
 

 

 

 

CRISTIANO MACHADO CESÁRIO 

 

 

 

 

AWARENESS OVER DISTRIBUTED VERSION CONTROL SYSTEMS 

 

 

 

 

Thesis presented to the Computing Graduate 

program of the Universidade Federal 

Fluminense in partial fulfillment of the 

requirements for the degree of Master of 

Science. Topic Area: Software Engineering.  

 

 

 

 

Advisor: Prof. D.Sc. Leonardo Gresta Paulino Murta 

 

 

 

 

 

 

 

 

Niterói 

2015 

  



 

 

Ficha Catalográfica – Esta página deve ser removida na versão a ser entregue para a banca, mas 

deve ser reinserida na versão final, com a ficha catalográfica fornecida pela biblioteca. 

Informações sobre este processo devem ser obtidas na secretaria da pós-graduação. 

  



 

 

CRISTIANO MACHADO CESÁRIO 

 

AWARENESS OVER DISTRIBUTED VERSION CONTROL SYSTEMS 

 

Thesis presented to the Computing Graduate 

program of the Universidade Federal 

Fluminense in partial fulfillment of the 

requirements for the degree of Master of 

Science. Topic Area: Software Engineering.  

 

Approved on April 2015. 

 

APPROVED BY 

 

 

_____________________________________________________________ 

Prof. D.Sc. Leonardo Gresta Paulino Murta – Advisor 

IC-UFF 

 

 

_____________________________________________________________ 

Prof. D.Sc. Daniel Cardoso Moraes de Oliveira 

IC-UFF 

 

 

_____________________________________________________________ 

Prof. D.Sc. Flávia Coimbra Delicato 

DCC-UFRJ 

 

 

Niterói 

2015 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Agostinho, my father, and Ondina, my mother. 

  



 

 

 

 

ACKNOWLEDGMENTS 

First of all, I am grateful to God, who infused in me the intelligence 

to be able to complete this thesis. 

I would like to thank my parents, Ondina and Agostinho, who 

supported my education, especially during my bachelor degree, both 

financially and with advises. 

I wish to express my deepest gratitude to my wife, Raquel, who 

encouraged me to apply for this Master of Science degree, and who had so 

many lonely moments by my side, while I was involved with my research. I 

love you, and will always be grateful for understanding the adversity we went 

through. 

I place on record my sincere thanks to my advisor, Leonardo. His help, 

counsels, patience, and tireless dedication were decisive to come to this thesis. 

I also thank my fellow postgraduate students in the computer science 

department, especially to Ivison who was always available to listen to my 

concerns and to share his life experience with everybody. 

I also place on record my thanks to the members of the committee, 

Flávia and Daniel, for spending their time to evaluate this thesis. 

 

 

  



 

 

  RESUMO 

O desenvolvimento de software utilizando sistemas de controle de versão distribuídos 

tem se tornado recentemente cada vez mais frequente. Tais sistemas trazem mais flexibilidade, 

mas também trazem uma maior complexidade para administrar e monitorar os múltiplos 

repositórios existentes, além de induzir à proliferação de vários ramos. 

Neste trabalho, propomos o DyeVC, uma abordagem para auxiliar desenvolvedores e 

administradores de repositórios a identificar dependências entre os clones de repositórios 

distribuídos, como forma de ajudar a entender o que acontece ao redor do clone de alguém e 

descobrir as relações entre os clones existentes. Um protótipo foi desenvolvido, para aplicar a 

abordagem proposta. Dois experimentos e um estudo observacional foram realizados com o 

intuito de avaliar a abordagem DyeVC. 

 

Palavras-chave: Gerência de configuração, Percepção de espaços de trabalho, Sistema de 

Controle de versão distribuído, Evolução de repositórios 

  



 

 

ABSTRACT 

Software development using distributed version control systems has become more 

frequent recently. Such systems bring more flexibility, but also bring greater complexity to 

administer and monitor the multiple existing repositories, and induce the proliferation of several 

branches. 

In this work, we propose DyeVC, a tool to assist developers and repository 

administrators in identifying dependencies amongst clones of distributed repositories in order 

to help to understand what is going on around one’s clone and depict the relations between the 

existing clones. A prototype was developed, applying the proposed approach. Two experiments 

and an observational study were conducted to evaluate DyeVC. 

 

Keywords: Configuration management, Workspace awareness, Distributed version 

control system, Repository evolution 

  



 

 

LIST OF FIGURES 

Figure 1 – A development scenario involving some developers .............................................. 17 

Figure 2 – CVCS (a) versus DVCS (b) (MURTA, 2012) ........................................................ 22 

Figure 3 – Commits in a repository .......................................................................................... 24 

Figure 4 – Branch “issue55” is created and development occurs in parallel ........................... 24 

Figure 5 – Branching through cloning ...................................................................................... 25 

Figure 6 – Repositories after pushing changes from clone A................................................... 26 

Figure 7 – Repositories after merging work from clone B. ...................................................... 26 

Figure 8 – Repositories after pushing changes from clone B ................................................... 26 

Figure 9 – Repositories after merging work from clone C ....................................................... 26 

Figure 10 – Branch after fetching updates from the original repository .................................. 27 

Figure 11 – Result of pushing changes from a tracked branch. ............................................... 27 

Figure 12 – Anonymous branch ............................................................................................... 28 

Figure 13 – Commit notification approaches ........................................................................... 29 

Figure 14 – Eclipse window with Palantir plugin (SARMA et al., 2012) ............................... 30 

Figure 15 – CollabVS snippets (DEWAN; HEGDE, 2007) ..................................................... 31 

Figure 16 – FASTDash Visualization Runtime (BIEHL et al., 2007) ..................................... 32 

Figure 17 – Lighthouse plugin on Eclipse (DA SILVA et al., 2006) ....................................... 33 

Figure 18 – WeCode continuous merging (GUIMARÃES; SILVA, 2012)............................. 34 

Figure 19 – Crystal snapshot (BRUN et al., 2011) ................................................................... 34 

Figure 20 – Gevol: focus on program structures (COLLBERG et al., 2003)........................... 35 

Figure 21 – The Evolution Matrix: focus on classes (LANZA, 2001) ..................................... 35 

Figure 22 – CVSScan: focus on lines (VOINEA et al., 2005) ................................................. 36 

Figure 23 – LifeSource: focus on authors (GILBERT; KARAHALIOS, 2006) ...................... 37 

Figure 24 – Polvo: focus on branches (SANTOS; MURTA, 2012) ......................................... 37 

Figure 25 – VisGi: focus on branches (ELSEN, 2013) ............................................................ 38 

Figure 26 – Visugit: focus on branches (HOZUMI, 2010) ...................................................... 38 

Figure 27 – GitHub’s Network Graph: focus on branches (PRESTON-WERNER, 2008) ..... 39 

Figure 28 – gitk client ............................................................................................................... 40 

Figure 29 – TortoiseGit client .................................................................................................. 40 

Figure 30 – How DyeVC gathers information ......................................................................... 44 

Figure 31 – DyeVC discovering the topology .......................................................................... 45 

Figure 32 – Remote repository configuration in Git’s config file ............................................ 45 



 

 

Figure 33 – Model used to store topology data ........................................................................ 46 

Figure 34 – DyeVC showing notifications in the notification area .......................................... 47 

Figure 35 – Topology view of DyeVC project, at a given moment ......................................... 48 

Figure 36 – DyeVC main screen .............................................................................................. 49 

Figure 37 – Developers led by Wolverine ................................................................................ 50 

Figure 38 – Commit history for a given project ....................................................................... 51 

Figure 39 – Collapsed commit history ..................................................................................... 53 

Figure 40 – Topology view showing first monitored repository (Sep 24 2010) ...................... 63 

Figure 41 – aakoch’s commit history showing commits pending to be pushed ....................... 63 

Figure 42 – Topology view showing the three monitored repositories (Sep 27 2010) ............ 63 

Figure 43 – Adam’s tracked branches ...................................................................................... 65 

Figure 44 – Jeresig’s collapsed commit history ....................................................................... 65 

Figure 45 – Aakoch’s commit history ...................................................................................... 65 

Figure 46 – Jeresig’s tracked branches ..................................................................................... 66 

  



 

 

LIST OF TABLES 

Table 1 – Possible states of a repository................................................................................... 50 

Table 2 – Status of a local repository regarding a remote one, based on the existence of non-

replicated commits .................................................................................................................... 50 

Table 3 – Existing commits in each repository ........................................................................ 51 

Table 4 – Status of each repository based on known remote repositories ................................ 51 

Table 5 – Comparing DyeVC features with related work ........................................................ 58 

Table 6 – Summary of the Characterization Form ................................................................... 68 

Table 7 – Time spent to answer each question in the study ..................................................... 69 

Table 8 – Expected answers to questions proposed in both phases.......................................... 70 

Table 9 – Monitored projects and repository metrics taken during evaluation ........................ 73 

Table 10 – Time spent to perform foreground operations ........................................................ 74 

Table 11 – Time taken to perform background operations ...................................................... 74 

Table 12 – Pearson coefficient between time spent and repository metrics for measured 

operations ................................................................................................................................. 75 

  



 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

API  – Application Programming Interface 

CI   – Configuration Item 

CM  – Configuration Management 

CVCS   – Centralized Version Control System 

DAG  – Directed Acyclic Graph 

DVCS   – Distributed Version Control System 

JSON  – JavaScript Object Notation 

RCS   – Revision Control System 

RESTful – Representational State Transfer 

SCCS   – Source Code Control System 

VCS   – Version Control System 

  



 

 

TABLE OF CONTENTS 

Chapter 1 – Introduction ........................................................................................................... 15 

1.1 Motivation ...................................................................................................................... 15 

1.2 Goals .............................................................................................................................. 18 

1.3 Organization ................................................................................................................... 19 

Chapter 2 – Awareness over Distributed Version Control Systems ......................................... 21 

2.1 Introduction .................................................................................................................... 21 

2.2 Distributed Version Control Systems ............................................................................ 22 

2.3 Branching in DVCS ....................................................................................................... 23 

2.3.1 Cloning a repository ............................................................................................... 24 

2.3.2 Push and pull changes ............................................................................................ 25 

2.3.3 Branch tracking ...................................................................................................... 27 

2.3.4 Anonymous branches ............................................................................................. 27 

2.4 Related Work ................................................................................................................. 28 

2.4.1 Commit notification ............................................................................................... 29 

2.4.2 Awareness of concurrent changes .......................................................................... 30 

2.4.3 Repository visualization ......................................................................................... 35 

2.4.4 DVCS clients .......................................................................................................... 39 

2.5 Final considerations ....................................................................................................... 41 

Chapter 3 – Approach ............................................................................................................... 42 

3.1 Introduction .................................................................................................................... 42 

3.2 Information gathering .................................................................................................... 43 

3.3 Information visualization ............................................................................................... 47 

3.3.1 Level 1: Notifications ............................................................................................. 47 

3.3.2 Level 2: Topology .................................................................................................. 48 

3.3.3 Level 3: Tracked branches ..................................................................................... 49 

3.3.4 Level 4: Commits ................................................................................................... 51 



 

 

3.4 How information is gathered ......................................................................................... 53 

3.5 Implementation details ................................................................................................... 56 

3.6 Final considerations ....................................................................................................... 57 

Chapter 4 – Evaluation ............................................................................................................. 61 

4.1 Introduction .................................................................................................................... 61 

4.2 Analyzing JQuery project with DyeVC ......................................................................... 61 

4.3 Observational study ....................................................................................................... 66 

4.3.1 Description ............................................................................................................. 67 

4.3.2 Procedure................................................................................................................ 68 

4.3.3 Results .................................................................................................................... 68 

4.3.4 Subjects evaluation................................................................................................. 71 

4.4 Performance evaluation ................................................................................................. 73 

4.5 Threats to validity .......................................................................................................... 76 

4.6 Final considerations ....................................................................................................... 77 

Chapter 5 – Conclusion ............................................................................................................ 78 

5.1 Contributions ................................................................................................................. 78 

5.2 Limitations ..................................................................................................................... 78 

5.3 Future work .................................................................................................................... 80 

Bibliography ............................................................................................................................. 82 

Appendix A – Commit History Visualization .......................................................................... 87 

Appendix B – DyeVC Usage ................................................................................................... 89 

B.1 Introduction ................................................................................................................... 89 

B.2 Running DyeVC ............................................................................................................ 89 

B.2.1 Main window ......................................................................................................... 89 

B.2.2 Monitored repositories........................................................................................... 90 

B.2.3 Visualizations ........................................................................................................ 91 

B.3 Typical usages ............................................................................................................... 92 



 

 

B.4 Further configurations ................................................................................................... 93 

B.4.1 Refresh rate ............................................................................................................ 93 

B.4.2 Connecting to a different database ........................................................................ 94 

B.4.3 Clearing the cache ................................................................................................. 94 

Appendix C – Informed Consent Form .................................................................................... 95 

Appendix D – Characterization Form ...................................................................................... 97 

Appendix E – Activities – Phase 1 ........................................................................................... 99 

Appendix F – Activities – Phase 2 ......................................................................................... 101 

Appendix G – Exit Survey ..................................................................................................... 107 

 



15 

 

 

 

CHAPTER 1 – INTRODUCTION 

1.1 MOTIVATION 

Version Control Systems (VCS) date back to the 70s, when Source Code Control 

System (SCCS) emerged (ROCHKIND, 1975). Their primary purpose is to keep software 

development under control (ESTUBLIER, 2000). Along these 40 years, VCSs evolved from a 

centralized repository with local access, as in SCCS and Revision Control System (RCS) 

(TICHY, 1985), to a client-server approach, as in CVS (CEDERQVIST, 2005) and Subversion 

(COLLINS-SUSSMAN et al., 2011). More recently, distributed VCSs (DVCS) arose, allowing 

clones of the entire repository in different locations, as in Git (CHACON, 2009) and Mercurial 

(O’SULLIVAN, 2009b). According to a survey conducted among the Eclipse community 

(ECLIPSE FOUNDATION, 2013), Git and Github combined usage increased from 6.8% to 

36.3% between 2010 and 2013 (a growth greater than 600%). During this same period, 

Subversion and CVS combined usage decreased from 71% in 2010 to 42.3% in 2013. This 

clearly shows the momentum and a strong tendency in the adoption of DVCSs among the open 

source community. 

Besides these changes from local to client-server and then to a distributed architecture, 

the concurrency control policy adopted by VCSs changed from lock-based (pessimistic) to 

branch-based (optimistic). According to Walrad and Strom (2002), creating branches in VCSs 

is essential to software development because it enables concurrent development, allowing the 

maintenance of different versions of a system in parallel, the customization to different 

platforms and to different customers, among other features that are expected by current software 

development teams. DVCS include better support for working with branches (O’SULLIVAN, 

2009a), turning the branch creation into a recurring pattern, no matter if this creation is 

explicitly done by executing a “branch” command or implicitly when a repository is cloned. 

All these branches, whether explicit or not, will eventually be reintegrated by means of merge 

operations, reflecting to the main development line the changes made. 

DVCS usage typically follows a push/pull model (more details in Section 2.2). 

Assuming an existing repository named rep, one can create a repository clone of rep (rep’, for 

example). This clone is in fact a mirror of rep, containing all commits that exist in rep by the 

time when rep’ was created. Commits can be concurrently created in rep and in rep’, and to 

maintain both repositories updated, one working with rep’ should periodically bring remote 



16 

 

 

 

commits from rep by means of a pull command and send local commits to rep by means of a 

push command. 

However, distributed software development, especially from the geographical 

perspective (GUMM, 2006), brings a set of risk factors, and Configuration Management (CM) 

is affected by them (BATTIN et al., 2001). The increasing growth of development teams, and 

their distribution along distant locations – even different continents – together with the 

proliferation of branches, introduce additional complexity for perceiving actions performed in 

parallel by different developers. According to Perry et al. (1998), concurrent development 

increases the number of defects in software. Besides, Silva et al. (2006) say that branches are 

frequently used for promoting isolation amongst developers. This postpones the perception of 

conflicts that result from changes made by co-workers, as these conflicts are noticed only after 

a pull or a push. Moreover, Brun et al. (2011) show that, even using modern DVCSs, conflicts 

during merges are frequent, persistent, and appear not only as overlapping textual edits (i.e., 

physical conflicts) but also as subsequent build (i.e., syntactic conflicts) and test failures (i.e., 

semantic conflicts). Even when two developers are working in different features, changing 

different artifacts, this could lead to conflicts. For example, if a developer changes the behavior 

of a method in a superclass, all subclasses of this class that rely on that method will be 

potentially affected by this behavior change. 

By enabling repository clones, DVCS expand the branching possibilities discussed by 

Appleton et al. (1998), allowing several clones to coexist with fragments of the project history. 

This may lead to complex topologies where changes can be sent to or received from any clone. 

This scenario generates traffic similar to that of peer-to-peer applications. In practice, projects 

impose some restrictions over this topology freedom. However, it can be still much more 

complex than the traditional client-server topology found in Centralized Version Control 

Systems (CVCS). 

To illustrate this situation, Figure 1 shows a scenario with some developers, each one 

owning a clone of the repository originally created at Xavier Institute. Xavier Institute acts like 

a central repository, where code developed by all teams is integrated, tested, and released to 

production. There is a team working at Xavier Institute, led by Professor Xavier. Outside the 

Institute, Wolverine leads a remote team located in a different site, which is constantly 

synchronized with the Institute. Solid lines in Figure 1 indicate data being pushed, whereas 

dashed lines indicate data being pulled. Thus, for example, Rogue can both pull updates from 

Gambit and push updates to him, and Beast can pull updates from Rogue, but cannot push 

updates to her. It is not common to have a scenario where pushes are performed from a 



17 

 

 

 

developer to another (such as the ones between Beast and Gambit, Rogue and Gambit, 

Nightcrawler and Rogue). Generally, what happens is that a developer pulls from another (for 

example, among Cyclops, Jean Gray and Mystique). This is to avoid that a developer 

inadvertently creates commits inside another’s clone. Although infrequent, this scenario helps 

in understanding the need to have awareness about who are the peers in a project and what are 

their interdependencies. 

