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�Science is a way of life. Science is a perspective. Science is the process that takes us

from confusion to understanding in a manner that is precise, predictive and reliable - a

transformation, for those lucky enough to experience it, that is empowering and

emotional� (Brian Greene).
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Resumo

Nesta tese é apresentado um novo método para a cosegmentação não supervisionada de
imagens. Este problema lida com a segmentação em duas regiões distintas, conhecidas
como objeto e fundo da cena, de uma coleção contendo múltiplas imagens. Os objetos
da cena são visualmente similares, porém distintos dos fundos que possuem atributos que
variam, como cor e textura. Existem muitas aplicações para sistemas de cosegmentação,
por exemplo: para o ranqueamento de imagens em sistemas de recuperação de imagens
baseados em conteúdo, para o reconhecimento de objetos em grandes bases de dados, para
a construção de resumos visuais de álbuns de fotos pessoais, para a edição e�ciente de
objetos selecionados de uma coleção, etc.

Este método utiliza um descritor de atributos baseado em cores, textura e posição das
regiões das imagens, e é de baixa dimensionalidade em comparação com outros trabalhos
da literatura. Até por isso, a quantidade de dados a serem processados é menor que em
outros trabalhos, com resultados de grande qualidade. Estes atributos são: o espaço de
cor CIE L*a*b*, os bancos de �ltros de Gabor e a posição bidimensional dos pixels, sendo
agrupados posteriormente por um procedimento de Clusterização Local.

Após a Clusterização Local, são empregados mapas de saliência em conjunto com
um algoritmo de Clusterização Global, que seleciona regiões de interesse visualmente
similares em coleções de imagens. A informação de saliência é usada para classi�car regiões
caracterizadas como grupos globais em conjuntos de objeto e fundo. As demais regiões não
globais da coleção também são utilizadas, mas classi�cadas como provavelmente objeto
e provavelmente fundo, a �m de se realizar cosegmentação de maneira mais completa
possível. Nossa principal contribuição é esta etapa de Clusterização Global, que possibilita
a identi�cação e o agrupamento de regiões visualmente similares em coleções de imagens,
de maneira simples e e�caz.

Essas quatro classi�cações, de�nidas como objeto, fundo, provavelmente objeto e
provavelmente fundo, são as sementes iniciais de um procedimento baseado em Cortes
em Grafos, que computam a cosegmentação �nal. Os resultados advindos do algoritmo
de Cortes em Grafos também são usados para se re�nar a informação de saliência original,
de�nindo um método de cosegmentação iterativo. O método proposto estende trabalhos
que segmentam objetos de interesse a partir de mapas de saliência. Além disso, após a
análise de resultados experimentais, veri�ca-se que este método produz resultados muito
competitivos em relação a outras propostas consideradas estado-da-arte na literatura,
mesmo em coleções de imagens que introduzem grande variedade de iluminação, objetos
de interesse oclusos ou fundos de cena repetitivos ou com pouco contraste.

Palavras-chave: Cosegmentação de Imagens, Clusterização, Descritores de Atributos
de Imagens, Cortes em Grafos, Mapas de Saliência, Campos Markovianos Randômicos,
Bancos de Filtros de Gabor.



Abstract

This thesis introduces a new method for unsupervised image cosegmentation. This prob-
lem deals with a collection containing multiple images that are segmented in binary re-
gions, known as object and background of the scene. The objects of interest are visually
similar but varies from the background in features of color and texture. Several appli-
cations for cosegmentation systems can be considered: image ranking in content based
image retrieval systems, object recognition by associating an image with a large database,
construct a visual summary from personal photos, segment a common object of multiple
images to e�ciently edit all occurrences, among others.

Our method uses a feature descriptor based on color, texture and position attributes of
each image segment. Our feature descriptor is a low dimensional feature vector compared
to other works. This reduces the amount of data necessary to compute the result with
high quality, and prevents over�tting problems. Our feature descriptor encompasses the
CIE L*a*b* color space, Gabor textures bank �lters and bidimensional position of pixels,
which is used to perform a Local Clustering stage for each image.

Our method combines saliency information with a Global Clustering step, which re-
veals parts of the objects by detecting similar subregions named global clusters across
image collections. The global clusters are classi�ed into foreground and background re-
gions based on their saliency information, and even regions not classi�ed as global clusters
are considered in the cosegmentation procedure, being classi�ed into probable object and
probable background regions, obtaining the most complete data as possible to infer the
label of each region.

These four types of regions are the input seeds for a Graph Cuts procedure that
computes the �nal cosegmentation. The Graph Cuts result can also be used to com-
pute a re�ned version of the saliency information which enables us to de�ne an iterative
cosegmentation pipeline. We believe that our method extends object saliency detection
proposals and can improve the �nal accuracy of distinct variations of it. Finally, our
framework produces remarkable results in comparison with state-of-the-art unsupervised
cosegmentation works, even in challenging datasets with illumination variance, occluded
objects and identical or cluttered backgrounds.

Keywords: Cosegmentation, Graph Cuts, Salient Object Detection, Markov Random
Fields, Gabor Filter Banks, Clustering, Feature Descriptors.
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Chapter 1

Introduction

The human visual system is able to analyze three-dimensional scenes of the world and

detect objects easily, quickly and e�ciently. For example, it perceives the color, shape,

texture patterns and translucency, among other features of an object of the scene. This

human capability has attracted the interest of many scientists, who have been studying

for decades how the visual system works, principally to simulate it in many computer

applications.

The human visual system is of special interest for the Computer Vision research �eld,

which aims at developing a visual interpretation of the world using machines that extract

information from images [49]. Many Computer Vision approaches arise from capabilities

of the human visual system, such as the segmentation of an object of interest from the

background of a scene. This is a problem called image segmentation, widely applied in

object recognition, compression, medical software, among others [21].

The image segmentation problem is the partition of an image into a set R = {R1, . . . ,

Rn} of nonoverlapping regions whose union is the entire image. The purpose of segmenta-

tion is to decompose the image into parts that are meaningful with respect to a particular

application [26]. Many works focused on the problem of partitioning an image into two

regions, such that n = 2. These two regions are typically referred as object and background

or R = {O,B} [21]. Sometimes the object of interest is also called foreground.

A version of the image segmentation problem that became very popular in the last

years is the image cosegmentation problem [52], where a set of images I = {I1, I2, . . . , In}
is to be segmented simultaneously, with all Ii sharing visually similar object instances Ok.

Figure 1.1 depicts an example of cosegmentation.

Image cosegmentation has many motivations in daily life. The advent of photography
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Figure 1.1: Example of cosegmentation produced by the proposed method of this thesis.
The red strokes delimit each object from the scene.

sharing websites and social networks such as Flickr®, Facebook®and Instagram®[2]

provided an enormous database of related images with similar objects. It is estimated

that Facebook stores more than 50 billion photos, with millions added every month. Image

cosegmentation approaches could take advantage of this rich collection, being extremely

useful for object recognition, image retrieval, image editing and searching, construction

of collage from personal photo collections, reconstruction of 3D models from 2D pictures,

image similarity measures among others.

The image cosegmentation problem was introduced by Rother et al. [52] in a restricted

scenario, where only two images were cosegmented with a nearly identical foreground

lying in front of a distinct background. Since then, the cosegmentation problem has been

explored in di�erent ways [28, 38, 63, 24, 2, 62, 34, 32, 8, 47].

Using the classi�cation of Batra et al. [2], it is possible to organize the cosegmentation

algorithms into three distinct classes, based on their degree of supervision: unsupervised,

interactive or supervised. The �rst class takes as input only a set of related images. On the

other hand, interactive cosegmentation uses as input a group of related images and a sparse

set of user marks, such as scribbled pixels, manual strokes or bounding box annotations.

These seeds guide the procedure and tends to improve the cosegmentation, although it

requires the e�ort of a human user. Finally, supervised cosegmentation receives a set of

images and a complete (pixel-level) ground-truth of a few images. Chapter 2 presents

several works belonging to these di�erent categories.
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1.1 Hypothesis

Many cosegmentation approaches do not adequately take into account the level of sim-

ilarity that could exist between the object of interest and the background, i.e., many

collections have nearly identical features shared by the foreground and the background.

On the other hand, in some images, the object is not highlighted, causing the failure

of methods exclusively based on saliency. Moreover, existing cosaliency methods may

not present satisfactory results when dealing with noisy images, partially occluded ob-

jects, cluttered background or images with multiple object regions. Consequently, using

di�erent features simultaneously in the same method could improve the results. How-

ever, it is important to use a low dimensional feature vector, attempting to reduce the

amount of data necessary to compute a high quality result and avoiding problems caused

by over�tting.

Our hypothesis is that using a small feature set based on color, texture, bidimensional

positioning and saliency measurement is su�cient to produce good results for the image

cosegmentation problem de�ned here.

1.2 Objective

Our primary goal is to con�rm the hypothesis presented in section 1.1 by demonstrating a

new method for accurate cosegmentation with a variable number of images. This proposal

works unsupervisedly, provided that for each image of the collection there exists at least

one instance in a similar foreground. Also, it is desired that our method performs with a

low dimensional feature descriptor.

For the validation of the method, experimental results were evaluated for many real-

world collections, and the performance of our algorithm was observed both quantitatively

and qualitatively. Finally, the advantages and limitations of our method are presented in

distinct scenarios.

1.3 Method Overview

Our thesis proposes a new model that incorporates a clustering strategy with a saliency

map computation procedure into a Markov Random Field (MRF) framework. More specif-

ically, our method combines the MRF model provenient from Graph Cuts algorithm [6],
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saliency information computed from images [11], and a new algorithm named Global Clus-

tering. The algorithm groups similar regions among the collection, by modeling them as

Gaussian components. These regions are named here global clusters.

Global clusters are classi�ed into foreground or background segments based on the

saliency information for each image. Regions that do not belong to the global clusters are

assigned probable object and probable background labels. These four types of regions are

input seeds for a Graph Cuts procedure that computes the cosegmentation. The Graph

Cuts result can also be used as a re�ned version of the saliency information, which de�nes

an iterative cosegmentation pipeline.

The Global Clustering algorithm introduces a quadratic time computational complex-

ity, which is adequate for Cosegmentation purposes. However, while the Global Clustering

method was not evaluated for di�erent contexts, we believe that it has the potential to

be used in other applications such as: image retrieval, histogram distance measure among

others.

A more detailed description of our method is presented in Chapter 4.

1.4 Contributions

The contributions are summarized as follows:

1. A new model that combines intra-image and inter-image clustering with saliency

information, being able to reveal which parts of the image are object and background

regions.

2. A new feature descriptor that relies on a low dimensional number of features, simpli-

fying the model complexity for researchers and users, while reducing the over�tting

caused by a higher number of features.

3. A novel way to identify and group visually similar regions across the collection, by

introducing an algorithm called Global Clustering.

4. A new system that extends the original Object Salient Detection from Cheng et al.

[11] for image collections. Such model is used in a cosegmentation pipeline with

a segmentation step yielded by a Graph Cuts algorithm. Our framework becomes

iterative, since it is possible to reuse the cosegmentation as a re�ned saliency map

of the next cosegmentation iteration.
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1.5 Thesis Outline

This thesis is organized as follows: The next chapter describes the related works that

in�uenced the development of our approach, such as extensions of the original problem

and similar ideas; Chapter 3 summarizes our work foundation, such as image generative

models that are the basis of interpreting and modeling structure of natural images and

probabilistic graphical models for cosegmentation; Chapter 4 presents a complete view

of our model framework, considering each stage individually; in Chapter 5, the experi-

mental results of the referred method are evaluated and compared with state-of-the-art

approaches; Finally, Chapter 6 outlines our conclusions, limitations of our method and

future work.



Chapter 2

Related Works

This chapter brie�y reviews cosegmentation methods proposed in the recent literature.

First, the term �Image Cosegmentation� was used by Rother et al. [52], which addressed

the task of segmenting simultaneously the common parts of a pair of images. They

proposed a generative model for the Image Cosegmentation problem with an energy min-

imization function similar to the original GrabCut method [51]. Their energy function

encompasses a global constraint which attempts to match the color histogram of the com-

mon parts of both images. Later, the cosegmentation is performed by a novel optimization

scheme de�ned as Trust Region Graph Cuts. Their method has the following limitations:

it computes the cosegmentation only on image pairs, it requires user seeds of object and

background regions, and the object of interest of both images needs to be visually similar

in a much di�erent background. However, their method was very in�uential, impacting

on further methods and applications.

Due to the in�uence of Rother et al., the very �rst cosegmentation proposals consid-

ered only the problem of segmenting image pairs [52, 28]. Thereafter, many works aimed

at extracting common objects from a collection of multiple images [32, 54, 45, 35, 8]. At

the same time, many papers focused on automatic object cosegmentation methods, in-

stead of supervised techniques [32, 14, 58]. Since it does not require manual intervention,

unsupervised methods are suitable for large-scale datasets and many practical applications

[36, 64, 66].

Zhu et al. [68] presented a survey that gives an overview of broad areas of segmentation

problems, including cosegmentation. They covered 180 publications and state-of-the-art

topics, such as superpixel techniques, interactive methods, object classi�cation, semantic

image parsing among others. For cosegmentation, they emphasized many particularities

of this problem, such as:
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� Di�erently from typical segmentation models designed for single images, current

cosegmentation approaches deal with multiple images. This considerably increases

the di�culty level to compute segmentation models and perform it e�ciently.

� Cosegmentation quality is directly related to foreground similarity. However, the

object structure varies according to the input images, for example, under the ef-

fect of cluttered background, illumination in�uence or arbitrary viewpoint of the

foreground among others, increasing the chance that the method will fail.

� Many practical applications demand di�erent requirements, such as large-scale coseg-

mentation, video cosegmentation, image retrieval and web image cosegmentation.

It is desirable that each model is extendable to several scenarios.

It is hard to categorize cosegmentation methods, since they have major di�erences

regarding being supervised or not, the features considered, the maximum number of in-

put images, the optimization model applied in their computation among others. There

is no consensus of what is the best way to classify cosegmentation models and methods,

although few works attempted it. Vicente et al. [62] categorize four models based on

the energy minimization function formulated by Rother et al. [52]. They di�er in terms

of the cosegmentation MRF energy minimization model, which characterizes the simi-

larity measure between foreground histograms of input images, and will be discussed in

Section 2.1.

Another classi�cation is proposed by Zhu et al. [68], which separates methods into

three categories. The �rst one includes modi�ed single-image based segmentation models,

extended for cosegmentation. The second one describes new models constructed specially

for cosegmentation applications, where many of them are based on clustering, graph-based

selection and metric-rank based representation. The method proposed in this thesis be-

longs to this category. Finally, the last class deals with new emerging problems, such as:

multiple foreground class cosegmentation, large scale cosegmentation, video cosegmenta-

tion among others. Sections 2.1, 2.2, 2.3 review each category with several examples of

many works.

Table 2.1 summarizes the di�erence between many cosegmentation methods.
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Table 2.1: Summary of several cosegmentation methods.
Method Is supervised? Collection Size Features Foreground/Background Model Segmentation Method
[52] Yes 2 RGB Color Gaussian Mixture Models Graph Cuts

[63] No Arbitrary
33 features, such as color,

texture and shape attributes
A complete graph of segmentation candidates
is labeled using a Random Forest regressor A* search algorithm is used for inference

[32] No Arbitrary
SIFT descriptor,

Gabor �lter and color histogram

Discriminative clustering using the
least-squares classi�cation framework of

Bach and Harchaoui [1]
Optimization through low-rank
matrices from Journee et al. [33]

[54] No Arbitrary
RGB color, Local Binary Pattern

texture descriptor and SIFT descriptor Gaussian Mixture Models Graph Cuts

[8] No Arbitrary
1076 features, such as color,
texture and shape attributes

Gaussian Mixture Models and
Support Vector Machine GrabCut

[10] No Arbitrary
Cosaliency prior, SIFT descriptor and

RGB color

K-means clustering with a regularization
term of regions with similar appearance and
an Expectation-Maximization procedure Graph Cuts

Proposed method No Arbitrary
77 features, such as color, texture,
position and saliency information

Gaussian Mixture Models and
Global Clustering GrabCut

2.1 Cosegmentation by Extending Single Image Seg-

mentation Models

We mentioned that the �rst cosegmentation works extended single-image based segmen-

tation approaches. Vicente et al. [62] examined theoretically and practically di�erent

optimization models and computational methods of this category. Those works intro-

duced many constraints: image pairs only, colors as the unique feature and probability

distributions described in terms of color histograms. These models were based on the

energy minimization theory from Boykov and Jolly [6] and only di�er in terms of the dis-

tance measure between the foreground histograms of both images. These models �t into a

single framework where the cosegmentation problem is modeled as an energy optimization

of the form:

E = Es + Eg, (2.1)

where Es is the single image segmentation term, which guarantees the smoothness of the

object region and the distinction between the object and background segments of each

image, and Eg is the cosegmentation term, which encodes a similarity measure of the

foreground between images.

