
UNIVERSIDADE FEDERAL FLUMINENSE

IGOR MACHADO COELHO

Hybrid and Parallel Algorithms for Single and
Multi-Objective Routing Problems

NITERÓI

2015

UNIVERSIDADE FEDERAL FLUMINENSE

IGOR MACHADO COELHO

Hybrid and Parallel Algorithms for Single and
Multi-Objective Routing Problems

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Topic Area: Algorithms and Optimization.

Orientador:
LUIZ SATORU OCHI

Co-orientador:
LUIDI SIMONETTI

NITERÓI

2015

IGOR MACHADO COELHO

HYBRID AND PARALLEL ALGORITHMS FOR SINGLE AND MULTI-OBJECTIVE

ROUTING PROBLEMS

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial fulfillment of the require-

ments for the degree of Doctor of Science.

BANCA EXAMINADORA

Prof. Luiz Satoru Ochi - Orientador, UFF

Prof. Luidi Simonetti - Co-orientador, UFF

Prof. Marcone Jamilson Freitas Souza, UFOP

Prof. Frederico Gadelha Guimarães, UFMG

Prof. Cristiana Bentes, UERJ

Prof. Simone de Lima Martins, UFF

Prof. Lucia Drummond, UFF

Niterói

2015

Abstract

This thesis deals with single and multi-objective routing problems by means of hybrid and
parallel metaheuristics. The first routing problem in this thesis, i.e., Single Vehicle Rout-
ing Problem with Deliveries and Selective Pickups (SVRPDSP), consists in finding a route
that starts from the depot and visits all delivery customers. Some pickup customers may
also be visited, since the capacity of the truck is not exceeded, and there is also a revenue
associated with each pickup. We develop an algorithm inspired on the Variable Neigh-
borhood Search metaheuristic that explores the power of modern Graphics Processing
Unit (GPU) to provide routes in reasonable computational time. The proposed algorithm
called Four-Neighborhood Variable Neighborhood Search (FN-VNS) includes a novel high
quality initial solution generator, a CPU-GPU integrated perturbation strategy and four
different neighborhood searches implemented purely in GPU for the local search phase.
Our experimental results show that FN-VNS is able to improve the quality of the solution
for 51 instances out of 68 instances taken from the literature. We obtained speedups up
to 14.49 times, varying from 17.42 up to 76.84 for each local search, measured over a set
of new large size instances. We also propose a matheuristic combining a multi-objective
evolutionary approach with an exact one-to-many decoder for bi-objective arc routing.
This problem requires servicing a set of required edges with positive demands using a
fleet of vehicles of limited capacity. The goal is to minimize: (i) the total length of all tra-
versed edges and (ii) the length of the longest route. The evolutionary algorithm works
with an indirect solution representation based on permutations of the required edges.
Each permutation is mapped to a Pareto set of solutions by a multi-objective decoder
based on dynamic programming. Results show that the proposed matheuristic offers a
significant improvement over previous algorithms in terms of solution quality for both
objectives, while also exhibiting a better Pareto front convergence. Finally, experiments
with the proposed algorithm show novel convergence behaviours that can be explored in
other single and multi-objective problems.

Keywords: Metaheuristics; Arc Routing Problem; Single Vehicle Routing Problem with
Deliveries and Selective Pickups; Multi-Objective Problems; GPU Computing.

List of Figures

2.1 An example of a CARP instance with a central depot, five vertices, four

required edges (continuous lines), six non-required edges (dashed lines) and

two routes (arrows). Each edge traversal i → j is labelled by its cost cij;

in parentheses we provide the amount of provided service (0 in case of

deadheading). 5

2.2 Bi-objective CARP with 4 required edges considering Manhattan distance

for non-required edges. Values 0 and 1 denote the two extremities of each

edge. 9

2.3 Decoding (solid arrows) and aggregation (dashed arrows) examples. Knowl-

edge from decision-maker can be used to assign objective values to input

solutions s and s′ based on values from the decoded sets D(s) and D(s′). . 15

2.4 Implicit solutions of s population pS are decoded (solid arrows); decoded

solutions are evaluated in the objective space (small dashed arrows). Based

on this, a fitness assignment function fa : X ×2X → R evaluates and ranks

the decoded solutions, generating function f̃s : S×2S → R (see left-bottom

section). 16

2.5 Growth of decoded solutions in relation to number of required edges. A

population of 10 random permutations is decoded and the number of gener-

ated solutions in plotted. The instances were selected from sets gdb, egl and

val, such that there are at least three different instances for each number

of required edges. 20

2.6 Reduction in the number of decoded solutions as the quality of population

increase for instance egl-s3-A with 159 required edges. As the number

of generations increase, the percentual gap from the lower bound (dotted

line) is reduced together with number of unique decoded solutions in the

current population (solid line). Random permutations (circles) present

poor quality, so a greater number of decoded solutions is generated. 21

List of Figures iv

2.7 Efficient Pareto front for instance gdb19 with 11 required edges, consisting

of four non-dominated solutions: (83, 17), (71, 19), (63, 20), (55, 21) 27

3.1 Solution S=[depot,−3,−2,+5,−6,−1,+3,−4,+4, depot] to a SVRPDSP

with five delivery and pickup customers. The depot is denoted by the

square. Pickups are positive values and deliveries are negative. 37

3.2 General framework of the developed FN-VNS. 40

3.3 Swap exchanges customers +4 and -1, leading the solution S = [depot,−3,−2,+5,−6,+4,+3,−4,−1, depot]

to become the solution S ′ = [depot,−3,−2,+5,−6,−1,+3,−4,+4, depot]. 42

3.4 2-Opt removes arcs (−1,+4) and (+3, depot); and adds arcs (−1,+3) and

(+4, depot), leading solution S = [depot,−3,−2,+5,−6,−1,+4,−4,+3, depot]

to S ′ = [depot,−3,−2,+5,−6,−1,+3,−4,+4, depot]. 43

3.5 1-OrOpt moves customer -6 to the position after customer +5. The arcs

(−3,−6), (−6,−2) and (+5,−1) are removed, and the arcs (−3,−2), (+5,−6)

and (−6,−1) are created. Solution S = [depot,−3,−6,−2,+5,−1,+3,−4,+4, depot]

becomes S ′ = [depot,−3,−2,+5,−6,−1,+3,−4,+4, depot]. 43

3.6 Swap exchanges customers i and j by removing arcs i − 1 to i, i to i + 1,

j − 1 to j, j to j + 1, and adding arcs i− 1 to j, j to i+ 1, j − 1 to i, i to

j + 1. 47

List of Tables

2.1 Each cell represents a pair of values
(
D0(ek, e`), D

1(ek, e`)
)
for all k ∈

{1, 2, 3, 4} and ` < k+len(ek). The arrows indicate the order of calculations. 10

2.2 The values R(ek, e`) represent full routes for the same ek and e` presented

in Table 2.1. Note that, in this case, only a single value is reported (instead

of a pair), since the vehicle always returns to the depot. 10

2.3 Final solution sol(k) for k ∈ [0..n]. Alg. 1 constructs this table and returns

the non-marked (non-dominated) solutions listed for k = 4, i.e., {(26, 14),

(30, 18), (32, 14)}. The next-to-last column is the fleet size; it could be

used to extend sol(k) to a structure indexed by both k and the number of

vehicles. 11

2.4 Impact of local search for gdb instances . 22

2.5 Impact of local search for egl instances . 23

2.6 Impact of local search for val instances . 24

2.7 Comparison of gdb results from literature 26

2.8 Comparison of egl results from literature 27

2.9 Comparison of val results from literature 28

2.10 Comparison of computational time . 29

3.1 Experiments with initial solution generation 48

3.2 Comparison of solution quality after local searches (including 3-Opt) . . . 48

3.3 Comparison of computational times of local searches (including 3-Opt) . . 49

3.4 Results for the 68 instances from literature (Part I). 51

3.5 Results for the 68 instances from literature (Part II). 52

3.6 Speedup results for FN-VNS neighborhoods. 53

List of Tables vi

3.7 Quality of the solution for the generated huge instances. 54

3.8 Performance gains of Shared-S implementation over Global-S implemen-

tation. 55

List of Algorithms

1 Dynamic Programming Multi-Objective Decoder 13

2 NSGA-II . 18

3 MODEMAT . 19

4 Best Improvement (BI) . 39

5 Initial solution generation . 41

6 FN-VNS Algorithm . 44

7 Kernel for Swap neighborhood . 46

Contents

1 Introduction 1

1.1 Routing Problems . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.3.1 Main Objective . 2

1.3.2 Specific Objectives . 2

2 Bi-Objective Capacited Arc Routing Problem 3

2.1 Introduction . 3

2.2 Bi-objective arc routing: definition, representation and decoding 5

2.2.1 Decoding/Indirect Representation 7

2.2.1.1 Dynamic Programming Bi-objective Decoder 7

2.2.1.2 Local search on the best routes 12

2.3 A general multi-objective framework . 14

2.3.1 Aggregating the values from a multi-objective decoder 15

2.3.2 Extending the classic framework of multi-objective metaheuristics . 15

2.3.3 Application on the NSGA-II . 17

2.4 Results . 20

2.4.1 Growth of decoded solutions . 20

2.4.2 Impact of Local Search . 21

2.4.3 Literature comparison . 25

2.5 Chapter Conclusions . 29

Contents ix

3 Parallel Algorithm in GPU for Vehicle Routing 31

3.1 Introduction . 32

3.2 Related Work . 34

3.3 The Problem . 37

3.4 Four-Neighborhood Variable Neighborhood Search 38

3.4.1 Parallel Local Searches . 45

3.5 Experimental Results . 46

3.5.1 Quality of Initial Solution . 47

3.5.2 Experiments with Local Searches 48

3.5.3 Comparison with Literature . 49

3.5.4 Efficiency of GPU Acceleration . 50

3.5.5 Memory Hierarchy . 53

3.6 Chapter Conclusions . 55

4 Conclusions and Future Works 57

4.1 Future Works . 58

References 60

Capítulo 1

Introduction

1.1 Routing Problems

The distribution of goods has been the subject of a great number of researches in the last

decades, mainly the Vehicle Routing Problem (VRP), since it was proposed by [23] and

better formalized by [18]. The VRP consists in minimizing the total traveled distance

of a set of trucks that leave a depot and must satisfy the demands of geographically

dispersed customers, respecting the capacity of the trucks. This type of problem arises in

many practical applications and it is also important due to the difficulty in solving large

instances in reasonable time, being classified as an NP-Hard problem.

Metaheuristics are handy tools to deal with these hard optimization problems, sup-

porting the design of efficient heuristics, with many of them being inspired by ideas from

nature, e.g., Genetic Algorithms, Ant Colony Optimization and Simulated Annealing.

Since the problems in focus belong to the class of the NP-Hard problems, no known

polynomial time algorithm is able to solve these problems to optimality. On the other

hand, local search techniques applied together with metaheuristics have shown to be able

to provide near optimal solutions in short computational time for many complex problems

like the VRP’s, as can be seen in [83] and [95].

Recently, the acceleration of search algorithms by means of a Graphics Processing Unit

(GPU) has also strongly emerged in the optimization field, giving birth to algorithms that

are dozens of times faster than classic algorithms implemented for a Central Processing

Unit (CPU). The GPU’s are massively parallel processors with abundant memory band-

width and huge number of computational cores. Dealing with the GPU architecture is

challenging in many aspects, e.g., exploration of low latency and limited size memories;

design of algorithms that explore the fine-grain parallelism offered by the GPU’s; and

1.2 Motivation 2

development of an efficient division of computational work between the CPU and the

GPU. The work of [55] successfully explores the GPU for many optimization problems

with emphasis on local search techniques, and this motivates the development of a similar

approach for integrated production-inventory-distribution problems.

1.2 Motivation

The motivation for this research is the great number of practical applications related to the

routing and distribution of goods. Also, the validation of metaheuristic algorithms that

have been shown effective to deal with large and complex optimization problems. Finally,

the study of GPU acceleration techniques that can drastically reduce the computational

time of the developed algorithms and to make possible obtaining good solutions quickly

in practical applications.

1.3 Objectives

1.3.1 Main Objective

The main objective is to develop metaheuristic algorithms for single and multi-objective

routing problem and to use recent GPU technology, in order to accelerate the most com-

putationally expensive tasks.

1.3.2 Specific Objectives

1. Study the state-of-art publications related to routing problems;

2. Develop heuristics inspired in metaheuristic frameworks such as Variable Neighbor-

hood Search and the Non-Dominated Sorting Algorithm to solve the problems;

3. Study the GPU technology and apply it on the developed algorithms in order to

achieve good quality solutions quickly;

4. Evaluate the quality of the developed algorithms on problem instances available in

literature;

5. Publish the achieved results in good quality international journals.

Capítulo 2

Bi-Objective Capacited Arc Routing
Problem

We propose a matheuristic combining a multi-objective evolutionary approach with an

exact one-to-many decoder for bi-objective arc routing. This problem requires servicing

a set of required edges with positive demands using a fleet of vehicles of limited capacity.

The goal is to minimize: (i) the total length of all traversed edges and (ii) the length of the

longest route. The evolutionary algorithm works with an indirect solution representation

based on permutations of the required edges. Each permutation is mapped to a Pareto set

of solutions by a multi-objective decoder based on dynamic programming. Results show

that the proposed matheuristic offers a significant improvement over previous algorithms

in terms of solution quality for both objectives, while also exhibiting a better Pareto front

convergence. Finally, experiments with the proposed algorithm show novel convergence

behaviours that can be explored in other multi-objective problems.

2.1 Introduction

This chapter is devoted to a bi-objective version of the Capacitated Arc Routing Problem

(CARP). Given a graph G(V,E), the CARP asks to find a set of feasible routes servicing

a set of required edges ER ⊆ E, under the constraint that the service amount on each

route cannot exceed a given maximum (vehicle) capacity. In the single-objective version,

the goal is to minimize the length of all traversed edges. The problem was first first

proposed by Golden and Wong [36] and it is NP-Hard. The most widespread version of

bi-objective CARP was proposed by Lacomme [51] and it requires minimizing both the

total length (of all routes), as well as the length of the longest route. This second objective

can be very useful to give extra flexibility to the decision-maker, e.g., so as to reduce

2.1 Introduction 4

working time inequality, comply with legislative shift-time limits, or to provide means for

the decision-maker to increase fairness between routes.

We propose a Multi-Objective Decoder Evolutionary Matheuristic (MODEMAT) ap-

proach, combining two components: (i) an evolutionary algorithm (EAs) that manipulates

permutations of ER (genotype) and (ii) an exact multi-objective one-to-many decoder

that maps permutations to explicit CARP solutions. The EA constitutes the main search

process of MODEMAT; we chose to use Non-dominated Sorting Genetic Algorithm II

(NSGA), because it is very flexible and very well-suited for problems involving permu-

tations. Regarding the decoder, it transforms a permutation into a Pareto front of non-

dominated explicit CARP solutions (the phenotype). Later, the objective values of these

decoded solutions can be combined to obtain a fitness value for the input permutation

using a specific fitness assignment scheme developed in this work (Sec. 2.3.2).

A permutation in the genotype space can be seen as a service order, i.e., all CARP

solutions returned by the decoder provide all service in the order given by the permuta-

tion. Using this decoder, one can interpret the CARP as a permutation problem [14, 67],

i.e., a problem for which the candidate solutions are encoded as permutations. An ad-

vantage of using a well-known mathematical object as genotype is that we can use many

well-established mutation and crossover operators already available in the literature. By

modifying the decoder function, the MODEMAT framework can be applied to other per-

mutation problems with single or multiple objectives.

Based on this framework, we actually present both a standard MODEMAT version

and a “memetic flavor”that includes a Local Search (LS) component applied after the

decoder. From an experimental point of view, we will compare MODEMAT with two

other EAs for bi-objective CARP [51, 58]. The comparison relies both on the best values

of the two objectives and on the hypervolume indicator, that measure both the quality

and the general spread of the Pareto fronts. Convergence issues are analysed and novel

motivating discussions on the role of local search techniques are discussed.

The remaining of the chapter is organized as follows. Section 2.2 is devoted to the fol-

lowing aspects: the bi-objective CARP definitions, the related literature and the proposed

multi-objective dynamic programming decoder. Section 2.3 presents MODEMAT as an

extension of the classic multi-objective evolutionary model regarding the use of indirect

representation and the presence of possibly many decoded solutions. The extended evolu-

tionary model is applied to the NSGA-II with permutation-based operators for mutation

and crossover. Section 3.5 presents the results of experiments with MODEMAT, including

2.2 Bi-objective arc routing: definition, representation and decoding 5

convergence issues and comparison with other algorithms in literature. Finally, Section

2.5 concludes the work with a discussion on the importance of the developed framework,

including promising research directions for the future.

2.2 Bi-objective arc routing: definition, representation
and decoding

The bi-objective CARP is defined on a graph G = (V,E), where V is a set of nodes and E

is a set of edges. A subset of edges ER ⊆ E, of cardinalitym, represents the set of required

edges, i.e., edges that must be serviced (once) using an unlimited fleet of homogeneous

vehicles of capacity W . A (traversal) cost cij and a (supply) demand qij are associated to

each edge {i, j} ∈ E and respectively {i, j} ∈ ER. A feasible trip (route) starts and ends

at a special depot node v0 ∈ V such that the sum of serviced demands does not exceed

W .

Note that the edges may be traversed multiple times; an edge traversed without service

is called a deadheaded edge. Figure 2.1 presents an example of a CARP instance with a

two-trip solution that does contain two deadheaded edges. The left route deadheads two

edges: the non-required edge {3, 4} and the required edge {v0, 2} that is also serviced by

the right route.

depot v

2 1

3 4

5

50 (5)

60 (4)

40 (0)

50 (0)

70 (8)

20 (0)
40 (2)

0

Figure 2.1: An example of a CARP instance with a central depot, five vertices, four
required edges (continuous lines), six non-required edges (dashed lines) and two routes
(arrows). Each edge traversal i → j is labelled by its cost cij; in parentheses we provide
the amount of provided service (0 in case of deadheading).

To formally define the bi-objective CARP, let us note Tfsbl the set of feasible trips

or feasible routes. The bi-objective CARP asks to find a subset of trips T ⊂ Tfsbl that

services all required edges and that minimizes: (i) the sum of all traversed edges and

(ii) the trip with the longest length (longest route). Technically, we can write these two

2.2 Bi-objective arc routing: definition, representation and decoding 6

objectives obj1 and obj2 using equations below.

obj1 = min
T⊂Tfsbl

∑
t∈T

∑
{i,j}∈ t

cij

 (2.1)

obj2 = min
T⊂Tfsbl

max
t∈T

∑
{i,j}∈ t

cij

 (2.2)

We hereafter use the term single-objective CARP to refer to the CARP variant with

only one objective (2.1), and the term bi-objective CARP consisting of objectives (2.1)-

(2.2). The search for solutions minimizing both objectives simultaneously may lead to

situations where conflicts occur between them and a choice of compromise between them

must be made. In our case, we search for a set of non-dominated Pareto solutions by

means of the Pareto dominance relation. It is said that a solution x dominates x′ (or

x ≺ x′) when x is better or equals to x′ for both objectives and it is strictly better for at

least for one objective. Section 2.3 formally describes the Pareto dominance and presents

more details on the development of multi-objective optimization algorithms.