 

Figure 1 – A development scenario involving some developers 

Each one of the developers has a copy of the repository. Luckily, this scenario has a CM 

Plan in action, otherwise any one would be able to send and receive updates to or from each 

other. In addition to the existence of a CM Plan, there are a number of workflows established 

to work with DVCSs, such as the Centralized Workflow, the Integration-Manager Workflow, 

and the Dictator and Lieutenants Workflow (CHACON, 2009), that could help in organizing 

the flow of commits. Otherwise, this would lead to a total of 𝑛 ∙ (𝑛 − 1) different possibilities 

of communication (where n is the number of developers in the topology). In practice, this limit 

is usually not reached: while interaction amongst some developers is frequent, it may happen 

that others have no idea about the existence of some coworkers. It occurs with Mystique and 

Nightcrawler, for example, where there is no direct communication. 

As an example, from a developer’s point of view, like Beast, how can he know at a 

given moment, if there are commits in Rogue, in Gambit, or in Nightcrawler clones that were 

not pulled yet? Alternatively, would be the case that there are local commits pending to be 

pushed to Gambit? Beast could certainly periodically pull changes from his peers, checking if 



18 

 

 

 

there were updates available, but this would be a manual procedure, error prone. DVCSs 

generally require that the user perform a pull before a push, whenever there are commits not 

pulled yet, but this will postpone the awareness of changes to a moment where local changes 

were already finished and are ready to be pushed. It would be more practical if Beast could have 

a continuously up-to-date knowledge of his peers, warning him about any local or remote 

updates that had not been synchronized yet. 

On the other hand, from an administrator’s point of view, how can they know the 

existing clones of a project and how they relate among each other? How can they know if there 

are pending commits to be sent from a staging clone to a production one? This kind of 

perception regarding others work is known as “awareness”, which is defined by Dourish and 

Bellotti (1992) as “an understanding of the activities of others to provide a context for one’s 

own activities”. 

There are many approaches that aim at providing awareness of concurrent work using 

VCSs, such as Palantir (SARMA et al., 2012), FASTDash (BIEHL et al., 2007), Lighthouse 

(DA SILVA et al., 2006), and CollabVS (DEWAN; HEGDE, 2007). The majority of these 

approaches, though, are focused only in CVCSs, which are much less prone to branches if 

compared to DVCSs. The only approach found that focus on DVCSs is Crystal (BRUN et al., 

2011), which continuously merge work from registered peers into a local clone, reporting to the 

user conflicts eventually found. However, Crystal does not deal with different branches 

automatically, demanding that the user creates a different project for each branch that they want 

to monitor. Moreover, Crystal does not offer a way to discover dependencies between clones 

(i.e., peers). 

1.2 GOALS 

In this work, we propose a novel monitoring and visualization infrastructure for DVCS, 

named DyeVC1, which gathers information about different repository clones, consolidates this 

information, and presents them visually to the user, allowing one to perceive how their clone 

evolved over time and how this evolution compares to the evolution of other clones. 

Thus, this work proposes a platform that enables repository administrators to monitor 

and visualize which the existing clones of a project are and how they interact with each other. 

The information provided by our approach is important for a number of reasons, such as: 

                                                 

 

1 Dye is commonly used in cells to observe the cell division process. As an analogy, DyeVC (Dye over Version Control) allows developers 

to observe how a Version Control repository evolved over time. 



19 

 

 

 

 It allows the configuration manager to verify if communication is taking place 

accordingly, based on what was defined in the CM Plan; 

 It helps administrators and developers in knowing who the participating peers in a 

project are and how they depend upon each other; 

 It increases the developer knowledge of what is going on around their repository 

clone and the clones of their teammates, despite the branch where changes are being 

done. 

Our intention is that, for a given project, our approach be capable of answering the 

following questions: 

 Q1: Which clones were created from a repository? 

 Q2: What are the dependencies between different clones? 

 Q3: Which changes are under work in parallel (in different clones or different 

branches) and which of them are available to be incorporated into my work? 

Besides these questions, the following question is posed, which is related to the non-

functional aspects of our approach: 

 Q4: Is it computationally feasible to gather this information from all known 

repository clones, keeping them available to be used when needed? 

1.3 ORGANIZATION 

Besides this introduction, this work is organized in four other chapters. Chapter 2 

presents some introductory topics regarding DVCS. It contrasts DVCS usage against CVCS. It 

also explains the concept of branches and how they are used in DVCS. Lastly, it presents the 

related work, which include commit visualization approaches, approaches that provide 

awareness of concurrent changes, approaches that focus on repository visualization and 

commercial / open source DVCS clients. 

Chapter 3 presents DyeVC. This chapter describes how DVCS information is gathered 

and structured. Then it outlines the existing visualizations in a hierarchical way, discussing the 

level of detail included in each one, over the example introduced in Section 1.1. It also discusses 

the algorithm used in information gathering, which is in the heart of the process that discovers 

related peers, dependencies, and commits found in each peer. Furthermore, it presents the 



20 

 

 

 

technologies used in the implementation. Finally, it shows a typical usage scenario of DyeVC, 

describing its prototype and the first steps needed to use it. 

Chapter 4 describes the evaluation performed on the usage of DyeVC to provide 

awareness over an open source project that uses DVCS. Next, the scalability of the approach is 

evaluated, presenting the factors that may affect the capability of using DyeVC. Lastly, it 

presents some threats to the validity of the performed evaluation. 

Finally, Chapter 5 concludes this work, presenting contributions, limitations, and future 

work. 

  



21 

 

 

 

CHAPTER 2 – AWARENESS OVER DISTRIBUTED VERSION 

CONTROL SYSTEMS 

2.1 INTRODUCTION 

Configuration management (CM) is part of Software Engineering and was born in the 

70’s (ESTUBLIER, 2000). According to Murta (2006), under the development perspective, CM 

is divided into three main systems: Change Management, Version Control, and Release 

Management. Change Management is in charge of systematically controlling the 

configuration, storing and reporting the information produced along the change requests. 

Version Control deals with the identification and evolution of configuration items (CI). 

Finally, Release Management automates the process of building executable files from the 

source code and releasing them into production. 

Version Control Systems (VCSs) date back to the 70’s, when the first VCS, called 

SCCS, emerged (ROCHKIND, 1975). VCSs were the first CM systems to emerge and, since 

then, they have evolved substantially, from the local access needed by SCCS, to a client-server 

architecture, and more recently to a distributed architecture. Besides their original scope, they 

have also been used as a data source to mine data related to software development, because they 

have the knowledge of all CIs and how they evolved over time (what was changed, why changes 

occurred, when changes happened, and who performed the changes). Moreover, as VCSs are 

the single point where every CI resides, they might be used to not only know what happened in 

the past, but also provide awareness of what is happening in the present and to help predicting 

what might happen in the future. 

Awareness is defined by Dourish and Bellotti (1992) as “an understanding of the 

activities of others to provide a context for one’s own activities”. The information needed to 

provide awareness depends on what people need to be aware of. In the context of this work, 

which focus on the awareness of changes occurring in DVCS, a portion of the information 

needed is available in the repository itself, such as which files have changed, what changes 

were applied, who applied the changes, when the changes occurred, and why the changes were 

applied. Another portion of the information needed, though, has to be discovered and 

consolidated in order to be used, such as who are the existing peers in the project, how they 

communicate with each other and which changes can be found in each one of them. 

This chapter presents some basic concepts related to DVCS and some approaches 

related to providing awareness combined with VCS. Section 2.2 discusses central concepts 



22 

 

 

 

regarding how DVCS work. Section 2.3 covers several branching situations that occur when 

working with DVCS. Section 2.4 presents related work. Finally, Section 2.5 presents the final 

considerations of this chapter. 

2.2 DISTRIBUTED VERSION CONTROL SYSTEMS 

CVCS relies on a centralized repository, stored on a server (Figure 2.a). When someone 

wants to work on any CI, a checkout is performed, copying a specific version of the artifacts 

from the repository to a workspace where changes can be applied. Later, after applying the 

changes, a commit (also known as check-in) is performed, sending all the changes back to the 

repository. The group of changes a commit introduces is referred as a changeset. Updates made 

by other developers can be brought to the workspace at any time, by performing an update. 

Updates are automatically merged into workspace, or, in the case of physical conflicts (same 

part of the artifact changed locally and remotely), the developer might have to handle the merge 

manually. 

 

Figure 2 – CVCS (a) versus DVCS (b) (MURTA, 2012) 

DVCS, on the other hand, does not rely on a centralized repository. It uses an 

architecture where the entire repository is distributed and it exists in every machine where 

someone wants to work with it (leading to the existence of several clones of a repository). The 

changes continue to take place on a workspace, but there is a local copy of the repository 

attached to the workspace (Figure 2.b). The main operations (checkout, commit, and update) 

continue to exist, but are performed locally, allowing offline work, committing whenever 

necessary. However, another set of commands arises, which allows sending and receiving 



23 

 

 

 

changes between different clones. Initially, a clone command is performed, copying the 

repository from a specified location. The copy can be done from a repository located on a 

partner or on a server. We will refer to the original repository as remote repository. There is no 

concept of a central repository, but some repository may act as a central repository by having, 

for example, a strict policy regarding who might send changes to it. Repositories might either 

have an associated workspace or not. A repository located on a server, where local changes are 

not expected to occur, does not need to have a workspace associated, and is referred as a bare 

repository. A bare repository is just like a regular one, except that it does not have a workspace 

associated with it. Due to the lack of a workspace associated, commands that depend upon a 

workspace (commit, update, and merge) cannot be performed on a bare repository. Changes 

can be sent from a local repository to a remote repository by invoking a push command. 

Changes can be received from remote repositories and applied immediately to the workspace, 

leading to merges / conflicts, or they can stay at the local repository to be applied later. A pull 

command brings the changes and applies them to the workspace. A pull can be broken into two 

subcommands2: a fetch command, that only transfers the changes to the local repository, 

without applying them to the workspace, and a merge command, which applies the changes to 

the workspace. 

2.3 BRANCHING IN DVCS 

The commits performed in a repository are based on previous commits, thus forming a 

directed acyclic graph (DAG), where newer commits point to older commits. Figure 3 

represents a repository with three commits. Commit “3” is pointed by a label named master. As 

new commits arise, the master pointer moves accordingly. This way, if one wants to refer to 

the last commit in this repository, they do not need to know how many commits are there. All 

they have to do is to ask for the commit pointed by the master label. 

This linear development is not frequent in real repositories, for a number of reasons, 

such as supporting multiple releases of the same software, trying new technologies that might 

be included in future versions or fixing multiple bugs in parallel3. In such cases, it is common 

                                                 

 

2 Here we focus on the possibility of breaking a pull into two different commands, but keep in mind that different tools can have different 
commands to do the same operation. An example is the pull command. Whereas in Git it brings the changes and applies them to the workspace, 

in Mercurial it only brings the changes and we have to perform an merge command to apply them. Later versions of Mercurial are being 

distributed with a fetch extension, which brings the changes and applies them. This way, the pull command in Git is equivalent to the fetch 
command in Mercurial, and vice-versa. Whenever we mention any command herein, we will be expecting the behavior provided by Git. 

3 APPLETON et al. (1998) present a compilation of branching patterns to address different needs. 



24 

 

 

 

to use branches, which are, according to Leon (2004), “a deviation from the main development 

line for an item”. 

 

Figure 3 – Commits in a repository 

Suppose that a bug is found in a software product during tests. The test team creates 

issue 55, asking the development team to fix the bug. The development team verifies that the 

software version being tested corresponds to commit #3, but the bug will take a considerable 

time to be fixed and the development cannot stop waiting for the bug fix. A branch named 

“issue55” is then created, pointing to commit #3 (Figure 4.a). At this moment, development can 

occur in parallel, with commits #5 and #7 being made to branch “issue55” and commits #4 and 

#6 being made to branch “master” (Figure 4.b). Finally, the team decides to merge the fix to 

issue #55 into the “master” branch, generating commit #8 (Figure 4.c). 

 

Figure 4 – Branch “issue55” is created and development occurs in parallel 

This is a scenario that shows the usage of explicit branches, i.e., a scenario where one 

explicitly creates a branch to perform some work. However, when using DVCS, there are other 

situations where branches arise implicitly. In these situations, one does not explicitly asks to 

create a new branch, but the branch concept is used anyway. We refer to branches that are not 

created explicitly as implicit branches. The next Sections will show some situations where this 

occurs. 

2.3.1 CLONING A REPOSITORY 

Suppose a repository that has a history like the one shown in Figure 3. At this point, 

clones A, B, and C are created by different developers, as shown in Figure 5, where the first 

three commits are the same in all of them, but other commits are created, each one existing in 



25 

 

 

 

only one of the clones. The colors in the commits are used to identify the clone where that 

commit was originally done. The numbers identifying each commit are used for the sake of this 

example, but commits are not necessarily identified by a sequential number. For example, in 

Git, commits are identified by a hash code of 40 hexadecimal digits. 

 

Figure 5 – Branching through cloning 

As discussed in Section 2.2, each clone is a complete repository copy, independent from 

the other clones, enabling parallel development. Throughout the text, we will use the terms 

clone, repository clone, or simply repository, to refer to any known clone of an original 

repository, except when we refer to a specific clone (for example, a remote repository or a 

central repository). We can say that each clone is a fork of the original repository, although we 

say that a repository is a clone if it is located at a developer’s machine, and it is a fork when it 

is located at a server. Furthermore, it is important to distinguish the clone command (verb) from 

a clone (subject) created by means of a clone command. 

2.3.2 PUSH AND PULL CHANGES 

Having a number of existing clones, the first one to push changes to the original 

repository is able to do it with no extra work. Looking at Figure 5, let us assume that clone A 

is the first one to push its changes to the original repository. This results in a scenario like the 

one shown in Figure 6. 

Next, clone B tries to push its changes to the original repository, but this is not allowed, 

because it could result in inconsistencies in the VCS, once commits from clone A were never 

tested together with commits from clone B. To allow clone B to push its changes, it is necessary 

to first pull commits 4’, 5’ and 6’ from the original repository, merging them into the clone B 

workspace, resulting in the scenario shown in Figure 7. Notice that, in this case, there is an 

additional commit, denoted by 5’’. 



26 

 

 

 

 

Figure 6 – Repositories after pushing changes from clone A 

 

Figure 7 – Repositories after merging work from clone B. 

Clone B then pushes its changes, resulting in the scenario shown in Figure 8. Finally, 

clone C has to follow the same procedure, i.e., pull the changes previously pushed by clone A 

and clone B, and merge them into its workspace, resulting in the scenario shown in Figure 9. 

As a final step, clone C would push its changes, and the original repository would then have the 

same set of commits as clone C. 

 

Figure 8 – Repositories after pushing changes from clone B 

 

Figure 9 – Repositories after merging work from clone C 

Besides pulling changes, which merges the changes them into the workspace, one could 

choose to bring the changes without immediately merging them. This is accomplished by only 

fetching the updates. If clone B had chosen only to fetch updates from the original repository, 



27 

 

 

 

this would result in a branch, as shown in Figure 10. Here, branch master is the local branch in 

clone B, and branch origin/master is the master branch from the original repository. 

 

Figure 10 – Branch after fetching updates from the original repository 

2.3.3 BRANCH TRACKING 

Another distinction between branches is that of tracked and non-tracked branches. A 

non-tracked branch is a local branch that is not shared with peers. A non-tracked branch exists 

only in the local repository and it is not pushed to remote repositories. On the other hand, a 

tracked branch is a branch that one chooses to share with peers, by associating a local branch 

with a branch in the remote repository. In the example shown in Figure 10, we say that the local 

branch origin/master tracks branch master in the remote repository. This way, when one pushes 

to a remote repository, the remote branches are updated to point to the correct commits. The 

result is shown in Figure 11. Notice that both the local and the remote branches are updated to 

point to the same commit (labeled 5’’), which was created in clone B as the result of merging 

branch origin/master into branch master.  

 

Figure 11 – Result of pushing changes from a tracked branch. 

2.3.4 ANONYMOUS BRANCHES 

An anonymous branch is a branch created when one checks out a commit that is not 

referenced by a branch. When this happens, commits are performed in the same way, pointing 

to their predecessors, with the difference that there is no branch pointing to them (see Figure 

12). This way, if one chooses to work with another branch after committing on an anonymous 



28 

 

 

 

branch, these commits will be accessible only through their internal identifications generated 

by the VCS. 

 

Figure 12 – Anonymous branch 

2.4 RELATED WORK 

This Section describes some approaches related to awareness or visualization of 

information stored in VCSs. We used the snowballing search (WEBSTER; WATSON, 2002) 

to select the approaches, starting with a finite individual population as a seed and looking for 

these approaches’ citations and at approaches that cited them. Our initial seed was based on the 

referenced papers analyzed by Steinmacher (2012). We also searched at the main academic 

digital libraries (ACM4, IEEE5, SpringerLink6, and ScienceDirect7) and at the industry. We 

used the following keywords in the search: “revision”, “source code”, “software configuration”, 

“source control”, and “version control”, combined with “awareness” and “visualization”. The 

resulting query was (“revision” OR “source code” OR “software configuration” OR “source 

control” OR “version control”) AND (“awareness” OR “visualization”). We filtered the results 

found to get only studies that used VCS. The resulting studies were divided into four groups. 

The first group includes tools that notify commit activities. The second group comprises 

approaches that give the developer awareness of concurrent changes, sometimes informing 

them if conflicts were detected. The third group includes approaches that visualize repository 

information. Finally, the fourth group contains commercial and open source DVCS clients. The 

next sub-Sections discuss each of these groups. 

                                                 

 

4 http://dl.acm.org/ 
5 http://ieeexplore.ieee.org/ 
6 http://link.springer.com/ 
7 http://www.sciencedirect.com/ 



29 

 

 

 

2.4.1 COMMIT NOTIFICATION 

Under the “Commit Notification” group, we found approaches such as SVN Notifier8, 

SCM Notifier9, Commit Monitor10, SVN Radar11, Hg Commit Monitor12, and Elvin 

(FITZPATRICK et al., 2006). The primary focus of these approaches is to present to the 

developer’s new commits performed by other users. Figure 13 shows some of these approaches 

in action. We can see notifications shown by SVN Notifier (Figure 13.a), SCM Notifier (Figure 

13.b), Commit Monitor (Figure 13.c), and Elvin (Figure 13.d). 

 

Figure 13 – Commit notification approaches 

Except for SVN Radar and Hg Commit Monitor, all of the approaches found in this 

group automatically present notifications to the user. While they could be categorized as 

approaches that provide awareness, they are generally restricted to show only the number of 

new commits and information related to them (e.g., author, date, log message, and changeset). 

