
UNIVERSIDADE FEDERAL FLUMINENSE

Roberto Kendy Sawamura

Improving Application Throughput by Exploiting
Vertical Memory Elasticity in Virtualized

Environments

NITERÓI

2015

UNIVERSIDADE FEDERAL FLUMINENSE

Roberto Kendy Sawamura

Improving Application Throughput by Exploiting
Vertical Memory Elasticity in Virtualized

Environments

Dissertation presented to the Computing
Graduate program of the Universidade
Federal Fluminense in partial fulfill-
ment of the requirements for the de-
gree of Master of Science. Topic area:
Computer Systems

Advisor:
Cristina Boeres and Vinod Rebello

NITERÓI

2015

Roberto Kendy Sawamura

Improving Application Throughput by Exploiting Vertical Memory Elasticity in

Virtualized Environments

Dissertation presented to the Computing

Graduate program of the Universidade

Federal Fluminense in partial fulfill-

ment of the requirements for the de-

gree of Master of Science. Topic area:

Computer Systems

Approved in December 2015 by:

Prof. Maria Cristina Silva Boeres, Ph.D. - Advisor, UFF

Prof. Eugene Francis Vinod Rebello, Ph.D. - Advisor, UFF

Prof. Claudio Luis de Amorim, Ph.D., UFRJ

Prof. Orlando Gomes Loques Filho, Ph.D., UFF

Niterói

2015

Resumo

A natureza dinâmica das aplicações e serviços tem levado a comunidade da área de nu-
vens a investir no estudo e desenvolvimento de funcionalidades elásticas que permitem
o redimensionamento dinâmico de recursos. Até os dias atuais, grande parte da área
científica tem focado em abordar a elasticidade horizontal, a fim de fornecer a quantidade
apropriada de máquinas virtuais (VMs) para manter a qualidade de serviço. Mais recente-
mente, a elasticidade vertical tem recebido maior atenção, onde o processamento, memória
e armazenamento de uma VM é ajustada de acordo com as necessidades da aplicação.
Tanto aplicações online com cargas imprevisíveis e workflows científicos com diferentes
conjuntos de dados necessitam de redimensionamento autônomo, a fim de evitar perda de
desempenho ou pagar por recursos subutilizados e possivelmente desnecessários. Dado o
crescente impacto da disponibilidade de memória no desempenho, este trabalho apresenta
as principais características do Memory Elasticity Controller (MEC), um escalonador de
VMs que visa maximizar a vazão de jobs ou workflows, calibrando criteriosamente a
quantidade de memória alocada para cada VM em execução, de acordo com os requisitos
dinâmicos das aplicações, evitando, ao mesmo tempo, comprometer seus desempenhos.
Este trabalho apresenta a arquitetura da ferramenta e avalia uma variedade de aspectos
através de experimentos que destacam os benefícios, tanto para os provedores de recursos
quanto para as aplicações, com maior eficiência, vazão e desempenho.

Palavras-chave: Elasticidade vertical, Escalonamento de máquinas virtuais, Alocação
dinâmica de memória.

Abstract

The dynamic nature of application or service requirements has lead the cloud community
to invest in the study and development of elasticity features that have the ability to re-
dimension resource capacities dynamically. To date, the dominant share of the research
literature has focused on tackling horizontal elasticity in order to provision the appropriate
number of virtual machines (VMs) to meet given quality of service criteria. More recently,
work has begun to investigate vertical elasticity where the processing, memory or storage
capacity of a single VM is adjusted in accordance with the application’s needs. Both
online applications under unpredictable workloads or scientific workflows with different
datasets require autonomic scaling in order to avoid performance degradation or paying
for additional, sub-utilized and possibly unnecessary, resources. Given the increasing
influence of memory availability on performance, this work presents the principal features
of the Memory Elasticity Controller (MEC), a VM scheduling tool that aims to maximize
the throughput of jobs or workflow tasks by judiciously calibrating the amount of host
memory allocated to each running VM in accordance with that VM’s respective job’s
changing run time requirements while, at the same time, trying to avoid compromising
the job’s performance. This work presents the tool’s architecture and evaluates a variety
aspects through experiments that highlight the benefits of the approach for both resource
providers and applications with improved efficiency, throughput and performance.

Keywords: Vertical elasticity, Virtual machines scheduling, Dynamic memory allocation.

List of Figures

3.1 Relationship between mo(vmi) and maxml(vmi) 11

3.2 Swap Activation Threshold in relation to ma() and maxml()) configurations. 12

3.3 Free memory and swap consumption during the execution J1 13

3.4 Relative job performance on a VM with different amounts of allocated

memory . 14

3.5 Memory utilisation and swap consumption for J1, J2 and J3 15

3.6 Swap-out and swap-in for J1, J2 and J3 . 16

3.7 The siso(vmi, t) indicator and swap consumption for m = 70% 17

3.8 Concurrently VMs with and without memory constraints 18

3.9 Sequential and concurrent execution of VMs, when using swap and not (ideal

execution) . 19

4.1 The Memory Elasticity Controller (MEC) Architecture 21

4.2 Communication between the component and their threads of the layers of MEC . 22

4.3 VM status and actions . 23

4.4 Calculating positive memory shaping ms(vmi, t) for ∆cm(vmi, t) > 0. The

current free memory fm(vmi, t) is shown at (1). The estimated free memory

efm(vmi, t+ Ihost) is calculated at (2). The memory shaping ms(vmi, t) is then

calculated at (3), to avoid letting the free memory fall below the sat(vmi) value

before the next scheduling event at t + Ihost (4). 27

4.5 Calculating memory shaping ms(vmi, t) when ∆cm(vmi, t) > 0. The current free

memory fm(vmi, t) is shown at (1) and the estimated free memory efm(vmi, t+

Ihost) at (2). The memory shaping ms(vmi, t) is calculated at (3) to avoid leaving

“idle” unused memory but still keeping free memory above sat(vmi) limit until

next scheduling time t + Ihost at (4). 27

List of Figures vi

4.6 Calculating memory shaping ms(vmi, t) when ∆cm(vmi, t) < 0. The current free

memory fm(vmi, t) is shown at (1) and the estimated free memory efm(vmi, t+

Ihost) at (2). If thems(vmi, t) calculation where to consider the negative ∆cm(vmi, t)

and keep the free memory equals to the sat(vmi) value at the time t+Ihost (in the

future (4)), then the current memory allocation ma(vmi, t) would be decreased

by ms(vmi, t) in such a way that would leave fm(vmi, t) below sat(vmi) (at (3))

at the current time t. 28

4.7 Memory State transitions diagram . 33

4.8 The CloudManager at CL layer . 41

5.1 Consumed memory from the host point of view 45

5.2 Memory and swap consumption during the execution of J1 using the function

“= 1” and Ihost = 5s under MEC management 46

5.3 The effects on the memory allocation during J3 execution on vmi due to memory

extraction . 49

5.4 The effects on the memory allocation during J1 execution on vmi due to memory

extraction . 49

5.5 Scenarios SC1 and SC2 with different priorities for choosing active VMs 51

5.6 Scenario SC3 where VMs face the same siso(), breaking ties with the “Distribute”,

“High ms” and “Low ms” criteria . 52

5.7 Pausing mechanism evaluation when executing two VMs concurrently in different

situations . 53

5.8 Execution time ratio of n VMs under MEC management versus static memory

allocation . 55

5.9 Execution time ratio: Static versus MEC . 56

5.10 Parsec with MEC vs STATIC . 57

5.11 MEC vc STATIC-V . 57

5.12 MEC vc MOP . 59

List of Tables

3.1 Corresponding total memory tm(vmi) and memory overhead mo(vmi), for

each memory allocation ma(vmi, t), with a fixed maxml(vmi) value of

12288, in MB . 10

4.1 Virtual machines states vstate(vmi, t) and descriptions 24

4.2 Memory State transitions . 33

4.3 Actions and state transitions of virtual machines 40

5.1 Jobs specifications . 44

5.2 Memory Consumption rates (GB/s) and Required Extra Memory (GB) for

different functions . 46

5.3 MEC overhead . 47

5.4 Jobs specifications for memory extraction 48

5.5 Jobs specifications for memory extraction 49

5.6 Comparison on the Pausing Mechanism (Memory Unit in GB) 53

List of Acronyms and Abbreviations

CL : Cloud layer;

cm(vmi, t) : Consumed memory reported by guest OS of vmi at time t;

fm(vmi, t) : Free memory reported by guest OS of vmi at time t;

hfm(pmj, t) : Host free memory of pmj at time t;

Ihost : Interval between scheduling events on the host machine;

Imonitor : Interval at which information is collected from the OS in each VM;

ma(vmi, t) : Memory allocation for VM vmi at time t;

maxml(vmi) : Maximum memory allocation for VM vmi;

MEC : Memory Elasticity Controller;

mo(vmi) : Memory overhead of vmi;

ms(vmi, t) : Memory shaping for vmi at time t;

pdr(Wk) : Peak dynamic range of Wk;

PM : Physical machine;

pmj : Physical machine j;

PML : Physical machine layer;

sat(vmi) : Swap activation threshold of vmi;

sc(vmi, t) : Swap consumption of vmi at time t;

si(vmi, t) : Amount of swap-in since last boot of vmi at time t;

siso(vmi, t) : Swap-in/Swap-out indicator of vmi at time t;

so(vmi, t) : Amount of swap-out since last boot of vmi at time t;

tm(vmi, t) : Total memory reported by guest OS of vmi at time t;

VM : Virtual machine;

vmi : Virtual machine i;

VML : Virtual machine layer;

Wk : Workflow k;

ws(Wk, t) : Working set of Wk at time t

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Structure of the dissertation . 4

2 Related work 5

3 An Analysis of Memory Parameters 8

3.1 Definitions . 8

3.2 Identification of relevant characteristics . 9

3.2.1 Memory Overhead . 9

3.2.2 Swap Activation Threshold . 11

3.2.3 Performance impact of distinct working sets 13

3.2.4 Evaluating Swap Usage . 15

3.2.5 Collective Impact of Swap Usage in Concurrent VMs 16

3.2.6 Summary . 18

4 MEC - A Memory Elasticity Controller 20

4.1 MEC layers . 20

4.2 The Host Manager . 22

4.2.1 Virtual Machine State Transitions 22

4.2.2 The Host Manager Algorithm . 24

Contents x

4.2.3 The Host Manager Parameters . 24

4.2.3.1 Memory Shaping . 25

4.2.3.2 The swap-in and swap-out indicator 30

4.2.4 Memory State Transitions . 31

4.2.4.1 Managing Active VMs . 33

4.2.4.2 Managing Inactive VMs 38

4.2.4.3 Committing changes . 39

4.3 The Cloud Manager . 41

5 Experimental Results 43

5.1 Overview . 43

5.2 Evaluating Specific Characteristics . 43

5.2.1 Host memory consumption pattern under MEC supervision 44

5.2.2 Management frequency . 45

5.2.3 Memory extraction mechanism . 47

5.2.4 Prioritizing VMs . 50

5.2.4.1 Breaking ties with lowest ms(vmi, t) 51

5.2.5 Pausing VMs . 51

5.3 MEC overall evaluation . 54

5.3.1 Synthetic Jobs . 54

5.3.2 Parsec Benchmark . 55

6 Conclusion and future work 60

6.1 Conclusion . 60

6.2 Future work . 62

References 64

Contents xi

Appendix A -- Parsec Benchmark Applications 66

Appendix B -- DMSS implementation algorithm 68

Chapter 1

Introduction

With the continuous advances in multi-core technology and consolidation of virtualization,

systems such as KVM [2], Xen [6] and VMware [5] have become the foundation of cloud

computing, allowing IaaS services to run several virtual machines (VMs) on a single

physical node. While virtualization provides environments isolated from one another, it

brings a new challenge from the host’s point of view – how to distribute the available

physical resources among the VMs. A conservative approach to allocate VMs can be

applied, based on the host server’s ability to meet the VM’s maximum CPU, I/O and

memory requirements. However, given that the requirements of applications within the

VM may vary during execution, it might be more efficient to also vary over time the

amount of resources dedicated to the VM.

According to the National Institute of Standards and Technology (NIST) [18], one

essential characteristic of cloud computing is rapid elasticity, where “capabilities can be

elastically provisioned and released, in some cases automatically, to scale rapidly out-

ward and inward commensurate with demand”. The cloud system should be able to scale

resources horizontally or vertically [12].

Horizontal elasticity is concerned with the rapid provisioning and releasing of nodes

in order to efficiently deal with the change on the workload. For example, if necessary and

depending on the application demands, increasing (or decreasing) the number of virtual

machines might be necessary in order to deal with changes in workload. In the Amazon

Elastic Compute Cloud (Amazon EC2) [7], the “Auto Scaling” [8] feature works in this

way, allowing EC2 instances (virtual machines) to be initiated/terminated automatically,

according to user defined conditions.

On the other hand, vertical elasticity is related with the ability to modify the capacity

1 Introduction 2

in terms of vCPU cores or memory allocated to a single VM, already in execution, to best

attend the application(s) it hosts. Specifically for RAMmemory, elasticity can be achieved

through the virtual memory ballooning [22], a technique used by the hypervisor to change

the amount of memory allocated to the VM. The process of allocating/deallocating mem-

ory is called inflating/deflating the balloon.

Vertical memory elasticity is advantageous given that application working sets change

in size [19] and distinct applications have differing memory demands. This presents In-

frastructure Providers with an opportunity to improve the effectiveness of their server

consolidation plans and thus, further reduce energy consumption, capital expenses and

administration costs.

The technique of over-provisioning or over-committing VMs, where more resources are

allocated than physically exist, is becoming common practice. Memory over-provisioning

is motivated by the fact that there can be a substantial difference between the amount

of memory allocated to a VM and the amount that is actually used. The memory pages

requested by a process are usually only allocated when they are first used. Furthermore,

sharing pages between multiple processes can also obviously save memory. While not

perfect, as available memory becomes scarce, the system can free up space by swapping

out less frequently accessed pages to disk. This discrepancy can help optimize the use

of limited resources. Over-provisioning however is not an ideal solution for all memory

issues. Although increasing the degree of over-provisioning might take better advantage

of resource capacity by fully utilizing it, this can also cause a dramatic loss in performance

and, since VMs will require resources for longer, will in turn adversely affect both efficiency

and throughput.

Rather than adopt memory over-provisioning, this work proposes to adjust the amount

of memory allocated to each VM while it executes its jobs. The allocated memory will be

elastically increased when required and reduced when there is a surplus and additional

memory is required by another VM on the same server. By developing a hypervisor

agnostic tool to allocate memory to VMs on demand in order to improve VM scheduling,

it is possible, for example, in an IaaS cloud system or data centre to consolidate servers,

without sacrificing performance.

To do this, this dissertation investigates the impact of memory allocation and swap

usage on VM performance and through experimental evaluations, a hypervisor indepen-

dent metrics and policies are identified. Based on the experiment results, this work goes

on to present the Memory Elasticity Controller (MEC), a framework of a tool to dy-

1.1 Motivation 3

namically manage memory allocations and states of VMs. Results with the proposed

tool highlight some of the benefits to both resource providers and applications through

improved efficiency, throughput and performance.

1.1 Motivation

The difficulty in estimating the dynamic memory usage of applications as well as absence

of an automatic memory management on cloud infrastructures creates a challenge in

VM memory allocation and vertical elasticity. Usually the allocation is static and is

not changed automatically during VM execution. Overestimating or underestimating the

memory allocation can have serious impact on applications as well as for the cloud system.

