
UNIVERSIDADE FEDERAL FLUMINENSE

EDUARDO CORRÊA GONÇALVES

NOVEL CLASSIFIER CHAIN METHODS FOR

MULTI-LABEL CLASSIFICATION BASED ON

GENETIC ALGORITHMS

NITERÓI

2015

UNIVERSIDADE FEDERAL FLUMINENSE

EDUARDO CORRÊA GONÇALVES

NOVEL CLASSIFIER CHAIN METHODS FOR

MULTI-LABEL CLASSIFICATION BASED ON

GENETIC ALGORITHMS

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Doutor em Computação. Área de concen-
tração: Algoritmos e Otimização.

Orientador:

ALEXANDRE PLASTINO

Coorientador:

ALEX A. FREITAS

NITERÓI

2015

EDUARDO CORRÊA GONÇALVES

NOVEL CLASSIFIER CHAIN METHODS FOR MULTI-LABEL CLASSIFICATION

BASED ON GENETIC ALGORITHMS

Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Computação da Uni-

versidade Federal Fluminense como requi-

sito parcial para a obtenção do Grau de

Doutor em Computação. Área de concen-

tração: Algoritmos e Otimização.

Aprovada em 15 de Setembro de 2015.

BANCA EXAMINADORA

Prof. Alexandre Plastino � Orientador, UFF

Prof. Simone de Lima Martins, UFF

Prof. José Viterbo Filho, UFF

Prof. Bianca Zadrozny, IBM Research Brasil

Prof. Eduardo Soares Ogasawara, CEFET-RJ

Niterói

2015

I take pleasure in dedicating this thesis to Glauce, Antonio, Ana and Joaquim.

Resumo

Classi�cação multirrótulo pode ser de�nida como a tarefa de associar automaticamente
objetos a múltiplas categorias com base nas características dos mesmos. Existem muitas
aplicações modernas e importantes para a tarefa como, por exemplo, categorização de
músicas (associar músicas a diversos gêneros musicais) e genômica funcional (determinar
as múltiplas funções biológicas de genes e proteínas). Proposto em 2009, o modelo deno-
minado classi�er chains (CC) se tornou um dos mais in�uentes métodos para classi�cação
multirrótulo, destacando-se por sua abordagem simples e e�caz para explorar a questão
da dependência entre rótulos. O método básico envolve o treinamento de q classi�cadores
monorrótulo binários, onde q representa o número de rótulos. Cada um deles é responsável
unicamente pela classi�cação de um rótulo de classe especí�co. Esses q classi�cadores são
ligados em uma estrutura de cadeia, de maneira que cada classi�cador binário torna-se
capaz de considerar os rótulos preditos pelos classi�cadores anteriores como informação
adicional em tempo de classi�cação. O método CC é considerado um dos mais e�cazes
para classi�cação multirrótulo, demonstrando-se competitivo com o estado da arte nesta
área. Entretanto, ele possui duas desvantagens: (i) determina a ordem dos rótulos na
cadeia de maneira aleatória, embora diferentes ordenações possam in�uir de maneira
signi�cativa na acurácia do modelo; (ii) obriga todos os rótulos a participar da cadeia,
mesmo que alguns contenham informação redundante e/ou irrelevante para a previsão dos
vários outros rótulos.

O objetivo principal deste trabalho é a proposta de duas novas técnicas capazes de
aprimorar a e�cácia dos classi�cadores multirrótulo em cadeia através da busca por uma
ordenação de cadeia otimizada (isto é, determinar uma ordenação capaz de aumentar
a acurácia do classi�cador). Essas duas técnicas, denominadas GACC e GA-PartCC,
são baseadas em Algoritmos Genéticos (AGs), que correspondem a métodos de busca e
otimização inspirados no princípio da seleção natural. Uma das estratégias propostas (GA-
PartCC) é capaz de avaliar cadeias de rótulos que variam não apenas na ordenação, mas
também em comprimento. Os AGs propostos foram avaliados, em termos de desempenho
preditivo, em diferentes bases de dados. Os resultados dos experimentos computacionais
demonstraram que, em geral, os AGs propostos produzem resultados competitivos em
relação a outros métodos de classi�cação multirrótulo em cadeia propostos na literatura.

Palavras-chave: Classi�cação multirrótulo, cadeias de classi�cadores, algoritmos genéti-
cos.

Abstract

Multi-label classi�cation (MLC) is the task of automatically assigning an object to multi-
ple categories based on its characteristics. There are many important and modern appli-
cations of MLC such as music categorization (associating songs to various music genres)
and functional genomics (determining the multiple biological functions of genes and pro-
teins). First proposed in 2009, the classi�er chains model (CC) has become one of the
most in�uential methods for MLC. It is distinguished by its simple and e�ective approach
to exploit label dependencies. The CC method involves the training of q single-label bi-
nary classi�ers, where q represents the number of labels. Each one is solely responsible for
classifying a speci�c label. These q classi�ers are linked in a chain in random order, such
that each binary classi�er is able to consider the labels predicted by the previous ones as
additional information at classi�cation time. CC is considered one of the most e�ective
MLC methods, in the sense that it has proved to be competitive with state-of-the-art
techniques. However, the basic CC model su�ers from two major drawbacks: (i) it de-
cides the label sequence randomly, although di�erent label sequences might have a strong
e�ect on the predictive accuracy of the model; (ii) it forces all labels to be present in
the chain, despite the fact that some of them might carry redundant and/or irrelevant
information to predict the various other labels.

The main contribution of this thesis is the proposal of two novel techniques that
enhance the e�ectiveness of multi-label chain classi�ers by searching for a single optimized
label sequence (i.e., a label sequence that leads to an improvement on the predictive
accuracy of the CC model). These two techniques, named GACC and GA-PartCC, are
based on Genetic Algorithms (GAs) which are search and optimization methods inspired
by the principle of natural selection. One of the proposed strategies (GA-PartCC) is
capable of evaluating chain sequences that vary not only in the ordering but also in
length. The proposed GAs are evaluated, in terms of predictive performance, on diverse
benchmark datasets. Overall, the results of our computational experiments have shown
that the proposed GAs are competitive with well-known alternative multi-label classi�er
chain methods.

Keywords: Multi-label classi�cation, classi�er chains, genetic algorithms.

List of Figures

2.1 Music categorization dataset . 10

2.2 LC transformation of the example music categorization dataset 11

2.3 RPC transformation of the example music categorization dataset 12

2.4 BR transformation of the example music categorization dataset 13

2.5 BR classi�cation of the song �The Girl from Ipanema� 14

3.1 An example of TSP with n = 4. The optimal tour is 0-1-4-2-3-0 (or 0-3-2-

4-1-0) with total weight 11 . 29

3.2 Representation of the TSP tour 0-1-4-2-3-0 using two distinct chromosome

encoding schemes: (a) path representation and (b) ordinal representation . 30

3.3 Two examples of probability distribution functions for ranking selection . . 32

3.4 DRC Crossover . 33

3.5 Order Crossover: (a) step 1 and (b) step 2 34

3.6 Three examples of mutation methods for permutation problems: (a) swap,

(b) insert and (c) scramble. 35

4.1 CC classi�cation of the song �The Girl from Ipanema� 39

4.2 Two decision trees built from the FLAGS training set using the C4.5 algo-

rithm to classify the label yellow: (a) tree built using label sequences of

the form {yellow → white → ...} and (b) tree built using label sequences

of the form {white→ yellow → ...} . 45

4.3 SCC method example . 53

4.4 BCC method example . 54

4.5 An example of CT structure with q = 6 . 55

4.6 An example of BS tree with q = 3 . 56

List of Figures vi

4.7 An example of PCC tree associated to the label sequence {l2 → l1 → l3} . 58

6.1 Results of the exhaustive experiment considering all possible label permu-

tations of any length in the chain for the base classi�ers C4.5 and NB

according to the Quality measure: FLAGS dataset 77

6.2 Results of the exhaustive experiment considering all possible label permu-

tations of any length in the chain for the base classi�ers C4.5 and NB

according to the Quality measure: EMOTIONS dataset 77

6.3 Results of the exhaustive experiment considering all possible label permu-

tations of any length in the chain for the base classi�ers C4.5 and NB

according to the Quality measure: SCENE dataset 78

6.4 Adapted order crossover operation . 81

List of Tables

2.1 List of benchmark multi-label datasets and their statistics concerning com-

plexity . 18

2.2 List of benchmark multi-label datasets and their statistics concerning the

degree of �multi-labelled-ness� . 19

2.3 Illustration of Accuracy for six examples 22

2.4 Illustration of F-Measure for six examples 22

2.5 Illustration of Hamming Loss for six examples 23

2.6 Illustration of actual and predicted labelsets of six examples 24

4.1 Results of the exhaustive experiment considering all possible label permu-

tations in the chain for di�erent base classi�ers according to the Accuracy

measure: FLAGS dataset . 43

4.2 Results of the exhaustive experiment considering all possible label permu-

tations in the chain for di�erent base classi�ers according to the Accuracy

measure: EMOTIONS dataset . 44

4.3 Results of the exhaustive experiment considering all possible label permu-

tations in the chain for di�erent base classi�ers according to the Accuracy

measure: SCENE dataset . 44

4.4 Number of top-20 label sequences for algorithm j (column) that also belong

to the set of top-20 label sequences for algorithm i (line): FLAGS dataset . 47

4.5 Number of top-20 label sequences for algorithm j (column) that also belong

to the set of top-20 label sequences for algorithm i (line): EMOTIONS dataset 47

4.6 Number of top-20 label sequences for algorithm j (column) that also belong

to the set of top-20 label sequences for algorithm i (line): SCENE dataset . 47

4.7 Performance of CC, FreqCC, DepCC and PredCC in terms of Accuracy. . . 50

List of Tables viii

4.8 Performance of CC, FreqCC, DepCC and PredCC in terms of F-Measure. . 51

4.9 Performance of CC, FreqCC, DepCC and PredCC in terms of Exact Match. 51

4.10 Performance of CC, FreqCC, DepCC and PredCC in terms of Hamming

Loss. 51

5.1 Parameter setting combinations evaluated in the calibrating tests 68

5.2 GACC �nal recommended set of parameters (used in the experimental

evaluation) . 68

5.3 Performance of BR, CC and GACC in terms of Accuracy. 69

5.4 Performance of BR, CC and GACC in terms of F-Measure. 69

5.5 Performance of BR, CC and GACC in terms of Exact Match. 70

5.6 Performance of BR, CC and GACC in terms of Hamming Loss. 70

6.1 Total number of evaluated models per chain length (r) for the datasets

EMOTIONS, SCENE and FLAGS . 76

6.2 Performance of BR, CC and GA-PartCC in terms of Accuracy. 83

6.3 Performance of BR, CC and GA-PartCC in terms of F-Measure. 83

6.4 Performance of BR, CC and GA-PartCC in terms of Exact Match. 84

6.5 Performance of BR, CC and GA-PartCC in terms of Hamming Loss. . . . 84

6.6 Performance of HBCC, BCC and GA-PartCC in terms of Accuracy. 85

6.7 Performance of HBCC, BCC and GA-PartCC in terms of F-Measure. . . . 86

6.8 Performance of HBCC, BCC and GA-PartCC in terms of Exact Match. . . 86

6.9 Performance of HBCC, BCC and GA-PartCC in terms of Hamming Loss. . 87

6.10 Performance of GACC and GA-PartCC in terms of Accuracy. 88

6.11 Performance of GACC and GA-PartCC in terms of F-Measure. 88

6.12 Performance of GACC and GA-PartCC in terms of Exact Match. 89

6.13 Performance of GACC and GA-PartCC in terms of Hamming Loss. 89

6.14 Average length of the best chain determined by GA-PartCC 90

6.15 Performance of OOCC and GA-PartCC in terms of Accuracy. 90

List of Tables ix

6.16 Performance of OOCC and GA-PartCC in terms of F-Measure. 91

6.17 Performance of OOCC and GA-PartCC in terms of Exact Match. 91

6.18 Performance of OOCC, GACC and GA-PartCC in terms of Hamming Loss. 92

A.1 Contingency table for two binary variables A and B 108

A.2 Contingency table for the pair of labels yellow and white (FLAGS dataset) 109

B.1 Results of two methods M1 and M2 according to the Accuracy measure

considering n = 10 datasets (Wilcoxon signed-rank test example) 110

B.2 Results, di�erences and ranking values of two methods M1 and M2 ac-

cording to the Accuracy measure considering n = 10 datasets (Wilcoxon

signed-rank test example) . 111

B.3 Critical values for the two-tailed Wilcoxon signed-rank test at a signi�cance

level of 5%. In this table, n corresponds to the number of datasets and α0.05

to the critical value. 112

List of Abbreviations

BCC : Bayesian Chain Classi�er

BR : Binary Relevance;

CC : Classi�er Chains;

DRC : Donor-Receptor Crossover;

EA : Evolutionary Algorithm;

GA : Genetic Algorithm;

GACC : Genetic Algorithm for Optimizing Classi�er Chains;

GA-PartCC : Genetic Algorithm for Optimizing Partially-Chained Models;

HBCC : Hybrid-Binary Chain Multi-Label Classi�er;

LSOP : Label Sequence Optimization Problem;

MLC : Multi-Label Classi�cation;

PartCC : Partially-Chained Model;

OC : Order Crossover;

OOCC : One-To-One Classi�er Chains;

SLC : Single-Label Classi�cation;

TSP : Traveling Salesman Problem;

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Organization . 8

2 Background on Multi-Label Classi�cation 9

2.1 Basic Approaches for Multi-label Learning 9

2.1.1 Problem Transformation Methods 9

2.1.1.1 Label Combination (LC) 10

2.1.1.2 Ranking by Pairwise Comparison (RPC) 11

2.1.1.3 Binary Relevance (BR) . 13

2.1.2 Algorithm Adaptation Methods . 14

2.2 Multi-label Data . 15

2.2.1 Benchmark Datasets . 15

2.2.2 Dataset Statistics . 18

2.3 Performance Evaluation . 20

2.4 The Label Dependence Issue . 25

3 Genetic Algorithms for Permutation Problems 27

3.1 GA Basics . 27

3.2 GAs for Permutation Problems . 28

3.2.1 Individual Representation . 29

3.2.2 Population Initialization . 30

Contents xii

3.2.3 Fitness Computation . 30

3.2.4 Parent Selection . 31

3.2.5 Genetic Operators . 32

3.2.5.1 Crossover . 33

3.2.5.2 Mutation . 35

3.2.6 Population Replacement . 35

4 Multi-Label Chain Classi�ers 37

4.1 An Introduction to the Classi�er Chains Method 37

4.1.1 Algorithm Speci�cation . 39

4.1.2 Pros and Cons . 40

4.2 The Label Sequence Issue . 41

4.3 Baseline Methods to Determine the Label Ordering 48

4.3.1 Experimental Methodology . 48

4.3.2 Results . 49

4.4 Extensions to the Classi�er Chain Model 52

4.4.1 Approaches Based on Training Optimization 52

4.4.1.1 Ensemble of Classi�er Chains 52

4.4.1.2 Exploring Candidate Chain Sequences 52

4.4.1.3 Searching for a Single Optimized Label Sequence 55

4.4.2 Approaches Based on Inference Optimization 57

4.4.2.1 Probabilistic Classi�er Chains 57

4.4.2.2 One-To-One Classi�er Chains 58

4.5 Concluding Remarks . 59

5 The GACC Method 61

5.1 The GACC Method . 61

Contents xiii

5.1.1 GACC Description . 62

5.1.1.1 Individual Representation and Population Initialization . . 62

5.1.1.2 Fitness Computation . 63

5.1.1.3 Parent Selection . 63

5.1.1.4 Genetic Operators . 64

5.1.1.5 Population Replacement 64

5.1.2 The Over�tting Issue . 64

5.1.3 GACC Pseudocode . 65

5.2 Experiments . 66

5.2.1 Experimental Setup . 66

5.2.2 Results . 68

5.3 Concluding Remarks . 71

6 The GA-PartCC Method 73

6.1 The Partially Chained Multi-Label Model 73

6.2 Exhaustive Experiment . 75

6.3 The GA-PartCC Method . 76

6.3.1 Individual Representation and Population Initialization 78

6.3.2 Lexicographic Fitness Function . 79

6.3.3 Genetic Operators . 80

6.4 Experiments . 81

6.4.1 GA-PartCC versus BR and CC . 82

6.4.2 GA-PartCC versus HBCC and BCC 83

6.4.3 GA-PartCC versus GACC . 87

6.4.4 GA-PartCC versus OOCC . 89

6.5 Concluding Remarks . 91

Contents xiv

7 Conclusions 93

7.1 Thesis Contributions . 93

7.1.1 Multi-Label Chain Classi�ers � Chapter 4 94

7.1.2 The GACC Method � Chapter 5 . 95

7.1.3 The GA-PartCC Method � Chapter 6 96

7.2 Future Work . 97

References 99

Appendix A -- The Chi-Squared Test for Independence 108

Appendix B -- The Wilcoxon Signed-Rank Test 110

Chapter 1

Introduction

Classi�cation is one of the most active topics of research in the �elds of data mining and

machine learning. It consists in the task of automatically assigning objects to discrete

classes (known as class labels or simply labels) based on the features of the objects.

In other words: classifying is to predict the category(ies) to which an object belongs.

There are several important real-world applications of classi�cation. Some of them are

traditional and well-known, such as spam detection (identifying an incoming e-mail as

either �spam� or �regular�), fraud detection (identifying whether a credit card transaction

is �fraudulent� or �genuine�), and loan risk prediction (classifying loan applicants as �low�,

�medium�, or �high� credit risks). Others have arisen relatively recently and are less

popular, such as functional genomics (determining the functions of genes and proteins)

and automatic music categorization (associating songs to music genres).

In the majority of classi�cation problems, each object must be associated to one and

only one label within a predetermined set of class labels. These are known as single-

label classi�cation (SLC) problems [23, 47, 92, 105, 109]. For example, in the loan risk

prediction problem, a loan applicant can be classi�ed as �low�, �medium� or �high� credit

risk, but he or she will never be classi�ed as two or three of these labels all together.

The single-label classi�cation problem can be formally de�ned as follows.

De�nition 1.1 (Single-Label Classi�cation). Let X = {X1, ..., Xd} be a set of d predic-

tive attributes and L = {l1, ..., lq} be a set of q class labels, where q ≥ 2. Consider a

training dataset D composed of N instances of the form {(x1, c1), (x2, c2), ..., (xN , cN)}.
In this dataset, each xi corresponds to a vector (x1, ..., xd) that stores values for the d

predictive attributes in X and each ci ∈ L corresponds to a single class label. The goal of

the single-label classi�cation task is to learn from D a function (a.k.a. classi�er) y that,

1 Introduction 2

given an unlabeled instance t = (x, ?), is capable of e�ectively predicting its class label c,

i.e., y(t) → c. When |L| = 2 the problem is called a binary SLC problem. Otherwise, it

is called a multiclass SLC problem.

However, not all classi�cation problems are single-label. An example is automatic

music categorization, where the goal is to associate songs to music genres. For instance,

most songs written by the Brazilian band Novos Baianos can be classi�ed as belonging to

�Rock�, �Samba�, and �Bossa Nova� genres at the same time. In the same way, a number

of compositions by Tom Jobim are a mixture of both music genres: �Jazz� and �Bossa

Nova�. Hence, music categorization represents a multi-label classi�cation (MLC) problem,

[18, 38, 96, 97, 113] in which objects can be assigned to various labels within a predeter-

mined set of class labels. Over the last few years, several other important and modern

applications of MLC classi�cation have emerged [38, 100], such as text categorization (as-

sociating documents to various subjects), direct marketing (recommendation of products

for clients), automated medical diagnosis (identifying when patients are su�ering from

one or more diseases at the same time), functional genomics (determining the multiple

biological functions of genes and proteins), and image and video annotation (assigning

keywords to images and videos), just to name a few.

The multi-label classi�cation problem can be formally de�ned as follows.

De�nition 1.2 (Multi-Label Classi�cation). Let X = {X1, ..., Xd} be a set of d predictive
attributes and L = {l1, ..., lq} be a set of q class labels, where q ≥ 2. Consider a training

dataset D composed of N instances of the form {(x1, Y1), (x2, Y2), ..., (xN , YN)}. In this

dataset, each xi corresponds to a vector (x1, ..., xd) that stores values for the d predictive

attributes in X and each Yi ⊆ L corresponds to a subset of labels. The goal of the multi-

label classi�cation task is to learn from D a classi�er h that, given an unlabeled instance

t = (x, ?), is capable of e�ectively predicting its set of labels (a.k.a. labelset) Y , i.e.,

h(t)→ Y .

Looking from a database theory angle, we might consider there is a unique di�erence

between the SLC and MLC problems: the �rst corresponds to predicting the state of

a single-valued class attribute, whereas the latter, the states of a multi-valued class at-

tribute. Although the di�erence is subtle in theory, in practice MLC problems tend to be

much more challenging. This is due to three main reasons. First, MLC applications usu-

ally need to handle a huge number of possible label combinations. Considering a problem

involving q distinct class labels, the size of the output space in MLC is 2q whereas it is just q

1 Introduction 3

in SLC. Second, real-world MLC datasets (e.g., multimedia data, biological data, etc.) are

usually larger and more complex in structure than SLC datasets (which often correspond

to ordinary relational data). Finally, the third and most important challenge concerns

the existence of correlations between labels in MLC. For example, a song is unlikely to be

simultaneously labeled as �Heavy Metal� and �Jazz� because these two music genres have

a strong negative correlation. Analogously, the likelihood of a song being labeled as �Pop�

becomes stronger if it has been labeled as �Hip Hop� and �R&B�. Thus, intuitively, we

would expect that algorithms that are able to capture and model label correlations should

be more accurate. Actually, exploiting label dependencies1 has been a major concern in

MLC research. A large body of recent work [11, 35, 37, 45, 81, 82, 83, 87, 98, 108] has

primarily concentrated e�orts to tackle this problem.

Proposed in [82, 83], the classi�er chains (CC) method has become one of the most

popular of such techniques. This method is mainly distinguished by its simple yet e�ec-

tive approach to incorporate label correlations into the classi�cation process. It works

as follows. First, a randomly-ordered chain containing all the q labels involved in the

classi�cation problem is generated, such as, for instance C = {l1 → l2 → ... → lq}. The
CC's training phase consists in learning q binary classi�ers, one for each label, following

the chain ordering. The �rst binary classi�er, y1, is trained using solely the attributes

that compose the feature set X as its input attributes. This classi�er will be responsible

for the prediction of the �rst label in the chain (l1, considering the example chain C). The

second binary classi�er, y2, is trained using a di�erent feature space: X augmented with

the training information of the �rst label in the chain (l1, considering C). This classi�er

will be responsible for the prediction of the second label in the chain (l2, considering C).

Each subsequent classi�er yj is trained using X augmented with the training information

of j−1 labels as its input attributes. I.e., the feature space of each classi�er yj is extended

with the true label information of all previous labels in the chain. Once the model is built,

the classi�cation step is also performed in a chained way. To predict the labelset of a new

object, q binary classi�cations are needed, with the process beginning at y1 and going

along the chain. In this procedure, the classi�er yj predicts the relevance of label lj, given

the features of the new object augmented by the predictions carried out by the previous

j − 1 classi�ers.

The CC model for MLC has many appealing properties. First of all, it is theoreti-

cally simple. While several MLC methods invest in complex probabilistic techniques to

1In this work, the terms �correlation� and �dependence� are used interchangeably, as is typically done
in the MLC literature.

1 Introduction 4

model label dependencies, CC adopts a quite straightforward strategy: it just passes la-

bel information between classi�ers. It is also relatively e�cient, since it scales linearly

with q. Finally, and more importantly, the method has proved to be highly e�ective. A

comprehensive recent empirical study [66] comparing several state-of-the-art methods for

MLC reported that CC is among the top best performing methods in terms of predictive

performance.

Putting together simplicity, e�ciency, and e�ective performance, CC has become

one of the most adopted frameworks for MLC. Not surprisingly, a considerable number

of variations of the original CC method have recently been proposed in the literature

[16, 48, 58, 63, 78, 79, 80, 91, 110]. A common characteristic of these variations is that

they try to eliminate a key drawback in the original proposal: the fact that the label

ordering is decided at random. It is intuitive that an inadequate label ordering can

potentially decrease accuracy, as the �rst binary classi�ers could frequently output wrong

predictions at classi�cation time, thus resulting in signi�cant error propagation along the

chain. A simplistic solution to this problem would be to arrange the chain by placing the

labels that are easiest to predict as the very �rst elements. Nevertheless, as argued by [58],

this idea might not necessarily produce a label sequence that leads to an improvement

on the predictive accuracy of the CC model (i.e., an optimized label sequence), since a

label that is di�cult to predict may make subsequent labels considerably easier to model.

It is thus important to invest in algorithmic solutions to �nd an optimized chain order.

Nonetheless, this is a di�cult problem because of the enormous search space of q! di�erent

existing label permutations.

The current extensions to the basic CC method make use of three di�erent approaches

to overcome the label sequence optimization problem (LSOP). The �rst and most widely

adopted � proposed by the authors of CC themselves in [82, 83] � consists of combining

random orders via an ensemble of classi�er chains (ECC) in order to mitigate the e�ect

of poorly ordered chains. The second category of CC variations [48, 63, 80, 91, 110] are

guided by tests to assess label correlation between pairs of labels. These methods work

by �rst running a preprocessing step that aims at identifying strongly correlated labels.

Further, this information is employed to determine a restricted set of candidate chain se-

quences (basically, chains in which correlated labels are placed close to each other). Then,

one of these candidate sequences should be randomly chosen or, optionally, ensembles can

be built by randomly selecting some of the candidates. Finally, the third category of CC

variations [16, 58, 78, 79] rely on the use of heuristic search techniques (such as beam

search) that aim at �nding a single optimized label sequence.

1.1 Contributions 5

1.1 Contributions

This thesis proposes the use of genetic algorithms (GAs) [28, 30, 39, 85] as a new approach

for optimizing multi-label chain classi�ers. GAs are a powerful search technique inspired

by Darwin's theory of natural evolution. In short, the GA search works as follows [28, 39].

In the �rst step, an initial population of individuals is created, where each one corresponds

to a candidate solution to a given problem (in this thesis, the target problem is to �nd an

optimized label sequence for a chain of classi�ers). Next, these individuals are evaluated

by a �tness function which assigns a numerical quality value to each of them. Then, the

genetic algorithm produces a new generation of individuals by employing the notion of

�survival of the �ttest�. This procedure consists of selecting the best (�ttest) individuals to

be combined so as to produce a new generation resembling them (using genetic operators

such as crossover and mutation). This process goes on for many iterations, progressively

producing better and better candidate solutions. Normally, the GA execution terminates

after a user-speci�ed number of generations.

Our main motivations for presenting a solution to the LSOP based on the evolutionary

paradigm of genetic algorithms are listed below:

� GAs are a global search method capable of e�ectively exploring the extremely large

search space associated to the LSOP problem. Hence, GAs are expected to discover

correlations among labels that would be missed by a greedy algorithm [30, 32].

� GAs have been successfully employed to solve a large number of classi�cation prob-

lems [30], varying from fraud detection [27] to the automated recognition of painting

artists [60].

� GAs have also been successfully applied to solve optimization problems where a

candidate solution is represented as a permutation, like the classical traveling sales-

man problem (TSP) [59, 68, 72] and the vehicle routing problem (VRP) [54, 64, 73].

Although both TSP and VRP do not constitute classi�cation problems, they bear

some resemblance to the LSOP: in essence, LSOP, VRP and TSP are permutation

problems.

In this thesis, we propose two novel genetic algorithms: GACC (Genetic Algorithm

for Optimizing Classi�er Chains) and GA-PartCC (Genetic Algorithm for Optimizing

Partially-Chained Models). The GACC strategy [42] represents the �rst proposed strategy

that makes use of an evolutionary algorithm to optimize multi-label chain classi�ers. In

1.1 Contributions 6

this strategy, each GA individual encodes a di�erent label permutation. Crossover works

by transferring sub-chains of random length between two individuals whilst mutation

swaps pairs of labels of an individual. At the end of the evolutionary cycle, GACC

delivers to the user a single optimized chain ordering.

The GA-PartCC strategy [43] constitutes an extension to the GACC method proposed

with the goal of investigating a potential drawback of the original CC method: the fact

that CC forces all labels to be present in the chain. None of the extensions have yet

explored the idea of generating models de�ned by optimized partial chains. In this context,

the aim is to build a CC model in which one or more labels may be absent from the chain

because their presence would lead to a decrease in the predictive accuracy. This is because

some of the binary classi�ers may pass redundant and irrelevant information, or wrongly

predicted labels, along the chain, which might confuse the subsequent classi�ers in the

chain. Therefore, it might be interesting to remove these irrelevant or redundant labels

from the chain structure (using independent binary classi�ers for predicting each of them)

and to create a partial chain with an optimized sequence using only the remaining labels.

Experiments on diverse benchmark datasets show that both GACC and GA-PartCC

obtain, overall, higher predictive accuracies than CC and competitive results against other

well-established chaining methods. Furthermore, our proposed genetic algorithms o�er

two advantages. The �rst lies in that they deliver an interpretable result, i.e., at the end

of the process both GACC and GA-PartCC return a single optimized chain, re�ecting

the label dependencies. This characteristic makes the strategies suitable for applications

that require the use of interpretable classi�ers [33]. These kinds of classi�ers explain their

classi�cation decisions and are mainly represented by decision trees [74] and associative

classi�ers [62]. This is a important advantage, since in some application scenarios of MLC,

such as medical diagnosis, bioinformatics and direct marketing, the ability to interpret

the classi�cation result might be almost as important as the accuracy itself. The second

advantage of the GA strategies is the fact that they are e�cient at classi�cation time

(since they produce a single model), di�erently from some of the CC variations, such as

the popular one based on combining several random orders trough an ensemble.