Elvin also uses a publish-and-subscribe event notification system, so that whenever an event 

occurs in a repository, all the users that subscribed to receive events on that repository are 

notified and can engage in a chat session to discuss the updates.  

Most of these approaches focus on CVCS, except for SCM Notifier, and Hg Commit 

Monitor, which support DVCS (Git and Mercurial, respectively), but do not identify related 

repositories and do not provide information in different levels of details, such as status, 

branches, and commits. 

                                                 

 

8 http://svnnotifier.tigris.org/ (2012) 
9 https://github.com/pocorall/scm-notifier (2012) 
10 http://tools.tortoisesvn.net/CommitMonitor.html (2013) 
11 http://code.google.com/p/svnradar/ (2011) 
12 http://www.fsmpi.uni-bayreuth.de/~dun3/hg-commit-monitor (2009) 



30 

 

 

 

2.4.2 AWARENESS OF CONCURRENT CHANGES 

Many approaches propose increasing the awareness of changes across different team 

members. Palantir (SARMA et al., 2012) shares information about changes to the same files 

across different workspaces, presenting this information as an eclipse plugin, as shown in 

Figure 14. The plugin shows the percentage of modification of each file, such as [S:24] in 

Payment.java, which indicates that 24% of the file was modified. It also indicates if there is a 

direct conflict (marked in the top left with a blue triangle) or an indirect conflict (red triangle 

in the top right). Direct conflicts are those that occur when there are changes on the same line 

in different workspaces. Indirect conflicts are those that occur in different lines, for example, 

when someone changes the signature of a method and the call to that method is not changed to 

incorporate the change. Although Palantir provides awareness regarding modified files, it 

works only with CVCSs. It also does not provide views with different levels of detail (e.g. 

topology, branches, commits). 

 

 

Figure 14 – Eclipse window with Palantir plugin (SARMA et al., 2012) 

CollabVS (DEWAN; HEGDE, 2007) is a Visual Studio plugin that identifies conflicts 

while code is being edited (Figure 15.a), similarly to Palantir. The developer can choose 

between just adding a watch to be notified when their collaborator finishes editing the 

conflicting code (Figure 15.b) and establishing a communication session with the other author 



31 

 

 

 

(Figure 15.c). It also does not work with DVCSs and does not show information in different 

levels of detail. 

 

(a) 

 

         (b)             (c) 

Figure 15 – CollabVS snippets (DEWAN; HEGDE, 2007) 

FASTDash (BIEHL et al., 2007) does not detect conflicts directly, but provides 

awareness of potential conflicts, such as two programmers editing the same region of the same 

source file (direct conflicts), in repositories stored in Team Foundation Server13. The 

notifications can be presented as a plugin to Visual Studio. Figure 16 shows FASTDash plugin 

in action. FastDASH works with DVCSs (Team Foundation Server), but it neither shows 

information in different levels of detail nor deals with repositories that pull updates from more 

than one peer. 

                                                 

 

13 http://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx (2013) 



32 

 

 

 

 

Figure 16 – FASTDash Visualization Runtime (BIEHL et al., 2007) 

Lighthouse (DA SILVA et al., 2006) is an Eclipse plug-in that monitors workspaces for 

changes as soon as they are made, in order to address conflicts sooner. It presents an updated 

design (Figure 17) indicating where the changes have been made and by whom, as well as if 

these changes have already been propagated to the repository and to other workspaces. The 

granularity of information shown is any Java element (class, interface, attribute or method). 

Lighthouse is able to show that an element does not exist locally, but exists in some peer 

(similarly as DyeVC does), like the Store class in Figure 17, that is marked as added by John, 



33 

 

 

 

but does not exists at the developer’s workspace. Again, this approach does not work with 

DVCSs and does not show different levels of detail. 

 

Figure 17 – Lighthouse plugin on Eclipse (DA SILVA et al., 2006) 

WeCode (GUIMARÃES; SILVA, 2012) is an eclipse plugin for real-time integration of 

changes, which is accomplished by means of continuously merging the working copy with work 

being done by other team members. Figure 18 shows the plugin in action. The Team view (3) 

shows the members of the team, along with their changes. The Package Explorer (1) and the 

Source Code view (2) were adapted to indicate existing conflicts. The Team Merge view (4) 

shows the conflicts that arise during continuous merge. By the time we wrote this work, 

WeCode supported only CVCS, but the authors had plans to support other VCSs, like Git and 

Mercurial. Similarly to the approaches discusses previously, this approach does not show 

different levels of information detail. 

 



34 

 

 

 

 

Figure 18 – WeCode continuous merging (GUIMARÃES; SILVA, 2012) 

Crystal (BRUN et al., 2011) performs continuously merges between pairs of 

repositories, compiling and testing the merged code, resulting in “merge failure”, “compilation 

failure”, “tests failure”, or “tests passed” (Figure 19). 

 

Figure 19 – Crystal snapshot (BRUN et al., 2011) 

Crystal works with DVCSs (Git and Mercurial), but it does not automatically find 

related repositories, demanding that the user points out every repository they want to compare. 

Besides that, it does not show information in different levels of detail (e.g., repositories, 

branches, and commits). It also does not deal with more than one branch, as each different 

branch to be analyzed has to be manually pointed out in the tool. 



35 

 

 

 

2.4.3 REPOSITORY VISUALIZATION 

Repository visualization consists in taking the information stored in VCSs and 

presenting it in a visual way. A number of approaches exist that propose different visualizations 

with different focuses. Gevol (COLLBERG et al., 2003) focuses on program structures. It 

extracts information about a Java program stored in a CVS version control system and displays 

it using a temporal graph visualizer. Figure 20 shows an example of a call graph, where nodes 

start out red, and in the case that no changes exist they turn purple and then blue. When a change 

is performed, the affected nodes turn red and the cycle starts again. 

 

Figure 20 – Gevol: focus on program structures (COLLBERG et al., 2003) 

The Evolution Matrix (LANZA, 2001) focuses on classes and their evolution within a 

software system. Figure 21 shows a snapshot of the approach. The columns represent different 

versions of the software and the rows represent different classes. The size of the lines represents 

the size of the classes. This way, it is possible to see if the system is growing, shrinking or 

becoming stagnated.  

 

Figure 21 – The Evolution Matrix: focus on classes (LANZA, 2001) 



36 

 

 

 

CVSScan (VOINEA et al., 2005) is a line-oriented approach that shows how a given file 

changed over the time, through different versions. Figure 22 shows a snapshot of the approach 

for a file. Each column represents a version and the rows represent lines of the file. The color 

scheme indicates if the line is the same (green), inserted (blue), deleted (red), or modified 

(yellow). Different color schemes can be chosen to depict, for example, the author of the last 

change in each line or the type of construct that the line represents (file reference, block, or 

comment). 

 

Figure 22 – CVSScan: focus on lines (VOINEA et al., 2005) 

Lifesource (GILBERT; KARAHALIOS, 2006) focus on showing how authors are 

contributing to a project. Figure 23 presents a visualization named CodeSaw, which shows the 

contributions along one year. Each colored line represents a different author and has two axes: 

the upper axis represents code contributions and the lower axis represents e-mail contributions 

to project mailing list. 

Polvo (SANTOS; MURTA, 2012) is an approach that establishes metrics that assist in 

determining the merge effort between branches, by quantifying merging complexity between 

involving Subversion branches. Figure 24 presents Polvo showing the metric Precision by 

Amount of Artifacts, which calculates the relation between the number of identical artifacts over 

the total number of artifacts in the branch. 



37 

 

 

 

 

Figure 23 – LifeSource: focus on authors (GILBERT; KARAHALIOS, 2006) 

 

Figure 24 – Polvo: focus on branches (SANTOS; MURTA, 2012) 



38 

 

 

 

VisGi (ELSEN, 2013), Visugit (HOZUMI, 2010), and GitHub’s Network Graph 

(PRESTON-WERNER, 2008) were designed to incorporate information about the different 

branches of a repository, using graphs to render the information. Figure 25 shows three different 

repositories represented by VisGi, which uses a horizontal layout that represents time in a left-

right direction. VisGi shows branches as solid black dots and branches intersections as dark 

gray dots. 

 

Figure 25 – VisGi: focus on branches (ELSEN, 2013) 

Figure 26 presents a snapshot of Visugit, which shows the commits in a repository, 

depicting the existing branches (e.g., github/master and master). 

 

Figure 26 – Visugit: focus on branches (HOZUMI, 2010) 

Figure 27 presents GitHub’s Network Graph, which shows all the commits associated 

with a repository, along with the information about branches (shown in the tag markers). The 

graph is drawn from the perspective of a given user (which is called root user – in this case, 

mojombo) and all the commits that exist in mojombo’s repository are drawn across his name. 



39 

 

 

 

For other users, commits that exist in their repositories but not in mojombo’s are drawn across 

their names. 

 

Figure 27 – GitHub’s Network Graph: focus on branches (PRESTON-WERNER, 2008) 

While all of the approaches presented in this category focus on visualizing repository 

information, only the last three work with DVCSs (VisGi, Visugit, and GitHub’s Network 

Graph). They visualize the repository history (commits), but they look only at a local repository, 

not showing, for example, where a given commit can be found. At first sight, the work of 

Preston-Werner seems to address this topic, but it actually does not address it entirely. Giving 

a repository rep, GitHub’s Network Graph allow one to see commits that a rep’s peer has and 

rep does not, but it might be the case that a commit exists only locally in rep and does not exist 

anywhere else (rep did not pushed it yet). This scenario cannot be seen in this visualization. In 

addition, these approaches do not show the dependencies among DVCS clones and do not 

provide information in different levels of detail. 

2.4.4 DVCS CLIENTS 

It is worth noticing that there is a number of commercial / open source DVCS clients, 

which allows one to execute operations on repositories / clones (push, pull, checkout, commit, 

etc.) and also visualizing the repository history, i.e., the commits, along with their attributes 

(comment, date, affected files, committer, etc.). For example, for Git repositories, some clients 

include gitk14, TortoiseGit15, EGit for Eclipse16, and SourceTree17. There is an extensive list of 

                                                 

 

14 http://git-scm.com/docs/gitk 
15 https://code.google.com/p/tortoisegit/ 
16 http://eclipse.org/egit/ 
17 http://www.sourcetreeapp.com/ 



40 

 

 

 

these tools available in the Git Wiki18. Figure 28 and Figure 29 present screenshots taken from 

gitk and TortoiseGit, respectively. 

 

Figure 28 – gitk client 

 

Figure 29 – TortoiseGit client 

                                                 

 

18 https://git.wiki.kernel.org/index.php/InterfacesFrontendsAndTools 



41 

 

 

 

The data about commits shown by these tools varies, but generally involves the 

committer name, message, date, affected files, and a visual representation of the history, which 

can be seen on the left part of Figure 28 and Figure 29. These tools, though, have no knowledge 

regarding peers. For this reason, these tools do not present commits from other clones and do 

not include information about where each commit can be found. 

2.5 FINAL CONSIDERATIONS 

This chapter presented some core concepts regarding DVCS, which are essential to 

understand the remaining of this work. We also presented four groups of approaches related 

with this work: Commit Notification, Awareness of Concurrent Changes, Repository 

Visualization, and DVCS clients. Although some approaches shown work with DVCS, none of 

them provides information in different levels of detail, nor shows information regarding several 

different clones, nor shows the dependencies among several DVCS clones. 

  



42 

 

 

 

CHAPTER 3 – APPROACH 

3.1 INTRODUCTION 

According to Diehl (2007), software visualization can be separated into three aspects: 

structure, behavior, and evolution. DyeVC relates primarily with the evolution aspect, more 

specifically with studies that aim at improving the awareness for people that work with 

distributed software development. A recent work by Steinmacher et al. (2012) presents a 

systematic review of awareness studies and classify them according to the Awareness 

Framework (GUTWIN et al., 1996) and according to the 3C Collaboration Model (FUKS et 

al., 2007). The classification is not exclusive, i.e., a given tool can present elements of different 

awareness types. According to Gutwin et al. (1996), DyeVC can be classified as a “Workspace 

Awareness” approach and according to Fuks (2007), DyeVC fits into the “Coordination” and 

“Cooperation” categories.  

As we have discussed in Section 2.2, DVCSs lead to a number of repository clones that 

may communicate with each other, receiving or sending updates. This operating mode 

resembles a peer-to-peer network topology (SCHOLLMEIER, 2001), where there are 

processing units and the flows between them through predefined connection paths. Whereas 

there are several approaches to discover such network topologies (DONG; GANG, 2012; LI, 

H. et al., 2009; LI, M. et al., 2013; UZAIR et al., 2007; YAN, 2012; YONG et al., 2010), to 

number a few, there is no corresponding approach to deal with DVCS, as discussed in Chapter 

2.  

The DyeVC approach (CESARIO; MURTA, 2013) came to fill this gap in supporting 

DVCS usage. The goal of DyeVC is two-fold. First, DyeVC should work as a non-obtrusive 

awareness tool to increase the developer knowledge on what is going on around their repository 

and the repositories of their teammates. Second, DyeVC should enable repository 

administrators and/or managers to visualize how the several existing repositories of a project 

interact with each other. 

This chapter explains the DyeVC approach, which consists of series of visualizations 

built upon DVCS environments. These visualizations provide different levels of detail that 

allow those involved in projects using DVCS to: 

 Receive notifications in the system tray bar whenever changes are detected in related 

peers (i.e., clones from where a repository pulls from or pushes to); 



43 

 

 

 

 Visualize all known clones of a project, and their interdependencies (i.e., which are 

the existing communication paths among them); 

 Visualize information regarding tracked branches, and their status compared to their 

corresponding branches in the original repository; 

 Visualize a repository history that contains all commits in the topology, even those 

that do not exist locally. 

Besides these visualizations, DyeVC has also a mechanism to gather information from 

a set of clones, processing this information and storing it to allow its presentation in the 

aforementioned visualizations.  

This chapter is organized as follows: Section 3.2 explains the data model used to store 

the information that our approach gathers and how this information is gathered from DVCSs. 

Section 3.3 shows how this information is presented using different levels of detail. Section 3.4 

discusses details regarding the information gathering process. Section 3.5 presents the 

technologies used in the prototype implementation. Lastly, Section 3.6 presents the final 

considerations of this chapter. 

3.2 INFORMATION GATHERING 

DyeVC continuously gathers information from a group of interrelated clones, starting 

from clones registered by the users. As shown in Figure 30, data is gathered by DyeVC 

instances running at each user machine and is stored in a central document database. This way, 

information from one DyeVC instance is made available to every other instance in the topology. 

For each registered clone rep, DyeVC transparently creates a clone rep’ in the user’s home 

folder. Rep’ is a working copy used to perform fetches from all of the peers that rep 

communicates with. We use a working copy because performing fetches on the monitored 

repository would change its structure, bringing new commits to the repository without the user 

being aware of it. DyeVC needs to perform fetches to analyze branches status (see more in 

Section 3.3.3).  

DyeVC gathers information not only from the registered clones in the user’s machine, 

but also from its peers, which are the clones that a given clone communicates with. Since there 

is a communication path between a registered clone and its peers (in order to push and pull 

data), we are able to analyze the commits that exist in these peers. This allows us to present a 

broader topology visualization that contains not only registered clones, but also those that have 



44 

 

 

 

a push or pull relationship with them. Details on how data is gathered are explained in Section 

3.4.  

 

Figure 30 – How DyeVC gathers information 

Figure 31 shows how DyeVC discovers the topology from the nodes where it is running 

and the registered clones. Here, blue nodes represent registered clones, where DyeVC is 

running, yellow nodes represent known clones located at nodes where DyeVC is not running, 

dashed nodes and dashed lines represent clones and communication paths that are not yet 

known. Suppose a scenario where the existing clones and interdependencies are shown in 

Figure 31.a. After installing DyeVC and registering clone 3, DyeVC finds out that this clone 

communicates with clones 1, 2, and 4 (either by pushing to or pulling from them), which is 

shown on Figure 31.b. Later on, clone 4 is registered and clone 5 is included as a known clone 

in the topology (Figure 31.c). Clone 6 is the next to be registered, allowing DyeVC to discover 

that clone 7 also exists, as well as the communication between clone 6 and clone 1, which was 

already a known clone (Figure 31.d). Suppose that no more clones are registered. The known 

topology that will be shown will be that of Figure 31.e. Notice that, although only clones 3, 4, 

and 6 were registered, DyeVC is also aware of the existence of clones 1, 2, 5, and 7. Only clone 

8 will not be known, as well as some communication paths between clones that were not 

registered (1-2, 1-5, 1-8, and 7-8). 



45 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 31 – DyeVC discovering the topology 

DyeVC finds out related clones by looking at the remote repositories, which are 

registered in Git’s config file of each clone. Figure 32 shows an example of this configuration, 

taken from a local clone of the dyevc project, where there is a remote named origin, which is 

located at github.com/gems-uff/dyevc. 

[remote "origin"] 

 fetch = +refs/heads/*:refs/remotes/origin/* 

 url = git@github.com:gems-uff/dyevc.git 

Figure 32 – Remote repository configuration in Git’s config file 

The data stored at the central database follows the model presented in Figure 33. A 

Project groups all repository clones of the same system, and each project is identified by a 

project name. Repository clones are stored as RepositoryInfo and are identified by an id and 

a meaningful clone name provided by the user. A RepositoryInfo has a list of clones to which 

it pushes to and a list of clones from which it pulls from. These lists are represented respectively 

by the self-associations pushesTo and pullsFrom. We also store the list of DyeVC instances that 

references the clone, in order to remove from the topology clones that are no longer referenced 



46 

 

 

 

(for example, a central repository may be referenced by several DyeVC instances). Finally, we 

store the hostname where the clone resides, as well as its path, which can be either an operating 

system path or a URL. DyeVC supports data transferring using the same set of protocols 

supported by Git, i.e., local (file://), http/s (http:// or https://), secure shell (ssh://), and git 

(git://). 

 

Figure 33 – Model used to store topology data 

Another element in Figure 33 is the Branch. Branches are part of a RepositoryInfo. A 

Branch instance has a name and a Boolean attribute isTracked, which is true if the branch tracks 

a remote branch. A RepositoryInfo may have one or many branches (it must have at least one 

branch, which is the main one). A Branch has two associations with CommitInfo: through the 

first association, a Branch knows which commit is its head and, conversely, a commit knows 

which branches point to it as a head. The second association represents which commits are 

reachable from a given branch and, conversely, the branches from which the commit is 

reachable. 

