎0,1 𝑏0,0

𝑎1,0 𝑎1,1 𝑏0,1

0 0 1

] [
𝑥
𝑦
1

] 

(2) 

 

The work of Mäkelä et al. [56], for instance, presents a review of various image 

registration methods applied to cardiac imaging regarding different modalities (including CT). 

Every method assessed in that work is an intrasubject registration that, by definition, 

considers different slices of the same patient. Intrasubject registrations for several types of 

imaging modalities are already well developed with relation to the medical field, as the survey 

of Pluim et al. [57] indicates. Moreover, CT images have been registered to several other image 

modalities such as 2D video images [58,59], 2D fluoroscopy images [60,61,62] and portal 
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images [63,64,65]. Meyer et al. [66] and Koral et al. [67] registered CT and SPECT images 

focusing on the abdomen while Kagadis et al. [68] compared a surface-based and a mutual 

information based registration routine for the same matter [42,69,70].  

Mäkelä et al. [56] separate the cardiac image registration in two main categories: (1) 

those based on Geometric Image Features and (2) those based on Voxel Similarity Measures. 

The methods based on the Geometric Features are divided in registration of a set of points 

and edges or registration of surfaces. Registration methods based on Voxel (or pixel) Similarity 

include moments and principal-axes methods, intensity difference, correlation and methods 

based on mutual information [56]. 

One of the branches of the Geometric Image Features type of registration is the Point-

Based Registration. The Point-Based Registration mainly relies on matching points among the 

images. These points are often anatomical landmarks or external markers. On the external 

markers case, they are set before the data acquisition and are captured along with the main 

data during the acquisition process. Some methods consist of highlighting the landmarks or 

placing some critical points, posteriorly to the acquisition of the data such as on [6,71]. The 

advantages of the Point-Based Registration is that it can be applied to any imaging modality 

where markers or landmarks are always visible among every image. The registration approach 

proposed by this work can be defined as being derived from the Point-Based Registration, 

however, the landmark is found automatically. 

The reason for applying intrasubject registrations on cardiac images is related to the 

movement of the heart, breathing and the actual displacement of the patient’s body in 

relation to the acquisition device. All these occasions may induce a noticeable displacement 

and distortion between the retrieved slices. Cardiac intrasubject registrations are, for 

instance, a more complex problem than intrasubject brain registrations, in particular because 

of the non-rigid and mixed motion of the heart and thorax structures [56]. 

The cardiac data is usually acquired along with the aid of an electrocardiogram that 

will indicate the best moment during a cardiac cycle where the data should be recorded. The 

entire cardiac cycle is shown in Figure 6. A single slice is acquired at successive intervals of the 

cardiac cycle. However, due to the motion of the heart, the data does not remain consistent 

among these acquired slices. Moreover, several cardiac cycles are usually required to 
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reconstruct a single slice. When possible, patients are asked to retain their breath (15–20 s) 

during the acquisition to reduce the thorax motion influence [56]. 

 

Figure 6: A classical acquisition with an electrocardiogram-gated sequence [56]. 

 

Several approaches for image segmentation employ commonly used procedures such 

as thresholding [72], atlas or multi-atlas registration [8,73,74], clustering [75], edge detection 

[76], level set [77], active contour [78], region growing [79] and many others [80,81]. We 

define the act of segmenting an image using classification algorithms as classified 

segmentation. This procedure is also addressed in the literature as pixel classification or 

probability based segmentation [80]. We tend to think that classified segmentation is the best 

terminology since pixel classification may not be related to segmentation and probability 

based segmentation is an ambiguous term. The classified segmentation has been used in 

multispectral MR segmentation [82]. However, it is not a very commonly applied procedure 

for image segmentation. 

The classified segmentation can be viewed as a simple iteration through a set of pixels 

or voxels of an image or 3D model where a set of characteristics related to the iterated pixel, 

voxel or surrounding area is extracted. These features are called features vector and each 

feature is illustrated as the variable b in Figure 7. Vectors of this type will usually compose a 
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dataset that is provided as input to a classification algorithm, which, in turn, generates a 

predictive model that is used to define the class of incoming (unknown) pixels. 

 

Figure 7: A features vector based on a pixel and its related information. 

 

Machine learning algorithms are often divided in two main categories: (1) the 

supervised and (2) the unsupervised methods. The algorithm is categorized as supervised 

when it explicitly evaluates the class or label attribute of a training set as the predictive label 

desired to attach to an incoming unlabeled instance. Furthermore, when this assumption is 

formalized, the class attribute heavily induces the generated predictive model, since the 

algorithm usually minimizes the error of the predictive model based on this class. However, 

when not formalized, the algorithm is defined as unsupervised and the class plays no heavy 

influence but of a normal attribute, when it is not disregarded from the training. Classification 

algorithms are always categorized as supervised learning methods while clustering algorithms 

are often unsupervised. 

Support vector machine (SVM) [83], multilayer perceptron (MLP) [84] and relevance 

machine (RVM) [85] are some of the most popular classification algorithms applied to create 

predictors. SVM and RVM make no assumptions about the data, they are able to find the 

global minimum of the objective function and can provide near optimal performance. 

Moreover, the complexity of these techniques depend on the number of support or relevance 

vectors, but not on the dimensionality of the input space. However, predictors based on these 

techniques provide too little insight on the importance of the variables involved on the 

prediction. The transparency of the predictive model is also very important in some areas, 
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such as medical decision support and quality control [86]. SVM and MLP have been used for 

classifying diseases and providing diagnosis [87,88], segmentation [89,90], weather prediction 

[91] and many other tasks. 

Decision and regression trees, in the other hand, are known for their transparency. 

However, they are rather sensitive to small perturbations on the learning set. It has been 

demonstrated that this problem can be reduced by applying bagging. Bagging predictors is a 

process of generating multiple predictive models based on a variation of the training set and 

using these to get an aggregated model [92]. One of the most acclaimed decision tree 

algorithms is the RandomForest (RF) proposed by Breiman [93]. RF is a combination of the 

random subspace method proposed by Ho [94] and bagging. RandomForests have been used 

for a large variety of tasks including identification of DNA-binding proteins, segmentation of 

video objects, classification of hyper-spectral data and many others [86].  

Verikas et al. [86] demonstrates how RandomForest outperforms and is also 

outperformed by several machine learning algorithms on distinctive tasks. According to the 

No Free Lunch theorem there is no single classifier model that is the best for all problems [95]. 

An analysis of how and why RandomForest is usually included on the top of the ranking of 

classification algorithms, outperforming, for instance, SVM and MLP on several tasks is 

valuable instead. 

Furthermore, Verikas et al. [86] also demonstrate how RF is a committee of weak 

learners for solving prediction problems. A decision tree is used as a weak learner in RF. When 

solving classification problems, the RF prediction is the un-weighted majority of class votes. 

As the number of trees in RF increases, the test set error rates converge to a limit, meaning 

that there is no overfitting in large RFs. In this work, we also complement this statement, in a 

slightly distinct fashion, with clear evidence of the non-overfitting characteristic of RF if 

compared to other classifiers. 

Meyer et al. [96] assessed the SVM performance on a large-scale comparison including 

16 classification and 9 regression techniques where the input parameters were carefully 

selected. The benchmark assessed 21 datasets, while 12 datasets were used for regression 

tests. The performance was evaluated using 10 times repeated 10-fold cross validation. Thus, 

on the classification tasks, SVM always ranked on the top 3 classifiers except for two datasets. 
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However, SVM was outperformed in 10 out of 21 data sets. On the regression tasks, SVM was 

almost always on the top 3. Nevertheless, SVM was outperformed in all occasions with the 

exception of two.  

Finally, neural networks are also powerful tools that can be used to approximate the 

complex nonlinear input-output relationships efficiently. On a classification problem, the 

objective is to learn the decision surface that accurately maps an input feature space to an 

output space of class labels. Among various architectures reported in the literature, Radial 

Basis Function (RBF) network is gaining attention due to its localization property of Gaussian 

function and has been widely used in classification problems [97]. 

 

Image segmentation has been used in biomedical areas such as on the identification 

of lung diseases; on the automated classification of white blood cells; in the detection of 

cancerous cells and in chromosome karyotyping [81]. It has also been used in chest [98] and 

liver segmentation [80], in breast segmentation [99] and many others. 

Rikxoort et al. [100] have proposed the use of the k-nearest neighbor algorithm for 

segmentation of the liver on CT images. The core of the method consists of a voxel labeling 

procedure: (1) for every voxel in the test set an amount of numerical values (a features vector) 

is computed and (2) a statistical classifier, trained on previously extracted features vectors, 

evaluates if the analyzed voxel is or is not part of the liver. 

The features extracted on the approach of Rikxoort et al. [100] were: (1) the 

coordinates of each voxel, (2) the grey value of the voxel, (3) a Gaussian weighted 

neighborhood of the voxel and (4) three extra features provided by the use of an atlas. The 

three extra features were generated on the basis of an atlas and they define if an arbitrary 

voxel is above, behind or to the left of the same. Furthermore, the authors stated that the 

extraction of the features (1), (2) and (3) alone were not sufficient to achieve a satisfying 

segmentation. In conclusion, they mention that the obtained results are satisfying but there 

is still a lot of room for improvement. Furthermore, their computation time is relatively large. 

It took 3 minutes to register 12 training scans to a single patient scan and some extra minutes 

to classify and preprocess the images. 
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Some of the first semi-automated segmentation methods for the epicardial fat were 

proposed around 2005. Dey et al. [101] apud Coppini et al. [6], for instance, apply a 

preprocessing step to remove all other structures apart from the heart by using a region 

growing strategy. Thereafter, an experienced user is required to scroll through the slices to 

place from 5 to 7 control points along the pericardium border, if visible. Therefrom, Catmull-

Rom cubic spline functions are automatically generated to obtain a smooth closed pericardial 

contour. Finally, the epicardial fat is simply quantified by thresholding, since it is theoretically 

located within this generated contour. In Pednekar et al. [102], a method for the segmentation 

of abdominal adipose tissue was proposed. The work of Kakadiaris et al. [103] have further 

extended the method of [102] to the segmentation of the epicardial fat. 

Coppini et al. [6] focused on reducing the user intervention. On their method, an expert 

is still necessary to scroll through the slices between the atrioventricular sulcus and the apex 

in order to place some control points on the pericardium. The amount of essential points is 

not clearly described. Nevertheless, the required amount of slices to be analyzed is apparently 

lesser than the ones required on the method proposed by Dey et al. [101]. Moreover, they 

also present their solution on a 3D space, and claim that Dey et al. [101] do not. The overall 

focus of their work was to describe their method mathematically. However, the work lacks on 

describing the general accuracy of their method. 

Barbosa et al. [104] proposed a more automated segmentation method for the 

epicardial fat. They start using the same preprocessing method from Dey et al. [101] and 

further apply a high level step for identification of the pericardium. Their identification is done 

by the act of tracing lines originating from the heart’s centroid to the pericardium layer and 

interpolating them with a spline. Although this approach may be interesting, of simple 

complexity, and highly applicable for virtually any proposed method for this issue, the 

reported results are not impressive. Only 4 out of 40 images were correctly segmented in a 

fully automatic way.  

Shahzad et al. [8] proposed, as far as we know, the first fully automated method for 

epicardial fat segmentation in 2013. Their method uses a multi-atlas based approach to 
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segment the pericardium. The multi-atlas approach is based on registering several atlases (8 

in this case) to a target patient and fusing these transformations to obtain the final result. The 

authors selected 98 patients for the test and reported a Dice similarity index of 89.15% to the 

ground truth, and a low rate of approximately 3% of unsuccessful segmentations. 

Notwithstanding, they did not provide any measurements of the overall processing time. 

Ding et al. [9], in 2014, proposed an approach similar to the one from Shahzad et al. 

[8]. The authors segment the pericardium using an atlas approach, which consists of a 

minimization of errors after applying transformations to the atlas along with an active contour 

method. The mean Dice similarity coefficient was equal to 93% and they claim that their result 

was achieved in 60 seconds on a simple personal computer. Although their segmentation 

seems to be the most precise in the current literature, the reported computing time is a 

dubious and poorly described. In addition, 60 seconds may be considered too fast for 

segmenting and transforming an entire scan, which consists of roughly 50 images. They also 

present a work [73] that segmented the aorta instead of the pericardium, and compare their 

achieved time (60 seconds) to the 15 minutes of the former. If these 60 seconds correspond 

to just the time it takes for the algorithm to minimize the transformations, then this 

comparison is not feasible. Furthermore, they report that on their approach the atlases’ 

images were pre-aligned to a standard orientation, therefrom, there is a comparison with only 

one of these atlases to speed up the process. The remaining pericardium contour will follow 

the pre-aligned pattern, which is a reported limitation. Besides, they did not describe how 

each one of these atlases is chosen as the correct one for each possible case. 

Although the epicardial fat segmentation have been softly addressed in the literature, 

on the other hand, the mediastinal fat have not been addressed as a target for automatic 

segmentation despite the fact of being a cardiovascular risk marker as previously shown in 

Section 2.2. 

 

Computed tomography (CT) holds two important advantages over conventional 

radiographs: three-dimensional image reconstructions and the capability to quantify X-ray 

attenuation. Attenuation is expressed in CT as Hounsfield Units (HU). The X-ray beams used 
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for diagnostic radiology are not monochromatic (i.e., consisting of photons with only one 

energy level), instead, they are composed of photons with a broad spectrum of energies [105]. 

Molteni [106] explains how HU may be different for a single type of material among distinct 

CT apparatus or even between the same machine model if different technical factors are 

applied such as distinct interpolators. In fact, each system and manufacturer incorporates a 

unique combination of X-ray source, detector array and projection geometry. Hence, when 

aiming to segment anything based on HU, this variation should be properly accounted.  

For recent systems, the available range of CT is usually between 212(4 048) and 216 (65 

536) for 12-bit and 16-bit types of acquisition, respectively. Thus, the maximal range for values 

in CT scans varies along with technical factors and is specified within each type of equipment. 

Hounsfield units correspond directly to grayscale values (i.e., the previously described 

attenuation). When the HU data is rendered to an image in order to be displayed on the 

screen, for instance, it should and is usually reduced to a representation within the interval of 

256 values (8 bits). For that matter, the actual visualization of CT data has to be calibrated 

according to the range that corresponds to an arbitrary area of interest (i.e., fat, muscle, 

bones, etc), or even to an interpolation of the whole range, which, in the case of CT scans, 

induces a massive loss of data [106].  

The values of Table 1 are present on the work of Molteni [106] and correlate a given 

substance to a mean of HU. In order to properly access the cardiac adipose tissue within CT 

scans, we need to consider an interval around -100 HU, which, in turn, corresponds to the 

overall fat tissue of the human body. Coppini et al. [6] and Shmilovich et al. [107] defined the 

cardiac adipose tissue interval as (-190,-30) while Spearman et al. [10] defined as (-195, -45) 

and Shahzad et al. [8] as (-200,-30). For this work, we will consider the largest proposed 

interval, which corresponds to the one used by Shahzad et al. All the addressed intervals fit 

properly on a 8 bits-depth image and no actual interpolation is required, avoiding a possible 

loss of data. 
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Material HU value Notes 

Air -1000 In a vacuum for all practical effects 

Fat -100  

Water 0 Distilled, at standard temperature and 
pressure 

Muscle +40  
Blood +40  
Bone >400 Spans over a large range, to approximately 

+1200 and occasionally more 
Aluminum 2640 At 60keV 

Table 1: Values of Hounsfield units (HU) for (fan beam) medical CT scans. 
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As previously discussed, the overall CT image data encapsulated in a DICOM file, even 

when belonging to the same modality, comes in different manners and is, therefore, not 

standardized. Thus, considering two arbitrary scans of a single patient or distinct patients, 

there is variation on the following topics, namely: (1) position, regarding the supposed center 

of the heart; (2) scale, regarding the distance from where the patient was from the scanners’ 

sensors or if it was rescaled along the acquisition process; and on the (3) texture. The texture 

difference is partly due to the fact that distinct manufacturers apply distinct formulas, 

interpolators and physical sensors on the acquisition and post-processing. To a fully extent, 

the differences in texture may also be related to the physical environment from where the 

data was acquired. 