In this framework, the minimum value of E de�nes the optimum cosegmentation

of both images. Also, Es jointly encompasses two terms from traditional MRF energy

minimization models, where:

Es = Eu + Ep, (2.2)

such that the Eu term enforces that sample labels should agree with the observed data and

Ep term penalizes discontinuities among neighboring samples. Equation 2.2 summarizes

typical energy functions of many Computer Vision problems, and Graph Cuts algorithm

is widely used to minimize it in polynomial computational complexity time. Section 3.4

presents more details of this framework.

Many cosegmentation models based on the energy minimization framework of Equa-
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tion 2.1 di�er in how Eg is de�ned. Rother et al. [52] introduces the L1-norm to measure

the color histogram similarity of the foreground regions, where Eg =
∑

z(|h1(z)−h2(z)|),
such that h1 and h2 are the feature descriptors of each image foreground region, and

z is the descriptor dimension. Mukherjee et al. [47] used the L2-norm to measure the

color histogram similarity of the object regions, such that Eg =
∑

z(h1(z)−h2(z))2. This

formulation allows di�erent methods for minimization that computes the minimization

more e�ciently. Hochbaum and Singh [28] introduced a reward term such that if a pixel

p in the �rst image is similar to a pixel q in the second image, then the probability of p

and q belonging to the cosegmented foreground region increases. Formally, it is de�ned:

Eg = −
∑

z h1.h2. Finally, Vicente et al. [62] modi�ed the generative model for binary

image segmentation proposed by Boykov and Jolly [6]. Di�erently from the original work,

which uses two gaussian mixture models for each region (object and background), Vicente

et al. extended it for three regions: two distinct background regions and one common

foreground segment. They a�rmed that this model is a straightforward extension of the

Boykov-Jolly approach, and was an improvement compared to the earlier works because:

used fewer parameters, it is most robust when compared to the other models and is

optimized e�ciently with Expectation-Maximization (EM) procedures.

Other works that deal with multiple images are considered. Batra et al. [2] implements

an interactive and supervised cosegmentation algorithm, where a user provides seeds in

one or more images of a collection, and based on these scribbles it produces cutouts from

all remaining images. Moreover, they present an automatic guiding system which itera-

tively recommends pictures where the user should scribble to improve the cosegmentation

accuracy. Their experimental analysis focused on the numerical accuracy of the solution

and usability studies, obtaining accurate cosegmentation with small manual e�ort from

users.

Rubio et al. [54] describes an image generative model that deals with multiple images

in di�erent scales. Also, it performs unsupervised cosegmentation and it does not re-

quire images with visually distinct background to work properly. Their method computes

foreground similarities by a high order graph-matching method, introduced into a MRF

model. Their results were very competitive with state-of-the-art works and outperformed

many supervised methods. Also, they present a proof of concept to use their method as

a starting point to compute part-based recognition.

Finally, works not based on MRF models are considered. Collins et al. [12] address a

solution for the cosegmentation problem based on the Random Walking algorithm. This
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method simulates a random walk from each pixel in the image to a set of seed points. The

assignment of regions as object or background depends on whether the walk reaches a seed

�rst. Their formulation allows a nonparametric representation of the foreground, which

permits any distribution of features while reducing additional computational costs. Also,

histograms are compared, independent of scale, and an optimization problem consisting

of linear algebra operations is computed. That allows easy implementation on parallel

architectures such as GPU.

To conclude, Meng et al. [45] presents a cosegmentation solution using an active

contours based method to evaluate foreground similarity and a rewarding strategy for

background consistency. A level set method handles topology changes of the collection,

and the �nal cosegmentation is computed by a mutual optimization approach. Unfortu-

nately, their method only uses color features and works solely on image pairs.

2.2 Cosegmentation by Proposing New Models

This section presents strategies tailored for Cosegmentation, rather than extended single

segmentation models. Many proposals represent the extraction of the common objects

of interest as a foreground clustering problem. For example, Joulin et al. [32] combine

existing tools for bottom-up segmentation approaches such as normalized cuts with kernels

used in object recognition methods. These resources are used within a discriminative

clustering framework: they assign foreground and background labels jointly to all images,

so a supervised classi�er is used in an unsupervised algorithm. This work obtained reliable

results, which could be further extended for multiple objects in the same collection, and

as an automatic seeding mechanism for marker-based segmentation algorithms.

Kim et al. [34] divides the image into hierarchical superpixel layers and describe

the relationship of these regions using graphs and a�nity matrices, evaluating intra-

image and inter-image edge a�nities. Finally, a spectral clustering strategy computes

the cosegmentation. They evaluated experiments with pairs of images and large datasets,

obtaining competitive results with similar works.

Yu et al. [24] proposes a Markov Random Field optimization model that introduces a

Cosaliency prior to an energy term which uses GMM constraints. Similarly to our work,

their method is unsupervised, can handle multiple images and is accurate with repeated

background among the collection.

Chang et al. [10] introduces an energy optimization model for cosegmentation that
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deems foreground similarity and background consistency. Similarly to Yu et al. [24], it

uses a Cosaliency prior that computes MRF data terms for the subsequent cosegmentation.

Besides clustering methods, graph theory approaches were also studied. For example,

Vicente et al. [63] compute a set of object proposals from each image, and a random forest

regressor learns a model based on these candidates to extract objects of the collection.

Later, a fully connected graph is constructed, such that the foreground regions of distinct

images are connected. The cosegmentation is �nally performed by a loop belief propaga-

tion algorithm. They showed remarkable results, outperforming several state-of-the-art

works, even when training their classi�er with a single image.

Meng et al. [46] �rst segment each image into a number of local clusters. Then, their

method constructs a digraph based on local region similarities and saliency maps. At

the end, their cosegmentation problem becomes a version of the shortest path problem,

further computed by a dynamic programming algorithm. They evaluated their results

within existing large image datasets and videos, obtaining a low error rate.

Many methods try to extract the common objects and their features among the col-

lection. Sun et al. [58] addresses the problem of learning discriminative part detectors

from image sets. They proposed a novel latent Support Vector Machine (SVM) model

regularized by group sparsity to learn these detectors. To compute the cosegmentation,

it uses the object cues extracted as an input for the discriminative clustering framework

of Joulin et al. [32]. They achieved state-of-the-art results in image classi�cation and

cosegmentation applications.

Fu et al. [20] proposed an object-based cosegmentation method that relies on RGBD

images, introducing depth information into RGB color information to produce better

results. In their work, Cosaliency maps are used in consonance with depth cues, preserving

the smoothness of object boundaries. As in our work, their method computes accurate

segmentation without the need of initial training data. Also, they impose mutual exclusion

constraints to prevent candidate selection of multiple object regions within the same

image.

Wang et al. [64] presented a framework for joint image segmentation using functional

maps, computing consistent appearance relations among a collection of images. The

basic idea of functional maps is to equip each image with a linear functional space, and

represent relations between images as linear maps between these spaces. Moreover, the

feature descriptors of images can be considered functions of images, and their relations can

be considered linear constraints on the linear map between these spaces. Our work is very



2.3 New Cosegmentation Problems 12

di�erent from theirs, because our framework relies on typical image matching techniques

that establish correspondences between image regions.

Dai et al. [14] propose an unsupervised learning framework by coupling cosegmen-

tation with a concept created by them named as cosketch. The goal of the cosketch

is to discover a codebook of deformable shape templates shared by the input images.

These shape templates extract image patterns where each template matches similar image

patches among the collection. Later, they use a statistical model whose energy function

couples the cosketch into the cosegmentation minimization framework. They obtained

very good results, even testing it with a new dataset named Coseg-Rep created by them,

which has challenging natural images with repetitive patterns.

2.3 New Cosegmentation Problems

The development of cosegmentation methods allowed many possibilities for several appli-

cations, principally on large-scale set of images. Kim et al. [36] proposed a distributed

cosegmentation approach for a highly variable large-scale image collection. It models their

cosegmentation task by a temperature maximization on anisotropic heat di�usion. The

temperature maximization with �nite K heat sources corresponds to a K-way segmenta-

tion that maximizes the segmentation accuracy in an image. As mentioned in their paper,

the temperature function is submodular, being achieved at least a constant factor of the

optimal solution by a simple greedy algorithm. It allows reliable results in an e�cient

computational time, compared to similar works.

Wang et al. [64] deals with a large-scale cosegmentation problem with hundred im-

ages, using a few number of training ground truths. They introduced three concepts:

inter-image distance, which measures the similarity of foreground regions between pair-

wise images; intra-image distance, which considers spatial continuity within each image;

and the balance term, which prevents segmenting the entire image as object or back-

ground. Combining these terms, an energy minimization problem is formulated as a

binary quadratic programming (QP) problem, being computed using an active sets based

method in polynomial time.

Other works attempted to use the knowledge of earlier methods to compute the coseg-

mentation problem with relaxed or distinct constraints. For example, Zhu et al. [66] com-

bine cosegmentation approaches with image retrieval techniques to automatically segment

a user input image using Google images search, creating an internet assisted image seg-
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mentation solution. Their method enhances the saliency map of the user input image

by highlighting regions that often appear in the salient areas of many retrieved images

from Google servers. They also consider regions that match the global color prior model

trained from returned Google images.

Rubinstein et al. [53] removed a typical constraint of the cosegmentation problem,

by including noisy images into the collection. Their method performs well even with

the inclusion of pictures which do not have a common foreground, as occur in real world

datasets. They use dense correspondences, assuming that the common object is salient, in

the sense that it is dissimilar to the other pixels within the image, and sparse, considering

that it is similar to the foreground features among images. They established reliable

correspondences between pixels in di�erent images by using SIFT �ow and weighted

GIST descriptors.

Chai et al. [8] proposed a bi-level cosegmentation method, also using it for image

classi�cation problems. It consists of a bottom-level procedure, obtained by an automatic

GrabCut algorithm to extract initial foreground seeds and the top-level stage, with a

discriminative classi�cation to propagate the information. Thus, Chai et al. [9] improved

their former work by including an interest region detection-based method to initialize the

system.

Recently, many works extended the cosegmentation problem for more complex ap-

plications. For example, many works described the Multiple Foreground Cosegmentation

problem, where multiple objects with di�erent features appear in the same collection,

where each image may contain multiple foreground regions. Kim and Xing [35] were the

�rst to handle this problem. Their method begins computing appearance models, which

optionally can be user-provided bounding boxes that encloses these objects of interest.

Furthermore, they use beam searches to �nd proposal candidates for each foreground,

being segmented by a dynamic programming algorithm.

Ma et al. [42] deal with the Multiple Foreground Cosegmentation problem, but they

formulate the problem as a graph transduction semi-supervised learning, integrating global

connectivity constraints. Similarly to [35], they perform over-segmentation to obtain

several segments for each image. Further, they use color-SIFT and bag-of-word models to

detect similar segments among the collection. However, disconnected regions with similar

color and texture features can be wrongly assigned to the same label set. To treat this

problem, they extract connected regions enforcing connectivity constraints.

Concluding, Zhu et al. [67] extended the Multiple Foreground Cosegmentation prob-
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lem by proposing the Multiple Foreground Recognition and Cosegmentation problem. The

main goal of their work is to segment out and annotate foreground objects. Their method

detects foreground regions on images using an extended version of the multiple color-line

based object detector, which requires user-provided bounding boxes for training.



Chapter 3

Foundations

This chapter reviews the background theory necessary for understanding the solution

presented by this thesis. As stated in Chapter 1, this work proposes an unsupervised

learning method for the Image Cosegmentation problem.

Our method foundations are based on probabilistic generative models, explained in

section 3.1. We discuss why they are so popular in Computer Vision and explain their

di�erences to other works, such as the ones based on discriminative methods. These are

part of the object and background preliminary models which comprise the local character-

istics of each image in the collection. Further, it will become the basis of a more general

model.

Later, in section 3.1.1 the formal notion of gaussian distributions, a common model

for uncertainty in machine vision is presented. Besides, Gaussian Mixture Models, which

are one of the central probabilistic models used in the proposed method are explained in

the same section, placing greater emphasis on classical methods for clustering, such as

K-means and Expectation-Maximization.

Section 3.2 describes the feature vectors used in the models addressed in section 3.1.

These are color, texture and position descriptors which compose the local data of each

image. In the same section, the notion of saliency maps is de�ned. In this work, this is a

fundamental concept used to determine whether distinct regions can be part of the seeds

of the object or background classes.

Finally, the Graph Cuts technique is presented, which is the optimization method that

analyzes those object and background seeds to iteratively compute the �nal cosegmenta-

tion. This method works on a probabilistic graphical model that minimizes a Markov-

Random-Field based energy function.
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3.1 Probabilistic Generative Models

Many methods in Computer Vision rely on modeling probability distributions, where the

goal is to analyze data captured from an image to infer something about it considering

the associated context [49]. For example, an object of the scene is segmented and later

assigned to a particular label. This usually requires the construction of models based

on distinct aspects of the world and which must be evaluated in some way. The goal is

to compute a probability that a particular sample was generated by a certain class. In

other words, a probability distribution de�ned here is used to explain how samples are

generated according to the model. To construct these models, many issues need to be

addressed:

� Many images are degraded by many conditions, such as low illumination, impulsive

noise, occluded objects among others. These problems cause distortions on the

original image and, consequently, introduce errors in the model.

� Models will seldom be complete, since they do not capture the full complexity of

the image formation process. This implies that many inaccuracies occur, because

much information is missing.

� The available data is insu�cient to constrain all aspects of the solution.

In order to propose a solution for the cosegmentation problem presented previously,

we assume that:

� Models need to be capable of extracting as many relevant features as possible of the

data.

� It is desirable that models be fairly simple to comprehend and implement, while

being adaptable to the data.

� Unsupervised learning is desired, since human intervention can be suscetible to

errors, and the dataset can be very huge, making the computer automation the only

viable option.

Machine learning tools can be used to construct such models, considering methods

to organize data, learn about image elements and infer decisions in Computer Vision.

Machine Learning is a sub-�eld of Computational Intelligence which attempts to predict
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the value of a label vector w given the sample x vector of input features [37]. When w

has continuous scalars, we call the inference problem regression. Otherwise, when w is

discrete entries, it is named classi�cation. Our study focuses on classi�cation problems.

In classi�cation problems, it is necessary to analyze measurements to understand to

which class of w will x belong. Speci�cally in Computer Vision problems, x describes

visual data and is used to infer a state of the world or an ideal state w [49]. However,

it is not trivial to solve this classi�cation problem, since the measurement procedure is

noisy or ambiguous, making x compatible with two or more classes of w. Thereby, a

probabilistic model approach seems natural: a sample is assigned to the class of w with

the highest probability. That means that a direct mapping from the observable sample to

its class is needed. A possible treatment for this problem is to represent the conditional

distribution using a parametric model, and then to determine the objective parameters

using a training set consisting of pairs {xn, wn} of input vectors. The resulting conditional
distribution can be used to predict w values for di�erent x vectors, assuming a continuous

model. This is a type of model named as discriminative classi�cation and is formally

referred as P (w | x).

