
UNIVERSIDADE FEDERAL FLUMINENSE

JOSE RICARDO DA SILVA JUNIOR

Using Massively Parallel Architecture for Media

Version Control and Fine-Grained Exploratory

Repository Analysis

NITERÓI

2015

UNIVERSIDADE FEDERAL FLUMINENSE

JOSE RICARDO DA SILVA JUNIOR

Using Massively Parallel Architecture for Media

Version Control and Fine-Grained Exploratory

Repository Analysis

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Area: Computer Graphics

Advisor:

ESTEBAN GONZALEZ CLUA

Co-advisor:
LEONARDO GRESTA PAULINO MURTA

NITERÓI

2015

Using Massively Parallel Architecture for Media Version Control and
Fine-Grained Exploratory Repository Analysis

Jose Ricardo da Silva Junior

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Area: Computer Graphics

Approved in December of 2015.

Prof. D.Sc. Esteban Gonzalez Clua / UFF (President)

Prof. D.Sc. Leonardo Gresta Paulino Murta / UFF

Prof. D.Sc. Anselmo Antunes Montenegro / UFF

Prof. D.Sc. Débora Christina Muchaluat Saade / UFF

Prof. Ph.D. Marcos Roberto da Silva Borges / UFRJ

Prof. Ph.D. Marco Aurélio Gerosa / USP

Prof. Ph.D. Anita Sarma / OSU

Niterói December 3, 2015.

“No one save us but ourselves. No one can and no one may. We ourselves must walk the
path.”

Buddha

Acknowledgement

I would like to thank my advisor Esteban Clua for his incentive and support, and
mainly his friendship during all my academic life.

My co-advisor Leonardo Murta for all of his lectures about software engineering,
advises, friendship, and encouragement during this doctoral course.

To Anita Sarma, for accepting to be my advisor at University of Nebraska, teaching
me a lot of interesting subjects during and after the time I spent there.

My family, specially my parents for they unconditional support and love, always
providing me with the best they could.

To my wife Giselle, for his patience and comprehension for all the time I was absent,
including the long time I lived in US, always giving me strength and love to keep going.

All the people from MediaLab and GEMS group for their support and friendship,
specially Daniel Prett for his hard working with Dominoes GUI.

I thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for
the financial support during this doctorate.

Resumo

Sistemas de controle de versão são amplamente utilizados para o controle da evolução de
artefatos de software ao longo do tempo, tornando-se uma valiosa fonte de informação
para a equipe de desenvolvimento. Visando generalidade e desempenho, esses sistemas se
basearam em um modelo de dados simples, que considera arquivos textuais como unidade
de versionamento e suas linhas como unidade de comparação. Porém, esse modelo de
dados traz dois principais problemas: artefatos binários são tratados de forma opaca e
análises mais elaboradas sobre a evolução se tornam custosas. Em relação ao primeiro
problema, quando artefatos binários são encontrados, as operações de diff, patch e merge
não são aplicadas, fazendo com que esses artefatos sejam armazenados em disco e trans-
portados pela rede por completo em cada revisão realizada. Além disso, também não
é possível compreender a diferença entre dois artefatos binários ou combinar artefatos
binários editados em paralelo.

Em relação ao segundo problema, dependendo do tamanho do repositório e do seu
tempo de vida, a extração e análise das informações não é tarefa fácil. Uma grande quan-
tidade de dados precisa ser reprocessada, compatibilizando o modelo de dados simples
usado no versionamento com o paradigma usado pela linguagem de programação do pro-
jeto (linhas ⇥ métodos, por exemplo). Como forma de atenuar este problema, alguns
autores fazem a análise em granularidade grossa (no nível de diretórios ou arquivos, por
exemplo) ou restringem o tamanho do histórico a ser analisado. Todavia essas restrições
tornam o resultado menos preciso.

Dado que ambos os problemas ocorrem em especial pela demanda computacional do
processamento de artefatos binários e das tarefas de análise de histórico, esta tese lança
mão do poder computacional de GPU. Para tal, é proposta uma abordagem utilizando
GPU que possibilite o versionamento sobre artefatos binários (imagem e vídeo especifica-
mente) através de operações especializadas de diff, patch e merge. Além de possibilitar
uma acurácia maior durante a exploração de repositórios compostos por este tipo de
artefatos e permitir o desenvolvimento em paralelo, a nossa abordagem também reduz o
espaço em disco necessário para o armazenamento desses artefatos, reduzindo também,
como consequência, a largura de banda necessária para a transferência de repositórios em
sistema de controle de versão distribuído. Por outro lado, nós também apresentamos uma
abordagem em GPU com o objetivo de possibilitar a exploração de conhecimento sobre
repositórios que contêm grande quantidade de dados, permitindo análises em granulari-
dade fina, como métodos e classes.

Palavras Chave: Gerenciamento de Software, Sistema de Controle de Versão, Artefato
de Imagem, Artefato de Vídeo, Especialização, Dependências, CUDA, GPU.

Abstract

Version control systems are widely used for controlling software artifacts evolution through
time, becoming a valuable source of information to the development team. Aiming at
generality and performance, these systems were conceived to work with a simple data
model that considers textual artifacts as unit of versioning and their lines as unit of
comparison. However, this data model presents two main drawbacks: binary artifacts are
treated as opaque data and a more elaborated analysis over software evolution becomes
expensive.

In relation to the first problem, when binary artifacts are found, the diff, patch,
and merge operations are not performed over them, leading to expensive requirements for
storing and transferring them. Besides that, it is not possible to understand the differences
or merge two binary artifacts modified in parallel.

Regarding the second problem, depending on the repository size and its lifetime,
extracting and analyzing information are not trivial tasks. A huge amount of data needs to
be reprocessed, matching the simple model used during versioning with the programming
language paradigm used by the project (e.g., lines ⇥ methods). In order to attenuate
this problem, some authors perform a coarse grain analysis (e.g., directory or file), or
restrict the portion of the repository history that can be analyzed. Unfortunately, such
restrictions produce less accurate results.

Given that the presented problems occur specially due to the computational process-
ing requirements for dealing with binary artifacts and analyzing repository history, this
thesis makes use of the GPU’s computational power to tackle both problems. We pro-
pose a GPU approach that allows binary artifacts versioning (specially image and video)
through specialized diff, patch, and merge operations. Besides enabling a more accurate
exploration of repositories composed by such kind of artifacts and making possible parallel
development over them, our approach also reduces their storage and network bandwidth
requirements. On the other hand, we also present a GPU approach for enabling knowl-
edge exploration over repositories that contain huge amounts of data, allowing a fine grain
analysis considering methods and classes.

Keywords: Software Management, Version Control System, Image Artifact, Video
Artifact, Expertise, Dependencies, CUDA, GPU.

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation . 3

1.2 Goal . 5

1.3 Organization . 7

2 Version Control Systems 9

2.1 Introduction . 9

2.2 Basic concepts . 10

2.3 VCS topology . 13

2.3.1 Centralized topology . 14

2.3.2 Distributed topology . 14

2.4 Base VCS operations . 15

2.4.1 Diff . 16

2.4.2 Patch . 19

2.4.3 Merge . 19

2.5 Final considerations . 20

3 Image-aware version control 22

3.1 Introduction . 22

Contents vii

3.2 Motivational example: JECRIPE project 23

3.3 Digital image . 24

3.4 Proposed approach . 25

3.4.1 The diff operation . 26

3.4.2 The Patch operation . 27

3.4.3 The Merge operation . 29

3.4.4 Image Processing Techniques . 31

3.4.5 Data structure . 34

3.5 Evaluation . 36

3.5.1 Repository outgrowth . 36

3.5.2 Performance measurement . 41

3.6 Threats to validity . 43

3.7 Related work . 43

3.8 Final considerations . 46

4 Video-aware version control 47

4.1 Introduction . 47

4.2 Digital video . 48

4.3 VIMUFF diff, patch, and merge operations 50

4.3.1 Diff operation . 50

4.3.1.1 Data structure . 60

4.3.2 Patch operation . 61

4.3.3 Merge operation . 62

4.4 Evaluation . 65

4.4.1 Storage space . 65

4.4.2 Processing time . 67

4.5 Threats to validity . 70

Contents viii

4.6 Related work . 70

4.7 Final considerations . 71

5 Exploratory data analysis of software repositories 72

5.1 Introduction . 72

5.2 Dominoes . 74

5.2.1 Architecture . 75

5.2.2 Dominoes tiles . 77

5.2.3 Specialized operations . 79

5.2.4 Dominoes GUI . 81

5.2.4.1 Design Rationale . 81

5.2.4.2 Interface . 83

5.3 Examples of Dominoes applicability . 86

5.3.1 Calculating dependencies using Dominoes 86

5.3.2 Expertise identification using Dominoes 88

5.3.2.1 Granularity Matters . 88

5.3.2.2 Time matters . 93

5.4 Case studies . 93

5.4.1 Dependency identification . 94

5.4.2 Expertise identification . 96

5.4.3 Expertise evolution . 100

5.4.4 Performance . 102

5.5 Usability evaluation . 104

5.5.1 Methodology . 105

5.5.1.1 Scenarios . 105

5.5.1.2 Participants . 106

5.5.1.3 Study Design . 106

Contents ix

5.5.1.4 Coding . 108

5.5.2 Results . 108

5.5.2.1 How is the influence of the use of derived tiles for getting
the right answer? . 109

5.5.2.2 Is it important to check the data produced along the ex-
ploration? . 112

5.5.2.3 What is the influence of relationships representation dur-
ing exploration? . 114

5.5.2.4 What is the behaviour of participants after changing their
exploratory path due to mistakes? 115

5.5.2.5 What are the barriers to start using Dominoes? 116

5.5.3 Discussion . 117

5.6 Threats to validity . 118

5.7 Related work . 119

5.8 Final considerations . 123

6 Conclusion 125

6.1 Contributions . 125

6.1.1 Diff, patch, and merge over image and video 126

6.1.2 Repository analysis . 126

6.2 Limitations . 127

6.3 Future work . 129

References 132

Appendix A -- Systematic mapping on version control over multimedia artifacts 140

A.1 Introduction . 140

A.2 Systematic mapping protocol . 141

A.2.1 Search methodology and protocol evaluation 142

Contents x

A.2.2 Selection criteria . 144

A.2.3 Extraction and data storage procedure 145

A.3 Search procedure . 145

A.4 Results analysis . 147

A.5 Complete list of papers returned by the search expression 150

A.6 Data collected from the selected papers . 187

Appendix B -- Graphics Processing Unit 194

Appendix C -- Dominoes Performance Comparision 197

List of Figures

2.1 Elements versioned by a VCS [86]. 11

2.2 A branch for implementing a new function in the project. In (a) a new
branch is created (named func-Z) derived from the main line (named mas-
ter). In (b) modifications were made in both master and func-Z branches.
Finally, in (c) the branch is merged to the main line of development. 12

2.3 VCS history composition (adapted from [86]). 13

2.4 CVCS (a) vs DVCS (b) topology [85]. 13

2.5 Delta storage strategies: Complete, forward, and reverse [85]. 17

2.6 The diff3 operation used to identify changes on parallel development. . . . 18

2.7 The merge operation aims at conciliating modifications from variants B

and C, generating version D. 20

3.1 Study of different artifact types. 23

3.2 Mona Lisa using an alpha blending effect. 24

3.3 Applying a diff operation to images to obtain their delta. In the leftmost
image a scene without Wally. In the center one, the same scene with Wally,
and on the right image, the delta between them. 27

3.4 The left image shows a scene without Wally. In the center one, the delta
from one revision of a scene where Wally is shown, and the one on the right
has the reconstruction of the scene. 28

3.5 Steps needed to execute merge. 30

3.6 Applying a merge operation. 31

3.7 The delta generated after applying a global transformation to an image. . . 32

3.8 Homogeneous bi-dimensional rotational matrix applied to an image. 33

3.9 Mapping characteristics of images for extracting a rigid transformation. . . 33

List of Figures xii

3.10 Data structure describing information stored for Image A. A table is used
to locate revision data in different packages. Black hashed blocks represent
delta size for each revision while white blocks store its matrix. 36

3.11 IMUFF toolkit used to perform diff, patch and merge operations over image
artifacts. Available at: https://github.com/gems-uff/gemuff. 37

3.12 Image distribution in terms of size. 38

3.13 Image area change transformation (IMUFF V1 and V2 overlap). 38

3.14 Applying global transformations: filter and rotation (Git, HG, and SVN
overlap). 39

3.15 Applying horizontal flipping and evenly distributed transformations (Git,
HG, and SVN are overlapped). 40

3.16 Comparison of diff, patch and merge operations as run by the CPU and
GPU for four image sizes. Vertical axis is shown in log10. 42

3.17 Time needed to make a check-in operation in the evenly distributed trans-
formations case. 43

4.1 Common resolutions for video artifacts (width ⇥ height) [68]. 49

4.2 Activity diagram for processing a diff in VIMUFF. 50

4.3 Identification and list sequence generation in VIMUFF. 51

4.4 The difference between two video’s sequence. Nodes colored in yellow are
common to both videos, while red nodes represents frames not in video 2
(removed) and green nodes represents frames just in video 2 (added). . . . 52

4.5 Diff detection by VIMUFF. In (a) frames were added while in (b) frames
were removed, and finally in (c) frames were changed. 54

4.6 DCT processing over two different images. The image in (a) has a small
slope between tones changes while in (b) tones change abruptly. Images
taken from [66]. 55

4.7 The difference between two video’s sequence. Nodes colored in yellow are
common to both videos, while red nodes represent frames not in video 2
(removed) and green nodes represent frames just in video 2 (added). Cyan
nodes represent frames that suffered modifications. 58

List of Figures xiii

4.8 Expansion activity diagram for both DCT Hash and Similarity Diff pro-
cesses. Yellow activities are done in GPU. 63

4.9 Example of how delta is organized. In (a) video 1 suffered a modification,
where yellow, cyan, and green represent LCS, modified, and added frames,
respectively. In (b) the data structure that represents these operations. . . 64

4.10 Merge of two videos B and D descending from A and producing final video
E. 64

4.11 Comparing using delta and not using it for storing video artifacts. 66

4.12 Time spent for each step during a diff processing using GPU. 67

4.13 Execution time for processing the DCT Hash and Similarity Diff between
two versions of a video using GPU and CPU. 68

4.14 Execution time running a patch operation. 68

4.15 Time spent for each step during a merge processing using GPU. 69

4.16 Execution time for processing the DCT Hash and Similarity Diff3 during
a merge operation using GPU and CPU. 69

5.1 Dominoes architecture. 75

5.2 A set of panes depicting Mamta’s interactions with Dominoes. The video
of the usage scenario is at: https://github.com/gems-uff/dominoes. 84

5.3 Support, Confidence, and Lift calculated from previous scenario. 87

5.4 [developer|file|time] tile with layers in the back denoting recency. 93

5.5 Relation among confidence for various support threshold. The leftmost
chart considers a threshold of 10, while the middle uses 20, and finally the
rightmost uses 30. 95

5.6 Developer breadth expertise for file EmbedConnection.java. 101

5.7 Developer breadth expertise for the whole project. 102

5.8 Participants’ characteristics. 107

5.9 Experiment workflow performed for each participant. 107

5.10 Participants’ action map for the experiment. 108

5.11 Time (in minutes) taken by each participant during the experiment. 110

List of Figures xiv

5.12 Total of derived tiles and unique derived tiles, and right answer. 110

5.13 Actions performed by P2 on scenario 2. 113

5.14 Relationship about deviation, moving forward, and backtracking. The
numbers over the lines represents tiles / minute. 115

5.15 Dominoes feedback from the participants. 116

5.16 Word cloud chose by participants from the Microsoft Reaction Card. . . . 117

A.1 Papers returned by the digital library. 145

A.2 Papers selected through the first filter. 146

A.3 Papers selected through the second filter. 147

A.4 Paper classification by multimedia artifacts. 147

A.5 Techniques used for multimedia artifact management. 148

A.6 Tool support offered. 148

A.7 VCS integration availability. 149

A.8 User intervention degree necessary for applying diff, patch, andmerge op-
erations over artifacts. 149

A.9 Dependent variables used to evaluate the paper. 150

B.1 GPU and CPU processing capacity [28]. 195

B.2 A common GPU architecture [94]. 195

C.1 Transposition operation using different matrix sizes in both CPU and GPU.198

C.2 Support operation using different matrix sizes in both CPU and GPU.
Vertical axis are presented in log10 scale. 198

C.3 Confidence operation using different matrix sizes in both CPU and GPU. . 199

C.4 Processing transpose, support, and confidence operations on GPU using
different matrices sizes. 199

List of Tables

3.1 Matrix of a 3 ⇥ 3 pixels image with a white dot in its center. 25

3.2 Evolution of a repository size for a specific file over three commits. 40

3.3 Speedup in running diff, patch and merge operations using CPU and GPU
(time in milliseconds). 41

4.1 Examples of calculating the Hamming distance. In the first row, a binary
string is used while in the second a decimal string is used. Finally, the
third string shows an alphabet [103]. 57

4.2 Properties of the videos used during the experiments. 65

4.3 Frames removed, added and changed as well as the delta size for each case. 66

5.1 Commits made by developers. 86

5.2 Methods changed for commit. 87

5.3 Developer ⇥ File. 89

5.4 Standard Score. 90

5.5 Developer ⇥ Method (DM matrix). 91

5.6 Developer ⇥ Method z-score. 91

5.7 Expertise and z-score at file level. 92

5.8 Top 5 logical dependencies in terms of high support and biggest confidence
difference. 94

5.9 Absolute and z-score ED for CreateAliasConstantAction.java. 96

5.10 Absolute and z-score EBD for CreateAliasConstantAction.java. 97

5.11 Top expert developers at file EmbedConnection.java by ED and EBDM . 98

5.12 Top 10 expert developers by ED, EBDF, and EBDM. 99

5.13 Processing time (in seconds) for calculating 3D tile for EBD in the project. 104

List of Tables xvi

5.14 Coding used for participants’ actions. 109

5.15 Checkpoints performed by the participants in different situations. 114

A.1 Complete list returned by systematic mapping review. 150

Chapter 1

Introduction

One of the key responsibilities of Configuration Management is to perform version control
of software artifacts during software development and maintenance. Version control is the
process of organizing, coordinating, and managing the development of evolving artifacts,
which can be defined as a series of incremental refinements, and is considered to be an
important task of digital content management [40, 33]. As an example, we can cite the
evolution of a software product, which can become more complex over time as bugs are
fixed and new functionalities are added. In this scenario, evolving artifacts are updated
to produce the next versions of the software product in the evolutionary process. In many
development areas, the preservation of intermediate revisions of these evolving artifacts is
very important to allow rollback operations in the case of an undesired change or simply
to check modifications between versions of the software.

Version control systems (VCS) are automated tools that assist the management of
these evolving artifacts, providing functionalities that allow users to track intermediate
revisions of artifacts and allowing distributed and parallel development. A key element
in VCS is the repository, which contains versioned data stored on disk, varying from a
single file to a complete source tree. This data exists on two levels, which are called the
raw data and the internal model. The former consists of file and directories on the hard
drive while the latter represents how these files and directories are maintained by a VCS
[100].

In order to process artifacts, VCS normally rely on three basic operations: diff, patch,
and merge. Diff is used to extract the differences, or deltas, between two versions of an
artifact. On the other hand, the patch is used to generate a specific version of an artifact
based on an existing version and a delta. The history maintained by a VCS consists
of a base version and the sequence of deltas that led to the current (or initial) state of

1 Introduction 2

the internal model. Applying a patch using a specific delta on a repository consists of
extending the history by updating the internal model of the repository as well as the
artifact itself [100]. Keeping a history with versioned artifacts by a VCS allows a better
comprehension of the project.

Both diff and patch allow a more efficient data storage as just the difference between
two versions of an artifact is saved. At the same time, network bandwidth requirement
is reduced, since only the delta is moved between repositories. Additionally, the delta
provides a better comprehension of modifications performed over artifacts. Finally, the
merge operation is used to reconcile two parallel modifications of an artifact, both based
on a common ancestor. In this case, each modification is performed on different branches
of a repository and merged lately. Branches are isolated areas tracked by a VCS where
artifacts can be modified. Each branch is kept apart from the others. While performing
a merge, a conflict may occur, requiring manual intervention. Such conflicts can occur,
for instance, when the same line of a source code is modified in parallel.

Over 40 years of VCS existence, processing time and storage space heavily influenced
VCS design. Conventional VCS divide artifacts into two groups: textual and binary.
Textual artifacts are processed by using their lines as unit of comparison [84], allowing
diff, patch, and merge operations to be performed on them. The line-based approach is
a very useful technique due to its efficiency and scalability [81], in addition to generality.
This leads to a better comprehension of modifications (when compared to looking at the
original artifacts), reduction of storage space and network bandwidth due to the use of
delta, and parallel work due to the use of merge. On the other hand, binary artifacts
do not have any kind of processing by VCS (or have only an inefficient block-based diff
and patch support performed by a binary diff), being considered as an opaque data and
modeled as a blob of bits. Allowing diff, patch, and merge operations for binary artifacts
would lead to processing a great amount of data. Due to the fact that binary artifacts
do not produce deltas, the comprehension of modifications over them becomes difficult,
the required storage space and network bandwidth increase, as each version is saved as
a whole (or with an inefficient block-based delta), and parallel work over them is not
possible. Finally, regarding storage space, the delta storage employed by a VCS can be
backward and forward. The forward delta algorithm stores the first version of an artifact,
being necessary to apply a delta on each version to reach more recent versions. On the
other hand, the backward delta algorithm stores the most recent version of an artifact,
requiring the application of a delta to recover previous versions.

1.1 Motivation 3

1.1 Motivation

Due to limitations presented on VCS to process a large amount of fine-grained data, two
negative consequences are observed: (1) the lack of diff, patch, and merge support for
binary artifacts, and (2) inability to perform on-line exploratory repository analysis over
the project history.

Many projects are largely composed by binary artifacts (such as image and video)
both in terms of number of artifacts or the space occupied by them. Game projects, for
instance, can have a large amount of image files to serve as textures. The same can be
told for projects in the movie industry, where the number of multimedia artifacts tends
to be high. The lack of a tailored support for binary data can cause several issues. For
example, existing general purpose VCS, such as Git, adopt a state-based model to store
different revisions of these files without any delta information to its predecessor, thus
requiring more storage space and making hard to deduce changes between revisions [59]
in a high level manner.

Allowing binary artifacts to be processed by VCS requires their internal structures
to be considered. This leads to the creation of specialized VCS for these artifacts or
the customization of existing VCS to deal with these artifacts more efficiently. These
approaches usually require specific diff, patch, and merge operations to manipulate each
type of binary artifact. As an example, Odyssey-VCS [84] is a VCS that works specifically
with UML models, allowing operations to be consistently executed with this type of
artifact.

When considering image and video artifacts, a large amount of data needs to be
processed for allowing specialized operations of diff, patch, and merge. In fact, using
a VCS for the image context requires processing all pixels for a given image in order
to control its evolution. Processing these pixels may become a very time consuming
operation, depending on the image size. As an example, processing a common 1,024

width by 1,024 height image requires the individual analysis of 1,048,576 pixels (1,024
⇥ 1,024), which can use a considerable computing time, specially when such image has
tens or hundreds of revisions. The amount of time necessary to obtain specific versions
of an image may impact the team productivity, which normally does not happen when
dealing with line-based artifact. For a video artifact, for instance, the number of images,
called frames, can be in the order of hundreds of thousands.

Some related work [49, 102, 26] record user actions while using an image editing soft-

1.1 Motivation 4

ware. The visualization of such user action histories can aid distinguishing modifications
between two versions of an image and is a popular topic among researches [70, 51, 67, 55].
The main problem is that this approach relies on knowing which tool has been used to
edit the image artifact, which makes impossible its integration with a VCS. This approach
is traditionally implemented inside image and video editing tools. Another approach [58]
tries to detect objects in images using computer vision techniques and track their modifi-
cations between two versions of an image, but not aimed at VCS. However, algorithms for
computer vision are complex, requiring a considerable amount of processing time. Besides
that, it cannot be used solely for representing difference, as computer vision algorithms
are not always precise. In relation to video artifacts, a few tools exist (Adobe Premiere 1,
Sony Vegas2), most of them related to manually merging two videos without any relation
with VCS. In this case, the user is responsible for producing the merged video by selecting
how the frames will be combined. To be used as a VCS, the video should be automatically
merged, requiring user intervention just in case of conflicts.

When working on software projects, developers often need to answer numerous ques-
tions, such as: “which other methods do I need to edit if I make this change?”; “who was
the person that last edited this method?”; “who do I need to coordinate my changes with?”;
“who is the expert in a specific file?” and so on [44]. Since software development leaves
behind activity logs (e.g., commits recorded in the version control system), it is possible
to answer some of these questions by doing a repository analysis.

However, the analysis of such software repository data is not trivial, especially when
there is an extensive amount of data that is accrued over the project’s lifecycle [93].
A large software project may comprise thousands of files, with hundreds of developers
leading to thousands of commits per month, making it difficult to process this data at
interactive rates.

Some related work deal with repository analysis by using some scoping strategy based
on: (1) filtering the data [82, 46], (2) performing coarse-grained analysis [23, 44, 93],
and (3) overlooking evolution [79, 4, 65, 91, 96]. In the first case, the approaches either
scope the amount of data that is processed or the time period over which processing is
performed, usually leading to imprecise results. In the second case, tools often analyze
data at a coarse-grain level, such as files, without considering which parts of this file
has been modified for calculating expertise. Finally, some approaches consider the entire
history of the project at once to recommend experts, overlooking the fact that artifacts

1Website: http://www.adobe.com/br/products/premiere.html
2Website: http://www.sonyvegas.com.br

1.2 Goal 5

evolve over time and that developers may change their roles. Finally, all approaches work
offline when not scoping the data.

1.2 Goal

As observed, some tasks in software engineering cannot be performed due to the amount
of data that needs to be processed. Specifically for VCS, giving support for processing
image and video artifacts demands analyzing a great amount of data to allow diff, patch,
and merge operation to be applied over them in a similar way that is done for text-based
artifact. On the other hand, extracting precise information from VCS requires processing
fine grain data, such as methods and classes, from a repository that can be composed of
hundreds of thousands of versions during a long-living project.

The goal of this thesis consists on allowing such tasks to be performed, opening a
new realm of possibilities as discussed before. For this, we conceived, implemented, and
evaluated algorithms solving the aforementioned problems, offering VCS support for: (1)
diff, patch, and merge operations over image an video artifacts and (2) fast processing of
large repositories for knowledge extraction.

Providing a VCS the capability to manage multimedia artifacts, specifically for image
and video, requires specialized operations for performing diff, patch, and merge. This
kind of support allows a more precise understanding of how image and video artifacts
evolve, showing the exact difference between versions. In addition to help developers
understanding the changes, we also employ global transform detection over images, such as
a rotation. Moreover, our approach for video artifacts also aims at detecting modifications
performed on the video, such as subtitle addition, instead of just detecting addition and
removal of frames, as performed by the vast majority of VCS. With this approach we
provide an additional reduction of the storage space in the repository, since only the
exact difference between two versions of the artifact need to be stored. As a natural
consequence, the bandwidth requirement when using a distributed VCS is supposed to be
lower as the repository becomes smaller.

In order to make our approach viable to be performed on a reasonable amount of time,
we employed a high parallel architecture of GPU. Differently from other architectures,
which normally rely on infrastructure of multiples nodes connected in a network and
demand some level of authentication, the potential of GPU can be used in a single personal
computer. By employing such high parallel architecture for repository exploration, we

1.2 Goal 6

aim at allowing analyses at any granularity (e.g., methods, classes, files), as well as over
unrestricted length of history. Additionally, in order to ease the user exploration in
software development process, we adopted a metaphor of dominoes pieces to represent
relationships. By combining these pieces, new relationships are produced, which can be
further combined. By relaxing constraints related to the amount of history, we believe
that more accurate information can be constructed during analysis.

The main contribution of this thesis is then related to making possible some software
engineering tasks that are normally ignored due to the their cost of processing. To do so,
we use a massively parallel architecture of GPU aimed at reducing the time required for
processing these tasks. In this thesis, we solved software engineering problem specifically
for VCS. Algorithms and techniques especially designed to work on this highly parallel
architecture were conceived, implemented, and evaluated by this thesis.

In order to evaluate our approach, some experiments were performed. In relation to
image artifacts, we evaluated:

• The repository outgrowth, presenting the storage space reduction when using the
proposed approach by a VCS. Here we found that the repository size increases
approximately 10 times faster when our approach is not used;

• How the repository grows when any image processing is performed, showing that
repositories composed by images that suffered global transforms are reduced by 14
times when applying imaging processing techniques; and

• The performance contrasting image processing using GPU and CPU, where a speedup
up to 55 ⇥ was found in relation to CPU.

For video artifacts, we evaluated:

• The size of delta storage contrasted to storing the whole video, where a reduction
about 99.57% was achieved; and

• The performance contrasting video processing using GPU and CPU, where a speedup
up to 2.55 ⇥ was found in relation to CPU.

Finally, for repository exploration we evaluated:

1.3 Organization 7

• The identification of dependencies among artifacts considering only support (widely
used in the literature) against considering support, confidence, and lift, where we
found approximately 23% of divergence;

• The identification of expertise, contrasting the use of coarse grain against fine grain
analysis, presenting a 25% of deviation;

• The identification of expertise over time, where we could observe that expertise
significantly varies during the project life, leading to imprecisions when considering
the repository as a whole;

• The performance of our GPU implementation, showing a speedup up to 49.67 in
relation to CPU; and

• The usability of our proposed approach, showing a success rate of 86.11% when
participants were assigned to answer questions over a repository.

1.3 Organization

This thesis is organized in other five chapters, besides this introduction. Chapter 2
presents an introduction to Version Control Systems (VCS), where the most important
concepts for a better understanding of the subsequent chapters are detailed, such as diff,
patch, and merge operations. Additionally, the paradigm of centralized and distributed
VCS are explained in this chapter.

In Chapter 3, the approach used to process image artifact over VCS, named IMUFF,
is presented. This chapter begins presenting a real example regarding the importance of
version control operations over this kind of artifacts. It then follows by an introduction
to digital image and its underling structure. In the sequence, the specialized diff, patch,
and merge operations are detailed. Additionally, the image processing techniques used
for extracting an image transform and the underling data structure used to store the
delta produced by IMUFF is presented. It then finishes by presenting the evaluation in
relation to repository outgrowth and performance of our approach. Finally, this chapter
also contrasts the related work with our approach.

Chapter 4 presents the approach for processing video artifact, called VIMUFF. Ini-
tially, the most important concepts in digital videos are introduced. In the sequence,
the specialized diff, patch, and merge operations are detailed in addition to the underling
data structure. The approach used for detecting modifications on videos is also carefully

1.3 Organization 8

detailed in this chapter. This chapter finishes by presenting an evaluation regarding to
storage space consumption and processing time. At the end, we compare and contrast
the proposed approach with related work.

Chapter 5 presents Dominoes, our GPU tool for extracting and analyzing artifacts over
software repositories. It starts by presenting the underling architecture used by Dominoes
as well as the Dominoes pieces concepts and the available specialized operations. It then
follows by presenting two usage scenarios of Dominoes: the calculation of dependencies
among artifacts and the expertise identification, showing that direction matters for the
former and that granularity and time matter for the latter. In the sequence, the eval-
uation is performed over Derby Apache project, a long living project. This evaluation
is performed regarding dependency calculation, expertise identification, user evaluation,
and performance. Additionally, we perform usability evaluation over Dominoes. In this
chapter, related work is compared against Dominoes approach.

Finally, on Chapter 6 we present the conclusion of this thesis, showing the contri-
butions regarding binary artifacts processing and data repository analysis. Additionally,
we present some limitations that we found in the implementation of our approaches and
enumerate future works to improve the work done so far.

Chapter 2

Version Control Systems

2.1 Introduction

Configuration Management (CM) has been developed since the 50’s due to a necessity
to control modifications over warplane and spaceship specifications [73, 39, 54]. After a
while, between the 60’s and 70’s, CM also started to comprise software artifacts along
with previously hardware artifacts. At this time, Software Configuration Management
(SCM) [53] has emerged to deal specifically with software artifacts.

Many SCM definitions have been emerged, although the most accepted one defines
SCM as “a discipline that applies technical and administrative direction and surveillance
to identify and document the functional and physical characteristics of a configuration
item, control changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified requirements” [1]. It is pos-
sible to state that SCM is not responsible to define how software engineering activities
must be achieved, but to aid and keep up with how activities are made, being considered
a supporting discipline to the whole process. According to Estublier [38], a typical SCM
tries to provide services in the following areas:

• Managing a repository of components: it is necessary to safely store different
components of a software product and all their versions. This topic includes version
management, product modeling, and complex object management.

• Help engineers in their usual activities: software engineering involves applying
tools over artifacts. As a consequence, SCM are expected to provide the correct
artifact version as long as its location to the engineer. Typically this functionality
is known as workspace control.

2.2 Basic concepts 10

• Process control and support: in the 80’s, it became clear that one of the biggest
problems in relation to software development was related to people.

SCM can be used under different perspectives, according to the participant role in
the software development process [7]. In this work, we are focused in the development
perspective, where Version Control Systems (VCS) are a key element.

In this chapter, we provide an introduction to SCM, mainly focused on VCS. Section
2.2 introduces VCS basic concepts. Section 2.3 discusses the topologies employed by VCS.
Section 2.4 presents the base operations of VCS. Finally, Section 2.5 presents some final
considerations.

2.2 Basic concepts

Version control systems date back to the 70’s and deal with the identification and evolution
of software artifacts. Artifact in the VCS context represents anything that can be put
under version control, such as files and directories in file-based systems [27]. SCCS [15]
and RCS [101] were the first VCS tools to emerge. Since then, VCS evolved substantially,
providing new functionalities and topologies.

Feiler [43] defines four types of VCS models used in a business environment: (1) The
checkout/checkin model, focusing mostly on the versioning of product components as well
as low level primitive operations to deal with those components; (2) The composition model,
which allows a user to select which version of each artifact should build a given config-
uration; (3) The long transaction model, where users work on specific versions and use
transactions for changes; and (4) The change set model, which supports changed-oriented
configuration management and allows the user to visualize a configuration in terms of a
collection of logical changes that can be linked to a change request.

In order to deal with artifacts, a VCS uses the concept of version. A version v

represents a state of an artifact in a certain moment of time. According to Conradi and
Westfechtel [27], depending on the intent of the version, it can be classified as revision,
variant, or cooperation. A revision is made to supersede its predecessor and in this case, an
artifact evolves as successive revisions. Variants are versions intended to coexist. Finally,
versions can be maintained by each user to allow cooperation.

Most of the existing VCS work over files and directories in the file system. As presented
in Figure 2.1, these files can be classified as textual and binary. Textual files are composed

2.2 Basic concepts 11

by a collection of lines while binary files are opaque data.

File	System	Element	

Directory	 File	

Binary	 Textual	 Line	

Figure 2.1: Elements versioned by a VCS [86].

The repository is responsible to store all artifacts that resides under VCS control as
well as each artifact history (versions). Additionally, the history maintains the reason for
a change, who made that change and when the change was made [33]. When a user desires
to make a modification over an artifact, it must first be copied to the user’s workspace.
Changes performed over artifacts in this workspace are not immediately reflected to the
repository, but can be submitted to the repository later on. By using workspaces, users
can concurrently work on the same project in parallel.

In order to avoid artifact inconsistences when submitted to a repository, a VCS em-
ploys a concurrency control policy, that can be divided into pessimistic and optimistic
cases. When using a pessimistic concurrency control policy, a user can only modify ar-
tifacts that are not being modified by any other user by adopting a lock mechanism.
On the other hand, by adopting an optimistic concurrency control policy, artifacts can
be modified in parallel and these modifications can be combined (merged) later, when
submitted to the repository, in order to produce the final version.

For situations where various users modify artifacts from the same project in parallel,
conciliating these modifications can induce conflicts. These conflicts can be physical and
logical. Physical conflicts arise when modifications are made in parallel at the same part of
an artifact. In this case, the VCS cannot combine them automatically, requiring manual
user intervention to solve these conflicts in order to put the repository in a consistent
state. On the other hand, logical conflicts occur when modifications are made in parallel
into distinct parts of the artifact, but after the automatic combination the artifact is put
at an inconsistent state.

In order to postpone combining modifications made in parallel, a branch can be used.
A branch is a new independent line of development that represents a collection of revisions

2.2 Basic concepts 12

that must be kept separately from the main line of development. Normally a branch is
often used to implement a feature or bug fix. Later on, a branch can be combined into the
main line of development in order to reflect the modifications over the artifacts. Figure
2.2 illustrates the concept of a branch, where each node is a revision of its parent version
(showed by the arrow) and the box shows the name of the branch. In this case, the branch
that represents the main line of development receives the name of master.

1	 2	 3	

master	

func-Z	

(a)

1	 2	 3	

master	

func-Z	

4	

5	

(b)

1	 2	 3	

master	

func-Z	

4	

5	

6	

(c)

Figure 2.2: A branch for implementing a new function in the project. In (a) a new
branch is created (named func-Z) derived from the main line (named master). In (b)
modifications were made in both master and func-Z branches. Finally, in (c) the branch
is merged to the main line of development.

In Figure 2.2(a), in addition to master branch, a new one (named func-Z) is created
for implementing a new functionality in the project. From this moment, every change
performed on each branch is kept isolated from changes in the other branch, as presented
in Figure 2.2(b), where modifications were made in both func-Z and master branches.
The modifications produced version 4 for the master branch and version 5 for the func-Z
branch. Finally, in Figure 2.2(c), the branch func-Z has been merged into the master
branch.

Each node in Figure 2.2 represents a commit, which is defined as the state of all
artifacts under VCS in a specific time moment. In addition, a commit has the information
of the author of the commit as well as the date it was performed and a message. At the
end, the history of a VCS is composed by a collection of commits, as showed in Figure
2.3.

2.3 VCS topology 13

Commit	
Author	
Message	
Date	

File	System	Element	*

parent 0..2

History	

*

Figure 2.3: VCS history composition (adapted from [86]).

2.3 VCS topology

A VCS needs to define how the data is organized in a repository as well as its location and
topology. This aspect is closely related to how developers use and collaborate in a project
that employs configuration management techniques using a VCS. The collaboration aspect
is closely related to the topology used by a VCS, being classified as centralized, or CVCS
(Figure 2.4(a)) and distributed, or DVCS (Figure 2.4(b)).

Workspace	

Repository	

ch
ec

k-
in

 /
co

m
m

it

check-out / update

(a)

Workspace	

Repository	

co
m

m
it

check-out

Workspace	

Repository	 clone / pull

pu
sh

(b)

Figure 2.4: CVCS (a) vs DVCS (b) topology [85].

2.3 VCS topology 14

2.3.1 Centralized topology

CVCS relies on a central repository stored on a server, according to Figure 2.4(a). This
model is adopted by VCS such as CVS 1 and Subversion 2. In this case, when a user desires
to work on a specific version of an artifact, it must be first copied to her workspace. The
check-out command is responsible for copying the selected version to the user’s workspace.
Later on, after performing the desired modifications to the artifact, a check-in (also known
as commit) command is responsible to submit these modifications to the repository. The
collection of changes introduced by a commit is known as changeset. This guarantees
that all modifications located at the user’s workspace become available in the repository.
Finally, the update command is used to bring parallel changes from the repository to the
user’s workspace. It is important to state that the update command automatically merges
modifications into the workspace, requiring user intervention in case of conflicts.

For a long time, this was a standard topology employed by almost all commercial
and open-source VCS. One advantage of the centralized topology is the level of control
over the repository, allowing fine-tuning the desired access-control policy. Besides that,
centralized topology can employ a pessimistic concurrency control policy for managing
concurrency. However, there are some disadvantages: considering that a repository is
located on a server, users cannot collaborate or perform a check-in or check-out during
a communication shortage. This fact can preclude users from concluding their tasks,
lowering their productivity. Additionally, the lack of offline commands, unavailability of
the repository, among others [89], are considered negative aspects of a centralized topology.

2.3.2 Distributed topology

In order to minimize the negative aspects found on the centralized topology, the DVCS
was developed (Figure 2.4(b)), steadily replacing the former generation of VCS. In this
topology, used by Git 3 and Mercurial 4, users do not simply perform check-out in order
to retrieve the last version of artifacts found in the repository. Instead, the repository
as a whole is retrieved, comprising all history of the project. It is important to state
that check-in and check-out commands work exactly in the same way as discussed for the
centralized model, however acting on the local repository.

1CVS website: http://cvs.nongnu.org
2Subversion website: http://subversion.tigris.org
3Git website: http://git-scm.com
4Mercurial website: http://mercurial.selenic.com

2.4 Base VCS operations 15

The interaction with the distributed repository is made by additional commands.
According to Figure 2.4(b), the commands clone, push, and pull have been added to
DVCS. The clone command – typically the first command to begin contributing to a
project in a DVCS - transfers the whole remote repository to the user’s computer. The
push command is used for sending the user’s modifications performed over her repository
to a remote repository. On the other hand, for transfer changes made in parallel in a
remote repository into a local repository, the pull command is used.

One advantage of using DVCS is the possibility of having any repository acting like a
server for other repositories. This allows the definition of a hierarchy, where a repository
is at the same time client of another repository and server to some other repositories.

2.4 Base VCS operations

VCS commands can be decomposed into a sequence of operations called in this thesis as
base operations, presented in the vast majority of VCS. The VCS base operations are:
diff, patch, and merge.

When performing a check-in command, the modifications performed by the user are
sent to a repository. In a CVCS, the repository is located in another machine. In this
case, in order to reduce the data that needs to be transferred, just the portion that has
changed is submitted to the remote repository. This set of changes receives the name of
delta. The process of finding this difference is made by using the diff operation. The diff
operation is a common delta-calculus algorithm to detect changes between two versions
of an artifact [61]. It is worth to mention that the diff operation is also used to reduce
storage space requirements and provide understandable comprehension of changes. This
operation is further detailed on Section 2.4.1.