The images processed and analyzed in this work always had their pixel values belonging 

to the fat interval: (-200,-30) in Hounsfield units. We have addressed the details about 

accessing and exporting images within that given range in the Appendix A – Accessing CT Data 

from DICOM Files. The image shown in Figure 8 is an instance where its data, apart from the 

black tone, represent only the adipose tissue range of a CT-DICOM file. In other words, the 

black color (0) represents the background, that is, what is not within that given range. 

 

Figure 8: An image within the (-200,-30) HU range. 
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The images in Figure 9 were taken from four distinct patients (on the axial-plane) and 

they were chosen due to being relatively close to the shoulders of each patient. By assuming 

that the images of the cardiac CT scans are aligned in a stack, we define their ordering as the 

first one being closer to the top (head) of the body, which is also known as craniocaudal 

direction. Furthermore, in this case, these images are represented on a greater HU range (-

200,500) just for a matter of analysis and comparison. 

  
Siemens Siemens 

  
Toshiba Phillips 

Figure 9: Variation between four distinct patients on the same HU range. 

These images evidence a variation on scale, positioning and texture among distinct 

manufacturers. The first two images were acquired with the same scanner (although the 

texture seems not to change, there is a divergence on the scale and a slight divergence on the 

position). The third patient data was acquired with a second distinct scanner, and the fourth 
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with a third distinct scanner. Hence, in total, there are three distinct manufacturers for these 

images. In Figure 10, the same images of Figure 9 after the appliance of the proposed 

registration are shown. This time, the images are within the adipose tissue range. 

  
Siemens Siemens 

  
Toshiba Phillips 

Figure 10: Four intersubjectly registered patients. 

We can consider by the images in Figure 10 that they are much more aligned between 

themselves and within a corresponding scale than the ones shown in Figure 9. The texture 

difference, when it comes to the segmentation, will be partially accounted and processed by 

the classification step. Registrations virtually always neglect the textural variation, such as on 

intersubject registrations. The information about the object, certain content, shape or area is 

regarded instead. When the standardization of the texture is desired, it is usually done on a 

separate preprocessing step. However, the variation of the texture within the adipose tissue 
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range of the CT images is almost unnoticeable, at least between the third and fourth images 

of Figure 10. We assume that the classification step of our approach will be able to properly 

predict the type of fat of the pixels even with remaining textural, positioning and scaling 

variations such as the ones that remain on the instances of Figure 10, variations that the 

proposed registration method alone is not able to standardize. 

 

We have already defined that this work will be based on images created as from the 

adipose tissue range that are extracted from DICOM files with regard to computed 

tomography. Given these fat images of several patients, we are then trying to find a 

practicable registration to be applied, which will standardize the positioning and scale of the 

heart among several patients. It is important to highlight that, when working with fat-only 

images; the quantification of the fats comes even easier. After being segmented, it can be 

simplified as literally counting each segmented pixel. 

In summary, the registration proposed in this work comprises two steps: (1) the scaling 

and (2) the translation. The DICOM structure stores information related to the scaling 

[108,109], and, therefore, we will address that standardization in the Appendix B – Rescaling 

Images According to DICOM. In summary, the images are stored in distinct scales within a 

DICOM file and an attribute of the same indicates by how much the image should be rescaled 

in order to transform it back to its natural proportion. Thus, our approach does not consider 

much of the scaling issue since it is a trivial operation and, therefore, it focus on the 

autonomous translation that should be applied to each patient. 

Moreover, one may suppose that it is sufficient to apply a rescale operation based on 

the DICOM information on a patient image followed by a translation operation, which centers 

the rescaled image before being rasterized. However, apart from the variation on the 

positioning of every patient, when a rescaled slice is rasterized and rendered to the screen or 

to an image as Figure 11 shows, part of the heart may be cropped out on that process. This 

occasion, therefore, evidences the need of an intelligent translation to be applied jointly or 

after the rescaling. 
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Figure 11: Heart exceeding the boundaries of the image. 

In average, there are 50 slices or images on every regarded cardiac CT scan. Our 

approach is based on registering a single slice of an arbitrary patient and further applying the 

same transformation to the remaining slices to reduce the computational time and simplify 

the method. Therefore, suitable slices for registration will always be the ones closer to the top 

of the body (on the craniocaudal direction) such as the one in Figure 11. Furthermore, since 

there is no external marker applied to each image of the scan, we need to rely on patient-

related content only. This kind of registration would be categorized as of intrinsic nature [42]. 

We later merged a landmark approach with an atlas approach, conceiving the proposed 

method.  

In order to autonomously perform the registration of several patients despite their 

scale and actual positioning of their heart, no manual placement of any common landmark is 

likely to be applied, such as several works have proposed [11,101,102,103]. Therefore, the 

remaining alternative is to automatically find the landmark. Thus, in other words, the 

parameters of our transformation are “searched for” and determined by finding an optimum 

of some function on the search space. 

The subject type of our solution cannot be intrasubject. In fact, we do not want to align 

structures of a patient based just on its own information. Conversely, structures of several 

distinct patients have to be aligned to some extent. Hence, we define the proposed 

registration as a fusion of an intersubject and atlas registration. The proposed registration is 

defined as so due to the fact that we construct an atlas of a certain area based on a few 
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patients, search for alignments for this atlas and align the patients to the chosen position. 

Therefore, our approach incorporates characteristics of a model and of an atlas. Moreover, 

the registration can be considered intersubject in a sense that it aligns distinct patients to a 

common position. Summarily, according to the definitions of Maintz et al. [42], our proposed 

registration approach is categorized as a registration of intrinsic nature where the parameters 

are search for and the transformation applied is affine. 

Thus, the proposed registration consists of a combination of (1) a landmark approach 

and (2) an atlas approach. With respect to the landmark approach, regions that exhibit or 

represent a common pattern among the evaluated instances are the most eligible for the 

placement of a landmark. A common characteristic that is of relatively recognizable easiness 

is exhibited from the 1st to approximately the 20th slice of every patient, regarding the 

craniocaudal direction. That common characteristic is denominated retrosternal area and was 

selected to be automatically recognized. The retrosternal area is located on the back of the 

sternum represented as red spots in Figure 12 and does not vary greatly as other cardiac 

structures do. Besides, it always appears within the boundaries of the CT image, i.e., it is 

almost never accidentally cropped off. The slice shown on the image (e) of Figure 12, despite 

being the 20th slice of a patient, is still exhibiting the same pattern in relation to the images 

(a), (b) and (d), which, in turn, are slices of the top of the CT stack.  

  
a) 4th slice b) 5th slice 
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c) 20th slice d) 2nd slice 

Figure 12: Highlighted retrosternal area of four distinct patients.  

Summarily, the proposed registration heavily relies on this common characteristic 

denominated retrosternal area. After automatically recognizing the area, its central point is 

used as reference in order to align the images of the patients to a standard position. The Figure 

13 below illustrates the overall steps of the registration. More details regarding the 

registration are further discussed in the following section. 

 

Figure 13: Overall steps of the proposed registration. 
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The proposed recognition is based on similarity measures [70]. Thus, in order to apply 

similarity measures to our problem, a small atlas of the retrosternal area was constructed 

where its central point corresponds to the common landmark among every patient. This atlas 

is then, by a simple analogy, moved on top of a fixed image while associating every single 

position (𝑥, 𝑦) of the atlas to a score of similarity between the pixel values of the fixed and 

the atlas (moving) images.  

We have randomly selected 10 instances and manually aligned these images to 

compose the atlas as shown in Figure 15. Due to the texture variation among distinct 

manufacturers, we chose, prior to the atlas assemblage, to threshold the images as the 

instance depicted in Figure 14-(b) shows. In other words, each one of these 10 images received 

a threshold at level 0.2, which originates the binary images as the one shown in Figure 14-(c). 

The reason for choosing 0.2 as value for thresholding was to remove possible remnants of 

interpolations from the image, since the images have already been rescaled from the DICOM 

file to their natural proportions. However, the approach still behaves apparently the same if 

the chosen value for thresholding is lower than that. 

 
a) Threshold operation at level 0.2. The graph represent the image’s 

histogram. 
 

  
b) Retrosternal area of an arbitrary fat image. c) Binary version of the image (b) after being 

thresholded at level 0.2. 

Figure 14: A thresholding process.  
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After the thresholding operation, the randomly chosen images were overlapped and 

the pixel values of each position was summed and at last divided by the amount of selected 

instances (10 in the case). The Figure 15 contains each one of the instances that composes the 

atlas applied to this work. The resultant image (i.e., the atlas) is shown in Figure 16 along with 

its histogram. 

 

  
 

  
 

  
 

  
 

  

Figure 15: Ten randomly chosen binary instances of the retrosternal area. 

 
 

 

Figure 16: The atlas applied on the registration. 

Therefrom, we need a measure to assess how much of the atlas is associated to an 

arbitrary part of a fixed image. A successful registration was defined as every single trial where 
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the algorithm-chosen retrosternal landmark coincided with the actual retrosternal area’s 

center of the fixed image, regarding slightly positioning variations within this area. A total 

amount of 52 randomly chosen slices was provided as input to evaluate the following 

described similarity measures. 

 

The mean absolute difference, mean squared difference and mean cubic difference 

are very simple measures for similarity and can be obtained from the minimization of the 

Mean Difference (MD) in Equation (3) regarding 𝑔 = 1 , 𝑔 = 2  and 𝑔 = 3  respectively. 𝑀 

denotes our atlas (i.e., moving image) shown in Figure 16, ℎ and 𝑤 stand for the height and 

width of the atlas, respectively [110]. 

 

𝑀𝐷𝑦,𝑥(𝐹, 𝑀, 𝑔) =
1

ℎ𝑤
(∑ ∑ |𝐹𝑖,𝑗 − 𝑀𝑖,𝑗|

𝑔
𝑤+𝑥

𝑗=𝑥

ℎ+𝑦

𝑖=𝑦

) (3) 

 

The chosen position (𝑥, 𝑦) for the atlas corresponds to the minimum value among all 

the possible 𝑀𝐷𝑦,𝑥 positions of 𝐹. We have defined as possible all the positions available in 𝐹 

plus a small extrapolation on the upper-left position. Thus, if a pixel that does not belong to 𝐹 

is accessed, then this nonexistent pixel is treated as a background pixel. If the chosen position 

for the atlas corresponds to (𝑥, 𝑦) then, alternatively, the chosen position for the landmark 

corresponds to the center of the retrosternal area that is equal to (𝑥 +
𝑤

2
, 𝑦 +

ℎ

2
), which is also 

the center of the atlas. The rate of successful recognitions obtained with this measure was 

equal to 63.5%. 

This measure, in an intrinsic fashion, gives more importance to certain types of pixels 

that are more abundant on the atlas image due to its equal-weighted nature. Darker pixels 

correspond to a great amount of pixels on the atlas and, due to that fact, the behavior 

depicted on the instances of Figure 17 is occasionally induced. In these occasions, the 

matching of darker pixels influence more on the final result due to the uncommon thorax and 

retrosternal structures of these patients. This behavior occurs more frequently when there is 
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a thick layer of fat surrounding the heart of the patient, as opposed to the ones when there is 

not, which are shown in Figure 18. In addition, if the darker area of the atlas image is reduced 

(e.g., by resizing it), the brighter pixels are then favored and the atlas eventually ends up on 

the wrong position (usually on top of the abdominal fat) in a very similar fashion.  

The following instances of Figure 17 and Figure 18 had their pixels of the atlas image 

shifted to the blue layer. The green (+) symbol illustrates the center of the atlas and the red  

(-) symbols indicate dark areas of the atlas image.  

  
 

  

Figure 17: Evidence for occasional darker pixels preference (high fat patients). 
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Figure 18: Successful recognitions (low fat patients). 

It is extremely difficult to non-empirically define the right proportion of the darker and 

brighter area on the atlas image. A complete empirical analysis is also impossible due to the 

restrict number of instances we have to rely on. Instead, our further proposed hybrid measure 

solves that hassle by dividing the image in two main areas and measuring the pixel deviation 

differently for each one of these parts (darker and brighter pixels). However, we have also 

evaluated the normalized cross correlation, mutual information and a weighted mutual 

information as similarity measures and compared the achieved results to the proposed 

measure. 
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The main use for correlation was studying random-like processes that exhibit similarity 

in their behavior of occurrence. A good example would be the temperature of the air, which 

is certainly correlated with seasons [111]. The discrete equation for the cross-correlation 

coefficient applied to images is defined on the Equation (4). The equation represents the 

cross-correlation between the images 𝐹 and 𝑀 and its intensity values (𝐹𝑖,𝑗 and 𝑀𝑖,𝑗) at the 

position (𝑥, 𝑦) of the fixed image, where ℎ and 𝑤 still represent the height and width of the 

atlas, respectively. The variables 𝜇𝐹 and 𝜇𝑀 represent the mean intensity values of the fixed 

and moving images, also respectively [110]. The maximal value that 𝐶𝐶𝑦,𝑥 can achieve is 1, 

which would imply that the images are in alignment [110]. This measure allows to register 

objects whose intensity values are related by a linear transformation [46].  

 

𝐶𝐶𝑦,𝑥(𝐹, 𝑀) =
|∑ ∑ (𝐹𝑖,𝑗 − 𝜇𝐹)(𝑀𝑖,𝑗 − 𝜇𝑀)𝑤+𝑥

𝑗=𝑥
ℎ+𝑦
𝑖=𝑦 |

√∑ ∑ (𝐹𝑖,𝑗 − 𝜇𝐹)
2𝑤+𝑥

𝑗=𝑥
ℎ+𝑦
𝑖=𝑦

∑ ∑ (𝑀𝑖,𝑗 − 𝜇𝑀)²𝑤+𝑥
𝑗=𝑥

ℎ+𝑦
𝑖=𝑦

2

 (4) 

 

The cross-correlation achieved a slightly lower rate of successful recognitions (55.7%) 

if compared to the similarity measures based on the difference of the related pixels. That low 

rate may be due to the fact that the atlas and the fixed images are not always related by a 

linear transformation. The relation between both images is generally more fuzzy than just a 

linear correlation. In theory, the mutual information measure would perform better because 

it considers the mutual dependence. 

 

Mutual information is a measure of how well one image explains the other [112]. When 

two images are composed by entirely distinct pixel values, mutual information is zero. The 

maximal value of mutual information is 1. The mutual information coefficient is defined as 𝑀𝐼 

in Equation (5), where 𝑚 is equal to the pixel values within the atlas image 𝑀, 𝑓 is equal to 

every pixel value of the fixed image 𝐹 that is within the atlas image size, i.e., between the top-

left corner of the atlas and the bottom-right corner, respecting the (𝑥, 𝑦) position of the atlas. 
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The variables 𝜌𝐹  and 𝜌𝑀  are the marginal probability distributions, corresponding to 

intensities in the images 𝐹  and 𝑀 , respectively [110]. Furthermore, 𝐻(𝐾)  stands for the 

Shannon entropy of the histogram 𝐾 [112] and 𝜌𝐹𝑀 stands for the joint probability. 

 

𝑀𝐼𝑦,𝑥(𝐹, 𝑀, 𝑔) = 𝐻(𝐹) + 𝐻(𝑀) − 𝐻(𝐹, 𝑀)

= ∑ ∑ 𝜌𝐹𝑀(𝑓, 𝑚) log𝑔

𝜌𝐹𝑀(𝑓, 𝑚)

𝜌𝐹(𝑓)𝜌𝑀(𝑚)
𝑚∈𝑀𝑓∈𝐹

  
(5) 

 

The variable 𝑔  usually receives 2, 10 or 𝑒  as input. The achieved rate of successful 

recognitions was equal to 61.5%, which is also equal to the mean squared difference measure 

and higher than the rate obtained with the normalized cross-correlation.  

 

In the traditional formulation of the mutual information, each event or object specified 

by (𝑓, 𝑚) is weighted by the corresponding joint probability 𝜌𝐹𝑀(𝑓, 𝑚). This assumes that all 

objects or events are equivalent apart from their probability of occurrence. However, in some 

applications, it may be the case that certain objects or events are more significant than others, 

or that certain types of associations are more semantically important than others [113]. 