Numerous heuristic algorithms have been proposed for the single-objective CARP over

the last thirty years. The first work began in the 1980s with CARP-specific heuristics such

as Augmented Merge [36], Path-Scanning [34] or the Ulusoy’s giant tour split [91]. The

last decades have seen a surge of interest in developing meta-heuristics, such as includ-

ing Tabu Search [45, 11], Guided Local Search [8], Variable Neighborhood Search [66],

Iterated Local Search [67], Genetic and Memetic Algorithms [49, 50, 86, 57]. Despite

the computational complexity of the problem, exact approaches based on mathematical

programming have been able to find optimal solutions for solutions with tens or even

hundreds of vertices [5, 4, 10]. Recent results for the single and bi-objective CARP can

be found in the annotated bibliography by CorberÃ¡n and Prins [21] or in the online

library logistik. bwl. uni-mainz. de/ benchmarks. php .

There are relatively few chapters devoted to multi-objective CARP, although extra

objectives can naturally be considered by many transportation companies. Amponsah and

Salhi [2] propose a constructive heuristic that considers both the distance cost of waste

collection and the environmental impact of the smell. Another waste collection problem

is tackled by a Multi-Objective Genetic Algorithm (MOGA) minimizing the total and

maximum distances of the routes [51]. This algorithm incorporates local searches for the

single-objective CARP to a NSGA-II framework, evaluating individuals by means of an

logistik.bwl.uni-mainz.de/benchmarks.php

2.2 Bi-objective arc routing: definition, representation and decoding 7

splitting procedure. Later, a Decomposition-Based Memetic Algorithm (D-MAENS) was

applied to the same problem and some results were improved for both objectives [58]. This

was achieved by a Memetic Algorithm where the population consists of diverse solution

vectors with different weights for each objective.

Despite the previous good results for the first objective, there is still room to develop

algorithms with better compromise between objectives. This fact also implies that single-

objective approaches cannot be adapted easily to deal with multiple conflicting objectives,

what motivates the development of the present work.

2.2.1 Decoding/Indirect Representation

In terms of indirect CARP encodings, Ulusoy’s split [91] is historically the most wide-

spread approach. The initial version consists of splitting giant tour into a number of

explicit routes. In more recent work [51], the routine is used and extended to take as

input a structure defined by (i) a service order and (ii) a traversal orientation for each

edge. Our decoder offers two advantages compared to Ulusoy’s routine:

1. it only takes a simple service order as input, i.e., a permutation of ER without

explicitly indicating a traversal sense of each edge.

2. it returns a set of Pareto-optimal routes with respect to objectives (2.1)-(2.2), i.e.,

we use a multi-objective decoder.

To our knowledge, although the general idea of transforming simple sequences into per-

mutations is not new [69, 70], multi-objective decoders based on dynamic programming

have not been explored before.

The main decoding routine is presented below in Section 2.2.1.1. It returns a set

of Pareto-optimal solutions that service all required edges in the order indicated by the

input permutation. We also use a second post-processing decoding stage (Section 2.2.1.2)

that is only applied on the solution of shortest total length routine from the above Pareto

front. The route produced in the end might not necessarily respect the order indicated

by the input permutation.

2.2.1.1 Dynamic Programming Bi-objective Decoder

Definition 1 (Implicit and Explicit Spaces)

2.2 Bi-objective arc routing: definition, representation and decoding 8

We note S the permutation space or the space of implicit solutions and X the space

of decoded, explicit (or complete) CARP solutions. We consider a decoder function D :

S → 2X that maps any permutation s ∈ S possibly many solutions from X .

This decoding stage is inspired by a single-objective version for the first objective

only [67]. Given s ∈ S, it creates a set of complete X -solutions subject to the order of

visit s1, s2, . . . sn. Furthermore, the decoded set D(s) of cardinality γ(s) forms a non-

dominated Pareto set such that ∀x, x′ ∈ D(s), x 6≺ x′. A good characteristic of such

algorithm is that it is always able to find the optimal solution regarding both objectives.

As pointed out in literature [50], this second characteristic does not hold for all problems.

In scheduling problems where the schedules are obtained by an algorithm that takes as

input a list of operations in order to simplify crossover operations, for some instances the

optimal solutions cannot be found [32].

Definition 2 Given an input permutation s = (e1, e2, . . . em) and some index k ∈ [1..m],

we define the following notations:

– the distance cost of the edge ek = {i, j} is denoted by cij, or simply ck when a

permutation of edges is given as input.

– the same idea can be applied to a demand dij, denoted as qk.

– len(ek) is the number of edges that can be serviced from edge ek onwards. This

service has to follow order ek, ek+1, ek+2, . . . such that capacity W is not exceeded.

– we denote the extremities of edge ek = {i, j} as e0k and e1k, such that e0k is the node

i and e1k node j.

– D0(ek, δ) and D1(ek, δ) represent the shortest length of a route that services the

required edges ek, ek+1, ek+2, . . . , ek+δ (in any sense) and finishes at an extremity

of edge ek+δ (respectively, D0 for extremity e0k+δ and D1 for e1k+δ);

– R(ek, δ) is the cost of a route starting from depot v0, servicing required edges ek, ek+1, ek+2, . . . , ek+δ

(in any sense) and returning to depot.

The dynamic programming scheme uses the values from the above structures to build a

Pareto front of CARP solutions (sets of trips).

Let us first illustrate the above structures on the CARP example from Figure 2.2.

This instance has 9 vertices and 4 required edges. Any two pairs of vertices are linked by

2.2 Bi-objective arc routing: definition, representation and decoding 9

a (required or non-required) edge with traversal cost given by the Manhattan distance.

Considering an input permutation (e1, e2, e3, e4), the proposed decoder returns three non-

dominated explicit solutions with the following pairs of objective values (obj1, obj2):

(26, 20), (30, 18) and (32, 14). The first solution is more optimized in terms of the first

objective (shortest total distance). The last solution simply corresponds to visiting each

required edge in an individual route, which is optimal in relation to the second objective

when an unlimited fleet of vehicles is considered.

0 1

Depot v0

0

1

0

1

0 1

q4 = 2

e4

e1 q1 = 4

e3 q3 = 3

q2 = 5

e2

Figure 2.2: Bi-objective CARP with 4 required edges considering Manhattan distance for
non-required edges. Values 0 and 1 denote the two extremities of each edge.

Tables 2.1 and 2.2 present the computed data structures D and R, respectively, for

the CARP example in Figure 2.2. Data structures D0 and D1 record the length of a

shortest-path route that services edges ek, ek+1, . . . e` and finishes at any end vertex e0`

and e1` of e`, where ` ∈ [k ... k+len(ek)−1]. The calculation of these shortest paths to e0`
and e1` depend on the previously-computed shortest paths to e0`−1 and e1`−1. For instance,

the shortest path to e0` is determined as the sum between: (i) the cost of the edge c` plus

2.2 Bi-objective arc routing: definition, representation and decoding 10

(ii) the minimum between the shortest path to e0`−1 finishing at e1` and the shortest path

to e1`−1 finishing at e1` . Note that the shortest path must finish at extremity 1 of the edge,

in order to serve and traverse this edge, completing the process at the extremity 0. Data

structure R from Table 2.2 computes the minimum cost for a complete route servicing

edges ek, ek+1, . . . , e` and returning to depot.

Table 2.1: Each cell represents a pair of values
(
D0(ek, e`), D

1(ek, e`)
)
for all k ∈ {1, 2, 3, 4}

and ` < k + len(ek). The arrows indicate the order of calculations.
ek len(ek) e`

e1 e2 e3 e4
e1 2 (4, 3) → (16, 12)
e2 3 (10, 8) → (15, 13) → (16, 15)
e3 2 (5, 5) → (8, 7)
e4 1 (6, 5)

Table 2.2: The values R(ek, e`) represent full routes for the same ek and e` presented in
Table 2.1. Note that, in this case, only a single value is reported (instead of a pair), since
the vehicle always returns to the depot.

ek len(ek) e`
e1 e2 e3 e4

e1 2 6 18
e2 3 14 16 20
e3 2 8 12
e4 1 10

The proposed multi-objective decoder is presented in Algorithm 1. The decoder re-

ceives as input a permutation of required edges and returns a Pareto front consisting of

the best values for both objectives servicing all required edges in the permutation order.

The first two major steps of this algorithm initialize and compute the above structures D

and L. The last step is devoted to computing complete solutions. For this, we use a table

of partial solutions sol indexed by values k ∈ [0..m] such that each sol[k] corresponds to

all non-dominated partial solutions servicing all edges e1, e2, . . . ek (or servicing nothing

if k = 0). More technically, sol[k] is a Pareto set (implemented as a linked list) of pairs

of objectives (obj1, obj2), each pair corresponding to a non-dominated partial solution.

Table 2.3 provides an example of the final state of this structure sol.

The rows of Table 2.3 are computed by Step 3 of Algorithm 1 by generating, for

instance, the following transitions:

– Row 1 (k = 0) represents a null state but it can lead to Rows 2 or 3 considering the

len(e1) = 2 possible future visits at e1 and e2 (if e3 is included in the same route,

the capacity W is exceeded);

2.2 Bi-objective arc routing: definition, representation and decoding 11

Table 2.3: Final solution sol(k) for k ∈ [0..n]. Alg. 1 constructs this table and returns the
non-marked (non-dominated) solutions listed for k = 4, i.e., {(26, 14), (30, 18), (32, 14)}.
The next-to-last column is the fleet size; it could be used to extend sol(k) to a structure
indexed by both k and the number of vehicles.

k
f2-ordered routes in sol[k] fleet row
in the form route:(f1, f2) size ID

0 ∅:(0,0) 0 1
1 {(e1)

6

}:(6, 6) 1 2

2 {(e1, e2)
18

}:(18, 18) 1 3

{(e1)
6

, (e2)
14

}:(20, 14) 2 4

3 {(e1, e2)
18

, (e3)
8

}:(26, 18)∗ 2 5

{(e1)
6

, (e2, e3)
16

}:(22, 16) 2 6

{(e1)
6

, (e2)
14

, (e3)
8

}:(28, 14) 3 7

4 {(e1)
6

, (e2, e3, e4)
20

}:(26, 20) 2 8

{(e1, e2)
18

, (e3, e4)
12

}:(30, 18) 2 9

{(e1)
6

, (e2, e3)
16

, (e4)
10

}:(32, 16)∗ 3 10

{(e1)
6

, (e2)
14

, (e3, e4)
12

}:(32, 14) 3 11

{(e1)
6

, (e2)
14

, (e3)
8

, (e4)
10

}:(38, 14)∗ 4 12

∗ indicates a dominated solution (never returned).

– Row 2 (k = 1) can generate Rows 4, 6 and 8 because len(e2) is 3 (see second column

in Table 2.2);

– Row 3 (k = 2) can generate Rows 5 and 9;

– Row 4 (k = 2) generates Rows 7 and 11;

– Row 5 (k = 3) generates Row 10;

– Row 7 (k = 3) generates Row 12.

We observe that the complexity of Algorithm 1 (mostly due to Step 3) depends linearly

onm, the maximum length of a Pareto front of a partial solution and the maximum length

of a route. The current version of Algorithm 1 does not take into account the fleet size.

2.2 Bi-objective arc routing: definition, representation and decoding 12

However, it can be extended in a relatively straightforward manner by adding a second

index to sol to represent the fleet size. We do not include this in Algorithm 1, but Table 2.3

does provide the number of vehicles of each solution, a structure with 3 dimensions, i.e.,

the place in the Pareto list, the number of vehicles and k. In this example, the final

result of the decoder consists of the non-dominated solutions with k = 4, i.e., visiting all

required edges. Since the first objective is much harder to deal with, a local search was

included in order to improve the quality of the complete solutions regarding this objective.

2.2.1.2 Local search on the best routes

Given the best route (regarding obj1) in the Pareto front returned by Algorithm 1, we

consider route operators that can be computed in constant time.

The route rotation operator considers a route as a cycle v0 → v1 → v2 → . . . vr → v0

(recall v0 is the depot), that can contain both serviced and non-serviced edges. Using a

similar approach as in [91, §3.3], one can compute in constant time the improvement that

can be obtained by re-locating the depot v0 before any index i ∈ [2..r], leading to route

v0 → vi → vi+1 → . . . vr → v1 → v2 · · · → vi−1 → v0. The cost variation resulting from

this operation can be computed in constant time, as one only has to compute the cost of

“re-locating” points v0, v1, vi−1, vi and vr. The route rotation can be applied on a linear

number O(m) of points i.

The edge exchange operator swaps some edges i, j ∈ ER. If i and j belong to the

same route route, such an inversion does not change the supplied quantity of this route.

If i and j belong to different routes, the inversion does change the supplied quantities

of the associated routes by qi − qj or qj − qi; however, the capacity constraints of the

updated routes can be easily checked in constant time. The total cost variation induced

by the swap is determined from the cost variation resulting from following operations: (a)

disconnect i and j from their initial position and (b) re-connect them at the new places

(computing their optimal orientation). The impact of these operations can be calculated

in constant time, because (a) and (b) do not interfere with the rest of the solution. The

number of potential i and j values is in O(m2).

It takes constant O(1) time to compute the interest in applying such a transformation

on a fixed index i for route-rotation or fixed indexes (i, j) for edge-exchange. We search

for such positions using one loop and we apply the transformation(s) associated to any

index(es) that can lead to an improvement. We thus obtain a steepest descent LS that

can be systematically performed after post-decoding.

2.2 Bi-objective arc routing: definition, representation and decoding 13

Algorithm 1: Dynamic Programming Multi-Objective Decoder
Input: V : set of nodes {v0 . . . vn}; ER: set of required edges {e1 . . . em}; ck: cost of edge

ek ∈ ER; qk: demand for edge ek ∈ ER; W : vehicle capacity; s: permutation
(e1 . . . em) of set ER

// STEP 1: INITIALIZE len, R, D0 AND D1

len, R,D0, D1 ← arrays with m positions, i.e., for each k ∈ [1..m]1

for k = 1 to m do2

len(ek)← max{` :
∑`−1

i=0 qk+i ≤W} // the maximum number of edges that can be3

feasibly serviced from ek on
R(ek), D0(ek), D1(ek)← array with len(ek) elements // R, D0 and D1 become4

matrices
end5

// STEP 2: COMPUTE R, D0 AND D1

for k = 1 to m do6

D0(ek, 1)← sp(v0, e
1
k) + ck // sp(vi, vj) denotes the shortest path ∀vi, vj ∈ V7

D1(ek, 1)← sp(v0, e
0
k) + ck8

R(ek, 1)← min{D0(ek, 1) + sp(e0k, v0), D
1(ek, 1) + sp(e1k, v0)}9

for δ = 2 to len(ek) do10

D0(ek, δ)← min{D0(ek, δ − 1) +sp(e0k+δ−1, e
1
k+δ) + c(ek),11

D1(ek, δ − 1) + sp(e1k+δ−1, e
1
k+δ) + c(ek)}

D1(ek, δ)← min{D0(ek, δ − 1) +sp(e0k+δ−1, e
0
k+δ) + c(ek),12

D1(ek, δ − 1) + sp(e1k+δ−1, e
0
k+δ) + c(ek)}

R(ek, δ)← min{D0(ek, δ) +sp(e
0
k+1, v0), D

1(ek, δ) +sp(e
1
k+1, v0)}13

end14

end15

// STEP 3: FIND MINIMAL ROUTES WITH BI-OBJECTIVE DYNAMIC PROGRAMMING
sol← array indexed by k ∈ [0..m] // sol(k) is a pareto set (a list) of pairs of objective16

values (f1, f2)
// corresponding to a partial solution servicing edges {e1, e2, . . . ek}17

sol(0)← {(0, 0)} // k = 0 means nothing serviced yet18

for k = 0 to m− 1 do19

forall (f1, f2) ∈ sol(k) do20

for δ = 1 to len(ek+1) do21

fnew
1 ← f1 +R(ek+1, δ) // add to partial solution sol(k) a route that services22

ek+1, ek+2, . . . , ek+δ
fnew
2 ← max

{
f2, R(ek+1, δ)

}
23

if 6 ∃ (fold
1 , fold

2) ∈ sol(k + δ) such that (fold
1 , fold

2) ≺ (fnew
1 , fnew

2)24

then
sol(k + δ)← sol(k + δ) ∪ (fnew

1 , fnew
2)25

sol(k + δ)← sol(k + δ) \ {(fold
1 , fold

2) | (fnew
1 , fnew

2) ≺ (fold
1 , fold

2)}26

end27

end28

end29

end30

return sol(m)31

2.3 A general multi-objective framework 14

2.3 A general multi-objective framework

We recall the general context of multi-objective problems. Given a space of explicit

solutions X and z minimization objectives f1, f2, . . . , fz, the goal is find a set of Pareto

solutions. A Pareto set only contains non-dominated elements, such that there are no

two different x and x′ such that x ≺ x′. Recall that the dominance relation ≺ indicates

that fi(x) ≤ fi(x
′) and that this inequality is strict for at least some i ∈ [1..k].

To deal with these multi-objective problems, many specific heuristics have been pro-

posed in literature for each different problem. Also, some general frameworks for heuris-

tics, denominated multi-objective metaheuristics, have been developed providing more

flexibility to the design of the heuristics adding a capability to escape local optima. Many

multi-objective metaheuristics are composed by three main components [85]: fitness as-

signment, diversity preserving and elitism.

A fitness assignment scheme is necessary to guide the search and may consist of

approaches based on scalar, criterion, dominance and indicator techniques. Scalar ap-

proaches basically combine the various conflicting objectives into one single objective,

and after that classic single objective techniques can be applied. Examples of scalar ap-

proaches are: the aggregation method, which combines the objectives in a linear way

[80, 26]; weighted metrics, or compromise programming, which can be applied by com-

paring the various objectives with a reference point [96]; goal programming, when the

decision maker defines aspiration levels and goals for each objective, so the objective is

to minimize the difference in relation to the goals [16]; achievement functions, another

scalarization method based on an arbitrary point in space [97]; goal attainment method,

which is a differenciable version of the weighted metrics technique [17]; and finally, the

ε-constrained method, which optimizes each objective subject to a fixation of the others

[41]; and others.

