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Resumo
Um dos desafios enfrentados por pesquisadores de redes sociais consiste na avaliação
do equilíbrio em redes sociais de sinais, onde interações positivas (amizade) e negativas
(antagonismo) estão presentes. O nível de equilíbrio de um grupo social pode ser utilizado
como ferramenta de estudo pelos pesquisadores de redes sociais para saber de que forma
(e se) determinado grupo evolui para um possível estado de equilíbrio. Neste sentido, uma
rede social pode ser representada através de um grafo de sinais e a solução de problemas de
clustering definidos sobre grafos de sinais pode ser utilizada como um critério para medição
do nível de equilíbrio em redes sociais. Tal medida pode ser obtida por meio da solução
ótima para o Problema de Correlação de Clusters (Correlation Clustering ou CC), assim
como uma variação do mesmo, conhecida como Relaxed Correlation Clustering (RCC)
problem. Contudo, resolver tais problemas não se traduz em tarefa fácil, especialmente
quando é necessário analisar grandes instâncias de rede. Este trabalho visa contribuir
para a solução eficiente de ambos os problemas por meio do desenvolvimento de versões
sequenciais e paralelas das metaheurísticas GRASP e ILS. Ao aplicarmos estes algoritmos,
foi possível realizar, de forma eficiente, a medição do equilíbrio estrutural em grandes redes
sociais do mundo real.

Palavras-chave: Metaheurísticas. Grafo de sinais. Correlação de Clusters. Rede Social.
Equilíbrio Estrutural. GRASP. ILS. MPI. CUDA.





Abstract
One challenge for social network researchers is to evaluate balance in signed social networks,
where positive (friendly) and negative (antagonistic) interactions take place. The degree of
balance of a social group can be employed as a tool to study whether and how this group
might evolve to a possible balanced state. The solution of clustering problems defined
on signed graphs can be used as a criterion to measure the degree of balance in social
networks. This measure can be obtained with the optimal solution of the Correlation
Clustering (CC) problem, as well as in variation, being the Relaxed Correlation Clustering
(RCC) problem. However, solving these problems is no easy task, especially when large
network instances require analysis. This work contributes to the efficient solution of both
problems by developing sequential and parallel versions of GRASP and ILS metaheuristics.
Then, by incorporating our algorithms, we efficiently solve the problem of measuring the
structural balance on large real-world signed social networks.

Keywords: Metaheuristics. Signed Graph. Correlation Clustering. Social Network. Struc-
tural Balance. GRASP. ILS. MPI. CUDA.
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1 Introduction

Structural balance is acknowledged as a fundamental social process. It has been
used to explain how feelings, attitudes and beliefs, which social actors direct towards each
other, can promote the formation of stable (but not necessarily conflict-free) social groups.
Structural balance theory states that the balance or equilibrium of a social system should
follow the human tendency to preserve a cognitive consistency of hostility and friendship.
The supporting principle, as proposed by Heider (HEIDER, 1946), is simple: “my friend’s
friend is my friend, my friend’s enemy is my enemy, my enemy’s friend is my enemy, my
enemy’s enemy is my friend". The absence of balance creates a stream of tension in the
minds of group members that can eventually lead to the altering of opinion. Once balance
is achieved, it tends to become stable, since no cognitive dissonance could change the state.

Determining the structural balance of a signed social network is a key aspect in
the study of the structure and origin of tensions and conflicts in a network of individuals
whose mutual relationships are characterized in terms of friendship and hostility. Struc-
tural balance theory was first formulated by Heider (HEIDER, 1946) with the purpose of
describing sentiment relationship between those people pertaining to the same social group
(like/dislike, love/hate, respect/disrespect, or trust/distrust). Signed graphs were then
introduced by Cartwright et al. (CARTWRIGHT; HARARY, 1956), which formalized
Heider’s theory that stated that a balanced social group could be partitioned into two
groups (or clusters), being that all relationships (or edges) within clusters are positive
(internal solidarity) and all those between clusters are negative (mutually hostile groups).
Davis (DAVIS, 1967) later introduced a notion called "weak balance", that further general-
izes social balance with an assertion that a balanced social group can be divided into two
or more mutually antagonistic subgroups (or clusters), each having internal solidarity.

Structural balance theory has a multitude of applications. Investigating the tem-
poral dynamics of communities has attracted an increasing amount of attention, with
models attempting to forecast how networks evolve over time. Known works involve the
dynamics of signed structures and group formation (DOREIAN; KRACKHARDT, 2001),
including balance adjustment processes (ABELL; LUDWIG, 2009). Structural balance
is also potentially useful to study similarity and correlation networks, such as those de-
termined by common voting patterns, or alliances and disputes among nations (TRAAG;
BRUGGEMAN, 2009; MACON; MUCHA; PORTER, 2012).

Over the last decades, signed graphs have shown to be a very attractive and
discrete structure for social network researchers (DOREIAN; MRVAR, 1996a; INOHARA,
1998; YANG; CHEUNG; LIU, 2007; ABELL; LUDWIG, 2009; DOREIAN; MRVAR, 2009;
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FACCHETTI; IACONO; ALTAFINI, 2011; ESMAILIAN; ABTAHI; JALILI, 2014). By
using these structures, researchers face the challenge of measuring and evaluating balance
within a social network. Differing criteria and different resolution approaches have been
incorporated into the literature as an attempt to accomplish this task. However, most social
network analysis is based on unsigned networks such as Facebook and Twitter (DUCH;
ARENAS, 2005; NEWMAN, 2006; BRANDES et al., 2008), which contain only positive
relationships (e.g. friend or trust) between users. For signed social networks, quantify-
ing and evaluating balance is still challenging and problematic (DOREIAN; MRVAR,
2009; LESKOVEC; HUTTENLOCHER; KLEINBERG, 2010; FACCHETTI; IACONO;
ALTAFINI, 2011; SRINIVASAN, 2011; ESMAILIAN; ABTAHI; JALILI, 2014). This
work is focused on the evaluation of structural balance within these networks. Our main
contribution is to efficiently solve the problem of measuring the structural balance on large
real-world signed social networks.

Clustering is the action of grouping individual elements based on their similarity.
Clustering problems defined on signed graphs arise in many scientific areas, such as efficient
document classification (BANSAL; BLUM; CHAWLA, 2002), detection of embedded
matrix structures (GÜLPINAR et al., 2004), biological systems (DASGUPTA et al., 2007),
community structure (TRAAG; BRUGGEMAN, 2009; MACON; MUCHA; PORTER,
2012), and image segmentation (KIM et al., 2014). The common element among these
applications is the collaborative vs. conflicting environment in which they are defined.
In particular, the clustering task in a signed network attempts to identify k antagonistic
groups in the network, being that most entities within the same cluster are friends while
most entities belonging to different clusters are enemies. Notice that, since this (weak)
balance definition solely applies to signed networks, most traditional clustering algorithms
for unsigned networks cannot be directly applied.

Moreover, with this in mind, the solution of clustering problems defined on signed
graphs can be used as criterion to measure the degree of balance in social networks (DOR-
EIAN; MRVAR, 1996a; DOREIAN; MRVAR, 2009; FIGUEIREDO; MOURA, 2013).
One such instance is the Correlation Clustering (CC) problem, defined by Bansal et
al. (BANSAL; BLUM; CHAWLA, 2002), which provides a measure for clustering a set of
objects into the optimal number of clusters, without specifying a said number in advance.
The main idea is that, in a signed network, there are some links that create imbalance. The
number of such links can be expressed as an amount of frustration. Links that contribute
to frustration are negative links within clusters and positive links between clusters. The
CC objective function consists of minimizing that frustration. Apart from the CC problem,
alternative measures to the structural balance and the clustering problems associated with
them have also been previously discussed (DOREIAN; MRVAR, 2009; FIGUEIREDO;
MOURA, 2013). Our intention is to evaluate the structural balance using the CC and a
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relaxed version of this problem.

From a practical point of view, when solving the clustering problems treated in
this paper, heuristic approaches are of prime interest, since large social networks1 require
analysis (KUNEGIS; LOMMATZSCH; BAUCKHAGE, 2009; LESKOVEC; HUTTEN-
LOCHER; KLEINBERG, 2010; FACCHETTI; IACONO; ALTAFINI, 2011). For example,
large-scale online networks with two opposite kinds of relationships are very common
nowadays. Slashdot (SLASHDOT, 1997), a technology-related news website, includes a
feature which allows users to tag each other as friends or foes. On-line review websites such
as Epinions (EPINIONS, 1999) allow users to either like or dislike other people’s reviews
and this behavior can be modeled as a signed network, where edge weights can be either
greater or less than zero, representing, respectively, a positive or negative relationship. The
definition of a measure to represent the balance/imbalance of a social network adds to itself
a degree of approximation to the task of evaluating balance in a social network. Thus, it is
imperative that the clustering problem associated with this measure be solved efficiently.
This is particularly challenging when, as in social networks retrieved from on-line media,
the size of the community is very big, of the order of 105 individuals or higher.

To our knowledge, until the development of this work, Zhang et al. (ZHANG
et al., 2008) presented the only metaheuristic approach applied to the CC problem. It
consists of a genetic algorithm for the CC problem, applied to document clustering. Since
previous works on the CC problem have used greedy local search algorithms with success
(VOTE/BOEM (ELSNER; SCHUDY, 2009) and Doreian Mrvar algorithm (DOREIAN;
MRVAR, 1996b)), we have chosen to focus our research in the development of local search
algorithms with a greedy component. Moreover, population-based algorithms (like genetic
algorithms) usually have a high computational cost, while local search algorithms with a
greedy component are faster when solving combinatorial problems on large-scale instances.
A neighborhood search heuristic for a related problem (clique partitioning), developed by
Brusco et al. (BRUSCO; KÖHN, 2009), has confirmed our choice.

In this work, we present a Greedy Randomized Adaptive Search Procedure
(GRASP) (FEO; RESENDE, 1995) implementation capable of efficiently solving the
problem in networks of up to 8000 vertices (DRUMMOND et al., 2013). Nonetheless, after
observing the great amount of time spent on the processing of larger graphs, we saw an
opportunity to extend this GRASP algorithm with a hybrid metaheuristic that can solve
the problem faster. We then developed sequential and parallel algorithms based on the
Iterated Local Search (ILS) (LOURENÇO; MARTIN; STÜTZLE, 2003) metaheuristic.
By employing the proposed algorithms, we demonstrate the improvements of ILS over
the GRASP procedure. We also extend the procedure to solve the Symmetric Relaxed

1 We consider small networks those comprised of dozens of nodes, while medium-sized networks contain
hundreds of elements and large-scale ones can have more than a hundred thousand nodes.
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Correlation Clustering (SRCC) problem (DOREIAN; MRVAR, 2009), which provides an
alternative measure of the structural balance of a social network.

By applying the solution provided by these heuristic approaches, we conducted
an analysis of the relative imbalance of the signed networks available in Stanford Large
Network Dataset Collection (LESKOVEC; KREVL, 2014). As previously mentioned,
structural balance theory affirms that human societies tend to avoid tension and conflicted
relationships. In a signed graph that represents a real-world social network, this translates
into a level of balance greater than expected, when compared to a random signed graph of
equivalent size (FACCHETTI; IACONO; ALTAFINI, 2011). Partial hints that real-world,
currently available signed social networks are more balanced than expected are provided
by (KUNEGIS; LOMMATZSCH; BAUCKHAGE, 2009; LESKOVEC; HUTTENLOCHER;
KLEINBERG, 2010; KUNEGIS et al., 2010; FACCHETTI; IACONO; ALTAFINI, 2011).
Our analysis confirms that three well-known signed social networks (WikiElections, Epin-
ions and Slashdot) are indeed extremely balanced, hence supporting previous related
works.

We also present a historical analysis of the results obtained from the voting on
resolutions in the United Nations General Assembly (UNGA), this based on the solutions
for the CC and SRCC problems. Other works have also applied different signed network
clustering methods to similar networks of international alliances and disputes. For example,
Traag and Bruggeman (TRAAG; BRUGGEMAN, 2009) analyze international relations
taken from the Correlates of War (STINNETT et al., 2002) data set, and Macon et
al. (MACON; MUCHA; PORTER, 2012) attempts to identify voting groups in UNGA
annual sessions using three different network representations.

This text is organized as follows. Chapter 1 presents the Correlation Clustering
problem, including a mathematical formulation and a literature review. Chapter 2 describes
sequential and parallel GRASP metaheuristics to solve the CC problem, while Chapter 3
introduces sequential and parallel ILS algorithms that bring an improvement over GRASP.
Experimental results of ILS as well as a comparison with other available solution approaches
are also available in this chapter. An improved local search procedure for the CC problem,
based on CUDA technology, is explained in Chapter 4. Next, Chapter 5 introduces the
SRCC problem, its application and an efficient solution method. Chapter 6 presents an
analysis of structural balance on large real-world social networks, based on the solutions
obtained by using our methodology. Finally, Chapter 7 presents our conclusions.

1.1 The Correlation Clustering Problem

Correlation Clustering (BANSAL; BLUM; CHAWLA, 2002) is a clustering technique
stemming from the problem of document clustering in which, when given a large corpus of
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documents such as web pages, one wants to group them into the optimal number of clusters,
without specifying that number in advance. The basic problem consists of minimizing the
number of unrelated pairs that are clustered together, in addition to the number of related
pairs that are separate. In this section, we formally describe the CC problem and present
a mathematical formulation, to be accompanied by a literature review.

1.1.1 Mathematical Formulation

Let G = (V,E) be an undirected signed graph2 (Figure 1) where V is the set
of n vertices and E is the set of edges. In this text, a signed graph is allowed to have
parallel edges (i.e. two edges associated with a given pair of vertices) but no loops. Also,
we assume that parallel edges always have opposite signs3. For a vertex set S ⊆ V , let
E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced by S. For two vertex sets
S,W ⊆ V , let E[S : W ] = {(i, j) ∈ E | i ∈ S, j ∈ W}. One observes that, by definition,
E[S : S] = E[S]. Consider a function s : E → {+,−} that assigns a sign to each edge in
E. An undirected graph G together with a function s is called a signed graph, denoted by
G = (V,E, s). An edge e ∈ E is called negative if s(e) = − and positive if s(e) = +. Let
E− and E+ denote, respectively, the set of negative and positive edges in a signed graph.
The negative graph density is defined as d− = |E−|/|E|, while the positive graph density
is d+ = |E+|/|E|.

1 2 3

4 5 6

+

+ +

_

___

Positive edge

Negative edge

_ _

Figure 1 – Undirected signed graph.

A partition of V is a division of V into non-overlapping and non-empty subsets.
Consider a partition P = {S1, S2, . . . , Sl} of V . The cut edges and the uncut edges related
2 It is possible to solve the CC problem on directed graphs. One must first convert the directed graph

to an undirected one: opposite arcs with the same sign are converted to a single edge whose weight is
equal to the sum of the arcs’ weights; opposite arcs with different signs become two parallel edges,
each one with the original sign and weight of each arc.

3 It is possible to use the same undirected graph to represent two possible relations. For example,
in a given network, persons A and B may be evaluated by an external individual as collaborators
(positive edge) or competitors (negative edge). In this case, if A and B are both seen as collaborators
or competitors, there will be only one edge between A and B, representing a positive or negative
behavior. On the other hand, if one behaves as collaborator and the other as competitor, there will be
two parallel edges between them, one for each behavior, with opposite signs.
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with this partition are defined, respectively, as the edges in sets ∪1≤i<j≤lE[Si : Sj] and
∪1≤i≤lE[Si]. Let we be a nonnegative edge weight associated with edge e ∈ E. Also, for
1 ≤ i, j ≤ l, let

Ω+(Si, Sj) =
∑

e∈E+∩E[Si:Sj ]
we and Ω−(Si, Sj) =

∑
e∈E−∩E[Si:Sj ]

we.

The imbalance I(P ) of a partition P is defined as the total weight of negative uncut edges
and positive cut edges, i.e.,

I(P ) =
∑

1≤i≤l

Ω−(Si, Si) +
∑

1≤i<j≤l

Ω+(Si, Sj). (1.1)

Likewise, the balance B(P ) of a partition P can be defined as the total weight of positive
uncut edges and negative cut edges. Clearly, B(P ) + I(P ) = ∑

e∈E we. Figure 2 presents
an example of how to calculate the imbalance of an undirected signed graph. That being
said, we are ready to provide a formal definition to the CC problem. Observe that this
definition comprises the unweighted version of the problem.

A B

D E

C

F

+

_

+

++ + +
_

+

+

C

G
_

_

I(P ) = 1 + 4 = 5

Figure 2 – Example of imbalance I calculation for a given graph and partition P .

Problem 1.1.1 (CC problem) Let G = (V,E, s) be a signed graph and we be a non-
negative edge weight associated with each edge e ∈ E. The correlation clustering problem is
the problem of finding a partition P of V such that the imbalance I(P ) is minimized or,
equivalently, the balance B(P ) is maximized.

The classical mathematical formulation for the CC problem is an integer linear
programming (ILP) model proposed to uncapacitated clustering problems (which are also
known as clique partitioning problems whenever the underlying graph is complete; see
references in (MEHROTRA; TRICK, 1998)). In this formulation, a binary decision variable
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xij is assigned to each pair of vertices i, j ∈ V , i 6= j, and defined as follows: xij = 0 if i
and j are in a common set; xij = 1 otherwise. The model minimizes the total imbalance.

minimize
∑

(i,j)∈E−

wij(1− xij) +
∑

(i,j)∈E+

wijxij (1.2)

subject to xip + xpj ≥ xij, ∀ i, p, j ∈ V, (1.3)
xij = xji, ∀ i, j ∈ V, (1.4)
xij ∈ {0, 1}, ∀ i, j ∈ V. (1.5)

The triangle inequalities (1.3) say that if i and p are in a same cluster as well as p and j, then
vertices i and j are also in a same cluster. Constraint (1.4) written to i, j ∈ V establishes
that variables xij and xji assume always the same value in this formulation. Constraints (1.5)
impose binary restrictions to the variables while the objective function (1.2) minimizes the
total imbalance defined by equation (1.1). Even though this formulation is polynomial-sized,
having n(n−1) variables and n3 +n2 constraints, notice that, according to constraints (1.4),
half of the variables can be eliminated, which reduces both the number of variables and
constraints of the formulation.

A set partitioning formulation (MEHROTRA; TRICK, 1998), proposed in the
literature to uncapacitated clustering problems, could also be used in the solution of the CC
problem. As we can expect, these two formulations are not appropriate solution approaches
when time limit is a constraint in the solution process. The authors in (FIGUEIREDO;
MOURA, 2013) report that the classical formulation begins to fail (time limit set to 1h)
with random instances of 40 vertices and negative density (d−) equal to 0.5.

1.1.2 Literature review

To the best of our knowledge, the CC problem, as defined in the previous section,
was addressed for the first time in (DOREIAN; MRVAR, 1996a) (not under this name)
where its heuristic solution was used as criteria for analyzing structural balance in social
networks. The heuristic approach proposed by the authors is a simple greedy neighbor-
hood search procedure that assumes a prior knowledge of the number of clusters in the
solution. This heuristic is implemented in software Pajek (BATAGELJ; MRVAR, 2008).
Motivated by the solution of a document clustering problem, Bansal et al. (BANSAL;
BLUM; CHAWLA, 2002) formalized the unweighted version of the CC problem and also
discussed its NP-completeness proof, whereas the weighted version of the problem was
addressed in Demaine et al. (DEMAINE et al., 2006). Integer linear programming (ILP)
can be used to solve the CC problem optimally, but only when the number of data points
is small. Since it consists of a NP-hard minimization problem, the only available solutions
for large instances are either heuristic or approximate. Predominately investigated from
the viewpoint of constant factor approximation algorithms (BANSAL; BLUM; CHAWLA,
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2002; SWAMY, 2004; CHARIKARA; GURUSWAMIB; WIRTHA, 2005; DEMAINE et
al., 2006; GIOTIS; GURUSWAMI, 2006; AILON; CHARIKAR; NEWMAN, 2008), the
problem has been applied in the solution of many applications, including portfolio analysis
in risk management (HARARY; LIM; WUNSCH, 2003; HUFFNER; BETZLER; NIE-
DERMEIER, 2010), biological systems (DASGUPTA et al., 2007; HUFFNER; BETZLER;
NIEDERMEIER, 2010), grouping of genes (BHATTACHARYA; DE, 2008), efficient docu-
ment classification (BANSAL; BLUM; CHAWLA, 2002), detection of embedded matrix
structures (GÜLPINAR et al., 2004) and community structure (TRAAG; BRUGGEMAN,
2009; MACON; MUCHA; PORTER, 2012). Additionally, some authors have focused on
the detection of overlapping communities in signed graphs (ZHANG; WANG; ZHANG,
2007; BONCHI; GIONIS; UKKONEN, 2011). In particular, Bonchi et al. (BONCHI;
GIONIS; UKKONEN, 2011) define an optimization problem that extends the framework
of Correlation Clustering to allow overlaps.

A comparison of several heuristic strategies (greedy and local search methods)
for the problem is presented in (ELSNER; SCHUDY, 2009) and applied to document
clustering4 and natural language processing (instances of n = 1000), to which ILP does
not scale. In this context, the authors’ recommended strategy for solving the CC Problem
is a greedy algorithm called V OTE/BOEM , which can quickly achieve good objective
values with tight bounds.

In Yang et al. (YANG; CHEUNG; LIU, 2007), the CC problem is known as
community mining and an agent-based heuristic called FEC is proposed to its solution.
In order to assess the performance of FEC, the authors present a method for generating
random signed networks with controlled community structures, based on a set of community
structure-conscious parameters. However, they only test their algorithm results against
the Doreian Mrvar (DM) algorithm (DOREIAN; MRVAR, 1996b), based on the clusters
listed in each solution, and without presenting a numerical measure of imbalance. Also,
according to the authors, the success of the FEC algorithm is based on its capacity of
extracting the communities initially defined by the aforementioned generation routine.

An approach based on genetic algorithms has been proposed in Zhang et al. (ZHANG
et al., 2008) for the CC problem and applied to document clustering, although unfortunately,
there is no explanation about how the genetic operators are applied and we were unable
to obtain the program code or recreate the instances used in the experiments, making
it difficult to understand and reproduce the proposed algorithm. As far as we are aware,
before the development of this work, Zhang et al. (ZHANG et al., 2008) presented the
only metaheuristic approach applied to the CC problem.

4 The original data set from UCI Machine Learning Repository (BACHE; LICHMAN, 2013) consists
of 20000 messages taken from 20 newsgroups. However, since the authors’ bounding technique did
not scale to the full dataset, they restricted their testbed to a subsample of 100 messages from each
newsgroup, for a total of 2000 messages.
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Finally, it is important to note that the term Correlation Clustering is also used
to refer to a different correlation clustering problem, in which multidimensional data
are analyzed aiming to spot clusters of objects in subspaces of the multidimensional
space (KRIEGEL; KRÖGER; ZIMEK, 2009).
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2 Solving the Correlation Clustering Problem
by GRASP

A metaheuristic is a higher-level procedure or heuristic designed to find, generate
or select a lower-level procedure or heuristic (partial search algorithm), in order to sample
a set of solutions which is too large to be completely examined. Metaheuristics have been
used successfully for solving hard combinatorial optimization problems as they can provide
sub-optimal solutions in a reasonable time.

GRASP is a multi-start metaheuristic in which each iteration consists basically
of two phases: construction and local search (FEO; RESENDE, 1995). The solutions
generated by a GRASP construction procedure are not guaranteed to be locally optimal
with respect to simple neighborhood definitions. Hence, it is almost always beneficial to
apply a local search to attempt to improve each constructed solution.