In summary, the main contribution of this thesis is the proposal of two novel chain

methods for multi-label classi�cation based on genetic algorithms, which occupy an im-

portant niche: they are competitive on diverse multi-label problems, yet being suitable

for use with interpretable classi�ers. One of these strategies (GA-PartCC) is capable

of searching for a single optimized label ordering, while at the same time taking into

1.1 Contributions 7

consideration the utilization of partial chains.

Secondary contributions of the thesis aim at improving the fundamental understand-

ing of the underlying principles of the classi�er chains model. In order to accomplish

this goal, we report and discuss the results of an experiment that, for the �rst time, in-

vestigated in depth the in�uence of the label sequence in the predictive accuracy of CC

models. Additionally, we perform a set of empirical comparisons involving di�erent chain-

ing methods and propose a group of baseline heuristics for the determination of optimized

label sequences.

Signi�cant parts of the research presented in this thesis have appeared in the following

publications.

� [42] Eduardo Corrêa Gonçalves, Alexandre Plastino and Alex A. Freitas. A Ge-

netic Algorithm for Optimizing the Label Ordering in Multi-Label Classi�er Chains.

In Proceedings of the 25th IEEE International Conference on Tools with Arti�-

cial Intelligence (ICTAI 2013). Washington, D.C., USA, November 2013 (currently

classi�ed as A2 by Qualis-CAPES.).

� This paper presents preliminary results obtained with our proposed GACC

algorithm, which is itself the main subject of Chapter 5.

� [43] Eduardo Corrêa Gonçalves, Alexandre Plastino and Alex A. Freitas. Simpler

is Better: a Novel Genetic Algorithm to Induce Compact Multi-label Chain Classi-

�ers. In Proceedings of the 2015 Genetic and Evolutionary Computation Conference

(GECCO 2015). Nominated for best paper award. Madrid, Spain, July 2015. (cur-

rently classi�ed as A1 by Qualis-CAPES.).

� This paper comprises the core of Chapter 6.

� [16] Pablo Nascimento da Silva, Eduardo Corrêa Gonçalves, Alexandre Plastino

and Alex A. Freitas. Distinct Chains for Di�erent Instances: An E�ective Strategy

for Multi-label Classi�er Chains. In Proceedings of the European Conference on

Machine Learning and Knowledge Discovery in Databases (ECML/PKDD 2014).

Nancy, France, September 2014 (currently classi�ed as A2 by Qualis-CAPES.).

� Some of the results of the exhaustive experiment presented in Chapter 4 of this

thesis were published in the above paper.

1.2 Thesis Organization 8

1.2 Thesis Organization

This thesis is structured as follows:

� Chapter 2: Background on Multi-Label Classi�cation. This chapter presents an

overview of multi-label classi�cation, covering the following topics: basic approaches

for inducing multi-label classi�ers; properties of multi-label datasets; performance

evaluation metrics for MLC; the notion of label dependence.

� Chapter 3: Genetic Algorithms for Permutation Problems. This chapter provides a

succinct overview of GAs. We focus our discussion on GAs designed for permuta-

tion problems, as this thesis primarily deals with the development of methods for

discovering optimized label sequences (i.e., optimized permutations of labels) for

multi-label chain classi�ers.

� Chapter 4: Multi-Label Chain Classi�ers. This chapter is devoted to the classi�er

chains method. First, the original CC method is explained and formalized in pseu-

docode. Next, we present an experiment that investigated the in�uence of the label

sequence in the predictive accuracy of CC models [16]. The results of this experi-

ment demonstrate that the use of an optimized label sequence actually corresponds

to a key factor in inducing e�ective multi-label chain classi�ers. Motivated by this

issue, we propose a set of baseline heuristics for the determination of optimized label

sequences. Additionally, we present and compare the variations of the CC method

currently proposed in the literature.

� Chapter 5: Genetic Algorithm for Optimizing Classi�er Chains (GACC). This chap-

ter addresses one of the main contributions of this thesis: the GACC method [42].

We describe in detail the designed GA and experimentally study the performance

of our proposed method.

� Chapter 6: Genetic Algorithm for Optimizing Partially-Chained Models

(GA-PartCC). This chapter addresses the second main contribution of this thesis:

the GA-PartCC method [43]. Initially, we formally de�ne the concept of partially

chained (PartCC) model for MLC and describe the GA-PartCC method. Next,

experimental results of GA-PartCC and diverse CC variations are presented.

� Chapter 7: Conclusions. In this chapter we outline and discuss the achievements of

this thesis and identify directions for future research.

Chapter 2

Background on Multi-Label Classi�cation

This chapter gives an overview of multi-label classi�cation (MLC). It starts in Section 2.1

with an introduction to the basic approaches for inducing multi-label classi�ers. Next,

Section 2.2 provides a study of the properties of multi-label data. Section 2.3 is devoted to

evaluation aspects of multi-label classi�ers, introducing and comparing di�erent kinds of

performance measures proposed in the literature. Finally, Section 2.4 addresses the label

dependence issue, which, as discussed in the previous chapter, represents an important

aspect to be taken into account when designing e�ective multi-label methods.

2.1 Basic Approaches for Multi-label Learning

According to the literature [18, 96, 97, 113], existing methods for MLC can be primarily

categorized into two fundamental families: problem transformation and algorithm adap-

tation. In what follows, each of the two families is introduced with emphasis given on the

�rst, since the contributions proposed in this thesis aim at improving a problem transfor-

mation strategy. For a recent and comprehensive survey on MLC methods, the reader is

referred to [37].

2.1.1 Problem Transformation Methods

Problem transformation (a.k.a. algorithm independent) methods work by transforming

the original multi-label problem into one or more single-label problems. Then, any existing

single-label algorithm can be directly applied by simply mapping back its single label

predictions into multi-label predictions. Problem transformation methods are �exible, as

they enable abstraction from the underlying base (single-label) classi�cation algorithm.

2.1 Basic Approaches for Multi-label Learning 10

This constitutes an important advantage, because di�erent single-label techniques (such

as decision trees, SVM, Naïve Bayes, etc.) are more or less e�ective according to the

di�erent application domains.

There are a few distinct strategies to perform the transformation of a multi-label

problem into one or more single-label problems [18, 96, 97]. Nonetheless, three are most

widely used: label combination (LC), ranking by pairwise comparison (RPC) and binary

relevance (BR). In the remainder of this subsection, these three strategies are explained

with the aid of the hypothetical training dataset for music categorization illustrated in

Figure 2.1. Following the notation introduced in Chapter 1, in this example consider L =

{�Metal�, �Jazz�, �Bossa�, �Pop�} as the set of non-disjoint class labels (music genres).

Also consider that each instance i in the dataset (in this case, a song) is associated with

a vector xi � which stores values for an arbitrary number of predictive attributes � and a

subset of labels Yi ⊆ L.

Figure 2.1: Music categorization dataset

2.1.1.1 Label Combination (LC)

The LC approach [7] � also referenced in the literature as �label powerset� and �label

creation� � reduces the multi-label problem to a unique multiclass single-label problem.

This is accomplished through the de�nition of a new compound class attribute whose val-

ues correspond to all possible label combinations present in the original training dataset.

Figure 2.2 illustrates the resulting (single-label) dataset generated from the LC transfor-

mation of the original (multi-label) dataset from Figure 2.1. Observe that the two labels

of the �rst instance in the original dataset (�Metal� and �Pop�) were combined to create a

new single-label �Metal-Pop� in the resulting dataset. Analogously, the new single-labels

�Jazz-Bossa� and �Jazz-Bossa-Pop� were created from the two and three labels respec-

tively associated to the instances 2 and 5 of the original dataset. It is worth noting

that the transformations only a�ect the label space, i.e., the feature space is preserved in

2.1 Basic Approaches for Multi-label Learning 11

its original form (in fact, this is a characteristic common to all problem transformation

methods).

Figure 2.2: LC transformation of the example music categorization dataset

Once the transformation has been applied to the original dataset, the induction of an

LC model is straightforward, corresponding merely to training a multiclass single-label

classi�er using the transformed dataset. The classi�cation of a new instance is also trivial:

the LC model simply outputs a compound class, which actually corresponds to a labelset

in the original dataset.

The LC method is simple and o�ers the advantage of implicitly taking into account the

dependencies between labels. However, it su�ers from two important drawbacks. First, it

is not capable of predicting labelsets that are not present in the training set. For instance,

an LC model induced from the transformed dataset shown in Figure 2.2 would not be able

to classify a new song as �Bossa� or �Jazz-Pop� because these combinations do not exist

in the original multi-label dataset. Second, and more importantly, the LC transformation

can generate an exponential number of compound classes, some of them with very few

instances compared to the rest. The maximum number of single-label classes is given by

min(N, 2q), where N corresponds to the number of training instances and q represents

the number of labels. Although in practice the actual number is usually much smaller

than the maximum possible number, it is normally much larger than q (as will be shown

in Section 2.2). Thus, the LC method is impractical for several real-world problems.

2.1.1.2 Ranking by Pairwise Comparison (RPC)

The RPC approach [35, 49] works by transforming the original multi-label dataset into

diverse binary single-label datasets. Each derived dataset is associated to a distinct pair of

labels {li, lj}, 1≤ i<j≤ q and must contain those instances in the training set D which are

labeled either as li or lj, but not labeled as both. Figure 2.3 shows the six binary datasets

resulting from the RPC transformation of the music categorization dataset illustrated in

Figure 2.1. Observe that the �rst dataset refers to the pair of labels �Metal� and �Jazz�.

All instances in this dataset can be associated to either of the following two class values:

2.1 Basic Approaches for Multi-label Learning 12

�Metal(1)-Jazz(0)� or �Metal(0)-Jazz(1)�. The �rst and fourth instances have the class

value �Metal(1)-Jazz(0)� because in the original dataset these respective instances are

labeled as �Metal� but are not labeled as �Jazz�. Analogously, the second, third and �fth

instances have the class value �Metal(0)-Jazz(1)�, because these are labeled as �Jazz� and

not labeled as �Metal� in the original dataset.

Figure 2.3: RPC transformation of the example music categorization dataset

The induction of an RPC model consists in training one binary single-label classi�er

for each derived dataset. Thus, each classi�er is trained for a pair of labels {li, lj},

2.1 Basic Approaches for Multi-label Learning 13

forming a decision boundary for these two labels. Unlike in the LC method, in RPC the

classi�cation step cannot be directly performed. In RPC, a new instance t to be classi�ed

must �rst be submitted to all binary models. Then, the �votes� received by each label are

counted and used to compute a label ranking. The �nal predicted labelset for t is obtained

with the application of a threshold function for separating the highest-rated labels from

the lowest-rated ones.

The RPC method is able to predict label combinations that are not present in the

original training set, while still retaining the LC's advantage of implicitly incorporating

label correlations into the classi�cation model. However, it has important disadvantages.

First, its classi�cation process is dependent on a threshold function, which might need

to be calibrated according to the di�erent datasets. Second, it may achieve quadratic

complexity in terms of space and time, since, in the worst case, a total of q(q − 1)/2

binary classi�ers must be trained and kept in memory. All of them need to be queried

at classi�cation time. Due to this, the RPC method is usually intractable for several

real-world problems in which q is not small (further discussion is given in Section 2.2).

2.1.1.3 Binary Relevance (BR)

BR [52, 55] is the most well-known and widely adopted problem transformation method

for MLC [113]. In this approach, the original multi-label dataset is decomposed into q

binary single-label datasets, one for each label. As an example, Figure 2.4 shows the four

binary datasets generated from the BR transformation of the music categorization dataset

from Figure 2.1.

Figure 2.4: BR transformation of the example music categorization dataset

The induction of a BR model consists in training one binary classi�er for each derived

dataset. Consequently, in the music categorization example, four independent binary

models would have to be trained, being each one solely and exclusively responsible for

classifying a speci�c music genre. Once the BR model has been induced, the classi�cation

process is quite straightforward: new instances are predicted by simply combining the

2.1 Basic Approaches for Multi-label Learning 14

outputs produced by each binary classi�er. This process is illustrated in the example

given in Figure 2.5. It shows the classi�cation process of a new multi-label instance t (the

song �The Girl from Ipanema�) considering a hypothetical BR model trained using the

group of derived datasets from Figure 2.4. In this �gure, y1, y2, y3 and y4 respectively

represent the trained binary classi�ers to predict the genres �Metal�, �Jazz�, �Bossa� and

�Pop� and x represent the set of features describing t. Observe that in order to carry out

the classi�cation, the BR model outputs the aggregation of the labels positively predicted

by all of the independent binary classi�ers. Since in this example labels �Metal� and

�Bossa� were predicted as non-relevant whilst �Jazz� and �Pop� were predicted as relevant,

the labelset {�Jazz�, �Pop�} was assigned to t.

Figure 2.5: BR classi�cation of the song �The Girl from Ipanema�

The BR strategy o�ers important advantages. First, like LC, it is simple and intuitive.

Second, like RPC, it is capable of predicting labelsets that are not present in the training

set. Third, unlike LC and RPC, the BR method has relatively low computational com-

plexity, since it scales linearly with q. Nonetheless, an obvious and important drawback

of the strategy lies in the fact that a trained BR model completely ignores the possible

correlations among labels, as the binary classi�ers take decisions independently from each

other. Thus, in theory, the method tends to be more suitable for problems where only a

small number of labels exhibit correlation with each other. Chapter 4 is devoted to the

classi�er chains model [82, 83], a direct extension of the binary relevance method which

is capable of taking label dependencies into consideration.

2.1.2 Algorithm Adaptation Methods

Algorithm adaptation methods extend or adapt an existing single-label algorithm for the

task of multi-label classi�cation. E.g., in the recent work of [87], the authors introduce

a slightly modi�ed Bayes formula which enables the traditional Naïve Bayes technique

to be applied in the MLC context. This formula is presented in Equation 2.1. Given an

2.2 Multi-label Data 15

unlabeled instance t, the probability of a label lj being relevant is computed taking into

consideration two separate contributions: the posterior probability of lj conditioned on x

(the set of features describing t) and also the posterior probability of lj conditioned on

Z − lj, which denotes a set containing the estimated 0/1 relevance for each class label

involved in the MLC problem, excluding lj.

Pr
(
lj
∣∣ x, Z − lj) =

Pr
(
lj
∣∣ x)× Pr

(
lj
∣∣ Z − lj)

Pr
(
lj
) (2.1)

Besides Naïve Bayes, other classic single-label techniques adapted for MLC include

k-NN [90, 112, 108], neural networks [14, 111], decision trees [12], SVM [29, 107], and

Bayesian networks [6, 102]. Unlike problem transformation strategies, it is noticeable

that algorithm adaptation methods are normally designed to be used in speci�c problem

domains. For instance, the adaptation of the Naïve Bayes technique presented in [87] was

originally proposed to be applied to the task of text categorization, since it constitutes

an area where Naïve Bayes very often yields much better results than other algorithms.

2.2 Multi-label Data

The performance of the di�erent multi-label learning methods over a dataset may be

a�ected by a number of distinct properties of the dataset. This section provides a study

of such properties, which de�ne the complexity and degree of �multi-labelled-ness�1 of

multi-label data. In order to facilitate the discussion, we present examples obtained from

the benchmark datasets utilized in the experiments carried out in this thesis. The text is

structured as follows. First, in Subsection 2.2.1, each dataset is brie�y described in terms

of its target classi�cation task and basic characteristics (number of labels, attributes and

instances). Following this introductory presentation, in Subsection 2.2.2, we show a set of

statistics (the properties themselves) extracted from the collection of datasets, discussing

how this information can be employed to give indication of the performance of the di�erent

multi-label methods.

2.2.1 Benchmark Datasets

The collection of datasets used in this thesis is presented below. All of them contain

real-world data from distinct application domains. We present the name of each dataset,

1This term was coined by Jesse Read in [77], having become popular among the MLC community.

2.2 Multi-label Data 16

followed by its application domain(s) and a brief description of its characteristics. The

datasets and further information about them can be obtained at the sources referenced

in the text.

� Emotions [95] (Music Categorization). Classi�cation of songs into six kinds of emo-

tions: �sad-lonely�, �angry-aggressive�, �amazed-surprised�, �relaxing-calm�, �quiet-

still�, and �happy-pleased�. The dataset comprises pieces of 593 distinct songs de-

scribed by 72 extracted numeric features.

� Scene [7] (Image Annotation). Classi�cation of images into six di�erent contexts:

�beach�, �sunset�, ��eld�, �fall-foliage�, �mountain�, and �urban�. The dataset is

formed by 2407 images described by 294 numeric features.

� Flags [61] (Image Annotation). This is a simple dataset containing information

about 194 countries and their national �ags. Each instance is described by 19

attributes (such as area in km2, language and predominant religion). The MLC

task consists in predicting the colors present in the national �ags (�red�, �green�,

�blue�, �yellow�, �white�, �black�, and �orange�).

� University [61] (Social Research). This dataset contains information related to 242

North American universities, which are characterized by 14 input attributes (e.g.:

number of students, male/female ratio, whether it is under either public or private

control, etc.). The MLC task is to predict the courses o�ered by a university. The

ten most popular courses were selected to form this dataset.

� Yeast [29] (Functional Genomics). This is a biological dataset where yeast genes

can be associated with a set of 14 functional categories belonging to the top level of

the Functional Catalog (FunCat) [88]. The dataset is composed of 2417 instances

described by 103 numeric attributes, representing micro-array expressions and phy-

logenetic pro�les of the yeast genes.

� CES-16 [41] (Social Research). This dataset contains 904 observations collected

from a household survey called Consumer Expenditure Survey (CES). This survey

has been conducted by a Brazilian institute of research since 1947 to, among other

goals, support the analysis of food consumption of Brazilian families. Each instance

concerns a di�erent family, which is characterized by 3 attributes: monthly income,

number of members and city of residence. The MLC task is to predict the collection

of products acquired by each family on their last visit to a supermarket. Sixteen

2.2 Multi-label Data 17

distinct products (presented in the examples of [40, 41]) were selected to compose

the dataset.

� Birds [8] (Audio Classi�cation and Biology Research). Classi�cation of the bird

species present in a 10-second audio record. The dataset comprises 645 instances,

260 features and 19 labels (species of birds).

� Thyroid [61, 74, 76] (Medical Diagnosis). This dataset keeps information about

examinations performed on 9172 patients from 1984 to 1987. Each instance is

described by 29 attributes and the classi�cation task is to perform the diagnosis of

thyroid conditions according to a set of 25 distinct class labels.

� Genbase [24] (Functional Genomics). Classi�cation of proteins into 27 distinct func-

tions. The dataset comprises 662 instances, each one corresponding to a protein

chain represented by a motif sequence vocabulary (binary array of length 1186).

� Medical [70] (Text Categorization and Medical Diagnosis). Classi�cation of clinical

reports into 45 distinct codes, representing di�erent diseases or clinical conditions.

This dataset keeps information about clinical reports regarding 978 patients. Each

report is described by 1149 binary attributes which indicate if a speci�c term (word)

is either present or absent.

� Enron [56, 81] (Text Categorization). Classi�cation of e-mails into 54 categories.

The dataset contains 1702 e-mail messages exchanged between employees of the

Enron Corporation, that were made available during a legal investigation. Each e-

mail is described by 1001 binary attributes which indicate if a term is either present

or absent.

� LLog [77] (Text Categorization). Classi�cation of free text into 75 topics. The

dataset was generated from the Language Log forum2, and contains 1460 instances,

each described by 1004 binary attributes. As in the case of the datasets Medical

and Enron, each binary attribute is used to indicate if a speci�c term appears in a

text document.

� Cal500 [101] (Music Categorization). Classi�cation of songs into 174 di�erent kinds

of music concepts, which, among others, may represent music genres (e.g.: �Soul�,

�Jazz�, �Pop�, etc.) and the presence of certain instruments (e.g.: �Synthesizer�,

�Saxophone�, �Piano�, etc.). The dataset comprises 502 well-known songs recorded

2http://languagelog.ldc.upenn.edu/nll/

2.2 Multi-label Data 18

by distinct artists in the last 50 years. Each song is described by 68 extracted

numeric features.

2.2.2 Dataset Statistics

In what follows, we present a collection of statistics extracted from the 13 benchmark

datasets introduced in the previous subsection. These reveal a series of interesting and

useful properties associated with multi-label data.

Table 2.1 presents a collection of properties that can be used to roughly indicate

the overall complexity associated to each dataset. The �rst column informs the name

of each dataset whilst the second, third, and fourth columns (N , d, and q) respectively

show the number of instances, features and labels (which have been previously presented

in Subsection 2.2.1). Note that the datasets are arranged in ascending order of number

of labels. The �fth column indicates the dataset complexity, as proposed in [77], which

is given by the product N × d × q. Nonetheless, it is worth reminding the reader that

methods based on the transformation of the multi-label problem in diverse binary single-

label problems, such as RPC and BR, may be more a�ected by the size of q (parameter

that actually de�nes the number of binary models to be induced) than by the complexity

itself.

Table 2.1: List of benchmark multi-label datasets and their statistics concerning com-
plexity

Dataset N d q Complexity

emotions 593 72 6 256,176

scene 2,407 294 6 4,245,948

�ags 194 19 7 25,802

university 242 14 10 33,880

yeast 2,417 103 14 3,485,314

ces-16 904 3 16 43,392

birds 645 260 19 3,186,300

thyroid 9,172 29 25 6,649,700

genbase 662 1186 27 21,198,564

medical 978 1449 45 6,377,0490

enron 1,702 1001 53 90,296,206

llog 1,460 1004 75 109,938,000

cal500 502 68 174 5,939,664

Table 2.2 presents a set of properties which give a reasonable indication of the degree

of �multi-labelled-ness� of the datasets. The �rst column informs the name of each dataset

2.2 Multi-label Data 19

whilst the second and third reproduce, respectively, the number of instances and labels.

The values in the fourth column (LCard) present the label cardinality associated to each

dataset, which corresponds to the average number of labels per instance. The lowest value

is close to 1.0 in the �birds� dataset, where most instances are associated with only one

label and some of them might not be associated to any label. On the other hand, the

highest value is superior to 26.0 in the �cal500� dataset. Complementary, the �fth column

(LDens) gives the label density, which corresponds to LCard divided by q. Both mea-

sures were introduced in [97]. The sixth column (NC) gives the number of distinct label

combinations present in each dataset. The seventh column (NU) presents the number

of �unique labelsets�, i.e., the number of label combinations that have frequency equal

to 1 in the dataset. These two measures were proposed in [77]. We further introduce two

new measures, which are presented in the last two columns. The �rst is NU/NC, in the

eighth column. This measure gives the proportion of unique labelsets to the total number

of distinct labelsets. The second is the number of RPC pairs (NP), presented in the last

column. It indicates the total number of distinct pairs of labels {li, lj}, 1≤ i<j≤ q that

are associated to at least one instance in the dataset, considering that the instance must

be labeled as li but not as lj or vice-versa. In other words: it gives the number of binary

classi�ers that would need to be trained in order to induce an MLC model employing the

RPC method.

Table 2.2: List of benchmark multi-label datasets and their statistics concerning the
degree of �multi-labelled-ness�

Dataset N q LCard LDens NC NU NU/NC NP

emotions 593 6 1.87 0.31 27 4 0.15 15

scene 2,407 6 1.07 0.18 15 3 0.20 15

�ags 194 7 3.39 0.49 54 24 0.44 21

university 242 10 1.58 0.16 68 36 0.53 45

yeast 2,417 14 4.24 0.30 198 77 0.43 91

ces-16 904 16 3.17 0.20 475 358 0.75 120

birds 645 19 1.01 0.05 133 73 0.55 171

thyroid 9,172 25 7.00 0.28 31 5 0.16 247

genbase 662 27 1.25 0.05 32 10 0.31 350

medical 978 45 1.25 0.03 94 33 0.35 984

enron 1,702 53 3.38 0.06 753 573 0.76 1,378

llog 1,460 75 1.18 0.02 304 189 0.62 2,774

cal500 502 174 26.04 0.15 502 502 1.00 15,028

As stated in the beginning of this section, the properties of a dataset will in�uence the

performance of the di�erent multi-label methods. For instance, consider the LC method

which treats each label combination that exists in the multi-label dataset as a distinct

2.3 Performance Evaluation 20

single-label class. The information presented in Table 2.2 demonstrates that this method

is actually impractical for most MLC problems. This is due to two reasons. First, the

value of the NC property (number of distinct label combinations) is superior to 30 in

the majority of the datasets, which can be considered a large number of class values for a

multiclass single-label problem. Second, observe that several datasets have a large number

of label combinations that are associated to only one instance (given by the NU property).

This is, for example, the case of �university�, �ces-16�, �birds�, �enron�, �llog� and �cal500�,

where the proportion NU/NC is superior to 50% (i.e., among the total number of distinct

label combinations, more than 50% are associated to only one instance). Hence, the LC

method would have to deal with a large number of compound classes that appear only

once in the dataset. In the extreme case of the �cal500� dataset, the number of label

combinations is equal to the number of instances (NC = N), so the method would have

to deal with only one instance per each compound class.

The information in Table 2.2 also allows for a comparison between the RPC method

(where a binary classi�er must be trained for each pair of labels of interest) and the BR

method (where a binary classi�er is trained for each label) in terms of time and space

complexity. In this regard, the NP property (last column Table 2.2) reveals that the

number of binary models that need to be trained and kept in memory considering the

RPC method is equal or very close to the upper bound of q(q − 1)/2 for all datasets. On

the other hand, the BR method has a much lower complexity, since it only requires the

use of a �xed number of q classi�ers. This is the reason why the BR method has been

preferred over RPC and LC in many real-world problems.

2.3 Performance Evaluation

Over the last few years, several evaluation measures speci�cally designed for MLC have

been proposed in the literature. The platforms MULAN [99] and MEKA [84] � both widely

adopted for research projects in MLC � make available more than twenty di�erent metrics

to their users. This subsection introduces and compares some of the most commonly used

evaluation measures. In the examples and de�nitions throughout the text the following

notation was adopted:

� n : number of test instances,

� q : number of labels,

2.3 Performance Evaluation 21

� Yi: actual labelset of the ith test instance,

� Zi: predicted labelset of the ith test instance.

The most trivial evaluation metric for MLC algorithms is the Exact Match (EM),

de�ned in Equation 2.2. This measure assesses the proportion of instances that were fully

correctly predicted in the test set. Consider that I(true) = 1 and I(false) = 0.

EM =
1

n

n∑
i=1

I(Yi = Zi) (2.2)

Although it provides essential information, the EM measure is regarded as too strict

to be applied in a standalone manner. This is because in MLC problems a result can be,

very often, partially correct, i.e., the classi�er may predict some of the correct labels, but

it can either miss some of them or include wrong predictions. Hence, it is necessary to

adopt other evaluation metrics so as to complement the Exact Match metric.

The Accuracy (ACC) and F-Measure (FM) metrics, respectively de�ned in Equations

2.3 and 2.4, can be seen as �less harsh� versions of EM. Both metrics provide the user with

information about the proportion of correct predictions, thus taking into consideration

results that are partially correct.

ACC =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2.3)

FM =
1

n

n∑
i=1

2× |Zi ∩ Yi|
|Zi|+ |Yi|

(2.4)

Tables 2.3 and 2.4 illustrate, respectively, the use of Accuracy and F-Measure in a

toy problem of six test instances and four labels. Observe that the measures are simple

and intuitive: the higher the value, the better the classi�cation. However, the cases

illustrated in the examples E5 and E6 in both tables highlight a drawback associated with

these measures: they are not very severe on penalizing wrong predictions (either false

positives or false negatives).

In order to cope with this problem, it is possible to employ the Hamming Loss measure

(HL), de�ned in Equation 2.5. This metric informs the average number of incorrect binary

predictions per instance. The expression |Yi ∆ Zi| represents the symmetric di�erence

between Yi and Zi. Thus, the smaller the HL value, the better the performance.

2.3 Performance Evaluation 22

HL =
1

n

n∑
i=1

|Yi ∆ Zi|
q

(2.5)

The use of HL in a new toy problem of six test instances and four labels is illustrated

in Table 2.5. Note that the most important advantage of HL over ACC and FM is

that it is more suitable to penalize wrong predictions. Nevertheless, in many practical

situations this characteristic ends up becoming a disadvantage. For instance, observe the

four last examples in Table 2.5. They show that, considering a pair of cases with the same

number of wrong predictions (such as E3 and E4 or E5 and E6), the HL measure does

not distinguish the case with a greater number of correct predictions from the one with a

smaller number of correct predictions.

Table 2.3: Illustration of Accuracy for six examples

Yi Zi ACC Comments

E1 l1, l2, l3, l4 l1, l2, l3, l4 1.00 perfect classi�cation
E2 l1 l2, l3, l4 0.00 worst case
E3 l1 l2 0.00 worst case
E4 l1, l3 l1, l2 0.33
E5 l1 l1, l2 0.50
E6 l1, l2 l1, l2, l3, l4 0.50 more false positives than E5, but the

value is still 0.50

Table 2.4: Illustration of F-Measure for six examples

Yi Zi FM Comments

E1 l1, l2, l3, l4 l1, l2, l3, l4 1.00 perfect classi�cation
E2 l1 l2, l3, l4 0.00 worst case
E3 l1 l2 0.00 worst case
E4 l1, l3 l1, l2 0.50
E5 l1 l1, l2 0.66
E6 l1, l2 l1, l2, l3, l4 0.66 more false positives than E5, but the

value is still 0.66

It is important to emphasize that despite some idiosyncrasies, all the four evaluation

measures presented in this subsection are important since they provide complementary

information about MLC processes. Another important aspect related to the Exact Match,

Accuracy, F-Measure and Hamming Loss metrics is that they all work by �rst evaluating

the performance of the algorithm on each test instance separately, and then averaging

the obtained result over the entire test set. Due to this, they are referred to as instance-

based or example-based measures. We may still observe that these four metrics summarize

2.3 Performance Evaluation 23

Table 2.5: Illustration of Hamming Loss for six examples

Yi Zi HL Comments

E1 l1, l2, l3, l4 l1, l2, l3, l4 0.00 perfect classi�cation
E2 l1 l2, l3, l4 1.00 worst case
E3 l1 l2 0.50
E4 l1, l3 l1, l2 0.50 better classi�cation than E3, but the

value is still 0.50
E5 l1 l1, l2 0.25
E6 l1, l2, l3, l4 l1, l2, l3 0.25 higher number of correct predictions

than E5, but the value is still 0.25

the overall performance of the algorithm taking into account all labels in the dataset.