The finer grain of information is the CommitInfo, which represents each commit in the 

topology. A commit is identified by a hash code and it refers to its parents (except for the first 



47 

 

 

 

commit in the repository, which does not have any parent). As each commit may not exist in 

all clones of the topology, we store the list of clones where each commit can be found (foundIn 

association). We also store the committer, the commit message, and the information whether 

the commits belongs to tracked branches or to non-tracked branches. 

3.3 INFORMATION VISUALIZATION 

The visualization of information gathered by DyeVC is classified into four different 

levels of detail:  

 Level 1 presents high-level notifications about the registered repositories. 

 Level 2 presents the whole topology of a given project. 

 Level 3 zooms into the branches of the repository, to see the status of each local 

branch that tracks a remote branch.  

 Level 4 zooms into the commits of the repository, to see a visual log with information 

about each commit. 

The following Sections discuss each of these levels. 

3.3.1 LEVEL 1: NOTIFICATIONS 

In Level 1, our approach periodically monitors the registered repositories and presents 

notifications whenever a change is detected in any known peer. The period between subsequent 

runs is configurable, and the notifications are presented in the system notification area, in a non-

obtrusive way, allowing the user to begin investigating what is occurring, if desired. Figure 34 

shows an example of this kind of notification, where DyeVC detected changes in two different 

repositories. The notification shows the repository id, followed by the name given by the user 

and the project name (system name). Clicking on the balloon allows the user to start 

investigating what changed. 

 

Figure 34 – DyeVC showing notifications in the notification area 



48 

 

 

 

3.3.2 LEVEL 2: TOPOLOGY 

Aiming at helping answering questions Q1 and Q2 from Section 1.1, we present a 

topology view showing all repositories for a given project, as depicted in Figure 35, where each 

node represents a known clone of the project dyevc itself, at a given moment. A blue computer 

represents the current user clone and black computers represent other clones where DyeVC is 

running. Servers represent central repositories, that do not pull from nor push to any other clone, 

or clones where DyeVC is not running. The representation is the same for both kinds of nodes 

because, once DyeVC is not running at a given clone, we cannot infer if the clone pushes to or 

pulls from anyone else. Thus, it will have empty push and pull lists and will be understood as a 

server. 

 
 

Figure 35 – Topology view of DyeVC project, at a given moment 

Each edge in the graph represents a relationship between two repositories. Edges with a 

continuous stroke mean that the source clone pushes to the destination clone. Edges with a 

dashed stroke mean that the destination clone pulls from the source clone. The edge labels show 

two numbers separated by a dash. The first number represents how many commits in tracked 

branches of the source clone are missing in the destination clone. The second number represents 

how many commits in non-tracked branches of the source clone are missing in the destination 

clone. The edge colors are used to represent the synchronization status: green edges mean that 

both clones are synchronized (i.e., both clones have the same set of commits), whereas red 

edges mean that the pair is not synchronized. 



49 

 

 

 

For example, it is possible to observe in Figure 35 that the current user clone (blue 

computer) is hosted at cmcdell and it is named dyevc. This clone pulls from gems-uff/dyevc, 

which is located at github.com, and there are four tracked commits ready to be pulled. It also 

pushes to the same peer, having five tracked commits ready to be pushed. 

3.3.3 LEVEL 3: TRACKED BRANCHES 

To answer question Q3 from Section 1.1, our DyeVC’s main screen (see Figure 36) 

shows Level 3 information, allowing one to depict the status of each tracked branch between 

registered repositories and their peers. This information is complemented with that of Level 4, 

shown in Section 3.3.4. 

 
Figure 36 – DyeVC main screen  

The status evaluation considers the existing commits in each repository individually. 

Table 1 shows the possible states presented by DyeVC. Due to the nature of DVCS, old data is 

almost never deleted and commits are cumulative. Only in rare situations, such as removal of 

sensitive data mistakenly committed to the repository, commits are deleted. Thus, if a commit 

N is created over a commit (N – 1), the existence of commit N in a given repository implies that 

commit (N – 1) also exists in the repository. With this said, by checking the existence of 

commits in the local repository not yet replicated to the remote repository, and vice-versa, it is 

possible to come up with one of the situations presented in Table 2. 

To illustrate how this approach works, let us assume that each commit is represented by 

an integer number and take the right portion of Figure 1, which represents developers led by 

Wolverine. This scenario is shown in Figure 37. 

  



50 

 

 

 

Table 1 – Possible states of a repository 

Status Description 

 
DyeVC has not analyzed the repository yet. 

 
Repository is synchronized with all peers. 

 
Repository has changes that were not sent yet to its peers (it is ahead its peers). 

 
Peers have changes that were not sent yet to the repository (it is behind its peers). 

 
Repository is both ahead and behind its peers. 

 

Invalid repository. This happens when DyeVC cannot access the repository. The reason is 
presented to the user. 

 

Table 2 – Status of a local repository regarding a remote one, based on the existence of 

non-replicated commits 

Existence of 
non-replicated commits 

Local Status 
Local 

Repository 
Remote 

Repository 

Yes Yes 
Ahead and Behind (needs pull and push) 

Yes No 
Ahead (needs push) 

No Yes 
Behind (needs pull) 

No No 
Synchronized 

 

 
Figure 37 – Developers led by Wolverine 

At a giving moment, the local repositories of each developer have the commits shown 

in Table 3. 



51 

 

 

 

Table 3 – Existing commits in each repository 

Repository Wolverine Gambit Rogue Nightcrawler Beast 

Commits 10 
11 

10 
11 

10 
12 

10 
11 
13 

10 

 

Considering just the synchronization paths presented in Figure 37, the perception of 

each developer regarding to their known peers is shown in Table 4. Notice that the perceptions 

are not symmetric. For instance, as Gambit does not pull updates from Nightcrawler, there is 

no sense in giving him information regarding Nightcrawler. 

Table 4 – Status of each repository based on known remote repositories 

Repository Wolverine Gambit Rogue Nightcrawler Beast 

Wolverine - - - - - 

Gambit 
 

- - - - 

Rogue - 
 

- - - 

Nightcrawler - 
  

- - 

Beast - 
   

- 

3.3.4 LEVEL 4: COMMITS 

Level 4 complements information of Level 3 in order to provide an answer to Question 

Q3, by presenting a visual history of the repository (Figure 38) as a directed acyclic graph 

(DAG). Each vertex in the graph represents a known commit for the same project, which is 

named after its hash’s five initial characters. A thicker border denotes that the commit is a 

branch’s head (e.g., commit f1a48, for which the balloon is showing additional information). 

 
Figure 38 – Commit history for a given project 



52 

 

 

 

Commits are drawn according to their precedence order. Thus, if a commit N is created 

after a commit (N – 1), then commit N will be located in the right hand side of commit (N – 1). 

For each commit, DyeVC presents the information shown in Figure 33 (gathered from the 

central database), along with information that is read in real time from the repository metadata, 

such as branches that point to that commit and files that were affected (modified, deleted, or 

inserted). 

It is important to notice that this visualization contains all commits of all clones in an 

integrated graph, and not only commits that exist locally at the user’s clone. Each commit is 

painted according to its existence in the local repository and in the peers’ repositories. Ordinary 

commits that exist locally and in all peers are painted in white. Green commits are ready to be 

pushed, as they exist locally but do not exist in any peer in the push list. Yellow commits need 

attention because they exist in at least one peer in the pull list, but do not exist locally, meaning 

that they may be pulled. Red commits do not exist locally and are not available to be pulled, as 

they exist only in repositories that are not peers. Finally, gray commits exist locally (either on 

the user’s computer or on a partner’s computer), but belong to non-tracked branches, meaning 

that they can neither be pushed nor pulled. 

This visualization can easily have thousands of nodes, one for each commit in the 

topology. Nevertheless, despite the high amount of nodes, users are generally interested in the 

most recent commits. As we show the commits following a chronological order, from left to 

right, most recent commits will be at the right part of the visualization, and DyeVC positions 

the graph so that these commits are shown when opening the visualization. More details 

regarding how this visualization is built can be found in Appendix A. 

There is also the possibility to collapse nodes manually to provide a better understanding 

of huge amounts of data. As shown in Figure 39, the label of collapsed nodes show the number 

of contained nodes (there is a white node containing 118 commits and a green node containing 

24 commits). 



53 

 

 

 

 

Figure 39 – Collapsed commit history 

3.4 HOW INFORMATION IS GATHERED 

Algorithm 1 shows the algorithm to update commits in the topology. This update finds 

out the existing commits and depicts where they can be found. The process was designed aiming 

at minimizing the amount of data transferred to the central database through the network. To 

accomplish that, we used Set Theory to check which commits have to be inserted, updated, or 

deleted in the central database. This process is executed for each repository clone rep being 

monitored by DyeVC. The algorithm receives the repository clone being monitored (rep), the 

set of existing commits in the database (db.commits), the set of existing commits at rep at the 

previous monitoring cycle (previousSnapshot), and the set of existing commits at rep at the 

current monitoring cycle (currentSnapshot).  

First of all, we subtract currentSnapshot from previousSnapshot to find 

commitsToDelete, which contains commits that were deleted since the previous monitoring 

cycle (line 2), and we delete them from the database in order to cover the rare situations where 

a commit is deleted (line 3). Conversely, we subtract previousSnapshot from currentSnapshot 

to find newCommits, which contains commits that are new in rep since the previous monitoring 

cycle (line 5). 



54 

 

 

 

 

Algorithm 1: Updating commits in the topology 

Input: a RepositoryInfo rep representing the repository clone being analyzed and three sets 

of CommitInfo db.commits, previousSnapshot and currentSnapshot. 

 



55 

 

 

 

Next, we find out which of newCommits will have to be inserted into the database, by 

subtracting the existing commits in the database (db.commits) from newCommits (line 6). This 

step is necessary because some of the new commits might have already been inserted into the 

database by another instance of DyeVC running elsewhere. Commits that might be updated are 

represented by commitsToUpdate (line 7) and they consist of those commits that exist in the 

database, but were not found in at least one of the repository clones related to rep on the last 

monitoring cycle. These commits must be verified because since the previous monitoring cycle 

it may happen that they now are found in other repository clones related to rep. 

Commits to be inserted or updated must be verified to check where they exist, thus 

updating the c.foundIn attribute. This verification is done using the procedure updateFoundIn 

(lines 23-45), which is called in lines 9-15. This procedure finds out where each commit c exists 

based on its existence locally or in any repository clone in the push or pull sets. This procedure 

verifies if rep is ahead of any clone in its push list regarding c (line 24), i.e., if c exists and if 

there is at least one clone that rep pushes to that does not contain c. Likewise, it verifies if rep 

is behind of any clone in its pull list regarding c (line 25), i.e., if c does not exist locally and if 

there is at least one clone that rep pulls from that contains c. If rep is behind, than all clones in 

rep’s pull list that contain c are added to c.foundIn (lines 27-29). If rep is ahead, than rep and 

all clones in rep’s push list that contain c are added to c.foundIn list (lines 30-32). It may happen 

that rep is neither ahead nor behind any clone (line 33). In such case, one of the following three 

scenarios may happen: In scenario 1, c does not exist in current snapshot (line 34), meaning 

that it also does not exist in any of the related clones, thus we remove rep and all its related 

clones from c.foundIn (line 35). For scenarios 2 and 3, we first depict if c is reachable from a 

tracked branch, i.e., if at least one of rep.branches is tracked and has c as one of its elements 

(line 37). In scenario 2, c is in a tracked branch, meaning that it also exists in all related clones 

(remember that rep is neither ahead nor behind their partners), thus we include rep and all its 

related clones in c.foundIn (line 39). Finally, in scenario 3, c is not in a tracked branch, meaning 

that it exists only in rep, thus we include only rep in c.foundIn (line 41). 

After updating where each commit is found, commitsToInsert are inserted into the 

database (line 17) and commitsToUpdate are updated in the database (line 18). Finally, it may 

happen that some commits end up with an empty foundIn attribute, meaning that they do not 

exist anywhere in the topology (line 19). These so-called orphanedCommits are then removed 

from the database (line 20) and the algorithm ends. 

At this point, it is worth mentioning two operations that do not occur very often while 

working with DVCSs, but exist and DyeVC supports them: rebase and cherry picking. A rebase 



56 

 

 

 

can be used to move a branch to a new base commit, or to clean up the repository history by 

transforming a series of commits into a single one. In both cases, what happens in fact is that 

all commits involved in the rebase operation are deleted, and new commits are created, with 

different hashes. It is strongly recommended that this kind of operation be executed before 

pushing the involved commits, because it demands replacing the old commits with new ones 

and it would look like part of the repository history abruptly vanished (CHACON, 2009). Since 

the commits involved in the rebase operation are deleted, DyeVC will detect this situation by 

comparing the current repository snapshot with the previous one and making the appropriate 

removals and insertions in the database. 

Cherry picking is an operation that takes a commit from somewhere else, and “play it 

back” after the current branch’s head. This operation introduces the same changes made at the 

original commit, but with a different parent, which generates a new commit, with a different 

hash. Thus, as a new commit is generated, and DyeVC is able to register this new commit in 

the database. 

3.5 IMPLEMENTATION DETAILS 

We implemented our approach as a Java Swing application (ELLIOTT et al., 2002) 

launched by Java Web Start Technology (MARINILLI, 2001). It currently monitors Git 

repositories, as it is the most used DVCS nowadays (ECLIPSE FOUNDATION, 2013). The 

source code and the link to download the tool via Java Web Start can be found at GitHub19. 

Appendix B presents basic usage information about the main features of DyeVC. The 

application gathers information from repositories using JGit library20, which allows the user to 

use our approach without having a Git client installed. Information gathered is stored in a central 

document database running MongoDB (CHODOROW, 2013).  

Our current deploy of DyeVC uses a MongoDB instance hosted at MongoLab21. To 

prevent from firewall blocks when accessing the database, we did not use MongoDB proprietary 

API, which would demand opening specific ports to connect to MongoDB. Instead, we chose 

to use MongoLab’s RESTful API. RESTful APIs (FIELDING, 2000) have the advantage to be 

available using standard HTTP and HTTPS protocols. This way, our approach can be used from 

inside corporate and academic environments, without major problems. In order to use the 

                                                 

 

19 https://github.com/gems-uff/dyevc 
20 http://www.eclipse.org/jgit 
21 http://mongolab.com 



57 

 

 

 

RESTful API provided by MongoLab, we implemented a MongoLabProvider, which translates 

the application methods into RESTful commands and vice-versa. This provider also serializes 

and deserializes the application objects to and from JSON22 representations in order to send and 

receive them through the RESTful commands.  

 We present the information gathered as a series of graphs by using JUNG (Java 

Universal Network/Graph Framework) library23, from which it inherits the ability to extend 

existing layouts and filters. All graphs present similar behavior, allowing the window to be 

zoomed in or out, whether the user wants to see details of a particular area or an overview of 

the entire graph. By changing the window mode from transforming to picking, it is possible to 

select a group of nodes and collapse them into one node, or simply drag them into new positions 

to have a better understanding of an area where there are too many crossing lines. 

3.6 FINAL CONSIDERATIONS 

In projects that use DVCS, there may be several clones where changes are being inserted 

simultaneously. These clones may communicate with each other indistinctively, turning the 

administration of such environment into a tough task. Today, administrators have no way to 

visualize the various clones and their dependencies, and developers have limited choices to 

provide awareness regarding parallel changes. 

In this chapter, we presented the DyeVC approach, which supports the development and 

administration under DVCS environments, providing awareness in a non-obtrusive way, 

enabling administrators to monitor and visualize the repository topology and establishing a 

platform to present information and metrics. We also discussed aspects of its implementation 

and usage. DyeVC is currently able to monitor Git repositories, but it can be extended to support 

other DVCSs by using generic interfaces. 

Table 5 compares DyeVC features with each category used to classify related work 

presented in Section 2.4. The following features were used in the comparison: 

 Notifications: What does the approach notify? 

 CVCS: Does the approach support CVCS? 

 DVCS: Does the approach support DVCS? 

                                                 

 

22 http://json.org 
23 http://jung.sourceforge.net 



58 

 

 

 

 Related repositories: Does the approach identifies related repositories? 

 Levels of detail: Does the approach present information in different levels of detail? 

 Multiple peers: Does the approach support repositories with multiple peers (multiple 

pull / push destinations)? 

 Commits in peer nodes: Does the approach detects commits in peer nodes (nodes 

that have a direct communication path among each other)? 

 Commits in non-peer nodes: Does the approach detects commits in non-peer nodes 

(nodes that do not have a direct communication path among each other)? 

 Multiple branches: Does the approach support multiple branches in DVCS? 

 Topology: Does the approach supply any topology visualization that shows 

dependencies among repositories? 

 Commit History: Does the approach allow visualizing only a partial commit history, 

showing only local commits, or does it allow visualizing a full commit history, 

including commits in other repositories that were not synchronized yet, or that are 

in non-tracked branches? 

Table 5 – Comparing DyeVC features with related work 

Feature / Category 

C
o

m
m

it
 

N
o

ti
fi

ca
ti

o
n

 

A
w

ar
en

es
s 

o
f 

C
o

n
cu

rr
e

n
t 

C
h

an
ge

s 

R
e

p
o

si
to

ry
 

V
is

u
al

iz
at

io
n

 

D
V

C
S 

cl
ie

n
ts

 

D
ye

V
C

 

Notifications 
new 

commits 
Conflicts No No 

Status change 
against peers 

CVCS Yes Yes Yes No No 

DVCS Some24 Some25 Some26 Yes Yes 

Related repositories No No No No Yes 

Levels of detail No No No No Yes 

                                                 

 

24 Exceptions are SCM Notifier and Hg Commit Monitor 
25 Exception is Crystal 
26 Exceptions are VisGi, Visugit and GitHub's Network Graph 



59 

 

 

 

Feature / Category 

C
o

m
m

it
 

N
o

ti
fi

ca
ti

o
n

 

A
w

ar
en

es
s 

o
f 

C
o

n
cu

rr
en

t 

C
h

an
ge

s 

R
e

p
o

si
to

ry
 

V
is

u
al

iz
at

io
n

 

D
V

C
S 

cl
ie

n
ts

 

D
ye

V
C

 

Multiple peers No No No No Yes 

Commits in peer 
nodes 

No Some27 Some28 No Yes 

Commits in non-peer 
nodes 

No No No No Yes 

Multiple branches No No No Yes Yes 

Topology No No No No Yes 

Commit history No No 
Some29 / 
Partial30 

Partial30 Full 

 

At first sight, it may seem that DyeVC is very similar to Crystal, one of the related 

works discussed in Section 2.4.2, especially due to the icons used in the visual interface to 

indicate status (compare Figure 19 on page 34 with Figure 36 on page 49, and with Table 1 on 

page 50). Both approaches work with DVCSs (besides Git, Crystal also supports Mercurial) 

and use working copies to perform analysis without affecting the user’s repositories. Apart from 

these similarities, there are major differences between them, as follows: 

 Goal: Crystal’s goal is to identify conflicts among pairs of repositories (local 

repository versus central repository or peer’s repository), whereas DyeVC’s goal is 

to provide awareness regarding the existing peers and their synchronization, in 

different levels. 