To our knowledge, this is the first time the GRASP metaheuristic has been imple-
mented to solve the CC Problem. First, it was developed as a sequential program. Then,
in order to obtain performance improvements that would allow the program to scale to
large network instances, we extended the algorithms to run tasks in parallel, using two
well-known strategies.

2.1 Greedy Randomized Adaptive Search Procedure (GRASP) for
the CC problem
We have designed and implemented a GRASP method which has been applied in

many combinatorial optimization problems. The proposed heuristic (GraspCC) is based
on a GRASP method for the maximum modularity problem (NASCIMENTO; PITSOULIS,
2013), which produced superior and robust (with respect to solution quality) solutions,
better than other heuristics from the literature on the majority of the its cases. First, we
have adapted the construction phase proposed by Nascimento et al. (NASCIMENTO;
PITSOULIS, 2013), replacing the modularity gain function (used on unsigned graphs) by an
imbalance (minimization) gain function, which makes more sense for signed networks. The
second step was to improve the local search procedure, replacing the simple neighborhood
traversal with a Variable Neighborhood Descent heuristic.

Our GraspCC is described in Algorithm 1. The parameter iter denotes the max-
imum number of iterations without improvement in the best solution found. The first
task in each iteration of GraspCC is the construction of an initial solution in a greedy
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randomized fashion. This task is performed in ConstructivePhase procedure described in
Algorithm 2. In order to describe it, we need some additional notation.

Let P = {S1, S2, ..., Sl} denote a partial partition (i.e., a partition of a proper subset
of V ). We define below a function g : (V \⋃

1≤k≤l Sk)→ R, which will measure the impact
on imbalance I of inserting a vertex i in the partial partition P .

g(i) = min

I(P ∪ {i}), min
1≤k≤l
Sk∪{i}

I(P )

 . (2.1)

This minimization function compares the cost of inserting vertex i in a new cluster
(g(i) = I(P ∪ {i})) with the cost of inserting it into one of the l clusters in P . Note that a
vertex with a low cost function value will probably generate less imbalance if we add it to
the partial partition P .

In this phase, the ordered set Lg is defined (line 3) as the set of vertices V \⋃
1≤k≤l Sk

ordered in decreasing order of function g (Figure 3). At each iteration, in lines 4-8, we
randomly choose a vertex i among the first bα. | Lg |c vertices in this set and add it
to the partial partition. Note that parameter α denotes the degree of randomness the
construction phase will have. This process is repeated until a partition of V is obtained.

Algorithm 1: GraspCC
1 Input: G = (V,E) and α
2 Output: partition P ∗
3 P ∗ = ∅; I(P ∗) =∞; i = 0;
4 while (i 6 iter)
5 P = ConstructivePhase(G,α);
6 P = V ariableNeighborhoodDescent(P,G);
7 if (I(P ) < I(P ∗))
8 P ∗ = P ; i = 0;
9 end if

10 i = i+ 1;
11 end while
12 return P ∗;

There is no guarantee that the construction method returns a locally op-
timal solution with respect to some neighborhood. Therefore, the solution P ob-
tained in ConstructivePhase could be improved by the local search procedure
V ariableNeighborhoodDescent (Algorithm 3).

The Variable Neighborhood Search (VNS) method, proposed by Mladenović and
Hansen (MLADENOVIĆ; HANSEN, 1997), is a metaheuristic that explores distant neigh-
borhoods of the current incumbent solution, and moves to a new solution if and only if an
improvement is made. The main idea is to systematically explore differing neighborhood
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Figure 3 – Constructive phase.

structures, with the goal of escaping from local minima. Within this work, we apply the
Variable Neighborhood Descent (VND) search, a variant of VNS. As illustrated in Figure 4,
VND starts with the partition provided by the construction phase and iteratively compares
the incumbent value I(P ) with the new value I(P ) obtained in the r − neighborhood,
denoted by Nr(P ) and defined as the family of all partitions obtained by moving r vertices
in P from one cluster into another. Figure 5 illustrates the neighborhood structures used
in this work (N1(P ), or 1-opt, and N2(P ), also known as 2-opt1(GENDREAU; POTVIN,
2010)), while Figure 6 examplifies a sequence of movements of the N1(P ) neighborhood.
If an improvement is obtained, r is returned to its initial value and the new incumbent
updated (lines 7 and 8 in Algorithm 3). Otherwise, the next neighborhood is considered
(line 12). The local search halts when no better partition is found in the most distant
neighborhood of the current solution. Note that the neighborhood analyzes partitions
with different number of clusters (i.e. a vertex can be moved into a new cluster or can be
removed from a single vertex cluster).

The use of simpler neighborhoods (moving vertices between clusters) is better
suited for the solution of large-scale real-world social networks, the focus of this work. For
this reason, we dicarded any complex neighnorhood structure or more advanced processing

1 A 1-optimal (or 1-opt) is a move which changes the value of one variable at a time, while a 2-optimal
(2-opt) neighborhood is defined as a move which simply exchanges two assignments of the current
solution(GENDREAU; POTVIN, 2010). In the CC problem, for example, a 2-opt move means moving
2 vertices in P from one cluster into another.
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such as path relinking (LAGUNA; MARTI, 1999; RESENDE; RIBEIRO, 2005). Another
strategy to optimize local search and save time was employing a first improvement (first
descent) heuristic, which means that local search will stop whenever it finds an improvement
of the current solution. This avoids the complete traversal of the r-neighborhood, which is
very time-consuming.

Algorithm 2: ConstructivePhase
1 Input: G = (V,E) and α
2 Output: partition P
3 P = ∅; Lf = Order(V );
4 while (Lf 6= ∅)
5 Choose vertex i randomly among the first bα. | Lf |c elements of Lf ;
6 Update Sk = Sk ∪ {i} where k is the component in P that minimizes f ;
7 Lf = Lf − {i}; Re-order(Lf );
8 end while
9 return P ;

Algorithm 3: V ariableNeighborhoodDescent
1 Input: G = (V,E) and a partition P
2 Output: partition P
3 r = 1;
4 while (r ≤ 2)
5 for all P ∈ (Nr(P ))
6 if (I(P ) < I(P ))
7 r = 1;
8 P = P ;
9 end if

10 end for
11 if (P has not improved)
12 r = r + 1;
13 end if
14 end while
15 return P ;

2.2 Parallel strategies to improve performance
In practice, interesting real-world optimization problems are often NP-hard, com-

plex, and time consuming. Although the utilization of a sequential metaheuristic provides
significant time reduction in the search process, execution time remains high for real-world
problems arising in both academic and industrial domains. For example, when it comes to
signed social networks, the instances generated from Wikipedia, Slashdot and Epinions
websites, available in (LESKOVEC; KREVL, 2014), have thousands of nodes and in some
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P P*N1 N2

Figure 4 – Variable Neighborhood Descent procedure. N1 stands for 1-opt neighborhood;
N2 stands for 2-opt neighborhood.

N1

......

S1 Sk

......

S1 Sk Sk+1

i

N2

......

S1 Sk

......

S1 Sk Sk+1

i

j

Original solution New solution

Figure 5 – Local search neighborhood structures used by GRASP. N1 stands for 1-opt
neighborhood; N2 stands for 2-opt neighborhood.
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Figure 6 – Example of 1-opt (or N1) neighborhood movements (FRINHANI et al., 2011).

cases almost a million relationships2. Therefore, parallelism presents as a natural way not
to only reduce the search time, but also to improve the quality of the provided solutions.

2.2.1 Independent Parallel GRASP Algorithm

Our first strategy was to employ the well-known independent approach in the
parallel program (GENDREAU; POTVIN, 2010). When p processors are used, a single
(master) process reads the problem data and passes it to the remaining p− 1 processes.
The number of multistart iterations is then divided among the set of p processes. Each
process executes a copy of the GRASP program and global search terminates once each
individual search stops, i.e., when the maximum number of allotted iterations is completed.

Since we applied message passing for communication among processes, this scheme
limits information exchange between processes only for problem input, detection of process
termination and determination of best overall solution. It is also worth noting that various
random seeds were used for each process in the construction phase (line 5 in Algorithm 2)
to favor the exploration of different search spaces by the independent programs.
2 Wikipedia adminship election data has 7,000 vertices and 100,000 edges, Epinions signed social network

has 131,828 vertices and 841,372 edges and Slashdot Zoo signed social network (from February 21
2009) is comprised of 82,144 vertices and 549,202 edges.
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2.2.2 Parallel Variable Neighborhood Descent (PVND) on MPI

Despite having several GRASP processes in parallel, which divides the number
of alloted iterations, the previous parallelization strategy has an efficiency limit. Since
our GRASP’s main stopping criterion is the number of multistart iterations without
improvement, increasing the number of simultaneous processes in order to reduce the
quantity of iterations presents good results up to a certain level. Moreover, the previous
algorithm still performs local search sequentially. When processing large network files, this
stage proves to be very time-consuming, as can be seen in Figure 7.

600
1,000

2,000
4,000

8,000

60%

62%

64%

66%

68%

70%

72%

74%

Number of vertices (n)

T
im

e
sp
en
t
on

lo
ca
ls

ea
rc
h

Figure 7 – Time spent on sequential local search, processed by sequential GRASP (α = 1.0,
r 1-opt, iter = 400) on Slashdot social network instances.

Another strategy for parallel implementation that, besides reducing the computation
time, can also increase the exploration in the search space, consists of partitioning the
search neighborhood and assigning each partition to a process running on a separate CPU
(ALBA, 2005; CRAINIC; TOULOUSE, 2010). With this idea in mind, an interesting
approach is extending the parallel metaheuristics to use the Parallel Variable Neighborhood
Descent (PVND) (EKŞIOGLU; PARDALOS; RESENDE, 2002) algorithm inside its local
search phase.

In this second approach of parallelizing the program, besides having a set of
processes responsible for executing a copy of GRASP, there is an alternate process known
as search slave, which is specialized in executing the local search (VND) algorithm. The
only difference from the VND procedure, as previously explained, is the neighborhood
traversal (line 5 in Algorithm 3), which is now executed in parallel, attempting to obtain a
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balanced load among the processors. Therefore the search space of the r − neighborhood
of the current solution (Nr(P )) is divided among the available search slave processes in
order to find the combination that minimizes the imbalance value I(P ). In the parallel
search of the N1(P ) neighborhood, for instance, each process will be in charge of moving a
subset of vertices to another cluster, one vertex at a time. Search slave processes send a
message to an GRASP master process when they either stop upon finding a better solution
or complete their walk through the provided search space (in case no improved solution
has been found). Finally, the GRASP master process will be in charge of gathering each
search result produced in parallel, choosing the best one.

Search slave processes execute lines 5-12 in Algorithm 4, sending a message to a
GRASP master process when they either stop upon finding a better solution or complete
their walk through the provided search space. Finally, the GRASP master process will be
in charge of gathering each search result produced in parallel, choosing the best one (lines
13-16).

Figure 8 exemplifies how Parallel GRASP with PVND traverses the search space.
Suppose the algorithm runs with a total of 16 processes, out of which 4 are GRASP
master processes (with ranks3 1, 5, 9 and 13), each one with a different random seed.
For this reason, it is highly probable that each GRASP master will commence with a
considerably different initial solution. Additionally, every process whose rank is different
from the previous four is a Parallel VND search slave process. When Parallel VND is
started, each GRASP master process splits the neighborhood of its current solution into
four parts, dividing the neighborhood traversal between its three PVND search slaves and
itself, resulting in four search tasks running in parallel. Division of the previously defined
neighborhood Nr(P ) is done in a very simple way: each process is responsible for a specific
range of clusters from which a vertex can be moved. A sample process allocation scheme
is detailed in Figure 9.

2.3 Experiments and performance comparisons
After implementing the algorithms presented in the previous section, we have

conducted extensive experiments in order to assess its performance against different sets of
signed graph instances. The solutions obtained by our metaheuristics were then compared
to results obtained from other solution techniques available in the literature. The following
methods were implemented for comparison:

• Integer Linear Programming (ILP) model: can provide an exact solution to
the CC problem, but is unable to process larger instances. Besides using the exact

3 A rank is a unique process identifier, an integer r in the range 0 ≤ r ≤ p− 1, where p is the number of
available processes.
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Algorithm 4: ParallelLocalSearch
1 Input: G = (V,E), partition P , neighborhood size r and number of search slave
processes y

2 Output: partition P
3 Let Ny

r (P ) = Nr(P ) equally divided in y pieces;
4 for each slave process y, send a message to execute the following block:
5 begin parallel block
6 Py = P

7 for all P ∈ (Ny
r (P ))

8 if I(P ) < I(Py)))
9 Py = P ;

10 end for
11 Send Py back to master process;
12 end parallel block
13 for each process y, receive a message containing Py:
14 if (I(Py) < I(P ))
15 P = Py;
16 return P ;

Current solution of processors of GRASP 1
(processes from 1 to 4)

Current solution of processors of GRASP 4
(processes from 13 to 16)

Space of feasible solutions

Figure 8 – Sample Parallel GRASP with PVND search space traversal

solution provided by the ILP model, we identify for which instance size the ILP
formulation becomes very big and the solver is not able to return a good solution
within the time limit. In these cases, the use of heuristics is necessary.

• Doreian Mrvar Method, implemented in Pajek software4 (BATAGELJ; MR-
VAR, 2008): consists of a relocation algorithm for partitioning signed graphs. In

4 The Pajek program is for analysis and visualization of large networks, which provides features such as
cluster identification, decomposition of large networks, visualization tools, as well as an implementation
of several efficient algorithms for analysis of large networks, having thousands or even millions of
vertices.



20 Chapter 2. Solving the Correlation Clustering Problem by GRASP

Figure 9 – GRASP with PVND machine-process deployment example. In this case, there
are 6 GRASP master processes and 18 VND search slave processes. Since each
machine has 8 processor cores, it will be able to host 8 processes at a time, for
example GRASP 1 and GRASP 2 process groups.

simple terms, a given partition (randomly generated at each iteration) is optimized
to get as much as possible positive edges inside clusters and negative edges between
clusters. In the local optimization procedure, vertices can be moved from one cluster
to another or pairs of vertices can be interchanged between clusters. For each such
change, the criterion function is evaluated. If a relocating change leads to a decrease
of the criterion function, the new partition is retained and the process continues
until the criterion function cannot be lowered. If the procedure finds several opti-
mal solutions, all of them are reported. More details are available in Doreian and
Mrvar (DOREIAN; MRVAR, 1996b);

• VOTE/BOEM heuristic (ELSNER; SCHUDY, 2009): provides good correlation
clustering solutions on datasets far too large for ILP to scale. The algorithm is
composed of two phases: (1) the VOTE algorithm adds each vertex to the cluster
that minimizes the correlation clustering objective; and (2) the best one element
move (BOEM) algorithm repeatedly makes the most profitable and the best element
move until a local optimum is reached.

As previously metioned, although an approach based on genetic algorithms has
been proposed in Zhang et al. (ZHANG et al., 2008) for the CC problem and applied
to document clustering, unfortunately, we were unable to implement the procedure and
compare it to our algorithms. There was no explanation as to how the genetic operators
were applied and we were also unable to obtain or recreate the instances used in the
experiments.

Moreover, we were also unable to directly compare our results with the solutions
of the FEC algorithm in Yang et al. (YANG; CHEUNG; LIU, 2007), even though we
had generated and used, in our experiments, the random signed networks with controlled
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community structures, as presented in their work. We verified that, since the FEC heuristic
is focused on community detection, using a different criterion than minimizing imbalance,
FEC does not present optimal (or close to optimal) solutions for the CC problem. In fact,
when using the aforementioned random instances as reference, the imbalance measures of
the best clustering configurations pointed by FEC are higher than the solutions generated
by our algorithms.

We next present extensive computational results obtained with three benchmarks.

2.3.1 Computational environment

The algorithms described in the previous section were implemented in ANSI C++
and MPI (GROPP; LUSK; SKJELLUM, 1999) (OpenMPI) for message passing. All
experiments were performed (with exclusive access) on a cluster with 42 nodes, each one
with two Intel Xeon QuadCore 2.66GHz processors and 16Gb of RAM under Linux (Red
Hat 5.3). The ILP formulation presented in this section is coded in Xpress Mosel 3.2.0
with solver Xpress Optimizer 21.01.00. The CPU time limit is set to 2 hours for the ILP
formulation. Additionally, all heuristic outcomes represent the average of 25 independent
runs and all confidence intervals (CI) were obtained through Student’s t-test at a confidence
level of 95%.

2.3.2 Test problems

Computational experiments were undertaken on (i) a set of 32 social networks from
the literature, (ii) a set of 63 network instances that represent the United Nations General
Assembly (UNGA) voting data and (iii) a set of 60 completely random instances. We will
briefly describe these instances5.

(i) This set of instances is composed by 22 small-sized instances normally used in block-
modeling approaches to structural balance (BRUSCO, 2003; DOREIAN; MRVAR,
2009; FIGUEIREDO; MOURA, 2013) and 10 signed networks (with n varying from
200 to 10, 000 vertices) extracted from the large scale social network representing
the technology-related news website Slashdot6(LESKOVEC; HUTTENLOCHER;
KLEINBERG, 2010; FACCHETTI; IACONO; ALTAFINI, 2011).

(ii) We generated 63 medium-sized social networks based on UNGA voting records of
5 All instances are available in <http://www.ic.uff.br/~yuri/files/CCinst.zip>.
6 We have extracted subsets of Slashdot Zoo signed social network from February 21 2009 (LESKOVEC;

KREVL, 2014), containing the first n vertices, where 200 ≤ n ≤ 10000. Since the original Slashdot
network is a signed digraph, before extracting the subsets, we have converted it into an undirected
graph.

http://www.ic.uff.br/~yuri/files/CCinst.zip
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the separate annual sessions between 1946 and 20087. These instances are weighted
versions of UNGA signed graphs described in (FIGUEIREDO; FROTA, 2014). The
set of vertices in each signed graph represents the set of countries in the associate
annual voting session. The set of weighted positive/negative edges is defined as
follows. For each pair of vertices (countries) i, j and for each resolution voted in
the session, we totaled the weights associated with all pairs of votes from i and j:
edge weights can be equal to 1.0 or 0.5; a positive edge means an agreement, while
a negative edge represents a disagreement. Following an observation from Macon
et al. (MACON; MUCHA; PORTER, 2012), we treat differently the disagreement
(agreement) in a yes-no (yes-yes or no-no) pair of votes on a same resolution from a
yes-abstain or no-abstain (abstain-abstain) pair. We normalize by the total number
of votes in a session.

(iii) We generated random social networks with n ∈ {100, 200, 300, 400, 600}, varying
network density d = 2 × |E|/(n2 − n) and negative graph density defined here as
d− = |E−|/|E|. For each value of n, we considered a set of 12 random instances
having d and d− ranging, respectively, in sets {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}.
The random selection of graph edges follows a uniform distribution. Random networks
are generally hard-to-solve instances, for not having a well-defined cluster structure.
Moreover, since real-world signed networks are generally sparse graphs, random
networks are important to assess the performance of the algorithm as the the graph’s
edge density grows. The largest random graph used in the experiments has such
a size that the ILP solver would be unable to find a feasible solution within the
specified time limit.

2.3.3 Methodology

We incorporated the instances in (i) and (ii) to parametrize the heuristics. Several
tests were conducted with GRASP parameters varying according to the following range:

• Number of iterations without improvement (iter): 100, 200, 300, 400;

• ConstructivePhase randomness factor (α): 0, 0.4, 0.8, 1.0;

• Neighborhood size (r): r = 1 and r ≤ 2.

A high value for the α parameter results in the generation of more diverse initial solutions
(highly random), while a low value like α = 0.4 consists of a more greedy approach (more
importance is given to the imbalance gain function).
7 United Nations General Assembly Voting Data, by Anton Strezhnev and Erik Voeten, <http://hdl.

handle.net/1902.1/12379>. Accessed in May 2014.

http://hdl.handle.net/1902.1/12379
http://hdl.handle.net/1902.1/12379
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In order to apply the GRASP algorithm, the following configuration presented the
best results:

SetPar Graph size Time limit Alpha Neighborhood Number of iterations without improvement
A n < 200 1 hour α = 0.8 r ≤ 2 iter = 400
B n ≥ 200 2 hours α = 1.0 r = 1 iter = 400

When testing the independent parallel version of GRASP, if p is the number of
simultaneous processes, the number of iterations (iter parameter) is reduced to iter/p.
This is due to the fact that the parallel procedure executes p independent metaheuristic
procedures at the same time, which provides enough variability so that the aggregated
results of parallel GRASP are quality-equivalent to those of the sequential GRASP.

Whenever it is required to assess the performance of parallel algorithms, two metrics
are applied: speed-up Su(p) measures the acceleration observed for the parallel algorithm
when compared with its sequential version and efficiency E(p) measures the average
fraction of time along which each process is effectively used. Thus, Su(p) = T (seq)/T (p),
such that T (seq) is the time required for the sequential algorithm and T (p) the time
required for the parallel algorithm run on p processors, and E(p) = Su(p)/p.

2.3.4 Exact solution by ILP formulation

As noted in the literature (MEHROTRA; TRICK, 1998), the linear relaxation
of the ILP formulation described in Chapter 1 provides a very good representation of
the problem which allows discovering the optimal solution for many instances by solving
this linear relaxation. Experiments reported in Figueiredo and Moura (FIGUEIREDO;
MOURA, 2013) confirm this assertion: the 22 small instances in set (i) were solved to
optimality in some seconds. Also, in our experiments, the instances in set (ii) were solved
to optimality by the ILP formulation in the root of the branch and bound tree. The results
obtained on some of these instances with the ILP formulation are reported in Table 1. We
can conclude that these signed networks are almost perfectly balanced with most part of
the imbalance given by negative relations.

The drawback of the ILP approach appears when we attempt to solve larger
instances. For most completely random instances in (iii), the solver is unable to find an
optimal solution within the time limit (Table 2). On Slashdot-based instances, the ILP
formulation becomes too big and the solver is unable to return any solution within the
prescribed time limit.

2.3.5 Sequential GRASP

We have first compared the results obtained with Xpress and the sequential GRASP
on UNGA (ii) and random (iii) instances, respectively. As displayed in Table 3, the GRASP
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Instance Optimal Solution Times (s)
Session n |E−| |E+| w(E−) w(E+) k %I %I− %I+ T (Xpress) T (seq)
2003 191 1119 16636 247.33 8247.60 2 0.09 0.47 0.08 281 51
2004 191 945 17121 315.15 8646.75 2 0.23 2.74 0.14 301 47
2005 192 1120 16566 251.28 8271.56 3 0.47 3.03 0.40 338 48
2006 192 886 17378 248.60 8873.92 2 0.32 1.59 0.28 223 49
2007 192 1109 17148 260.26 8646.04 2 0.51 4.18 0.40 262 59
2008 192 1055 17091 256.66 8854.55 2 0.40 5.05 0.27 178 56

Table 1 – Results obtained on UNGA instances with Xpress (ILP formulation) and the sequential
GRASP algorithm. Number of vertices (n); number of negative (|E−|) and positive (|E+|)
edges; sum of negative (w(E−)) and positive (w(E+)) weights; number of clusters (k) in the
optimal solution P̄ ; percentage imbalance (%I = 100× IP (P̄ )/w(E)); negative percentage
imbalance (%I− = 100× IP−(P̄ )/w(E−)) where IP−(P̄ ) is the sum of weights of negative
edges in the optimal solution; positive percentage imbalance (%I+ = 100× IP+(P̄ )/w(E+))
where IP+(P̄ ) is the sum of weights of positive edges in the optimal solution; and time
in seconds spent by the Xpress software to solve the ILP formulation (T (Xpress)) and by
the sequential GRASP procedure SeqGRASP (T (seq)). T (seq) is the average value after 25
executions of the heuristic.

program was able to solve the instances in (ii) faster than Xpress, with similar solution
quality, and, for the instances in (iii), Xpress was not able to find an optimal solution to
most networks of size bigger than 100 vertices within the 2-hour time limit (Table 2).