For instance, the mapping {(9,9), (5,5), (2,2)} may be viewed as stronger than the 

mapping {(9,2), (5,9), (2,5)} , although these relationships would yield the same mutual 

information. In other words, assuming that the image 𝐸 = {9,5,2} and 𝑅 = {2,9,5} are being 

measured by the 𝑀𝐼  equation, the result of the comparison between 𝐸  and 𝐸  or 𝐸  and 𝑅 

would be the same. However, in our problem, it is clear that the images 𝐸 and 𝐸 are more 

similar than 𝐸 and 𝑅 although they hold the same mutual information. Thus, we propose a 

combined measure which considers both the mean difference measure and the mutual 

information, originating a weighted by the difference mutual information shown in Equation 

(6). 
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𝑊𝑀𝐼𝑦,𝑥(𝐹, 𝑀, 𝑔) = ∑ ∑
1

|𝑓 − 𝑚| + 1
𝜌𝐹𝑀(𝑓, 𝑚) log𝑔

𝜌𝐹𝑀(𝑓, 𝑚)

𝜌𝐹(𝑓)𝜌𝑀(𝑚)
𝑚∈𝑀𝑓∈𝐹

  (6) 

 

The factor 
1

|𝑓−𝑚|+1
 defines the applied weight to the equation. When 𝑓 = 𝑚  each 

parcel of the sum of the 𝑀𝐼 equation will be multiplied by 1. Thus, in this case, the maximum 

value of 𝑊𝑀𝐼 will still be 1 and that coefficient will be achieved when the images are the same 

and are perfectly aligned. The weighted mutual information measure achieved a successful 

rate of 70%, which is higher than all the results achieved by the other measures.  

 

Although the weighted mutual information measure achieved a relatively high rate of 

successful recognitions, we did not consider that rate high enough. We focused on minimizing 

the error during the registration by the tightest amount possible. Thus, by evaluating the 

circumstances, we ended up with a Hybrid Mean Difference (HMD) measure capable of 

achieving a successful rate of recognitions of the retrosternal area higher than 70%. 

The proposed measure is based on the premise of solving the issue introduced by the 

mean difference measure. At first, by thresholding the moving (atlas) image on the level 𝑡, we 

separate two main parts of the image: (1) the one with darker pixels and (2) the one with 

brighter pixels, as shown on the image (c) of Figure 19. Therefrom, the brighter moving image 

area will have its pixel values 𝑚 inverted and subtracted of the values 𝑓 from the fixed image 

(b), as the images (d) and (f) depict. If the difference between 𝑓 and 𝑚 is positive then this 

value is summed to compose a partial error score 𝑆𝑝, as shown at the bottom of the image (f). 

Furthermore, the pixel values of the moving image that belong to the darker area, 

depicted as black on image (c), will be subtracted of the fixed image (b) to compose the image 

(e). The sum of the pixel values on the image (e) will compose the remaining partial error score 

𝑆𝑛  shown at the bottom of image (e). The final hybrid difference is given by 𝑆𝑛 − 𝑆𝑝 . By 

minimizing HMD, we automatically maximize 𝑆𝑝  and minimize 𝑆𝑛  altogether. When the 

images 𝐹 and 𝑀 are identical, HMD will return 0. However, with distinct images it will return 

negative values if 𝑆𝑛 < 𝑆𝑝. 
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In summary, by applying this measure we are maximizing the intersection of the 

brighter pixels of the moving image to the ones of the fixed image while reducing errors that 

occur when brighter pixels of the atlas match darker pixels of the fixed image. This type of 

errors occur because the area of brighter pixels of the atlas is virtually always greater than the 

brighter pixels of the retrosternal area of the processed fixed image. As such, if the errors 

related to that surplus area are reduced, so is the recognition error provoked by the similarity 

measure. In addition, the intersection of the pixels is properly weighted by grey values of both 

images such as in MD. Finally, at the same time, we are minimizing the intersection of the 

darker pixels of the moving images to the brighter pixels of the fixed images. 
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Figure 19: The hybrid mean difference similarity measure. 
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The function in Algorithm 1 represents logical steps to achieve the hybrid mean 

difference, where 𝑡 stands for the threshold level, 𝐹 stands for the fixed image, 𝑀 stands for 

the moving image, 𝑀. 𝑥 and 𝑀. 𝑦 stand for the position (𝑥, 𝑦) within 𝐹 where the upper-left 

pixel of 𝑀 is placed. Furthermore, 𝑔 stands for the exponent of the difference between the 

pixel values of 𝐹 and 𝑀. Besides, we consider that the values 𝐹𝑖,𝑗 and 𝑀𝑖,𝑗 are normalized. The 

parameter 𝑡 was empirically chosen to be 0 as well as 𝑔 to be 3 (if 𝑟 is an integer variable). 

The achieved accuracy of the proposed measure was equal to 92%. In addition, the Equation 

(7) mathematically illustrates the Algorithm 1. 

1. hybridMeanDifference(𝐈𝐦𝐚𝐠𝐞 𝐹, 𝐈𝐦𝐚𝐠𝐞 𝑀, 𝐈𝐧𝐭 𝑔, 𝐈𝐧𝐭 𝑡) 
1.1. 𝐝𝐨𝐮𝐛𝐥𝐞 𝑠𝑐𝑜𝑟𝑒 = 0 
1.2. 𝐟𝐨𝐫 𝑖 = 0 ;  𝑖 < 𝑀. ℎ𝑒𝑖𝑔ℎ𝑡 ;  𝑖 + + 
1.2.1. 𝐟𝐨𝐫 𝑗 = 0 ;  𝑗 < 𝑀. 𝑤𝑖𝑑𝑡ℎ ;  𝑗 + + 
1.2.1.1. 𝐝𝐨𝐮𝐛𝐥𝐞 𝑟 = 1 
1.2.1.2. 𝐢𝐟 𝑀. 𝑥 + 𝑗 < 𝑀. 𝑤𝑖𝑑𝑡ℎ 𝐚𝐧𝐝 𝑀. 𝑦 + 𝑖 < 𝑀. ℎ𝑒𝑖𝑔ℎ𝑡 
1.2.1.2.1. 𝐢𝐟 𝑀𝑖,𝑗 > 𝑡 

1.2.1.2.1.1. 𝑟 = − (max (𝐹𝑖,𝑗 −
1

𝑀𝑖,𝑗
, 0))

𝑔

 

1.2.1.2.2. 𝐞𝐥𝐬𝐞 
1.2.1.2.2.1. 𝑟 = |𝐹𝑖,𝑗 − 𝑀𝑖,𝑗|𝑔 

1.2.1.3. score+= 𝑟 
1.3. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑐𝑜𝑟𝑒 

Algorithm 1: Hybrid mean similarity function. 

 

𝐻𝐷𝑀𝑦,𝑥(𝐹, 𝑀, 𝑔, 𝑡) = ∑ ∑ {
− (max (𝐹𝑖,𝑗 −

1

𝑀𝑖,𝑗
, 0))

𝑔

  , 𝑖𝑓 𝑀𝑖,𝑗 > 𝑡

|𝐹𝑖,𝑗 − 𝑀𝑖,𝑗|
𝑔

  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤+𝑥

𝑗=𝑥

ℎ+𝑦

𝑖=𝑦

 (7) 

 

In summary, we have proposed an extension of an existing similarity measure called 

mean difference. This extension performed better than the normalized cross-correlation, 

mutual information and the proposed weighted mutual information as well. The highest rate 

of successful recognitions achieved by HMD was equal to 92% against 70% of the weighted 

mutual information measure. In other words, once the HMD was applied, the proposed 

recognition method was able to successfully locate the retrosternal area in 48 instances out 

of a total of 52. A comparison between the similarity measures is shown in Table 2. 
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Measures Successful 
Recognitions 

Hybrid Mean Difference* 92% 
Weighted mutual information* 70% 

Mean difference 63.5% 
Mutual information 61.5% 

Normalized cross-correlation 55.7% 

Table 2: A comparison of the similarity measures using 52 images. 

 

We have addressed the fact that CT slices can be trivially rescaled according to the 

information in their DICOM file. However, the proposed recognition, using the HMD measure, 

successfully works with slices of varied scales. That is, the recognition succeeded on images of 

pixel spacings within the (0.20,0.50) interval. In addition, approximately 95% of the patients 

we have checked had their associated pixel scaling data belonging to that interval. Hence, the 

proposed recognition is basically scale invariant for all the possible cardiac CT images. In other 

words, the method does not need to be adapted to work with slices of different scales. The 

Figure 20 shows 3 examples of successful recognitions of the retrosternal area regarding 

differences of 0.02, 0.1 and 0.15 on the pixel spacing information, respectively.  

 

  
Pixel spacing: k Pixels Spacing k - 0.02 
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Pixel spacing: m Pixel spacing: m - 0.1 

  
Pixel spacing: n Pixel spacing: n - 0.15 

Figure 20: Successful recognitions on varied scales.  

As evidenced by Figure 20, the proposed method is virtually scale invariant, the size of 

the atlas does not need to change to match the scale of the fixed image. In other words, the 

size of the atlas does not depend on the size of the fixed image and can be thought as a 

constant. Therefore, the complexity of the Algorithm 1, which loops through the pixels of the 

atlas image only, may also be considered constant. Thus, the  ℎ𝑦𝑏𝑟𝑖𝑑𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

function runs in 𝑂(1) time for each pixel of an arbitrary fixed image. Therefore, to assess the 

measure through an entire fixed image searching for the most suited position implies a 𝑂(𝑤ℎ) 

time, where 𝑤 and ℎ are now the width and the height of the fixed image, respectively. 
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Although the proposed similarity measure (HMD) achieved a high rate of successful 

recognitions (92%), it was not successful on all trials. Thereafter, we further incremented the 

proposed recognition with a heuristical confirmation method. The proposed confirmation is 

responsible not only to increment the rate of successful recognitions but to prevent any 

further unaccounted variation that is not present in the patients regarded for this study. Such 

variations may include anatomical defects in the retrosternal area induced by surgery or 

genetic disposition, for instance.  

Given a small area of pixels 𝐴  at the center of the atlas (i.e., the center of the 

recognized retrosternal area), there should be two points 𝑝𝑙  and 𝑝𝑟  that continously move 

through the fat pixels on the left-bottom and right-bottom directions until they reach 

convergence. A fat pixel is defined as a pixel that is not background (i.e., black). The thin 

slanted white lines on the instances of Figure 21 illustrate the binding of, or the distance 

between these two points 𝑝𝑙  and 𝑝𝑟  after their convergence. The action of moving these 

points on the image is just a fragment of the whole confirmation method. The movement of 

these points will provide information for two logical conditions that reinforce the 

autonomously recognized position (𝑥, 𝑦)  for the atlas as correct or not. The two logical 

conditions are defined as such: (1) the traced line must be within a certain width (in the x-axis) 

and (2) both points must also be within a certain distance from each other and from the 

starting point as well. If this confirmation fails, the settlement of the atlas and the 

confirmation method must be redone jointly for all the positions in the fixed image. 
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Figure 21: Binding of the two points 𝑝𝑙 and 𝑝𝑟. 

After the retrosternal area recognition, we consider a rectangular area 𝐴 where its 

central point corresponds to the central point of the atlas image. This central point is 

illustrated as the pixel pointed by the arrow in Figure 22 and the rectangular area is also 

illustrated in yellow in the same figure. The reason for considering a rectangular area instead 

of a single point is so that if a single point is selected, not always will the two points 𝑝𝑙 and 𝑝𝑟 

be able to move through fat pixels because not every patient has a straight continuity of fat 

deposits in the retrosternal area as Figure 23 evidences.  



3 Proposed Approach 59 

 

 

 

 

Figure 22: The rectangular area and the central point of the atlas. 

 

Figure 23: Absence of continuous fat deposits in the retrosternal area. 

The aspect ratio of 𝐴 was obtained based on observations of that area over several 

instances. There usually are more gaps on the horizontal direction than on the vertical and, 

therefore, the width of the rectangular area was set to be greater than its height. Following 
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that premise, we have empirically chosen the width to be equal to approximately 13% of the 

width of the fixed image and the height to be approximately 4% of its height.  

Thereafter, from every pair of pixels within 𝐴 there must be at least one pair 𝑝𝑙 and 𝑝𝑟 

that satisfies the function shown in Algorithm 2, where 𝑍(𝑝) is a function that returns true if 

the pixel 𝑝 passed as parameter is a fat pixel and false otherwise. The two dimensional vector 

𝑑𝑋 stipulates the minimum and maximum distances that these points 𝑝𝑙 and 𝑝𝑟 must move 

on the x-axis. The parameter 𝑐 stands for the convergence threshold, i.e., how many times 

both coordinates 𝑝𝑙  and 𝑝𝑟  will move on the image. Furthermore, 𝑙  stands for how many 

background pixels can be skipped on a single movement of the coordinates 𝑝𝑙 and 𝑝𝑟. Finally, 

the methods 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() , 𝑚𝑜𝑣𝑒𝐷𝑜𝑤𝑛() , 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡()  and 𝑚𝑜𝑣𝑒𝑈𝑝()  are self-

explanatory, they will essentially move the coordinates of the arbitrary point 𝑝 by 1 pixel on 

the orientation described by the name. 
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1 confirmationMethod(𝐈𝐦𝐚𝐠𝐞 𝐹, 𝐕𝐞𝐜𝐭𝐨𝐫𝟐 𝑝𝑙, 𝐕𝐞𝐜𝐭𝐨𝐫𝟐 𝑝𝑟 , 𝐕𝐞𝐜𝐭𝐨𝐫𝟐 𝑑𝑋, 𝐈𝐧𝐭 𝑐, 𝐈𝐧𝐭 𝑙)  

1.1. 𝐯𝐞𝐜𝐭𝐨𝐫𝟐 𝑖𝑃 =  (
𝑝𝑙.𝑥+𝑝𝑟.𝑥

2
,

𝑝𝑙.𝑦+𝑝𝑟.𝑦

2
) //center of the initial pair of points 

1.2. 𝐟𝐨𝐫 𝑐𝑎 = 0 ; 𝑐𝑎 < 𝑐 ;  𝑐𝑎 + + 
1.2.1. 𝐟𝐨𝐫 𝑙𝑎 = 1 ;  𝑙𝑎 ≤ 𝑙 ;  𝑙𝑎 + +  
1.2.1.1. 𝐯𝐞𝐜𝐭𝐨𝐫𝟐 𝑝𝑎 = 𝑝1 
1.2.1.2. 𝐯𝐞𝐜𝐭𝐨𝐫𝟐 𝑝𝑏 = 𝑝𝑟 
1.2.1.3. 𝐢𝐟 𝑍(𝐹𝑝1.𝑦,𝑝1.𝑥) 

1.2.1.3.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() 
1.2.1.3.2. 𝐢𝐟 ¬𝑍(𝐹𝑝1.𝑦,𝑝1.𝑥) 

1.2.1.3.2.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡() 
1.2.1.3.2.2. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝐷𝑜𝑤𝑛() 
1.2.1.3.2.3. 𝐢𝐟 ¬𝑍(𝐹𝑝1.𝑦,𝑝1.𝑥) 

1.2.1.3.2.3.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() 
1.2.1.3.2.3.2. 𝐢𝐟 ¬𝑍(𝐹𝑝1.𝑦,𝑝1.𝑥) 

1.2.1.3.2.3.2.1. 𝐝𝐨 2𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡() 
1.2.1.3.2.3.2.2. 𝐢𝐟 ¬𝑍(𝐹𝑝1.𝑦,𝑝1.𝑥) 

1.2.1.3.2.3.2.2.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() 
1.2.1.3.2.3.2.2.2. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑙. 𝑚𝑜𝑣𝑒𝑈𝑝() 
1.2.1.4. 𝐢𝐟 𝑍(𝐹𝑝𝑟.𝑦,𝑝𝑟.𝑥) 

1.2.1.4.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡() 
1.2.1.4.2. 𝐢𝐟 ¬𝑍(𝐹𝑝𝑟.𝑦,𝑝𝑟.𝑥) 

1.2.1.4.2.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() 
1.2.1.4.2.2. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝐷𝑜𝑤𝑛() 
1.2.1.4.2.3. 𝐢𝐟 ¬𝑍(𝐹𝑝𝑟.𝑦,𝑝𝑟.𝑥) 