Overestimating the amount of memory can result in poor resource utilization. Typi-

cally, if a VM of 10GB is allocated to a physical host with 10GB of available memory, the

host machine will not allocated any other VM. If this VM uses all of the whole memory,

100% of the time, but no other resource just as much, such as CPU, computational capac-

ity is being wasted. The situation gets worse in common situations, where the VM uses

its entire memory for only a small percentage of the time. In this case, RAM memory

and CPU are wasted.

On the other hand, underestimating the amount of memory can result in performance

degradation since, in a memory shortage, swap space is used, which is slower than memory

access and thus delays the application’s execution. This degradation will occur even if

there is free memory in the host machine, since the VM is not able to access memory that

is not allocated to it.

Managing memory efficiently according to the workload can result in better resource

utilization without losses in performance. To do so, it is necessary to analyze and under-

stand how applications in VMs behave and how they are impacted when memory elasticity

is applied in a cloud system.

1.2 Objectives

This work proposes a tool to increase the throughput of a cloud system environment,

based on analysis of behaviours of a set of applications towards memory and swap usage.

This multi-tier tool uses the vertical memory elasticity capability of VMs to maintain

performance and to avoid memory over-provisioning. In a cloud environment, with data

1.3 Contributions 4

centers incorporating increasing numbers of physical machines and even higher numbers of

virtual machines, an efficient manager focusing on better resource utilization and avoiding

performance drops can result in higher throughputs.

1.3 Contributions

The main contributions of this work are listed below:

• A study of parameters and behaviors of VMs to identify metrics and policies for a

vertical memory elasticity tool;

• Based on the study, the design and implementation of a guest OS independent tool

and platform to dynamically manage VM’s memory and running state, detailing its

main components and features;

• Validation of the tool, which is able to increase the throughput of cloud systems

when possible without any previous knowledge of the applications running in the

VMs.

1.4 Structure of the dissertation

This dissertation is organized as follows: Chapter 2 summarizes some related work and

describes other approaches that also tackle vertical memory elasticity; Chapter 3 presents

experiments to identify and monitor controllable memory related factors that influence

the performance of an application, in order to define metrics and policies to manage VMs;

Chapter 4 explains in detail the mechanics of the Memory Elasticity Controller (MEC), a

tool to manage VMs aiming to increase the system’s throughput; Chapter 5 present some

experiments with MEC and results with synthetic applications that represents different

memory patterns and also, with the Parsec benchmark [4]; and finally, Chapter 6 draws

a few conclusions and indicates some future work directions.

Chapter 2

Related work

Over the last few years, a growing interest has been paid to elasticity in cloud systems. The

survey in [11] covers many works on cloud computing elasticity, and addresses different

aspects such as definitions, metrics, tools, and existing solutions. It classifies the solutions

for elasticity in methods and models. Methods (or actions), can be Horizontal, where

instances, such as virtual machines, applications or containers, are added/removed from

the environment, or Vertical, where resources, such as processing, memory or storage, are

added/removed from a single virtual machine. Migration is also mentioned as a method,

which consists of moving a VM or application from a physical server to another. The

Horizontal scaling is reported as the most widely used approach to provide elasticity.

As for methods, the article points out that the literature tackles the problem in

reactive or in proactive manner. The reactive approach responds to the current load,

and does not anticipate them, while the proactive approach uses forecasting techniques

to adapt to the future workload, usually based on the history of the load.

The article concludes by reporting open issues, such as elastic approach, stating that

most of the researches has been done in the use of static threshold, where unsuitable

values may lead to instability of the system. Instead, it proposes dynamic thresholds that

adapts based on changes of the application’s behavior.

Baruchi and Midorikawa present a concise survey on vertical memory elasticity [10]

and compares two techniques, one based on the Exponential Moving Average and the

other based on Page Faults. Although their work advocates that with Exponential Moving

Average, memory could be used more efficiently, the Page Faults technique as the main

criteria to allocate or remove memory led to better performance.

The Vertical Elasticity Manager (VEM) [13] implemented an elasticity rule with the

2 Related work 6

aim of maintaining an user-defined percentage of free memory, called the Memory Over-

provisioning Percentage (MOP), available in the VM. The goal is to avoid thrashing in

the virtual memory subsystem (swapping pages from memory to disk) by scaling up or

down the VM’s memory so as to maintain a statically pre-defined but sufficient amount

of memory free in the VM. If the percentage of free memory is lower than 80% or greater

than 120% of the MOP, the VM’s memory allocation is increased or decreased accordingly.

As an example, when using a MOP of 10%, the elasticity rule will only be triggered when

the free memory of the VM is lower than 8% or greater than 12% of the memory allocated

to it. Then the new VM memory size is calculated with the used (or consumed) memory

and the MOP percentage. Not only can MOP be troublesome for the user to define, but a

high MOP leads to wasted memory while a low MOP could hurt performance. Although

the aim is to avoid swap, the proposal fails to cope should this actually occur (since the

rule for free memory does not apply). An additional mechanism is needed to rapidly

increase the VM’s memory – and VEM assumes that sufficient memory is available on the

host for this allocation.

The dynamic memory scheduler system (DMSS) [16], captures the actual memory

assigned to each VM, the amount of physical memory being accessed, the free memory

and number of page faults in order to identify the memory activeness and performance of

each VM. Again this approach is based on swap avoidance through the maintenance of a

free memory cushion. A free memory threshold is used to classify VMs in terms of memory

abundance and shortage, so that the DMSS can reclaim memory from abundant VMs to

give to VMs with a shortage. The reclamation process is gradual, verifying page faults

as memory is removed, and may require several scheduling periods. This process may

have a significant adverse impact on performance of the VMs with a memory shortage.

Concerning memory distribution when it is not possible to satisfy all VM’s requirements,

memory is provided to the VM with the highest requirement until this amount is not the

largest. This criteria can lead to even higher degradation. Furthermore, when there is no

memory available for redistribution, the authors suggest only to migrate VMs.

The Ginkgo framework presented in [14] models application behavior under different

loads and memory sizes, and uses this information to calculate the desirable memory

assignment for the VMs. The main difficulty with their approach is the need to profile the

applications to be executed so that performance indicators (e.g. transactions or requests

per second, processing time, etc.) are identified. It also assumes that there is enough

memory available to attend the VMs.

2 Related work 7

While the above mentioned works tackle vertical memory elasticity, [21] considers the

number of vCPUs in a VM as a mean to implement vertical elasticity. Their work specifies

a Layered Performance Model in order to estimate demands of online applications, which

is limited to the number of physical cores of each machine. Still to be done, resources like

memory and I/O are not tackled by their work.

In [17], a holistic and hierarchical performance management tool that scales VMs

vertically by adjusting either processing (vCPUs) or memory resources. It translates the

application’s Service Level Objectives (SLO) into resource requirements, by reading per-

formance metrics (such as response time and throughput) and resource utilization (such

as CPU usage and consumed memory). Those inputs are used to build and refine a model

that associates the application SLO with the VM resource allocation. The relationship be-

tween application performance and resource allocation are simplified, using a liner model

to estimate the underlying nonlinear relationship. Although their work considered vertical

memory scaling, no study on the limited amount of memory was discussed. Also, when

building a model, the solution requires a period for learning, which can be troublesome

and generate a high performance degradation.

Chapter 3

An Analysis of Memory Parameters

To help define the design and implementation of the memory manager, this chapter

presents a series of experiments that aim to identify the relevant parameters that should

be considered as well as charaterize their behaviours in order to decide how they should

be used within the memory management framework.

3.1 Definitions

Let {pm1, pm2, . . . pmn} be the set of physical machines that compose the cloud and let

{vmj
1, vm

j
2, . . . vm

j
m} be the set of virtual machines to be instantiated in a physical machine

pmj. As a matter of simplification, when not required, the notation vmj
i representing the

virtual machine i on the physical machine j is denoted as vmi.

Before instantiating a virtual machine vmi, a series of parameter values must be

defined, for example, in relation to the memory, the maximum amount of memory and

the initial memory allocation. Let ma(vmi, t) be the memory allocation of vmi at time t,

configured through the hypervisor. This value can be changed dynamically while vmi is

running with the Libvirt setmem option of the virsh command [3]. In the case of KVM,

for example, ma(vmi, t) has an upper limit defined by the maximum memory allocation

limit, maxml(vmi) for vmi, i.e. ma(vmi, t) ≤ maxml(vmi),∀t. In order to change this

limit, the VM must first be shutdown.

This work assumes that the collection of applications executing concurrently or se-

quentially in a VM can be represented as a workflow Wk. Associated with a workflow is

the concept of its peak dynamic range, pdr(Wk), which represents the maximum amount

of data space required to load and execute Wk. For the sake of clarity in Section 3.2, only

3.2 Identification of relevant characteristics 9

one application or job is executed per workflow, i.e. Wk = Jk, but this is not a restriction.

Furthermore, the initial experimental analysis was based on a synthetic test application

Jk that carries out the same function, but models different memory access patterns. In

the experiments, pdr(Jk) is modelled by the test application allocating a vector of ne(Jk)

floating point numbers so that pdr(Jk) ≈ ne(Jk) × sizeof(float). Thus, the difference

between jobs is in the manner in which this vector is accessed, i.e. the jobs have different

sized working sets ws(Jk, t), with each element in the working set being accessed and

operated on a number of times before the application’s execution moves on to the next

working set.

3.2 Identification of relevant characteristics

Our goal is to create a hypervisor-independent solution to minimise the quantity of mem-

ory allocated to each VM without adversely affecting the performance of its executing

applications. The first step is to identify and monitor controllable memory related factors

that influence the performance of an application, taking into consideration an environ-

ment composed of a single server running multiple VMs with limited memory and CPU

resources.

These experiments were carried out on a server with two Intel Xeon X5650 2.67Ghz

CPUs, with a total of 12 physical cores (hyper-threading was disabled), and 24GB of

RAM. The host and guest operating systems were CentOS 6.5, kernel version 2.6.32. The

hypervisor was Kernel-based Virtual Machine (KVM)[9] and libvirt was used as an API to

manage the virtual infrastructure without over-committing CPUs. The results presented

are based on an average of 10 executions.

3.2.1 Memory Overhead

Although vmi is created with a memory allocation ma(vmi, 0), when the memory size is

measured in vmi via a system call like top, one will notice that some of the memory is

not available. Let the total amount of memory visible internally by vmi be tm(vmi, t) =

cm(vmi, t) + fm(vmi, t), where cm(vmi, t) is the amount of memory being consumed by

the running applications and guest operating system and fm(vmi, t), the free memory

available, at time t. Note that the total memory tm(vmi, t) is constant if ma(vmi, t) does

not change. The memory overhead mo(vmi) can then be measured as the following:

3.2 Identification of relevant characteristics 10

mo(vmi) = ma(vmi, t)− tm(vmi, t) (3.1)

Given the environment described, VMs were configured with different combinations

of maxml() and ma() in order to measure the memory overhead, as shown in Figure 3.1.

Values for maxml(vmi) ranged from 2 to 24GB, and ma(vmi, t) varied in steps of 2GB

up to maxml(vmi). The results show that mo(vmi) is not constant, but rather the larger

the value of maxml(vmi), the higher the overhead. While these memory overheads are

around the typical value of 3% [15] of maxml(vmi), note that mo(vmi) does not appear

to depend on ma(vmi, t).

For example, when maxml(vmi) is set with a value of 12288MB, mo(vmi) is 377MB,

regardless of the ma(vmi, t) value, i.e. setting ma(vmi, t) with 12288MB or setting

ma(vmi, t) with 1024MB, mo(vmi) will be 377MB. For the guest operating system, ac-

cording to Equation 3.1, the tm(vmi, t) will be 11911MB in the first case, and 647MB in

the second case, as shown in Table 3.1 for ma(vmi) from 12288MB down to 512MB.

Table 3.1: Corresponding total memory tm(vmi) and memory overheadmo(vmi), for each
memory allocation ma(vmi, t), with a fixed maxml(vmi) value of 12288, in MB

.

ma(vmi, t) tm(vmi, t) mo(vmi)

12288 11911 377
8192 7815 377
4096 3719 377
2048 1671 377
1024 647 377
512 135 377

Therefore, when defining the memory allocation for vmi, one should consider that a

share of ma(vmi, t) will not be available to the guest OS. The amount lost is not related

to ma(vmi, t), but rather to the maximum memory value maxml(vmi).

Concerning the free memory fm(vmi, t) for a workflow Wk in virtual machine vmi,

and considering the memory consumed by just the guest OS as cm(vmi, 0), Equation 3.1

can be rearranged as follows:

ma(vmi, t) = fm(vmi, t) + mo(vmi) + cm(vmi, 0) (3.2)

3.2 Identification of relevant characteristics 11

Figure 3.1: Relationship between mo(vmi) and maxml(vmi)

3.2.2 Swap Activation Threshold

If the OS in vmi needs more memory and there is no available frame, elected pages will be

moved to the swap space to be reloaded later if required. Since swap is typically located

on hard drives, which have a slower access times than physical memory, its use should be

avoided if at all possible (by providing more memory) to prevent any additional delays

to an application’s execution. A potential indicator of imminent swap usage might be to

monitor the amount of free memory available [13].

Let the swap activation threshold, sat(vmi), be the minimum amount of free memory

fm(vmi, t) remaining in vmi before the system starts to use swap space. The following

experiment aims to identify the value of sat(vmi) and its relation to maxml(vmi) and

ma(vmi, t). Let job J1 with ws(J1, t) = pdr(J1) (i.e. J1 accesses its entire vector se-

quentially, and repeatedly, a fixed number of times) be executed on vm1, configured with

different pairs of values for maxml() and ma(). Values for maxml() ranged from 2GB to

24GB, and ma() varied from 2GB up to maxml(vm1) in steps of 2GB. Also, pdr(J1) was

set to ma(vm1, t) so that J1 would require to use swap.

Figure 3.2 presents the values of sat(vm1) and their intervals of confidence, grouped

in accordance with each value of maxml(vm1). In each group, each bar corresponds to a

different value of ma(). Although there is a reasonable amount of variation around when

the SO decides/needs to use swap, it seems fair to say that sat() depends more on the

value maxml() than ma().

Hence, in order to avoid swap consumption by a job Jk executing on vmi, the memory

3.2 Identification of relevant characteristics 12

allocation limit should be the smallest value that satisfies:

maxml(vmi) ≥ mo(vmi) + sat(vmi) + max∀t(cm(vmi, t)) (3.3)

and during execution ma(vmi, t) should be adjusted dynamically according to cm(vmi, t)

which reflects the current memory requirements of Jk at time t. Note that using swap may

not always have a detrimental impact on the execution and thus, this memory allocation

may still be an overestimate.

Figure 3.2: Swap Activation Threshold in relation to ma() and maxml()) configurations.

Although it is valuable to monitor free memory in a VM, it is as important to monitor

swap consumption as it may give a possible indication of performance degradation and how

much additional memory might be needed. Let sc(vmi, t) be the amount of data in swap

on vmi at time t, as reported by the guest OS. Figure 3.3 shows fm(vmi, t) and sc(vmi, t)

during the execution of J1 on vm1 with ma(vm1, t) = 1.8GB ∀t and pdr(J1) = 1.8GB.

Since the memory consumption required by this job grows steadily, the free memory

decreases accordingly until sat(vmi) is reached. After this point, fm(vmi, t) remains

relatively constant, while swap consumption increases to satisfy ws(J1, t). If no corrective

action is taken, this might delay the job’s execution.