The diversity preserving techniques are responsible for keeping solutions well spread

in the Pareto fronts, usually avoiding premature convergence and increasing the quality

of the final solutions. Although some poor quality solutions are kept in order to balance

the search process, a good search algorithm must guarantee that the best visited solutions

are available in the Pareto front for the decision maker.

This strategy denominated elitism is also known as archiving, when good Pareto

individuals are saved in a special pool, or archive, during the search process. The size of

the archive can be limited though, since in many optimization problems it may not be

2.3 A general multi-objective framework 15

feasible to store all non-dominated solutions found during the search.

2.3.1 Aggregating the values from a multi-objective decoder

Given an implicit solution s ∈ S, a multi-objective decoder procedure D can generate a

set of decoded solutions D(s) ⊆ X . In a classic approach, an aggregation process can

be carried such that the value of s in the objective space corresponds to an aggregation

of the values from decoded solutions x ∈ D(s), by means of an aggregation function G.
For instance, the aggregation function G may assign a value to s according to a priority

in the objective functions or by a weighted sum of the objective values in D(s), however

this decision depends on the interests of the decision maker and it is problem specific. In

this case, although there are multiple associations between s and the elements in D(s),

an unique multi-objective value is attributed to s, which may reduce the amount of infor-

mation contained in the decoded set, but with the advantage that classic multi-objective

algorithms can be applied directly for the search process. This process of decoding and

aggregation is presented in Figure 2.3.

s

s′

. . .

S X

x1
x2
. . .
xγ(s)

Decode

Aggregation

x′1
x′2
. . .
x′γ(s′)

Figure 2.3: Decoding (solid arrows) and aggregation (dashed arrows) examples. Knowl-
edge from decision-maker can be used to assign objective values to input solutions s and
s′ based on values from the decoded sets D(s) and D(s′).

When a multi-objective decoder is used, but no a priori information is available

for the aggregation process, the three main components of the standard multi-objective

metaheuristics must be adapted in order to support this new type of information.

2.3.2 Extending the classic framework of multi-objective meta-
heuristics

We present an extended multi-objective model for metaheuristics with indirect represen-

tation and a multi-objective decoder. Consider a multi-objective problem with a space S
of implicit solutions (genotype) and a space X of explicit solutions (phenotype). We also

2.3 A general multi-objective framework 16

consider a (decoder) function D : S → 2X , where 2X is the power set of X , i.e., D maps

an implicit solution s ∈ S to a set of decoded complete solutions D(s) ⊆ X .

A fitness assignment function fa : X × 2X → R provides a numeric fitness value for

each element x of a population pX ⊆ X . The fitness of x depends both on the objective

values of x and the objective values of other elements in its current population. In the

space of implicit solutions S, we use a similar function f̃a : S × 2S → R. This function

can be defined such that f̃a(s, pS) is the best fitness among all the values of fa over the

decoded solutions x ∈ D(s); fa can be any function at hand, i.e., well-known fitness

assignment functions already presented in literature. Equation (2.3) below formalizes this

implementation of f̃a

f̃a(s, pS) = min
x∈D(s)

fa
(
x,
⋃
s′∈pS

D(s′)
)

(2.3)

Figure 2.4 depicts the fitness assignment process with a multi-objective decoder. Ini-

tially, the elements of a population pS from space S are decoded into elements of space X .
These elements are projected in the objective space and some well-known fitness assign-

ment function fa assigns a value to each decoded solution (a different shape represents

a different value). Finally, function f̃a presented in Equation (2.3) assigns the best fit-

ness assignment value to each implicit solution, regarding their respective sets of decoded

solutions.

Decode

Order by fitness valuef̃a(s) = fa(, pX)

...

S X

f̃a(s
′) = fa(, pX)

s

s′

pS

x′1
x′2

D(s′)

x1
x2
x3

D(s)

f̃a assigns best value from fa(
, , , ,

)

Objective
space

Use a
func. fa : X × 2X → R
to assign fitness values
with regard to the
whole population of
decoded solutions.

Figure 2.4: Implicit solutions of s population pS are decoded (solid arrows); decoded
solutions are evaluated in the objective space (small dashed arrows). Based on this, a
fitness assignment function fa : X × 2X → R evaluates and ranks the decoded solutions,
generating function f̃s : S × 2S → R (see left-bottom section).

2.3 A general multi-objective framework 17

Analogously, a diversity management function dm : {(x, pX) | pX ∈ 2X , x ∈ pX} → R
attributes a real value to each element of the input population pX . The value of dm

is usually given by the distances from x to pX in the objective space, but one can also

consider the distances in the space of X (see [68] for examples in the space of arrays,

partitions or permutations). However, any function dm can be extended to S-diversity
function d̃m : {(s, pS) | pS ∈ P (S), s ∈ pS} → R using a similar approach as for f̃a above.

In this case, however, a big number of similar decoded solutions may cause an excessive

crowding of an area in the objective space and thus prejudice the original implicit solution.

To avoid this issue, the search for value of d̃m(s) may compute the diversity measure

ignoring decoded solutions that come from s. This strategy denoted sibling avoidance is

presented in Equation (2.4), considering a function d̃m that assumes maximization of the

diversity measure.

d̃m(s, pS) = max
x∈D(s)

dm
(
x,
{
x
}
∪

⋃
s′∈ pS/{s}

D(s′)
)

(2.4)

2.3.3 Application on the NSGA-II

NSGA-II [25] is a classic evolutionary algorithm for multi-objective optimization. It is

mainly based on the concepts on non-domination sorting and crowding distance and seeks

to optimize a set of solutions (population), returning a Pareto front of non-dominated so-

lutions. The idea of the non-domination sorting is to organize the population in fronts

(sets) such that, every solution in front Fj is never dominated by any solution in any front

Fi, with i ≤ j. In order to avoid the evolution of very similar solutions (a common cause

of premature convergence of the algorithm), a crowding distance metric evaluates how

much “space” every solution occupies in the objective space. If an area is too crowded,

the space occupied by each solution will be smaller, and the selection operator will prefer

solutions with better fitness (smaller non-dominated front) that belong to less crowded

areas. Algorithm 2 presents the classic structure of NSGA-II algorithm. An initial pop-

ulation P 0 of size N is given as input, and a population of children Q0 (also with size

N) is created by procedure Crossover in line 2. At each generation t, these populations

are merged as a population Rt and the fitness assignment is calculated by the procedure

NonDominatedSort in line 6. Since the population Rt has size 2 × N , the selection loop

(line 9 of Algorithm 2) chooses the best N solutions (notation Fi[1 . . . n] indicates the

first n solutions in front i), front by front, sorted by the CrowdingDistance (line 10 of

Algorithm 2).

2.3 A general multi-objective framework 18

Algorithm 2: NSGA-II
Input: P 0: initial population
N ← |P 0|1

Q0 ← Crossover(P 0)2

t← 13

while not stopping criteria do4

Rt ← P t−1 ∪Qt−15

F ← NonDominatedSort(Rt)6

P t ← {}7

i← 18

while |P t| < N do9

CrowdingDistance(Fi)10

P t ← P t ∪ Fi[1 . . .min{|Fi|, N − |P t|}]11

i← i+ 112

end13

Qt ← Crossover(P t)14

t← t+ 115

end16

return P t17

Since the classic NSGA-II cannot handle a multi-objective decoder, a novel algorithm

was developed. It is named MODEMAT (Multi-Objective Decoder Matheuristic), consist-

ing an NSGA-II adapted with the fitness assignment and diversity management operators

presented in Eqs. (2.3)-(2.4), and the dynamic programming decoder (Algorithm 1).

MODEMAT is presented in Algorithm 3. The algorithm starts with a population of

N random permutations P 0
S , which is decoded (line 2 of Algorithm 3) and stored as a

secondary population P 0
X . The local search operator improves the quality of the decoded

solutions, regarding the first objective (total distance). A children population of N per-

mutations Q0
S is generated (line 4 of Algorithm 3), then decoded and stored as Q0

X for a

local search. In the main loop, both populations of permutations and decoded solutions

are merged into populations Rt
S and Rt

X , and the classic NonDominatedSort procedure

from NSGA-II is applied to Rt
X (procedure SuppressRepeated will be discussed later).

The selection operator (line 16 of Algorithm 3) is an extension of the classic selection from

NSGA-II. In this case, it searches for a set of decoded solutions with a number N of par-

ents, i.e., permutations that generated these decoded solutions. The CrowdingDistance

procedure (line 17 of Algorithm 3) helps avoiding premature convergence by selecting

decoded solutions which are more well-spread in the objective space, regarding Eq. (2.4).

2.3 A general multi-objective framework 19

Algorithm 3: MODEMAT
Input: P 0

S : initial population
N ← |P 0

S |1

P 0
X ← Decode(P 0

S)2

LocalSearch(P 0
X)3

Q 0
S ← Crossover(P 0

S)4

Q 0
X ← Decode(Q 0

S)5

LocalSearch(Q 0
X)6

t← 17

while not stopping criteria do8

RtS ← P t−1S ∪Qt−1S9

RtX ← P t−1X ∪Qt−1X10

SuppressRepeated(RtX)11

F ← NonDominatedSort(RtX)12

P tS ← {}13

P tX ← {}14

i← 115

while |P tS | < N do16

CrowdingDistance(Fi, RtX)17

P tS ← P tS ∪ Fi[1 . . .min{|Fi|, N − |P tS |}]18

i← i+ 119

end20

QtS ← Crossover(P tS)21

QtX ← Decode(QtS)22

LocalSearch(QtX)23

t← t+ 124

end25

return P tS26

2.4 Results 20

28 35 50 63 69 75 97 147 190

0
2
0

4
0

6
0

8
0

1
0
0

Number of required edges

N
u

m
b

e
r

o
f

d
e

c
o

d
e

d
 s

o
lu

ti
o

n
s

Figure 2.5: Growth of decoded solutions in relation to number of required edges. A
population of 10 random permutations is decoded and the number of generated solutions
in plotted. The instances were selected from sets gdb, egl and val, such that there are at
least three different instances for each number of required edges.

2.4 Results

2.4.1 Growth of decoded solutions

We have detected a growth in the number of decoded solutions, that is related to the

increase of the number of required edges in problem instances. Figure 2.5 shows the

number of decoded solutions from a population of 10 random permutations, for problem

instances with different numbers of required edges. For the bigger instances (190 required

edges) almost 100 decoded solutions are generated on average for each input permutation.

The original procedure NonDominatedSort is very sensitive to the population size

since it is O(zN2), where z is the number of objectives and N the size of the population.

Due to this quadratic behaviour, in MODEMAT the complexity also becomes quadratic

over the number of decoded solutions (for each generation t), which is very inefficient for

bigger problem instances.

In order to deal with the explosion of decoded solutions in bigger instances, a method

SuppressRepeated was implemented (line 11 of Algorithm 3). The idea is to remove

the repeated decoded solutions, i.e., clones, from population RX before applying the

NonDominatedSort procedure. This way, it was possible to achieve a better efficiency for

2.4 Results 21

0 50 100 150 200 250

0
5

1
0

1
5

2
0

2
5

Random solutions

Solutions from population

Gap in relation to lower bounds

0 50 100 150 200 250

0
5

1
0

1
5

2
0

2
5

Generation

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
u

n
iq

u
e

 d
e

c
o

d
e

d
 s

o
lu

ti
o

n
s

1
1

1
4

1
7

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

G
a

p
 (

%
)

Figure 2.6: Reduction in the number of decoded solutions as the quality of population
increase for instance egl-s3-A with 159 required edges. As the number of generations
increase, the percentual gap from the lower bound (dotted line) is reduced together with
number of unique decoded solutions in the current population (solid line). Random per-
mutations (circles) present poor quality, so a greater number of decoded solutions is
generated.

bigger instances, since the number of unique solutions falls quickly as the quality of the

population improves. This last observation is presented in Figure 2.6. As the population

evolves, the gap from the best individuals in relation to the first objective reduces (dotted

line), so the average number of decoded solutions (solid line) also decreases. For compari-

son purposes, random permutations were generated (circles in Figure 2.6) and the average

number of decoded solutions was much higher than the evolved population, considering a

population of size 30.

2.4.2 Impact of Local Search

Two versions of MODEMAT were developed for the computational experiments. The

first MODEMAT version, called MM1, was tested without the LocalSearch procedure

of Algorithm 3. The second version, called MM-LS, performs a local search after each

decoding operation. The algorithms were compared in terms of computational time and

Pareto front convergence. The hypervolume quality indicator [102] was chosen in order

to evaluate the Pareto front convergence, since it considers both the quality of solutions

regarding the two objectives and the diversity of the Pareto front. The hypervolume

2.4 Results 22

computes the area over a Pareto front with normalized values of objectives varying from

0 to 1.0, in relation to a reference point with coordinates (1.1, 1.1). Since the CARP

consists of two minimization objectives, a bigger area on the hypervolume indicates a

better convergence of the Pareto front.

Tables 2.4-2.6 show the impact of the local search in the developed algorithm, for

the sets of instances gdb, egl and val. It is worth mentioning that MM-LS was capa-

ble of finding Pareto fronts with better convergence (bigger hypervolume) and smaller

computational time. This behavior is even clearer with bigger instances such as val and

egl, where the time gains by using local search were on average 50.72% and 72.46%,

respectively. These experiments indicate that, although the local search consume some

computational times, a better quality permutation generates fewer decoded solutions,

what in fact reduces the computational time of MM-LS.

Table 2.4: Impact of local search for gdb instances
Problem Hypervolume Time(s) Time

MM1 MM-LS MM1 MM-LS Gain(%)
gdb01 0.672 0.943 10.87 8.69 20.06
gdb02 0.941 1.013 16.58 14.65 11.64
gdb03 0.928 1.087 10.75 8.34 22.42
gdb04 0.939 1.039 9.55 7.67 19.69
gdb05 1.013 1.018 15.94 14.59 8.47
gdb06 0.609 0.911 10.92 8.19 25.00
gdb07 0.804 0.923 13.62 10.44 23.35
gdb08 0.744 0.870 32.65 22.95 29.71
gdb09 0.689 0.819 50.77 32.3 36.38
gdb10 0.959 0.973 19.73 17.91 9.22
gdb11 0.993 1.011 89.14 61.27 31.27
gdb12 0.807 0.974 9.74 8.92 8.42
gdb13 0.201 1.210 7.03 7.84 -11.52
gdb14 1.017 1.052 9.55 8.57 10.26
gdb15 0.824 0.824 5.35 6.49 -21.31
gdb16 0.953 0.955 11.39 12.93 -13.52
gdb17 0.899 0.988 7.11 9.28 -30.52
gdb18 0.893 0.933 35.49 27.94 21.27
gdb19 0.496 0.496 2.14 2.46 -14.95
gdb20 0.941 0.959 6.05 8.13 -34.38
gdb21 0.983 0.978 21.08 18.58 11.86
gdb22 0.927 0.945 32.27 36.97 -14.56
gdb23 0.964 1.029 43.31 40.35 6.83
Average 0.835 0.954 20.48 17.19 6.79
Median 0.927† 0.973†

† statistical difference for medians for a Wilcoxon
Rank-sum test with 95% confidence

2.4 Results 23

Table 2.5: Impact of local search for egl instances
Problem Hypervolume Time(s) Time

MM1 MM-LS MM1 MM-LS Gain(%)
egl-e1-A 0.748 0.907 152.38 56.11 63.18
egl-e1-B 0.671 0.995 131.75 46.29 64.87
egl-e1-C 0.536 0.964 70.04 34.57 50.64
egl-e2-A 0.831 0.996 596.78 158.87 73.38
egl-e2-B 0.711 0.964 311.01 96.39 69.01
egl-e2-C 0.826 1.091 153.09 84.87 44.56
egl-e3-A 0.644 0.911 1385.92 381.99 72.44
egl-e3-B 0.782 0.723 1115.76 268.47 75.94
egl-e3-C 0.832 1.113 633 153.73 75.71
egl-e4-A 0.738 1.002 2222.71 387.95 82.55
egl-e4-B 0.796 1.038 1234.96 237.81 80.74
egl-e4-C 0.665 0.920 762.32 176 76.91
egl-s1-A 0.781 0.875 771.51 194.01 74.85
egl-s1-B 0.767 0.994 466.57 146.61 68.58
egl-s1-C 0.708 1.076 267.54 92.81 65.31
egl-s2-A 0.687 0.938 5380.56 1039.84 80.67
egl-s2-B 0.689 0.887 3496.87 803.09 77.03
egl-s2-C 0.713 1.128 2042.35 473.12 76.83
egl-s3-A 0.706 0.990 6837.36 1306.81 80.89
egl-s3-B 0.774 1.075 4504.82 1031.72 77.10
egl-s3-C 0.764 1.090 2915.08 778.12 73.31
egl-s4-A 0.668 1.113 7200.62 1686.38 76.58
egl-s4-B 0.547 1.071 6249.38 1044.11 83.29
egl-s4-C 0.424 1.136 3868.05 979.46 74.68
Average 0.709 1.000 2198.77 485.80 72.46
Median 0.712† 0.996†

† statistical difference for medians for a Wilcoxon
Rank-sum test with 95% confidence

2.4 Results 24

Table 2.6: Impact of local search for val instances
Problem Hypervolume Time(s) Time

MM1 MM-LS MM1 MM-LS Gain(%)
val01A 0.968 1.069 45.65 38.71 15.20
val01B 0.798 0.948 45.37 35.3 22.20
val01C 0.657 1.085 19.13 16.55 13.49
val02A 0.833 0.948 102.56 48.83 52.39
val02B 0.928 0.910 69.67 35.2 49.48
val02C 0.328 1.082 31.58 14.05 55.51
val03A 0.816 0.909 45.05 34.42 23.60
val03B 0.633 0.848 32.72 24.35 25.58
val03C 0.396 1.188 18.83 11.95 36.54
val04A 0.852 0.986 567.17 191.54 66.23
val04B 0.790 1.018 516.41 159.1 69.19
val04C 0.849 1.080 396.87 131.53 66.86
val04D 0.559 1.144 166.16 66.76 59.82
val05A 0.970 1.030 964.15 255.66 73.48
val05B 0.870 0.967 781.17 233.13 70.16
val05C 0.871 1.014 611.18 176.23 71.17
val05D 0.616 1.086 284.44 83.12 70.78
val06A 0.894 0.958 92.53 66.14 28.52
val06B 0.890 1.010 75.48 56.59 25.03
val06C 0.596 0.662 41.17 23.93 41.88
val07A 0.975 0.996 200.47 109.17 45.54
val07B 0.841 1.012 195.32 97.26 50.20
val07C 0.668 0.951 105.23 70.08 33.40
val08A 0.892 0.947 476.76 273.35 42.67
val08B 0.847 0.978 480.88 211.23 56.07
val08C 0.805 1.006 193.85 75.07 61.27
val09A 0.931 0.937 1026.36 421.66 58.92
val09B 0.818 0.943 883.93 330.94 62.56
val09C 0.843 0.989 800.67 319.33 60.12
val09D 0.812 1.061 423.7 198.49 53.15
val10A 0.974 1.021 2496.5 701.54 71.90
val10B 0.945 1.006 1920.55 815.68 57.53
val10C 0.870 0.963 2021.18 557.2 72.43
val10D 0.751 0.944 1097.74 420.63 61.68
Average 0.828 0.988 506.78 243.91 50.72
Median 0.842† 0.992†

† statistical difference for medians for a Wilcoxon
Rank-sum test with 95% confidence

2.4 Results 25

2.4.3 Literature comparison

The proposed MODEMAT algorithm was compared to the best-known algorithms in

literature, namely the Multi-Objective Genetic Algorithm (MOGA) by Lacomme [51]

and the Decomposition-Based Memetic Algorithm (D-MAENS) by Mei [58]. Results

show that it is competitive for both objectives.