Nevertheless, in most multi-label scenarios the frequency distribution of the labels in the

dataset is imbalanced. This naturally makes some labels easier to predict than others. For

example, in the music categorization task, genres like �Pop� and �Dance� would certainly

be much more frequent than �Folk�. To cope with this situation, it might be also interesting

to employ evaluation metrics capable of assessing the e�ectiveness of the classi�er on each

label separately. These kinds of metrics are called label-based. Two examples of label-based

metrics are the True Positive Rate (TPR) and the True Negative Rate (TNR), respectively

de�ned in Equations 2.6 and 2.7. In the de�nitions, lj represents some speci�c label of

interest and TPlj , TNlj , FPlj , FNlj the number of true positives, true negatives, false

positives, and false negatives after the binary evaluation of lj.

TPR(lj) =
TPlj

TPlj + FNlj

(2.6)

TNR(lj) =
TNlj

TNlj + FPlj
(2.7)

The TPR of label lj measures the percentage of actual positive instances that were

classi�ed as positive whilst the TNR of lj assesses the percentage of actual negative

instances that were indeed classi�ed as negative. To demonstrate the importance of

label-based measures, consider the information presented in Table 2.6. In this table, the

�rst column stores the actual labelsets of six test instances and the second contains the

respective labelsets predicted by a hypothetical multi-label learner. In this example, we

have TPR(l1) = 3/(3 + 0) = 1.00 and TNR(l1) = 1/(1 + 2) = 0.33. Therefore, the learning

algorithm obtained the maximum value for the TPR of l1, but its performance was far

worse with respect to the TNR. Let us now examine the label l2. The values of both

2.3 Performance Evaluation 24

measures are given by TPR(l2) = 2/(2+1) = 0.66 and TNR(l2) = 2/(2+1) = 0.66. Thus,

the TPR and TNR values of l2 are more balanced.

Table 2.6: Illustration of actual and predicted labelsets of six examples

Yi Zi

E1 l1, l3, l4 l1, l4
E2 l2, l4 l1, l4
E3 l1, l4 l1, l2
E4 l2 l2
E5 l3, l4 l1, l3, l4
E6 l1, l2 l1, l2

Besides TPR and TNR, there are many other label-based measures for MLC. In fact,

any binary measure for SLC classi�cation, as the various presented in [51], can be directly

applied in the MLC context. In spite of being label focused, these metrics can also be

easily summarized for all labels by applying di�erent kinds of averaging operations, such

as micro-averaging and macro-averaging [97, 113].

As a �nal remark, it is worth mentioning that some studies also make use of ranking-

based measures [97] to evaluate multi-label methods. Nonetheless, unlike example-based

and label-based measures, this kind of metric requires the use of a method that can output

a score for each class label (e.g., probability) along with the predicted 0/1 relevance. An

example of such measure is One Error (OE), de�ned in Equation 2.8. It assesses the

proportion of test instances where the label predicted with the highest con�dence score

(denoted by best(Zi) in the formula) does not correspond to an actual label. Consider

that H(true) = 1 and H(false) = 0. Smaller values indicate better performance.

OE =
1

n

n∑
i=1

H(best(Zi) /∈ Yi) (2.8)

It is important pointing out that OE and other ranking-based measures (such as the

ones presented in [97]) can be considered more suitable for use in the evaluation of multi-

label ranking methods. Multi-label ranking is a related classi�cation task where the goal

is to construct a classi�cation model that provides, for each unseen instance, a list of

preferences (i.e., a ranking) on the labels [65, 100]. In other words: given a test instance

t, a multi-label ranking classi�er produces a ranking, such as r(l4) < r(l1) < r(l3) < r(l2),

where r(li) denotes the position of label li in the ranking (the smaller the better). As an

example of practical application, consider a system for classi�cation of scienti�c papers

2.4 The Label Dependence Issue 25

into keywords. Suppose the number of keywords is �xed to k (i.e., each paper must be

associated with exactly k keywords). In this case, to obtain the keywords for a new

instance, a multi-label ranking method could simply select the top k labels in the output

ranking.

2.4 The Label Dependence Issue

There seems to be a consensus in the literature that multi-label algorithms capable of

identifying and modeling the dependencies among labels tend to be more e�ective [11, 35,

37, 45, 81, 82, 83, 87, 98]. In practice, two di�erent types of label dependencies can be

taken into consideration [21]: unconditional and conditional.

The unconditional dependence between a pair of labels li and lj occurs when the actual

joint probability Pr(li, lj) is di�erent from the expected joint probability: Pr(li, lj) 6=
Pr(li) × Pr(lj). This type of dependence is quite easy to be measured, since it is based

only on the frequency of the labels. Any standard statistical measure of correlation can

be used for this purpose, such as the Pearson correlation coe�cient [92], the chi-squared

test for correlation [9], and the mutual information [34, 80].

However, the strength of the dependence between two labels may dramatically change

in presence of one or more variables from the input feature set X. In order to support

this claim, consider the following example, originally presented in the study of [41] and

obtained from the CES dataset. As described in Section 2.2, the CES dataset keeps

information about purchases made by families residing in di�erent Brazilian cities. In this

dataset, the pair of labels beer and salami is unconditionally independent if we consider all

instances. Thus, the following relation holds: Pr(beer, salami) ≈ Pr(beer)× Pr(salami).

However, an example obtained with the use of a technique to extract exception rules

proposed in [41] revealed that the correlation between these two items becomes not only

positive but also considerably strong if we only consider the subset of the CES dataset

de�ned by people who live alone. More clearly, in the subset of the CES dataset de�ned

by instances where the value of the input attribute �number of members in the family� is

equal to 1, the following relation holds: Pr(beer, salami) > Pr(beer)× Pr(salami).

Despite being very simple, the above example is enough to disclose the importance

of the exploitation of conditional dependencies in MLC processes. This type of depen-

dence takes into consideration the attributes from the input feature space X in order

to capture the dependence among labels. Two labels li and lj are said to be condition-

2.4 The Label Dependence Issue 26

ally dependent given x (a vector that stores values for the predictive attributes in X) if:

Pr(li, lj|x) 6= Pr(li|x) × Pr(lj|x). Clearly, the measurement of conditional dependence is

more appropriate than the measurement of unconditional dependence, since any multi-

label classi�er will predict the labelset of an object conditioned on its features. Nonetheless

and unfortunately, measuring conditional dependence is much more di�cult due to the

fact that, in most datasets, there are many input variables to be taken into consideration

in the feature set X.

Chapter 3

Genetic Algorithms for Permutation

Problems

The goal of this chapter is to review the concepts of genetic algorithms (GAs) particularly

relevant to this thesis. The text is divided into two sections. Section 3.1 starts by providing

a succinct overview of GAs. Section 3.2 expands upon the theory relating to GAs by

speci�cally discussing the issues surrounding the design of GAs for solving permutation

problems.

3.1 GA Basics

Evolutionary Algorithms (EAs) are stochastic search methods that work by simulating

the principles of natural selection and natural genetics [2, 19, 28, 32]. The �eld of EAs

encompasses di�erent techniques, such as, among others, genetic algorithms [39, 85],

genetic programming [57], and evolution strategies [5]. This thesis focuses on genetic

algorithms (GAs), which are distinguished by their wide range of applications in the �eld

of data mining [4, 30, 32, 46, 47].

GAs work based on the application of Darwinian principles (natural selection, re-

production and mutation) to solve high-dimensional problems. The following is a brief

explanation of how the GA search works [28, 39]. In the �rst step, an initial population

of individuals (also named chromosomes) is created, where each one corresponds to a

candidate solution to a given problem. Next, these individuals are evaluated by a �tness

function which assigns a numerical quality value to each of them. Then, the genetic algo-

rithm produces a new generation of individuals by employing the notion of �survival of the

�ttest�. This procedure consists in selecting individuals to be combined, with probability

3.2 GAs for Permutation Problems 28

proportional to their �tness values, so as to produce a new generation resembling them

(using genetic operators such as crossover and mutation). The process goes on for many

iterations, progressively producing better and better candidate solutions. Normally, the

GA execution terminates either when a su�ciently �t individual emerges or after a user-

speci�ed maximum number of generations has been performed. Algorithm 1 (adapted

from [28, 32]) outlines the above described scheme in pseudocode.

Algorithm 1 Generic pseudocode for a genetic algorithm

1: create an INITIAL POPULATION of individuals (candidate solutions)

2: EVALUATE each individual

3: repeat

4: SELECT parents based on �tness

5: apply GENETIC OPERATORS to selected individuals, creating new individuals

6: EVALUATE each new individual

7: UPDATE the current population (new individuals replace old individuals)

8: until (termination condition is satis�ed)

GAs constitute a very generic heuristic search paradigm, which has proven to deliver

good (though not necessarily optimal) solutions within acceptable time for a wide range

of problems [28, 32, 39, 85]. In the next section, we examine the constituent parts of the

GA search in detail. We focus our discussion on GAs designed for permutation problems,

as this thesis primarily deals with the development of methods for discovering optimized

label sequences (i.e., optimized permutations of labels) for multi-label chain classi�ers.

3.2 GAs for Permutation Problems

Within the past 30 years, GAs have become quite popular as a means of solving hard

combinatorial optimization problems [28, 85, 89]; many of them correspond to problems

that take the form of deciding on the order in which a sequence of events should occur

(permutation problems). Examples vary from the classical traveling salesman problem [59,

72] to the analysis of genome rearrangements [36], also including the personnel assignment

problem [94], the vehicle routing problem [64, 73], and several others.

For instance, consider the traveling salesman problem (TSP), a well-known NP-hard

problem where the objective is to �nd the shortest route for a traveling salesman who,

starting from his home city, needs to visit a set of n cities and then return to his departure

city. This problem can be formally stated as follows. Let G be a complete weighted

3.2 GAs for Permutation Problems 29

undirected graph composed of n + 1 nodes. In this graph, each node corresponds to a

city (where node 0 stands for the traveling person's home city) and the weighted edges

represent the distances between each pair of cities. The goal of TSP is to design a tour

that starts and ends at node 0, includes all other nodes exactly once, and has minimum

total weight. Figure 3.1 shows an example involving four cities (n = 4). Note that

although the TSP is easy to describe and represent, it is very di�cult to solve due to the

enormous number of n!/2 possible tours. To overcome the prohibitive computational cost

for the exact solution, heuristic approaches � such as GAs � are often used in practice [59,

72, 85, 89].

Figure 3.1: An example of TSP with n = 4. The optimal tour is 0-1-4-2-3-0 (or 0-3-2-4-
1-0) with total weight 11

In the remainder of this section we show how to design a GA to solve permutation

problems. In order to accomplish this task, we will look at the operation of Algorithm 1

in detail, by separately examining each of its component parts: population initialization

(line 1), �tness computation (lines 2 and 6), parent selection (line 4), genetic operators

(line 5) and population replacement scheme (line 7). The discussion is illustrated with

examples that speci�cally regard the TSP, since it shares many similarities with the LSOP.

Before that, however, we discuss the individual representation of the proposed GA.

3.2.1 Individual Representation

The design of any GA starts with the de�nition of the representation of a solution to the

problem at hand in the form of a chromosome. In essence, this corresponds to choosing

an adequate data structure for representing a solution. As a pragmatic rule of thumb,

[39] advises �choosing a simple representation that is as close as possible to the natural

representation of solutions in the target problem�.

3.2 GAs for Permutation Problems 30

With regard to permutation problems, the most natural and popular approach is

to represent a chromosome as a vector of integers, according to one of the following

two standard encodings [28]: path representation and ordinal representation. In the �rst

encoding scheme, the ith element of the permutation is stored at the ith position in the

array. In the latter, the value at the ith position in the array denotes the position of the

ith element in the permutation. For instance, Figures 3.2a and 3.2b show, respectively,

the chromosome representation of the TSP tour 0-1-4-2-3-0 according to the path and

the ordinal representations. Note that, in both cases, the home city is not included in

the chromosome to avoid redundancy1. Other, less popular, methods for representing

permutations can be found in [72].

(a) (b)

Figure 3.2: Representation of the TSP tour 0-1-4-2-3-0 using two distinct chromosome
encoding schemes: (a) path representation and (b) ordinal representation

3.2.2 Population Initialization

As shown in Algorithm 1, the �rst step of the GA search process corresponds to the

creation of an initial population of chromosomes (i.e., a set of possible solutions to the

given problem) which will evolve over successive generations in an attempt to �nd an

optimized solution to the problem. In most GAs, the initial population is simply generated

at random, although it is also possible to make use of heuristics that ensure that, at least,

a fraction of the chromosomes have some desirable characteristics [73]. Typical real-world

problems have a population of several dozen or even hundreds chromosomes [4, 28, 39].

3.2.3 Fitness Computation

The second step of the GA process consists in evaluating each member of the initial

population by a �tness function, which is responsible for assigning a numerical quality

value to each of them. This enables chromosomes to be compared against each other.

Subsequently, during the actual evolutionary process (lines 3�8 of Algorithm 1), the �t-

ness function provides a basis for the creation of new populations of candidate solutions.

Basically, individuals that will form a new population are generated from the �genetic

1It is also to simplify the design of genetic operators, as will be shown in Section 3.2.5.

3.2 GAs for Permutation Problems 31

material� of the �ttest members in the current population, mimicking the behavior of

natural selection in nature.

In most optimization problems, the de�nition of the �tness function is straightforward:

it usually corresponds to a well de�ned mathematical function. For instance, in the case

of the TSP, the �tness function is simply de�ned as the distance (length) of the tour

encoded in a chromosome. The smaller the value, the better the individual. Nonetheless,

there exist certain problems in which more than one objective must be taken into account

in order to determine the quality of a candidate solution [31]. In such multi-objective

problems, the de�nition of the �tness evaluation function is less trivial. This theme is

discussed in Chapter 6.

3.2.4 Parent Selection

Parent selection is the step in the GA evolutionary cycle responsible for de�ning the

individuals in the current generation that will be combined in order to produce o�spring

(new individuals). As mentioned in the previous subsection, the essential idea is that

the �ttest individuals of a population must have higher probability of being selected as

parents, thus passing their genetic material to later generations. There are three popular

kinds of selection methods [28, 32]: proportionate selection (a.k.a. roulette wheel), ranking

and tournament. These are introduced and compared below.

In proportionate selection, each member of the population is assigned a probability

of selection that is simply given by its �tness value divided by the sum of the �tness

of all other chromosomes in the population. In spite of being simple and intuitive, the

method is seldom used in practice because it has several drawbacks [32]. First, it assumes

a maximization problem, requiring the �tness function to be modi�ed if it is not the case.

Second, it requires the computation of a global statistic: the sum of the �tness of all chro-

mosomes in the population. This reduces the potential for parallel implementation of the

GA. Third, in problems where most individuals have similar �tness values, selection will

be almost random. On the other hand, when there exist one or very few �superperformer�

individuals in a population (maybe representing local optimal solutions), these will have

a much greater probability of selection. As a result, the population may prematurely

converge to be dominated by copies of such individuals.

Ranking selection is an alternative method that works in two steps. First, the individ-

uals of the population are sorted in descending (for a maximization problem) or ascending

(for a minimization problem) order according to their �tness values. Next, selection is

3.2 GAs for Permutation Problems 32

performed with probability proportional to their rank positions (ignoring the actual �t-

ness value), by following a predetermined probability distribution function, such as the

ones shown in Figure 3.3 (example obtained from [50]). Although the method overcomes

most problems associated to proportionate selection, it also requires the computation of

a global statistic (rank position of individuals), di�culting a parallel implementation of

the GA.

Figure 3.3: Two examples of probability distribution functions for ranking selection

Tournament selection is the most adopted parent selection technique nowadays [28].

In this approach, the GA randomly chooses k individuals from the population, where k is

a user-speci�ed parameter called tournament size. These individuals �play a tournament�

which consists of a comparison of their �tness values. The winner is the individual with the

best �tness among the k participants. In spite of being conceptually similar to the ranking

method, tournament selection o�ers the advantage of not requiring the computation of

a global statistic. Another appealing property is that the parameter k allows for a more

direct control over the selective pressure [28, 32], a measure of how often the top individuals

are selected to be parents in comparison with the weaker ones. The larger the value of k,

the stronger the selective pressure.

3.2.5 Genetic Operators

Once the parents have been selected, the subsequent step in the GA cycle is to generate

a new set of candidate solutions (the o�spring) by applying the crossover and mutation

genetic operators. There are many distinct crossover and mutation techniques available

in the literature [19, 28, 39, 72]. Each one is suitable for a speci�c kind of chromosome

representation. In the subsections below, we present examples of strategies suitable for

permutation problems where chromosomes are encoded using the path representation.

3.2 GAs for Permutation Problems 33

3.2.5.1 Crossover

Crossover is the most important genetic operator in GAs. It is applied to a selected

pair of parents in order to produce one or more children (new individuals), which inherit

�genetic material� from both parents. The rationale is that by �mating� two individuals

P1 and P2 with di�erent but desirable characteristics, it will be possible to produce a new

�tter individual that combines the best characteristics of P1 and P2. In the following, we

describe two di�erent crossover techniques designed for permutation problems, namely

donor-receptor crossover (DRC) [64] and order crossover (OC) [17]. A few other crossover

strategies proposed for permutation problems using the path representation and other

encoding schemes can be found in [28, 72].

DRC is a simple method that generates one child from two parents. An example

illustrating how it works is given in Figure 3.4. One of the selected parents plays a role

of donor of genetic material. The second parent is cloned and its copied version acts as a

receptor. The crossover operation is performed in three steps. First, a sub-chain is chosen

at random on the donor individual. Next, the elements of the sub-chain are removed from

the receptor individual. At last, the child is generated by inserting the donor's sub-chain

at a random position into receptor.

Figure 3.4: DRC Crossover

Unlike DRC, the OC technique generates two children from two parents. This is, prob-

ably, the kind of crossover method that has been most used in permutation problems [28].

Although OC is a bit more complex than DRC, it o�ers the important advantage of pro-

ducing children that preserve the relative order of the permutations encoded in both of

their parents. To explain how the method operates, consider the example shown in Fig-

ure 3.5. As aforementioned, the OC approach generates two children (represented by O1

and O2 in Figure 3.5) from two parents (represented by P1 and P2). Initially, two crossover

3.2 GAs for Permutation Problems 34

points (represented by the two vertical thick lines in Figure 3.5) are chosen at random.

The �rst step to generate O1 is to copy the segment between the crossover points from P1

into O1 (Figure 3.5a). The second step consists in �lling the remainder empty positions in

O1 with genetic material from P2 (Figure 3.5b). The procedure works as follows. Starting

from the position next to the second crossover point (the fourth position in our example),

the values that are present in P2 but are not contained in O1 are transferred to the empty

positions in O1, wrapping around when the last position of both chromosomes is reached.

As shown in Figure 3.5, the second child, O2, is analogously generated.

(a)

(b)

Figure 3.5: Order Crossover: (a) step 1 and (b) step 2

GAs make use of a parameter named crossover rate (pc) [28] to control the frequency

with which crossover is applied. This parameter is usually de�ned in the range between 0.5

and 1.0 and is employed as follows. Each selected pair of parents is given a random number

r from [0,1). If r ≤ pc, then the crossover operation is normally applied. Otherwise, the

children are created �asexually�, by simply generating clones of the parents. In the case

of the DRC approach, the single child is created as a clone of the donor individual.

As a �nal remark, it is important to observe that DRC and OC are nondeterministic

in their behavior, since in both methods the choice of which pieces of the parents will

be combined and transferred to their children is random. Actually, this is a property

common to all crossover methods [19, 28, 39].

3.2 GAs for Permutation Problems 35

3.2.5.2 Mutation

Children resulting from crossover can be also subject to mutation. This operator is

applied to one individual, transforming it into a slightly modi�ed mutant. Figure 3.6

presents three examples of mutation methods for permutation problems: swap, insert

and scramble [28, 72]. Swap mutation (Figure 3.6a) consists in randomly picking two

positions in the individual and swap their values. The insert mutation (Figure 3.6b)

randomly picks two positions and moves one next to the other, shifting the remainder

ones. In the scramble mutation (Figure 3.6c), the entire chromosome or some randomly

subset of positions within it, have their contents scrambled.

(a)

(b)

(c)

Figure 3.6: Three examples of mutation methods for permutation problems: (a) swap,
(b) insert and (c) scramble.

Similar to crossover, a parameter named mutation rate (pm) de�nes the probability

that a chromosome undergoes mutation. Also similar to crossover, mutation is a nonde-

terministic operation, since the piece that will be mutated within a candidate solution is

chosen randomly.

3.2.6 Population Replacement

After the application of crossover and mutation, two sets of individuals will be available:

the old population of chromosomes and the brand new o�spring set. The last step in the

GA cycle is to produce a new generation of individuals taking into consideration both

sets (�tness based replacement) or only the latter set (age-based replacement) [28].

In �tness based replacement, the sets of old individuals and o�spring are joined in a

uni�ed multiset. This multiset is ranked according to the �tness of its members and the µ

3.2 GAs for Permutation Problems 36

�ttest individuals are selected to compose the next generation, where µ corresponds to the

population size. In other words, at the end of each cycle, individuals from the o�spring

set compete based on their �tness with the old ones for a place in the next generation.

On the other hand, the age-based replacement scheme works by simply replacing

the entire population by the o�spring on each generation. Thus, in this approach, each

individual exists for just one generation. The problem is that the top best individuals of

a generation may �die� without producing o�spring (due to probabilistic selection). In

order to solve this problem, an elitist strategy may be adopted, where a small set of best

individuals in the old population set (named elite individuals) are copied unaltered to the

next generation.

It is worth pointing out that, independently of the adopted strategy and di�erently

from natural selection, the size of the population in GAs usually remains constant from

one generation to the next [4]. Hence, there is no chance of the chromosome population

become either overgrown or extinct during the many iterations of the GA cycle.

Chapter 4

Multi-Label Chain Classi�ers

The BR approach, introduced in Chapter 2, represents a simple solution to the MLC

problem, yet o�ering the advantages of being e�ective in many application domains [66],

scalable to large datasets and algorithm independent [113]. However, it has the serious

disadvantage of ignoring the possible relationships among labels. This chapter is devoted

to the chaining classi�cation model (a.k.a. classi�er chains model � CC), a direct extension

of the BR approach, which is capable of exploiting label relationships though.

The text is divided as follows. Section 4.1 introduces the basic approach for building

multi-label chain classi�ers as it was originally proposed in [82, 83]. The CC's training and

classi�cation mechanisms are �rst presented through the use of an illustrative example

and then described in pseudocode. At the end of the section, the main advantages and

disadvantages associated to the CC method are outlined. Section 4.2 reports and discusses

an experiment that, for the �rst time, investigated in depth the in�uence of the label

sequence in the predictive accuracy of CC models. The results con�rm that the use of

an optimized label sequence is actually a key factor in inducing e�ective chain classi�ers.

In Section 4.3, we propose and evaluate a few baseline heuristics for the determination of

optimized label sequences. Subsequently, in Section 4.4, we examine di�erent techniques

proposed in the literature to improve the e�ectiveness of the basic CC method. Concluding

remarks are given in Section 4.5.

4.1 An Introduction to the Classi�er Chains Method

The CC method was originally conceived in [82, 83]. As with BR, CC is a problem

transformation approach that: (i) decomposes the multi-label problem into q single-label

binary problems; (ii) trains one binary classi�er for each label; and (iii) determines the

4.1 An Introduction to the Classi�er Chains Method 38

labelset of new objects by combining the outputs produced by each classi�er. However,

di�erently from BR, the binary classi�ers in CC are not isolated from each other. Instead,

they are linked in a chain structure which allows each one to be able to communicate their

predictions to the other binary classi�ers ahead in the chain. Next, we discuss the steps

involved in the CC's training and classi�cation processes, once again making use of the

hypothetical music categorization dataset introduced in Figure 2.1.

The �rst step of the CC's training procedure consists in generating a randomly-ordered

chain that must contain all the q labels involved in the classi�cation problem. For instance,

considering the dataset of Figure 2.1, an example of valid chain would be C = {Metal →
Jazz → Bossa→ Pop}. Once the chain has been de�ned, q binary classi�ers are trained,

one for each label, according to the chain sequence. The �rst binary classi�er, y1, is trained

using solely the attributes that compose the feature set X as its input attributes. This

classi�er will be responsible for the prediction of the �rst label in the chain (�Metal�,

according to the example chain C). The second binary classi�er, y2, is trained using X

augmented with the binary information of the �rst label in the sequence (in this example,

the true values of label �Metal� in the training set) as its input attributes. This second

binary classi�er will be responsible for the prediction of the second label in the chain

(�Jazz�, considering the example chain). Each subsequent classi�er yj is trained using X

augmented with the information of j − 1 labels as its input attributes, i.e., the feature

space of yj is extended with the true label information of all previous labels in the chain.

The CC's classi�cation process must also be executed according to the same chain

sequence employed in the training phase. To predict the labelset of a new object, q binary

classi�cations are performed, with the process beginning at the classi�er associated to the

�rst label in the sequence and going along the chain. For example, Figure 4.1 illustrates

the classi�cation of the song t = `The Girl from Ipanema� considering a hypothetical CC

model trained with the sequence C. In this �gure, y1, y2, y3 and y4 respectively represent

the trained binary classi�ers to predict the genres �Metal�, �Jazz�, �Bossa� and �Pop� and

x represents the set of features describing t. The classi�cation process begins at y1 and

goes along the chain, i.e., the classi�er yj predicts the relevance of label lj, given the

feature space augmented by the predictions carried out by the previous j − 1 classi�ers.

Observe that, di�erently from the BR model, the binary classi�cations performed by a

CC model are not independent of each other, because each classi�er communicates its

decision (binary prediction) to the subsequent classi�ers in the chain. In the example of

Figure 4.1, the binary classi�cation of y1 (which predicted that t is not a heavy metal

song) is incorporated into the set of features x, becoming immediately available to be

4.1 An Introduction to the Classi�er Chains Method 39

considered as additional predictive information by y2 and the remaining binary classi�ers.

Despite its simplicity, the example can immediately highlight the advantage of allowing

communication among the binary models. Note that a classi�er such as y3, which is

placed near the end of the chain, can clearly bene�t from having been informed about the

decisions of both y1 and y2. Thus, the CC model is able to generate predictions di�erent

from the ones generated by a BR model.

Figure 4.1: CC classi�cation of the song �The Girl from Ipanema�

4.1.1 Algorithm Speci�cation

Algorithm 2 formalizes the CC's training procedure in pseudocode. This algorithm re-

quires a training set D as the only input parameter and produces a multi-label chain clas-

si�er h as output. In the adopted notation, assume that there is a set L = {l1, ..., lq} of q
class labels involved in the target classi�cation problem. Also assume that the training set

D is composed of N instances, where each instance i has the form (x
(i)
1 , ..., x

(i)
d , ι

(i)
1 , ..., ι

(i)
q).

Consider that (x
(i)
1 , ..., x

(i)
d) is a vector that stores values for d predictive attributes de-

scribing i whereas (ι
(i)
1 , ..., ι

(i)
q) is a label relevance vector, with ι(i)j ∈ {0, 1} being the jth

label assignment (1 if label lj is relevant to i; 0 otherwise)1.

The algorithm works as follows. First, a randomly-ordered label sequence C is de�ned

(line 1). This sequence must contain all the q labels involved in the classi�cation problem.

Then, the FOR loop that encompasses lines 3-11 is responsible for inducing a binary

classi�er for each label lj, following the order speci�ed in C. The process is divided

into two phases. In the �rst (lines 4-8), a dataset D′j, derived from D, is generated.

This dataset is subsequently used in the second phase (lines 9-10) to train yj, the binary

classi�er responsible for predicting the relevance of lj (the label being processed in current

iteration in the FOR loop). Observe that the set of predictive attributes in each D′j

1In order to facilitate the description and explanation of the CC's training procedure, we decided to
represent the subset of labels associated to each training instance as a binary vector of length q. This
notation di�ers from that adopted in Chapter 1, where we used a subset of label identi�ers.

4.1 An Introduction to the Classi�er Chains Method 40

(denoted as x′) comprises the original feature set augmented with the binary information

of the j−1 labels processed in the previous iterations. Once all labels have been processed,

Algorithm 2 returns h (line 7), a multi-label chain classi�er composed of q binary SLC

classi�ers, each one trained with a distinct and speci�c set of input attributes (de�ned

according to C).

It is worth clary�ng that each binary classi�er yj ∈ h is induced considering the actual

label values present in the original training set D. Nonetheless, as pointed out by [67, 91],

it would also be possible to train a classi�er using the estimations of lj produced by other

classi�er (e.g., an external BR model). Actually, this approach has been evaluated in the

above works, but it has demonstrated to be less e�ective.

Algorithm 2 CC's training procedure
Input : D (training set)
Output: h (multi-label chain classi�er induced from D)

1: generate a random label sequence C = {l1 → l2 → ...→ lq}
2: h← ∅
3: for all labels lj according to the order speci�ed in C do
4: D′j ← ∅
5: for i = 1 to N do
6: x′ ← [x

(i)
1 , ..., x

(i)
d , ι

(i)
1 , ..., ι

(i)
j−1]

7: D′j ← D′j ∪ (x′, ι
(i)
j)

8: end for
9: train a binary classi�er yj to predict the relevance of lj using D′j.
10: h← h ∪ yj
11: end for
12: return h

Algorithm 3 describes the classi�cation procedure employed in the CC method. The

following three input parameters are required: h � a trained CC model; C � the label

sequence used to train h; t � the new instance to be classi�ed. The algorithm produces as

output Z � the predicted labelset for instance t. In Algorithm 3, the notation �lj is used

to represent the 0/1 relevance of label lj predicted by the binary classi�er yj ∈ h.