After difference extraction by the diff operation, it becomes necessary to apply it to
the artifacts located in the remote repository. In order to accomplish this task, the patch
operation is used, further detailed in Section 2.4.2.

Finally the merge operation is performed in the VCS to reconcile two revisions created
in parallel through an optimistic concurrency control policy. This reconciling may occur
either (1) when someone wants to reintegrate a branch in the main development line or
even in another branch; or (2) when someone wants to commit artifacts to the repository
and it has already been changed in the meantime. The merge operation is detailed on
Section 2.4.3.

2.4 Base VCS operations 16

2.4.1 Diff

Over 40 years of existence, VCS decisions have been influenced by storage space and pro-
cessing time. According to Estublier [37], each revision of an artifact is 98% statistically
similar with the previous revision. For this reason, storing just the difference between
revisions reduces the storage space requirements and network bandwidth for data trans-
ferring, especially when a DVCS is used, which demands copying the whole repository.
Additionally, the ability to visualize the difference between two versions of an artifact can
benefit the comprehension of modifications.

As previously mentioned, most of the existing VCS work over files and directories.
Those kinds of VCS are format agnostic, usually identifying the differences, or delta,
between two artifact revisions in terms of the lines that were removed or added. This
VCS strategy considers files and directories as the units of versioning and lines as the
unit of comparison [84]. The line-based approach for finding a delta remains a very useful
technique due to its efficiency, scalability, and generality [81].

Extracting the delta between two versions of an artifact is accomplished by the diff
operation [60, 59], according to Equation 2.1:

delta
i!j

= diff(V
i

, V
j

), (2.1)

where V
j

and V
i

represent two versions of an artifact and delta
i!j

is the difference between
these two versions.

However, some kind of artifacts cannot be represented as a collection of lines, such
as image and video, being considered as binary by the VCS. Binary artifacts are opaque
data without any kind of processing performed over them by the VCS. As a consequence,
the artifact is stored as a whole at the repository for each revision, independently of the
amount and size of the content that has been modified. Besides consuming more space
in the repository and requiring more network bandwidth to be transferred, it is almost
impossible to comprehend the modifications performed in this kind of artifact.

As an alternative to this problem VBinDiff 5 can be used to extract the difference
between two binary files in order to reduce storage and network bandwidth. However,
instead of a set of lines added and/or removed, the difference is presented in hexadecimal,
without helping the comprehension of such modifications. For example, using VBinDiff
over two versions of an image artifact will not provide a better way to visualize these

5VBinDiff website: http://www.cjmweb.net/vbindiff.

2.4 Base VCS operations 17

differences.

In addition, artifacts that possess a well-defined syntax, such as XML, do not provide
relevant information about modifications when treated as a simple set of lines. In this
case, although it is possible to produce a delta between two versions, this delta is not able
to provide the better comprehension about this modification.

Regarding to storage and reconstruction of textual artifacts, a VCS can use different
strategies (see Figure 2.5):

Vi	

Vj	

Vk	

Vi	

diff(Vi,Vj)	

diff(Vj,Vk)	
Vk	

diff(Vk,Vj)	

diff(Vj,Vi)	

Complete Forward Reverse

Figure 2.5: Delta storage strategies: Complete, forward, and reverse [85].

• Complete versioning: stores the whole artifact on each revision, independently of
the amount of changes performed on it. Normally, this approach is used for binary
artifacts due to the impossibility of considering their data as a collection of lines.

• Forward versioning: in this approach, the first version of an artifact is stored as
a whole. For each subsequent version of the artifact, the delta between the prior an
current version is stored. Reconstructing a specific version of an artifact consists of
applying a set of deltas since the first version to the one being requested.

• Reverse versioning: this approach is exactly the opposite of forward. In this case,
the most recent version of an artifact is stored as a whole. On each commit of a
newer version (n for instance), the VCS calculates the difference between versions
n and n� 1 as a delta, storing n as a whole and the delta to n� 1. This approach
is based on the fact that the vast majority of check-outs are on the last version of
an artifact, which can be provided without any processing.

2.4 Base VCS operations 18

Additionally to the diff operation, the diff3 operation is frequently used by VCS.
Instead of considering just two versions of an artifact and extracting the difference between
them, the diff3 operation uses three versions of an artifact to process the difference.
One version is considered the base A, while the other two, B and C, are considered
modifications over A. By considering a common ancestor for processing the difference, a
more precisely result is obtained. Normally diff3 operation is used for conciliating parallel
modifications made to an artifact from a common ancestor.

Figure 2.6 shows the diff3 operation. When using A as the base version, it is possible
to see that a modification has been made in the first line of version C while on version B

there is no modification presented on this line.

int	x	=	0;	
int	b	=	x+2;	
int	k	=	2*x;	

int	x	=	1;	
int	b	=	x+2;	
int	k	=	2*x;	

int	x	=	0;	
int	b	=	x+2;	
int	k	=	2*x;	
int	v	=	10;	

Change	
	

int	x	=	1;	

co
m

par
iso

n com
parison

diff3()
Add	
	

int	v	=	10;	

Remove	
	

int	b	=	x+2;	

A

C B

Figure 2.6: The diff3 operation used to identify changes on parallel development.

As presented in this section, the necessity of specialized diff operation to deal with
artifacts that cannot be treated as sets of text lines is clear. A specialized diff operation
allows comprehension of performed modifications to an artifact based on its type. Besides
that, it allows storing just the delta between revisions of an artifact, reducing the space
required as well as the network bandwidth used to transfer these artifacts.

2.4 Base VCS operations 19

2.4.2 Patch

Sometimes it is necessary to retrieve an intermediate version of an artifact. In this case,
supposing that a delta

i�!j

= diff(V
i

, V
j

) was generated between two versions of an
artifact, V

i

and V
j

, the patch operation is used to reconstruct V
j

by applying delta
i�!j

over V
i

, according to Equation 2.2:

V
j

= patch(v
i

, deltai!j), (2.2)

where V
i

corresponds to a version of an artifact, deltai!j is the delta, and V
j

is the
requested version.

Due to the fact that delta generated by diff operation needs to be known by the patch
operation in order to build a requested version of an artifact, it is normal to develop both
operations together in order to support a specific artifact type.

2.4.3 Merge

The merge operation aims at conciliating variants created in parallel. To do so, given two
versions of an artifact, B and C both descendent from version A, the merge operation
generates a new version D of this artifact comprising modifications performed on both
versions B and C, according to Figure 2.7.

As the diff operation, merge can be subdivided in two-way and three-way merge.
The two-way merge considers two versions of a specific artifact and tries to combine
their differences. In this case, when the same line differs in both variants, a conflict
will be marked, requiring manual user intervention. On the other hand, the three-way
merge considers the common ancestor of an artifact for combining two versions modified
in parallel. When considering Figure 2.2, the three-way merge will use the version of
artifacts presented in commit 3 when merging branch func-Z into master, as commit 3 is
the common ancestor for both branches.

According to Babich [9], three fundamental problems in team coordination can be
observed: (1) shared data, handled by VCS with separate workspaces; (2) simultaneous
update, handled by VCS with a concurrency control policy; and (3) double maintenance,
handled by the merge functionality of the VCS. From this standpoint, it is possible to see
the importance of the merge operation when working in parallel. As VCS do not provide
merge operations for binary artifacts, there is no support for combining parallel changes,

2.5 Final considerations 20

int	x	=	0;	
int	b	=	x+2;	
int	k	=	2*x;	

int	x	=	1;	
int	b	=	x+2;	
int	k	=	2*x;	

int	x	=	0;	
int	b	=	x+2;	
int	k	=	2*x;	
int	v	=	10;	

co
m

par
iso

n com
parison

merge()

A

C B

int	x	=	1;	
int	k	=	2*x;	
int	v	=	10;	

D

Figure 2.7: The merge operation aims at conciliating modifications from variants B and
C, generating version D.

and so the user is required to select (based on one’s knowledge) which version to maintain
when a conflict occur.

The importance of the merge operation is closely related to the adopted concurrency
control policy [95]. By adopting a pessimistic concurrency control policy, the merge
operation is not necessary as the artifact is changed by just one user at a time. However
it usually becomes counterproductive when the number of users performing parallel tasks
increases. On the other hand, by adopting an optimistic concurrency control policy, the
use of merge becomes necessary in order to conciliate parallel modifications performed on
an artifact by different users.

2.5 Final considerations

Although VCS are considered sufficiently mature for practitioners, there is the necessity
of further improvements. By considering artifacts as a collection of lines, VCS are able
to process different types of artifacts in a reasonable amount of time. However, this
approach presents some disadvantages. The first one is the impossibility to present the
difference between versions of an artifact in a more adequate way for structured textual

2.5 Final considerations 21

artifacts, such as XML. Additionally, when a VCS cannot treat an artifact as a collection
of lines, it is considered as binary and each version is stored as a whole. For such cases,
no difference is calculated, requiring high storage space. Indeed, conciliating changes
performed in parallel to binary artifacts is almost impossible. When considering DVCS
topology, bandwidth becomes an issue since the whole repository is transferred from and
to the users.

According to Estublier [38], the research and development performed on VCS can
be considered independent of any programming language and any semantic aspect of
an artifact. Thus, many weaknesses of VCS come from having little knowledge about
the artifact. To overcome this issue it is necessary to increase VCS power by providing
knowledge on some artifact types. However, this must be made without having to pay
too much in terms of complexity, efficiency, and generality to achieve this objective.

As a consequence, it becomes important to process each kind of artifact using spe-
cialized algorithms. In this context, Mens [81] suggests the use of a more reliable merge
operation considering the internal structure of an artifact. As merge operation usually re-
lies on bothdiff and patch, this suggestion also extends to the aforementioned operations.

On the other hand, performing exploratory analysis does not require just extracting
commits’ metadata on the VCS history. In fact, it also requires extracting the data itself
for these different versions presented in the repository in order to calculate dependency
among artifacts, modified methods, expertise and so on. Doing this kind of analysis
requires a high processing effort, spending too much time depending on the size of the
project and its lifetime. This fact leads to scoping the data to allow it to be processed
in a feasible amount of time. In this case, off-line specific analysis can be done with the
scoped data.

Chapter 3

Image-aware version control

3.1 Introduction

In many development areas, the preservation of intermediate revisions of evolving artifacts
is very important to allow rollback operations in the case of an undesired change or simply
to check modifications between versions of the software. In the videogame industry, this
is particularly relevant as at the end of the development stage one often needs to optimize
and streamline performance by reducing and optimizing the artifacts.

While using lines as the unit of comparison may be suitable for text-based artifacts,
some artifact types, such as images and videos, heavily used in the game industry, do
not correctly fit into this data model due to their binary nature. For instance, Git stores
different revisions of a complete new binary artifacts as individual files without any delta
information related to their predecessors, making it difficult to discern the modifications
between revisions [59] and leading to large repositories and considerable transfer times.

In this chapter, we present IMage UFF (IMUFF)1 [32, 31], which considers images as
first-class elements in the context of version control. IMUFF uses the change set model
to represent the set of modifications that forms a logical image change, allowing a more
accurate merge [19] of two modified images based on the same ancestor. Our approach
customizes the VCS base operations (i.e., diff, patch, and merge) to deal with image
artifacts. We allow people to deal with the parallel maintenance of images by providing
adequate merge support. Also, our contextual delta has two main purposes: allow image
change identification for the end user and avoid high storage space requirements and
bandwidth consumption. In order to reduce the processing time, our approach employs a

1UFF stands for the name of the author’s university.

3.2 Motivational example: JECRIPE project 23

parallel architecture based on a GPU to implement diff, patch, and merge operations on
images.

Section 3.2 starts the discussion showing a motivational example for the problem of
managing multimedia artifacts by presenting the case study for a real videogame. Section
3.3 introduces the concept of digital images while Section 3.4 discusses the proposed
approach for the solution. Section 3.5 presents the evaluation of the approach and Section
3.6 discusses some threats that can affect the validity of our evaluation. Finally, Section
3.7 presents related work and Section 3.8 presents the final considerations of this chapter.

3.2 Motivational example: JECRIPE project

We used the JECRIPE 2 [18] game to better illustrate the problems related to the adoption
of a common VCS for projects that are heavily based on multimedia artifacts. At first,
each artifact is classified as sound, image, 3D model, source code, or video.

Figure 3.1(a) shows the total number of artifacts and their corresponding percentages,
for each type of artifact. It can be seen that JECRIPE uses more multimedia assets than
source code artifacts.

Figure 3.1(b) shows the amount of space and percentage required by each type of
artifact. It is possible to see that image artifacts require more storage space than any
other type of artifact. An important relation shown here is the storage space needed for
source code artifacts. Although a reasonable number of source code artifacts can be found
in this project, they occupy less than 1 MB. Their storage space requirements have little
impact on the repository size.

131		
(25%)	

196	
	(37%)	

123	
(23%)	

81		
(15%)	

1		
(<1%)	

Sound	 Image	 3D	Model	 Source	Code	 Video	

(a) Amount of artifacts by type.

159.6		
(23%)	

299.0		
(43%)	

210.4		
(30%)	

0.2	(<1%)	
29.5		
(4%)	

Sound	 Image	 3D	Model	 Source	Code	 Video	

(b) Storage space occupied by type (in MB).

Figure 3.1: Study of different artifact types.

Although there are guidelines and descriptions of best practices to deal with multime-
2JECRIPE is a game whose target are children with Down’s syndrome.

3.3 Digital image 24

dia artifacts [8, 63], the absence of tailored support can produce side effects. Sometimes,
a high volume of information can be recorded from user actions on an image editing
software. The visualization of such user action histories can be used to distinguish mod-
ifications between two versions of an image, and has become a popular topic of research
[70, 51, 67, 55]. Unfortunately, this approach relies on knowing which feature and tool
has been used to edit the image artifact, which makes integration with a generic VCS
difficult.

3.3 Digital image

In digital imaging, images are described by a matrix of numerical values, each value
describing a single point in a raster image, called pixel. A pixel is the smallest addressable
element in a display device that can be represented or controlled. A pixel is made of three
components, also known as channels: red (R), green (G) and blue (B). For some kinds
of images, an extra channel is also used, called alpha (A), which is responsible to store
the transparency of the pixel in order to perform different effects such as alpha blending,
as illustrated in Figure 3.2.

Figure 3.2: Mona Lisa using an alpha blending effect.

The collection of pixels of an image can be represented by a matrix, where rows
represent the y coordinate and columns the x coordinate. Within each entry of (x,y)
coordinate, there is a pixel, that can be represented as a vector of three (R,G,B) or four
(R,G,B,A) elements.

In order to represent a color, normally each channel uses a byte, ranging from 0 to 255,
which gives 256 distinct tones for each color. This approach makes possible to show up to

3.4 Proposed approach 25

256

3 different color values by mixing these three channels together. As an example, Table
3.1 shows a matrix representation of a 3 ⇥ 3 pixel image that has a white dot in its center.
It is important to notice that for some images that use the alpha channel, the number of
colors stays the same, being this extra channel used only for blending operations.

Table 3.1: Matrix of a 3 ⇥ 3 pixels image with a white dot in its center.
< 0, 0, 0 > < 0, 0, 0 > < 0, 0, 0 >
< 0, 0, 0 > < 255, 255, 255 > < 0, 0, 0 >
< 0, 0, 0 > < 0, 0, 0 > < 0, 0, 0 >

According to how image files are represented, performing version control operations
in this kind of artifact requires processing all these pixel elements. Additionally, revision
data information has to be stored in such a way that allows fast backward and forward
reconstructions.

Although it is possible to find different kinds of image layouts, such as multi-layer,
mipmaps, or vector images, our focus is on raster-based images. Approaches that deal
with high level images are operation based, normally tied to a specific tool [26]. These
approaches record the history of all operations performed by each user, enabling undoing
them if necessary. However, aiming at avoiding tool dependency, we opted for a state
based version control. This allows us to be compatible with popular VCS such as Git and
Subversion. Apart from that, layered and vectorial images are not supported by the vast
majority of popular image extensions (e.g., PNG, JPG, and TGA) and in general cannot
be directly used in a project without their proper conversion to a bitmap layout.

3.4 Proposed approach

As discussed before, artifacts treated as binary by VCS require specialized operations of
diff, patch, and merge to be processed. This section presents the approach used for spe-
cializing these operations in the image context, providing insights about their integration
into VCS.

Besides that, our approach applies image-processing techniques in order to extract
high-level transformations from images, such as translation and rotation, presenting to
the user a more semantic view of his/her modifications across different versions of an image
artifact. A data structure was conceived and employed by IMUFF to accommodate all
data used during image processing and versioning.

3.4 Proposed approach 26

3.4.1 The diff operation

The extraction of difference is not well defined for image artifacts. Some approaches are
based on general image comparison visualization: the popular ones include side-by-side
comparison, layer-based differences, image overlay [16], flickering difference regions, and
linear and non-linear operations on images [26]. For better results, this process usually
requires finding pixels that differ in two given images. Instead of transferring the respon-
sibility of finding modifications in images to the end-user through visual comparison, our
approach can pinpoint the exact location where a modification happened in the image.

This operation in IMUFF is carried out by locating the difference between two images
and saving its result as another image, which is called the delta between them. We wish to
give this delta contextual information to provide an adequate way to locate the difference
by just observing the resulting image. In other words, this delta is not only designed
to reduce space consumption and improve bandwidth, but also to provide a fast visual
identification of the changes between two images. As an example, a diff operation on
images A and B produces image C as a delta, where the pixels that are equal in both
images (A and B) correspond to black pixels in C, and the pixels that differ appear with
a different color in C.

The diff operation is made by using a binary XOR (�) over each channel for all the
pixels of both images A and B. We chose this operator due to its property of running in
parallel over the GPU in a single instruction as well as its good pixel change representation,
allowing bidirectional use to reconstruct either version. As an example, the diff of a
binary RGB of green (R=00000000; G=11111111; B=00000000) and blue (R=00000000;
G=00000000; B=11111111) pixels would lead to a cyan pixel (R=00000000; G=11111111;
B=11111111) after applying the XOR operation.

In our proposal, we executed the delta computation using the GPU architecture. In
this case, we process each pixel independently and concurrently from each other. This
modification produces Algorithm 1, where thX and thY are variables automatically cal-
culated by the built-in CUDA context mechanism used to locate the specific data element
that a thread will operate on.

To better contextualize this operation for image artifacts, we used two images of the
“Where’s Wally?” game 3 (also known in the US and Canada as “Where’s Waldo?”). In
the first image, there is a scene where Wally is absent, while in the second image he is

3Image used from https://www.usbio.net/misc/newsletterseptember2011.

3.4 Proposed approach 27

Input: Image A, Image B
Output: Image C

1

C.At(thX,thY).R = A.At(thX,thY).R � B.At(thX,thY).R;
2 C.At(thX,thY).G = A.At(thX,thY).G � B.At(thX,thY).G;
3 C.At(thX,thY).B = A.At(thX,thY).B � B.At(thX,thY).B;
4 C.At(thX,thY).A = A.At(thX,thY).A � B.At(thX,thY).A;

Algorithm 1: Algorithm used for image delta generation in GPU.

somewhere in the scene. The diff operation receives both images and produces a delta,
showing the exact location of Wally. The result of this operation is shown in Figure 3.3.
The leftmost image is the scene without Wally, the center one is the image where Wally
is found, with the one in the right is the delta image, with pixels different than black for
unmatched colors in the same (x,y) position for both images.

Figure 3.3: Applying a diff operation to images to obtain their delta. In the leftmost
image a scene without Wally. In the center one, the same scene with Wally, and on the
right image, the delta between them.

As can be seen, most of our delta image consists of black color (zeros), which leads
to a small size after a lossless compression (using a PNG format), requiring less storage
space and network bandwidth during commit and check-out. We should point out that
usually a small delta between two consecutive versions is expected [37].

3.4.2 The Patch operation

Another important operation in VCS is the application of deltas to an artifact, to re-
construct its older or newer versions. For image artifacts, this is also an important and
necessary operation due to the frequent modifications in their lifetime.

As stated before, we use the binary XOR operator to identify the pixels that have
different colors on any channel, producing an image that represents the delta. Using
the patch operation, it is possible to reconstruct an artifact based on its delta and its
previous or next version (indeed our delta can be used both forwards and backwards). As

3.4 Proposed approach 28

an example, given images A and B, which correspond to two versions of the same image,
and an image C that contains the delta generated by diff (A,B), we can rebuild image A
by applying image C to image B. On the other hand, we can also reconstruct image B by
applying image C to image A. Using the same example from Section 3.4.1, it is possible
to apply the XOR operator to blue (R=00000000; G=00000000; B=11111111) and cyan
(R=00000000; G=11111111; B=11111111) to reach a green (R=00000000; G=11111111;
B=00000000) pixel. Beside this specific example, the XOR operator can be applied to
any color to reach the original one at that pixel position. Algorithm 2 shows the patch
operation performed with a GPU architecture, which is the same as presented before for
diff, but changing the parameters order.

Input: Image A, Image C
Output: Image B

1

B.At(thX,thY).R = A.At(thX,thY).R � C.At(thX,thY).R;
2 B.At(thX,thY).G = A.At(thX,thY).G � C.At(thX,thY).G;
3 B.At(thX,thY).B = A.At(thX,thY).B � C.At(thX,thY).B;
4 B.At(thX,thY).A = A.At(thX,thY).A � C.At(thX,thY).A;

Algorithm 2: Algorithm for GPU image patching.

Figure 3.4 shows the results of applying this algorithm to the same “Where’s Wally?”
scene. The leftmost image shows a scene where “Wally” is not shown while the center one
shows the delta we want to apply to get the final revision. The image on the right shows
the result of this operation.

Figure 3.4: The left image shows a scene without Wally. In the center one, the delta
from one revision of a scene where Wally is shown, and the one on the right has the
reconstruction of the scene.

Using our approach we can recognize some important properties of the patch algo-
rithm: identity, commutativity, and bidirectionality. Due to identity, patching an empty
delta to an image produces an unchanged image (Equation 3.1). By commutativity, patch-
ing the delta to the image or the image to the delta produces the same image (Equation
3.2). Finally, by bidirectionality, patching the delta to any one of the original images

3.4 Proposed approach 29

produces the other image (Equation 3.3). For all Equations 3.1, 3.2, and 3.3, A, B and C
are images of the same size.

patch(A,C) = A if C is an empty delta (3.1)

patch(A,C) = patch(C,A) = B (3.2)

patch(A,C) = B and patch(B,C) = A (3.3)

According to Estublier [40], bidirectional deltas allow a more powerful version selection
and at the same time provides better assistance to the user during the composition of a
particular version with the use of the change-set model (the model used by IMUFF). The
bidirectionality of the binary XOR operator allows IMUFF to obtain the original image
A from a changed image B by simply applying the same delta to B, without any additional
operation. For example, in Figure 3.4, the delta could be applied to the modified image
(rightmost image), also using Algorithm 2, to get the prior revision state (leftmost image),
thanks to the bidirectionality of the binary XOR operator.

3.4.3 The Merge operation

As said before, IMUFF uses the change set model [43] to represent the logical changes to
images. In this case, given two images, B and D, both revisions of image A, the changes
made to the B and D should be blended to get a final image E. IMUFF uses a three-way
merge technique to allow a more precise combination among parallel development from a
common ancestor. Our merge relies on using both the previously presented diff and patch
operations in two steps, as in Figure 3.5. In the first step, images A and B are chosen (or
A and D with no loss of generality) and a diff operation is applied to detect the changes
between them, as shown by image C. In the second step, the changes encoded in image C
are applied to image D (or image B, if A and D were the ones used in the diff) through
a patch operation, to produce image E. Image E represents the merging of the changes
introduced into images B and D in parallel. Algorithm 3 shows the whole process.

To better illustrate the merge operation, Figure 3.6 shows two examples where mod-
ifications were made in parallel to image A by different users, generating images B and
D. In the first case (Figure 3.6(a)), both users merge their local copy, generating the final

3.4 Proposed approach 30

A"

B" D"

Changes

A"

B" D"
Changes

Diff

C"

A"

B" D"
Changes

Patch

C"

E"

1 2

Figure 3.5: Steps needed to execute merge.

Input: Image A, Image B, Image D
Output: Image E

1 Image C = Diff(A, B);
2 E = Patch(D, C);

Algorithm 3: Algorithm used to execute a merge operation.

image E, which reconciles the two modifications made in parallel, without any physical
conflict.

In the cases where the same image area is changed, a physical conflict is detected
in the same way as with text-based VCS. In this sense, both methods (ours and the
text-based approach) require user intervention to solve the conflict. This situation is
illustrated in Figure 3.6(b), where pixels at the same location have been concurrently
modified. IMUFF automatically detect and indicate whether a conflict occurred with
the use of the AND (⌦) operator, facilitating conflict resolution during the integration
of parallel development. For C = diff(A,B), C 0

= diff(A,D), and F = C ⌦ C 0, a
conflict is found when the sum of all pixel values in F leads to a value other than zero.
In addition, the exact location of the conflicting pixels is shown on F wherever the pixels
are other than black. In this case, for the situation shown in Figure 3.6(b), the F image
would lead to all black pixels, except for the exact location where the sun touches the
spaceship. This location would have pixels other than black, enabling the visualization of
the conflicted region.

The above operations can be made in different directions to produce the same result.
So, assuming that B and D are two revisions that descend from A, merge(A,B,D) is
the same as patch(D,diff(A,B)) or patch(B, diff(A,D)), which in fact is the same as
merge(A,D,B). Using the change set model as well as the properties defined in Section
3.4.2 allows seamless data manipulation.

Finally, we should say that, as a toolkit, IMUFF cannot perform all the operations
found in VCS per se (such as a commit or a merge). Instead, it is meant to be triggered

3.4 Proposed approach 31

A

B

C=Diff(A,B)

D

E=Patch(D,C)

(a) Use Case 1: Merge operation performed
on two different images.

A

B

C=Diff(A,B)

D

E=Patch(D,C)

F = Conflicted area

(b) Use Case 2: Merge operation performed
on two different images, where it is possible
to see a conflict.

Figure 3.6: Applying a merge operation.

by a VCS, to efficiently deal with image artifacts. For the same reason, IMUFF is not
responsible for deciding when the merge should happen (before or as part of the commit).
The VCS designer should make this kind of decision.

3.4.4 Image Processing Techniques

According to Estublier [37], it is common to expect small changes between consecutive
revisions. However, for image artifacts, global transformations can also be applied, such
as translation, reflection, rotation, and bright adjustement. This kind of transformation
leads to a delta that consists of all the pixels in the image, providing no hints on which
kind of action has been done to the original image. This kind of delta provides no visual
support to help the user to solve conflicts during a merge. Additionally, a delta produced
by a global transformation usually requires more storage space than storing the whole
modified file. This is a side-effect of compression algorithms, that usually work by taking
into account the neighboring pixels that have similar colors, which are stored only once.

3.4 Proposed approach 32

In the cases where a XOR has been applied to images that have been modified by a global
transformation (such as a rotation), the number of pixels with the same color is very small,
as shown in Figure 3.7. This happens mainly because during a global transformation, all
the pixel colors in the modified image will not match the color from the original image,
producing a color other than black (which is the color produced by applying XOR to
pixels of the same color).

Clockwise
Rotation
(180º)

Diff(A,B)

A B

Figure 3.7: The delta generated after applying a global transformation to an image.

Amongst all the global transformations that can be applied to an image, a special set
of them can be classified as rigid transformations. A rigid transformation is related to
changing the position of a pixel in the image and can be defined by a bijective function for
each pixel [48]. These functions are reversible, permitting the retrieval of the original or
final position of the pixel with the application of this function. Rigid transformations can
be detected by IMUFF, and include translations, rotations, and reflections. The reversion
of rigid transformations can take place through a linear operation such as I

m

(x, y) =

U ⇥ I
o

(x, y), where I
m

is the final image, I
o

is the original image, and U is a rigid
transformation defined by a function. It is important to note that filter operations cannot
be defined by a bijective function and, for this reason, are not considered here. For
example, applying a blur filter would generate a delta that consists of all the pixels that
are not black. Hu et al. [58] can detect this kind of transformation as well as many others
but their approach requires at least three minutes to process an image of 512 ⇥ 512 pixels
in CPU, being not feasible for using it in a version control.

When looking at both the original (A) and the modified image (B) in Figure 3.7,
it is easy to see that a 180� clockwise rotation has been performed. During a merge
conflict, the user could solve the conflict by applying the operations in sequence, for
example. However, understanding what has been done during a conflict resolution just
by analyzing this delta is almost impracticable. Furthermore, storing U instead of the
whole delta could lead to a smaller space consumption.

IMUFF uses image-processing techniques to identify a rigid transformation through
the OpenCV [17] library. A rigid transformation is represented by a 3 ⇥ 3 homogeneous

3.4 Proposed approach 33

matrix composed by a rotation, a reflection, and a translation [2]. As an example, Figure
3.8 shows a homogeneous matrix used to rotate an image. In this case, a point (x0, y0)

of the image is rotated by ↵ degrees (performed by multiplying a vector by a matrix),
generating a new (x, y) rotated point. It is important to note that this operation should
run for all pixels in the image in order to have the image rotated.

!
!
1
=

cos! − sin! 0
sin! cos! 0
0 0 1

.
!!
!!
1
!

Figure 3.8: Homogeneous bi-dimensional rotational matrix applied to an image.

The extraction of the matrix U requires analyzing at least three independent well-
known points (forming a triangle) in order to infer which transformation has been applied
to the image [90]. The extraction of those points involves finding features that are pre-
served in both the original and the modified images, and is done using the SURF (Speeded
Up Robust Features) algorithm [11]. A feature in this context represents a pixel that is
very likely to be the same in the original and modified images, taking its neighborhood
into consideration. From the set of detected features, the three best ones are picked and
their pixel positions (x,y) are used to build the triangle and recover the rigid transforma-
tion. As an example, Figure 3.9 shows the three best features detected to build up the U

matrix. From this example, one can see that a 90 � rotation has been done to the original
image, leading to a rigid transformation that completely represents this operation.

Figure 3.9: Mapping characteristics of images for extracting a rigid transformation.

As said before, translation, rotation, and reflection transformations can be detected

3.4 Proposed approach 34

by IMUFF. For other transformations, the whole delta is stored in the recovery of a
version, without taking the U matrix (set to an identity matrix) into account. Besides,
due to floating point imprecision, some misaligned pixels can be seen in the original
and reconstructed images when using U . To minimize this situation, we still save a delta

between the two images as well as U . However, this delta is not the difference between the
original and modified images (such as diff(A,B) in Figure 3.7) but the difference between
I
m

and the modified image (diff(I
m

,B) in the former case). As I
m

tends to be much more
similar to the modified image than to its previous version, only those misaligned pixels
are stored, leading to a very small delta when compared to the whole difference between
I
m

and the original image. In the end, reconstructing a version requires applying U to an
image and then performing the XOR operation using this delta.

3.4.5 Data structure

Using a specialized approach to deal with specific artifact types allows significant im-
provements in diff, patch, and merge operations and data storage. The effort of the VCS
to reduce the size of an artifact through compression is normally not effective for binary
files. This is true for certain kinds of images, as they are already compressed and could
be stored without any further processing. IMUFF takes advantage of this fact and only
compresses images that have not already been compressed, such as bitmap files, avoiding
redundant processing.

IMUFF uses a data structure where each image artifact has its own database, created
when an image undergoes by modifications. This database consists of a history table and
packages, as shown in Figure 3.10 for Image A. The figure shows that the database for
Image A has two packages, (PCK-1 and PCK-2), each one responsible for storing a
collection of deltas. Each package is mapped directly to a physical file, leading to two files
in this specific case.

Each delta in the package represents a change set performed on an image, followed by
its respective rigid transformation (when it is successfully found, otherwise it is an identity
matrix). Figure 3.10 shows that PCK-1 stores four deltas and their respective matrices
(M , B, C, and D), while PCK-2 stores three deltas as well as their respective matrices
(K, F , and G). Each package can store up to a certain amount of data (configurable
through a parameter). When this value is exceeded, a new package is automatically
created to accommodate new deltas. The main motivation for storing more than one
delta in the same package is to use less space, as the probability of having more colors of

3.4 Proposed approach 35

the same value in the deltas packages tends to rise. Besides the likelihood of having more
pixels with the same color as more deltas are included in the same package, we decided
to split it. One motivation for this is to reduce data corruption. In the event of one of
these packages becoming corrupted, the versions stored in the other packages can still be
retrieved. Our second motivation was to improve the ability to search for a specific delta,
as moving inside a big file tends to be a slower process. One important fact is that the
first delta in package PCK-2 only consists of one matrix (K), meaning that an accurate
transformation mapping between the two images involved has been found, and we can
assume that the base image consists of only black colors.

The second component in this database is the history table, which is responsible for
indicating how an older version of the artifact can be built. It stores a version navigation
field (i.e., a source and target version), the package where one can find the right delta or
change set, the offset (in bytes) for the beginning of the desired delta, and, finally, the size
of the delta (considering the change set and matrix size, the latter being constant). In
this case, reconstructing an older version requires locating the right delta row by querying
the revision table and then accessing the right package and offset. As an example, and
considering the Image A database in Figure 3.10, retrieving the prior revision of Image A
(V

n

� > V
n�1) involves applying the delta located at the beginning of PCK-1 (the offset

is zero). On the other hand, retrieving version V
n�2 from version V

n�1 of Image A involves
applying the delta located in package PCK-1 and offsetting 12 bytes (the offset equals
12), which represents the second delta in this package (along with the matrix B). As well
as the package, the database, together with this table, is mapped to another physical file.

IMUFF employs a lossless image delta format (PNG) during the compression of each
package that includes an image database. This kind of compression maintains the fidelity
of the original image while reducing the used disk space. Actually, each image delta is
compressed and then put together with images in the same package.

3.5 Evaluation 36

Image A
History

PCK-1

M

B

C

D

PCK-2

K

F

G

Figure 3.10: Data structure describing information stored for Image A. A table is used
to locate revision data in different packages. Black hashed blocks represent delta size for
each revision while white blocks store its matrix.

3.5 Evaluation

This section presents an evaluation of our approach in terms of repository outgrowth
and performance. For all experiments, an Intel Core 2 Quad Q6600 2.40GHz PC with
4GB RAM and a nVidia GeForce GTX580 graphics card was used. This GPU has 16
Stream Multiprocessors with 32 Stream Processors each, giving up to 512 cores, and a
market price around $300,00 in the US in 2015. For the evaluation, we developed a GUI
(Graphical User Interface) to activate the process and inspect the generated results, as
presented in Figure 3.11. However, in real scenarios, a more automated usage, such as a
pluggable module for VCS, should be used.

3.5.1 Repository outgrowth

In this section, we present a study to demonstrate and compare the repository outgrowth.
Git, Subversion and Mercurial, some of the most popular VCS used nowadays, are used

3.5 Evaluation 37

Figure 3.11: IMUFF toolkit used to perform diff, patch and merge operations over image
artifacts. Available at: https://github.com/gems-uff/gemuff.

as baselines 4 as there are no specific VCS for image artifacts. In all these experiments,
a collection of 50 different sizes of images was used, distributed according to Figure 3.12,
totaling 211.6 MBytes of data.

In 76 iterations (number used to better demonstrate the repository outgrowth), one
image is randomly chosen and a transformation is performed on it, generating a new revi-
sion. This experiment used a limited set of transformations, based on the typically scale
used in a real graphics production pipeline. The transformations employed were: pixel
area change, filter, rotation, and horizontal flip, the last three being global transforma-
tions.

Additionally, in order to demonstrate the importance of our image processing tech-
nique and the proposed data structure, the results are labeled as V1 and V2. V1 corre-
sponds to the first version of IMUFF [32], without employing image analysis techniques.
V2 is the current IMUFF version [31], which uses an image analysis technique to detect
global operations and employs our data structure for image storage.

Figure 3.13 presents a chart with the repository growth for the pixel change transfor-
mation. In this scenario, only a subset of 32⇥32 pixels is randomly changed. From this

4Each VCS has a directory where the information about versioned artifacts was kept. Git stores this
information in “.git/objects”, Mercurial does it in “.hg/store”, and SVN keeps this data in the “svn/db”
folder at the server side.

3.5 Evaluation 38

Figure 3.12: Image distribution in terms of size.

chart, we can clearly see that the IMUFF repository growth is the most reduced when
compared to the other VCS between each revision, for both releases of our approach.
While the other VCS solutions use 450–500MB by the end of the experiment, our ap-
proach ends up using only about 200MB. This shows that just storing what has been
modified can considerably reduce the storage needs (as with IMUFF) when compared to
saving the whole image for each revision (as done by the other VCS).

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80

Si
ze

 (M
By

te
s)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

Figure 3.13: Image area change transformation (IMUFF V1 and V2 overlap).

In the sequence, in Figure 3.14(a) and Figure 3.14(b) both blur filter and a random
rotation transformations are performed, respectively. According to these results, it is
possible to see that Git, Mercurial, and Subversion are almost close in their repository

3.5 Evaluation 39

outgrowth 5, while V1 requires more data storage space to store deltas. This occurs
because both filtering and rotation transformations change the whole image, with almost
all the pixels in different colors in the delta, which degrades the data compression. On
the other hand, an interesting fact occurs in the filter operation: it requires less space in
each iteration for V2. This happens because blur is a mean filter, which tends to equalize
the color using neighboring pixels. Thus, applying this filter sequentially to an image
produces smaller deltas after compression. As IMUFF performs backward deltas in these
examples, maintaining only the last revision as a whole, the space used by the last image
revision gets smaller. For example, Table 3.2 shows the first three commits for a specific
image used in this blur filter experiment. The first line represents the initial commit,
leading to an empty delta (delta column) and a 6.5MB file (file size column), summing up
6.5MB. Before the second commit, a blur filter was applied to the image, reducing it to
4.3MB as well as a 1MB delta, leading to 5.3MB in total. In the third commit, another
blur filter was performed, generating a new 4.1MB image and deltas adding to 1.1MB,
with a total of 5.2MB data in the repository. It is worth mentioning that the cumulative
size of the deltas is not reduced during the interactions. However, it rises more slowly
than the decreasing rate for the image size, thus leading to a smaller repository size.
Additionally, we should point out that, since it is a mean filter, blur decreases the image
fidelity, producing more similar pixels in each interaction. Even with the loss of fidelity
after successive uses of the blur filter, it is possible to build the original image by just
applying each delta in the reverse order (i.e., from the last image to the first one).

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80

Si
ze

 (M
By

te
s)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

(a) Filter transformation.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 10 20 30 40 50 60 70 80

Si
ze

 (M
By

te
s)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

(b) Rotation transformation.

Figure 3.14: Applying global transformations: filter and rotation (Git, HG, and SVN
overlap).

Additionally, the rotation operation benefitted from our image processing technique,
leading to the smallest storage space requirement. As said before, the main benefit from

5Git, Mercurial and SVN grow in almost the same way: in the chart, their curves overlap.

3.5 Evaluation 40

Table 3.2: Evolution of a repository size for a specific file over three commits.
Commit # File Size Delta Total

1 6.5 MB - 6.5 MB
2 4.3 MB 1.0 MB 5.3 MB
3 4.1 MB 1.1 MB 5.2 MB

identifying rigid transformations is to recognize the semantics of a modification, such as
translation, rotation, and/or reflection, instead of storing the plain delta. The knowledge
that a rotation has been done to an image has an enormous impact on time and user
confidence, since it removes the uncertainly of guessing a transformation by just looking
at a change set.

Finally, Figure 3.15(a) and Figure 3.15(b) provide a chart with the horizontal flipping
and mixed transformations, respectively. The horizontal flipping transformation is also a
global image change that generates a delta consisting of all the pre-existing pixels. In this
case, it is possible to see that V2 has the most reduced storage space. The mixed chart
consists of all the transformations distributed evenly (i.e., 19 transformations for pixel area
change, filter, rotation, and horizontal flip). Using our first approach, the repository grows
faster than all analyzed VCS due to the large number of global transformations, usually
requiring more storage space. On the other hand, the newer version of our approach is
the one that requires the least storage space of all analyzed VCS, thanks to its image
analysis technique and data structure. Apart from reducing the storage space required
by a repository, the bandwidth required to transfer data to distributed VCS, such as Git
and Mercurial, would also be reduced as only the delta needs to be transferred.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 10 20 30 40 50 60 70 80

Si
ze

 (M
By

te
s)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

(a) Horizontal flipping transformation.

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80

Si
ze

 (M
By

te
s)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

(b) Applying evenly distributed transforma-
tions.

Figure 3.15: Applying horizontal flipping and evenly distributed transformations (Git,
HG, and SVN are overlapped).

3.5 Evaluation 41

3.5.2 Performance measurement

This section presents the performance evaluation of our approach. For a fair comparison
with a baseline, we implemented the diff, patch, and merge operations also in CPU.
In the case of GPU, the time, measured in milliseconds, corresponds to the complete
process, which is composed by the stages of opening and decompressing the image into
the CPU memory, transferring the data from CPU to GPU memory, processing the data,
transferring it back from GPU to CPU memory, compressing it, and saving it.

Table 3.3 shows the results from running these operations on the CPU and the GPU.
According to the table, all operations that run in GPU are faster than the same ones done
in the CPU. The column named Speedup shows how much faster the GPU version is in
comparison with the CPU and is calculated as S =

CPUtime
GPUtime

. Also, in some cases such as
the merge operation, an almost 55⇥ boost is obtained. It is important to note that we
are not using all the CPU cores in this evaluation, but only one. We believe it would be
slightly faster if all CPU cores were used, but we should point out that traditional VCS
do not run this process in parallel. Besides that, the overhead of managing a large set
of threads that operates at the same structure at the CPU level may block an optimal
parallelism at this architecture.