2.3.6 Comparison with existing heuristics

Our goal in the next subsections is to verify the limit of Doreian Mrvar and
VOTE/BOEM heuristics. Notice that these heuristics are simplified versions of a local
search heuristic, so they tend to have inferior performance when compared to metaheuristics.
In order to run the tests, we chose to slice a huge real-world network into smaller sizes
(Slashdot-based instances in set (i)).

2.3.6.1 Sequential GRASP vs. Doreian Mrvar Method

In this section we compared our GRASP procedure with Doreian Mrvar Method
to solve some of the most challenging instances available in the related literature: the
Slashdot instances in set (i).

The Doreian Mrvar Method (implemented in Pajek software) presents good-quality
results (with respect to solution value and average time spent) for the small-sized literature
instances in (i) and also for random social networks of up to 50 vertices (the results are
available in Figueiredo and Moura (FIGUEIREDO; MOURA, 2013)). However, for larger
instances, it presents poor performance.

For this benchmark, we have obtained average results of 25 executions. The software
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ILP SeqGRASP
n e d d- BestSol Time Avg I(P) CI[I(P)] Gap %I(P) Avg Time CI(Time) Gap Time
100 990 0.1 0.2 198 71.49 198.00 0.00 0.00% 1.25 0.11 -70.24

0.5 292 1,339.70 238.40 1.52 -18.36% 3.85 0.64 -1,335.85
0.8 50 308.74 72.24 1.12 44.48% 6.06 0.76 -302.68

1980 0.2 0.2 396 82.50 396.00 0.00 0.00% 1.19 0.09 -81.31
0.5 780 933.03 586.08 1.27 -24.86% 5.73 0.62 -927.30
0.8 272 709.02 226.24 1.16 -16.82% 9.49 1.06 -699.53

4950 0.5 0.2 990 60.42 990.00 0.00 0.00% 1.27 0.17 -59.15
0.5 2234 1,267.70 1,842.32 2.90 -17.53% 9.84 1.02 -1,257.86
0.8 858 641.85 752.64 2.01 -12.28% 18.53 1.40 -623.32

7920 0.8 0.2 1584 33.16 1,584.00 0.00 0.00% 1.53 0.32 -31.63
0.5 3624 1,542.02 3,132.64 2.39 -13.56% 12.23 1.29 -1,529.79
0.8 1476 689.52 1,325.20 1.30 -10.22% 28.21 3.52 -661.31

200 3980 0.1 0.2 796 812.28 792.00 0.00 -0.50% 2.56 0.31 -809.72
0.5 1990 703.44 1,227.92 3.62 -38.30% 15.07 2.15 -688.37
0.8 3184 1,289.60 462.32 1.81 -85.48% 27.36 3.25 -1,262.24

7960 0.2 0.2 1592 994.13 1,592.00 0.00 0.00% 2.49 0.33 -991.64
0.5 3980 1,001.72 2,870.08 4.76 -27.89% 25.30 3.98 -976.42
0.8 6368 2,988.93 1,155.28 2.73 -81.86% 51.92 5.22 -2,937.01

19900 0.5 0.2 3980 2,386.59 3,980.00 0.00 0.00% 3.04 0.22 -2,383.55
0.5 9606 1,687.30 8,155.52 7.19 -15.10% 39.25 6.50 -1,648.05
0.8 3824 2,395.06 3,410.80 3.52 -10.81% 96.79 13.23 -2,298.27

31840 0.8 0.2 6368 1,449.56 6,368.00 0.00 0.00% 3.97 0.44 -1,445.59
0.5 15920 2,272.33 13,615.04 6.59 -14.48% 54.16 10.89 -2,218.17
0.8 6236 2,108.50 5,752.24 2.42 -7.76% 151.01 19.47 -1,957.49

300 8970 0.1 0.2 1794 862.03 1,794.00 0.00 0.00% 3.98 0.32 -858.05
0.5 4486 859.98 3,078.72 4.79 -31.37% 36.53 3.99 -823.45
0.8 7176 857.13 1,217.92 2.35 -83.03% 73.76 7.09 -783.37

17940 0.2 0.2 3588 865.92 3,588.00 0.00 0.00% 4.17 0.21 -861.75
0.5 8970 866.94 6,891.36 6.67 -23.17% 62.26 10.47 -804.68
0.8 14352 862.98 2,864.32 2.77 -80.04% 137.69 15.34 -725.29

44850 0.5 0.2 8970 861.98 8,970.00 0.00 0.00% 6.23 0.34 -855.75
0.5 22426 879.82 19,119.76 8.92 -14.74% 110.13 24.89 -769.69
0.8 35880 871.12 8,041.76 4.99 -77.59% 243.59 41.25 -627.53

71760 0.8 0.2 14352 866.66 14,352.00 0.00 0.00% 9.18 0.65 -857.48
0.5 35880 882.58 31,731.76 14.71 -11.56% 146.82 49.27 -735.76
0.8 57408 879.75 13,326.48 4.17 -76.79% 398.19 71.99 -481.56

400 15960 0.1 0.2 3192 7,200.00 3,192.00 0.00 0.00% 5.63 0.24 -7,194.37
0.5 7980 7,200.00 5,796.08 7.28 -27.37% 70.71 10.28 -7,129.29
0.8 12768 4,675.04 2,342.40 4.02 -81.65% 162.51 23.72 -4,512.53

31920 0.2 0.2 6384 4,711.29 6,384.00 0.00 0.00% 6.62 0.34 -4,704.67
0.5 15960 4,819.54 12,836.16 10.38 -19.57% 102.82 19.05 -4,716.72
0.8 25536 7,200.00 5,330.16 5.63 -79.13% 285.95 40.57 -6,914.05

79800 0.5 0.2 15960 3,921.77 15,960.00 0.00 0.00% 11.96 0.70 -3,909.81
0.5 39900 7,200.00 34,827.36 10.36 -12.71% 216.03 77.99 -6,983.97
0.8 63840 4,970.73 14,639.68 6.38 -77.07% 550.07 116.59 -4,420.66

127680 0.8 0.2 25536 7,200.00 25,536.00 0.00 0.00% 17.68 1.22 -7,182.32
0.5 63840 7,200.00 57,417.76 14.16 -10.06% 327.69 142.55 -6,872.31
0.8 102144 7,200.00 24,096.80 7.23 -76.41% 848.73 183.45 -6,351.27

600 35940 0.1 0.2 - 7,200.00 7,188.00 0.00 - 10.89 0.60 -7,189.11
0.5 - 7,200.00 13,901.20 9.67 - 190.45 35.93 -7,009.55
0.8 - 7,200.00 5,730.40 5.03 - 428.02 66.69 -6,771.98

71880 0.2 0.2 - 7,200.00 14,376.00 0.00 - 14.62 0.52 -7,185.38
0.5 - 7,200.00 30,136.32 10.40 - 298.51 91.20 -6,901.49
0.8 - 7,200.00 12,615.12 5.88 - 797.49 146.57 -6,402.51

179700 0.5 0.2 - 7,200.00 35,940.00 0.00 - 29.33 1.47 -7,170.67
0.5 - 7,200.00 80,678.48 19.79 - 679.53 316.09 -6,520.47
0.8 - 7,200.00 33,809.76 8.46 - 1,581.51 446.58 -5,618.49

287520 0.8 0.2 - 7,200.00 57,504.00 0.00 - 42.74 2.94 -7,157.26
0.5 - 7,200.00 132,075.52 26.65 - 1,042.45 566.78 -6,157.55
0.8 - 7,200.00 55,163.20 10.00 - 2,210.26 736.74 -4,989.74

Average - 3,301.40 - - -23.62% 195.61 55.53 -3,105.78

Table 2 – ILP and sequential GRASP (SeqGRASP) results for random instances in (iii). Instances
not solved to optimality by ILP formulation are marked with bold values in column (ILP -
BestSol); in that case this column exhibits the value of the best integer solution found in the
time limit. Avg I(P) is the average imbalance and Avg Time is the average execution time (in
seconds), after 25 executions of the heuristic. Gap %I(P)= 100× (Avg I(P)−BestSol)/BestSol.
Gap Time is the gap between ILP and SeqGRASP execution times. CI[I(P)] and CI(Time)
are the 95% confidence intervals of the imbalance and execution time, respectively.
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Year ILP SeqGRASP
I(P) Time BestSol CI(BestSol) Gap %I(P) Avg Time CI(Time) Gap Time

1946 9.3327 2.00 9.3378 1.18E-07 0.05% 2.57 0.30 0.57
1947 18.6904 6.00 18.6975 1.67E-07 0.04% 3.84 0.37 -2.16
1948 16.9734 6.00 16.9853 9.61E-08 0.07% 6.38 0.38 0.38
1949 37.7317 7.00 37.7484 4.99E-07 0.04% 3.54 0.29 -3.46
1950 25.0162 4.00 25.0279 1.92E-07 0.05% 3.25 0.32 -0.75
1951 58.9514 20.00 58.9600 3.85E-07 0.01% 4.04 0.39 -15.96
1952 46.0840 7.00 46.0990 2.72E-07 0.03% 4.73 0.33 -2.27
1953 31.2752 6.00 31.2880 0.00E+00 0.04% 3.65 0.34 -2.35
1954 32.8097 7.00 32.8227 4.71E-07 0.04% 4.57 0.54 -2.43
1955 13.1367 2.00 13.1468 1.36E-07 0.08% 3.96 0.40 1.96
1956 47.7567 17.00 47.7781 2.72E-07 0.04% 8.59 1.16 -8.41
1957 106.7950 75.00 106.8349 4.46E-07 0.04% 7.98 0.93 -67.02
1958 122.4970 112.00 122.5359 1.09E-06 0.03% 6.93 1.00 -105.07
1959 102.8430 93.00 102.8809 1.33E-06 0.04% 8.18 1.16 -84.82
1960 94.1976 129.00 94.2386 7.69E-07 0.04% 16.74 1.92 -112.26
1961 115.5650 262.00 115.6122 1.13E-06 0.04% 14.97 2.31 -247.03
1962 154.3600 358.00 154.4117 1.83E-06 0.03% 14.21 1.40 -343.79
1963 93.4542 84.00 93.4824 7.69E-07 0.03% 18.42 1.73 -65.58
1964 0.0000 17.00 0.0000 0.00E+00 0.00% 5.62 0.00 -11.38
1965 137.2510 73.00 137.2849 1.33E-06 0.02% 18.33 1.62 -54.67
1966 213.5970 849.00 213.6803 1.09E-06 0.04% 19.21 1.88 -829.79
1967 242.0090 1,205.00 242.0621 2.66E-06 0.02% 28.51 3.34 -1,176.49
1968 190.3440 1,001.00 190.4335 1.88E-06 0.05% 25.83 2.91 -975.17
1969 142.0640 359.00 142.1171 1.72E-06 0.04% 23.46 2.45 -335.54
1970 194.3390 338.00 194.4068 1.88E-06 0.03% 30.00 3.85 -308.00
1971 40.8834 33.00 40.9018 4.30E-07 0.05% 23.93 2.67 -9.07
1972 16.2836 25.00 16.2943 1.27E-07 0.07% 18.02 2.03 -6.98
1973 29.4791 59.00 29.5001 4.71E-07 0.07% 23.48 2.74 -35.52
1974 37.9123 38.00 37.9340 6.08E-07 0.06% 28.04 4.43 -9.96
1975 85.8126 214.00 85.8431 1.01E-06 0.04% 35.30 3.54 -178.70
1976 49.3427 134.00 49.3702 0.00E+00 0.06% 35.66 4.85 -98.34
1977 45.9462 69.00 45.9657 4.71E-07 0.04% 29.68 4.03 -39.32
1978 74.7211 183.00 74.7554 0.00E+00 0.05% 31.09 4.44 -151.91
1979 87.8995 169.00 87.9325 1.15E-06 0.04% 31.30 2.99 -137.70
1980 102.9330 237.00 102.9577 1.29E-06 0.02% 40.13 3.75 -196.87
1981 99.5351 285.00 99.5714 4.15E-07 0.04% 51.57 7.03 -233.43
1982 75.5698 229.00 75.6021 5.87E-07 0.04% 38.66 5.09 -190.34
1983 61.3197 169.00 61.3410 6.66E-07 0.03% 46.37 5.62 -122.63
1984 45.4756 277.00 45.4901 3.85E-07 0.03% 46.73 6.72 -230.27
1985 53.6096 220.00 53.6297 6.66E-07 0.04% 26.51 3.75 -193.49
1986 44.6501 71.00 44.6731 4.71E-07 0.05% 30.17 3.21 -40.83
1987 16.3129 53.00 16.3204 6.80E-08 0.05% 35.15 4.12 -17.85
1988 33.8870 72.00 33.9051 4.99E-07 0.05% 24.70 2.30 -47.30
1989 17.2942 57.00 17.3022 2.88E-07 0.05% 31.16 4.03 -25.84
1990 19.3817 70.00 19.3896 1.92E-07 0.04% 33.94 3.80 -36.06
1991 15.4498 130.00 15.4796 1.80E-07 0.19% 51.36 5.94 -78.64
1992 17.6703 104.00 17.7159 2.54E-07 0.26% 52.42 6.89 -51.58
1993 27.4587 122.00 27.4796 1.36E-07 0.08% 52.56 7.60 -69.44
1994 35.4362 240.00 35.4781 2.72E-07 0.12% 64.85 8.69 -175.15
1995 28.4099 125.00 28.4413 1.36E-07 0.11% 58.90 5.63 -66.10
1996 13.1945 115.00 13.2284 1.36E-07 0.26% 51.09 6.66 -63.91
1997 83.3901 271.00 83.4223 1.02E-06 0.04% 56.60 6.31 -214.40
1998 92.6719 339.00 92.6943 1.38E-06 0.02% 61.93 6.82 -277.07
1999 22.0806 160.00 22.1183 2.72E-07 0.17% 61.35 10.87 -98.65
2000 29.3329 296.00 29.3535 3.85E-07 0.07% 78.62 11.65 -217.38
2001 33.4920 516.00 33.5312 4.40E-07 0.12% 76.13 11.96 -439.87
2002 12.6935 242.00 12.7005 6.80E-08 0.06% 55.96 7.36 -186.04
2003 7.4469 281.00 7.4663 5.89E-08 0.26% 50.88 5.81 -230.12
2004 20.6182 301.00 20.6382 1.67E-07 0.10% 47.24 5.69 -253.76
2005 40.2684 338.00 40.2919 5.09E-07 0.06% 47.96 4.52 -290.04
2006 28.9418 223.00 28.9545 3.85E-07 0.04% 48.59 4.76 -174.41
2007 45.5292 262.00 45.5699 3.33E-07 0.09% 58.93 7.41 -203.07
2008 36.86 178.00 36.8889 4.30E-07 0.08% 55.50 6.85 -122.50

Average 0.06% -158.19

Table 3 – Average % gap between ILP and sequential GRASP in solution values [Gap %
I(P)] and execution time (Gap Time) in seconds. CI(BestSol) and CI(Time) are
the 95% confidence intervals of the imbalance and execution time, respectively,
after 25 independent executions of SeqGRASP.
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Pajek (version 3.14)8 was invoked with the following configuration: Doreian Mrvar Method,
starting from a random partition (1-mode), 1000 repetitions, α = 0.5, minimum number
of vertices in clusters = 1.

Pajek’s Doreian Mrvar Method accepts only one stopping criterion: number of
iterations. Since an iteration of this method is fundamentally different from an iteration
performed by GRASP, the number of iterations is not a sound basis for comparison of
both algorithms. Therefore, as an alternative, we have set the time-limit parameter of
GRASP to 2 hours and the number of repetitions of Pajek to 1000, which was enough for
Pajek to either reach the same solution value of GRASP, or exceed the time limit with
an inferior solution value. In this way, we were able to compare both solution values and
execution times in a fair manner. As shown in Table 4, when it comes to these larger
instances, the GRASP procedure can get to the same solution or to a better one at least
34 times faster than Pajek’s Doreian Mrvar Method. We do not include Pajek execution
data for instances with n > 800, as it was unable to find any solution within 2 hours.

2.3.6.2 Sequential GRASP vs. VOTE/BOEM

We have implemented the VOTE/BOEM heuristic for the CC Problem (here named
V OTE/BOEM), comparing the obtained solutions with the previous results from our
best sequential GRASP algorithm. Again, our goal was to solve the Slashdot instances in
set (i). The time limit was set to 2 hours for both procedures.

As shown in Table 4, the imbalance results of the sequential GRASP are al-
ways better than V OTE/BOEM . For smaller instances, the faster execution times of
V OTE/BOEM are not surprising, since the heuristic is equivalent to only one multistart
iteration of the GRASP metaheuristic. As the number of vertices increases, the GRASP
procedure is still unable to finish earlier than VOTE/BOEM.

2.3.7 The parallel strategies

Since the Slashdot instances in (i) have shown the limits of the sequential version
of GRASP, we have used them to assess the performance of the parallel GRASP algorithm.
Three different solution methods were applied:

• sequential GRASP metaheuristic (SeqGRASP , using only one processor core);
8 In order to solve the CC Problem with Pajek, we followed these steps: after loading the network file,

we created a random initial partition using 1−mode. At this point we defined the number of clusters k
of the solution. We have used the same number of clusters of the solution returned by GRASP. Finally,
we called the resolution method from the menu (Network → Signed Network → Create Partition →
Doreian Mrvar Method), specifying the number of repetitions (we set it to 1000), the alpha parameter
(set to 0.5 to match the CC Problem objective function) and the minimum number of vertices in
clusters (set to 1).
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Instance SeqGRASP Doreian Mrvar Method V OTE/BOEM

n |E−| |E+| w(E−) w(E+) k BestSol Time k BestSol Time k BestSol Time
200 62 825 62 825 6 45.0 1.82 3 45.2 61.80 11 47.0 0.42
300 82 981 82 981 10 54.0 3.54 2 54.0 125.00 14 57.0 0.50
400 87 1192 87 1192 9 57.0 4.88 2 57.0 454.40 14 61.0 0.44
600 156 1761 156 1761 10 109.0 8.78 3 119.0 2,740.60 12 111.0 1.14
800 371 2965 371 2965 21 240.0 18.54 4 244.8 7,381.40 33 245.8 2.09
1000 859 5132 859 5132 24 600.0 32.80 - - - 44 608.9 4.27
2000 3217 17598 3217 17598 55 2,187.0 169.50 - - - 105 2,264.2 43.86
4000 8664 40868 8664 40868 81 6,203.0 751.70 - - - 147 6,216.5 395.10
8000 22789 86916 22789 86916 195 16,083.0 2,891.84 - - - 375 16,115.8 3,475.91
10000 29805 109266 29805 109266 238 20,586.0 4,589.55 - - - 169 23,458.4 7,041.97

Table 4 – Sequential GRASP for the CC Problem, here named SeqGRASP , vs. Doreian
Mrvar Method vs. V OTE/BOEM results obtained on Slashdot signed graphs.
Average number of clusters (k) in the solution; BestSol is the average value of
the best solution found and Time is the average execution time (in seconds),
after 25 executions of each algorithm.

• independent parallel algorithm with sequential local search (ParGRASP/SeqV ND);

• parallel GRASP with parallel local search (ParGRASP/ParV ND).

We conducted several experiments to find the optimal number of processes to be
used in the parallel algorithms. This setting is closely related to the hardware configuration
of the computer cluster used in the experiments. As previously explained in Figure 9,
since each machine has 2 quad-core CPUs (8 processor cores), it can host 8 processes
running in parallel. In ParGRASP/ParV ND, we chose to group each GRASP master
process together with its corresponding VND search slaves, in order to maximize the
performance of message exchange between related processes. As seen in Figure 11, the
parallel procedures with the best efficiency were:

• independent parallel algorithm with sequential local search (ParGRASP/SeqV ND),
using 8 cores;

• parallel GRASP with parallel local search (ParGRASP/ParV ND), using 8 cores,
where 2 cores run GRASP master processes and 6 cores run VND search slave
processes, 3 for each master.

The parameters of the procedures used in the parallel approaches of GRASP are
the same used for testing the sequential algorithms, except for the number of GRASP
iterations. In ParGRASP/SeqV ND(8), the number of iterations is reduced from 400 to
50. This is due to the fact this parallel algorithm executes 8 GRASP procedures at the same
time, which provides enough variability to make the 50-iteration parallel GRASP results
quality-equivalent to the 400-iteration sequential GRASP. In ParGRASP/ParV ND(8),
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Figure 10 – Average efficiency of parallel GRASP with sequential local search
(ParGRASP/SeqV ND) and parallel GRASP with parallel local search
(ParGRASP/ParV ND) when solving Slashdot-based signed graphs, after 25
independent executions.

2 GRASP master processes run 200 iterations each. There are also 6 VND search slaves, 3
for each master.

Note that, in order to compare the sequential and parallel procedures, the following
additional stopping criterion was applied: all procedures stop whenever the specified target
solution value [Target I(P)] is found.

2.3.8 Sequential vs. Parallel GRASP

In this section, the Parallel GRASP algorithm results [ParGRASP/SeqV ND(8)
and ParGRASP/ParV ND(8)] are compared to the sequential version (SeqGRASP ).

As seen in Table 5, the algorithm with the best efficiency was
ParGRASP/SeqV ND (8 cores from one machine with 2 quad-core CPUs), with
an average speed-up of 2.93 (minimum of 0.97 and maximum of 4.11) and efficiency of
37% (minimum of 12% and maximum of 51%). Remark that lower speed-up and efficiency
values are related to smaller instances, whose solution takes just a few seconds. Also,
we did not obtain linear speed-ups because of the random nature of the heuristics. The
sequential algorithm reached the target solution values proportionately faster than their
parallel counterparts.

The execution times of ParGRASP/ParV ND(8) were in average higher than the
execution times of ParGRASP/SeqV ND(8). Therefore ParGRASP/ParV ND, using
the same number of processes, presented a speedup of x1.13 and an average efficiency of
only 14%.

We also ran both parallel algorithms to solve the random networks in (iii) and the re-
sults shown in Figure 11 confirm the superiority of ParGRASP/SeqV ND(8), with average
efficiency of 40% (minimum of 28% and maximum of 56%), while ParGRASP/ParV ND(8)
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Instance SeqGRASP ParGRASP/SeqVND(8) ParGRASP/ParVND(8)
Target I(P) Avg Time CI(Time) Avg Time CI(Time) Speedup Avg Time CI(Time) Speedup

200 45 1.82 0.04 1.88 0.30 0.97 1.35 0.17 1.36
300 54 3.54 0.16 1.70 0.33 2.09 2.41 0.17 1.47
400 57 4.88 0.19 1.53 0.22 3.19 3.41 0.19 1.43
600 109 8.78 0.31 3.17 0.39 2.77 5.51 0.35 1.59
800 240 18.54 0.95 4.96 0.34 3.74 11.71 1.12 1.58
1000 600 32.80 1.40 7.98 0.75 4.11 23.62 1.99 1.39
2000 2187 169.50 19.02 41.83 6.84 4.05 263.74 26.29 0.64
4000 6203 751.70 94.42 218.89 68.64 3.43 2,049.40 199.34 0.37
8000 16083 2,891.84 599.95 1,152.27 534.20 2.51 3,924.46 482.53 0.74

10000 20586 4,589.55 660.33 1,918.06 958.57 2.39 6,654.05 448.19 0.69
Average 2.93 1.13

Table 5 – CC results obtained on Slashdot signed graphs by the use of the following
approaches: Sequential GRASP (SeqGRASP ), Parallel GRASP with sequential
VND (ParGRASP/SeqV ND(np)) and Parallel GRASP with parallel VND
(ParGRASP/ParV ND(np)), where np is the number of processes in parallel.
Target I(P) is the target imbalance value used as stopping criterion for each
algorithm. Avg Time is the average execution time spent (in seconds) by each
algorithm to reach the specified target solution value, after 25 independent
executions. CI(Time) is the 95% confidence interval of the execution time, for
each algorithm.

presented a maximum efficiency of only 12%. This degradation in speedup and efficiency
is somewhat expected, since the ParallelLocalSearch algorithm causes an overhead in
the number of messages exchanged between processes.9 Therefore, even in random net-
works, where higher edge density and complex structure increase the time spent by local
search, the additional computational resources required to run parallel local search with
message-passing are not worth the available acceleration and efficiency brought by this
procedure.