 Repository identification: Crystal demands the user to point out every repository 

they want to compare. For instance, when working with four repositories, all of them 

need to be manually registered in the approach. DyeVC does not require every 

repository to be registered, because it automatically looks at configuration files to 

                                                 

 

27 Exception is Lighthouse 
28 Exception is GitHub's Network Graph 
29 Visugit and GitHub's Network Graph 
30 Approaches allow visualizing only local commits. Commits in other repositories that were not synchronized yet, or that are in non-tracked 

branches, are not shown. 



60 

 

 

 

discover all the repositories that one pushes to or pulls from. DyeVC works even 

with scenarios where a repository pushes to or pulls from more than one partner. 

 Repository comparison: Crystal analyses one repository against several peers, on a 

pair basis, whereas DyeVC analyzes all repositories against each other, provided that 

there are pushes or pulls among them. 

 Information type: Crystal provides information regarding the synchronization 

between two repositories and the existence of conflicts. DyeVC does not report 

conflicts natively, but it shows synchronization information in different levels of 

detail (repositories, branches, and commits – see more at Section 3.3), including a 

topology view, which shows all known repositories and their interdependencies. 

 Multiple branches: Crystal deals with only one branch at a time. If one wants to 

make comparisons involving different branches, it would be necessary to create 

different working copies of the same repository, each one pointing to a different 

branch, and register these working copies so that the approach can monitor them. 

DyeVC automatically checks all tracked branches in all registered repositories. 

 Allowed actions: While Crystal provides commands to push, pull, compile, and test 

a repository, DyeVC allows one to visualize branches status, topology, and history. 

 

  



61 

 

 

 

CHAPTER 4 – EVALUATION 

4.1 INTRODUCTION 

We conducted two experiments and an observational study to evaluate DyeVC. Besides 

using the evaluation results to identify limitations and improvements in our approach, we aim 

at verifying if DyeVC is capable of answering the questions posed in Section 1.2: 

 Q1: Which clones were created from a repository? 

 Q2: What are the dependencies between different clones? 

 Q3: Which changes are under work in parallel (in different clones or different 

branches) and which of them are available to be incorporated into my work? 

We also aim at answering the question related to non-function aspects of our approach, 

which was also introduced in Section 1.2: 

 Q4: Is it computationally feasible to gather this information from all known 

repositories, keeping them available to be used when needed? 

In the first experiment, we conducted a post hoc analysis over the JQuery31 open-source 

project, to check if DyeVC can help answering questions Q1-Q3. Next, we conducted an 

observational study involving four students that used DyeVC. This study also used the JQuery 

project. Finally, we took some open-source projects of different sizes and from different 

sources, in order to evaluate the scalability of our approach, aiming at answering question Q4. 

This chapter is organized as follows: Section 4.2 describes the post hoc analysis. Section 

4.3 presents the observational study. Section 4.4 describes the performance evaluation of our 

approach. Section 4.5 discusses some threats to validity of the experiment. Lastly, Section 4.6 

presents the final considerations of this chapter. 

4.2 ANALYZING JQUERY PROJECT WITH DYEVC 

We conducted a post hoc analysis using an open source project to demonstrate that our 

approach can help answering questions Q1-Q3. We used the JQuery project, a project that began 

in 2006 and had 6,222 commits by the time of the evaluation. We reconstructed the repository 

                                                 

 

31 https://github.com/jquery/jquery.git 



62 

 

 

 

history, simulating the actions that occurred in the past. We do not replicate the repository 

history here, due to its size, but the repository is public available at Github. Automatically 

generated comments helped us to depict specific flows that occurred in the past. For example, 

the comment “Merge branch 'master' of https://github.com/scottjehl/jquery into scottjehl-

master” tells us that there was a user named scottjehl and that the merge operation was done at 

a branch called scottjehl-master. Although one might perform a merge manually and insert a 

different text in the comment, this did not compromise our analysis because we had a focus on 

depicting some of the merge situations, and not all of them. 

Due to the operating mode of Git, some details are missing, but these details do not 

compromise our analysis. The first one is the moment when a clone arises or deceases. This 

information does not exist anywhere in the repository. We inferred the creation of clones 

looking at the commit messages in the repository history (a commit by developer X led to the 

creation of a clone named X). Clones created at a given time stayed alive for the rest of the 

analysis.  

The second missing detail is that, although we had the commit dates and times in the 

repository history, these dates and times were not guaranteed to be correct. This occurs because 

DVCSs do not have a central clock. Each commit is registered with the local time at the machine 

where the clone is located, which could lead to commits in the history with a predecessor in the 

future, depending on when and where each one of them were performed. This missing detail is 

not important, because the precedence between two commits is not depicted from their commit 

times, but from the pointers that Git maintains from a commit to its parents. We can use these 

dates, but not as an authoritative information. 

We chose a moment in time when three developers were involved, performing commits 

and merging changes in the repository. We created three clones for these developers, named 

after their author names and commit messages: jeresig, adam, and aakoch. Figure 40 shows the 

topology view on Sep 24 2010, when aakoch had 121 commits pending to be pushed to the 

central repository (hereafter represented as central-repo).  Figure 41 shows part of aakoch’s 

commit history and how DyeVC represents commits pending to be pushed as green nodes in 

the graph. 



63 

 

 

 

 

Figure 40 – Topology view showing first monitored repository (Sep 24 2010) 

 

Figure 41 – aakoch’s commit history showing commits pending to be pushed 

Later on, aakoch pushed his commits to central-repo. Adam performed a commit on Jun 

21 2010 (before aakoch’s push to central-repo), but he did not push this commit to central-

repo. On Sep 27 2010, jeresig committed some changes as well (after aakoch’s push), and did 

not pushed them either. At this moment, we registered them to be monitored by DyeVC. Figure 

42 shows the topology view after this registration on Sep 27 2010. Here, we can see that aakoch 

was synchronized with central-repo, whereas adam and jeresig had some pending actions.  

 

Figure 42 – Topology view showing the three monitored repositories (Sep 27 2010) 

At this point, we are able to revisit questions Q1 and Q2: 



64 

 

 

 

Q1: Which clones were created from a repository? DyeVC’s topology view (Figure 42) 

shows all the clones where there is an instance running, and discovers other clones connected 

to them, even if there is no instance running. 

Q2: What are the dependencies between different clones? DyeVC’s topology view 

(Figure 42) shows the dependencies between the peers in the topology, as well as the number 

of commits ahead or behind in each of these dependencies. 

Adam had 121 commits to pull from central-repo, what is corroborated by the details of 

his tracked branches (master branch in Figure 43). He also had a non-tracked commit pending 

to be pushed. Non-tracked commits are not shown in the tracked branches view, but we can see 

them in commit history views, painted in gray. Figure 44 shows the collapsed commit history 

for jeresig, where we can see adam’s non-tracked commit with hash a2bd8. We can see in the 

details box showing the commit details that the committer was adam j. sontag. The details also 

show the following message in red letters: “This commit does not belong to a tracked branch 

and thus cannot be retrieved by any other repository”. The repository where this commit exists 

is shown at the end of the details box (rep1403042549624). We know this is adam’s repository 

by comparing this id with adam’s repository id in Figure 42). 

The repository history leads us to think that jeresig is a core developer in the project, 

because he performed most of the merges to master branch. Looking at Figure 42, we see that 

he had 26 commits pending to be pushed to central-repo. These 26 commits can be seen at 

aakoch’s commit history (Figure 45), as red commits, once they could not be pulled by aakoch 

until jeresig had pushed them to central-repo. There was also a commit in central-repo pending 

to be pulled by jeresig. If we look at Figure 44 we see that the only yellow commit is a0887, 

made by aakoch. This tells us that jeresig pulled changes from central-repo at a moment before 

aakoch pushed commit a0887. This analysis make us return to the discussion we had after 

Figure 42. There, our conclusion was that aakoch had pushed all pending commits at once, and 

then jeresig pulled these commits. However, if this was the case, jeresig would already have 

commit a0887, but the last commit from aakoch that jeresig has is 5c055 (the white node just 

before commit a0887 in Figure 44). Thus, we conclude that what happened in fact was that 

aakoch pushed all commits up to commit 5c055, jeresig pulled these commits and, later on, 

aakoch performed commit a0887 and pushed it, leaving jeresig with no awareness of this 

action. 



65 

 

 

 

 

Figure 43 – Adam’s tracked branches 

 

Figure 44 – Jeresig’s collapsed commit history 

 

Figure 45 – Aakoch’s commit history 



66 

 

 

 

If we look at Figure 46, we see that all pending commits (those that were pending to be 

pushed and those that were pending to be pulled) are related to the same branch (master). This 

tells us that, if jeresig wanted to push these commits to central-repo, he would have to perform 

both push and pull operations. This analysis helps us revisit and answer Q3. 

 

Figure 46 – Jeresig’s tracked branches 

Q3: Which changes are under work in parallel (in different clones or different branches) 

and which of them are available to be incorporated into my work? New commits in tracked 

branches of peers can easily be found looking at Level 3 information (tracked branches, shown 

in Figure 43 and Figure 46). This view shows to which branch these commits are related and 

how many new commits exist.  If we want to look at each commit individually, we can look at 

Level 4 information (commit history, shown in Figure 41 and Figure 45) and notice the yellow 

nodes. Additionally, Level 4 information is used to find new commits in repositories that are 

not peers (red nodes), or new commits in non-tracked branches (gray nodes). 

4.3 OBSERVATIONAL STUDY 

We conducted an observational study over the same project used in the post hoc analysis 

(JQuery) to analyze the capability of the visualizations provided by DyeVC in supporting 

developers and repository administrators. In this kind of study, the subject performs tasks while 

an experimenter observes the actions taken. This kind of study aims at collecting information 

regarding how a given task is performed (SHULL et al., 2001). This information can help in 

understand how a new process is used. 

This Section is organized as follows: Section 4.3.1 describes the study. Section 4.3.2 

presents the procedure used during the study. Section 4.3.3 presents the study results. Finally, 

Section 4.3.4 presents the subjects evaluation regarding the study and the approach. 



67 

 

 

 

4.3.1 DESCRIPTION 

The pre-requisite to participate in this study was to have experience in any DVCS. The 

study was conducted with four volunteers. All of them are graduate students from the Software 

Engineering area at Universidade Federal Fluminense (UFF). Although there were no industry 

subjects involved, (SVAHNBERG et al., 2008) discuss that students may work well as subjects 

in empirical studies. There was no compensation of any kind to the subjects. Four different 

sessions were conducted, each of them with one subject. All forms presented in this study are 

written in Portuguese, which was the native language of all subjects. 

The goal of this observational study was to analyze when DyeVC helps on 

understanding the project history better than existing tools. This study was divided in two 

phases, each one with two scenarios, where the subject had to answer a number of questions 

related to usual work with DVCS. The scenarios in each phase were the same and in each one 

of them the subject played a different role. In Scenario One, the subject played the developer 

role, working in a clone named aakoch. In Scenario Two, the subject played the repository 

administrator role. 

In Phase 1, the subject had a number of questions to be answered about the JQuery 

project history, before knowing DyeVC. The subject could use any desired DVCS client to 

answer these questions among the ones available in the test machine: gitk, Tortoise Git, Git 

Bash, and SourceTree. It was also possible to access the Internet to search for any other 

procedure or tool that could help in answering the questions. In Phase 2, DyeVC approach was 

presented and the subject used it to help answering the same questions. The possible answers 

in Phase 2 were either “keep the answer of Phase 1”, meaning that using DyeVC did not change 

the subject perception, or a different answer, meaning that using DyeVC actually changed the 

subject perception. 

The main points to be observed in this study are: 

1. What procedure subjects followed to answer the questions in Phase 1; 

2. Which (if any) of the questions in Phase 1 could not be answered; 

3. If DyeVC let subjects answer any questions in Phase 2 that were not previously 

answered in Phase 1; 

4. The overall evaluation that DyeVC received from subjects. 



68 

 

 

 

4.3.2 PROCEDURE 

Initially, the subject filled the Informed Consent Form (Appendix C) and, upon 

accepting the terms, they filled the Characterization Form (Appendix D). Next, the subject 

received the document entitled Activities – Phase 1 (Appendix E) and was allowed to read the 

first two sections of the document (Instructions and Context). Phase 1 of this study included 

answering the questions for both scenarios. 

 After finishing Phase 1, the subject watched a 10-minute video presenting DyeVC. 

Next, the subject received the document entitled Activities – Phase 2 (Appendix F). This 

document contained a summarization of DyeVC approach, its main visualizations, and the 

meaning of each different icon, node, edge, etc. In Phase 2 of this study, the subject used DyeVC 

and contrasted the answers given in Phase 1 with the answers found using DyeVC. The set of 

questions in Phase 2 was the same as in Phase 1. The subject could either answer that they want 

to keep the previous or write a new answer, based on the analysis done using DyeVC. 

Finally, the subject filled the Exit Survey (Appendix G), expressing their opinion 

regarding the tasks executed and the DyeVC approach. Each subject spent one hour on average 

in this study. 

4.3.3 RESULTS 

Four graduate students participated in this study and all of them had experience in 

software development and DVCS. Table 6 summarizes the subjects’ profile. 

Table 6 – Summary of the Characterization Form 

Criteria P1 P2 P3 P4 

1  
Grade D.Sc. in 

progress 
M.Sc. 
completed 

M.Sc. in 
progress 

D.Sc. in 
progress 

2 

2.1 
Type of projects in 
which spend most 
time 

Academic Academic Academic Academic 

2.2 Experience (Years) +10 +10 +10 6-10 

2.3 
Most used Version 
Control System 

Git Mercurial Git Git 

2.4 Average team size Alone 6-10 2-5 Alone 

3 

3.1 

How frequently 
changes are 
committed 

After 
completing a 
feature 

After 
completing a 
feature 

After 
completing a 
feature 

After completing 
changes in a 
class/method 

3.3 
How changes are 
grouped or split into 
commits 

By tasks I have no 
opinion 

By tasks By classes 

 



69 

 

 

 

Table 7 presents time spent for each subject to answer each question of both scenarios 

from phases 1 and 2. Values include time to understand the question, investigate repositories 

with available tools, look for the answer and write down the answers in the form. Values do not 

include time spent filling the consent form and the characterization form, watching the video 

about DyeVC, and filling the Exit Survey. 

Table 7 – Time spent to answer each question in the study 

Subject 

Time spent (in minutes) 

Scenario 1 Scenario 2 

Phase 1 Phase 2 Phase 1 Phase 2 

P1 14 5 - 6 

P2 13 6 - 5 

P3 3 2 - 4 

P4 10 2 - 10 

 

It is possible to notice, by looking at Table 7, that all subjects took less time to complete 

Scenario 1 in Phase 2 (using DyeVC). For Scenario 2, times for Phase 1 are not shown because 

none of the subjects managed to answer the questions without using DyeVC.  

Table 8 presents the expected answers to each of the question proposed in both phases. 

Questions 1.1 through 1.3 correspond to Scenario 1, whereas questions 2.1 through 2.4 are 

related to Scenario 2. 

In Phase 1, each subject used different ways to look for the answers, which are detailed 

in next sections. In Phase 2, subjects correctly used DyeVC to find the answers. Question 1.1 

was answered using DyeVC Level 3 visualization (Tracked branches). Question 1.3 was 

answered using Level 4 visualization (Commit History). Finally, questions 1.2 and 2.1 through 

2.4 were answered using Level 2 visualization (Topology). Almost all subjects answered all the 

questions similarly, except for subject P4 in question 1.2 from Phase 1. 

  



70 

 

 

 

 

Table 8 – Expected answers to questions proposed in both phases 

Question 

Answer 

Without DyeVC 
(Phase 1) 

With DyeVC 
(Phase 2) 

1.1 – What is the status of your clone, compared to the 
central repository? 

121 ahead 
Same as Phase 

1 

1.2 – Who else is working  in JQuery project (other 
clones)? 

I don’t know Nobody 

1.3 – Which files were modified in commit with hash 
beginning in 5d454? 

src/effects.js 
Same as Phase 

1 

2.1 – What are the existing clones for JQuery project? I don’t know 
Aakoch, Adam 

and Jeresig 

2.2 – Which clones are synchronized with the central 
repository? 

I don’t know Aakoch 

2.3 – How many commits in tracked branches are pending 
to be sent to the central repository? 

I don’t know 26 

2.4 – Is there any commit in non-tracked branches? 
Where? 

I don’t know Yes (Adam) 

 

Subject P1 answered questions 1.1 and 1.3 in Phase 1 using the command line interface. 

To answer question 1.1, they looked at the log for both local and remote repositories, counted 

down how many hashes there were in each log and subtracted these numbers to find the answer. 

Question 1.3 was answered with git show command, which shows, for each affected file in the 

commit, what has changed. The answer to this question was easy to find because only one file 

was affected, but if many files had been affected, the subject would have trouble finding all 

affected files using this procedure. For questions 1.2 and 2.1 through 2.4, the subject tried to 

find a way to discover related clones by searching the Internet. After a few searches with no 

promising results, the subject gave up and their answer was “I don’t know”. Once there was no 

answer to question 2.1, next questions in Scenario 2 could not be answered as well. 

Subject P2 answered question 1.1 by issuing the git status command. To answer 

question 1.3, they used Tortoise Git and walked through the commit tree until finding the 

desired commit. For questions 1.2 and 2.1 through 2.4, the subject answered that they didn’t 

know a way to find an answer. When answering question 2.1, the subject commented that, as a 

repository manager, they should know which were the existing clones and their relationships, 

but they did not have any resources available to accomplish that. 