1.2.1.4.2.3.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡() 
1.2.1.4.2.3.2. 𝐢𝐟 ¬𝑍(𝐹𝑝𝑟.𝑦,𝑝𝑟.𝑥) 

1.2.1.4.2.3.2.1. 𝐝𝐨 2𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝐿𝑒𝑓𝑡() 
1.2.1.4.2.3.2.2. 𝐢𝐟 ¬𝑍(𝐹𝑝𝑟.𝑦,𝑝𝑟.𝑥) 

1.2.1.4.2.3.2.2.1. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡() 
1.2.1.4.2.3.2.2.2. 𝐝𝐨 𝑙𝑎 𝐭𝐢𝐦𝐞𝐬: 𝑝𝑟 . 𝑚𝑜𝑣𝑒𝑈𝑝() 
1.2.1.5. 𝐢𝐟 𝑝𝑎 ≠ 𝑝1 𝐨𝐫 𝑝𝑏 ≠ 𝑝𝑟 
1.2.1.5.1. 𝑙𝑎 = 𝑙 + 1 //ends the 𝑙𝑎 loop 
1.3. 𝐢𝐟 𝑝𝑟 . 𝑥 − 𝑝𝑙 . 𝑥 > 𝑑𝑋. 𝑥 𝐚𝐧𝐝 𝑝𝑟 . 𝑥 − 𝑝𝑙. 𝑥 < 𝑑𝑋. 𝑦 

1.3.1. 𝐛𝐨𝐨𝐥𝐞𝐚𝐧 isBalanced =  (√(𝑝𝑙. 𝑥 − 𝑖𝑃. 𝑥)2 +  (𝑝𝑙. 𝑦 − 𝑖𝑃. 𝑦)2 >

√(𝑝𝑟.𝑥−𝑖𝑃.𝑥)2+ (𝑝𝑟.𝑦−𝑖𝑃.𝑦)2

2
)  𝐚𝐧𝐝 (√(𝑝𝑟 . 𝑥 − 𝑖𝑃. 𝑥)2 +  (𝑝𝑟 . 𝑦 − 𝑖𝑃. 𝑦)2 >

√(𝑝𝑙.𝑥−𝑖𝑃.𝑥)2+ (𝑝𝑙.𝑦−𝑖𝑃.𝑦)2

2
)   

1.3.2. 𝐛𝐨𝐨𝐥𝐞𝐚𝐧 isLongEnough = √(𝑝𝑙. 𝑥 − 𝑖𝑃. 𝑥)2 +  (𝑝𝑙. 𝑦 − 𝑖𝑃. 𝑦)2 >

 𝑑𝑋. 𝑥 𝐚𝐧𝐝 √(𝑝𝑟 . 𝑥 − 𝑖𝑃. 𝑥)2 +  (𝑝𝑟 . 𝑦 − 𝑖𝑃. 𝑦)2 > 𝑑𝑋. 𝑥 
1.3.3. 𝐫𝐞𝐭𝐮𝐫𝐧 isBalanced 𝐚𝐧𝐝 isLongEnough 
1.4. 𝐫𝐞𝐭𝐮𝐫𝐧 false 

Algorithm 2: Confirmation method for the retrosternal area recognition. 
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In summary, what the Algorithm 2 essentially does is, starting at the initial coordinates 

of 𝑝𝑙 and 𝑝𝑟, it will try to displace these points only if there is an available fat pixel to move 

next, while respecting a set hierarchy. The 𝑙 on 𝑝𝑙 stands for “left pixel”, which infers that 𝑝𝑙 

will move down and leftwards, whereas 𝑝𝑟 will move right and downwards. The coordinates 

of 𝑝𝑙  and 𝑝𝑟  are changed only when the next moveable pixel is a fat pixel. Moreover, that 

displacement have to be strictly done respecting the following hierarchy: (1) at first, the point 

𝑝 should be moved on the horizontal direction (left or right), (2) if the associated pixel is not 

a fat pixel then 𝑝 is moved on the vertical direction (down only) and (3) finally, if the pixel 

associated to the previous movement is also not a fat pixel then 𝑝 is moved diagonally (left or 

right along with a downward movement).  

That process of choosing which direction to move and verifying if the associated pixel 

represents fat is done at most 𝑙 times for each interation of 𝑐. The 𝑙 variable was introduced 

to overcome some interpolation problems introduced by the resizing operation. Although we 

have applied just the bicubic interpolation, sometimes, the resultant image contained small 

gaps between pair of pixels that were previously continuous. Therefore, the use of the 𝑙 

variable was essential. Finally, that whole process of moving the coordinates of 𝑝𝑙 and 𝑝𝑟 is 

done at most 𝑐 times before the algorithm reaches convergence. 

The instance in Figure 24 illustrates some of the gaps originated by the rescaling and 

interpolation (mainly on the external structures of the heart). That instance was originally 

acquired from a DICOM file in a small scale (high pixel spacing) and, therefore, had to be 

resized by a significant amount. Hence, that resizing left some small gaps between fat pixels 

despite the fact of applying a bicubic interpolation. The nearest neighbor and bilinear 

interpolations reinforced even more those gaps and, for that matter, were disregarded.  
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Figure 24: Small gaps on the image provoked by rescaling.  

Finally, the boolean variable isBalanced verifies if both coordinates of 𝑝𝑙  and 𝑝𝑟 

moved, to some extent, equally to each other. That is so to avoid situations such as the one 

depicted in Figure 25, where the distance from 𝑖𝑃 to 𝑝𝑟  is much shorter than the distance 

from 𝑖𝑃  to 𝑝𝑙 . Thus, the logic condition associated to the variable isBalanced, shown in 

Algorithm 2, verifies if the distance from 𝑖𝑃 of both points 𝑝𝑟 and 𝑝𝑙. is at least half length of 

the other.  

 

Figure 25: An occasion where the point 𝑝𝑙.was displaced much more than 𝑝𝑟.  

In a similar fashion, the boolean isLongEnough verifies if the points 𝑝𝑟 and 𝑝𝑙 are at 

least at a meaningful distance from the initial point 𝑖𝑃 in order to avoid situations depicted by 

the image in Figure 26, where the 𝑝𝑙 and 𝑝𝑟 are very close to the atlas image. The absence of 
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this verification produced some unsuccessful recognitions. The slice featured in Figure 26, out 

of curiosity, can also be seen in Figure 12-(e) without any atlas blended to it. 

 

Figure 26: Wrong recognition due to the absence of the isLongEnough variable.  

Moreover, if the confirmation function in Algorithm 2 returns false then the 

recognition step is rerun whereas this time, at each evaluated position, the confirmation 

method is also run jointly. Thus, the chosen location will now be the one that minimizes the 

hybrid mean difference (Section 3.1.1.5) and that also returns true on the confirmation 

function. Therefore, there must exist a best position among every position 𝜇 that satisfies the 

call to the function 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐹, 𝜇, 𝑤𝐴, ℎ𝐴 , 𝑐, 𝑙, 𝑑𝑋) in Algorithm 4, where 𝑤𝐴 and  ℎ𝐴 

stand for the width and height of the area 𝐴. The remaining parameters 𝑐, 𝑙 and 𝑑𝑋 are just 

reassigned to the ones of the 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑 function.  

In summary, given a fixed image 𝐹  (fat image) and the moving image 𝑀(atlas), the 

function 𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎(𝐹, 𝑀) in Algorithm 3 is run. At the end of this run the best 

position is retrieved and stored on 𝜇. The function 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐹, 𝜇, 𝑤, ℎ, 𝑐, 𝑙, 𝑑𝑋) in 

Algorithm 4 is then called, if true is returned, the position 𝜇 is reinforced as being accurate 

and the algorithm converges. Otherwise, the function 𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎(𝐹, 𝑀) is rerun 

but, this time, only evaluating positions 𝑝 that respect the condition of returning true on the 

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐹, 𝑝, 𝑤, ℎ, 𝑐, 𝑙, 𝑑𝑋) function. The set of empirically chosen parameters for 

these methods were: 𝑤 = 0.13𝐹. 𝑤𝑖𝑑𝑡ℎ , ℎ = 0.04𝐹. ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑐 = 0.6𝐹. 𝑤𝑖𝑑𝑡ℎ , 𝑙 =

0.003(𝐹. 𝑤𝑖𝑑𝑡ℎ + 𝐹. ℎ𝑒𝑖𝑔ℎ𝑡)  and 𝑑𝑋 = (0.2𝐹. 𝑤𝑖𝑑𝑡ℎ, 0.55𝐹. 𝑤𝑖𝑑𝑡ℎ) . The vector (𝑒𝑥, 𝑒𝑦) 
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consists of the amount of extrapolation on the moving image position regarding the fixed 

image. 

1. findRetrosternalArea(𝐈𝐦𝐚𝐠𝐞 F, 𝐈𝐦𝐚𝐠𝐞 𝑀) 
1.1. 𝐝𝐨𝐮𝐛𝐥𝐞 bestScore = +∞ 
1.2. 𝐯𝐞𝐜𝐭𝐨𝐫𝟐 bestPosition = (0,0) 

1.3. 𝐯𝐞𝐜𝐭𝐨𝐫𝟐 (𝑒𝑥, 𝑒𝑦) = (80, 10) 

1.4. 𝐟𝐨𝐫 𝑖 = −𝑒𝑦 ;  𝑖 < 𝐹. ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑒𝑦 ;  𝑖 + + 

1.4.1. 𝐟𝐨𝐫 𝑗 = − 𝑒𝑥 ;  𝑗 < 𝐹. 𝑤𝑖𝑑𝑡ℎ + 𝑒𝑥 ;  𝑗 + + 
1.4.1.1. (𝑀. 𝑥, 𝑀. 𝑦) = (𝑗, 𝑖) 
1.4.1.2. 𝐝𝐨𝐮𝐛𝐥𝐞 hybridScore =  ℎ𝑦𝑏𝑟𝑖𝑑𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝐹, 𝑀, 3) 
1.4.1.3. 𝐢𝐟 hybridScore < bestScore 
1.4.1.3.1. bestScore = hybridScore 
1.4.1.3.2. bestPosition = (𝑗, 𝑖) 
1.5. 𝐫𝐞𝐭𝐮𝐫𝐧 bestPosition 

Algorithm 3: Steps to find the retrosternal area. 

1 confirmPosition(𝐈𝐦𝐚𝐠𝐞 𝐹, 𝐕𝐞𝐜𝐭𝐨𝐫𝟐 𝜇, 𝐈𝐧𝐭 𝑤, 𝐈𝐧𝐭 ℎ, 𝐈𝐧𝐭 𝑐, 𝐈𝐧𝐭 𝑙, 𝐕𝐞𝐜𝐭𝐨𝐫𝟐 𝑑𝑋) 
1.1. 𝐟𝐨𝐫 𝐞𝐯𝐞𝐫𝐲 𝐩𝐚𝐢𝐫 of points 𝑝1 𝐚𝐧𝐝 𝑝2 𝐰𝐢𝐭𝐡𝐢𝐧 𝐹 

1.1.1. 𝐢𝐟  ((𝑝1. 𝑦 𝒂𝒏𝒅 𝑝2. 𝑦) ∈ [−
ℎ

2
+ 𝜇. 𝑦,

ℎ

2
+ 𝜇. 𝑦]) 𝐚𝐧𝐝 ((𝑝1. 𝑥 𝒂𝒏𝒅 𝑝2. 𝑥) ∈

[−
𝑤

2
+ 𝜇. 𝑥,

𝑤

2
+ 𝜇. 𝑥])  

1.1.1.1. 𝐢𝐟 confirmationMethod(𝐹, 𝑝1, 𝑝2, 𝑑𝑋, 𝑐, 𝑙) 
1.1.1.1.1. 𝐫𝐞𝐭𝐮𝐫𝐧 true 
1.2. 𝐫𝐞𝐭𝐮𝐫𝐧 false 

Algorithm 4: Formally applying the confirmationMethod function.  

 

The complexity of the 𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 function is considered equal to 𝑂(𝑤ℎ), 

as previously discussed in Section 3.1.2, where 𝑤 and ℎ is the width and the height of the fixed 

image, respectively. This function evaluates every point 𝑝𝑒  of the fixed image for the 

placement of the atlas, and this is the direct reason for such complexity. However, the 

confirmation method requires an additional access of points. For each evaluated position 𝑝𝑒, 

we have to loop through every position of the rectangle area 𝐴. As such, in order to access 

every point within 𝐴, which is illustrated by the yellow rectangle depicted in Figure 22, a 

complexity of (0.12𝑤0.04ℎ) is required. As the constants and coefficients are not meaningful 

in a complexity measure, the worst case complexity for accessing every point in 𝐴 will result 
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on 𝑂(𝑤ℎ). Nevertheless, we need to evaluate every combination of points within the area 𝐴. 

Thus, instead of just 𝑂(𝑤ℎ), the worst case complexity for this operation is 𝑂(𝑤²ℎ²).  

In addition, the confirmation method in Algorithm 2 has a loop based on the 𝑐 variable, 

which, in turn, grows proportionally to the width of the fixed image. Hence, the complexity of 

that algorithm equals 𝑂(𝑤). For every pair of points 𝑝1 and 𝑝2 selected by the Algorithm 4 

(worst case complexity: 𝑂(𝑤²ℎ²) ), the function 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑(𝐹, 𝑝1, 𝑝1, 𝑑𝑋, 𝑐, 𝑙) , 

which is 𝑂(𝑤), will be called. That fact results on a complexity of 𝑂(𝑤³ℎ²) for the function 

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 , that is, 𝑂(𝑤)𝑂(𝑤²ℎ²) . By combining the complexity of 

the  𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  function, which is 𝑂(𝑤³ℎ²) , with the complexity of the 

𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 function, which is 𝑂(𝑤ℎ), we then have the worst-case complexity 

for the proposed recognition of the retrosternal area being equal to 𝑂(𝑤4ℎ³) . This is a 

relatively high computational complexity for real time processing. Nonetheless, the 

𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 function usually successfully recognizes the retrosternal area alone 

and does not need to be rerun along with the confirmation method. In fact, 92% of the 52 

patients we have assessed had their retrosternal area successfully recognized without the 

confirmation method, as also shown in Section 3.1.1. Hence, the worst case complexity for 

the proposed recognition method is 𝑂(𝑤4ℎ³). However, the complexity 𝑤4ℎ³ occurs at just 

8% of the time. At the remaining 92%, the complexity of the complete approach of finding the 

retrosternal area is simply 𝛺(𝑤ℎ). 

 

Finally, the Figure 27 shows all the four instances where the 𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 

method unsuccessfully recognized the retrosternal area, whereas the Figure 28 shows the 

same images from Figure 27 after the appliance of the confirmation method. Therefrom, we 

have tested this recognition method with all the 52 previously selected images plus a set of 

30 patients and the recognition approach (using also the confirmation method) did not fail to 

recognize the retrosternal area in none of them. 
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Figure 27: The 4 instances, out of 52, where the recognition method failed. 
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Figure 28: The same 4 instances after the confirmation method. 

 

Until now, we have: (1) built a simple atlas for the retrosternal area; (2) used this atlas 

along with a proposed similarity measure to recognize and select the retrosternal area 

location on an input image and (3) developed a heuristical confirmation method to reinforce 

the previously selected location and to correct eventual mistakes. However, we have not yet 

applied the actual translation to the images of the various patients.  

We assume that each patient usually has from 30 to 70 slices in their cardiac CT scans, 

such as the ones regarded in this work. In summary, the whole registration method is 

comprised of the steps following described: at first, we select the 𝛿(𝑛)𝑡ℎ  slice from the 

beginning of the stack (relatively next to the shoulders) according to the Equation (8), where 

the total number of slices of the CT scan is 𝑛. After selecting the 𝛿(𝑛)𝑡ℎ slice, we apply the 

transformation shown in Equation (9), where 𝑣𝑜  stands for the original pixel spacing value 

while 𝑣𝑑 stands for the desired standard pixel spacing value, which is equal to 0.35 in both 

directions. More details about pixel spacing and scaling are described in the Appendix A and 

B. 