The obtained computational results indicate that our independent parallel GRASP
metaheuristic is an efficient approach for the heuristic solution of the CC problem, with
ParGRASP/SeqV ND with 8 processes being the fastest configuration for networks of
up to 10, 000 vertices.

9 Please note that the loss of efficiency when using parallel local search is not caused by the lack of
work for the VND search slaves. For example, when solving Slashdot instance of size n = 10000, local
search performs more than 600 million neighborhood evaluations, and when solving random instances
with n = 600, this number rises to 700 million.



2.3. Experiments and performance comparisons 31

1 2 3 4 5 6 7 8 9 10 11 12

0%

50%

100%

Random instances, n = 400

ParGRASP/SeqV ND(8)
ParGRASP/ParV ND(8)

d=0
.1; d

- =
0.2

d=0
.1; d

- =
0.5

d=0
.1; d

- =
0.8

d=0
.2; d

- =
0.2

d=0
.2; d

- =
0.5

d=0
.2; d

- =
0.8

d=0
.5; d

- =
0.2

d=0
.5; d

- =
0.5

d=0
.5; d

- =
0.8

d=0
.8; d

- =
0.2

d=0
.8; d

- =
0.5

d=0
.8; d

- =
0.8

0%

50%

Effi
ci
en

cy

Random instances, n = 600

Figure 11 – Average efficiency of parallel GRASP with sequential local search
(ParGRASP/SeqV ND(8)) and parallel GRASP with parallel local search
(ParGRASP/ParV ND(8)) when solving random instances in (iii), after 25 inde-
pendent executions.
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3 Multistart Iterated Local Search (ILS)
heuristic for the CC Problem

The Iterated Local Search (LOURENÇO; MARTIN; STÜTZLE, 2003) (ILS) be-
longs to a class of local search algorithms (as VNS (MLADENOVIĆ; HANSEN, 1997),
IGS (RUIZ; STÜTZLE, 2007), GRASP (FEO; RESENDE, 1995) and ad hoc local-search
schemes (BRUSCO; KÖHN, 2009)) proposed in the literature to efficiently investigate
the solution space of combinatorial problems. The difference among all these methods
is the philosophy used to walk in the solution space. ILS is a metaheuristic that aims
to improve upon stochastic multi-restart search by sampling in a broader and distant
neighborhood of candidate solutions, followed by a local search that refines solutions to
their local optima. To reach these distant neighborhoods, it explores a sequence of solutions
created as perturbations of the current best solution. The result is then refined using an
embedded heuristic.

As mentioned in Chapter 1, the CC problem is related to the clique partitioning
problem. The authors in Brusco et al.(BRUSCO; KÖHN, 2009) developed a neighborhood
search heuristic (known as NS-R) for the clique partitioning problem, which is similar to
the one proposed in this chapter. NS-R includes the basic principles of random perturbation
and pursuit of a local optimum through a local search procedure also present in ILS.

Our ILS algorithm to solve the CC problem reuses the constructive and local search
modules of GRASP, as well as its multistart nature. It also includes a procedure that
creates perturbations in the best current solution. Like GRASP, ILS was implemented not
only sequentially, but also using the parallel strategies presented in the previous chapter.

3.1 Multistart ILS algorithm

The proposed heuristic (ILSMultiStartCC) has the same multistart (MARTÍ,
2003) nature of GRASP. In a nutshell, multistart brings an alternative way to achieve
diversification of solutions, restarting the ILS algorithm with a new initial solution whenever
a search region has already been extensively explored.

Algorithm 5 summarizes the operation of ILS, which consists of 4 elements:
(i) the ConstructivePhase, that generates an initial solution, (ii) the local search
V ariableNeighborhoodDescent, (iii) a procedure called Perturbation to modify a so-
lution at random, and (iv) an acceptance criterion, which defines from which solution the
search will resume. The iter parameter represents the number of multistart iterations, that
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is, the number of times ILS will be executed, returning the best solution based on all ILS
executions. The value iterMaxILS determines the number of iterations of the main ILS
loop, where perturbation and local search phases will be applied. Finally, the parameter
perturbationMax limits the level of perturbations to be applied to a given solution. We
next describe each step of the algorithm in detail.

The first task in each iteration of ILSMultiStartCC is the construction of an
initial solution in a greedy randomized fashion, the same way it is done in the GRASP
algorithm. This task is performed in ConstructivePhase procedure previously described
in Algorithm 2 from Chapter 2, so it will not be listed here.

Algorithm 5: ILSMultiStartCC

1 Input: G = (V,E), α, iter, iterMaxILS and perturbationMax
2 Output: partition P ∗
3 P ∗ = ∅; I(P ∗) =∞; i = 1;
4 while (i 6 iter)
5 P = ConstructivePhase(G,α);
6 P = V ariableNeighborhoodDescent(P,G);
7 j = 1; t = 1;
8 repeat
9 P = Perturbation(P, t);

10 P = V ariableNeighborhoodDescent(P ,G);
11 if (I(P ) < I(P ))
12 P = P ; j = 1; t = 1;
13 else
14 j = j + 1;
15 if (j > iterMaxILS)
16 t = t+ 1; j = 1;
17 end if
18 end if
19 while (t 6 perturbationMax)
20 i = i+ 1;
21 if (I(P ) < I(P ∗))
22 P ∗ = P ;
23 end while
24 return P ∗;

There is no guarantee that the construction method will return a locally op-
timal solution with respect to some neighborhood. Therefore, the solution P , ob-
tained in ConstructivePhase, could be improved by the local search procedure
V ariableNeighborhoodDescent, which consists of the same local search phase applied in
GRASP. More details are available in Algorithm 3 from Chapter 2.

The next step of the algorithm is generating a perturbation whose level is pro-
portional to the value of t. The perturbation, listed in Algorithm 6, simply consists of t
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Figure 12 – ILS perturbation (GLOVER; KOCHENBERGER, 2003).

random movements of any vertex from one cluster to another, that is, a large random
move (shuffle) of the current solution. The perturbation serves as mechanism for escaping
from local optima (Figure 12).

Finally, a basic acceptance criterion was used in our ILS. We accepted only improv-
ing moves, that is, a move that forces the cost (imbalance) to decrease, which corresponds
to a first-improvement descent in the set of solutions.

Algorithm 6: Perturbation
1 Input: G = (V,E), a partition P and perturbation level t
2 Output: partition P
3 i = 1;
4 while (i 6 t)
5 Choose a random cluster cx ∈ P and a random vertex i ∈ cx;
6 Choose a random cluster cy ∈ P such that x 6= y;
7 Move vertex i from cluster cx to cluster cy;
8 i = i+ 1;
9 end while

10 return P ;

As described by Den Besten et al. (BESTEN; STÜTZLE; DORIGO, 2001), the
efficacy of the local search module is of extreme importance to ILS, since it influences not
only the quality of the final solution of the metaheuristic, but also the total time spent. In
turn, the perturbations should allow ILS to effectively escape from local optima, while
at the same time avoiding the disadvantages of a random restart (i.e., should not be too
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strong). The acceptance criteria, along with the perturbations, greatly influence the type
of walk through the solution space and can be applied to algorithm tuning, alternating
between intensification and diversification of the search. The challenge of designing an ILS
algorithm is the need to find the best combination and configuration of its modules, so
that the best overall performance is achieved.

3.1.1 Parallel ILS and Parallel Variable Neighborhood Descent

The same approaches previously used to parallelize the GRASP algorithm have
been applied to improve ILS performance. With the independent approach in mind,
in the parallel version of multistart ILS, the outer loop of the ILS-CC algorithm (line
4), responsible for its multistart nature, is replaced by i ILS processes running at the
same time, each with a different random seed. Likewise, in the parallel ILS with parallel
VND (ParILS/PV ND), the V ariableNeighborhoodDescent procedure of ILS uses the
ParallelLocalSearch procedure (Algorithm 4 in Chapter 2) to divide search space traversal.
The process allocation scheme for parallel ILS is the same employed in parallel GRASP,
as depicted in Figure 9 from Chapter 2.

3.2 Improvements of Multistart ILS over GRASP algorithm

In the previous chapter, we have proposed sequential and parallel GRASP ap-
proaches for solving large network instances. However, it was observed that the sequential
version of GRASP presented long processing times (more than 1 hour) for instances with
more than 8000 vertices.

To obtain an improved heuristic, we have reused the constructive and local search
modules of GRASP, as well as its multistart nature, and added a procedure that creates
perturbations in the best current solution, creating the ILSMultiStartCC algorithm,
described in the previous section. As we shall see, the great advantage that this algorithm
has over GRASP is the reduced execution time. You can invoke i local searches within
ILS much more quickly than if the same i local searches were performed within GRASP’s
random restart framework. That’s probably because fewer movements in the neighborhood
are necessary to achieve local optimum from a perturbed solution than from a new solution
originated by a greedy random algorithm. In other words, the potential power of ILS lies
in its random and biased sampling (perturbations) of the set of local optima found in
the local search step. According to Den Besten et al.(BESTEN; STÜTZLE; DORIGO,
2001), even with the simplest implementations of perturbations and acceptance criteria,
ILS appears to be much more efficient than simple random restart. This superiority can
be demonstrated, for example, by the metaheuristic execution time.
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3.3 Experiments and performance comparisons

3.3.1 Computer environment and test problems

Like GRASP, the ILS algorithms previously described were also implemented
in ANSI C++. All experiments, including those with GRASP, were conducted on the
same computer environment described in Chapter 2, Section 2.3.1. All heuristic outcomes
represent the average of 25 independent runs and all confidence intervals (CI) were obtained
through Student’s t-test at a confidence level of 95%.

Computational experiments were performed on the same sets of instances already
described in Section 2.3.2 from Chapter 2. In addition to it, we have generated a fourth
set of instances, composed of 45 random signed networks with a predefined community
structure, according to Yang et al. (YANG; CHEUNG; LIU, 2007). The random signed
network is defined as SG(c, n, k, pin, p−, p+), where c is the number of communities in the
network, n is the number of nodes in each community, k is the degree of each node, pin is
the probability of each node connecting other nodes in the same community, p− denotes
the probability of negative links appearing within communities, and p+ denotes that of
positive links appearing between communities. The signs of the generated links within
communities are positive, whereas those between communities are negative. Based on
the network generation process, there will be c× n× k × pin × p− negative links within
communities and c× n× k × (1− pin)× p+ positive links outside communities.

3.3.2 Methodology

We have used the instances in (i) and (ii) to parametrize the heuristics. After
testing various combinations of parameters, including the maximum level of perturbation,
the following configurations presented the best results for ILS, depending on the instance
size:

SetPar Graph size Time limit Alpha Neighborhood Iterations ILS iterations Perturbation level
A n < 300 1 hour α = 0.4 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 3
B n ≥ 300 2 hours α = 1.0 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 30

In order to compare the ILS and GRASP algorithms, we reuse the GRASP config-
uration presented in Chapter 2. We also compare the ILS algorithm to the same solution
methods listed in Section 2.3 of Chapter 2.

When testing the independent parallel version of ILS, if p is the number of simulta-
neous processes, the number of multistart iterations (iter parameter) is reduced to iter/p.
This is due to the fact that the parallel procedure executes p independent metaheuristic
procedures at the same time, which provides enough variability so that the aggregated
results of parallel ILS are quality-equivalent to those of the sequential ILS.
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As described in the previous chapter, whenever it is required to assess the per-
formance of parallel algorithms, two metrics are applied: speed-up Su(p) measures the
acceleration observed for the parallel algorithm when compared with its sequential version
and efficiency E(p) measures the average fraction of time along which each process is
effectively used. Thus, Su(p) = T (seq)/T (p), such that T (seq) is the time required for
the sequential algorithm and T (p) the time required for the parallel algorithm run on p
processors, and E(p) = Su(p)/p.

3.3.3 Exact solution by ILP formulation

As previously observed in Chapter 2, the drawback of the ILP approach appears
when we attempt to solve larger instances. For most completely random instances in (iii),
the solver is unable to find an optimal solution within the time limit (Table 6), and on
Slashdot-based instances, the ILP formulation becomes too big and the solver is unable to
return any solution within the prescribed time limit.

3.3.4 Sequential ILS vs. sequential GRASP

We compared both SeqGRASP and SeqILS, in their best configurations. When
solving all UNGA instances in (ii), within the same time limit (1h), SeqILS presented the
same results of SeqGRASP. Since UNGA networks consist of extremely balanced instances,
small perturbations only change the current solution to a very similar one, already visited
before. In other words, a small number of perturbations wasn’t enough to provide the
kicks that ILS needed to escape from local optima and further explore the space of feasible
solutions. One possible explanation lies in the fact that, as such instances are well balanced,
both pseudo-random initial solutions and the perturbations led to the same point to be
reoptimized. As Figure 13 shows, the sequential ILS procedure was always faster than
GRASP. Considering the sum of the average execution times of UNGA instances, ILS
took 1739 seconds less. This summarizes in an average of minus 27.60 seconds per instance
after 25 independent runs of each algorithm.

When applying the set of completely random instances (iii) as input, we observe
the superiority of SeqILS over SeqGRASP. As Table 6 shows, for 60 random instances
with 100 ≤ n ≤ 600, SeqILS running time was strictly better in 45 of these instances,
while SeqGRASP found the target solution value earlier for 15 instances. Still, the average
time to target of ILS was smaller than GRASP’s: on average, ILS is 4 times faster than
GRASP.

Additionally, when applying both metaheuristics to solve the random instances with
predefined community structure in (iv), SeqILS was, on average, superior to SeqGRASP
in execution time. As shown in Table 7, an analysis of the gap in average time to target
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ILP Target SeqGRASP SeqILS T(GRASP) /
n e d d- BestSol Time I(P) AvgTime CI AvgTime CI Gap time T(ILS)
100 990 0.1 0.2 198 71.49 198 0.00 0.00 0.00 0.00 0.00 0.63

0.5 292 1,339.70 228 0.53 0.23 0.23 0.07 -0.30 2.31
0.8 50 308.74 54 1.03 0.37 0.22 0.04 -0.81 4.66

1980 0.2 0.2 396 82.50 396 0.00 0.00 0.00 0.00 0.00 0.95
0.5 780 933.03 582 1.27 0.46 1.63 0.84 0.36 0.78
0.8 272 709.02 208 1.80 0.62 0.34 0.09 -1.46 5.28

4950 0.5 0.2 990 60.42 990 0.00 0.00 0.00 0.00 0.00 0.92
0.5 2234 1,267.70 1838 0.99 0.46 0.96 0.38 -0.03 1.03
0.8 858 641.85 732 2.29 0.77 0.49 0.12 -1.80 4.72

7920 0.8 0.2 1584 33.16 1584 0.00 0.00 0.00 0.00 0.00 1.03
0.5 3624 1,542.02 3128 2.80 0.97 4.36 2.19 1.56 0.64
0.8 1476 689.52 1306 4.64 1.81 0.92 0.39 -3.73 5.07

200 3980 0.1 0.2 796 812.28 792 0.01 0.00 0.01 0.00 0.00 0.89
0.5 1990 703.44 1212 1.94 0.79 1.25 0.57 -0.69 1.55
0.8 3184 1,289.60 406 3.50 1.53 0.61 0.14 -2.89 5.71

7960 0.2 0.2 1592 994.13 1592 0.01 0.00 0.01 0.00 0.00 0.98
0.5 3980 1,001.72 2852 5.03 1.64 2.44 0.93 -2.60 2.07
0.8 6368 2,988.93 1098 14.96 5.01 1.31 0.21 -13.65 11.42

19900 0.5 0.2 3980 2,386.59 3980 0.01 0.00 0.01 0.00 0.00 1.10
0.5 9606 1,687.30 8144 4.37 2.54 2.86 1.38 -1.50 1.53
0.8 3824 2,395.06 3350 11.82 4.46 2.19 0.53 -9.63 5.39

31840 0.8 0.2 6368 1,449.56 6368 0.01 0.00 0.01 0.00 0.00 1.11
0.5 15920 2,272.33 13604 10.55 4.04 11.28 9.39 0.73 0.94
0.8 6236 2,108.50 5698 38.76 12.92 2.28 0.46 -36.48 17.00

300 8970 0.1 0.2 1794 862.03 1794 0.01 0.00 0.01 0.00 0.00 0.96
0.5 4486 859.98 3036 6.97 3.42 3.67 1.59 -3.30 1.90
0.8 7176 857.13 1116 15.00 5.06 1.48 0.22 -13.52 10.14

17940 0.2 0.2 3588 865.92 3588 0.01 0.00 0.01 0.00 0.00 0.88
0.5 8970 866.94 6878 10.32 3.23 5.33 2.72 -5.00 1.94
0.8 14352 862.98 2766 46.69 14.93 2.91 0.65 -43.77 16.03

44850 0.5 0.2 8970 861.98 8970 0.02 0.00 0.02 0.00 0.00 0.92
0.5 22426 879.82 19070 35.45 18.51 16.22 7.48 -19.23 2.19
0.8 35880 871.12 7930 22.88 8.25 3.18 0.65 -19.70 7.19

71760 0.8 0.2 14352 866.66 14352 0.02 0.00 0.02 0.00 0.00 0.96
0.5 35880 882.58 31704 24.18 19.83 14.18 7.79 -10.00 1.71
0.8 57408 879.75 13222 117.57 42.75 4.66 1.02 -112.91 25.21

400 15960 0.1 0.2 3192 7,200.00 3192 0.01 0.00 0.01 0.00 0.00 0.99
0.5 7980 7,200.00 5750 13.16 5.91 6.37 3.97 -6.79 2.07
0.8 12768 4,675.04 2210 26.67 9.02 3.01 0.66 -23.65 8.85

31920 0.2 0.2 6384 4,711.29 6384 0.02 0.00 0.02 0.00 0.00 1.11
0.5 15960 4,819.54 12764 32.10 13.72 10.44 5.45 -21.66 3.08
0.8 25536 7,200.00 5190 29.84 10.09 3.20 0.54 -26.65 9.34

79800 0.5 0.2 15960 3,921.77 15960 0.03 0.00 0.03 0.00 0.00 1.04
0.5 39900 7,200.00 34744 33.24 21.13 14.33 8.52 -18.91 2.32
0.8 63840 4,970.73 14490 62.23 22.03 6.32 1.41 -55.91 9.84

127680 0.8 0.2 25536 7,200.00 25536 0.04 0.00 0.04 0.00 0.00 1.03
0.5 63840 7,200.00 57356 77.12 61.04 15.89 8.82 -61.24 4.86
0.8 102144 7,200.00 23926 109.30 34.33 8.18 1.47 -101.12 13.37

600 35940 0.1 0.2 - 7,200.00 7188 0.03 0.00 0.03 0.00 0.00 0.94
0.5 - 7,200.00 13814 34.30 10.27 10.56 5.04 -23.74 3.25
0.8 - 7,200.00 5496 60.01 21.99 6.27 1.06 -53.74 9.57

71880 0.2 0.2 - 7,200.00 14376 0.04 0.00 0.04 0.00 0.00 0.98
0.5 - 7,200.00 30024 80.22 59.71 21.91 11.28 -58.31 3.66
0.8 - 7,200.00 12364 119.48 49.82 9.78 2.60 -109.70 12.22

179700 0.5 0.2 - 7,200.00 35940 0.07 0.01 0.07 0.00 0.00 1.04
0.5 - 7,200.00 80512 249.22 196.25 58.82 39.03 -190.40 4.24
0.8 - 7,200.00 33552 93.98 36.65 12.46 3.63 -81.52 7.54

287520 0.8 0.2 - 7,200.00 57504 0.10 0.01 0.10 0.01 0.00 1.03
0.5 - 7,200.00 131892 171.05 174.45 24.91 9.77 -146.14 6.87
0.8 - 7,200.00 54886 209.53 72.35 17.89 4.12 -191.64 11.71

Average - - - 29.79 - 5.26 - -24.52 4.48

Table 6 – ILP, sequential GRASP (SeqGRASP) and sequential ILS (SeqILS) results for random instances
in (iii). Instances solved to optimality by ILP formulation are marked with bold values in column
(ILP - BestSol); in the other case this column exhibits the value of the best integer solution found
in the time limit. Target I(P) is the target imbalance value used as stopping criterion for each
algorithm. AvgTime is the average execution time spent (in seconds) by each algorithm to reach
the specified target solution value, after 25 independent executions. CI is the 95% confidence
interval of the execution time, for each algorithm. Gap Time is the gap between SeqILS and
SeqGRASP execution times. T(GRASP)/T(ILS)= [AvgTime(SeqGRASP)/AvgTime(SeqILS)].
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Figure 13 – First graph: average gap between ILP, sequential GRASP and sequential ILS
solution values. Second graph: time spent (in seconds) on UNGA instances
with ILP, sequential GRASP and sequential ILS. Average of 25 independent
executions of each heuristic.

(column Gap time) between SeqILS and SeqGRASP indicates the superiority of SeqILS in
28 of 44 instances. On average, SeqILS is more than 2 times faster than SeqGRASP to
find the specified target solution values.

Experiments with larger social networks were also performed with SeqGRASP and
SeqILS. In this context, when solving Slashdot-based instances in (i), after running both
algorithms for 2 hours, ILS has improved the solution quality on larger instances, with
more than 2000 vertices (Table 8). Additionally, both SeqGRASP and SeqILS solve the CC
problem with low variances in solution value, as seen in the confidence intervals (columns
SeqGRASP-CI and SeqILS-CI in Table 8). This confirms the robustness of these heuristics,
for the stability of the solution values returned by both algorithms.