Another aspect one can observe in this table is that the patch operation is always
faster than the diff operation with the CPU. After investigating this, we were able to see
that the deltas used as inputs for patch consisted mainly of black colors, thus leading to
a single representation of this color in the CPU cache memory. Finally, as expected, the
merge operation is more resource-hungry than the other two operations as it consists of
a diff followed by a patch operation. Moreover, it was faster than summing up diff and
patch. Although the merge relies on both operations, context creation and data transfer
from CPU to GPU and from GPU to CPU is done only once. Minimizing both operations
while working with the GPU architecture greatly reduces the processing time [28].

Table 3.3: Speedup in running diff, patch and merge operations using CPU and GPU
(time in milliseconds).

Image Size Num pixels Diff Patch Merge
CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

512⇥512 262,144 49.1 1.7 28.2 31.2 1.8 17.3 74.3 2.3 32.3
1,024⇥1,024 1,048,576 197.5 4.6 43.0 131.7 4.7 28.0 320.3 5.82 55.0
2,048⇥2,048 4,194,304 611.3 13.6 44.9 352.6 13.8 25.5 950.7 18.33 51.8
4,096⇥4,096 16,777,216 2,433.8 55.3 44.0 1,358.1 56.1 24.2 3,782.1 73.13 51.7

To better illustrate this speed boost, Figure 3.16 has a chart with the amount of time
required to execute these operations with both the GPU (using V2 of IMUFF) and CPU,

3.5 Evaluation 42

where time is shown in a log10 scale. It can be seen that all the operations done by the
CPU take almost two orders of magnitude more in comparison to the same operation run
by the GPU.

1"

10"

100"

1000"

10000"

512x512" 1024x1024" 2048x2048" 4096x4096"

Ti
m
e%
(m

s)
%

Image%Size%

Image%Processing%Time%

CPU"Diff"

GPU"Diff"

CPU"Patch"

GPU"Patch"

CPU"Merge"

GPU"Merge"

Figure 3.16: Comparison of diff, patch and merge operations as run by the CPU and GPU
for four image sizes. Vertical axis is shown in log10.

Figure 3.17 shows the time required for a VCS check-in (i.e., commit command) for
Git, Mercurial, and SVN compared to both versions of IMUFF in the evenly distributed
transformations scenario (Figure 3.15) at each iteration. Again, note that IMUFF is not
a VCS as-is, so the time considered here is just to run the diff operation, which involves
applying the previous image algorithm and building or updating the data structure for
each image. Also, it is important to note that Git only gets the whole image artifact
for the revision requested, running a faster process, as the artifacts do not need to be
reconstructed by running a patch operation. Also, the whole image is stored for each
revision, thus not requiring any kind of processing (i.e., diff is not applied). On the other
hand, both SVN and Mercurial use a binary diff for detecting blocks of different bytes by
using xdelta 6. For this reason, our approach is expected to use more time than all the
other VCS, as the artifact is being processed. Furthermore, our last version requires more
time to process than the first one, due to the image processing for rigid transformation
extraction. However, should Git, Mercurial, and SVN use our approach, the push and pull
commands would require less network traffic, as the delta has been shown to be smaller.
This benefit requires extra processing effort during check-in.

6Website: http://xdelta.org

3.6 Threats to validity 43

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80

Ti
m

e
(S

ec
on

ds
)

Revision

Git
Hg

SVN
IMUFF V1
IMUFF V2

Figure 3.17: Time needed to make a check-in operation in the evenly distributed trans-
formations case.

3.6 Threats to validity

People who deal with images normally use the set of image transformations that were
evaluated in this thesis on a daily basis. However, to state how IMUFF performs in gen-
eral, a real case study is desirable. On the other hand, according to the presented results,
we believe that the only side effect from using IMUFF would be the extra processing time
in the cases where an image transformation cannot be extracted.

Additionally, during performance evaluation, we did not consider all the available
cores of a CPU. However, when comparing the number of cores found in a CPU, it could
lead to a small fraction of the cores found in a GPU (which could be thousands). This
way, our approach design is targeted to be executed by a GPU and its hundreds of cores,
enabling the CPU to deal with other tasks such as version control for text-based artifacts.
We believe that even when using all the cores of a CPU to run IMUFF, it would still be
much slower than with a GPU.

3.7 Related work

Digital content management refers to the general process of authoring, editing, collecting,
publishing, and distributing digital content, both in text and binary formats [63]. Among

3.7 Related work 44

the various components of digital content management, version control is one of the most
important, as artifacts generally change over time.

Conventional version control mechanisms are mainly focused on text rather than bi-
nary data format, either on the low level (via line diff [59]) or the high level (via pro-
gramming language syntax [62]). In the case of binary files, such as videos or images, it is
common to store the files as a whole or crude binary difference in each revision, without
any semantic information [59]. According to Babich’s idea of team coordination [9], the
maintenance of duplicate nearly identical images, as handled by the merge functionality
of a VCS, is crucial to Computer-Supported Collaborative Work (CSCW) as well as a
method of allowing conflict resolution. Dealing with images as binary artifacts does not
provide a mechanism for conflict resolution. This issue may hamper the adoption of VCS
to manage this kind of asset, although there is a significant demand for version control
of these files. Some approaches and techniques have emerged for trying to help users
with image artifacts. This section presents the related literature divided into two groups:
techniques that extract differences from images and version control for images per se.
According to a systematic mapping review in this topic, detailed in Appendix A, 17%
of the papers present operation based approach (i.e., the steps produced by the user are
stored) in order to deal with image artifacts. Besides that, all papers present some kind
of tool in order to aid in the diff, patch, and merge process. Finally, none of the analyzed
approach deals with VCS integration.

Perforce 4 7 allows side by side image comparison, without any support for diff,
patch, or merge. The PixelNovel 5 8 plugin for Adobe Photoshop R� editor can process
difference on layer, allowing the simulation of a merge operation through pixel combination
among these layers. Chimera [70] is a plugin aimed at storing high level information in
relation to user’s action over image artifacts, allowing a future analysis over these data.
Unfortunately, the lack of a formal representation among these actions can be inefficient
on VCS. As a consequence, such approaches force the user to use a specific editor that
does the image versioning.

Grabler et al. [49] proposed a system to automatically manipulate photos using GIMP,
an open source image editor, and create visually appealing tutorials. Unfortunately,
this approach requires GIMP to record all the transformations applied in its command
sequences, not allowing its inclusion in any external VCS. This restriction may impose
a barrier among users that is not flexible to change its tool or even do not want to. In

7Perforce website: http://www.perforce.com
8PixelNovel website: http://pixelnovel.com

3.7 Related work 45

contrast, our approach can be plugged in any working pipeline, as it is not tied to a
specific tool.

Hu et al. [58] introduced an approach to recover a semantically meaningful editing
history from a source image and an edited one. Their technique supports the detection
of global and local linear and non-linear color changes, the insertion and removal of
objects, and cropping. Although it produced interesting results, their technique requires
considerable processing time (about three minutes for a 512 ⇥ 512 image resolution when
compared to 0.094 seconds required by IMUFF for the same image resolution), and so is
not feasible for version control.

Version control of images is growing as images are being massively used in many
applications, such as in the Web, simulations, videogames, and medical analysis. Wong
[102] introduced an approach to manage Web images that are developed concurrently,
implementing a framework capable of performing merge operation on image files and
providing a method for visual conflict resolution. In this approach, an intermediate step
is necessary, as image pixel data are extracted and transformed into an XML file. After
this extraction, pixels in the same position are checked for equality and actions performed
according to results. Our approach does not use conditional statements, which accelerates
the processing. Apart from that, on top of the merge operation, we also provide diff and
patch to be used independently. Finally, merging a 255 ⇥ 259 image takes 1 second in
their approach, while in ours, it takes 0.083 seconds for the same image resolution.

Chen et. al. [26] introduced a tool built in GIMP capable of performing non-linear
version control for image artifacts (i.e., operations can be undone in any order) by rep-
resenting the operations among revisions as a Directed Acyclic Graphic (DAG). Another
tool, LayerVault [71], can do version control for Adobe Photoshop files (.psd) using a
collaborative environment. Unfortunately, they do not provide a benchmark for time
performance or space used, being impossible to find out if their approach can deal with
large amounts of data in a reasonable time. Moreover, both were conceived to work inte-
grated with image editing tools, reducing the possibilities of supporting situations where
the images are versioned together with other artifacts, making a change set of the whole
project. Regarding space, we believe that just storing the history of operations performed
in images through an image editor would require much less space than the delta proposed
in this work. However, depending on the complexity of the operations, the reconstruction
of the versions might be time-consuming.

3.8 Final considerations 46

3.8 Final considerations

We presented in this chapter an approach to transform conventional VCS into an image-
aware VCS through the use of IMUFF. This approach makes parallel work possible for
image artifacts, enabling merging, and indicating any physical conflicts that may exist.
Moreover, it generates an interpretable delta by showing the user rigid transformations
(i.e., translation, rotation, and flipping), which can help users understand how the images
evolved. Finally, IMUFF can reduce the storage space needed, and consequently the
network bandwidth required by some VCS commands at the cost of a slight increase of
the processing time. We believe that organizations that use large amounts of images, such
as the ones in the video games or computer graphics industry, would greatly benefit from
the use of our approach.

However, the processing of image artifacts requires a significant effort, which can
jeopardize productivity, as one may have to wait until the operations finish in order to
continue working. Thanks to the use of a GPU, which is a highly parallel architecture
widely available in almost any development environment, the time required to process
image artifacts is minimized when compared to using a CPU. In our experiments, the
usage of our GPU solution boosts VCS common operations over image by up to 55⇥,
when compared to a CPU-bound architecture. Our proposal is designed and implemented
using an architecture that allows its easy deployment in existing VCS.

Chapter 4

Video-aware version control

4.1 Introduction

Recently, the number of video artifacts produced is growing up fast. Due to the social
media websites, it becomes common to make and share images, videos, and other kinds
of multimedia artifact over the Internet. Websites such as YouTube 1 and Instagram 2

are completely turned to store videos and images, respectively, produced by anyone who
wants to share experiences.

Absent from producing videos for fun, industries such as game development and film
also produce a high amount of video artifacts. However, a key aspect here is the iteration
they make over the file during production, by modifying it until the desired video is
achieved. Thus, in order to keep the history of these changes for situations such as rolling
back undesired effects, normally each version of the video is saved under different names
and versions.

The most popular VCS found today can be used for controlling the evolution of video
artifacts. However, they do not provide specific operations to deal with this type of
artifacts. In other words, operations such as diff, patch, and merge will have no effect
when applied over video artifacts. Besides that, any file that cannot be dealt by VCS
is saved as binary artifact due to their compression strategy, i.e., the whole file is saved
for each revision unless a binary diff algorithm is employed. Even worse is the fact that
the user cannot know what kind of modification was done between versions. The lack of
specific operations to deal with video artifacts transfers the responsibility of controlling
changes over these artifacts to the user, where the VCS acts just like a backup repository

1Youtube Website: http://www.youtube.com
2Instagram Website: http://www.instragram.com

4.2 Digital video 48

for each version.

Normally, depending on the duration of the video as well as how it is saved, it can
occupy a large amount of space to be stored. Due to that, some VCS hosting services,
such as Github, do not allow a single file to be over 2GB 3.

In this chapter we present an approach called VIdeo Multimedia UFF (VIMUFF),
which applies our developed concepts to video artifact as first-class elements in the context
of version control. Our approach customizes the VCS base operations (i.e., diff, patch, and
merge) to deal with this video artifact. As well as done in IMUFF, parallel maintenance
is allowed through the merge support. Additionally, our contextual delta has the main
purposes of allowing video change identification for the end user as well as reducing the
size of the data to be maintained. In order to minimize the processing time, VIMUFF
employs a parallel architecture based on a graphics processor unit (GPU) to implement
diff, patch, and merge operations on videos.

Initially, Section 4.2 introduces the concept of digital video. In Section 4.3, we discuss
the proposed approach for the solution while in Section 4.4 this approach is evaluated.
In Section 4.5 some threats to validity are presented. Finally, Section 4.6 presents the
related work and Section 4.7 presents the final considerations of this chapter.

4.2 Digital video

In its basic form, a video artifact can be considered a collection of still images that are
presented in an ordered sequence for a certain amount of time. Due to the expansion
of cheaper storage media, new compression techniques, high transmission rate, among
others, the availability of them in different areas grows fast. Videoconference, education,
training, monitoring systems, and entertainment are just few examples of situations that
use video artifacts.

The following characteristics can be observed over video artifacts:

• Resolution: as well as image artifacts, the amount of space occupied by a video on
the screen is determined by its resolution, which is defined by its width and height,
in pixels. Figure 4.1 shows resolutions commonly used during video production.

• Frame rate: represents the number of images shown in a second. Highest frames
3Distributing Large Binary: https://help.github.com/articles/distributing-large-binaries/

4.2 Digital video 49

per second (FPS) produces smoother movements to video. Theatrical movies are
shot both with film and video typically at 24 FPS [20].

• Codec: due to the high number of information contained in a video artifact, a codec
strategy is used to compress such information. Additionally the same codec used
during a video compression needs to be used during decompression for showing the
video.

• Container: such as image formats, video artifacts also have standard formats,
normally corresponding to its extension. Some of these formats includes AVI, MOV,
and FLV. It is important to state that not all video that has the same extension
(container) uses the same codec.

Figure 4.1: Common resolutions for video artifacts (width ⇥ height) [68].

One of the biggest problems in relation to video artifacts is due to its high amount of
data. In order to better illustrate, ten minutes of an uncompressed colored video (18,000
frames) leads to an amount of 3 Gb of data, assuming a 256 ⇥ 256 video resolution
[6]. Following the same idea, ten minutes of the same video in Full HD (1920 ⇥ 1080
resolution) occupies about 149 Gb. Efficient transmission and storage can be done by
using some standard compression techniques [72, 77]. In this case, processing this kind of
artifact requires decoding it before extracting and analyzing the frames.

4.3 VIMUFF diff, patch, and merge operations 50

4.3 VIMUFF diff, patch, and merge operations

In this section, we present an approach for processing video artifacts based on specialized
diff, patch, and merge operations. Besides that, we also present the data structure used
to store the delta as well as how it is internally organized.

4.3.1 Diff operation

Given two specific videos, extracting their difference consists of locating where new frames
were added or removed. To do so, we propose the process described in Figure 4.2.

Figure 4.2: Activity diagram for processing a diff in VIMUFF.

This process starts by extracting the video’s frames as set of images (Extract Frame).
However, depending on the codec used for producing the video, extracting these frames

4.3 VIMUFF diff, patch, and merge operations 51

can vary considerably on its strategy. For example, some codecs store a frame as the
difference from its predecessor and not as a full image, while others may do this process
just for specific frames (called key frames). In order to support a wide range of videos,
the FFMPEG 4 library was adopted for extracting video’s frames from different codecs.
These frames are extracted in a chronological order as they appear in the video.

Unfortunately, depending on the video’s length, the number of frames extracted can
be relatively high, consuming considerable amounts of memory. Considering this fact,
each frame is indexed by a hash, which is based on its content. Afterwards, only the hash
is processed to detect changes in the video. This hash is built by Generate Hash process,
producing an MD5 hash [92]. The aforementioned process is illustrated in Figure 4.3,
where the letters on top of each frame represents their identification.

Based on the fact that the same frame can appear more than once in the video, thus
having the same hash, it is stored just once and a hash list containing the sequence of the
frames’ hash used during the video playback is created, as shown in the bottom of Figure
4.3. This example shows that frame A is used both at beginning and end of the video,
according to its sequence list, but in fact this frame is stored just once in the memory.
Both extracting and generating the hash of the frames to produce the hash list are made
in parallel for each one of the videos.

Figure 4.3: Identification and list sequence generation in VIMUFF.

At this point of the process, our approach produced two lists containing the sequence
of hashes of the frames for each video. Locating the difference between these two se-
quences is now a matter of processing them in order to check which frames are common
to both videos. This is made by using the Longest Common Subsequence (LCS) [57] algo-

4FFMPEG website: http://ffmpeg.org/index.html

4.3 VIMUFF diff, patch, and merge operations 52

rithm. The LCS algorithm is responsible for extracting the common largest subsequence
of elements between two lists and is performed by the Conventional LCS step.

Finally, after computing the LCS we can process the difference (identify added and
removed frames) by contrasting the LCS with each one of the videos (Conventional Diff).
This diff calculation is responsible to classify the sequence of frames in video 1 or video 2
that do not appear in the LCS. These sequences can be classified as added if they appear
on video 2 or as removed if they appear on video 1. Figure 4.4 shows two sequences
of frames and their difference. According to this example, four frames are common to
both videos while three frames were removed and four frames were added. Due to the
fact that VIMUFF uses a directional delta, the delta between these two videos would be
built by indications for removing B, Y, and D frames from video 1 and adding U, K, W,
and G frames in the correct position of the same video. In this case just frames U, K,
W, and G would be fully saved in the delta, as well as some additional data indicating
their position for insertion and instructions indicating which frames to remove to compose
video 2 during a patch operation.

F

E

D

C

A

B

Video 1 Video 2

F

E

C

K

A

U

G

Added

Removed

W

Y

LCS

Figure 4.4: The difference between two video’s sequence. Nodes colored in yellow are
common to both videos, while red nodes represents frames not in video 2 (removed) and
green nodes represents frames just in video 2 (added).

One problem that may occur is related to small changes to a video, such as adding
a subtitle. In this situation, all frames that do not have the subtitle will be marked as
removed, followed by the same frame, but with the subtitle, marked as added. In this

4.3 VIMUFF diff, patch, and merge operations 53

case, storing all these added frames will increase the delta size significantly.

For this situation, VIMUFF is also capable of detecting modifications among frames
besides addition and removal, allowing to better understand changes performed on the
video as well as decreasing the delta size as just the difference between the two frames
is stored. According to Figure 4.2, after producing the LCS from the two hash lists, the
DCT Hash process is invoked when a pair of chunks (frames that are between the LCS)
between the two videos is found. This process is responsible to produce a hash list for
each frame in the chunk, for different chunks. However, this new hash produced has the
property of being comparable to other hash to check how close they are. In the sequence,
the Similarity LCS is triggered in order to calculate an LCS considering similarity among
frames in chunks. Finally, Similarity Diff process is invoked to process frames identified
as modified, added, or removed to produce the delta.

Figure 4.5 shows a screenshot of VIMUFF tool during its processing. In the tool,
the first video appears at the top while the second in the middle. Additionally, the delta
between them is shown at the bottom. Figure 4.5(a) shows frame added (using green
border) in the delta . On the other hand, Figure 4.5(b) shows frames removed (using red
border), while Figure 4.5(c) shows modified frames (using a yellow border).

Measuring how different is a given frame from another requires the usage of a percep-
tual image hash function. These functions produce values based on the visual appearance
of the image, allowing such hashes to be compared in order to compute how similar two
images are.

There are techniques that use different functions operator to produce hash identifica-
tion, such as the Discrete Cosine transform (DCT), Marr-Hildreth, radial variance, and
block mean value [103]. In this thesis, the DCT is used for detecting similarity among
images, similar to the one used on pHash [103] library.

The DCT, such as any Fourier-related transform, is responsible to express a function or
signal in terms of a sum of sinusoids, each one having different frequencies and amplitudes.
The DCT just use cosine functions to express a signal.

Definition 4.3.1. DCT

Let x[m], m = 0, . . . , N � 1 denote an N-point real signal sequence. Strang [98] defines
DCT as

4.3 VIMUFF diff, patch, and merge operations 54

(a) (b)

(c)

Figure 4.5: Diff detection by VIMUFF. In (a) frames were added while in (b) frames
were removed, and finally in (c) frames were changed.

X[n] =

r
2

N
·
N�1X

m=0

x[m] · cos
✓
(2m+ 1) · n⇡

2N

◆
, (n = 0, . . . , N � 1). (4.1)

Equation 4.1 can be expressed as

X[n] =

N�1X

m=0

c[n,m] · x[m], (n = 0, . . . , N � 1). (4.2)

where c[n,m] denotes the row number n and column number m of the DCT matrix,
defined in Equation 4.3.

c[n,m] =

r
2

N
· cos

✓
(2m+ 1) · n⇡

2N

◆
, (m,n = 0, . . . , N � 1). (4.3)

As DCT is a separable linear function, it can be applied to any two-dimensional image
first along one dimension and then to the other dimension. In this case, the DCT of a
two-dimensional image I can be computed as (M denotes the DCT matrix in Equation
4.3)

4.3 VIMUFF diff, patch, and merge operations 55

DCT (I) = M · I ·M 0 (4.4)

According to Lin [74], low-frequency DCT coefficients of an image are mostly stable
under image manipulations, as most of the signal information tends to be concentrated
in a few low-frequency components. After applying the DCT formula over the image, the
element close to the top-left (index position (0,0)) represents the low frequency compo-
nents therefore being perceptually most significant. Coefficients located in higher vertical
and horizontal indexes represent higher frequency components. Figure 4.6 shows two ex-
amples where it is possible to observe the variation of the DCT according to how images
are composed. Figure 4.6(b) is composed by abrupt changes so its DCT information is
spread far from the beginning of the image (index position (0,0)). On the other hand,
Figure 4.6(a) presents smooth changes, having its frequency information concentrated on
the beginning of the image.

ECE 802 – 602: Information Theory and Coding
Seminar 1 – The Discrete Cosine Transform: Theory and Application

10

Other examples of the energy compaction property of DCT with respect to some standard images

are provided in Figure 7.

(a)

(b)

(c)

(a)

ECE 802 – 602: Information Theory and Coding
Seminar 1 – The Discrete Cosine Transform: Theory and Application

11

(d)

(e)

(f)

Figure 7. (a) Saturn and its DCT; (b) Child and its DCT; (c) Circuit and its DCT; (d) Trees
and its DCT; (e) Baboon and its DCT; (f) a sine wave and its DCT.

A closer look at Figure 7 reveals that it comprises of four broad image classes. Figure 7 (a) and

(b) contain large areas of slowly varying intensities. These images can be classified as low

frequency images with low spatial details. A DCT operation on these images provides very good

energy compaction in the low frequency region of the transformed image. Figure 7(c) contains a

number of edges (i.e., sharp intensity variations) and therefore can be classified as a high

frequency image with low spatial content. However, the image data exhibits high correlation

(b)

Figure 4.6: DCT processing over two different images. The image in (a) has a small slope
between tones changes while in (b) tones change abruptly. Images taken from [66].

Besides that, instead of computing the DCT from a RGB colored image (RGB stands
for red, green, and blue), it must be first converted to gray scale, where the essential
semantic information resides in. Additionally, the image is reduced to a 32⇥32 resolution.
In order to a avoid high frequencies, a 7⇥ 7 mean filter is applied over the image before

4.3 VIMUFF diff, patch, and merge operations 56

its reduction. After this process, the DCT formula is applied over each row and column
of this image and just 8 ⇥ 8 (as the four quadrants are the same) samples are used in
order to compute the hash. Algorithm 4 presents the execution of this step as well as the
extraction of a 64-bit hash.

Data: image
Result: 64 bits hash

1 ConvertToGrayScale(image, grayScaleImage);
2 Apply7x7MeanFilter(grayScaleImage, grayScaleImageFiltered);
3 ResizeImage(grayScaleImageFiltered, grayScaleResized, height:32, width:32);
4 DCT(grayScaleResized, dctImage);
5 CropImage(dctImage, dctCropped, h:8, w:8);
6 float mean = MeanValue(dctCropped);
7 ulong64 one = 0x0000000000000001;
8 ulong64 hash = 0x0000000000000000;
9 for i 0 to 64 do

10 if GetFloatValue(dctCropped, i mod 8, i mod 8) then

11 hash |= one ;
12 end

13 one = one « 1;

14 end
Algorithm 4: Algorithm for processing DCT hash based.

According to Lin [74], feature code can be extracted from the relationship between
two DCT coefficients in the same position of different images. In this case, similarity could
be calculated by comparing each of these coefficients for different images and calculating
how distant they are. This is performed through the Hamming Distance [52], which is
basically a measurement for the difference of two given strings [103].

Definition 4.3.2. Hamming Distance

Let A denote an alphabet of finite lenght. x = (x1, . . . , xn

) denotes an even-lenght string,
whereas x 2 A. The same holds true for y = (y1, . . . , yn). Then the hamming distance �

between x and y is defined as

�(x, y) :=

nX

i=1

|x
i

� y
i

| (4.5)

Definition 4.3.3. Normalized Hamming Distance

In order to facilitate comparison, the hamming distance can also be normalized with respect

4.3 VIMUFF diff, patch, and merge operations 57

to the length n of the strings. Swaminathan [99] defines the normalized hamming distance
�

n

as

�(x, y)
n

:=

1

n
�(x, y) (4.6)

The hamming distance can be calculated for strings representing either a number
system, such as binary, or alphabets. As an example, Table 4.1 shows three different kind
of strings. In the first line, a binary system is used so the difference from 0 to 1 is one
and occurs once. On the second line, a decimal system is used and two digits are different
between the first and second string by one value, summing two. Finally, an alphabet string
is used, having a hamming distance of four (going from letter a to e requires passing over
four letters, i.e., b, c, d, e.

Table 4.1: Examples of calculating the Hamming distance. In the first row, a binary
string is used while in the second a decimal string is used. Finally, the third string shows
an alphabet [103].

String 1 String 2 Hamming Distance
00101 10101 1
12345 13344 2
well wall 4

In this case, calculating the hamming distance between two binary coded numbers can
be done by applying the XOR operation. Denoting a and b as two binary coded numbers
of equal length, the hamming distance is defined to be the number of ones in a� b.

Due to the amount of processing that needs to be done, a DCT hash is just calculated
from chunks between two LCS frames. As an example, supposing that frames B and
Y were subtitled, producing frames K and W, respectively, in Figure 4.4, the similarity
diff would find out those modifications when processing the sub-list between A and C.
As a result, just frame U would be considered added while frames K and W would be
considered as modification, as shown in Figure 4.7.

Both processes DCT Hash and Similarity Diff presented in Figure 4.2 can be further
decomposed as presented in Figure 4.8. The first step after calculating the LCS is per-
formed by Create Subsequence step, responsible to create a hash sub-list for each frame
in each chunk. This process produces a total of n sub-lists for each video (SL1 · · ·SLn),
being n the total chunks of the video. According to the figure, it is executed in parallel
for each video.

4.3 VIMUFF diff, patch, and merge operations 58

F

E

D

C

A

B

Video 1 Video 2

F

E

C

K

A

U

G

Added

Removed

W

Y

Changed

LCS

Figure 4.7: The difference between two video’s sequence. Nodes colored in yellow are
common to both videos, while red nodes represent frames not in video 2 (removed) and
green nodes represent frames just in video 2 (added). Cyan nodes represent frames that
suffered modifications.

After producing the sub-list, three possible situations can occur during processing:

1. SLi

video1.Size() > 0 and SLi

video2.Size() = 0) this represents frames removed and
no further processing is necessary.

2. SLi

video1.Size() = 0 and SLi

video2.Size() > 0) this represents frames added and no
further processing is necessary.

3. SLi

video1.Size() > 0 and SLi

video2.Size() > 0) this represents potentially modified
frames and requires analyzing frames on SLi

video1 and SLi

video2 for similarity.

The first and second cases are straightforward and require just marking those frames
as added or removed (Process Added Frames and Process Removed Frames, respectively).
However, the third case involves further processing for detecting frames similarity. When
the third case happens, a similarity hash must be produced for each frame in the sub-list.
However, as stated before, a series of manipulation is first needed before generating this
hash (Convert Frames to Gray, Apply Mean Filter, Resize Frame, Apply DCT, and Crop
Image). After all these manipulations are done, the hash can be generated using the
resulting image. At this stage, each sub-list pair go through Similarity LCS processing
for producing a similarity LCS. During processing, two frames are considered similar if
their hash distance is equal or below a threshold, which can be configured by the user
during processing.

4.3 VIMUFF diff, patch, and merge operations 59

Finally, after producing the similarity LCS, the Process Modified Frames are triggered,
in order to locate the position of each LCS in the sub-lists. It is important to notice that
it is not possible to assume the frames are located on the same index in both sub-lists as
they may have different lengths. One example of this situation can be found in Figure
4.7, where the sub-list between LCS A and C will have two frames for video 1 (B and Y)
and three frames for video 2 (U, K, and W). Frames in sub-lists that are not similar to
other are processed as added or removed.

In Figure 4.8, some steps are done in CPU and GPU. Actions colored in yellow are
executed on GPU as they involve transformations that are performed over frames, while
actions colored in blue are performed on the CPU. Algorithm 5 shows the whole execution
of the processing.

Data: Video 1, Video 2
Result: delta between Video 1 and Video 2

1 sequenceListV1 = nil;
2 sequenceListV2 = nil;
3 LCS = nil;
4 while Video 1 has more frames do
5 RegisterImage(v1-current-frame, hash);
6 AddFrame(sequenceListV1, hash);
7 end
8 while Video 2 has more frames do
9 RegisterImage(v2-current-frame, hash);

10 AddFrame(sequenceListV2, hash);
11 end
12 ProcessLCS(sequenceListV1, sequenceListV2, LCS);
13 currentV1Idx = 0;
14 currentV2Idx = 0;
15 for lcs-node first(LCS) to last(LCS) do
16 LocateLCSNode(lcs-node, sequenceListV1, idx1);
17 LocateLCSNode(lcs-node, sequenceListV2, idx2);
18 if idx1 - currentV1Idx > 0 and idx2 – currentV2Idx > 0 then
19 v1SubSeq = FramesFrom(sequenceListV1, currentV1Idx, idx1);
20 v2SubSeq = FramesFrom(sequenceListV2, currentV2Idx, idx2);
21 SimilarityLCS(v1SubSeq, v2SubSeq, simLCS, delta);
22 end
23 else if idx1 - currentV1Idx > 0 then
24 FramesRemoved(delta, sequenceListV1, currentV1Idx, idx1);
25 else if idx2 - currentV2Idx > 0 then
26 FramesAdded(delta, sequenceListV2, currentV2Idx, idx2);
27 end
Algorithm 5: Diff algorithm considering added, removed, and modified frames.

4.3 VIMUFF diff, patch, and merge operations 60

It is important to state that the difference between two modified frames is processed
by using IMUFF diff, as presented in Section 3.4.1, i.e., using a binary XOR (�) over
each channel for all the pixels of both images.

4.3.1.1 Data structure

In order to store the delta during a diff operation and further use it to reconstruct a
new revision of a video artifact during a patch operation, a new data structure is needed.
When considering video artifact, it is necessary to specify the right position in the sequence
where each modification happened. Considering two sequences S1 and S2 representing two
videos, the diff(S1, S2) operation gives an index where modifications happened in the
sequence S1 as well as the kind of modification (OP_ADD, OP_REMOVE, or OP_-
MODIFY).

When a frame is present in S1 and not found in S2, just the index of the frame and a
flag indicating that it was removed is necessary to be stored. However, when a frame is
present in S2 and not in S1, it is considered as an addition and the frame content must be
stored in the delta to allow the reconstruction of the respective version. Finally, when the
similarity LCS find that two frames are similar, IMUFF is triggered in order to calculate
the difference between frames, saving just the index and the difference itself (performed
by SimilarityLCS in Algorithm 5). As the difference between two similar frames tends to
have most of the pixels in black, the delta size is reduced.

In order to clarify these steps, Figure 4.9 presents a complete example. In Figure
4.9(a), a modification is made in video 1 to produce video 2. In this example, the bold
number in the top left corner presents the index of the frame in the sequence. According
to the figure, the LCS between both videos are A and C. When analyzing the frames
between A and C, we can observe that frame U was added while frames K and W were
identified as modification over frames B and Y in video 1, respectively. Also, after frame
C we can notice that frames D, E, and F were removed and frame G was added. This
whole situation produces a delta according to Figure 4.9(b), representing the difference
between those two videos.

4.3 VIMUFF diff, patch, and merge operations 61

4.3.2 Patch operation

VIMUFF uses directional delta for composing revisions of video artifacts. Applying a
patch in order to retrieve a version is done according to Equation 4.7.

V ersion
j

= Patch(V ersion
i

,�
i!j

) (4.7)

As Figure 4.9 illustrates, storing video 1 as a whole and just the delta between video
1 and video 2, constructing the latter requires the following steps: add frame U at index
1; modify frames B and Y at indexes 1 and 2, respectively; remove frames at index 4, 5,
and 6, respectively; and finally add frame G at index 7.

However, during video 2 reconstruction, it is possible that specified indices in the
delta become no longer valid. For instance, when adding frame G at index 7 (the last
operation specified by the delta), the video produced so far will have only five frames. It
is due the fact that adding and removing frames changes the absolute index specified in
the delta. In order to avoid this problem, an offset is always added to the index specified
by the delta. This offset is incremented or decremented by one when a frame is added
or removed, respectively. Algorithm 6 illustrates all the steps performed during a patch
operation. As observed, when a modified frame is found, IMUFF is triggered to process
the resulting patched frame.

Data: Video
i

, �
i!j

Result: Video
j

1 offset � 0;
2 while �

i!j

has more actions do
3 index � GetIndex(currentAction);
4 frameData � GetData(currentAction);
5 if Operation(currentAction) = OP_ADD then
6 InsertFrame(frameData, index + offset, Video

i

);
7 offset � offset + 1;
8 end
9 else if Operation(currentAction) = OP_REMOVE then

10 RemoveFrame(index + offset, Video
i

);
11 offset � offset - 1;
12 else
13 IMUFFPatch(FrameAt(Video

i

, index + offset), frameData);
14 end
15 end
Algorithm 6: Patch algorithm considering frames added, removed, and changed.

4.3 VIMUFF diff, patch, and merge operations 62

4.3.3 Merge operation

The merge operation is responsible for conciliating two modifications made in parallel
over a common video artifact. In this case, it is necessary to combine both modifications
in order to produce the final video.

Considering a video 1 artifact and two modifications made in parallel over it, pro-
ducing variants video 2 and video 3, the merge operation produces a video 4 containing
modifications performed on both video 2 and video 3. This process involves the execution
of a set of steps in order to merge these videos. Besides that, instead of using the diff
specified in Section 4.3.1, which considers just two artifacts for extracting the difference,
here the three way diff (called diff3) is used. Diff3 extracts the difference considering a
common ancestor, thus allowing a more precise way to recognize conflicts. Specifically for
VIMUFF, a conflict is caused when two modifications over the same set of frames between
two consecutive LCS are made.

Calculating the diff3 among video 2 and video 3 based on the ancestor video 1 involves
first calculating the LCS between video 1 and video 2 (called LCS1!2) and between video
1 and video 3 (called LCS1!3). In the sequence, a new LCS is performed between LCS1!2

and LCS1!3, producing LCS2!3, which contains common frames among video 1, video 2,
and video 3. After that, the diff3 continues verifying what was changed between LCS2!3

frames in order to process addition, removal, and modifications.

Figure 4.10 presents an example of diff3 processing. Frames colored in yellow on
video 2 and video 3 represent the LCS between the respective video and video 1 (LCS1!2

and LCS1!3, respectively) while yellow frames on video 4 represent common frames to
all videos (LCS2!3). It is important to notice that space between frames is desired for
aligning the versions. According to the figure, it is possible to observe that the final
video (video 4) will have frames X and K between LCS frames A and B as just video
2 changed (added frames) in this subsequence between those frames. The same occurs
between frames B and D as well as between frames D and F as one frame is removed
from video 2 and a modification is made in video 3, respectively. However, when checking
between frames F and I, it is possible to see that both videos (2 and 3) changed frames
G and H, thus causing a conflict. As done by any VCS, a conflict situation requires the
user intervention in order to select which version to use in order to produce the merged
video.

4.3 VIMUFF diff, patch, and merge operations 63

Figure 4.8: Expansion activity diagram for both DCT Hash and Similarity Diff processes.
Yellow activities are done in GPU.

4.3 VIMUFF diff, patch, and merge operations 64

F

E

D

C

A

B

Video 1 Video 2

C

K

A

U

G

W

Y

1

0

3

2

5

4

6

1

0

3

2

4

5

(a)

Index
1

Operation
OP_ADD

Data
Frame U

Operation
OP_MODIFY

Data
Diff(B,K)

Operation
OP_MODIFY

Data
Diff(Y,W)

Operation
OP_REMOVE

Data
NULL

Index
4

Operation
OP_ADD

Image
Frame G

Operation
OP_REMOVE

Data
NULL

Operation
OP_REMOVE

Data
NULL

Index
1

Index
2

Index
5

Index
6

Index
7

(b)

Figure 4.9: Example of how delta is organized. In (a) video 1 suffered a modification,
where yellow, cyan, and green represent LCS, modified, and added frames, respectively.
In (b) the data structure that represents these operations.

FEDCBAVídeo 1

FEDCBAVídeo 2 X K

Vídeo 3 FEDA B

EDBAVídeo 4
(Merge)

X K F

Added Removed Changed LCS

C

G

G

G

?

H

H

H

?

I

I

I

IC

Conflict

Figure 4.10: Merge of two videos B and D descending from A and producing final video
E.

4.4 Evaluation 65

4.4 Evaluation

This section presents an evaluation of our approach in terms of space consumption and
performance. For all experiments, an Intel Core i7 4.4GHz PC with 16GB RAM and
an nVidia GeForce GTX580 graphics card was used. This GPU has 16 Stream Multi-
processors with 32 Stream Processors each, giving up to 512 cores. For the evaluation,
we developed a GUI (Graphical User Interface) to activate the process and inspect the
generated results. Table 4.2 shows the properties of the video used for evaluation. It is
important to state that all the videos are in 624 ⇥ 352 resolution and 24 FPS in uncom-
pressed format. Additionally, frames are considered similar when they have a minimum
of 70% of similarity (maximum distance of 30%).

Table 4.2: Properties of the videos used during the experiments.
Video Duration Size (MB) Number of Frames MD5 Hash (ms)

A 4 min. 48 sec. 2,280.00 6,923 16,674
B 4 min. 0 sec. 1,897.00 5,060 15,690
C 4 min. 0 sec. 1,877.00 5,699 16,341
D 1 min. 0 sec. 474.50 1,440 2,288
E 1 min. 0 sec. 474.50 1,440 2,194

The evaluation description is divided into two sections. In Section 4.4.1, the evaluation
focuses on data storage space. In Section 4.4.2, the experiments observe processing time
in both GPU and CPU.

4.4.1 Storage space

Normally, one of the reasons to use delta is to reduce the storage space requirement.
Instead of saving two versions of an artifact, just the difference between them is stored.

In order to analyze how VIMUFF impacts storage space requirements for video arti-
facts, Table 4.3 shows the number of frames removed, added, and changed as well as the
delta size. It is important to state that the removed frames almost do not impact our
delta size as just a flag and an index is necessary to be stored. On the other hand, frames
added impact in the size of the delta as they must be fully stored. Finally, the number of
modifications has a small impact over the delta size as just the difference between frames
must be stored.

Our delta requires less space than storing the video as a whole, as can be seen in Figure
4.11 for each case presented in Table 4.3. According to this figure, our delta reduces the

4.4 Evaluation 66

Table 4.3: Frames removed, added and changed as well as the delta size for each case.

Case Operation Frames Delta (MB)Removed Added Changed
1 Diff(A,C) 1,329 2,553 280 260
2 Diff(D,E) 14 14 255 1.7
3 Diff(C,B) 1,379 1,440 500 93

space consumption in 86.15%, 99.57%, and 95.09% for the Diff(A,C), Diff(D,E), and
Diff(C,B), respectively. The fluctuation on this percentage is due to the number of frames
added and modified, as removed frames just require storing index and flag information.
When the number of added frames grows, the size of the delta tends to increase as well as
each frame needs to be fully stored. This is represented by Diff(A,C) and Diff(C,B) cases,
when compared to the Diff(D,E) case. On the other hand, modified frames tend to not
increase the size of the delta as just the difference between the frames are stored, as can
be seen by Diff(D,E) case. Also, notice that even when the Diff(C,B) has almost twice of
modified frames in relation to the other two cases, its delta size still remains below the
Diff(A,C) case.

This analysis is made by only considering one revision. When considering multiple
revisions of the video, this number tends to increase faster.

1,877%

475%

1,897%

260%

2%
93%

0%

200%

400%

600%

800%

1,000%

1,200%

1,400%

1,600%

1,800%

2,000%

Case%1% Case%2% Case%3%

Si
ze
%(M

B)
%

Using%Delta%

Not%Using%Delta%

Figure 4.11: Comparing using delta and not using it for storing video artifacts.

4.4 Evaluation 67

4.4.2 Processing time

As presented in Figure 4.2, our approach is divided into a set of steps, performed in
an ordered sequence. Figure 4.12 shows the amount of time spent for each step during
processing all cases presented on Table 4.3 (using GPU). As it is possible to observe, the
Conventional Hash generation step is the most expensive one, followed by Conventional
Diff processing. Also, it is important to notice that all steps performed for processing
similarity diff (DCT Hash, Similarity LCS, and Similarity Diff) require substantially less
time when compared to the other steps.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

Diff(A,C)" Diff(D,E)" Diff(C,B)"

Ti
m
e%
(m

ili
se
co
nd

s)
%

Cases%

Similarity"Diff"

Similarity"LCS"

DCT"Hash"

ConvenBonal"Diff"

ConvenBonal"LCS"

ConvenBonal"Hash"

Extract"Frame"

Figure 4.12: Time spent for each step during a diff processing using GPU.

According to Figure 4.8, just a number of steps are performed on GPU when similarity
diff is being processed. To show the difference of both GPU and CPU proposals, we
compared the execution of these steps as presented in Figure 4.13. In this figure, all the
steps used for the DCT Hash generation are compared between GPU and CPU. Moreover,
the Similarity Diff processing corresponds to cases where images are processed through
IMUFF for extracting the diff between two frames.

When looking at these cases, it is possible to observe that processing DCT Hash is
slightly increased on GPU. The reason for this is related to memory latency, as frames
are processed sequentially one by one in GPU. To avoid this latency, a batch of frames
should be submitted concurrently to the GPU. Also, as these times represent just cases
where a possibly modification is found between chunks, it is expected to spend more
time on situations where it happened most, represented by Diff(C,B) (a total of 500
frames modified). Besides that, it is possible to observe that the time taken for processing
similarity on GPU is almost three times faster than same processing on CPU.