4.1.2 Pros and Cons

The CC method o�ers a considerable number of advantages. The most important is

that, in spite of its simplicity, a comprehensive recent study comparing several state-of-

the-art methods for MLC [66] demonstrated that CC is among the top best performing

4.2 The Label Sequence Issue 41

Algorithm 3 CC's classi�cation procedure
Input : h (trained CC model), C (label sequence used to train h), t (instance to be
classi�ed)
Output: Z (the predicted labelset for instance t)

1: Z ← ∅
2: for all labels lj according to the order speci�ed in C do

3: t′ ← t[x1, ..., xd, l̂1, ..., l̂j−1]

4: l̂j ← yj(t
′)

5: Z ← Z ∪ l̂j
6: end for
7: return Z

algorithms in terms of predictive performance. Furthermore, CC still maintains most

of the attractive characteristics of BR: it is algorithm independent, scales linearly with

q and can be easily parallelizable for better time performance. Not surprisingly, a re-

cent comprehensive survey on multi-label classi�cation included CC in the family of the

topmost representative methods for MLC [113]. Indeed, over the last few years, a consid-

erable number of variations of the basic CC model have been proposed in the literature

[16, 21, 48, 58, 63, 78, 79, 80, 91, 110].

However, there are two important drawbacks in the basic CC approach. First, the

label ordering is decided at random instead of being selected using an �intelligent� method.

Second, the CC method imposes that all labels must be present in the chain, even the

ones that might carry irrelevant information with respect to the prediction of the other

labels. The �rst drawback is the object of study of the next subsection whilst the latter

is covered in Chapter 6.

4.2 The Label Sequence Issue

In the original CC method, the label sequence is decided at random. This has often been

considered a major drawback, even noted by the authors of CC themselves, which deemed

that if the �rst members of the chain have low accuracy (i.e., if they output many wrong

predictions), error propagation will occur along the chain causing a signi�cant decrease

in predictive accuracy [82, 83]. In a similar vein, [58, 69, 78] argued that di�erent label

orderings can lead to di�erent results in terms of predictive accuracy mainly due to �nite

sample e�ects. For example, if a label lj is rare, then it may lead to the induction of an

unreliable binary model, which should not be placed in the beginning of the chain. On

4.2 The Label Sequence Issue 42

the other hand, the authors of [93] have a completely di�erent belief. They consider that

the e�ect of the chain order will be very small when the number of features in the dataset

is much higher than the number of labels (which corresponds to the most typical situation

in real-world applications, as seen in Section 2.2).

Nevertheless, [11] realized that �the e�ect of di�erent orders on the predictive perfor-

mance of the CC method has not yet been studied in depth�. Motivated by this consid-

eration and by the con�icting views of [93] and [58, 78, 82, 83], we decided to carry out

an exhaustive experiment to examine the in�uence of the label sequence in the predictive

accuracy of CC models. The experiment consisted in assessing the predictive accuracy of

CC considering all q! label permutations of three benchmark datasets using the follow-

ing single-label base algorithms2: k-NN [106], C4.5 [75], Naïve Bayes [26], and SMO (an

SVM algorithm) [71]. The main goal is to observe the di�erences in predictive accuracy

between the best (most accurate) and the worst (less accurate) chain sequences for CC

models built using each of the datasets and base classi�ers. If most of the di�erences

are large, then there is evidence that the use of an optimized label sequence is actually

important for training a CC model. In the experiment, the predictive performance is

determined in terms of the Accuracy measure, de�ned in Equation 2.3 (a brief note on

results for other measures is mentioned at the end of the section).

The experiment was carried out using the implementation of the CC method available

in the Mulan tool [99], an open source platform for the evaluation of multi-label algorithms

developed in Java that works on top of the well-known Weka API for data mining [46].

The datasets ��ags� (q = 7, d = 19, N = 194), �emotions� (q = 6, d = 72, N = 593), and

�scene� (q = 6, d = 294, N = 2407), previously described in Section 2.2, were used in this

experiment. Since they have a small number of labels, it became feasible to build and test

CC models for all possible label permutations (a total of 5040 distinct chain orderings for

��ags� and 720 for both �emotions� and �scene�). In our experiment, the CC models were

evaluated by applying the holdout method using the training and test partitions supplied

with the datasets3.

Tables 4.1, 4.2 and 4.3 present the results for the datasets ��ags�, �emotions� and

�scene�, respectively. In these tables, the �rst column indicates the name of the base

algorithm (the acronym �x-NN� is used to refer to the k-NN algorithm con�gured with

k = x; �NB� is used to refer to the Naïve Bayes algorithm). The values in the second

2We selected these four SLC algorithms based on two criteria: (i) usage by the community, and (ii)
the representation of di�erent underlying principles for addressing the classi�cation task.

3Datasets obtained from the Mulan repository: http://mulan.sourceforge.net/datasets-mlc.html.

4.2 The Label Sequence Issue 43

Table 4.1: Results of the exhaustive experiment considering all possible label permutations
in the chain for di�erent base classi�ers according to the Accuracy measure: FLAGS
dataset

Base Best Worst Avg SD Best-Worst Best-Avg
Algorithm

C4.5 0.622 0.496 0.569 0.023 (1) 0.126 (1) 0.053 (3)

1-NN 0.531 0.531 0.531 0.000 (8) 0.000 (8) 0.000 (8)

3-NN 0.622 0.516 0.563 0.016 (2) 0.106 (2) 0.059 (1)

5-NN 0.628 0.534 0.578 0.012 (6) 0.094 (4) 0.050 (4)

7-NN 0.614 0.510 0.558 0.013 (4) 0.104 (3) 0.056 (2)

9-NN 0.601 0.508 0.564 0.013 (4) 0.093 (5) 0.037 (6)

NB 0.576 0.487 0.537 0.015 (3) 0.089 (6) 0.039 (5)

SMO 0.607 0.522 0.589 0.007 (7) 0.085 (7) 0.018 (7)

and third columns (�Best� and �Worst�) represent the Accuracy value obtained by the

best and the worst classi�er chains model, respectively. The fourth and �fth columns

show, respectively, the mean Accuracy and the standard deviation. The sixth column

(�Best-Worst�) gives the di�erence of the best and the worst accuracies and the seventh

(�Best-Avg�) the di�erence between the best and the mean accuracies. In the three last

columns, the values between parentheses are used to rank the standard deviation and the

values of the computed di�erences (the smaller the rank value, the greater the standard

deviation or the computed di�erence).

The exhaustive experiment revealed that, overall, the order of the chain indeed has a

strong e�ect on predictive performance. Nonetheless, the obtained results also evidence

that the di�erent base algorithms, due to their own characteristics, are a�ected to di�erent

degrees by the use of distinct label orderings. In this sense, it has been observed that

the e�ect tends to be large when the base algorithm is C.45. Observe that in the ��ags�

dataset the di�erence between the best and the worst Accuracy values for C4.5 is above

12%. Considering the other datasets, C4.5 also presented the largest di�erence between

the best and the worst chains in �emotions� and the second largest in �scene�. Furthermore,

the standard deviation values were consistently large when compared with the majority

of the other base algorithms as well as the values of the di�erences between the best and

the mean accuracies.

The above behavior can be explained by the fact that C4.5 adopts a greedy recursive

strategy, based on attribute importance, for selecting the attributes that will be placed

closer to the root of the decision tree (i.e., the attributes that are initially evaluated to

determine the class to which a new instance belongs). Thus, if two labels li and lj are

4.2 The Label Sequence Issue 44

Table 4.2: Results of the exhaustive experiment considering all possible label permutations
in the chain for di�erent base classi�ers according to the Accuracy measure: EMOTIONS
dataset

Base Best Worst Avg SD Best-Worst Best-Avg
Algorithm

C4.5 0.538 0.406 0.467 0.025 (2) 0.132 (1) 0.071 (1)

1-NN 0.493 0.493 0.493 0.000 (8) 0.000 (8) 0.000 (8)

3-NN 0.584 0.498 0.541 0.016 (3) 0.086 (3) 0.043 (3)

5-NN 0.596 0.531 0.564 0.012 (4) 0.065 (5) 0.032 (4)

7-NN 0.602 0.531 0.571 0.012 (4) 0.071 (4) 0.031 (5)

9-NN 0.606 0.544 0.579 0.012 (4) 0.062 (5) 0.027 (6)

NB 0.544 0.518 0.531 0.004 (7) 0.026 (7) 0.013 (7)

SMO 0.617 0.486 0.550 0.031 (1) 0.131 (2) 0.067 (2)

Table 4.3: Results of the exhaustive experiment considering all possible label permutations
in the chain for di�erent base classi�ers according to the Accuracy measure: SCENE
dataset

Base Best Worst Avg SD Best-Worst Best-Avg
Algorithm

C4.5 0.603 0.550 0.578 0.010 (2) 0.053 (2) 0.025 (2)

1-NN 0.637 0.637 0.637 0.000 (8) 0.000 (8) 0.000 (8)

3-NN 0.684 0.662 0.671 0.005 (6) 0.022 (6) 0.013 (6)

5-NN 0.697 0.665 0.681 0.006 (4) 0.032 (4) 0.016 (4)

7-NN 0.694 0.666 0.679 0.006 (4) 0.028 (5) 0.015 (5)

9-NN 0.708 0.663 0.683 0.010 (2) 0.045 (3) 0.025 (2)

NB 0.472 0.467 0.469 0.001 (7) 0.005 (7) 0.003 (7)

SMO 0.692 0.611 0.655 0.018 (1) 0.081 (1) 0.037 (1)

strongly correlated, either positively or negatively, it is likely that li will be identi�ed by

C4.5 as an important attribute to discriminate the 0/1 relevance of lj (and vice-versa).

Consequently, if li comes before lj in a chain sequence, there is a high probability for C4.5

selecting li as one of the topmost nodes of the decision tree to classify lj. Figure 4.2 gives

an illustrative example considering the ��ags� dataset. Recall from Section 2.2 that the

classi�cation task associated to this dataset is to predict the colors present in a national

�ag. Figure 4.2 shows two distinct decision trees to classify the label �yellow� that were

built during our exhaustive experiment. Each one was induced from two di�erent kinds

of label permutations. Figure 4.2a shows the tree built utilizing any label sequence of the

form {yellow → white → ...} (i.e., in which the �rst element is �yellow� and the second

�white�). On the other hand, Figure 4.2b presents the tree built with the use of any label

sequence of the form form {white → yellow → ...} (the �rst element is �white� and the

4.2 The Label Sequence Issue 45

second �yellow�). Observe that the tree from Figure 4.2b is much smaller than the one

from Figure 4.2a, also having a lower error rate (9.30% against 12.40%). Note also that,

in the smaller tree, �white� was selected by C4.5 as the second most relevant attribute to

predict the 0/1 relevance of �yellow�. We further performed a correlation analysis on the

attributes of the ��ags� training set and con�rmed that �yellow� and �white� exhibit one

of the strongest negative correlations taking into consideration all attributes and labels

that compose this dataset (more details in Appendix A).

(a) (b)

Figure 4.2: Two decision trees built from the FLAGS training set using the C4.5 algorithm
to classify the label yellow: (a) tree built using label sequences of the form {yellow →
white→ ...} and (b) tree built using label sequences of the form {white→ yellow → ...}

In regard to the other base algorithms, the exhaustive experiment indicated that the

e�ect of the chain ordering was rather small for Naïve Bayes in the datasets �emotions�

and �scene�, where the number of attributes is much larger than the number of labels.

This can be explained by the fact that, unlike C4.5, Naïve Bayes gives the same weight

to all predictive attributes, whose probabilities (conditioned on the target class label) are

multiplied in the numerator of the Bayes' Formula, attenuating the e�ect of di�erent label

4.2 The Label Sequence Issue 46

permutations.

On the other hand, SMO presented the largest di�erence between the best and the

worst accuracies in the �Scene� dataset and the second largest in �Emotions�. It also

presented the largest standard deviation in the same two datasets. This algorithm is

used for training Support Vector Machine classi�ers, whose main idea is to �nd maximal

marginal hyperplane (the optimal decision boundary separating data points belonging

to two distinct classes). The results obtained in our experiments suggest that, for the

datasets �emotions� and �scene�, the boundary and the support vectors frequently change

as the label sequence is modi�ed.

The algorithm k-NN presented moderate to large di�erences for most con�gurations

of k in the three datasets; however, it was observed that the e�ect of the label sequence

is null if k = 1. This behavior occurs because, when k = 1, the nearest neighbor of a test

instance will always be the same for each of the binary classi�cations performed by the

CC model, independently of the chain sequence. For example, consider the classi�cation

of a new instance t using the chain sequence {l1 → l2 → ... → lq}. In the �rst binary

classi�cation (prediction of l1), suppose that instance I is the nearest neighbor of t. So,

the value of l1 in I must be assigned to t. As a consequence I will continue to be the

nearest neighbor of t and the value of l2 in I will be assigned to t. Thus, I keeps being the

nearest neighbor of t and it will be until the classi�cation of the last label in the chain.

The exhaustive experiment also allowed us to identify that, in general, an e�ective

label sequence for a speci�c base algorithm (e.g.: C4.5) does not necessarily constitute a

good sequence for other base algorithm (e.g.: SMO). For instance, the experiments over

the ��ags� dataset revealed that the label sequence that leads to the best Accuracy value

for C4.5 is only ranked as the 248th best sequence for SMO. Similarly, the best label

sequence for SMO is ranked as the 114th best sequence for C4.5. In Tables 4.4, 4.5, 4.6 we

extend this comparison by performing an analysis involving the 20 best ranked sequences

in terms of the Accuracy measure for the algorithms C4.5, 5-NN, Naïve Bayes and SMO

in the datasets ��ags�, �emotions� and �scene�, respectively. In these tables, each cell i, j

(where i represents a line and j a column) denotes the number of top-20 label sequences

for algorithm j that also belong to the set of top-20 label sequences for algorithm i.

Observe that the majority of cells contain a zero value, indicating that none of the very

best sequences for a speci�c algorithm also belong to the set of topmost e�ective sequences

for the other algorithms.

In summary, the exhaustive experiment allowed us to derive the following conclusions

4.2 The Label Sequence Issue 47

Table 4.4: Number of top-20 label sequences for algorithm j (column) that also belong to
the set of top-20 label sequences for algorithm i (line): FLAGS dataset

Base Algorithm C4.5 5-NN NB SMO

C4.5 - 2 0 0
5-NN 8 - 0 1
NB 0 0 - 0
SMO 4 3 0 -

Table 4.5: Number of top-20 label sequences for algorithm j (column) that also belong to
the set of top-20 label sequences for algorithm i (line): EMOTIONS dataset

Base Algorithm C4.5 5-NN NB SMO

C4.5 - 0 1 0
5-NN 0 - 0 4
NB 0 0 - 1
SMO 0 4 1 -

Table 4.6: Number of top-20 label sequences for algorithm j (column) that also belong to
the set of top-20 label sequences for algorithm i (line): SCENE dataset

Base Algorithm C4.5 5-NN NB SMO

C4.5 - 0 3 0
5-NN 0 - 1 1
NB 0 0 - 0
SMO 0 3 10 -

about the in�uence of the label sequence in the e�ectiveness of CC models: (i) the use of an

optimized label sequence is often important to ensure the e�ective performance of multi-

label chain classi�ers; (ii) the di�erent base algorithms, due to their own characteristics,

are a�ected to di�erent degrees by the label sequence (for instance, the e�ect tends to be

very large when the base algorithm is C.45, but it can be rather small for Naïve Bayes);

and (iii) a good chain sequence for a given base algorithm is not necessarily good for other

base algorithms. It is important to mention that we also ran the same experiment using

the measures of Exact Match, F-Measure and Hamming Loss, having obtained equivalent

results.

4.3 Baseline Methods to Determine the Label Ordering 48

4.3 Baseline Methods to Determine the Label Ordering

In the present section, we propose three baseline strategies designed to determine an

optimized label sequence and examine their predictive performance:

1. PredCC: In this method, the chain sequence is arranged in descending order of

predictive accuracy according to the results of a preliminary BR classi�cation. More

speci�cally, the method has two steps: �rst, it builds and evaluates an ordinary BR

classi�er (using only the training set) and next it creates a chain in which the most

accurate binary classi�ers are placed in the very beginning of the chain. The goal

is to attenuate the e�ect of error propagation along the chain, which is considered

by [82, 83] as the major potential drawback of using a randomly-ordered sequence.

2. FreqCC: In this method, the most-frequent labels are selected as the very �rst

elements of the chain (the greater the frequency of a label, the closer to the begin-

ning of the sequence it is). The rationale behind this baseline strategy is that, as

observed by [58, 69, 78], some labels may have much fewer instances compared to

the rest, leading to the induction of unreliable binary models. Thus, placing those

underrepresented labels at the end of the chain can bene�t the accuracy of the CC

model as a whole.

3. DepCC: In this method, the goal is to place the labels determined as most depen-

dent on other labels at the end of the sequence. The strategy work as follows: for

each label, we determine a score based on the number of correlated labels using the

chi-square test for dependence [9, 47]. The sequence is then ordered in ascending

order according to the computed score. The rationale is that the higher the number

of correlations, the more a label is in�uenced by other labels. Refer to Appendix A

for an introduction to the chi-squared statistics.

In spite of being very simple, the above strategies have never been previously ana-

lyzed in the multi-label literature, reinforcing the importance of the present study. The

remainder of this section is organized as follows. Section 4.3.1 describes the methodology

employed during the empirical analysis which is itself presented in Section 4.3.2.

4.3.1 Experimental Methodology

The goal of the experiment performed in this section is to compare the three proposed

baseline strategies against the original CC approach [82, 83]. The methods were evaluated

4.3 Baseline Methods to Determine the Label Ordering 49

on 10 benchmark datasets from the collection presented in Section 2.2, excluding, however,

the datasets ��ags�, �emotions� and �scene�. These were not included in the experiments

because they have a small number of labels, allowing the best chain to be determined by

an exhaustive method (as seen in Section 4.2).

Most of the datasets employed in the experiment came divided into training and

testing parts, being �cal500�, �university� and �thyroid� the only exceptions. Following

the approach adopted in the extensive comparison of multi-label methods presented in

[66], a holdout evaluation [47, 51] was performed to assess the predictive performance

of the methods, using the benchmark datasets with that prede�ned division, where the

training part comprises about 2/3 of the complete dataset and the test part, the remaining

1/3. For �cal500�, �university� and �thyroid� we generated the training and test parts.

The experiment was carried out using the Java implementation of CC available in

the Mulan tool [99]. J48 [46] with default parameters was used as the base SLC algo-

rithm for the evaluated methods. This corresponds to the Weka's implementation for

the C4.5 decision tree technique [75], which has been identi�ed as the single-label algo-

rithm most sensitive to the label sequence in the exhaustive experiment reported in the

previous section. The predictive performance of the methods was evaluated in terms of

four example-based measures: Accuracy, F-Measure, Hamming Loss and Exact Match.

We employed the two-tailed Wilcoxon signed-rank test [51, 103] to verify the statistical

signi�cance of the results with a con�dence level of 95%. This is a non-parametric test

appropriate for comparing pairs of classi�ers in multiple domains (datasets). It does not

assume normal distribution and works well for small sample sizes [103]. Details on how

this test works can be found at Appendix B. Since the sequence used in CC is created

randomly, the results reported for CC are averaged over 10 executions, with di�erent ran-

dom sequences. Our adopted approach di�ers from experiments involving the CC method

in past papers, such as [16, 42, 48, 58, 78, 93, 110], where the chain sequence was simply

de�ned as the �default order� (the order speci�ed in the database).

As a �nal remark, it is important to mention that all the other experiments in the

subsequent chapters of this thesis were carried out using the same benchmark datasets

and the same experimental setup described above.

4.3.2 Results

Tables 4.7, 4.8, 4.9, 4.10 present the performance of each method in terms of Accuracy,

F-Measure, Exact Match, and Hamming Loss, respectively. The best results for each

4.3 Baseline Methods to Determine the Label Ordering 50

dataset are highlighted in bold type. The rank obtained by each method in each dataset

is presented in parenthesis whereas the mean rank of the methods is presented in the

last line of each table. Although the mean ranks are not used by the Wilcoxon test (as

presented in the example of Appendix B), we consider this information provides deeper

insight into the overall behavior of each method.

We compared each baseline strategy against the CC method considering the four eval-

uation measures of predictive performance. In all comparisons, the two-tailed Wilcoxon

signed-rank test indicated that, with a con�dence level of 95%, no statistically signi�cant

di�erences exist between the performance of the baseline methods and the performance

of CC. In other words: overall, none of the baseline strategies to obtain an optimized

label sequence is able to signi�cantly outperform the original CC approach, where the

label sequence is simply decided at random, according to the four evaluation measures

of predictive performance. Furthermore, observe that the di�erences between the mean

ranks of the methods in the four tables is very small (although it is worth highlighting

that DepCC obtained the best rank for all metrics), reinforcing that the methods lead to

quite similar predictive performances.

The results are enough to conclude that it is necessary to invest in more sophisticated

algorithmic solutions to overcome the label sequence optimization problem (LSOP) in

multi-label chain classi�ers. In the next section, we carefully revise and categorize the

di�erent techniques proposed in the literature to address this issue.

Table 4.7: Performance of CC, FreqCC, DepCC and PredCC in terms of Accuracy.

Dataset
Accuracy

CC FreqCC DepCC PredCC
university 0.310 (2.0) 0.307 (3.0) 0.321 (1.0) 0.265 (4.0)
yeast 0.418 (3.0) 0.416 (4.0) 0.452 (1.0) 0.448 (2.0)
ces-16 0.194 (2.0) 0.196 (1.0) 0.188 (3.0) 0.180 (4.0)
birds 0.564 (2.0) 0.562 (4.0) 0.568 (1.0) 0.563 (3.0)
thyroid 0.983 (3.0) 0.984 (1.0) 0.983 (3.0) 0.983 (3.0)
genbase 0.987 (2.5) 0.987 (2.5) 0.987 (2.5) 0.987 (2.5)
medical 0.743 (4.0) 0.745 (3.0) 0.757 (1.5) 0.757 (1.5)
enron 0.402 (2.0) 0.391 (4.0) 0.411 (1.0) 0.395 (3.0)
llog 0.239 (4.0) 0.241 (2.0) 0.240 (3.0) 0.251 (1.0)

cal500 0.218 (2.0) 0.221 (1.0) 0.200 (4.0) 0.215 (3.0)
average rank 2.65 2.65 2.10 2.60

4.3 Baseline Methods to Determine the Label Ordering 51

Table 4.8: Performance of CC, FreqCC, DepCC and PredCC in terms of F-Measure.

Dataset
F-Measure

CC FreqCC DepCC PredCC
university 0.335 (2.0) 0.333 (3.0) 0.344 (1.0) 0.279 (4.0)
yeast 0.523 (4.0) 0.524 (3.0) 0.563 (1.0) 0.553 (2.0)
ces-16 0.249 (2.0) 0.251 (1.0) 0.242 (3.0) 0.234 (4.0)
birds 0.592 (2.0) 0.592 (2.0) 0.592 (2.0) 0.589 (4.0)
thyroid 0.990 (3.0) 0.991 (1.0) 0.990 (3.0) 0.990 (3.0)
genbase 0.991 (2.5) 0.991 (2.5) 0.991 (2.5) 0.991 (2.5)
medical 0.769 (4.0) 0.776 (3.0) 0.780 (1.5) 0.780 (1.5)
enron 0.506 (2.0) 0.495 (3.0) 0.509 (1.0) 0.492 (4.0)
llog 0.255 (4.0) 0.259 (2.0) 0.257 (3.0) 0.265 (1.0)

cal500 0.348 (2.0) 0.350 (1.0) 0.325 (4.0) 0.345 (3.0)
average rank 2.65 2.25 2.20 2.90

Table 4.9: Performance of CC, FreqCC, DepCC and PredCC in terms of Exact Match.

Dataset
Exact Match

CC FreqCC DepCC PredCC
university 0.248 (2.0) 0.238 (3.0) 0.263 (1.0) 0.225 (4.0)
yeast 0.127 (3.0) 0.113 (4.0) 0.135 (2.0) 0.147 (1.0)
ces-16 0.058 (2.0) 0.060 (1.0) 0.057 (3.0) 0.054 (4.0)
birds 0.485 (3.0) 0.477 (4.0) 0.495 (1.0) 0.486 (2.0)
thyroid 0.941 (2.0) 0.944 (1.0) 0.938 (4.0) 0.940 (3.0)
genbase 0.975 (2.5) 0.975 (2.5) 0.975 (2.5) 0.975 (2.5)
medical 0.665 (3.0) 0.653 (4.0) 0.688 (1.5) 0.688 (1.5)
enron 0.125 (3.0) 0.109 (4.0) 0.149 (1.0) 0.142 (2.0)
llog 0.201 (2.0) 0.197 (4.0) 0.199 (3.0) 0.213 (1.0)

cal500 0.000 (2.5) 0.000 (2.5) 0.000 (2.5) 0.000 (2.5)
average rank 2.50 3.00 2.15 2.35

Table 4.10: Performance of CC, FreqCC, DepCC and PredCC in terms of Hamming Loss.

Dataset
Hamming Loss

CC FreqCC DepCC PredCC
university 0.139 (3.0) 0.134 (1.0) 0.136 (2.0) 0.144 (4.0)
yeast 0.274 (3.0) 0.275 (4.0) 0.256 (1.0) 0.264 (2.0)
ces-16 0.188 (2.0) 0.188 (2.0) 0.188 (2.0) 0.189 (4.0)
birds 0.051 (3.0) 0.053 (4.0) 0.050 (2.0) 0.049 (1.0)
thyroid 0.006 (3.0) 0.005 (1.0) 0.006 (3.0) 0.006 (3.0)
genbase 0.001 (2.5) 0.001 (2.5) 0.001 (2.5) 0.001 (2.5)
medical 0.011 (3.5) 0.011 (3.5) 0.010 (1.5) 0.010 (1.5)
enron 0.054 (1.5) 0.054 (1.5) 0.055 (3.0) 0.057 (4.0)
llog 0.019 (2.5) 0.019 (2.5) 0.019 (2.5) 0.019 (2.5)

cal500 0.176 (3.0) 0.184 (4.0) 0.160 (2.0) 0.156 (1.0)
average rank 2.60 2.90 2.05 2.45

4.4 Extensions to the Classi�er Chain Model 52

4.4 Extensions to the Classi�er Chain Model

Over the last few years, the CC model has become one of the main methods for MLC. A

considerable number of variations of the CC basic approach have recently been proposed in

the literature [16, 21, 22, 48, 58, 63, 78, 80, 91, 110]. In this section we introduce, compare

and discuss these techniques. The text is divided into two sections. Subsection 4.4.1 covers

the proposals that improve CC by modifying its training step whereas Subsection 4.4.2

addresses the ones that modify the CC's inference step.

4.4.1 Approaches Based on Training Optimization

The majority of current variations of the basic CC approach try to overcome the LSOP

by modifying the CC's training step. The proposals can be categorized into three basic

groups: ensemble approach [82, 83], methods that explore candidate chain sequences

[48, 63, 80, 91, 110], and methods that search for a single optimized chain sequence

[58, 78]. These di�erent families of methods are covered in the next subsections.

4.4.1.1 Ensemble of Classi�er Chains

The authors of the original CC model suggest the use of an ensemble of classi�er chains

(ECC) [82, 83] in order to cope with the label sequence issue. In this approach the

individual classi�ers vote and the output labelset for a new instance is determined based

on the collection of votes. The expectation is that the e�ect of poorly ordered chains

in predictive accuracy will be mitigated. Indeed, the machine learning literature have

evidenced that in diverse SLC problems, ensembles are likely to be more accurate than

their individual member classi�ers [47, 86, 92].

4.4.1.2 Exploring Candidate Chain Sequences

Methods in this category work by �rst running a preprocessing step, prior to model

training, that aims at identifying pairs of unconditionally dependent labels. Further,

this information is employed to determine a restricted set of candidate chain sequences

that, basically, correspond to chains in which correlated labels are placed close to each

other. Finally, one of these candidate sequences should be randomly chosen or, optionally,

ensembles can be built by randomly selecting some of the candidates. There are four of

such methods proposed in the literature: SCC, BCC, HBCC and CT.

4.4 Extensions to the Classi�er Chain Model 53

The Sorted-Label Chain Classi�ers (SCC) approach [63] employs association rule min-

ing [1, 47, 92, 105] in order to identify pairs of dependent labels. This technique works

in three steps. First, considering only the label attributes in the dataset, SCC mines all

association rules of length two (i.e., rules with one label in the antecedent and one label in

the consequent) with support and con�dence above user-speci�ed thresholds. From this

set of rules, the SCC method generates a graph where each node corresponds to a speci�c

label and each edge represents an association rule between a pair of labels. The next step

consists in transforming this graph into a DAG, by employing a simple algorithm that

prunes the �weakest� edges (edges representing rules with less signi�cant values of support

or con�dence). From this �nal DAG, it is possible to obtain di�erent full candidate chains

using a topological sort algorithm [13]. Any of these chains can be chosen for training a

CC model. Figure 4.3 illustrates the whole process.

Figure 4.3: SCC method example

In [91, 110], the authors present the Bayesian Chain Classi�er (BCC), a technique that

relies on the use of Bayesian networks to identify and represent unconditionally dependent

labels. In this approach, the �rst step is to induce a maximum weighted spanning tree [34]

according to the mutual dependence measure between each pair of labels. Subsequently,

one of the nodes is randomly selected as the root node and the tree is transformed into a

directed tree by setting the direction of all edges outwards the root node. Each path in

the directed tree will then form a di�erent partial chain. The �nal CC model consists of

the aggregation of all these partial chains. The procedure is illustrated in the example of

4.4 Extensions to the Classi�er Chain Model 54

Figure 4.4, in which the �nal CC model comprises the chains de�ned by the two distinct

paths in the tree: {l1 → l4 → l2} and {l1 → l4 → l3}. In this example, the binary

classi�er for predicting l1 will be trained using {X} as its set of input attributes. The

binary classi�er for l4 will be trained using {X ∪ l1}. Finally, the binary classi�ers for l2

and l3 will both be trained using {X ∪ l1 ∪ l4} as their set of input attributes.