If we change the stopping criterion to target solution value [Target I(P)], ILS also
outperforms GRASP in average execution time when the instances have more than 2000
vertices (Table 9). In these cases, ILS can reach the target solution value up to 6 times
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Instance SeqGRASP SeqILS T(GRASP)
c n ‖E‖ k pin p− p+ Target I(P) Avg Time CI(Time) Avg Time CI(Time) Gap Time / T(ILS)
4 16 64 16 0.2 0 0 0 0.73 0.26 0.63 0.33 -0.10 1.16

0.7 0 0 0 0.03 0.01 0.08 0.04 0.05 0.38
4 32 128 20 0.7 0.6 0.6 80.8669 0.67 0.20 0.82 0.34 0.15 0.82

24 0.7 0.2 0.2 62.8762 1.58 0.56 0.47 0.33 -1.11 3.34
4 64 256 24 0.7 0.2 0.2 99.8465 3.53 1.15 1.15 0.49 -2.38 3.07
4 64 256 24 0.8 0 0 0 1.12 0.41 0.52 0.36 -0.59 2.13

0.2 86.2275 2.13 0.72 0.85 0.36 -1.28 2.50
0.4 173.2103 0.69 0.30 0.69 0.30 0.00 1.00
0.6 166.9959 0.01 0.00 0.18 0.08 0.17 0.08
0.8 81.5059 0.01 0.00 0.09 0.03 0.08 0.06
1 0 0.00 0.00 0.05 0.00 0.05 0.07

0.2 0 49.6108 7.11 3.09 1.27 0.58 -5.84 5.61
0.2 121.3758 4.06 1.61 0.71 0.28 -3.35 5.72
0.4 191.5338 1.76 0.58 1.13 0.53 -0.62 1.55
0.6 224.8849 0.35 0.15 1.42 0.73 1.06 0.25
0.8 190.6345 1.09 0.38 1.09 0.39 -0.01 1.01
1 142.315 0.11 0.04 0.59 0.27 0.48 0.19

0.4 0 84.1122 0.87 0.28 1.61 1.25 0.74 0.54
0.2 145.6284 7.23 2.69 2.42 1.02 -4.81 2.99
0.4 202.3622 3.04 1.45 3.13 1.50 0.09 0.97
0.6 253.4543 0.09 0.02 3.01 1.26 2.92 0.03
0.8 251.4013 0.16 0.06 3.08 1.20 2.92 0.05
1 212.095 1.19 0.41 2.23 1.07 1.05 0.53

0.6 0 76.3863 0.15 0.03 0.59 0.35 0.44 0.25
0.2 153.0779 6.59 1.99 4.60 1.68 -1.99 1.43
0.4 193.5687 8.84 5.34 2.64 1.82 -6.21 3.36
0.6 235.7613 0.36 0.10 6.47 2.93 6.11 0.06
0.8 235.2052 10.06 4.57 6.34 2.76 -3.73 1.59
1 270.1083 5.55 2.92 3.98 1.77 -1.57 1.40

0.8 0 55.4669 0.08 0.01 0.27 0.02 0.19 0.30
0.2 97.2707 10.30 4.82 2.03 0.82 -8.27 5.06
0.4 140.8 13.23 9.35 3.22 1.45 -10.00 4.10
0.6 187.4619 18.12 6.95 3.82 1.64 -14.30 4.74
0.8 259.2399 24.09 9.48 6.03 3.00 -18.07 4.00
1 269.8675 7.46 2.68 3.34 2.53 -4.12 2.24

1 0 0 0.01 0.00 0.16 0.01 0.15 0.09
0.2 27.2516 15.83 5.27 2.47 1.13 -13.36 6.41
0.4 67.7761 6.41 1.96 1.18 0.52 -5.23 5.44
0.6 117.656 15.69 8.45 3.14 1.29 -12.55 5.00
0.8 174.2849 13.34 8.10 4.31 1.93 -9.03 3.10
1 232.5436 10.16 5.03 4.43 2.36 -5.73 2.29

4 96 384 24 0.7 0.2 0.2 160.0418 11.08 5.61 1.06 0.61 -10.02 10.43
4 128 512 24 0.7 0.2 0.2 221.71 16.62 7.20 8.32 4.03 -8.30 2.00
25 30 750 20 0.6 0.3 0.3 414.3783 33.16 12.16 3.96 0.74 -29.20 8.37

Average - 6.02 - 2.26 - -3.75 2.40

Table 7 – Sequential GRASP (SeqGRASP) and sequential ILS (SeqILS) CC results for random instances
with predefined community structure in (iv). Target I(P) is the target imbalance value
used as stopping criterion for each algorithm. Avg Time is the average execution time
(in seconds) spent by each algorithm to reach the specified target solution value, after 25
independent executions. CI(Time) is the 95% confidence interval of the execution time, for
each algorithm. Gap Time is the gap between SeqILS and SeqGRASP average execution times.
T(GRASP)/T(ILS)= [AvgTime(SeqGRASP)/AvgTime(SeqILS)].
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SeqGRASP SeqILS
n Avg I(P) CI Avg I(P) CI Gap I(P)
200 45 0 45 0 0
300 54 0 54 0 0
400 57 0 57 0 0
600 109 0 109 0 0
800 240 0 240 0 0
1000 600 0 600 0 0
2000 2,184.76 0.17 2,184.14 0.15 -0.62
4000 6,198.79 0.49 6,193.35 0.57 -5.44
8000 16,076.52 0.88 16,060.55 1.66 -15.97
10000 20,579.29 1.48 20,571.35 5.40 -7.94

Table 8 – Results obtained on Slashdot instances, with sequential GRASP (SeqGRASP) and sequential
ILS (SeqILS). Number of vertices: n; Avg I(P): value of the best solution found after 2 hours
of execution; CI is the 95% confidence interval of the solution value I(P), for each algorithm;
Gap I(P)=[SeqILS Avg I(P)]−[SeqGRASP Avg I(P)].

faster than GRASP.

Figure 14 presents an additional comparison between both algorithms, based on
Time-to-Target Plots (TTT-plots) (AIEX; RESENDE; RIBEIRO, 2007), used to analyze
the behavior of stochastic algorithms. TTT-plots show, on the y-axis, the probability that
an algorithm will find a solution at least as good as a given target solution value within a
specific running time, displayed on the x-axis.

One can notice the improved behavior of SeqILS when compared to SeqGRASP.
For example, when solving Slashdot n = 8000 instance, the probability of SeqILS finding
the target solution of 16068 in 2000 seconds is almost equal to 100% while the same
probability lies below 65% for SeqGRASP.

The above results lead us to conclude that the potential power of ILS lies in its
random and biased sampling (perturbations) of the set of local optima found in the local
search step. In most cases, i local searches within ILS can be invoked much faster than
if the same i local searches were performed within GRASP’s random restart framework.
One possible explanation is that fewer movements in the neighborhood are necessary to
achieve local optimum from a perturbed solution than from a new solution originated by
a greedy random algorithm. In a nutshell, perturbations tend to be faster than simple
random restart.

Moreover, SeqILS runs 10 (fixed) multistart iterations (10 constructions), while
SeqGRASP runs at least 400 iterations, that is, a minimum of 400 constructions, a very
time-expensive step when processing larger graphs, as seen in Figure 15.

Regarding the solution quality, besides random restart, the proposed ILS procedure
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Slashdot Target SeqGRASP SeqILS T(GRASP)
n I(P) Avg Time CI Avg Time CI Gap Time / T(ILS)
200 45 0.01 0.00 0.02 0.01 0.01 0.45
300 54 0.06 0.02 0.31 0.18 0.25 0.19
400 57 0.19 0.09 1.60 1.19 1.41 0.12
600 109 0.38 0.13 1.52 0.62 1.14 0.25
800 240 0.97 0.28 2.27 0.87 1.30 0.43
1000 600 2.52 0.84 5.22 2.03 2.69 0.48
2000 2185 648.24 213.57 129.85 54.23 -518.38 4.99
4000 6196 1,069.74 609.50 335.80 190.80 -733.94 3.19
8000 16068 1,775.08 627.15 276.57 80.12 -1,498.51 6.42
10000 20580 3,336.05 1,095.30 2,613.07 739.97 -722.98 1.28

Average 683.32 336.62 1.78

Table 9 – Results obtained on Slashdot instances, with sequential GRASP (SeqGRASP) and sequential
ILS (SeqILS). Number of vertices: n; Target I(P) is the target imbalance value used as
stopping criterion for each algorithm. AvgTime is the average execution time spent (in
seconds) by each algorithm to reach the specified target solution value, after 25 independent
executions. CI is the 95% confidence interval of the execution time, for each algorithm. Gap
Time is the gap between SeqILS and SeqGRASP execution times. T(GRASP)/T(ILS)=
[AvgTime(SeqGRASP)/AvgTime(SeqILS)].
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Figure 14 – Time-to-Target Plot (TTT-plot)(AIEX; RESENDE; RIBEIRO, 2007) for SeqGRASP and
SeqILS algorithms when solving Slashdot n = 8000 instance to obtain the target solution
value I(P ) = 16068. TTT-plots show, on the y-axis, the probability that an algorithm will
find a solution at least as good as a given target solution value within a specific running
time, displayed on the x-axis.
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Figure 15 – Average construction time spent (in seconds) on Slashdot instances with
SeqGRASP (400 iterations without improvement) and SeqILS (10 multistart
iterations). Average of 25 independent executions of each heuristic.

achieves variability through perturbations as well, which explains the improved average
solution quality of ILS when compared to GRASP.

3.3.5 Comparison with existing heuristics

Our goal in the next subsections is to verify the limit of Doreian Mrvar and
VOTE/BOEM heuristics. Notice that these heuristics are simplified versions of a local
search heuristic, so they tend to have inferior performance when compared to metaheuristics.
In order to run the tests, we chose to slice a huge real-world network into smaller sizes
(Slashdot-based instances in set (i)).

3.3.5.1 Sequential ILS vs. Doreian Mrvar Method

In this section we compared our ILS procedure with Doreian Mrvar Method to solve
some of the most challenging instances available in the related literature: the Slashdot
instances in set (i).

The Doreian Mrvar Method (implemented in Pajek software) presents good-quality
results (with respect to solution value and average time spent) for the small-sized literature
instances in (i) and also for random social networks of up to 50 vertices [the results are
available in Figueiredo and Moura (FIGUEIREDO; MOURA, 2013)]. However, for larger
instances, it presents poor performance.

For this benchmark, we have obtained average results of 25 executions. The software
Pajek (version 3.14)1 was invoked with the following configuration: Doreian Mrvar Method,
1 In order to solve the CC Problem with Pajek, we followed these steps: after loading the network file,

we created a random initial partition using 1−mode. At this point we defined the number of clusters
k of the solution. We have used the same number of clusters of the solution returned by ILS. Finally,
we called the resolution method from the menu (Network → Signed Network → Create Partition →
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starting from a random partition (1-mode), 1000 repetitions, α = 0.5, minimum number
of vertices in clusters = 1.

Pajek’s Doreian Mrvar Method accepts only one stopping criterion: number of
iterations. Since an iteration of this method is fundamentally different from an iteration
performed by ILS, the number of iterations is not a sound basis for comparison of both
algorithms. Therefore, as an alternative, we have set the time-limit parameter of ILS to 2
hours and the number of repetitions of Doreian Mrvar Method to 1000, which was enough
for this method to either reach the same solution value of ILS, or exceed the time limit
with an inferior solution value. In this way, we were able to compare both solution values
and execution times in a fair manner. As seen in Table 10, when it comes to these larger
instances, our ILS procedure can get to the same solution or to a better one at least
13 times faster than Pajek’s Doreian Mrvar Method. We do not include Doreian Mrvar
Method execution data for instances with n > 800, as it was unable to find any solution
within 2 hours.

3.3.5.2 Sequential ILS vs. VOTE/BOEM

We have implemented the VOTE/BOEM heuristic for the CC Problem (here named
V OTE/BOEM), comparing the obtained solutions with the previous results from our
sequential ILS algorithm. Again, our goal was to solve the Slashdot instances in set (i).
The time limit was set to 2 hours for both procedures.

As shown in Table 10, the solution values obtained by sequential ILS are al-
ways better than V OTE/BOEM . For smaller instances, the faster execution times of
V OTE/BOEM are not surprising, since the heuristic is equivalent to only one multistart
iteration of the GRASP metaheuristic proposed in Chapter 2. However, as the number
of vertices increases, the ILS procedure outperforms VOTE/BOEM. Our sequential ILS
algorithm becomes the fastest choice to solve the CC problem when the number of vertices
is big (n ≥ 8000).

3.3.6 Sequential ILS vs. Parallel ILS

We have also used the Slashdot instances in (i) to assess the performance of the
parallel ILS algorithm. Three different solution methods were applied:

• sequential ILS metaheuristic (SeqILS, using only one processor core);

• independent parallel ILS with sequential local search (ParILS/SeqV ND);

Doreian Mrvar Method), specifying the number of repetitions (we set it to 1000), the alpha parameter
(set to 0.5 to match the CC Problem objective function) and the minimum number of vertices in
clusters (set to 1).



46 Chapter 3. Multistart Iterated Local Search (ILS) heuristic for the CC Problem

Instance SeqILS Doreian Mrvar Method V OTE/BOEM

n |E−| |E+| w(E−) w(E+) k BestSol Time k BestSol Time k BestSol Time
200 62 825 62 825 7 45.0 4.32 3 45.2 61.80 11 47.0 0.42
300 82 981 82 981 9 54.0 9.37 2 54.0 125.00 14 57.0 0.50
400 87 1192 87 1192 6 57.2 9.17 2 57.0 454.40 14 61.0 0.44
600 156 1761 156 1761 9 109.2 13.44 3 119.0 2,740.60 12 111.0 1.14
800 371 2965 371 2965 14 240.1 19.22 4 244.8 7,381.40 33 245.8 2.09
1000 859 5132 859 5132 18 600.1 30.20 - - - 44 608.9 4.27
2000 3217 17598 3217 17598 31 2,185.0 99.76 - - - 105 2,264.2 43.86
4000 8664 40868 8664 40868 44 6,195.2 528.44 - - - 147 6,216.5 395.10
8000 22789 86916 22789 86916 80 16,065.0 2,208.41 - - - 375 16,115.8 3,475.91
10000 29805 109266 29805 109266 95 20,580.4 4,277.18 - - - 169 23,458.4 7,041.97

Table 10 – Sequential ILS for the CC Problem, here named SeqILS, vs. Doreian Mrvar
Method vs. V OTE/BOEM results obtained on Slashdot signed graphs. Aver-
age number of clusters (k) in the solution; BestSol is the average value of the
best solution found and Time is the average execution time (in seconds), after
25 executions of each algorithm.

• parallel ILS with parallel local search (ParILS/ParV ND).

The parameters of the procedures used in the parallel approaches of ILS are the
same used for testing the sequential algorithm, except for the number of ILS multistart
iterations. Additionally, the number of processes used in the experiments was chosen
following the best parallel results from the previous chapter. For independent parallel ILS
(ParILS/SeqV ND), in order to perfectly divide the number of multistart iterations of
the original ILS procedure, 10 master processes execute one multistart iteration of ILS
each.

In ParILS/ParV ND, similarly to Parallel GRASP, we chose to group each ILS
master process together with its corresponding VND search slaves. As previously ex-
plained in Chapter 2, since each machine has 2 quad-core CPUs (8 processor cores),
ParILS/ParV ND was tested with 8 processes running in parallel, out of which 2 pro-
cesses are ILS masters (each one running 5 ILS iterations) and the other 6 processes consist
of VND search slaves, 3 for each master.

Finally, in order to compare the sequential and parallel procedures, the following
additional stopping criterion was applied: all procedures stop whenever the specified target
solution value [Target I(P)] is found.

On average, the independent parallel ILS (ParILS/SeqV ND) with 10 processes
is the best solution method. As shown in Table 11, it can solve the Slashdot instances in
set (i) up to 6 times faster than sequential ILS, with an average efficiency of 49%.

On the other hand, the results obtained with parallel ILS with parallel local search
(ParILS/ParV ND) have no such performance improvement as one would expect. Using 8
processes to execute the algorithm (2 ILS masters and 3 VND search processes per master)
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Instance SeqILS ParILS/SeqVND(10) ParILS/ParVND(8)
Target I(P) Avg Time CI Avg Time CI Speedup Efficiency Avg Time CI Speedup Efficiency

200 45 4.32 0.17 2.68 0.66 1.61 16.13% 3.36 0.47 1.29 16.08%
300 54 9.37 5.83 1.67 0.18 5.63 56.29% 3.91 0.34 2.39 29.93%
400 57 9.17 0.48 1.67 0.35 5.49 54.86% 4.54 0.50 2.02 25.23%
600 109 13.44 3.81 3.33 0.90 4.04 40.36% 4.74 0.37 2.83 35.41%
800 240 19.22 0.93 4.33 1.13 4.44 44.38% 6.40 0.33 3.00 37.55%
1000 600 30.20 1.35 5.75 0.41 5.25 52.55% 9.49 0.46 3.18 39.78%
2000 2185 99.76 6.14 18.39 1.82 5.43 54.25% 57.24 2.30 1.74 21.79%
4000 6195 528.44 35.20 91.14 7.75 5.80 57.98% 330.80 15.25 1.60 19.97%
8000 16065 2,208.41 165.49 425.57 36.25 5.19 51.89% 590.40 12.92 3.74 46.76%

10000 20580 4,277.18 291.29 709.04 47.25 6.03 60.32% 1,012.47 32.03 4.22 52.81%
Average 4.89 48.90% 2.60 32.53%

Table 11 – CC results obtained on Slashdot signed graphs by the use of different
metaheuristic approaches: Sequential ILS (SeqILS), Parallel ILS with se-
quential VND (ParILS/SeqV ND(np)) and Parallel ILS with parallel VND
(ParILS/ParV ND(np)), where np is the number of processes in parallel.
Target I(P) is the target imbalance value used as stopping criterion for each
algorithm. Avg Time is the average execution time (in seconds) spent by each
algorithm to reach the specified target solution value, after 25 independent
executions. CI is the 95% confidence interval of the execution time, for each
algorithm.

resulted in an average speedup of 2.6 (average efficiency of 33%) for Slashdot instances.
Similarly to what happened to Parallel GRASP in the previous chapter, the additional
computational resources required to run parallel local search via message passing are not
worth the available acceleration and efficiency brought by this procedure.

As noted in the previous chapter, this degradation in speedup and efficiency is
expected, since the ParallelLocalSearch algorithm causes an overhead in the number of
messages exchanged between processes.2

3.3.7 Parallel ILS vs. Parallel GRASP

The last question that comes to mind is knowing which parallel metaheuristic
presents the best efficiency and possibly the best solution values. First, when comparing
the results over Slashdot instances in (i), ParILS/SeqV ND is up to 4 times faster than
ParGRASP/SeqV ND when the stopping criterion is a specific target solution (Table 12).

To compare the behavior of ParGRASP/SeqV ND and ParILS/SeqV ND algo-
rithms, we present a Time-to-Target Plot (TTT-plot) (AIEX; RESENDE; RIBEIRO,
2007) when solving Slashdot n = 8000 instance (Figure 16). The improved behavior of
ParILS/SeqV ND is evident. For example, the probability of ParILS/SeqV ND finding

2 Please note that the loss of efficiency when using parallel local search is not caused by the lack of
work for the VND search slaves. For example, when solving Slashdot instance of size n = 10000 with
ParILS/ParV ND, local search performs more than 500 million neighborhood evaluations, and when
solving random instances with n = 600, this number rises to 8 billion.
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Target ParGRASP/SeqVND(8) ParILS/SeqVND(10) T(GRASP)
n I(P) Avg Time CI Avg Time CI Gap Time / T(ILS)

2000 2187 10.83 3.74 4.18 2.08 -6.64 2.59
4000 6203 64.03 37.36 20.33 3.55 -43.70 3.15
8000 16087 347.27 222.29 88.33 23.61 -258.94 3.93
10000 20589 985.85 786.81 246.33 199.92 -739.52 4.00

Average - 351.99 - 89.79 - -262.20 3.42

Table 12 – CC results obtained on Slashdot signed graphs by the use of the following metaheuristic
approaches: Parallel GRASP with Sequential VND (ParGRASP/SeqV ND(np)) and Parallel
ILS with Sequential VND (ParILS/SeqV ND(np)), where np is the number of processes
in parallel. Target I(P) is the target imbalance value used as stopping criterion for each
algorithm. Avg Time is the average execution time (in seconds) spent by each algorithm
to reach the specified target solution value, after 25 independent executions. CI is the
95% confidence interval of the execution time, for each algorithm. T(GRASP)/T(ILS)=
[AvgTime(ParGRASP/SeqVND)/AvgTime(ParILS/SeqVND)].

the target solution of 16087 in 400 seconds is almost equal to 100% while the same
probability lies below 90% for ParGRASP/SeqV ND.

Finally, for the random instances in (iii), as seen in Table 13, ParILS/SeqV ND
is always faster than ParGRASP/SeqV ND when finding the specified target solution
values, being on average 3 times faster.

3.4 Summary

Based on the previously presented results, the sequential ILS is the best algorithm
to solve the UNGA instances in (ii). Moreover, the parallel ILS with sequential VND
(ParILS/SeqV ND) is the fastest and most efficient metaheuristic to solve the real-world
Slashdot instances in (i) and the random instances in (iii).

Additionally, both GRASP and ILS are more efficient than the existing heuristic
implemented in Pajek, but only ILS was able to outperform the VOTE/BOEM heuristic
when solving larger networks like Slashdot.

The computational results indicate that the proposed multistart ILS metaheuristic
consists of a fast and efficient approach to solve the CC Problem, outperforming, in
processing time, the GRASP metaheuristic proposed earlier, with similar or improved
solution quality.

A possible explanation for ILS superiority over GRASP on bigger instances lies on
the fact that ILS executes more local searches and less initial solution constructions than
GRASP. Since GRASP’s random restart framework generally costs more when instances
grow in size (building an initial solution becomes more costly), ILS outperforms GRASP
and presents similar or improved solution quality when solving larger networks.
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Target ParGRASP/SeqVND(8) ParILS/SeqVND(10)
n e d d- I(P) AvgTime CI AvgTime CI Gap time Speedup
100 990 0.1 0.2 198 0.00 0.00 0.00 0.00 0.00 1.16

0.5 228 0.07 0.02 0.04 0.01 -0.02 1.55
0.8 56 0.10 0.03 0.05 0.01 -0.06 2.18

1980 0.2 0.2 396 0.00 0.00 0.00 0.00 0.00 1.21
0.5 582 0.28 0.10 0.15 0.08 -0.14 1.91
0.8 208 0.24 0.09 0.09 0.02 -0.15 2.71

4950 0.5 0.2 990 0.00 0.00 0.00 0.00 0.00 1.08
0.5 1838 0.22 0.07 0.13 0.04 -0.09 1.72
0.8 734 0.76 0.19 0.18 0.04 -0.58 4.28

7920 0.8 0.2 1584 0.00 0.00 0.00 0.00 0.00 1.17
0.5 3124 0.42 0.16 0.40 0.15 -0.02 1.05
0.8 1308 0.42 0.15 0.16 0.03 -0.26 2.62

200 3980 0.1 0.2 792 0.01 0.00 0.00 0.00 0.00 1.15
0.5 1206 0.55 0.19 0.33 0.11 -0.22 1.67
0.8 402 1.11 0.35 0.31 0.06 -0.80 3.53

7960 0.2 0.2 1592 0.01 0.00 0.00 0.00 0.00 1.16
0.5 2852 0.80 0.39 0.24 0.08 -0.56 3.29
0.8 1098 1.08 0.31 0.35 0.08 -0.74 3.12

19900 0.5 0.2 3980 0.01 0.00 0.01 0.00 0.00 1.14
0.5 8140 1.43 0.61 0.65 0.30 -0.77 2.18
0.8 3354 2.75 1.10 0.66 0.12 -2.09 4.17

31840 0.8 0.2 6368 0.01 0.00 0.01 0.00 0.00 1.22
0.5 13586 1.81 0.97 0.62 0.22 -1.18 2.89
0.8 5696 4.70 1.46 0.93 0.18 -3.77 5.05

300 8970 0.1 0.2 1794 0.01 0.00 0.01 0.00 0.00 1.10
0.5 3040 1.36 0.56 0.50 0.14 -0.86 2.72
0.8 1122 1.71 0.67 0.60 0.11 -1.12 2.87

17940 0.2 0.2 3588 0.01 0.00 0.01 0.00 0.00 1.15
0.5 6862 1.53 0.58 0.67 0.30 -0.86 2.29
0.8 2758 3.58 1.20 0.86 0.15 -2.72 4.18

44850 0.5 0.2 8970 0.02 0.00 0.01 0.00 0.00 1.22
0.5 19080 7.14 4.31 1.40 0.68 -5.73 5.08
0.8 7928 6.88 1.96 1.27 0.16 -5.61 5.42

71760 0.8 0.2 14352 0.02 0.00 0.02 0.00 0.00 1.16
0.5 31698 7.84 4.15 2.33 1.05 -5.51 3.36
0.8 13212 10.39 3.58 1.98 0.36 -8.41 5.25

400 15960 0.1 0.2 3192 0.01 0.00 0.01 0.00 0.00 1.10
0.5 5746 3.19 1.50 0.91 0.33 -2.28 3.49
0.8 2204 3.83 1.51 1.29 0.25 -2.55 2.98

31920 0.2 0.2 6384 0.02 0.00 0.01 0.00 0.00 1.16
0.5 12778 2.95 1.09 0.84 0.26 -2.11 3.52
0.8 5180 11.15 3.50 1.59 0.37 -9.55 6.99

79800 0.5 0.2 15960 0.03 0.00 0.03 0.00 0.00 1.13
0.5 34764 9.59 5.49 3.00 0.94 -6.59 3.20
0.8 14476 14.59 4.16 2.34 0.44 -12.25 6.23

127680 0.8 0.2 25536 0.05 0.00 0.04 0.00 -0.01 1.16
0.5 57342 22.78 11.94 5.58 2.52 -17.20 4.08
0.8 23922 22.73 6.05 4.16 0.80 -18.58 5.47

600 35940 0.1 0.2 7188 0.03 0.00 0.02 0.00 0.00 1.13
0.5 13802 6.72 3.94 1.28 0.37 -5.45 5.26
0.8 5484 13.29 4.12 2.74 0.52 -10.55 4.85

71880 0.2 0.2 14376 0.04 0.00 0.03 0.00 0.00 1.13
0.5 30046 17.30 7.93 3.20 1.11 -14.10 5.40
0.8 12362 15.20 5.64 3.76 0.75 -11.44 4.04

179700 0.5 0.2 35940 0.08 0.00 0.06 0.01 -0.02 1.26
0.5 80522 54.04 34.43 6.72 3.16 -47.33 8.05
0.8 33524 34.81 9.99 7.68 1.74 -27.12 4.53

287520 0.8 0.2 57504 0.11 0.01 0.09 0.01 -0.02 1.17
0.5 132006 116.92 88.85 24.61 15.92 -92.30 4.75
0.8 54872 58.45 15.50 11.43 2.45 -47.02 5.11

Average - - - - - -6.15 2.94

Table 13 – Parallel GRASP (ParGRASP/SeqV ND(8)) and parallel ILS (ParILS/SeqV ND(10)) re-
sults for random instances in (iii). Target I(P) is the target imbalance value used as stop-
ping criterion for each algorithm. Avg Time is the average execution time (in seconds)
spent by each algorithm to reach the specified target solution value, after 25 indepen-
dent executions. CI is the 95% confidence interval of the execution time, for each algo-
rithm. Gap time is the gap between parallel ILS and parallel GRASP execution times.
Speedup= [AvgTime(ParGRASP)/AvgTime(ParILS)].
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Figure 16 – Time-to-Target Plot (TTT-plot)(AIEX; RESENDE; RIBEIRO, 2007) for ParGRASP and
ParILS algorithms when solving Slashdot n = 8000 instance to obtain the target solution
value I(P ) = 16087. TTT-plots show, on the y-axis, the probability that an algorithm will
find a solution at least as good as a given target solution value within a specific running
time, displayed on the x-axis.