 

𝛿(𝑛) = {
𝑛 − 45,  𝑖𝑓 𝑛 > 45   
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 
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[
𝑥′

𝑦′] = [

𝑣𝑜 . 𝑥

𝑣𝑑 . 𝑥
0

0
𝑣𝑜 . 𝑦

𝑣𝑑 . 𝑦

] [
𝑥
𝑦] (9) 

 

The transformed image 𝑇(𝑥′, 𝑦′)  is then passed to the 

𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 function shown in Algorithm 3. After positioning the atlas on the 

retrosternal area, the 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 function in Algorithm 4 is run and, if necessary, the 

𝑓𝑖𝑛𝑑𝑅𝑒𝑡𝑟𝑜𝑠𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑟𝑒𝑎 function is rerun along with the confirmation method. Finally, after 

the last placement of the atlas on the position 𝜔, the image 𝑇 is translated once again with 

the objective of aligning the found position 𝜔  of the retrosternal area to a standard 

centralized position 𝜑 . That standard position  𝜑  has been empirically chosen to be 

(0.14𝑤, 0.23ℎ). Therefore, the previously scaled image 𝑇 is then translated by the Equation 

(10), originating 𝑇2(𝑥′′, 𝑦′′). That step concludes the registration method and gives us the 

parameters of the transformation to be applied to every slice of the processed patient.  

 

[
𝑥′′

𝑦′′] = [
𝑥′

𝑦′] − [
𝜔. 𝑥 − 𝜑. 𝑥
𝜔. 𝑦 − 𝜑. 𝑦] (10) 

 

An overview of the proposed registration is shown in Figure 29. Visual results of our 

registration were shown in Figure 9 and Figure 10. 
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Figure 29: An overview of the whole registration procedure.  

 

In order to generate a concise predictive model we need to provide reliable data for 

the training step of the classification algorithm. Therefore, two specialists, one being a 

physician and the other being a computer scientist, have manually segmented the epicardial 

and mediastinal adipose tissues of 20 patients or CT scans (10 male and 10 female). These 
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data compose a ground truth that contains 878 manually segmented cardiac CT images and is 

available at [114]. The demographics of these patients are shown in Figure 30. 

 

Figure 30: Patient demographics. 

It is important to highlight that, previously to the manual segmentation, the images 

were already registered by our proposed registration. The black value (0) of the segmented 

images represents the background. The produced ground truth conforms to the following 

standard: the epicardial fat is represented in red, the mediastinal fat is represented in green 

and the pericardium or a transitional area between the epicardial and mediastinal fats is 

depicted as blue. The grey textural information of the pixels was simply shifted to their 

respective color layer. The image in Figure 31 illustrates one of the manually segmented slices.  

 

Figure 31: A slice of one patient that compose the ground truth. 
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Thereafter, some features should be extracted and algorithms should be chosen to 

train on the extracted information once the ground truth is established. The proposed 

classification approach consists of three main steps: (1) extracting the features, (2) training 

the predictive model and (3) further classifying an incoming CT scan. The steps (1) and (2) do 

not need to be redone every time a new incoming scan needs to be classified. In fact, if that 

were true, the method would take so long to converge that it would be unpractical. It do not 

take too much to perceive that the generated dataset is very big and that the step (1) is a very 

slow process. Thus, the step (3) is independent of (1) and (2) once they have already been 

processed. These three steps are represented by the “Initial Points” in Figure 32. 

 

Figure 32: Overall steps required for the classified segmentation. 

The first step consists of iterating every pixel of the images that compose the ground 

truth and extracting features related to the iterated pixel. The features vector of each pixel 

will represent a line on the extracted database and, therefore, various pixels of various images 

will compose the final dataset that is used to train predictive models for further segmentation. 
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There is a huge variety of features that can be extracted from images; some of them are 

specifically valuable for each type of image and arrangement of data. On the following section, 

we define and select some features that could be extracted for our problem. Moreover, we 

decided not to normalize the features after the extraction. The reason is so that without 

normalization, we are able to generate various predictive models from different training sets 

and aggregate these predictive models with little effort.  

The second and third steps, i.e., the steps to be applied after extracting the features, 

are totally related to the classification algorithms. On this aspect, the incoming pixel can be 

assigned to 3 different classes (mediastinal fat, epicardial fat or pericardium). It should be 

remembered that black pixels (0) are set as background and are not classified by the predictive 

model. Moreover, some classification algorithms work only with binary classes. Therefore, we 

divided the 3 possible classes into a binary mapping for each class. The classes are disposed in 

three columns on the dataset; each one represents a class and receives true or false as value. 

When training the algorithm for the epicardial fat, the columns that represent the remaining 

classes should be removed prior to the training in order to avoid predictive models trained 

using these classes, which are the desired output. The Figure 33 illustrates the overall steps 

for the segmentation of an incoming DICOM file. 

 

Figure 33: Segmentation of an arbitrary DICOM file. 

 

The features we have selected for extraction are divided in three main categories: (1) 

the primary features, which are directly related to the pixel information, (2) the secondary, 
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which are related to the image or to a neighborhood window and (3) the tertiary, which are 

related to data that was already derived from the image or from a neighborhood window.  

Thus, the possible and also the ones that were extracted as primary features are the 

pixel value along with its 𝑥, 𝑦 and 𝑧 coordinates. For secondary features we extracted the 𝑥 

and 𝑦 coordinates of the pixel with respect to the center of gravity of the image (𝑥 −  𝑥𝑔, 𝑦 −

 𝑦𝑔, ) , where (𝑥𝑔, 𝑦𝑔)  is shown in Equation (18) and further addressed in Section 3.2.1.2. 

Besides, a 𝑖̃𝑥𝑗̃  neighborhood of pixels around the iterated pixel 𝑃𝑦,𝑥 was considered for 

extracting information, where 𝑖̃  =  𝑗̃  =  2𝑞 + 1 | 𝑞 > 0 as shown in Figure 34. If any pixel of 

this neighborhood extrapolates the boundaries of the image then it is treated again as a black 

pixel. 
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Figure 34: Neighborhood around the pixel 𝑃𝑦,𝑥. 

From this neighborhood, the following secondary features were extracted: (1) a simple 

arithmetic mean of the grey values, (2) the geometric moments 𝑀(0,1), 𝑀(1,0) and 𝑀(1,1) 

and (3) the proposed Coefficient of Smooth Variation (CSV) of the grey values. The arithmetic 

mean is obtained from the Equation (11) and the coefficient of smooth variation is addressed 

in the following section. 

 

𝐴𝑀 =
1

𝑖̃𝑗̃
∑ ∑ 𝑃𝑖,𝑗

�̃�

𝑗

�̃�

𝑖

 (11) 

 

Furthermore, the (1) moments 𝑀1..4 at the distances (0,1), (1,0) and (1,1) of the co-

occurrence matrix were extracted as tertiary features. The reason for selecting those distances 

is so that there are images where the layer comprising the heart is of approximately one or 
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two pixels of thickness. Moreover, based on the run length matrix, the (2) run percentage and 

(3) grey level non-uniformity were also extracted as tertiary features respecting the directions 

𝜃 = {0°, 45°, 90°, 135°}. All these tertiary features were obtained from the neighborhood 

window and are addressed on the following sections. The extracted features are summarized 

in the Table 3 along with the applied parameters. By accounting the number of applied 

parameters with relation to each feature, a total of 31 features were extracted from the 

images. The texture is considered an important regional descriptor for segmentation and 

classification of various types of medical images. Thus, in this case, the reason for extracting 

texture-based features (most of the secondary and tertiary features) was mainly due to the 

hypothesis that the epicardial and mediastinal fat yield a slight difference on their texture that 

can be partially accounted by the analytical process of these features. 

Type Feature Parameters 

Primary Grey value - 

 𝑥 - 
 𝑦 - 

 𝑧 (slice number) - 

Secondary 𝑥 relative to the center of gravity - 

 𝑦 relative to the center of gravity - 

 Arithmetic Mean - 

 Coefficient of Smooth Variation - 

 Geometric Moments 𝑀(0,1), 𝑀(1,0), 𝑀(1,1) 

Tertiary Moments of the Co-occurrence 
Matrix 

(∆𝑥, ∆𝑦)  
= {(0,1), (1,0), (1,1)} 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑡𝑜 {𝑀1, 𝑀2, 𝑀3, 𝑀4} 
 Run Percentage 𝜃 = {0°, 45°, 90°, 135°}  

 Grey level non-uniformity 𝜃 = {0°, 45°, 90°, 135°} 

Table 3: Extracted features and used parameters. 

 

In this work, a new feature based on the Gaussian 1D filter and in the sup metric is 

proposed, which is denominated Coefficient of Smooth Variation. In this coefficient, a 

convolution operation is performed using a Kernel of which weights are based on a 

unidimensional Gaussian filter computed in terms of the distance 𝑟 from the point (𝑥𝑗 , 𝑦𝑖) of 
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the Kernel to its center (𝑥𝑐, 𝑦𝑐). However, the sup metric is used as the distance in ℝ². That 

is, instead of using the traditional Euclidian metric shown in the Equation (12) [115]: 

 

       𝑑(𝑥𝑐 , 𝑦𝑐; 𝑥𝑗 , 𝑦𝑖) = √(𝑥𝑗 − 𝑥𝑐)
2

+ (𝑦𝑖 − 𝑦𝑐)2   

𝑑2 = (|𝑥𝑗 − 𝑥𝑐|2 + |𝑦𝑖 − 𝑦𝑐|2)
1
2 

(12) 

 

The metric 𝑑∞  is used, where in the Equation (12), instead of 2, ever increasing 

numbers are considered as shown in Equation (13): 

 

𝑑𝑛 = (|𝑥𝑗 − 𝑥𝑐|𝑛 + |𝑦𝑖 − 𝑦𝑐|𝑛)
1
𝑛 (13) 

 

In a way that 𝑛 tends to infinity, resulting in the metric known as sup, which is actually 

part of the class of metrics 𝑑𝑛 , where 𝑛 = 1,2,3,4,5, … 100, … 1000, … . Thus, for ever 

increasing high values of 𝑛, one of the parcels within the modulus would become so greater 

than the other in a way that it finally becomes the only relevant parcel, which results on the 

known sup metric shown in Equation (14) [115]: 

 

𝑑∞ = 𝑚𝑎𝑥(|𝑥𝑗 − 𝑥𝑐|, |𝑦𝑖 − 𝑦𝑐|) (14) 

 

The Figure 35 represents the Euclidian distance of each pixel with relation to the 

central one in a 7x7 window. For this case, there is a total of 9 groups of distances, excluding 

the central one. 
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Figure 35: Euclidian distance Kernel in a 7x7 window. 

The first step to determine the Kernel of the proposed coefficient is to compute the 

distance of the pixels using the sup metric. In this case, the highest distance between the 

vertical and horizontal directions is what defines the distances of the pixels. Thus, the distance 

increase in a rectangular fashion before the modulus operation as shown in Figure 36.  

 

Figure 36: Sup metric. 

The distance Kernel based on the sup metric is shown in Figure 37: 

 

3 3 3 3 3 3 3 
3 2 2 2 2 2 3 
3 2 1 1 1 2 3 
3 2 1 0 1 2 3 
3 2 1 1 1 2 3 
3 2 2 2 2 2 3 
3 3 3 3 3 3 3 

Figure 37: 𝑑∞ distance in a 7x7 Kernel. 
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Instead of 9 groups of distances given by the Euclidian distance, in the case of the 

proposed coefficient there are only 3. Assuming again that the Kernel size is 𝑛 × 𝑛, then the 

number of groups of Euclidian distances is given by the Equation (15): 

 

⌊
𝑛2

8
⌋ +

𝑛 − 3

2
+ 1 (15) 

 

As opposed to ⌊𝑛/2⌋ of the proposed coefficient. The possible types of distances to be 

computed are significantly less. In a real-time scenario, that difference greatly influences on 

the performance. Therefrom, regarding a 7x7 window, instead of using the traditional 

Gaussian Kernel shown in Figure 38: 

 

1 6 15 20 15 6 1 
6 36 90 120 90 36 6 

15 90 225 300 225 90 15 
20 120 300 400 300 120 20 
15 90 225 300 225 90 15 
6 36 90 120 90 36 6 
1 6 15 20 15 6 1 

Figure 38: A Gaussian Kernel in a 7x7 window. 

We apply the coefficient of smooth variation, which looks like the Kernel in the Figure 

39. 
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56 215 215 215 215 215 56 
56 215 3162 3162 3162 215 56 
56 215 3162 107 3162 215 56 
56 215 3162 3162 3162 215 56 
56 215 215 215 215 215 56 
56 56 56 56 56 56 56 

Figure 39: Smooth variation Kernel in a 7x7 window. 

When the entire neighborhood window is regarded, the convolution is given by the 

Equation (16). The 𝛽 is a constant and should be adjusted to avoid overflows. In our approach, 

we have considered 𝛽 to be 107. The weight √𝛽
𝑑∞+1

 is multiplied by the pixel value 𝑃𝑖,𝑗 of the 

window. The 𝐶𝑆𝑉 is itself one of the features extracted from the neighborhood window. 

 

𝐶𝑆𝑉 = ∑ ∑ √𝛽
𝑑∞+1

𝑃𝑖,𝑗

�̃�

𝑗

�̃�

𝑖

 (16) 

 

If the CSV was outputted to an image, the result of the convolution on a single pixel 

with a 5x5 Kernel would be the one shown in Figure 40. 

 

Figure 40: CSV convolution. 



3 Proposed Approach 80 

 

 

 

 

Geometric moments provide important statistical descriptors of an image and are 

applicable for texture analysis [88,116]. The geometric moment 𝑀(𝑚, 𝑛) of order 𝑚 + 𝑛 is 

defined by Equation (17) where 𝑃𝑖,𝑗 are pixel values, 𝑗 and 𝑖 are pixel coordinates and 𝑚, 𝑛 are 

integer exponents that define the moment order. The center of gravity (𝑥𝑔, 𝑦𝑔)  can be 

obtained by the Equation (18) [117].  

 

 𝑀(𝑚, 𝑛) =  ∑ ∑ 𝑗𝑚𝑖𝑛 𝑃𝑖,𝑗

𝑗𝑖

 (17) 

   

 
(𝑥𝑔, 𝑦𝑔) = (

𝑀(1,0)

𝑀(0, 0)
,
𝑀(0,1)

𝑀(0,0)
) 

(18) 

 

 

The co-occurrence matrix associates the number of co-occurrences of a grey level of a 

pixel 𝑝𝑎 to a grey level 𝑝𝑏 on an image 𝐻 at a given distance (∆𝑥, ∆𝑦), where 𝑝𝑛 ∈ 𝐻 and the 

maximal 𝑛 is the amount of distinct grey values that exist in 𝐻. The function 𝐶∆𝑥,∆𝑦(𝑝𝑎, 𝑝𝑏) in 

Equation (19) denotes the co-occurrences between the pixel values 𝑝𝑎 and 𝑝𝑏 at a distance 

(∆𝑥, ∆𝑦) [88]. An example of the construction of the matrix is shown in Figure 41. 

 

𝐶∆𝑥,∆𝑦(𝑝𝑎, 𝑝𝑏) = ∑ ∑ {
1,    𝑖𝑓 𝐻(𝑖, 𝑗) = 𝑝𝑎 𝑎𝑛𝑑 𝐻(𝑗 + ∆𝑥, 𝑖 + ∆𝑦) = 𝑝𝑏

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑗𝑖

 (19) 
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Figure 41: Construction of a co-occurrence matrix. 

The sequence {1,2} on the direction (1,0) appears 4 times in the input image. 

Therefore, the cell (1,2) of the co-occurrence matrix must be populated with the number of 

co-occurrences of the sequence {1,2}, which is 4. This procedure is repeated for each possible 

co-occurrence on the input image, respecting the given distance. 

The probability of a grey level 𝑝𝑎 co-occurring with 𝑝𝑏 at a certain distance is given by 

the times these two grey values co-occur divided by all the co-occurrences of every pair of 

grey values (𝑘, 𝑙) at the same distance. Hence, the probability of 𝑝𝑎 co-occurring with 𝑝𝑏 is 

given by the function 𝑃∆𝑥,∆𝑦(𝑝𝑎, 𝑝𝑏) on the Equation (20) below. The moment of the co-

occurrence matrix is given by the function 𝑀𝑔  in Equation (21), where 𝑔  is the moment’s 

degree [88]. 