3.2 Identification of relevant characteristics 13

Figure 3.3: Free memory and swap consumption during the execution J1

3.2.3 Performance impact of distinct working sets

When executing an application on vmi, it is desirable to have the host provide the VM with

sufficient allocated memory to avoid unnecessary use of swap. To introduce the impact

of page swapping, let J1, J2 and J3 be three jobs with the same memory requirements,

i.e. pdr(J1) = pdr(J2) = pdr(J3) = 1.6GB. However, while ws(J1, t) = pdr(J1), i.e. J1
traverses the entire vector four times, ws(J2, t) = pdr(J2)/4 and means that J2 first

traverses a quarter of the vector four times, before traversing the next quarter, and so

on. J3 is a mixture, first traversing the whole vector once, then each quarter a further 3

times.

This experiment aims to evaluate how the performance of the jobs differ when exe-

cuting in a VM with different amounts of allocated memory. Let maxml(vmi) = 2GB so

that there will be just sufficient memory when ma(vmi, 0) = 2GB. Each job was executed

in isolation on a VM with ma(vmi, t) = m% of maxml(vmi), where m = 100, 90, . . . 30.

Figure 3.4 presents the job execution times normalised with respect to the fastest time

obtained with ma(vm1, t) = maxml(vm1). In other words, if et(Jk,m) is the execution

time of Jk, k = 1, 2, 3 on vm1 with m% of maxml(vm1), then the execution time ratio,

etr(Jk,m) is et(Jk,m)
et(Jk,100)

. Note that the three jobs have the same number of operations so

et(J1, 100) = et(J2, 100) = et(J3, 100).

The differences in performance between J1 and J2 (or J1 and J3) when m is between

40% and 90% can be explained by the larger working set of J1. Since J1 sweeps the

memory locations in sequence, all memory pages are required in quick succession. Since

3.2 Identification of relevant characteristics 14

Figure 3.4: Relative job performance on a VM with different amounts of allocated memory

maxml(vmi) = 2GB and pdr(Jk) = 1.6GB, and given the considerations discussed in

Subsections 3.2.1 and 3.2.2 that mo(vmi) + sat(vmi) + cm(vmi, 0) ≈ 400MB, then even a

10% reduction in allocated memory, forces all three jobs to require swap (since pdr(Jk) >

fm(vmi, t)). This reduction impacts the performance of the jobs differently, and quite

significantly in the case of J1. On the other hand, J2 exhibits near optimal performance

with as little as m = 40% of maxml(vmi). With an average working set size of ws(J2, t) =

pdr(J2)/4 elements occupying ≈ 400 MB, vmi requires at least 800MB, to run J2 without

needing to recover data from swap. When less memory is available (30% of maxml(vm1)),

a significant performance drop occurs, as in the case of J1. For J3, the first iteration causes

the average 40% delay for values of m between 90% and 40% and, as for J2, a further

drop in performance occurs when m is lower than 40% when heavier swap usage occurs.

Note thatm = 30% of the idealma(vmi, t) is not the same as 30% of memory available

for the pdr(Jj). If so, the performance degradation should occur when m < 25%. To

determine the exact percentage of ma(vmi, t) to fit 25% of the pdr(J2) (or J3), we should

consider the memory overhead mo(vmi), the sat(vmi) and guest OS memory cm(vmi, 0).

In the conducted experiments, mo(vm1) = 171MB, sat(vm1) = 60MB and cm(vm1, 0) =

175MB. Using Equation 3.2 and adding the required memory, ma(vmi, t) = mo(vmi) +

cm(vmi, 0)+sat(vmi)+0, 25∗pdr(Ji), results in 806MB. Any ma(vmi, t) less than 806MB

will not provide enough memory for block size 400MB, which is 25% of the pdr(J2) =

1.6GB. In experiment above, when m = 40%, ma(vmi, t) = 2048MB ∗ 0, 4 = 819MB,

3.2 Identification of relevant characteristics 15

which is higher than 806MB, and therefore, no degradation for J2 occurs. On the other

hand, when m = 30%, ma(vmi, t) = 2048MB ∗ 0, 3 = 614MB, and since 614MB is less

than 806MB, there is degradation in performance for J2.

3.2.4 Evaluating Swap Usage

Taking a closer look at swap, Figure 3.5 presents the memory utilisation and swap con-

sumption, sc(vmi, t), of J1, J2 and J3 during the execution time of the longest job J1, as

reported by the guest OS. The jobs were executed in a VM with a quantity of memory

equivalent to 70% of maxml(vm1), which based on Figure 3.4 causes J1 and J3 to be

delayed.

Figure 3.5: Memory utilisation and swap consumption for J1, J2 and J3

From Figure 3.5, note that the jobs have the same peak memory and swap consump-

tion, around 1200 MB and 510 MB, respectively. Interestingly, J2 does indeed use swap

without affecting the execution time, as shown in Figure 3.4. To differentiate between

the executions of J1 and J3, one must look carefully at the subtle noise or fluctuations

(< 20%) in sc(vmi, t). This indicates that data is being exchanged between memory and

disk. While there is a stepped increase in swap consumption for J2, there is no noise

during the time interval, thus indicating good data locality. Initially, J3 accesses the

entire data vector in the same way as J1 causing the use of swap around the 50 seconds

mark, but finishes earlier because it swaps in and out fewer pages. Without capturing the

amount of data or duration that data was being written/read to/from swap, sc(vmi, t)

alone does not help differentiate between the executions of J1 and J3.

To delve a little further, let swap-in si(vmi, t) and swap-out so(vmi, t) represent the

amount of data read from and written to swap since the last VM boot, respectively,

as provided by the guess OS. Figure 3.6 reports the delta values of swap-in and swap-

3.2 Identification of relevant characteristics 16

out between two successive measurements for the three jobs, i.e. the values reported

are si(vmi, t) − si(vmi, t − 1) and so(vmi, t) − so(vmi, t − 1), respectively. While J1 is

constantly swapping in and out pages, J3 uses swap when changing working sets. From

J1 and J3 we see that simultaneous occurrences of swap in and swap out has high impact

on performance.

Figure 3.6: Swap-out and swap-in for J1, J2 and J3

To capture this behavior, let siso(vmi, t) be the swap-in and swap-out indicator for

vmi, calculated by counting the number of concurrent swap-in and swap-out events within

the previous scheduling interval of Ihost seconds up to time t, as follows:

siso(vmi, t) =
t∑

k=t−I+1

f(k) (3.4)

where function f(k) is defined as:

f(k) =

{
1 if si(vmi, k) > si(vmi, k − 1) ∧ so(vmi, k) > so(vmi, k − 1)

0 otherwise
(3.5)

Figure 3.7 shows the calculated siso(vmi, t) indicator for the same experiment with

m = 70%. The indicator varies according to the fluctuation of swap-in and swap-out, and

can signal, in the case of J1, when page swapping is taking place.

3.2.5 Collective Impact of Swap Usage in Concurrent VMs

To investigate if memory constrained VMs affect other VMs executing on the same host,

Figure 3.8 presents the execution times of two jobs of type J1, each running in their own

VM, vm1 and vm2, with ma(vm1, t) = ma(vm2, t) = 2GB. The following configurations

were considered: [1G & 1G] where both VMs receive jobs with pdr(Ji) = 1GB; [1G & 2G]

3.2 Identification of relevant characteristics 17

Figure 3.7: The siso(vmi, t) indicator and swap consumption for m = 70%

vm1 and vm2 receive jobs with pdr(Ji) equal to 1GB and 2GB, respectively; and [2G &

2G] each VM receives jobs with pdr(Ji)=2GB. Thus, in this experiment, both VMs have

enough free memory to run jobs with pdr(Ji) = 1GB but not with pdr(Ji) = 2GB. Note

that, with enough memory, the execution times of both configurations of jobs would be

the same since the job with twice the vector size, pdr(Ji) = 2GB, has only half of the

number of iterations.

As expected, the jobs in configuration [1G & 1G] achieve their minimum execution

times, while in configuration [1G & 2G], the second job had its time doubled due to the

use of swap. However, when both jobs require swap in their respective VMs, the times

are proportionally worse and even slower than a sequential execution. This is caused by

competition for disk access on the host, given that the host has sufficient available CPUs

and memory.

The results of the concurrent execution of n VMs on the same machine, where n =

2, . . . 20 and each vmi was allocated 2GB of memory to execute the same job J1 with

pdr(J1) = 2GB, are shown in Figure 3.9. Executing these VMs concurrently (the line

named “swap” since their jobs use swap) is worse then executing them sequentially. Note

that the physical machine has sufficient available memory to support 10 VMs, after which

swap on the host is activated and this accounts for the increased gradient. Even if there

was free memory available in the host (as is the case for less than 10 VMs), execution

times are still slow since there is no manager to allocate this spare memory appropriately.

While running VMs sequentially (which will commit less host memory) is better, any

management tool should try to reduce the number of VMs in swap and avoid swap usage

on the host. The line “ideal” identifies the obtainable performance if the host were to have

enough physical memory (n×2.4GB) to run the n virtual machines concurrently without

them having to use swap.

3.2 Identification of relevant characteristics 18

Figure 3.8: Concurrently VMs with and without memory constraints

3.2.6 Summary

This chapter identified metrics to be used by a management tool to control dynamically

the amount of memory allocated to each VM during their concurrent execution with other

VMs. In the next chapter, a new tool based on the insights obtain here will be presented.

3.2 Identification of relevant characteristics 19

Figure 3.9: Sequential and concurrent execution of VMs, when using swap and not (ideal
execution)

Chapter 4

MEC - A Memory Elasticity Controller

As technology pushes up processor core counts in servers and resource providers aim to

maximize utilization through improved consolidation rates, memory is becoming rela-

tive scarce. Chapter 3 highlighted the performance impacts of insufficient memory on

applications and the need to manage memory allocation in multi-tenanted virtualized

environments. To address this, the vertical Memory Elasticity Controller (MEC) dynam-

ically manages the memory allocated to VMs, and their corresponding states, running in

a cloud environment via a three level hierarchy: the virtual machine layer (VML); the

physical machine layer (PML); and the cloud layer (CL), as seen in Figure 4.1. This chap-

ter presents an overview of the MEC framework, starting with an explanation of these

layers.

4.1 MEC layers

In the VML, a Monitori ((a) in Figure 4.1) is deployed in each VM vmi and is responsi-

ble for gathering and sending information reported by the guest operating system to its

local PML. At the PML, on each physical host machine pmj, a HostManagerj (element

(c)) is responsible for receiving requests to instantiate new VMs and allocating physical

resources to them. Periodically, each HostManagerj consumes the buffered information

obtained by the monitors of the VMs running on pmj (element (b)) to decide how the

host’s available memory will be distributed among them during the next scheduling win-

dow. While new requests for incoming VMs are placed in the VMQueuej (element (d))

and moved to the ActiveVMsj when chosen for execution, the HostManagerj can also

move running VMs from the ActiveVMsj to the VMQueuej should their execution be

suspended (paused).

4.1 MEC layers 21

Figure 4.1: The Memory Elasticity Controller (MEC) Architecture

Information regarding the state of the host machine pmj is sent to the CL where the

CloudManager (element (e)) decides to which HostManagerj requests to execute new

VMs should be sent, taking into consideration resource availability. In addition, the CL

may also define the migration of previously scheduled VMs between physical machines.

Following the typical cloud system hierarchy, this multilevel architecture separates issues

that needs to be addressed (load balancing at the CL; resource (memory) sharing and

local VM throughput at the PML, and; application performance at the VML) to improve

the overall global cloud system throughput.

Figure 4.2 shows the communication between the layers of MEC. In the CL layer, the

receiveV mReq receives the VM execution request from the user, while receivePmInfo

receives information regarding the state of each host machine, sent by the sendPmInfoj

at the PML layer. Also at the PML layer, the receiveV mExecj receives VM execution

requests for pmj sent by the Cloud Manager, and the receiveV mInfo receives information

collected and sent by Monitori deployed in each virtual machine running on pmj.

4.2 The Host Manager 22

Figure 4.2: Communication between the component and their threads of the layers of MEC

4.2 The Host Manager

The main objective ofHostManagerj is to find an appropriate memory allocationma(vmi, t)

for each running VM vmi at time t, and at intervals of Ihost seconds, based on the recent

memory consumption of vmi and the combined requirements of the other running VMs

on pmj. To do so, HostManagerj analyses the information collected by the monitors

during the last scheduling time interval [t− Ihost, t] and, if necessary and possible, adjusts

ma(vmi, t) of each vmi with the purpose of avoiding a performance degradation of the

VM’s respective applications during the next scheduling period [t, t + Ihost].

At time intervals of Imonitor seconds, each Monitori in vmi, collects and sends the

following information obtained from the vmi’s guest OS:

• tm(vmi, t): total memory of vmi at time t;

• fm(vmi, t): free memory of vmi at time t;

• si(vmi, t): amount of swap-in since the last vmi boot at time t;

• so(vmi, t): amount of swap-out since the last vmi boot at time t.

Note that Ihost > Imonitor so that a time series of data related to memory usage during

the time window [t− Ihost, t] can be analyzed. Initially, a simple linear regression is used

to predict vmi’s memory requirement at t + Ihost, but other more sophisticated schemes

will be investigated in future work.

4.2.1 Virtual Machine State Transitions

At every interval Ihost, the HostManagerj considers the monitoring information placed in

the buffers and the lists of inactive and active VMs, VMQueuej and ActiveVMsj, respec-

4.2 The Host Manager 23

tively. Actions can be taken for each vmi in pmj, depending on its current state, defined

by vstate(vmi, t). Figure 4.3 shows the VMs states considered and possible transitions

among them.

Figure 4.3: VM status and actions

When a VM request is first submitted to HostManagerj by CloudManager, vmi is

inserted in VMQueuej and its state is set to NEW . When a decision to instantiate a VM

in a NEW state for execution is taken, its state is switched to running (the RUN state)

and the VM is moved from VMQueuej to ActiveVMsj. Depending on the system load

and available free memory in the host machine pmj, a running VM may be suspended,

having its state set to SUS. This state indicates that a VM is not running (no use

of CPU), but still maintains the memory allocated to it. This state serves to prevent

an application from suffering significant performance degradation by being forced to use

swap. The intention is to return the VM to execution (i.e. the RUN state) shortly when

enough memory can be found to meet its requirements. From a SUS state, a VM can

become SAV (saved), where the VM’s memory and context is saved to disk, and its

allocated memory is then released to be distributed to other VM’s in need. VMs in a

SAV state may also be migrated to other physical machines, depending on CL decisions

to improve overall performance. From the SAV state, the VM can also return to a RUN

state and continue its execution. Note that the estimated amount of memory required by

the VM was calculated prior to its suspension. Table 4.1 shows the VMs states and their

descriptions, where the column “Description” summarizes the events that led the VM to

the respective state, column “Memory” reports whether there is memory allocated to it,

and the last column reports the queue in which the VM resides.

4.2 The Host Manager 24

Table 4.1: Virtual machines states vstate(vmi, t) and descriptions
State Description Memory Location

NEW
New VMs that were submitted from the CL, received by
the Host Manager, and are waiting to be initiated Not allocated VMQueuej

RUN
VMs that were started by the Host Manager and are
currently running Allocated ActiveVMsj

SUS
Running VMs that were suspended due to performance
reasons. If resumed, it continues execution where it left
off

Allocated VMQueuej

SAV
Suspended VMs that were saved to disk to release mem-
ory for other VMs. If restored, it continues execution
where it left off

Not allocated VMQueuej

4.2.2 The Host Manager Algorithm

Algorithm 1 summarizes the sequence of operations carried out by HostManagerj at

each scheduling interval. The memory allocated to VMs that terminated during the last

interval will be freed and returned to the host. The amount of available free memory at

time t on the actual physical machine pmj is read from hfm(pmj, t) and stored in the

current host free memory variable chfm (line 2). With this in hand, the host manager first

attempts to meet the predicted requirements of each running VM (line 3). This function,

described in detail later in Subsection 4.2.4.1, decides which VMs will have their requests

for additional memory upheld, based on chfm and memory to be released by other VMs.