However, when a problem with numerous classes and a huge number of samples is

considered, it is hard to learn this direct mapping, due to computational high cost. This

is exactly the case of Image Cosegmentation, where a huge number of data samples is

available. Considering Bayes Rule [3], it is possible to estimate the probability that a

particular class produced a sample, in other words, P (x | w). This procedure is known

as generative classi�cation, since it can produce synthetic examples of x. In other words,

a joint probability distribution function over the data is produced and it can be used to

construct new observations.

The posterior distribution P (w | x), also named as inference term, is obtained from

Bayes' theorem, as

P (w | x) =
P (x | w)P (w)∑
P (x | w)P (w)dw

. (3.1)

By adopting a Bayesian approach, not only the measured data is uncertain, but also

the ideal data [50]. The posterior term P (w|x) describes the probability of being in an ideal

state given the fact that some observations were considered. The likelihood term P (x |w)

describes how well the measured data arises from the ideal state. The prior term P (w)

models the belief of being in a particular ideal state without any observation. Generative
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models formulate the problem in such a way that each component (likelihood and prior)

are modeled separately, and they model how the ideal state (and the observation) is

generated.

To model P (x | w), we consider the prior form P (w), and unknown distribution pa-

rameters θ as a function of w. The distribution is rewritten as P (x | w, θ) and is referred

as likelihood. The objective of the learning process is to obtain θ from many paired ex-

amples {xi, wi}Ii=1. This procedure is named parameter estimation and is explained in

section 3.1.1.1.

In a generative model, it is necessary to compute the posterior, as stated by Equa-

tion 3.1. That usually requires intensive computing algorithms, principally considering

that these models deal with high dimensional data, provided by bidimensional or tridi-

mensional images. However, generative models bring important bene�ts:

� As parts of the test or training data are not available, it is still possible to model

the joint distribution over all data dimensions and e�ectively interpolate missing

elements.

� It allows incorporation of expert knowledge in the prior term. It is hard to impose

prior knowledge in discriminative models.

� These models can extract informations about shape and appearance, illumination,

occlusion and other factors of variation in an unsupervised manner.

� Generative models are more suitable for heterogeneous data like natural images than

discriminative models.

Several examples of applications which are notedly designed as generative models have

been presented: image compression, video tracking, object recognition, among others [31].

Also, many generative models are based on normal distributions, also referred gaussian

distributions. Their importance and applicability is shown in section 3.1.1.

3.1.1 Gaussian Distributions

The gaussian distribution, also known as normal distribution, is a widely used model for

the distribution of continuous variables. This distribution is useful due to the central

limit theory, which states that averages of random variables independently drawn from
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independent distributions are normally distributed. Physical quantities that are the sum

of independent processes shall have distributions that are nearly normal [41].

For a random variable x, it can be de�ned as

P (x | µ,Σ) =
1√

2πΣ2
exp

(
− 1

2Σ2
(x− µ)2

)
, (3.2)

where µ is the mean, Σ2 is the variance and x is de�ned in the interval x ∈ [−∞,∞].

The extension to multidimensional variables can be formuled as:

P (x | µ,Σ) =
1

(2π)
D
2 Σ

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (3.3)

where µ is a D×1 vector that describes each mean of the distribution, Σ is the covariance

represented in a D × D positive de�nite matrix and x = {x1, . . . , xD}. A distribution

with multiple variables like this can represent the joint distribution of the intensities of

D pixels within a region of the image.

Gaussian distributions arise in many di�erent contexts and are extremely important

in statistics. For a single variable, it is the distribution that maximizes the entropy. Also,

the sum of a set ofN random variables, which itself is a random variable, has a distribution

that tends to become a gaussian distribution, when N is su�ciently large (Central Limit

Theory, due to Laplace). A gaussian distribution has many other important analytical

properties. For example, when a gaussian distribution is marginalized or a conditional

distribution of a gaussian is obtained, another gaussian is generated. Also, the Fourier

Transform of a gaussian distribution is a gaussian distribution in frequency space [59].

However, in Computer Vision it is typical to use models that represent and operate

on a huge amount of data with thousands of dimensions. Since a gaussian distribution is

unimodal, complex data imply in several di�culties if represented by a probability distri-

bution function with a single peak. Also, few outliers can a�ect negatively the estimates

of the mean and covariance. These issues demand more robust forms of representation,

still based on gaussians. For that, the study of Gaussian Mixture Models are very useful,

as described in next section.
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3.1.1.1 Mixture of Gaussians and the Expectation-Maximization Method

Initially, consider a distribution p such that

p(x) =
k∑
i=1

πiρi(x). (3.4)

A probabilistic model similar to Equation 3.4 is a mixture model of k components,

with πi being a set of mixing weights, πi > 0 and
∑

i πi = 1 [56]. Although the ρ

can be completely arbitrary, usually they come from the same parametric family, such

as gaussians with di�erent centers and variances. Based on this de�nition, a Gaussian

Mixture Model uni�es mixture models and gaussian distributions, being a simple linear

superposition of gaussian components. It aims at providing a richer class of density models

than a single gaussian.

From Equation 3.4, the Gaussian Mixture Model can be written in the form

p(x) =
k∑
i=1

πiρi(x | µi,Σi). (3.5)

For a set of samples x, it is necessary to estimate a set of unknown parameters

θ = {πi, µi,Σi} from Equation 3.5. A popular method for estimating parameters in

gaussian mixture models is the maximum likelihood estimation. Assuming each data

point of x = {x1, . . . , xn} is extracted independently of each other, the likelihood function

P (x1...n | θ) is the product of individual likelihoods. Therefore, the maximum likelihood

estimate of the expected parameter θ̂ for a generic probability distribution f is

θ̂ = argmax
θ

k∏
i=1

f(xi | θ), (3.6)

where argmaxθf(θ) retrieves the value of θ that maximizes the argument f(θ).

The Expectation-Maximization (EM), proposed by Dempster et al. [16], is a general-

purpose method for estimating a set of parameters from probability functions with unob-

served data [48]. These variables set the degree of relevance of each sample xi relative to

each component of the probability function.

The extension of the likelihood function for a set of n observations of a mixture model

can be de�ned as:

p(x) =
m∏
j=1

k∑
i=1

πiρi(xj | µi,Σi). (3.7)
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Equation 3.7 de�nes a set of parameters ψ = {π1, . . . , πk; θ1, . . . , θk}. In this context,

it is necessary to estimate not only each mixing weight πi, but also the contribution of

each one in any sample xj. However, this set ψ needs to be estimated without previous

knowledge, hindering a simple analytical solution for the maximization of Equation 3.7.

The EM algorithm applied to mixture model is an iterative procedure composed of

two stages:

� E-step: uses an initial estimative set of parameters or the parameters obtained

from a previous iteration and determines the probability of a sample to belong to a

speci�c component from a mixture model.

� M-step: maximizes the likelihood function under the assumption that the missing

data is known. Moreover, it updates the parameters using the probabilities and

parameters estimated from the previous E-step stage.

The parameters of an EM procedure can be initialized by using the output of the K-

means algorithm, which is a method of vector quantization, relevant for cluster analysis

in machine learning [43]. It aims to partition n sample observations into k clusters, such

that each observation belongs to the cluster with the nearest center, according to some

distance criteria. It is probably the simplest and one of the most used algorithms devised

to subdivide a dataset in an unsupervised approach.

For a mixture composed of density functions based on gaussian distributions, the

estimated parameters are πi, µi and Σi, respectively the mixing weights, the mean and

the standard deviation for a group of equations. These parameters are evaluated by

Equations 3.8, 3.9, 3.10 and 3.11 [48].

ρt+1
i =

exp
(
−1

2
(xi − µtj)ᵀ((Σ̂t

j)
−1)(xi − µtj)

)
(2π)

1
2 |Σ̂t

j|
1
2

(3.8)

µt+1
i =

1

nπtj

n∑
i=1

ctijxi (3.9)

Σt+1
i =

1

nπtj

n∑
i=1

ctij(xi − µtj)(xi − µtj)ᵀ (3.10)

πt+1
i =

1

n

n∑
i=1

ctij (3.11)
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An example of the Expectation-Maximization pseudocode is represented in Algo-

rithm 1.

Algorithm 1 Algorithm that maximizes the function from Equation 3.7, obtained from
mixture of k gaussian components, represented by n samples contained from the set of
samples x.

Initialize π0
j , x

0
j and

∑̂0
j , where j = 1, . . . , k.

t⇐ 0.
while not converge do
//E-step
for i = 1, . . . , n do
for j = 1, . . . , k do
Compute ct+1

ij as stated by Equation 3.8.
end for

end for
//M-step
for j = 0, . . . , k do
Compute µt+1

j as stated by Equation 3.9.
Compute Σt+1

j as stated by Equation 3.10.
Compute πt+1

j as stated by Equation 3.11.
end for
t⇐ t+ 1.

end while

3.2 Descriptor Features

After describing models for image clustering in section 3.1, it is necessary to explain what

features are selected and how certain features are extracted and used in these models.

The clustering algorithms of this method may use distinct features such as color, texture,

position, saliency among others.

For colors, we use CIE L*a*b* which is composed of three channels, denoted by the

luminance of the color (L*) and the remaining components are part of the chromaticity

data. More speci�cally, a* indicates its position between red/magenta and green and

b* denotes its position between yellow and blue. This color system was derived from

the CIE XYZ, which plays an important role in the conversion between the many color

models. For example, any color of the RGB system can be easily converted to CIE XYZ,

and subsequently converted to CIE L*a*b*. Obviously, the opposite operation is also

available [21].

Color features are not su�cient to di�erentiate regions in an image. Regions of natu-
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ral images have distinct regions with similar colors, and parts of an object of interest may

share identical colors to the background. In this context, texture patterns are necessary

to di�erentiate clusters. Texture is an attribute easily noticed by the human visual sys-

tem, containing information of the spatial distribution of the object and the relationship

between the neighboring elements of the internal region.

Although the human eye can easily identify texture patterns, it is di�cult to formalize

the de�nition of texture and describe a general set of texture descriptors for distinct

problems in image analysis, due to the diversity of natural and synthetic texture patterns

that exists in many images. Consequently, a large number of techniques for texture

analysis has been proposed in the literature. A review of texture analysis methods is

presented in the surveys [17, 65].

For texture analysis, we used a particular approach called multi-channel �ltering [30].

This method is inspired by the human visual system, which decomposes the retinal image

into a number of �ltered images, such that each one contains many variations of intensities

over a narrow range of frequencies and orientations. It consists in the convolution of

the input image with a bank of even-symmetric linear �lters followed by a half-wave

recti�cation, giving a set of responses.

The multi-channel �ltering method uses a bank of Gabor �lters to characterize several

channels. Brie�y, it involves three tasks:

� Decomposition of the input image using a �lter bank.

� Feature extraction of the image.

� Clustering.

The channels within a bank of two-dimensional Gabor �lters consists of a sinusoidal

plane wave of some frequency and orientation, modulated by two-dimensional gaussians

[55]. The canonical Gabor �lter in the spatial domain is given by

Gλθψσγ (x, y) = exp

(
−x

′2 + γ2y
′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
, (3.12)

x
′
= xcos(θ) + ysin(θ), (3.13)

y
′
= ycos(θ)− xsin(θ). (3.14)

where 1
λ
and ψ represents the frequency and phase, respectively, of the sinusoidal plane

wave along the x-axis, σ the space constants of the gaussian envelope, θ is an arbitrary
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orientation, and γ is a factor of the spatial aspect ratio.

The feature extraction stage begins after the decomposition of the original image.

First, each �ltered image is subjected to a nonlinear transformation described by Equa-

tion 3.15,

ψ(t) = tanh(αt) =
1− e−2αt

1 + e−2αt
(3.15)

where α is a constant.

The application of this non-linear function transforms the sinusoidal modulations

of the �ltered images into squared modulations, working similarly to a blob detector.

However, the detected blobs can not be necessarily isolated from each other. To overcome

this issue, instead of detecting individual blobs and measuring their attributes, the average

absolute deviation from the mean is computed in a small overlapping window. It is also

possible to compute the Gaussian smoothing function of Equation 3.16.

g(x, y) = exp

(
− x2 + y2

2σ2

)
, (3.16)

where σ is the standard deviation which determines the size of the window considered.

Concluding, the �nal stage consists in clustering the extracted pixels from �ltered

images into k clusters representing texture regions. For that, the K-means algorithm is

used. Figure 3.1 depicts an example of the technique presented in this section and the

�nal result obtained by Jain and Farrokhnia [30].

Figure 3.1: (a) A 256× 256 image containing �ve natural textures. (b) The �nal clustering
of (a) with k = 5 and obtained using a total of 13 Gabor �lters with the technique
presented in this section and proposed by Jain and Farrokhnia [30].
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3.3 Salient Object Detection

Saliency techniques try to mimic the human ability of identifying quickly and accurately

the most noticeable element of the scene. However, to assign this task for a machine is

challenging [11]. An algorithm that solves automatically the problem of detecting the

most salient object of the image is desirable, mainly for the �rst stages of many computer

vision systems, for example, automatic image cropping, adaptive image display on small

devices, image or video compression, image collection browsing among others [39].

It is important to notice that salient object detection algorithms do not depend nec-

essarily on the full scene understanding, but in visual distinctness, and is often attributed

to the variation in features such as color, gradient, edges and boundaries. The saliency

detection procedure can be a bottom-up approach similar to the process performed by the

eye, motivated to preferentially respond to high contrast stimulus. One possible approach

is to use contrast analysis which extracts high-resolution saliency maps based on several

considerations:

� A global contrast is preferable over local approaches, allowing comparable assign-

ment of similar image regions.

� The saliency of a region depends on contrast to nearby regions.

� Commonly salient objects are positioned towards the central regions of the image,

and away from image boundaries.

� Saliency methods should be fast, accurate and easy to compute over large image

databases.

The bottom-up saliency framework presented by Cheng et al. [11] consists of three

steps. The �rst stage is the feature extraction, where low-level features such as color,

orientation, texture or motion are extracted from the image at multiple scales. The

second step is the saliency computation, where these features are analyzed simultaneously,

and saliency information is evaluated for each pixel. Finally, in the last task, a few key

locations are identi�ed and the �nal salient region is retrieved.

Cheng et al. [11] proposed a histogram-based contrast (HC) method to de�ne saliency

values of image pixels using color information of the input image. Firstly, it is de�ned the
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saliency of a pixel S(pi), where

S(pi) =
∑
∀pi∈I

D(pi, pj), (3.17)

such that pi and pj are pixels from the image I, and D is a distance metric in a color

space such as the euclidean distance in L*a*b* color space.

Since pixels with the same color level have the same saliency value under Equa-

tion 3.17, it is possible to rearrange this equation in terms of a color value cl, such that:

S(pi) = S(cl) =
n∑

m=1

fmD(cl, cm), (3.18)

where cl is the color value of pi, n is the range of di�erent color levels, and fm is the

frequency of a pixel color cm in I.

Finally, based on Equation 3.18, the saliency values that produces the HC-map are

computed, consisting in the assignment of each pixel saliency value individually. However,

notice that a technique based on HC-maps is computationally expensive, since it requires

the computation of the saliency for each pixel.

Further, Cheng et al. [11] improved the method based on HC-map by incorporating

spatial relations in saliency, and generating region-based constrast maps, de�ned as RC-

maps. Before starting the RC-map computation method, the original image is segmented

by a graph based image clustering algorithm proposed by Felzenszwalb and Huttenlocher

[18]. A saliency value is then assigned for each region created. The saliency value of each

region is computed by a global contrast score, which is the weighted sum of the regions

contrast to all other clusters. Each weight is based on the spatial distance, where the

farther regions obtain smaller weights and vice versa.

The saliency of each region rk is de�ned formally as

S(rk) =
∑
rk 6=ri

exp(−Ds(rk, ri)/σ
2
s)w(ri)Dr(rk, ri), (3.19)

where w(ri) is the weight of cluster ri, Ds is the spatial distance between two clusters,

σs is a constant that adds or reduces importance for spatial distance term, and Dr is the

color distance metric of two clusters, where

Dr(r1, r2) =

n1∑
i=1

n2∑
j=1

f(c1,i)f(c2,j)D(c1,i, c2,j), (3.20)
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such that f(ck,i) is the frequency of the color ck,i among all nk colors in the k-th cluster.