Figure 4.4: BCC method example

The Hybrid-Binary Chain Multi-Label Classi�er (HBCC), proposed in [48], employs

two steps to modify the CC's training phase. The �rst step consists in calculating the

Pearson's linear correlation coe�cient [47] between each pair of labels, generating a cor-

relation matrix. According to the obtained results, di�erent chains can be de�ned in the

second step, each one composed of labels identi�ed as strongly correlated (either nega-

tively or positively). Suppose, for instance, that the pair of labels l1 and l4 have a strong

correlation, but are not correlated with both l2 and l3. Consider also that l2 and l3 are cor-

related. In this situation, the HBCC algorithm would train two separate classi�er chains,

such as, for instance, {l1 → l4} and {l2 → l3} or {l4 → l1} and {l3 → l2}. Note that

although the HBCC method de�nes the set of labels that will form each of the di�erent

chains, these are placed in random order into their respective chains.

The CT (Classi�er Trellis) method, recently proposed in [80], is even simpler than

BCC and HBCC, also working in two steps. The �rst consists in computing the value

of the mutual dependence between each pair of labels. However, instead of generating

a maximum spanning tree considering these results (like BCC), in the second step the

labels are placed into a �xed �trellis� structure such as the one presented in Figure 4.5.

The top-left node of the trellis is randomly-chosen, being the remainder labels inserted

4.4 Extensions to the Classi�er Chain Model 55

using a greedy (hill climbing) approach, which tries to maximize the mutual dependence

between parents and children. In the prediction phase, the trellis structure is treated as a

Bayesian network. To predict the relevance of each label lj, the feature set is augmented

with the binary information of the ancestors of lj in the network.

Figure 4.5: An example of CT structure with q = 6

The main advantage of the methods SCC, BCC, HBCC and CT is that they are simple

and fast, consisting of the original CC model plus a preliminary step that is performed

before the training step, in which the correlation between pairs of labels is measured. BCC,

HBCC and CT have also the interesting characteristic of changing the chain structure to

another kind of structure (a tree in BCC, a trellis in CT and a set of partial chains in

HBCC). A potential advantage is that these structures allow uncorrelated labels to be put

in di�erent chains. Nevertheless, these methods have three signi�cant drawbacks. The

�rst and most important is that they are based on the measurement of the unconditional

dependence among labels. Typically, this is not su�cient to truly represent dependencies.

Second, they rely on the simplistic assumption that a good chain sequence is the one

in which strongly correlated labels are connected or are placed close to each other, not

paying attention to the way the sequence is ordered. Third, none of the methods is able

to �nd out a single optimized chain. Instead, they produce a set of candidate structures,

which can de�ne di�erent chain sequences. In order to train a CC model, a candidate

must be randomly chosen or, alternatively, an ensemble of sequences de�ned by di�erent

candidate structures can be generated.

4.4.1.3 Searching for a Single Optimized Label Sequence

This family of CC variations are based on the use of heuristic search techniques that aim

at �nding a single optimized label sequence. I.e., they search for a unique and speci�c

label sequence that leads to an improvement on the predictive accuracy of the CC model.

There are two of such methods proposed in the literature: BS and M2CC.

The BS method, presented in [58], tackles the LSOP by performing a beam search over

4.4 Extensions to the Classi�er Chain Model 56

a tree in which every distinct path represents a di�erent label permutation. An example

of such tree for q = 3 labels is illustrated in Figure 4.6. Since the construction of a tree

with q! paths is infeasible even for moderate sizes of q, the BS method employs an user

adjustable input parameter called beam width (b) to reduce the number of paths. The

tree is built in a level-wise fashion, starting from the root node. During the construction

of each level, only the top-b vertices in terms of predictive accuracy must be maintained

in the tree (which is computed using only the training set). Once the tree has been fully

constructed, the �nal sequence is the one � among the b full chains represented by the b

paths in the tree � that leads to the best value of a chosen performance measure in the

training set.

Figure 4.6: An example of BS tree with q = 3

The M2CC method, described in [78], employs a double-Monte Carlo optimization

technique to e�ciently generate and evaluate a small population of distinct label se-

quences. The best sequence is the one that maximizes some payo� function in the training

set. The method works as follows. It starts with a randomly-de�ned sequence. During

the execution of the algorithm, this sequence is modi�ed with the aim of �nding, at least,

a local maximum of the payo� function. In [78], the authors adopted the Exact Match as

the payo� function and a simple procedure in order to determine the candidate sequences.

This procedure consists in choosing two positions of the label sequence and swapping the

labels corresponding to them.

The methods BS and M2CC o�er important advantages. First, they are capable of

automatically taking into consideration the conditional dependencies during their search

procedure. Second, unlike the ensemble approach and the approaches based on candidate

4.4 Extensions to the Classi�er Chain Model 57

chain sequences, both BS and M2CC �nd a single optimized chain sequence re�ecting the

label dependencies. This is especially interesting for applications that require interpretable

classi�ers. The major drawback associated to these techniques is that their training step is

more computationally expensive in comparison with the methods described in the previous

subsections.

4.4.2 Approaches Based on Inference Optimization

This subsection examines the only two methods proposed in the literature that modify the

inference step of the original CC method in order to improve the predictive performance

of the classi�cation model: probabilistic classi�er chains [21] and the one-to-one classi�er

chains [16].

4.4.2.1 Probabilistic Classi�er Chains

The �rst technique for improving CC by performing inference optimization instead of

training optimization was introduced in [21], in the approach named as Probabilistic

Classi�er Chains (PCC). The basic idea of this method is to apply the chain rule of the

probability theory at the inference step to obtain more accurate predictions.

The PCC's training step is identical to the CC's one: a label sequence is randomly

chosen and used to train a CC model. However, its classi�cation step works di�erently.

According to the chain sequence used in the training step, the PCC classi�er aims at

maximizing the posterior probability of the predicted labelset for each test instance. In

order to accomplish this task, it �rst generates a PCC tree composed of 2q paths. An

example of such tree corresponding to the label sequence {l2 → l1 → l3} is illustrated in

Figure 4.7. To classify a new instance t = (x, ?), the algorithm evaluates all possible paths

in this tree, calculating the conditional probability for all possible outputs. For example,

the probability estimation of the output Pr
(
l2 = 0, l1 = 1, l3 = 0

∣∣ x) is obtained with the

application of the chain rule:

Pr
(
l2 =0

∣∣ x)× Pr
(
l1 =1

∣∣ x, l2 =0
)
× Pr

(
l3 =0

∣∣ x, l2 =0, l1 =1
)
.

The returned labelset is the one with highest estimated conditional probability. It is

important to state that, in theory, the chain rule should always return the same result re-

gardless of the label sequence. However, since each Pr(yj
∣∣ x) corresponds to an estimated

probability (instead of a real one), in practice, the results end up being di�erent.

The PCCmethod is e�ective, simple, and based on a principled probabilistic approach.

4.4 Extensions to the Classi�er Chain Model 58

Figure 4.7: An example of PCC tree associated to the label sequence {l2 → l1 → l3}

However, it has two drawbacks. First, it requires a probabilistic single-label base classi�er

� such as naïve Bayes or logistic regression � to estimate the posterior probabilities for each

path in the PCC tree. Second, it employs an exhaustive search in the space of 2q possible

label combinations. Thus, its practical applications are restricted to problems where q is

small. To cope with this problem [22, 58, 78] suggest the use of heuristic techniques to

explore the PCC tree. The proposals of [22, 78] are equivalent, suggesting the use of a

Monte Carlo search on the tree whereas [58] suggests performing a beam search over the

PCC tree. It is also important to remark that the PCC method is susceptible to the �bad

label ordering� problem, since a random label sequence is used in the training step. The

authors of PCC simply recommend the use of an ensemble of PCC classi�ers to attenuate

this problem. However, any method for determining an optimized chain sequence (such

as the ones presented in Subsection 4.4.1.3) can be used in conjunction with PCC.

4.4.2.2 One-To-One Classi�er Chains

The One-To-One Classi�er Chains method (OOCC), proposed in [15, 16], has emerged

from a new modi�ed execution of the exhaustive experiment described in Section 4.2. In

this new experiment, we identi�ed that the use of di�erent optimized label sequences for

distinct instances can lead to high gains in the predictive performance of CC.

Di�erently from PCC, the OOCC method modi�es not only the inference step of CC,

but also the training step and o�ers the advantage of not requiring the use of probabilistic

single-label classi�ers. The method works as follows. First, in the training step, one or

more label sequences that perform well for each training instance are found (according

to a given evaluation measure). In order to accomplish this task, the training dataset is

4.5 Concluding Remarks 59

randomly partitioned into m distinct subsets, each representing a di�erent data partition

Dv. For each subset Dv, the method induces r CC models (each one using a distinct

random label sequence), using a training set formed by the remainderm−1 data partitions

(i.e., all data partitions except Dv). Once the models are built, it becomes possible to

identify the best label sequences associated to each instance of the data partition Dv.

Both parameters m and r are user-speci�ed.

At the classi�cation step, a k-NN (k-nearest neighbors) algorithm is employed to

retrieve the k training instances that are most similar to the instance t = (x, ?) being

classi�ed, and assign, to t, the label sequence that was found to perform best for the k

training instances. Due to the similarity between the test instance t and its k nearest

training instances, it is expected that an e�ective label sequence for instance t's nearest

neighbors will also be an e�ective label sequence for instance t. Actually, experiments

reported in [16], have shown that OOCC obtained, overall, better predictive performance

than the BR, CC and ECC methods. However, a disadvantage of OOCC lies in the fact

that, as a lazy learning approach, it is expensive at classi�cation time.

4.5 Concluding Remarks

This chapter presented a review of the original CC method and their current extensions

proposed in the literature, making two additional contributions in regard of improving

the fundamental understanding of the CC model.

The �rst consisted in a study that, for the �rst time, investigated in depth the alleged

key drawback associated to the original CC method: the fact that the label ordering is

decided at random. An exhaustive experiment (presented in Section 4.2), con�rmed that

the order of the chain actually has a strong e�ect on the predictive performance. However,

the di�erent base (single-label) algorithms, by their own characteristics, may be more or

less a�ected by the chain ordering. For instance, the e�ect tends to be very large when the

base algorithm is C4.5, but it can be rather small for Naïve Bayes. The same experiment

also revealed that a good chain sequence for a given base algorithm (e.g., C4.5) is not

necessarily good for other base algorithm (e.g., SMO).

The second contribution consisted in the proposal of three novel baseline methods

to determine an optimized label sequence for CC, named PredCC, FreqCC and DepCC.

These baseline methods were compared against the original CC method (where the label

ordering is decided at random) considering four distinct evaluation measures of predictive

4.5 Concluding Remarks 60

performance. Nonetheless, the two-tailed Wilcoxon signed-rank test indicated that, with

a con�dence level of 95%, none of the methods is statistically superior to CC, evidencing

that it is necessary to invest in more sophisticated solutions to overcome the LSOP.

Motivated by these empirical �ndings, in the next chapter we present one of the

main contributions of this thesis: a genetic algorithm for optimizing the label ordering in

multi-label classi�er chains.

Chapter 5

The GACC Method

This chapter presents one of the main contributions of this thesis: the GACC method

(Genetic Algorithm for Optimizing Classi�er Chains) [42]. It represents the �rst strategy

based on the evolutionary paradigm of GAs to overcome the LSOP. The text is structured

as follows. Section 5.1 presents the main motivations for developing this method and then

describe in detail the designed GA (indicating additional improvements to the original

proposal published in [42]). The results of the experimental evaluation of GACC, CC and

BR on the collection of benchmark datasets is presented in Section 5.2. Finally, we give

concluding remarks in Section 5.3.

5.1 The GACC Method

In [42], we proposed the GACC method, a genetic algorithm for �nding an optimized

ordering for a chain of classi�ers. More clearly, the goal of GACC is to search for a label

ordering that leads to a signi�cant improvement on the predictive accuracy of the CC

model. Our main motivations for using GAs in the MLC context � especially under the

classi�er chains framework � are described below:

� GAs are a global search method capable of e�ectively exploring the extremely large

search space of q! possible solutions associated to the LSOP. As a global method,

GAs tend to cope better with attribute interactions than greedy methods [30, 32].

Hence, intuitively, GAs are expected to discover correlations among labels that

would be missed by greedy approaches.

� Over the last decades, GAs have been successfully applied to solve a myriad of

optimization problems where a candidate solution is represented as a permutation,

5.1 The GACC Method 62

like the TSP [59, 68, 72] and others [28, 36, 64, 73, 85, 89, 94]. Although TSP does

not constitute a classi�cation problem, it bears some resemblance to the LSOP (in

essence, LSOP and TSP are permutation problems). Nonetheless, it is necessary to

highlight that LSOP, as a classi�cation problem, involves prediction and over�tting

issues, unlike optimization problems (both issues are examined in this section).

� GAs have also been widely employed to solve a large number of classi�cation prob-

lems in the most distinct contexts and application domains. For instance, the tech-

nique is widely employed to perform feature selection [32, 47, 60] (evolving the

subset of features that leads to the best classi�cation accuracy), to determine the

best set of weights for training neural networks [4] and to discover classi�cation rules

[10, 30, 32].

� GAs are capable of delivering an interpretable result (a single optimized chain or-

dering that can be interpreted by users), which is important in many real-world

classi�cation problems [33], such as medical diagnosis, functional genomics, social

research and direct marketing.

� As discussed in Section 2.3, the evaluation of MLC classi�ers often involves the use of

several distinct measures. GAs naturally allow the evaluation of a candidate solution

by simultaneously considering di�erent quality criteria in the �tness function [31].

� As the CC and BR approaches, GAs can be easily parallelizable for better time

performance.

GACC is the �rst proposed strategy that makes use of Evolutionary Algorithms to

address the LSOP, also constituting our �rst main contribution towards the improvement

of CC classi�ers. In the next subsection, a full description of the GACC method is

presented. Comments on additional improvements to our original proposal published in

[42] are made throughout the text.

5.1.1 GACC Description

5.1.1.1 Individual Representation and Population Initialization

A candidate solution for the LSOP must specify a label sequence. In GACC, we followed

the path representation encoding, which allows individuals of the population to be simply

represented by q-dimensional vectors regarding di�erent speci�c label orderings for CC,

5.1 The GACC Method 63

where q represents the number of labels. For instance, the sequence {l1 → l2 → l3 → l4}
is encoded as the vector [1, 2, 3, 4]. Note that, di�erently from TSP, pairs of permutations

where one permutation is the inverse of the other (such as [1, 2, 3, 4] and [4, 3, 2, 1]) do

not represent equivalent solutions (i.e., the accuracy of a CC model built using the chain

{l1 → l2 → l3 → l4} is probably di�erent from the one obtained with the chain {l4 →
l3 → l2 → l1}).

The initial population is created randomly. In the adopted approach, each individual

(candidate chain sequence) is created by randomly selecting integer numbers (representing

the label indexes) according to a uniform distribution in the range [1, q]. Repeated integers

are not allowed in a chromosome.

5.1.1.2 Fitness Computation

To assess the predictive accuracy of a chromosome, we use the Quality (�tness) function

de�ned in Equation 5.1. This function simultaneously takes into account the measures

of Exact Match (EM), Accuracy (ACC) and Hamming Loss (HL), respectively de�ned

in Equations 2.2, 2.3 and 2.5. The Quality of CCi � a CC model built using the label

sequence encoded in a chromosome i � is computed as1:

Quality(CCi) =
(1−HL) + ACC + EM

3
(5.1)

The evaluation method follows the wrapper approach [30] in which the quality of an

individual (candidate CC model) is determined by using the target MLC method (i.e.,

the CC method). The �tness function is calculated using only the training set, according

to a holdout method that works as follows. First, the training set is partitioned into two

mutually-exclusive subsets: building (2/3 split) and validation (1/3 split). Next, for each

chromosome we build a CC model using only the building set, and then that model is

evaluated with the validation set (i.e., the model's �tness is computed using Equation 5.1).

5.1.1.3 Parent Selection

At each generation, parent selection is performed using the tournament procedure de-

scribed in Subsection 3.2.4. First, the GA randomly chooses k individuals from the pop-

ulation, where k is a user-speci�ed parameter called tournament size. These individuals

1It is worth mentioning that it is possible to change the �tness function so as to optimize any speci�c
performance measure.

5.1 The GACC Method 64

�play a tournament� which consists of a comparison of their �tness values. The winner is

the individual with the best �tness among the k participants.

5.1.1.4 Genetic Operators

Each pair of individuals selected by tournament undergo crossover operation so as to

create the o�spring. In the preliminary experiments reported in [42], GACC employed

the Donor-Receptor crossover method (DRC) (Figure 3.4). Nonetheless, in this thesis we

decided to substitute DRC for the Order Crossover method (OC) (Figure 3.5), since the

latter has demonstrated to be more e�ective. This can be explained in terms of the OC

capacity for promoting a mutual exchange of genetic material (sub-chains) from the two

selected parents in the produced children.

The implemented mutation operation is same used in [42], consisting in selecting

a group of children from the o�spring set (new individuals produced by the crossover

operation) and swapping two class labels (labels in two di�erent positions) at random in

each selected child. We evaluated the use of other kinds of mutation operators, but these

did not lead to an overall improvement on the accuracy of the GACC method.

5.1.1.5 Population Replacement

GACC adopts age-based replacement with elitism. As introduced in Subsection 3.2.5, in

this scheme the entire population is replaced on each generation, but a percentage of elite

individuals is preserved from the previous generation according to their �tness values.

5.1.2 The Over�tting Issue

Since GAs perform a large number of candidate solution evaluations (given by the number

of individuals in the population times the number of generations), it is possible it will be

prone to the problem of over�tting the training data � i.e., �nding a classi�cation model

that achieves high accuracy on training data, but does not generalize well for unseen

instances [3, 44]. In fact, in the preliminary experiments with GACC reported in [42], we

observed the occurrence of over�tting when a moderate to large number of generations

was set for the execution of the GA (e.g., 50 or 100 generations). To alleviate this problem

and also to reduce the computational time required for the experiments, we followed the

general suggestion of [25], which advises reducing the number of models to be considered.

Hence, we limited the number of generations to a value between 15 and 20 (according to

5.1 The GACC Method 65

the size of the target dataset) in the experiments of [42], obtaining an attenuation on the

e�ects of over�tting.

Nonetheless, the above values are rather small when compared to the number of

generations used in typical GA applications, which may be detrimental to the overall

e�ectiveness of GACC. In order to cope with this issue, in this thesis we modi�ed the

method to mitigate over�tting, adopting the technique indicated in [32]. The approach

consists in changing the building and validation sets at each generation of GACC by re-

splitting the training set. More clearly: at each generation, a di�erent subset of training

instances is randomly selected to form the building and validation sets.

5.1.3 GACC Pseudocode

Algorithm 4 outlines the GACC method in pseudocode. It can be seen as an expanded

version of the generic GA pseudocode (presented in Algorithm 1, Chapter 3) tailored for

solving the speci�c LSOP. The GACC algorithm receives a training set D as input2 and

produces as output a single optimized label sequence bestChain, representing the �ttest

individual found after the evaluation of the GACC's last generation.

First, an initial population of candidate label sequences is randomly generated (line 1).

This initial population will evolve over successive generations in the REPEAT loop that

encompasses lines 2 to 12, until a maximum number of generations has been performed.

This loop is divided into two phases: �tness evaluation of the current population (lines 3

to 7) and generation of a new population (lines 8 to 11).

The �rst phase of the GA cycle (lines 3 to 7) works as follows. Initially, in line 3,

we construct the build and validation sets from the training set D. As stated in the

previous subsection, in order to mitigate the e�ects of over�tting, varying subsets of the

training data are used to form the build and validation sets at each generation of the

GA. Next (lines 4 to 7), the �tness of the current population is computed following the

wrapper approach. In this process, distinct CC models are built and evaluated, one for

each chromosome (label sequence). It is worth reinforcing the fact that only the training

set is used during the evaluation process. The CC models are inferred using the build set

(line 5) and have their �tness calculated with the validation set (line 6).

2In this thesis, the genetic algorithm parameters (population size, number of generations, tournament
size, number of elite individuals and probability of using genetic operators) were optimized by performing
calibrating tests in a separate group of datasets (datasets other than the ones used in the experiments to
evaluate the predictive accuracy of GACC). This is further addressed in Subsection 5.2.1.

5.2 Experiments 66

The goal of the second phase (lines 8 to 11) is to expand the GACC's search space,

by producing a new population of candidate solutions to be evaluated in the next cycle

(generation). First, in line 8, a tournament selection procedure is employed to perform

parent selection. Next, the selected parents undergo crossover (according to the OC ap-

proach), resulting in the generation of the o�spring set (line 9). Members in the o�spring

may also be subjected to mutation (line 10). Finally, the old population is replaced by the

o�spring, with the use of an elitist strategy to preserve a small group of elite individuals

(line 11).

After the individuals of the last generation have been evaluated, GACC returns to

the user the �ttest individual (the label sequence with best value for Quality metric) from

the population in this generation (line 13).

Algorithm 4 GACC overall pseudocode
Input : D (training set)
Output: bestChain (a single optimized label sequence)

1: create an INITIAL POPULATION of individuals (candidate label sequences)

2: repeat

3: divide the training set D into BuildSet and V alidationSet
4: for all candidate label sequences i in the current population do
5: build the CCi model using BuildSet and the label sequence i
6: Fitnessi ← calculate Quality(CCi) using V alidationSet
7: end for

8: SELECT parents using tournament selection
9: apply CROSSOVER to selected individuals, generating o�spring
10: apply MUTATION to the o�spring
11: UPDATE the current population using age-base replacement with elitism

12: until (maximum number of generations is reached)

13: return bestChain {individual with best Quality value in the last generation}

5.2 Experiments

In this section, we present the results of the experiments that compared our proposed

genetic algorithm against the BR and CC methods.

5.2.1 Experimental Setup

We implemented GACC in Java and made use of the CC and BR implementations avail-

able at the Mulan platform. The empirical evaluation was performed using the same

5.2 Experiments 67

datasets and following the same methodology described in Section 4.3, which can be sum-

marized as follows: (i) the Weka's J48 implementation with default parameters was used

as the base SLC algorithm for the three methods; (ii) a holdout evaluation was performed

to assess the predictive performance of the multi-label methods by using the training and

test parts that come with the benchmark datasets; (iii) the predictive performance was

evaluated in terms of Accuracy, F-Measure, Exact Match and Hamming Loss; (iv) the

Wilcoxon signed-rank test was employed to verify the statistical signi�cance of the results

with a con�dence level of 95%.

As GACC is a probabilistic method, we averaged the results of ten executions with

distinct random seeds (except for the larger datasets �enron� and �llog� where the results

were averaged over �ve executions). The results reported for CC are also averaged over ten

executions with distinct random seeds. This di�ers from [42] � where preliminary results

regarding the GACC method were presented � in which the reported results considered a

single execution of both GACC and CC.

GAs require the use of a set of parameters, namely: number of generations (gmax),

population size (µ)), crossover rate (pc), mutation rate (pm), tournament size (k), and

number of elite individuals (e). In practice, parameter tuning plays an important role

in the e�ectiveness of any GA [28]. In this thesis, the values of the genetic algorithm

parameters were set by performing calibrating tests with three benchmark datasets:

��ags� (q = 7, d = 19, N = 194), �emotions� (q = 6, d = 72, N = 593), and �scene�

(q = 6, d = 294, N = 2407). In total, 15 parameter setting combinations were consid-

ered (Table 5.1).The �nal settings are shown in Table 5.2. It is worth remarking that,

intuitively, the performance of GACC could be improved by separately performing pa-

rameter optimization for each of the ten datasets involved in our experimental evaluation.

However, we decided to optimize the GA parameters across three selected small datasets

due to two advantages pointed out in [53]. The �rst is simply because using separate

datasets for parameter optimization is less time consuming. The second and more impor-

tant advantage lies in the fact that our adopted approach allows for the identi�cation of

GA parameters that are robust across di�erent datasets. In this sense, the parameters

presented in Table 5.2 can be understood as the recommended set of parameters (or de-

fault parameters) for GACC, i.e., the ones used when users do not have time to perform

parameter tuning.

5.2 Experiments 68

Table 5.1: Parameter setting combinations evaluated in the calibrating tests

gmax µ pc pm k e
20 35 100% 25% 5 2
20 35 100% 15% 3 2
20 35 100% 25% 2 2
50 35 100% 10% 2 2
50 35 100% 15% 2 2
50 50 100% 25% 2 2
50 50 100% 25% 2 3
50 50 100% 15% 2 3
50 100 100% 25% 2 2
50 100 100% 25% 3 2
50 100 100% 25% 5 2
50 200 100% 25% 2 2
50 200 100% 15% 2 2
50 200 100% 25% 2 4
50 200 90% 25% 2 2

Table 5.2: GACC �nal recommended set of parameters (used in the experimental evalu-
ation)

Number of Generations (gmax) 50
Population Size (µ) 200
Crossover Rate (pc) 100%
Mutation Rate (pm) 25%
Tournament Size (k) 2
Number of elite individuals (e) 2

5.2.2 Results

The results for the measures of Accuracy, F-Measure, Exact Match, and Hamming Loss

are respectively shown in Tables 5.3, 5.4, 5.5 and 5.6. The best results for each dataset are

highlighted in bold type. The rank obtained by each method in each dataset is presented

in parenthesis whilst the average rank for each method is show in the last row. In the

rows below Tables 5.3 and 5.4 and 5.5, the symbol � represents a statistically signi�cant

di�erence between one or more methods. For instance, {a} � {b, c} shows that the

method a is signi�cantly better than b and c.

According to Tables 5.3 and 5.4, the best values for Accuracy and F-Measure were

achieved by GACC in the majority of the datasets. The two-tailed Wilcoxon test indicated

that, with con�dence level of 95%, GACC is statistically superior to both BR and CC for

5.2 Experiments 69

Table 5.3: Performance of BR, CC and GACC in terms of Accuracy.

Dataset
Accuracy

BR CC GACC
university 0.300 (3.0) 0.310 (2.0) 0.319 (1.0)
yeast 0.423 (2.0) 0.418 (3.0) 0.432 (1.0)
ces-16 0.196 (2.0) 0.194 (3.0) 0.213 (1.0)
birds 0.573 (1.0) 0.564 (3.0) 0.569 (2.0)
thyroid 0.984 (1.0) 0.983 (2.5) 0.983 (2.5)
genbase 0.987 (2.0) 0.987 (2.0) 0.987 (2.0)
medical 0.743 (2.5) 0.743 (2.5) 0.744 (1.0)
enron 0.367 (3.0) 0.402 (2.0) 0.409 (1.0)
llog 0.243 (2.0) 0.239 (3.0) 0.249 (1.0)

cal500 0.212 (3.0) 0.218 (2.0) 0.224 (1.0)
average rank 2.15 2.50 1.35

GACC � {BR, CC}

Table 5.4: Performance of BR, CC and GACC in terms of F-Measure.

Dataset
F-Measure

BR CC GACC
university 0.315 (3.0) 0.335 (2.0) 0.343 (1.0)
yeast 0.547 (2.0) 0.523 (3.0) 0.548 (1.0)
ces-16 0.251 (2.0) 0.249 (3.0) 0.275 (1.0)
birds 0.603 (1.0) 0.592 (3.0) 0.597 (2.0)
thyroid 0.990 (2.0) 0.990 (2.0) 0.990 (2.0)
genbase 0.991 (2.0) 0.991 (2.0) 0.991 (2.0)
medical 0.773 (1.0) 0.769 (2.5) 0.769 (2.5)
enron 0.474 (3.0) 0.506 (2.0) 0.507 (1.0)
llog 0.261 (2.0) 0.255 (3.0) 0.264 (1.0)

cal500 0.344 (3.0) 0.348 (2.0) 0.356 (1.0)
average rank 2.10 2.45 1.45

{GACC} � {CC}

Accuracy (Twilcox(9) = 4.5 and Twilcox(8) = 0.0, respectively). GACC is also statistically

superior to CC for F-Measure (Twilcox(7) = 0.0). There are no statistically signi�cant

di�erence between the BR and CC methods in both measures.

The GACC method also outperformed the other two methods in terms of Exact Match

in the vast majority of the datasets, as presented in Table 5.5. Once again, the di�erence

between the results is statistically signi�cant in favor of GACC (Twilcox(8) = 3.0 and

Twilcox(7) = 0.0 in regard to BR and CC models, respectively). On the other hand,

although CC performed, on average, better than BR, the di�erence between the results

of these methods is not statistically signi�cant.

The results presented in Table 5.6 show that the BR model obtained the best results

5.2 Experiments 70

Table 5.5: Performance of BR, CC and GACC in terms of Exact Match.

Dataset
Exact Match

BR CC GACC
university 0.263 (1.0) 0.248 (3.0) 0.255 (2.0)
yeast 0.064 (3.0) 0.127 (2.0) 0.134 (1.0)
ces-16 0.060 (2.0) 0.058 (3.0) 0.063 (1.0)
birds 0.486 (2.0) 0.485 (3.0) 0.492 (1.0)
thyroid 0.932 (3.0) 0.941 (1.5) 0.941 (1.5)
genbase 0.975 (2.0) 0.975 (2.0) 0.975 (2.0)
medical 0.651 (3.0) 0.665 (2.0) 0.670 (1.0)
enron 0.086 (3.0) 0.125 (2.0) 0.135 (1.0)
llog 0.199 (3.0) 0.201 (2.0) 0.209 (1.0)

cal500 0.000 (2.0) 0.000 (2.0) 0.000 (2.0)
average rank 2.40 2.15 1.35

{GACC} � {BR, CC}

Table 5.6: Performance of BR, CC and GACC in terms of Hamming Loss.