Subject P3 answered question 1.1 by issuing a git status command (same as subject P2). 

To answer question 1.3, they used Tortoise Git but they found the desired commit using the 

search feature of the tool, instead of walking through the commit tree. For questions 1.2 and 

2.1 through 2.4, the subject answered that it was not possible to find an answer. 



71 

 

 

 

Subject P4 answered questions 1.1 and 1.3 using Sourcetree. This subject answered 

question 1.2 differently from the others. They wrote down each different author of each commit 

as if it was a different clone. Although this is a valid interpretation, it may happen that authors 

commit changes in the same clone, and this would lead to a wrong answer for this question. For 

questions 2.1 through 2.4, the subject answered that it was not possible to find an answer. 

The overall results of this study were positive, because subjects were able to answer 

correctly questions 1.1 and 1.3 whether using DyeVC or not. Also, further questions, which did 

not have a way to be answered without DyeVC, were answered correctly by using the approach. 

By looking at the results and at the points to be observed (mentioned in Section 4.3.1), 

we can say that: 

1. Each subject uses a different tool and follows a different procedure to find answers 

regarding DVCS usage; 

2. In Phase 1, questions that depend on information of peers cannot be answered 

effectively without using DyeVC; 

3. DyeVC let subjects answer all questions in Phase 2, including those that had not been 

answered before. 

4.3.4 SUBJECTS EVALUATION 

After finishing their tasks, all subjects were asked to fill an evaluation form. The overall 

evaluation was positive. All subjects found easy to interact with DyeVC, to identify related 

repositories, and to use the operations the approach provides. They also stated that DyeVC 

visualizations were useful to answer the questions and that DyeVC helped investigating the 

JQuery project (one of the subjects answered that the help was neutral).  

All subjects chose topology visualization as the most helpful visualization in DyeVC. 

This choice was made by two reasons: the ability to find out relationships between peers and 

the ability to know which repositories have pending pushes. 

The following positive aspects of DyeVC were mentioned: 

 “It helps visualizing peers and their relationships”; 

 “It helps visualizing the status of each clone”; 

 “It is easy to use”; 

 “It is useful to manage projects”; 



72 

 

 

 

 “It provides a way to know that people are working in parallel”; and 

 “It let us view non-tracked branches and commits in all the topology, regardless of 

clones where they can be found”. 

The following negative aspects of DyeVC were mentioned: 

 “It does not detect people that do not use DyeVC”; 

 “It violates privacy when showing information regarding non-tracked branches”; and 

 “Having a centralized repository can lead to information overload and it go against 

the DVCS usage philosophy”. 

Detecting people that do not use DyeVC is in fact possible, with some restrictions. As 

we discussed in Section 3.2, if DyeVC monitors a given repository rep, it is able to find all 

peers that relate to rep, either by push or pull relationships, even if they are not being monitored. 

The privacy violation related to non-tracked branches is partial, because the information that 

DyeVC gathers do not include the content of any files, just their names (see Section 3.2 for 

more information). Finally, the need for a centralized repository is to fill the gap that emerged 

with DVCS usage: not having a central point with information from all the clones of a given 

DVCS repository. 

Regarding the study, one of the subjects stated that questions in Scenario 2 were biased, 

leading to the answer: “I don’t know”. This was, in effect, a natural side-effect of Scenario 2, 

where we tried to show that many questions that repository administrators can have are difficult 

or even impossible to answer with existing tools. 

Finally, the subjects mentioned some improvements that could be incorporated in the 

approach: 

 “Provide a visualization showing all people involved in the project (commit 

authors)”; 

 Improve help screens, which are now text based, by including DyeVC icons in the 

explanations”; 

 “Provide a way in topology view to see all hosts where clones are stored”; 

 “Provide a way to search commits in Commit History visualization” 



73 

 

 

 

4.4 PERFORMANCE EVALUATION 

In order to evaluate the scalability of our approach, we measured the time spent to 

perform the most common DyeVC operations, by analyzing projects with repositories of 

different sizes and hosted in different Git servers. Table 9 shows the monitored projects, the 

server hosting the original repositories and the repository metrics – number of commits, disk 

usage, and number of files. For each one of the monitored projects, we created a local clone the 

original repository. These local clones were used to perform measurements. All measurements 

were taken in the same period of the day and from the same machine, a Core Duo CPU running 

at 2.53 GHz, with 4GB RAM running Windows 8.1 Professional 64 bits, connected to the 

internet at 35 Mbit/s. 

Table 9 – Monitored projects and repository metrics taken during evaluation 

  Repository metrics 

Project Hosting # commits Size (MB) # files 

DyeVC github.com 187 1.0 539 

Sapos github.com 702 7.0 685 

jgit eclipse.org 2,979 10.0 1,595 

egit eclipse.org 3,775 27.0 1,478 

jquery github.com 5,518 20.0 253 

Tortoise Git code.google.com 6,166 85.0 3,220 

Gitextensions github.com 6,417 448.0 1,549 

drupal drupal.org 23,922 84.4 9,290 

Expresso Livre gitorious.org 25,822 141.0 20,729 

Git github.com 35,260 98.0 2,656 

 

We measured the main operations of our approach. Table 10 shows the time spent to 

perform foreground operations and Table 11 shows the time spent to perform background 

operations.  Table 10 also presents the memory usage during the execution of the “Commit 

History” operation. The measured operations were: 

 “Commit History”, an operation invoked when the user requests to see the commit 

history of a given system. 

 “Topology”, invoked when the user wants to see the topology of clones of a given 

system. 

 “Insert 1st”, invoked when the user includes the first clone of a given system to be 

monitored. 

 “Insert 2nd”, invoked when the user includes a clone to be monitored in a system that 

already have registered repositories. 



74 

 

 

 

 “Check Branches”, invoked periodically to check all the monitored clones, searching 

for ahead or behind commits. 

 “Update Topology”, invoked periodically to update the topology information in the 

central database. It updates the existing clones, their peers, and the existing commits, 

marking in which clones each commit is found. 

Table 10 – Time spent to perform foreground operations 

 Foreground operations 

Project 
Commit History Topology 

Time (s) Memory Usage (MB) Time (s) 

DyeVC 3.5 15 2.7 

Sapos 5.6 19 3.2 

jgit 18.4 512 3.4 

egit 21.3 559 3.7 

jquery 65.0 1,121 4.1 

Tortoise Git 68.0 492 4.2 

Gitextensions 73.0 1,529 17.0 

drupal   18.0 

Expresso Livre   18.2 

Git   19.4 
 

Table 11 – Time taken to perform background operations 

 Background operations times (s) 

Project Insert 1st Insert 2nd Check Branches Update Topology 

DyeVC 12.4 16.1 1.7 4.4 

Sapos 20.8 22.6 1.8 5.2 

jgit 42.4 46.0 5.9 6.8 

egit 49.6 46.6 4.2 7.3 

jquery 40.0 37.4 1.4 9.4 

Tortoise Git 39.0 36.0 1.6 9.6 

Gitextensions 155.8 129.0 1.6 10.6 

drupal 102.0 95.0 2.0 18.0 

Expresso Livre 110.0 102.0 2.1 19.3 

Git 196.0 158.6 3.4 40.0 
 

It is possible to notice by looking at Table 10 that the “Commit History” operation has 

no values for the last three projects. This occurs because, as the number of commits increases, 

more memory is used to calculate the commit history graph. The current algorithm has an O(x2) 

space complexity (x being the number of commits). The increasing memory usage is due to two 

factors: First, in order to plot the commit graph, JUNG library requires the entire graph in 

memory. Second, the x position of nodes in the graph are calculated based on node ancestry, 

but the y position is calculated in order to minimize the number of lines crossing during merges 

and splits in the graph. In order to do so, we used the implementation of Dijkstra’s algorithm 

(1959) provided by JUNG library, for which memory usage scales exponentially with the 



75 

 

 

 

number of nodes. Our test machine was configured with a two GB maximum Java Heap Size, 

which let us execute the “Commit History” operation for repositories with up to 6,417 commits, 

although the other operations could be executed for all the projects under analysis. This is an 

aspect for future improvements.  

According to Table 10 and Table 11, the slowest operations were “Insert 1st” and “Insert 

2nd”, due to the amount of data sent over the Internet to update the database. The tasks performed 

by both operations are almost the same, which involve storing the clone information in the 

central database (RepositoryInfo data, shown in Figure 33, on page 46) and creating a 

working copy of the monitored clone in the user’s home folder, where DyeVC will perform all 

necessary fetches during its operation. The major difference between the two operations is 

related to creating / updating the commit existence in the database. In the “Insert 1st” operation, 

all commits must be included in the database, whereas in the “Insert 2nd”, existing commits are 

updated to reflect in which clones they exist and only new commits are inserted. The time spent 

for both operations is almost the same, because inserting or updating commits in the database 

takes about the same amount of time. 

The only operation with no significant variation in response times was “Check 

Branches”. Amongst the foreground operations, the “Topology” operation had a significant 

increase in its response time, but with lower values than the “Commit History” operation. This 

is because the latter deals with much finer grain data than the former.  

Table 12 shows, for each measured operation, the correlation between time spent and 

each repository metric, according to the Pearson coefficient (PEARSON, 1895). This 

correlation coefficient measures the linear correlation between two variables x and y and ranges 

from −1 to 1. Values of 1 or -1 mean that a linear equation can describe the correlation between 

the two variables perfectly (either positive or negative, respectively). A value of 0 means that 

there is no linear correlation between them. 

Table 12 – Pearson coefficient between time spent and repository metrics for measured 

operations 

Operation # commits Size # files 

Commit History 0.95 0.62 0.41 

Topology 0.86 0.61 0.59 

Insert 1st 0.79 0.65 0.30 

Insert 2nd 0.82 0.65 0.36 

Check Branches 0.00 -0.28 -0.13 

Update Topology 0.94 0.17 0.33 

 

Looking at Table 12, we can see that the number of commits in the repositories is the 

metric with the Pearson coefficient nearest to 1. Generally, operations took longer in 



76 

 

 

 

repositories that had more commits. Size also presents a high Pearson coefficient, and it was 

expected that size and number of commits would present similar behaviors, because, as we 

discussed before, commits do not delete data from VCSs. Even if an artifact is logically deleted 

in a commit, it continues to exist in previous versions of the repository. Even in this case, 

supposing a commit that consists of only logical deletes, some metadata will be stored in the 

repository, causing it to grow continuously in space. 

After this analysis, we are able to revisit and answer Q4. 

Q4: Is it computationally feasible to gather this information from all known 

repositories, keeping them available to be used when needed? Yes. The current version of 

DyeVC allows one to gather information from repositories with different sizes, using up to 2 

GB of memory, in a reasonable time (the whole topology is shown in about 17 seconds). Besides 

that, branch checking is performed on repositories with tens of thousands of commits in a few 

seconds (3.4 seconds for the Git repository, which had more than 35,000 commits). Lastly, it is 

possible to visualize the commit history for repositories with up to 6,417 commits. Increasing 

the amount of memory available or optimizing the algorithm are ways for allowing the approach 

to processes a higher number of commits in this visualization.  

4.5 THREATS TO VALIDITY 

While we have taken care to minimize threats to the validity of the experiment, some 

factors can influence the results. The usage of a post hoc analysis to evaluate a real project may 

not reflect the exact sequence of events that occurred, although the outcome did not change. 

For example, when we say that aakoch, at some moment, had 121 commits pending to be 

pushed to the central repository, these commits could have been pushed at once, or by a series 

of smaller pushes.  

Moreover, only one project was selected to perform the post hoc analysis, what imposes 

limitations from a statistical standpoint. Furthermore, there is a risk regarding the 

instrumentation used to measure the response times during the performance evaluation. As we 

used a database stored over the Internet, the response times may have been negatively affected 

by connectivity issues and network instability. The usage of a 35Mbit/s home network also 

contributes to this network instability, because home networks have much lower service level 

agreements than corporate ones. 

Next, we used an open source project to perform the post hoc analysis. However, the 

modus operandi of peers in this context may be different from that of peers in academic or 

corporate contexts. Besides that, it is not possible to represent all different situations of a real 



77 

 

 

 

project. We discussed the most common situations that occur when using DVCSs, but a more 

thoroughly verification is needed to evaluate the usefulness of our approach in other situations. 

The selection of subjects in the observation study was done by asking for volunteers 

from students in the same research group of the experimenter. This was necessary due to time 

and people restrictions. Therefore, this group might not be representative and can be biased 

regarding the experimenter. Moreover, there were few subjects in this study. Thus, the results 

may have been influenced by the size and by specific characteristics of the group.  

Finally, tasks involving DyeVC were performed right after presenting the approach, 

giving no time to subjects to assimilate the tool. Results may have been influenced by this lack 

of time to mature the necessary knowledge to use the approach efficiently. 

4.6 FINAL CONSIDERATIONS 

The evaluation of DyeVC aimed at identifying if the approach helps developers and 

administrators to work in projects that involve DVCS. We showed that DyeVC could provide 

awareness regarding who are the people that work together on the same project and how they 

interact and / or depend on each other to accomplish their work. The observation study showed 

that DyeVC could effectively help developers and repository administrators by saving time and 

providing ways to help questions regarding DVCS usage that could not be answered before. 

We also showed that it is feasible to gather information from different repositories, 

consolidating and showing it at a reasonable time. 

 



78 

 

 

 

 

CHAPTER 5 – CONCLUSION 

5.1 CONTRIBUTIONS 

This work introduced a novel approach for DVCS monitoring and awareness, entitled 

DyeVC. This approach gathers information from registered DVCS clones and their peers, 

regarding the flow of communication and the existing commits in every node, and records this 

information in a central database. 

The gathered information is consolidated, allowing developers to increase their 

knowledge of what is going on that might affect their work, as well as which changes have to 

be sent/received to/from their teammates. It also gives repository administrators the knowledge 

about which are the existing clones of a project and how they interact with each other. 

DyeVC shows the information in different levels of detail, from a high-level topology-

like visualization, where each node represents a repository clone, to a detailed level that presents 

every commit, despite the clone where it is located. The visualizations use transformations to 

present vertices and edges using different icons, colors, line types, and text labels, according to 

the characteristics that we want to highlight. This way, we established a framework for coupling 

different visualizations related to DVCS. 

We have evaluated DyeVC on a real project, showing that it can be used to answer 

questions that arise when working with DVCSs. We have also performed an observation study 

that allowed subjects to use DyeVC to answer questions that are common when using DVCSs. 

Finally, we have also evaluated DyeVC’s performance when used with repositories of different 

sizes, and we found out that the time and space complexity of the approach are directly related 

to the number of commits in the repository under analysis, especially in the view levels with 

finer granularity. The current version of DyeVC allows one to analyze repositories with 

different sizes with a limitation of 6,417 commits shown in the finest level of granularity (level 

4, which shows the commit history), when using 2 GB of memory. 

5.2 LIMITATIONS 

DyeVC has a scalability limitation, regarding processing performance and memory 

usage, when dealing with level 4 information (commit history). We use the Dijkstra’s algorithm 

(1959) provided by the JUNG graph library to minimize the number of crossing lines in the 

lower level visualization (that shows each commit in the topology). Although information from 

levels 1 to 3 is presented at reasonable times for repositories with tens of thousands of commits, 



79 

 

 

 

 

this procedure is not optimized to deal with graphs that contain more than 6,417 nodes in level 

4. In order to draw these graphs, all vertex and edges must be loaded into memory to calculate 

vertices positions. Besides that, for repositories with more than 5,000 commits, more than a 

minute is spent to calculate positions and draw the graph. The usage of automatically collapsing 

could help in terms of time spent to draw the graph, as there would be less vertices and edges 

to be plot, but the memory issue would still be present, because collapsed nodes would be still 

loaded into memory, due to the limitation on how JUNG works. A possible way to solve that 

would be to filter commits before plotting them, for example showing only commits performed 

over the last month. A downside of this approach is that it could lead to a disconnected graph, 

for example, if work has been done over the last month on two separate branches whose 

common ancestor is a commit performed a long time ago, we would see two parallel sequence 

of commits, with no common ancestor. 

Another limitation is related to the need of a central database to record information gathered 

from the several DyeVC instances. Although this central database is needed, we used a document-

based database, and the information is read and written using semi-structured JSON documents, 

which are automatically mapped to/from the application class model. The connection with the 

central database is authenticated by using an application key. Although we do not store any sensitive 

information (we do not store contents of any files, just metadata), this might be a concern for some 

people. A different database and application key might be configured by editing the application 

configuration (more information regarding DyeVC usage and configuration is available in 

Appendix B.  

The usage of a central database also brings a limitation related to the availability of the 

solution, because DyeVC visualizations need to access the central database to retrieve the 

information that will be shown. If the database goes down, DyeVC visualizations will not work 

properly, until it is available again. This limitation could be solved by replicating the central 

database locally, or by installing local databases together with each DyeVC instance and 

establishing a peer-to-peer synchronization among them. DyeVC also needs network connectivity 

in order to present visualizations. Having a local database would help to overcome this limitation 

as well, bringing the possibility of using DyeVC without a network (for example, while travelling 

on a plane). 

An existing limitation in Level 2 visualization (which shows the topology) is regarding 

how the approach registers existing clones. In this visualization, once registered, clones will be 

presented forever. It might be the case that one had just registered a clone with DyeVC and 



80 

 

 

 

 

never worked on it again. After some time, this could lead to a polluted topology view, with 

lots of “garbage”, i.e., repositories that are not used or that might not even exist. The approach 

could check when was the last change in each clone, marking those clones that did not change 

for a period time, so that an administrator could remove it from the topology. Similarly, an 

administrator could manually include nodes in the topology, to represent clones located in 

places with no DyeVC instance running, in order to complete the topology not previously seen 

by the approach. 

5.3 FUTURE WORK 

The advent of DyeVC approach brings with it a number of possibilities for future 

researches. The following paragraphs describe possible improvements and researches that can 

be explored in the future. 

The first improvement is related to the visualizations the approach already provides. 