Each region rk is binarized considering their weighted sum S(rk) into a �xed threshold

t. If a sum S(rk) has a value greater than t, then rk is considered a salient object.

Otherwise, rk is considered not salient and part of the background region.

Based on RC saliency maps, Cheng et al. [11] describe a procedure to compute salient

object segmentation with the best accuracy possible. Figure 3.2 illustrates the whole

process. The segmentation result is obtained by thresholding the RC-maps (Figure 3.2(b))

as initial seeds of a Graph Cuts segmentation algorithm [6]. More speci�cally, the initial

seed of the Graph Cuts method is a rectangular area, labeled as unknown, with the

largest connected region that attends to the threshold criteria. The remaining regions are

initialized as background seeds.

Figure 3.2: Demonstration of the Object Salient Detection technique proposed by Cheng
et al. [11]: (a) original images, (b) initial segmentation provided by the �xed thresholding
of the RC-map, (c) trimap segmentation of Graph Cuts after �rst iteration, where the red
colored areas depict the foreground, and the green regions represent the background (d)
trimap segmentation of Graph Cuts after �rst iteration, (e) �nal segmentation, where the
blue area is the object region, and the gray area is the background, (f) labeled ground
truth.

Once started, a few number of Graph Cuts iterations are evaluated. After each itera-

tion, dilation and erosion morphologic operations are applied, improving seeds at each step

(Figures 3.2(c) and 3.2(d)). At this moment, regions inside the eroded area are labeled

as foreground seeds, the regions outside the dilated area are part of the background seeds

and the remaining ones are unknown. Morphologic operations yield fundamental impor-

tance in accuracy improvement, since regions closer to the salient object have a higher

probability to be part of the foreground than far away regions. Similarly, distant areas

tends to be background. That heuristic tries to impact positively in the �nal accuracy,
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obtaining better seeds which are corrected iteratively by the Graph Cuts optimization

method. Details on the Graph Cuts computation are presented in section 3.4.

Figure 3.3 depicts few examples of each saliency object detection and segmentation

presented in this section.

Figure 3.3: Few examples of each saliency maps approach presented in this section. It
is noticeable that RC-maps, compared to HC-maps, introduces improved accuracy based
on spatial localization of the salient object. However, the RCC approach, which is the
Graph Cuts stage over RC-maps, yields a binary solution, typically desired in salient
segmentation methods [11].

3.4 Graph Cuts Segmentation

The GrabCut algorithm is used in this work to produce the �nal result. The GrabCut

method is an interactive image segmentation algorithm that is widely used in computer
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vision applications. In GrabCut, the image segmentation is a labeling problem which

assigns a label li = {0, 1}, where i = {1, . . . , N} for each image pixel pi, such that li = 0

for the background and li = 1 for the foreground. The label problem is then set as an

optimization problem by minimizing a speci�c energy function.

In image segmentation literature, it is required that the computed segmented regions

matches human perception, in order to solve a particular problem [68]. For example,

precise object localization and segmentation is desired in medical image analysis and

image editing. Sometimes, this type of segmentation does not rely on prior knowledge

or constraints, and a small amount of user inputs may be not su�cient to obtain good

segmentation results. Thus, two properties are desired: that segments of pixels with

similar features, such as color and texture, remain in the same sets; and smooth boundaries

are obtained along distinct segments. It is possible to formulate a method with such

characteristics as a binary Markov Random Field [59].

Markov Random Fields in Computer Vision has emerged as a powerful knowledge

over the recent years, since many vision problems can be solved by the minimization

of energy functionals de�ned over continuous or discrete functions. In this study, we

consider only combinatorial approaches, where the focus is restricted to a class of discrete

energy functions, expressed by labeling problems. These methods can also be named

label propagation approaches, since it starts with initial input marks provided by a user,

and then labels are propagated using global optimization. Local optimization techniques

can also be used, but global approaches are preferred due to the existence of polynomial

complexity solvers.

Formally, the pixel labelling problem is the assignment of a particular label L =

{l1, . . . , ls} of s distinct labels to each discrete site X = {x1, . . . , xn} [15]. In Computer

Vision, X is a set of random variables that may correspond to pixels, superpixels, corners,

edges among other features. Labels represent sets to be assigned to the sites, for example,

in image segmentation problems, labels are associated to object categories, such as object

or background regions.

Consider an energy function E that determines the labelling of a segmentation prob-

lem. It is possible to model it as a minimization problem, which yields the solution with

the highest quality according to conventions de�ned previously. Based on bayesian for-

mulation (Equation 3.1), the energy of a particular labelling is determined by an energy

function E, which can be modeled as the log likelihood of a posterior distribution of a
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Markov Random Field, described as the minimization

E(X) =
∑
xi∈V

E1(X(xi)) + λ
∑

xi,xj∈P

E2(X(xi), X(xj)), (3.21)

where xi and xj are elements of the set to be minimized, V is the set of elements, P is

the set of connected elements, which is typically 4-neighbor or 8-neighbor systems, and λ

is a weight that adds importance to the E2 term.

E1 is a data term that de�nes the cost for each xi to belong to one of the possible

sets r1 or r2. In order to minimize the objective function, this cost should be inversely

proportional to the probability of xi belonging to any set. This term checks the consistency

of an element xi (for example, a pixel) related to a set r1 or r2, which can be parameters

such as the mean color level of a region, intensity histograms or gaussian mixture models.

The second term E2 is a smoothness term that de�nes a penalty for labeling two

connected elements with di�erent labels. This penalty depends on the similarity of both

elements: similar elements have high probability of belonging to the same set. In this

case, the resulting cost must be high, otherwise, it has a small value. This term measures

the consistency between each xi and their neighbors, being inversely proportional to the

local edge strength.

Determining an optimum labeling lopt of a particular X by minimizing E is compu-

tational infeasible. Exponential growth of the state space, principally for high resolution

images, and many local minima in E makes it di�cult to �nd the optimum solution by

using standard numerical methods directly in E. However, it is possible to use deter-

ministic algorithms for solving the discrete labelling problem. Among these, the most

proeminent methods are based on the Graph Cuts framework [6].

The �rst approach that minimizes energy functions using graph based methods was

proposed by Greig et al. [23] for binary image restoration. They showed that �nding the

minimum cut of a speci�c graph can lead to the optimal solutions of E in polynomial

computational time. Before them, only numerical methods which obtains local optimal

solutions were studied, with very slow computational times.

Before introducing the Graph Cuts framework, it is important to review what is the

minimum cut of a graph. Let G = (V,E) be a directed weighted graph and for each edge

(i, j) ∈ E is assigned a real-valued capacity wij ≥ 0. A cut C in G is a partitioning set of

V nodes into two disjoint subsets S and T . The cost of a cut |C| is the sum of capacities
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of the edges that connect nodes in S with nodes of T . In other words,

|C| =
∑

{(i,j)∈E|i∈S,j∈T}

wij. (3.22)

A special type of graph, named st-graph, is assumed to contain two terminal nodes s

and t, denoted source and sink, respectively. A speci�c type of cut in st-graph is known as

st-cut, where s ∈ S and t ∈ T . Finally, the minimum st-cut problem is to �nd the st-cut

with the smallest cost possible, among all possibilities. Figure 3.4 depicts an example of

a st-graph, with two terminal nodes s and t and a st-cut.

Figure 3.4: Diagram of a st-graph typically used in image segmentation. Here, two
terminal nodes s and t are detached, also with a st-cut. Notice that S and T terminal
nodes need to be separated into two disjoint sets [6].

Computing directly the minimum cut of a st-graph is a di�cult task. However, an

important theory of combinatorial optimization is that the minimum cut problem can be

solved equivalently by �nding a maximum �ow of the st-graph from the source s to the

sink t. This is known as Minimum Cut-Maximum Flow or Ford-Fulkerson theorem [19].

The Ford-Fulkerson theorem states that the cost of a minimum cut is equal to the value

of a maximum �ow. In the �nal graph, the set S consists of nodes only reachable to the

source. Similarly, nodes reachable to the sink are part of the T set.

The �rst method that solves energy minimization techniques such as Equation 3.21

for binary object segmentation was proposed by Boykov and Jolly [6]. In their work,

a user delineates pixel samples for background and object regions by using strokes of

an image brush. These pixels became seeds related to the st-graph. Seed pixels are

necessary to estimate foreground and background statistics, used in the E1 term described

in Equation 3.21. The st-graph has edges with numerical capacities derived from the data
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and smoothness terms, for example, pixels visually similar to the foreground seeds get

stronger connections to the source node. Otherwise, pixels more related to the background

seeds tend to get stronger connections to the sink node. Also, a pair of similar adjacent

pixel nodes tends to get stronger connections.

A popular approach that extends original Boykov and Jolly work is the GrabCut

system, proposed by Rother et al. [51]. Their system iteratively re-estimates the region

statistics, given by a gaussian mixture model based on RGB color features. Their seeds are

typically available by a user marked bounding box, where the pixels inside this rectangle

are labeled as unknown, and the pixels outside the box are automatically background.

Figure 3.5: Three examples of GrabCut. The user drags a rectangle loosely around an
object. The object is then extracted automatically. [51]



Chapter 4

Unsupervised Cosegmentation Based on

Global Clustering and Saliency

This chapter describes the unsupervised image cosegmentation method proposed. Its

goal is to determine the regions containing objects within a collection of n input images

I = {I1, . . . , In}. Our mere assumption is that the observed object is present in every

image of the collection, such that each object instance in Ii shares visual similarities to

other object instances.

Unsupervised methods in many cases require an automatic way to infer seeds from

the image that make it possible to build a model of the object of interest. This is usually

a di�cult task. However, with multiple images we have su�cient cues that enable us

to deduce what is likely the object region. For example, with a collection of images

containing �owers, it is possible to learn an object model by constructing a probability

distribution or training a machine learning classi�er using features such as color, texture or

shape features among others. The existence of multiple images compensates the absence

of initial cues granted in a supervised manner, for example, given by scribbles of a human

user. The redundancy of data provided by an image dataset is useful in unsupervised

methods.

Our approach uses a variable number |I| > 1 of images and computes |c| = 2 seg-

mented regions, called object and background partitions. Although it is possible to extend

it for |c| > 2, it is not our focus.

A formulation of the problem is presented in section 4.1. Section 4.2 outlines the

proposed method created to deal with the described problem. Subsequent subsections

aim to explain each step of this approach. Section 4.3 correlates the proposed method

with typical computer vision frameworks using a bayesian approach.
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4.1 Problem De�nition

Consider an image collection I = {I1, . . . , In} and a set of features Fi(e), where e is a

family of local features from an image Ii. The Image Cosegmentation problem is modeled

as the determination of the simultaneous segmentation of I, where a segmentation is

a partition of Ii into two groups: O(Ii) and B(Ii), such that O(Ii) ∪ B(Ii) = Ii and

O(Ii) ∩ B(Ii) = ∅. O(Ii) represents the object of interest that co-occurs in Ii, where the

notion of interest in each image is given by a function f(Ii) : I → R.

4.2 Method Overview

The conceptual model of the method is subdivided into four steps: Local Clustering,

Global Clustering, Object Cosegmentation and Cosegmentation Re�nement. Its scheme

is presented by the �owchart in Figure 4.1.

Object Cosegmentation Step

Global Clustering Step

Input Image Set

Local Clustering Step

Local Feature 
Extraction

Image Content 
Clustering

Determination of 
Similar Local 

Clusters 

Fusion of 
Similar Local 

Clusters Object/Background
Classification

Image 
Segmentation

Cosegmentation
Refinement

Final
Cosegmentation 

Sequence

Construction of 
Super 

Clusters

Figure 4.1: A �owchart that depicts the proposed method, which is composed of 4 stages:
Local Clustering, Global Clustering, Object Cosegmentation and Cosegmentation Re�ne-
ment. Each stage is represented by substages, also emphasized in the diagram.
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4.2.1 Local Clustering

The Local Clustering task is responsible for constructing a set of clusters for each Ii.

These initial internal-clusters are the basis of our method, since it separates regions of the

image into clusters with similar features. Later, in further stages of our approach, these

internal clusters will be compared and grouped among the collection.

This step is subdivided into two substages: the Feature Extraction is responsible for

extracting all the features of each image and is explained in section 4.2.1.1. Based on these

features, the Image Content Clustering procedure intends to group regions with similar

features into the same set, as described in Section 4.2.1.2. Finally, Section 4.2.1.3 depicts

the pseudocode of this task and a concise analysis of its computational complexity.

4.2.1.1 Feature Extraction

One of the foundations of the image cosegmentation problem is the existence of visually

similar objects among the collection I. Image regions de�ned by such objects tend to

share similar features, although features can change considerably with the illumination

variation, object pose, camera viewpoint among others. For each Ii, it is necessary to

extract features Fi that will be used during the cosegmentation procedure. Feature vectors

associated to each pixel (e.g., color and position) and region (texture) are modeled as

normal distributions, subjected to compute distributions and parameters such as mean

and standard deviation. These feature descriptors are represented by a 77-dimensional

vector set (in average).

The Feature Extraction substage produces a set of Fi(e) features, where e is a region of

I de�ned by a subset of pixels P ∈ Ii. The feature vector Fi(e) = {col(e), tex(e), pos(e)} ∈
Rd is composed by three major components describing, respectively: color, texture and

bidimensional position.

Cosegmentation methods must deal with the problem of comparing regions with dif-

ferent features, such as color, across the collection, even with arbitrary points of view

and when llumination variation is present. In this context, the CIE L∗a∗b∗ color space

is very appropriate to deal with both problems. The color features of our descriptor are

composed by a luminance scalar and two chrominance scalars, represented by col(e). Each

feature in the descriptor vector is normalized (except for color coordinates) by including

weight terms to add importance for each attribute individually, whether it is texture or

position. Figure 4.2 illustrates the feature extraction procedure computed in this step.
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Empirical tests of the method proposed support that these color scalars are su�cient

enough to cosegment collections properly, when the foreground region possess a signi�cant

color di�erence compared to their background segment. Also, we tested the use of color

pyramids to extract di�erent resolutions of Ii, which did not have signi�cant in�uence in

our �nal results. We also veri�ed that certain collections could be cosegmented with 2-

dimensional descriptor sets, irrespective of other features, since it is possible to cosegment

fairly well using only chrominance scalars.

For the majority of image collections, using only color components may not be su�-

cient to clusterize the image content. Hence, it is necessary to incorporate texture based

features. In this work, we rely on the Gabor Filter Banks technique [30] aiming to use

the lowest dimensional descriptor as possible, without losing accuracy in the �nal results.

Works such as Jain and Farrokhania [30] obtained reliable results by proposing an un-

supervised texture segmentation algorithm, and we extracted texture features in a way

that is similar to their approach. Similar to theirs, our texture descriptor encompasses

60 feature dimensions, with 6 orientation angles θ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} and

12 frequency scalars. However, these frequency scalars can vary depending of the image

resolution considered.

Finally, we include in our descriptor set the bidimensional position (x, y) of each

pixel, in order to incorporate the information about where each cluster appeared in the

coordinates space. This parameter is relevant, since real images usually have spatial

coherence in each object or background region.

Figure 4.2: An example of the feature extraction procedure for a particular collection.
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4.2.1.2 Image Content Clustering

Going deeper in the proposed pipeline, the Image Content Clustering substage is respon-

sible for analyzing each Ii and grouping pixels of similar features into a set of Local

Clusters LCi = {LC1
i , . . . , LC

m
i }, where m is the maximum number of clusters. After the

computation of each individual cluster LCs
i , their descriptors in a d-dimensional space Rd

are extracted. To illustrate this stage, Figure 4.3 shows an example of an image collection

with 3 images, and their Local Clustering is depicted in Figure 4.4. Each LCi is in the

aforementioned illustration represented by a distinct color.

Figure 4.3: Original image collection example to illustrate the image content clustering
task.

Figure 4.4: Local Clustering of the collection represented in Figure 4.3.

This substage computes a set of clusters for each image using K-means [27] and

mixture of Gaussians [16] techniques, mentioned previously in Section 3.1. These initial

clusters are given by a K-means technique and used as an input to the Expectation-

Maximization algorithm to generate Gaussian Mixture Models (GMMs). Many methods

which deal with image segmentation rely on EM procedures for clustering [7] and modeling

object or background regions [51].