 

𝑃∆𝑥,∆𝑦(𝑝𝑎, 𝑝𝑏) =
𝐶∆𝑥,∆𝑦(𝑝𝑎, 𝑝𝑏)

∑ ∑ 𝐶∆𝑥,∆𝑦(𝑘, 𝑙)𝑙𝑘
 (20) 

𝑀𝑔 = ∑ ∑ 𝑃∆𝑥,∆𝑦(𝑘, 𝑙)(𝑘 − 𝑙)𝑔

𝑙𝑘

 (21) 
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The run percentage and grey level non-uniformity are features calculated over the run 

length matrix of an image. The run length matrix, in turn, is assembled based on the run length 

encoding principle. Moreover, the run length encoding is a simple technique used to encode 

and compress information [118]. On a run length encoded message, the identical symbols that 

previously appeared continuously 𝑛  times are traded for a unique representation of the 

symbol plus a concatenation of the number 𝑛. 

The run length matrix follows a similar principle in relation to the encoding. Given a 

direction 𝜃, the number of identical grey values of an image in that same direction can be 

accounted to compose a matrix. Thus, one axis of this matrix will represent all the possible 

grey values comprised on the image and the other axis will represent the length of the run, 

i.e., all the possible times the grey values appear continuously on the direction 𝜃. The four 

conventional possible directions for 𝜃 are 0°, 45°, 90° and 135°. The 0°, for instance, represent 

the horizontal direction. When computing the matrix for the 0° direction all the lines of the 

image are accessed and when any grey level 𝑝 is continuously repeated 𝑙 times, the value of 

run length matrix on the position (𝑝, 𝑙) is increased by one.  

The run length matrix construction can be recursively programmed. For instance, a 

function responsible for jumping one pixel where the length of the run is passed as parameter 

may be created and, for every first pixel of a line or diagonal on the image it could be triggered. 

The called function evaluates if the next pixel value is equal to the current and keeps calling 

itself and incrementing the length variable on each call. The stopping condition is when the 

next value is not equal to the current value or if it is the end of the image. At that stopping 

condition the function increments the run length matrix at the according position. Finally, at 

the end of the triggering, the matrix will be correctly populated. The Figure 42 illustrates how 

a run length matrix on the direction 0° is constructed. 
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Figure 42: Construction of a run length matrix. 

This matrix is, in principle, very different from the co-occurrence matrix. For instance, 

in the input image, the pixel value 0 occurred consecutively four times on the 0° direction, 

which means that the cell (0,4) of the run length matrix should be populated with the 

occurrence 1. As for the pixel value 1, there were two occurrences where it appeared 

continuously 2 times. Therefore, the run length matrix at the position (1,2) should be 

populated with the number of occurrences 2. 

We will assume that the run length matrix for an arbitrary image is 𝑅𝜃, where 𝑅𝜃(𝑝, 𝑙) 

represents the times that the grey value 𝑝  appears continuously 𝑙  times on the image 

respecting the direction 𝜃. Thus, the grey level non-uniformity feature is computed by solving 

the Equation (22). The summations are done for every possible 𝑝 and 𝑙 of the matrix [88].  

 

𝐺𝜃 =
∑ (∑ 𝑅𝜃(𝑝, 𝑙)𝑙 )²𝑝

∑ ∑ 𝑅𝜃(𝑝, 𝑙)𝑙𝑝
 (22) 

 

Furthermore, the run percentage 𝑅𝑃𝜃 is of easy computation. It consists of summing 

all the elements of the run length matrix and dividing it by the area 𝑆 of the image, as shown 

in Equation (23). The areas of the neighborhood window are constant and, therefore, that 

division is irrelevant in this case. Nevertheless, to maintain the usual formulation we kept the 
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division [88]. The sum of the run length matrix appears to be a relevant feature since it could 

show how uniform is an arbitrary part of the image. 

 

𝑅𝑃𝜃 =
∑ ∑ 𝑅𝜃(𝑝, 𝑙)𝑙𝑝

𝑆
 (23) 

 

 

For the classification tasks we have used the Weka library [119]. Weka is an open-

source collection of machine learning algorithms maintained by the University of Waikato and 

is entirely programmed in Java. The Weka usage is twofold, it has its own graphical interface 

that can be used on several types of graphical analysis and the library can be directly imported 

and used in Java code as well. 

Before proceeding to the classification tasks, there is a need to define the meaning of 

accuracy. In machine learning, accuracy is defined as the sum of the true positive and true 

negative occurrences divided by the total population, as shown in Equation (24). With respect 

to the proposed solution of this work, the total of distinct classes are three. From here on, 

when only one accuracy rate is provided, we define it as being the arithmetic mean of the 

three classes (red, green and blue). 

Furthermore, the true positive (TP) rate stands for the percentage of pixels that were 

correctly classified as true. The true negative (TN), in turn, stands for the percentage of pixels 

that were correctly classified as false. The false positive and false negative rates stand for the 

two types of errors that can occur on a classification problem. The Type I error is the false 

positive (FP), which occurs when the algorithm classifies an instance as true and the correct is 

false. Thus, the Type II error is called false negative (FN) and occurs when the algorithm 

classifies as false when the label should be true [120].  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (24) 
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In order to reduce the amount of classification algorithms to be assessed, we have 

extracted the features of a single patient (which has approximately 50 images and, in average, 

a total of 512×512×50 features vectors are extracted) and evaluated the time that each 

algorithm took to construct the predictive model based on two thirds of the patient data plus 

the time it took to evaluate the model on the remaining one third (66% split) in a simple 

personal computer. It is important to reduce the computational time spent on the training, 

not only to shrink the whole analysis but also to speed up the final classifying process. In fact, 

there is a need to evaluate distinct algorithms in several aspects and a fast convergence is 

strictly necessary. 

Therefore, for that single patient, we have tested all the classification algorithms 

present in Weka on its version 3-6-11. Some of these algorithms are, namely, the Support 

Vector Machine (SVM), Sequential Minimal Optimization (SMO), Naïve Bayes, Radial Basis 

Function Network (RBFNetwork), Random Trees, C4.5 (or J48), Primal Estimated Sub-Gradient 

Solver for SVM (SPegasos), REPTree, iBk (k-NN), Multilayer Perceptron and others. Among all 

the tested algorithms, we have selected for further analysis the ones that converged within 

200 seconds. The parameters of each algorithm were based on their standards with some 

adjustments and the best result was selected. On this evaluation, the size of the neighborhood 

window was 5x5 (relatively small in order to speed up the processing). The comparison of the 

achieved results is shown in Table 5 below. 

Algorithm Accuracy Time (sec) Acc/Time 

J48Graft 99.0% 132.86 0.75 
RandomForest 98.9% 112.57 0.88 

REPTree 98.9% 10.34 9.56 
J48 98.9% 151.23 0.65 

SimpleCart 98.9% 108.78 0.91 
SMO 98.3% 58.66 1.68 

RandomTree 97.5% 8.0 12.19 
RBFNetwork 96.8% 3.48 27.82 

SPegasos 96.8% 15.77 6.14 
DecisionStump 96.8% 52.34 1.85 

HyperPipes 94.8% 0.04 2370.0 
NaiveBayes 86.0% 55.48 1.55 

Table 5: Accuracies and convergence time on a single patient. 
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At first, the REPTree algorithm appears to be the best choice since it achieved a great 

accuracy in a relatively fast convergence time if compared to the other algorithms. Besides, 

the HyperPipes result was rather interesting. In this case, it returned a very good accuracy 

“almost instantaneously”. However, when applied to a bigger dataset and a set of images of 

distinct patients, the results obtained through the HyperPipes algorithm start to differ 

drastically. 

 

In order to avoid unfair comparisons of classifiers we have tested some of them along 

with a variation on the neighborhood size. Hypothetically, one may consider that some 

classifiers perform better on a neighborhood of certain size. Some charts that represent the 

accuracy of each classifier on the y-axis and the variation of the neighborhood size in pixels on 

the x-axis are displayed in Figure 43. The accuracies are divided per class in three colors, each 

one respecting the ground truth definition. The red color represents the epicardial fat, green 

represents the mediastinal and blue the pericardium or a transitional space between the 

epicardial and mediastinal fats. 

 The accuracies on the charts were also achieved using the 66% random-selected split 

method as test mode from the data of 20 patients (878 images). However, some slices were 

skipped from the processing to decrease the convergence time. The reason for choosing the 

split method was also to reduce the huge convergence time due to the great amount of data. 

The extracted features composed datasets of approximately 1.5 gigabytes for each 

neighborhood size that were provided to the classifier. The period to train and evaluate the 

model lasted, in some cases, up to 20 minutes for each combination of neighborhood size and 

classification algorithm. 
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5 7 9 13 15 21 23 25 27 35 39 43 51 61 71

Pericardium 96,40 96,75 97,70 97,10 97,10 96,50 96,30 96,20 96,30 96,40 96,40 94,50 94,70 92,50 92,20

Epicardial 91,00 92,70 95,60 95,40 95,90 96,50 96,70 97,00 97,10 97,80 98,00 96,50 97,60 96,30 96,20

Mediastinal 88,90 91,16 94,00 94,40 95,00 95,80 96,00 96,50 96,50 97,30 96,65 96,00 96,30 96,00 95,80
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Figure 43: Accuracies (y-axis) of classifiers versus neighborhood sizes (x-axis). 

The five algorithms shown in Figure 43 were the ones who performed faster on this 

large dataset. The HyperPipes was the fastest and always converged virtually within 0.5 

seconds but, in this case, the best accuracy that it could achieve was around 70%. We can 

state by this evidence that this algorithm is not generalizable. In other words, it fails to 

generate a “universally applicable” predictive model from the moment that more than one 

patient is regarded for the training. However, it is a rather simple algorithm and, in fact, the 

achieved low accuracy was somehow supposed to happen. 

Due to the convergence time issue, we were not able to extensively assess all the 

possible sizes for the neighborhood for all the algorithms selected on the convergence time 

test. The REPTree algorithm did not converge remarkably faster than the remaining decision 

tree algorithms on this large dataset, even though fast convergence is probably the main 

characteristic of the REPTree algorithm. The RBFNetwork was faster than RandomForest and 

the SPegasos was slower but both returned lower accuracies.  
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The RandomTree and DecisionStump were just a little faster than RandomForest and 

REPTree but returned significant lower accuracies and, therefore, were disregarded due to the 

massive presence of decision tree algorithms on the previous convergence time experiment. 

The J48Graft returned similar accuracies if compared to the RandomForest but its 

convergence was approximately 1.4 times slower and, due to that matter, it was impracticable 

to evaluate all the sizes for this classifier. All the other algorithms shown in Table 5 that were 

not quoted here took more time to converge on a large dataset than the SPegasos and, 

therefore, they could not be precisely evaluated.  

Furthermore, the accuracy of almost every algorithm started to slightly decrease after 

the size of 25x25 pixels and to sharply decrease after 39x39. In fact, the more the 

neighborhood size converges to the size of the image, more information is lost. This behavior 

was expected, however, that analysis was done in order to set an arguably perfect size for the 

neighborhood window, for posteriorly refining the results. Moreover, the higher the size of 

the neighborhood window, the higher is the time the algorithm takes to extract the features 

from the image and, consequently, to converge. Therefore, by evaluating this tradeoff we 

decided that 25x25 was the most suited size for the neighborhood window. 

Finally, we also conclude that the decision tree algorithms were the ones that best 

performed over a large dataset. The Table 4 compares mean values produced by the 

algorithms evaluated on this benchmark over all the classes and evaluated sizes of the 

neighborhood shown on the previous charts. Furthermore, in this comparison, we have 

included the SimpleKMeans algorithm with the objective of relating its performance. That was 

so because the issue addressed by this work appears to be, at first, more suitable to clustering 

than to classification. 

Algorithm Accuracy Time (sec) 

RandomForest 96.72% 548.67 
J48Graft 95.11% 763.90 
REPTree 94.02% 544.63 
SPegasos 83,5% 826.45 

RBFNetwork 75,32% 387.92 
SimpleKMeans 60.20% 2000.32 

HyperPipes 57.37% 0.55 

Table 4: Accuracies and convergence on a large dataset. 
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Overfitting is usually defined as a lack of generalization or a super adjustment to the 

training dataset induced by some machine learning algorithms during the training pace. For 

instance, an algorithm that achieves high accuracies evaluating its predictive model on the 

training set but fails to get high accuracies on similar datasets can be considered overfitted to 

the training data [121]. 

To complement our work we modestly analyzed the overfitting degree of the 

RandomForest, REPTree, J48, J48Graft, SMO and SPegasos algorithms. Our overfitting analysis 

consisted of training classifiers with data of a single patient (50 × 512 × 512 features vectors) 

and using the generated predictive model to segment another patient scan of a different 

manufacturer. The algorithm who visually performed better, i.e., the one that segmented the 

images more similarly to the ground truth was defined as having the lowest overfitting. The 

parameters for the features were the same for all the algorithms (5x5 pixels for the size of the 

neighborhood window) and the parameters of the classifier were empirically chosen. Results 

of a single instance segmented by the classification algorithms are shown in Figure 44. For this 

trial, we have disregarded the blue layer (i.e., the pericardium or the unknown area). 

  
RandomForest REPTree 
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J48 J48Graft 

  
SMO and SPegasos RBFNetwork 

 

Figure 44: One instance segmented by algorithms trained on another patient. 

 

Figure 45: Ground truth. 
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We concluded that the RandomForest was the algorithm that overfitted the least. In 

fact, the segmented result is the most similar if compared to the ground truth in Figure 45. 

The REPTree, J48 and J48Graft algorithms performed a less sparse segmentation but it is clear 

that the construction of their predictive model was heavily induced by the features derived 

from the spatial disposition of the pixels (𝑥 and 𝑦 coordinates) and not much on the texture. 

That fact is evidenced by the lines and columns on the segmentation produced by these 

algorithms. 

The SMO and SPegasos, both algorithms based on the SVM, outputted the segmented 

image entirely in yellow. The yellow color is a combination of the colors red and green. 

Therefore, what the algorithm essentially did was classifying all the bright pixels as epicardial 

and mediastinal fat. Thus, we can infer that the SMO and SPegasos algorithms lack heavily on 

generalization, at least for this evaluation. They took an easy path assuming that every pixel 

is both epicardial and mediastinal fats. This may be associated to the weakness of the classifier 

in a sense that, if the generated model does not predict well, then it is better to just assume 

that everything is true or everything is false to raise the accuracy by some margin.  

The predictive model generated by the RBFNetwork was similar to the SMO and 

SPegasos to some degree. With regard to the mediastinal fat (green), the algorithm classified 

every pixel as false. On the other hand, regarding the epicardial fat (red), it classified almost 

everything but the outline as true. The result of the RBFNetwork segmentation is a little better 

than assuming that every pixel belongs to both classes, but still being a bad result. 

Among the decision tree algorithms, we can say that the RandomForest was the one 

that least overfitted, directly followed by the J48Graft algorithm. The J48Graft converges 

slower than the RandomForest and produces similar accuracies but a very different type of 

segmentation (less sparse). The J48Graft converged faster than the J48 algorithm and 

produced better segmentations (and accuracies). Thus, the J48 was probably the one that 

most suffered overfitting between these four.  

The decision tree algorithms performed better in this trial. The RandomForest, along 

with the J48Graft, were selected as the ones that overfitted the least, according to their 

accuracies and the actual segmentation shown in Figure 44. We tend to think that 

RandomForest is the best choice due to the fact that on the segmentation produced by this 
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algorithm, there is still a clear possibility for improvement on a post-processing step. Some 

techniques could be applied so that the sparse characteristic of the segmentation could be 

reduced and, consequently, the overall result may improve. 

 

Until now we have evaluated various classifiers using all the 31 previously extracted 

features. However, although all the extracted features are valuable for the distinct types of 

fat, when it comes to evaluating the parameters of the features, there must be one set of 

parameters that will be better than the others. Therefore, that was the main reason for 

selecting a couple of different parameters for the features based on the co-occurrence and 

run length matrixes. Thus, we considered the premise that, after an extended evaluation of 

these features, some of them could be disregarded with no significant impact in the outcome 

of the classification. 