Level 4 visualization, which shows every commit in the topology, could be enhanced with 

automatic collapsing of similar nodes. Currently, each vertex in level 4 visualization represents 

a single commit. Depending on the repository size, this leads to a graph that is very long 

horizontally, because we show each commit on a different X-coordinate, to give the idea of 

elapsed time. Even with the zooming feature, large repositories can be difficult to analyze. It 

happens that we normally want to analyze the very ending part of a repository, which comprises 

of the most recent commits in the topology, because the older ones probably were spread to the 

whole topology already. The current implementation has a feature for the user to select a group 

of commits and manually collapse them, creating a single node that represents the group of 

collapsed commits, which is placed at the midpoint between the first and the last collapsed 

nodes. However, on a repository with thousands of commits, this is not practical. Automatic 

collapsing could compact the visualization, by collapsing contiguous nodes that represent 

commits of the same type (pending to be pulled, pending to be pushed, synchronized, etc.) and 

leaving only branch heads expanded. 

A number of research opportunities arise by increasing the amount of metadata that 

DyeVC already gathers,. For example, supposing that we are dealing with text artifacts, if 

DyeVC gathers the changes introduced by each commit at the line level (by storing each 

commit’s diff), one could create a visualization to show conflicts that will happen when merging 

two or more branches. This could be used to propose to the user an optimal sequence of merges, 

so that the number of conflicts is minimized, lowering the effort needed to perform the merges. 



81 

 

 

 

 

This additional data could also be used to mine information in the repositories, allowing 

uncovering usage patterns or presenting metrics. Mined information, together with the ability 

of creating new visualizations, could be helpful to answer a number of user questions, such as: 

Which repositories or people changed a specific artifact or group of artifacts? Which commits 

introduced the higher amount of changes in the code? Who were the top contributors in the 

project this week? Who were the top contributors in a file or in an application module? The 

answer to this last question could help, for example, in finding those developers who are experts 

on a module of the application.  

  



82 

 

 

 

 

BIBLIOGRAPHY 

APPLETON, B.; BERCZUK, S.; CABRERA, R.; ORENSTEIN, R. Streamed lines: 

Branching patterns for parallel software development. In: PATTERN LANGUAGES OF 

PROGRAMS CONFERENCE (PLOP 98), Aug. 1998, Monticello, Illinois, USA: ACM, Aug. 

1998.  

BATTIN, R. D.; CROCKER, R.; KREIDLER, J.; SUBRAMANIAN, K. Leveraging 

resources in global software development. IEEE Software, v. 18, n. 2, p. 70–77, Mar. 2001. 

BIEHL, J. T.; CZERWINSKI, M.; SMITH, G.; ROBERTSON, G. G. FASTDash: A 

Visual Dashboard for Fostering Awareness in Software Teams. In: ACM CONFERENCE ON 

HUMAN FACTORS IN COMPUTING SYSTEMS (CHI ’07), May 2007, New York, NY, 

USA: ACM, May 2007. p. 1313–1322.  

BRUN, Y.; HOLMES, R.; ERNST, M. D.; NOTKIN, D. Proactive detection of 

collaboration conflicts. In: ACM SIGSOFT SYMPOSIUM AND EUROPEAN 

CONFERENCE ON FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE’11), 

Sep. 2011, New York, NY, USA: ACM, Sep. 2011. p. 168–178.  

CEDERQVIST, P. Version Management with CVS. [N.A.]: Free Software Foundation, 

2005.  

CESARIO, C. M.; MURTA, L. G. P. What is going on around my repository? In: 

BRAZILIAN WORKSHOP ON SOFTWARE VISUALIZATION, EVOLUTION AND 

MAINTENANCE (VEM’13), 29 Sep. 2013, Brasilia, Brazil: UNB, 29 Sep. 2013. p. 14–21.  

CHACON, S. Pro Git. 1. ed. Berkeley, CA, USA: Apress, 2009.  

CHODOROW, K. MongoDB: The Definitive Guide. 2. ed. Beijing: O’Reilly Media, 

2013.  

COLLBERG, C.; KOBOUROV, S.; NAGRA, J.; PITTS, J.; WAMPLER, K. A System 

for Graph-based Visualization of the Evolution of Software. In: ACM SYMPOSIUM ON 

SOFTWARE VISUALIZATION (SOFTVIS ’03), Jun. 2003, New York, NY, USA: ACM, Jun. 

2003. p. 77–ff.  

COLLINS-SUSSMAN, B.; FITZPATRICK, B. W.; PILATO, C. M. Version Control 

with Subversion. Stanford, CA, USA: Compiled from r4849, 2011.  

DA SILVA, I. A.; CHEN, P. H.; VAN DER WESTHUIZEN, C.; RIPLEY, R. M.; VAN 

DER HOEK, A. Lighthouse: coordination through emerging design. In: WORKSHOP ON 



83 

 

 

 

 

ECLIPSE TECHNOLOGY EXCHANGE (OOPSLA ’06), Oct. 2006, New York, NY, USA: 

ACM, Oct. 2006. p. 11–15.  

DEWAN, P.; HEGDE, R. Semi-synchronous conflict detection and resolution in 

asynchronous software development. In: EUROPEAN CONFERENCE ON COMPUTER-

SUPPORTED COOPERATIVE WORK (ECSCW ’07), Sep. 2007, Limerick, Ireland: Springer 

London, Sep. 2007. p. 159–178.  

DIEHL, S. Software Visualization: Visualizing the Structure, Behaviour, and Evolution 

of Software. Berlin; New York: Springer, 2007.  

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische 

Mathematik, v. 1, n. 1, p. 269–271, 1 Dec. 1959. 

DONG, J.; GANG, X. A Topology Discovery Algorithm Based on the IP-Network. In: 

2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND 

COMMUNICATION TECHNOLOGY (ICCECT’12), Dec. 2012, Shenyang, Liaoning, China: 

IEEE, Dec. 2012. p. 665–668.  

DOURISH, P.; BELLOTTI, V. Awareness and Coordination in Shared Workspaces. In: 

ACM CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK (CSCW 

’92), Nov. 1992, New York, NY, USA: ACM, Nov. 1992. p. 107–114.  

ECLIPSE FOUNDATION. The Open Source Developer Report - 2013 Eclipse 

Community Survey. Survey. San Francisco, CA, USA: Eclipse Foundation, Jun. 2013. 

ELLIOTT, J.; ECKSTEIN, R.; LOY, M.; COLE, B. Java Swing, Second Edition. 2. ed. 

Sebastopol, CA: O’Reilly Media, 2002.  

ELSEN, S. VisGi: Visualizing Git branches. In: IEEE WORKING CONFERENCE ON 

SOFTWARE VISUALIZATION (VISSOFT’13), Sep. 2013, Eindhoven, Netherlands: IEEE, 

Sep. 2013. p. 1–4.  

ESTUBLIER, J. Software configuration management: a roadmap. In: INTERNATION 

CONFERENCE ON SOFTWARE ENGINEERING (ICSE ’00), May 2000, New York, NY, 

USA: ACM, May 2000. p. 279–289.  

FIELDING, R. T. Architectural Styles and the Design of Network-based Software 

Architectures. 2000. Thesis – University of California, Irvine, CA, USA, 2000.  

FITZPATRICK, G.; MARSHALL, P.; PHILLIPS, A. CVS Integration with 

Notification and Chat: Lightweight Software Team Collaboration. In: ACM CONFERENCE 

ON COMPUTER-SUPPORTED COOPERATIVE WORK (CSCW ’06), Nov. 2006, New 

York, NY, USA: ACM, Nov. 2006. p. 49–58.  



84 

 

 

 

 

FUKS, H.; RAPOSO, A.; GEROSA, M. A.; PIMENTEL, M.; LUCENA, C. J. The 3c 

collaboration model. In: KOCK, N. (Org.). . The Encyclopedia of E-Collaboration. New York, 

NY, USA: Information Science Reference, 2007. p. 637–644.  

GILBERT, E.; KARAHALIOS, K. LifeSource: Two CVS Visualizations. In: ACM 

CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI ’06), Apr. 2006, 

New York, NY, USA: ACM, Apr. 2006. p. 791–796.  

GUIMARÃES, M. L.; SILVA, A. R. Improving early detection of software merge 

conflicts. In: INTERNATION CONFERENCE ON SOFTWARE ENGINEERING (ICSE ’12), 

Jun. 2012, Piscataway, NJ, USA: IEEE Press, Jun. 2012. p. 342–352.  

GUMM, D.-C. Distribution Dimensions in Software Development Projects: A 

Taxonomy. IEEE Software, v. 23, n. 5, p. 45–51, Sep. 2006. 

GUTWIN, C.; GREENBERG, S.; ROSEMAN, M. Workspace Awareness in Real-Time 

Distributed Groupware: Framework, Widgets, and Evaluation - Springer. In: SASSE, M. A.; 

CUNNINGHAM, R. J.; WINDER, R. L. (Org.). . People and Computers XI. London: Springer 

London, 1996. p. 281–298.  

HOZUMI, T. Visugit. Available at: <https://github.com/hozumi/visugit>. Accessed: 2 

jan. 2015.  

LANZA, M. The Evolution Matrix: Recovering Software Evolution Using Software 

Visualization Techniques. In: INTERNATIONAL WORKSHOP ON PRINCIPLES OF 

SOFTWARE EVOLUTION (IWPSE ’01), Sep. 2001, New York, NY, USA: ACM, Sep. 2001. 

p. 37–42.  

LEON, A. Software Configuration Management Handbook, Second Edition. 2. ed. 

Norwood, MA, USA: Artech House, 2004.  

LI, H.; DAN, C.; HUAIXIANG, B.; SHURONG, L. Topology Discovery Algorithm 

Based on Ant Colony Algorithm of Power Line Carrier Sensor Network. In: 

INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND 

NETWORKS (ICCSN ’09), Feb. 2009, Macau, China: IEEE, Feb. 2009. p. 102–105.  

LI, M.; YANG, J.; AN, C.; LI, C.; LI, F. IPv6 network topology discovery method based 

on novel graph mapping algorithms. In: IEEE SYMPOSIUM ON COMPUTERS AND 

COMMUNICATIONS (ISCC ’13), Jul. 2013, Split, Croatia: IEEE, Jul. 2013. p. 554–560.  

MARINILLI, M. Java Deployment with JNLP and WebStart. 1. ed. Indianapolis, Ind: 

Sams Publishing, 2001.  



85 

 

 

 

 

MURTA, L. G. P. Gerência de Configuração no Desenvolvimento Baseado em 

Componentes. 2006. Thesis – UFRJ, COPPE, Rio de Janeiro, Brasil, 2006.  

MURTA, L. G. P. Version Control - an Introduction, lecture notes distributed in 

Software Configuration Management Laboratory at Universidade Federal Fluminense. 

Niteroi, RJ, Brazil, 17 Aug. 2012.  

O’SULLIVAN, B. Making sense of revision-control systems. Communications of the 

ACM, v. 52, n. 9, p. 56–62, Sep. 2009a. 

O’SULLIVAN, B. Mercurial: The Definitive Guide. 1. ed. Sebastopol, CA, USA: 

O’Reilly Media, 2009b.  

PEARSON, K. Note on Regression and Inheritance in the Case of Two Parents. 

Proceedings of the Royal Society of London, v. 58, n. 347-352, p. 240–242, 1 Jan. 1895. 

PERRY, D. E.; SIY, H. P.; VOTTA, L. G. Parallel changes in large scale software 

development: an observational case study. In: INTERNATIONAL CONFERENCE ON 

SOFTWARE ENGINEERING (ICSE 98’), Apr. 1998, Washington, DC, USA: IEEE Computer 

Society, Apr. 1998. p. 251–260.  

PRESTON-WERNER, T. GitHub’s Network Graph. Available at: 

<https://github.com/blog/39-say-hello-to-the-network-graph-visualizer>. Accessed: 2 jan. 

2015.  

ROCHKIND, M. J. The source code control system. IEEE Transactions on Software 

Engineering. (TSE), v. 1, n. 4, p. 364–470, Dec. 1975. 

SANTOS, R.; MURTA, L. G. P. Evaluating the Branch Merging Effort in Version 

Control Systems. In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES 

’12), Sep. 2012, Natal, RN - Brazil: IEEE Computer Society, Sep. 2012. p. 151–160.  

SARMA, A.; REDMILES, D. F.; VAN DER HOEK, A. Palantir: Early Detection of 

Development Conflicts Arising from Parallel Code Changes. IEEE Transactions on Software 

Engineering, v. 38, n. 4, p. 889 –908, Aug. 2012. 

SCHOLLMEIER, R. A definition of peer-to-peer networking for the classification of 

peer-to-peer architectures and applications. In: INTERNATIONAL CONFERENCE ON 

PEER-TO-PEER COMPUTING (P2P’01), Aug. 2001, Linkoping, Sweden: IEEE, Aug. 2001. 

p. 101–102.  

SHULL, F.; CARVER, J.; TRAVASSOS, G. H. An Empirical Methodology for 

Introducing Software Processes. In: EUROPEAN SOFTWARE ENGINEERING 

CONFERENCE HELD JOINTLY WITH ACM SIGSOFT INTERNATIONAL SYMPOSIUM 



86 

 

 

 

 

ON FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE-9), 2001, New York, 

NY, USA: ACM, 2001. p. 288–296.  

STEINMACHER, I.; CHAVES, A.; GEROSA, M. Awareness Support in Distributed 

Software Development: A Systematic Review and Mapping of the Literature. 15th ACM 

Conference on Computer-supported Cooperative Work (CSCW ’12), p. 1–46, May 2012. 

SVAHNBERG, M.; AURUM, A.; WOHLIN, C. Using Students As Subjects - an 

Empirical Evaluation. In: INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE 

ENGINEERING AND MEASUREMENT (ESEM ’08), Oct. 2008, New York, NY, USA: 

ACM, Oct. 2008. p. 288–290.  

TICHY, W. RCS: A system for version control. Software - Practice and Experience, v. 

15, n. 7, p. 637–654, 1985. 

UZAIR, U.; AHMAD, H. F.; ALI, A.; SUGURI, H. An Efficient Algorithm for Ethernet 

Topology Discovery in Large Multi-subnet Networks. In: IEEE INTERNATIONAL 

CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE ’07), Apr. 2007, San 

Antonio, TX, USA: IEEE, Apr. 2007. p. 1–7.  

VOINEA, L.; TELEA, A.; VAN WIJK, J. J. CVSscan: Visualization of Code Evolution. 

In: ACM SYMPOSIUM ON SOFTWARE VISUALIZATION (SOFTVIS ’05), May 2005, 

New York, NY, USA: ACM, May 2005. p. 47–56.  

WALRAD, C.; STROM, D. The importance of branching models in SCM. IEEE 

Computer, v. 35, n. 9, p. 31 – 38, Sep. 2002. 

WEBSTER, J.; WATSON, R. T. Analyzing the past to prepare for the future: Writing a 

literature review. Management Information Systems Quarterly, v. 26, n. 2, p. 3, 2002. 

YAN, H. The study on network topology discovery algorithm based on SNMP protocol 

and ICMP protocol. In: INTERNATIONAL CONFERENCE ON SOFTWARE 

ENGINEERING AND SERVICE SCIENCE (ICSESS ’12), Jun. 2012, Beijing, China: IEEE, 

Jun. 2012. p. 665–668.  

YONG, W.; NAN, P.; XIAOLING, T. Network topology discovery algorithm based on 

OSPF. In: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND 

INTEGRATED SYSTEMS (ICISS ’10), Oct. 2010, Guilin, China: IEEE, Oct. 2010. p. 136–

139.  

 

  



87 

 

 

 

 

APPENDIX A – COMMIT HISTORY VISUALIZATION 

As discussed in Section 3.3.4, Level 4 information consists in a visualization that shows 

all commits pertaining to a project as a DAG, where each vertex represents a commit. This 

appendix presents more information regarding how this visualization is built. 

We created a layout to plot the graph, named RepositoryHistoryLayout, which takes a 

JUNG graph as input. A JUNG graph is implemented as a double linked list l, where each vertex 

v is an element of l. Thus, for a commit represented by v, it is possible to get both the 

predecessors (parents) and successors (children) of v. For example, Figure 47 shows that 

commit 3 has one predecessor (2) and two successors (4 and 5). 

 

Figure 47 – Predecessors and successors for a commit 

In order to plot a graph, we have to calculate the x and y positions for every vertex v in 

the graph. To calculate the x position, we start from the first commit in the repository. This is 

not necessarily the commit with the earliest commit date because, as we discussed in Section 

3.3.4, DVCSs do not have the concept of a central clock. To find out the first commit, we look 

for the commit that has no predecessors and assign 0 (zero) to its x position (This would be 

commit 1 in Figure 47). After that, we take all its successors (children commits) and, for each 

one of them, we look at the commit date to find out which one is the earliest, assigning greater 

values for x as the algorithm proceeds, until all commits have been assigned a value for x. If we 

find that a commit has a child with lower value for x value then itself, this is due to a clock 

problem, and we correct it by changing both commits x values. This is the case shown in Figure 

48, where commit 8 should be to the right of commit 7. Notice that the edge that connects 

commit 8 to commit 7 is in the wrong direction.  

 

Figure 48 – Commit with wrong value for x 



88 

 

 

 

 

In order to calculate the y position of each node, processing starts from the farthest 

commit to the right, for which a value of 0 is assigned to its y position. This is to guarantee that 

the branch with the most recent commit in the history always appear at the top. Figure 49 

presents an example of a small commit history showing the y positions, beginning in 0, down 

to -100. It is possible to notice that most recent commit is A, and that its y position is 0. Other 

branches are assigned values below 0 for y position (branches headed by commits B and C were 

assigned y positions -60 and -100, respectively), which makes the graph grow to the bottom.  

 

Figure 49 – Calculating y position 

The calculation occurs from right to left, looking at the predecessors of each commit. 

When a commit has more than one predecessor (like commit M in Figure 49, this because it is 

a merge. To find out the y position for each of M’s predecessors, it is necessary to find their 

common ancestor (which is S in our example) and calculate the height of the subtree between 

these two commits (S and M). In this example, the height of the subtree between S and M  is 

two. Therefore, one of M’s predecessors is assigned 0 for y position (same position as M), while 

the other is assigned -40 (which is two steps down). There could be more merges between S 

and M and the process continues until all nodes are visited and their y position is properly set. 

  



89 

 

 

 

 

APPENDIX B – DYEVC USAGE 

B.1 INTRODUCTION 

This Appendix show basic usage information regarding DyeVC, together with some tips 

on its configuration. This information is also available online on the DyeVC User Manual32. 