This substage deals with features in a high dimensional space. The choice of Gaussian

Mixture Models for clustering is appropriate in such case as it performs well with high di-

mensional data, and identi�es the main directions of data variation. Also, GMM generates

prior probabilistic models which are well suited for data samples of image segmentation

algorithms.
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However, the original Expectation-Maximization algorithm depends on a �xed number

of clusters and relies on a good selection of initial data, with trained labels in order to

converge. Therefore, it is suitable to use the K-means algorithm to construct an initial

set of clusters preceding the EM method, although it requires a maximum number of

clusters. The combination of K-means and EM algorithms extends both methods and

reduces their drawbacks. Generally, the EM algorithm takes several iterations to converge,

compared to the K-means technique. Also, each iteration requires much computing e�ort.

That also explains why it is suitable to start EM with clusters obtained with the K-

means algorithm, in order to �nd a robust initialization of the EM method. Also, the

initial clusters necessary for EM procedure are obtained by the K-means algorithm or any

variation of it, such as X-means.

The K-means algorithm is widely used to classify data, but it does not ensure the

best representation of the clusters, since it is very sensitive to the random initialization

and can introduce errors caused by outliers or redundant initial centers. Many heuristics

can reduce the probability that these issues occur, for example by including a preliminary

clustering phase on a random 10% subsample of the set of samples. The mean centers

obtained by the clustering of this preliminary phase are the initial centers of the K-means

procedure.

Concluding this step, we consider each gaussian distribution from the mixture of an

image Ii as a Local Cluster LCs
i . Its mean µsi and covariance matrix Σs

i are descriptors

of the corresponding Local Cluster.

4.2.1.3 Pseudocode and Computational Complexity Analysis of Local Clus-
tering Task

The pseudocode that describes the Local Clustering stage is depicted in Algorithm 2. The

�rst loop O(p) is performed for each p ∈ Ii. Also, several Gabor �lters are computed for

each Ii, introducing an exponential function for each p. Consequently, the initial loop

has a complexity O(p× exp(−x21+γ2×y21
2σ2 )× cos(2π x1

λ
+ ψ)), where x1 = xcos(θ) + ysin(θ),

y1 = ycos(θ) − xsin(θ), p = (x, y), λ represents the wavelenght of the cosine factor, θ

represents the orientation of the normal to the parallel stripes of a Gabor function, ψ

is the phase o�set, γ is the spatial aspect ratio and σ is the standard deviation of the

gaussian component.

Finally, the remaining complexity is based on K-means and EM. The computational

complexity of these algorithms depends on the number of samples s, the number of images
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I, the total number of local clusters m and the maximum number of iterations it of both

K-means and EM methods. Consequently, it is determined as O(2× s×m× it) [60, 29].

Algorithm 2 Algorithm representation of the Local Clustering stage.
Commentary: Extract features for color, texture and position.
for each Ii ∈ I do
for p ∈ Ii do
Commentary: Extract each feature descriptor Fi(p) for color and position. For
texture, extract Fi(e) where e is a window region such that p ∈ e.
F p
i (col(p)) = col(p)
F p
i (tex(p)) = tex(e)
F p
i (pos(p)) = pos(p)

end for
end for
Commentary: Compute K-means for each Ii using the extracted features Fi.
Ci = K-means(Ii, Fi, it)
Commentary: Compute the Expectation-Maximization using Fi and the components Ci
generated by K-means.
GMMi = Expectation-Maximization(Fi, Ci)

4.2.2 Global Clustering Step

As mentioned before, in the problem we tackle here one expects to �nd a set of visually

similar objects in each image collection. Based on this premise, our approach searches for

Local Clusters LCs
i that share similar features among the collection. These Local Clusters

yield new cluster sets via the Global Clustering step.

The Global Clustering task, in a bottom-up perspective, attempts to identify groups

of similar clusters across di�erent images, creating Global Cluster sets GC. Two Lo-

cal Clusters LCs
i and LCt

j , with respective indices s and t, in distinct images Ii and

Ij, are fused into a single Global Cluster GCk, if they are considered similar, that is,

dist(LCs
i , LC

t
j) < εglobal. Hence, dist is a distance function de�ned by the Local Clusters

LCs
i and LC

t
j feature descriptors. The εglobal constant is a threshold measure that delimits

the minimum distance between all pairs of LCs
i and LCt

i . The Global Clustering stage

detects which Local Clusters in I are similar, determining those that must be fused, so

that super clusters GCk are generated. Each GCk exists over the collection I. Figure 4.5

presents an illustrative scheme of a Global Clustering set where each GCk is represented

by a distinct color.

The similarity of Local Clusters from distinct images is determined by using a dis-

tance metric dist. Since the samples considered in the Local Clustering stage can vary
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Figure 4.5: Global Clustering set of the collection from Figure 4.3.

signi�cantly in their color and texture features, it is used the Bhattacharyya Distance [4],

which measures the degree of similarity between two probability distributions (discrete or

continuous). The Bhattacharyya Distance takes into account not only the average value

of the samples in the distribution, but also the di�erence between the standard deviations

of the two classes.

This measure is named after Anil Kumar Bhattacharyya, a statistician from 1930s [4],

and is used to measure the separability of classes in classi�cation problems. When two

classes have similar means but distinct standard deviations, the Bhattacharyya distance

will increase its value proportionally.

For multivariate normal distributions, the Bhattacharyya distance is de�ned by

Db =
1

8
(µ1 − µ2)ᵀ

(
Σ1 + Σ2

2

)−1

(µ1 − µ2) +
1

2
ln

(
detΣ1+Σ2

2√
detΣ1detΣ2

)
, (4.1)

where µi and Σi are the means and covariances of the distributions measured.

Let a Local Cluster LCs
i from an image Ii be described by its mean µsi and covariance

matrix Σs
i . Analogously, a Local Cluster LCt

j from an image Ij, with mean µtj and

covariance matrix Σt
j is also de�ned. In order to evaluate the similarity measure between

the distribution of LCs
i and the distribution of LCt

j , we de�ne their distance as:

dis(LCs
i , LC

t
j) =

1

8
(µsi − µtj)TΣ−1(µsi − µtj) +

1

2
ln(

detΣ√
detΣs

idetΣ
t
j

), (4.2)

where Σ =
Σs

i+Σt
j

2
.

Observing Figure 4.1, one can notice that the Global Clustering stage is composed

of three substages. The Determination of Similar Local Clusters substage veri�es if each

pair LCs
i and LCt

j is similar among I. If LCs
i and LCt

j is considered similar, then they

are fused into a Global Cluster GCk, which occurs during the Fusion of Similar Local

Clusters subtask. Based on Equation 4.2, we de�ne that LCs
i and LC

t
j pair is considered
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similar, if their distance is lower than a particular threshold εglobal. The εglobal constant is

de�ned by the minimum Bhattacharyya distance between all pairs of LCs
i and LC

t
i that

belong to the same Ii, such that

εglobal = min(dis(LCs
i , LC

t
i )), (4.3)

where s 6= t and min is a function that represents the lower value between all pairs of

LCs
i and LC

t
i .

This allows us to state that a pair LCs
i and LC

t
j is similar when

εglobal > dis(LCs
i , LC

t
j). (4.4)

The threshold εglobal is the shortest intracluster distance between all images. Empiri-

cally, if the distance between Local Clusters LCs
i and LC

t
j that compose the foreground is

lower than εglobal, that means these components should be parts of a single cluster. This

procedure is computed for each pair of Local Clusters of distinct images and is concluded

after all pairs are veri�ed. Moreover, εglobal is a delimitation term that is based on the

degree of separation between internal clusters of each Ii, and de�nes what probably is a

similar cluster between distinct images.

An example of this procedure is depicted in Figure 4.6.

Figure 4.6: Graphic example of the substage Determination of Similar Local Clusters,
with a pair of images I0 and I1. It is computed the distance function dist between
each pair of Local Clusters of distinct images. For example, in the �rst iteration it is
computed the distance dis(LC0

0 , LC
0
1), such that if dis(LC0

0 , LC
0
1) < εglobal, then these

components are classi�ed as similar. In the next iteration, the same procedure is re-
peated for dis(LC0

0 , LC
1
1). This procedure is repeated until all pairs of Local Clusters are

evaluated.

After evaluating the dist function between all pairs of Local Clusters that belong to I,
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part of these clusters are grouped, generating a set of Global Clusters GC. That de�nes

the Fusion of Similar Local Clusters subtask. A particular GCk is formed by many similar

Local Clusters such that GCk = {LCs
i , . . . , LC

t
j}. We merge a LCs

i into a GCk if their

distance is lower than εglobal for any LCt
j ∈ GCk.

Concluding the Global Clustering phase, several Local Clusters may be left ungrouped.

To overcome this problem, a top-down approach computes descriptors for each GCk al-

ready created. In this case, instead of using dis(LCs
i , LC

t
j), which compares the distance

between Local Clusters, a new gaussian distribution is constructed for each GCk and their

distance is compared with each ungrouped LCs
i . Thus, a distribution that represents each

GCk is constructed. For that, the similarity notion reevalDist is used, which revisits the

ungrouped Local Clusters in a reevaluation loop. Each GCk generates a gaussian distri-

bution and their distance is compared with LCs
i . Their descriptors are then compared

to the Global Clusters descriptors, that is, a Local Cluster LCs
i will belong to a Global

Cluster GCk if reevalDist(LCs
i , GCk) < εglobal. The function reevalDist also uses the

Bhattacharyya Distance. An example of this procedure is depicted in Figure 4.7.

At the end of the Global Clustering step, a set of Global Clusters is generated, becom-

ing the input data to the next step of the cosegmentation, called Object Cosegmentation

task.

4.2.2.1 Pseudocode and Computational Complexity Analysis of Global Clus-
tering Task

A full description of the pseudocode of this stage is represented in Algorithm 3. The �rst

loop computes the εglobal, which needs to compute the distance between Local Clusters

of each image Ii. For that, considering that the maximum number of Local Clusters m,

it is assumed O(I ×m× (m− 1)). That occurs because in the worst case, each Ii has m

local clusters, and the distance between each one is computed.

The next excerpt of the algorithm requires more computational e�ort since it veri�es,

for each pair of Local Clusters, whose are similar. Based on this, we ensure that the

computational complexity of this stage is O(I × (I − 1)×m× (m− 1)).

The �nal loop revisits each LCs
i 6∈ GC, which can introduce O(|LCs

i 6∈ GC|), where
|LCs

i 6∈ GC| is the total number of LC that was not grouped into a GC.
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Algorithm 3 Algorithm representation of the Global Clustering stage.
Commentary: Compute the εglobal constant.
εglobal ←∞
for each LCs

i and LC
t
i do

if Bhattacharrya(LCs
i , LC

t
i ) < εglobal then

εglobal ← Bhattacharrya(LCs
i , LC

t
i )

end if
end for
Commentary: Determine for each pair LCs

i and LCt
j if they are similar.

for each LCs
i and LC

t
j do

if Bhattacharrya(LCs
i , LC

t
j) < εglobal then

Commentary: Verify if LCs
i or LCt

j belongs to any GCk.
if LCs

i ∈ GCk then
Commentary: LCt

j is fused into GCk.
GCk = GCk ∪ LCt

j

else if LCt
j ∈ GCk then

Commentary: LCs
i is fused into GCk.

GCk = GCk ∪ LCs
i

else
Commentary: Create a new GCk = {LCs

i , LC
t
j}.

GCk = {LCs
i , LC

t
j}

end if
end if

end for
Commentary: Revisit each LCs

i 6∈ GC and verify their distance to each GCk.
for each LCs

i 6∈ GC do
if Bhattacharrya(LCs

i , GCk) < εglobal then
GCk ← LCs

i .
end if

end for
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Figure 4.7: Graphic example of the substage Construction of Super Clusters, for a col-
lection of three images. In this example, the pair of Local Clusters LC0

0 and LC0
1 is

considered similar and generates the Global Cluster GC1. However, the Local Cluster
LC0

2 6∈ GC. In this substage, it is constructed a gaussian component of GC1 which
is used to compute the distance of GC1 between each LCs

i 6∈ GC. In this image, if
reevalDist(LC0

2 , GC1) < εglobal, then LC0
2 is fused with GC1. This procedure is repeated

for each LCs
i 6∈ GC.

4.2.3 Object Cosegmentation Step

The previous stage reveals intrinsic models from the samples of a photo collection. During

the Object Segmentation task, Global Clusters are used in order to create a partition of

each image into binary regions: foreground and background. Section 4.2.3.1 explains how

each Global Cluster is assigned into these classes. These two partitions underly funda-

mental cues to compute the �nal segmentation of each image, as stated in section 4.2.3.2.
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4.2.3.1 Object / Background Classi�cation

The Object Cosegmentation task is initialized with the set of Global Clusters GC. Each

GCk describes a set of similar samples from the collection whose variability is modeled by

a gaussian component and has to be classi�ed into two categories: object or background.

For each Ii where a GCk occurs, it is computed a classi�cation procedure that analyzes

cues that indicate wheter it is an object or a background segment. After each GCk is

classi�ed as object or background, it is used as a seed model for the �nal Cosegmentation.

The Object and Background classi�cation procedure considers the de�nition of saliency

information proposed by Cheng et al. [11], where for each Ii, a salient map Si is com-

puted. Figure 4.8 shows many examples of salient maps computed over the collection of

Figure 4.3, where white pixels represent the salient area.

Figure 4.8: Examples of salient maps of the image group presented in Figure 4.3.

Before introducing further details of the Object / Background Classi�cation proce-

dure, we assume that if a pixel p belongs to the salient region of Si, then S(p) = 1.

Otherwise, p is part of the non salient area and S(p) = 0. Based on that, each GCk

is classi�ed as object or background by using a voting scheme. The frequency of pixels

p ∈ GCk, where S(p) = 1 is denoted by |S(GCk) = 1|. Di�erently, the frequency of pixels

p ∈ GCk, such S(p) = 0 is de�ned by |S(GCk) = 0|. The classi�cation procedure is

performed in the following way: for a collection I, if |S(GCk) = 1| > |S(GCk) = 0|, then
GCk is object. Otherwise, it is classi�ed as background. Figure 4.9 presents an example

for two Global Clusters.

Notice that after concluding the Object / Background Classi�cation procedure, many

regions may be left unclassi�ed into any label. That occurs because many Local Clusters

LCs
i do not belong to any Global Cluster, such that LC

s
i 6∈ GC. It is important to take the

cases into consideration, since the remaining Local Clusters could give a more complete

information about the seeds that are used to compute the �nal result. Therefore, each

Local Cluster LCs
i 6∈ GC can be classi�ed as probable object or probable background, based

on their saliency maps. This is done similarly as the classi�cation procedure explained
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Figure 4.9: A diagram that exempli�es the saliency classi�cation procedure. It is com-
puted the frequency of pixels p ∈ GCk that belongs to the salient area S. In this example,
GC1 has more pixels that belongs to S, assigning GC1 as object. Similarly, for GC2,
the frequency of pixels p 6∈ S is higher that p ∈ S. Consequently, GC2 is classi�ed as
background.

before. That is, if |S(LCs
i ) = 1| > |S(LCs

i ) = 0|, then LCs
i is assigned into the probable

object region, otherwise, it is classi�ed as a probable background area.

Naturally, for the Graph Cuts computation, there must exist many di�erences be-

tween the object and background labels, compared to the probable object or probable

background classes. For example, if GCk is classi�ed as object, then it is guaranteed that

this region will be an object instance of the cosegmentation. However, if a Local Cluster

LCs
i is classi�ed as probable object, then it will increase the probability of LCs

i being part

of the object region, but it is not a de�nitive condition. That depends of the classi�cation

of the other GCk or LCs
i within each image.