VMs whose requests cannot immediately be fulfilled are suspended and moved to the

VMQueuej. In order to keep delays to attend requests to a minimum, these changes

to already running VMs are committed through the libvirt API layer (line 4) before the

host manager progresses on to manage the updated list of inactive VMs, in line 5. At

this point, the host is possibly short on free memory to allocate to the VMs waiting

in this list. Tough decisions may be required and the strategy adopted is described in

Subsection 4.2.4.2. Finally, any proposed changes are implemented in line 6 and the

HostManagerj sends the updated chfm and VMQueuej to the CL (line 7) before being

put to sleep until next scheduling interval time t + Ihost (lines 8 to 9).

4.2.3 The Host Manager Parameters

The main objective of HostManagerj is to update the amount of memory allocated

ma(vmi, t) to vmi at each time step t, based on its prior memory consumption. To

acheive this, the HostManagerj analyses the information stored in Bufferj during the

time interval [t − Ihost, t] and specifies an amount of memory, ma(vmi, t), which should

4.2 The Host Manager 25

Algorithm 1 HostManagerj
1: while true do
2: chfm← hfm(pmj, t);
3: manage_active_VMs(ActiveVMj, chfm);
4: commit_changes(ActiveVMj);
5: manage_inactive_VMs(VMQueuej, chfm);
6: commit_changes(VMQueuej);
7: send_pm_info(chfm, VMQueuej);
8: actual = get_time();
9: sleep(Ihost − (actual − t));
10: end while

be allocated to each vmi and that should be enough to avoid any significant performance

degradation during the next time period [t, t + Ihost].

At this PM layer, two parameters are calculated: memory shaping ms(vmi, t), which

aids the calibration of allocated memory to vmi and also helps to avoid swap usage,

and; the swap-in/swap-out indicator, siso(vmi, t), of vmi, proposed in this work to detect

performance degradation caused by using swap.

4.2.3.1 Memory Shaping

This work proposes the memory shaping factor ms(vmi, t) as the amount of memory to

be added (in the case of a shortage of memory in the VM) or subtracted (in case of a

surplus of memory) to the current memory allocation ma(vmi, t) in order to attend vmi’s

memory requirement during the next scheduling interval. This estimated factor is derived

with the aim to avoid swap usage and, consequently, to execute the applications with

minimal overhead and while improving throughput.

Given the information collected by all monitors Monitori from VMs running in a

physical machine pmj from time t− Ihost to current time t, the HostManagerj calculates

the difference between the consumed memory (cm) at moments t− Ihost and t as:

∆cm(vmi, t) = cm(vmi, t)− cm(vmi, t− Ihost) (4.1)

Using a simple linear extrapolation, the expected amount of available free memory in

vmi at time t+Ihost (in the future) is based on ∆cm(vmi, t), i.e. the memory consumption

during the next interval is assumed to be the same as the current one:

4.2 The Host Manager 26

efm(vmi, t + Ihost) = fm(vmi, t)−∆cm(vmi, t) (4.2)

Note that, although a more precise estimation method could have been used to calculate

the memory to be consumed, this work opted to adopt a simplistic but generic estimation

method and focus on the elasticity framework rather than having to consider the different

behaviors of specific applications.

Recall from Section 3.2.2 that the swap activation threshold sat(vmi) is the minimal

amount of free memory remaining in vmi before the system starts to use swap space.

In order to derive the memory shaping value ms(vmi, t) while avoiding swap usage, the

free memory should be at least equal to the swap activation threshold sat(vmi), i.e.,

efm(vmi, t + Ihost) + ms(vmi, t) ≥ sat(vmi). Since we do not want to add memory

unnecessarily, then

ms(vmi, t) = sat(vmi)− efm(vmi, t + Ihost) (4.3)

Substituting Equation 4.2 in Equation 4.3, it follows that

ms(vmi, t) = sat(vmi)− (fm(vmi, t)−∆cm(vmi, t)) (4.4)

Lets consider the following three memory consumption scenarios:

Scenario 1: ∆cm(vmi, t) > 0 and ms(vmi, t) > 0

Figure 4.4 shows the free memory collected at times t− Ihost and t, and the sat(vmi)

limit. In this scenario, it is assumed that memory was consumed i.e. ∆cm(vmi, t) > 0,

causing free memory to drop from fm(vmi, t−Ihost) to fm(vmi, t). At time t+Ihost, since

we expect that the same amount of memory will be consumed, the estimated free memory

efm(vmi, t + Ihost) is predicted to be fm(vmi, t) − ∆cm(vmi, t). However, in this case,

efm(vmi, t+ Ihost) would be below sat(vmi) and therefore, in order to avoid swap usage,

memory should be added so that the free memory would at least be sat(vmi), i.e. memory

shaping ms(vmi, t) is set to sat(vmi)− efm(vmi, t + Ihost), resulting in Equation 4.4.

Scenario 2: ∆cm(vmi, t) > 0 and ms(vmi, t) ≤ 0

Figure 4.5 shows when ∆cm(vmi, t) > 0 and efm(vmi, t + Ihost) is above sat(vmi) by

applying Equation 4.4. In this case, memory can be released, keeping the current free

memory fm(vmi, t) above the sat(vmi) value. Based on the estimation, the amount left

4.2 The Host Manager 27

Figure 4.4: Calculating positive memory shaping ms(vmi, t) for ∆cm(vmi, t) > 0. The current
free memory fm(vmi, t) is shown at (1). The estimated free memory efm(vmi, t + Ihost) is
calculated at (2). The memory shaping ms(vmi, t) is then calculated at (3), to avoid letting the
free memory fall below the sat(vmi) value before the next scheduling event at t + Ihost (4).

above sat(vmi) will be just enough to meet the expected memory consumption ∆cm(vmi, t)

until the next scheduling event at t + Ihost without activating swap.

Figure 4.5: Calculating memory shaping ms(vmi, t) when ∆cm(vmi, t) > 0. The current free
memory fm(vmi, t) is shown at (1) and the estimated free memory efm(vmi, t + Ihost) at (2).
The memory shaping ms(vmi, t) is calculated at (3) to avoid leaving “idle” unused memory but
still keeping free memory above sat(vmi) limit until next scheduling time t + Ihost at (4).

4.2 The Host Manager 28

Scenario 3: ∆cm(vmi, t) ≤ 0

The case where ∆cm(vmi, t) is negative means that memory consumption has de-

creased between t − Ihost and t. In this case, if ma(vmi, t) is decreased so that the

estimated free memory efm(vmi, t + Ihost) equals the sat(vmi) value, the current free

memory fm(vmi, t) would in turn fall below this limit and could result in the need to use

swap or worse cause the VM to crash. Figure 4.6 shows a diagram where the memory

consumption over two scheduling periods is considered to drop.

Figure 4.6: Calculating memory shaping ms(vmi, t) when ∆cm(vmi, t) < 0. The current free
memory fm(vmi, t) is shown at (1) and the estimated free memory efm(vmi, t+ Ihost) at (2). If
the ms(vmi, t) calculation where to consider the negative ∆cm(vmi, t) and keep the free memory
equals to the sat(vmi) value at the time t+Ihost (in the future (4)), then the current memory al-
location ma(vmi, t) would be decreased by ms(vmi, t) in such a way that would leave fm(vmi, t)
below sat(vmi) (at (3)) at the current time t.

In this case, the ∆cm(vmi, t) is not considered and the memory shaping ms(vmi, t) is

set with the amount that will adjust the current free memory fm(vmi, t) to the sat(vmi)

value. From Equation 4.4. thus considering ∆cm(vmi, t) = 0, it follows that:

ms(vmi, t) = sat(vmi)− fm(vmi, t) (4.5)

In summary, the value for memory shaping is the amount of memory that should

be added to the current memory configuration ma(vmi, t), and represents the minimal

amount that should be given to or the maximum amount that should be taken from

vmi in order to maintain the amount of free memory equal or above the swap threshold

sat(vmi). A positivems(vmi, t) indicates there is memory shortage andma(vmi, t) should

4.2 The Host Manager 29

be increased, while a negative value indicates memory excess and ma(vmi, t) could be

decreased.

On the other hand, when memory consumption increases and free memory fm(vmi, t)

reaches the swap activation threshold sat(vmt), the amount of free memory becomes

constant while swap consumption increases, as seen in Section 3.2.2 (Figure 3.3). In this

case, the ms(vmi, t) value should also consider the amount of swap memory, otherwise it

will results in a value lower than what it should be. Specifically, if swap-out is positive, the

memory allocated to the VM is not enough and therefore, the amount of memory swapped-

out should be added to ms(vmi, t). Also, a negative value of consumed memory should

be discarded, since occasionally the measurement of memory can capture the deallocation

of space being moved to swap as memory being freed for release. The amount of memory

swapped-out totalso(vmi, t) is defined as follows: since so(vmi, t) returns the amount of

swap-out space since last boot, the difference in values between time t− Ihost and t gives

the amount of data written to the swap in that period. Therefore, between time period

[t− Ihost, t], the total swap out on vmi is given by:

totalso(vmi, t) = so(vmi, t)− so(vmi, t− Ihost) (4.6)

One final adjustment to ms(vmi, t) may be necessary, in relation to maxml(vmi).

Recall that the maximum memory allocation limit maxml(vmi) is the upper limit for

ma(vmi, t). When ms(vmi, t) is positive, the finalma(vmi, t) can exceed the maxml(vmi)

value. In this case, ms(vmi, t) should be limited as follows:

ms(vmi, t) = maxml(vmi)−ma(vmi, t) (4.7)

so that the new ma(vmi, t + Ihost) is equals to maxml(vmi).

Finally, Algorithm 2 presents the calculation of the memory shaping functionms(vmi, t),

based on the swap consumption in the last scheduling period, and considering the values

of consumed memory at time t− Ihost and t, the current free memory fm(vmi, t) and the

sat(vmi) value. The algorithm first calculates the difference between the consumed mem-

ory between t− Ihost and t and resets it if it is negative (lines 1 to 3). The total memory

swapped-out is also calculated in line 5. The memory shaping value is then calculated

in line 6, based on Equations 4.4, 4.5 and 4.6, where ∆cm(vmi, t) is ignored if lower than

zero, and totalso is added if higher than zero. Finally, the amount of memory added

or subtracted to the VM memory allocation ma(vmi, t) respects the limit maxml(vmi)

(lines 8 to 9).

4.2 The Host Manager 30

Algorithm 2 memory_shaping(vmi, t)

1: ∆cm(vmi, t) = cm(vmi, t)− cm(vmi, t− Ihost);
2: if ∆cm(vmi, t) < 0 then
3: ∆cm(vmi, t)← 0
4: end if
5: totalso(vmi, t) = so(vmi, t)− so(vmi, t− Ihost);
6: ms(vmi, t)← sat(vmi)− (fm(vmi, t)−∆cm(vmi, t)) + totalso(vmi, t);
7: /* cannot exceed maxml(vmi) */
8: if ms(vmi, t) + ma(vmi, t) > maxml(vmi) then
9: ms(vmi, t)← maxml(vmi)−ma(vmi, t);
10: end if
11: return ms(vmi, t)

4.2.3.2 The swap-in and swap-out indicator

The swap-in/swap-out indicator, siso(vmi, t), has been proposed as an attempt to identify

the specific fluctuations in swap usage, during the time period [t − Ihost, t], that can

cause significant performance degradation. As seen in the experiment in Subsection 3.2.4,

concurrently occurring swap-in and swap-out should be avoided. For the purpose of

detecting this particular behavior while executing a job in vmi, readings of swap-in and

swap-out are collected at intervals of Imonitor by each monitor Monitori during the last

scheduling interval t− Ihost + 1 to t.

As previously defined, let si(vmi, t) and so(vmi, t) be the volume of data swapped-

in and swapped-out, respectively, since vmi was last rebooted, as indicated by VM’s

OS at time t. But the siso(vmi, t) indicator is calculated by only counting occurrences of

simultaneous swap-in and swap-out activity, as shown in Algorithm 3, based on Equations

3.4 and 3.5 from Section 3.2.4.

Algorithm 3 swapin_swapout(vmi, t)

1: siso(vmi, t)← 0;
2: for k = t− Ihost + 1, . . . , t do
3: if (si(vmi, k) > si(vmi, k − 1) ∧ (so(vmi, k) > so(vmi, k − 1)) then
4: siso(vmi, t)← siso(vmi, t) + 1;
5: end if
6: end for
7: return siso(vmi, t);

4.2 The Host Manager 31

4.2.4 Memory State Transitions

By requiring a dynamic approach to identify changes over time of a variable number of

unknown executing applications, MEC monitors changes to free memory and swap usage

through the VM’s operating system over the last scheduling interval and, by extrapo-

lating memory consumption over the next scheduling interval, decides how to adjust the

memory allocation of each VM. While this approach may be effective to predict when to

increase the memory allocated to a VM, it is less so when memory could be recovered from

VM, i.e. when an application or applications could actually execute with less memory

without losing performance. The current mechanism relies on the VM’s applications to

free memory, and is unable to detect that the memory page working set of an application

has reduced in size. To address this issue, our model is associated with concept of VM

memory states.

The memory state, denoted as mstate(vmi, t), associated with vmi when the VM

state vstate(vmi, t) = RUN , can be one of the following: in flux, FLU , when the mem-

ory allocation of the VM is fluctuating, i.e. memory was added to or removed from the

VM at the last scheduling interval; stable, STB, when there was no variation in memory

consumption and no fluctuations in swap-in and swap-out (known as stable memory con-

dition); held, HLD, is when the VM is considered to be a candidate for a non voluntary

reduction in allocated memory, or; frozen, FRZ, when an attempt to remove memory

from the VM caused an increase in swap-in and swap-out, and consequently ma(vmi, t)

should be returned to its previous value. A VM’s initial state is FLU , while scount(vmi)

counts the consecutive intervals in the current state.

The stable memory condition is true when the memory shaping ms(vmi, t) is zero,

meaning that vmi is not releasing nor requiring memory, and when the swap-in/swap-out

indicator siso(vmi, t) is also zero, i.e.:

stable(vmi, t)← (ms(vmi, t) = 0 AND siso(vmi, t) = 0) (4.8)

This work proposes to carefully extract memory from VMs that have been stable for

a predetermined number of consecutive intervals, slimit(STB), and only when memory

is required by the Host Manager. A VM will transition to STB when the stable memory

condition is true except if the VM was recently frozen (mstate(vmi, t − Ihost) = FRZ).

If VM remains stable for scount(vmi) = slimit(STB) scheduling iterations, the VM

transitions to HLD otherwise, at earlier interval, it would have returned to FLU .

4.2 The Host Manager 32

Once in HLD, the VM will be tested to see if memory can be removed without ad-

versely affecting the performance of the VM as follows: PERC is a predefined percentage

of the actual memory allocation ma(vmi, t) to be extracted from vmi. This amount of

memory will be removed and held in reserved(vmi) (it is not added to the available free

memory of pmj) until the next scheduling interval so that theHostManagerj has a chance

to detect if this change caused requests for memory or swap usage within the VM. If the

swap-in/swap-out indicator siso(vmi, t) remains zeroed, the VM transitions from HLD

to STB otherwise to FRZ.