Dataset
Hamming Loss

BR CC GACC
university 0.134 (1.0) 0.139 (3.0) 0.138 (2.0)
yeast 0.259 (1.0) 0.274 (3.0) 0.266 (2.0)
ces-16 0.188 (2.5) 0.188 (2.5) 0.187 (1.0)
birds 0.051 (2.0) 0.051 (2.0) 0.051 (2.0)
thyroid 0.005 (1.0) 0.006 (2.5) 0.006 (2.5)
genbase 0.001 (2.0) 0.001 (2.0) 0.001 (2.0)
medical 0.011 (2.0) 0.011 (2.0) 0.011 (2.0)
enron 0.054 (1.5) 0.054 (1.5) 0.055 (3.0)
llog 0.019 (2.0) 0.019 (2.0) 0.019 (2.0)

cal500 0.163 (1.0) 0.176 (3.0) 0.173 (2.0)
average rank 1.60 2.45 2.05

No statistical signi�cance

in terms of Hamming Loss in the majority of the datasets. This was expected, since BR

is actually suitable for most loss functions that ignore label correlations, as demonstrated

in [21]. However, the two-tailed Wilcoxon test suggested that no statistically signi�cant

di�erences exist between the Hamming Loss values achieved by BR and GACC and also

between the values achieved by BR and CC. It is also noticeable that GACC obtained a

better average rank than CC; however, no statistically signi�cant di�erences were identi-

�ed.

In summary, the results indicated that, in comparison with the original CC method,

our proposed genetic algorithm is signi�cantly superior in terms of Accuracy, F-Measure

and Exact Match. In this sense, the behavior of GACC di�ers from the behavior of the

5.3 Concluding Remarks 71

baseline methods PredCC, FreqCC and DepCC, which, overall, yield predictive accuracies

statistically equivalent to the ones obtained by CC in experiments involving the same set

of benchmark datasets and evaluation measures (Section 4.3).

With regard to the BR method, GACC obtained a signi�cant gain on Accuracy and

Exact Match, without signi�cantly impacting the Hamming Loss measure. Furthermore,

GACC obtained higher F-Measure values in most datasets. On the other hand, the original

CC method performed poorer than the BR method, obtaining average ranks inferior to the

ones obtained by BR method in three out of the four measures of predictive performance

(though the two-tailed Wilcoxon test suggests that no statistically signi�cant di�erences

exist among the results achieved by these methods). Actually, our experimental results

regarding CC and BR are analogous to the ones reported in [16, 66], reinforcing that the

use of a single randomly-generated label sequence actually represents a fragile approach for

multi-label chain classi�ers, thus evidencing the importance of searching for an optimized

label sequence.

5.3 Concluding Remarks

In this chapter, we introduced GACC, a novel global search method for optimizing the

label ordering in CC that makes use of a genetic algorithm. In this strategy, each chro-

mosome represents a di�erent label sequence and the �tness function combines three

evaluation measures: Exact Match, Accuracy, and Hamming Loss. The crossover opera-

tion works by transferring sub-chains of random length between pairs of individuals whilst

mutation swaps pairs of labels of an individual. The proposed GA follows the wrapper

approach, evaluating the quality of an individual (candidate label sequence) by using the

target MLC algorithm (i.e., the CC algorithm). GACC is the �rst strategy that makes

use of Evolutionary Algorithms to address the label ordering problem.

The GACC method was compared against the CC and BR methods. The obtained

results show that GACC signi�cantly outperformed both methods in terms of Accuracy

and Exact Match. In terms of F-Measure, GACC signi�cantly outperformed CC. There

was no signi�cant di�erence among the three methods in terms of the Hamming Loss

measure. These results suggest that, as a global search method, GACC is more suitable

to identify and model label dependencies in comparison with greedy and baseline methods,

such as PredCC, FreqCC and DepCC (as reported in Subsection 4.3.2, overall, there is

no statistically signi�cant di�erence between the results of CC and the three baseline

5.3 Concluding Remarks 72

methods). Moreover, the GACC approach o�ers other important advantage: it is suitable

for applications that require the generation of comprehensible classi�ers, since, at the end

of the process, GACC returns a single optimized chain, re�ecting the label dependencies

(unlike other methods for improving CC, such as the approach based on the use of an

ensemble of random chains, suggested by the authors of the CC in [82, 83]).

The main disadvantage of GACC is the fact that its training phase is computationally

slow by comparison with BR and CC. Considering a dataset composed of d attributes

and N instances, the BR's training complexity is equal to O(q× f(d,N)), where f(d,N)

corresponds to the training complexity of the base single-label algorithm. For the same

dataset and base SLC algorithm, the complexity of CC is equal to O(q×f(d+(q/2), N)),

i.e., a small penalty is incurred for having an average of q/2 attributes added to each

instance. On the other hand, GACC's complexity can be roughly given by: O(q× gmax×
µ×f(d+(q/2), N)), where gmax represents the number of generations and µ the size of the

population. Nonetheless, as argued by [32], the importance of this drawback (GACC's

slow training time) depends on the user requirements, such as the size of the target

database and if the classi�cation is performed as an o�-line task. Anyway, it is possible

to attenuate this problem by developing a parallel version of GACC to simultaneously

process multiple candidate individuals.

In [42], we identi�ed that a promising direction of future work would be to extend

GACC by de�ning a chromosome structure capable of representing not only the chain

ordering, but also the presence or the absence of any speci�c label, allowing the GA

search to investigate the predictive performance of shorter classi�er chains (chains with

length inferior to q). Motivated by this issue, in the next chapter we propose the GA-

PartCC method, the �rst multi-label classi�er chain method that is able to search for

a single optimized label sequence, while at the same time taking into consideration the

utilization of partial chains.

Chapter 6

The GA-PartCC Method

This chapter presents the second main contribution of this thesis: the GA-PartCC method

(Genetic Algorithm for Optimizing Partially-Chained Models) [43], a novel genetic algo-

rithm that performs a global search for an optimized chain (i.e., a label sequence that

leads to an improvement on the predictive accuracy of the CC model), by exploring par-

tial chains with only a subset of labels. To the best of our knowledge, this is the �rst

approach proposed with the explicit goal of �nding an optimized partially chained model

for MLC.

The text is organized as follows. Section 6.1 presents the primary motivations behind

our proposal and formally de�nes the concept of partially chained (PartCC) model for

MLC. Section 6.2 presents a new exhaustive experiment that investigated the in�uence

of the label sequence length in the predictive performance of CC. In Section 6.3, we

describe our proposed GA-PartCC method. Section 6.4 presents a comprehensive set

of experiments comparing GA-PartCC against other well-known alternative multi-label

classi�er chain methods. Finally, we summarize our conclusions in Section 6.5.

6.1 The Partially Chained Multi-Label Model

GACC and most of the other variations of the basic CC method aim at improving the

model's e�ectiveness by handling the LSOP. However, there is another important draw-

back in the original CC method that has been often neglected in the literature. It cor-

responds to the fact that CC forces all labels to be present in the chain. None of the

extensions have yet explored the idea of generating models de�ned by optimized partial

chains. In this context, the aim is to build a CC model in which one or more labels may

be absent from the chain because their presence would lead to a decrease in the predictive

6.1 The Partially Chained Multi-Label Model 74

performance. This is because some classi�ers may pass redundant and irrelevant infor-

mation, or wrongly predicted labels, along the chain, which might confuse the subsequent

classi�ers in the chain. Therefore, it might be interesting to remove these irrelevant or

redundant labels from the chain structure (using independent binary classi�ers for pre-

dicting each of them) and to create a partial chain with an optimized sequence using only

the remaining labels. For instance, an example of partially chained model for a MLC that

could be induced from the music categorization database presented in Figure 2.1 (Chapter

2) is given by:

[{yBossa → yJazz → yPop}, {yMetal}]

In the above example, the binary classi�ers associated to labels �Bossa�, �Jazz� and

�Pop� are linked together in a classi�er chain model in the sequence {yBossa → yJazz →
yPop}. The label �Metal�, however, is not in the chain. The intuition behind this repre-

sentation is to indicate that �Metal� will be treated by an independent binary classi�er,

because its presence in the chain would decrease the predictive performance of the multi-

label chain classi�er as a whole.

A formal de�nition of partially chained model is given below:

De�nition 6.1 (Partially Chained Model). Let X = {X1, ..., Xd} be a set of d predictive

attributes and L = {l1, ..., lq} be a set of q class labels, where q ≥ 2. Consider a training

dataset D composed of N instances of the form {(x1, Y1), (x2, Y2), ..., (xN , YN)}. In this

dataset, each xi corresponds to a vector (x1, ..., xd) that stores values for the d predictive

attributes in X and each Yi ⊆ L corresponds to a subset of labels. A partially chained

model is a multi-label classi�cation model inferred from D with the following structure:

[{yα1 → yα2 → ... → yαr}, {yβ1 , yβ2 , ..., yβs }]

The model is divided into two components. The left component, denoted by {yα1 → yα2 →
... → yαr}, consists in a single classi�er chain model composed of r members, where 0 ≤
r ≤ q (r is referred to as the length of the model). The right component, {yβ1 , yβ2 , ..., yβs },
consists of a group of s = q − r independent binary classi�ers.

The PartCC model can be seen as a hybrid strategy between a BR model (when r = 0)

and a CC model (when r = q) using an optimized label sequence. Thus, it is expected to

be e�ective in both situations: when most labels are independent and also in the converse

6.2 Exhaustive Experiment 75

case, when the majority the majority of the labels are dependent on each other. More

interestingly, since it deals with partial chains, it is capable of producing simpler, more

compact multi-label chain classi�ers, o�ering gains in terms of e�ciency. Furthermore,

a PartCC model is particularly suitable for problems that require the construction of

comprehensible predictive models [33], as the shorter sequence is more realistic for the

representation of true label dependencies in comparison with a full length sequence.

Nonetheless, the problem of �nding an optimized PartCC model is much more chal-

lenging than the traditional LSOP as the search space is composed of an ordinary BR

model (where all labels are �disconnected�) plus the models formed by all possible chain

permutations of length 2 to q. Consequently, while the search space in the LSOP has size

equal to q!, the size of the search space in the problem of optimizing PartCC models is

much higher, being given by Equation 6.1.

1 +

q∑
r=2

q!

(q − r)!
(6.1)

Additionally, it is important to highlight the fact that the LSOP involves the opti-

mization of a single objective (model accuracy) whereas the PartCC optimization problem

takes into account two distinct objectives (model accuracy and model size). This charac-

teristic also contributes to make the later problem more di�cult than the �rst.

6.2 Exhaustive Experiment

In this section, we report the results of a new exhaustive experiment similar to the one

described in Section 4.2. However, the new experiment was carried out to investigate

the in�uence of the label sequence length in the CC's e�ectiveness. The experiment

consisted in assessing the predictive accuracy of all possible PartCC models that can

be built considering every label permutations of any length of three datasets: ��ags�

(q = 7, d = 19, N = 194), �emotions� (q = 6, d = 72, N = 593), and �scene�

(q = 6, d = 294, N = 2407). As with the �rst exhaustive experiment reported in

Chapter 4, the PartCC models were evaluated by applying the holdout method using

the training and test parts supplied with the datasets. Table 6.1 presents the number

of evaluated models per chain length (r) considering the three datasets involved in the

experiment.

Figures 6.1, 6.2 and 6.3 present the results for the datasets ��ags�, �emotions� and

6.3 The GA-PartCC Method 76

Table 6.1: Total number of evaluated models per chain length (r) for the datasets EMO-
TIONS, SCENE and FLAGS

r = 0 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 Total

emotions, 1 30 120 360 720 720 - 1951
scene (q = 6)
�ags (q = 7) 1 42 210 840 2520 5040 5040 13693

�scene�, respectively. In the three �gures, each point in the horizontal axis represents a

distinct PartCC model whilst the vertical axis shows the Quality value (Equation 5.1)

obtained after the holdout evaluation of each model. The models are ordered along the x-

axis �rst by their length (from 0 to q) and then, within each length group, in lexicographic

order according to the chain sequence used to train the model. Vertical dotted lines are

used to separate the groups of models with distinct lengths. In each �gure, we show the

results obtained using two single-label classi�ers: C4.5 and and Naïve Bayes (NB).

The results of the experiment show that, similar to the �rst exhaustive experiment,

the e�ect of the chain ordering and chain length is larger for C4.5 in comparison with

Naïve Bayes. Observe that in the �emotions� dataset, where q = 6, the best sequence for

C4.5 has size 5 (i.e., it is composed of q − 1 labels). For the other two datasets, is has

been observed that the mean Quality value increases with the chain length. In regard to

the Naïve Bayes algorithm, it is interesting to observe that the best sequence has size 0 in

the �scene� dataset (i.e., BR performed better than any CC model). In the same dataset,

some of the sequences with size 2 performed better than the sequences with larger values

of r.

In summary, the results of this new exhaustive experiment reveal that in some sit-

uations, models composed of shorter chains can achieve higher accuracy than models

composed of full chains. It is important to remark that we also investigated the base al-

gorithms SMO and k-NN, observing similar behaviors (however, the results were omitted

from Figures 6.1, 6.2 and 6.3 to simplify the visualization).

6.3 The GA-PartCC Method

In this section, a genetic algorithm for learning optimized PartCC models is proposed: GA

for Optimizing Partially-Chained Models (GA-PartCC). To the best of our knowledge, this

is the �rst classi�er chain method proposed with the explicit goal of �nding an optimized

partially chained model for MLC. The GA-PartCC method can be seen as a natural

6.3 The GA-PartCC Method 77

Figure 6.1: Results of the exhaustive experiment considering all possible label permu-
tations of any length in the chain for the base classi�ers C4.5 and NB according to the
Quality measure: FLAGS dataset

Figure 6.2: Results of the exhaustive experiment considering all possible label permu-
tations of any length in the chain for the base classi�ers C4.5 and NB according to the
Quality measure: EMOTIONS dataset

extension to the GACC method. Actually, it was necessary to modify four constituent

parts of GACC: the individual representation, the initial population, the �tness function

and the genetic operators. These modi�cations are fully described below.

6.3 The GA-PartCC Method 78

Figure 6.3: Results of the exhaustive experiment considering all possible label permu-
tations of any length in the chain for the base classi�ers C4.5 and NB according to the
Quality measure: SCENE dataset

6.3.1 Individual Representation and Population Initialization

In GA-PartCC, individuals are represented by variable-length lists. Each candidate so-

lution speci�es both a subset of labels and the order they are placed into the chain. For

instance, considering a problem where q = 4, the partial chain l3 → l1 → l4 (in which l2 is

absent from the chain) is encoded as the list [l3, l1, l4]. Similarly, a BR model is encoded

as [] (empty list) and a full sequence (with no isolated labels) such as l1 → l2 → l3 → l4

is represented as [l1, l2, l3, l4].

We adopted a simpli�ed controlled approach for generating the initial population. Let

µ be the population size. The �rst individual is an empty chain (i.e., a BR model) and

the second individual constitutes a complete CC model with the �default order� (the order

speci�ed in the database1). The remainder individuals are generated as follows. First,

individual lengths are randomly drawn following a uniform distribution in the range [2, q].

As a consequence, µ− 2 chromosomes with di�erent lengths will be generated. For each

of these chromosomes, starting from the leftmost position, the chain sequence is de�ned

by randomly selecting integer numbers (representing the label indexes) according to a

uniform distribution in the range [1, q]. Repeated integers (labels) are not allowed in a

chromosome.
1See Subsection 4.3.1

6.3 The GA-PartCC Method 79

6.3.2 Lexicographic Fitness Function

In GA-PartCC, we adopted a multi-objective lexicographic approach [31] to determine

the �tness of the candidate solutions. In this approach, two or more objectives with

distinct predetermined priorities are taken into consideration to de�ne the quality of each

chromosome. Consider the following example. Let ci and cj be two candidate solutions. In

the lexicographic approach used in GA-PartCC, when comparing two chromosomes, the

GA �rst tries to determine which one is better considering the highest priority objective.

If ci is not better than cj, and vice-versa, then both are compared considering the second

objective. The process is repeated until either a winner is found or all the criteria have

been tested (in the later case, if no winner was found, one of the chromosomes is randomly

chosen as winner).

In GA-PartCC, we only consider two objectives: predictive accuracy (�rst priority)

and model simplicity (second priority). To assess the predictive accuracy of a chromosome,

we use the Quality (�tness) function de�ned in Equation 5.1 (the same used by GACC).

If two chromosomes have the same value for the Quality function, they must be compared

with regard to model's simplicity (second objective). We consider a solution ci simpler

than cj if ci encodes a chain sequence shorter than the one encoded in cj. The rationale

lies primarily in the Occam's Razor principle [25] which states that �given two models with

the same generalization error, the simplest one should be preferred because simplicity is

desirable in itself�. Indeed, apart from being simpler, a shorter model o�ers two other

important advantages (as previously discussed in Section 6.1). First, it is more e�cient, as

it involves a smaller number of attributes. Second, it gives higher �delity for representing

label dependencies, since only the most relevant labels with regard to the classi�cation

problem are present in the chain.

By comparison with the simple use of a weighted formula to combine the two objec-

tive values, the lexicographic approach has the advantage of avoiding the speci�cation of

ad-hoc numeric weights. It requires only the speci�cation of the relative priority of the

objectives, which is well-de�ned in the context of classi�cation (accuracy clearly has pri-

ority over the chain size). By comparison with the Pareto dominance-based approach [20]

for multi-objective optimization, the lexicographic approach has the advantages of being

simpler and avoiding the issue of how to choose one single solution to be used in practice

(out of all non-dominated solutions). Also, the usual Pareto approach would not allow

us to specify that maximizing accuracy is more important than reducing the chain size,

an important application-speci�c piece of knowledge that is naturally speci�ed using the

6.3 The GA-PartCC Method 80

lexicographic approach.

Like GACC, the GA-PartCC follows the wrapper approach [30] in which the quality of

an individual (candidate PartCC model) is determined by using the target MLC algorithm

(i.e., the CC method). The �tness function is calculated using only the training set,

according to a holdout method that works as follows. First, the training set is partitioned

into two mutually-exclusive subsets: building (2/3 split) and validation (1/3 split). Next,

for each chromosome we build a PartCC model using only the building set, and then that

model is evaluated with the validation set.

6.3.3 Genetic Operators

GA-PartCC implements crossover and mutation to deal with the two levels of represen-

tation encoded in the chromosomes (chain sequence and chain length).

The crossover operation consists in a modi�ed version of the order crossover [28]

method, the same used in GACC and in several other GAs for permutation problems. The

adaptation was necessary because the original method can only deal with chromosomes

of the same length. In order to facilitate the explanation, consider the example shown

in Figure 6.4. Like the original method, our version of order crossover generates two

children (represented by O1 and O2) from two parents (represented by P1 and P2). As

shown in the �gure, child O1 must have the same length as P2 and O2, the same length

as P1. The crossover operates as follows. Two crossover points (represented by the two

vertical thick lines in Figure 6.4) are chosen at random. The �rst step to generate O1

is to copy the segment between the crossover points from P1 into O1 (Figure 6.4a). The

second step consists in �lling the remainder empty positions in O1 with genetic material

from P2 (Figure 6.4b). The procedure works as follows. Starting from the position next

to the second crossover point (the fourth position in our example), the values that are

present in P2 but are not contained in O1 are transferred to the empty positions in O1,

wrapping around when the last position of both chromosomes is reached. O2 is analogously

generated.

The main advantages of the order crossover method used by GA-PartCC are the facts

that the order in the parents is preserved in their children and that the procedure always

generates valid solutions. However, it does not create children with lengths di�erent from

their parents' lengths, since the �rst child has the same length of the second parent and

vice-versa. In order to increase the population's variability of length, in GA-PartCC,

children resulting from crossover can be also subject to mutation, which consists in either

6.4 Experiments 81

(a) Step 1

(b) Step 2

Figure 6.4: Adapted order crossover operation

inserting or removing a sub-chain. In the insertion procedure, a single insertion point is

chosen at random in the current child. Next, a sub-chain with maximum length of 5%

of q is randomly generated and inserted at that insertion point. The inserted sub-chain

must contain only labels that do not occur in the current child. The deletion procedure

removes a segment between two randomly-chosen points (also limited to a length of 5%

of q).

6.4 Experiments

In this section, we report and discuss the results of four di�erent experimental evaluations

involving the GA-PartCC method. Initially, in Section 6.4.1, the experiments were car-

ried out to compare GA-PartCC against the standard BR and CC methods. Section 6.4.2

is devoted to the experimental comparisons encompassing the HBCC and BCC methods

(presented in Subsection 4.4.1.2). These methods are based on the exploration of candi-

date chain sequences and, along with GA-PartCC, are the only two approaches proposed

in the literature which are able to produce models composed of partial chains2. In Sec-

tion 6.4.3 we compare GA-PartCC against GACC. Finally, in Section 6.4.4, we address

experiments comparing GA-PartCC and the OOCC lazy technique, recently published in

our collaborative paper [16]. This is the empirical evaluation involving the largest number

of multi-label classi�er chains methods so far (six classi�er chain methods plus the BR

2Although they are able to work with partial chains, these methods di�er from GA-PartCC in impor-
tant aspects, which are discussed throughout Subsection 6.4.2

6.4 Experiments 82

method).

All experiments reported in this section were performed using the same experimental

settings of the experiments presented in the previous chapters: (i) the Weka's J48 decision

tree algorithm with default parameters was used as the base binary classi�cation algorithm

for all evaluated methods; (ii) a holdout evaluation was performed, where 2/3 of each

dataset was used for learning the classi�er and 1/3 for testing (using the same training and

test splits that come with the datasets); (iii) the predictive performance of the methods

was evaluated in terms of Accuracy, F-Measure, Hamming Loss and Exact Match; (iv) we

used the Wilcoxon signed-rank test to verify the statistical signi�cance of the results at

a con�dence level of 95%; (v) the parameters values used in GA-PartCC are the same

as those used by GACC (these were presented in Table 5.2); (vi) the results reported

for GA-PartCC, GACC, CC, HBCC, BCC and OOCC are averaged over 10 executions

with distinct random seeds, except for the larger datasets �enron� and �llog� which were

averaged over 5 executions (additional information on how the seeds were employed for

each method is provided within each subsection).

6.4.1 GA-PartCC versus BR and CC

In this subsection, the predictive performance of GA-PartCC is compared against the BR

and CC methods. Tables 6.2, 6.3, 6.4 and 6.5 present the performance of each method in

terms of Accuracy, F-Measure, Exact Match and Hamming loss, respectively.

The results presented in Tables 6.2 and 6.3 show that the GA-PartCC obtained the

smallest average rank (i.e., the best overall result) for both Accuracy and F-Measure.

The Wilcoxon signed-rank test indicated that GA-PartCC is signi�cantly better than CC

for Accuracy (Twilcox(9) = 0.0) and that GA-PartCC is signi�cantly better than BR and

CC for F-Measure (Twilcox(9) = 4.0 in both cases). According to Table 6.4, our genetic

algorithm also performed signi�cantly better than both standard methods in terms of

Exact Match (Twilcox(8) = 1.0 and Twilcox(7) = 1.5 in regard to BR and CC, respectively).

Finally, no statistically signi�cant di�erences existed between the Hamming Loss values

obtained by the three methods (Table 6.5).

In short, our experiments revealed that, like GACC, GA-PartCC method obtained

results signi�cantly superior to CC according to Accuracy, F-Measure and Exact Match.

GA-PartCC also obtained results signi�cantly superior to the BR method according to

F-Measure and Exact Match.

6.4 Experiments 83

Table 6.2: Performance of BR, CC and GA-PartCC in terms of Accuracy.

Dataset
Accuracy

BR CC GA-PartCC
university 0.300 (3.0) 0.310 (2.0) 0.312 (1.0)
yeast 0.423 (2.0) 0.418 (3.0) 0.440 (1.0)
ces-16 0.196 (2.0) 0.194 (3.0) 0.218 (1.0)
birds 0.573 (1.0) 0.564 (3.0) 0.567 (2.0)
thyroid 0.984 (1.5) 0.983 (3.0) 0.984 (1.5)
genbase 0.987 (2.0) 0.987 (2.0) 0.987 (2.0)
medical 0.743 (2.5) 0.743 (2.5) 0.748 (1.0)
enron 0.367 (3.0) 0.402 (2.0) 0.405 (1.0)
llog 0.243 (1.5) 0.239 (3.0) 0.243 (1.5)

cal500 0.212 (3.0) 0.218 (2.0) 0.222 (1.0)
average rank 2.15 2.55 1.30

{GA-PartCC} � {CC}

Table 6.3: Performance of BR, CC and GA-PartCC in terms of F-Measure.

Dataset
F-Measure

BR CC GA-PartCC
university 0.315 (3.0) 0.335 (1.0) 0.329 (2.0)
yeast 0.547 (2.0) 0.523 (3.0) 0.550 (1.0)
ces-16 0.251 (2.0) 0.249 (3.0) 0.280 (1.0)
birds 0.603 (1.0) 0.592 (3.0) 0.595 (2.0)
thyroid 0.990 (2.5) 0.990 (2.5) 0.991 (1.0)
genbase 0.991 (2.0) 0.991 (2.0) 0.991 (2.0)
medical 0.773 (1.5) 0.769 (2.5) 0.773 (1.5)
enron 0.474 (3.0) 0.506 (2.0) 0.507 (1.0)
llog 0.261 (2.0) 0.255 (3.0) 0.264 (1.0)

cal500 0.344 (3.0) 0.348 (2.0) 0.355 (1.0)
average rank 2.10 2.40 1.35

{GA-PartCC} � {BR, CC}

6.4.2 GA-PartCC versus HBCC and BCC

In this subsection, we present the results of an experiment that compared GA-PartCC

against two methods that can deal with shorter chains: HBCC [48] and BCC [91, 110].

As with GA-PartCC, we implemented HBCC and BCC in Java.

Both methods were presented in Section 4.4.1.2. In the following, they are brie�y

summarized. The HBCC method works in two steps. In the �rst, the Pearson's lin-

ear correlation coe�cient between each pair of labels in the training set is calculated.

According to the results, in the second step, di�erent partial chains are created, each

one composed of labels identi�ed as strongly positively correlated. The BCC technique

6.4 Experiments 84

Table 6.4: Performance of BR, CC and GA-PartCC in terms of Exact Match.

Dataset
Exact Match

BR CC GA-PartCC
university 0.263 (2.0) 0.248 (3.0) 0.266 (1.0)
yeast 0.064 (3.0) 0.127 (2.0) 0.134 (1.0)
ces-16 0.060 (2.0) 0.058 (3.0) 0.066 (1.0)
birds 0.486 (2.0) 0.485 (3.0) 0.490 (1.0)
thyroid 0.932 (3.0) 0.941 (1.5) 0.941 (1.5)
genbase 0.975 (2.0) 0.975 (2.0) 0.975 (2.0)
medical 0.651 (3.0) 0.665 (2.0) 0.669 (1.0)
enron 0.086 (3.0) 0.125 (2.0) 0.128 (1.0)
llog 0.199 (2.0) 0.201 (1.0) 0.198 (3.0)

cal500 0.000 (2.0) 0.000 (2.0) 0.000 (2.0)
average rank 2.40 2.15 1.55

{GA-PartCC} � {BR, CC}

Table 6.5: Performance of BR, CC and GA-PartCC in terms of Hamming Loss.

Dataset
Hamming Loss

BR CC GA-PartCC
university 0.134 (1.0) 0.139 (3.0) 0.137 (2.0)
yeast 0.259 (1.0) 0.274 (3.0) 0.263 (2.0)
ces-16 0.188 (2.5) 0.188 (2.5) 0.187 (1.0)
birds 0.051 (1.5) 0.051 (1.5) 0.052 (3.0)
thyroid 0.005 (1.5) 0.006 (3.0) 0.005 (1.5)
genbase 0.001 (2.0) 0.001 (2.0) 0.001 (2.0)
medical 0.011 (2.0) 0.011 (2.0) 0.011 (2.0)
enron 0.054 (1.5) 0.054 (1.5) 0.055 (3.0)
llog 0.019 (2.0) 0.019 (2.0) 0.019 (2.0)

cal500 0.163 (1.0) 0.176 (3.0) 0.170 (2.0)
average rank 1.60 2.35 2.05

No statistical signi�cance

combines Bayesian networks with classi�er chains and also works in two steps. The �rst

consists in constructing a maximum weighted spanning tree according to the mutual de-

pendence measure between each pair of labels. In the second step, an arbitrary node from

the tree must be randomly chosen as the root node. From this root node, the di�erent

paths that compose the tree are used to form di�erent partial chains.

Despite the fact that HBCC and BCC are able to work with shorter chains, our GA-

PartCC method di�ers from these techniques in two key aspects. First, the GA-PartCC

method delivers to the user a single chain sequence at the end of the GA evolution. On

the other hand, neither HBCC nor BCC generate a single speci�c chain. Instead, both

algorithms �rst identify correlated labels and further employ this information to restrict

6.4 Experiments 85

the set of possible valid chain orderings. One of the valid chain orderings must then be

randomly chosen in order to train the CC model. Second and more importantly, GA-

PartCC is actually concerned with the determination of an optimized chain sequence (i.e.,

the label ordering is important to GA-PartCC). Di�erently, HBCC and BCC rely on the

assumption that a good chain sequence is the one in which strongly correlated labels are

connected or are placed close to each other, not paying attention to the way the sequence

is ordered.

Tables 6.6, 6.7, 6.8 and 6.9 present the results of HBCC, BCC and GA-PartCC con-

cerning, respectively, the measures of Accuracy, F-Measure, Exact Match and Hamming

Loss. The results reported for HBCC are averaged over 10 executions with distinct ran-

dom seeds to de�ne the order of each shorter sequence in the model. The HBCC method

requires the speci�cation of a user-input parameter: the threshold value for the Pearson's

linear correlation coe�cient (denoted as λ), used to de�ne which pairs of labels are corre-

lated in the training set (basically, two labels are regarded as correlated if the computed

value of the Pearson's linear correlation coe�cient between them is higher than λ). As

recommended in [48], we separately optimized the value of this parameter for each dataset

involved in our experiments, using only the training part. In this process, we evaluted

di�erent values of λ, ranging from 0.0 to 1.0, with steps of 0.05. The results reported

for the BCC method are also averaged over 10 executions with distinct random seeds to

de�ne the root node of the maximum weighted spanning tree. Di�erently from HBCC,

this method does not require the speci�cation of any user-input parameter.

Table 6.6: Performance of HBCC, BCC and GA-PartCC in terms of Accuracy.