The importance of classifying Local Clusters LCs
i 6∈ GC is immense for obtaining

results with high visual quality. For example, if the method deals with a collection where

the foreground varies across the set, that increases the probability of the object region

being not assigned into any GCk. Consequently, an incomplete model is constructed. In

a particular image, regions classi�ed as probable object or probable background could be

the single seeds that are incorporated into the Graph Cuts computation. Similarly, if a

background segment does not repeat among the collection, it is possible that it is not

assigned into any GCk. Moreover, the Graph Cuts results can introduce mistakes, since it

will classify this segment based on the distance between object or background probability

distribution functions, given by GMMs. More details about this procedure is explained
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in the next section.

4.2.3.2 Graph Cuts Segmentation

In the Object or Background Classi�cation subtask, the classi�ed regions assigned into the

Global Clusters (or Local Clusters) are used as seeds for a Graph Cuts energy minimization

framework, using the GrabCut algorithm [51]. In its original work, the GrabCut algorithm

introduces a supervised approach that coarsely indicates whether regions belong to the

object or to the background instances. In our method, these user mark seeds are de�ned by

GC and LC regions. Figure 4.10 depicts an example of a cosegmentation result obtained

from the image collection of Figure 4.3, separated by red strokes.

Figure 4.10: Final cosegmentation of the collection of Figure 4.3.

The Grabcut method is based on the Graph Cuts framework, which was proven to be

useful multidimensional optimization tool enforcing piecewise smoothness while preserv-

ing relevant sharp discontinuities. Also, its computational complexity big-O function is

polynomial.

During this stage, it can be assumed that each pixel p ∈ Ii has four possible labels for
GrabCut seeds: object, background, probable object or probable background. Formally,

an L function de�nes the label of p, such that L(p) = {O,B, PO, PB}. For example, if p

belongs to a classi�ed Global Cluster p ∈ GCk, it means that it is part of the object or

background seeds. The similarity notion and the salient maps de�nes the label correctness.

In our pipeline, the Global Clusters are labeled as object or background, and the

Local Clusters LCs
i 6∈ GC can be assigned, in a pixel level, into the probable object

and probable background sets. These labeled sets are used as seeds for the GrabCut

method. Two GMMs are computed for object and background regions, respectively, using

the samples of these sets assigned into each label, generating probabilistic models for each

region of the binary segmentation. These GMMs are considered in the Ed term described

by Equation 3.21.
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In our cosegmentation pipeline, the GrabCut framework cosegments the photo col-

lection by minimizing an energy function based on GMMs produced from the classi�ed

samples obtained previously. The Object GMM, GMMOBJ , is computed from the corre-

sponding samples determined from the Global and Local Clusters classi�ed as object or

probable object (O or PO). Similarly, the Background GMM, GMMBKG is computed

from samples that can be inferred from the Global and Local Clusters classi�ed as back-

ground (B or PB). These GMMs are used in the de�nition of the energy function of the

GrabCut framework, which is applied to the entire collection.

4.2.3.3 Pseudocode and Computational Complexity Analysis of Object Coseg-
mentation Task

A full pseudocode that describes the Object Cosegmentation stage is described in Algo-

rithm 4.

The saliency maps procedure presented in Cheng et al. [11] takes O(n) +O(c2) time

for a single image, where n is the total number of pixels in an image and c is the number

of colors of the same picture. That occurs because for each pair of color levels, the

Equation 3.18 is computed. Also, since we compute saliency maps for the collection, we

assume that this stage takes O(|I| × n) +O(|I| × c2), where |I| is the collection size. The

GrabCut algorithm running time complexity depends on how the augmenting paths of

maximum �ow problem is chosen. For example, the Boykov-Kolmogorov algorithm [5] has

O(V ×E2×|C|), where |C| is the capacity of the minimum cut, V is the number of nodes

and E is the number of edges in a graph G = (V,E). In our case, this is transcripted into

O(|I| × V × E2 × |C|).

To conclude, it is necessary to evaluate loops for each pixel in GC and LCs
i 6∈ GC

sets, in order to compute the frequency of the total number of salient or non salient pixels,

such that O(p),∀p ∈ |I|.

4.2.4 Cosegmentation Re�nement Step

After the Object Cosegmentation step, it is possible to reuse the cosegmented images and

restart the method, reevaluating many iterations as necessary. This iterative approach

generally impacts positively in the �nal accuracy of our method. This procedure is named

the Cosegmentation Re�nement task.

This is done by restarting the method during the Global Clustering stage, replacing the
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Algorithm 4 Algorithm representation of the Object Cosegmentation stage.
Commentary: Compute the saliency maps for I using the method proposed in [11].
S ← ComputeSaliency(I)
Commentary: For each p ∈ GCk, sums the total number of salient pixels and not salient
pixels.
TotalSalientPixels(GCk) ← 0
TotalNotSalientPixels(GCk) ← 0
for each p ∈ GCk do
if S(p) == 1 then
TotalSalientPixels(GCk) ← TotalSalientPixels(GCk) + 1

else
TotalNotSalientPixels(GCk) ← TotalNotSalientPixels(GCk) + 1

end if
end for
Commentary: De�nes for each GCk if it is assigned into the object or background
regions.
for each GCk do
if TotalSalientPixels(GCk) > TotalNotSalientPixels(GCk) then
L(GCk) ← O

else
L(GCk) ← B

end if
end for
Commentary: For each p ∈ LCs

i , such that LCs
i 6∈ GC, sums the total number of salient

pixels and not salient pixels.
TotalSalientPixels(LCs

i ) ← 0
TotalNotSalientPixels(LCs

i ) ← 0
for each p ∈ LCs

i , where LC
s
i 6∈ GC do

if S(p) == 1 then
TotalSalientPixels(LCs

i ) ← TotalSalientPixels(LCs
i ) + 1

else
TotalNotSalientPixels(LCs

i ) ← TotalNotSalientPixels(LCs
i ) + 1

end if
end for
Commentary: De�nes for each LCs

i 6∈ GC if it is assigned into the probable object or
probable background labels.
for each LCs

i 6∈ GC do
if TotalSalientP ixels(LCs

i ) > TotalNotSalientP ixels(LCs
i ) then

L(LCs
i )← PO

else
L(LCs

i )← PB
end if

end for
Commentary: Cosegments the entire set, by evaluating the GrabCut method for each Ii
using the computed label sets.
{Iobj, Ibkg} = GrabCut(I, L(I))
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original salient images by the cosegmented results produced in the Object Cosegmentation

stage. The rationale behind this idea is that many salient images computed initially

can introduce artefacts, noisy images or errors produced during the computation. For

many collections, we assume that the majority of images has saliency maps computed

adequately. Therefore, for a small image set with salient regions that does not cover

adequately the foreground area, this heuristic tends to improve results.

However, notice that if the majority of the collection introduces several mistakes in

the computed saliency maps, this heuristic will not be helpful and the �nal accuracy of

the cosegmentation can further deteriorate. In chapter 5, we show through experiments

that a small number of interactions (even a single one) can produce quite good results for

most collections.

4.3 Concluding Remarks

As stated by Prince [49], given a vision problem, the components of their solution are:

a model, a learning algorithm and an inference algorithm. Based in this de�nition, we

intend to de�ne which parts of the method are related to these components.

The model mathematically relates the visual data x of the image, which in our ap-

proach are the extracted features, and the world state w, that is the classi�cation of the

cosegmented regions as object and background labels. The model speci�es a family of

possible relationships between x and w based on a set of model parameters θ. In our ap-

proach, the model is represented by Gaussian Mixture Models that reveal colors, texture

patterns and position of region instances related to cosegmentation classes. Their pa-

rameters are computed by the Expectation-Maximization method. Finally, these GMMs

reveal the likelihood functions P (x|O) and P (x|B).

The inference algorithm is responsible for taking a new observation x and using the

model to return the posterior P (w|x, θ) over w. In our approach, the posterior is not

computed algebrically, but revealed by a GrabCut procedure. In other words, the GrabCut

method obtains information of P (O|x) and P (B|x).

The learning algorithm allows to �t the parameters θ using paired training examples

{xi, wi}. These informations are obtained by three components of our approach: the

EM method computation, the Global Clustering stage and the saliency voting scheme

computed in the Object Cosegmentation task, which induces the information of what is

an object or background region instance based on the extracted features.
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Concluding, our approach is a generative model that computes likelihoods by GMMs

and learns x data by Expectation-Maximization, Global Clustering and saliency voting

scheme. The �nal probabilities P (O|x) and P (B|x) are given by the GrabCut procedure.



Chapter 5

Experimental Results

In this chapter, we present and discuss the practical aspects of our results. The perfor-

mance of our algorithm is evaluated quantitatively and qualitatively. The results were

analyzed and compared with many unsupervised state-of-the-art approaches.

An overview of the test methodology is presented in Section 5.1, considering accu-

racy measures for comparison with other cosegmentation methods and information about

public cosegmentation datasets. A description of all experiments is given in Section 5.2,

with presentation of many image cosegmentation examples and a comparative discussion

of our results with other works.

5.1 Methodology

All experimental tests were performed in an Asus N46V laptop with an Intel Core i7

CPU and 8GB of RAM. The initial Local Clustering and Global Clustering stages were

implemented with the Matlab R2013a toolbox, and the Object Cosegmentation task was

implemented in C++ using Microsoft Visual Studio 2012 environment. The GrabCut

algorithm used the OpenCV3 library and the saliency-map computation software was

developed by Cheng et al. [11], available online.

As explained in Section 4.2.1.1, di�erent types of features, such as color and texture,

can be used for the feature descriptors of the Local Clustering algorithm. This feature

set typically encompasses a 77-dimensional vector, where the three initial scalars describe

CIE L*a*b* colors, the following seventy-two components represent Gabor Filter textures

at various scales and the �nal two scalars depict x and y pixel positions. For Gabor Filter

banks, six orientation separation angles of 30◦ are used: θ : 0◦, 30◦, 60◦, 90◦, 120◦, 150◦,



5.1 Methodology 53

followed by values of frequencies Fl(i) = 0.25 − 2i−0.5/w and Fh(i) = 0.25 + 2i−0.5/w,

such that i = 1, 2, . . . , log2(w/8) and w is the width of the image considered. Note that

the number of texture scalars shall vary according to the image dimensions. More details

regarding these parameters choice are explained in [65].

The Local Clustering algorithm is initialized by a K-means procedure that performs

a preliminary clustering phase on a random 10% subsample of the image. The distance

measure used is the squared Euclidean Distance, where each centroid is the mean of the

points in that cluster. Finally, the maximum number of K-means iterations is 150 and

the maximum number of Local Clusters is K = 35. Since the object region is initially

unknown, a high number of Local Clusters is recommended to obtain good results.

Finally, the saliency map parameters are the same as recommended by Cheng et al.

[11] and it is computed a single iteration of the Cosegmentation Re�nement stage. Details

regarding these choices and their consequences are explained in Section 5.2.

As mentioned earlier, the quality of our experiments is validated in two distinct ways:

� Qualitatively: Image experiments are showed, and each image is overlayed by their

segmentation, represented by red marks. Later, each collection is analyzed and

compared with other works. Good results and failure cases are explained.

� Quantitatively: Three accuracy measures are analyzed to evaluate the numerical

quality of the cosegmentation proposal.

The segmentation accuracy is the proportion of the number of pixels that were cor-

rectly identi�ed as object or background. This metric is used in many works such as Fu

et al. [20], Wang et al. [64], Rubio et al. [54] and Vicente et al. [63], among others.

The second accuracy measure requires some de�nitions: the True Positive (TP ) is

the percentage of pixels correctly classi�ed as part of the object region; the True Negative

(TN), analogously to TP , is the percentage of pixels correctly classi�ed as background;

the False Positive (FP ) is the rate of background pixels incorrectly predicted as object;

and, �nally, the False Negative (FN) is the total of object pixels incorrectly assigned as

part of the background region.

The second accuracy measure considered is the True Positive Rate (TPR), which

measures the proportion of object pixels correctly identi�ed in an image or collection.
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Sometimes, it is named sensitivity or object rate and is de�ned as

TPR =
TP

TP + FN
. (5.1)

Similarly, the last measure is the True Negative Rate (TNR), which scores the total

of correctly predicted background pixels. It can be named speci�city or background rate,

being computed as

TNR =
TN

TN + FP
. (5.2)

Obviously, the object rate is complementary to the background rate and these quanti-

tative measures can be used to compute the accuracy of the segmentation of a particular

image or even the whole collection, as it is seen in Section 5.2.

5.2 Experimental Evaluation

We begin our experimental evaluation by reporting quantitative and qualitative results

on two cosegmentation datasets: iCoseg [2] and MSRC [57], with binary ground truths for

object regions. Each result is separated per classes of collections, ensuring that at least

an object instance exists in each image of the collection. Both datasets are composed of

images with two distinct regions to segment: object and background. On average, MSRC

set approximately has collections with 30 images per collection and iCoseg has 5 to 50

images per collection.

Each image class has their accuracy measures computed by our method and compared

with other state-of-the-art methods of the literature, in similar conditions as theirs, such

as the same number of images per collection.

5.2.1 Experimental Results for iCoseg dataset

The iCoseg is a challenging dataset that introduces collections under several conditions.

For each collection, the object instance appears with considerable di�erence of angle,

position, deformation, illumination and occlusion. Also, color and texture variation over

object regions is typical, with variable background. The object instances vary, including

animals, popular landmarks, people playing sports with similar uniforms, among others.

This dataset contains 38 collections with a total of 643 images and was created in the

context of a fully supervised cosegmentation application [2]. Their application yields a
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user-friendly interface, that relies on human marked scribbles. Also, they constructed an

image database with a globally-consistent appearance, simulating the characteristics of

collections obtained when people take multiple photographs of the same event or object.

They used a histogram distance metric to select images with similar foreground to be

included into their dataset. Moreover, they quanti�ed the amount of scale change of the

object of interest at each collection, concluding that some images contain very small fore-

ground (on average ≤ 5% of the �gure), while some groups contain very large foreground

objects (on average ≥ 40% of the image). In other words, the foreground scale changes

signi�cantly among the dataset, what makes the cosegmentation task more challenging.

However, in our method, these scale changes did not a�ected negatively our results.

For this dataset, we compared our results with four distinct works that obtained the

best accuracy results among several methods: Vicente et al. [63], Fu et al. [20], Wang et

al. [64] and Joulin et al. [32].

The accuracy of our method and of these works is summarized in Table 5.1, using

the same number of images as theirs, and selecting a random subset of images on each

collection. Also, since the source code of these works has not been publicly available,

we report directly the accuracy provided by their papers. For comparison, we present

separately the accuracy after the Object Cosegmentation (OC) stage and after a single

iteration of the Cosegmentation Re�nement task (CR). Table 5.2 shows the same results,

but presenting the object rate and the background rate of Object Cosegmentation and

Cosegmentation Re�nement phases.

After analyzing Tables 5.1 and 5.2, we can conclude that the proposed method pro-

duces remarkable results in comparison with other state-of-the-art methods. Also, a single

iteration of the Cosegmentation Re�nement task can improve, in average, the segmenta-

tion accuracy and the object rate of many collections of the iCoseg dataset. However,

after the re�nement, the background rate decreased a little. As we will discuss, each

iteration of the Cosegmentation Re�nement stage can impose a trade-o� between object

and background rates. As the re�nement step is computed, the salient images tend to

represent the foreground more accurately, achieving better visual quality in cosegmenta-

tion accuracy and increasing the object rate measure. However, as more iterations of the

re�nement are computed, small segments of the background that bear some visual sim-

ilarities to the foreground can be globally clustered as object. Obviously, that situation

depends of the foreground characteristics and the quality of the salient images. Normally,

after few iterations, the impact of this problem is minimum. However, after a high num-
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Table 5.1: Results obtained with the iCoseg dataset by the proposed method and other
approaches. We present separately the segmentation accuracy after the Object Cosegmen-
tation (OC) stage and after the Cosegmentation Re�nement (CR) task. Bold numbers
highlight the best method for each collection.