Computational tests were done in a Intel 2.3GHz Core i7 (single thread, no par-

allelism), 8GB de RAM linux kernel 3.0, stopping criterion by number of populations

without improvement set to 2000, population size of 80 (permutations), including all con-

figurations presented previously for MM-LS. The objective values are compared to lower

bounds for both objectives calculated by Belenguer [5] and Lacomme [51].

Tables 2.7–2.9 present a comparison on sets of instances gdb, egl and val, for the

algorithms MODEMAT, MOGA and D-MAENS. In the tables, the column Problem in-

dicates the test problem used; LB1 and LB2 indicate the lower bounds for objectives one

and two, respectively; best1 and best2 are the best values found by each algorithm for both

objectives; gap1(%) and gap2(%) represent the percentual relative gap between the best

value and the lower bound, for each objective. Values in bold indicate the lower bound

was reached, that is, indicate optimal values. The final rows Average and Hits indicate,

respectively, the average gaps for the test instances and the number of optimal solutions

reached for each objective.

From Table 2.7, it is possible to observe that MODEMAT finds better solutions than

MOGA for all problem instances considering the first objectives. The most expressive

result is for the second objective, finding all optimal values while MOGA struggles with

an average gap2 of 20.95%. Considering instances egl and val the MOGA is more com-

petitive, although MODEMAT always performs better on average. On the other hand,

D-MAENS is very competitive with MODEMAT for the first objective since the average

gaps are very close, although MODEMAT performs better than D-MAENS for the second

objective. For the gdb set, only instances gdb08, gdb09 and gdb12 remain open, while

optimal values were reached for all others. For the egl, no optimal value was reached for

the first objective, indicating that the lower bound could be improved in future works, or

more optimizations aiming the first objective could be added to the search algorithms.

The algorithms were also compared in terms of computational times. In Table 2.10,

the column Reported indicates the computational time (in seconds) spent by the search

algorithm, as reported by the authors; and column Reduced represents the expected com-

2.4 Results 26

Table 2.7: Comparison of gdb results from literature
MOGA D-MAENS MODEMAT

Problem LB1 LB2 best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%)
gdb01 316 63 316 0.00 63 0.00 316 0.00 63 0.00 316 0.00 63 0.00
gdb02 339 59 339 0.00 59 0.00 339 0.00 59 0.00 339 0.00 59 0.00
gdb03 275 59 275 0.00 59 0.00 275 0.00 59 0.00 275 0.00 59 0.00
gdb04 287 64 287 0.00 64 0.00 287 0.00 64 0.00 287 0.00 64 0.00
gdb05 377 64 377 0.00 64 0.00 377 0.00 64 0.00 377 0.00 64 0.00
gdb06 298 64 298 0.00 64 0.00 298 0.00 64 0.00 298 0.00 64 0.00
gdb07 325 57 325 0.00 61 7.02 325 0.00 57 0.00 325 0.00 57 0.00
gdb08 344 38 350 1.74 38 0.00 348 1.16 38 0.00 348 1.16 38 0.00
gdb09 303 37 309 1.98 37 0.00 304 0.33 37 0.00 305 0.66 37 0.00
gdb10 275 39 275 0.00 54 38.46 275 0.00 39 0.00 275 0.00 39 0.00
gdb11 395 43 395 0.00 64 48.84 395 0.00 45 4.65 395 0.00 43 0.00
gdb12 448 93 458 2.23 93 0.00 458 2.23 93 0.00 458 2.23 93 0.00
gdb13 536 128 544 1.49 128 0.00 536 0.00 128 0.00 544 1.49 128 0.00
gdb14 100 15 100 0.00 17 13.33 100 0.00 16 6.67 100 0.00 15 0.00
gdb15 58 8 58 0.00 13 62.50 58 0.00 9 12.50 58 0.00 8 0.00
gdb16 127 14 127 0.00 19 35.71 127 0.00 14 0.00 127 0.00 14 0.00
gdb17 91 9 91 0.00 15 66.67 91 0.00 10 11.11 91 0.00 9 0.00
gdb18 164 19 164 0.00 27 42.11 164 0.00 24 26.32 164 0.00 19 0.00
gdb19 55 17 55 0.00 17 0.00 55 0.00 17 0.00 55 0.00 17 0.00
gdb20 121 20 121 0.00 20 0.00 121 0.00 20 0.00 121 0.00 20 0.00
gdb21 156 15 156 0.00 22 46.67 156 0.00 16 6.67 156 0.00 15 0.00
gdb22 200 12 200 0.00 20 66.67 200 0.00 18 50.00 200 0.00 12 0.00
gdb23 233 13 235 0.86 20 53.85 233 0.00 20 53.85 235 0.86 13 0.00

Average 0.36 20.95 0.16 7.47 0.28 0.00
Hits 18 12 20 15 18 23

putational time of the algorithm running in a Intel(R) Core(TM) i7 CPU 870 2.93GHz

(comparison made by memory latency times and processor gigaflops, from specialized

websites). From this table, it can be concluded that MODEMAT still consumes more

computational resources during the search process. However, the topic of multi-objective

decoding and the management of multiple populations is still quite new in literature. More

efficient techniques are likely to appear in the future as more algorithms are developed

based on the novel ideas behind MODEMAT.

As a visual example of Pareto convergence, MODEMAT managed to find the efficient

Pareto front for instance gdb19, presented in Figure 2.7. This comparison was possible

since gdb19 consists of only 11 required edges and a brute force algorithm was able to

find the efficient Pareto front in reasonable computational time. Unfortunately, this is

not possible for the other instances, which consist of at least 22 required edges. Although

a hypervolume comparison between the Pareto fronts of the algorithms is desirable, this

comparison was not possible since this information was not provided by the authors of

MOGA and D-MAENS. For future comparisons, all information related to MODEMAT

is available online at the personal website of the authors.

2.4 Results 27

Table 2.8: Comparison of egl results from literature
MOGA D-MAENS MODEMAT

Problem LB1 LB2 best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%)
egl-e1-A 3515 820 3548 0.94 820 0.00 3548 0.94 820 0.00 3548 0.94 820 0.00
egl-e1-B 4436 820 4525 2.01 820 0.00 4525 2.01 820 0.00 4524 1.98 820 0.00
egl-e1-C 5453 820 5687 4.29 820 0.00 5595 2.60 820 0.00 5615 2.97 820 0.00
egl-e2-A 4994 820 5018 0.48 820 0.00 5018 0.48 820 0.00 5018 0.48 820 0.00
egl-e2-B 6249 820 6411 2.59 820 0.00 6347 1.57 820 0.00 6351 1.63 820 0.00
egl-e2-C 8114 820 8440 4.02 820 0.00 8339 2.77 820 0.00 8395 3.46 820 0.00
egl-e3-A 5869 820 5956 1.48 820 0.00 5926 0.97 820 0.00 5982 1.93 820 0.00
egl-e3-B 7646 820 7911 3.47 820 0.00 7801 2.03 820 0.00 7870 2.93 820 0.00
egl-e3-C 10019 820 10349 3.29 820 0.00 10340 3.20 820 0.00 10374 3.54 820 0.00
egl-e4-A 6372 820 6548 2.76 820 0.00 6476 1.63 820 0.00 6533 2.53 820 0.00
egl-e4-B 8809 820 9116 3.49 820 0.00 9069 2.95 820 0.00 9138 3.73 820 0.00
egl-e4-C 11276 820 11802 4.66 820 0.00 11774 4.42 820 0.00 11760 4.29 820 0.00
egl-s1-A 4992 912 5102 2.20 924 1.32 5068 1.52 912 0.00 5018 0.52 912 0.00
egl-s1-B 6201 912 6500 4.82 912 0.00 6435 3.77 912 0.00 6414 3.43 912 0.00
egl-s1-C 8310 912 8694 4.62 912 0.00 8518 2.50 912 0.00 8518 2.50 912 0.00
egl-s2-A 9780 979 10207 4.37 979 0.00 10117 3.45 979 0.00 10253 4.84 979 0.00
egl-s2-B 12886 979 13548 5.14 979 0.00 13459 4.45 979 0.00 13450 4.38 979 0.00
egl-s2-C 16221 979 16932 4.38 979 0.00 16832 3.77 979 0.00 16794 3.53 979 0.00
egl-s3-A 10025 979 10456 4.30 979 0.00 10469 4.43 979 0.00 10501 4.75 979 0.00
egl-s3-B 13554 979 14004 3.32 979 0.00 14082 3.90 979 0.00 14056 3.70 979 0.00
egl-s3-C 16969 979 17825 5.04 979 0.00 17650 4.01 979 0.00 17500 3.13 979 0.00
egl-s4-A 12027 1027 12730 5.85 1027 0.00 12602 4.78 1027 0.00 12648 5.16 1027 0.00
egl-s4-B 15933 1027 16792 5.39 1027 0.00 16686 4.73 1027 0.00 16675 4.66 1027 0.00
egl-s4-C 20179 1027 21309 5.60 1027 0.00 21213 5.12 1027 0.00 20979 3.96 1027 0.00
Average 3.69 0.05 3.00 0.00 3.12 0.00

Hits 0 23 0 24 0 24

Figure 2.7: Efficient Pareto front for instance gdb19 with 11 required edges, consisting of
four non-dominated solutions: (83, 17), (71, 19), (63, 20), (55, 21)

55 60 65 70 75 80 85

1
7

1
8

1
9

2
0

2
1

Total distance

M
a

x
im

u
m

 d
is

ta
n

c
e

Solution from efficient Pareto set

Efficient Pareto front

2.4 Results 28

Table 2.9: Comparison of val results from literature
MOGA D-MAENS MODEMAT

Problem LB1 LB2 best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%) best1 gap1(%) best2 gap2(%)
val01A 173 40 173 0.00 58 45.00 173 0.00 40 0.00 173 0.00 40 0.00
val01B 173 40 173 0.00 42 5.00 173 0.00 40 0.00 173 0.00 40 0.00
val01C 235 40 245 4.26 40 0.00 245 4.26 40 0.00 245 4.26 40 0.00
val02A 227 71 227 0.00 90 26.76 227 0.00 71 0.00 227 0.00 71 0.00
val02B 259 71 260 0.39 78 9.86 259 0.00 71 0.00 259 0.00 71 0.00
val02C 445 71 463 4.04 71 0.00 457 2.70 71 0.00 457 2.70 71 0.00
val03A 81 27 81 0.00 31 14.81 81 0.00 27 0.00 81 0.00 27 0.00
val03B 87 27 87 0.00 27 0.00 87 0.00 27 0.00 87 0.00 27 0.00
val03C 137 27 138 0.73 27 0.00 138 0.73 27 0.00 138 0.73 27 0.00
val04A 400 80 400 0.00 92 15.00 400 0.00 80 0.00 400 0.00 80 0.00
val04B 412 80 412 0.00 83 3.75 412 0.00 80 0.00 412 0.00 80 0.00
val04C 428 80 430 0.47 80 0.00 430 0.47 80 0.00 434 1.40 80 0.00
val04D 520 80 539 3.65 80 0.00 536 3.08 80 0.00 530 1.92 80 0.00
val05A 423 72 423 0.00 96 33.33 423 0.00 76 5.56 423 0.00 72 0.00
val05B 446 72 446 0.00 86 19.44 446 0.00 73 1.39 446 0.00 72 0.00
val05C 469 72 474 1.07 80 11.11 474 1.07 72 0.00 474 1.07 72 0.00
val05D 571 72 595 4.20 72 0.00 595 4.20 72 0.00 595 4.20 72 0.00
val06A 223 45 223 0.00 56 24.44 223 0.00 45 0.00 223 0.00 45 0.00
val06B 231 45 233 0.87 50 11.11 233 0.87 45 0.00 233 0.87 45 0.00
val06C 311 45 317 1.93 45 0.00 317 1.93 45 0.00 317 1.93 45 0.00
val07A 279 39 279 0.00 59 51.28 279 0.00 41 5.13 279 0.00 39 0.00
val07B 283 39 283 0.00 51 30.77 283 0.00 40 2.56 283 0.00 39 0.00
val07C 333 39 335 0.60 40 2.56 334 0.30 39 0.00 334 0.30 39 0.00
val08A 386 67 386 0.00 87 29.85 386 0.00 71 5.97 386 0.00 67 0.00
val08B 395 67 395 0.00 79 17.91 395 0.00 69 2.99 395 0.00 67 0.00
val08C 517 67 545 5.42 67 0.00 532 2.90 67 0.00 527 1.93 67 0.00
val09A 323 44 326 0.93 68 54.55 324 0.31 47 6.82 323 0.00 44 0.00
val09B 326 44 326 0.00 58 31.82 326 0.00 47 6.82 326 0.00 44 0.00
val09C 332 44 332 0.00 51 15.91 332 0.00 44 0.00 332 0.00 44 0.00
val09D 382 44 399 4.45 44 0.00 392 2.62 44 0.00 393 2.88 44 0.00
val10A 428 47 428 0.00 91 93.62 428 0.00 62 31.91 428 0.00 47 0.00
val10B 436 47 436 0.00 77 63.83 436 0.00 60 27.66 437 0.23 47 0.00
val10C 446 47 448 0.45 66 40.43 446 0.00 58 23.40 446 0.00 47 0.00
val10D 524 47 537 2.48 54 14.89 533 1.72 51 8.51 534 1.91 47 0.00
Average 1.06 19.62 0.80 3.79 0.77 0.00

Hits 18 10 20 22 20 34

2.5 Chapter Conclusions 29

Table 2.10: Comparison of computational time
Time(s)

Problem Algorithm Reported Reduced

gdb
MOGA [51] 13.791 4.31*
D-MAENS [58] 8.822 4.41*
MODEMAT 17.193 17.19

val
MOGA [51] 83.061 30.74*
D-MAENS [58] 53.982 26.99*
MODEMAT 243.913 243.91

egl
MOGA [51] 268.991 84.08*
D-MAENS [58] 213.52 106.75*
MODEMAT 485.803 485.80

overall
MOGA [51] 115.611 36.13*
D-MAENS [58] 88.422 44.21*
MODEMAT 226.663 226.66

1 Pentium IV 1.8GHz
2 Intel(R) Xeon(R) CPU E5335 2.00GHz
3 Intel(R) Core(TM) i7 CPU 870 2.93GHz
* time reduced according to reported computer specifications

2.5 Chapter Conclusions

This chapter addressed bi-objective CARP in which a set of edges has to be serviced

by vehicles of limited capacity, so as to minimize the sum of all traversed arcs as well

as the longest tour. The CARP consisting of only the first objective is well explored

in literature and it is a NP-Hard problem, so many heuristic approaches have been pre-

sented before in literature. We proposed a Matheuristic approach called MODEMAT, that

integrates an exact dynamic programming decoder into the classic multi-objective evolu-

tionary metaheuristic NSGA-II. Since the decoder generates a set of explicit solutions, a

novel multi-objective framework was developed in order to extend classic multi-objective

components for providing fitness assignment, diversity and elitism.

Optimization techniques were presented in order to accelerate the convergence of

MODEMAT and also to prevent premature convergence. The results show that the pro-

posed algorithm is competitive with literature, being able to achieve all optimal values

for the second objective of the problem. For the first objective, MODEMAT is also com-

petitive even in the number of optimal solutions found and for the average gap compared

to a lower bound from literature.

It is also worth mentioning that proposed algorithm is very generic and no specific

construction heuristics were necessary in order to find good quality solutions. The algo-

rithm can also be easily applied to other optimization problems and the ideas presented

2.5 Chapter Conclusions 30

in this chapter can also be extended to improve other multi-objective search algorithms.

Acknowledgements This work was partially supported by the Brazilian funding agency

CAPES (process 10381-13-9) and also by INRIA funding for the research team DOLPHIN.

Capítulo 3

Parallel Algorithm in GPU for Vehicle
Routing

Environmental issues have become increasingly important to industry and business in

recent days. This trend forces the companies to take responsibility for product recovery,

and proper recycling and disposal, moving towards the design of sustainable green supply

chains. This chapter addresses the backward stream in transportation of products, by

means of reverse logistics applied to vehicle routing. This problem, called Single Vehicle

Routing Problem with Deliveries and Selective Pickups (SVRPDSP), consists in finding a

route that starts from the depot and visits all delivery customers. Some pickup customers

may also be visited, since the capacity of the truck is not exceeded, and there is also a

revenue associated with each pickup. We develop an algorithm inspired on the Variable

Neighborhood Search metaheuristic that explores the power of modern Graphics Pro-

cessing Unit (GPU) to provide routes in reasonable computational time. The proposed

algorithm called Four-Neighborhood Variable Neighborhood Search (FN-VNS) includes a

novel high quality initial solution generator, a CPU-GPU integrated perturbation strat-

egy and four different neighborhood searches implemented purely in GPU for the local

search phase. Our experimental results show that FN-VNS is able to improve the quality

of the solution for 51 instances out of 68 instances taken from the literature. Finally, we

obtained speedups up to 14.49 times, varying from 17.42 up to 76.84 for each local search,

measured over a set of new large size instances.

3.1 Introduction 32

3.1 Introduction

Environmental issues have received a great deal of attention over the past two decades.

Organizations are adopting environmentally friendly management strategies in both op-

erational and strategic contexts, aiming to add competitive advantages and to cope with

environmental regulations [76, 22]. In addition, the evidence of environmental damage in-

tensifies the population pressure on organizations practices [101]. In this scenario, Green

Supply Chain Management (GSCM) is becoming an increasingly popular management

concept because it takes environmental aspects into consideration when managing the

supply chain [81, 37, 92, 93]. Different research directions for addressing GSCM arise in:

product design [1, 12], manufacturing practices [98, 39], and reverse logistics [15, 74].

In this work, we focus on the reverse logistics aspect of GSCM [94]. Reverse logis-

tics deals with the backward movement, or the product return in the supply chain [24].