Even better results can be obtained if the ILS modules are optimized. First, the
acceptance criteria, defined to accept only solutions that improve the objective function
value, can be modified in search of a better balance between intensification and diversifica-
tion. It means they could accept solutions that are worse than the best current solution,
so as to widen the search space exploration. In addition, the perturbation procedure
can be adjusted to incorporate several kinds of problem-specific information, following a
good practice that says that a good perturbation transforms an excellent solution into an
excellent starting point for a local search.
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4 Parallelizing local search in CUDA

An observation of the great amount of time spent on the local search phase of the
aforementioned GRASP and ILS algorithms (Figure 17) reveals the possibility to enhance
their performance by extending both of them with a new implementation of local search,
that would be capable of solving the problem faster, without altering the behavior of the
metaheuristic.

With this in mind, we developed an improved local search procedure for the CC
problem, using the parallelism offered by GPGPU (General Purpose Graphics Processing
Unit).
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Figure 17 – Average time spent by sequential GRASP and ILS on r=1-opt local search on
Slashdot-based signed graphs, after 25 independent executions.

4.1 Using General Purpose GPUs to solve optimization problems
The use of Graphics Processing Units (GPUs) has been extended to a wide range of

application domains (e.g. computational science) thanks to the publication of the CUDA
(Compute Unified Device Architecture) development toolkit (NVIDIA, 2015), which allows
GPU programming in C-like language. When used as general-purpose computing devices,
GPUs can efficiently accelerate many non-graphics programs, especially vector-and matrix-
based codes that exhibit lots of parallelism with low synchronization requirements. Because
their hardware is primarily designed to perform complex computations on blocks of pixels
at high speed and with wide parallelism, GPU architectures differ substantially from
conventional CPU hardware. Therefore, writing efficient programs to solve combinatorial
optimization problems on GPUs is not a straightforward task and requires a huge effort not
only at design but also at implementation level. Indeed, several challenges mainly related
to the hierarchical memory management have to be dealt with. The major issues consist of
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efficient distribution of data processing between CPU and GPU, thread synchronization,
optimization of data transfer between the different memories, as well as the capacity
constraints of these memories (LUONG; MELAB; TALBI, 2013).

Whenever parallel algorithms are applied to solve optimization problems, it is
worth noticing that, in general, for distributed architectures, the global performance in
metaheuristics is limited by high communication latencies. However, in GPU architectures,
performance is bounded by memory access latencies. This being said, several works have
already demonstrated the potential speedups when using GPUs to accelerate metaheuristics.
For example, GRASP, ILS and evolutionary algorithms have already been adapted to use
local search procedures implemented in GPGPU. Table 14 lists some results available in
the literature.

Author Main contribution Speedup
Kruger et al. (KRÜGER et
al., 2010)

Generic local search
(memetic) algorithm

Between x70 and x120

Fujimoto et al. (FUJI-
MOTO; TSUTSUI, 2011)

Highly-parallel TSP solver
for a GPU computing plat-
form

Up to x24.2

Coelho et al.(COELHO et
al., 2012)

Single Vehicle Routing
Problem with Deliveries
and Selective Pickups in
CPU-GPU

From x2.73 to x16.23

Rocki et al.(ROCKI; SUDA,
2012)

Accelerating TSP 2 and 3-
opt local search using GPU

From x3 to x26 compared
to parallel CPU w/ 32 cores

Van et al.(LUONG;
MELAB; TALBI, 2013)

GPU computing for parallel
local search algorithms

From x0.5 up to x73.3

Pena et al.(PENA et al.,
2014)

Parallel algorithm for Siting
Observers on Terrain prob-
lem

More than x20

Table 14 – Speedups obtained when using GPGPUs to accelerate metaheuristics.

4.2 GPGPU architecture and the CUDA programming model
CUDA has made possible the development of algorithms to solve time-consuming

problems using the large number of parallel multiprocessors as well as the high memory
bandwidth provided by NVIDIA GPUs. To accomplish high-performance computing, it is
necessary to develop parallel algorithms that are partially or totally executed on the GPU.
The CUDA-enabled graphics cards are composed of multiple processors, more specifically,
Single Instruction Multiple Data (SIMD) processors called Stream Multiprocessors (SMs),
which allow the execution of multiple parallel threads. Thus, GPU processors can efficiently
execute instructions involving operations with data parallelism, when the same operation
is applied to different data.
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Depending on the algorithm, GPUs can provide greater processing power than
CPUs because they are specialized in performing parallel tasks involving many calculations.
On the other hand, CPUs are optimized for execution flow control and data cache. The
physical difference between both architectures can be visualized in Figure 18: GPUs
dedicate most of their area for processing units (cores), while CPUs dedicate most of their
area for execution control and data cache.

A CUDA application consists in code that is executed on CPU and functions
(called kernels) that are executed on GPU. The GPU is able to do parallel processing by
creating threads such that each thread may execute the kernel operations on different
data. This way, the GPU is used as a coprocessor to perform certain tasks more efficiently
than the CPU. The GPU processing units (CUDA cores) are grouped to share a single
instruction unit, so that threads mapped on these cores execute the same instruction each
cycle, but on different data. Each logical group of threads sharing instructions is called a
warp. Moreover, threads belonging to different warps can execute different instructions
on the same cores, but in a different time slot. In practice, CUDA cores are time-shared
between warps, and a group of threads in a warp performs as a SIMD unit.

Moreover, modern GPU architectures relax SIMD constraints by allowing threads
in a given warp to execute different instructions (i.e. if-then-else statements and loop-
termination conditions). However, these varying instructions cannot be executed concur-
rently, since each SIMD unit must execute the same instruction on all cores. This way, the
instructions are serialized in time, which can severely degrade performance. This situation
is called (thread) divergence.

Another major concern about CUDA implementation which greatly impacts per-
formance is memory access. Bottlenecks can appear not only during data transfer between
host (CPU) and device (GPU) memory, but also during memory access on the device;
namely, data locality is very important. Memory requests exhibiting spatial locality are
maximally coalesced. For example, accesses to addresses i and i+ 1 are served by a single
memory fetch, as long as they are aligned. Depending on the accessed addresses, concurrent
memory requests from multiple threads from a warp can exhibit undesired effects. Different
threads writing to the same memory address will exhibit non-deterministic behavior (it is
not possible to determine which value will be actually written). Non-coalesced memory
requests (including atomic ones) will be serialized in a nondeterministic order. This last
behavior, often called the scattering access pattern, greatly reduces memory throughput,
since each memory request utilizes only a few bytes from each memory fetch.

The CUDA programming model includes the notion of shared memory and thread
blocks, a reflection of the underlying hardware architecture as shown in Figure 19. All
threads in a thread block can access the same shared memory, which provides lower latency
and higher bandwidth access than global GPU memory but is limited in size. Threads in
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a thread block may also communicate with each other via this shared memory.

Figure 18 – Basic structure of a typical CPU (left) and GPU (right).
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Figure 19 – GPU Memory Hierarchy (MELAB; TALBI et al., 2011).
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Figure 20 – CUDA local search parallelization scheme (MELAB; TALBI et al., 2011).

4.3 Modifying the search algorithm to run in the GPU

Our approach to parallelize the local search procedure followed the Iteration-level
Parallel Model (LUONG; MELAB; TALBI, 2013). As can be seen on Figure 20, the
evaluation of the neighborhood is made in parallel. At the beginning of each iteration, the
master thread, that runs on the CPU, makes the current solution available to all threads of
the GPU. Each of them evaluates a specific movement in the neighborhood of candidates,
and the results are returned back to the master.
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Figure 21 – Using the Compressed Sparse Row (CSR) format to store graph’s adjacency
matrix. This representation consists of two arrays. The column indices array
is a concatenation of each vertex’s adjacency list into an array of m elements.
The row offsets array is an n + 1 element array that points at where each
vertex’s adjacency list begins and ends within the column indices array.

At this point, it is important to list some optimizations in the Correlation Clustering
local search algorithm that have been applied for the code to run efficiently in the GPU.
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First of all, the graph had to be stored in Compressed Sparse Row format (Figure 21), in
order to save space and avoid unnecessary data transfers between host (CPU) and device
(GPU) memory. Also, since it is impossible to store the graph in shared memory (as of
2015, shared memory size is limited to 112kB per multiprocessor), the graph is copied
to the (slower) GPU global memory. It is then used to calculate matrices that contain
the sum of edge weights between vertex i and every cluster k in the current solution.
As we are processing a signed graph, there are two sum matrices: one for positive edges
and the other for negative edges (positiveSum and negativeSum, respectively). These
auxiliary matrices, also stored in GPU global memory, contain all the information needed
to evaluate the imbalance of a new clustering configuration, without the need to traverse
the graph, thus saving GPU memory accesses and execution time. It is worth noting that
the use of these auxiliary matrices in CUDA local search consists of an improvement to the
sequential local search algorithm, and the same structures have been applied in a second
version of the local search that runs on the CPU, thus enhancing the original algorithms.
All GRASP and ILS results listed in the previous chapters are related to this new version
of local search.

4.4 CUDA local search kernel implementation

Algorithm 7: 1OptLocalSearchKernel
1 Input: positiveSum[], negativeSum[], cluster[], currentImbalance, number of clusters (c), vertices
(n)

2 Output: destImbalance[]
3 i = idx mod n; → The number of vertex i is derived from each thread’s unique identifier
(idx)

4 k2 = idx div n; → Vertex i is being moved to cluster k2
5 if (i ≤ n and k2 ≤ c+ 1)
6 k1 = cluster[ i ]; → obtains the cluster number of vertex i
7 /* calculates only the difference in positive and negative imbalance */
8 positiveSum = - positiveSum[ i+ k2× n ] + positiveSum[ i+ k1× n ];
9 negativeSum = - negativeSum[ i+ k1× n ] + negativeSum[ i+ k2× n ];

10 destImbalance[ idx ] = currentImbalance + positiveSum + negativeSum;

In order to test the viability of a parallel local search procedure for the CC problem
running on GPU, we only implemented the neighborhood of size one, that is, moving one
vertex at a time to a different cluster. Algorithm 7 presents the kernel pseudocode for
CUDA CC 1-opt local search kernel and Figure 22 summarizes the work executed. Each
thread running in the GPU (uniquely identified by idx) is responsible for calculating the
delta of imbalance caused by moving a specific vertex i to a different cluster, for example,
in the range k1 to kc. Afterwards, another kernel performs a reduction of the results, also
in parallel, returning the best move for this specific local search.
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Finally, whenever a vertex move is applied due to an improvement in imbalance, a
third CUDA kernel is invoked to update the clustering configuration and the vertex-cluster
edge-weight-sum auxiliary matrices (positiveSum and negativeSum) after a change in
the clustering 1. This update is a necessary step to allow a new execution of the local
search procedure (new local search iteration), as long as the obtained clustering solution
brings an improvement in imbalance.
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Figure 22 – GPU thread work representation for 1-opt local search. Each thread idx is
responsible for moving vertex i to a different cluster, from k1 to kc, and to a
new cluster (kc + 1).

4.5 Experiments performed with CUDA local search

The previously described algorithms were implemented in ANSI C++ and "C
for CUDA V6.5" (NVIDIA, 2015) programming environment. All experiments were per-
formed (with exclusive access) on a workstation with an Intel Core i7 QuadCore processor
@3.40GHz (only one CPU core used), 32GB of RAM and NVIDIA Tesla K40 GPU (con-
taining 12GB of memory and 2880 CUDA cores), under Ubuntu Linux 12.04. All heuristic
outcomes are average results of 25 independent executions. Speedups are computed by
dividing the sequential CPU time with the parallel time, which is obtained with the same
CPU and the GPU acting as a co-processor.
1 The update of the auxiliary matrices in the GPU is preferred, since it also benefits from CUDA

parallelism.
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Computational experiments were carried out on (i) a set of 24 random instances,
and (ii) a set of 4 social networks from the literature. Next, we briefly describe these
instances2.

(i) We generated random social networks with n ∈ {400, 600}, varying network density
d = 2× |E|/(n2 − n) and negative graph density defined here as d− = |E−|/|E|. For
each value of n, we considered a set of 12 random instances having d and d− ranging,
respectively, in sets {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}.

(ii) This set of instances is composed by 4 signed networks extracted from
the large scale social network representing the technology-related news web-
site Slashdot (LESKOVEC; HUTTENLOCHER; KLEINBERG, 2010; FAC-
CHETTI; IACONO; ALTAFINI, 2011), containing the first n vertices, with
n ∈ {2000, 4000, 8000, 10000}.

4.5.1 Sequential GRASP vs. Sequential GRASP with CUDA local search

In this section, we present the experiments performed with the sequential GRASP
algorithm (SeqGRASP) in its best configuration, available in Chapter 2, and the sequential
GRASP with CUDA Parallel Local Search (SeqGRASP/CUDALS), when solving random
instances (Table 15) and Slashdot instances (Table 16). Both experiments used the following
set of parameters:

Time limit Alpha Neighborhood Number of iterations without improvement

2 hours α = 1.0 r = 1 iter = 400

4.5.2 Sequential ILS vs. Sequential ILS with CUDA local search

Here we list the results of the experiments performed with the sequential ILS
algorithm (SeqILS) in its best configuration, available in Chapter 3, and the sequential
ILS with CUDA Parallel Local Search (SeqILS/CUDALS), when solving random instances
(Table 15) and Slashdot instances (Table 16). The following configuration was used in the
ILS procedure.

Time limit Alpha Neighborhood Iterations ILS iterations Perturbation level

2 hours α = 1.0 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 30

4.5.3 Analysis of results

Our intent was to design an efficient parallelization strategy for the implementation
of a parallel local search procedure for the Correlation Clustering problem on GPU. After
applying the procedure, known as CUDALS, in existing GRASP and ILS procedures for
2 all instances are available in http://www.ic.uff.br/∼ yuri/files/CCinst.zip.
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the CC problem, our experimental results showed significant speedups, outperforming, in
processing time, the equivalent algorithm with local search implemented in the CPU.

The GRASP/CUDALS algorithm presented an average speedup of x1.6 (up to x3)
on random instances and x1.7 (up to x2) on Slashdot instances, while the ILS/CUDALS
showed an average speedup of x13 (up to x47) on random instances and x6.2 (up to x10.3)
on Slashdot instances. In both algorithms, the solution quality was equal or close to their
sequential counterparts. Considering only the local search execution time, as Table 17
shows, it is also possible to measure the speedup obtained by CUDALS alone (column LS
Speedup), when running inside the GRASP and ILS procedures. On Slashdot instances,
in comparison with the sequential local search running on CPU, the CUDALS procedure
presents an average speedup of x2.5 (maximum of x3.5) when running inside SeqGRASP
and an average speedup of x7.3 (maximum of x12.5) when running inside SeqILS.

It is worth noting that the sublinear speedups obtained when using both procedures
to solve random instances with d− = 0.2 can be explained by their low negative edge
density, which significantly reduces the local search space. As a consequence, these instances
are always solved in a short time (less than a minute) and most of the time spent by
CUDA local search is due to the overhead of memory copies between CPU and GPU.

An extension of this work could focus on improving the analysis of larger signed
social networks. The numerical experience indicates that, in order to handle instances
larger than Epinions (131,828 vertices and 841,372 edges) or Slashdot (82,144 vertices and
549,202 edges) networks, there is the need to develop better parallelization strategies. One
possible approach is implementing a hybrid application, using the parallelism available
both in CPU (multicore) and GPU (CUDA).



n |E| |E+| |E−| d d− SeqGRASP SeqGRASP/CUDALS SeqILS SeqILS/CUDALS
Avg I(P) Avg Time Avg I(P) Gap %I(P) Avg Time Speedup Avg I(P) Avg Time Avg I(P) Gap %I(P) Avg Time Speedup

400 15960 12768 3192 0.1 0.2 3,192.00 2.44 3,192.00 0.00% 3.56 0.68 3,192.00 2.35 3,192.00 0.00% 15.19 0.15
400 15960 7980 7980 0.1 0.5 5,797.20 32.63 5,801.27 0.07% 26.48 1.23 5,693.33 69.06 5,775.10 1.44% 12.77 5.41
400 15960 3192 12768 0.1 0.8 2,341.27 65.12 2,361.93 0.88% 33.31 1.95 2,181.53 250.64 2,270.65 4.08% 12.35 20.29
400 31920 25536 6384 0.2 0.2 6,384.00 3.02 6,384.00 0.00% 3.85 0.78 6,384.00 3.36 6,384.00 0.00% 21.90 0.15
400 31920 15960 15960 0.2 0.5 12,838.07 49.06 12,844.60 0.05% 48.78 1.01 12,720.67 85.57 12,833.55 0.89% 19.74 4.33
400 31920 6384 25536 0.2 0.8 5,334.73 95.16 5,352.73 0.34% 53.72 1.77 5,159.07 432.98 5,265.55 2.06% 18.06 23.98
400 79800 63840 15960 0.5 0.2 15,960.00 5.41 15,960.00 0.00% 5.62 0.96 15,960.00 6.26 15,960.00 0.00% 41.22 0.15
400 79800 39900 39900 0.5 0.5 34,812.73 119.87 34,843.73 0.09% 107.51 1.12 34,690.60 156.70 34,853.74 0.47% 40.82 3.84
400 79800 15960 63840 0.5 0.8 14,638.87 268.17 14,659.80 0.14% 118.89 2.26 14,446.33 795.74 14,578.32 0.91% 37.36 21.30
400 127680 102144 25536 0.8 0.2 25,536.00 7.92 25,536.00 0.00% 7.58 1.04 25,536.00 10.70 25,536.00 0.00% 60.27 0.18
400 127680 63840 63840 0.8 0.5 57,415.87 200.92 57,448.47 0.06% 165.36 1.22 57,274.60 237.30 57,501.74 0.40% 57.96 4.09
400 127680 25536 102144 0.8 0.8 24,088.40 394.78 24,119.00 0.13% 203.28 1.94 23,896.27 1,149.82 24,043.29 0.62% 55.15 20.85
600 35940 28752 7188 0.1 0.2 7,188.00 5.07 7,188.00 0.00% 5.49 0.92 7,188.00 3.97 7,188.00 0.00% 21.55 0.18
600 35940 17970 17970 0.1 0.5 13,896.87 80.23 13,904.80 0.06% 53.00 1.51 13,754.47 145.41 13,883.94 0.94% 18.15 8.01
600 35940 7188 28752 0.1 0.8 5,730.53 211.86 5,760.27 0.52% 79.27 2.67 5,458.40 775.61 5,644.71 3.41% 17.33 44.75
600 71880 57504 14376 0.2 0.2 14,376.00 6.47 14,376.00 0.00% 6.61 0.98 14,376.00 6.23 14,376.00 0.00% 33.47 0.19
600 71880 35940 35940 0.2 0.5 30,124.93 142.37 30,144.27 0.06% 101.23 1.41 29,944.07 204.18 30,138.13 0.65% 30.03 6.80
600 71880 14376 57504 0.2 0.8 12,609.93 348.14 12,648.87 0.31% 125.61 2.77 12,333.07 1,297.92 12,543.48 1.71% 27.43 47.31
600 179700 143760 35940 0.5 0.2 35,940.00 14.00 35,940.00 0.00% 11.79 1.19 35,940.00 16.31 35,940.00 0.00% 65.35 0.25
600 179700 89850 89850 0.5 0.5 80,664.87 420.53 80,683.67 0.02% 259.77 1.62 80,434.13 421.37 80,757.16 0.40% 63.79 6.61
600 179700 35940 143760 0.5 0.8 33,802.07 929.33 33,845.00 0.13% 326.16 2.85 33,487.00 2,441.50 33,753.10 0.79% 57.10 42.76
600 287520 230016 57504 0.8 0.2 57,504.00 22.14 57,504.00 0.00% 17.86 1.24 57,504.00 31.36 57,504.00 0.00% 96.41 0.33
600 287520 143760 143760 0.8 0.5 132,050.60 636.54 132,102.33 0.04% 416.26 1.53 131,798.53 686.82 132,203.29 0.31% 94.88 7.24
600 287520 57504 230016 0.8 0.8 55,156.47 1,402.47 55,205.13 0.09% 472.92 2.97 54,829.20 3,413.36 55,112.19 0.52% 86.20 39.60

Average - 227.65 - 0.12% 110.58 1.57 - 526.85 - 0.82% 41.85 12.86

Table 15 – SeqGRASP, SeqGRASP/CUDALS, SeqILS and SeqILS/CUDALS results for random instances in (i). Number of vertices: n;
Avg I(P): average value of the best solution found; AvgTime: average time spent (in seconds) after 25 executions of each
algorithm. Gap %I(P) is the % gap between sequential and CUDA-based local search.
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Instance SeqGRASP SeqGRASP/CUDALS SeqILS SeqILS/CUDALS
n |E−| |E+| w(E−) w(E+) AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup

2000 3217 17598 3217 17598 2,186.77 70.19 2,186.62 -0.01% 55.65 1.26 2,196.73 29.95 2,196.52 -0.01% 18.64 1.61
4000 8664 40868 8664 40868 6,202.20 338.70 6,202.78 0.01% 169.20 2.00 6,211.33 151.75 6,216.84 0.09% 31.22 4.86
8000 22789 86916 22789 86916 16,081.83 1,346.06 16,084.34 0.02% 856.93 1.57 16,069.47 669.61 16,095.74 0.16% 83.18 8.05
10000 29805 109266 29805 109266 20,587.23 2,502.00 20,589.43 0.01% 1,272.11 1.97 20,590.70 1,130.71 20,616.52 0.13% 109.42 10.33

Average - 1,064.24 - 0.01% 588.47 1.70 - 495.50 - 0.09% 60.62 6.21

Table 16 – SeqGRASP, SeqGRASP/CUDALS, SeqILS and SeqILS/CUDALS results for Slashdot instances in (ii). Number of vertices: n; Avg I(P): average
value of the best solution found; AvgTime: average time spent (in seconds) after 25 executions of each algorithm. Gap %I(P) is the % gap between
sequential and CUDA-based local search.