Dataset
Accuracy

HBCC BCC GA-PartCC
university 0.300 (2.5) 0.300 (2.5) 0.312 (1.0)
yeast 0.430 (2.0) 0.423 (3.0) 0.440 (1.0)
ces-16 0.202 (2.0) 0.198 (3.0) 0.218 (1.0)
birds 0.566 (2.0) 0.560 (3.0) 0.567 (1.0)
thyroid 0.984 (2.0) 0.984 (2.0) 0.984 (2.0)
genbase 0.987 (2.0) 0.987 (2.0) 0.987 (2.0)
medical 0.749 (1.0) 0.743 (3.0) 0.748 (2.0)
enron 0.396 (3.0) 0.405 (1.5) 0.405 (1.5)
llog 0.241 (2.5) 0.241 (2.5) 0.243 (1.0)

cal500 0.215 (2.0) 0.209 (3.0) 0.222 (1.0)
average rank 2.10 2.55 1.35

{GA-PartCC} � {HBCC, BCC}

The genetic algorithm approach proved to be very e�ective, as GA-PartCC signi�-

6.4 Experiments 86

Table 6.7: Performance of HBCC, BCC and GA-PartCC in terms of F-Measure.

Dataset
F-Measure

HBCC BCC GA-PartCC
university 0.315 (2.5) 0.315 (2.5) 0.329 (1.0)
yeast 0.539 (2.0) 0.529 (3.0) 0.550 (1.0)
ces-16 0.259 (2.0) 0.254 (3.0) 0.280 (1.0)
birds 0.595 (1.5) 0.588 (3.0) 0.595 (1.5)
thyroid 0.990 (3.0) 0.991 (1.5) 0.991 (1.5)
genbase 0.991 (2.0) 0.991 (2.0) 0.991 (2.0)
medical 0.775 (1.0) 0.772 (3.0) 0.773 (2.0)
enron 0.496 (3.0) 0.509 (1.0) 0.507 (2.0)
llog 0.256 (3.0) 0.258 (2.0) 0.264 (1.0)

cal500 0.346 (2.0) 0.336 (3.0) 0.355 (1.0)
average rank 2.20 2.40 1.40

{GA-PartCC} � {HBCC, BCC}

Table 6.8: Performance of HBCC, BCC and GA-PartCC in terms of Exact Match.

Dataset
Exact Match

HBCC BCC GA-PartCC
university 0.263 (2.5) 0.263 (2.5) 0.266 (1.0)
yeast 0.111 (3.0) 0.118 (2.0) 0.134 (1.0)
ces-16 0.064 (2.0) 0.061 (3.0) 0.066 (1.0)
birds 0.483 (2.0) 0.478 (3.0) 0.490 (1.0)
thyroid 0.941 (2.5) 0.945 (1.0) 0.941 (2.5)
genbase 0.975 (2.0) 0.975 (2.0) 0.975 (2.0)
medical 0.671 (1.0) 0.655 (3.0) 0.669 (2.0)
enron 0.125 (2.0) 0.122 (3.0) 0.128 (1.0)
llog 0.201 (1.0) 0.197 (3.0) 0.198 (2.0)

cal500 0.000 (2.0) 0.000 (2.0) 0.000 (2.0)
average rank 2.00 2.45 1.65

{GA-PartCC} � {BCC}

cantly outperformed both HBCC and BCC in two of the four evaluation measures: Accu-

racy (Twilcox(8) = 1.5 and Twilcox(7) = 0.0, respectively) and F-Measure (Twilcox(8) = 2.0

in both cases). GACC is also statistically superior to BCC for Exact Match (Twilcox(8) =

3.0). None of the methods was signi�cantly superior to any other in terms of Hamming

Loss.

The superior performance of GA-PartCC indicates that both issues are important:

taking partial chains into consideration and determining an optimized label sequence for

training the CC model. The later issue is not considered by the HBCC and BCC methods.

It is also important to state that HBCC and BCC are based on the measurement of the

unconditional dependence among labels, which is often not su�cient to truly identify

6.4 Experiments 87

Table 6.9: Performance of HBCC, BCC and GA-PartCC in terms of Hamming Loss.

Dataset
Hamming Loss

HBCC BCC GA-PartCC
university 0.134 (1.5) 0.134 (1.5) 0.137 (3.0)
yeast 0.267 (3.0) 0.266 (2.0) 0.263 (1.0)
ces-16 0.188 (2.0) 0.189 (3.0) 0.187 (1.0)
birds 0.052 (2.0) 0.052 (2.0) 0.052 (2.0)
thyroid 0.005 (2.0) 0.005 (2.0) 0.005 (2.0)
genbase 0.001 (2.0) 0.001 (2.0) 0.001 (2.0)
medical 0.011 (2.0) 0.011 (2.0) 0.011 (2.0)
enron 0.054 (1.5) 0.054 (1.5) 0.055 (3.0)
llog 0.019 (2.0) 0.019 (2.0) 0.019 (2.0)

cal500 0.170 (1.5) 0.190 (3.0) 0.170 (1.5)
average rank 1.95 2.10 1.95

No statistical signi�cance

dependencies. On the other hand, GA-PartCC can indirectly cope with this issue by

employing a global search method based on a GA that follows the wrapper approach.

Furthermore, GA-PartCC o�ers the advantage of delivering an interpretable result, i.e.,

at the end of the search the method returns a single optimized partial chain, re�ecting

the label dependencies, whilst HBCC and BCC return a set of candidate chains.

6.4.3 GA-PartCC versus GACC

In this subsection, we compare the performance of our two proposed chain methods for

multi-label classi�cation based on genetic algorithms, GACC and GA-PartCC. Tables

6.10, 6.11, 6.12 and 6.13 show, respectively, the results for the measures of Accuracy,

F-Measure, Exact Match, and Hamming Loss.

In this experiment, GACC presented the best average rank for Accuracy and Exact

Match and GA-PartCC, the best ones for F-Measure and Hamming Loss. However,

the two-tailed Wilcoxon signed-rank test indicated that, with a con�dence level of 95%,

no statistically signi�cant di�erences exist between the performance of the two methods

considering the four evaluation measures of predictive performance.

The GA-PartCC method was also evaluated with respect to the length of the chains

associated to the best solutions. Table 6.14 shows the results averaged over the 10 ex-

ecutions. It is possible to observe that, for the datasets �llog� and �medical�, the best

models are, on average, composed of nearly half of the labels. For the remaining datasets,

with the exception of �genbase�, the best found models are, on average, composed of a

6.4 Experiments 88

Table 6.10: Performance of GACC and GA-PartCC in terms of Accuracy.

Dataset
Accuracy

GACC GA-PartCC
university 0.319 (1.0) 0.312 (2.0)
yeast 0.432 (2.0) 0.440 (1.0)
ces-16 0.213 (2.0) 0.218 (1.0)
birds 0.569 (1.0) 0.567 (2.0)
thyroid 0.983 (2.0) 0.984 (1.0)
genbase 0.987 (1.5) 0.987 (1.5)
medical 0.744 (2.0) 0.748 (1.0)
enron 0.409 (1.0) 0.405 (2.0)
llog 0.249 (1.0) 0.243 (2.0)

cal500 0.224 (1.0) 0.222 (2.0)
average rank 1.45 1.55

No statistical signi�cance

Table 6.11: Performance of GACC and GA-PartCC in terms of F-Measure.

Dataset
F-Measure

GACC GA-PartCC
university 0.343 (1.0) 0.329 (2.0)
yeast 0.548 (2.0) 0.550 (1.0)
ces-16 0.275 (2.0) 0.280 (1.0)
birds 0.597 (1.0) 0.595 (2.0)
thyroid 0.990 (2.0) 0.991 (1.0)
genbase 0.991 (1.5) 0.991 (1.5)
medical 0.769 (2.0) 0.773 (1.0)
enron 0.507 (1.5) 0.507 (1.5)
llog 0.264 (1.5) 0.264 (1.5)

cal500 0.356 (1.0) 0.355 (2.0)
average rank 1.55 1.45

No statistical signi�cance

large number of labels (however, not all labels). This conforms with the results of the

exhaustive experiment presented in Section 6.2, where most of the best performing se-

quences were composed of q or q − 1 labels. It can also be explained by the fact that in

these datasets, a large number of labels exhibit dependence with each other. A notable

exception is the dataset �genbase�, in which the performance of BR method was equivalent

to the performance of the six classi�er chain methods evaluated in our experiments for

all evaluation measures. In this case, the GA-PartCC method was consistent with the

Occam's Razor principle, being able to determine the simplest model (an empty chain)

as the best solution. Hence, the results presented in this subsection demonstrate that the

proposed GA-PartCC has a predictive performance equivalent to GACC, o�ering the the

6.4 Experiments 89

Table 6.12: Performance of GACC and GA-PartCC in terms of Exact Match.

Dataset
Exact Match

GACC GA-PartCC
university 0.255 (2.0) 0.266 (1.0)
yeast 0.134 (1.5) 0.134 (1.5)
ces-16 0.063 (2.0) 0.066 (1.0)
birds 0.492 (1.0) 0.490 (2.0)
thyroid 0.941 (1.5) 0.941 (1.5)
genbase 0.975 (1.5) 0.975 (1.5)
medical 0.670 (1.0) 0.669 (2.0)
enron 0.135 (1.0) 0.128 (2.0)
llog 0.209 (1.0) 0.198 (2.0)

cal500 0.000 (1.5) 0.000 (1.5)
average rank 1.40 1.60

No statistical signi�cance

Table 6.13: Performance of GACC and GA-PartCC in terms of Hamming Loss.

Dataset
Hamming Loss

GACC GA-PartCC
university 0.138 (2.0) 0.137 (1.0)
yeast 0.266 (2.0) 0.263 (1.0)
ces-16 0.187 (1.5) 0.187 (1.5)
birds 0.051 (1.0) 0.052 (2.0)
thyroid 0.006 (2.0) 0.005 (1.0)
genbase 0.001 (1.5) 0.001 (1.5)
medical 0.011 (1.5) 0.011 (1.5)
enron 0.055 (1.5) 0.055 (1.5)
llog 0.019 (1.5) 0.019 (1.5)

cal500 0.173 (2.0) 0.170 (1.0)
average rank 1.65 1.35

No statistical signi�cance

advantage of generating simpler models though.

6.4.4 GA-PartCC versus OOCC

In this subsection, we compare the performance of GA-PartCC against the state-of-the-art

OOCC method for MLC [15, 16], presented in Section 4.4.2.2.

The OOCC technique works by employing a lazy approach that searches for a distinct

and more e�ective label sequence to each new instance t. In this strategy, for each instance

in the training dataset, an e�ective label sequence is previously identi�ed in the training

step (according to the Quality metric). At classi�cation time, the label sequence for the

6.4 Experiments 90

Table 6.14: Average length of the best chain determined by GA-PartCC

Dataset q avg length
university 10 7.2
yeast 14 13.8
ces-16 16 14.0
birds 19 15.0
thyroid 25 24.4
genbase 27 0.0
medical 45 20.2
enron 53 52.0
llog 74 37.4

cal500 174 124.8

new instance t is chosen based on the sequences associated with the instances in the

training dataset that are more similar to t to be classi�ed.

The parameter values used in OOCC were the same used in [16]: k = 5 (number

of neighbours), m = 5 (number of data partitions) and r = 15 (number of sequences

trained for each data partition). The results reported are averaged over 10 executions

with distinct random seeds used to create the label sequences associated to each data

partition. Tables 6.15, 6.16, 6.17 and 6.18 show, respectively, the results for the measures

of Accuracy, F-Measure, Exact Match, and Hamming Loss.

Table 6.15: Performance of OOCC and GA-PartCC in terms of Accuracy.

Dataset
Accuracy

OOCC GA-PartCC
university 0.305 (2.0) 0.312 (1.0)
yeast 0.422 (2.0) 0.440 (1.0)
ces-16 0.207 (2.0) 0.218 (1.0)
birds 0.567 (1.5) 0.567 (1.5)
thyroid 0.984 (1.5) 0.984 (1.5)
genbase 0.987 (1.5) 0.987 (1.5)
medical 0.751 (1.0) 0.748 (2.0)
enron 0.401 (2.0) 0.405 (1.0)
llog 0.245 (1.0) 0.243 (2.0)

cal500 0.220 (2.0) 0.222 (1.0)
average rank 1.65 1.35

No statistical signi�cance

In this experiment, GA-PartCC presented the best average rank in three out of the

four evaluation metrics (Accuracy, F-Measure and Hamming Loss). According to the

Wilcoxon test, the F-Measure values obtained by GA-PartCC were signi�cantly superior

to the ones obtained by OOCC (Twilcox(7) = 2.0). The results demonstrate that the

6.5 Concluding Remarks 91

Table 6.16: Performance of OOCC and GA-PartCC in terms of F-Measure.

Dataset
F-Measure

OOCC GA-PartCC
university 0.325 (2.0) 0.329 (1.0)
yeast 0.526 (2.0) 0.550 (1.0)
ces-16 0.265 (2.0) 0.280 (1.0)
birds 0.593 (2.0) 0.595 (1.0)
thyroid 0.990 (2.0) 0.991 (1.0)
genbase 0.991 (1.5) 0.991 (1.5)
medical 0.775 (1.0) 0.773 (2.0)
enron 0.503 (2.0) 0.507 (1.0)
llog 0.261 (2.0) 0.264 (1.0)

cal500 0.350 (2.0) 0.355 (1.0)
average rank 1.85 1.15

{GA-PartCC} � {OOCC}

Table 6.17: Performance of OOCC and GA-PartCC in terms of Exact Match.

Dataset
Exact Match

OOCC GA-PartCC
university 0.249 (2.0) 0.266 (1.0)
yeast 0.135 (1.0) 0.134 (2.0)
ces-16 0.065 (2.0) 0.066 (1.0)
birds 0.494 (1.0) 0.490 (2.0)
thyroid 0.943 (1.0) 0.941 (2.0)
genbase 0.975 (1.5) 0.975 (1.5)
medical 0.677 (1.0) 0.669 (2.0)
enron 0.126 (2.0) 0.128 (1.0)
llog 0.206 (1.0) 0.198 (2.0)

cal500 0.000 (1.5) 0.000 (1.5)
average rank 1.30 1.70

No statistical signi�cance

proposed GA-PartCC method exhibits a very competitive performance, o�ering the ad-

vantage of delivering much faster classi�cation times; since OOCC, being a lazy method,

has a very long classi�cation time.

6.5 Concluding Remarks

This chapter presented a novel method for multi-label classi�er chains based on a genetic

algorithm. This method, named GA-PartCC, di�ers from the majority of current exten-

sions to the original CC model because it is capable of evaluating chain sequences that

vary not only in the ordering but also in the length. In order to accomplish this task,

6.5 Concluding Remarks 92

Table 6.18: Performance of OOCC, GACC and GA-PartCC in terms of Hamming Loss.

Dataset
Hamming Loss

OOCC GA-PartCC
university 0.138 (2.0) 0.137 (1.0)
yeast 0.272 (2.0) 0.263 (1.0)
ces-16 0.188 (2.0) 0.187 (1.0)
birds 0.055 (2.0) 0.052 (1.0)
thyroid 0.005 (1.5) 0.005 (1.5)
genbase 0.001 (1.5) 0.001 (1.5)
medical 0.010 (1.0) 0.011 (2.0)
enron 0.055 (1.5) 0.055 (1.5)
llog 0.019 (1.5) 0.019 (1.5)

cal500 0.175 (2.0) 0.170 (1.0)
average rank 1.70 1.30

No statistical signi�cance

GA-PartCC uses a variable-length list representation and a multi-objective lexicographic

�tness function, taking into account two objectives: the model's accuracy and the model's

size.

We reported the results of a comprehensive set of experiments that compared the ef-

fectiveness of GA-PartCC against BR, CC and four alternative multi-label classi�er chain

methods (HBCC, BCC, GACC and OOCC). In our experiments: GA-PartCC achieved

statistically signi�cantly better results than BR, CC, BCC, HBCC and OOCC in the

F-Measure performance measure; GA-PartCC was signi�cantly superior to CC, BCC and

HBCC in the Accuracy measure; And the performance of GA-PartCC was also signi�-

cantly superior to BR, CC and BCC considering the Exact Match measure. None of the

evaluated methods was signi�cantly superior to GA-PartCC in any of the four perfor-

mance measures.

The experiments indicated that the predictive performance of GA-PartCC is similar to

the one of GACC. Nonetheless, the simpler, more compact model produced by GA-PartCC

o�ers an important advantage: it gives higher �delity for representing label dependencies,

since only the most relevant labels with regard to the classi�cation problem are present

in the chain.

Chapter 7

Conclusions

In the last few years, multi-label classi�cation (MLC) has been a highly active topic of

research within the data mining and machine learning communities. In this problem, each

object of a dataset may belong to multiple class labels and the goal is to learn a model

that can infer the correct labels of new, previously unseen, objects. The general objective

of this thesis is to contribute to the development of the MLC area. More speci�cally, the

focus of this research was on the proposal of novel strategies for improving the e�ectiveness

of the classi�er chains method (CC), one of the most widely known techniques for mining

multi-label classi�ers.

In this chapter, we conclude this thesis by giving a detailed summary of our �ndings

and contributions (Section 7.1) and pointing towards potential future work (Section 7.2).

7.1 Thesis Contributions

First proposed in 2009, CC has become one of the most in�uential methods for multi-label

classi�cation. It is distinguished from other methods by its simple and e�ective approach

to exploit label dependencies. The CC method involves the training of q single-label

binary classi�ers, where q is the number of labels and each classi�er is solely responsible

for classifying a speci�c label. These q classi�ers are linked in a chain, such that each

binary classi�er is able to incorporate the predictions of the previous ones as additional

information at classi�cation time. Thus, possible correlations among labels � inherent

in several MLC problems � can be straightforwardly exploited. However, the basic CC

model su�ers from two major drawbacks:

1. It decides the label ordering at random, although this ordering has a strong e�ect

7.1 Thesis Contributions 94

on predictive accuracy.

2. It forces all labels to be present in the chain, despite the fact that some of them

might cause a decrease in the predictive accuracy of the model.

The main contribution of this thesis was the proposal of two novel techniques for

improving the e�ectiveness of multi-label chain classi�ers: GACC (Chapter 5) and GA-

PartCC (Chapter 6). Both of them make use of Genetic Algorithms (GAs) to perform a

global search for a single optimized label sequence (i.e., a label sequence that leads to an

improvement on the predictive accuracy of the CC model). One of the proposed strategies

(GA-PartCC) is capable of taking into consideration chain sequences that vary not only

in the ordering but also in the length, thus tackling both problems of the original CC

method at once. Experiments on diverse benchmark datasets, followed by the Wilcoxon

test for assessing statistical signi�cance, indicate that our proposed GAs produce more

accurate chain classi�ers.

Secondary contributions of the thesis mainly aimed at obtaining a greater understand-

ing of underlying principles of the CC model. In this regard, in Chapter 4, we reported

a study that demonstrated the importance of using a good label sequence for training a

CC model independently of the base single-label algorithm. Subsequently, we proposed

and evaluated a group of baseline heuristics to �nd a good order for training CC models

(PredCC, FreqCC and DepCC). In Chapter 6, we carried out a study to investigate the

in�uence of the label sequence length in the CC's e�ectiveness. In the same chapter, we

introduce a novel conceptual model for multi-label classi�cation, named PartCC.

In the remainder of this section, we summarize the major �ndings of Chapters 4, 5

and 6 in order to provide details about the above contributions.

7.1.1 Multi-Label Chain Classi�ers � Chapter 4

In Chapter 4, two secondary contributions of this thesis were presented. The �rst consisted

in an exhaustive experiment that, for the �rst time, investigated in depth the in�uence of

the label sequence in the predictive performance of CC models. The experiment consisted

in assessing the predictive performance of CC considering all q! label permutations of

three benchmark datasets using four distinct single-label base algorithms: k-NN, C4.5,

Naïve Bayes, and SMO. Our main motivation for carrying out this empirical analysis was

the fact that, in the MLC literature, we found divergent views on the importance of the

label sequence issue. For instance, while the authors of CC in [82, 83] argued that, due to

7.1 Thesis Contributions 95

the e�ect of error propagation, it is likely that di�erent label orderings might lead to the

induction of CC models that have very di�erent predictive power, the authors of [93] do

not share the same belief, and argued that the e�ect of the chain order would probably

not be signi�cant for datasets in which the number of features is much higher than the

number of labels (the most typical case in real-world applications).

The results of our exhaustive experiment indicated that, overall, the order of the

chain indeed has a strong e�ect on predictive performance. However, additional �ndings

evidenced that the di�erent single-label base algorithms, due to their own characteristics,

are a�ected to di�erent degrees by the label ordering. For instance, the e�ect tends to be

very large when the base algorithm is C.45, but it can be rather small for Naïve Bayes.

Furthermore, the exhaustive experiment also allowed us to identify that, in general, an

e�ective label sequence for a speci�c base algorithm (e.g.: C4.5) does not necessarily

constitute a good sequence for other base algorithm (e.g.: SMO). Part of the results of

this experiment were published in [16].

The second contribution in Chapter 4 consisted of the proposal of three simple baseline

heuristics for the determination of optimized label sequences, namely: PredCC (most

con�dent labels �rst), FreqCC (most frequent labels �rst), and DepCC (�most-dependent�

labels last). In spite of being very simple, none of the three heuristics had been previously

examined in the multi-label literature.

We conducted an experiment on a set of benchmark datasets with the aim of com-

paring PredCC, FreqCC and DepCC against the original CC method. Nonetheless, the

obtained results indicated that, according to four distinct measures of predictive perfor-

mance, there is no statistically signi�cant di�erence between CC (where the label sequence

is simply decided at random) and the presented baselines. Consequently, we concluded

that it is necessary to adopt more sophisticated heuristics to overcome the label sequence

optimization problem (LSOP). Motivated by this issue, in Chapter 5 we proposed the

GACC method.

7.1.2 The GACC Method � Chapter 5

In Chapter 5, we presented the �rst main contribution of this thesis: the GACC method,

published in [42]. This corresponds to the �rst proposed strategy based on the evolution-

ary paradigm of GAs to optimize multi-label chain classi�ers. We opted for a solution

based on GAs mainly due to the following reasons: (i) GAs perform a global search ca-

pable of e�ectively exploring the extremely large search space of q! associated with the

7.1 Thesis Contributions 96

LSOP; (ii) GAs have been traditionally applied to solve a large number of classi�cation

and permutation problems.

In GACC, each chromosome represents a di�erent label sequence and the �tness func-

tion combines three performance evaluation measures: Exact Match, Accuracy, and Ham-

ming Loss. The crossover operation works by transferring sub-chains of random length

between pairs of individuals whilst mutation swaps pairs of labels of an individual. The

proposed GA follows the wrapper approach, evaluating the quality of an individual (can-

didate label sequence) by using the target MLC method (i.e., the CC method).

Our proposed solution based on GAs was compared against the CC method and

also against the BR method (which trains q independent binary classi�ers). As opposed

to the baseline heuristics of Chapter 4, GACC outperformed the original CC method

with statistical signi�cance in three out of the four evaluated measures of predictive

performance (Accuracy, F-Measure and Exact Match). Additionally, GACC signi�cantly

outperformed BR according to the Accuracy and Exact Match measures. In summary,

GACC yield competitive results, yet o�ering the advantage of delivering an interpretable

result to the user (a single optimized chain ordering, re�ecting the label dependencies).

7.1.3 The GA-PartCC Method � Chapter 6

In Chapter 6, we presented the second main contribution of this thesis: the GA-PartCC

method, published in [43]. It represents a natural extension of GACC proposed with the

goal of �lling a gap in the range of available classi�er chain methods in the literature: the

fact that none of these methods have yet explored the idea of generating models de�ned

by optimized partial chains1.

Before describing the GA-PartCC method, we introduced and formally de�ned the

concept of partially chained multi-label model (PartCC). This kind of MLC model is

formed by two sets of labels: isolated and chained. The labels in the �rst set are predicted

by independent binary classi�ers whilst the ones in the later set are linked in a partial

chain so as to be predicted according to the classi�er chains framework. Hence, a PartCC

model represents a hybrid model between BR and CC.

Subsequently, we carried out an exhaustive experiment (similar to the one reported

in Chapter 4) which demonstrated the potential of inducing PartCC models from MLC

datasets. Then we introduced the GA-PartCC method, a genetic algorithm for mining

1Although the methods HBCC and BCC can work with shorter chains, they do not pay attention to
the way the chains are ordered, as discussed in Subsection 6.4.2

7.2 Future Work 97

optimized partially chained models. This method adopts a variable-length list represen-

tation and makes use of a multi-objective lexicographic �tness function, which takes into

account two objectives when evaluating a candidate solution: the model's accuracy and

the model's size.

We reported the results of a comprehensive set of experiments to evaluate the pre-

dictive performance of GA-PartCC. In the �rst experiment, we compared GA-PartCC

against CC and BR, where our genetic algorithm outperformed CC with statistical signif-

icance in three out of the four measures (Accuracy, F-Measure and Exact Match) and BR

in two measures (F-Measure and Exact Match). In the second experiment, we compared

GA-PartCC against HBCC and BCC, two alternative multi-label classi�er chain methods

based on building models composed of a set of partial chains. Although GA-PartCC works

with simpler models (composed of only two sets � isolated labels and chained labels), our

experiments revealed that, overall, it obtained superior results in comparison with both

HBCC and BCC. In the third experiment, we compared GA-PartCC against GACC. De-

spite the fact that there was no statistically signi�cant di�erent between the results of

GA-PartCC and GACC, the �rst method o�ers the advantage of generating simpler, more

compact models, which gives higher �delity for representing label dependencies. In the

last experiment, we compared GA-PartCC against the state-of-the-art OOCC lazy ap-

proach. In this experiment, GA-PartCC achieved statistically signi�cantly better results

according to the F-Measure performance measure. As a �nal remark, it is important to

state that none of the evaluated methods (CC, BR, HBCC, BCC, GACC and OOCC)

was signi�cantly superior to GA-PartCC in any of the four performance measures.

7.2 Future Work

In this thesis, we proposed two novel classi�er chain methods based on genetic algorithms,

GACC and GA-PartCC. We consider that both methods occupy an important niche in

the multi-label classi�cation �eld: they are competitive on diverse multi-label problems,

yet being suitable for use with interpretable classi�ers.

Some possibilities for future research are as follows. First, extend the GAs with local

search methods to add some intelligence across the successive generations. For instance, a

possible approach would be to identify, during the evolutionary process, groups of labels

that tend to cause a decrease in the accuracy of most other labels when they take part

in the chain. These labels could then be either removed from children resulting from

7.2 Future Work 98

crossover or placed in the last positions of these children. Similarly, groups of labels that

tend to cause an increase in the predictive accuracy of other labels could be identi�ed by

the local search procedure and placed in the �rst positions of new children.

A second possibility for future research would be to develop a chromosome represen-

tation capable of encoding not only the chain sequence, but also the base single-label

algorithm (along with its parameter settings) that will be used to induce the classi�er

associated to each label. Thus, it would be possible to evaluate a PartCC model in which,

for instance, the �rst label in the chain would be associated with a C4.5 classi�er, the

second with an SMO classi�er, and so on.

Finally, we also consider that it would be interesting to search for optimized PartCC

models with the use of other heuristics di�erent from genetic algorithms.

References

[1] Agrawal, R.; Imieli«ski, T.; Swami, A. Mining association rules between sets
of items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 1993), SIGMOD '93,
ACM, pp. 207�216.

[2] Back, T.; Fogel, D. B.; Michalewicz, Z., Eds. Handbook of Evolutionary
Computation. IOP Publishing Ltd., Bristol, UK, UK, 1997.

[3] Becker, L. A.; Seshadri, M. Comprehensibility and over�tting avoidance in
genetic programming for technical trading rules. Tech. rep., Worcester Polytechnic
Institute, May 2003.

[4] Berry, M. L. A.; Linoff, G., Eds. Data Mining Techniques: for Marketing,
Sales and Customer Support. J. Wiley Computer Publishing, 1997.

[5] Beyer, H.-G.; Schwefel, H.-P. Evolution strategies: A comprehensive intro-
duction. Natural Computing 1, 1 (2002), 3�52.

[6] Bielza, C.; Li, G.; Larrañaga, P. Multi-dimensional classi�cation with
bayesian networks. International Journal of Approximate Reasoning 52, 6 (Sept.
2011), 705�727.

[7] Boutell, M. R.; Luo, J.; Shen, X.; Brown, C. M. Learning multi-label scene
classi�cation. Pattern Recognition 37, 9 (2004), 1757�1771.

[8] Briggs, F.; Huang, Y.; Raich, R.; Eftaxias, K.; Lei, Z.; Cukierski, W.;

Hadley, S. F.; Hadley, A.; Betts, M.; Fern, X. Z.; Irvine, J.; Neal, L.;

Thomas, A.; Fodor, G.; Tsoumakas, G.; Ng, H. W.; Nguyen, T. N. T.;

Huttunen, H.; Ruusuvuori, P.; Manninen, T.; Diment, A.; Virtanen,

T.; Marzat, J.; Defretin, J.; Callender, D.; Hurlburt, C.; Larrey,

K.; Milakov, M. The 9th annual MLSP competition: New methods for acoustic
classi�cation of multiple simultaneous bird species in a noisy environment. In IEEE
International Workshop on Machine Learning for Signal Processing, MLSP 2013,
Southampton, United Kingdom, September 22-25, 2013 (2013), pp. 1�8.

[9] Brin, S.; Motwani, R.; Silverstein, C. Beyond market baskets: Generalizing
association rules to correlations. In Proceedings of the 1997 ACM SIGMOD Interna-
tional Conference on Management of Data (New York, NY, USA, 1997), SIGMOD
'97, ACM, pp. 265�276.

[10] Cerri, R.; Barros, R. C.; de Carvalho, A. C. P. L. F. A genetic algorithm
for hierarchical multi-label classi�cation. In Proceedings of the 27th Annual ACM

References 100

Symposium on Applied Computing (New York, NY, USA, 2012), SAC '12, ACM,
pp. 250�255.