Developments in reverse logistics are fundamental for GSCM, providing waste reduction

and cost savings, since a value can be retrieved from returned goods [48]. Environmental

conscious organizations must take responsibility for their products at end of life, including

product recovery, and proper recycling and disposal. A considerable number of reverse lo-

gistics cases of study have been reported. A mail-service problem is presented by [84]. The

mail is stored in a depot and later on is delivered to the customers, which can also send

mail back to the depot. [71] present a practical application for the soft-drink distribution

problem, which includes the delivery of bottled water to customers, that return empty

bottles back to the depot. The case of European electronics industry is studied in [63].

Electrical and electronic equipment have a short life, and can be restocked and returned to

the original distribution centers. The management of product return process in a timely

and effective manner presented a great difficulty in Europe. [88] present the case of single-

use flash camera in Kodak. Customers take the used camera to a store, that receives a

deduction for each camera returned to the factory. The used circuit boards of cameras

are further recycled to produce new cameras. The combined delivery and collection of

products was studied in [7] for printer cartridge recycling in Great Britain, and power

tools recycling in Germany. The recovery of copy machines is proposed by [87], where

used products are collected for recovery. Products are transported from plants to markets

and from each market a certain amount of used products have to be collected. There are

also some design considerations for product recovery networks in the literature [31, 27].

In reverse logistics, the distribution and collection of the products have to be care-

fully planned. Transportation activities have to be organized in order to: (i) provide

3.1 Introduction 33

efficiency in the supply chain; (ii) reduce costs, guaranteeing the economic success of re-

processing products [9]; and avoid further degradations to the environment, endorsing the

environmental benefits of the backward stream [29]. The dominant design decision in the

transportation activities planning is the determination of the vehicle routes.

Vehicle routing is a well-known combinatorial optimization problem that aims to find

vehicle routes at minimum cost. An important variant of this problem, called Single

Vehicle Routing Problem with Deliveries and Selective Pickups (SVRPDSP), fits the

reverse logistics demands. This problem considers that a single vehicle delivers products

to a set of customers, while some pickups are also possible during the route. Every satisfied

pickup yields a positive revenue.

The SVRPDSP is a NP-hard problem and this implies that there is no known polyno-

mial algorithm that solves the problem to optimality. In this case, the use of metaheuristic

frameworks and mathematical programming techniques can provide reasonably good so-

lutions. However, they usually cannot handle efficiently large size problems. In addition,

on-line vehicle routing is gaining attention because of the advances in communication

technologies. The demands of customers may change quickly and the manager may need

a fast routing algorithm to solve the problem. Therefore, it is indisputable that com-

panies need a computational mechanism to provide routes in reasonable computational

time, despite the size of the problem.

Recent advances in processor architectures can be explored in order to accelerate rout-

ing algorithms. We present an efficient algorithm that explores the low-cost and highly

accessible Graphics Processing Unit (GPU) technology. The GPUs have evolved into a

powerful massively programmable parallel environment, where a large number of cores

can be assembled for solving large scale problems with lower price than multiple sep-

arated processing units. We propose an integrated heuristic, called Four-Neighborhood

Variable Neighborhood Search (FN-VNS), that combines the flexibility of the metaheuris-

tic Variable Neighborhood Search (VNS) with acceleration components implemented in a

GPU. The FN-VNS also includes a novel high quality initial solution generator, integrated

with two mathematical programming solvers, providing the search algorithm with good

starting solutions. These solutions are further improved by local search in four different

neighborhoods, that is parallelized by means of GPU programming. Finally, an integrated

CPU-GPU perturbation mechanism and a novel stopping criteria introduce diversity dur-

ing the search process and avoid premature convergence of the algorithm, preventing it

from staying stuck in local optima. The results of FN-VNS are superior when compared

3.2 Related Work 34

to algorithms from literature and the integration with a GPU is able to achieve nearly 15

times speedup over a pure sequential version. It is also possible to achieve an acceleration

of 76.84 times for the neighborhood searches, considering a new set of instances of larger

size.

In the next section, we briefly review works on strategic, tactical and operational

decisions for supply chain management problems, focusing on successful applications of

the VNS metaheuristic. We also review the works on GPU parallelization for classic

metaheuristic algorithms. In Section 3.3, we describe the problem in details, while Section

3.4 presents the proposed FN-VNS algorithm. The results are reported in Section 3.5.

Finally, the Section 2.5 concludes the work and indicates directions for future researches

in supply chain problems and parallel metaheuristics.

3.2 Related Work

There are three important streams of research involving a supply chain management

problem: strategic, tactical and operational [30]. The strategic stream involves long-term

decisions, such as facility location. The tactical stream involves decisions made in not

such a long-term basis, such as transportation and fleet planning. The operational stream

involves short-term decisions, usually made in real-time, such as vehicle loading and route

recomputation.

Facility location is a widely studied combinatorial optimization problem, that arises

in industrial engineering, with applications in manufacturing units and process plants.

It seeks an efficient location of facilities to optimize production flows and minimize the

costs [79]. This problem has been extensively studied since it was first formulated as a

Quadratic Assignment Problem [47]. Many heuristic techniques were developed since

then [89, 44] and some routing decisions were also included in the model, called the

Location-Routing Problem (LRP). It simultaneously determines the location of a set of

facilities (depots) and optimizes distribution in a supply chain where customers receive

goods from the set of depots. Exact methods are usually based on a mathematical pro-

gramming formulation [52, 6] and different heuristic approaches have been proposed to

provide solutions in reasonable time [42, 100]. Literature surveys on LRP are presented

in [62] and [72] with the applications in logistics and distribution management.

From a tactic and operational perspective, in order to optimize transportation costs

many practical applications are modeled as a Vehicle Routing Problem (VRP). It has

3.2 Related Work 35

become a very important problem in supply chain logistics and also for computing, since

it is an NP-Hard problem [23]. Many heuristic algorithms have been developed for VRP

variants [90, 35]. The Variable Neighborhood Search (VNS) framework proposed by [43]

has been applied to many hard combinatorial problems, including those related to the

VRP. Currently, most of the best techniques for VRP variants are merged with multi-

neighborhood concepts inspired by the VNS, e.g., Hybrid Iterated Local Search [83] and

Hybrid Genetic Algorithm [95].

We discuss implementations that are based on VNS and parallel metaheuristics, as

they have similarities with our approach. Recently, a VNS algorithm was successfully

applied to an economic lot sizing problem with product returns and recovery [78], indi-

cating that this approach can also fit the GSCM objectives of this work. The work of

[59] deals with non-linear cost for the open depots, and presents a hybrid metaheuristic

consisting of Tabu Search and VNS. The work by [28] uses multiple neighborhoods to

evaluate solutions regarding both depot status and customer sequence. The perturbation

mechanism is composed of two neighborhoods affecting the depot, while the local search

step uses classic neighborhood structures for routing, inspiring the development of the

proposed FN-VNS algorithm. In these works, the routing problem considers customers

to have only delivery demands. The work of [33] considers pickup and delivery demands,

but the pickups are not selective. A continuous location problem is solved and routing

is solved with a VNS approach. In this case, a cross-exchange neighborhood is used as

perturbation and a 3-Opt operation as local search. [82] developed a parallel Iterated

Local Search for a VRP with pickups and deliveries. The results indicate a tremendous

decrease in the computational time by using a massive number of processing cores. Notice-

able speedups are achieved by [75] for a Greedy Randomized Adaptive Search Procedure

metaheuristic, while some parallel Evolutionary Algorithms on the GPU were also pro-

posed [99, 54]. A Tabu Search implementation with GPU is presented in [46] and also

in [54] for a 3-dimensional assignment problem. Finally, local search on the GPU is the

subject of research of [55] and [77].

The SVRPDSP was first presented by [84]. The authors contextualized the problem

with some real industry cases and developed a mathematical programming model, us-

ing the MTZ subtour elimination constraints presented by [60]. Experiments with the

software CPLEX have shown that the proposed model was able to solve small randomly

generated instances. However, the authors considered that customers have only delivery

or pickup demands, but not both. This variant fits many real-world reverse logistic scenar-

ios and it is closely related to the Prize Collecting Traveling Salesman Problem (PCTSP)

3.2 Related Work 36

presented by [3]. The PCTSP consists in finding a tour visiting a subset of customers and

penalizing each non-visited customer. However, the PCTSP does not consider demands

on customers, i.e., a scenario where the vehicle has unlimited capacity.

In [38], a heuristic based on Tabu Search was developed to solve the SVRPDSP. The

idea behind the algorithm was to assign labels for each customer, pickup only, delivery

only, both pickup and delivery, and exchange these labels in order to improve the solution

quality. In terms of mathematical programming, a branch-and-cut algorithm for the

SVRPDSP was developed by [40]. Efficient cuts were devised for a new mathematical

programming model, which was able to solve some instances of up to 90 customers.

[19] proposed the first VNS with classic local search algorithms for the SVRPDSP. A

basic initial solution was generated by randomly selecting pickup customers and adding

random delivery customers in a route, merging them in a route. However, many infeasi-

ble routes may be generated with this strategy, when vehicle capacity is not respected.

Also, the complicated perturbation scheme of the method involved an extra perturbation

parameter, causing computational times to rise much faster for larger instances of the

problem. In [20], an initial GPU parallelization of local searches for the SVRPDSP was

presented, achieving modest acceleration values. According to the authors, the lack of

communication between the GPU components prevented the design of a fully integrated

algorithm, so no improvement in the quality of solution was achieved by means of the GPU

technology. [13] improved the perturbation mechanism by using ideas from evolutionary

algorithms while keeping the multi-neighborhood characteristic of VNS algorithms. The

algorithm was able to improve marginally the quality of solutions and, to the best of our

knowledge, these are the best results in literature for the problem at hand.

The proposed Four Neighborhood Variable Neighborhood Search (FN-VNS) algorithm

unifies good characteristics of recent VNS algorithms in literature, together with a novel

solution generator with a global greedy criteria that merges two exact solutions from

subproblems of the SVRPDSP. This process is fast and allows the search to start from

better quality initial solutions, further optimized by four different GPU local searches. The

integrated perturbation scheme is a novel component that involves route recalculation in

order to reduce communication time with the GPU and it is an important advance in order

to design a complete metaheuristic in a CPU-GPU environment. From the managerial

point of view, no parameter tuning is now involved with the proposed perturbation scheme

in FN-VNS, thus allowing the design of a fast and self-adaptable algorithm for small

instances and even for instances with hundreds of customers.

3.3 The Problem 37

3.3 The Problem

In the SVRPDSP, the delivery demands of all customers must be satisfied, but the pickups

are not obligatory. Consider a depot node c0, a set of n customers CD = {c1, c2, . . . , cn}
and CP = {cn+1, cn+2, . . . , cN} called delivery customers and pickup customers, respec-

tively. The delivery and pickup customers have delivery demands di, pickups pi and

revenues ri such that: ∀ci ∈ CD, di > 0, pi = ri = 0; and ∀cn+i ∈ CP , dn+i = 0, pn+i > 0,

rn+i > 0.

A solution S to the SVRPDSP consists of a permutation of all the delivery customers

CD and some selected pickup customers from CP . If a customer ci precedes a customer

cj, then there is an arc connecting ci to cj with cost M(ci, cj). A valid route starts and

ends with the depot c0 and respects the capacity Q of the vehicle, starting with load

Q′. A load vector q is calculated such that q0 = Q′ and for each customer ci a load of

qi = qi−1−di+pi, i.e., consider the delivery as a negative value and a pickup as a positive

value.

Figure 3.1 depicts a solution to the problem with vehicle capacity Q = 16, five delivery

and pickup customers, where positive values denote pickups and negative values denote

deliveries. The depot (square) indicates the initial load at the vehicle (Q′ = 16 for this

example). Note that pickup customer +8 is not visited in this route, so no revenue is

gained from this pickup.

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

Figure 3.1: Solution S=[depot,−3,−2,+5,−6,−1,+3,−4,+4, depot] to a SVRPDSP with
five delivery and pickup customers. The depot is denoted by the square. Pickups are
positive values and deliveries are negative.

3.4 Four-Neighborhood Variable Neighborhood Search 38

The evaluation of a solution consists of the sum of transportation costs minus the

sum of revenues associated with the pickups. In order to guide the search only for feasible

routes, all load values qi that exceed Q are multiplied by a huge constant H. The objective

function is presented in Eq. (3.1).

min
∑

(ci, cj)∈S

M(ci, cj) −
∑

ci∈S | ci∈CP

ri + H ×
∑
ci∈S

max(qi −Q, 0) (3.1)

In [73], an efficient technique is used in order to reduce the complexity of solution

reevaluations. We apply a similar technique for the feasible part of Eq. (3.1), but due to

the presence of multiple maximum functions in the infeasible part, the complexity of the

reevaluation is O(N). This is due to the fact that all maximum functions may change

their values in the worst case, so the number of recomputed values is linear. This fact

motivated the implementation of the evaluation procedure in a GPU, thus reducing the

computational time by using a big number of parallel processing units.

3.4 Four-Neighborhood Variable Neighborhood Search

The proposed FN-VNS algorithm relies on the basic principles of the metaheuristic frame-

work Variable Neighborhood Search (VNS), also incorporating a new high quality initial

solution generator, an integrated CPU-GPU diversification mechanism and four different

GPU searches.

The VNS is a metaheuristic framework proposed by [61], which main idea is to apply a

systematic change of some selected neighborhood structures to explore the solution space.

Let S be a solution to the optimization problem at hand and Nk(S) the set of neighbor

solutions of S for neighborhood k. A neighbor solution S ′ is reached from solution S

by an operation called move. The neighborhood can be fully explored in order to find

better quality solutions. This classic heuristic, called Best Improvement (BI), is depicted

in Algorithm 4.

3.4 Four-Neighborhood Variable Neighborhood Search 39

Algorithm 4: Best Improvement (BI)
Input: S: Solution, f(.): evaluation function, Nk(.): neighborhood structure

S ′ ← S;1

S ← arg minX ∈Nk(S) f(X);2

if (f(S) ≤ f(S ′)) then3

S ′ ← S;4

end5

return S ′;6

The schematic diagram for the FN-VNS is presented in Figure 3.2. The communica-

tions between CPU and GPU are represented in the diagram by boxes in the intersection

between the CPU and GPU columns. For the manager that wishes to use only CPU

technology, we provide also a fully CPU implementation of all GPU tasks. In this case,

no communication between these hardwares is necessary. Steps 1-3 initialize the algo-

rithm and copy the first generated solution to the GPU. The main loop is represented

by steps 4-7, keeping the best known solution in s∗ and limiting computational time to

IterMax iterations without improvement. In steps 8 and 9 the integrated perturbation

generates random move operations and updates the solutions in both CPU and GPU.

Steps 10-12 represent a classic Variable Neighborhood Descent (VND) strategy proposed

by [43], starting from the faster neighborhoods (k = 1) and moving to the slower ones. In

step 13, given a neighborhood Nk the GPU finds the best neighbor with the BI algorithm.

Step 14 checks if any improvement is made on the current solution and step 15 finishes

the algorithm by returning the best solution s∗.

The FN-VNS algorithm starts with the generation of an initial solution for the SVR-

PDSP. In this algorithm, the problem is divided into two smaller subproblems, tackled

by two exact solvers and then merged together according to a greedy criteria. Let S∗T be

an optimal solution of value f ∗T to a Traveling Salesman Problem consisting of all deliv-

ery customers plus the depot. Let S∗K be an optimal solution of value f ∗K to a Knapsack

Problem consisting of all pickup customers as items, maximizing the revenue ri of the cus-

tomers subject to the vehicle capacity Q [56]. It is worth mentioning that f ∗ = f ∗T - f ∗K is

a lower bound for the SVRPDSP [38]. The computation of the exact solutions S∗T and S∗K
is also an NP-Hard problem, so approximations of these solutions can be done by means

of heuristics when computational time is prohibitive for pure exact methods. Finally, the

solutions S∗T and S∗K must be merged to form a valid SVRPDSP solution S. The solution

starts with the arcs from the route S∗T . In the algorithm proposed by [19], the pickup

3.4 Four-Neighborhood Variable Neighborhood Search 40

CPU GPU

1. Initialize Solution s

2. s∗ ← s and iter = 1

3. Copy s to GPU

4. s < s∗

8. Choose random moves

9. Update s in CPU/GPU with moves

11. k ← k + 1

13. Run BI Nk

7.iter < ItMax

12. k < kmax

14. s improved?

15. Return s∗

5. s∗ ← s 6. s← s∗

yes no

yes

no

no

10. k ← 0

yes

no

yes

Figure 3.2: General framework of the developed FN-VNS.

3.4 Four-Neighborhood Variable Neighborhood Search 41

customers are inserted in S in random positions. Since this process may lead to many

infeasible solutions when the vehicle capacity is exceeded during the route, we propose a

global greedy strategy based on best feasible insertions. In this strategy, every non-visited

pickup customer from S∗K is considered for an insertion in best position of the route, i.e.,

minimizing the distance and maximizing the revenue. The best insertion is chosen such

that the vehicle capacity is not violated and the process is repeated while there are pickup

customers available. In the worst case, the complexity of the merge is O(N2), since the

route is gradually extended to O(N) customers with another linear calculation of O(N)

at each iteration (for the best insertion and the feasibility test). Algorithm 5 describes

this process in details.

The neighborhood structures are the basis of a VNS algorithm, so the FN-VNS was

designed with four different neighborhood structures: Swap, 2-Opt, 1-OrOpt and 2-OrOpt.

Each of them is able to induce a different set of neighbor solutions, by means of different

move operations.

Algorithm 5: Initial solution generation
Input: CD: Delivery customers, CP : pickup customers, M : cost matrix, Q:

vehicle capacity, d: deliveries, p: pickups, r: revenues

S∗T ← solve TSP (CD ∪ {c0}, M);1

S∗K ← solve Knapsack Problem (CP , Q, p, r);2

S ← S∗T //Initialize solution S with TSP route;3

while ∃ ci ∈ S∗K | ci 6∈ S do4

∆f ∗ ← 0;5

for ci ∈ S∗K | ci 6∈ S do6

Let ∆fi be the cheapest cost (distance) for the insertion of pickup customer7

ci in S, respecting vehicle capacity Q;

if ∆fi − ri < ∆f ∗ then8

∆f ∗ ← ∆fi − ri;9

end10

end11

Add pickup customer ci to S according to best insertion ∆f ∗;12

end13

return S;14

The Swap neighborhood is a restriction of the Osman Interchanges [65] and consists of

3.4 Four-Neighborhood Variable Neighborhood Search 42

an exchange between two different customers. Figure 3.3 presents an example of a Swap

move for the pickup customer +4 and delivery customer −1. It is worth mentioning that,

in this case, the original solution (on the left of Figure 3.3, left) is not feasible due to the

excess of one unit at customer +3. Indeed, considering Q′ = 16, the load at customer

+3 is: Q′ − 3 − 2 + 5 − 6 + 4 + 3 = 17 > Q = 16. This situation is fixed after a swap

operation in the solution (on the right of Figure 3.3). The 2-Opt, introduced by [53] for

the TSP, removes two non-adjacent arcs from the route and adds two others generating

a new route. In Figure 3.4, we show an example of a 2-Opt where the arcs (−1,+4)

and (+3, depot) are removed, while the new arcs (−1,+3) and (+4, depot) are created. A

1-OrOpt move [64] relocates one customer to another position in the route. The 2-OrOpt

is its natural extension when a block of two consecutive customers is relocated, instead of

just one. Figure 3.5 presents an example of a 1-OrOpt move where the delivery customer

-6 is moved to the position immediately after pickup customer +5.