Arriving in the STB state fromHLD means that the VM continues executing without

signs of performance degradation, so the reserved memory reserved(vmi) is released and

will be made available to the HostManagerj to allocate to other VMs on the same ma-

chine. Transitioning to FRZ state from HLD means the extracted memory should be re-

turned to vmi and, to avoid hurting performance again, the VM is frozen for slimit(FRZ)

scheduling intervals, preventing renewed attempts in the short term to forcefully remove

memory from this VM. However, through normal execution, should a frozen VM begin

to exhibit concurrent swap-in and swap-out or memory release, it will transition to the

FLU state to be a candidate to have its memory allocation adjusted. Figure 4.7 presents

the memory state diagram and Table 4.2 shows memory state transitions.

The purpose of using memory states is to save memory by finding the lowest possible

ma(vmi, t) to fit the application working set ws(Wk, t) without generating a high drop

in performance. Since memory extraction can cause delay, it must be carefully executed.

For this, time limits are defined for certain memory states. For state STB, the memory

will only be extracted if the stable memory condition is true during a number of schedul-

ing periods, defined as slimit(STB). Defining slimit(STB) with a low value may cause

memory to be extracted from VMs that are not stable, which is undesirable due to un-

predictable memory usage. On the other hand, setting a high value will take longer to

reach the desired ma(vmi, t).

For state FRZ, it is assumed that the lowest possible ma(vmi, t) was found, since the

memory allocation value is the one prior to the extraction that generated siso(vmi, t) to

raise. The idea is to keep the VM in this state for slimit(FRZ) scheduling periods, so that

further memory extractions, which may cause undesired delay, is avoided. However, this

state can change under certain conditions: when siso(vmi, t) is higher than zero, meaning

that the ma(vmi, t) is not enough to fit the ws(Wk, t) of the running application; or when

ms(vmi, t) is lower than zero, which indicates that memory was released, and the working

4.2 The Host Manager 33

set is now different. In both cases, the VM is set to FLU and a new ma(vmi, t) will be

recalculated since the new working set is not known. Now, another situation that may

occur is that, if a VM is in FRZ state and ms(vmi, t) higher than zero but siso(vmi, t) is

zero, at this moment no memory is added to ma(vmi, t) on an attempt to provide memory

strictly when in necessary. In this case, the frozen state should not be changed since it

does not indicates an actual necessity to increase memory. If the positive ms(vmi, t) is a

real request for more memory (probably due to enlarging the ws(Wk, t)), it will most likely

cause siso(vmi, t) to raise, making the memory state change to FLU . If the conditions

for interrupting the FRZ state are not true, the VM leaves the state only when counter

scount(vmi) reaches slimit(FRZ), changing to the STB state. This is a time period to

check if the VM is actually stable, before another memory extraction round begins.

The value for slimit(FRZ) should also be chosen with care. Setting it with a low

value may cause a higher number of attempts to extract memory bellow its working set,

generating undesirable delay. On the other hand, setting it with a high value might be

ineffective if the application’s working set drops to a lower value than the current one,

loosing opportunity for reaching the lowest possible ma(vmi, t) value and saving memory.

The FLU and HLD memory states do not require any time limit.

Figure 4.7: Memory State transitions diagram

Table 4.2: Memory State transitions
mstate(vmi, t − Ihost) Transition Condition mstate(vmi, t) Action

FLU stable(vmi, t) = TRUE STB –

STB
stable(vmi, t) = FALSE FLU –
stable(vmi, t) = TRUE AND scount(vmi) = slimit(STB) HLD Extract mem

HLD
siso(vmi, t) = 0 STB Release mem
siso(vmi, t) > 0 FRZ Return mem

FRZ
siso(vmi, t) > 0 OR ms(vmi, t) < 0 FLU –
siso(vmi, t) = 0 AND scount(vmi) = slimit(FRZ) STB –

4.2.4.1 Managing Active VMs

Algorithms 4 to 8 outline the main steps to manage the memory state transitions and

memory requirements of the active VMs. It first calculates the memory requirement

4.2 The Host Manager 34

ms(vmi, t) and the swap-in/swap-out indicator siso(vmi, t) (lines 3 and 4) for all of the

VMs in ActiveVMj and inserts each transitioning vmi in one of the following lists accord-

ing to their new memory state: FRZlist, which lists all vmi that were in HLD but when

they had reserved(vmi) memory extracted were no longer stable, and will transistion to

the FRZ memory state; STBlist stores VMs that have become stable, which can be VMs

that had there memory reduced without causing swap-in/swap-out usage, or VMs coming

from FLU , HLD or FRZ states (note that already stable VMs are not inserted since no

action on them is necessary); HLDlist lists those that have remain stable for slimit(STB)

intervals and are candidates to have memory extracted; and finally, the FLUlist lists all

of the VMs that are predicted to require or release memory, including those transitioning

from STB or FRZ as well as those already in state FLU .

The VMs that were in the memory states FLU or STB are treated first (lines 7 to

16), checking if vmi is stable and inserting it in the appropriate list. The HLD state

are treated between lines 17 and 22, inserting the vmi into the STBlist list if extraction

succeeded or into the FRZlist list if not. The last state FRZ is verified between lines

23 and 28, checking if vmi should return to state FLU (line 24) in case siso(vmi, t) is

higher than zero or when ms(vmi, t) is lower than zero; or to state STB (line 26) when

scount(vmi) reaches the limit slimit(FRZ).

Although FRZlist, STBlist and HLDlist do not require any specific ordering, the

FLUlist is divided into negative and positive ms(vmi, t) values. Negative ms(vmi, t)

are treated first (since memory will be freed), updating the chfm with memory that is

being released. VMs with a positive ms(vmi, t) are ordered in accordance with decreasing

values of siso(vmi, t), breaking ties with the smallest ms(vmi, t). This ordering gives

MEC the opportunity to analyze first the VMs with the highest swap-in and swap-out

usage accumulated during the period [t − Ihost, t]. The reasoning behind this is that

by providing more memory to these VMs will hopefully increase overall performance.

Breaking ties with the smaller ms(vmi, t) requirement will encourage a wider distribution

of available memory among VMs and will lead to a smaller collective use of swap.

The management of VMs in FRZlist is shown in Algorithm 5, with reserved(vmi)

being the amount of memory previously extracted and is now being returned to vmi, i.e.,

added back to the current ma(vmi, t). The mstate(vmi, t) is set to FRZ and its counter

scount(vmi) reset.

Algorithm 6 shows the management of VMs in STBlist, where the amount of memory

reserved(vmi) is released if the previous memory state was HLD. Any VM transition

4.2 The Host Manager 35

Algorithm 4 manage_active_vms(ActiveVMsj, chfm)

1: for all (vmi ∈ ActiveVMsj) do
2: // Calculating ms and siso:
3: ms(vmi, t)← memory_shaping(vmi, t);
4: siso(vmi, t)← swapin_swapout(vmi, t);
5: scount(vmi)← scount(vmi) + 1;
6: prev ← mstate(vmi, t− Ihost);
7: if prev == FLU OR prev == STB then
8: if stable(vmi, t) then
9: if prev == FLU then
10: STBlist = STBlist ∪ {vmi};
11: else if scount(vmi) == slimit(STB) then
12: HLDlist = HLDlist ∪ {vmi};
13: end if
14: else
15: FLUlist = FLUlist ∪ {vmi};
16: end if
17: else if prev == HLD then
18: if siso(vmi, t) > 0 then
19: FRZlist = FRZlist ∪ {vmi};
20: else
21: STBlist = STBlist ∪ {vmi};
22: end if
23: else if prev == FRZ then
24: if siso(vmi, t) > 0 OR ms(vmi, t) < 0 then
25: FLUlist = FLUlist ∪ {vmi};
26: else if scount(vmi) == slimit(FRZ) then
27: STBlist = STBlist ∪ {vmi};
28: end if
29: end if
30: end for
31: manage FRZlist, STBlist, FLUlist and HLDlist;

Algorithm 5 Management of FRZlist list
1: for all vmi ∈ FRZlist do
2: ma(vmi, t)← ma(vmi, t) + reserved(vmi);
3: reserved(vmi)← 0;
4: mstate(vmi, t)← FRZ;
5: scount(vmi)← 0;
6: end for

4.2 The Host Manager 36

from a different previous state (FRZ, FLU or HLD) will have mstate(vmi, t) set to STB

and its counter scount(vmi) is set to zero.

Algorithm 6 Management of STBlist list
1: for all vmi ∈ STBlist do
2: if prev == HLD then
3: chfm← chfm + reserved(vmi);
4: reserved(vmi)← 0;
5: end if
6: mstate(vmi, t)← STB;
7: scount(vmi)← 0;
8: end for

The management of VMs in FLUlist can be seen in Algorithm 7. The FLUlist is

ordered so that VMs with negativems(vmi, t) are placed in the beginning of the list. Then

VMs with positive ms(vmi, t) are sorted by decreasing siso(vmi, t), breaking ties with the

smaller ms(vmi, t) first. For each active VM, the algorithm checks if chfm is large enough

to attend vmi, taking into consideration sat(pmj)
1. If there is enough free memory,

the ma(vmi, t) and chfm values are updated (lines 3 to 5). Otherwise, siso(vmi, t)

is verified and if it is higher than zero, vmi is suspended, i.e., vstate(vmi, t) = SUS,

(line 8). Suspending vmi will not free any memory, but will avoid further degradation in

performance due to its swap usage if vmi were to continue to be executed. If siso(vmi, t) is

zero, no action is performed since, even though there is not enough spare memory available

to meet its projected requirement, vmi is apparently not being adversely affected yet which

indicates a reduced priority for immediate intervention. In any case, mstate(vmi, t) is set

to FLU (line 11).

As seen in Section 3.2.3, depending on the application, the amount of memory may

be overestimated and its reduction may not cause high degradation. For example, for job

J1, a 10% reduction of its allocated memory caused a high degradation in performance,

while a reduction of up to 60% for J2 did not cause any noticeable delay. Therefore, as

in the case of J2, the memory allocation might be an overestimate and this is can be an

opportunity for memory extraction.

However, since it is difficult to predict precisely the behavior of the application being

executed, the extraction should be carried out carefully and only when necessary. In order

to avoid swap usage, the memory extracted from the vmi is only effectively returned to

the host machine in the next time step if siso(vmi, t) does not become positive.
1Note that this is the swap activation threshold of the physical host machine, the minimum amount

of free memory remaining before system starts to use swap space

4.2 The Host Manager 37

Algorithm 7 Management of FLUlist list
1: FLUlist← order by ms(vmi, t) < 0, then by high siso(vmi, t) breaking ties with low

ms(vmi, t);
2: for all vmi ∈ FLUlist do
3: if chfm− sat(pmj) ≥ ms(vmi, t) then
4: ma(vmi, t)← ma(vmi, t) + ms(vmi, t);
5: chfm← chfm−ms(vmi, t);
6: else
7: if siso(vmi, t) > 0 then
8: action(vmi)← suspend;
9: end if
10: end if
11: mstate(vmi, t)← FLU ;
12: end for

The VMs in HLDlist list are managed in Algorithm 8, where it shows the steps of the

extraction mechanism for each vmi in the list. Note that this extraction is only performed

if the host’s free memory chfm is close to the swap activation threshold value of pmj,

define here as satc(pmj), where satc(pmj) > sat(pmj) and is set in the MEC framework

to indicate that the host free memory is reaching the sat(pmj) value. For example,

satc(pmj) can be set as satc(pmj)← sat(pmj)×2. In this case, when chfm ≤ satc(pmj),

the reserved memory is calculated based on a percentage PERC of ma(vmi, t), and a

new ma(vmi, t) is set (line 3 to 4). If chfm is not “close” to sat(pmj), non voluntary

memory extraction is not considered necessary. The mstate(vmi, t) is set to STB and

its counter scount(vmi) is set to slimit(STB) − 1 (line 7 to 8), making the VM eligible

for memory extraction again in the next period t + Ihost should it continue with stable

memory consumption.

Algorithm 8 Management of HLDlist list
1: for all vmi ∈ HLDlist do
2: if chfm ≤ satc(pmj) then
3: reserved(vmi)← ma(vmi, t) ∗ PERC;
4: ma(vmi, t)← ma(vmi, t)− reserved(vmi);
5: mstate(vmi, t)← HLD;
6: else
7: mstate(vmi, t)← STB;
8: scount(vmi)← slimit(STB)− 1;
9: end if
10: end for

4.2 The Host Manager 38

4.2.4.2 Managing Inactive VMs

After the management of the active VMs, the HostManagerj handles the inactive ones,

i.e. those VMs that are either in a NEW , SUS or SAV state. During the lifetime of a VM

vmi, the time spent in these three states is measured by the waiting time wtime(vmi).

The objective of MEC at this point is, after managing and calibrating memory of the

active VMs, to decide which of the currently inactive ones, if any, can be transitioned to

the RUN state given the remaining free host memory.

Firstly, the suspended VMs with the highest waiting time wtime(vmi) are considered:

if the host has enough memory, that is, chfm− sat(pmj) ≥ ms(vmi, t), then memory is

given to vmi and it will be resumed. Otherwise, the suspended VM with the lowest waiting

time will be saved, vstate(vmi, t) = SAV . In this case, the allocated memory ma(vmi, t)

of the saved VM is added to the host available memory chfm. Choosing to save the

VM with the lowest wtime(vmi) is likely to have the least impact on a VM’s execution

performance. However, as future work, alternative strategies should be investigated in

conjunction with the cloud layer VM scheduling algorithm.

After evaluating all of the suspended VMs in VMQueuej, first the SAV VMs and

then NEW VMs remaining in the list are evaluated in order of wait time, being restored

or activated, respectively, if sufficient host memory is available. The priority being given

to suspended VMs (note that these suspensions occurred during management of active

VMs earlier in the evaluation at the current time t) is an opportunity to quickly restart

VMs that are still in memory. However, if there is still not enough available memory in

the host machine they will be saved and their allocated memory will be freed up. The act

of suspending and resuming a VM has a lower overhead when compared to saving and

restoring a VM. Finally, saved VMs are given priority over new ones in order to avoid

starvation.

Algorithm 9 describes the management steps for inactive VMs. First, the VMs are

ordered by vstate(vmi, t) (SUS, SAV and then NEW) breaking ties with decreasing

wtime(vmi) (line 1). Then variables p and q are set with their initial values (lines 2 to

3). The p variable holds the suspended vmp identifier with the highest wtime(vmi) to be

resumed, while q variable holds the suspended vmq identifier with the lowest wtime(vmi)

to be saved. For each vmi with vstate(vmi, t) = SUS, if the host’s free memory is enough

to attend the VM (line 6), the memory allocation of vmp and chfm are updated, the VM

is set to be resumed and identifier p receives the VM with the next highest wtime(vmi)

(lines 7 to 10). Otherwise, the vmq is saved to release memory for vmp, and identifier q

4.2 The Host Manager 39

receives the VM with next lowest wtime(vmi) (lines 12 to 15).

From lines 20 to 30, the VMs in the saved state SAV , set in earlier intervals, are

managed before the NEW VMs, according to ordering in line 1. For each vmp, if the

chfm is enough to attend vmp memory requirement, it can be restored (line 23) or

activated (line 25), depending on its current state SAV or NEW , and chfm is updated

(line 27), otherwise nothing is done.