4.4 Evaluation 68

0"

100"

200"

300"

400"

500"

600"

CPU" GPU" CPU" GPU" CPU" GPU"

Diff(A,C)" Diff(D,E)" Diff(C,B)"

Ti
m
e%
(m

ili
se
on

ds
)%

Opera1on%

DCT"Hash"

Similarity"Diff"

Figure 4.13: Execution time for processing the DCT Hash and Similarity Diff between
two versions of a video using GPU and CPU.

In Figure 4.14 is possible to observe the results of the patch: Patch(K,�
K!Y

). This
figures shows that the same performance obtained when processing the diff operation on
GPU is achieved, which means that the patch operation on GPU reduces to the half of
the time taken by processing at the CPU. Moreover, the patch operation does not need
to calculate LCS, as reconstructing a version is just a matter of removing, adding or
processing modified frames. In this case, the most expensive operation is to process a
modified frame, as it needs to go over pixel by pixel in order to apply the delta.

In the first case (Patch(A,�
A!C

)), it takes 198ms on GPU and 440ms on CPU. When
looking at the second case (Patch(D,�

D!E

)), the CPU version requires 337 ms to process
the patch, while in GPU it requires 127ms. Finally, the third case (Patch(C,�

C!B

))
requires 273ms to process in GPU while in CPU it requires 593ms.

0"

100"

200"

300"

400"

500"

600"

700"

Patch(A,ΔA3>C)" Patch(D,ΔD3>E)" Patch(C,ΔC3>B)"

Ti
m
e%
(m

ili
se
co
nd

s)
%

Opera2on%

Patch3GPU"

Patch3CPU"

Figure 4.14: Execution time running a patch operation.

Finally, for the merge operation, we have used video A as base and videos B and

4.4 Evaluation 69

C as parallel modifications. As said before, this operation requires the diff3 to work
properly, which involves calculating LCS three times. All steps as well as the time taken
for each one can be seen in Figure 4.15 for the GPU version. It is possible to observe
that the most expensive processing step is regarding to Conventional Hash followed by
Conventional Diff3.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

20000"

Merge(A,"B,"C)"

Ti
m
e%
(m

ili
se
co
nd

s)
%

Opera2on%

Similarity"Diff3"

Similarity"LCS"

DCT"Hash"

ConvenDonal"Diff3"

ConvenDonal"LCS"

ConvenDonal"Hash"

Extract"Frame"

Figure 4.15: Time spent for each step during a merge processing using GPU.

In order to analyze just the steps where GPU is employed, Figure 4.16 presents the
time for both the DCT Hash and Similarity Diff3 processing. As observed, processing
the DCT Hash and Similarity Diff3 in GPU is 2.55 and 2.18 times faster, respectively.
Different from the diff where the DCT Hash processing has slightly increased when com-
pared to CPU, here the memory latency was hidden by GPU processing as the number
of chunks tends to increase during a merge operation (reduced number of LCS frames).

0"
100"
200"
300"
400"
500"
600"
700"
800"
900"

CPU" GPU"

Merge(A,"B,"C)"

Ti
m
e%
(m

ili
se
co
nd

s)
%

Opera2on%

DCT"Hash"

Similarity"Diff"

Figure 4.16: Execution time for processing the DCT Hash and Similarity Diff3 during a
merge operation using GPU and CPU.

4.5 Threats to validity 70

4.5 Threats to validity

Although VIMUFF can work with compressed video formats, all the videos used in the
experiments were uncompressed. Compressed video size is highly reduced when compared
with non-compressed videos at a price of lowering the quality of the video.

Additionally, the number of videos used during evaluation was kept to a minimum,
specifically for the merge evaluation. More videos should be used in order to observe how
VIMUFF behaves with them.

Finally, we did not present any case where all frames are added from one version to
another. This case should be interesting to evaluate how the delta increases.

4.6 Related work

In our systematic mapping review we could not be able to found any research directly
related to versioning of video artifacts, i.e., proposing specialized operations for diff, patch,
and merge. The usual approach for versioning video artifacts is storing the versions as a
whole during each modification, without any awareness of the kind of modification that
was made.

Considering high level editing tools, some of them allow a workaround for merging
two video artifacts. For instance, Adobe Premiere R� can combine two videos taking into
consideration the weight that each pixel has over the other, just like image alpha blending.
Using this technique, it is possible to produce the merged video.

Boar 5 facilitates the storing of large binary files. According to them, Boar is con-
sidered a “version control for large binary files” and allows the manipulation of just a
small subsets of binary data at a time, so maintaining control of which part is being
manipulated and by who. However, Boar does not provide any kind of awareness about
modifications made over these files, and does not allow merging parallel modifications. On
the other hand, VIMUFF can work with video artifact just like standard VCS can work
with textual artifacts by allowing merging and providing awareness about modifications
performed over these kind of artifacts.

Some plugins help Git to better deal with large binary artifacts. Git-annex [47] allows
managing large files without the need of committing the file into the repository. In this

5Boar website: http://www.boarvcs.org/

4.7 Final considerations 71

case, the content of the file is kept by git-annex in a distributed key/value repository. The
file that actually gets checked into Git is just a symbolic link to the real file. Git-Media
[24] is another extension to Git with the same goal. For this, a new command is appended
to Git that allows synchronizing only those specific large files.

4.7 Final considerations

In this chapter we presented an approach named VIMUFF to allow conventional VCS
to process video artifacts. It generates interpretable delta, where users can see which
modifications were performed. Besides that, it allows the merging of these artifacts as
well as indicating any physical conflicts that may exists, relying on the user to choose
which version to maintain.

Additionally, we had shown that storing the whole file for each revision can consume
a great amount of disk space when compared to storing just the difference between each
revision. In this thesis, we had shown that, depending on the size of the video and the
modifications performed on them, almost 95% of data storage is saved. This represents a
considerable amount of saved disk space, making more viable a complete version control
of video.

Due to the amount of data that needs to be processed, it must be fast in order to not
jeopardize the user productivity. In fact, we show that performing diff, patch, and merge
operations is faster in GPU than the same processing in CPU.

Chapter 5

Exploratory data analysis of software

repositories

5.1 Introduction

When working on software projects, developers often need to answer numerous questions,
such as: “which other methods do I need to edit if I make this change?”; “who was the
developer that last edited this method?”; “who do I need to coordinate my changes with?”;
“who is the expert in a specific file?” and so on [44].

Besides that, software repository analysis can also be used to identify expertise. Ex-
pertise identification in a software project is an important issue for task allocation, person-
nel hire, onboarding, and development help, among other activities. It has been observed
that when stuck in a task, developers often use their implicit knowledge of work depen-
dencies to identify a developer who can help [56], or rely on their social network to find
others who might know enough about the artifact in question [80]. In fact, managers
often use informal processes to facilitate their team members to come talk to them (e.g.,
a manager keeping a candy bowl in his office), so that they are aware of who is having
what kinds of problems and can direct allocate developers to help each other.

Some of these questions can be answered by doing a repository exploration. However,
such kind of exploration is not a trivial task, especially when there is an extensive amount
of data that is accrued over the project lifecycle and when this data is stored across
different repositories.

In order to overcome such problem, some approaches rely on filtering the data. For
example, EEL [82] scopes the analysis to 1,000 project elements when identifying exper-

5.1 Introduction 73

tise in a team, thereby restricting the application to smaller chunks of data. Besides
that, performing a coarse-grain analysis, such as the file level, is a common approach as
suggested by Cataldo et al. [23]. One problem and a possible inaccuracy of performing
analysis at this level is that a developer may be recommended as an expert of the whole
file, even if she only intensively worked on a small portion of that file. Additionally,
inaccurate answers can be presented for posed questions when working at coarse-grain
or scoped data. Analysis at the finer-grain (method or lines-of-code), however, leads to
scale issues. Finally, some other approaches overlook evolution, such as Expertise Recom-
mender (ER) [79], which considers the entire project history to make recommendation.
Approaches based on overlooking the evolution do not consider that artifacts evolve over
time as well as developers that may change their roles. Further, temporal analysis can
show how expertise of a development team changes and whether there are artifacts that
lack experts at a given moment in time.

In this chapter propose Dominoes [64, 30, 29] for allowing a new realm of explorations
over software repositories. In order to be efficient, allowing large-scale repository analysis
at interactive rates, Dominoes adopts the parallel architecture of GPU to process the
underlying data much faster than what can be possible with CPU processing [3]. Dominoes
1 is a framework that can be used by other tools for processing relationships [34] or by
our provided GUI. Dominoes GUI is a visual tool for allowing users to play with their
own repository for performing different kinds of exploratory analysis.

In Section 5.2 we start by introducing our approach, Dominoes, designed to enable in-
teractive and exploratory analysis. In Section 5.3 two examples of Dominoes applicability
are presented: one for relationship identification and another for expertise extraction over
an artifact. Additionally we show how coarse and fine grain can impact over our analysis,
including a temporal analysis. In Section 5.4 we applied the previous two examples over
a real project, Apache Derby 2, considering dependency, granularity, expertise and its
evolution. Also we evaluate the performance of Dominoes in the same section. In Section
5.5 we evaluate Dominoes GUI regarding its usability. In Section 5.6 threats to validity
are presented. Section 5.7 presents the related work among data repository exploration
and expertise extraction. Finally, in Section 5.8 we present our final considerations.

1Available at: https://github.com/gems-uff/dominoes.
2Derby Repository: https://github.com/apache/derby

5.2 Dominoes 74

5.2 Dominoes

Dominoes aims at enabling users to explore the relationships among their project elements.
Our approach organizes data from a software repository into multiple matrices that are
treated as domino tiles, such as [developer|commit], [commit|method], [class|method],
amongst many other combinations. Just as in the Dominoes game, where joining two
congruent squares edge to edge can form a rectangle, our matrices can be combined to
create additional (derived) matrices.

Dominoes allows exploring relationships across different levels of granularity. Besides
that, it allows extracting temporal developer expertise by considering modifications over
parts of an artifact. Therefore, the granularity aspect is a central architectural element
(e.g. [package|class], [file|class], and [class|method]). Connecting any other domino tile
with these composition tiles or their transposed tiles allows navigation from coarse-grained
to fine-grained analysis or vice versa. However, fine-grained analysis can lead to extremely
large data sets to be analyzed. In order to solve the scalability problem, Dominoes im-
plements the exploratory analysis of software project entities as linear algebra operations
over matrices, which can be parallelized in GPU architecture [69]. This allowed boosts
in performance of about three orders of magnitude. Therefore, Dominoes opens a new
realm of exploratory software analysis, as endless combinations of domino tiles can be
experimented and generated in an exploratory fashion.

We denominate a matrix as M and its transpose by using a superscript (MT). Indi-
vidual elements in a matrix are denoted as M [i, j]. The operator “⇥” represents matrix
multiplication. It is important to note that when multiplying two matrices the number of
columns in the first operand must be equal to the number of rows in the second operand.
In our case, the column and rows of the operand over which we are multiplying also need
to be congruent (same project element), similar to the Dominoes game. In other words,
we can multiply [developer|commit] ⇥ [commit|method], but not [developer|commit] ⇥
[method|method].

In the following sections we discuss the architecture of Dominoes as well as its tiles.
Besides that, specialized operations that can be performed over these tiles are also de-
scribed. Finally, our Dominoes GUI and its design rationale are discussed.

5.2 Dominoes 75

5.2.1 Architecture

Dominoes’ architecture is designed in such a way that data from a software project repos-
itory is extracted and the associated change information is processed. Basically, it is
composed of a set of modules responsible to extract and process data, as seen in Figure
5.1.

Dominoes

CUDA Kernels

Database

Data Mining

Linear
Transformations

Statistics

Extractor

2D Tile

3D Tile

Derived Tile

Serialize

10010011000 10010011000

Unserialize

Basic Tile
Builder

Memory

Client Analysis
Request

Figure 5.1: Dominoes architecture.

Currently, the Extractor module is responsible for mining repository projects (for
version management). The repository is then preprocessed for generating a tree of all
modifications performed in all commits by analyzing which files, packages, classes, and
methods were modified. It is important to note that the information of each modification
is decomposed to get a fine-grained view of the changes by using the Eclipse ASTParser
(suitable for Java-based projects), responsible for extracting the Abstract Syntax Tree
(AST). For example, even if we represent changes at the package level (for a coarse-

5.2 Dominoes 76

grained analysis), we know exactly which classes or even which methods were modified.
This information is then stored in a relational database. Furthermore, after the initial
data collection, information about subsequent changes can be updated incrementally to
the database.

After the pre-processing stage, basic Dominoes tiles are constructed on the fly by the
Basic Tile Builder module, which relies on querying the database in order to perform
the desired relationship request, based on the granularity chosen by the user (e.g., File,
Method, Package). These tiles then become available to the users, allowing them to
manipulate the tiles according to their needs.

There are several additional manipulations of the data allowed by Dominoes: manipu-
lating the set of tiles as well as filtering their values. These manipulations include Linear

Transformations (e.g., addition, multiplication, and transposition of matrices), Data

Mining metrics (e.g., calculating support, confidence, and lift in a tile), and Statistics

operations (e.g., calculating the mean), as presented in Section 5.2.3. Basic building tiles
can be further combined through linear transformation operations to yield derived tiles
that allow exploration of derived project relationships. These derived domino tiles can
also be saved as new template pieces in case that they will be used in consecutive calcula-
tions and compositions. All tiles (basic and derived) are stored in memory, allowing their
use as needed for analysis since the data is cached.

Performance becomes an issue when we compute relationships at a fine-grained level.
Therefore, in order to allow efficient computation at interactive speeds, we model the
aforementioned manipulations as Single Instruction Multiple Thread (SIMT) architecture,
making possible to execute intensive matrices operations at a GPU device. When a
matrix manipulation is needed, Dominoes forks its execution by triggering the respective
asynchronous GPU code (kernel) according to the desired operation. In addition, our
data is very sparse, leading to a high number of matrix’ cells with zeros. In order to
reduces memory consumption by just representing values different than zero, the CUSP
3 library is used for sparse linear algebra.

Except for the CUDA kernel operations, Dominoes is otherwise developed in Java.
Performing operations over these tiles requires communicating the data with a C code,
as kernels in CUDA must be programmed using the C language. Therefore, Dominoes
implements a Java Native Interface (JNI) that is responsible for serializing and dese-

rializing building tiles to and from C. During serialization, matrices are flattened to a
3Website: https://developer.nvidia.com/cusp

5.2 Dominoes 77

vector and submitted to GPU memory in order to be processed. After processing, the
vector result is copied from GPU memory to the main CPU memory and converted back
to matrices during deserialization.

5.2.2 Dominoes tiles

As discussed before, Dominoes includes basic building tiles, which can be combined to
create derived building tiles, which can be further combined with other basic or derived
tiles. The basic building tiles are created by extracting data from existing software repos-
itories (version control systems, issue tracking systems, etc.). Due the large amount of
data and size of matrices, most of them generate sparse based matrices, which will have an
important optimization at the implementation. The basic building tiles around commits
include:

• [class|method] (ClM): relationship between a class and its constituent methods,
where cell ClM [i, j] has a value of 1 when class i contains method j.

• [file|class] (FCl): relationship between a file and its constituent classes, where cell
FCl[i, j] has a value of 1 when a file i contains class j.

• [commit|file] (CF): relationship between commits and files modified, where cell
CF [i, j] has a value of 1 when file j has been change in commit i.

• [commit|method] (CM): relationship between commits and methods, where cell
CM [i, j] has a value of 1 when commit i adds or changes method j. Note that the
index i does not necessary express the commit id.

• [developer|commit] (DC): relationship between developers and their commits, where
cell DC[i, j] has a value of 1 when developer i is the author of commit j.

• [package|file] (PF): relationship between a package and its constituent files, where
cell PF [i, j] has a value of 1 when a package i contains file j.

• [issue|commit] (IC): relationship between issue and commits, where cell IC[i, j] has
a value of 1 when issue j was fixed by commit i.

These basic building tiles can then be combined to form a series of derived building
tiles. In the following we show a small set of derived building tiles that can be computed
using the multiplication and transposition operations:

5.2 Dominoes 78

• [method|method] (MM = CMT ⇥ CM): represents method dependencies, where
MM [i, j] denotes the strength of the dependency of method j on method i. The
rationale of this matrix is based on logical dependencies, as elements that are co-
committed together share some program logic. Note that we can also create an
MM matrix through syntactic analysis, in which case it would be termed as a basic
building tile. Such MM matrices have been explored by Steward [97] in Design
Structure Matrices.

• [class|class] (ClCl = ClM ⇥MM ⇥ ClMT): represents class dependencies, where
ClCl[i, j] denotes the strength of the dependency of class j on class i. Note that
using the composition tile, we can easily provide analysis results at a higher-level of
abstraction.

• [issue|method] (IM = IC ⇥CM): represents the methods that were changed to fix
each issue. This matrix could be used to identify which methods are “buggy”.

• [developer|method] (DM = DC ⇥ CM): represents the methods that a developer
has changed. This matrix could be used to identify experts on a particular method.

• [developer|class] (DCl = DM ⇥ ClMT): represents classes that a developer has
changed. DCl uses the composition operation to provide expertise information at
the class level, which is typically used during bug triaging [12].

• [developer|developer] (DD = DM ⇥MM ⇥DMT): represents the expertise depen-
dency among developers, where developer j depends on some knowledge of developer
i, because of underlying technical dependencies in their work. Note that here this
derived building tile uses other derived building tiles (MM and DM) in its defini-
tion.

In addition, we also have the 3D tiles, which represent the whole project history and is
composed of multiple slices, to be able to deal with evolution. As an example, an evolution
of relationship between developers and classes across the time can be represented by a
[developer|class|time] 3D tile. In this case, each slice represents a snapshot of the history
at a certain moment.

A question that arises is how should we create a slice to depict the history when
using 3D tiles. Humans tend to discretize evolution in terms of time; therefore, we can
use time intervals (weeks, months, etc.) to discretize it. However, the project structure
evolves as a sequence of commits (i.e., if no commit is performed in weeks or months,

5.2 Dominoes 79

no evolution will be perceived). We reconcile these two factors by computing a slice per
unit of time (e.g., one slice per month), but in terms of a sliding window that comprises
a set of commits performed before each slice. We define the size of the sliding window as
presented in Equation 5.1.

slide window size = Max(MAM,MLC)⇥M (5.1)

Where MAM represents the number of commits in the most active month of the
project history; MLC represents a minimum limit of commits per window, independently
of how active is the project; and M represents a multiplier to allow users to experiment
with different window sizes.

While using 3D tiles to represent evolution, we identify the number of commits that
were performed in the most active month (MAM) of a project and use that as the
default size of the sliding window over which we collect commits. As previously explained
we do not simply choose a month as the window size since the amount of activity in a
given month can fluctuate (e.g., in open source projects) and we want to use a constant
window size across our calculations. This implies that when we create slices for months
that have less activity than the most active-month, they will involve commits from the
previous month(s). This is in fact desirable, since having the window overlap across slices
smoothens out sharp fluctuations and equally represents the effects of evolution. However,
since it is possible that a (small) project might not have a month with enough activity
at all to create an appropriate window size, we use a floor for the minimum number of
commits (MNC) that are used to create a slice window.

5.2.3 Specialized operations

Our basic matrices are typically binary, that is, M [i, j] is either 1 or 0 for any i and j,
whereas our derived matrices are not. This is largely because commits are atomic trans-
actions (i.e., a set of distinct changes are applied as a single operation) and therefore most
associated matrices with commits are binary. In the case of derived matrices, cell values
have associated semantics. Simple operations such as multiplication and transposition
allow us to compose different types of domino tiles to derive more complex matrices and,
thereby, different software engineering constructs. However, there are three “specialized”
operations that can be applied on derived matrices where individual cells are not binary:
support, confidence, and lift.

5.2 Dominoes 80

Let us take the example of the MM matrix. The diagonal shows how frequently a
method has been changed and each cell (M [i, j]) shows how frequently a method (i) was
changed together with another method (j). This semantics is equivalent to the absolute
support, largely adopted in the data mining community. The support of an item set
is defined as the proportion of transactions in the dataset that contains the item set.
According to [75], the rule X ! Y has support s if s% of transactions contain X [Y .
As this operation pattern of multiplying a matrix by its transpose is very popular and
semantically rich, we treat it as a specialized operation computed according to Equation
5.2.

M sup

= M ⇥MT (5.2)

The semantics of support allows us to answer software engineering related questions
regarding the strength of the relationships. For example, if we are interested in predicting
which other methods a developer needs to edit because of a change, we can use the
concept of logical coupling (files that are committed together have underlying logical
dependencies) to identify all those methods that are dependent on the edited method
and may also demand changes. We could use the MM = MCsup matrix to answer this
question.

Unfortunately, support is transitive, so M sup

[i, j] = M sup

[j, i]. Consequently, using
support to represent dependencies is not precise, as program dependency is not tran-
sitive. In order to obtain a more precise relationship that reflects the direction of the
dependency, Zimmermann et al. [104] use confidence to represent logical coupling. This
metric suggests which artifacts should be modified together, given that a specific artifact
is being modified. According to [75] the rule X ! Y has confidence c if c% of transactions
that contain X also contain Y . In the context of our approach, when applied to MM

matrix, confidence quantifies the occurrence of an entity (e.g., method) change given that
the other entity (e.g., method) has also changed. The confidence operator is computed
according to Equation 5.3.

M conf

[i, j] =
M sup

[i, j]

M sup

[i, i]
(5.3)

Confidence does not have a transitive property among elements, so it is possible
to define different levels of dependency for each pair. However, confidence suffers form
another type of problem: in the context of data mining, confidence is used to quantify

5.2 Dominoes 81

relations such as “those who buy product A also buy product B”. In this case, if product B
is presented in almost all orders, purchase of any product will lead to a high confidence
in buying B. For this reason, analyzing confidence alone tends to be imprecise, and can
exhibit false relationships.

To address this problem we can use a third metric, called as lift [75]. Lift measures the
influence of the antecedent in the frequency of the consequent. Formally, the rule X ! Y

has lift L if the frequency of Y increases in L times when X occurs. According to this
definition, we are interested in dependencies with lift greater than 1, as any other value
implies irrelevant (coincidental) relationships. The lift operator is defined by Equation
5.4, where the scalar multiplication by the number of commits (M rows) transforms the
absolute support (M sup) into relative support (values ranging from 0 to 1).

M lift

[i, j] =
M conf

[i, j]⇥M rows

M sup

[j, j]
(5.4)

When working with some matrices, it is difficult to find a threshold for filtering out
specific relationships. For instance, when using an absolute support, what is the minimum
value for considering a logical coupling? To overcome this challenge, we provide the
Standard (Z) Score (z-score) [21] to statistically identify the appropriate thresholds. It
converts the absolute values (scores) into z-scores according to Equation 5.5, where � is
the absolute score and µ and � are the mean and standard deviation of the population,
respectively.

z =

(�� µ)

�
(5.5)

5.2.4 Dominoes GUI

Besides Dominoes framework, we provided a graphical user interface designed to enable
end users, who in our case can be project managers or developers, to perform exploratory
data analysis of their projects. This section provides information about its design rationale
as well as how the interface can be used.

5.2.4.1 Design Rationale

Dominoes’ design follows a set of guidelines that, when blended together, are able to pro-
vide a highly interactive and powerful tool for exploratory analysis of software engineering

5.2 Dominoes 82

data. In the rest of the section, we detail each of the design guidelines and their expected
effects in Dominoes:

• Decouple data collection from consumption, which makes it possible to: (1) gather
different types of data (version histories, issues, email, etc.), and (2) use different
repositories (e.g., a choice of version control systems such as SVN, Git, Hg, etc.)
from which data can be extracted. Currently, we have collected data from ver-
sion histories (Git) and issue tracking systems (Bugzilla). Additional wrappers for
different repositories can be implemented and “plugged” into the system.

• Support data composition, enabling users to explore different relationships and
facets of data in their project to gain insight into their own projects. A key goal is to
support the user in reasoning about the data relationships among project elements
and starting new explorations. We did not use a query-based approach, frequently
seen in the literature [44, 12] for mining relationships, because: (1) users must know
or learn the query language and explicitly express how the data should be inte-
grated, and (2) queries are often hard to formalize by end users and they are often
restricted to queries that are preconceived by the tool builder during development.

• Consider data, operations, and visualizations as first-class elements, since these
are the three key facets of exploratory data analysis. Dominoes allows users to
interact with the data tiles to create and save more complex data units. Moreover,
this separation of features facilitates extensibility by the ease in which additional
operations and visualizations can be incorporated.

• Allow exploration at interactive rates. A key requirement of Dominoes is to support
seamless linking of ideas and exploration of data in a “what if” fashion. This led
to a collection of concrete design decisions, such as incremental data up-dates, the
use of GPU for data transformation (when GPU is available), and thresholds in
visualizations.

• Support open-ended explorations, allowing users to compose together different data
units to make derived data types. Furthermore, we support transitioning between
granularities (low to high level) by leveraging different types of composition matri-
ces (class-method, class-package, etc.) and operations over these matrices. We also
allow users to undo and redo their operations to facilitate an exploratory environ-
ment where users can view their analysis and backtrack when needed. In addition

5.2 Dominoes 83

to matrix manipulation operations (e.g., transposition and multiplication), we also
allow users to aggregate (and view) data by summing across rows or columns.

• Gather provenance information over exploration sessions, allowing users to save
their exploration paths in addition to saving the artifacts of their explorations (i.e.,
derived data types). The exploration paths can then be viewed in tree form (along
with backtracks), and the user can decide whether to repeat parts of the exploration
path in a later investigation or in another project. For ease of exploration we also
allow users to save the workspace (the edit canvas as well as the tiles).

• Leverage visualizations. When we consider the adage that a picture is worth a
thousand words, it follows that visually representing data will help users comprehend
the state of their project better. Therefore, we provide a set of visualizations (graph
visualization, tree structures, histograms, and also textual lists) that the user can
use to display the data (the state of the matrix).

5.2.4.2 Interface

We explain the different features of Dominoes by using a simple scenario. To do so, we
situate the scenario in a real world project: Apache Derby.

Let us consider Mamta, who is a developer in the Derby project. She is planning to
make a significant change to the code base and would like to know which other developers
depend on her work. In the rest of the section, we describe how Mamta uses Dominoes to
identify this information. Some steps of the process are shown in Figure 5.2, with labeled
panes detailing specific actions.

Mamta starts Dominoes and is presented with the UI as shown in Figure 5.2(a).
Dominoes has four panes. The first pane (top) allows users to select the time frame for
analysis and presents a timeline view of project activities regarding the number of commits
and the number of opened bugs. The lower left pane (library) holds all the dominoes tiles,
the middle pane is the editor canvas where users can compose the tiles or operate over
them. The rightmost pane is used for visualizations.

Mamta decides to use the last three months for her analysis (Nov 2013 to Jan 2014)
and clicks on “Set” to start the analysis. Dominoes then generates a collection of tiles
representing relationships in the project. These tiles are matrices that represent the
following relationships: [commit ⇥ method], [developer ⇥ commit], [bugs ⇥ commit],
[class ⇥ method], [file ⇥ class] (see Figure 5.2(b)).

5.2 Dominoes 84

Figure 5.2: A set of panes depicting Mamta’s interactions with Dominoes. The video of
the usage scenario is at: https://github.com/gems-uff/dominoes.

These tiles are called basic tiles [64] since they are relationships that are directly
extracted from the source code, versioning system, and issue tracker. Mamta decides to
start her explorations by first looking at each tile. Hovering over a tile provides infor-
mation about that tile in a tool tip (Figure 5.2(b)). She decides to pick the [commit ⇥
method] and [class ⇥ method] tiles ([C|M], [Cl|M]). She drags these tiles from the library
pane to the editor pane (Figure 5.2(c)). Since she is interested in knowing which commits
were related to which classes, she wants to combine the [C|M] and [Cl|M] tiles. However,
note that to combine (multiply) the matrices they need to have the same dimension (re-
lationship). Since [C|M] and [Cl|M] do not share the same dimension, Dominoes doesn’t
allow Mamta to connect these two tiles (in Figure 5.2(d) the tiles have red colored edges).
Mamta realizes that to connect these two tiles she will have to transpose one of the ma-
trices. She transposes the [Cl|M] matrix by double clicking the tile, which swivels the
tile in the editor (Figure 5.2(e)). Note that she could also have right clicked on the tile
and selected the “transpose” operation. Once the [Cl|M] matrix is transposed, Dominoes
allows the two tiles to be combined (in Figure 5.2(f) the tiles now have green colored
edges). This leads to the derived tile [C|Cl], containing information about the commits
involved with the classes (Figure 5.2(f)). Mamta decides to save the derived tile for later
use (Figure 5.2(g)) by right clicking on the tile and choosing the “save” option.

5.2 Dominoes 85

Mamta then continues her exploration in Dominoes. She decides to create a [commit
⇥ commit] matrix by combining the [C|Cl] tile with its own transpose to generate the
[C|C] tile. She then multiples the following tiles: [D|C] ([developer ⇥ commit]) tile,
[C|C] tile, and the transpose of the [D|C] tile to generate the [developer ⇥ developer]
matrix. This matrix identifies the developers who are dependent on each other because
their commits involved a common set of classes. Mamta decides to save the [D|D] tile for
future use. In order to ensure that she remembers the logic behind the derived tile, since
there could be other ways two developers can be related (e.g., working on the same bug),
she names the tile as “dev-commit-dev”. Note that Dominoes not only allows users to
save derived tiles, but also automatically saves the interaction history – the series of steps
that were followed. If she wants, Mamta can replay her interaction history to generate
the derived data in a new session or in another project. Note that Dominoes also allows
Mamta to save her workspace, which saves all of her interactions and the tiles that she
has generated.

Now that Mamta has created the underlying data she wants to identify which devel-
opers are interconnected with her. To do so, she selects the “Graph” view to visualize
the [D|D] matrix (Figure 5.2(h)). The network graph (Figure 5.2(i)) shows developers
(green nodes) who are interconnected because of a common set of classes that they have
committed to. The view allows Mamta to set a threshold on the edge weight; that is,
she can filter out developers whose edges (number of connections) are below a certain
number. When she searches for her name (lower right corner of the UI in Figure 5.2(i)),
Dominoes highlights the node representing her and then she can follow the edges from
her node to identify the two other developers (Richard and Knut, as presented in Figure
5.2(j)) who are connected to her.

Different types of visualizations might be appropriate for different types of data. In
our scenario, the network graph visualization was the easiest for discerning relationships.
However, other analysis questions, such as who committed the most to a package or
which files are the most buggy, might require different types of visualizations, such as
bar graphs, matrices, and or tree visualizations. Dominoes currently provides these four
types of visualization. Dominoes UI is built using JavaFX 4 whereas the visualizations
are generated using JFreeChart 5 .

4Website: http://www.oracle.com/technetwork/java/javafx/overview/index.html
5Website: http://www.jfree.org/jfreechart/

5.3 Examples of Dominoes applicability 86

5.3 Examples of Dominoes applicability

In this section we are going to provide examples of how Dominoes can be used for ex-
ploratory analysis. Note that this is an intentionally simple example to explain the Domi-
noes applicability. In addition, each class is contained in the file with the same name of
the class (e.g.., the class Circle is inside file Circle.java).

Initially consider a scenario where three developers (Alice, Bob, and Carlos) work
together on a “geometry project”, containing four classes (Circle, Cylinder, Cone, and
Shape). Each class has four methods but just the methods used in the following sections
will be described. Circle has a method circumf() that calculates its circumference. Shape
has a method draw() to render a shape. Finally both Cylinder and Cone have methods
area() to calculate the area of the respective shapes. In addition, Cone has methods
collided() to check a collision against another shape; volume() to calculate its volume;
and copy() to make a copy of itself.

Using the previous established scenario, the following sections introduce how to use
Dominoes for calculating dependencies as well as showing how Dominoes can be used for
expertise identification.

5.3.1 Calculating dependencies using Dominoes

Using the established scenario, this section shows how data mining concepts such as
support, confidence, and lift matter when identifying artifact dependencies.

In order to begin the discussion, Table 5.1 describes five commits and their change
descriptions. Table 5.2 shows which commits modified which methods.

Table 5.1: Commits made by developers.
Commit # Developer Description

C1 Alice
Change type of function parameter to com-
pute the radius (Circle) and how to render it
(in Shape)

C2 Carlos Change the side of Cone and how to render
it

C3 Alice Change how a Shape is rendered

C4 Alice
Calculation of how circumference and area
are calculated using PI. Required modifica-
tion on how to draw a Shape

C5 Bob Modify the height calculation of a cylinder
and how it is rendered

5.3 Examples of Dominoes applicability 87

Table 5.2: Methods changed for commit.
Commit # Circle

circumf()
Cylinder
area()

Cone
area()

Shape
draw()

C1 1 1 0 1
C2 0 0 1 1
C3 0 0 0 1
C4 1 1 1 1
C5 0 1 0 1

Figure 5.3 represents the support, confidence, and lift values for the MM matrix,
where Ci represents Circle.circumference(), Cy - Cylinder.area(), Co - Cone.area(), and
S - Shape.draw().

Figure 5.3: Support, Confidence, and Lift calculated from previous scenario.

If we consider the confidence matrix, we notice that the dependency from Cy to Ci
(100% confidence - row 1 column 2) is stronger than from Ci to Cy (60% confidence,
row 2, column 1), because whenever Ci was changed, Cy was also changed (commits C1
and C4) (see Table 5.2). However, Cy was changed once without Ci (commit C5). With
such a confidence analysis we can state that Cy (always) depends on Ci, but Ci does not
necessarily depend on Cy. Therefore, using confidence to derive the DD matrix would
identify that Bob should communicate with Alice, but not necessary the opposite way.

The confidence matrix also indicates high dependency from S to all other methods.
However, this occurs not because S really depends on all other methods, but because S
was independently changed in all commits (see Table 5.2). The lift matrix eliminates such
coincidental dependencies, keeping only dependencies between Cy and Ci, and Co and Ci,
since all other values are either equal to or below 1.

In summary, support alone is not sufficient to indicate dependencies among project
entities, but helps in eliminating dependencies that appear by chance (e.g., Co and Ci). In
a large project, with thousands of commits, thresholding on a predefined support level can
help to eliminate accidental dependencies. On the other hand, lift plays a complementary
role of identifying dependencies to elements that are very frequent (e.g., S) and, therefore,
avoiding coincidental changes. Finally, confidence is important to identify the direction

5.3 Examples of Dominoes applicability 88

of the dependency (e.g., from Cy to Ci). With such an analysis, we find that the only
real dependency in our scenario is from Cy to Ci, which would lead to a communication
requirement from Bob to Alice in the DD matrix.

Our approach, therefore, provides four distinct advantages. First, the confidence
measure allows more nuanced investigations (e.g., direction of dependency). Second,
the use of lift measure coincidental relationships but unrelated changes. Third, the fine-
grained analysis at the method level increases accuracy, since we can identify dependencies
among individual methods. Therefore, if we find that Cy depends on Ci, we can find that
Bob needs to coordinate with Alice, who is working on Ci, and not another developer who
is working on the same file (Circle, but on a different method). Finally, GPU processing
allows these investigations to be performed interactively.

5.3.2 Expertise identification using Dominoes

In this section, we introduce how Dominoes can be used for identifying expertise of devel-
opers over artifacts in a project. It considers two important factors pertaining to expertise:
granularity of analysis and time. In essence, artifacts are not atomic, and local expertise
(in specific parts of an artifact) should be differentiated from global expertise (in the whole
artifact). Moreover, as artifacts naturally evolve over time the expertise of a developer
diminishes unless she has kept familiarity with the artifacts through time. Initially, the
importance of granularity during analysis is being discussed. Later, we analyze how this
expertise varies across time.

5.3.2.1 Granularity Matters

In this subsection we discuss two different strategies for calculating the expertise of a
developer in a given artifact (e.g., file): Expertise of a Developer (ED) and Expertise
Breadth of a Developer (EBD). The first one considers the entire artifact as an atomic
element. This strategy is vastly adopted in the literature [82, 22, 93]. However, to
differentiate among developer expertise, we use the z-score in our analysis. The second
approach uses the underlying composition structure of the artifact (e.g., methods) to
perform a fine-grained analysis when calculating expertise.

Expertise of a Developer (ED): it identifies the frequency of changes to an artifact
(e.g., file, project, etc.) by a given developer. Frequency of edits has long been used as a
proxy for identifying the knowledge that a developer has about an artifact, typically a file

5.3 Examples of Dominoes applicability 89

[5]. The intuition is that the more someone has edited a file, the more working knowledge
that person has about that file. The frequency of edits can therefore help answer two
related questions: (1) “who is the developer that is an expert for a given file?”, and (2)
“which files is a given developer an expert of?”.

Table 5.3 shows the previous established scenario after a set of commits. Based on this
scenario, it is possible to build a tile relating the three developers who have worked on four
files ([developer|file] - DF for short). Note that we arrive at the DF matrix by operating
over the basic tiles ([developer|commit] ⇥ [commit|file]). The cells in the derived matrix
DF represent the number of occurrences (e.g., the number of times a developer d

i

edited
a file f

j

), which is considered as “support” in data mining nomenclature. Besides that,
Table 5.3 also shows the number of commits performed by each developer (note that it is
different from summing all columns in a row, as a commit may comprise more than one
file).

Table 5.3: Developer ⇥ File.
Project Circle.java Cylinder.java Cone.java Shape.java # Commits

Alice 14 2 20 1 28
Carlos 10 24 12 1 25
Bob 25 10 8 4 40

To answer the first expertise question (who is an expert for a given file f
j

), we search
for the developers who mostly edited the file. This is done by scanning down the column
of f

j

in the DF matrix. In our simplistic example (see Table 5.3), if we want to identify an
expert for Cone.java, we would indicate Alice. Carlos would be considered as the second
most knowledgeable developer in that file.

To answer our second question, about the expertise of a specific developer d
i

, we
scan the rows in the matrix for the highest values. In our example, we find that Alice
has expertise in Cone.java, Carlos in Cylinder.java, and Bob in both Circle.java and
Shape.java.

A key challenge is identifying the right threshold to use in this approach. For example,
“is there a minimum number of changes that developers must have performed before they
can be considered as experts?”. Further, if two developers have changed the file, how
do we determine who can be defined as “the” expert - should that be the person with
the most edits? For example, if we are to compare the expertise of Alice versus Carlos
on Circle.java. Because Alice has made four more changes than Carlos, is it possible to
conclude that Alice clearly have more expertise than Carlos? Does a difference of four

5.3 Examples of Dominoes applicability 90

additional edits matter, or should there be a minimum distance between the numbers of
edits by developers to differentiate expertise between developers?

To overcome this challenge, we applied the z-score, where � is the absolute score in
Table 5.3 and µ and � are the mean and standard deviation of the number of edits for each
file, respectively. When using z-scores (see Table 5.4), cells above zero indicate values that
are above the mean, that is, they indicate that a developer has changed that file more
than the mean number of times that the file has been changed in the project. Similarly,
cells below zero indicate values below the mean. Moreover, cells above (or below) one,
two, or three indicate values above (or below) one, two, or three standard deviations from
the mean, respectively. For example, when we consider Cone.java, we see that it has
been changed on average 13.33 times (summing column 4 in Table 5.3 and dividing by
the total number of developers in the project), and that Alice has edited the file 1.34
standard deviations above the mean (Table 5.4, cell value for Alice’s edits to Cone.java).

Table 5.4: Standard Score.
Project Circle.java Cylinder.java Cone.java Shape.java

Alice -0.37 -1.10 1.34 -0.71
Carlos -1.00 1.32 -0.27 -0.71
Bob 1.37 -0.22 -1.07 1.41

We assume zero as the threshold for determining expertise. That is, to be counted
as an expert of a file a developer must have edited more than the mean change rate of
that file. In our example, this measure enables us to quickly identify the expert developer
for each of the files. Alice can be considered an expert in Cone.java, since she has made
significantly more changes than any other developer in the project. Similarly, Bob is an
expert in both Circle.java and Shape.java, and Carlos in Cylinder.java. Similarly, to be
considered a higher expert than another we assume that the developer has to present edits
that is one standard deviation higher.

Expertise Breadth of a Developer (EBD): here we challenge the assumption that
a developer who has more commits over a file always has the most (breadth) knowledge
of this file. Normally, a file comprises of a set of classes and methods and it is possible
that a developer only performs niche changes to a sub-set of methods or internal classes.
In such cases, numerous edits to only a subpart of the file do not guarantee that the
developer is an expert on the entire file. We, therefore, analyze changes at different levels
of granularity to create a more nuanced understanding of expertise.

To calculate EBD we run an analysis at a fine grain. In our case study we run an

5.3 Examples of Dominoes applicability 91

analysis at the method level, however, it is also possible to work at the lines-of-code
level if needed. We first calculate the absolute scores (count of number of edits to the
[developer|method] matrix, DM for short, which is computed as [developer|commit] ⇥
[commit|methods]). We then transform the absolute scores into z-score. Finally, using
zero as a threshold, we count the cells that have positive numbers as a measure of expertise.

As an example, consider Table 5.5 (DM matrix), which is composed of methods present
in Cone.java for class Cone and the number of commits performed by each developer,
which involved those methods. Table 5.6 presents the z-score calculated from Table 5.5.
In this example, it is possible to see that even though Alice has edited Cone.java the most
(20 times) and therefore had the highest ED for this file (Table 5.3), most changes she has
made were only related to a single method in the class of this file. In contrast, Carlos has
made only 12 changes (as compared to 20 by Alice), but his changes are spread across all
the methods in the class of the file. Therefore, based on our proposed metric, Carlos has
a higher EBD in Cone.java (in Table 5.6 Carlos has positive entries for three methods).
If we now look at the expertise of developers in the project that comprises these four
files, we find that Carlos is the expert in both Cone.java and Shape.java, and Alice in
Circle.java. Carlos and Bob both have expertise in Cylinder.java (see Table 5.7, which
presents experts by each file as well as its z-score in parentheses; we use 0 as threshold
when determining expertise).