Proposed Method Competitors
Class Number of Images OC OC + CR [63] (Single) [63] (All) [20] [64] [32]

Alaskan Bear 9 94.9 94.8 79.0 90.0 93.5 90.4 74.8
Baseball 8 97.3 97.3 84.5 90.9 96.5 94.2 73.0

Stonehenge 5 93.6 94.2 84.2 63.3 93.0 92.5 56.6
Stonehenge 2 9 94.1 93.9 88.9 88.8 83.5 87.2 86.0
Liverpool 9 97.0 97.0 87.4 87.5 92.1 89.4 76.4
Ferrari 11 94.5 94.8 84.8 89.9 91.7 95.6 85.0

Taj Mahal 5 96.0 96.2 80.7 91.1 88.7 92.6 73.7
Elephant 7 97.7 97.1 75.4 43.1 90.4 86.7 70.1
Panda 8 94.0 94.9 87.8 92.7 81.2 88.6 84.0
Kite 8 75.0 74.1 89.3 90.3 96.6 93.9 87.0

Kite Panda 7 96.5 96.9 80.2 90.2 83.8 93.1 73.2
Gymnastics 6 99.0 99.1 82.1 91.7 95.4 90.4 90.9
Skating 7 92.4 94.5 78.4 77.5 81.7 78.7 82.1
Balloon 8 98.7 98.5 79.5 90.1 96.5 90.4 85.2
Statue 10 96.5 97.3 92.9 93.8 92.7 96.8 90.6
Bear 5 97.5 97.1 78.2 95.3 94.8 88.1 74.0

Average - 94.6 94.8 83.3 85.3 90.7 90.5 78.9

Table 5.2: Object rate and background rate results obtained with the iCoseg dataset by
the proposed method. As in Table 5.1, it is presented separately the accuracy after the
Object Cosegmentation stage and after Cosegmentation Re�nement task.

Class Object Rate (OC) Background Rate (OC) Object Rate (OC+CR) Background Rate (OC+CR)
Alaskan Bear 95.4 94.7 95.0 94.7
Baseball 84.0 98.7 85.0 98.6

Stonehenge 83.2 97.0 83.0 97.8
Stonehenge 2 91.9 95.7 91.7 95.4
Liverpool 90.3 97.7 92.2 97.5
Ferrari 81.0 99.3 82.1 99.3

Taj Mahal 94.2 96.4 94.9 96.5
Elephant 93.1 98.9 93.3 98.1
Panda 87.9 97.6 92.9 96.6
Kite 32.2 100.0 29.8 100.0

Kite Panda 95.6 97.1 96.9 96.9
Gymnastics 92.4 99.8 92.9 99.8
Skating 78.7 98.4 86.9 97.9
Balloon 97.7 98.9 97.6 98.7
Statue 83.9 99.6 88.5 99.5
Bear 96.3 98.2 96.4 97.4

Average 86.1 98 87.4 97.7
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ber of iterations, segments of the background can be assigned as foreground, reducing the

segmentation accuracy and the background rate of the method.

For some collections, we noticed that after a single iteration of the re�nement, the

object rate tends to increase a lot. However, the background rate maintains their accuracy

for some collections or reduces it a little. After many iterations, the object rate improves

at a very slower rate, and the background rate degradation impacts severely on the �nal

accuracy. Considering that the majority of the image set obtains very good accuracy

after �nishing the Object Cosegmentation stage or even after a single iteration of the

Cosegmentation Re�nement, we conclude that a single iteration is su�cient to bene�t

our method. Also, in cases where almost all salient images in a given collection fails to

recognize approximate regions of the object of interest, the impact of many iterations of

the Cosegmentation Re�nement stage is very negative, as showed by the Kite collection,

depicted in Figure 5.7. When virtually all images of a collection include errors by noise or

cluttered background, then the Cosegmentation Re�nement has the opposite e�ect than

the one originally expected.

According to our experiments, the proposed method outperforms the compared state-

of-the-art approaches in 14 out of 16 collections. In these groups, the foreground region

has homogeneous color and texture, a case that improves our method e�ectiveness. The

importance of Global Clustering is signi�cant, since it identi�es similar foreground and

background regions among the group. To illustrate each stage of our method, consider

the example of the Alaskan Bear collection, depicted in Figure 5.1.

Figure 5.1 shows images from the Alaskan Bear collection that were used in the

cosegmentation computation. Each stage of the method was represented in the picture.

It is visible that the salient images obtained by the algorithm of Cheng et al. [11] are

very accurate in detecting the object of the scene. Minor errors are introduced, except

for a particular image with many mistakes. The Local Clustering task partitions many

regions of each image into distinct segments, where each Local Cluster LCs
i is represented

by di�erent colors. Note that the colors used in the Local Clustering stage of this scheme

were selected randomly, just for presentation in this thesis. During the Global Clustering

stage, each LCs
i is compared with each LCt

j , across distinct images Ii and Ij by computing

a distance function dist, as formalized in Section 4.2.1.2.

The scheme of Figure 5.1 shows the computed images of the Global Clustering task,

where the regions assigned dark colors such as blue and red delimit Global Clusters. If a

Global Cluster GCk has more pixels within a salient region, then it is classi�ed as object
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Figure 5.1: Step by step diagram overview of each stage of the proposed method. These
images belongs to the Alaskan Bear collection of the iCoseg dataset. Each salient im-
age was computed by the method presented by Cheng et al. [11]. The Local Clustering
phase is represented, where each color de�nes a distinct cluster. In the Global Clustering
images, each region colored with dark blue is part of a GCk classi�ed as object. Analo-
gously, each area colored with dark red is classi�ed as background. Local Clusters LCs

i

that were not assigned into a Global Cluster are represented by light blue and light red
colors, which respectively represents probable object and probable background segments.
The �nal cosegmentation is delimited by red lines. For further comparison, the results
obtained by the Object Cosegmentation phase and Cosegmentation Re�nement procedure
are presented separately.

and represented by a dark blue colored region. Otherwise, if the majority of pixels of a

GCk remains outside of a salient area, then it is classi�ed as background and assigned

a dark red area. Blue light and red light colored clusters represent Local Clusters LCs
i

that do not belong to any GCk and, respectively, denote probable object and probable

background regions. Although the background varies signi�cantly among images, the

foreground area shares similar features, principally in color and texture attributes.

In the next step, these blue and red regions are the input seeds for a Graph Cuts

procedure that computes the �nal cosegmentation, represented by lines of the Object

Cosegmentation images. These results are very good, corresponding to 94.9% percent of

segmentation accuracy, even considering some images with foreground occlusion, e. g., the

Alaskan Bear collection. The object and background rates support this good quality. The

Cosegmentation Re�nement stage had small impact in this �nal result, since the previous

stage already obtained excellent results. In the following experiments, other collections

will be shown for which this �nal stage will be necessary to improve the accuracy.

The Global Clustering algorithm assumes that the foreground of each image shares
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similarities among color and texture features, and that most part of the foreground across

the collection belongs to the salient regions. Although many salient images introduce

errors, they can be corrected by the proposed method. Consider the Skating collection,

which is the experiment presented in Figure 5.2. Their computed salient images introduce

errors at the foreground, in at least 4 images out of 7. The Local Clustering stage parti-

tions the whole set, assigning human skin regions and the blue dresses to distinct Local

Clusters. That is the foundation of the next stage, where the Global Clustering algorithm

groups these human skin clusters on similar Global Clusters, and the blue dresses of each

image in other GCk. These Global Clusters unite similar Local Clusters and classify

correctly each GCk as object or background, culminating in the good results obtained

during the Object Cosegmentation task. However, the �nal result can be improved by

the Cosegmentation Re�nement step. This �nal stage repeats the Cosegmentation proce-

dure, starting from the Global Clustering stage, but replacing the original salient images

by images obtained after the Object Cosegmentation task. In other words, a re�ned

version of the saliency information, which tends to improve the accuracy is computed

iteratively. When a signi�cant amount of errors are introduced by the salient images,

then the Cosegmentation Re�nement stage becomes useful.

Vicente et al. [63] concluded that their method does not cosegment adequately the

Skating collection due to the complexity of the foreground. Since all the skaters are part

of the foreground and their proposal computes foreground candidates with connected

segments, it is inevitable that part of the background is incorrectly labeled as the object

of interest. A similar problem occurs with the object saliency detection algorithm used

by our proposal, which retrieves only connected regions. However, the Global Clustering

has the role of grouping these disconnected partitions and obtaining robust results.

Similarly to Figure 5.2, the Liverpool FC collection (Figure 5.3) introduces foreground

with multiple segments. That typically imposes di�culties, since salient images tend to

consider only a single component as the salient region. However, our method is very robust

in those cases. The Local Clustering unites similar regions within the images, such as the

red jerseys or human skin tones of this collection. Even when that does not occur and

parts of the foreground are partitioned into distinct Local Clusters, the Global Clustering

stage fuses these regions. At the end, segments of the foreground that were not identi�ed

as foreground by salient images were assigned as object by our proposed method. That

is a strong evidence that our method can be very helpful for extending saliency-based

methods that compute the foreground for the cosegmentation problem. The detection of

salient objects remains an open problem in vision, which draws signi�cant attention of
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Figure 5.2: A scheme that represents each stage of the computed cosegmentation of the
Skating collection of iCoseg dataset. This diagram is similarly to the other presented in
Figure 5.1.

researchers and it will bene�t from new improvements in saliency detection.

The experiment presented in Figure 5.4 (Kite Panda collection) illustrates a case

when the in�uence of foreground fragmentation during the Local Clustering stage and of

errors introduced by salient images can produce unexpected results. Even in this case, the

collection is globally clustered adequately. However, these clustering stages could probably

introduce mistakes. To deal with this, after the end of the Object Cosegmentation task,

we applied the GrabCut algorithm for each image, with the rectangular seed surrounding

the cosegmented area. It is the method originally proposed by Rother et al. [51] without

modi�cations. This Grabcut stage helps to overcome small errors introduced by the

clustering partial results and enforces smoothness in the overall segmentation. Finally,

as we assume that the initial salient images has introduced errors, the Cosegmentation

Re�nement improves the �nal accuracy.

Sometimes, a similar segment of the background becomes part of the salient region

among several images. That occurs in the black colored windows of the building in the

Ferrari collection (Figure 5.5) and in the blue sky of the Taj Mahal collection (Figure 5.6).
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Figure 5.3: Computed images during each phase of the cosegmentation from Liverpool
set. In this case, the foreground is partitioned into various segments. That is a typical
situation where our proposal works robustly.
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Figure 5.4: Intermediate images that depicts each stage of the Kite Panda set of the
iCoseg database. Even with small errors introduced by their salient images and Global
Clustering scheme, it produces very good results.

Also, the Ferrari collection contains considerable variation in terms of viewpoints, making

its segmentation a greater challenge. In the Ferrari collection, the Global Clustering

fused all black colored windows into similar Global Clusters. As the majority of pixels

that belong to these windows do not belong to the salient region, they were labeled as

background, reducing the object accuracy. However, a signi�cant part of the car windows

were considered background, for many reasons: initially, they were not part of the salient

region; and they were fused into Global Clusters formed by the black colored windows of

the building. That introduced errors in the foreground, minimized by the Cosegmentation

Re�nement task.

The Taj Mahal collection of Figure 5.6 contains problems similar to the Ferrari group,

caused by the presence of part of the background into the salient region. Although many

errors were introduced, pixels that compose the blue sky are part of the non salient

area. Consequently, a Global Clustering of the blue sky is constructed and labeled as

background, even fusing those blue sky segments that initially are part of the salient

region. This particular collection introduced errors on each original image, which have

been corrected by our proposed method.

Another interesting example to discuss is the Kite collection of Figure 5.7. As observed
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Figure 5.5: Cosegmentation results obtained in the Ferrari set of the iCoseg database. This
experiment shows that our method can handle foreground with several points of view. For
this particular case, the �nal cosegmentation is depicted by blue marks, because we intend
to represent the results with better color contrast.
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Figure 5.6: Cosegmentation results obtained in the Taj Mahal set of the iCoseg database.
This collection was the failure case of many compared cosegmentation works, due to
the salient regions that do not represent properly the foreground. However, the Global
Clustering mechanism assigns blue sky regions into similar global clusters labeled as back-
ground. Consequently, it produced excellent segmentation results.

in Table 5.1, our proposal obtained poor results in this collection compared to other works.

We believe that this occurred because we could not produce accurate salient images for

the subset of images in the Kite collection. The salient images of this experiment do not

adequately represent the foreground of the scene.

Notice that the black and white colored segments which belong to the foreground of

the Kite collection are frequently positioned outside of the salient area. In this case, our

method de�nes that these regions are elements of the background, and they are fused

into Global Clusters labeled as background. Consequently, only these segments with

red colored tones of the kite are cosegmented as object. That is a current drawback

of our solution, which relies on saliency maps as cues (in fact, a priori models) for ob-

ject/background classi�cation. However, this problem only occurs when the majority of
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the salient images in a given collection fails to detect the approximate correct regions

corresponding to the objects of interest. In most cases, the saliency false positives and

false negatives are overcome by the voting scheme.

Figure 5.7: Cosegmentation results obtained in the Kite set of the iCoseg database. That
is a failure case of our method, since relevant segments of the foreground (the black
and green regions of the kites that compose the foreground) are incorrectly classi�ed
as background. For this situation, modi�cations in our saliency map computation are
necessary to produce better results. Blue marks represents the cosegmentation, for better
color contrast.

Vicente et al. [63] reported in their paper that the Elephant collection (Figure 5.8)

and Stonehenge collection (Figure 5.9) are their cosegmentation failure cases, since the

object is depicted in very similar backgrounds among each collection. That increases

the ambiguity of their cosegmentation method, as the background can be considered a

redundant part of the collection, and consequently, the object of interest. Some early

works that deal with cosegmentation such as Hochbaum et al. [28] and Rother et al.

[52] had similar problems and used collections with very distinct backgrounds among the

collection. As it will be shown, our method deals appropriately with this cases, since the

salient images help to di�erentiate between the foreground and the background.

In the Elephant collection, although the colors of the object of interest can be very

similar to the color of the background scenario, the texture descriptors encompassed

by the Gabor �lters help to di�erentiate between object and background. Something

similar occurs in Stonehenge group, since the salient images di�erentiate the foreground



5.2 Experimental Evaluation 66

based on grey colored rocks from the green grass background, and the color di�erence

between foreground/background is another element that culminates in our very accurate

cosegmentation.

Figure 5.8: Cosegmentation results obtained in the Elephant set of the iCoseg database.
For this case, the repeated background does not impact in the �nal accuracy, and the
texture feature was an important feature to di�erentiate the foreground of the background.

Fu et al. [20] reported that their method can handle the cosegmentation of images

with multiple instances of the common foreground, e. g., the Liverpool collection. How-

ever, their method does not signi�cantly outperform many methods, because it employs

object proposals as the basic element of processing, which may fail to �nd the whole

region when the object comprises multiple highly diverse components, such as Panda

(Figure 5.10) and Kite Panda (Figure 5.4). Their method uses depth maps of each image

and generates object candidates that are subsequently used for the cosegmentation. The

aforementioned collections had depth maps computed that do not represent adequately

the entire foreground, as they showed in their paper. Di�erently from theirs, the salient

regions produced by our proposal produced accurate salient regions, impacting positively

in our method.

Several examples are shown for each remaining class of iCoseg in Figures 5.11, 5.12, 5.13, 5.14, 5.16

and 5.15.
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Figure 5.9: Cosegmentation results obtained in the Stonehenge set of the iCoseg database.
Salient images and the Cosegmentation Re�nement stages were necessary to produce these
results with very visual quality.

Figure 5.10: Cosegmentation results obtained in the Pandas set of the iCoseg database.
The di�erence between colors of the foreground/background and the accurate salient im-
ages, that separates properly these segments, were the major reasons behind the excellent
results of this experiment.

5.2.2 Experimental Results for MSRC dataset

The MSRC dataset, similarly to iCoseg, is widely used to evaluate cosegmentation per-

formance, with ground truth segmentation publicly available. However, di�erently from

iCoseg, MSRC database introduces foreground with higher visual variation of the same

class, principally in their color and texture features. The foreground structure of many
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Figure 5.11: Cosegmentation results obtained in the Baseball set of the iCoseg database.