Algorithm 9 manage_inactive_vms(VMQueuej, chfm)

1: VMQueuej ordered by vstate(vm, t) and wtime(vm);
2: p← 1; // First suspended VM
3: q ← |VMQueuej, vstate(vm, t) = SUS|; // Last suspended VM
4: // Manage suspended VMs:
5: while p ≤ q do
6: if chfm− sat(pmj) ≥ ms(vmp, t) then
7: ma(vmp, t)← ma(vmp, t) + ms(vmp, t);
8: chfm← chfm−ms(vmp, t);
9: action(vmp)← resume;
10: p← p + 1;
11: else
12: chfm← chfm + ma(vmq, t);
13: ma(vmq, t)← ma(vmq, t) + ms(vmq, t);
14: action(vmq)← save;
15: q ← q − 1;
16: end if
17: end while
18: // Manage saved and new VMs:
19: p← p + 1;
20: while p ≤ |VMQueuej| do
21: if chfm− sat(pmj) ≥ ma(vmp, t) then
22: if vstate(vmp, t) == SAV then
23: action(vmp)← restore;
24: else
25: action(vmp)← activate;
26: end if
27: chfm← chfm−ma(vmp, t);
28: end if
29: p← p + 1;
30: end while

4.2.4.3 Committing changes

After making the decisions regarding the VMs, it is necessary to commit the changes, dur-

ing which the HostManagerj calls Libvirt functions to effectively change the memory allo-

cationma(vmi, t) and to implement the VM state vstate(vmi, t), based on assigned actions

4.2 The Host Manager 40

action(vmi) in the Algorithms manage_active_vms() and manage_inactive_vms().

According to Algorithm 1, the procedure commit_changes() is called at two different

moments. The first call is immediately after managing the active VMs, since a quick

response from HostManagerj to adjust the memory allocation for these VMs and to sus-

pend VMs that are active with high swap-in/swap-out usage can help reduce any loss in

performance especially if there is insufficient memory available on the host machine. Af-

ter committing the first set of adjustments, the HostManagerj will then consider which

inactive VMs should release memory to meet demand, when necessary. This second call

commits the adjustments related to these inactive VMs.

Both attributes ma(vmi, t) and vstate(vmi, t) of vmi are be changed during the com-

mitment phase. The change in memory allocation ma(vmi, t) triggers the change in

the total memory tm(vmi, t) of the operating system at vmi, providing memory to the

running applications to execute without delay. VM states, vstate(vmi, t), are changed

through action(vmi), which is set with one of the following values: activate, suspend, re-

sume, save, restore and migrate. Table 4.3 shows the possible actions, their descriptions,

the associated state transition and equivalent action in the Libvirt API.

Table 4.3: Actions and state transitions of virtual machines
Action Description Current state Next state Libvirt API
activate Start the execution of a VM NEW RUN virDomainCreate
suspend Suspend the execution of a VM RUN SUS virDomainSuspend
resume Resume the execution of a VM SUS RUN virDomainResume
save Save the state of a VM to disk SUS SAV virDomainSave
restore Restore the state of a VM from disk SAV RUN virDomainRestore
ma(vmi, t) Change ma(vmi, t) of a VM {RUN, SAV, SUS} {RUN, SAV} virDomainSetMemory
migrate Migrate a VM SAV SAV virDomainMigrate

The procedure then traverses the set of VMs and calls the corresponding Libvirt

function. Before the HostManagerj is put to sleep, it must send information regarding

the physical machine state to CL layer, using the procedure send_pm_info(). Each pmj

that composes the cloud system sends its chfm and information regarding VMQueuej

to the receivePmInfo component, as shown in Figure 4.2. The CL will then make the

appropriate scheduling decisions for VM allocation.

Finally, the HostManagerj is suspended for the remainder of the interval, to be

activated again at moment t + Ihost. This is achieved calculating how long the current

management cycle took, actual − t, where t was the moment current management round

started and actual the current time, and subtracting this from the next interval of Ihost,

as seen in Algorithm 1, line 8.

4.3 The Cloud Manager 41

4.3 The Cloud Manager

The cloud manager is not the main focus of this work, thus only basic outline of what might

be required is discussed here. In the CL, the CloudManager is responsible for receiving

virtual machines requests for execution and deciding in which pmj they should be placed,

or which already scheduled VMs should be migrated between physical machines. Figure

4.8 shows the diagram of CloudManager. From element receivePmInfo, it receives

information from HostManagerj on each pmj that composes the cloud, and places it in

the ActivePMs list. The InactiveV Ms set is then updated with information regarding

VMQueuej of each host. The CloudManager also receives VM execution requests in

element receiveV mReq, placing them in the V mReqQueue queue. At each time interval

defined by Icloud, the CloudManager reads information from ActivePMs, InactiveV Ms

and V mReqQueue and decides if VM migration should be initiated, which VMs should

be involved and between which physical machines, or to which physical machines new

VMs should be scheduled.

Figure 4.8: The CloudManager at CL layer

The objective of the CloudManager is to distribute the VMs across physical machines.

Since each PM sends information of its VMs that are waiting to be executed, as well as

its currently free memory, the problem is to determine which PM will receive a VM, to be

first started or migrated. In this layer, it can be assumed that the total expected execution

time of vmi is known, and since the time vmi spent executing is easily extracted from the

PML (together with wtime(vmi)), it is possible to calculate the remaining time needed

to finish vmi, define here as rtime(vmi).

The ActivePMs list can be used to keep the hfm(pmj) (from variable chfm) of each

4.3 The Cloud Manager 42

pmj that composes the cloud. The following information are set:

• j: identifier of pmj;

• hfm(pmj): the host free memory of pmj.

Then, for each pmj, the InactiveV Ms can be populated with the following infor-

mation retrieved from the PML, regarding each VM waiting to be executed (from the

VMQueuej queue):

• wtime(vmi): time spent by vmi waiting to be executed;

• rtime(vmi): vmi expected remaining time to finish;

• ma(vmi): the memory allocation of vmi;

• maxml(vmi): the maximum memory limit of vmi;

• vstate(vmi, t): state of vmi, SAV or NEW ;

• pmj: the physical machine where vmi is allocated;

With these information, the CloudManager is able to load-balance the cloud system,

and define where VMs will be executed, given the existing VMs that are waiting to

be executed, together with its waiting time wtime(vmi) and remaining execution time

rtime(vmi). Then, policies should be defined in the CloudManager to decide how the

VMs will be distributed, matching the VM’s requirements to PM’s memory availability.

This new problem is independent from the one treated in this work at the PML,

although related by the parameters that are sent from the PML to the CL. Different

policies will be investigated, defined and implemented in future work.

Chapter 5

Experimental Results

5.1 Overview

In this chapter, the results of several experiments using MEC as the execution manager are

carried out, while considering different job requirements and examining different aspects

of the proposed framework. The experiments are divided in main two sections. The first

section aims to test specific criteria and features implemented by MEC. The second section

focus on testing MEC against other approaches and implementations, using synthetic jobs

and the Parsec Benchmark [4]. Within each test, it is possible to verify how MEC is able

to reduce the execution delay and increase the throughput of VMs by calibrating the

amount of memory allocated to each VM and controlling their concurrent execution.

These experiments were executed on the same infrastructure mentioned in Section

3.2: a server with two Intel Xeon X5650 2.67Ghz CPUs, with a total of 12 physical cores

(hyper-threading was disabled), and 24GB of RAM. The host and guest operating systems

were CentOS 6.5, kernel version 2.6.32. The hypervisor was Kernel-based Virtual Machine

(KVM) [9] and libvirt was used as an API to manage the virtual infrastructure without

over-committing CPUs. The results presented are based on an average of 10 executions.

5.2 Evaluating Specific Characteristics

In this section, some aspects of MEC framework are analyzed, including how the host

memory is affected by the virtual machine’s memory consumption, the frequency in which

MEC is executed, the memory extraction mechanism as a way to predict the memory

access pattern, the impact of the chosen priorities and the VM pause functionality.

5.2 Evaluating Specific Characteristics 44

5.2.1 Host memory consumption pattern under MEC supervision

The virtual memory ballooning technique [22] allows the hypervisor to dynamically take

memory from the host machine and give it to the virtual machine, and vice-versa, by

deflating or inflating the memory balloon. When the balloon is deflated by the hypervisor,

more memory is available for the guest OS, whereas when inflated, memory pages are

unmapped from the guest and handed back to the host. This experiment shows the

behavior of host memory when using the elastic capability of MEC, and how it can create

opportunities for better memory usage.

When the host has sufficient memory, virtual machines can run without the need of

memory extraction, pausing or migration. However, when limited, the unsupervised use

of this memory by a group of VMs can lead to poor utilization. To show this, three jobs

were run in sequence on a single virtual machine and the consumed memory from the host

machine was monitored. The jobs specifications can be seen in Table 5.1, where pdr(Jk)

is the peak dynamic range of job Jk and ws(Jk) is the working set size of job Jk.

Table 5.1: Jobs specifications
pdr(Jk) (MB) ws(Jk) (MB)

J1 2048 2048
J2 2048 512
J3 2048 512

Recall from Section 3.1 that J1, J2 and J3 have the same number of operations to be

executed, considering the same peak dynamic range pdr(Jk) size. The difference between

them is the manner in which the allocated vector of size pdr(Jk) is accessed. Jobs J1

and J2 access their entire working set sequentially and repeatedly a fixed number of times

before moving to the next working set. Since pdr(J1) = ws(J1), job J1 has only one

working set, while job J2 has four different working sets. Job J3 is a mix of these two,

accessing its entire vector like J1 and then accessing each working set like J2.

Figure 5.1 shows the consumed memory from the host point of view, with MEC

enabled (solid line) and with MEC disabled (dotted line), running jobs J1, J2 and J3

in sequence. When the memory management is not active, the host consumed memory

remains constant with its maximum value. Even after J3 is finished, if the VM continues to

run without any jobs, the consumed memory at the host would still be around 14250MB.

On the other hand, under MEC supervision, the host consumed memory reflects the

consumption inside the VM.

5.2 Evaluating Specific Characteristics 45

The difference between the solid line and dotted line, at each moment, indicates the

memory that could be used elsewhere, with, for example, others virtual machines. In this

experiment, the difference between the average memory consumption is about 600MB,

and shows that, with MEC, the available host memory is better used, and memory over-

commitment can be avoided, thus increasing the throughput.

Figure 5.1: Consumed memory from the host point of view

5.2.2 Management frequency

One of the mechanisms exploited when managing vertical elasticity is the release of mem-

ory that is not being used from VMs to be made available to others, so that throughput

is improved. However, this memory calibration has to be held carefully since low free

memory can cause swap activation, if high memory consumption suddenly arises.

The frequency in which the Host Manager is executed, defined by Ihost, is related with

the amount of spare memory1 that is going to be added to ma(vmi, t): the smaller the

Ihost value, the faster the response to sudden changes on memory consumption, and thus,

lower amount of extra memory is needed. Nonetheless, this frequency is limited to the

hypervisor response time and to the frequency of received values from the monitors in the

VMs (i.e. from the guest OS).

For example, let four jobs of type J1 be executed, but with different functions operated

on each element of the vector, and with pdr(J1) = 1GB. Table 5.2 shows the different

memory consumption speed for each particular function, and for different intervals Ihost
of 20, 10, 5, 2 and 1 second, the required extra memory to absorb the sudden increase

1Amount of memory beyond the one calculated with ms(vmi, t)

5.2 Evaluating Specific Characteristics 46

of memory consumption. One can note that the lower the frequency, the less additional

amount of memory is required.

Table 5.2: Memory Consumption rates (GB/s) and Required Extra Memory (GB) for
different functions

Ihost
Function Rate(GB/s) 20 10 5 2 1

J1:1 xy 0.05 0.91 0.45 0.23 0.09 0.05
J1:2 x ∗ y 0.29 5.74 2.87 1.43 0.57 0.29
J1:3 = 1 0.82 16.36 8.18 4.09 1.63 0.82
J1:4 memset() 2.16 43.12 21.56 10.78 4.31 2.16

Having concluded that, we now redirect our attention to sat(vmi). In Section 3.2.2,

the evaluation held identified the swap activation threshold sat(vmi) as the minimum

amount of free memory remaining before the system starts to use swap space. Figure 5.2

shows the memory allocation ma(vmi, t) and the swap consumption during execution of

J1 for the function “= 1” and Ihost = 5s. Although swap is activated at first, MEC adjusts

the ma(vmi, t), and then, after that, swap is not activated anymore. Although MEC was

able to efficiently manage the amount of memory allocated, during the interval in which

the manager was not activated, there was an abrupt increase on swap consumption.

Figure 5.2: Memory and swap consumption during the execution of J1 using the function “= 1”
and Ihost = 5s under MEC management

One strategy in order to prevent the slightest chance to access swap when executing

jobs in a VM is to add an extra quantity to sat(), denoted as satextra(vmi). In one side,

this strategy may provide good execution performance if a sudden memory consumption

occurs, on the other hand, setting this extra memory to sat(vmi) to each vmi in pmj

may be undesirable if one wish minimize memory allocation. It is important to report

5.2 Evaluating Specific Characteristics 47

that sat(vmi) + satextra(vmi) can be used on the ms(vmi, t) calculations, instead of just

sat(vmi).

In this experiment, there was a delay of 3% on the times when comparing the execu-

tions of J1 with Ihost = 5s under MEC management with satextra(vmi) = 0GB (Figure 5.2)

and with satextra(vmi) = 4.09GB, which is necessary value of extra memory according to

Table 5.2 to avoid swap activation for function “=1”. It is interesting to remark that the

delay drops to values less than 1% when Ihost is set to 1s which is negligible considering

long batch applications.

Although setting MEC with low Ihost values prevents delays on execution time, it is

important to evaluate MEC’s overhead. For this, vm1 received one job J1 executing the

function xy and its ma(vm1, t) (for t =0) was statically set with enough memory to avoid

swap. The virtual CPU of vm1 was fixed to run alone in a processor of the host machine

without the interference of MEC. Then the same instance was executed, but now, under

MEC management using the identified sat(vm1) and Ihost = 1s. In this case, MEC was

executed in the same CPU as vm1. Table 5.3 shows the results of both executions. The

delay of 0.18% on the job’s execution time shows the low overhead generated by MEC.

However, if 0% of overhead is seek, MEC can be set to run in the same CPU of the hosts

operating system.

Table 5.3: MEC overhead
Type Execution time (s) Ihost(s) Delay (%)
Static 1099.64 – 0
MEC 1101.66 1 0.18

5.2.3 Memory extraction mechanism

As seen in Subsection 4.2.4, when available memory is low, Host Managerj is able to

reduce the memory allocation of vmi even if ms(vmi, t) does not portray that memory

can be reduced (i.e. when vmi is stable). This experiment has the objective to show the

impact of extracting memory from a virtual machine when it is under the stable condition.

As seen in Subsection 3.2.3, jobs behave differently under lack of memory. In that

experiment, job J1 suffered a high delay with a 10% reduction of its ideal amount of

memory, whereas J3 suffered this same delay only when reduction reached 70%. In this

experiment, jobs J1 and J3 were executed, with MEC managing their memory and with

memory extraction enabled. The specification of jobs J1 and J3 can be seen in Table 5.4.

5.2 Evaluating Specific Characteristics 48

The job J3 was chosen since it represents a type of application that indicates memory

consumption of pdr(J3) units, but with working set ws(J3) < pdr(J3) only after the first

iteration. In this case, monitoring its memory consumption can be misleading, because its

initial memory consumption indicates that J3 will need all the pdr(J3) amount. As for J1,

it is an example where there is practically no space for optimization, and making wrong

decisions on extraction can lead to high degradation on the performance. In both J1 and

J3, the memory extraction percentage (PERC from Algorithm 8 in Section 4.2.4.1) to be

reserved was set to 5% (a high value can lead to long delays, jobs sudden termination or

even VM crash).