An incipient ranked evaluation of these features using the Linear Forward Selection as 

search method, the Attribute Subset Evaluator along with the REPTree algorithm and the same 

dataset used in Section 3.2.3 confirmed that the features have very distinct degrees of 

importance for each class involved in our problem. The Table 5 compares the position of the 

feature in the ranking (the lower the better) for the three possible classes. If the feature is not 

ranked with numbers on the Table 5 it means that the feature was not considered sufficiently 

relevant by the algorithm. We intend to do in the near future a more extensive analysis using 

distinct search methods and the RandomForest algorithm. 
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Type Feature Epicardial Mediastinal Pericardium 

Primary Grey value 1 - - 

 𝑥 2 1 - 
 𝑦 3 2 - 

 𝑧 (slice number) - - 19 

Secondary 𝑥 relative to the center of gravity 4 3 1 

 𝑦 relative to the center of gravity 5 4 2 

 Arithmetic Mean 6 - 4 

 Coefficient of Smooth Variation - 5 3 

 Geometric Moments 14-15 11 15-18 

Tertiary Moments of the Co-occurrence 
Matrix 

7-10 6-7 5-11 

 Run Percentage 13 8-10 - 

 Grey level non-uniformity 11-12 - 12-14 

Table 5: Ranked features per class. 

For the epicardial fat, the parameters of the moments of the co-occurrence matrix that 

went better than the others were at the distance (0,1) and 𝑔 = 4, followed by the distance 

(1,0) and g = 3. For the mediastinal fat the best parameters were (0,1) and g = 4 followed 

by (1,1) and 𝑔 = 4. Moreover, for the pericardium, (0,1) and g = 1 followed by (0,1) and 

g = 2 were the ones most valuable. 

Furthermore, with relation to the features based on the run length matrix, the 

orientations 0° and 90° were the most valuable for the epicardial fat, where 90° was the only 

valuable orientation for the run percentage feature. For the mediastinal, the most valuable 

orientations were 45°, 90° and 135°, in this order. However, for the pericardium, the most 

valuable orientations were, respectively, 0°, 45° and 135°. Conclusively, in our problem, it is 

extremely difficult to set parameters for extracting the features. As we can see, the 

importance of the features are very distinct for each type of fat. The run percentage is not 

significant for the pericardium due to the fact that it appears just as a small contour of fat 

around the heart where the run length matrix cannot extract much information. 

Moreover, a few features were counter-intuitively ranked. For instance, 𝑧  was 

basically irrelevant among all of the three classes. However, theoretically, it appears to be a 

valuable feature since the arrangement of the types of fat varies greatly from one slice to the 
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other (on the 𝑧 index). Nevertheless, if the RandomForest algorithm was regarded in this 

analysis, maybe the results would change significantly with relation to this feature. Another 

surprise was the ranking of the run percentage and grey level non-uniformity features, both 

are based on the run length matrix but none could be more significant than the moments of 

the co-occurrences in any of the three occasions. Since the mediastinal fat is dense we thought 

that the two features based on the run length matrix would perform better than the co-

occurrence moment for this type of fat. However, that was not what occurred. 

The coefficient of smooth variation performed much better than the arithmetic mean 

on the case of the mediastinal fat, the mean arithmetic feature was not even considered 

relevant. The CSV performed better than the arithmetic mean on the pericardium as well. 

However, it lost for the pixel value and for the mean arithmetic on the epicardial fat. 

Nevertheless, we tend to think that repeating this evaluation over the RandomForest would 

at least slightly change that panorama. That is, as we have seen in the previous Section 3.2.4, 

the segmentation produced with the REPTree relies much more on attributes such as the 𝑥 

and 𝑦 than on the texture-based attributes.  

The tertiary features are unarguably the most expensive to be extracted. Thus, even 

by this simple analysis, we aim to remove the features based on the RLM matrix due to their 

cost-effectiveness coefficient, and to remove the geometric moments as well. The geometric 

moments were considered relevant in all of the three cases but in any of them they were 

significantly important for the predictive model. Moreover, some set of parameters that 

performed worse than others are to be removed as well. In a real-time scenario, that cleaning 

could greatly impact on the speed of the conceived system. 
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Until now, we have (1) proposed and evaluated a registration method for standardizing 

every patient, (2) extracted some features from their registered images, (3) provided these 

features to classification algorithms in order to train predictive models that are used to classify 

an incoming instance, (4) evaluated the results of these segmentations over a significant 

number of classifiers and (5) analyzed the importance of the extracted features. 

RandomForest was the algorithm that performed the best if the speed, accuracy, 

overfitting and segmentation analyses are considered. To refine our results we generated a 

dataset of approximately 2.5 gigabytes originated from 16 patients of the ground truth. In this 

occasion, no slice were skipped during the training set. The extracted dataset is also available 

directly on the Weka’s arff format at [114]. The 10-fold cross validation and the 66% split 

evaluation were both regarded as test modes. The difference between the two is not 

expressive due to the huge amount of instances (pixels) in the dataset. The Table 6 contains 

the accuracies and the confusion matrixes of the RandomForest algorithm with standard 

parameters (which are: -I 10 -K 0 -S 1) over 16 patients, using a neighborhood of 25x25 pixels 

and obtained through the 66%-split test mode, whereas Table 7 contains the values obtained 

through the 10-fold cross validation. The 25x25 size for the neighborhood was chosen on the 

basis of the results shown in Figure 43.  

Tissue Accuracy TP Rate TN Rate FP Rate FN Rate 

Epicardial fata 98.3% 98.1% 98.4% 1.6% 1.5% 
Mediastinal fatb 98.0% 92.9% 98.8% 1.1% 1.1% 

Pericardiumc 97.7% 81.6% 98.9% 1.0% 1.0% 
Total of regarded instances (a,b,c): 1 373 079| Total of positives: a: 269 343, b: 188 222, c: 96 540 

Table 6: Random Forest algorithm on 66% split validation. 

Tissue Accuracy TP Rate TN Rate FP Rate FN Rate 

Epicardial fata 98.5% 98.3% 98.5% 1.4% 1.4% 
Mediastinal fatb 98.4% 94.2% 99% 1% 0.9% 

Pericardiumc 98.0% 81.9% 99.1% 0.9% 0.9% 
Total of regarded instances (a,b,c): 4 038 469 | Total of positives: a: 794 297, b: 552 078, c: 284 305 

Table 7: Random Forest algorithm on 10-fold cross validation. 
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The Dice index is one of the most commonly used parameters in the literature for 

comparison of the automatic segmentation of cardiac fats. Nevertheless, it can be addressed 

in a slightly different manner by each author, producing distinct results. This work is the first 

to propose the use of classification algorithms for cardiac fat segmentation. The nature of the 

classification algorithms implies that they are tightly related to confusion matrixes and to the 

accuracy index. In fact, this is usually the standard way to evaluate the performance of a 

classification. However, just one of the three main related works evaluates their segmentation 

on the basis of accuracies and confusion matrixes. Furthermore, another usually done 

comparison is on the rate of successful segmentations. However, this rate is usually observed 

by the authors and is, therefore, highly subjective. In other words, one can simply state that a 

segmentation was successful, but this evaluation is prone to high variability. 

The Table 8 relates the results of these three main related works. If it is the case that 

values are not provided by the authors, the respective cells were left blank. The work of 

Kakadiaris et al. [103] is semi-automated, while the works of Shahzad et al. [8] and Ding et al. 

[9] are fully automatic. All these three works proposed methods for segmenting just the 

epicardial fat and, therefore, we compare just our epicardial fat segmentation in this table. 

Author Dice Index TP Rate 

Kakadiaris et al. - 85.6% 
Shahzad et al.  89.15% - 

Ding et al.  93.0% - 
This work (epicardial) 97.9% 98.3% 

Table 8: Comparison of the epicardial fat segmentation. 

The Dice index can be computed differently to some extent. It can be achieved using 

the Equation (25) where 𝐺 stands for the ground truth and 𝐻 stands for the segmented image. 

In our approach, we have shifted the segmented pixels to their fat-respective colors. Taking 

our scheme as reference, 𝐺 ∩ 𝐻 represents the amount of matches of colored values of a 

segmented image to the ground truth and |𝐺| + |𝐻| represents the sum of matches of colored 

pixels to colored pixels and colored pixels to grey pixels.  
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𝐷 =
2|𝐺 ∩ 𝐻|

|𝐺| + |𝐻|
 (25) 

 

However, the Dice index can also be interpreted differently, that is, the 𝐺 ∩ 𝐻 may not 

account the matches of grey pixels if the authors assume that they want to quantify the 

similarity of the cardiac fat (colored) pixels only and disregard the similarity of the remaining 

(background and others, such as the thorax fat). When accounting the match of grey values 

as correct (a grey pixel of the ground truth and a grey pixel of the segmented image is 

considered correct) it is said that our method achieved a mean Dice index of 96.8%. However, 

when including the matching of black pixels as correct, it reached 97.5%. Accounting the 

similarity of the black pixels makes no sense since it is set as the background in our approach, 

however, one could take advantage of it to report a controversial improved index. However, 

when only pairs of colored pixels are regarded as correct matchings (i.e., a match of a colored 

pixel to a grey or black pixel is considered wrong), the mean Dice similarity index was equal to 

80.1%. Table 9 compares the achieved mean Dice index over this reported variation. 

Moreover, for this evaluation, the blue contour of the pericardium was considered epicardial 

and mediastinal fat at the same time. In addition, the Dice index was achieved from the data 

of 6 randomly chosen patients.  

Tissue Only colored Colored and grey 
(excluding black) 

Colored, grey 
and black 

Epicardial 79.7% 97.9% 98.2% 
Mediastinal 80.6% 94.3% 96.9% 

Mean 80.1% 96.8% 97.5% 

Table 9: A comparison of the Dice similarity variation. 

 

The images in Figure 46 are a comparison of a single manually segmented slice to the 

result of the proposed automatic segmentation. The green color denotes the mediastinal fat, 

red represents the epicardial and blue corresponds to the pericardium. All the colored pixels 

represent pixels within the fat range of a CT and, therefore, that is the reason for some 

discontinuities evidenced on the images. It is important to highlight that the blue color is not 
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present on the automatically segmented images due to the fact that it was interpreted as a 

transitional area between the epicardial and mediastinal fats. Thus, the pericardium 

classification was slightly different than the other two. That is, if a pixel was classified as red 

or green before being classified as blue, then it remains at its previously classified color. 

Otherwise, the pixel is painted yellow (both epicardial and mediastinal) instead of blue. The 

two images in Figure 47 correspond to the same patient shown in Figure 46 but this time 

reconstructed on a 3D model (all slices) after its automated segmentation. Although the 

quality of the model may not be the best, it is possible to perfectly distinguish the contour of 

the heart on the epicardial fat (red color). The automatically segmented slices of a second 

patient are also shown in Appendix C – Automatically Segmented Slices. 

  

Figure 46: Manually (left) versus an automatically segmented slice (right). 

 

  

Figure 47: 3D fat model of an automatically segmented patient. 
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In this chapter we present a brief conclusion and discuss further improvements for the 

method proposed in this work. Furthermore, we address details about the implementation, 

used equipment and infrastructure.  

We started this work with the intent of automatically segmenting two types of fats 

from very distinct CT slices, with regard to the same patient and to others. Thus, applying 

classification algorithms to this problem seemed very plausible from the beginning. 

Otherwise, distinct approaches would have to consider such a great amount of variation that 

could make them unpractical, while machine learning algorithms are able to automatically 

learn and overcome portions of this variation. The achieved results are satisfactory but the 

current approach needs to be adapted in order to be applied in real time. Currently, with a 

huge set of extracted features and not sufficient effort applied to optimizing the code, the 

algorithm still takes approximately from 24 to 48 hours to fully segment a single patient scan. 

However, a more recent optimization have been indicating that it may be possible to segment 

from 3 to 4 patients a day, without loosing much accuracy. 

A couple of works have already proposed semi and fully automated segmentations for 

the epicardial fat, which were addressed and compared in the previous chapter. However, 

every currently proposed method quantifies the epicardial fat based on the pericardium 

border, which makes the quantification of the mediastinal fat unpractical, since it is not 

located within the pericardium contour. Besides, in contrast to the other methods, the 

proposed approach is easily reproducible and of adaptive nature with regard to various types 

of modalities and medical images, apart from the fact of apparently producing better results. 

As to the correctness extent, the epicardial fat was automatically segmented in a more 

reliable way than the mediastinal fat. In fact, the mediastinal fat is prone to a higher variation 

with relation to their spatial disposition and their volume among distinct patients and, 

therefore, that fact could induce these worse results. Furthermore, the caudal slices of each 

patient were also segmented in a worse fashion than the remaining. However, these slices 

contain extremely confuse disposition of the organs due to the positioning of the liver and the 

stomach with relation to the heart that varies on each patient, which makes them hard to 

segment even to a human specialist. 
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In the Chapters 3 and 4, we have seen that the segmentation produced with the 

RandomForest algorithm is sparse. That is actually an interesting outcome, since it creates a 

clear possibility for a post-processing improvement. A simple heuristic could optimize the 

segmentation by a significant amount by connecting the colored sparse points, for instance. 

Furthermore, since the epicardial fat follows the internal elliptical contour of the heart, a post 

processing such as an elliptical container could be adjusted to the segmented epicardial fat in 

order to reduce errors. Unfortunately, we were not able to implement and evaluate these 

hypotheses. 

The dataset used in our work regarded CT images produced by different scanners from 

mainly two different manufacturers (Siemens and Philips). We did not include features related 

to the scanner model and manufacturer into the prediction due to the fact that, for every pixel 

of every slice of each patient (i.e., each features vector), these features would be equally 

repeated, significantly increasing the size of the extracted dataset. However, we believe that 

if these features were regarded or if distinct predictive models were generated for each model 

and manufacturer the results would also improve. 

Ensemble methods use multiple learning algorithms to obtain better performance 

[122]. In this work, we have used a single classification algorithm to segment the images 

instead of a combination of them. The J48Graft could be combined to the RandomForest and 

perhaps to the REPTree algorithms to increase the overall performance of the predictive 

model. The RandomForest is itself considered an ensemble method. Still, it can properly be 

applied to other classification algorithms, in a sense, generating a more complex ensemble 

method. 

In summary, the proposed methodology could have its convergence time improved if 

(1) areas are classified instead of pixels, which would generate a faster but worse result, if (2) 

a more robust selection of features is performed or if (3) computers with a great amount of 

cores are used in order to distribute the workload, processing a slice at each core (parallelism). 

On the other hand, the segmentation could be improved if the following statements were 

regarded: (1) considering more patients in order to generate a more generalizable predictive 

model during the training phase, (2) using ensemble methods instead of just one classifier. 

Furthermore, by (3) developing a post-processing technique to enhance the segmentation 
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such as dilations of the colored pixels and/or applying elliptical containers to the epicardial 

fat, aiming to, for instance, automatically fill some of the produced gaps, or (4) by training the 

classification algorithm with CT images originated from a single model of scanner and 

manufacturer and applying the predictive model to scans of the same model. We believe that 

the considerations addressed in this section would significantly improve the efficiency and 

accuracy of the proposed approach. 

 

All the processing rates provided by this work including all the time, accuracy and 

efficiency analysis were obtained from relatively common personal computers. The Oscar 

cluster from the Universidade Federal Fluminense, which fits in this definition, was also used 

in the process [123]. In summary, the number of CPU cores of the used computers varied from 

2 to 8, the available amount of RAM varied from 4 to 8 gigabytes and no dedicated graphical 

card was used. All the processing was done on the CPU apart from the 3D rendering. The 

operating systems varied from Windows 8 to Linux distributions such as Fedora and Ubuntu 

and all the code used in this work was programmed in Java and run over Oracle’s JVM. 

Although we have based our registration on the ITK scheme, we have not used the ITK library 

itself. The 3D modeling was done on LibGDX and the remaining was provided by the Oracle’s 

JDK or programmed from scratch. 