Table 5.5: Developer ⇥ Method (DM matrix).
Cone.java area() collided() volume() copy()

Alice 2 1 1 16
Carlos 4 3 4 1
Bob 2 1 3 2

Table 5.6: Developer ⇥ Method z-score.
Cone.java area() collided() volume() copy()

Alice -0.71 -0.71 -1.34 1.41
Carlos 1.41 1.41 1.07 -0.78
Bob -0.71 -0.71 0.26 -0.63

Finally, calculating EBD for the project as a whole when considering the method-
grain based approach in Table 5.7 (note that here we omit presenting how the z-score at
method level for Circle.java, Cylinder.java, and Shape.java has been derived for easing
visualization) reveals that Carlos has the highest level in the project (he has three cells
that have positive z-scores) when compared to Alice and Bob (both have only one cell

5.3 Examples of Dominoes applicability 92

with positive z-score). Therefore, EBD can serve as a more precise measure of identifying
expertise of a developer when fine-grained data is available, instead of simply using ED.

Table 5.7: Expertise and z-score at file level.
Project Circle.java Cylinder.java Cone.java Shape.java

Alice 3 (1.41) 0 (-1.34) 1 (-0.71) 0 (-1.07)
Carlos 1 (-0.71) 3 (1.07) 3 (1.41) 3 (1.34)
Bob 1 (-0.71) 2 (0.27) 1 (-0.71) 1 (-0.27)

Recall that Dominoes can perform analysis at different levels of granularity by using
the appropriate composition matrix. Therefore, it can be used to indicate expertise by
analyzing edits at different levels of granularity. Here we explained how expertise of
developers can be calculated for the project by recursively considering edits from the
method level (called EBDM) to the file level and then to the project level. That is,
we give expertise credit to a developer for a file if she has a z-score above zero when
considering changes to methods of that file. The intuition here is that a developer is
considered an expert in a file if she has breadth of knowledge in that file (z-score > 0),
and this is recursively computed for the project.

We can follow a similar strategy to identify experts for the project by analyzing edits
directly from the file level (i.e., we give expertise credit to a developer for each file, in
which she has z-score of commits above zero for that file). We call this EBDF. The
intuition here is that to be considered an expert, a developer must have changed a file
more than average, and that information is aggregated for the project. The only difference
is that the latter considers files as atomic elements and does not take into account edits
to their methods.

Considering our example, if we simply used ED for determining expertise for the
project, that is, the person who has made most changes to the project as the highest
expert, then Bob would be considered the expert, followed by Alice and Carlos (see Table
5.3). When considering EBDF, we see that Bob would still be considered as the highest
expert followed by Alice and Carlos, as counting the number of files modified above the
mean is equal two for Bob and one for both Alice and Carlos in Table 5.4. However, when
using EBDM, we notice that Carlos has the highest expertise, as he is the expert in three
out of four files, while the others are expert in only one out of four files, as shown in Table
5.7.

5.4 Case studies 93

5.3.2.2 Time matters

As a project evolves, it is possible that developers take on different roles or move to
different parts of a project. Typical archival analyses for expertise identification do not
take project evolution into consideration [82, 23]. As a result of this, developers who had
made frequent changes in the past, but are no longer active and unaware of the current
project structure, may still be recommended as experts.

In our illustrative example, performing expertise analysis over such slices might show
that Bob has the highest expertise in Shape.java (see layer 1 in Figure 5.4), but as we
visit subsequent slices we see that the expertise shifts in time, with Alice being the expert
in the last window (layer 3 in the Figure 5.4) of the project. Such a time-based analysis
can show when an expertise handover occurs in a project (e.g., between periods 2 and 3
Bob makes much fewer edits to the Shape.java and Alice assumes development for that
file). Such analyses can, therefore, identify points when a developer started acquiring
expertise, how long it took to gain expertise to the extent of the previous expert, and for
how long a developer’s expertise is valid (as software changes, past expertise naturally
looses strength). Therefore, Dominoes allows more nuanced investigation of expertise -
for example, it can help answer how expertise has changed over time.

Figure 5.4: [developer|file|time] tile with layers in the back denoting recency.

5.4 Case studies

In this section we report on the evaluation of Dominoes in the context of dependency
calculation, expertise identification and its evolution, and performance evaluation. We
used the open source project Derby as our experimental object. We selected Apache
Derby because it has a large, active contributor base and has a good number of commit-
issue linkages (about 80%). All analyses were performed over the data extracted from

5.4 Case studies 94

Derby repository from Aug 2004 to Jan 2014, which comprises 7,573 commits, 36 unique
developers, 34,335 file changes, and 305,551 method changes committed during a span
of about 10 years. Additionally, for all the experiments a CPU (Intel Core 2 Quad Q6600)
equipped with a GPU (NVidia GeForce GTX 580) was used.

5.4.1 Dependency identification

We first created the MM matrix (dependencies between methods based on co-commit
information) and then applied the composition operation to calculate the ClCl (class to
class) matrix. We found that in Derby a file was associated with only one class, therefore,
for our purposes the ClCl matrix is the same as the FF ([file|file]) matrix. We then applied
the confidence and lift analysis on this matrix. We found that due to the characteristics of
Derby, the lift analysis does not filter out any coincidental dependencies. This is because
the Derby file dependencies are highly clustered, causing low support and a very high lift.
When we filter the lift values by thresholding it with “1”, no data points were eliminated.
Therefore, here we restrict our discussion to the support and confidence analysis.

Table 5.8 presents the top 5 logical dependencies in terms of support and with the
biggest difference in confidence (the filename extension is omitted). It is important to
remember that confidence is not transitive.

Table 5.8: Top 5 logical dependencies in terms of high support and biggest confidence
difference.

Artifact A Artifact B Support Conf.

(A-B)

Conf.

(B-A)

DataDictionary DataDictionaryImpl 79 0.88 0.37
DD_Version DataDictionaryImpl 45 0.78 0.21

LanguageConnection
Context GenericLanguageConnection

Context
44 0.86 0.48

DRDAConnThread DRDAStatement 37 0.22 0.68
ResultSetNode SelectNode 36 0.54 0.45

Considering the first case as an example, it is possible to observe that using the
common approach that is based on support, artifacts DataDictionary.java and Data-
DictionaryImpl.java would be considered as dependent on each other as they have a
high support (in fact, 79 is the highest value of absolute support in the whole system).
However, when observing the confidence, it is possible to see that only DataDictionary-
Impl.java has dependency with DataDictionary.java, which is reasonable as changing a
method implementation normally does not result in a change to its interface. The follow-

5.4 Case studies 95

ing two rows are also interface/implementation cases, presenting the same behavior. In
the fourth row, we have a composition case, where DRDAConnThread.java possesses a
DRDAStatement.java instance. In this case, modifying the former does not necessary im-
ply a modifications in the latter. However, there is a high likelihood of a related change in
the opposite direction, that is, modifications in DRDAStatement.java can change method
signatures used by DRDAConnThread.java, for instance.

Finally, the last case is a class specialization, which normally requires modification to
both files, with a slightly higher dependence from the subclass to the superclass. These
analyses show the importance of using confidence to identify the direction of the depen-
dencies.

Besides these five top dependencies, Figure 5.5 presents a scatter plot chart with
all dependencies at three specific support levels (10, 20, and 30). This chart plots each
dependency according to its confidence in both directions (A-B and B-A). This way,
dependencies with the same confidence value in both directions are plotted along the di-
agonal. As we can see, however, there are several cases where points are located far from
the diagonal. When we consider the rightmost chart in Figure 5.5 (support threshold at
30) for discussion, we can observe some distinct patterns. The red quadrant shows that
both conf(A-B) and conf(B-A) are less than 0.5, thus containing weak bidirectional
dependencies. The yellow quadrant, on the other hand, shows dependencies where both
conf(A-B) and conf(B-A) are above 0.5, thus containing strong bidirectional dependen-
cies. Finally, the green and blue quadrants show unidirectional dependencies with highest
divergences among confidence. In this case, dependencies from these quadrants can be
erroneously classified as bidirectional if we solely use support to analyze dependencies. Multi-Perspective Exploratory Analysis of Software Development Data 13

Fig. 3. Relation among confidence for various support threshold. The leftmost chart considers a threshold of 10,

while the middle uses 20, and finally the rightmost uses 30.

Besides these five top dependencies, Fig. 3 presents a scatter plot chart with all
dependencies at three specific support levels (10, 20, and 30). This chart plots each
dependency according to its confidence in both directions (A-B and B-A). This way,
dependencies with the same confidence value in both directions are plotted along the
diagonal. As we can see, however, there are several cases where points are located far
from the diagonal. When we consider the rightmost chart in Fig. 3 (support threshold at
30) for discussion, we can observe some distinct patterns. The red quadrant shows that
both conf(A-B) and conf(B-A) are less than 0.5, thus containing weak bidirectional
dependencies. The yellow quadrant, on the other hand, shows dependencies where both
conf(A-B) and conf(B-A) are above 0.5, thus containing strong bidirectional
dependencies. Finally, the green and blue quadrants show unidirectional dependencies
with highest divergences among confidence. In this case, dependencies from these
quadrants can be erroneously classified as bidirectional if we solely use support to
analyze dependencies.

Performing an analysis such as the one in Fig. 3 can unveil how inaccurate
dependencies extracted from support-based approaches tend to be. As demonstrated for
the Derby project, only dependencies in the yellow-quadrant should be classified as
bidirectional. Both blue and green quadrants present unidirectional dependencies.

In this evaluation, the CCl (i.e., [commit|class]) matrix was of size 7,578 × 34,335.
The generation of CClsup and CClconf using GPU (NVidia GeForce GTX 580) took about
0.2 minutes. However, performing the same computation using CPU (Intel Core 2 Quad
Q6600) took 413 minutes. This shows that we get a speedup of three orders of magnitude
when using GPU – with just the simple calculation that requires one transposition and
three multiplication operations. Similarly, when we process MC (i.e., [method|commit]),
with size of 305,551 × 7,578, it takes about 0.3 minutes in GPU. This calculation was
infeasible to do so in a reasonable amount of time when processed on CPU (after waiting
for 720 minutes). This makes CPU processing of data infeasible when analyzing fine-
grained project data.

Figure 5.5: Relation among confidence for various support threshold. The leftmost chart
considers a threshold of 10, while the middle uses 20, and finally the rightmost uses 30.

Performing an analysis such as the one illustrated in Figure 5.5 can unveil how inaccu-
rate dependencies extracted from support-based approaches tend to be. As demonstrated

5.4 Case studies 96

for the Derby project, only dependencies in the yellow-quadrant should be classified as
bidirectional. Both blue and green quadrants present unidirectional dependencies.

5.4.2 Expertise identification

In this section, we contrast analyses using fine-grain versus coarse-grain data when identi-
fying expertise in the Derby project by: (1) computing ED and EBD metrics for each file
and (2) comparing the experts for each file based on these metrics. ED and EBD metrics
diverged in 977 files, totalizing in 28% difference in expertise calculations. As previously
discussed, this difference is a result of how ED is calculated: summing up the number of
times a developer edited a file. Because of this, even if a developer has worked on only
very specific parts of the file, she is considered an expert for the entire file. This is how
expertise is normally identified by current approaches [82, 22, 93], potentially leading to
imprecision in the recommendations.

To demonstrate the difference when we calculate expertise at the coarse-grain (ED)
versus at the fine-grain (EBD), let us consider the file “CreateAliasConstantAction.java”
in the Derby project. This file comprises only one class with four methods: (1) Cre-
ateAliasConstantAction(), (2) executeConstantAction(), (3) toString(), and (4) vetRou-
tine(). Table 5.9 presents the expertise (ED) of two developers who edited this file the
most. The mean (1.88) and standard deviation (1.91) were computed out of 17 commits
made by 9 developers who edited the file in total.

On the other hand, Table 5.10 presents the expertise breadth (EBD) of the same
two developers from Table 5.9 as well as the number of commits, mean, and standard
deviation in order to highlight the difference between ED and EBD. It is important to
note that ED basically represents the number of commits and z-score of each developer
over the file. For instance, 7 commits are equivalent to 2.67 standard deviations above
the mean and 3 commits are equivalent of 0.58 standard deviations above the mean.

Table 5.9: Absolute and z-score ED for CreateAliasConstantAction.java.
Expertise of a Developer (ED)

Absolute ED Z-Score ED

djd 7 2.67
rhillegas 3 0.58

When we calculate expertise based on the number of commits that each developer
made to this file, we see that djd has a higher expertise (ED) when compared to rhillegas.
However, when using EBD we find that rhillegas has a higher expertise breadth in the

5.4 Case studies 97

Table 5.10: Absolute and z-score EBD for CreateAliasConstantAction.java.
Expertise Breadth of a Developer (EBD)

Developer Method 1 Method 2 Method 3 Method 4 EBD

djd 1 (-0.57) 2 (0.30) 1 (-0.57) 0 (-0.16) 1 (-1.00)
rhillegas 2 (1.73) 3 (1.50) 2 (1.73) 1 (1.00) 4 (1.00)

Total Commits 5 7 5 1 -
Mean / St. Dev. 1.25 / 0.43 1.75 / 0.89 1.25 / 0.43 1.0 / - -

file. The numbered columns show the absolute and z-score (in parentheses) commits for
each method. The last column shows the absolute and z-score (in parentheses) EBD
values for the whole file. As previously discussed, the absolute EBD at file level is the
number of methods each developer has modified above the mean (above zero z-score).
In this case, it is possible to see that djd has modified just one method above the mean
(CreateAliasConstantAction()), while rhillegas has modified all of the methods above
the mean. Consequently, we can consider that rhillegas (EBD value of 4) has a wider
knowledge over this file than djd (EBD value of 1).

It is important to note that, because we are using a fine-grained approach for cal-
culating EBD, we are able to distinguish between modifications that change the method
body, as compared to modifications that do not affect methods (e.g., inserting comments
or import statements). For instance, in our example we find that djd has committed
to the file seven times. However, only four of the changes really affected the methods.
On the other hand, rhillegas committed the file three times, but each commit changed
more than one method (e.g., Method 2 was modified by all three commits). Therefore,
when analyzing commits per file, djd would be considered an expert, whereas using the
fine-grained EBD view, we see that rhillegas has a broader expertise. In fact, rhillegas
has changed each individual method more times than djd (i.e., rhillegas dominates djd in
all methods).

Next, we calculate expertise for the file "EmbedConnection.java", since it is a large
file (it is comprised by 135 methods) and has been edited extensively. Table 5.11 shows
the difference when comparing ED and EBD for this file. From this table, we see that
djd has the most edits to the file (ED). However, he only touched 18 methods above the
mean (EBDM), leading to a low z-score. In contrast, kristwaa committed to this file only
8 times (ED), but her modifications touched 22 methods above the mean (EBD), leading
to a higher z-score when compared to djd. We find that rhillegas has the highest expertise
since he edited 59 methods above the mean.

Finally, bpendleton appears in Table 5.11 with two commits in the ED list. However,

5.4 Case studies 98

Table 5.11: Top expert developers at file EmbedConnection.java by ED and EBDM .

Dev. ED Z-score Dev.

EBD

M

(Method Level)

djd 21 2.28 rhillegas 59 2.04
kahatlen 19 1.98 coar 56 1.89
rhillegas 16 1.53 kahatlen 50 1.59
oysteing 14 1.23 kristwaa 22 0.21
dag 10 0.63 dag 22 0.01
kristwaa 8 0.33 djd 18 0.01
kmarsden 6 0.03 oysteing 18 0.01
abrown 2 -0.56 kmarsden 8 -0.47
bpendleton 2 -0.56 bernt 4 -0.67
lilywei 2 -0.56 bandaram 2 -0.77
bandaram 2 -0.56 lilywei 2 -0.77
bernt 1 -0.71 tmnk 1 -0.82
davidvc 1 -0.71 suresht 1 -0.82
dyre 1 -0.71 abrown 1 -0.82
coar 1 -0.71 mamta 1 -0.82
mamta 1 -0.71 dyre 1 -0.82
bakksjo 1 -0.71
suresht 1 -0.71
tmnk 1 -0.71

one of his commit was made because of importing modifications (not considered when
calculating EBD), and the other commit touched just one method. Therefore, he does
not appear in the EBD list. In contrast, coar , who has just one commit (15th position in
the ED list), has modifications to 56 methods above the mean (2nd position in the EBD
list) since he was responsible for the initial code creation.

The same approach can be applied at the project level to identify expertise when
considering the entire project history. There are three ways in which we can calculate
this, as discussed in Section 5.3.2.1. First, we calculate the total number of commits
performed by each developer in the project (ED column) as shown in Table 5.12. This
metric follows the intuition that the more commits a developer has made to a project,
the more knowledge he has about the project.

Second, we calculate EBD for the project by aggregating changes at the file level (i.e.,
we give expertise credit to a developer for each file, in which she has Z-score of commits
above zero for that file), called EBDF. Finally, we calculate EBD for the project by
aggregating changes from the method level (EBDM). That is, we give expertise credit to
a developer for a file if she has a Z-score above zero when considering changes to methods
of that file.

5.4 Case studies 99

Table 5.12: Top 10 expert developers by ED, EBDF, and EBDM.

Dev.

ED

Dev.

EBD

F

(File Level)

Dev.

EBD

M

(Method Level)

kahatlen 1393 djd 1846 2.61 djd 1533 3.42
djd 1190 rhillegas 1780 2.49 coar 1244 2.66
rhillegas 990 kahatlen 1556 2.08 kahatlen 1047 2.13
kmarsden 650 bakksjo 1252 1.52 rhillegas 960 1.90
kristwaa 640 coar 1210 1.45 dag 631 1.03
fuzzylogic 412 kristwaa 1045 1.15 kmarsden 467 0.60
myrnavl 385 fuzzylogic 893 0.87 kristwaa 403 0.43
dag 331 dag 879 0.84 bandaram 361 0.32
mikem 284 davidvc 866 0.82 fuzzylogic 322 0.21
mamta 282 bpendleton 823 0.74 bpendleton 245 0.01

When we compute the top 10 experts in the project, we see that kahatlen appears
as the highest expert in the project when considering the ED measurement. However, in
EBDF and EBDM he moves to the 3rd position. Conversely, djd assumes the 1st position
for both EBDF and EBDM measures, which means that djd has more breadth in knowledge
across the whole project than kahatlen. This clearly shows that calculating expertise by
simply computing the number of commits performed by a developer can yield to very
different results. Moreover, coar, who appears in the 5th and 2nd positions in EBDF and
EBDM, respectively, does not even appear in the ED list. The same situation occurs with
dag, who moves from the 8th position according to both ED and EBDF to the 5th position
when considering EBDM. Also note that bandaram (colored in green) in the EBDM list
does not appear in either ED or EBDF lists. On the other hand, two other developers
in EDBF list (bakksjo and davidvc, colored in red) do not appear in the EBDM list. This
shows that many developers make edits to only some portions of the file and may not
have expertise over the majority of the methods in a file.

Another interesting case occurs when we consider bakksjo, who is at the 4th position in
the EBDF list with a z-score of 1.52. When considering EBDM, he falls down to the 26th

position in this list (not shown in Table 5.12), presenting a value of 8 and a z-score of -0.61.
This happens because bakksjo has modified over 1300 files. However, most of his changes
introduced comments and copyright modifications, without any functionality changes in
the code. This is another example of how simply calculating edits to a file may not be the
right approach to identifying expertise on that file. These results show how fine-grained
analyses at the method level can provide a more nuanced view of expertise. Consequently,
another advantage of analyzing edits at the method level is the ability to filter out non-
code related changes. Previous research has used commit size as a mechanism to filter out

5.4 Case studies 100

copyright and other non-code related changes [79, 46]. Our results show that analyzing
edits at the method level provides a more accurate means of filtering out these ancillary
commits.

5.4.3 Expertise evolution

Another important aspect to consider when analyzing expertise is time. As software
and people change over time, it is expected that expertise also evolve. The Apache
Derby project, which is a long living and active project with a 10-year history, is not an
exception. We analyze expertise evolution through two studies, which identified changes
in expertise: (1) in one particular file, and (2) in the entire project. For both analyses we
group commits by using Equation 5.1.

We selected the file "EmbedConnection.java" to measure expertise evolution when
considering a single file, because it was the third most committed file in the project and
was “touched” by a large number of developers. When calculating the size of the sliding
window for the analysis (see Equation 5.1), MAM is equal to 11, as this was the number
of commits that occurred in the most active month, which was Feb 2008. MNC equals to
10, as we believe this provides a sufficiently large slice of data. Note that our choice of
MNC does not influence the results, as it is lower than MAM. We did not change the M
factor; therefore, our sliding window size is 11.

We derived the [developer|method] tiles for each layer, based on the aforementioned
sliding window, and stacked them to create a [developer|method|time] 3D tile for "Em-
bedConnection.java". We then computed a time-based EBD for it.

Figure 5.6 shows the graph of EBD evolution for each developer who have edited
EmbedConnection.java. We observe that djd was the most active developer for almost
half a year. Then, onwards kahatlen assumed expertise for almost a year, followed by
rhillegas, both relinquishing their expertise at the same time. The graph shows that
rhillegas, after almost three years since the beginning, starts to become an expert again
in this file. A few months after this, oysteing’s expertise starts to decline. At the end,
rhillegas can be considered the expert in this file. Note that if we were to determine an
expert for the file by using ED (and over the entire project) djd would be considered
the expert (Table 5.11). On the other hand, when we consider the evolution of expertise
(using EBD), we find that rhillegas has the most expertise breadth at the end.

For the second study (temporal analysis of expertise across the project as a whole),

5.4 Case studies 101

0"

5"

10"

15"

20"

25"

30"

1" 3" 5" 7" 9" 11
"

13
"

15
"

17
"

19
"

21
"

23
"

25
"

27
"

29
"

31
"

33
"

35
"

37
"

39
"

41
"

43
"

45
"

47
"

Ex
pe

r&
ze
(B
re
ad

th
((o
f(D

ev
el
op

er
(

Month(

kahatlen"

kristwaa"

rhillegas"

dag"

djd"

kmarsden"

oysteing"

bandaram"

lilywei"

tmnk"

μ""

μ"+"1σ"

μ"+"2σ"

Figure 5.6: Developer breadth expertise for file EmbedConnection.java.

when we consider the sliding window for analysis we group commits by setting MAM to
270 (Equation 5.1). This was the maximum number of commits that occurred in the most
active month (Aug 2006). We set MNC to 100, as we believe this provides a sufficiently
large slice of data over which to perform analysis. Again, our choice of MNC does not
influence the results, as it is lower than MAM. Also, the M factor was not changed, leaving
the sliding window size to 270.

We then compute EBD for the entire project by considering each time slice. Here we
show the results of our analysis of the top five developers in terms of EBD in Table 5.12.

Figure 5.7 shows the evolution of EBD of these developers. In this graph we find that
djd was the main developer in the beginning of the project, together with coar. Almost
a year and a half later, rhillegas and kahatlen start to contribute more extensively to the
project, increasing their expertise. Four years after the start of the project, djd leaves the
project and rhillegas takes over the development. In the fifth year of the project rhillegas
has his first month with EBD higher than two standard deviations above the mean (higher
dashed line). While rhillegas still remains very active, after six years kahatlen seems to
supersede rhillegas in terms of EBD. This clearly contrasts with the results presented in
Table 5.12: if we do not consider evolution, djd would be considered the main expert.

Finally, dag appears as the leading expert in Derby’s recent years (superseding ka-
hatlen), but had less activity in the earlier years. His expertise hardly even crossed one

5.4 Case studies 102

0"

50"

100"

150"

200"

250"

300"

350"

400"

1" 6" 11
"

16
"

21
"

26
"

31
"

36
"

41
"

46
"

51
"

56
"

61
"

66
"

71
"

76
"

81
"

86
"

91
"

96
"

10
1"

10
6"

11
1"

Ex
pe

r&
ze
(B
re
ad

th
((o
f(D

ev
el
op

er
(

Month(

djd"

kahatlen"

rhillegas"

dag"

coar"

μ""

μ"+"1σ"

μ"+"2σ"

Figure 5.7: Developer breadth expertise for the whole project.

standard deviation above mean (lower solid single line) during the project. Nevertheless,
he was an active developer. However, when analyzing over the entire project history, dag
(see Table 5.12 ED column) is classified as the 8th expert in the project.

5.4.4 Performance

Our approach has been designed to enable online exploratory analysis over large-scale
software engineering data. It makes efficiency of computation an underlying requirement.
In this section, we provide some benchmarks contrasting our approach using Dominoes
with an equivalent tool in CPU. This tool was specifically developed to allow comparison
of optimal CPU implementations with our GPU implementation.

In order to make a fair comparison, all linear transformations in CPU are made in
OpenBLAS 6, an open source implementation of BLAS (Basic Linear Algebra Subpro-
grams) API with many handcrafted optimizations for specific processor types, including
multi-core parallelism features. BLAS are a specified set of low-level subroutines that per-
form common linear algebra operations that include matrix multiplications. OpenBLAS
is able to decompose a BLAS operation into smaller “kernel routines” and is thus able to
use all available CPU cores during its processing, thereby making it a fair comparison.
We experimented both tools with different matrix sizes, providing evidences regarding
scalability. Additionally, in order to calculate the time, we processed the mean after run-

6OpenBLAS: http://www.openblas.net

5.4 Case studies 103

ning the experiments 20 times and removing the biggest and smallest times. We use the
Speed up metric, defined in Equation 5.6 to measure how fast GPU is in relation to
CPU.

SpeedUp =

T imeCPU

T imeGPU

(5.6)

The first step, the initial (full) loading of all commits into the database required 15
minutes in order to create the AST, while the parser to identify all changed methods took
about 208 minutes. However, we reiterate that this corresponds to a pre-process stage
and occurs only once, as future commits are processed in an incremental way.

The dependency calculation, described in Section 5.4.1, produced a matrix CCl ([com-
mit|class]) of size 7,578 ⇥ 34,335. The generation of CClsup and CClconf took about 0.2
minutes in GPU. However, performing the same computation using CPU took 413 min-
utes. This shows that we get a speedup of three orders of magnitude when using GPU -
with just the simple calculation that requires one transposition and three multiplication
operations. Similarly, when we process MC (i.e., [method|commit]), with size of 305,551
⇥ 7,578, it takes about 0.3 minutes in GPU. This calculation was infeasible in a reasonable
amount of time when processed on CPU (stopped after waiting for 720 minutes).

When evaluating the time required during expertise evolution across the time, de-
scribed in Section 5.4.3, we initially measured the total time spent to process the 3D tile
introduced in Section 5.3.2 at the coarse level ([developer|file|time]). This tile comprises
114 layers of a 36 x 3400 ([developer|file]) matrix (a total of 13,953,600 elements). Build-
ing this tile from Dominoes’ database takes 2.38 seconds. On the other hand, composing
a 3D tile at fine grain level ([developer|method|time]) takes about 189.96 seconds, com-
prising of 114 layers of 36 x 43,788 matrices ([developer| method]) each. Tile generation
is always done in CPU, as it is a query over the persistent database.

Processing the z-score requires calculating the mean and standard deviation of each
layer and then computing the z-score itself. Table 5.13 shows the times taken to calculate
EBD. In the first column (“EBDF”), we show the time necessary for creating a 3D tile for
the entire project when considering files as the unit of analysis. The total time taken to
process all layers (“Total” column) is 303.42 versus 19.59 seconds when comparing CPU
and GPU, respectively. Therefore, we have a speed up of 15.48 times in relation to CPU.
In the second column (“EBDM”), we also calculate EBD for the entire project, but this
time considering methods as the unit of analysis. The total time taken to process all

5.5 Usability evaluation 104

layers (“Total” column) is 1,998.31 and 212.01 for CPU and GPU, respectively, achieving
a speedup of 9.42 in relation to CPU.

Table 5.13: Processing time (in seconds) for calculating 3D tile for EBD in the project.
EBD

F
EBD

M

Mean & SD Z-Score Total Mean & SD Z-Score Total
CPU 2.19 301.23 303.42 424.71 1,573.60 1,998.31
GPU 0.10 19.49 19.59 8.55 203.46 212.01
Speed

Up

21.90 15.45 15.48 49.67 7.73 9.42

The results show that a large difference in performance can be achieved when we
perform the same analysis in GPU as compared to using CPU, even when the latter
employs optimal algorithms provided by OpenBLAS. It is important to note that we used
a conventional and affordable GPU card when running the experiments. Replacing this
card with a more powerful card, such as nVidia Tesla K40, could easily boost Dominoes
performance. The nVidia Tesla K40, the most powerful GPU at the time of writing of
this thesis, provides at least 20 times more computational power.

5.5 Usability evaluation

In order to evaluate Dominoes as a tool for exploratory analysis, this section presents the
approach used for its evaluation. Additionally, the results and insights gathered from this
study are also discussed in this section.

In this experiment, we are focused on answering the following research questions:

• How is the influence of the use of derived tiles for getting the right answer?

• Is it important to check the data produced along the exploration?

• What is the influence of relationships representation during exploration?

• What is the behaviour of participants after changing their exploratory path due to
mistakes?

• What are the barriers to start using Dominoes?

The remaining of this section presents the methodology used for the evaluation (Sec-
tion 5.5.1) and the results of our analysis (Section 5.5.2).

5.5 Usability evaluation 105

5.5.1 Methodology

Dominoes evaluation was performed by using a think-aloud method to investigate how
participants conduct their thoughts during exploration.

We used a section of the Apache Derby project history and formulated four scenarios
(i.e., tasks) to be solved by the participants. This subset of Apache Derby history com-
prehend a period from January 2013 to January 2014. The selected period produced a
total of 602 commits, 1,316 changes in classes, 7,792 changes in methods, and 264 issues.
We chose Apache Derby project since it is a stable project, still active since the beginning
of its life, and is a long-living project.

During the experiments, we observed participants while they performed actions to
solve the proposed problems.

5.5.1.1 Scenarios

Participants were presented to four scenarios to be solved using our tool. All scenarios
were aimed at using Dominoes tiles and their connections in order to manage and build
repository data relationships. For each scenario, a wide range of exploration paths could
be used at different abstraction levels (i.e., file, class, methods, etc.), as well as different
ways of composing data. In the following we describe all four scenarios.

Scenario 1: “Richard is planning on performing a major refactoring over the code
he has worked on in the last 3 months. He wants to analyze the commit history of his
modifications to identify which developers might be affected by his proposed refactoring.
How can he do so?”. This scenario was made in order to evaluate how is the barrier
to starting using Dominoes as well as if its relationship representations were easy to
understand by the participants.

Scenario 2: “Knut has been a core developer in Derby, but lately he has had too many
issues to resolve and is not able to fix them quickly enough. Therefore, the Derby manager,
Susan, has decided to give Knut a team of developers to work with. Knut would like to
form the team with people he has worked with before (in the context of fixing issues in the
past 6 months). How can Knut identify the developers who should be on his team?”. In
this scenario, we would like to observe the path taken for each participant, as it is a more
open question.

Scenario 3: “Derby’s project manager, Susan, wants to identify the appropriate de-

5.5 Usability evaluation 106

veloper to be assigned to a (new) task that requires significant modifications to the class
java.drda.org.apache.derby.drda.NetworkServerControl. She wants to do so based
on the developer history of the class in the last 4 months. How can Susan identify the
developer for this task?”. In this scenario, we aim at evaluating the participant’s abil-
ity for composing her answer using different fragments of data by looking at each one
individually.

Scenario 4: “The Derby team has realized that they have not refactored their code base
in a while and functionalities have been added in an ad hoc manner, so they would like
to refactor their code base. However, they have limited time for doing so, so they want
to first identify the classes that are the most brittle - that is, classes that have undergone
a lot of changes in the last six months of development. How can the team do so?”. In
this last scenario, we would like to observe if the participant grasps the meaning of each
kind of relationship available in Dominoes, as this scenario can only be answered by using
specific tiles.

It is important to state that all scenarios are aimed at evaluating the different explo-
ration patterns used by each participant.

5.5.1.2 Participants

In this evaluation, we are interested to know how participants explore repository rela-
tionships by using Dominoes. For this reason, we selected novice participants that had
never played with repositories before in order to see how they behave when using Domi-
noes. Moreover, we recruited people with industry experience as well as computer science
students, with different academic degree. Additionally, we asked each participant if they
have worked with repository analysis before, so we could map how previous knowledge
on repository analysis is important for using and understand Dominoes concepts. Figure
5.8 shows this information for each participant.

5.5.1.3 Study Design

A set of steps was established for the evaluation, as presented in Figure 5.9. The first step
consists in providing a document to the participant explaining how the experiment is going
to be conducted. In the following, they filled in a consentiment term for anonymously
using and publishing their collected data. In sequence, participants were instructed about
the think aloud method and presented to a video tutorial showing how Dominoes works

5.5 Usability evaluation 107

Figure 5.8: Participants’ characteristics.

and its basic operations. Moreover, the participants were reminded about the concepts of
matrix multiplication and transposition. All these training steps took around 25 minutes.
Finally, we gave the participant five minutes to play with Dominoes, using a different
database from the one used in the experiment, before the experiment actually started.

Figure 5.9: Experiment workflow performed for each participant.

After the initial instructions, the participant had a total of 15 minutes for finding
the answer to each scenario. Throughout the session, we collected audio of what the
participant said, video of the participant while talking aloud, and screen-captured video.
In addition, each participant needed to do a printscreen of her solution at the end.

During the session, we took notes about each unusual action performed by the partic-
ipant, such as finding results in a different way than most of the participants did. After
a short break, we conducted an interview with each participant about these notes. We
also asked about some mistakes that participants made in order to better understand if
the problem was related to Dominoes or due to the participant’s lack of knowledge in a
specific subject.

Finally, at the end of the interview, each participant received an exit survey form
containing the following questions about her experience with Dominoes: (1) Were Domi-
noes tiles easy to interact with? (2) Were Dominoes derived tiles easy to create and use?

5.5 Usability evaluation 108

(3) Were Dominoes operations easy to use? (4) Were Dominoes visualizations useful
in answering the questions?, and (5) Did Dominoes help you to investigate the Apache
Derby project? These questions were answered based on a likert scale, which ranges from
strongly disagree (1) to strongly agree (5). Additionally, the participants used the Mi-
crosoft Product Reaction Card 7 to best select their experiences during Dominoes usage.

5.5.1.4 Coding

We analyzed each step performed by the participant by watching the video and transcrib-
ing them into concrete actions performed on the tool. In sequence, these actions were
coded based on the intention of the participant considering the action itself as well as the
context. The codes are shown in Table 5.14, grouped into four main categories: explo-
ration, verification / validation, adjustments, and repetition. These codes were extracted
by the author of this thesis and reviewed by other researchers. Our analysis is mainly
based on the results of this coding step, however the video was revisited in some other
opportunities to double-check the obtained results.

5.5.2 Results

In this section we present the behaviour of participants during their sessions while working
on the proposed scenarios using Dominoes. As discussed before, their actions were coded
to help us to build a map of their intentions, presented in Figure 5.10.

S1 S2 S3 S4
P1 ✓ ✓ ✓ ✓

S1 S2 S3 S4
P2 ✓ ✓ ✓ ✓

S1 S2 S3 S4
P3 ✓ ✓ ✖ ✓

S1 S2 S3 S4
P4 ✓ ✓ ✓ ✓

S1 S2 S3 S4
P5 ✖ ✖ ✓ ✓

S1 S2 S3 S4
P6 ✓ ✓ ✓ ✓

S1 S2 S3 S4
P7 ✓ ✖ ✓ ✓

S1 S2 S3 S4
P8 ✓ ✓ ✓ ✓

S1 S2 S3 S4
P9 ✓ ✓ ✖ ✓

Deviation Repeat	and	Moving	Forward Moving	Forward Visualization	Tweak Checkpoint Backtracking Save Reuse Tile	Tweak ✓ Right	Answer ✖ Wrong	Answer Confirmation

Scenarios

Legend

Figure 5.10: Participants’ action map for the experiment.

Moreover, Figure 5.11 presents the time (in minutes) spent by each participant during
the experiment. For each participant, Figure 5.11 also shows if the participant succeed (a
tick) or failed (an x) in the scenario. This information is important for discussing about
the actions of the participants during the experiment.

The following subsections answer the aforementioned research questions.
7Developed by and c�2002 Microsoft Corporation. All rights reserved

5.5 Usability evaluation 109

Table 5.14: Coding used for participants’ actions.
Category Name Description

Moving Forward When the participant performs ex-
pected actions towards the solution.

Exploration Deviation When the participant performs actions
that won’t lead to answer.

Backtrack When the participant gives up a cur-
rent exploration path.

Checkpoint When the participant verifies if the
steps done until now are correct.

Verification / Right Answer When the participant reaches the right
answer.

Validation Wrong Answer When the participant reaches a wrong
answer.

Confirmation
When the participant checks another
visualization to ensure that the answer
is correct.

Adjustments Vis Tweak When the participant adjusts some as-
pects of the visualization.

Tiles Tweak When the participant adjusts some
tiles.

Repeat
When derived tiles are not used, lead-
ing to the repetition of the same oper-
ations.

Repetition Save When saving derived tiles.

Reuse When using derived tiles that were pre-
viously saved.

5.5.2.1 How is the influence of the use of derived tiles for getting the right
answer?

One interesting information we found during our analysis is that trying more than one
way to analyze relationship helps people to reach the correct answer. This is observed
quantitatively by the number of derived tiles used and its relationship with the number
of right answers provided. Here it is important to state that each derived tile represents
different relationships among artifacts and thus different perspective of analysis. For
instance, one could choose to explore the knowledge of a developer by using the files
touched, leading to [D|F] = [D|C] x [C|F] (coarse grain). On the other hand, another
participant can choose to perform this exploration by methods touched by a developer,
leading to [D|M] = [D|C] x [C|M] (fine grain). In this case, if the participant gets stucked
while analysing [D|M] tile, she can derive [D|F] and make the analysis over it, as [D|M]
can easily connect with [F|M]T.

5.5 Usability evaluation 110

Figure 5.11: Time (in minutes) taken by each participant during the experiment.

Figure 5.12 shows the number of derived and unique tiles and right answer. During the
experiment, the minimum number of derived tiles used by a participant was 13, leading
to just 2 right answers. On the other hand, the maximum number of derived tiles used
by a participant was 29, leading to all scenarios answered correctly.

Figure 5.12: Total of derived tiles and unique derived tiles, and right answer.

According to Figure 5.12, it is possible to observe that the number of unique derived
tiles closely follows the amount of derived tiles used. Based on this, we can conclude
that different exploration was done by the participants while answering the scenarios and
normally participants do not get stucked by producing the same relationships repeatedly.
A case where the number of derived tiles and unique derived tiles differs is for P1. In
fact, when looking at Figure 5.10, P1’s experiment is the one with most redundant actions

5.5 Usability evaluation 111

(repetition, in yellow), showing that previous steps and relationships are often being re-
done.

When analyzing P6, it is possible to observe that she is the participant that most used
derived tiles in addition to answering rightly all the scenarios. While exploring for giving
the answer to a scenario, she tinkered a lot before using the Dominoes tiles (being the
fourth participant who spent most time in the whole experiment). From the experiment,
we observed that allowing participants to combine tiles helped them to reach more correct
answers, as a consequence of visualizing the relationship from different perspectives. P6,
for example, said: “What about if I combine these two pieces [tiles]? Maybe this path will
lead to the answer”.

On the other hand, P5, who had answered only 2 scenarios correctly (S3, S4), was
the one with fewest derived tiles. She spent few time to understand each scenario and
answering them. Considering the mean time spent by each participant in the scenarios,
she just spent about half of this mean time for scenarios 1, 2, and 3. In scenario 4 the time
spent was close to the mean. While for scenarios 1 and 2 it is not a big problem (although
the participant has answered them wrongly), it is important for scenarios 3 and 4, as
they are more complex to answer. Scenarios 1 and 2 require more exploration (Dominoes
tiles manipulation) to be answered correctly, being one of the main factor that led P5
to miss them. On the other hand, scenarios 3 and 4 do not require much exploration to
be answered (for example, neither of them require using the support operation), which
explains why P5 succeed on answering them. According to Figure 5.10, she is the one
who did fewer actions to finish the whole experiment and did not explore at all.

However, the presented behaviour (number of derived tiles leading to correct answers)
could not be observed for P2, P7, and P8. While for P2 and P8 all questions were answered
rightly using few derived tiles, P7 missed one question, even being the second one to use
more derived tiles in the experiment.

When revisiting the P2 and P8 video, it was possible to observe that both participants
grasp the Dominoes concepts very fast. However, P2 had some difficulties to understand
and use the concept of support, requiring some backtracking to fix wrong tiles. Besides
this little problem, according to P2 “Dominoes pieces [tiles] are self explanatory and it is
possible to understand relationships easily”. In addition, P8 had already made repository
analysis before and could understand fastly the concepts of relationships in Dominoes (in
fact, she spent just 19 minutes for answering all the questions, the lowest time across
all the participants. On the other hand, P7 is the participant with the second highest

5.5 Usability evaluation 112

number of derived tiles and 3 right answers in total. This participant missed answering
scenario 2 since expertise based on issue was expected. Instead she computed expertise
by looking at the number of file modifications made by each developer. At the end, we
asked her why she did not perform the expertise calculation based on issue and she said:
“I did not noticed it [the [issue|commit] tile]”.

In addition, some paths we did not envision for answering the scenarios happened
during this experiment. For instance, while we expected scenario 3 to be answered by
looking at a derived tile presenting the total amount of modifications the class suffered by
a developer ([d|sum(Cl)], P1 and P5 answered this scenarios by using a [developer|class]
tile. They used a graph to visualized this tile and played with a threshold until just one
edge remained. The same happened to P3, who also used a graph to answer scenario 4.