Table 5.4: Jobs specifications for memory extraction
pdr(Ji) (MB) ws(Ji) (MB)

J1 1024 1024
J3 1024 256

Figure 5.3 shows the memory allocation ma(vmi, t) for job J3 during its execution

time. Initially, the mstate(vmi) is set to FLU and vmi receives its additional required

memory ms(vmi, t). Between moments 47s and 121s, there is no more memory con-

sumption and then mstate(vmi) is set to STB. When memory state continues stable

until scount(vmi) == slimit(STB), memory extraction mechanism begins, gradually,

until moment 534s. At this point, siso(vmi, t) rises, and reserved memory is added back

to vmi, changing mstate(vmi) to frozen (FRZ). The vmi continues in this state until

scount(vmi) == slimit(FRZ), in moment 1001s, when mstate(vmi) = STB, when an-

other extraction occurs, causing siso(vmi, t) to increase, and mstate(vmi) to set back to

FRZ. Another extraction attempt is made at moments 1527s and 2011s, without success.

Finally, memory is released at moment 2147s and mstate(vmi) is set to its default value

flux (FLU).

Figure 5.4 shows the same experiment for J1, where extraction stops at moment 170s,

much earlier than in J3, since its working set ws(J1) is greater than ws(J3) in the last 3

iterations. The three attempts to extract memory when running J1 occurred at moments

670s, 1173s, 1672s due to the timeout of state FRZ, when mstate(vmi) was changed to

STD and another attempt to extract memory was made, without success.

With the purpose of comparing the execution time and memory reduction of J1 and

J3, MEC was disabled and memory allocation of vmi was set statically with just enough

memory to run J1 or J3 without any delay, as indicated in Static in column “Type” of Ta-

ble 5.5. The table also shows the initial memory allocation (Initial ma()) when ma(vmi, t)

5.2 Evaluating Specific Characteristics 49

Figure 5.3: The effects on the memory allocation during J3 execution on vmi due to memory
extraction

Figure 5.4: The effects on the memory allocation during J1 execution on vmi due to memory
extraction

starts to be reduced2, the final memory allocation (Final ma()) when ma(vmi, t) stops

being reduced, the memory allocation percentage reduction (Reduc ma()), the total ex-

ecution time (Time) in seconds, and the execution time percentage delay (Delay) when

compared with Stat execution time.

Table 5.5: Jobs specifications for memory extraction
Type Initial ma (MB) Final ma (MB) Reduc ma (%) Exec time (s) Delay (%)
Static 1510 1510 0 2119 0
J1 1510 1510 0 2128 0.4
J3 1510 790 48 2230 5.2

2Between 1700MB and 1510MB extraction is not considered since the difference is due to the extra
memory set through parameter satextra(vmi)

5.2 Evaluating Specific Characteristics 50

In both cases (J1 and J3), the memory extraction percentage PERC value was set to

5%. This value should be chosen with care, since a high value can cause longer delays or

jobs abrupt termination or even VM crash. Also, using a percentage value instead of a

fixed value causes the amount of memory extracted to decrease as the ma(vmi, t) becomes

lower. This is intended, since the lower ma(vmi, t) gets, the closer to the limit it will be,

and taking too much memory at once will cause undesirable effects.

This experiment showed that MEC is able to detect the limit of the allocated memory.

When extraction is possible, MEC is able to reduce the memory allocation without a high

delay, and when extraction is not possible, MEC is able to react and maintain the job

performance. It is import to remember that this memory extraction is only active when

the host is under pressure, i.e. free memory on host machine is not enough to attend its

VMs. Otherwise, there is no attempt to reduce memory and thus, no delay on the VMs

execution occurs.

5.2.4 Prioritizing VMs

When the free memory of the host is not enough to attend all VMs, HostManagerj decides

which VMs receive more memory first. In Algorithm 7 in Section 4.2.4.1, it was proposed

to give priority to choose those VMs with highest siso(vmi, t), breaking ties with the lowest

ms(vmi, t). Aiming to show the importance of this priority, the following experiment was

carried out: two virtual machines vm1 and vm2 were set to run concurrently, where vm1

executed J1 and vm2, J2. At a certain moment t, high siso(vm1, t) was detected, while

for vm2 the same did not happen, and the memory available to be distributed at moment

t was such that only one VM could be attended.

Two scenarios were defined to test different prioritizing criteria: SC1, wherems(vm1, t) <

ms(vm2, t); and SC2, with ms(vm1, t) > ms(vm2, t). Four priorities were evaluated: the

VM with highest ms(vmi, t) (High ms); the VM with lowest ms(vmi, t) (Low ms);

distribute the memory evenly among the VMS (Distribute); and the VM with highest

siso(vmi, t) (Siso).

Figure 5.5 shows the execution time ratio3 for each scenario and priority. Clearly,

for both scenarios, picking up the next VM with highest siso() is the best choice since

it captures which VM is under stress mostly. The worst priority is clearly the one that

distributes memory evenly, since all VMs compete for swap use.
3Execution time normalized with respect to the optimal time

5.2 Evaluating Specific Characteristics 51

Figure 5.5: Scenarios SC1 and SC2 with different priorities for choosing active VMs

5.2.4.1 Breaking ties with lowest ms(vmi, t)

A third scenario SC3 was defined where four VMs, from vm1 up to vm4, are experiencing

the same siso(vmi, t), but requiring different ms(vmi, t) values. Each one of them exe-

cuted a job of type J1. At a certain moment t, the amount of memory required by vm1 is

equals to the summation of the amounts required by vm2, vm3 and vm4 altogether, and

also hfm(pmj) is just enough to attend either vm1 or all the three remaining VMs.

Figure 5.6 shows the execution time ratio per VM of scenario SC3 for “Distribute”,

“High ms” and “Low ms” criteria. As can be observed, when memory is distributed equally,

the execution time ratio reaches its highest value, due to the concurrent swap usage. For

the criteria “High ms”, vm1 is benefited, but overall performance declines since vm2, vm3

and vm4 are under high swap usage. With the criteria “Low ms”, the number of VMs

with their requirements met are maximized, and thus only vm1 has its execution delayed

(but its execution time ration is only 2.0), and therefore, throughput is maximized.

5.2.5 Pausing VMs

Targeting to offer an opportunity for cloud providers to increase the number of requests

being attended, one can consider to execute high number of VMs into one physical machine

in order to maximize the throughput. However, the concurrent memory use by many VMs

can lead to long execution delays due to concurrent swap usage, depending on the jobs

5.2 Evaluating Specific Characteristics 52

Figure 5.6: Scenario SC3 where VMs face the same siso(), breaking ties with the “Distribute”,
“High ms” and “Low ms” criteria

being executed. This delay can be much longer than if the VMs were executed in sequence.

The extraction of memory can reduce significantly the ma(vmi, t) of certain VMs,

but it is not always possible to be performed since each VM needs a minimum amount of

memory. Moreover, the process of extraction is not immediate and requires a number of

time steps (specified by slimit(STB)). The siso(vmi, t) indicator can be used to reduce

the delay by prioritizing VMs with high siso(vmi, t), but if there is no more memory

left, and the VMs are still experiencing high swap-in/swap-out, MEC should be able to

reduce the swap usage impact before relying in the CL for VM migration. The following

experiment aims to show the benefits of pausing mechanism of MEC, where VMs are

suspended and later saved, if necessary.

In this experiment, vm1 and vm2 were executed concurrently, each one running one

job J1 with pdr(J1) = 2GB, both initiating at the same time. In this scenario, and

considering the job type, J1 runs with its optimum time when ma(vmi, t) = 3GB.

Six different situations for running the two VMs were set, as specified in Table 5.6.

Static ideal and MEC ideal provides plenty of physical memory to run both VMs and

no swap is activated. In Static ma=2G, each VM is set with 2GB, totaling 4GB. The

same total amount of memory is made available in the remaining situations. In MEC No

Pause, no pausing mechanism is activated (VMs are neither suspended, nor saved), only

suspension is enabled in MEC SUS, and both suspension and saving are activated in MEC

SAV.

5.2 Evaluating Specific Characteristics 53

Table 5.6: Comparison on the Pausing Mechanism (Memory Unit in GB)
Type hfm (GB) ma(vmi, t) (GB) Pause
Static ideal 6 3 No
MEC ideal 6 Dynamic No
Static ma = 2G 4 2 No
MEC No Pause 4 Dynamic No
MEC Suspend 4 Dynamic Suspend
MEC Save 4 Dynamic Save

The results are shown in Figure 5.7. Obviously, both ideal situations (Static and

MEC) achieved the optimum execution time. On the other hand, when memory is not

enough, Static led to the worse results, since both VMs are accessing swap concurrently.

MEC No Pause also showed high delay, though a slight lower value is produced due to

the dynamics of memory allocation ma(vmi, t), since occasionally one VM would end up

with more memory than another. MEC SUS shows the importance of avoiding concurrent

swap, during which, although one VM continued to run without enough memory, there

was no concurrent swap usage due to the suspension of the second VM, and therefore, the

delay was lower 33% than the worst case. Finally, MEC SAV resulted in a execution time

ratio of two. Even though this seems a high ratio, but since 4GB of free memory is not

enough to run both jobs, MEC was able to avoid a huge delay by automatically executing

the VMs in sequence, each one close to its optimal time.

Figure 5.7: Pausing mechanism evaluation when executing two VMs concurrently in different
situations

5.3 MEC overall evaluation 54

5.3 MEC overall evaluation

The following experiments aim to show that by allowing MEC to elastically manage

memory allocation it might be able to reduce execution delays and therefore, to improve

performance when compared to the traditional approach where memory is statically allo-

cated, usually evenly, amongst VMs. Furthermore, MEC might also be able to increase

the number of VMs that share a physical server without hurting performance as well as

reduce the number of required physical machines to host a given number of required VMs.

5.3.1 Synthetic Jobs

In this first experiment, n VMs are executed concurrently, n = 2, 4, 6, 8, 10, where the

VMs with an even identifier received each a job of type J1, while the remaining received

each a job of type J2. Both jobs have pdr(J1) = pdr(J2) = 1GB. Assume, when running

n VMs concurrently, that the total amount of memory available for allocation among

them is limited to nGB. In the static memory allocation approach, all VMs will receive

ma(vmi, t) = 1GB since both jobs have the same data requirement, but since pdr(ji) =

ma(vmi, t), there will not be enough memory to run the jobs without using swap. With

a manager like MEC, the nGB can be distributed according to the needs of each VM, on

demand.

Figure 5.8 shows the execution time ratio for n concurrent VMs, with MEC and static

memory allocation. Since J1 and J2 use different amounts of swap, there is scope for

the manager to orchestrate these demands, by prioritizing VMs with higher siso(vmi, t).

Given that the host has sufficient CPUs and memory, the increasing performance degra-

dation (i.e. the difference in the execution time ratio) as the number of concurrent VMs

increases is caused by the fact that their jobs required swap usage. However, the elastic

memory allocation provided by MEC obtained a significant reduction, as much as 84% in

this example, using the information collected during execution.

The next experiment used a similar configuration to the previous one, except that

VMs may now obtain enough memory to avoid swap usage. For pdr(job1,2) = 1GB, a

memory allocation of ma(vmi, t) = 1.4GB is necessary for this experiment during its

whole execution. With the total amount of memory available for allocation still being 10

GB, the question is how many VMs can be executed concurrently?

For the static approach, in order to avoid swap usage, the number of concurrent VMs

is limited to b10GB/1.4GBc = 7. If more than 7 VMs were to be instantiated, there

5.3 MEC overall evaluation 55

Figure 5.8: Execution time ratio of n VMs under MEC management versus static memory
allocation

would be no guarantee that a required throughput criterion could be met. Note that

MEC does not know which type of job is executing in each VM. While the results in

Figure 5.9 show that, for a mixture of jobs J1 and J2, the static approach executes 7 jobs

with the expected execution time ratio of one, the execution under MEC management

achieves a throughput of 11 – an increase of 57% in the number of VMs on the same

physical host. For 12 VMs, the total host memory of 10GB was not enough to run the set

of jobs and instead of generating a high delay, VMs were run in sequence due to the pause

mechanism, generating a small overhead of 2%. If one considers executing only jobs of

type J2, the results are even better, with an increase of 71% in the number of VMs. While

the static approach can still only fit 7 VMs, MEC can up to 12 VMs with an additional

delay of no more than 11%.

5.3.2 Parsec Benchmark

The Parsec Benchmark Suite [4] executed in this experiment is composed by several ap-

plications, described in Appendix A. Although each application has relative constant

memory consumption during its execution, the chosen set of application has high dy-

namic variations in memory requirements among them. The benchmark was executed on

the virtualized environment with the aim to compare the benefits provided by the pro-

posed MEC, against the MOP strategy [13] considering 10% and 30% as the pre-defined

5.3 MEC overall evaluation 56

Figure 5.9: Execution time ratio: Static versus MEC

percentages of free memory and also the DMSS strategy [16]. Also, a comparison was

carried out with the STATIC strategy, in which VMs are executed with their required

memory, and its variant, STATIC-V, where the available memory is evenly divided be-

tween VMs. For each experiment, a number of concurrent VMs were executed, each VM

running a given combination of 10 Parsec applications sequentially in different orders.

Thus, the memory requirements of each VM will vary. Preliminary executions showed

that ma(vmi, 0) =1GB was sufficient to run the set of applications in a single VM with-

out memory related delays. This information was used solely to limit the total physical

memory to 6GB, i.e. the sum of all ma(vmi, t) did not exceed 6GB.

Figure 5.10 compares the execution time ratio in relation to the optimal execution

time (6 VMs each one with 1GB of memory) between MEC and STATIC, where in the

latter, VMs were set with a fixed ma(vmi, t) of 1GB. Since the host memory available was

set with 6GB, only six VMs can be executed concurrently without loss in performance.

When running 7 to 12 VMs, only six VMs were executed concurrently, after which the

remaining VMs were run. On the other hand, MEC automatically adjusts the amount of

allocated memory and manages to reduce by an average of 31.5% the execution time of

the same set of Parsec applications.

A much worse scenario is presented in Figure 5.11 where MEC is compared against

STATIC-V approach, in which a staticma(vmi, t) was set to 6GB
n

, with n being the number

5.3 MEC overall evaluation 57

Figure 5.10: Parsec with MEC vs STATIC

of concurrent VMs. In the case of six VMs, ma(vmi, t) was 1GB, while with seven VMs,

ma(vmi, t) was 878MB. The variant STATIC-V provided much worse results due to the

intensive use of swap, since the same amount of available memory as divided between the

concurrently executing VMs.

Figure 5.11: MEC vc STATIC-V

The previous results clearly show the dynamic approach of MEC, even with the over-

heads of detecting and reconfiguring the allocation, to be better than the standard static

5.3 MEC overall evaluation 58

strategies. Figure 5.12 compares the MEC scheme with the dynamic approaches from

the literature, MOP [13](with two free memory threshold values of 10% and 30%) and

DMSS, the closest ones to MEC. The differences between these three approaches are in

the metrics and heuristics adopted.