Figure 5.12: Cosegmentation results obtained in the Bear set of the iCoseg database.

collections sets a higher challenge for the Global Clustering algorithm, since it strongly re-

lies on objects of interest with visual similarity. The background can also vary, depending

of the class considered. Table 5.3 depicts the accuracy of our results for this dataset.

For this dataset, we compare our results with four distinct works: Yu et al. [24], Joulin

et al. [32], Rubio et al. [54] and Chang et al. [10], since they obtained the best results

for this dataset. The accuracy of our model and the mentioned works is summarized in

Table 5.3. Table 5.4 depicts the object and background rate measures of each image class,

and considers individually the Object Cosegmentation and Cosegmentation Re�nement

stages.
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Figure 5.13: Cosegmentation results obtained in the Gymnastics set of the iCoseg
database.

Figure 5.14: Cosegmentation results obtained in the Balloon set of the iCoseg database.
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Figure 5.15: Cosegmentation results obtained in the Statue set of the iCoseg database.

Figure 5.16: Cosegmentation results obtained in the Stonehenge 2 set of the iCoseg
database.

After analyzing Table 5.3, it is veri�ed that, on average, our method only reported

worse accuracy than the one presented by Chang et al. [10]. Considering that the majority
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Table 5.3: Cosegmentation results obtained in the MSRC and Weizmann horses datasets
by the proposed method. Bold numbers highlight the best method for each collection.

P roposed Method Competitors
Class Total Images OC OC+CR [24] [32] [54] [10]

Cars (Front) 6 86.5 87.4 83.6 87.7 65.9 90.8
Cars (Back) 6 80.5 78.7 74.5 85.1 52.4 85.8

Face 30 88.2 88.6 84.5 84.3 76.3 87.3
Cow 30 93.0 93.0 91.7 81.6 80.1 91.4
Horse 30 85.0 85.2 87.6 80.1 74.9 86.4
Cat 30 90.2 92.2 84.2 74.4 77.1 86.7
Plane 30 85.7 85.1 85.7 75.9 77.0 87.7
Bike 30 72.1 72.6 73.2 63.3 62.4 76.8

Average - 85.1 85.3 83.1 79.0 70.7 86.6

Table 5.4: Cosegmentation results obtained in the MSRC and Weizmann horses datasets
by the proposed method.

Class Object Rate (OC) Background Rate (OC) Object Rate (OC+CR) Background Rate (OC+CR)
Cars (Front) 74.0 99.3 75.4 99.7
Cars (Back) 69.1 97.0 64.3 99.5

Face 73.1 93.1 79.8 91.4
Cow 76.0 99.3 75.9 99.3
Horse 67.5 91.9 65.3 93.0
Cat 74.9 95.9 77.9 97.5
Plane 64.9 91.0 66.8 89.8
Bike 51.2 84.1 59.9 79.9

Average 68.8 93.9 70.6 93.7

of the foreground in each image class presented much variation among the set, which is

a drawback for Global Clustering scheme, we consider that our method yielded good

results. For instance, the MSRC dataset depicts two distinct collections of car objects

(Figures 5.17 and 5.18) composed by a small number of images, and the colors of each

object of interest do not repeat among the set. Furthermore, the texture feature makes

it di�cult to reveal a unique aspect of the foreground that allows the Global Clustering

algorithm to group these regions as global clusters. Although many collections such as

Cars, contradict this assumption, which relies on the foreground similarity among the

collection, our method remained very competitive to other works.

Our experimental results revealed that our method obtained good results for the

Face, Cow and Cat collections, even outperforming many state-of-the-art works in average

accuracy measure. That was expected, since these image classes introduce foreground

instances that share similar color and texture features, which brings the Global Clustering

algorithm to its full potential. However, image sets such as Cars, Horse, Plane and Bike

obtained worse results compared to methods such as [24, 10], although the accuracy of
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them was very similar to ours. For each collection, we expose many arguments that justify

the reason behind the results reported.

Considering the Car collections, which are separated into two image classes, based on

frontal and rear views. These are very challenging cases, since they introduce a large intra-

class variability, regarding color and texture features. Results obtained for the Car (Back

view) collection (Figure 5.17) show that the background similarity across the collection

assists the Global Clustering scheme to group these regions and label them as background.

Similarly, foreground parts such as glass windows or yellow plates are classi�ed as object.

That also occurs with the collection from Figure 5.18, which depicts an image set with

frontal view cars, named Car (Front view) collection. Three images from this set share

very similar colors, and these cars form global clusters that represent foreground regions.

Finally, it is important to notice that even when some image segments are not assigned

to any global cluster, they are considered as seeds for the Graph Cut procedure of the

following stage. These points discussed impacted positively in the �nal accuracy of both

image sets.

For the Car image sets, Rubio et al. [54] attributes the color and texture variation

of the foreground as an important reason for their failure. They use RGB color and

a Local Binary Pattern texture analysis operator [44] to construct feature descriptors

that produce their scene representation. We believe that our feature descriptor choices

are more robust for cosegmentation, since unlike RGB color mode, CIE L*a*b* is more

perceptually uniform, meaning that a change of the same amount in a color scalar should

produce a change of about the same visual importance. Also, recent works such as Gorai

et al. [22] evidence that Gabor �lters for image segmentation problems can produce more

reliable results than LBP operators. Althought this premise can not be proved as true in

our thesis, it is still a factor that establishes the Gabor Filters importance. Finally, the

inclusion of saliency images, which are not used in Rubio et al. [54], is another factor

that could explain why we produced better results.

Figure 5.19 depicts the Faces collection, where the human head represents the fore-

ground of each image. Although the illumination variance and the cluttered background

makes the cosegmentation harden, our method determines the object of interest repre-

sented by human faces. Notice that the similar color foreground supports the Global

Clustering mechanism, where practically each face was cosegmented appropriately. Natu-

rally, the lack of hair slightely decreased the average accuracy. In many cases, our method

considered the hair as part of the background, due to its great variation among the image
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Figure 5.17: Cosegmentation results obtained in the Car (Back view) set of the MSRC
database. The color and texture variation of the foreground among this set imposes
di�culties to compute the cosegmentation procedure. However, the quality of the salient
images, the Global Clustering technique that detected parts of the foreground with visual
similarities and the robustness of the Object Cosegmentation stage culminates in rather
good results.

Figure 5.18: Cosegmentation results obtained in the Car (front view) set of the MSRC
database. This collection is very similar to the one presented in Figure 5.17, but we
believe that the background is less complex, and more foreground instances share similar
features, which improves the overall accuracy.

set. Also, the Cosegmentation Re�nement stage smoothed the results, while improving

the object rate measure of this collection. In conclusion, even if it is a very challenging

collection, our approach outperformed the compared state-of-the-art proposals for this

image set. When the foreground has unique aspects that repeat across the collection,

it is very possible that our method will perform as its full potential. Something similar
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occured with the Cow collection, whose �nal cosegmentation is depicted in Figure 5.20.

Figure 5.19: Cosegmentation results obtained in the Face set of the MSRC database.
The Global Clustering scheme impacts positively in this experiment, due to the feature
similarity of the foreground.
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Figure 5.20: Cosegmentation results obtained in the Cow set of the MSRC database.
This collection present a simple background structure with detached salient images, and
the Global Clustering mechanism is bene�ted by the foreground with common features
among the set, being these the major reasons of the good accuracy computed.

A more challenging experiment is presented in Figure 5.21, where a set composed

by cats of distinct breeds is depicted. That shows a typical real-world dataset, where

the foreground can be dramatically di�erent among several images. Many works such

as [32, 24] attribute the natural camou�age of these animals as a reason why it is very

hard to distinguish them from the background, principally with foreground with di�erent

color and texture features. Even Chang et al. [10], which on average obtained better

accuracy than our work, performed poorly in this case. For the Cats collection, our results

surpassed every work considered. That probably occured because the initial salient images

were properly accurate, and some images presented pair of cats with similar color and

texture features. Consequently, global clusters emerged between these image pairs. Also,

the Cosegmentation Re�nement had an important in�uence in the �nal results, since it

removed background areas that belonged to the salient region, and object regions not

covered by salient regions were included in the �nal cosegmentation.

Figure 5.22 presents the Horse collection, where our method performed worse than

Yu et al. [24] and Chang et al. [10]. These works share one trait in common: they

introduce Cosaliency priors into their methods. In typical Cosaliency mechanisms, image
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Figure 5.21: Cosegmentation results obtained in the Cat set of the MSRC database. This
is a real-world case, where the foreground/background varies signi�cantly. However, even
with these di�culties, very reasonable results were obtained.
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regions that are similar to each other are detected, while retaining their distinctness within

each image. In other words, a distinctness property is considered in consonance with a

repeatedness aspect among images. Saliency depth maps of each image are computed and

their values are adjusted by a multiplying weight when a factor of repeatedness is veri�ed.

That adds importance to salient regions that appear with greater frequency among the

image set. This repeatedness feature is normally handled by a SIFT feature [40]. In our

work, the inclusion of this feature could impact positively in the overall accuracy, since

we only considered salient values of single images. However, our method still obtained

comparable results to these works, considering that the Horse collection introduces images

with di�erent resolutions and foreground with many di�erent color and texture features.

Figure 5.22: Cosegmentation results obtained in the Horse set of the MSRC database.
This collection introduces images with many resolutions and foreground variance. How-
ever, our proposal still obtained very reasonable results, detecting the foreground of several
images.
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Now we analyse the Plane collection (Figure 5.23), which introduces a background

that does not change much between images. Many segments of the scene such as airport

buildings can be easily confused with objects of interest. That ambiguity impacts in

the �nal accuracy, since many parts of the airport are included in salient regions, and

consequently become global clusters labeled as object. Something similar occured with

tree segments of a few images, which belonged to the salient region and were labeled as

foreground. The Cosegmentation Re�nement stage had a relevant in�uence in the �nal

cosegmentation, removing areas incorrectly assigned as object. That improved the object

rate measure, as shown in Table 5.4.

Finally, the Bikes collection (Figure 5.24) presented a failure case, due to the quality

of the salient images computed and the special structure of the foreground, which fails to

segment regions inside the wheels. The bikes foreground introduces a very thin structure,

which makes it di�cult to cluster those, or even segment appropriately. Also, a texture

feature of the foreground is not properly de�ned, making the procedure much more di�-

cult. Typical Graph Cuts has problems while segmenting thin enlogated objects. Works

such as Vicente et al. [61] imposes an additional conectivity prior into the Graph Cuts

model, making it possible to segment very thin foreground. We believe that incorporat-

ing their solution could improve the accuracy of our method. Also, as mentioned in the

previous experiments, the Cosaliency prior could be a major improvement in this result.

5.2.3 Parameters Analysis

Further analysis have shown that the K maximum number of clusters used during the

Local Clustering phase has signi�cant e�ect on the �nal cosegmentation result. IfK is very

small, then the foreground tends to be not well separated from the background, a�ecting

the following stages. However, if K is much higher, then the foreground area will be

extremely fragmented, potentially generating small regions that can be mismatched with

parts of the background of other images, during the Global Clustering stage. Although a

�xed K can be used, a K value computed for each image can be more reliable and robust

in diverse contexts, for several collections and for dealing with the possible variation of

their content. For that, some methods for cluster analysis such as Silhouette [25] can be

useful. Also, methods such as Mean Shift [13] can be considered in the Local Clustering

stage, since it is a general nonparametric technique for the analysis of complex feature

spaces that delineate arbitrary shaped clusters on it. Consequently, it can produce Local

Clusters with an estimated K maximum number of clusters.
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Figure 5.23: Cosegmentation results obtained in the Plane set of the MSRC database.
That is a more di�cult experiment, since major parts of the background, such as the
buildings are classi�ed incorrectly as part of the foreground.

Another parameter that requires more discussion is εglobal. As mentioned in Sec-

tion 4.2.1, this is a �xed threshold that determines when Local Clusters are fused into a

Global Cluster. If dist(LCs
i , LC

t
j) < εglobal, then LCs

i and LCt
j become part of a Global

Cluster GCk. The εglobal constant is the minimum distance dist between Local Clusters
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Figure 5.24: Cosegmentation results obtained in the Bike set of the MSRC database. This
is the major failure case of our method, since the foreground represent a special structure
with very thin segments, becoming hardly to detect similar regions based on color and
texture features.
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within the same image from a particular collection. However, depending on the Lo-

cal Clusters generated, this constant can be higher or lower, in�uencing directly on the

amount of Local Clusters fused into Global Clusters. To improve the e�ciency during

the Global Clustering computing, the percentage of pixels that belong to any GCk was

calculated: when less than 70% of the pixels of the collection are part of any Global Clus-

ter, the εglobal constant is replaced by the smallest distance between two distinct Local

Clusters LCs
i and LC

t
j where the total amount of pixels p ∈ GC is 70% of the collection.

That assures the regularity of the Global Clustering stage among several collections.



Chapter 6

Conclusion

In this thesis, we proposed a fully unsupervised cosegmentation model which is able to

identify visually similar regions across images and cosegment them into binary classes.

For our proposed Local Clustering stage, we compose a descriptor based on color, texture

and position features. We believe that it is necessary to use di�erent features because

of the variation in the image content of many collections, which has been observed by

evaluating experiments on public datasets. For several image classes, the color or the

texture descriptors can distinguish unique aspects of foreground regions. Also, the position

feature imposes a spatial coherence among regions of an image.

Moreover, our Global Clustering algorithm succeeds in detecting subregions that share

similarities in their features among multiple images. After evaluating experiments in the

iCoseg dataset [2], we can a�rm that our method works with similar foreground regions

with distinct background in the collection. Even when the foreground varies systematically

among the set, our results were satisfactory, being competitive compared to other methods

proposed in the literature.

Also, we create a robust approach to combine the use of many features such as color,

texture and position with a saliency model, in unique approach that yields comparable

results than state-of-the-art algorithms. Considering that di�erent methods for saliency

map computation can be composed into our method, improvements in our original pro-

posed approach can be expected as the state-of-the-art of saliency detection evolves.

It is expected that our proposed method can be used in many distinct applications, i.

e., segmenting picture albums of the same events such as birthday parties, ranking similar

pictures in an image retrieval system, segmenting foreground as a complementary system

of 3D reconstruction methods, among others.
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6.1 Limitations

It is necessary to discuss the limitations of our approach. In this case, salient maps are

an important factor to consider. To produce accurate results for our cosegmentation

method, a prerequisite is that at least the majority of foreground pixels are covered by

salient regions. Otherwise, failure cases such as in the Kite collection of Figure 5.7 shall

occur. Normally, the foreground is a certain part of a scene which is distinctive for the

human visual system, and consequently, saliency technique. That is a reason why our

method performed well for many images.

Another limitation of our method is associated with the presence of multiple objects

in the same collection. That introduces a di�culty in the saliency maps computation,

since with many object segments, it is probable that several partitions are not covered

by salient regions. Consequently, many foreground segments can be assigned incorrectly

as background. The ambiguity of collections such as Plane (Figure 5.23) and Liverpool

(Figure 5.3) are typical examples.

Also, our solution is limited by the parameters and the type of features used. For

example, in many collections, colors may be a more relevant feature than texture.

Finally, collections such as Bike (Figure 5.24) are not appropriately segmented because

the Graph Cuts can not handle properly foreground with thin or enlogated regions without

�ne parameter tuning to control the importance of the smoothness term. That is another

shortcoming that demands improvement in further versions of cosegmentation approaches.

6.2 Future Works

To conclude, it is possible that our model can be extended in many ways:

� To deal with the segmentation of multiple classes, instead of object and background

regions only.

� Our method could include Cosaliency priors, such as SIFT-based ones [40], which

we believe was a factor that produced the accurate results of other state-of-the-art

works.

� Our results could be improved by using machine learning algorithms to learn the

relevance of individual features. Di�erent weights can be associated to the features

according to their level of co-occurrence in the object class of the image collection.
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� Instead of dealing with only 4 distinct classi�cations (object, background, probable

object and probable background), it is possible to consider continuous classi�cations,

with methods such as alpha matting.

� Vicente et al. [61] work can improve the accuracy of the cosegmentation, when the

foreground has a very thin structure, since it imposes an additional conectivity prior

into the Graph Cuts model.
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