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

Figure 3.3: Swap exchanges customers +4 and -1, leading the solution
S = [depot,−3,−2,+5,−6,+4,+3,−4,−1, depot] to become the solution S ′ =
[depot,−3,−2,+5,−6,−1,+3,−4,+4, depot].

With a view to providing diversity during the search process, a novel perturbation

approach is also proposed. While the search process can get stuck in a local optimum trap

from an specific neighborhood, a combination of moves from different neighborhoods can

be strong enough to drive the search process into a more promising region of the solution

space. This diversification cannot be too weak, otherwise the search will fall again into

the same local optimum, but if it is too strong the search may skip a promising region.

Due to the nature of the developed neighborhood structures, the diversity procedure must

perform at least two consecutive moves, what may be enough to scape from shallow local

3.4 Four-Neighborhood Variable Neighborhood Search 43

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

Figure 3.4: 2-Opt removes arcs (−1,+4) and (+3, depot); and adds arcs (−1,+3) and
(+4, depot), leading solution S = [depot,−3,−2,+5,−6,−1,+4,−4,+3, depot] to S ′ =
[depot,−3,−2,+5,−6,−1,+3,−4,+4, depot].

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

16

-3
+4

-2

+5
-6

-1

+8

+3

-4

Q = 16
Delivery
Pickup

Route

Figure 3.5: 1-OrOpt moves customer -6 to the position after customer +5. The arcs
(−3,−6), (−6,−2) and (+5,−1) are removed, and the arcs (−3,−2), (+5,−6) and
(−6,−1) are created. Solution S = [depot,−3,−6,−2,+5,−1,+3,−4,+4, depot] becomes
S ′ = [depot,−3,−2,+5,−6,−1,+3,−4,+4, depot].

3.4 Four-Neighborhood Variable Neighborhood Search 44

optima. But in order to scape from deeper local optima, the number of necessary con-

secutive moves can vary randomly, limited to a maximum of |CD|+|CP |
2

moves. Exceeding

this limit would allow the solution to be completely rebuilt by the moves and the search

process be driven to a random region in solution space, without the benefits of a high

quality initial solution.

The integrated CPU-GPU search method FN-VNS is presented in Algorithm 6.

Algorithm 6: FN-VNS Algorithm
Input: iterMax: max. number of iterations without improvement, f(.):

evaluation function, Nk(.): neighborhoods, CD: delivery customers, CP :

pickup customers, M : cost matrix, Q: vehicle capacity, d: deliveries, p:

pickups, r: revenues

S ← InitialSolution(CD, CP , M , Q, d, p, r);1

iter ← 1;2

while iter ≤ iterMax do3

S ′ ← S;4

l← random number [2, |CD|+|CP |
2

];5

for (i = 1 to l) do6

k ← random number [1, 4];7

S ′′ ← random neighbor from Nk(S ′);8

S ′ ← S ′′;9

end10

for (k = 1 to 4) do11

R← LocalSearch(S ′′, f(.), Nk) ;12

S∗ ← BI(R, S ′′, Nk);13

if (f(S∗) < f(S)) then14

S ← S∗;15

k ← 1;16

iter ← 0;17

end18

end19

iter ← iter + 1;20

end21

return S;22

3.4 Four-Neighborhood Variable Neighborhood Search 45

The proposed neighborhood structures are used in the diversification phase (lines 7-

8) and also in the Local Search phase (line 12) in the following order (smaller to bigger

neighborhoods): 2-Opt, Swap, 2-OrOpt and 1-OrOpt, defined as N1, N2, N3 and N4,

respectively. This block of four neighborhoods is denominated FN and gives the name to

FN-VNS algorithm. The VND loop (lines 11-19) consists of: a LocalSearch procedure

that explores the neighborhood Nk in the GPU; a GPU feasibility test, that checks the

viability of the solution; and a BI procedure, that updates the current solution. The

feasibility test consists of checking every position in the solution vector if the capacity of

the truck has been exceeded after a move. If an infeasible solution is found, the exceeding

capacity is multiplied by a huge factor H, making the solution unattractive during the

search process. The result of the Local Search process made by the GPU is stored in the

auxiliary vector R. Later, if an improving move in found in R, the BI procedure applies the

best move to the current solution. Whenever an improvement is made the iter counter

is set to zero and the neighborhood counter k is also reset to the first neighborhood.

When no neighborhood move is able to improve the current solution, the iter counter

is increased. FN-VNS stops when the iter counter exceeds iterMax iterations without

improvement.

3.4.1 Parallel Local Searches

In metaheuristics, and particularly for the FN-VNS, the computational cost of the search

process is strongly dominated by the Local Search (line 12 of Algorithm 6). This is

explained by the complexity of the developed neighborhood structures, which is O(N3),

since it is necessary to perform a O(N) feasibility test for each of the O(N2) moves of

each neighborhood. In fact, the feasible part of the objective function in Eq. (3.1) can be

recalculated in constant time O(1), but the linearity of the feasibility test come from the

penalization of infeasible solutions. In the worst case, all customers may exceed the vehicle

capacity and every customer ci may have a different penalized value max(qi −Q, 0)×H.

Thus, we parallelized in a GPU this computationally demanding part of the code. The

idea is to explore the massively parallel environment, the high memory bandwidth, and

the efficient thread scheduling mechanism of the GPU to reduce the computational times

and to allow tackling larger problem instances.

The GPU implementation of a Swap move (i, j) is presented in Algorithm 7.

3.5 Experimental Results 46

Algorithm 7: Kernel for Swap neighborhood
Input: (i, j): thread indexes, S: Solution, q: Loads, R: result vector, N : number

of customers, M : cost matrix, Q: vehicle capacity, d: deliveries, p:

pickups, r: revenues

value← +M(S[i− 1], S[j]) +M(S[j], S[i+ 1])1

+M(S[j − 1], S[i]) +M(S[i], S[j + 1])2

−M(S[i− 1], S[i])−M(S[i], S[i+ 1])3

−M(S[j − 1], S[j])−M(Sj, Sj+1);4

foreach customer ci ∈ S in the position after the possible move do5

update evaluation with value max(qi −Q, 0)×H, if vehicle capacity is6

exceeded at customer ci
end7

R[i×N + j] ← value;8

return R;9

The idea of the algorithm is to compute the cost of the move and to assert the

feasibility of the new solution. As illustrated in Figure 3.6, the cost of the move is

computed by replacing the distances from customers i − 1 to i and i to i + 1 and from

customers j−1 to j and j to j+1, by the distances from customers i−1 to j and j to i+1

and from customers j − 1 to i and i to j + 1. The parallelization technique can explore

the best characteristics of the CPU and the GPU, by means of a massive computational

GPU algorithm that returns a cost vector R to the main flow of FN-VNS running in the

CPU.

3.5 Experimental Results

We evaluate the performance and the quality of the solutions generated by FN-VNS. The

results are compared against other SVRPDSP solutions in literature provided by [13].

Experiments were performed on the 68 problem instances from [38] and their respective

lower bound values presented in literature. We divided the 68 instances from literature

according to the instance sizes, small: 16 to 31 customers, medium: 33 to 72 customers,

large: 76 to 101 customers. There are 28 instances in the small and medium groups; 12

instances in the large group. This new grouping scheme provides more insights on how

FN-VNS deals with bigger problems.

3.5 Experimental Results 47

Figure 3.6: Swap exchanges customers i and j by removing arcs i− 1 to i, i to i+ 1, j− 1
to j, j to j + 1, and adding arcs i− 1 to j, j to i+ 1, j − 1 to i, i to j + 1.

Our experimental platform is composed by a CPU Intel i7 2.67 GHz, with 8 GB of

memory (only one CPU core was used), and a GPU GeForce GTX 560 Ti, with 1 GB of

memory and 384 cores. The proposed algorithm was implemented in C++ and CUDA

version 4.0. After preliminary tests, we fixed the algorithm to 256 threads per block and

also limited the registers per block to 20, in order to achieve a better occupancy of the

GPU processors.

3.5.1 Quality of Initial Solution

In order to test the quality of the solutions generated by the proposed global greedy

constructive (Algorithm 5), it was compared to the randomized merge algorithm of [19].

Table 3.1 presents the results in terms of gap and time. The gap is calculated in relation to

the lower bound for each instance, i.e., gap(value) = (value−lower bound)/|lower bound|.
The column time presents the execution times in milliseconds.

From Table 3.1 it is possible to see that the proposed global greedy strategy generates

solutions with much lower gaps than a pure random generation. On average a gap over

900% is obtained from a random merge, while gaps of 233% are achieved by a more

elaborated greedy strategy. The running times of the proposed method are bigger, but

less than one second on average, so they are still very small compared to the execution

times of the complete FN-VNS.

3.5 Experimental Results 48

Table 3.1: Experiments with initial solution generation
Group of [19] Proposed constructive
Instances gap(%) time(ms) gap(%) time(ms)
small 655.61 0.007 142.64 1.606
medium 696.84 0.012 172.83 19.601
large 2286.46 0.019 589.29 192.711

Average 962.87 0.011 233.03 42.917

3.5.2 Experiments with Local Searches

Since the neighborhoods 1-OrOpt and 2-OrOpt are special cases of the classic neighbor-

hood 3-Opt, we investigated the impact of this neighborhood for the SVRPDSP. Table 3.2

presents the improvement of each local search after the constructive method. Consider-

ing all instances, the 2-Opt improves only 19.7% on average while the 3-Opt produces the

best results for single local searches, with 31.5% of improvement on average. However, the

FN structure consisting of neighborhoods 2-Opt, Swap, 2-OrOpt and 1-OrOpt explored

as presented in Algorithm 6, lines 11-19, is capable of an improvement on initial solutions

of 80.0% on average.

Table 3.2: Comparison of solution quality after local searches (including 3-Opt)

Group of Improvement(%)
Instances 2-Opt Swap 2-OrOpt 1-OrOpt FN 3-Opt
small 18.0 23.7 20.4 27.1 54.2 30.6
medium 28.0 39.2 38.9 42.1 131.3 42.8
large 4.3 6.3 5.8 6.2 20.5 7.1
All 19.7 27.0 25.4 29.6 80.0 31.5

Table 3.3 presents the computational time of each local search after the constructive

method. From this table, it is possible to see that neighborhoods 2-Opt, Swap, 2-OrOpt

and 1-OrOpt are ordered in terms of computational time, from the least to the most

expensive. The search process of the four neighborhoods FN combined take 274.5ms on

average, while the 3-Opt takes nearly 15 times more time, 4112.2ms. This is due to the

much bigger number of elements in the 3-Opt neighborhood, which is O(N3), compared

to the others that are quadratic. This experiment motivated us to discard the 3-Opt in

our final algorithm, since the FN structure alone is already capable of big improvements,

while retaining lower computational times.

3.5 Experimental Results 49

Table 3.3: Comparison of computational times of local searches (including 3-Opt)

Group of Time(ms)
Instances 2-Opt Swap 2-OrOpt 1-OrOpt FN 3-Opt
small 1.8 2.0 4.6 5.3 27.5 125.5
medium 13.0 13.5 32.1 34.1 181.5 1891.5
large 79.4 82.3 191.1 199.5 1067.9 18596.0
All 20.1 20.9 48.9 51.4 274.5 4112.2

3.5.3 Comparison with Literature

The execution time of FN-VNS depends on the parameter iterMax, which was set to

200 after a preliminary battery of tests. The calibration of this parameter seeks a good

compromise between quality of solution and execution times. Since the loop variable

iter is reinitialized after every improvement, the execution time grows quickly depending

on the number of improvements and the shape of the solution space. This behavior

is not linear and should be experimented empirically depending on the strength of the

perturbation and local searches involved. The constant H was also calibrated and set

to 100000. This decision considered programming language details, e.g. limitations on

floating point types in C++ with very large values, also empirical tests were done to

guarantee that no infeasible solution is chosen if it is possible to reach another high value

feasible solution.

Tables 3.4 and 3.5 show FN-VNS results for the 68 instances from literature and more

32 new instances generated by the authors1, considering from 150 up to 484 customers. In

order to assess the quality of the solutions produced by FN-VNS, these are compared to

a lower bound of the problem proposed by [38], which is presented in column LB. Column

EA presents the best solutions found by the Evolutionary Algorithm of [13]. Columns

best and avg presents, respectively, the best and average solutions found by FN-VNS in

10 executions. Column gap shows the gap between the best solution found by FN-VNS

and the lower bound of the problem. Column var shows the variability of the average

solutions in relation to the best solutions found by FN-VNS, given by:

vari =
avgi − besti
|besti|

(3.2)

Finally, column time(s)×spd presents the total time (in seconds) spent by the paral-
1Instances are available online at the author’s website

3.5 Experimental Results 50

lel FN-VNS and the speedup in relation to the sequential FN-VNS, following the same

notation of [55]. The CPU times are not presented in the tables since they can be easily

deduced. Values printed in bold face show the improvements or the ties of the proposed

algorithm upon the work by [13]. Unfortunately, it is not possible to compare the solu-

tion quality with the work of [38] for each instance, since in this work only general quality

results are presented.

Our algorithm was able to find 51 new better solutions and 7 equal solutions, out of

the 68 instances used. The average gap of 5.32% is also quiet low, since we compared the

solutions with a lower bound of the problem. This shows that the best solutions achieved

by the proposed algorithm are near optimal solutions. Finally, the low variability of 1.55%

from the average solutions shows that the proposed algorithm is robust.

3.5.4 Efficiency of GPU Acceleration

As can be observed in Tables 3.4 and 3.5, FN-VNS improved the execution time for all

the instances tested, except for one. The speedups increase with the problem size, varying

from 0.93 to 14.49. So, for smaller instances the GPU time is nearly the same as the CPU

time, but it is almost 15 times faster for the larger instances, showing the capability of

the parallel FN-VNS to deal with larger problems.

Despite the great speedups obtained by FN-VNS, it is important to assess the effi-

ciency of the local search separately. To perform this evaluation, we further included 32

new instances as a group huge, that we generated according to the methodology proposed

in literature [38].

Table 3.6 shows the average and maximum speedups (avg, max) obtained by each

neighborhood of the parallel FN-VNS algorithm when compared to the sequential execu-

tion of the neighborhood for each of the group of instances. The results show that our four

proposed GPU neighborhoods consistently outperform the CPU counterparts, mainly for

the larger instances where there is enough work to keep the threads busy in the highly

parallel architecture of the GPU.

Analyzing the larger instances results in detail, we can observe that the Swap neighbor-

hood presents the worst average speedup for the large instances. The Swap neighborhood

handles eight arcs in the route, while k-OrOpts deal with six arcs, and 2-Opt deals with

four arcs. This makes Swap the most expensive neighborhood in terms of computation

and memory accesses. The necessary accesses to the global memory to update the solu-

3.5 Experimental Results 51

Table 3.4: Results for the 68 instances from literature (Part I).

Instance LB EA best avg gap(%) var(%) time(s)×spd
016_B_half 36.60 36.60 36.60 39.21 0.00 7.14 1.91×1.03
016_B_one -155.41 -150.73 -150.73 -150.73 3.01 0.00 1.33×1.06
016_B_p_two 130.99 135.11 132.27 134.26 0.98 1.50 2.45×0.93
016_B_two -540.81 -536.13 -536.13 -536.13 0.87 0.00 1.35×1.09
021_B_half -20.16 -20.16 -18.62 -12.56 7.64 32.52 2.78×1.77
021_B_one -316.09 -301.93 -307.79 -307.79 2.63 0.00 2.26×1.77
021_B_p_two 132.21 146.75 137.59 141.37 4.07 2.75 4.03×1.69
021_B_two -909.57 -901.28 -901.28 -901.28 0.91 0.00 2.56×1.77
022_B_half -64.97 -62.63 -62.63 -58.01 3.60 7.37 2.85×1.93
022_B_one -429.15 -421.04 -421.03 -421.03 1.89 0.00 2.47×1.93
022_B_p_two 116.01 124.25 123.60 124.17 6.54 0.46 2.50×1.75
022_B_two -1157.49 -1149.38 -1149.38 -1149.38 0.70 0.00 2.47×1.94
023_B_half -94.06 -80.95 -80.95 -80.95 13.94 0.00 2.75×2.05
023_B_one -711.46 -698.35 -698.35 -698.35 1.84 0.00 2.74×2.06
023_B_p_two 260.88 274.31 269.12 269.82 3.16 0.26 2.80×1.98
023_B_two -1946.21 -1933.10 -1933.10 -1933.10 0.67 0.00 2.75×2.05
026_B_half -92.47 -91.95 -88.20 -82.92 4.62 5.98 5.79×2.54
026_B_one -504.40 -497.17 -497.17 -497.17 1.44 0.00 2.96×2.63
026_B_p_two 139.67 146.51 148.03 150.31 5.99 1.54 4.55×2.53
026_B_two -1341.49 -1334.26 -1334.26 -1334.26 0.54 0.00 2.97×2.61
030_B_half -382.80 -357.21 -377.12 -375.73 1.48 0.37 8.47×3.63
030_B_one -1156.23 -1120.33 -1150.44 -1149.35 0.50 0.09 8.75×3.63
030_B_p_two 81.33 82.29 82.29 86.27 1.19 4.82 8.11×3.57
030_B_two -2703.16 -2667.25 -2697.37 -2696.28 0.21 0.04 8.76×3.65
031_B_half -91.79 -85.56 -89.32 -87.15 2.69 2.43 6.62×3.65
031_B_one -514.05 -505.46 -510.50 -509.25 0.69 0.24 7.26×3.60
031_B_p_two 115.52 123.15 123.15 125.34 6.61 1.77 8.16×3.37
031_B_two -1358.57 -1350.61 -1355.02 -1353.77 0.26 0.09 7.27×3.61
033_B_half -157.09 -137.29 -144.66 -144.66 7.91 0.00 5.57×4.06
033_B_one -778.21 -759.25 -765.76 -765.76 1.60 0.00 5.50×4.07
033_B_p_two 188.44 198.44 197.01 203.55 4.55 3.32 10.73×4.00
033_B_two -2020.40 -2001.44 -2007.89 -2007.89 0.62 0.00 5.87×4.08
036_B_half -128.53 -113.44 -128.25 -126.20 0.22 1.60 11.08×4.79
036_B_one -624.67 -608.73 -624.41 -622.59 0.04 0.29 10.99×4.79
036_B_p_two 121.94 139.71 132.05 134.52 8.29 1.87 9.27×4.19
036_B_two -1616.90 -1596.84 -1616.63 -1614.81 0.02 0.11 11.19×4.73
041_B_half -186.35 -184.07 -183.46 -178.00 1.55 2.97 13.67×5.67
041_B_one -767.97 -755.69 -760.53 -758.88 0.97 0.22 13.88×5.82
041_B_p_two 100.89 111.66 110.68 114.93 9.70 3.84 11.20×5.29
041_B_two -1931.31 -1922.74 -1923.88 -1922.23 0.38 0.09 13.83×5.87

3.5 Experimental Results 52

Table 3.5: Results for the 68 instances from literature (Part II).