In MOP, the elastic rule was implemented with a few adaptations. In their work, at

every time step, the memory allocated to each vmi is defined as a factor (1+MOP) of the

actual memory consumed by vmi. However, the calculation based solely on the consumed

memory might result in the application’s abrupt interruption or VM crash, since it does

not take into consideration VMs attributes such as memory overhead mo(vmi) and swap

activation threshold sat(vmi). Therefore, in our version, the amount of memory to be

allocated in MOP is the (1 + MOP) times the actual consumed memory plus mo(vmi)

+ sat(vmi). This calculation is also held at every Ihost = 5 seconds, defined in the same

manner as in MEC.

For DMSS, the calculation of the VM’s memory allocation is similar to our work,

therefore no changes were necessary. They also use the Free threshold (FT) to avoid

swap usage, similar to the sat(vmi). The FT in DMSS is dynamic, allowing to adjust an

incorrect value set by the administrator during the VM execution, but for our experiments,

this feature was not necessary since the correct value of FT was known (which is based

on sat(vmi)). The main difference between DMSS and MEC is the memory distribution,

when host memory is not enough to attend the VM’s requests is the criteria for VMs

prioritization. The implementation of the DMSS criteria is shown in Appendix B.

We can clearly see in Figure 5.12 the benefits of MEC when a higher number of VMs

need to be executed, since MEC automatically calibrates the amount of memory required

by the applications. In the case of a higher pre-defined percentage, the MOP strategy

provides a higher amount of memory for an initial number of VMs, but then, remaining

VMs will not receive the necessary amount. While DMSS considers the number of page

faults and may allocate memory when in fact it is not necessary, MEC looks at the amount

of data being swapped in and out in order to define more precisely memory requirements.

The two approaches use opposing VMs priorities for memory allocation, since MEC avoids

a higher degradation by considering the influence of swap on the performance-memory

relationship. As seen in the figure, when 10 to 12 VMs with different requirements are

defined, due to the DMSS distribution, a higher amount of VMs in swap occur.

5.3 MEC overall evaluation 59

Figure 5.12: MEC vc MOP

Chapter 6

Conclusion and future work

6.1 Conclusion

For cloud providers and data centers, small improvements in memory utilization can

lead to higher consolidation rates. The evaluation presented in this work outlined a

hypervisor and guest OS independent tool, the Memory Elasticity Controller (MEC) that

manages the VM’s running state and memory allocation on a server, aiming to increase

the throughput of a cloud system.

MEC was developed based on a careful examination of the characteristics of the

behavior of a virtualized environment, and considered:

• Properties that should be monitored within the guest OS, such as total memory

tm(vmi, t), free memory fm(vmi, t), swap-in si(vmi, t) and swap-out so(vmi, t);

• Characteristics of the VMs, such as the swap activation threshold sat(vmi), the

memory overhead mo(vmi);

• Attributes of the VMs, such as the maximum memory allocation maxml(vmi) and

memory allocation ma(vmi, t);

• Dynamic parameters to identify VMs with insufficient memory such as the mem-

ory shaping ms(vmi, t) or VMs suffering significant slowdowns in their execution

through the swap-in/swap-out indicator siso(vmi, t);

• Criteria to prioritize VMs, such as high siso(vmi, t) or low ms(vmi, t);

• Configuration parameters of MEC, such as Ihost and Imonitor intervals.

6.1 Conclusion 61

To evaluate the execution of applications in virtualized environments and identify

and exemplify crucial configuration criteria and parameters for MEC, the synthetic ap-

plications J1, J2 and J3 were created. These jobs represent generic applications with

different memory access patterns, and through experiments, showed how different mem-

ory and swap usages impact performance and memory under different VM’s memory

allocations.

The MEC definition also included mechanisms to calculate memory requirement using

predictions based on recent memory consumption; to extract memory without the guest

OS indicating that memory can be released; and to pause/resume virtual machines when

necessary. The collected information identified at the PML is also sent to the CL, giving

opportunities for the CloudManager to solve a different problem concerning the load

balance of the cloud system.

Also, the memory state transitions defined in this work offer a chance to estimate with

a certain accuracy the memory requirements of the VMs in future moments. It provides

an opportunity for memory deallocation as a mean to liberate memory for use by others

VMs in need on the same machine.

Different to the work of [13, 16], this study focuses on the analysis of memory and

swap usage. In particular, how the management of both can be used to increase VM

throughput, while attempting to minimize application performance degradation taking

into consideration different memory requirements and access patterns. The mechanism

proposed does not incur any significant performance overhead (like [23]) nor require apriori

application modeling [14]. Memory over-commitment techniques such as Kernel Same-

page Merging (KSM), if available, can be applied transparently in conjunction with this

proposal.

Finally, MEC was validated through experiments using synthetic applications as well

as the Parsec benchmark. The results showed that MEC is capable of increasing the

throughput of a server when possible, and maintain performance when not, by managing

the VM’s memory allocation and running state. Given the high number of physical

machines in data centers nowadays, the obtained increases in throughput can have a

significant impact in help reduce energy consumption, capital expenses and administration

costs.

This work also led to an article titled “Evaluating the Impact of Memory Allocation

and Swap for Vertical Memory Elasticity in VMs” [20], presented at the 27th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD

6.2 Future work 62

2015), held in Florianópolis, Brazil.

6.2 Future work

As future work, the free memory estimation can be refined, using different methods to

calculate the memory consumption, with adaptive models and linear regression based

on all values received from period [t − Ihost, t], from Monitori deployed at each virtual

machine.

Another issue, in order to validate the accuracy of memory consumption prediction,

alternatives can be evaluated through distinct benchmarks, not restricted to batch ap-

plications. Web applications with variable workloads can be included and Java Virtual

Machines [1] (JVM) should also be studied since it manages its own memory. In this case,

a different approach might be necessary to cope with applications running under a JVM.

Analyses of the relationship between parameters such as Ihost, slimit(STB) and

slimit(FRZ) should also be compared and evaluated. In this work, all mentioned values

were set statically, based on experiments, but a more sophisticated approach can be used,

with automatic adaptation of Ihost based on application’s demands. Different requirements

might need different Ihost values, and with higher interval, more sophisticated prediction

method will be necessary. Values set in slimit(STB) and slimit(FRZ) should also be

adaptive with the application’s necessity. The adaptive model for memory consumption

prediction could be used to define dynamically the values for slimit().

Given the management of the number of vCPUs dynamically in response to require-

ments of malleable applications is a key feature in the roadmap towards exascale systems,

vertical elasticity of other resources such as vCPU can also be integrated into the frame-

work. In this case, a whole new set of parameters can be considered, such as CPU usage

and cache-miss rate, as well as considering hardware architectures with non-uniform mem-

ory access (NUMA). I/O and network access should also be considered since these also

impacts VM migration as well as decisions regarding how to schedule a set of VMs that

needs high connectivity across separate PMs.

With the set of information from the Physical Layer, the problem that the Cloud

Layer needs to solve will also be addressed. Here, horizontal elasticity policies can be

applied, and migration of VMs are regarded and evaluated, comparing live migration

with the current migration of saved VMs. Information regarding the time spent in each

memory state mstate(vmi, t) can be used to categorize VMs, for mixing or matching

6.2 Future work 63

different types in a physical machine. Also, the waiting time wtime(vmi), together with

the expected remaining time to finish execution rtime(vmi) can be used to decide which

VMs are selected to free memory for other VMs. And in order to increase scalability,

the CloudManager could be organized as a P2P network, or divided in sub-clouds, using

elasticity as demands increases or decreases in the cloud system.

References

[1] Java virtual machine. http://www.java.com/.

[2] Kernel virtual machine (kvm). http://www.linux-kvm.org/.

[3] Libvirt: The virtualization API. http://libvirt.org/index.html.

[4] The princeton application repository for shared-memory computers (parsec). http:
//parsec.cs.princeton.edu/.

[5] Vmware. http://www.vmware.com/.

[6] Xen hypervisor. http://www.xenproject.org/developers/teams/hypervisor.
html.

[7] Amazon ec2, 2014. Available at http://aws.amazon.com/ec2.

[8] Amazon ec2 auto scaling, 2014. Available at http://aws.amazon.com/autoscaling.

[9] Kvm kernel based virtual machine, 2014. Available at http://www.linux-kvm.org.

[10] Baruchi, A.; Midorikawa, E. A survey analysis of memory elasticity techniques.
In Euro-Par 2010 Par. Proc. Workshops, vol. 6586 of LNCS. Springer, 2011, pp. 681–
688.

[11] Coutinho, E.; de Carvalho Sousa, F.; Rego, P.; Gomes, D.; de Souza,
J. Elasticity in cloud computing: a survey. Annals of Telecommunications 70, 7-8
(2015), 289–309.

[12] Elmroth, E.; Tordsson, J.; Hernández, F.; Ali-Eldin, A.; Svärd, P.;
Sedaghat, M.; Li, W. Self-management challenges for multi-cloud architectures.
In Proc. of the 4th European Conf. on Towards a Service-based Internet (2011),
Springer, pp. 38–49.

[13] G. Molto, M. Caballer, E. R.; Alfonso, C. Elastic memory management
of virtualized infrastructures for applications with dynamic memory requirements.
Procedia Computer Science 18 (2013), 159 – 168.

[14] Gordon, A.; Hines, M.; Da Silva, D.; Ben-Yehuda, M.; Silva, M.;
Lizarraga, G. Ginkgo: Automated, application-driven memory overcommitment
for cloud computing. In ASPLOS RESoLVE’11: Runtime Environ./Sys., Layering,
and Virtualized Environ. Workshop (2011).

[15] Kleen, A. Where is the kernel memory going? Memory usage in the 2.6 kernel. In
13th International Linux Sys. Technology Conf. (2006 Linux Kongress) (Sept 2006).

References 65

[16] Liu, L.; Chu, R.; Zhu, Y.; Zhang, P.; Wang, L. DMSS: A dynamic memory
scheduling system in server consolidation environments. In 15th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing Workshops (ISORCW) (April 2012), pp. 70–75.

[17] Lu, L.; Zhu, X.; Griffith, R.; Padala, P.; Parikh, A.; Shah, P.; Smirni, E.
Application-driven dynamic vertical scaling of virtual machines in resource pools. In
IEEE Network Operations and Management Symp. (NOMS) (2014).

[18] P. Mell, T. G. The nist definition of cloud computing, 2011. Available at http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[19] Pavlovic, M.; Etsion, Y.; Ramirez, A. On the memory system requirements of
future scientific applications: Four case-studies. In IEEE International Symposium
on Workload Characterization (IISWC) (2011), pp. 159–170.

[20] Sawamura, R.; Boeres, C.; Rebello, V. Evaluating the impact of memory
allocation and swap for vertical memory elasticity in VMs. In IEEE 27th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD) (Oct 2015).

[21] Spinner, S.; Kounev, S.; Zhu, X.; Lu, L.; Uysal, M.; Holler, A.; Griffith,
R. Runtime vertical scaling of virtualized applications via online model estimation.
In 8th IEEE Int. Con. on Self-Adaptive and Self-Organizing Systems (2014), pp. 157–
166.

[22] Waldspurger, C. A. Memory resource management in vmware esx server. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 181–194.

[23] Zhao, W.; Wang, Z. Dynamic memory balancing for virtual machines. In ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(USA, 2009), pp. 21–30.

66

APPENDIX A -- Parsec Benchmark Applications

This appendix list and describes the applications used from the Parsec Benchmark Suite.

parsec.swaptions: The application is an Intel RMS workload which uses the Heath-

Jarrow-Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs

Monte Carlo (MC) simulation to compute the prices.

splash2x.raytrace: The Intel RMS application uses a version of the raytracing method

that would typically be employed for real-time animations such as computer games. It is

optimized for speed rather than realism. The computational complexity of the algorithm

depends on the resolution of the output image and the scene.

splash2x.volrend: Computes the cholesky factorization of a sparse matrix

parsec.ferret: This application is based on the Ferret toolkit which is used for content-

based similarity search. It was developed by Princeton University. The reason for the

inclusion in the benchmark suite is that it represents emerging next-generation search

engines for non-text document data types. In the benchmark, we have configured the

Ferret toolkit for image similarity search. Ferret is parallelized using the pipeline model.

splash2x.lu_ncb: LU factorization of a dense matrix (non-contiguous block allocation)

splash2x.lu_cb: LU factorization of a dense matrix (contiguous block allocation)

parsec.fluidanimate: This Intel RMS application uses an extension of the Smoothed

Particle Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive

animation purposes. It was included in the PARSEC benchmark suite because of the

increasing significance of physics simulations for animations.

splash2x.water_spatial: Computes the cholesky factorization of a sparse matrix

parsec.freqmine: This application employs an array-based version of the FP-growth

(Frequent Pattern-growth) method for Frequent Itemset Mining (FIMI). It is an Intel

RMS benchmark which was originally developed by Concordia University. Freqmine was

Appendix A -- Parsec Benchmark Applications 67

included in the PARSEC benchmark suite because of the increasing use of data mining

techniques.

parsec.bodytrack: This computer vision application is an Intel RMS workload which

tracks a human body with multiple cameras through an image sequence. This benchmark

was included due to the increasing significance of computer vision algorithms in areas

such as video surveillance, character animation and computer interfaces.

68

APPENDIX B -- DMSS implementation algorithm

This appendix describes the algorithm used to implement the DMSS criteria for memory

distribution when the host available memory is not enough to attend the VMs requests.

Few definitions are necessary:

• ms(vmi, t): the memory shaping, or required memory for vmi;

• dms(vmi, t): the difference between ms(vmi, t) and ms(vmi+1, t), considering that

the VMs are already ordered by ms(vmi, t) decreasingly;

• ma(vmi, t): the memory allocation of vmi at current moment t;

• chfm: the current host free memory to be distributed.

Algorithm 10 only manages VMs with memory shortage. The memory abundant ones

should be treated firstly and is not shown here. The algorithm starts by ordering the

VMs with their ms(vmi, t) value decreasingly (line 1). Then, for each vmi, it calculates

the difference between ms(vmi, t) value and the value from the next VM, considering the

ordering by ms(vmi, t) (lines 3 to 5). This difference represents the value that should

be added to the VM’s memory allocation so that its required memory ms(vmi, t) is not

the highest anymore. For the last VM, the difference dms(vmi, t) is set with its own

ms(vmi, t) (line 7). From lines 9 to 25 , the memory is distributed as follows: if host free

memory is enough to attend the first i VMs in order to equalize their ms(vmi, t) values,

then this amount will be added to the VM’s memory allocation (line 11). If not, each

VM from vm1 to vmi will receive an equal share of the last available host free memory

(line 13). The actual update of memory allocation is done from line 16 to 18, following

by the chfm update with the amount that was used to attend the VMs. If there is no

free memory left in the host, then the memory distribution is over.

Appendix B -- DMSS implementation algorithm 69

Algorithm 10 Distribute available memory to VMs with memory shortage
1: Order VMs by ms(vmi, t) decreasingly;
2: // For each VM with memory shortage, calculate diff ms:
3: for i = 1 to n− 1 do
4: dms(vmi)← ms(vmi, t)−ms(vmi+1, t);
5: end for
6: // Set diff ms for the last element:
7: dms(vmn)← ms(vmn);
8: // Calculate the new ma for each VM:
9: for i = 1 to n do
10: if chfm ≥ dms(vmi, t)× i then
11: diff ← dms(vmi);
12: else
13: diff ← chfm/i;
14: end if
15: // Updates the ma of each VM from 1 to n
16: for j = 1 to i do
17: ma(vmj, t)← ma(vmj, t) + diff ;
18: end for
19: // Updates the host free memory:
20: chfm← chfm− (diff × i);
21: // If there is no more memory available, exit:
22: if chfm = 0 then
23: break;
24: end if
25: end for