[11] Cherman, E. A.; Metz, J.; Monard, M. C. Incorporating label dependency
into the binary relevance framework for multi-label classi�cation. Expert Systems
with Applications 39, 2 (2012), 1647�1655.

[12] Clare, A.; King, R. D. Knowledge discovery in multi-label phenotype data.
In Proceedings of the 5th European Conference on Principles of Data Mining and
Knowledge Discovery (London, UK, 2001), PKDD '01, Springer-Verlag, pp. 42�53.

[13] Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C. Introduction To Algorithms,
third ed. MIT Press, 2009.

[14] Crammer, K.; Singer, Y. A family of additive online algorithms for category
ranking. Journal of Machine Learning Research 3 (March 2003), 1025�1058.

[15] da Silva, P. N. Classi�cação Multirrótulo em Cadeia: Novas Abordagens. PhD
thesis, Institute of Computing, Universidade Federal Fluminense (IC-UFF), 2014.

[16] da Silva, P. N.; Gonçalves, E. C.; Plastino, A.; Freitas, A. A. Distinct
chains for di�erent instances: An e�ective strategy for multi-label classi�er chains.
InMachine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II
(2014), vol. 8725 of Lecture Notes in Computer Science, Springer, pp. 453�468.

[17] Davis, L. Applying adaptive algorithms to epistatic domains. In Proceedings of
the 9th International Joint Conference on Arti�cial Intelligence - Volume 1 (San
Francisco, CA, USA, 1985), IJCAI'85, Morgan Kaufmann Publishers Inc., pp. 162�
164.

[18] de Carvalho, A. C. P. L. F.; Freitas, A. A. A tutorial on multi-label classi�ca-
tion techniques. In Foundations of Computational Intelligence Volume 5, A. Abra-
ham, A.-E. Hassanien, and V. Sná�sel, Eds., vol. 205 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2009, pp. 177�195.

[19] De Jong, K. A. Evolutionary Computation - a Uni�ed Approach. MIT Press,
2006.

[20] Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, Inc., New York, NY, USA, 2001.

[21] Dembczynski, K.; Cheng, W.; Hüllermeier, E. Bayes optimal multilabel
classi�cation via probabilistic classi�er chains. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel
(2010), Omnipress, pp. 279�286.

[22] Dembczynski, K.; Waegeman, W.; Hüllermeier, E. An analysis of chaining
in multi-label classi�cation. In Proceedings of the 20th European Conference on
Arti�cial Intelligence (Montpellier, France, August 2012), L. De Raedt, C. Bessiere,
D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. Lucas, Eds., ECAI'12, IOS
Press, pp. 294�299.

References 101

[23] Dietterich, T. G. Machine learning. In Encyclopedia of Cognitive Science,
L. Nadel, Ed., vol. 2. London: Nature Publishing Group, 2003, pp. 971�981.

[24] Diplaris, S.; Tsoumakas, G.; Mitkas, P. A.; Vlahavas, I. Protein clas-
si�cation with multiple algorithms. In Advances in Informatics, P. Bozanis and
E. Houstis, Eds., vol. 3746 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, pp. 448�456.

[25] Domingos, P. The role of occam's razor in knowledge discovery. Data Mining and
Knowledge Discovery 3, 4 (1999), 409�425.

[26] Duda, R. O.; Hart, P. E. Pattern classi�cation and scene analysis. John Wiley
and Sons, 1973.

[27] Duman, E.; Ozcelik, M. H. Detecting credit card fraud by genetic algorithm
and scatter search. Expert Systems with Applications 38, 10 (September 2011),
13057�13063.

[28] Eiben, A. E.; Smith, J. E. Introduction to Evolutionary Computing. SpringerVer-
lag, 2003.

[29] Elisseeff, A.; Weston, J. A kernel method for multi-labelled classi�cation. In
Advances in Neural Information Processing Systems 14 [Neural Information Pro-
cessing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancou-
ver, British Columbia, Canada] (2001), pp. 681�687.

[30] Freitas, A. A. Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Natural Computing Series. Springer, 2002.

[31] Freitas, A. A. A critical review of multi-objective optimization in data mining:
A position paper. SIGKDD Explorations Newsletters 6, 2 (December 2004), 77�86.

[32] Freitas, A. A. A review of evolutionary algorithms for data mining. In Data Min-
ing and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Springer
US, 2010, pp. 371�400.

[33] Freitas, A. A. Comprehensible classi�cation models: A position paper. SIGKDD
Explorations Newsletter 15, 1 (June 2013), 1�10.

[34] Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classi�ers.
Machine Learning 29, 2-3 (Nov. 1997), 131�163.

[35] Fürnkranz, J.; Hüllermeier, E.; Mencía, E. L.; Brinker, K. Multilabel
classi�cation via calibrated label ranking. Machine Learning 73, 2 (November 2008),
133�153.

[36] Ghaffarizadeh, A.; Ahmadi, K.; Flann, N. S. Sorting unsigned permutations
by reversals using multi-objective evolutionary algorithms with variable size indi-
viduals. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2011, New Orleans, LA, USA, 5-8 June, 2011 (2011), pp. 292�295.

References 102

[37] Gibaja, E.; Ventura, S. Multi-label learning: A review of the state of the art
and ongoing research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 4, 6 (2014), 411�444.

[38] Gibaja, E.; Ventura, S. A tutorial on multilabel learning. ACM Computing
Surveys (CSUR) 47, 3 (April 2015), 52:1�52:38.

[39] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

[40] Gonçalves, E. C. Regras de associação e suas medidas de interesse objetivas e
subjetivas. INFOCOMP 4 (2005), 26�35.

[41] Gonçalves, E. C. A human-centered approach for mining hybrid-dimensional
association rules. In Proceedings of the 2014 Conference on Information Fusion
(Salamanca, Spain, July 2014), FUSION'14, pp. 1�8.

[42] Gonçalves, E. C.; Plastino, A.; Freitas, A. A. A genetic algorithm for
optimizing the label ordering in multi-label classi�er chains. In Proceedings of
the 2013 IEEE 25th International Conference on Tools with Arti�cial Intelligence
(Washington, DC, USA, November 2013), ICTAI'13, IEEE Computer Society,
pp. 469�476.

[43] Gonçalves, E. C.; Plastino, A.; Freitas, A. A. Simpler is better: A novel
genetic algorithm to induce compact multi-label chain classi�ers. In Proceedings
of the 2015 on Genetic and Evolutionary Computation Conference (Madrid, Spain,
July 2015), GECCO'15, ACM, pp. 559�566.

[44] Gonçalves, I.; Silva, S. Balancing learning and over�tting in genetic program-
ming with interleaved sampling of training data. In Genetic Programming, K. Kraw-
iec, A. Moraglio, T. Hu, A. Etaner-Uyar, and B. Hu, Eds., vol. 7831 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 73�84.

[45] Guo, Y.; Gu, S. Multi-label classi�cation using conditional dependency networks.
In Proceedings of the Twenty-Second international joint conference on Arti�cial
Intelligence - Volume Two (Barcelona, Catalonia, Spain, July 2011), IJCAI'11,
AAAI Press, pp. 1300�1305.

[46] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Wit-

ten, I. H. The weka data mining software: an update. ACM SIGKDD Exploration
Newsletter 11, 1 (November 2009), 10�18.

[47] Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.
The Morgan Kaufmann Series in Data Management Systems. Elsevier Science, San
Francisco, CA, USA, 2011.

[48] Hernandez-Leal, P.; Orihuela-Espina, F.; Sucar, L. E.; Morales, E. F.

Hybrid binary-chain multi-label classi�ers. In Proceedings of the 6th European Work-
shop on Probabilistic Graphical Models (Granada, Spain, September 2012), PGM'12,
pp. 139�146.

References 103

[49] Hüllermeier, E.; Fürnkranz, J.; Cheng, W.; Brinker, K. Label ranking
by learning pairwise preferences. Arti�cial Intelligence 172, 16-17 (November 2008),
1897�1916.

[50] Husbands, P.; Copley, P.; Eldridge, A.; Mandelis, J. An introduction to
evolutionary computing for musicians. In Evolutionary Computer Music, E. Miranda
and J. Biles, Eds. Springer London, 2007, pp. 1�27.

[51] Japkowicz, N.; Shah, M. Evaluating Learning Algorithms: A Classi�cation
Perspective. Cambridge University Press, New York, 2011.

[52] Joachims, T. Text categorization with suport vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning (London, UK, UK, 1998), ECML '98, Springer-Verlag, pp. 137�142.

[53] Jungjit, S.; Freitas, A. A. A lexicographic multi-objective genetic algorithm
for multi-label correlation based feature selection. In Proceedings of the Compan-
ion Publication of the 2015 on Genetic and Evolutionary Computation Conference
(Madrid, Spain, 2015), GECCO Companion '15, ACM, pp. 989�996.

[54] Karakatic, S.; Podgorelec, V. A survey of genetic algorithms for solving multi
depot vehicle routing problem. Applied Soft Computing 27, 0 (2015), 519�532.

[55] Karali�c, A.; Pirnat, V. Signi�cance level based multiple tree classi�cation.
Informatica 15, 5 (1991).

[56] Klimt, B.; Yang, Y. The enron corpus: A new dataset for email classi�cation
research. InMachine Learning: ECML 2004, 15th European Conference on Machine
Learning, Pisa, Italy, September 20-24, 2004, Proceedings (2004), pp. 217�226.

[57] Koza, J. R. Genetic Programming: On the Programming of Computing by Means
of Natural Selection. MIT Press, 1992.

[58] Kumar, A.; Vembu, S.; Menon, A. K.; Elkan, C. Beam search algorithms for
multilabel learning. Machine Learning 92, 1 (July 2013), 65�89.

[59] Larrañaga, P.; Kuijpers, C. M. H.; Murga, R. H.; Inza, I.; Dizdarevic, S.

Genetic algorithms for the travelling salesman problem: A review of representations
and operators. Arti�cial Intelligence Review 13, 2 (April 1999), 129�170.

[60] Levy, E.; David, O. E.; Netanyahu, N. S. Genetic algorithms and deep learning
for automatic painter classi�cation. In Proc. of the 2014 Genetic and Evolutionary
Computation Conference (July 2014), GECCO'14, pp. 1143�1150.

[61] Lichman, M. UCI machine learning repository, 2013. University of California,
Irvine, School of Information and Computer Sciences, http://archive.ics.uci.
edu/ml.

[62] Liu, B.; Hsu, W.; Ma, Y. Integrating classi�cation and association rule mining. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (1998), AAAI Press, pp. 80�86.

References 104

[63] Liu, X.; Shi, Z.; Li, Z.; Wang, X.; Shi, Z. Sorted label classi�er chains for
learning images with multi-label. In Proceedings of the ACM 2010 International
Conference on Multimedia (Florence, Italy, October 2010), MM'10, pp. 951�954.

[64] Machado, P.; Tavares, J.; Pereira, F. B.; Costa, E. Vehicle routing prob-
lem: Doing it the evolutionary way. In Proceedings of the 2002 Genetic and Evolu-
tionary Computation Conference (July 2002), GECCO'02, pp. 690�696.

[65] Madjarov, G.; Dimitrovski, I.; Gjorgjevikj, D.; ; Dºeroski, S. Evaluation
of di�erent data-derived label hierarchies in multi-label classi�cation. In New Fron-
tiers in Mining Complex Patterns - Third International Workshop, NFMCP 2014,
Held in Conjunction with ECML-PKDD 2014, Nancy, France, September 19, 2014,
Revised Selected Papers (2014), pp. 19�37.

[66] Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; Dºeroski, S. An extensive
experimental comparison of methods for multi-label learning. Pattern Recognition
45, 9 (September 2012), 3084�3104.

[67] Montañes, E.; Senge, R.; Barranquero, J.; Ramón Quevedo, J.; José

Del Coz, J.; Hüllermeier, E. Dependent binary relevance models for multi-
label classi�cation. Pattern Recognition 47, 3 (2014), 1494�1508.

[68] Moon, C.; Kim, J.; Choi, G.; Seo, Y. An e�cient genetic algorithm for the
traveling salesman problem with precedence constraints. European Journal of Op-
erational Research 140, 3 (2002), 606�617.

[69] Newby, D.; Freitas, A. A.; Ghafourian, T. Comparing multilabel classi�ca-
tion methods for provisional biopharmaceutics class prediction. Molecular Pharma-
ceutics 12, 1 (2015), 87�102.

[70] Pestian, J. P.; Brew, C.; Matykiewicz, P.; Hovermale, D. J.; Johnson,

N.; Cohen, K. B.; Duch, W. A shared task involving multi-label classi�cation
of clinical free text. In Proceedings of the Workshop on BioNLP 2007: Biological,
Translational, and Clinical Language Processing (Stroudsburg, PA, USA, 2007),
BioNLP '07, pp. 97�104.

[71] Platt, J. C. Fast training of support vector machines using sequential minimal
optimization. In Advances in Kernel Methods, B. Schölkopf, C. J. C. Burges, and
A. J. Smola, Eds. MIT Press, Cambridge, MA, USA, 1999, pp. 185�208.

[72] Potvin, J.-Y. Genetic algorithm for traveling salesman problem. Annals of Oper-
ation Research 63 (1996), 339�370.

[73] Potvin, J.-Y. State-of-the art review - evolutionary algorithms for vehicle routing.
INFORMS Journal on Computing 21, 4 (2009), 518�548.

[74] Quinlan, J. R. Induction of decision trees. Machine Learning 1, 1 (1986), 81�106.

[75] Quinlan, J. R. C4.5: Programs for machine learning. Morgan Kaufmann Pub-
lishers, 1993.

References 105

[76] Quinlan, J. R.; Compton, P. J.; Horn, K. A.; Lazurus, L. Inductive knowl-
edge acquisition: A case study. In Proc. of the 2nd Australian Conference on Ap-
plications of Expert Systems (1986), pp. 183�204.

[77] Read, J. Scalable multi-label classi�cation. PhD thesis, Department of Computer
Science, University of Waikato, 2010.

[78] Read, J.; Martino, L.; Luengo, D. E�cient monte carlo optimization for multi-
label classi�er chains. In IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013 (2013),
IEEE, pp. 3457�3461.

[79] Read, J.; Martino, L.; Luengo, D. E�cient monte carlo methods for multi-
dimensional learning with classi�er chains. Pattern Recognition 47, 3 (2014), 1535�
1546.

[80] Read, J.; Martino, L.; Olmos, P. M.; Luengo, D. Scalable multi-output label
prediction: From classi�er chains to classi�er trellises. Pattern Recognition 48, 6
(2015), 2096�2109.

[81] Read, J.; Pfahringer, B.; Holmes, G. Multi-label classi�cation using en-
sembles of pruned sets. In Proceedings of the 8th IEEE International Conference
on Data Mining (Pisa, Italy, December 2008), ICDM'08, IEEE Computer Society,
pp. 995�1000.

[82] Read, J.; Pfahringer, B.; Holmes, G.; Eibe, F. Classi�er chains for multi-
label classi�cation. In Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases: Part II (Bled, Slovenia, September 2009),
ECML PKDD '09, Springer-Verlag, pp. 254�269.

[83] Read, J.; Pfahringer, B.; Holmes, G.; Eibe, F. Classi�er chains for multi-
label classi�cation. Machine Learning 85, 3 (December 2011), 333�359.

[84] Read, J.; Reutemann, P.Meka: A multi-label extension to weka, 2015. Retrieved
May 13, 2015 from http://meka.sourceforge.net/.

[85] Reeves, C. R. Genetic algorithms. In Handbook of Metaheuristics, M. Gendreau
and J.-Y. Potvin, Eds., 2nd ed. Springer Publishing Company, Incorporated, 2010,
pp. 109�139.

[86] Rokach, L. Taxonomy for characterizing ensemble methods in classi�cation tasks:
A review and annotated bibliography. Computational Statistics & Data Analysis
53, 12 (2009), 4046 � 4072.

[87] Romero, A. E.; de Campos, L. M. A probabilistic methodology for multilabel
classi�cation. Intelligent Data Analysis 18, 5 (September 2014), 911�926.

[88] Ruepp, A.; Zollner, A.; Maier, D.; Albermann, K.; Hani, J.; Mokrejs,

M.; Tetko, I.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.;

Mewes, H. W. The FunCat, a functional annotation scheme for systematic clas-
si�cation of proteins from whole genomes. Nucleic Acids Research 32, 18 (January
2004), 5539�5545.

References 106

[89] Sait, S. M.; Youssef, H. Iterative Computer Algorithms with Applications in En-
gineering: Solving Combinatorial Optimization Problems, 1st ed. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1999.

[90] Spyromitros, E.; Tsoumakas, G.; Vlahavas, I. An empirical study of lazy
multilabel classi�cation algorithms. In Proceedings of the 5th Hellenic Conference
on Arti�cial Intelligence: Theories, Models and Applications (Berlin, Heidelberg,
2008), SETN '08, Springer-Verlag, pp. 401�406.

[91] Sucar, L. E.; Bielza, C.; Morales, E. F.; Hernandez-Leal, P.; Zaragoza,

J. H.; Larrañaga, P.Multi-label classi�cation with bayesian network-based chain
classi�ers. Pattern Recognition Letters 41 (May 2014), 14�22.

[92] Tan, P.-N.; Steinbach, M.; Kumar, V. Introduction to Data Mining. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[93] Tenenboim-Chekina, L.; Rokach, L.; Shapira, B. Identi�cation of label
dependencies for multi-label classi�cation. In Proceedings of the 2nd International
Workshop on Learning from Multi-Label Data (MLD'10) in Conjunction with ICML
2010 (Haifa, Israel, June 2010), MLD'10, pp. 53�60.

[94] Toroslu, I. H.; Arslanoglu, Y. Genetic algorithm for the personnel assignment
problem with multiple objectives. Inf. Sci. 177, 3 (February 2007), 787�803.

[95] Trohidis, K.; Tsoumakas, G.; Kalliris, G.; Vlahavas, I. Multilabel classi�-
cation of music into emotions. In Proceedings of the 9th International Conference on
Music Information Retrieval (ISMIR 2008) (Philadelphia, PA, USA, June 2008),
ISMIR'08, pp. 325�330.

[96] Tsoumakas, G.; Katakis, I. Multi-label classi�cation: An overview. Interna-
tional Journal of Data Warehousing and Mining (IJDWM) 3, 3 (2007), 1�13.

[97] Tsoumakas, G.; Katakis, I.; Vlahavas, I. Mining multi-label data. In
Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds.
Springer US, 2010, pp. 667�685.

[98] Tsoumakas, G.; Vlahavas, I. Random k-labelsets: An ensemble method for
multilabel classi�cation. In Proceedings of the 18th European Conference on Machine
Learning (Warsaw, Poland, September 2007), ECML'07, Springer-Verlag, pp. 406�
417.

[99] Tsoumakas, G.; Xioufis, E. S.; Vilcek, J.; Vlahavas, I. P. Mulan: A java
library for multi-label learning. Journal of Machine Learning Research 12 (2011),
2411�2414.

[100] Tsoumakas, G.; Zhang, M.-L.; Zhou, Z.-H. Tutorial on learning from multi-
label data, 2009. Retrieved October 14, 2014 from http://www.ecmlpkdd2009.

net/wp-content/uploads/2009/08/learningfrom-multi-label-data.pdf.

[101] Turnbull, D.; Barrington, L.; Torres, D.; Lanckriet, G. Semantic an-
notation and retrieval of music and sound e�ects. IEEE Transactions on Audio,
Speech, and Language Processing 16, 2 (February 2008), 467�476.

References 107

[102] van der Gaag, L. C.; de Waal, P. R. Multi-dimensional bayesian network
classi�ers. In Proceedings of the 3rd European Workshop on Probabilistic Graphical
Models, Electronic Proceedings (Prague, Czech Republic, 2006), PGM'06, pp. 107�
114.

[103] Whitley, E.; Ball, J. Statistics review 6: Nonparametric methods. Critical Care
6, 6 (2002), 509�513.

[104] Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1 (1945),
80�83.

[105] Witten, I. H.; Frank, E.; Hall, M. A. Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. The Morgan Kaufmann Series in Data
Management Systems. Elsevier Science, San Francisco, CA, USA, 2011.

[106] Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.;

McLachlan, G. J.; Ng, A.; Liu, B.; Yu, P. S.; Zhou, Z.-H.; Steinbach,

M.; Hand, D. J.; Steinberg, D. Top 10 algorithms in data mining. Knowledge
Information Systems 14, 1 (December 2007), 1�37.

[107] Xu, J. An e�cient multi-label support vector machine with a zero label. Expert
Systems with Applications 39, 5 (2012), 4796�4804.

[108] Younes, Z.; Abdallah, F.; Denoeux, T.; Snoussi, H. A dependent multilabel
classi�cation method derived from the k-nearest neighbor rule. EURASIP Journal
on Advances in Signal Processing 2011, Article ID 645964 (2011).

[109] Zaki, M. J.; Meira Jr, W. Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[110] Zaragoza, J. H.; Sucar, L. E.; Morales, E. F.; Bielza, C.; Larrañaga,

P. Bayesian chain classi�ers for multidimensional classi�cation. In Proceedings of
the 22nd International Joint Conference on Arti�cial Intelligence - Volume Three
(Barcelona, Catalonia, Spain, 2011), IJCAI'11, AAAI Press, pp. 2192�2197.

[111] Zhang, M.-L.; Zhou, Z.-H. Multi-label neural networks with applications to
functional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering 18 (2006), 1338�1351.

[112] Zhang, M.-L.; Zhou, Z.-H. Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition 40, 7 (July 2007), 2038�2048.

[113] Zhang, M.-L.; Zhou, Z.-H. A review on multi-label learning algorithms. IEEE
Transactions on Knowledge and Data Engineering 26, 8 (August 2014), 1819�1837.

108

APPENDIX A -- The Chi-Squared Test for

Independence

As its name suggest, the chi-squared test for independence (χ2) is a statistical test that can

be employed to evaluate the hypothesis that two or more variables are independent [9, 47].

The test works as follows. First, the value of the chi-squared statistic between the variables

under investigation is computed. Next, it is compared against a cuto� value, obtained from

a chi-square table. If the computed value is higher than the cuto� value, the independence

assumption is rejected at some signi�cance level.

For binary variables (such as the label variables in a multi-label dataset), the value

of the chi-squared statistics can be can be straightforwardly obtained with the use of a

2 × 2 contingency table, such as the one presented in Table A.1. In this table, consider

that A and B are two label variables from a training dataset composed of N instances.

Columns A and ¬A correspond to instances that do and do not, respectively, contain label

A. Similarly, rows B and ¬B correspond to instances that do and do not contain label

B. Thus, the cell labeled as fA,B indicates the number of instances that contain both A

and B (a similar notation was used to represent the contents of the remainder cells).

Table A.1: Contingency table for two binary variables A and B

A ¬A Σrow

B fA,B f¬A,B fB
¬B fA,¬B f¬A,¬B f¬B
Σcol fA f¬A N

The value of the chi-squared statistic can be computed with the formula presented in

Equation A.1. For two binary variables, the cuto� value to reject the hypothesis at the

95% con�dence level is equal to 3.84 [9].

χ2 =
N × ((fA,B × f¬A,¬B)− (f¬A,B × fA,¬B))2

(fA × fB × f¬A × f¬B)
(A.1)

Appendix A -- The Chi-Squared Test for Independence 109

In this thesis, the χ2 test was used in our proposed DepCC method (Chapter 4) to

determine all pairs of independent labels in a given training set. Below, we present an

example of the use of the χ2 test considering the ��ags� training dataset, described in

Section 2.2. The example focus on the relationship between labels �yellow� and �white�

(refer to the decision tree illustrated in Figure 4.2b, Section 4.2 for additional details).

The contingency table for these two labels is presented in Table A.2.

Table A.2: Contingency table for the pair of labels yellow and white (FLAGS dataset)

yellow ¬yellow Σrow

white 33 62 95
¬white 28 6 34

Σcol 61 68 129

According to Equation A.1, the chi-squared statistic between �yellow� and �white� is

given by:

χ2 =
129× (33× 6− 62× 28)2

(61× 95× 68× 34)
= 22.77.

Since 22.77 is well above the cuto� value of 3.95, we reject the independence assump-

tion at the 95% con�dence level. In other words, we can conclude that labels �yellow� and

�white� are dependent.

110

APPENDIX B -- The Wilcoxon Signed-Rank Test

Originally proposed in [104], the Wilcoxon signed-rank test is a non-parametric statistical

hypothesis test that has been often used for comparing the performance of MLC meth-

ods [38]. The test does not assume a normal distribution and can be used to perform the

comparison of two classi�ers on multiple domains. In the case of the experiments in this

thesis, each benchmark dataset corresponds to a data sample for the test (i.e., we have

10 data samples for the test), where the values being compared are the predictive per-

formance measures of the classi�ers (Accuracy, F-Measure, Exact Match and Hamming

Loss). In all experiments, the signi�cance of the results were veri�ed with a con�dence

level of 95%.

Next, we describe the steps involved in the Wilcoxon signed-rank test with the aid of

a toy example based on the hypothetical data presented in Table B.1. Consider that this

table presents the Accuracy values obtained after the evaluation of two MLC methodsM1

and M2 on 10 di�erent datasets (D1 to D10).

Table B.1: Results of two methods M1 and M2 according to the Accuracy measure con-
sidering n = 10 datasets (Wilcoxon signed-rank test example)

Dataset M1 M2

Accuracy Accuracy

D1 0.900 0.910
D2 0.472 0.467
D3 0.865 0.902
D4 0.664 0.675
D5 0.818 0.812
D6 0.239 0.244
D7 0.994 0.996
D8 0.870 0.920
D9 0.501 0.526
D10 0.697 0.718

Appendix B -- The Wilcoxon Signed-Rank Test 111

Assuming that the null hypothesis states that the two methods are not signi�cantly

di�erent, the �rst step in the Wilcoxon test consists of computing the di�erences between

each pair of scores (in our example, Accuracy values) and ranking the obtained values in

increasing order of magnitude, ignoring the sign of result (i.e., if it is either negative or

positive). In Table B.2, columns 4 and 5, we respectively present the obtained di�erences

and rankings for our given toy example.

Table B.2: Results, di�erences and ranking values of two methodsM1 andM2 according to
the Accuracy measure considering n = 10 datasets (Wilcoxon signed-rank test example)

Dataset M1 M2 Di�erence Rank
Accuracy Accuracy (M2 −M1)

D1 0.900 0.910 0.010 5.0
D2 0.472 0.467 -0.005 2.5
D3 0.865 0.902 0.037 9.0
D4 0.664 0.675 0.011 6.0
D5 0.818 0.812 -0.006 4.0
D6 0.239 0.244 0.005 2.5
D7 0.994 0.996 0.002 1.0
D8 0.870 0.920 0.050 10.0
D9 0.501 0.526 0.025 8.0
D10 0.697 0.718 0.021 7.0

Note that in the above example, the dataset with the highest absolute value of dif-

ference is D8; thus it was assigned the highest rank value of 10. On the other hand, the

lowest rank value of 1 was given to D7, the dataset with the smallest absolute value of

di�erence. It is also important to observe that, in the case of ties, as it occurs with the

di�erence values of D2 and D6, average ranks must be assigned to each tied observation.

Zero-valued di�erences (i.e., a situation in which the two methods have the same value for

the performance metric under evaluation) can also be treated as a tie [51] or, alternatively,

can be simply ignored [103].

Once the rankings have been computed, the subsequent step in the Wilcoxon test is

to determine R+ and R−, which correspond to the sum of the rankings associated to the

di�erences with a positive and a negative sign, respectively. Then, a Twilcox statistic can

be calculated as min(R+, R−) (the smaller value of R+ and R−). In the example of Table

B.2, we have:

R+ = 5.0 + 9.0 + 6.0 + 2.5 + 1.0 + 10.0 + 8.0 + 7.0 = 48.5.

R− = 2.5 + 4.0 = 6.5.

Appendix B -- The Wilcoxon Signed-Rank Test 112

Twilcox = min(48.5, 6.5) = 6.5.

When the number of datasets involved in the comparison is small (n ≤ 25), the �nal

step in the Wilcoxon test corresponds to directly use the table of critical values to check

if the null hypothesis stating that the two classi�ers perform equally well can be rejected.

In Table B.3 (data partially reproduced from [51]), we present the critical values for the

two-tailed test at a signi�cance level of 5%, considering n ≤ 10.

Table B.3: Critical values for the two-tailed Wilcoxon signed-rank test at a signi�cance
level of 5%. In this table, n corresponds to the number of datasets and α0.05 to the critical
value.

n α0.05

6 0
7 2
8 3
9 5
10 8

According to [51], the null hypothesis should be rejected with a con�dence level of

95% if Twilcox is smaller than the critical value associated to n in Table B.3. In the

given example, we have n = 10 and Twilcox = 6.5. In this case, Table B.3 indicates the

critical value of α0.05 = 8. Since Twilcox = 6.5 is below this critical value, we conclude

that the null hyphotesis can actually be rejected. In other words, we can say that the

two-tailed Wilcoxon signed-rank test indicates that M2 is statistically superior to M1

with a con�dence level of 95%. This result can be presented using the following notation:

Twilcox(10) = 6.5. In this notation, the value between parenthesis (in this case, 10) speci�es

the number of datasets where the two methods M1 and M2 do not have the same value

for the performance metric under evaluation.

In short, the logic behind the Wilcoxon signed-rank test can be summarized as fol-

lows [51]. Given a set of results obtained by two methods M1 and M2 on the same

population (i.e., a collection of datasets), M2 is better than M1 if: (i) most of the results

obtained by M2 are greater than those obtained by M1; and (ii) those results that are not

greater, are smaller by only a small amount.

As a �nal remark, it is worth mentioning that our main motivations for using the

Wilcoxon test in this work were twofold. The �rst consists in the fact that, with a few

exceptions, most of the reported experiments were designed with the goal of performing

paired comparisons between one of our proposed methods (PredCC, FreqCC, DepCC,

Appendix B -- The Wilcoxon Signed-Rank Test 113

GACC or GA-PartCC) against the original CC method (or a CC-like method). The

second is because the test is non-parametric and works well for small sample sizes [103],

being thus appropriate for our experimental setup.