Instance LB EA best avg gap(%) var(%) time(s)×spd
045_B_half -491.15 -489.47 -491.15 -491.15 0.00 0.00 0.72×6.48
045_B_one -1648.51 -1647.59 -1648.51 -1648.51 0.00 0.00 0.73×6.40
045_B_p_two 198.04 202.70 199.84 202.18 0.91 1.17 12.60×6.62
045_B_two -3963.32 -3963.32 -3963.32 -3963.32 0.00 0.00 0.73×6.33
048_B_half -37752.96 -36786.80 -36786.64 -36705.55 2.56 0.22 20.42×6.96
048_B_one -107058.78 -105863.00 -106625.21 -106542.29 0.40 0.08 17.62×7.14
048_B_p_two -4797.03 -3830.83 -4244.72 -3802.70 11.51 10.41 18.36×6.98
048_B_two -248298.30 -247332.00 -247864.73 -247781.81 0.17 0.03 17.59×7.15
051_B_half -320.61 -310.02 -311.26 -309.53 2.92 0.56 21.28×7.94
051_B_one -1098.86 -1083.76 -1089.51 -1087.78 0.85 0.16 21.28×7.93
051_B_p_two 116.58 135.34 130.99 133.85 12.36 2.18 21.58×7.17
051_B_two -2655.30 -2640.20 -2645.94 -2644.20 0.35 0.07 21.27×7.92
072_B_half -409.78 -388.84 -407.76 -405.92 0.49 0.45 67.04×12.13
072_B_one -1027.24 -998.14 -1024.53 -1023.20 0.26 0.13 79.74×12.20
072_B_p_two -39.24 -19.05 -36.20 -35.41 7.75 2.18 58.55×12.22
072_B_two -2262.21 -2232.95 -2259.32 -2257.63 0.13 0.07 80.24×12.16
076_B_half -579.52 -565.60 -574.08 -570.02 0.94 0.71 66.57×12.15
076_B_one -1759.19 -1741.31 -1754.68 -1749.45 0.26 0.30 79.42×12.17
076_B_p_two 14.33 34.04 38.41 38.41 168.04 0.00 35.58×10.87
076_B_two -4118.50 -4099.12 -4114.30 -4108.92 0.10 0.13 73.75×12.29
101a_B_half -922.71 -911.68 -903.12 -896.57 2.12 0.73 221.25×14.08
101a_B_one -2552.38 -2538.99 -2531.06 -2525.65 0.84 0.21 186.36×13.91
101a_B_p_two -66.59 -47.99 -46.79 -46.79 29.73 0.00 99.51×12.19
101a_B_two -5811.69 -5800.66 -5790.86 -5785.43 0.36 0.09 170.43×13.50
101b_B_half -1386.67 -1380.63 -1381.01 -1379.78 0.41 0.09 197.91×14.49
101b_B_one -3320.83 -3314.79 -3315.35 -3312.92 0.17 0.07 187.62×13.59
101b_B_p_two -257.18 -251.14 -248.74 -245.12 3.28 1.46 181.00×13.07
101b_B_two -7188.92 -7182.88 -7183.25 -7181.20 0.08 0.03 175.00×13.88
Average 5.32 1.55 34.95×6.08

3.5 Experimental Results 53

Table 3.6: Speedup results for FN-VNS neighborhoods.

Group of Number of Swap 2-Opt 1-OrOpt 2-OrOpt
Instances Instances avg max avg max avg max avg max
small 28 1.81 3.33 2.61 4.73 3.61 6.21 3.16 6.14
medium 28 7.63 16.41 10.36 20.49 12.81 24.69 11.28 21.00
large 12 17.42 19.21 24.47 29.45 26.50 28.97 24.49 26.42
huge 32 55.56 76.84 45.74 52.83 58.36 71.95 54.23 64.79
All 100 22.51 21.21 26.45 24.33

tion vector S, make Swap slower than the others. However, the results are different for

the huge instances. It seems that the cache memory in GPU global memory works better

for larger routes, where the accesses of threads in closer blocks are stored more efficiently

by the cache controller, increasing the speed of the access.

To validate the results obtained for this new set of instances, we evaluate the quality

of the results obtained for these instances. Table 3.7 presents the Lower Bound (LB),

the best and average solutions (best, avg) found by FN-VNS, the gap (gap), variability

(var), and execution time in seconds (time). Due to the greater number of customers, the

parameter iterMax of the algorithm was reduced to 20, but even with this small number

of iterations, the sequential algorithm was not able to finish in reasonable times, so only

the parallel FN-VNS results are presented.

As can be seen in the table, even for such large instances, the parallel FN-VNS

algorithm succeeded in finding near optimal solutions, with a gap of 0.91% on the average,

and also with a low variability of 0.40% from the average solutions. This validates the

robustness of our approach. It is important to notice that the instances in the huge group

were created for this work, making it impossible to compare their results with other

authors.

3.5.5 Memory Hierarchy

The parallelization of the Local Search of FN-VNS exploits the massive computational

capacity of the GPU. Nevertheless, there is still one important issue that needs to be in-

vestigated, how to deal with the GPU memory hierarchy efficiently. In terms of memory

hierarchy, GPUs provides different memories with different bandwidths that can be lever-

aged to improve performance. The solution vector S has a linear size and we implemented

two different allocation schemes for S. In the first one, called Global-S, we allocate S

3.5 Experimental Results 54

Table 3.7: Quality of the solution for the generated huge instances.

Instance LB best avg gap(%) var%) time(s)
151_B_half -1640.84 -1618.16 -1615.62 1.38 0.16 40.12
151_B_one -4067.39 -4042.81 -4036.56 0.60 0.15 48.97
151_B_p_two -267.52 -245.54 -236.71 8.22 3.60 34.35
151_B_two -8920.43 -8903.88 -8890.57 0.19 0.15 51.96
200_B_half -2259.56 -2231.61 -2224.00 1.24 0.34 122.76
200_B_one -5402.65 -5378.39 -5361.71 0.45 0.31 143.94
200_B_p_two -512.95 -492.01 -489.65 4.08 0.48 98.29
200_B_two -11688.67 -11660.55 -11645.60 0.24 0.13 156.08
256_B_half -1016.09 -1007.79 -1006.63 0.82 0.12 377.10
256_B_one -2459.00 -2452.99 -2449.50 0.24 0.14 308.65
256_B_p_two -151.77 -145.26 -142.39 4.29 1.98 390.21
256_B_two -5343.33 -5335.78 -5333.55 0.14 0.04 363.09
321_B_half -2031.52 -2027.10 -2021.58 0.22 0.27 522.61
321_B_one -4902.92 -4900.16 -4893.26 0.06 0.14 508.53
321_B_p_two -410.10 -403.44 -399.92 1.62 0.87 372.66
321_B_two -10645.99 -10637.42 -10633.76 0.08 0.03 526.59
386_B_half -46685.80 -46685.80 -46563.66 0.00 0.26 507.64
386_B_one -102744.33 -102744.33 -102591.27 0.00 0.15 507.56
386_B_p_two -13050.74 -13050.74 -12999.88 0.00 0.39 461.56
386_B_two -214862.18 -214862.18 -214695.98 0.00 0.08 461.55
400_B_half -2164.30 -2155.26 -2152.81 0.42 0.11 1025.44
400_B_one -4999.38 -4989.82 -4986.61 0.19 0.06 1083.17
400_B_p_two -463.18 -455.22 -452.02 1.72 0.70 1003.52
400_B_two -10669.60 -10662.82 -10658.66 0.06 0.04 1051.67
481_B_half -3988.65 -3975.52 -3967.16 0.33 0.21 2283.14
481_B_one -9253.49 -9244.92 -9233.44 0.09 0.12 2576.68
481_B_p_two -845.94 -840.97 -833.26 0.59 0.92 1512.03
481_B_two -19782.77 -19768.90 -19762.41 0.07 0.03 2573.12
484_B_half -2955.05 -2944.73 -2941.37 0.35 0.11 2181.63
484_B_one -6722.59 -6712.73 -6708.17 0.15 0.07 2181.42
484_B_p_two -694.69 -686.83 -681.94 1.13 0.71 2438.10
484_B_two -14256.85 -14248.10 -14243.64 0.06 0.03 2343.49
Average 0.91 0.40 883.05

3.6 Chapter Conclusions 55

Table 3.8: Performance gains of Shared-S implementation over Global-S implementa-
tion.

Group of Number of Average Time Decrease
Instances Instances Swap 2-Opt 1-OrOpt 2-OrOpt
small∗ 28 - - - -
medium∗ 28 - - - -
large∗ 12 - - - -
huge 32 3.12% 3.15% 3.32% 6.26%

*In groups small, medium and large, no statistical differences
were observed with 95% confidence in a non-parametric test.

on the large high latency global memory and in the second one, called Shared-S, we al-

locate S in the low latency on-chip shared memory. The vector R was allocated in global

memory due to its quadratic size.

We also made experiments to evaluate the impact of exploring the memory hierarchy

of the GPU. In these experiments we compare our two different allocations of the solution

vector, Global-S and Shared-S. Table 3.8 shows the percentage of the performance gains

in the execution times for the four neighborhood of the Shared-S implementation over

the Global-S implementation, for each group of instances. As can be observed in this

table, for the small, medium, and large groups, the usage of the shared memory provides

no substantial improvement. This occurs because the L2 cache mechanism of the GPU

is effective in handling the accesses to the solution vector. In the huge group, the usage

of the shared memory improves the execution time of the neighborhoods from 3.12% to

6.26%, on the average. This improvement is achieved because in such large instances, the

solution vector does not fit into the L2 cache. The misses in the L2 cache, which require

accesses to the global memory, make the Global-S slower than the Shared-S. The gains

of Shared-S over Global-S are, however, modest. In the Shared-S implementation, all

threads in a block must copy collaboratively the vector S to the shared memory. After

the vector is copied, it is accessed with a very low latency, but only a few elements are

updated. So, the ratio between the cost of copying the data and the data reuse is high,

what explains the small gains obtained.

3.6 Chapter Conclusions

In this chapter, we have dealt with the Single Vehicle Routing Problem with Deliveries

and Selective Pickups (SVRPDSP). It is a very important and practical problem arising

3.6 Chapter Conclusions 56

in reverse logistics and also in the design of green supply chains. The selective pickup

component of the problem allows to include in the vehicle routing the product recovery,

proper recycling and disposal. So, besides the optimization of a vehicle fleet for product

deliveries, it provides waste reduction and cost savings by means of the value retrieved

from returned goods. Many real-world cases illustrate the need of a selective pickup

component, such as soft-drink distribution and distribution/recovery of copy machines.

Since the computation of the vehicle route is a NP-hard problem, an efficient mech-

anism to provide routes in reasonable computational time is determinant for the success

of the industry/business transportation problem. To deal with this problem we propose

the FN-VNS algorithm, inspired by the metaheuristic Variable Neighborhood Search. It

includes a novel high quality initial solution generator and an integrated perturbation

strategy that provides diversity to four different local searches. These local searches are

performed by means of modern parallel Graphical Processing Units (GPUs), which pro-

vide today the lower cost for high performance processing units.

We compared the results obtained by FN-VNS with the results of the best algorithm

developed for the problem. For 68 instances proposed in the literature, containing from

16 to 101 customers, FN-VNS was able to improve the results of 51 instances and be

equal in 7 instances. In terms of efficiency, our parallel version of FN-VNS outperformed

the sequential version for all tested instances, except one. The speedups compared to

the sequential FN-VNS varied up to 14.49 times, achieving better results as the size

of the instances grows. We also evaluated the influence of the parallelization of the

neighborhoods in the execution time. In this evaluation, we used a new set of instances

that we created to represent larger size problems available online, containing from 151

to 484 customers. For these instances, our parallel implementation obtained remarkable

average speedups ranging from 45.74 up to 76.84 for the neighborhood searches.

As future work, the proposed FN-VNS could be extended to solve related reverse

logistics vehicle routing problems, for instance including time windows in the problem

and solving the multi-vehicle variant of the problem. Some changes in the infeasibility

function can be studied in order to allow a more efficient calculation of the objective

function values in both CPU and GPU. From the supply chain manager point of view,

a real-time framework for route recomputation could be incorporated to the proposed

algorithm. This would require not only a communication with the navigation system

of the vehicles, but also a more sophisticated parallel solution using multiple GPUs to

increase the acceleration of the developed algorithm.

Capítulo 4

Conclusions and Future Works

In this thesis, we have dealt with two different routing problems, with single and multi-

objective strategies. We have addressed the bi-objective CARP in which a set of edges

has to be serviced by vehicles of limited capacity, so as to minimize the sum of all tra-

versed arcs as well as the longest tour. The CARP consisting of only the first objective

is well explored in literature and it is a NP-Hard problem, so many heuristic approaches

have been presented before in literature. We proposed a Matheuristic approach called

MODEMAT, that integrates an exact dynamic programming decoder into the classic

multi-objective evolutionary metaheuristic NSGA-II. Since the decoder generates a set of

explicit solutions, a novel multi-objective framework was developed in order to extend

classic multi-objective components for providing fitness assignment, diversity and elitism.

Optimization techniques were presented in order to accelerate the convergence of MODE-

MAT and also to prevent premature convergence. The results show that the proposed

algorithm is competitive with literature, being able to achieve all optimal values for the

second objective of the problem. For the first objective, MODEMAT is also competitive

even in the number of optimal solutions found and for the average gap compared to a

lower bound from literature.

We have also dealt with the Single Vehicle Routing Problem with Deliveries and

Selective Pickups (SVRPDSP). It is a very important and practical problem arising in

reverse logistics and also in the design of green supply chains. The selective pickup

component of the problem allows to include in the vehicle routing the product recovery,

proper recycling and disposal. So, besides the optimization of a vehicle fleet for product

deliveries, it provides waste reduction and cost savings by means of the value retrieved

from returned goods. Many real-world cases illustrate the need of a selective pickup

component, such as soft-drink distribution and distribution/recovery of copy machines.

4.1 Future Works 58

Since the computation of the vehicle route is a NP-hard problem, an efficient mechanism

to provide routes in reasonable computational time is determinant for the success of the

industry/business transportation problem. To deal with this problem we propose the FN-

VNS algorithm, inspired by the metaheuristic Variable Neighborhood Search. It includes

a novel high quality initial solution generator and an integrated perturbation strategy

that provides diversity to four different local searches. These local searches are performed

by means of modern parallel Graphical Processing Units (GPUs), which provide today

the lower cost for high performance processing units.

We compared the results obtained by FN-VNS with the results of the best algorithm

developed for the problem. For 68 instances proposed in the literature, containing from

16 to 101 customers, FN-VNS was able to improve the results of 51 instances and be

equal in 7 instances. In terms of efficiency, our parallel version of FN-VNS outperformed

the sequential version for all tested instances, except one. The speedups compared to

the sequential FN-VNS varied up to 14.49 times, achieving better results as the size

of the instances grows. We also evaluated the influence of the parallelization of the

neighborhoods in the execution time. In this evaluation, we used a new set of instances

that we created to represent larger size problems available online, containing from 151

to 484 customers. For these instances, our parallel implementation obtained remarkable

average speedups ranging from 45.74 up to 76.84 for the neighborhood searches.

4.1 Future Works

As future work related to GPU computing, the proposed FN-VNS could be extended

to solve related reverse logistics vehicle routing problems, for instance including time

windows in the problem and solving the multi-vehicle variant of the problem. Some

changes in the infeasibility function can be studied in order to allow a more efficient

calculation of the objective function values in both CPU and GPU. From the supply

chain manager point of view, a real-time framework for route recomputation could be

incorporated to the proposed algorithm. This would require not only a communication

with the navigation system of the vehicles, but also a more sophisticated parallel solution

using multiple GPUs to increase the acceleration of the developed algorithm.

It is also worth mentioning that proposed MODEMAT algorithm is very generic and

no specific construction heuristics were necessary in order to find good quality solutions.

The algorithm can also be easily applied to other optimization problems and the ideas

4.1 Future Works 59

presented in this paper can also be extended to improve other single and multi-objective

search algorithms.

References

[1] Allenby, B. Supporting environmental quality: Developing an infrastructure for
design. Environmental Quality Management 2, 3 (1993), 303–308.

[2] Amponsah, S. K.; Salhi, S. The investigation of a class of capacitated arc routing
problems: the collection of garbage in developing countries. Waste management
(New York, N.Y.) 24, 7 (Jan. 2004), 711–721.

[3] Balas, E. The Prize Collecting Traveling Salesman Problem and Its Applications.
In The Traveling Salesman Problem and Its Variations, D.-Z. Du, P. M. Pardalos,
G. Gutin, and A. Punnen, Eds., vol. 12 of Combinatorial Optimization. Springer
US, Boston, 2004, ch. 14, pp. 663–695.

[4] Bartolini, E.; Cordeau, J.-F.; Laporte, G. Improved lower bounds and exact
algorithm for the capacitated arc routing problem. Mathematical Programming 137,
1-2 (2013), 409–452.

[5] Belenguer, J. M.; Benavent, E. A cutting plane algorithm for the capacitated
arc routing problem. Computers & Operations Research 30, 5 (Apr. 2003), 705–728.

[6] Belenguer, J.-M.; Benavent, E.; Prins, C.; Prodhon, C.;
Wolfler Calvo, R. A branch-and-cut method for the capacitated location-
routing problem. Computers & Operations Research 38, 6 (2011), 931–941.

[7] Bettac, E.; Maas, K.; Beullens, P.; Bopp, R. Reloop: Reverse logistics chain
optimisation in a multi-user trading environment. In Proceedings of the 1999 IEEE
International Symposium on Electronics and the Environment. ISEE-1999. (1999),
IEEE, pp. 42–47.

[8] Beullens, P.; Muyldermans, L.; Cattrysse, D.; Van Oudheusden, D. A
guided local search heuristic for the capacitated arc routing problem. European
Journal of Operational Research 147, 3 (June 2003), 629–643.