5.5.2.2 Is it important to check the data produced along the exploration?

According to Figure 5.10, it is possible to observe that participants did multiple check-
points during their explorations. In fact, an average of 16.55 checkpoints per participant
have been made for the whole experiment.

When looking at Figure 5.12, P6 is the participant that most used derived tiles. After
combining tiles, the participant normally visualized them in order to better understand
the problem and take the right direction. In fact, while stucked on scenario 1, P6 opened
a derived tile and said: “That’s it! My logic to answer the question is right and now I
know how to proceed”. On the other hand, during a checkpoint on scenario 3 the same
participant said: “That is not what I want. It’s wrong. I need another dominoes piece
[tile]” and did a backtrack.

In some cases, checkpoints were useful in order to provide information about a wrong
path. In this case, participants realized they were in the wrong path and backtracked. In
fact, this pattern happened 7 times (4.69% from all checkpoints) in the whole experiment,
as can be observed on Figure 5.10. According to Figure 5.13 (zoomed over Figure 5.10
for P2/S2), P2 backtracked twice on scenario 2 after confirming by a checkpoint she was
in the wrong direction. In one checkpoint, the participant recovered to the right

direction. On the other one, the participant recovered to the right direction without
performing a checkpoint before. In the first checkpoint, she produced a derived tile that
was a diagonal matrix (as said before, P2 had a problem to understand support matrix).
After looking at this tile she said: “It will not help me as it is a diagonal matrix. It does
not make sense to be used”.

5.5 Usability evaluation 113

Figure 5.13: Actions performed by P2 on scenario 2.

Additionally, checkpoint helped participants to keep in the right path in 94 times
(63.09%). For instance, according to Figure 5.10, P4 is the third participant who did
most checkpoints. This participant did not deviate any time during the experiment, be-
ing able to answer all questions rightly. During her checkpoints, she normally says: “Ok,
I’m getting what I need to answer it [scenario]”. In addition, checkpoints were normally
followed by tiles tweaks for most participants. We observed that this pattern happened
29 times in the whole experiment.

Unfortunately, in some cases we observed that checkpoint was not effective while in
deviation. P7 on scenario 2, for example, did a checkpoint for almost every step while
deviating in order to see how to reach the correct result. While producing derived tiles, P7
opened a matrix visualization for checking the relationship, sometimes concluding that it
was not able to give the correct results. P7 also tried to use different kinds of visualizations
for the same derived tile in order to check the data from different perspectives. Such
an example happened when she was viewing a derived tile using a matrix visualization
and then changed to a graph visualization, saying: “This visualization [graph] is much
better to analyze it [relationship]”.

In order to compare these four cases discussed before, Table 5.15 presents the number
of checkpoints performed by the participants in different moments. The first case occurs
by doing checkpoints while moving forward and keeping moving forward (area colored
in green in Figure 5.10), represented by column 2 on Table 5.15. On the other hand,
column 3 represents checkpoints performed while in deviation that did not help to finish
the deviation (area colored in red in Figure 5.10). Finally, columns 4 and 5 represent
checkpoints performed immediately before switching from deviation to moving forward
(switch color from red to green in Figure 5.10) and from moving forward to deviation
(switch color from green to red in Figure 5.10), respectively.

Data visualization is important as people like doing progressive evaluation [50]. Domi-
noes makes it easier through the use of checkpoints. People did it not only when they
were deviating, but also when they were making progress (in the right path). According
to Table 5.15, this percentage is equivalent to 67.12% (column 2 + column 5). Besides
that, considering all participants, in 94% of these cases, checkpoints helped on keeping
the participant in the correct path, as only 6% of them deviated just after a checkpoint.

5.5 Usability evaluation 114

Table 5.15: Checkpoints performed by the participants in different situations.

Part.
Keeping
Moving
Forward

Keep
Deviating

Changing from
Deviation to

Moving Forward

Changing from
Moving Forward

to Deviation
P1 11 1 2 1
P2 8 3 1 1
P3 9 0 0 1
P4 20 0 0 1
P5 7 2 0 1
P6 11 3 3 0
P7 10 15 3 0
P8 9 1 1 0
P9 9 11 3 1

Total 94 36 13 6
Perc. 63.09% 24.16% 8.72% 4.03%

Moreover, 32.88% (column 3 + column 4) of the checkpoints were done during a devia-
tion. However, in 26.52% (of the cases they helped the participant to move to the correct
path. This result shows a clear tendency of the positive effects of checkpoints: 26.52% of
success on correcting a deviation with only 6% of side effect of starting a new deviation.

5.5.2.3 What is the influence of relationships representation during explo-
ration?

Although participants used many checkpoints to track their steps towards answering a
scenario, some of them (2 participants in 2 scenarios) did a backtracking without doing
a checkpoint. For instance, P2 did a backtrack on scenario 2 without looking at the
produced data. The same happened on scenario 1 for P3. During our interview session
after the experiment, we asked them how they knew they were in the wrong way without
looking at the produced data. They told us that the abstraction provided by Dominoes
over the data helped them to grasp the meaning of the produced relationships without
needing to open it to visualize. They said that by just looking at the Dominoes tile, they
could infer that it was the wrong data to answer the question. In fact, this statement
was confirmed when we analyzed the video as one of them said: “It is not the data [that]
I need to answer this question”.

5.5 Usability evaluation 115

5.5.2.4 What is the behaviour of participants after changing their exploratory
path due to mistakes?

Another fact that we could observe from participants while making a backtrack in their
sessions is that they normally reduce the time required for using the same number of domi-
noes tiles after the backtrack (i.e., the density of used tiles by time normally increases).
As an example, P1 on scenario 3 placed 0.83 tiles / minute before the first backtrack.
After that, she started to place 3.10 tiles / minute. It is represented in Figure 5.14, where
the numbers above the line represent the number of tiles placed by time.

Figure 5.14: Relationship about deviation, moving forward, and backtracking. The num-
bers over the lines represents tiles / minute.

From Figure 5.14 we can observe that in 6 out of 8 cases, the number of checkpoints
performed before and after a backtrack has been reduced. It is important to state that
normally a checkpoint requires analyzing the produced data, requiring more time. It shows
that after a backtrack, participants already know the produced data, avoiding visualizing
it again and, consequently, increasing the number of tiles / minute.

However, the opposite can occur (P6/S3 & S4), i.e., the number of tiles / minute
decreased after a backtracking. For these case, it is possible to observe that more check-
points were done after the backtrack than before it. While analyzing P6 video, we noticed
that she was more careful after the first deviation by saying: “Let me check every step
now”.

Moreover, it is interesting to note that in two cases (P2/S2 and P7/S1) multiple
backtracks happened in the same scenario, leading to a reduction of tiles placed / minute
after the second backtrack (numbers in blue). By analysing the video of these participants
we found that after the second backtracking, they were also more carefully while checking
the data for answering the question. In the case of P7, she did multiple checkpoints,
explaining the decrease in tiles placed / minute.

5.5 Usability evaluation 116

From the feedback we received, we can conclude that due to Dominoes performance
to analyze and build information, participants did not get afraid of trying out new ways
of exploration, and they explored with the tiles pretty fast. According to participant P6:
“Dominoes produces data very fast”.

5.5.2.5 What are the barriers to start using Dominoes?

When analyzing Figure 5.10, it is possible to see that most of the participants did not
have problems at all using Dominoes, as the green color (representing moving forward)
is dominant when compared to the red color (representing deviation). Additionally, due
to the number of tiles and relationships that Dominoes offers, some low yellow area is
observed (meaning repetition).

As told before, at the end of the sessions we asked participants to fill in a form with
some closed questions regarding their experience using Dominoes, as presented in Figure
5.15. This form helped us to evaluate Dominoes at the user perspective as well as to un-
derstand its weaknesses. Comparing participants that never had contact with repository
analysis before (P1, P2, P3, P4, P6, and P7), 2 out of 24 scenarios (6 participants ⇥ 4
scenarios) were not answered correctly (P3/S3 and P7/S2), representing a success rate of
91.66%.

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Did	Dominoes	help	you	to	inves<gate	the	Apache	Derby	project?	

Were	Dominoes	visualiza<ons	useful	in	answering	the	ques<ons?	

Were	Dominoes	opera<ons	easy	to	use?	

Were	Dominoes	derived	<les	easy	to	create	and	use?	

Were	Dominoes	<les	easy	to	interact	with?	

Strongly	Disagree	 Disagree	 Neutral	 Agree	 Strongly	Agree	

Figure 5.15: Dominoes feedback from the participants.

According to Figure 5.15, 8 out of 9 participants agree that Dominoes tiles were easy
to interact with (question 1). In the same way, 8 out of 9 participants agree that creating
and using derived tiles was easy (question 2). Moreover, 7 out of 9 participants agree that
using Dominoes operations was easy (question 3). Additionally, all participants agree that
the visualizations provided by Dominoes are useful for answering the scenarios (question
4). One interesting fact to observe from this figure is that all participants agree (8 out of

5.5 Usability evaluation 117

9 completely agree) that Dominoes helped them to investigate the Apache Derby project,
which was the main objective of the experiment.

Besides that, after filling this form, we asked the participants to choose the words
(positive or negative) in the Microsoft Reaction Card that best represented their expe-
rience using Dominoes. This selection was used to generate a word cloud presented in
Figure 5.16, where the word size reflects the frequence each word was chosen. The most
chosen word was “efficient”. As Dominoes uses GPU architecture for accelerating pro-
cessing, allowing online exploration, efficiency was a key concern in its design and was
well recognized by the participants. Additionally, the word “innovative” has been chosen
multiple times. In fact, as far as we know, Dominoes is the first approach that uses a ludic
metaphor (dominoes game) to allow exploratory analysis over repository. Finally, during
the interview at the end of the session, participants told P1 said: “Congratulations. It
[Dominoes] is an interesting tool. When it will be available for use?”.

Figure 5.16: Word cloud chose by participants from the Microsoft Reaction Card.

5.5.3 Discussion

After performing Dominoes evaluation, we could identify some initial evidences that sup-
port the following findings:

• Allowing more than one way to explore a problem leads to more correct results
during exploration, as each user can select the best grain and relationship that fits
to the problem (Section 5.5.2.1).

5.6 Threats to validity 118

• Providing the ability to check intermediate data during exploration helps keeping
the analysis in the correct path. At the same time, providing these checkpoints
helps users to recover from a wrong to the right path (Section 5.5.2.2).

• The use of Dominoes’ game pieces for representing the data and relationship creation
helps users to understand the meaning of the data and relationships (Section 5.5.2.3).

• People normally are faster after the first backtracking as they already know how to
produce data and do not need to visualize it frequently (Section 5.5.2.4).

• As the first contact with Dominoes, users succeed on 31 out of 36 scenarios (Section
5.5.2.5).

• Dominoes seems to be useful, fast, and efficient according to the participants. At the
same time, it was easy to interact and compose new relationships (Section 5.5.2.5).

However, our study was also able to identify some deficiencies in Dominoes. For
example, P1, P2, P4, P6, and P7 tried to answer scenario 3 by looking at a matrix
visualization and by manually searching for the answer. Due to the fact that this matrix
is big (about 8 ⇥ 300), it became difficult for finding the right cell. In this case, after
spending some time in this visualization, they tried the bar chart visualization, with
more tweaks, such as search and ordering. For instance, while looking at the data using
the matrix visualization, P1 said: “It is important to have an option to search on this
visualization”. Additionally, P2 said regarding the bar chart: “It would be interesting to
put the number on each bar in the bar chart. Depending on the numbers of bars, it is
difficult to see the numbers”.

Moreover, although interacting with the tiles was intuitive, we could observe some
trouble when moving pieces to the editor. People wanted to drag the tiles to the editor,
however the hand icon only means that tiles can be reorganized in the library, not dragged
to the editor (this is done with a double-click). Participants quickly understood the
interaction paradigm, but it is something to change in the future.

5.6 Threats to validity

The divergence of expertise from expertise breadth that we observed is largely based on
the Apache Derby project. We selected Apache Derby because it has a large and active
contributor base. It is possible that other projects might not have as much as deviation

5.7 Related work 119

in expertise breadth. We need further studies of other projects to observe whether such
deviation between expertise and expertise breadth holds true. A central construct in our
analysis is that if someone edits a method, we assume that the developer has a certain
degree of knowledge of that method. However, since other approaches also use number
of edits as a proxy for knowledge, this is not a major threat. Further, our analysis filters
out non-source code changes to the method (or file).

Another threat in our study is that we use z-scores to identify expertise, which assumes
a normal distribution. Project data might not be normal. However, since we use z-scores
to identify developers who have made edits more than the average number of times, non-
normality of our data should not be a problem. In the worst case, the z-score provides us
a ranking (even if some developers have negative scores) with a perception of the distance
among data points in the sample.

Additionally, each method inside a class might not have the same importance. For in-
stance, get/set methods have a low complexity to implement or maintain, when compared
to other functional methods (e.g., executeConstantAction). In this case, it is desirable to
use a weighting mechanism for methods according to their complexity, which can then
help in identifying experts not only on the breadth of their knowledge, but also on the
complexity of the changes that they have made.

Regarding to usability study, we received positive feedback from the participants that
used Dominoes. However, this study was executed with only 9 participants, producing
a total of 36 scenarios. Although almost all their thoughts and actions were carefully
analyzed, we cannot generalize the results due to the low number of participants and
their representativeness. In this case, we cannot assume that Dominoes will be as useful
as discussed here for other users or in other scenarios. Additionally, the participants are
familiar to software engineering field, facilitating their analysis and comprehension of the
tool.

5.7 Related work

We could identify a broad range of related work focused on data exploration for knowledge.
Some related work contributes by identifying dependencies [22], providing tools for

exploratory analysis [93, 13, 44, 35], expertise identification [46, 79, 4, 65, 91, 96],
proposing infrastructure for repository analysis [12, 82, 45], and infrastructure

focused on speeding up data analsysis [36, 41].

5.7 Related work 120

Determining dependencies can be done by a number of approaches that focus on
identifying structural dependencies (through syntactic analysis) or logical dependencies
(through change history) amongst artifacts. Cataldo et al. [22] stands out as they use
matrices to process dependencies among developers based on dependencies among arti-
facts. In their approach, both structural dependencies and logical dependencies become
Task Dependency (T

D

) matrices, and change requests, associating developers to artifacts,
becomes Task Assignment (T

A

) matrix. These matrices are used in an equation that
indicates coordination requirements T

A

⇥ T
D

⇥ T T

A

. Our approach generalizes this idea
by allowing different kinds of exploration over matrices. Finally, our identification of re-
lationships is innovative, as it allows combining support, confidence, and lift, to compose
the dependency matrix depending on the required analysis.

Gîrba et al. [46] defined an “Ownership Map” visualization to understand when and
how different developers interacted and in which parts of the code, as well as define who
a file belonged to and for how long. In their approach, lines of code added/removed by
each developer are counted to determine ownership. A developer who owns (made the
latest edit) the most number of lines in the file is considered the owner of the file. It does
not take into account the syntactic structures of the file (such as classes or methods) and
is influenced by non-functional changes like comments. Our approach, in contrast, can
detect changes at different granularities as well as ignores non-functional changes.

Exploratory Data Analysis tools provide either predefined questions or are very lim-
ited to derive information that was not conceived beforehand. In the case of Tesseract
[93], for example, the available relationships are preprocessed and the matrices are fixed
at a coarse grain (file-file, file-developer, file-bug, bug-developer). CodeBook [12] fol-
lows a similar approach and creates a network that connects developers and artifacts by
mining version control change logs, emails, and other artifacts in a software repository.
The underlying graph can then be used by applications to answer different analysis ques-
tions (e.g., WhoseIsThat [13] identifies artifacts edited by a developer). Additionally,
exploration using CodeBook is constrained to search nodes and their connections. Our
approach uses matrices to define software relationships and allows for unconstrained data
exploration and manipulation. Moreover, we perform incremental update of data, which
is not the case for CodeBook.

Information Fragment [44] allows a user to compose information from tasks, change
sets, and teams to explore the relationships between these entities. Unfortunately, it
operates at a predefined granularity level, while navigating from fine-grain to coarse-grain

5.7 Related work 121

and vice-versa is essential for exploratory analysis. Also, it needs to restrict the data
that can be analyzed, because performing interactive data analytics of software archives
through visual explorations of relationships among project elements is infeasible at the
scale of operation that is needed.

Recommender Systems are approaches designed to help decision-making. McDon-
ald and Ackerman [79] introduced Expertise Recommender (ER), which is based on two
heuristics for recommending developers for specific tasks: tech support and change his-
tory. The tech support heuristic uses an issue database to search for similar situations
and recommends the people involved in previous situations. The change history heuristic
states that the last person that changed an artifact is a good candidate for changing it
again. Unfortunately, the latter heuristic places a high weight on the most recent changes
and ignores the past, which might affect the quality of the recommendations. Our ap-
proach uses the entire history of a repository, but segregates this history into timeframes
that allow the perception of how expertise fluctuates over time.

Anvik et al. [4] proposed an approach to recommend developers for a specific issue
by using machine learning techniques exclusively over an issue database. This way, the
provided information does not take into account artifacts’ modifications in order to suggest
a developer who is the most appropriate to change specific artifacts. Our focus is different,
as we identify expertise over artifacts (e.g., files, project).

Kagdi et al. [65] propose a system for assisting in the tasks of allocating developers for
changing a given file. It considers three metrics to compose a ranked list of recommended
developers: contribution, activity, and recency of changes. The contribution metric indi-
cates the number of commits each developer has made over a file. The activity metric
indicates the number of days the developer has committed at least once in the project.
The recency metric indicates the date of the last commit of each developer. This approach
works only at coarse grain (i.e., files) and is not designed to support online exploratory
analysis. Further than a recommendation system, Dominoes provides a generic and flex-
ible platform for exploratory analysis of project elements at any granularity level, which
is compatible with multiple data types and relationships. Its interactive capabilities are
mainly possible due to the adoption of the massively parallel architecture of the GPU.

Posnett et al. [91] consider both artifact and developers perspectives in order to
extract focus and ownership for computing a unified score: DAF (developer attention
focus), which measures how focused is a developer during his task (i.e., their work is
spread among many artifacts or is more focused). In contrast, EBD measures the breadth

5.7 Related work 122

of expertise of a developer in specific artifacts (or the project).

Schuler and Zimmermann [96] propose an approach for measuring expertise by the
frequency in which a developer uses a method. While this information can help for
identifying a person who knows how to use a method, it might not help in identifying
the developer who knows that method the best, that is, the person who is the most
appropriate to edit that method. Instead, our approach uses modifications inside a method
for proposing experts in a file.

Additionally, there are works that propose infrastructures to facilitate the automated
expertise identification through repository exploration. For example, Minto and Murphy
[82] introduce the Emergent Expertise Locator (EEL). EEL is based on the framework by
Cataldo et al. [22] for matrix manipulation, thus requiring massive linear operations to
be performed depending on the size of the project. To avoid this problem, EEL imposes
a constraint over matrix size, allowing only matrices up to 1,000 ⇥ 1,000 elements to be
used. Besides that, EEL uses coarse-granularity (i.e., files) to recommend experts. How-
ever, the problem of personnel allocation becomes harder for large projects, with much
more than 1,000 files. Moreover, assuming files as atomic units may lead to inadequate
recommendations, as changes in very specific parts of the file or broader changes in mul-
tiple parts are considered equivalent. Our proposed approach, on the other hand, works
at a fine grain (i.e., methods) to differentiate specific changes from broader changes. This
leads to large matrices to be processed, which can be performed interactively because of
the underlying GPU architecture of Dominoes.

Evolizer, by Gall et al. [45], is a tool for mining software archives at fine grain in
order to compare source code changes. From these analyses, recommendations such as
change type patterns and consistency of changes can also be made. It analyzes AST level
changes to identify different types of changes and modification patterns. Dominoes allows
for an open set of questions that can be answered based on how the relationships are
composed by the user during exploration. Also, our architecture is modeled in a way that
any repository can be plugged into the system, avoiding the necessity to build a new tool.
Tempe [35] is a tool for data science environment exploration. It is based on a query
language and allows for living programming, providing continuous visualizations as well
as data streaming. However, it is important to state that data used in Tempe for analysis
has to be processed before its usage. On the other hand, Dominoes provides the user with
processed data that can be used for manipulation, analysis, and visualization.

Finally, there are works that aims at speeding up repository analysis. Boa [36] provides

5.8 Final considerations 123

an infrastructure for analyzing large scale software repositories on a cluster. Although its
performance may be comparable to Dominoes, setting up a CPU cluster is not a trivial
task, making it more applicable for researchers in the university than for developers in
the industry. On the other hand, when an infrastructure is already built to be used by
the research community, other constrains can be applied such as confidentiality over the
data, which can only be used inside the organization. Jean-Rémy et al. [41] developed
the Harmony platform, a unified model that extracts and analyzes data at a coarse grain
from different version control systems. After extracting the data to a database, the user
is responsible for dealing with pieces of data to extract the desired information. These
tools require the user to write a functional script to define what the platform needs to
process per analysis type. This can be a constraint, since end users will need to program
their analysis and write a script for each of their queries. Dominoes has a friendly user
interface that allows even non-programmers to start exploring a repository.

5.8 Final considerations

Dominoes is an exploratory data analysis approach that allows users to select information
about different project elements and their interrelationships from a repository. Relation-
ships are represented by matrices, defined as basic building tiles and derived building tiles.
Both kinds of building tiles can be combined iteratively to reveal deeper and complex re-
lationships. Through such explorations, relationships that have not been computed or
published before can be discovered. Dominoes makes possible a new realm of exploratory
analysis that can be made at the users own computer, without relying on difficult com-
mands and a complex infrastructure. As all operations are performed in parallel over
GPU, exploratory analysis can occur seamlessly at interactive rates, even when comput-
ing relationships in fine-grained data. The current version of Dominoes tool extracts data
from a Git repository and operates over the matrices by using GPU kernels implemented
in CUDA.

The Dominoes architecture was intentionally designed to easily accommodate the def-
inition of new basic building tiles, such as relationships mined from communication chan-
nels (e.g., email, chat, discussion forums). The same extensibility feature also applies for
operations. Besides the basic matrix operations, such as multiplication and transposition,
specialized operations can also be easily created and plugged into Dominoes, as showed
in Section 5.2.3 for support, confidence, and lift. This makes Dominoes a contribution to
the scientific community, as empirical studies can be reproduced over different corpora in

5.8 Final considerations 124

order to validate an investigation. This has the potential of alleviating the pain of setting
up an environment for each trial of an investigation.

Using Dominoes, we contrasted the use of support alone and the use of support
and confidence to distinguish the dependence directions. In the case of Apache Derby,
employing confidence leads to a more accurate analysis for finding dependencies among
artifacts. Moreover, using confidence for thresholding a relationship is more natural for
the user, as it represents a normalized value.

Additionally, we demonstrate that performing exploratory data analysis in software
repositories has computational challenges. Here we show how our approach can analyze
fine-grained data, such as edits to classes or methods to identify expertise in a project.
Our results show that when we consider expertise by only recognizing edits at the file-
level, we get a 28% deviation as compared to when we analyze expertise based on the
breadth of developers’ knowledge. Moreover, since we calculate changes at a fine-grained
level, we are able to filter out those changes that do not affect the method body, thereby,
being more precise in expertise identification.

We also presented the concept of tridimensional matrices of relationships across soft-
ware project elements over time. These matrices allow temporal analysis of relationships.
When identifying expertise in Apache Derby, we found that temporal analysis shows the
flow in developer expertise for a single file, as well as for the whole project. It also
shows when a developer stopped being active and “handed over” the expertise to another.
Had we considered the entire history of the Derby project, the analysis would incorrectly
recommend a developer who was no longer active in the project.

Finally, the Dominoes’ usability had been evaluated. In this evaluation, participants
explored a project that they never heard about before, producing new derived tiles, differ-
ent relationships, and new perspectives for visualizing these relationships. In such project,
it was observed a rate of 86.11% of right answers, which is a positive score for a new tool.
Based on this result, a natural extension would be to release Dominoes to the community
in order to get feedbacks about how people behave using Dominoes for exploring their
own projects for finding different kinds of relationships.

Chapter 6

Conclusion

6.1 Contributions

In this thesis, we present two negative consequences on VCS due to limitations related
the processing of large amount of data: (1) the lack of diff, patch, and merge support
for binary artifacts (more specifically for images and videos), and (2) inability to perform
on-line exploratory repository analysis over the project history.

Binary artifacts are typically treated as opaque data by VCS. In this case modifications
performed over these binary artifacts are difficult to comprehend in addition to make use
of more memory due to the lack of a delta. Moreover, a VCS repository can be used for
extracting information such as relationship dependencies and expertise and its fluctuation
over time. However, depending on the repository size and its lifetime, some constraints
to extract information are imposed such as the grain of processing and history limitation,
which normally affect the accuracy of extracted knowledge.

As presented in Chapter 1, the goal of this thesis consists on conceiving, implement-
ing, and evaluating GPU algorithms and data structures for solving the aforementioned
problems, offering VCS support for: (1) diff, patch, and merge operations over image an
video artifacts and (2) fast processing of large repositories for knowledge extraction. To
reach this objective, a great amount of data needs to be processed, whether for allow-
ing diff, patch, and merge support to binary artifacts or extracting knowledge. In this
case, our contribution can be dismembered on processing binary artifacts, as discussed in
Section 6.1.1, and extracting knowledge over repositories, presented in Section 6.1.2.

6.1 Contributions 126

6.1.1 Diff, patch, and merge over image and video

Processing binary artifacts on VCS requires specialized diff, patch, and merge operations.
In this thesis, an approach for dealing specifically with image and video artifacts was
proposed. This approach makes collaborative work possible for image and video artifacts,
enabling merging, and indicating, through observation, any physical conflicts that may
exist. Additionally, besides the visual information about the change provided by the delta,
it significantly reduces the space required for storage when compared to saving the whole
artifact. In this way, our delta reduced the disk space requirement up to 99.57 % for
video, and even decreased the repository size for images when a consecutive blur filter is
applied.

Due to the fact that processing these kinds of artifacts requires a significant effort
and may jeopardizing the user productivity, our approach uses GPU architecture. Our
GPU alternative can boost VCS common operations over images, reaching a speed boost
almost 55⇥ higher in some cases, when compared to a CPU-bound architecture. When
analyzing the time for processing a video artifact, the boost can be up to 2.2 ⇥ higher for
some operations. Our proposal is designed and implemented using an architecture that
allows its easy inclusion in commercial, existing VCS.

We can summarize the benefits of our contributions on diff, patch, and merge over
images and videos as:

• Reduction by approximately 10 times of the repository size when using IMUFF ;

• Reduction by approximately 14 times of the repository size when using IMUFF
image processing techniques;

• A speedup performance up to 55 ⇥ in GPU in relation to CPU in IMUFF ;

• A file size reduction about 99.57% when comparing the size of the delta to the size
of the whole video artifact by VIMUFF ;

• A speedup performance up to 2.55 ⇥ in GPU in relation to CPU in VIMUFF ;

6.1.2 Repository analysis

In this thesis we presented Dominoes, an exploratory data analysis approach that allows
users to select information about different project elements and their interrelationships

6.2 Limitations 127

from a repository. Additionally, the concept of tridimensional matrices of relationships
across software project elements over time was employed. These matrices allow temporal
analysis of relationships.

Due to our GPU approach, all these explorations over repositories can be performed
fast when compared to the CPU. Our approach is able to overcome CPU in about three
orders of magnitude during repository processing.

We can summarize the contributions on repository analysis as:

• Design and implementation of a tool (Dominoes) for on-line repository analysis;

• Usage of Dominoes to analyze artifact dependencies on Derby project;

• Usage of Dominoes to analyze developer expertize on Derby project;

• Usage of Dominoes to analyze developer expertize fluctuation over time on Derby
project;

• Benchmark over Dominoes showing that the use of GPU can reach speedups up to
49.67 ⇥ in relation to CPU, allowing interactive features in repository exploration;
and

• Usability evaluation of Dominoes, showing a success rate of 86.11% while partici-
pants explored a repository using Dominoes for the first time.

It is worth it to mention that Dominoes library is being used by other projects in the
group, that aim at identifying the best developer to merge branches [34].

6.2 Limitations

IMUFF can deal with many different types of images. However, currently it only works
with image artifacts that are of the same size, generating results that are also of the same
size. To bypass this constraint, a modification of the data structure permitting it to deal
with images of different sizes is required. In such a case, only portions of the images that
are actually being processed need to be stored. It is important to state that this does
not affect the size in terms of disk space, due to the adoption of compression prior to
storing the generated deltas. This limitation is due the fact that our solution is working
a pixel-by-pixel matching.

6.2 Limitations 128

Regarding VIMUFF, our approach for video artifact manipulation, some aspects could
be improved. One of them is related to frame storage during extraction. Currently, all
frames extracted from a video are maintained in memory. This could impose a barrier
over the size of the videos that can be processed by VIMUFF. In order to solve this, each
video frame can be maintained in disk, being indexed by the hash of its content, allowing
retrieval of a frame in O(1) time. Additionally, the MD5 based hash takes a considerable
amount of time to be generated according to our results. Replacing it by a parallel version
of SHA-1 hash [42] can improve VIMUFF during its processing.

Besides that, some steps could be further parallelized, such as the DCT hash genera-
tion. Currently, we compute one frame at a time in GPU, which degrades the performance
due to memory latency. One solution for this is computing in batch or using the CUDA
stream mechanism [88]. We believe that this modification would greatly improve the
performance of this step.

Additionally, one of the biggest problems when using VIMUFF with compressed video
format is regarding pixel alignment. In this case, two frames that look like the same
have pixels with different colors due to quality loose during the previous compression.
Applying VIMUFF over them generates a high number of modified frames, which highly
increases the delta size, sometimes at values that is five times bigger than summing up
the two original videos. For solving this problem, a filter can be applied over the frame
to minimize the noise and avoiding such high number of not aligned pixels.

Dominoes uses a matrix approach for representing relationship among artifacts, thus
providing a set of operations that make sense in terms of matrix and data analysis.
In this case, the existence of a relationship among artifacts is represented as one, or
zero otherwise. This representation still makes sense after a matrix manipulation, as
multiplication by zero produces zero, indicating no relationship. However, some kinds of
relationships cannot be represented this way, such as a file deletion. For instance, using
another number to represents a file deletion in [commit|file] tile would lead to incorrect
results after its multiplication. For solving this problem, a non-binary representation must
be used and, keeping valid at the same time the matrix operation.

Moreover, regarding to Dominoes’ visualization, it would be interesting to allow more
options for it, such as search and sort. This was one of the most problems participants
faced while doing their analysis.

6.3 Future work 129

6.3 Future work

IMUFF is capable of producing understandable delta for presenting the difference between
two images. However, when global transformations are applied over the entire image, it
leads to a delta without black pixels, which may be difficult for users to understand the
difference between two images. In order to minimize this problem, we try to detect such
global transformations (i.e., geometric transformations that are applied to the image as
a whole). If this global transformation cannot be retrieved, another approach should
be used for avoiding presenting to the user an incomprehensible delta. One possible
solution is performing object detection over an image and tracking its modification such
as moving its position or reducing its size. Being able to detect such kind of transformation
would greatly benefit the user by providing a more precise identification of changes. This
modification would impact the data structure, requiring the storage of such specific object
transformation. Unfortunately, algorithms for object detection and tracking are related to
computer vision, which are normally complex, requiring a considerable amount of time.
However, some efficient algorithms to detect objects and transformations do exist and
may be implemented using GPU for boosting their processing.

Additionally, our presented delta shows the result of a XOR operator, where the color
is different from the one observed in the image. In order to improve the comprehension
of the difference, a mask could be produced by using the pixels’ position presented in
the XOR and applied over the original image, thus exhibiting the real color of the pixels
instead of the XOR result.

Finally, the IMUFF could be applied for different situations other than VCS. For
example, it could be adapted for detecting common areas in the image or identifying
duplicated regions within an image.

Currently VIMUFF cannot deal with sound stream presented in video artifacts, just
operating over the video stream. For this reason, a natural future work would be de-
veloping diff, patch, and merge operations for sound artifacts and integrating them to
VIMUFF, allowing it to process all the streams presented in a video. This would allow a
complete solution for versioning video artifacts.

VIMUFF works well for small videos like the ones used for evaluation. However,
when the video presents a long duration, such as films, it may take considerably more
time. One possible solution for this problem could be organizing frames into chunks.
Instead of calculating the hash for each frame, the hash would be calculated by chunks.

6.3 Future work 130

The number of chunks can be generated by applying a recursive subdivision heuristic in
order to find the longest common chunks. In this case, a video can be processed by using
a dynamic granularity, instead of working over all frames of the video at once.

Additionally, many steps are still being executed in CPU, leading to a small speed
up when compared to IMUFF. The MD5 hash generation is the slowest step executed
by VIMUFF, actually processed in CPU. Using a parallel algorithm for generating such
hash code in GPU would heavily improve the whole time required for processing a video
in VIMUFF.

Another possibility for VIMUFF is performing an internal diff, which represents a diff
inside the same video. For this situation, the user could lock a frame, or a chunk, and
process the difference between it and other chunks or frames in order to detect significant
changes between the locked frame or chunk and the others. One application for such
internal diff is checking if a security camera has recorded a movement without having to
look at the whole video.

Finally, some video codecs use the concept of keyframes, which is a frame stored as
a whole followed by a certain number of frames stored as a difference to the keyframe.
When processing such videos, IMUFF could use these keyframes and all the following
deltas to speed up the processing without the need to uncompressing the videos.

Regarding both image and video artifacts, an interesting work would be creating a
multimedia repository specialized in such artifacts. In such case, all approaches presented
so far for image and video artifacts could be used for multimedia documents with reasoning
support.

Dominoes allows repository exploration through the manipulation of its tiles in order
to produce relationships. During our study, we make use of some of them to analyze
artifact dependency and expertise and its fluctuation in time. However, more analysis
could be made with the others tiles that are available in Dominoes. For instance, we
did not make any kind of analysis involving the [commit|issue] title. By using this tile,
it should be possible to extract information about buggy artifacts and its evolution with
time. Additionally, the manipulation of this tile could be used to check how the team could
be organized in order to minimize the number of bugs. On the other hand, bugs added by
a developer could be also related with the expertise of this developer. By correlating bugs
with expertise it would be possible to see through time if increase in expertise decreases
or not the number of bugs added by a developer.

6.3 Future work 131

In addition, Dominoes is ready for importing new data from another sources, such as
email communication. Expanding the sources of data available in Dominoes can further
increase the types of analysis. Using a relationship about users and her communication
can unveil certain patterns about team organization. Besides that, it can be used with
[commit|issue] tile to analyze whether or not communication decrease bugs.

Finally, Dominoes approach can be applied to other domains by letting users to load
and play with their own matrices representing other kinds of relationships. In this case, all
operations and infrastructure provided by Dominoes would be available for these matrices.
Following this idea and based on the fact that we also propose fine-grained processing both
image and video artifacts, Dominoes could be adapted for doing repository exploration
over such artifacts instead of just source code. When considering a video, for instance,
we could still work at coarse-grain, by considering the video as a whole, or at fine-grain,
by considering the frames of the video. Even further, some exploration could be done
at pixel level in order to detect information such as the most changed area (which may
represents an object at high level) and the most conflicted areas during a merge.

References

[1] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990
(1990), 1.

[2] Akenine-Möller, T.; Haines, E.; Hoffman, N. Real-Time Rendering 3rd
Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[3] Ammar, S. R. L. F. M. A. R. A. Multicore Computing: Algorithms, Architectures,
and Applications. CRC Press, 2013.

[4] Anvik, J.; Hiew, L.; Murphy, G. C. Who should fix this bug? In International
Conference on Software Engineering (New York, NY, USA, 2006), ICSE ’06, ACM,
pp. 361–370.

[5] Anvik, J.; Murphy, G. C. Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.
20, 3 (Aug. 2011), 10:1–10:35.

[6] Arman, F.; Hsu, A.; yee Chiu, M. Feature management for large video
databases. In SPIE Storage and Retrieval for Image and Video Databases (1993),
pp. 2–12.

[7] Asklund, U.; Bendix, L. A software configuration management course. In
ICSE Workshops on SCM 2001, and SCM 2003 conference on Software configu-
ration management (Berlin, Heidelberg, 2003), SCM’01/SCM’03, Springer-Verlag,
pp. 245–258.

[8] Austerberry, D. Digital asset management. Elsevier, 2004.

[9] Babich, W. A. Software Configuration Management: Coordination for Team Pro-
ductivity. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[10] Barreto, A. S. UMA ABORDAGEM PARA DEFINIÇÃO DE PROCESSOS
BASEADA EM REUTILIZAÇÃO VISANDO À ALTA MATURIDADE EM PRO-
CESSOS. Tese de Doutorado, COPPE/UFRJ, 2011.

[11] Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features
(surf). Comput. Vis. Image Underst. 110, 3 (June 2008), 346–359.

[12] Begel, A.; Khoo, Y. P.; Zimmermann, T. Codebook: Discovering and exploit-
ing relationships in software repositories. In ACM/IEEE International Conference
on Software Engineering - Volume 1 (New York, NY, USA, 2010), ICSE ’10, ACM,
pp. 125–134.

References 133

[13] Begel, A.; Phang, K. Y.; Zimmermann, T. Whoselsthat: Finding software
engineers with codebook. In ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (New York, NY, USA, 2010), FSE ’10, ACM, pp. 381–
382.

[14] Biolchini, J.; Mian, P. G. Systematic Review in Software Engineering. Tech.
Rep. RT-ES 679/05, COPPE/UFRJ, Rio de Janeiro,RJ,Brasil, 2005.

[15] Bolinger, D.; Bronson, T. Applying RCS and SCCS, 1 ed. OŔeilly & Asso-
ciates, Inc, 1995.

[16] Bonanni, L.; Xiao, X.; Hockenberry, M.; Subramani, P.; Ishii, H.;
Seracini, M.; Schulze, J. Wetpaint: scraping through multi-layered images.
In International conference on Human factors in computing systems (New York,
NY, USA, 2009), CHI ’09, ACM, pp. 571–574.

[17] Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).

[18] Brandao, A.; Brandao, L.; Nascimento, G.; Moreira, B.; Vasconcelos,
C. N.; Clua, E. Jecripe: stimulating cognitive abilities of children with down
syndrome in pre-scholar age using a game approach. In International Conference
on Advances in Computer Entertainment Technology (New York, NY, USA, 2010),
ACE ’10, ACM, pp. 15–18.

[19] Buffenbarger, J. Syntactic software merging. In Selected Papers from the ICSE
SCM-4 and SCM-5 Workshops, on Software Configuration Management (London,
UK, UK, 1995), Springer-Verlag, pp. 153–172.

[20] Busch, D. D. David Busch’s DSLR Movie Shooting Compact Field Guide. Cengage
Learning PTR, Natick, MA, USA, 2012.

[21] Carroll, S. R.; Carroll, D. J. Statistics made simple for school leaders data-
driven decision making. Scarecrow Press, 2002.

[22] Cataldo, M.; Herbsleb, J. D.; Carley, K. M. Socio-technical congruence: A
framework for assessing the impact of technical and work dependencies on software
development productivity. In ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (New York, NY, USA, 2008), ESEM ’08,
ACM, pp. 2–11.

[23] Cataldo, M.; Wagstrom, P. A.; Herbsleb, J. D.; Carley, K. M. Identi-
fication of coordination requirements: Implications for the design of collaboration
and awareness tools. In Conference on Computer Supported Cooperative Work (New
York, NY, USA, 2006), CSCW ’06, ACM, pp. 353–362.

[24] Chacon, S. Git-media, 2009. [Online; Accessed in 02-sep-2014].

[25] Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J. W.; Skadron, K.
A performance study of general-purpose applications on graphics processors using
cuda. J. Parallel Distrib. Comput. 68 (October 2008), 1370–1380.

[26] Chen, H.-T.; Wei, L.-Y.; Chang, C.-F. Nonlinear revision control for images.
ACM Trans. Graph. 30 (August 2011), 105:1–105:10.

References 134

[27] Conradi, R.; Westfechtel, B. Version models for software configuration man-
agement. ACM Comput. Surv. 30 (June 1998), 232–282.

[28] Corporation, N. Nvidia cuda programming guide, 2011.

[29] da Silva, J.; Clua, E.; Murta, L.; Sarma, A. Niche vs. breadth: Calculating
expertise over time through a fine-grained analysis. In International Conference on
Software Analysis, Evolution and Reengineering (SANER) (March 2015), pp. 409–
418.

[30] da Silva Jr., J. R.; Clua, E.; Murta, L.; Sarma, A. Multi-perspective ex-
ploratory analysis of software development data. International Journal of Software
Engineering and Knowledge Engineering 25, 1 (2015), 51–68.

[31] da Silva Junior, J. R.; Clua, E.; Murta, L. Efficient image-aware version
control systems using gpu. Software: Practice and Experience (2015), n/a–n/a.

[32] da Silva Junior, J. R.; Pacheco, T.; Clua, E.; Murta, L. A gpu-based archi-
tecture for parallel image-aware version control. European Conference on Software
Maintenance and Reengineering 0 (2012), 191–200.

[33] Dart, S. Concepts in configuration management systems. In International work-
shop on Software configuration management (New York, NY, USA, May 1991),
ACM, pp. 1–18.

[34] de Souza Costa, C. Método de alocação de participantes para o merge de ramos.
unpublished thesis, 2014.

[35] DeLine, R.; Fisher, D.; Chandramouli, B.; Goldstein, J.; Barnett, M.;
Terwilliger, J.; Wernsing, J. Tempe: Live scripting for live data. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (Oc-
tober 2015), pp. 137–141.

[36] Dyer, R.; Nguyen, H. A.; Rajan, H.; Nguyen, T. N. Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories. In International
Conference on Software Engineering (Piscataway, NJ, USA, 2013), ICSE ’13, IEEE
Press, pp. 422–431.

[37] Estublier, J. Distributed objects for concurrent engineering. In Proceedings of
the 9th International Symposium on System Configuration Management (London,
UK, 1999), SCM-9, Springer-Verlag, pp. 172–185.