Average SeqGRASP times Average SeqGRASP/CUDALS times
n Construction Local search Total Construction Local search Total LS Speedup GRASP Speedup
2000 23.65 46.54 70.19 20.61 35.04 55.65 1.33 1.26
4000 119.08 219.62 338.70 88.16 81.04 169.20 2.71 2.00
8000 500.58 845.48 1,346.06 516.22 340.70 856.93 2.48 1.57
10000 811.09 1,690.91 2,502.00 784.20 487.91 1,272.11 3.47 1.97

Average 2.50 1.70
Average SeqILS times Average SeqILS/CUDALS times

n Construction Local search Total Construction Local search Total LS Speedup ILS Speedup
2000 0.79 29.16 29.95 0.79 17.86 18.64 1.63 1.61
4000 5.96 145.79 151.75 5.96 25.26 31.22 5.77 4.86
8000 12.45 657.17 669.61 12.45 70.74 83.18 9.29 8.05
10000 20.51 1,110.19 1,130.71 20.51 88.91 109.42 12.49 10.33

Average 7.30 6.21

Table 17 – Local search speedups obtained by SeqGRASP/CUDALS and by SeqILS/CUDALS on Slashdot instances in (ii). Number of vertices: n; Construction:
average time spent on constructive phase; Local search: average time spent on local search phase; Total: average time spent on the whole algorithm;
LS Speedup: speedup obtained only with the local search procedure; GRASP/ILS Speedup: speedup obtained considering the full algorithm
execution time. Time is measured in seconds and all results were obtained after 25 independent executions of each algorithm.
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5 Relaxed Correlation Clustering: an alterna-
tive measure for structural balance

As we noted in the introduction, other measures of structural balance are proposed
in the literature. In Doreian and Mrvar (DOREIAN; MRVAR, 2009), the definition of a
k-balanced signed graph was informally extended in order to include relevant processes
(polarization, mediation, differential popularity and subgroup internal hostility) that
originally were viewed as violations of structural balance. For example, the existence of a
group of individuals who share only positive relationships with everyone in the network
counts as imbalance in the CC Problem. Nonetheless, the individuals in this group could
be construed as mediators (i.e. their relations probably won’t change over time) and, as
pointed in Esmailian et al. (ESMAILIAN; ABTAHI; JALILI, 2014), their relations should
not be considered as a contribution to the imbalance of the network.

Using this new definition, the structural balance was generalized to a version labeled
as relaxed structural balance (DOREIAN; MRVAR, 2009). This generalization gives rise
to a new definition for the imbalance of a vertex partition. Let P = {S1, S2, . . . , Sl} be a
l-partition of V . The relaxed imbalance RI(P ) of P is defined as

RI(P ) =
∑

1≤i≤l

min{Ω+(Si, Si),Ω−(Si, Si)}+
∑

1≤i 6=j≤l

min{Ω+(Si, Sj),Ω−(Si, Sj)}. (5.1)

Similarly to the CC Problem, the relaxed balance RB(P ) is defined in such a way
that RB(P ) +RI(P ) = ∑

a∈A wa. Consider a partition P and a cut (uncut) arc (i, j). The
contribution of arc (i, j) for the relaxed imbalance RI(P ) depends on the sign of other
cut (uncut) arcs. On the other hand, the contribution of arc (i, j) for the imbalance I(P )
depends only on its own sign. Remark that these two measures of imbalance are related in
such a way that RI(P ) ≤ I(P ) for each partition P of V .

The definition of relaxed imbalance RI(P ) given by equation (5.1), and associated
with the relaxed structural balance, has its roots in blockmodeling approaches (DOREIAN;
MRVAR, 2009; BRUSCO et al., 2011). Besides, a redefinition of relaxed imbalance of
a partition P that takes into account only symmetric relationships was presented by
Figueiredo and Moura (FIGUEIREDO; MOURA, 2013), as stated below.

SRI(P ) =
∑

1≤i≤l

min{Ω+(Si,Si),
Ω−(Si,Si)}+

∑
1≤i<j≤l

min{Ω+(Si,Sj)+Ω+(Sj ,Si),
Ω−(Si,Sj)+Ω−(Sj ,Si)}. (5.2)

This definition of imbalance gives rise to a new graph clustering problem, the
Symmetric Relaxed Correlation Clustering Problem, which will be studied here. The
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problem is stated as follows.

Problem 5.0.1 (Symmetric RCC problem) Let G = (V,E) be a signed graph, we be
a non-negative edge weight associated with edge e ∈ E and k be an integer value satisfying
1 ≤ k ≤ n. The symmetric relaxed correlation clustering problem is the problem of finding
a l-partition P of V , with l ≤ k, such that the symmetric relaxed imbalance SRI(P ) is
minimized. Let us denote this minimal value by SRCC(G,k).

It is worth noting that the Symmetric RCC (SRCC) problem is closely related
with the CC problem but it is not a particular case nor is it a generalization. Actually,
each feasible solution (a graph partition) of the SRCC problem is also feasible in the CC
problem but the problems have different cost functions, i.e., there are different ways of
evaluating the imbalance of a partition. The SRCC problem is intuitively as difficult as
the CC problem and is indeed a NP-hard problem (FIGUEIREDO; MOURA, 2013).

Structural balance theory affirms that signed social networks tend towards balance,
so as to avoid conflicting situations (e.g. cycles of negative parity). However, many empirical
networks are unbalanced and it is not even possible to state that these networks have a
tendency towards balance. The authors in (DOREIAN; MRVAR, 2009) argued that, in
a social network, some subsets of elements can be viewed as sets of either negative or
positive mediators and, as a consequence, the imbalance of a partition depends on this
mediation rule. In other words, the relationship pertaining to a group of mediators should
not be considered as a contribution to the imbalance of the network.

Suppose that a network has intermediaries positively linked to members of mutually
hostile subgroups - in exactly balanced groups. This is shown in Figure 23-a with three
group members, {A,B,D}, that are viewed as potential positive mediators. The sets
{C,E, F} and {G,H} are mutually hostile, balanced subgroups.
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Figure 23 – Positive mediation (a) and negative mediation (b) examples.

Further exploring the mediation example, suppose that the mediators see themselves
as competitors for performing mediation and have only negative ties between them because
of this rivalry. The resulting network is shown in Figure 23-b, where (AB), (AD) and (BD)
are negative edges, and this process is known as negative mediation.
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The SRCC problem allows us to analyse mediation processes (positive and negative).
That is not the case of the RCC problem, where mediation and differential popularity
cannot be pointed out.

5.1 Literature review

To the best of our knowledge, the RCC problems have been proposed for only the
evaluation of structural balance in social networks. However, these problems could be also
used as an approach to efficient community detection. Two solution methods were initially
proposed in the literature for RCC problems: a greedy heuristic approach (DOREIAN;
MRVAR, 2009) and a branch-and-bound procedure (BRUSCO et al., 2011). Computational
experiments with both procedures were reported over literature instances with up to 29
vertices (small literature instances listed in Chapter 2, item (i)) and for random instances
with |V | ∈ {20, 40} (DOREIAN; MRVAR, 2009; BRUSCO et al., 2011). For the branch-
and-bound procedure, the values considered for k were k ≤ 7 for literature instances and
k ∈ {3, 5} for the set of random instances.

Further on, Figueiredo and Moura (FIGUEIREDO; MOURA, 2013) presented
the first mathematical formulation for the RCC and SRCC problems: a representatives
ILP formulation, which is harder to solve than the CC ILP formulation. For the set of
benchmark instances, the ILP formulation was able to solve the problem when k = 2,
k = 3 (for some instances) and for higher values of k. The results presented for the
branch-and-bound procedure in (BRUSCO et al., 2011) demonstrated that this approach
was efficient in the solution of RCC instances with k ≤ 8. At this point, no metaheuristic
approaches have been applied to solve the RCC problems.

5.2 Experimental results

The RCC ILP formulation becomes numerically more difficult to solve with the
symmetric definition and, as a consequence, the authors in (FIGUEIREDO; MOURA,
2013) were able to calculate the SRCC solution only for smaller networks, namely the
literature instances in (i). We have applied these results to validate the quality of the
solutions returned by our metaheuristics.

When adapting the ILS metaheuristic to solve the SRCC problem, instead of
the CC problem, there is the need to change the objective function that evaluates the
partition. When it comes to the SRCC problem, this evaluation becomes more costly,
as it demands the solution of a series of minimization problems defined in equation 5.2.
In order to reduce this computational cost, the algorithm manipulates matrices with
precalculated imbalance values between clusters, and these matrices are incrementally
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updated whenever an improved solution is found. The matrices are then used to analyze
the solutions visited at each local search iteration. In this way, our ILS heuristic is able
to provide an efficient solution to the SRCC Problem, applying the same methods (and
corresponding configurations) used to solve the CC Problem, with one major advantage
over exact methods: it can process larger graph files.

Therefore we have extended the metaheuristics explained in the previous chapters
to deal with this new measure, modifying the applied objective function. Also, in order to
provide SRCC measures for larger graph files, we ran the ILS procedure restricting the
number of clusters in the SRCC solution in order to match the exact number of clusters (k)
found by the CC solution previously obtained by the program. This way, we were able to
compare the imbalance of the solutions returned by both ILS algorithms (CC and SRCC).

The computational effort to solve the SRCC problem using the Slashdot instances
as input is greater when compared to the CC problem (Table 18). Note that the slow-down
of SRCC decreases when n ≥ 4000, since the algorithm exceeds the 2-hour time limit.

After solving the SRCC problem, one can observe that, when compared to the
CC problem, the imbalance measures obtained with SRCC are sometimes smaller, as
can be seen on Figure 24 (UNGA instances) and Table 19 (Slashdot-based instances). A
reason why the CC problem tends to over-evaluate the imbalance is related to penalizing
relationships associated with mediation processes that occur in the network.

n 200 300 400 600 800 1000 2000 4000 8000 10000
Time-CC 2.26 1.64 1.80 3.11 4.44 7.29 20.30 125.37 458.32 794.11
Time-SRCC 7.79 9.14 6.64 39.34 324.67 426.30 5262.02 7202.64 7202.95 7205.69
Slow-down 3.44 5.58 3.69 12.64 73.06 58.47 259.25 57.45 15.72 9.07

Table 18 – Difference in execution time (in seconds) when running the parallel ILS algo-
rithm using CC and SRCC objective functions, respectively, over Slashdot-based
instances listed in Chapter 2. Slow-down=Time-SRCC/Time-CC.

n 200 300 400 600 800 1000 2000 4000 8000 10000
CC 45 54 57.2 109.4 240 600 2201.4 6210.4 16074 20596.6
SRCC 23 11 23 19 83 226 755 3056 8215 10083

k 5 8 4 9 20 11 43 30 67 109

Table 19 – CC and SRCC imbalance measures of Slashdot-based instances listed in Chap-
ter 2. Number of vertices: n; number of clusters in the solution: k.
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Figure 24 – CC and SRCC imbalance measures of UNGA instances listed in Section 2.3.2. In this graph, we only list the years
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6 Analysis of structural balance on real-world
signed social networks

In this chapter, we apply the previously presented algorithms to efficiently solve
the CC and SRCC problems, and analyze the obtained solutions to the United Nations
General Assembly Voting Data and three large signed social networks (Epinions, Slashdot
and Wikipedia) available in (LESKOVEC; KREVL, 2014).

6.1 The United Nations General Assembly (UNGA) voting data
As noted in the introduction, some authors have applied different signed graph

clustering methods to networks of international alliances and disputes. Traag and Brugge-
man (TRAAG; BRUGGEMAN, 2009) analyzed international relations taken from the
Correlates of War (STINNETT et al., 2002) data set, while Macon et al. (MACON;
MUCHA; PORTER, 2012) showed how three different network representations could be
used to identify voting groups in UNGA annual sessions.

Likewise, the following analysis is based on the voting on resolutions in the United
Nations General Assembly (UNGA), separated by year. Having applied the sequential ILS
algorithm using the UNGA instances listed in Chapter 2 as input, we give a taste of social
network analysis that can be done with the obtained CC and SRCC results.1 We interpret
the results obtained on graphs associated with UNGA votes, i.e. groups of countries that
minimize imbalance, together with some historical facts.

6.1.1 UNGA CC results

According to our results, in 1946 (first UNGA voting session), the obtained CC
solution has Poland, Czechoslovakia, Yugoslavia, Russia, Ukraine and Belarus together in
the same group, reflecting the Soviet Union power in Eastern Europe. At the same time,
USA and Cuba appeared together in another group, and this behavior persisted until 1953,
the year of the Cuban Revolution (PÉREZ-STABLE, 1993). Later, in 1962, when the
Cuban missile crisis took place (ALLISON, 1969), bipolarity was evident during the Cold
War. Our CC results indicate two clusters: (i) USA, with most Latin American countries,
Western Europe, Japan, Taiwan, India, Australia and other Pacific Countries; and (ii)
Russia, with Cuba, Poland, Hungary, Czechoslovakia, Albania, Yugoslavia, Bulgaria,
1 Appendix A lists the CC and SRCC results mentioned in this Chapter, including the groups of

countries in each solution, separated by year. For a full report of these results, see the complementary
material in <http://www.ic.uff.br/~yuri/files/CCcomp.zip>.

http://www.ic.uff.br/~yuri/files/CCcomp.zip
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Ukraine and many African countries. By 1963, Cuba had moved towards a full-fledged
Communist system modeled on the USSR.

Other interesting results are related to Apartheid in South Africa, as the country
appears isolated in the CC clustering solution for the 1974 voting session. In that year a
motion was passed to expel South Africa from the UN, but this was vetoed by France, the
United Kingdom and the United States, all key trade associates of South Africa (NESBITT,
2004; MCGREAL, 2006; DOWDALL, 2009). The results obtained for the graph associated
to 1974 also show an approximation of the USSR (Russia) and Arab states (Libya, Sudan,
Iran, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia, Kuwait, Bahrain, Qatar, United
Arab Emirates, Oman and Afghanistan), which appear in the same group. This behavior
makes sense, since after the mid 1950’s and throughout the remainder of the Cold War the
Soviets unequivocally supported various Arab regimes in lieu of Israel (GOLANI, 1995;
GOLAN, 2010).

Later on, from 1987 to 1991, during the period known as the First Intifada,
characterized by Palestinian uprising against the Israeli occupation of the Palestinian
Territories (SMITH, 2010), the CC results show that Israel is always in a small group while
most other countries of the world form another group. The USA, however, always appears
together with Israel and sometimes other countries like the UK, France and German
Federal Republic also appear in the same group.

More recently, regarding the Gaza-Israel conflict, in 2006, Israel and USA ap-
pear together, isolated in a group, with the rest of the world in another group. This is
probably due to the large-scale conventional warfare beyond the peripheries of the Gaza
Strip (MEARSHEIMER; WALT, 2006), in addition to the 2006 Lebanon War (KREPS,
2007).

6.1.2 UNGA SRCC results

As explained in the previous section, an interesting analysis of the SRCC problem
provides a different view over certain relations that were previously seen as violations
to the balance on the network according the original CC problem definition. Since the
SRCC problem does not count certain types of ties as violations (for considering some ties
belonging to processes occurring in the network, such as positive and negative mediation),
the values of imbalance tend to be even lower than those identified by the CC problem
solver. Thus it is possible to extract and detect which actors possibly belong to a group of
mediators. Taking the UNGA CC and SRCC solution values into account, as can be seen
on Figure 24 in Section 5.2, it is possible to identify in which yearly voting sessions the
SRCC relaxed imbalance is smaller than the CC imbalance measure. In these cases, there
are relationships / ties that were not classified by SRCC as violations of the balance of
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the network. For example, in the voting session of 1987, we were able to identify a group
of countries that acted as positive mediators: Canada, Ireland, Netherlands, Belgium,
Luxembourg, France, Spain, Portugal, German Federal Republic, Italy, Norway, Denmark,
Iceland, Japan, Australia and New Zealand. This group of sixteen countries has 100%
of internal positive relationships and 92% of external positive relationships. Besides this,
there are two other clusters: the first one with the USA, Dominica, the UK and Israel,
and another one with 138 countries. The year of 1987 is exactly when the First Intifada
commenced, so probably the small group with Israel and the large group with most
countries of the World are in opposite camps, subject to the mediation of a third group of
countries.

The same holds true in the analysis of the SRCC results of 1990. In this case, the
group of mediators was composed of the following twelve countries, out of which eleven were
also present in the mediation group of 1987: Canada, Netherlands, Belgium, Luxembourg,
Portugal, German Federal Republic, Poland, Italy, Norway, Denmark, Iceland and Japan.
This group of twelve countries has 100% of internal positive relationships and 94% of
external positive relationships. There are also two other groups. The second one comprising
of nine countries (United States of America, Panama, United Kingdom, France, Sao Tome
and Principe, Equatorial Guinea, Liberia, Israel and Cambodia) and the third one with 137
nations, including all Arab and Soviet states. The First Intifada lasted until the Madrid
Conference in 1991, though some date its conclusion to 1993, with the signing of the Oslo
Accords (MUNEM, 2008). With this in mind, an evidence that supports the existence of
the aforementioned mediation group is the second phase of the Madrid Peace Process,
launched by the United States and Russia in Moscow, in January 1992. Foreign ministers
and delegates from thirty six countries - including representatives from the Middle East,
Europe, Japan, China and Canada - were involved in the Israeli-Palestinian peace process.

6.2 Epinions, Slashdot and Wikipedia social media networks

In this section, we evaluate three large online signed social networks available in
Stanford Large Network Dataset Collection (LESKOVEC; KREVL, 2014): (i) the social
network of the technology-news website Slashdot2, where a signed link indicates that
one user likes or dislikes the comments of another; (ii) the voting network of Wikipedia
(WikiElections3), where a signed link indicates a positive or negative vote by one user on
the promotion to admin status of another; and (iii) the trust network of Epinions product
review website4, where users can indicate their trust or distrust of the reviews of others.

2 Slashdot friends or foes network from Feb 21 2009: 82,144 vertices and 549,202 edges.
3 Wikipedia adminship election data: 7,000 vertices and 100,000 edges.
4 Epinions who-vote-whom network: 131,828 vertices and 841,372 edges.
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Table 20 presents different imbalance measures found in the literature for the
aforementioned social networks. Facchetti et al. (FACCHETTI; IACONO; ALTAFINI, 2011)
defines a fraction called δ/m, which can be interpreted as a measure of the relative imbalance
of the network, since it consists of the number of frustrated bipartite relationships divided
by the total number of relationships of the network. In turn, Chiang et al. (CHIANG et al.,
2013) shows the proportion of balanced 3-cycles (P (Cli)), and Leskovec et al. (LESKOVEC;
HUTTENLOCHER; KLEINBERG, 2010) presents a measure of balanced undirected triads.

Method Measure Slashdot Wikipedia Epinions
(FACCHETTI; IACONO; ALTAFINI, 2011) δ/m 14.76% 14.20% 7.17%

(CHIANG et al., 2013) 1− P (Cli) 13.35% 21.65% 9.50%
(LESKOVEC; HUTTENLOCHER; KLEINBERG, 2010) % unbalanced triads 8.80% 9.10% 5.90%

ILS-CC %I(P ) 14.04% 14.32% 7.89%
ILS-SRCC %RI(P ) 13.90% 5.37% 7.81%

Table 20 – Comparison of imbalance measures from different authors and our results
(ILS-CC and ILS-SRCC).

By applying the best parallel version of the ILS algorithm, we provide an analysis
of the relative imbalance of these networks, which corresponds with the results from three
different works that have also shown how these networks are extremely balanced when
compared to random networks of equivalent size.

According to Fachetti et al. (FACCHETTI; IACONO; ALTAFINI, 2011), the
fraction of imbalance for the undirected Slashdot network is 14.76%, which is compatible
with the results obtained by ILS − CC. Our metaheuristic has reached a solution with
a relative imbalance ( %I(P ) ) of 14.04% (Table 20). Remark that the divergence in
these values is expected and is probably due to the different measures applied. ILS − CC
managed to fully process Wikipedia network, resulting in a relative imbalance (%I(P )) of
14.32%, while the paper’s measure points to the value of 14.20%. Moreover, the relative
imbalance of Epinions network obtained by ILS − CC was 7.89%, being very close to the
paper’s result (7.17%).

Additionally, according to Chiang et al. (CHIANG et al., 2013), the three former
social networks exhibit high levels of balance - we show the corresponding values of
imbalance (1− P (Cli)) in Table 20. Even though this measure is not the same objective
function of the CC problem, it still indicates that these networks are indeed extremely
balanced, which is in accordance with the result of our work. Also remark that the same
work presents another measure called P0(Cli), which consists of the expected probability
of finding balanced 3-cycles in an equivalent random network. The values of P0 are a lot
smaller than the values of P (P0 equals an average of 60%). This leads to the conclusion
that, in random networks of equivalent size, imbalance measures tend to be much higher
than the actual imbalance of the three aforementioned social media networks.
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Finally, a third work by Leskovec et al. (LESKOVEC; HUTTENLOCHER; KLEIN-
BERG, 2010) confirms that the analysed social media networks have high relative balance
(i.e. low relative imbalance). In the corresponding line of Table 20, we display the percentage
of unbalanced triads, based on the measures provided by the authors.

In summary, the above comparisons indicate that the measure applied in (FAC-
CHETTI; IACONO; ALTAFINI, 2011) matches our relative imbalance measure derived
from the CC problem objective function, while the measures available in (CHIANG et
al., 2013) and (LESKOVEC; HUTTENLOCHER; KLEINBERG, 2010) underevaluate the
imbalance of the networks, as they are based only on unbalanced triangles.

Great part of the imbalance measure of the networks is due to unaccounted
mediation relationships. Although ILS−SRCC was not able to detect mediation processes
occurring in Slashdot and Epinions networks, the Wikipedia network does indeed present
a great quantity of relationships associated with mediation and this translates into a lower
imbalance measure (%RI(P )), as shown in Table 20. This points to relative values of
(relaxed) imbalance even lower than those found by the CC problem solver. Thus, if we
factor the SRCC results into consideration, the Wikipedia network is still more balanced
than the measures from Fachetti et al. (FACCHETTI; IACONO; ALTAFINI, 2011) and
also the CC problem.
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7 Discussion and concluding remarks

The CC and SRCC consist of NP-hard combinatorial optimization problems.
We have contributed to their efficient solution by incorporating the GRASP and ILS
metaheuristics, enabling the analysis of structural balance on large-scale real-world social
networks. We have demonstrated the potential of social network analysis over UNGA
voting session data, Wikipedia election history, Slashdot friends or foes network and
Epinions who-trust-whom online social network. To the best of our knowledge, this is the
first work to list CC and SRCC measures of large signed social networks.