B.2 RUNNING DYEVC 

As we discussed in Section 3.5, DyeVC uses Java Web Start technology and thus does 

not need to be formally installed. After launching the application for the first time, it creates a 

shortcut in the Desktop (Figure 50.a), which can be used to execute the application later on. 

After running the application, it lies on the system tray bar (Figure 50.b). A single click on the 

icon will show the application window and minimizing it will take it back to the tray bar. 

     

(a) (b) 

Figure 50 – DyeVC icon on the desktop and on the tray bar 

B.2.1 MAIN WINDOW 

After maximizing the application, the main window is shown (Figure 51). The main 

window presents all monitored repositories, along with the following information in the 

Monitored Repositories panel: 

 Status: An icon representing the clone status related to its known partners (as 

discussed in Section 3.3); 

 System Name: The system or project name that the clone belongs. Clones that belong 

to the same project are shown together in the topology view; 

 Clone Name: The name that the user gave to this particular clone. It must be unique 

on each single machine for a particular system name; 

 Id: An internal unique id generated by DyeVC; 

                                                 

 

32 https://github.com/gems-uff/dyevc/wiki/User-Manual 



90 

 

 

 

 

 Clone Path: The path in the local machine where this clone is found. 

 
Figure 51 – DyeVC main window 

The application also shows relevant information regarding the monitoring status in the 

Messages panel. There is the possibility to see more detailed log messages by clicking on View 

 Console Window. A new window will be opened, where messages are displayed according 

to their levels of criticality. The default behavior is to show INFO, WARN, and ERROR 

messages, but right clicking on the panel allows the user to change this behavior, allowing to 

also log TRACE and DEBUG messages. 

B.2.2 MONITORED REPOSITORIES 

The main screen will be initially empty as there is no repository being monitored. 

Clicking on File  Add Project allows creating a new monitoring configuration (Figure 52). 

The user can choose a system name from the ones provided on the drop-down list, or type a 

new one, and click on the Explore button to choose the path where the clone is located. The 

Clone Name will be automatically chosen by the application, based on the folder name where 

the clone is located. For instance, if the user points the Clone Address to 

/home/users/username/myprojects/xyz, the Clone Name of this configuration will be xyz. 



91 

 

 

 

 

 

Figure 52 – Creating a new monitoring configuration 

B.2.3 VISUALIZATIONS 

Once repositories are being monitored, the user is able to navigate through all the 

visualization levels discussed in Section 3.3, where each one of them is described. Level 1 

(Notifications) will be shown as notifications in tray bar (Figure 50.b); Level 2 (Topology) will 

be presented by right clicking on a repository and choosing Show Topology (Figure 53); Level 

3 (Tracked Branches) will be shown by hovering the mouse over any monitored repository 

(Figure 51); and Level 4 (Commits) will be accessible by right clicking on a repository and 

choosing Show Commit History (Figure 54). 

 

Figure 53 – Topology view for a given project 



92 

 

 

 

 

 

Figure 54 – Commit history for a given project 

B.3 TYPICAL USAGES 

DyeVC visualizations may help both administrators and developers that work with 

DVCS. However, each profile may use DyeVC differently. Figure 55 represents the typical 

DyeVC usage by administrators. After starting DyeVC, an administrator will typically 

maximize it and invoke any of its visualizations. After working with the desired visualizations, 

the administrator will then stop DyeVC. 

 

Figure 55 – Typical DyeVC usage by administrators 

Figure 56 represents the typical DyeVC usage by developers. After starting DyeVC, a 

developer will generally leave it minimized. After DyeVC sends a notification, the developer 

may decide to check more details of the notification, in which case they would maximize it and 



93 

 

 

 

 

invoke any of its visualizations. After working with the desired visualizations, the developer 

would minimize it again, until another notification is received and they decide to check it. The 

developer could also stop DyeVC, but this would generally happen only at the end of a workday. 

 

Figure 56 – Typical DyeVC usage by developers 

B.4 FURTHER CONFIGURATIONS 

This Section discusses further configurations that may be needed to adjust DyeVC to 

the user’s need. 

B.4.1 REFRESH RATE 

DyeVC periodically updates the state of all monitored repositories. The time elapsed 

between subsequent updates is configured through the DyeVC Settings window (Figure 57). 

This setting is in seconds and its default value is 300, meaning that the application will check 

the repositories at each 5 minutes. 



94 

 

 

 

 

 

Figure 57 – DyeVC settings window 

B.4.2 CONNECTING TO A DIFFERENT DATABASE 

If user wants to use a different database to store topology data, it is necessary to 

manually create or edit a preferences key, as described below, according to the user’s operating 

system: 

 On Windows systems, use the regedit tool and create / edit the following keys under 

HKEY_CURRENT_USER\Software\JavaSoft\Prefs\br\uff\ic\dyevc\application\ge

neralsettings (both keys must be created as String values): 

o databasePath: this key stores the URL to the MongoDB instance; 

o appKey: this key stores the application key used to access MongoDB REST 

services. 

 On Linux or Mac systems, create the following text files under 

~/Library/Preferences/br.uff.ic.dyevc.application/generalsettings: 

o databasePath: this file must contain the URL to the MongoDB instance; 

o appKey: this file must contain the application key used to access MongoDB 

REST services. 

B.4.3 CLEARING THE CACHE 

If any visualization does not match the user’s environment, this can possibly due to a 

bug in the application. Although this bug may have already been fixed, DyeVC stores some 

cache information to speed up the analysis, and this cache must be cleared in order to fix the 

visualization. 

To clear the cache, the user must right click on the desired monitored repository and 

then on Clear Cache and Check Project. This will clear the cache for that project and force 

DyeVC to check it again as if it was just added to the list of monitored repositories. 

  



95 

 

 

 

 

APPENDIX C – INFORMED CONSENT FORM 

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) 

 

Condutor do Estudo: Cristiano Machado Cesário (aluno de mestrado) 

Pesquisador Responsável: Prof. Leonardo Murta – {leomurta}@ic.uff.br 

Instituição: Universidade Federal Fluminense (UFF) 

 

Eventualmente realizamos estudos experimentais para caracterizar/avaliar uma determinada 

tecnologia de software. Estes estudos são conduzidos por alunos de Pós-graduação em 

Computação da Universidade Federal Fluminense (UFF). Você foi previamente selecionado 

pelo seu perfil/conhecimento/experiência e está sendo convidado a participar desta pesquisa. 

Essa pesquisa consiste em avaliar o apoio fornecido por ferramentas de software (DyeVC e/ou 

Git) na percepção de atualizações em projetos de software.   

1) Procedimentos 

O estudo está sendo realizado com data e hora marcada com os participantes pré-

selecionados. O estudo será executado de forma individual. O estudo consiste no uso da 

ferramenta DyeVC e/ou Git para responder perguntas relacionadas ao andamento do 

projeto JQuery. Durante o estudo é esperado que você expresse em voz alta o que está 

pensando/fazendo. O áudio será gravado e transcrito para viabilizar a análise posterior 

da sessão. Caso seja necessário, ao final do estudo será solicitado que você responda um 

questionário de avaliação sobre a tecnologia de software que está sendo 

caracterizada/avaliada.   

2) Tratamento de possíveis riscos e desconfortos 

Serão tomadas todas as providências durante a coleta de dados de forma a garantir a sua 

privacidade e seu anonimato.  

3) Benefícios e Custos 

Espera-se que, como resultado deste estudo, você possa aumentar seus conhecimentos, 

de maneira a contribuir para o aumento da qualidade das atividades com as quais você 

trabalhe ou possa vir a trabalhar. Este estudo também contribuirá com resultados 

importantes para a pesquisa de um modo geral. Você não terá nenhum gasto ou ônus 

com a sua participação no estudo e também não receberá qualquer espécie de reembolso 

ou gratificação devido à autorização do uso dos dados coletados nesse estudo.  

   



96 

 

 

 

 

4) Confidencialidade da Pesquisa 

Toda informação coletada neste estudo é confidencial e seu nome não será identificado 

de modo algum. Quando os dados forem coletados, seu nome será removido dos 

mesmos e não será utilizado em nenhum momento durante a análise ou apresentação 

dos resultados. 

5)  Participação 

Sua participação neste estudo é muito importante e voluntária, pois requer a sua 

aprovação para utilização dos dados coletados. Você tem o direito de não querer 

participar ou de sair deste estudo a qualquer momento, sem penalidades. Em caso de 

você decidir se retirar do estudo, favor notificar o pesquisador responsável. Você pode 

solicitar e esclarecimento sobre o estudo a qualquer momento. 

6) Declaração de Consentimento 

Declaro que li e estou de acordo com as informações contidas neste documento e que 

toda linguagem técnica utilizada na descrição deste estudo de pesquisa foi explicada 

satisfatoriamente, recebendo respostas para todas as minhas dúvidas. Confirmo também 

que recebi uma cópia deste Termo (TCLE), compreendo que sou livre para não autorizar 

a utilização dos meus dados neste estudo em qualquer momento, sem qualquer 

penalidade. Declaro ter mais de 18 anos e concordo de espontânea vontade em participar 

deste estudo. 

  

Data: 

 

Nome do Participante (letra de forma): 

 

RG do Participante:  

 

Assinatura: 

  



97 

 

 

 

 

APPENDIX D – CHARACTERIZATION FORM 

Questionário de Caracterização 

Este formulário contém algumas perguntas sobre sua experiência acadêmica e profissional. 

1. Formação acadêmica 

( ) Doutorado 

( ) Doutorando 

( ) Mestrado 

( ) Mestrando 

( ) Graduacao 

Ano de ingresso: _________ Ano de conclusao (ou previsao de conclusao): ________ 

2. Formação Geral 

2.1. Em que tipo de projetos você ocupa a maior parte do tempo? 

a) Acadêmicos 

b) Pessoais 

c) Open-Source 

d) Indústria 

2.2. Quantos anos de experiência em programação você possui? 

e) 0-2 anos 

f) 3-5 anos 

g) 6-10 anos 

h) Mais de 10 anos 

2.3. Qual SCV você utiliza com mais frequência? 

i) Git 

j) Subversion 

k) CVS 

l) Mercurial 

m) Outro. Especificar: ________________________ 

2.4. Com quantas pessoas, em média, você costuma trabalhar em equipes de 

desenvolvimento? 

n) Apenas eu 

o) 2-5 pessoas 

p) 6-10 pessoas 

q) Mais de 10 pessoas 

  



98 

 

 

 

 

3. Utilização de Sistemas de Controle de Versão (SCV) 

3.1. Com que frequência você efetua commit de suas mudanças? 

a) Depende 

b) A cada grupo de linhas editadas 

c) Ao terminar as alterações em um método de uma classe 

d) Ao terminar a feature que estou implementando ou o bug que estou corrigindo 

e) Uma vez por dia, antes de terminar o trabalho 

f) Quando lembro, ou quando alguém solicita que disponibilize as alterações que fiz 

3.2. Se você escolheu “Depende”, sua decisão depende de que fatores? 

 

 

 

3.3. Ao efetuar um commit, como você agrupa (ou quebra) suas alterações? 

 

 

 

 

 

 

  



99 

 

 

 

 

APPENDIX E – ACTIVITIES – PHASE 1 

Estudo Observacional – Etapa 1 

Instruções: 

Este é um estudo de observação, por isso, sempre que possível, verbalize seus pensamentos, 

para que o experimentador possa melhor avaliar os resultados obtidos. Pergunte e comente tudo 

que achar necessário. Você terá 15 minutos para atuar em cada um dos cenários. Caso não 

consiga responder a algumas das perguntas, registre o fato e passe à pergunta seguinte. 

Contextualização 

Você trabalha em um projeto open source (JQuery) que recebe contribuições de 

desenvolvedores em todo o mundo. Por esse motivo, você não tem contato direto com as demais 

pessoas que contribuem para esse projeto.  

Cenário 1: 

Você é um desenvolvedor que está na trabalhando no projeto JQuery, em um clone chamado 

aakoch. Responda às seguintes questões: 

1.1 Qual a situação de seu clone em relação ao repositório central? 

(  ) Sincronizado 

(  ) Adiantado em ____ commits 

(  ) Atrasado em ____ commits 

 

1.2 Quem mais está trabalhando no projeto JQuery, além de você? (outros clones) 

 

 

1.3 Quais foram os arquivos modificados no commit com hash iniciado em 5d454? 

 

 

  



100 

 

 

 

 

Cenário 2: 

Após alguns meses, você passou a gerenciar o projeto JQuery. Responda às seguintes questões: 

2.1 Quais são os clones existentes do JQuery? 

 

 

 

2.2 Qual(is) clone(s) está(ão) sincronizado(s) com o repositório central? 

 

 

 

2.3 Quantos commits em ramos rastreados estão pendentes de envio ao repositório central? 

 

 

 

2.4 Existe algum commit realizado em ramo não rastreado? Onde? 

 

 

 

 

  



101 

 

 

 

 

APPENDIX F – ACTIVITIES – PHASE 2 

Estudo Observacional – Etapa 2 

Instruções: 

Este é um estudo de observação, por isso, sempre que possível, verbalize seus pensamentos, 

para que o experimentador possa melhor avaliar os resultados obtidos. Pergunte e comente tudo 

que achar necessário. Você terá 15 minutos para atuar em cada um dos cenários. Caso não 

consiga responder a algumas das perguntas, registre o fato e passe à pergunta seguinte 

Abordagem DyeVC 

DyeVC é uma abordagem cujo objetivo é proporcionar a percepção de alterações (awareness) 

realizadas em repositórios de controle de versão distribuídos (DVCS – Distributed Version 

Control Systems). A abordagem consiste em um conjunto de visualizações, em diferentes níveis 

de detalhe, que proporcionam que os envolvidos em projetos que utilizam DVCS possam: 

 Receber notificações na barra de tarefas, sempre que uma alteração ocorrer nos repositórios 

associados aos clones em que está trabalhando (i.e. repositórios para os quais faz push e dos 

quais faz pull); 

 Visualizar os clones conhecidos de um projeto, e as dependências entre eles (i.e. quem se 

comunica com quem); 

 Visualizar informações sobre os ramos rastreados, bem como sua situação em relação aos 

ramos correspondentes no(s) repositório(s) de origem; 

 Visualizar o grafo de commits de toda a topologia, apresentando não só os commits 

existentes localmente, mas também aqueles commits que existam em outros repositórios 

(mesmo que não haja uma comunicação entre eles. Commits existentes em ramos não 

rastreados também são apresentados nessa visualização. 

A Fig. 1 apresenta a tela principal do DyeVC e a Tabela 1 apresenta as possíveis situações de 

um repositório que são apresentadas nessa tela. 



102 

 

 

 

 

 

Fig. 1 – Tela principal do DyeVC 

Tabela 1 – Possíveis status de um repositório 

Status Description 

 
DyeVC has not analyzed the repository yet. 

 
Repository is synchronized with all peers. 

 
Repository has changes that were not sent yet to its peers (it is ahead its peers). 

 
Peers have changes that were not sent yet to the repository (it is behind its peers). 

 
Repository is both ahead and behind its peers. 

 
Invalid repository. This happens when DyeVC cannot access the repository. The 

reason is presented to the user. 

 

  



103 

 

 

 

 

A Fig. 2 e a Fig. 3 apresentam os principais elementos da visualização de topologia do DyeVC.  

 

Fig. 2 – Elementos da visualização de topologia do DyeVC 

 

Fig. 3 – Elementos da visualização de topologia do DyeVC 

  



104 

 

 

 

 

A Fig. 4 apresenta a visão de commits da abordagem. O código de cores utilizado na 

representação de commits é apresentado na Fig. 5. 

 

Fig. 4 – Visão de commits (história do repositório) 

 

Fig. 5 – Elementos da visualização de commits do DyeVC 

 

  



105 

 

 

 

 

Contextualização 

Após ter contato com a abordagem DyeVC, refaça os cenários 1 e 2 da etapa 1, verificando se 

sua resposta se mantém. Caso a resposta agora seja outra, ou caso não tenha conseguido 

responder à questão na primeira etapa e consiga agora, informe a nova resposta no formulário.  

Cenário 1: 

Você está na trabalhando no projeto JQuery, em um clone chamado aakoch. Responda às 

seguintes questões: 

1.1 Qual a situação de seu clone em relação ao repositório central? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

(  ) Sincronizado 

(  ) Adiantado em ____ commits 

(  ) Atrasado em ____ commits 

 

1.2 Quem mais está trabalhando no projeto JQuery, além de você? (outros clones) 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 

1.3 Quais foram os arquivos modificados no commit com hash iniciado em 5d454? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 

Cenário 2: 

Após alguns meses, você passou a gerenciar o projeto JQuery. Responda às seguintes questões: 

2.1 Quais são os clones existentes do JQuery? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 



106 

 

 

 

 

2.2 Qual(is) clone(s) está(ão) sincronizado(s) com o repositório central? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 

2.3 Quantos commits em ramos rastreados estão pendentes de envio ao repositório central? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 

2.4 Existe algum commit realizado em ramo não rastreado? Onde? 

(  ) Mesma resposta da etapa 1 Resposta diferente: 

 

 

 

 

  



107 

 

 

 

 

APPENDIX G – EXIT SURVEY 

Nome:  

Por favor, preencha a seguinte pesquisa sobre este experimento utilizando uma escala de 1 até 

5 (onde 1 discorda plenamente, 2 discorda, 3 neutro, 4 concorda, 5 concorda plenamente ou 

N/A não se aplica) 

Você achou fácil a interação com o DyeVC?  

1  2  3  4  5  N/A 

Você achou fácil identificar os repositórios relacionados no DyeVC?  

  1  2  3  4  5  N/A 

Você achou fácil a utilização das operações disponibilizadas no DyeVC?  

  1  2  3  4  5  N/A 

Qual operação disponibilizada pelo DyeVC você achou mais útil? 

 

 

 

Você achou que as visualizações disponibilizadas pelo DyeVC foram úteis para responder 

as questões? 

  1  2  3  4  5  N/A 

Qual visualização disponibilizada pelo DyeVC você achou mais útil? 

 

 

 

Você acha que o uso do DyeVC lhe ajudou durante a investigação do projeto JQuery?  

  1  2  3  4  5  N/A 

Liste os aspectos positivos da abordagem 

 

 

 

 

 

  



108 

 

 

 

 

Liste os aspectos negativos da abordagem 

 

 

 

 

 

Você tem algum outro comentário sobre a elaboração do experimento, tarefas 

selecionadas ou em relação à abordagem DyeVC? 

 

 

 

 

 

 