[38] Estublier, J. Software configuration management: a roadmap. In Proceedings
of the Conference on The Future of Software Engineering (New York, NY, USA,
2000), ICSE ’00, ACM, pp. 279–289.

[39] Estublier, J.; Leblang, D.; Clemm, G.; Conradi, R.; Tichy, W.; van der
Hoek, A.; Wiborg-Weber, D. Impact of the research community on the field
of software configuration management: summary of an impact project report. SIG-
SOFT Softw. Eng. Notes 27, 5 (Sept. 2002), 31–39.

References 135

[40] Estublier, J.; Leblang, D.; Hoek, A. v. d.; Conradi, R.; Clemm, G.;
Tichy, W.; Wiborg-Weber, D. Impact of software engineering research on the
practice of software configuration management. ACM Trans. Softw. Eng. Methodol.
14 (October 2005), 383–430.

[41] Falleri, J.-R.; Teyton, C.; Foucault, M.; Palyart, M.; Morandat, F.;
Blanc, X. The harmony platform.

[42] Fechner, B. Gpu-based parallel signature scanning and hash generation. In In-
ternational Conference on Architecture of Computing Systems (ARCS) (Feb 2010),
pp. 1–6.

[43] Feiler, P. H. Configuration management models in commercial environments.
Technical Report 7 CMU/SEI-91-TR-7 ESD-9-TR-7, Software Engineering Insti-
tute, 1991.

[44] Fritz, T.; Murphy, G. C. Using information fragments to answer the questions
developers ask. In ACM/IEEE International Conference on Software Engineering
- Volume 1 (New York, NY, USA, 2010), ICSE ’10, ACM, pp. 175–184.

[45] Gall, H. C.; Fluri, B.; Pinzger, M. Change analysis with evolizer and
changedistiller. IEEE Softw. 26, 1 (Jan. 2009), 26–33.

[46] Girba, T.; Kuhn, A.; Seeberger, M.; Ducasse, S. How developers drive
software evolution. In International Workshop on Principles of Software Evolution
(Washington, DC, USA, 2005), IWPSE ’05, IEEE Computer Society, pp. 113–122.

[47] Git-annex. Git-annex, 2012. [Online; accessed 02 September 2014].

[48] Gonzalez, R. C.; Woods, R. E. Digital Image Processing, 3 ed. Prentice Hall,
2008.

[49] Grabler, F.; Agrawala, M.; Li, W.; Dontcheva, M.; Igarashi, T. Gener-
ating photo manipulation tutorials by demonstration. In ACM SIGGRAPH 2009
Papers (New York, NY, USA, 2009), SIGGRAPH ’09, ACM, pp. 66:1–66:9.

[50] Green, T.; Petre, M. Usability analysis of visual programming environments:
A ‘cognitive dimension’ framework. Journal of Visual Languages & Computing 7, 2
(1996), 131 – 174.

[51] Grossman, T.; Matejka, J.; Fitzmaurice, G. Chronicle: capture, exploration,
and playback of document workflow histories. In ACM symposium on User interface
software and technology (New York, NY, USA, 2010), UIST ’10, ACM, pp. 143–152.

[52] Hamming, R. Error Detecting and Error Correcting Codes. Bell System Technical
Journal 26, 2 (1950), 147–160.

[53] Hass, A. M. J. The Project Manager’s Guide to Software Engineering’s Best
Practices, 1 ed. IEEE Computer Society Press and John Wiley & Sons, 2002.

[54] Hass, A. M. J. Configuration Management Principles and Practice. Pearson
Education, Inc, Boston, MA, 2003.

References 136

[55] Heer, J.; Card, S. K.; Landay, J. A. prefuse: a toolkit for interactive informa-
tion visualization. In SIGCHI conference on Human factors in computing systems
(New York, NY, USA, 2005), CHI ’05, ACM, pp. 421–430.

[56] Herbsleb, J. D.; Grinter, R. E. Splitting the organization and integrating the
code: Conway’s law revisited. In International Conference on Software Engineering
(New York, NY, USA, 1999), ICSE ’99, ACM, pp. 85–95.

[57] Hirschberg, D. S. Algorithms for the longest common subsequence problem. J.
ACM 24, 4 (Oct. 1977), 664–675.

[58] Hu, S.-M.; Xu, K.; Ma, L.-Q.; Liu, B.; Jiang, B.-Y.; Wang, J. Inverse image
editing: Recovering a semantic editing history from a before-and-after image pair.
ACM Trans. Graph. 32, 6 (Nov. 2013), 194:1–194:11.

[59] Hunt, J. J.; Vo, K.-P.; Tichy, W. F. Delta algorithms: an empirical analysis.
ACM Trans. Softw. Eng. Methodol. 7, 2 (Apr. 1998), 192–214.

[60] Hunt, J. W.; Mcilroy, M. D. An algorithm for differential file comparison.
Tech. rep., AT&T Bell Laboratories, Inc., 1975.

[61] Hunt, J. W.; McIlroy, M. D. An algorithm for differential file comparison.
Tech. Rep. CSTR 41, Bell Laboratories, Murray Hill, NJ, 1976.

[62] Jackson, D.; Ladd, D. A. Semantic diff: A tool for summarizing the effects of
modifications. In International Conference on Software Maintenance (Washington,
DC, USA, 1994), ICSM ’94, IEEE Computer Society, pp. 243–252.

[63] Jacobsen, J.; Schlenker, T.; Edwards, L. Implementing a Digital Asset
Management System: For Animation, Computer Games, and Web Development.
Focal Press, 2005.

[64] Júnior, J. R. D. S.; Clua, E.; Murta, L.; Sarma, A. Exploratory data analysis
of software repositories via gpu processing. In International Conference on Software
Engineering and Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada,
July 1-3, 2013. (2014), pp. 495–500.

[65] Kagdi, H.; Poshyvanyk, D. Who can help me with this change request? In
International Conference on Program Comprehension. (May 2009), pp. 273–277.

[66] Khayam, S. A. The discrete cosine transform (dct): Theory and application.
department of electrical & computing engineering, 2003.

[67] Klemmer, S. R.; Thomsen, M.; Phelps-Goodman, E.; Lee, R.; Landay,
J. A. Where do web sites come from?: capturing and interacting with design
history. In SIGCHI conference on Human factors in computing systems: Changing
our world, changing ourselves (New York, NY, USA, 2002), CHI ’02, ACM, pp. 1–8.

[68] Krogh, P. The DAM Book: Digital Asset Management for Photographers.
O’Reilly, 2009.

References 137

[69] Krüger, J.; Westermann, R. Linear algebra operators for gpu implementation
of numerical algorithms. In ACM SIGGRAPH 2003 Papers (New York, NY, USA,
2003), SIGGRAPH ’03, ACM, pp. 908–916.

[70] Kurlander, D. Watch what i do. MIT Press, Cambridge, MA, USA, 1993,
ch. Chimera: example-based graphical editing, pp. 271–290.

[71] LayerVault. Layervault, 2012. [Online; Accessed 02 September 2012].

[72] Le Gall, D. Mpeg: a video compression standard for multimedia applications.
Commun. ACM 34, 4 (Apr. 1991), 46–58.

[73] Leon, A. A Guide to Software Configuration Management. Artech House Publish-
ers, Norwood, MA, 2000.

[74] Lin, C.-Y.; Chang, S.-F. A robust image authentication method distinguishing
jpeg compression from malicious manipulation. Circuits and Systems for Video
Technology, IEEE Transactions on 11, 2 (Feb 2001), 153–168.

[75] Lin, W.-Y.; Tseng, M.-C.; Su, J.-H. A confidence-lift support specification for
interesting associations mining. In Pacific-Asia Conference on Advances in Knowl-
edge Discovery and Data Mining (London, UK, UK, 2002), PAKDD ’02, Springer-
Verlag, pp. 148–158.

[76] Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J. Nvidia tesla: A
unified graphics and computing architecture. IEEE Micro 28 (March 2008), 39–55.

[77] Liou, M. Overview of the p?64 kbit/s video coding standard. Commun. ACM 34,
4 (Apr. 1991), 59–63.

[78] Mafra, S. N.; TRAVASSOS, G. H. In Simposio Brasileiro de Engenharia de
Software (2005), vol. 1, pp. 72–87.

[79] McDonald, D. W.; Ackerman, M. S. Expertise recommender: A flexible rec-
ommendation system and architecture. In Computer Supported Cooperative Work
(New York, NY, USA, 2000), CSCW ’00, ACM, pp. 231–240.

[80] Meneely, A.; Williams, L. Socio-technical developer networks: Should we trust
our measurements? In International Conference on Software Engineering (New
York, NY, USA, 2011), ICSE ’11, ACM, pp. 281–290.

[81] Mens, T. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28, 5 (May 2002), 449–462.

[82] Minto, S.; Murphy, G. C. Recommending emergent teams. In International
Workshop on Mining Software Repositories (Washington, DC, USA, 2007), MSR
’07, IEEE Computer Society, pp. 5–.

[83] Montoni, M. Uma Abordagem para Condução de Iniciativas de Melhoria de Pro-
cessos de Software. Tese de Doutorado, COPPE/UFRJ, 2007.

[84] Murta, L.; Oliveira, H.; Dantas, C.; Lopes, L. G.; Werner, C. Odyssey-
scm: An integrated software configuration management infrastructure for uml mod-
els. Sci. Comput. Program. 65 (March 2007), 249–274.

References 138

[85] Murta, L. G. P. Version control - an introduction. University Lecture, August
2012.

[86] Murta, L. G. P. Uma introdução aos sistemas de controle de versão distribuídos.
CBSoft Lecture, September 2014.

[87] Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel pro-
gramming with cuda. Queue 6 (March 2008), 40–53.

[88] NVIDIA. Cuda zone. [Online; accessed 13 August 2010].

[89] O’Sullivan, B. Making sense of revision-control systems. Commun. ACM 52, 9
(Sept. 2009), 56–62.

[90] Paradowski, M.; Sluzek, A. Detection of image fragments related by affine
transforms: Matching triangles and ellipses. In International Conference on Infor-
mation Science and Applications (ICISA) (April 2010), pp. 1–8.

[91] Posnett, D.; D'Souza, R.; Devanbu, P.; Filkov, V. Dual ecological
measures of focus in software development. In International Conference on Software
Engineering (Piscataway, NJ, USA, 2013), ICSE ’13, IEEE Press, pp. 452–461.

[92] Rivest, R. L. The MD5 Message-Digest Algorithm (RFC 1321). http://www.

ietf.org/rfc/rfc1321.txt?number=1321.

[93] Sarma, A.; Maccherone, L.; Wagstrom, P.; Herbsleb, J. Tesseract: Inter-
active visual exploration of socio-technical relationships in software development. In
International Conference on Software Engineering (Washington, DC, USA, 2009),
ICSE ’09, IEEE Computer Society, pp. 23–33.

[94] Satish, N.; Harris, M.; Garland, M. Designing efficient sorting algorithms
for manycore gpus. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on (May 2009), pp. 1–10.

[95] Schefstörm, D.; van den Broek, G. Tool Integration: Environments and
Frameworks. John Wiley & Sons, 1993.

[96] Schuler, D.; Zimmermann, T. Mining usage expertise from version archives.
In International Working Conference on Mining Software Repositories (New York,
NY, USA, 2008), MSR ’08, ACM, pp. 121–124.

[97] Steward, D. The design structure system: A method for managing the design of
complex systems. Engineering Management, IEEE Transactions on EM-28, 3 (Aug
1981), 71–74.

[98] Strang, G. The discrete cosine transform. SIAM Rev. 41, 1 (Mar. 1999), 135–147.

[99] Swaminathan, A.; Mao, Y.; Wu, M. Robust and secure image hashing. Infor-
mation Forensics and Security, IEEE Transactions on 1, 2 (June 2006), 215–230.

[100] Swierstra, W.; Löh, A. The semantics of version control. In ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (New York, NY, USA, 2014), ACM, pp. 43–54.

References 139

[101] Tichy, W. F. Rcs - a system for version control. Softw. Pract. Exper. 15, 7 (July
1985), 637–654.

[102] Wong, J.; Capretz, M. A. M. An implementation for merging images for ver-
sion control. In WSEAS international conference on Computers (Stevens Point,
Wisconsin, USA, 2006), ICCOMP’06, World Scientific and Engineering Academy
and Society (WSEAS), pp. 662–667.

[103] Zauner, C. Implementation and Benchmarking of Perceptual Image Hash Func-
tions. Master’s thesis, University of Applied Sciences, Austria, 2010.

[104] Zimmermann, T.; Weisgerber, P.; Diehl, S.; Zeller, A. Mining version his-
tories to guide software changes. In International Conference on Software Engineer-
ing (Washington, DC, USA, 2004), ICSE ’04, IEEE Computer Society, pp. 563–572.

140

APPENDIX A -- Systematic mapping on version

control over multimedia artifacts

A.1 Introduction

Systematic mapping studies are defined in literature as a specific research methodology
aimed at collecting and evaluating available evidences related to a subject [14]. According
to Mafra and Travassos [78], a literature review without reproducibility property can be
less embracing, not confident, and reviewer dependent. As a consequence, defining a
research protocol can considerably increase the coverage and confidence during a literature
reviewing process.

In this thesis we present a systematic mapping study aimed at locating and classify-
ing related research to version control of multimedia artifact, specifically for images and
videos. Using the systematic mapping technique and considering our experience in this
field, we hope to reduce the risks presented by informal literature review. As a conse-
quence, we expect to cover as many work as possible and allow the reproducibility of this
review.

In order to perform this study, we define three activities, a proposed by Montoni [83]:

• Protocol development : define a research protocol aimed at guiding the study direc-
tion, test, and evaluate the protocol. The protocol is evaluated in order to check its
viability as well as to make the necessary adjustments.

• Research conduction: the research is conducted using the protocol defined before
and the results are evaluated. This activity also involves quantitative and qualitative
analysis of the collected data.

• Publish the results: this process involves publish the results in a conference, maga-
zine, or scientific library.

A.2 Systematic mapping protocol 141

Due to the coverage of this work, systematic mapping study protocol includes image
and video artifacts. In the following subsections, the study is detailed. We present the
search protocol statement in Section A.2. Section A.3 presents how the search protocol is
used. Section A.4 presents the results of our systematic mapping study. Finally, Section
A.5 presents the complete list of analyzed papers.

A.2 Systematic mapping protocol

In this section, we define a research protocol to identify and analyze existing works on
versioning over multimedia artifacts (video and image). We first identify specific ques-
tions about how these artifacts have been processed, such as: techniques being applied,
supporting tools, user intervention, among others.

Focusing on obtaining the desired information for this systematic mapping study, the
main research question (MQ) and secondary questions (SQ) are the following:

MQ: How version control techniques are being used over multimedia artifacts?

SQ1: Which techniques are being used?

SQ2: Which tool support is offered?

SQ3: Does it integrates with existing VCS?

SQ4: What intervention degree is necessary by the user?

SQ5: How the described proposal has been evaluated?

Some criteria were established to guarantee the study viability (considering costs,
efforts, and time), data accessibility, and comprehensiveness. This research was performed
using digital libraries, through their own search mechanism. Manual search is done when
data is unavailable to be collected by the aforementioned search mechanisms.

These libraries were selected by adopting the following criteria:

• Possess search mechanism, allowing logical expressions to be used;

• Retrieved control work previously obtained in an informal literature review;

• Possess search mechanisms that allow full text search, or at publications’ specific
fields;

• Guarantee unique results for the same search expression; and

A.2 Systematic mapping protocol 142

• Include papers correlated with the research topic of this thesis in their database.

Due to the fact that almost all papers and conferences are only available in English,
this idiom has been defined as default. However, papers in Portuguese from Brazilian
conference were also considered.

The following digital libraries have been selected:

• IeeeXplorer (IEEE) (in mode Command Search): http://ieeexplorer.ieee.org

• Scopus (in mode Advanced Search): http://www.scopus.com

These libraries have been selected due to their easy access for retrieving references and
the full paper. Additionally, these libraries achieved good results in other work [83] [10].
Besides, they have been classified as relevant sources in Software Engineering. The ACM
(Association for Computing Machinery) library was not used because the same query does
not produces the same results for different searches. The manual search considered both
forward and backward snow bowling to analyze the cited references of papers considered
in this work.

The following sections present the search methodology and protocol evaluation as well
as the criteria used for papers selection. Additionally, we also present extraction and data
storage.

A.2.1 Search methodology and protocol evaluation

In order to define the search expression to be used over the digital libraries, first a test
and refinement process has been established. In this process, population, intervention,
comparison, and output parameters have been determined.

(P) (Population): image and video artifacts.

(I) (Intervention): versioning techniques.

(C) (Comparison): do not exist as the main objective is not to compare approaches
but to characterize them.

(O) (Output): tools, methodologies, and approaches.

After the protocol and parameters definition have been established, the next step was
to scope the search expression to populate, or instantiate, the output elements. As a
result, the expression used to perform the search was defined as following:

A.2 Systematic mapping protocol 143

Population: (“image” OR “images” OR “picture” OR “pictures” OR “video” OR
“videos” OR “movie” OR “movies”). Some terms have been include during the tests,
as some papers use different names to represent the same concept.

Intervention: (“version control” OR “revision control” OR "conflict resolution” OR
“system” OR “control”). Here the term merge and diff have been omitted due to the
amount of papers that use them without any relation to software engineering.

Comparison: no applicable.

Output: (“tool” OR “editor” OR “prototype” OR “methodology” OR “procedure” OR
“algorithm” OR “infrastructure”).

The third step involves identifying control papers, aiming at validating the protocol.
In this case, a relevant paper in the context of version control for image and video was
used:

• Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear revision control
for images. In ACM SIGGRAPH 2011 papers (SIGGRAPH ’11), Hugues Hoppe
(Ed.). ACM, New York, NY, USA, , Article 105 , pp. 105:1–105:10.

The next step comprises the validation of the search protocol using the control paper.
At first, the query was submitted to Scopus in order to fine tune the search protocol. In
sequence, the other search engine was used with the search protocol already tuned. During
the validation of the search expression, we could observe that terms such as “system” and
“control” returned a high number of non-related papers to the subject of this study. This
mainly happens because they are very common to others knowledge areas. To avoid this
problem, these terms were removed.

Finally, after the search expression adjustments, the control paper was returned, thus
validating the search expression. The final expression used at Scopus and all others search
mechanisms is defined as:

TITLE-ABS-KEY((“image” OR “images” OR “picture” OR “pictures” OR “video” OR
“videos” OR “movie” OR “movies”) AND (“project management” OR “version control” OR
“revision control” OR “conflict resolution”) AND (“tool” OR “editor” OR “prototype” OR
“methodology” OR “procedure” OR “algorithm” OR “infrastructure”)) AND (LIMIT-TO(
SUBJAREA, “COMP”))

The same Scopus search string was used at IEEEXplore, but removing the beginning
of the string (“TITLE-ABS-KEY”), which is responsible to search in title, abstract, and

A.2 Systematic mapping protocol 144

key words fields, and the final of the string (“AND (LIMIT-TO(SUBJAREA,“COMP”
))”), responsible to limit the knowledge area. The search was made only over metadata
(title, abstract, and key words).

A.2.2 Selection criteria

The selection of papers is done in three steps:

1st Step - preliminary selection: it was done by using the search expression in
the digital libraries or through manual search. The resulting papers were cataloged to a
future analysis and exclusion filter processing. Table A.1 lists the returned results of this
step.

2nd Step - relevant publications selection (1o filter): the search mechanism
used does not guarantee that all results are pertinent to this thesis subject, as just syn-
tactic restrictions exist. As a consequence, a manual filter was applied by reading and
analyzing the title and abstract of each paper returned in the 1st step. Paper exclusion
was based on the following criteria:

• EC1 - Papers that do not deal with versioning of multimedia artifacts (images and
videos);

• EC2 - Papers qualified as norm, templates, or national and international patterns;

• EC3 - Papers that described keynote speeches, tutorials, courses, workshops, and
so on;

• EC4 – Papers not available in full version at digital libraries nor any other way
without costs to the researcher; and

• EC5 – Papers not written in English or Portuguese.

The selected papers to the next step were the ones not excluded by any of these filters.

3rd Step - relevant publications selection (2o filter): after the first filter, we still
have no guarantee that the remaining papers are tied to this thesis research as just paper’s
title and abstract were manually analyzed. The next step involves a complete reading and
further analysis of individual papers selected in the second step, and applying the same
exclusion criteria stated before.

A.3 Search procedure 145

A.2.3 Extraction and data storage procedure

Each paper retrieved by the search expression in the 1st step has been stored. For each
publication stored, the filters defined in the 2nd and 3rd step were applied, being identified
by “EC[exclusion criteria number]” or “OK” in Table A.1. Additionally, this table also
identifies the artifact type discussed in the respective paper (image or video).

Finally, each publication selected on the 3rd step had its reference data completely
registered, such as abstract, observations, and the answer for each of the secondary ques-
tions previously defined. All these articles are presented in Section A.6.

A.3 Search procedure

After definition and adjustment in the search protocol, the process was executed between
December 2012 and February 2013 (updated in August 2015), using the Scopus and
IEEEXplore digital libraries. The digital libraries returned a total of 414 distinct papers.
The manual search were also performed, with a selection of 2 papers, according to Figure
A.1.

IEEE Database

89

SCOPUS Database

9316

Manual Search

2 U = 416

Figure A.1: Papers returned by the digital library.

The second step to select the papers was performed by reading their title and abstracts.
This way, following the established criteria, 10 papers were selected from the search result.
Figure A.2 shows the distribution of these 10 publications in addition to the 2 papers
selected manually.

A.3 Search procedure 146

IEEE DatabaseSCOPUS Database

8

Manual Search

2 U = 12

11

Figure A.2: Papers selected through the first filter.

From all papers returned by the digital libraries, 2 could not been considered due
their unavailability. A contact with their authors was performed without success.

Publications that passed through the 1st and 2nd steps were read and classified again
in relation to the same exclusion criteria, but now considering their complete text. During
the 3rd step execution, 4 publications from the search result were selected, classified in
relation to their artifact type, summarized, and had the secondary questions answered.
Considering the publications that were approved in the 2nd filter, we obtained the distri-
bution presented in Figure A.3.

In Figure A.3, it is possible to observe that by just considering the digital libraries,
the Scopus library represents about 100% of results while IEEE library represents 25%.

A.4 Results analysis 147

IEEE DatabaseSCOPUS Database

3

Manual Search

2 U = 6

1

Figure A.3: Papers selected through the second filter.

A.4 Results analysis

This section presents an analysis over the consolidate data related to papers that were
considered tied to this thesis research theme. Figure A.4 illustrates the papers’ distribu-
tion according to artifact type. Details of each publication can be visualized on Section
A.6.

17%$

83%$

Video$

Image$

Figure A.4: Paper classification by multimedia artifacts.

Considering SQ1 (Which techniques are being used?), we aimed to evaluate the method-
ology used for version control over multimedia artifacts. These results are grouped ac-
cording to techniques used by each paper in Figure A.5. Many approaches use techniques
based on file system and graph.

A.4 Results analysis 148

0" 0.5" 1" 1.5" 2" 2.5"

Graph"

Database"

Filesystem"

Figure A.5: Techniques used for multimedia artifact management.

Following, SQ2 (Which tool support is offered?), we evaluated the results considering
what was mentioned in the paper in relation to tools support. The results of this step
can be seen in Figure A.6, showing that half of approaches have some kind of tool for
supporting the user.

50%$

33%$

17%$

Tool$exist$

Not$men3oned$

No$tool$exist$

Figure A.6: Tool support offered.

SQ3 (Does it integrates with existing VCS?) is aimed to check the availability of
integration of the proposed approach and a VCS, such as Git, Mercurial, or SVN. One
important fact that can be seen in Figure A.7 is that just 33% of the approaches offer
such kind of integration. This factor can be considered a negative aspect for projects that
already use a VCS on a daily basis.

When checking SQ4 (What intervention degree is necessary by the user?), it is possible
to check information upon the necessity of the user intervention degree to perform a diff,
patch, and merge operations over artifacts. According to Figure A.8, about 33% of the

A.4 Results analysis 149

34%	

33%	

33%	
Exist	

Do	not	exist	

Not	specified	

Figure A.7: VCS integration availability.

approaches require user intervention just in conflict situations. Besides that, in 50% of
the approaches, the user is responsible to specify the diff, patch, and merge processing
order.

33%#

50%#

17%#

Conflicts#

Step#selec4on#

Not#specified#

Figure A.8: User intervention degree necessary for applying diff, patch, andmerge opera-
tions over artifacts.

Finally, SQ5 (How the described proposal has been evaluated?) gives information
about how the proposed approach was evaluated. Figure A.9 shows that most of papers
are evaluated by analyzing storage space and processing time. It is important to state
that papers that evaluate more than one item are considered twice in this analysis.

A.5 Complete list of papers returned by the search expression 150

37%	

38%	

25%	

Storage	space	

Processing	5me	

No	evalua5on	

Figure A.9: Dependent variables used to evaluate the paper.

A.5 Complete list of papers returned by the search ex-
pression

Table A.1: Complete list returned by systematic mapping review.

Title

Year

Complete Reference

1st

Filter

2nd

Filter

Source Artifact

Image-based
localization and

content authoring in
structure-from-

motion point cloud
models for real-time

field reporting
applications

2015

Bae H., Golparvar-Fard M., White J..
Image-based localization and content

authoring in structure-from-motion point
cloud models for real-time field reporting

applications. Journal of Computing in Civil
Engineering, 2015 pp - .

EC1 - SCOPUS -

A little ingenuity
solves an

elephant-sized
problem

2015

Byrd G.. A little ingenuity solves an
elephant-sized problem. Computer, 2015 pp

74 - 77.
EC1 - SCOPUS -

Efficient image-aware
version control

systems using GPU
2015

da Silva Junior J.R., Clua E., Murta L..
Efficient image-aware version control

systems using GPU. Software - Practice and
Experience, 2015 pp - .

OK OK SCOPUS Image

CVC-FP and SGT: a
new database for

structural floor plan
analysis and its

groundtruthing tool

2015

de las Heras L.-P., Terrades O.R., Robles
S., Sanchez G.. CVC-FP and SGT: a new
database for structural floor plan analysis
and its groundtruthing tool. International

Journal on Document Analysis and
Recognition, 2015 pp 15 - 30.

EC1 - SCOPUS -

Negotiation Strategy
Video Modeling

Training for
Adolescents with
Autism Spectrum

Disorder: A Usability
Study

2015

Hochhauser M., Gal E., Weiss P.L..
Negotiation Strategy Video Modeling
Training for Adolescents with Autism
Spectrum Disorder: A Usability Study.

International Journal of Human-Computer
Interaction, 2015 pp 472 - 480.

EC1 - SCOPUS -

A framework for
model-driven

acquisition and
analytics of visual

data using UAVs for
automated

construction progress
monitoring

2015

Lin J.J., Han K.K., Golparvar-Fard M.. A
framework for model-driven acquisition and

analytics of visual data using UAVs for
automated construction progress

monitoring. Congress on Computing in
Civil Engineering, Proceedings, 2015 pp 156

- 164.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 151

Table A.1: Complete list returned by systematic mapping review.

Status quo and open
challenges in

vision-based sensing
and tracking of

temporary resources
on infrastructure
construction sites

2015

Teizer J.. Status quo and open challenges
in vision-based sensing and tracking of
temporary resources on infrastructure

construction sites. Advanced Engineering
Informatics, 2015 pp 225 - 238.

EC1 - SCOPUS -

Construction
performance

monitoring via still
images, time-lapse
photos, and video

streams: Now,
tomorrow, and the

future

2015

Yang J., Park M.-W., Vela P.A.,
Golparvar-Fard M.. Construction

performance monitoring via still images,
time-lapse photos, and video streams: Now,

tomorrow, and the future. Advanced
Engineering Informatics, 2015 pp 211 - 224.

EC1 - SCOPUS -

System model of an
image stabilization

system
2014

Carmona M., Gomez J.M., Roma D., Casas
A., Lopez M., Bosch J., Herms A., Sabater

J., Volkmer R., Heidecke F., Maue T.,
Nakai E., Schmidt W.. System model of an
image stabilization system. Proceedings of

SPIE - The International Society for
Optical Engineering, 2014 pp - .

EC1 - SCOPUS -

Fast updating of
national geo-spatial
databases with high
resolution imagery:

China’s methodology
and experiences

2014

Chen J., Wang D., Zhao R., Zhang H., Liao
A., Liu J.. Fast updating of national

geo-spatial databases with high resolution
imagery: China’s methodology and

experiences. International Archives of the
Photogrammetry, Remote Sensing and
Spatial Information Sciences - ISPRS

Archives, 2014 pp 41 - 50.

EC1 - SCOPUS -

An end-to-end
simulation framework

for the Large
Synoptic Survey

Telescope

2014

Connolly A.J., Angeli G.Z.,
Chandrasekharan S., Claver C.F., Cook K.,
Ivezic Z., Jones R.L., Krughoff K.S., Peng
E.-H., Peterson J., Petry C., Rasmussen

A.P., Ridgway S.T., Saha A., Sembroski G.,
Vanderplas J., Yoachim P.. An end-to-end

simulation framework for the Large
Synoptic Survey Telescope. Proceedings of

SPIE - The International Society for
Optical Engineering, 2014 pp - .

EC1 - SCOPUS -

Serious sustainability
challenge game to

promote teaching and
learning of building

sustainability

2014

Dib H., Adamo-Villani N.. Serious
sustainability challenge game to promote

teaching and learning of building
sustainability. Journal of Computing in

Civil Engineering, 2014 pp - .

EC1 - SCOPUS -

The realization of the
geological image 3D

reconstruction
2014

Du C., Leng B.. The realization of the
geological image 3D reconstruction. 2014
International Conference on Mechatronics,

Electronic, Industrial and Control
Engineering, MEIC 2014, 2014 pp 14 - 18.

EC1 - SCOPUS -

Pythy: Improving the
introductory Python

programming
experience

2014

Edwards S.H., Tilden D.S., Allevato A..
Pythy: Improving the introductory Python
programming experience. SIGCSE 2014 -
Proceedings of the 45th ACM Technical

Symposium on Computer Science
Education, 2014 pp 641 - 646.

EC1 - SCOPUS -

Model-based quality
management of

software development
projects

2014

Heidrich J., Rombach D., Klas M..
Model-based quality management of

software development projects. Software
Project Management in a Changing World,

2014 pp 125 - 156.

EC1 - SCOPUS -

An evidence based
approach for multipe
similarity measures

combining for
ontology mapping

2014

Idoudi R., Ettabaa K.S., Hamrouni K.,
Solaiman B.. An evidence based approach
for multipe similarity measures combining
for ontology mapping. International Image

Processing, Applications and Systems
Conference, IPAS 2014, 2014 pp - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 152

Table A.1: Complete list returned by systematic mapping review.

Wind responses of
Giant Magellan

telescope
2014

Irarrazaval B., Buleri C., Johns M.. Wind
responses of Giant Magellan telescope.

Proceedings of SPIE - The International
Society for Optical Engineering, 2014 pp - .

EC1 - SCOPUS -

ConstructAide:
Analyzing and

visualizing
construction sites

through photographs
and building models

2014

Karsch K., Golparvar-Fard M., Forsyth D..
ConstructAide: Analyzing and visualizing

construction sites through photographs and
building models. ACM Transactions on

Graphics, 2014 pp - .

EC1 - SCOPUS -

From big data to big
projects: A

step-by-step roadmap
2014

Mousannif H., Sabah H., Douiji Y., Sayad
Y.O.. From big data to big projects: A

step-by-step roadmap. Proceedings - 2014
International Conference on Future Internet
of Things and Cloud, FiCloud 2014, 2014

pp 373 - 378.

EC1 - SCOPUS -

E-ELT requirements
management 2014

Schneller D.. E-ELT requirements
management. Proceedings of SPIE - The

International Society for Optical
Engineering, 2014 pp - .

EC1 - SCOPUS -

Root cause analysis
towards lean

collaboration between
production line and

factory planning

2014

Slitnikova S., Fruchter R.. Root cause
analysis towards lean collaboration between

production line and factory planning.
Computing in Civil and Building

Engineering - Proceedings of the 2014
International Conference on Computing in
Civil and Building Engineering, 2014 pp

1449 - 1456.

EC1 - SCOPUS -

Complexity in the
MATISSE cold optics:

A risk or a tool?
2014

Tromp N., Bettonvil F., Aitink-Kroes G.,
Agocs T., Navarro R.. Complexity in the
MATISSE cold optics: A risk or a tool?.
Proceedings of SPIE - The International

Society for Optical Engineering, 2014 pp - .

EC1 - SCOPUS -

The tail wags the
dog: Managing large
telescope construction
projects with lagging

requirements and
creeping scope

2014

Warner M.. The tail wags the dog:
Managing large telescope construction
projects with lagging requirements and

creeping scope. Proceedings of SPIE - The
International Society for Optical

Engineering, 2014 pp - .

EC1 - SCOPUS -

TOAD: A numerical
model for the 4MOST

instrument
2014

Winkler R., Haynes D.M., Bellido-Tirado
O., Xu W., Haynes R.. TOAD: A numerical

model for the 4MOST instrument.
Proceedings of SPIE - The International

Society for Optical Engineering, 2014 pp - .

EC1 - SCOPUS -

Object tracking in
video sequences using

information fusion
principles. Meanshift

kernel
implementation using

fuzzy rules

2013

Alam I.. Object tracking in video sequences
using information fusion principles.

Meanshift kernel implementation using
fuzzy rules. 2013 5th Computer Science and
Electronic Engineering Conference, CEEC

2013 - Conference Proceedings, 2013 pp 146
- 151.

EC1 - SCOPUS -

Alignment of large
project management
process to business
strategy: A review

and conceptual
framework

2013

Alsudiri T., Al-Karaghouli W., Eldabi T..
Alignment of large project management

process to business strategy: A review and
conceptual framework. Journal of

Enterprise Information Management, 2013
pp 596 - 615.

EC1 - SCOPUS -

Social networking
meets software
development:

Perspectives from git
hub, MSDN, stack
exchange, and top

coder

2013

Begel A., Bosch J., Storey M.-A.. Social
networking meets software development:
Perspectives from git hub, MSDN, stack
exchange, and top coder. IEEE Software,

2013 pp 52 - 66.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 153

Table A.1: Complete list returned by systematic mapping review.

The role of software
in environmental

conflict resolution:
How did MarineMap

facilitate
collaborative learning
in california’s MLPA

initiative?

2013

Cravens A.E.. The role of software in
environmental conflict resolution: How did
MarineMap facilitate collaborative learning

in california’s MLPA initiative?.
Computer-Supported Collaborative

Learning Conference, CSCL, 2013 pp 468 - .

EC1 - SCOPUS -

Leveraging
transparency 2013

Dabbish L., Stuart C., Tsay J., Herbsleb J..
Leveraging transparency. IEEE Software,

2013 pp 37 - 43.
EC1 - SCOPUS -

Authoring multi-stage
code examples with

editable code
histories

2013

Ginosar S., De Pombo L.F., Agrawala M.,
Hartmann B.. Authoring multi-stage code

examples with editable code histories. UIST
2013 - Proceedings of the 26th Annual ACM
Symposium on User Interface Software and

Technology, 2013 pp 485 - 494.

EC1 - SCOPUS -

A Petri Net based
algorithm for the

resource constrained
project scheduling

problem (RCPSP): A
real life application in

the Animation and
Videogame industry

2013

Mejia G., Sanchez M.A., Nino K., Figueroa
P.. A Petri Net based algorithm for the
resource constrained project scheduling

problem (RCPSP): A real life application in
the Animation and Videogame industry.

22nd International Conference on
Production Research, ICPR 2013, 2013 pp -

.

EC1 - SCOPUS -

Do we need total
quality management
in fusion engineering?

- Experience from
construction of W7-X

2013

Vilbrandt R., Bosch H.-S., Feist J.-H.. Do
we need total quality management in fusion
engineering? - Experience from construction
of W7-X. 2013 IEEE 25th Symposium on

Fusion Engineering, SOFE 2013, 2013 pp - .

EC1 - SCOPUS -

Error-correction
methods for

construction site
image processing
under changing

illumination
conditions

2013

Wu Y., Kim C., Kim H.. Error-correction
methods for construction site image

processing under changing illumination
conditions. Journal of Computing in Civil

Engineering, 2013 pp 99 - 109.

EC1 - SCOPUS -

Fostering a
continuum of care 2012

Bonfiglio S.. Fostering a continuum of care.
Lecture Notes in Computer Science

(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in

Bioinformatics), 2012 pp 35 - 41.

EC1 - SCOPUS -

Smarter financial
management - An

answer to the missing
link between key

performance
indicators and

budgeting decisions
for smarter cities

2012

Boyette N., Fang H.. Smarter financial
management - An answer to the missing
link between key performance indicators

and budgeting decisions for smarter cities.
Annual SRII Global Conference, SRII, 2012

pp 608 - 613.

EC1 - SCOPUS -

A GPU-based
architecture for

parallel image-aware
version control

2012

Da Silva Jr. J.R., Pacheco T., Clua E.,
Murta L.. A GPU-based architecture for

parallel image-aware version control.
Proceedings of the European Conference on
Software Maintenance and Reengineering,

CSMR, 2012 pp 191 - 200.

OK OK
SCOPUS,

IEEE
Image

Quality evaluation of
information

technology project -
A multicriteria

approach

2012

E Silva L.C., Costa A.P.C.S.. Quality
evaluation of information technology
project - A multicriteria approach.

Conference Proceedings - IEEE
International Conference on Systems, Man

and Cybernetics, 2012 pp 611 - 616.

EC1 - SCOPUS -

RFID and
CCTV-based material
delivery monitoring

for cable-stayed
bridge construction

2012

Ju Y., Kim C., Kim H.. RFID and
CCTV-based material delivery monitoring

for cable-stayed bridge construction.
Journal of Computing in Civil Engineering,

2012 pp 183 - 190.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 154

Table A.1: Complete list returned by systematic mapping review.

The large synoptic
survey telescope

Project Management
Control System

2012

Kantor J.P.. The large synoptic survey
telescope Project Management Control

System. Proceedings of SPIE - The
International Society for Optical

Engineering, 2012 pp - .

EC1 - SCOPUS -

Investigating the
effect of software
project type on

accuracy of software
development effort

estimation in
COCOMO model

2012

Khatibi B V., Khatibi E.. Investigating the
effect of software project type on accuracy
of software development effort estimation in

COCOMO model. Proceedings of SPIE -
The International Society for Optical

Engineering, 2012 pp - .

EC1 - SCOPUS -

Linked open data
aggregation: Conflict

resolution and
aggregate quality

2012

Knap T., Michelfeit J., Necasky M.. Linked
open data aggregation: Conflict resolution

and aggregate quality. Proceedings -
International Computer Software and

Applications Conference, 2012 pp 106 - 111.

EC1 -
IEEE,

SCOPUS
-

Statelets:
Coordination of social

collaboration
processes

2012

Liptchinsky V., Khazankin R., Truong
H.-L., Dustdar S.. Statelets: Coordination
of social collaboration processes. Lecture

Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics), 2012 pp 1 - 16.

EC1 - SCOPUS -

Product and quality
assurance processes

and ECSS compliance
within a science

ground segment using
Gaia as an example

2012

Lock T., Mercier E., Els S., Gracia G.,
O’Mullane W., Comoretto G., Gallegos J..
Product and quality assurance processes
and ECSS compliance within a science

ground segment using Gaia as an example.
Proceedings of SPIE - The International

Society for Optical Engineering, 2012 pp - .

EC1 - SCOPUS -

MESSI, the METIS
instrument software

simulator
2012

Nicolini G., Andretta V., Abbo L.,
Antonucci E., Bemporad A., Capobianco

G., Crescenzio G., Fineschi S., Focardi M.,
Magli E., Naletto G., Nicolosi G., Pancrazzi

M., Ricci M., Romoli M., Uslenghi M.,
Volpicelli A.. MESSI, the METIS

instrument software simulator. Proceedings
of SPIE - The International Society for

Optical Engineering, 2012 pp - .

EC1 - SCOPUS -

An empirical study of
application of PSP
methodology with

students of a Systems
Technology program
with different levels

of training

2012

Nino Manrique J.F., Anaya R.. An
empirical study of application of PSP

methodology with students of a Systems
Technology program with different levels of
training. 38th Latin America Conference on

Informatics, CLEI 2012 - Conference
Proceedings, 2012 pp - .

EC1 - SCOPUS -

Integrated telescope
model for the James
Webb space telescope

2012

Scott Knight J., Scott Acton D., Lightsey
P., Barto A.. Integrated telescope model for

the James Webb space telescope.
Proceedings of SPIE - The International

Society for Optical Engineering, 2012 pp - .

EC1 - SCOPUS -

PIVoT: Project
insights and

Visualization Toolkit
2012

Sharma V.S., Kaulgud V.. PIVoT: Project
insights and Visualization Toolkit. 2012 3rd

International Workshop on Emerging
Trends in Software Metrics, WETSoM 2012

- Proceedings, 2012 pp 63 - 69.

EC1 - SCOPUS -

A holistic approach
to developing a

progress tracking
system for distributed

agile teams

2012

Sultan A., Ivins W.K., Gray W.A.. A
holistic approach to developing a progress

tracking system for distributed agile teams.
Proceedings - 2012 IEEE/ACIS 11th

International Conference on Computer and
Information Science, ICIS 2012, 2012 pp

503 - 512.

EC1 - SCOPUS -

Local thermal seeing
modeling validation
through observatory

measurements
2012

Vogiatzis K., Otarola A., Skidmore W.,
Travouillon T., Angeli G.. Local thermal

seeing modeling validation through
observatory measurements. Proceedings of

SPIE - The International Society for
Optical Engineering, 2012 pp - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 155

Table A.1: Complete list returned by systematic mapping review.