[9] Beullens, P.; Van Oudheusden, D.; Van Wassenhove, L. N. Collection
and vehicle routing issues in reverse logistics. In Reverse Logistics. Springer, 2004,
pp. 95–134.

[10] Bode, C.; Irnich, S. Cut-First Branch-and-Price-Second for the Capacitated
Arc-Routing Problem. Operations Research 60, 5 (Oct. 2012), 1167–1182.

[11] Brandão, J.; Eglese, R. A deterministic tabu search algorithm for the capac-
itated arc routing problem. Computers & Operations Research 35, 4 (Apr. 2008),
1112–1126.

References 61

[12] Bras, B.; McIntosh, M. W. Product, process, and organizational design for
remanufacture–an overview of research. Robotics and Computer-Integrated Manu-
facturing 15, 3 (1999), 167–178.

[13] Bruck, B. P.; dos Santos, A. G.; Arroyo, J. E. C. Hybrid metaheuristic
for the single vehicle routing problem with deliveries and selective pickups. In
Proceedings of the WCCI 2012 IEEE World Congress on Computational Intelligence
(Brisbane, Australia, 2012), pp. 10–15.

[14] Campos, V.; Laguna, M.; Martí, R. Context-independent scatter and tabu
search for permutation problems. INFORMS Journal on Computing 17, 1 (2005),
111–122.

[15] Carter, C. R.; Ellram, L. M. Reverse logistics–a review of the literature and
framework for future investigation. Journal of business logistics (1998).

[16] Charnes, A.; Cooper, W. W. Goal programming and multiple objective opti-
mization. European Journal of Operational Research 1, 1 (1977), 39–45.

[17] Chen, Y. L.; Liu, C. C. Multiobjective var planning using the goal-attainment
method. Generation, Transmission and Distribution, IEE Proceedings 141, 3 (1994),
227–232.

[18] Christofides, N. The vehicle routing problem. RAIRO - Operations Research -
Recherche OpÃ©rationnelle 10, V1 (1976), 55–70.

[19] Coelho, I. M.; Munhoz, P. L. A.; Haddad, M. N.; Souza, M. J. F.; Ochi,
L. S. A hybrid heuristic based on General Variable Neighborhood Search for the
Single Vehicle Routing Problem with Deliveries and Selective Pickups. Electronic
Notes in Discrete Mathematics 39, 0 (2012), 99–106.

[20] Coelho, I. M.; Ochi, L. S.; Munhoz, P. L.; Souza, M. J.; Farias, R.;
Bentes, C. The Single Vehicle Routing Problem with Deliveries and Selective
Pickups in a CPU-GPU Heterogeneous Environment. In 2012 IEEE 14th Inter-
national Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems (June 2012),
IEEE, pp. 1606–1611.

[21] Corberán, A.; Prins, C. Recent results on arc routing problems: An annotated
bibliography. Networks (2010).

[22] Dalé, L. B. d. C.; Roldan, L. B.; Hansen, P. B. Analysis of sustainability
incorporation by industrial supply chain in rio grande do sul state (brazil). Journal
of Operations and Supply Chain Management 4, 1 (2013), 25–36.

[23] Dantzig, G. B.; Ramser, J. H. The truck dispatching problem. Management
Science 6 (1959), 80–91.

[24] De Brito, M. P.; Dekker, R. A framework for reverse logistics. Springer, 2004.

[25] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on 6, 2 (2002), 182–197.

References 62

[26] Deb, K.; Sundar, J.; N, U. B. R.; Chaudhuri, S. Reference point based multi-
objective optimization using evolutionary algorithms. In International Journal of
Computational Intelligence Research (2006), Springer-Verlag, pp. 635–642.

[27] Dekker, R.; Fleischmann, M. Reverse logistics: quantitative models for closed-
loop supply chains. Springer, 2004.

[28] Derbel, H.; Jarboui, B.; Chabchoub, H.; Hanafi, S.; Mladenovic, N. A
variable neighborhood search for the capacitated location-routing problem. In 4th
International Conference on Logistics (LOGISTIQUA-2011) (2011), IEEE, pp. 514–
519.

[29] Dethloff, J. Vehicle routing and reverse logistics: the vehicle routing problem
with simultaneous delivery and pick-up. OR-Spektrum 23, 1 (2001), 79–96.

[30] Farahani, R. Z.; Rezapour, S.; Kardar, L. Logistics operations and manage-
ment: concepts and models. Elsevier, 2011.

[31] Fleischmann, M.; Krikke, H. R.; Dekker, R.; Flapper, S. D. P. A charac-
terisation of logistics networks for product recovery. Omega 28, 6 (2000), 653–666.

[32] French, S. Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-shop. Series in mathematics and its applications. E. Horwood, 1982. ISBN
9780853123644.

[33] Ghodsi, R.; Amiri, A. S. A variable neighborhood search algorithm for continuous
location routing problem with pickup and delivery. In Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer Simulation (AMS-
2010) (2010), IEEE, pp. 199–203.

[34] Golden, B.; DeArmon, J.; Baker, E. Computational experiments with algo-
rithms for a class of routing problems. Computers & Operations Research 10, 1
(1983), 47–59.

[35] Golden, B.; Raghavan, S.; Wasil, E. The vehicle routing problem: latest
advances and new challenges. Operations Research/Computer Science Interfaces
Series, 43. Springer, 2008.

[36] Golden, B. L.; Wong, R. T. Capacitated arc routing problems. Networks 11
(1981), 305–315.

[37] Green, K. W.; Zelbst, P. J.; Meacham, J.; Bhadauria, V. S. Green supply
chain management practices: impact on performance. Supply Chain Management:
An International Journal 17, 3 (2012), 290–305.

[38] Gribkovskaia, I.; Laporte, G.; Shyshou, A. The single vehicle routing prob-
lem with deliveries and selective pickups. Computers & Operations Research 35
(2008), Issue 9. 2908–2924.

[39] Gungor, A.; Gupta, S. M. Issues in environmentally conscious manufacturing
and product recovery: a survey. Computers & Industrial Engineering 36, 4 (1999),
811–853.

References 63

[40] Gutiérrez-Jarpa, G.; Marianov, V.; Obreque, C. A single vehicle routing
problem with fixed delivery and optional collections. IIE Transactions 41, 12 (Oct.
2009), 1067–1079.

[41] Haimes, Y. Y.; Lasdon, L. S.; Wismer., D. A. On a bicriterion formulation of
the problems of integrated system identification and system optimization. Systems,
Man and Cybernetics, IEEE Transactions on SMC-1, 3 (1971), 296–297.

[42] Hansen, P.; Hegedahl, B.; Hjortkjaer, S.; Obel, B. A heuristic solution to
the warehouse location-routing problem. European Journal of Operational Research
76, 1 (1994), 111–127.

[43] Hansen, P.; Mladenović, N.; Pérez, J. M. Variable neighbourhood search:
methods and applications. Annals of Operations Research 175 (2010), 367–407.
10.1007/s10479-009-0657-6.

[44] Hassan, M. M.; Hogg, G. L.; Smith, D. R. Shape: a construction algorithm
for area placement evaluation. International Journal of Production Research 24, 5
(1986), 1283–1295.

[45] Hertz, A.; Laporte, G.; Mittaz, M. A tabu search heuristic for the capacitated
arc routing problem. Operations research (2000), 129–135.

[46] Janiak, A.; Janiak, W.; Lichtenstein, M. Tabu search on GPU. Journal of
Universal Computer Science 14, 14 (2008), 2416–2427.

[47] Koopmans, T. C.; Beckmann, M. Assignment problems and the location of
economic activities. Econometrica: Journal of the Econometric Society (1957), 53–
76.

[48] Kumar, S.; Teichman, S.; Timpernagel, T. A green supply chain is a require-
ment for profitability. International Journal of Production Research 50, 5 (2012),
1278–1296.

[49] Lacomme, P.; Prins, C.; Ramdane-Chérif, W. A genetic algorithm for the
capacitated arc routing problem and its extensions. Applications of evolutionary
. . . 2037 (2001), 473–483.

[50] Lacomme, P.; Prins, C.; Ramdane-Cherif, W. Competitive Memetic Algo-
rithms for Arc Routing Problems. Annals of Operations Research 131, 1-4 (Oct.
2004), 159–185.

[51] Lacomme, P.; Prins, C.; Sevaux, M. A genetic algorithm for a bi-objective
capacitated arc routing problem. Computers & Operations Research 33, 12 (Dec.
2006), 3473–3493.

[52] Laporte, G.; Nobert, Y. An exact algorithm for minimizing routing and oper-
ating costs in depot location. European Journal of Operational Research 6, 2 (1981),
224–226.

[53] Lin, S.; Kernighan, B. W. An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research 21, 2 (1973), 498–516.

References 64

[54] Luong, T. V.; Loukil, L.; Melab, N.; Talbi, E. A GPU-based iterated tabu
search for solving the quadratic 3-dimensional assignment problem. ACS/IEEE
Intern. Conf. on Computer Systems and Applications 0 (2010), 1–8.

[55] Luong, T. V.; Melab, N.; Talbi, E.-G. GPU Computing for Parallel Local
Search Metaheuristic Algorithms. IEEE Transactions on Computers 62, 1 (Jan.
2013), 173–185.

[56] Martello, S.; Toth, P. Knapsack problems: algorithms and computer imple-
mentations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[57] Martinez, C.; Loiseau, I.; Resende, M.; Rodriguez, S. BRKGA Algorithm
for the Capacitated Arc Routing Problem. Electronic Notes in Theoretical Computer
Science 281 (Dec. 2011), 69–83.

[58] Mei, Y.; Tang, K.; Yao, X. Decomposition-Based Memetic Algorithm for Mul-
tiobjective Capacitated Arc Routing Problem. IEEE Transactions on Evolutionary
Computation 15, 2 (Apr. 2011), 151–165.

[59] Melechovskỳ, J.; Prins, C.; Calvo, R. W. A metaheuristic to solve a location-
routing problem with non-linear costs. Journal of Heuristics 11, 5-6 (2005), 375–391.

[60] Miller, C. E.; Albert W. Tucker, R. A. Z. Integer programming formulation
of traveling salesman problems. Journal of the ACM (JACM) 7, 4 (1960), 326–329.

[61] Mladenović, N.; Hansen, P. Variable neighborhood search. Computers &
Operations Research 24, 11 (1997), 1097–1100.

[62] Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. European
Journal of Operational Research 177, 2 (2007), 649–672.

[63] Nguyen, T. V. H. Development of Reverse Logistics–Adaptability and Transfer-
ability. Tese de Doutorado, Technische Universitat Darmstadt, november 2012.

[64] Or, I. Traveling salesman-type combinatorial problems and their relation to the
logistics of regional blood banking, 1976.

[65] Osman, I. H. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Ann. Oper. Res. 41, 1-4 (May 1993), 421–451.

[66] Polacek, M.; Doerner, K. F.; Hartl, R. F.; Maniezzo, V. A variable
neighborhood search for the capacitated arc routing problem with intermediate
facilities. Journal of Heuristics 14, 5 (Oct. 2007), 405–423.

[67] Porumbel, D.; Hsu, T.; Allaoui, H.; Goncalves, G. Arc-routing via column
generation and iterated local search in a permutation set-covering framework. Sub-
mitted Paper (available as technical report cedric.cnam.fr/~porumbed/papers/
carp.pdf), 2014.

[68] Porumbel, D. C.; Hao, J.-K.; Kuntz, P. Spacing memetic algorithms. In
GECCO (2011), pp. 1061–1068.

cedric.cnam.fr/~porumbed/papers/carp.pdf
cedric.cnam.fr/~porumbed/papers/carp.pdf

References 65

[69] Prins, C.; Labadi, N.; Reghioui, M. Tour splitting algorithms for vehicle
routing problems. International Journal of Production Research 47, 2 (2009), 507–
535.

[70] Prins, C.; Lacomme, P.; Prodhon, C. Order-first split-second methods for
vehicle routing problems: A review. Transportation Research Part C: Emerging
Technologies 40 (2014), 179 – 200.

[71] Privé, J.; Renaud, J.; Boctor, F.; Laporte, G. Solving a vehicle-routing
problem arising in soft-drink distribution. Journal of the Operational Research So-
ciety 57, 9 (October 2005), 1045–1052.

[72] Prodhon, C.; Prins, C. A survey of recent research on location-routing problems.
European Journal of Operational Research 238, 1 (2014), 1–17.

[73] Psaraftis, H. N. k-interchange procedures for local search in a precedence-
constrained routing problem. European Journal of Operational Research 13, 4
(1983), 391–402.

[74] Rogers, D. S.; Tibben-Lembke, R. An examination of reverse logistics practices.
Journal of business logistics 22, 2 (2001), 129–148.

[75] Santos, L.; Madeira, D.; Clua, E.; Martins, S.; Plastino, A. A par-
allel GRASP resolution for a GPU architecture. In International Conference on
Metaheuristics and Nature Inspired Computing, META10 (Tunisia, 2010).

[76] Sarkis, J.; Rasheed, A. Greening the manufacturing function. Business Horizons
38, 5 (1995), 17–27.

[77] Schulz, C. Efficient local search on the GPU-Investigations on the vehicle routing
problem. Journal of Parallel and Distributed Computing 73, 1 (2013), 14–31.

[78] Sifaleras, A.; Konstantaras, I.; Mladenovic, N. Variable neighborhood
search for the economic lot sizing problem with product returns and recovery. In-
ternational Journal of Production Economics 160, 0 (2015), 133 – 143.

[79] Singh, S. P.; Sharma, R. R. K. A review of different approaches to the facility
layout problems. The International Journal of Advanced Manufacturing Technology
30, 5-6 (2006), 425–433.

[80] Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation 2 (1994), 221–248.

[81] Srivastava, S. K. Green supply-chain management: a state-of-the-art literature
review. International journal of management reviews 9, 1 (2007), 53–80.

[82] Subramanian, A.; Drummond, L. M.; Bentes, C.; Ochi, L. S.; Farias, R.
A parallel heuristic for the vehicle routing problem with simultaneous pickup and
delivery. Computers & Operations Research 37, 11 (2010), 1899 – 1911.

[83] Subramanian, A.; Uchoa, E.; Ochi, L. A hybrid algorithm for a class of vehicle
routing problems. Computers & Operations Research 40, 10 (Oct. 2013), 2519–2531.

References 66

[84] Sural, H.; Bookbinder, J. H. The single-vehicle routing problem with unre-
stricted backhauls. Networks 41 (2003), 127–136.

[85] Talbi, E.-G. Metaheuristics: From Design to Implementation. Wiley Publishing,
2009.

[86] Tang, K.; Mei, Y.; Yao, X. Memetic Algorithm With Extended Neighborhood
Search for Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary
Computation 13, 5 (Oct. 2009), 1151–1166.

[87] Thierry, M. C. An analysis of the impact of product recovery management on
manufacturing companies. Tese de Doutorado, Rotterdam School of Management
(RSM), Erasmus University, 1997.

[88] Toktay, L. B.; Wein, L. M.; Zenios, S. A. Inventory management of remanu-
facturable products. Management Science 46, 11 (2000), 1412–1426.

[89] Tompkins, J. A.; Reed Jr., R. An applied model for the facilities design problem.
The International Journal Of Production Research 14, 5 (1976), 583–595.

[90] Toth, P.; Vigo, D., Eds. The vehicle routing problem. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001.

[91] Ulusoy, G. The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research 22, 3 (Dec. 1985), 329–337.

[92] Validi, S.; Bhattacharya, A.; Byrne, P. A case analysis of a sustainable
food supply chain distribution system – a multi-objective approach. International
Journal of Production Economics 152 (2014), 71–87.

[93] Validi, S.; Bhattacharya, A.; Byrne, P. Integrated low-carbon distribution
system for the demand side of a product distribution supply chain: a doe-guided
mopso optimiser-based solution approach. International Journal of Production Re-
search 52, 10 (2014), 3074–3096.

[94] Van Hoek, R. I. From reversed logistics to green supply chains. Supply Chain
Management: An International Journal 4, 3 (1999), 129–135.

[95] Vidal, T.; Crainic, T. G.; Gendreau, M.; Prins, C. Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis. European Journal of
Operational Research 231, 1 (2013), 1–21.

[96] Wienke, D.; Lucasius, C.; Kateman, G. Multicriteria target vector optimiza-
tion of analytical procedures using a genetic algorithm: Part i. theory, numerical
simulations and application to atomic emission spectroscopy. Analytica Chimica
Acta 265, 2 (1992), 211 – 225.

[97] Wierzbicki, A. The use of reference objectives in multiobjective optimization. In
Multiple Criteria Decision Making Theory and Application, G. Fandel and T. Gal,
Eds., vol. 177 of Lecture Notes in Economics and Mathematical Systems. Springer
Berlin Heidelberg, 1980, pp. 468–486.

References 67

[98] Winsemius, P.; Guntram, U. Responding to the environmental challenge. Busi-
ness Horizons 35, 2 (1992), 12–20.

[99] Wong, M.; Wong, T. Implementation of parallel genetic algorithms on graphics
processing units. In Intelligent and Evolutionary Systems (2009), pp. 197–216.

[100] Yu, V. F.; Lin, S.-W.; Lee, W.; Ting, C.-J. A simulated annealing heuristic
for the capacitated location routing problem. Computers & Industrial Engineering
58, 2 (2010), 288–299.

[101] Zhu, Q.; Sarkis, J. The moderating effects of institutional pressures on emergent
green supply chain practices and performance. International Journal of Production
Research 45, 18-19 (2007), 4333–4355.

[102] Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algo-
rithms - a comparative case study. In Parallel Problem Solving from Nature - PPSN
V, A. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, Eds., vol. 1498 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998, pp. 292–301.

	Introduction
	Routing Problems
	Motivation
	Objectives
	Main Objective
	Specific Objectives

	Bi-Objective Capacited Arc Routing Problem
	Introduction
	Bi-objective arc routing: definition, representation and decoding
	Decoding/Indirect Representation
	Dynamic Programming Bi-objective Decoder
	Local search on the best routes

	A general multi-objective framework
	Aggregating the values from a multi-objective decoder
	Extending the classic framework of multi-objective metaheuristics
	Application on the NSGA-II

	Results
	Growth of decoded solutions
	Impact of Local Search
	Literature comparison

	Chapter Conclusions

	Parallel Algorithm in GPU for Vehicle Routing
	Introduction
	Related Work
	The Problem
	Four-Neighborhood Variable Neighborhood Search
	Parallel Local Searches

	Experimental Results
	Quality of Initial Solution
	Experiments with Local Searches
	Comparison with Literature
	Efficiency of GPU Acceleration
	Memory Hierarchy

	Chapter Conclusions

	Conclusions and Future Works
	Future Works

	References