The multistart ILS metaheuristic, proposed in Chapter 3 to solve these problems,
is an improvement over the GRASP approach to solve the CC Problem, either by out-
performing, in processing time, the GRASP metaheuristic proposed in Chapter 2, or by
improving the solution quality. In fact, our tests have shown that the sequential version
of ILS is more efficient than the existing heuristics (Pajek - Doreian Mrvar Method, and
VOTE/BOEM).

Additionally, the parallel ILS with sequential VND, which offers substantial
speedups over the sequential algorithm, is the most efficient metaheuristic to solve larger
instances, such as those based on real-world signed social networks (Wikipedia, Slashdot
and Epinions), as well as completely random and random instances with a predefined
community structure. A comparison with the VOTE/BOEM heuristic has also revealed
that the parallel ILS algorithm is able to outperform it when solving larger networks like
Slashdot. A possible improvement of this work could be combining the parallel local search
procedure for the Correlation Clustering problem on GPU (CUDAVND) with parallel
ILS, in a hybrid application, applying the parallelism available both in CPU (multicore)
and GPU (CUDA). Moreover, the development of an ILS procedure which benefits from
data parallelism could also bring interesting results, allowing the processing of even larger
graph instances (more than half a million vertices).

Regarding the Symmetric RCC Problem, we were able to calculate the Symmetric
Relaxed Imbalance (SRI) of all network instances cited in the experiments by applying
the same parallel ILS metaheuristic used to solve the CC Problem.

The multistart ILS heuristic can also be incorporated in the efficient solution of
instances from other problems. The CC problem can be applied in several areas, in which
large instances probably require solving. With this idea in mind, practitioners interested in
these applications can apply our heuristic. In future works, these methods can be used to
analyse other real networks that represent a social group in different periods of time. On
top of this, it is possible to generalize our heuristic to manage other ways of evaluating the
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imbalance of the network, which implies solving other relaxed versions of the CC problem.
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A UNGA CC and SRCC results

Group # Countries
1 51 United States of America, Canada, Haiti, Dominican Republic, Mexico,

Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama,
Colombia, Venezuela, Ecuador, Peru, Brazil, Bolivia, Paraguay, Chile,
Argentina, Uruguay, United Kingdom, Ireland, Netherlands, Belgium,
Luxembourg, France, Spain, Portugal, Austria, Italy, Greece, Cyprus,
Finland, Sweden, Norway, Denmark, Iceland, South Africa, Turkey, Israel,
Taiwan, Japan, India, Thailand, Malaysia, Philippines, Australia, New
Zealand, Jamaica, Trinidad and Tobago,

2 59 Cuba, Poland, Hungary, Czechoslovakia, Albania, Yugoslavia, Bulgaria,
RUM, Russia, Ukraine, Belarus, Mali, Senegal, Benin, Mauritania, Niger,
Ivory Coast, Guinea, Burkina Faso, Liberia, Sierra Leone, Ghana, Togo,
Cameroon, Nigeria, Gabon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Tanzania, Somalia, Ethiopia, Mada-
gascar, Morocco, Tunisia, Libya, Sudan, Iran, Iraq, Egypt, Syria, Lebanon,
Jordan, Saudi Arabia, Yemen, Afghanistan, Mongolia, Pakistan, Myan-
mar, Sri Lanka, Nepal, Cambodia, Laos, Indonesia, Uganda, Burundi,
Rwanda, Algeria,

Table 21 – CC results for 1962 UNGA.



84 Appendix A. UNGA CC and SRCC results

Group # Countries
1 6 United States of America, United Kingdom, France, Portugal, South

Africa, Maldives
2 25 Canada, Dominican Republic, Nicaragua, Brazil, Bolivia, Paraguay,

Uruguay, Ireland, Netherlands, Belgium, Luxembourg, Spain, German
Federal Republic, Austria, Italy, Greece, Finland, Sweden, Norway, Den-
mark, Malawi, Israel, Japan, Australia, New Zealand

3 104 Bahamas, Cuba, Haiti, Jamaica, Trinidad and Tobago, Barbados, Mex-
ico, Guatemala, Honduras, El Salvador, Costa Rica, Panama, Colombia,
Venezuela, Guyana, Ecuador, Peru, Chile, Argentina, German Democratic
Republic, Poland, Hungary, Czechoslovakia, Malta, Albania, Yugoslavia,
Cyprus, Bulgaria, Russia, Ukraine, Belarus, Iceland, Equatorial Guinea,
Gambia, Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea,
Burkina Faso, Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria,
Gabon, Central African Republic, Chad, Congo, Democratic Republic
of the Congo, Uganda, Kenya, Tanzania, Burundi, Rwanda, Somalia,
Ethiopia, Zambia, Lesotho, Botswana, Swaziland, Madagascar, Mauritius,
Morocco, Algeria, Tunisia, Libya, Sudan, Iran, Turkey, Iraq, Egypt, Syria,
Lebanon, Jordan, Saudi Arabia, Yemen, Yemen People’s Republic, Kuwait,
Bahrain, Qatar, United Arab Emirates, Oman, Afghanistan, Mongolia,
Taiwan, India, Bhutan, Pakistan, Myanmar, Sri Lanka, Nepal, Thailand,
Cambodia, Laos, Malaysia, Singapore, Philippines, Indonesia

Table 22 – SRCC results for 1973 UNGA.

Group # Countries
1 7 United States of America, United Kingdom, France, Malawi, South Africa,

Israel, Maldives
2 40 Canada, Bahamas, Haiti, Dominican Republic, Barbados, Grenada,

Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama,
Colombia, Ecuador, Bolivia, Paraguay, Chile, Uruguay, Ireland, Nether-
lands, Belgium, Luxembourg, Spain, Portugal, German Federal Republic,
Austria, Italy, Greece, Finland, Sweden, Norway, Denmark, Iceland, Ivory
Coast, Turkey, Japan, Laos, Australia, New Zealand

3 91 Cuba, Jamaica, Trinidad and Tobago, Mexico, Venezuela, Guyana,
Peru, Brazil, Argentina, German Democratic Republic, Poland, Hun-
gary, Czechoslovakia, Malta, Albania, Yugoslavia, Cyprus, Bulgaria, Rus-
sia, Ukraine, Belarus, Guinea-Bissau, Equatorial Guinea, Gambia, Mali,
Senegal, Benin, Mauritania, Niger, Guinea, Burkina Faso, Liberia, Sierra
Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Central African Republic,
Chad, Congo, Democratic Republic of the Congo, Uganda, Kenya, Tan-
zania, Burundi, Rwanda, Somalia, Ethiopia, Zambia, Lesotho, Botswana,
Swaziland, Madagascar, Mauritius, Morocco, Algeria, Tunisia, Libya, Su-
dan, Iran, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia, Yemen,
Yemen People’s Republic, Kuwait, Bahrain, Qatar, United Arab Emi-
rates, Oman, Afghanistan, China, Mongolia, India, Bhutan, Pakistan,
Bangladesh, Myanmar, Sri Lanka, Nepal, Thailand, Cambodia, Malaysia,
Singapore, Philippines, Indonesia

Table 23 – SRCC results for 1974 UNGA.
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Group # Countries
1 1 Dominica
2 3 United States of America, United Kingdom, Israel
3 154 Canada, Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad

and Tobago, Barbados, Grenada, St. Lucia, St. Vincent and the
Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Belize,
Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama,
Colombia, Venezuela, Guyana, Suriname, Ecuador, Peru, Brazil, Bolivia,
Paraguay, Chile, Argentina, Uruguay, Ireland, Netherlands, Belgium, Lux-
embourg, France, Spain, Portugal, German Federal Republic, German
Democratic Republic, Poland, Austria, Hungary, Czechoslovakia, Italy,
Malta, Albania, Yugoslavia, Greece, Cyprus, Bulgaria, Russia, Ukraine,
Belarus, Finland, Sweden, Norway, Denmark, Iceland, Cape Verde, Sao
Tome and Principe, Guinea-Bissau, Equatorial Guinea, Gambia, Mali,
Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina Faso,
Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Cen-
tral African Republic, Chad, Congo, Democratic Republic of the Congo,
Uganda, Kenya, Tanzania, Burundi, Rwanda, Somalia, Djibouti, Ethiopia,
Angola, Mozambique, Zambia, Zimbabwe, Malawi, Lesotho, Botswana,
Swaziland, Madagascar, Comoros, Mauritius, Seychelles, Morocco, Algeria,
Tunisia, Libya, Sudan, Iran, Turkey, Iraq, Egypt, Syria, Lebanon, Jordan,
Saudi Arabia, Yemen, Yemen People’s Republic, Kuwait, Bahrain, Qatar,
United Arab Emirates, Oman, Afghanistan, China, Mongolia, Japan, In-
dia, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka, Maldives, Nepal,
Thailand, Cambodia, Laos, Vietnam, Malaysia, Singapore, Brunei, Philip-
pines, Indonesia, Australia, Papua New Guinea, New Zealand, Vanuatu,
Solomon Islands, Samoa

Table 24 – CC results for 1987 UNGA.
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Group # Countries
1 5 United States of America, United Kingdom, France, German Federal

Republic, Israel
2 153 Canada, Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad

and Tobago, Barbados, Dominica, Grenada, St. Lucia, St. Vincent and
the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Be-
lize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama,
Colombia, Venezuela, Guyana, Suriname, Ecuador, Peru, Brazil, Bolivia,
Paraguay, Chile, Argentina, Uruguay, Ireland, Netherlands, Belgium, Lux-
embourg, Spain, Portugal, German Democratic Republic, Poland, Aus-
tria, Hungary, Czechoslovakia, Italy, Malta, Albania, Yugoslavia, Greece,
Cyprus, Bulgaria, Russia, Ukraine, Belarus, Finland, Sweden, Norway,
Denmark, Iceland, Cape Verde, Sao Tome and Principe, Guinea-Bissau,
Equatorial Guinea, Gambia, Mali, Senegal, Benin, Mauritania, Niger,
Ivory Coast, Guinea, Burkina Faso, Liberia, Sierra Leone, Ghana, Togo,
Cameroon, Nigeria, Gabon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Uganda, Kenya, Tanzania, Burundi,
Rwanda, Somalia, Djibouti, Ethiopia, Angola, Mozambique, Zambia, Zim-
babwe, Malawi, Lesotho, Botswana, Swaziland, Madagascar, Comoros,
Mauritius, Seychelles, Morocco, Algeria, Tunisia, Libya, Sudan, Iran,
Turkey, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia, Yemen,
Yemen People’s Republic, Kuwait, Bahrain, Qatar, United Arab Emirates,
Oman, Afghanistan, China, Mongolia, Japan, India, Bhutan, Pakistan,
Bangladesh, Myanmar, Sri Lanka, Maldives, Nepal, Thailand, Cambo-
dia, Laos, Vietnam, Malaysia, Singapore, Brunei, Philippines, Indonesia,
Australia, Papua New Guinea, New Zealand, Vanuatu, Solomon Islands,
Samoa

Table 25 – CC results for 1988 UNGA.
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Group # Countries
1 3 United States of America, United Kingdom, Israel
2 155 Canada, Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and To-

bago, Barbados, Dominica, Grenada, St. Lucia, St. Vincent and the Grenadines,
Antigua & Barbuda, St. Kitts and Nevis, Mexico, Belize, Guatemala, Honduras,
El Salvador, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Guyana,
Suriname, Ecuador, Peru, Brazil, Bolivia, Paraguay, Chile, Argentina, Uruguay,
Ireland, Netherlands, Belgium, Luxembourg, France, Spain, Portugal, German
Federal Republic, German Democratic Republic, Poland, Austria, Hungary,
Czechoslovakia, Italy, Malta, Albania, Yugoslavia, Greece, Cyprus, Bulgaria,
Russia, Ukraine, Belarus, Finland, Sweden, Norway, Denmark, Iceland, Cape
Verde, Sao Tome and Principe, Guinea-Bissau, Equatorial Guinea, Gambia,
Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina Faso,
Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Central African
Republic, Chad, Congo, Democratic Republic of the Congo, Uganda, Kenya,
Tanzania, Burundi, Rwanda, Somalia, Djibouti, Ethiopia, Angola, Mozambique,
Zambia, Zimbabwe, Malawi, Lesotho, Botswana, Swaziland, Madagascar, Co-
moros, Mauritius, Seychelles, Morocco, Algeria, Tunisia, Libya, Sudan, Iran,
Turkey, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia, Yemen, Yemen
People’s Republic, Kuwait, Bahrain, Qatar, United Arab Emirates, Oman,
Afghanistan, China, Mongolia, Japan, India, Bhutan, Pakistan, Bangladesh,
Myanmar, Sri Lanka, Maldives, Nepal, Thailand, Cambodia, Laos, Vietnam,
Malaysia, Singapore, Brunei, Philippines, Indonesia, Australia, Papua New
Guinea, New Zealand, Vanuatu, Solomon Islands, Samoa

Table 26 – CC results for 1989 UNGA.
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Group # Countries
1 4 United States of America, United Kingdom, France, Israel
2 5 Panama, Sao Tome and Principe, Equatorial Guinea, Liberia, Cambodia
3 149 Canada, Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad

and Tobago, Barbados, Dominica, Grenada, St. Lucia, St. Vincent and
the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Belize,
Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Colombia,
Venezuela, Guyana, Suriname, Ecuador, Peru, Brazil, Bolivia, Paraguay,
Chile, Argentina, Uruguay, Ireland, Netherlands, Belgium, Luxembourg,
Liechtenstein, Spain, Portugal, German Federal Republic, Poland, Aus-
tria, Hungary, Czechoslovakia, Italy, Malta, Albania, Yugoslavia, Greece,
Cyprus, Bulgaria, Russia, Ukraine, Belarus, Finland, Sweden, Norway,
Denmark, Iceland, Cape Verde, Guinea-Bissau, Gambia, Mali, Senegal,
Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina Faso, Sierra
Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Central African Repub-
lic, Chad, Congo, Democratic Republic of the Congo, Uganda, Kenya,
Tanzania, Burundi, Rwanda, Somalia, Djibouti, Ethiopia, Angola, Mozam-
bique, Zambia, Zimbabwe, Malawi, Namibia, Lesotho, Botswana, Swazi-
land, Madagascar, Comoros, Mauritius, Seychelles, Morocco, Algeria,
Tunisia, Libya, Sudan, Iran, Turkey, Iraq, Egypt, Syria, Lebanon, Jor-
dan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United Arab Emi-
rates, Oman, Afghanistan, China, Mongolia, Japan, India, Bhutan, Pak-
istan, Bangladesh, Myanmar, Sri Lanka, Maldives, Nepal, Thailand, Laos,
Vietnam, Malaysia, Singapore, Brunei, Philippines, Indonesia, Australia,
Papua New Guinea, New Zealand, Vanuatu, Solomon Islands, Samoa

Table 27 – CC results for 1990 UNGA.
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Group # Countries
1 2 United States of America, Israel
2 10 Equatorial Guinea, Croatia, Slovenia, Moldova, Georgia, Turkmenistan,

Tajikistan, Kyrgyzstan, Uzbekistan, Kazakhstan
3 166 Canada, Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad

and Tobago, Barbados, Dominica, Grenada, St. Lucia, St. Vincent and
the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Be-
lize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama,
Colombia, Venezuela, Guyana, Suriname, Ecuador, Peru, Brazil, Bolivia,
Paraguay, Chile, Argentina, Uruguay, United Kingdom, Ireland, Nether-
lands, Belgium, Luxembourg, France, Liechtenstein, Spain, Portugal, Ger-
man Federal Republic, Poland, Austria, Hungary, Czechoslovakia, Italy,
Malta, Albania, Yugoslavia, Greece, Cyprus, Bulgaria, Russia, Estonia,
Latvia, Lithuania, Ukraine, Belarus, Finland, Sweden, Norway, Denmark,
Iceland, Cape Verde, Sao Tome and Principe, Guinea-Bissau, Gambia,
Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina
Faso, Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Cen-
tral African Republic, Chad, Congo, Democratic Republic of the Congo,
Uganda, Kenya, Tanzania, Burundi, Rwanda, Somalia, Djibouti, Ethiopia,
Angola, Mozambique, Zambia, Zimbabwe, Malawi, Namibia, Lesotho,
Botswana, Swaziland, Madagascar, Comoros, Mauritius, Seychelles, Mo-
rocco, Algeria, Tunisia, Libya, Sudan, Iran, Turkey, Iraq, Egypt, Syria,
Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United
Arab Emirates, Oman, Afghanistan, China, Mongolia, North Korea, South
Korea, Japan, India, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka,
Maldives, Nepal, Thailand, Cambodia, Laos, Vietnam, Malaysia, Singa-
pore, Brunei, Philippines, Indonesia, Australia, Papua New Guinea, New
Zealand, Vanuatu, Solomon Islands, Marshall Islands, Federated States
of Micronesia, Samoa, San Marino, Bosnia and Herzegovina, Armenia,
Azerbaijan

Table 28 – CC results for 1991 UNGA.
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Group # Countries
1 2 Yemen People’s Republic, Mauritius
2 20 United States of America, Canada, United Kingdom, Netherlands, Bel-

gium, Luxembourg, France, Portugal, Austria, Italy, Malta, Finland,
Sweden, Norway, Denmark, Iceland, Malawi, South Africa, Australia,
New Zealand

3 102 Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago, Bar-
bados, Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa
Rica, Panama, Colombia, Venezuela, Guyana, Ecuador, Peru, Brazil,
Bolivia, Paraguay, Chile, Argentina, Uruguay, Ireland, Spain, Poland,
Hungary, Czechoslovakia, Albania, Yugoslavia, Greece, Cyprus, Bulgaria,
Russia, Ukraine, Belarus, Gambia, Mali, Senegal, Benin, Mauritania,
Niger, Ivory Coast, Guinea, Burkina Faso, Liberia, Sierra Leone, Ghana,
Togo, Cameroon, Nigeria, Gabon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Uganda, Kenya, Tanzania, Burundi,
Rwanda, Ethiopia, Zambia, Lesotho, Botswana, Madagascar, Morocco,
Algeria, Tunisia, Libya, Sudan, Iran, Turkey, Iraq, Egypt, Syria, Lebanon,
Jordan, Israel, Saudi Arabia, Yemen, Kuwait, Afghanistan, Mongolia,
Taiwan, Japan, India, Pakistan, Myanmar, Sri Lanka, Maldives, Nepal,
Thailand, Cambodia, Laos, Malaysia, Singapore, Philippines, Indonesia,
Somalia

Table 29 – CC results for 1967 UNGA.

Group # Countries
1 30 United States of America, Canada, Barbados, Costa Rica, Brazil, United

Kingdom, Ireland, Netherlands, Belgium, Luxembourg, France, Portugal,
Austria, Italy, Malta, Finland, Sweden, Norway, Denmark, Iceland, Gam-
bia, Malawi, South Africa, Lesotho, Botswana, Israel, Japan, Australia,
New Zealand, Mauritius

2 37 Haiti, Dominican Republic, Jamaica, Trinidad and Tobago, Mexico,
Guatemala, Honduras, El Salvador, Nicaragua, Panama, Colombia,
Venezuela, Guyana, Ecuador, Peru, Bolivia, Paraguay, Chile, Argentina,
Uruguay, Spain, Greece, Benin, Niger, Ivory Coast, Burkina Faso, Liberia,
Sierra Leone, Ghana, Togo, Rwanda, Madagascar, Turkey, Taiwan, Thai-
land, Laos, Philippines

3 57 Cuba, Poland, Hungary, Czechoslovakia, Albania, Yugoslavia, Cyprus,
Bulgaria, Russia, Ukraine, Belarus, Mali, Senegal, Mauritania, Guinea,
Cameroon, Nigeria, Gabon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Uganda, Kenya, Tanzania, Bu-
rundi, Ethiopia, Zambia, Morocco, Algeria, Tunisia, Libya, Sudan, Iran,
Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait,
Afghanistan, Mongolia, India, Pakistan, Myanmar, Sri Lanka, Maldives,
Nepal, Cambodia, Malaysia, Singapore, Indonesia, Somalia, Yemen Peo-
ple’s Republic

Table 30 – SRCC results for 1967 UNGA.
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Group # Countries
1 1 Albania
2 13 United States of America, Canada, United Kingdom, Netherlands, Bel-

gium, Luxembourg, France, Portugal, Malawi, South Africa, Botswana,
Australia, New Zealand

3 112 Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago, Barba-
dos, Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica,
Panama, Colombia, Venezuela, Guyana, Ecuador, Peru, Brazil, Bolivia,
Paraguay, Chile, Argentina, Uruguay, Ireland, Spain, Poland, Austria,
Hungary, Czechoslovakia, Italy, Malta, Yugoslavia, Greece, Cyprus, Bul-
garia, Russia, Ukraine, Belarus, Finland, Sweden, Norway, Denmark,
Iceland, Equatorial Guinea, Gambia, Mali, Senegal, Benin, Mauritania,
Niger, Ivory Coast, Guinea, Burkina Faso, Liberia, Sierra Leone, Ghana,
Togo, Cameroon, Nigeria, Gabon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Uganda, Kenya, Tanzania, Burundi,
Rwanda, Somalia, Ethiopia, Zambia, Lesotho, Swaziland, Madagascar,
Mauritius, Morocco, Algeria, Tunisia, Libya, Sudan, Iran, Turkey, Iraq,
Egypt, Syria, Lebanon, Jordan, Israel, Saudi Arabia, Yemen, Yemen
People’s Republic, Kuwait, Afghanistan, Mongolia, Taiwan, Japan, India,
Pakistan, Myanmar, Sri Lanka, Maldives, Nepal, Thailand, Cambodia,
Laos, Malaysia, Singapore, Philippines, Indonesia

Table 31 – CC results for 1969 UNGA.

Group # Countries
1 21 United States of America, Canada, United Kingdom, Netherlands, Bel-

gium, Luxembourg, France, Portugal, Austria, Italy, Malta, Sweden,
Norway, Denmark, Iceland, Gambia, Malawi, South Africa, Botswana,
Australia, New Zealand

2 40 Dominican Republic, Jamaica, Trinidad and Tobago, Mexico, Guatemala,
Honduras, El Salvador, Nicaragua, Costa Rica, Panama, Colombia,
Venezuela, Ecuador, Peru, Brazil, Bolivia, Paraguay, Chile, Argentina,
Uruguay, Ireland, Spain, Greece, Cyprus, Finland, Senegal, Ivory Coast,
Liberia, Gabon, Lesotho, Swaziland, Madagascar, Turkey, Israel, Taiwan,
Japan, Maldives, Thailand, Laos, Philippines

3 65 Cuba, Haiti, Barbados, Guyana, Poland, Hungary, Czechoslovakia, Alba-
nia, Yugoslavia, Bulgaria, Russia, Ukraine, Belarus, Equatorial Guinea,
Mali, Benin, Mauritania, Niger, Guinea, Burkina Faso, Sierra Leone,
Ghana, Togo, Cameroon, Nigeria, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Uganda, Kenya, Tanzania, Burundi,
Rwanda, Somalia, Ethiopia, Zambia, Mauritius, Morocco, Algeria, Tunisia,
Libya, Sudan, Iran, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi Arabia,
Yemen, Yemen People’s Republic, Kuwait, Afghanistan, Mongolia, India,
Pakistan, Myanmar, Sri Lanka, Nepal, Cambodia, Malaysia, Singapore,
Indonesia

Table 32 – SRCC results for 1969 UNGA.
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