We finally conclude that the appliance of classification algorithms on image 

segmentation, as long as the right features are selected, is highly prone to success and may 

surpass many usual segmentation methods on several aspects. RandomForest is commonly 

rated as one of the best decision-tree algorithms and proved its efficiency in our analysis. We 

have also concluded that decision tree algorithms provided much better performance over 

neural networks and function-based classification algorithms. The achieved mean accuracy for 

the epicardial and mediastinal fats was 98.4% with a mean true positive rate of 96.2%. The 

mean Dice similarity index was 96.8%. Every registration was considered successful and every 

segmentation could also be considered successful in a sense that no major error or 

unpredicted behavior occurred. 
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The DICOM acronym stands for Digital Imaging and Communications in Medicine, 

which consists of a set of protocols, encoding and values that define how medical data should 

be stored, accessed and transmitted. The Section 2.3 of this work provides a general literature 

review of the DICOM standard.  

DICOM was firstly introduced for the purpose of standardizing the various formats, 

encoding and transmission protocols of medical images and related data. Such topics were 

formerly defined distinctively by each single manufacturer, therefore, hardening the 

reproducibility of the data. In general, DICOM files contain more than just image-related 

information. They may also hold patient-related information. Among these related data there 

virtually, namely, the full name of the patient, sex and birth date. Furthermore, they also 

contain important acquisition-related data such as the type of equipment used and a couple 

of related settings. 

A DICOM object (i.e., a DICOM file) is comprised of DICOM elements or, alternatively, 

DICOM attributes. Every DICOM element has a tag, a data type (VR – acronym for value 

representation), length and value. The value is what we usually aim to retrieve by accessing 

an element when possessing its identification tag. In other words, the value is the wanted 

information itself. The Figure A.1 illustrates DICOM elements in a data stream. 

 

Figure A.1: Encoding of a DICOM element in a DICOM data stream [DICOM Standard – 

Chapter 5]. 
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Every DICOM element has an identification tag that uniquely defines the element and 

its properties. Moreover, a DICOM tag is comprised of two hexadecimal values of four digits 

each (e.g., 0028,0012). The first value is defined as the group index and the second one as 

element index. DICOM tags that are related to one another sometimes belong to the same 

group, but not strictly always. For instance, the tag (0028,0010) represents the number of 

rows of an image and (0028,0011) represents the number of columns. The data type (VR) is 

represented as a two characters code. The VR field may receive: (1) US for unsigned short, (2) 

UI for unique identifier, (3) CS for coded string, (4) OB for other byte, etc. Although this is not 

what the Integrating the Healthcare Enterprise (IHE) recommends, the VR data is omitted in 

some cases for being redundant. By being redundant we mean that, for instance, the number 

of columns and rows of an image will always be an integer and, hence, there is a redundancy 

on declaring the data type. 

The DICOM files are of binary format, differing from textual-based file formats such as 

XML and HTML. Due to that fact, each element must declare its length for storage, 

compression and transfer purposes. The length on the DICOM standard is always even. When 

the element’s value is a single character string like patient sex data (0010,0040) that is either 

‘F’ for female, ‘M’ for male or ‘O’ for other, the length of that element must be 2 and the value 

will be padded by a space character (ASCII: 0x20). String types (like CS and UI) are padded by 

space whereas binary and US types are padded by null (0x0). 

The bases of the CT acquisition are better described on the Section 2.5.3.1 of this work. 

The mechanics and specific information will be summarily described here. A CT scanner is 

composed of an apparatus usually with a circular aperture in its center. The patient aperture 

is usually from 60 cm to 70 cm in diameter. Inside the covers of the CT scanner is a rotating 

frame which has an x-ray tube mounted on one side and the curved (i.e., “banana-shaped”) 

detector mounted on the opposite side as shown in Figure A.2. 
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Figure A.2: A CT scanner apparatus. 

The x-ray tube rotates around the patient as the following Figure A.3 shows. One or 

usually several of these rotations compose a single slice, depicted by a section of the object 

on the left of the image. The output image is generated by using the information taken by the 

detector on every single position of one cycle of rotation.  

 

Figure A.3: A moment of the acquisition of a single slice that composes the whole CT scan. 

In order to access the DICOM data we have used the dcm4che library along with the 

dcm2xml implementation available at the dcm4che website. The dcm2xml implementation 
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takes a DICOM file as input and outputs a XML file containing all the DICOM information. The 

difference is that the XML file is directly readable (textual format), whereas the DICOM is not. 

Thus, in order to retrieve any information, we access the XML file, search for the wanted 

identification tag and gather the content stored on the related value field. The DICOM 

elements are distributed as exemplified in the Figure A.4 below. 

1. <?xml version="1.0" encoding="UTF-8"?><dicom> 
2. <attr tag="00020000" vr="UL" len="4">212</attr> 
3. <attr tag ="00020001" vr="OB" len="2">00\01</attr> 
4. <attr tag ="00020002" vr="UI" len="26">1.2.840.10008.5.1.4.1.1.2</attr> 
5. <attr tag ="00020010" vr="UI" len="18">1.2.840.10008.1.2</attr> 
6. <attr tag ="00020013" vr="SH" len="6">OSIRIX</attr> 
7. <attr tag ="00020016" vr="AE" len="10">pacswebFIR</attr> 
8. <attr tag ="00020100" vr="UI" len="12">iMac-de-CDPI</attr> 
9. <attr tag ="00080005" vr="CS" len="10">ISO_IR 100</attr> 
10.  … 
11. </dicom> 

Figure A.4: A fragment of a DICOM converted to a XML file using the dcm2xml 

implementation. 

Occasionally, pixel values on DICOM files, such as in CT images, are not stored directly 

on the Hounsfield scale (more details in Section 2.5.3.1). The DICOM standard allows the 

possibility of storing values of a conversion (e.g., such as a linear function) instead of the raw 

values (Hounsfield units in this case), along with the method of the conversion. There is, to 

the extent of our knowledge, two types of transformations: (1) a linear transformation or (2) 

a modality look up table. All the patients we have worked with had their data stored as a linear 

transformation, and we presume that this is always true for CT data. Due to that fact, we will 

intentionally disregard the modality look up table conversion and address just the linear one. 

The absence of the Modality LUT tag (0028,3000) on the DICOM file ensures that the values 

are stored as a linear transformation. 

The Pixel Data tag (7FE0,0010) contains the actual values of the pixels stored as a linear 

vector. For instance, the Pixel Data tag on the XML file looks like the piece of code shown in 

Figure A.5 below.  
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1. <attr tag="7FE00010" vr="OW" 
len="524288">35\41\44\42\45\52\53\43\33\26\33\45\55\54\46\41\42\41\43\46\46\
45\40\46\51\48\43\42\47\45\46\47\45\39\39\47\56\57\55\59\66\77\84\84\74\70\64
\60\63\71\77\78\74\70\68\74\79\75\76\84\97\104\103\97\91\91\93\93\93\100\104\
101\99\104\108\106\97\87\80\80\86\91\89\85\82\84\87\90\78\62\59\65\72\77\77\
67\56\50\52\58\60\61\64\64\62\57\56\57\59\63\64\59\52\49\45\41\39\36\41\52\59
\60\64\71\73\62\45\35\33\32\38\46\50\46\40\38\36\26\17\16\25\35\40\41\37\35\3
9\50\55\46\28\20\26\36\40\40\37\32\27\25\22\23\25\25\26\33\39\38\35\35\39\46\
46\42\42\43\39\32\32\39\45\39\26\18\18\17\15\19\30\36\38\42\47\50\48\…</attr> 

Figure A.5: A fragment of a pixel data attribute tag. 

In order to reconstruct an image with the dimensions of the original one from the 

values stored on the Pixel Data tag we will call each value of the vector 𝑃(𝑖) or 𝑃(𝑥, 𝑦), where 

𝑥 equals the rest of the division of 𝑖 from the width of the image (𝑥 = 𝑖 % 𝑤) and 𝑦 equals 

the modulus of the division of 𝑖 by the width of the image (𝑦 = |
𝑖

𝑤
|). The width equals the 

number of columns on the image and can be obtained by accessing the Columns tag 

(0028,0010). 

For every 𝑃(𝑖) there must be two conversions until the returned value corresponds to 

the raw value of the pixel in HU. The first conversion is associated to the Pixel Representation 

tag (0028,0103). When this tag is equal to 1 it means that every value 𝑃(𝑖) is stored as a two’s 

complement and, hence, it must be converted back from this notation. If the tag is equal to 0, 

it means that the data is stored as unsigned and the value 𝑃(𝑖) can be accessed directly. The 

Bits Stored tag (0028,0101) is also important for containing the amount of bits allocated to 

store each pixel value. In order to simplify the explanation, we will call the reconverted 𝑃(𝑖) 

from the two’s complement notation as 𝑃2(𝑖)  and depict the process on the following 

equation shown in Algorithm A.1, where ¬ inverts the binary number, 𝑟 stands for the pixel 

representation tag value (0 or 1), and 𝑏 for the amount of allocated bits. 

 

𝑃2(𝑖) =  {
{

𝑃(𝑖) , 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡 (𝑜𝑢𝑡 𝑜𝑓 𝑏) 𝑏𝑖𝑡 𝑜𝑓 𝑃(𝑖) = 0

¬(𝑃(𝑖) + 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑖𝑓 ¬ 𝑟 =  0

𝑃(𝑖) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Algorithm A.1: Conversion from complement of two. 
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We have already made the first conversion. The second conversion is the linear one. 

After obtaining 𝑃2(𝑖), two tags from the DICOM should be accessed: (1) the Rescale Slope 

(0028,1053) and the Rescale Intercept (0028,1052), which represent the angular and linear 

coefficient of the linear function, respectively. The corresponding Hounsfield value, 

represented by 𝐻(𝑖) is further obtained by simply solving the Equation (A.1) disposed below. 

 

𝐻(𝑖) = 𝑃2(𝑖) ∗ 𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝑆𝑙𝑜𝑝𝑒 + 𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (A.1) 

 

Every DICOM file viewer internally implements the windowed view to display DICOM-

acquired images on the screen. Some provide the option of varying the window range and 

some do not. Moreover, some possess a function that paints the pixels within a given HU range 

(ImageJ and Osirix). Nevertheless, this painting do not preserve the texture-related 

information, just the spatial disposition of the colored pixels. Although all DICOM viewers 

display windowed data we did not found an option to export to images a given window in any 

of the following DICOM editors: RadiAnt Viewer, Invesalius, ImageJ and Osirix. Due to this fact, 

we implemented this feature in a small framework following the instructions below. 

By assuming that the inferior limit of the image is always 0, we define that 𝐻𝑖 and 𝐻𝑠 

represent the inferior and superior limit of the Hounsfield scale, respectively. 𝑂𝑖  and 𝑂𝑠 

represent the inferior and superior limit of the output image 𝑂, also respectively, and that 

∆𝐻 = 𝐻𝑠 − 𝐻𝑖 as well as ∆𝑂 = 𝑂𝑠 − 𝑂𝑖. Finally, we conceive a function 𝑂(𝑖) that, from the 

corresponding value 𝐻(𝑖), converts it into a value within the respective output image range 

as shown in Algorithm A.2.  

 

𝑂(𝑖) = {
𝑟𝑜𝑢𝑛𝑑 (

∆𝑂(𝐻(𝑖) − 𝐻𝑠)

∆𝐻
+ 𝑂𝑠) , 𝑖𝑓 𝐻(𝑖) ∈ [𝑂𝑖, 𝑂𝑠]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Algorithm A.2: Function responsible for converting the values of a Hounsfield range [𝐻𝑖, 𝐻𝑠] to 

an image range [𝑂𝑖, 𝑂𝑠]. 
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In that case, the 0 value on the output image will be considered background as well as 

the 𝐻𝑖 value. If not desired, that matching between the background and 𝐻𝑖 can be avoided by 

setting the 𝑂𝑠 variable to 𝑂𝑠 − 1 and by summing 1 to the 𝑂(𝑖) function. By doing that the 

value 0 will only be associated to the background only. 

The following Figure A.6 depicts the difference of a single cardiac CT slice drawn to a 

8-bit depth image when varying the Hounsfield range (𝐻𝑖 and 𝐻𝑠). Besides, every pixel that 

was out of the given interval [𝐻𝑖, 𝐻𝑠] was being painted black.  

  
[-200,500] [-200,1000] 

  
[-400,1000] [-500,1500] 
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[-500,700] [-600,700] 

  
[-200,300] [-500,500] 

Figure A.6: Distinct thresholding of HU ranges. 

The images we have been using on this work look like the Figure A.7, which stands 

within the [-200,-30] range. This range, in turn, corresponds to the Hounsfield range of the 

adipose tissues. 
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[-200,-30] 

Figure A.7: Adipose tissue thresholding. 

If we paint the information that is higher than 𝐻𝑠 as white, even if regarding a smaller 

∆𝐻, then we have a more continuous image (i.e., without a sudden variation from white to 

black) like the one shown in the Figure A.8 below. 

 
[-200,500] 

Figure A.8: Values higher than 𝐻𝑠 being painted as white instead of black.
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The DICOM standard stores information about the size of the object acquired on 3 

dimensions. This rescaling information should be conceived as the distance that pixels or 

voxels within the Pixel Data tag (7FE0,0010) should be drawn apart from each other when 

rendered on the screen. The Pixel Spacing tag (0028,0030) stores that distance on the x and y 

axes in mm, respectively. Moreover, the Slice Spacing tag (0018,0088), if present, subtracted 

by the Slice Thickness tag (0018,0050) stores the distance between the slices (i.e., on the z-

axis), also in mm. Therefore, when rendered to the screen, every possible pair of pixels 𝑝1 and 

𝑝2 should respect the following 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in Equation (A.2), where 𝑣 is a three dimensional 

volume vector that has its 𝑥 equals to the Pixel Data tag first element, 𝑦 to the second element 

of the Pixel Data tag and 𝑧 to the Slice Spacing tag element. 

 

∆𝑝 = (𝑝1 − 𝑝2)𝑣 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∆𝑝. 𝑥2 + ∆𝑝. 𝑦2+∆𝑝. 𝑧22
 

(A.2) 

 

In order to output the data of a single slice to a single image we just need the 

information of the Pixel Data tag. By manual rescaling and analysis we have defined that a 

good value for the Pixel Spacing on cardiac CT data was 0.35. That value was chosen when 

avoiding the output image of being cropped or of being too small (loosing too much 

information) after rescaled. Thus, we map the pixel data by applying the following rescaling 

function in Equation (A.3), where 𝑣𝑎 represents the slice’s actual Pixel Spacing, 𝑣𝑑 the desired 

scaling we want to achieve, 𝑥 and 𝑦 the positions of the pixels on the slice’s image and 𝑥’ and 

𝑦’ the mapped rescaled image. 

[
𝑥′

𝑦′] = [

𝑣𝑎. 𝑥

𝑣𝑑 . 𝑥
0

0
𝑣𝑎 . 𝑦

𝑣𝑑 . 𝑦

] [
𝑥
𝑦] 

 

(A.3) 
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It is not sufficient to just rescale the slice, the image should be centered after or before 

the rescalement. There are basically two ways of proceeding on this: (1) before being rescaled 

the image should be translated to the origin or (2) after being rescaled the image should be 

translated by the difference of the bottom-right pixel position after rescaling to the one before 

rescaling. 

In this work, we have also observed that, even when rescaling the images to a common 

scale, there is still a noticeable difference on the same (i.e., in a sense that some images are 

actually not within the same scale even after being standardized). Further searches into that 

topic defined what may be causing that variation: some devices automatically make 

assumptions about the geometry magnification of the data being acquired. In many cases, 

without documenting the nature of the correction, what triggers it (e.g., body part), and how 

to suppress it [A.1]. Therefore, that induces a general variation on the spatial measures of the 

DICOM standard. 

 

 

 

 

 

 

 

 

 

 

 

 

[A.1] ftp://medical.nema.org/medical/dicom/final/cp586_ft.pdf 
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The following images of a single patient represent slices automatically segmented by 

our approach. All of them were segmented by the same predictive model. The slices on the 

left column are the ones that were automatically segmented, whereas the slices on the right 

represent the ground truth of the slice at its left. 
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Figure A.9: Automatically segmented patient and its ground truth. 
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