Six Sigma in IT
processes, IT services
and IT products - A
fact or a fad? Six

Sigma beyond
manufacturing in IT
processes, IT services

and IT products

2012

Wong W.Y., Lee C.W., Tshai K.Y.. Six
Sigma in IT processes, IT services and IT

products - A fact or a fad? Six Sigma
beyond manufacturing in IT processes, IT
services and IT products. Proceedings -

2012 IEEE 12th International Conference
on Computer and Information Technology,

CIT 2012, 2012 pp 524 - 531.

EC1 - SCOPUS -

The similarity degree
comparison study of
travel routes between
the VR digital models

and the reality
environment in urban

planning

2012

Zhang Y., Zhang X., Chen Y.. The
similarity degree comparison study of travel
routes between the VR digital models and
the reality environment in urban planning.

Journal of Convergence Information
Technology, 2012 pp 116 - 123.

EC1 - SCOPUS -

DVB-T2 LDPC
decoder with perfect
conflict resolution

2012

Xiongxin Zhao; Zhixiang Chen; Xiao Peng;
Dajiang Zhou; Goto, S.; , DVB-T2 LDPC
decoder with perfect conflict resolution,

VLSI Design, Automation, and Test
(VLSI-DAT), 2012 International

Symposium on , vol., no., pp.1-4, 23-25
April 2012

EC1 - IEEE -

Efficient Versioning
for Scientific Array

Databases
2012

Seering, A.; Cudre-Mauroux, P.; Madden,
S.; Stonebraker, M.; , Efficient Versioning

for Scientific Array Databases, Data
Engineering (ICDE), 2012 IEEE 28th
International Conference on , vol., no.,

pp.1013-1024, 1-5 April 2012

EC1 - IEEE -

Industrialised
Building System
(IBS) in Sarawak

construction industry
2012

Bohari, A.A.M.; Mahat, N.; Kipli, K.; ,
Industrialised Building System (IBS) in

Sarawak construction industry, Innovation
Management and Technology Research

(ICIMTR), 2012 International Conference
on , vol., no., pp.433-437, 21-22 May 2012

EC1 - IEEE -

Software development
process animation 2011

Agarwal R.. Software development process
animation. Proceedings of the Annual

Southeast Conference, 2011 pp 221 - 226.
EC1 - SCOPUS -

Dubaisat-1: Mission
overview and
applications

2011

Alrais A., Alsuwaidi A., Bushahab A..
Dubaisat-1: Mission overview and

applications. 2011 IEEE GCC Conference
and Exhibition, GCC 2011, 2011 pp 65 - 66.

EC1 - SCOPUS -

Real options pricing
by the finite element

method
2011

Andalaft-Chacur A., Montaz Ali M.,
Gonzalez Salazar J.. Real options pricing
by the finite element method. Computers
and Mathematics with Applications, 2011

pp 2863 - 2873.

EC1 - SCOPUS -

Nonlinear revision
control for images 2011

Chen H.-T., Wei L.-Y., Chang C.-F..
Nonlinear revision control for images. ACM

Transactions on Graphics, 2011 pp - .
OK OK SCOPUS Image

Defect estimation
using

capture-recapture in
IBM Jazz

2011

Doran J., Gary K.. Defect estimation using
capture-recapture in IBM Jazz. Proceedings
of the IASTED International Conference on

Software Engineering and Applications,
SEA 2011, 2011 pp 176 - 183.

EC1 - SCOPUS -

A visual monitoring
framework for

integrated
productivity and
carbon footprint

control of
construction
operations

2011

Heydarian A., Golparvar-Fard M.. A visual
monitoring framework for integrated

productivity and carbon footprint control of
construction operations. Congress on

Computing in Civil Engineering,
Proceedings, 2011 pp 504 - 511.

EC1 - SCOPUS -

Immersive and non
immersive 3D virtual

city: Decision
support tool for

urban sustainability

2011

Isaacs J.P., Gilmour D.J., Blackwood D.J.,
Falconer R.E.. Immersive and non

immersive 3D virtual city: Decision support
tool for urban sustainability. Electronic
Journal of Information Technology in

Construction, 2011 pp 151 - 162.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 156

Table A.1: Complete list returned by systematic mapping review.

Vehicle detection
using partial least

squares
2011

Kembhavi A., Harwood D., Davis L.S..
Vehicle detection using partial least

squares. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2011 pp

1250 - 1265.

EC1 - SCOPUS -

A pilot study of a 3D
game environment for
construction safety

education
2011

Lin K.-Y., Son J.W., Rojas E.M.. A pilot
study of a 3D game environment for

construction safety education. Electronic
Journal of Information Technology in

Construction, 2011 pp 69 - 83.

EC1 - SCOPUS -

Use of SAR data for
hydro-morphological
characterization in
sub-Saharan Africa:

A case study

2011

Papa M.N., Ciervo F., Koussoube Y., Di
Martino G., Iodice A., Riccio D., Ruello G.,

Zinno I.. Use of SAR data for
hydro-morphological characterization in

sub-Saharan Africa: A case study.
Proceedings of SPIE - The International

Society for Optical Engineering, 2011 pp - .

EC1 - SCOPUS -

DubaiSat-1 mission
overview 2011

Rais A.A.. DubaiSat-1 mission overview.
Proceedings of SPIE - The International

Society for Optical Engineering, 2011 pp - .
EC1 - SCOPUS -

The RECorder: A
participatory digital

platform for the
rehabilitation of the
city of Famagusta in

Cyprus

2011

Vardouli T., Xanthouli E., Stathopoulos A..
The RECorder: A participatory digital

platform for the rehabilitation of the city of
Famagusta in Cyprus. Proceedings - 2011
7th International Conference on Intelligent
Environments, IE 2011, 2011 pp 238 - 244.

EC1 -
IEEE,

SCOPUS
-

Leveraging cloud
platform for custom

application
development

2011

Zhou N., An D.P., Zhang L.-J., Wong
C.-H.. Leveraging cloud platform for

custom application development.
Proceedings - 2011 IEEE International

Conference on Services Computing, SCC
2011, 2011 pp 584 - 591.

EC1 -
IEEE,

SCOPUS
-

A Decision Support
System for Global

Software
Development

2011

Beecham, S.; Noll, J.; Richardson, I.;
Dhungana, D.; , A Decision Support System
for Global Software Development, Global

Software Engineering Workshop (ICGSEW),
2011 Sixth IEEE International Conference
on , vol., no., pp.48-53, 15-18 Aug. 2011

EC1 - IEEE -

Advances space
technology for project
management in early
stage of the design

work

2011

Kurnaz, S.; Rustamov, R.B.; Hasanova,
S.N.; Rahimov, N.; , Advances space

technology for project management in early
stage of the design work, Recent Advances
in Space Technologies (RAST), 2011 5th
International Conference on , vol., no.,

pp.128-131, 9-11 June 2011

EC1 - IEEE -

Application of
separation principle

in Management
innovation based on

TRIZ

2011

Yaqiang Zhang; Xiufeng Sang; , Application
of separation principle in Management
innovation based on TRIZ, Computer

Science and Service System (CSSS), 2011
International Conference on , vol., no.,

pp.2116-2119, 27-29 June 2011

EC1 - IEEE -

Goal-Driven
Development Method

for Managing
Embedded System

Projects: An
Industrial Experience

Report

2011

Guoping Rong; Dong Shao; He Zhang; Jun
Li; , Goal-Driven Development Method for
Managing Embedded System Projects: An
Industrial Experience Report, Empirical
Software Engineering and Measurement

(ESEM), 2011 International Symposium on
, vol., no., pp.414-423, 22-23 Sept. 2011

EC1 - IEEE -

The development of
the enterprise

innovation value
diagnosis system with

the use of systems
engineering

2011

Wang, T.J.; Chang, L.; , The development
of the enterprise innovation value diagnosis
system with the use of systems engineering,
System Science and Engineering (ICSSE),

2011 International Conference on , vol., no.,
pp.373-378, 8-10 June 2011

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 157

Table A.1: Complete list returned by systematic mapping review.

Visualizing Work
Progress Information

of Construction
Project by Web and

VR Application

2011

Leen-Seok Kang; Hyoun-Seok Moon;
Hyun-Seoung Kim; Gwang-Ryul Choi;

Nam-Jin Park; Chang-Hak Kim; ,
Visualizing Work Progress Information of

Construction Project by Web and VR
Application, Modelling Symposium (AMS),

2011 Fifth Asia , vol., no., pp.177-180,
24-26 May 2011

EC1 - IEEE -

100 Million hours of
audiovisual content:
Digital preservation
and access in the

PrestoPRIME project

2010

Addis M., Allasia W., Bailer W., Boch L.,
Gallo F., Wright R.. 100 Million hours of
audiovisual content: Digital preservation
and access in the PrestoPRIME project.

ACM International Conference Proceeding
Series, 2010 pp - .

EC1 - SCOPUS -

Safe and flexible
human-robot
cooperation in

industrial
applications

2010

Bosch J.J., Klett F.. Safe and flexible
human-robot cooperation in industrial

applications. 2010 International Conference
on Computer Information Systems and
Industrial Management Applications,

CISIM 2010, 2010 pp 107 - 110.

EC1 - SCOPUS -

Scheduling piece
requests blindly and

randomly for
peer-to-peer live

streaming

2010

Chen Y.-S., Chen C.-J., Zhao Y.-X., Li
C.-X.. Scheduling piece requests blindly and
randomly for peer-to-peer live streaming.
Journal of China Universities of Posts and

Telecommunications, 2010 pp 76 - 84.

EC1 - SCOPUS -

A novel method for
de-warping in Persian

document images
captured by cameras

2010

Dehbovid H., Razzazi F., Alirezaii S.. A
novel method for de-warping in Persian
document images captured by cameras.

2010 International Conference on Computer
Information Systems and Industrial

Management Applications, CISIM 2010,
2010 pp 614 - 619.

EC1 - SCOPUS -

Automatic MPEG4
compatible face

representation using
clustering-based

modeling schemes

2010

Ghahari A., Mosleh M.. Automatic MPEG4
compatible face representation using

clustering-based modeling schemes. 2010
International Conference on Computer
Information Systems and Industrial

Management Applications, CISIM 2010,
2010 pp 96 - 102.

EC1 - SCOPUS -

Hybrid
clustering-based 3D
face modeling upon

non-perfect
orthogonality of

frontal and profile
views

2010

Ghahari A., Mosleh M.. Hybrid
clustering-based 3D face modeling upon
non-perfect orthogonality of frontal and

profile views. 2010 International Conference
on Computer Information Systems and
Industrial Management Applications,

CISIM 2010, 2010 pp 578 - 584.

EC1 - SCOPUS -

Computer
vision-based video

interpretation model
for automated

productivity analysis
of construction

operations

2010

Gong J., Caldas C.H.. Computer
vision-based video interpretation model for

automated productivity analysis of
construction operations. Journal of

Computing in Civil Engineering, 2010 pp
252 - 263.

EC1 - SCOPUS -

Integration of
different

computational models
in a computer vision

framework

2010

Kasprzak W.. Integration of different
computational models in a computer vision
framework. 2010 International Conference

on Computer Information Systems and
Industrial Management Applications,

CISIM 2010, 2010 pp 13 - 18.

EC1 - SCOPUS -

SOFIA telescope
modal survey test and
test-model correlation

2010

Keas P., Brewster R., Guerra J., Lampater
U., Karcher H., Teufel S., Wagner J..

SOFIA telescope modal survey test and
test-model correlation. Proceedings of SPIE

- The International Society for Optical
Engineering, 2010 pp - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 158

Table A.1: Complete list returned by systematic mapping review.

Development and
clinical evaluation of
a physiological data
acquisition device for

monitoring and
exercise guidance of

heart failure and
chronic heart disease

patients

2010

Kokonozi A., Astaras A., Semertzidis P.,
Michail E., Filos D., Chouvarda I.,

Grossenbacher O., Koller J.-M., Leopoldo
R., Porchet J.-A., Correvon M., Luprano J.,

Sipila A., Zamboulis C., Maglaveras N..
Development and clinical evaluation of a
physiological data acquisition device for

monitoring and exercise guidance of heart
failure and chronic heart disease patients.
Computing in Cardiology, 2010 pp 1099 -

1102.

EC1 - SCOPUS -

The large synoptic
survey telescope

preliminary design
overview

2010

Krabbendam V.L., Sweeney D.. The large
synoptic survey telescope preliminary

design overview. Proceedings of SPIE - The
International Society for Optical

Engineering, 2010 pp - .

EC1 - SCOPUS -

Phase retrieval
analysis of the
Hobby-Eberly

Telescope primary
mirror segment figure

error and its
implication for

wavefront sensing for
the new wide-field

upgrade

2010

Lee H., Hill G.J., Hart M.. Phase retrieval
analysis of the Hobby-Eberly Telescope

primary mirror segment figure error and its
implication for wavefront sensing for the
new wide-field upgrade. Proceedings of
SPIE - The International Society for

Optical Engineering, 2010 pp - .

EC1 - SCOPUS -

Investigation of
disturbance effects on

space-based weak
lensing measurements

with an integrated
model

2010

Lieber M., Kaplan M., Sholl M., Bernstein
G.. Investigation of disturbance effects on
space-based weak lensing measurements

with an integrated model. Proceedings of
SPIE - The International Society for

Optical Engineering, 2010 pp - .

EC1 - SCOPUS -

CMYK model color
image segmentation
using type 2 fuzzy

sets
2010

Maity S., Sil J.. CMYK model color image
segmentation using type 2 fuzzy sets. 2010

International Conference on Computer
Information Systems and Industrial

Management Applications, CISIM 2010,
2010 pp 347 - 352.

EC1 - SCOPUS -

Documentary tools in
everyday life: The
wedding planner

2010

McKenzie P.J., Davies E.. Documentary
tools in everyday life: The wedding planner.
Journal of Documentation, 2010 pp 788 -

806.

EC1 - SCOPUS -

Transcription support
system using
Subversion

2010

Murakawa T., Fukuoka H., Noda D.,
Nakagawa M.. Transcription support

system using Subversion. WEBIST 2010 -
Proceedings of the 6th International

Conference on Web Information Systems
and Technology, 2010 pp 150 - 155.

EC1 - SCOPUS -

Pruned-AZB for
reduced complexity
block matching in
video compression

2010

Pandit A.K., Verma S., Tomar G.S..
Pruned-AZB for reduced complexity block

matching in video compression. 2010
International Conference on Computer
Information Systems and Industrial

Management Applications, CISIM 2010,
2010 pp 553 - 556.

EC1 - SCOPUS -

Integrated finite
element analysis and
raytracing, oriented

to structural
optimization, for

astronomical
instrument design

2010

Riva M., De Caprio V., Spano P., Tintori
M.. Integrated finite element analysis and

raytracing, oriented to structural
optimization, for astronomical instrument

design. Proceedings of SPIE - The
International Society for Optical

Engineering, 2010 pp - .

EC1 - SCOPUS -

Effects of thermal
deformations on the
sensitivity of optical
systems for space

application

2010

Segato E., Da Deppo V., Debei S.,
Cremonese G., Cherubini G.. Effects of

thermal deformations on the sensitivity of
optical systems for space application.

Proceedings of SPIE - The International
Society for Optical Engineering, 2010 pp - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 159

Table A.1: Complete list returned by systematic mapping review.

Professional
Penetration Testing 2010

Wilhelm T.. Professional Penetration
Testing. Professional Penetration Testing,

2010 pp - .
EC1 - SCOPUS -

Scholarly knowledge
development and

dissemination in an
international context:
Approaches and tools
for higher education

2010

Willis J., Baron J., Lee R.-A., Gozza-Cohen
M., Currie A.. Scholarly knowledge

development and dissemination in an
international context: Approaches and tools

for higher education. Computers in the
Schools, 2010 pp 155 - 199.

EC1 - SCOPUS -

Object recognition in
construction-site
images using 3D

CAD-based filtering
2010

Wu Y., Kim H., Kim C., Han S.H.. Object
recognition in construction-site images

using 3D CAD-based filtering. Journal of
Computing in Civil Engineering, 2010 pp 56

- 64.

EC1 - SCOPUS -

A Collaborative
Platform for Sharing
Scientific Data and

Experiments:
Application to

Characterization
Experiments of

Photovoltaic Cells

2010

Kossi, T.; Fazziki, A.E.; Napo, K.; , A
Collaborative Platform for Sharing
Scientific Data and Experiments:
Application to Characterization

Experiments of Photovoltaic Cells,
Signal-Image Technology and

Internet-Based Systems (SITIS), 2010 Sixth
International Conference on , vol., no.,

pp.329-335, 15-18 Dec. 2010

EC1 - IEEE -

Data conflict
resolution for layered

LDPC decoding
algorithm by selective

recalculation

2010

Wen Ji; Hamaminato, M.; Nakayama, H.;
Goto, S.; , Data conflict resolution for
layered LDPC decoding algorithm by

selective recalculation, Image and Signal
Processing (CISP), 2010 3rd International

Congress on , vol.6, no., pp.2985-2989,
16-18 Oct. 2010

EC1 - IEEE -

Establishing the
Impact Evaluation

Indicators System for
Rural Road

Investment Projects:
Evidence from Fujian

Province, China

2010

Chen Yuefeng; Tian Yuan; Chen Xiaohong;
, Establishing the Impact Evaluation

Indicators System for Rural Road
Investment Projects: Evidence from Fujian
Province, China, Optoelectronics and Image

Processing (ICOIP), 2010 International
Conference on , vol.1, no., pp.492-497,

11-12 Nov. 2010

EC1 - IEEE -

Information system
for managing the
ionizing radiations

based medical
procedures and the

patient dose RXINFO

2010

Badoiu, Adrian; Petrescu, Sanda; Botu,
Alexandru; Vlad, Vasilica; Matei,

Gheorghe; , Information system for
managing the ionizing radiations based

medical procedures and the patient dose —
RXINFO, Automation Quality and Testing
Robotics (AQTR), 2010 IEEE International

Conference on , vol.2, no., pp.1-4, 28-30
May 2010

EC1 - IEEE -

Software tool for
supporting

ethnographic research
in design and

innovation projects in
management
education

2010

Agrawal, M.; Agarwal, A.; krishnamoorthy,
a.; Pendse, P.; , Software tool for

supporting ethnographic research in design
and innovation projects in management

education, Technology for Education (T4E),
2010 International Conference on , vol., no.,

pp.63-67, 1-3 July 2010

EC1 - IEEE -

Direct automatic
generation of mind

maps from text with
M2Gen

2009

Abdeen M., El-Sahan R., Ismaeil A.,
El-Harouny S., Shalaby M., Yagoub M.C.E..
Direct automatic generation of mind maps
from text with M2Gen. TIC-STH’09: 2009
IEEE Toronto International Conference -

Science and Technology for Humanity, 2009
pp 95 - 99.

EC1 - SCOPUS -

DUBAISAT-1:
Mission overview,

development status
and future
applications

2009

Al Rais A.A., Al Suwaidi A., Ghedira H..
DUBAISAT-1: Mission overview,

development status and future applications.
International Geoscience and Remote

Sensing Symposium (IGARSS), 2009 pp
V196 - V199.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 160

Table A.1: Complete list returned by systematic mapping review.

A methodology of
requirement analysis
for disaster response

oriented spatial
information

2009

Biao C., Jinggao Z., Jun L., Zuo Z.. A
methodology of requirement analysis for

disaster response oriented spatial
information. 2009 WASE International
Conference on Information Engineering,

ICIE 2009, 2009 pp 341 - 345.

EC1 - SCOPUS -

The implementation
of satellite images

and associated digital
image processing in

addition to GIS
modelling for urban
mapping in Amman

area, Jordan

2009

Fadda E.H.R., Kakish M., Al Azab T.A..
The implementation of satellite images and

associated digital image processing in
addition to GIS modelling for urban

mapping in Amman area, Jordan. WSEAS
Transactions on Communications, 2009 pp

300 - 309.

EC1 - SCOPUS -

Towards automated
progress assessment

of workpackage
components in

construction projects
using computer vision

2009

Ibrahim Y.M., Lukins T.C., Zhang X.,
Trucco E., Kaka A.P.. Towards automated

progress assessment of workpackage
components in construction projects using
computer vision. Advanced Engineering

Informatics, 2009 pp 93 - 103.

EC1 - SCOPUS -

Software engineering
challenges in game

development
2009

Kanode C.M., Haddad H.M.. Software
engineering challenges in game
development. ITNG 2009 - 6th

International Conference on Information
Technology: New Generations, 2009 pp 260

- 265.

OK EC1 SCOPUS -

Dialogue games that
agents play within a

society
2009

Karunatillake N.C., Jennings N.R., Rahwan
I., McBurney P.. Dialogue games that
agents play within a society. Artificial

Intelligence, 2009 pp 935 - 981.

EC1 - SCOPUS -

GIMIAS: An open
source framework for
efficient development
of research tools and
clinical prototypes

2009

Larrabide I., Omedas P., Martelli Y.,
Planes X., Nieber M., Moya J.A., Butakoff
C., Sebastian R., Camara O., De Craene

M., Bijnens B.H., Frangi A.F.. GIMIAS: An
open source framework for efficient

development of research tools and clinical
prototypes. Lecture Notes in Computer

Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2009 pp 417 - 426.

EC1 - SCOPUS -

A multi-agent system
to construct

production orders by
employing an expert
system and a neural

network

2009

Lopez-Ortega O., Villar-Medina I.. A
multi-agent system to construct production
orders by employing an expert system and a

neural network. Expert Systems with
Applications, 2009 pp 2937 - 2946.

EC1 - SCOPUS -

DAM good: Making
the most of your

assets in a
multimedia world

2009

McClure M.. DAM good: Making the most
of your assets in a multimedia world.

EContent, 2009 pp 28 - 32.
OK EC4 SCOPUS Video

Validation tool for 2D
multi-stage

metal-forming
processes on

meta-stable stainless
steels

2009

Post J., de Vries C., Huetink J.. Validation
tool for 2D multi-stage metal-forming

processes on meta-stable stainless steels.
Journal of Materials Processing Technology,

2009 pp 5558 - 5572.

EC1 - SCOPUS -

Heading into new
virtual environments:
What skills do design
team members need?

2009

Sher W., Sherratt S., Williams A., Gameson
R.. Heading into new virtual environments:
What skills do design team members need?.

Electronic Journal of Information
Technology in Construction, 2009 pp 17 -

29.

EC1 - SCOPUS -

Job security
2009

Spinellis D.. Job security. IEEE Software,
2009 pp 14 - 15.

EC1 - SCOPUS -

Evaluating the
Quality of Open
Source Software

2009

Spinellis D., Gousios G., Karakoidas V.,
Louridas P., Adams P.J., Samoladas I.,
Stamelos I.. Evaluating the Quality of

Open Source Software. Electronic Notes in
Theoretical Computer Science, 2009 pp 5 -

28.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 161

Table A.1: Complete list returned by systematic mapping review.

A simplified approach
to determine airspace

complexity maps
under automated
conflict resolution

2009

Salaun, E.; Vela, A.E.; Feron, E.; Clarke,
J.-P.; Solak, S.; , A simplified approach to
determine airspace complexity maps under

automated conflict resolution, Digital
Avionics Systems Conference, 2009. DASC

’09. IEEE/AIAA 28th , vol., no.,
pp.3.C.5-1-3.C.5-13, 23-29 Oct. 2009

EC1 - IEEE -

A Specialized
Meta-scheduler for

Business and
Applications
Constraints
Management

2009

Chevalier, J.; Mouton, S.; , A Specialized
Meta-scheduler for Business and

Applications Constraints Management,
Computer Software and Applications

Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International , vol.2, no.,

pp.365-370, 20-24 July 2009

EC1 - IEEE -

Biomedical data
acquisition and

processing in the
Decision Support

services of
HEARTFAID

platform

2009

Costanzo, D.; , Biomedical data acquisition
and processing in the Decision Support

services of HEARTFAID platform,
Intelligent Data Acquisition and Advanced

Computing Systems: Technology and
Applications, 2009. IDAACS 2009. IEEE

International Workshop on , vol., no.,
pp.292-296, 21-23 Sept. 2009

EC1 - IEEE -

Conflict resolution for
pipelined layered
LDPC decoders

2009

Marchand, C.; Dore, J.-B.;
Conde-Canencia, L.; Boutillon, E.; ,

Conflict resolution for pipelined layered
LDPC decoders, Signal Processing Systems,
2009. SiPS 2009. IEEE Workshop on , vol.,

no., pp.220-225, 7-9 Oct. 2009

EC1 - IEEE -

Direct automatic
generation of mind

maps from text with
M²Gen

2009

Abdeen, M.; El-Sahan, R.; Ismaeil, A.;
El-Harouny, S.; Shalaby, M.; Yagoub,

M.C.E.; , Direct automatic generation of
mind maps from text with M2Gen, Science
and Technology for Humanity (TIC-STH),

2009 IEEE Toronto International
Conference , vol., no., pp.95-99, 26-27 Sept.

2009

EC1 - IEEE -

Implementation of
power managed hyper
transport system for
transmission of HD

video

2009

Kodati, A.V.; Vemuri, K.S.; Lili He; Jones,
M.; , Implementation of power managed

hyper transport system for transmission of
HD video, Quality of Electronic Design,
2009. ISQED 2009. Quality Electronic

Design , vol., no., pp.517-521, 16-18 March
2009

EC1 - IEEE -

Target Recognition
Based on a Novel
Riemannian Map

2009

Guangwei Li; Yunpeng Liu; Zelin Shi; Jian
Yin; , Target Recognition Based on a Novel

Riemannian Map, Image and Signal
Processing, 2009. CISP ’09. 2nd

International Congress on , vol., no.,
pp.1-5, 17-19 Oct. 2009

EC1 - IEEE -

Workload Point
System Based on
Project Schedule

Optimization
2009

Sun Yanan; Cui Rong; , Workload Point
System Based on Project Schedule

Optimization, Management and Service
Science, 2009. MASS ’09. International
Conference on , vol., no., pp.1-4, 20-22

Sept. 2009

EC1 - IEEE -

Technology
interactions on reticle

delivery
2008

Ackmann P., Goad S., West C.. Technology
interactions on reticle delivery. Proceedings

of SPIE - The International Society for
Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Systems engineering
for the preliminary
design of the thirty

meter telescope
2008

Angeli G.Z., Roberts S., Vogiatzis K..
Systems engineering for the preliminary

design of the thirty meter telescope.
Proceedings of SPIE - The International

Society for Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Computational
models of the human

body for medical
image analysis

2008

Ayache N.. Computational models of the
human body for medical image analysis.

Lecture Notes in Computer Science
(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in
Bioinformatics), 2008 pp 405 - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 162

Table A.1: Complete list returned by systematic mapping review.

Kohonen map
combined to the

K-means algorithm
for the identification

of day types of
Algerian electricity

load

2008

Benabbas F., Khadir M.T., Fay D.,
Boughrira A.. Kohonen map combined to

the K-means algorithm for the identification
of day types of Algerian electricity load.
Proceedings - 7th Computer Information

Systems and Industrial Management
Applications, CISIM 2008, 2008 pp 78 - 83.

EC1 - SCOPUS -

Autonomous high
dynamic range phase

unwrapping
2008

Bikkannavar S.. Autonomous high dynamic
range phase unwrapping. Proceedings of

SPIE - The International Society for
Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Fairness assessment
of the adaptive token

bank fair queuing
scheduling algorithm

2008

Bokhari F.A., Yanikomeroglu H., Wong
W.K., Rahman M.. Fairness assessment of

the adaptive token bank fair queuing
scheduling algorithm. IEEE Vehicular
Technology Conference, 2008 pp - .

EC1 - SCOPUS -

Applying a
video-based
requirements

engineering technique
to an airport scenario

2008

Bruegge B., Creighton O., Reiss M., Stangl
H.. Applying a video-based requirements

engineering technique to an airport
scenario. 2008 3rd International Workshop
on Multimedia and Enjoyable Requirements

Engineering, MERE’08, 2008 pp - .

EC1 - SCOPUS -

The potential of
crowd simulations for

communication
purposes in
architecture

2008

Burkhard R., Bischof S., Herzog A.. The
potential of crowd simulations for

communication purposes in architecture.
Proceedings of the International Conference
on Information Visualisation, 2008 pp 403 -

408.

EC1 - SCOPUS -

An integrated FEM
and ANN

methodology for
metal-formed product

design

2008

Chan W.L., Fu M.W., Lu J.. An integrated
FEM and ANN methodology for

metal-formed product design. Engineering
Applications of Artificial Intelligence, 2008

pp 1170 - 1181.

EC1 - SCOPUS -

Implicit personal
contracts and

actor-group consensus
in CRM

implementations -
Evidence for their
role in influencing

success

2008

Corner I., Hinton M.. Implicit personal
contracts and actor-group consensus in

CRM implementations - Evidence for their
role in influencing success. 2nd European
Conference on Information Management

and Evaluation, ECIME 2008, 2008 pp 89 -
98.

EC1 - SCOPUS -

SISI project:
Developing GIS-based
tools for vulnerability

assessment
2008

Della Rocca B., Fattoruso G., Locurzio S.,
Pasanisi F., Pica R., Peloso A., Pollino M.,

Tebano C., Trocciola A., De Chiara D.,
Tortora G.. SISI project: Developing

GIS-based tools for vulnerability
assessment. Lecture Notes in Computer

Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2008 pp 327 - 330.

EC1 - SCOPUS -

Integrated modeling
for the GPi flexure
sensitive structure

2008

Erickson D., Roberts S., Pazder J.S.,
Fletcher J.M.. Integrated modeling for the
GPi flexure sensitive structure. Proceedings

of SPIE - The International Society for
Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

An algorithm for
parking lot

occupation detection
2008

Fabian T.. An algorithm for parking lot
occupation detection. Proceedings - 7th

Computer Information Systems and
Industrial Management Applications,

CISIM 2008, 2008 pp 165 - 170.

EC1 - SCOPUS -

Multi-sensor-based
fully autonomous
non-cooperative

collision avoidance
system for unmanned

air vehicles

2008

Fasano G., Accardo D., Moccia A., Carbone
G., Ciniglio U., Corraro F., Luongo S..
Multi-sensor-based fully autonomous

non-cooperative collision avoidance system
for unmanned air vehicles. Journal of

Aerospace Computing, Information and
Communication, 2008 pp 338 - 360.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 163

Table A.1: Complete list returned by systematic mapping review.

The new CIO: from
technician to business

strategist and the
implications for

e-commerce

2008

Fortino A.. The new CIO: from technician
to business strategist and the implications

for e-commerce. IEEE International
Conference on e-Business Engineering,

ICEBE’08 - Workshops: AiR’08, EM2I’08,
SOAIC’08, SOKM’08, BIMA’08,
DKEEE’08, 2008 pp 139 - 146.

EC1 - SCOPUS -

Lean development in
the automotive
industry: The

snap-shot approach
2008

Gracbsch M., Roclofscn J., Lindcmann U..
Lean development in the automotive

industry: The snap-shot approach. FISITA
World Automotive Congress 2008, Congress

Proceedings - Mobility Concepts, Man
Machine Interface, Process Challenges,

Virtual Reality, 2008 pp 430 - 439.

EC1 - SCOPUS -

Exploring the 3D
spatial distribution of
cultural prints using
remote sensing and
giscience: Istanbul:
The city on seven

hills

2008

Has Y.. Exploring the 3D spatial
distribution of cultural prints using remote
sensing and giscience: Istanbul: The city on

seven hills. International Geoscience and
Remote Sensing Symposium (IGARSS),

2008 pp IV703 - IV706.

EC1 - SCOPUS -

ATST systems
engineering - Project
update and lessons

learned
2008

Hubbard R.P.. ATST systems engineering -
Project update and lessons learned.

Proceedings of SPIE - The International
Society for Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Performance
prediction for a code
with data-dependent

runtimes
2008

Jarvis S.A., Foley B.P., Isitt P.J., Spooner
D.P., Rueckert D., Nudd G.R.. Performance
prediction for a code with data-dependent

runtimes. Concurrency Computation
Practice and Experience, 2008 pp 195 - 206.

EC1 - SCOPUS -

Application of
support vector

machine based on
rough sets to project

risk assessment
(RS-SVM)

2008

Jia Z., Gong L., Han J.. Application of
support vector machine based on rough sets

to project risk assessment (RS-SVM).
Proceedings - International Conference on

Computer Science and Software
Engineering, CSSE 2008, 2008 pp 508 - 511.

EC1 - SCOPUS -

Microarray image
converted database -
Genetic Algorithm

application in
bioinformatics

2008

Jiao C.Y., Li D.G.. Microarray image
converted database - Genetic Algorithm

application in bioinformatics. BioMedical
Engineering and Informatics: New

Development and the Future - Proceedings
of the 1st International Conference on

BioMedical Engineering and Informatics,
BMEI 2008, 2008 pp 302 - 305.

EC1 - SCOPUS -

A web-based
collaborative

environment based on
a shared ontology for
the maintenance of

steam turbines

2008

Khadir M.T., Sellami M.. A web-based
collaborative environment based on a

shared ontology for the maintenance of
steam turbines. Proceedings - 7th

Computer Information Systems and
Industrial Management Applications,

CISIM 2008, 2008 pp 151 - 152.

EC1 - SCOPUS -

Skeletal curves of 3D
astrocyte samples 2008

Klette G.. Skeletal curves of 3D astrocyte
samples. Machine Graphics and Vision,

2008 pp 105 - 129.
EC1 - SCOPUS -

A novel approach
based on support
vector machine to

forecasting the
construction project

cost

2008

Kong F., Wu X.-J., Cai L.-Y.. A novel
approach based on support vector machine
to forecasting the construction project cost.

Proceedings of the 2008 International
Symposium on Computational Intelligence
and Design, ISCID 2008, 2008 pp 21 - 24.

EC1 - SCOPUS -

Rough set approach
for feature reduction
in pattern recognition
through unsupervised

artificial neural
network

2008

Kothari A.G., Keskar A.G., Gokhale A.P.,
Deshpande R., Deshmukh P.. Rough set
approach for feature reduction in pattern
recognition through unsupervised artificial

neural network. Proceedings - 1st
International Conference on Emerging
Trends in Engineering and Technology,
ICETET 2008, 2008 pp 1196 - 1199.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 164

Table A.1: Complete list returned by systematic mapping review.

The second life
client-viewer: A case
study in using open

source
2008

Krawczyk L., Hansen S., Deshpande Y..
The second life client-viewer: A case study
in using open source. AusWeb 2008: 14th
Australasian World Wide Web Conference,

2008 pp - .

EC1 - SCOPUS -

WiiArts: Creating
collaborative art
experience with

WiiRemote
interaction

2008

Lee H.-J., Kim H., Gupta G., Mazalek A..
WiiArts: Creating collaborative art

experience with WiiRemote interaction.
TEI’08 - Second International Conference
on Tangible and Embedded Interaction -
Conference Proceedings, 2008 pp 33 - 36.

EC1 - SCOPUS -

Application and
evaluation of wireless

transmission
technique at

construction job-site

2008

Lin L.-K., Tuan C.-C., Cnen C.-J..
Application and evaluation of wireless
transmission technique at construction
job-site. Proceedings of the 3rd IEEE

Asia-Pacific Services Computing
Conference, APSCC 2008, 2008 pp 963 -

968.

EC1 - SCOPUS -

Adaptive critic
learning techniques

for engine torque and
air-fuel ratio control

2008

Liu D., Javaherian H., Kovalenko O., Huang
T.. Adaptive critic learning techniques for
engine torque and air-fuel ratio control.

IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 2008 pp

988 - 993.

EC1 - SCOPUS -

Object localization
based on mutual

information in global
structure constraint

model

2008

Liu M., Guo D., Jie M., Zhou C.. Object
localization based on mutual information in

global structure constraint model.
Proceedings - 7th Computer Information

Systems and Industrial Management
Applications, CISIM 2008, 2008 pp 212 -

213.

EC1 - SCOPUS -

Conflict resolution
within multi-agent

system in
collaborative design

2008

Liu Q., Cui X., Hu X.. Conflict resolution
within multi-agent system in collaborative

design. Proceedings - International
Conference on Computer Science and

Software Engineering, CSSE 2008, 2008 pp
520 - 523.

EC1 -
IEEE,

SCOPUS
-

Application of a
web-based education
system in industrial

processes
2008

Marino P., Dominguez M.A., Otero S.,
Merino M.. Application of a web-based

education system in industrial processes.
WEBIST 2008 - 4th International

Conference on Web Information Systems
and Technologies, Proceedings, 2008 pp 452

- 455.

EC1 - SCOPUS -

University-enterprise
technology transfer
for education and

training about
industrial processes

2008

Marino P., Dominguez M.A., Otero S.,
Merino M.. University-enterprise

technology transfer for education and
training about industrial processes. 2008
Conference on Human System Interaction,

HSI 2008, 2008 pp 40 - 43.

EC1 -
IEEE,

SCOPUS
-

Multimedia tool to
help small and

medium enterprises in
their enterprise

resource planning and
business process

change

2008

Marino P., Dominguez M.A., Otero S.,
Merino M.. Multimedia tool to help small
and medium enterprises in their enterprise

resource planning and business process
change. Proceedings of the 2008

International Conference on e-Learning,
e-Business, Enterprise Information Systems,
and e-Government, EEE 2008, 2008 pp 252

- 256.

EC1 - SCOPUS -

Classification of fMRI
time series in a
low-dimensional
subspace with a

spatial prior

2008

Meyer F.G., Shen X.. Classification of fMRI
time series in a low-dimensional subspace

with a spatial prior. IEEE Transactions on
Medical Imaging, 2008 pp 87 - 98.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 165

Table A.1: Complete list returned by systematic mapping review.

High-resolution
optical modeling of
the thirty meter

telescope for
systematic

performance trades

2008

Nissly C., Seo B.-J., Troy M., Angeli G.,
Angione J., Crossfield I., Ellerbroek B.,

Gilles L., Sigrist N.. High-resolution optical
modeling of the thirty meter telescope for

systematic performance trades. Proceedings
of SPIE - The International Society for

Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Two hand tracking
using colour

statistical model with
the K-means

embedded particle
filter for hand gesture

recognition

2008

Ongkittikul S., Worrall S., Kondoz A.. Two
hand tracking using colour statistical model
with the K-means embedded particle filter
for hand gesture recognition. Proceedings -

7th Computer Information Systems and
Industrial Management Applications,

CISIM 2008, 2008 pp 201 - 206.

EC1 - SCOPUS -

Dome and mirror
seeing estimates for

the thirty meter
telescope

2008

Pazder J.S., Vogiatzis K., Angeli G.Z..
Dome and mirror seeing estimates for the

thirty meter telescope. Proceedings of SPIE
- The International Society for Optical

Engineering, 2008 pp - .

EC1 - SCOPUS -

Evolution of
computer graphics
and its impact on

engineering product
development

2008

Sathyanarayana K., Ravi Kumar G.V.V..
Evolution of computer graphics and its

impact on engineering product
development. Proceedings - Computer
Graphics, Imaging and Visualisation,
Modern Techniques and Applications,

CGIV, 2008 pp 32 - 37.

EC1 - SCOPUS -

Optical vortex and
correlation image

sensor for networked
deformation sensing
of infrastructures

2008

Sato S., Kurihara T., Ando S., Fujimoto I..
Optical vortex and correlation image sensor

for networked deformation sensing of
infrastructures. Proceedings of INSS 2008 -
5th International Conference on Networked

Sensing Systems, 2008 pp 39 - 42.

EC1 - SCOPUS -

Effect of similarity
metrics and ROI sizes

in featureless
computer aided

detection of breast
masses in

tomosynthesis

2008

Singh S., Tourassi G.D., Lo J.Y.. Effect of
similarity metrics and ROI sizes in

featureless computer aided detection of
breast masses in tomosynthesis. Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in

Bioinformatics), 2008 pp 286 - 291.

EC1 - SCOPUS -

A segmentation-based
approach for

temporal analysis of
software version

repositories

2008

Siy H., Chundi P., Rosenkrantz D.J.,
Subramaniam M.. A segmentation-based

approach for temporal analysis of software
version repositories. Journal of Software

Maintenance and Evolution, 2008 pp 199 -
222.

EC1 - SCOPUS -

Recent results
obtained on the

APEX 12 m antenna
with the ArTeMiS
prototype camera

2008

Talvard M., Andre P., Rodriguez L.,
Le-Pennec Y., De Breuck C., Reveret V.,
Agnese P., Boulade O., Doumayrou E.,

Dubreuil D., Ercolani E., Gallais P., Horeau
B., Lagage P.O., Leriche B., Lortholary M.,

Martignac J., Minier V., Pantin E.,
Rabanus D., Relland J., Willmann G..

Recent results obtained on the APEX 12 m
antenna with the ArTeMiS prototype
camera. Proceedings of SPIE - The
International Society for Optical

Engineering, 2008 pp - .

EC1 - SCOPUS -

Towards a conceptual
framework and tool
support for linking
long-term product

and business planning
with agile software

development

2008

Vahaniitty J., Rautiainen K.T.. Towards a
conceptual framework and tool support for

linking long-term product and business
planning with agile software development.
Proceedings - International Conference on

Software Engineering, 2008 pp 25 - 28.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 166

Table A.1: Complete list returned by systematic mapping review.

Meteorological
simulation portal on
the thaigrid system

2008

Vittayasermsathian S., Wongjumpa K.,
Yamwong W., Sarochawikasit R..

Meteorological simulation portal on the
thaigrid system. 5th International

Conference on Electrical
Engineering/Electronics, Computer,
Telecommunications and Information

Technology, ECTI-CON 2008, 2008 pp 153 -
156.

EC1 - SCOPUS -

Conditional
correlation analysis
for safe region-based
memory management

2008

Wang X., Xu Z., Liu X., Guo Z., Wang X.,
Zhang Z.. Conditional correlation analysis
for safe region-based memory management.

Proceedings of the ACM SIGPLAN
Conference on Programming Language

Design and Implementation (PLDI), 2008
pp 45 - 55.

EC1 - SCOPUS -

Influence of media
communication on

daily communication
2008

Yamada-Kawai K., Musou M., Hirasawa N..
Influence of media communication on daily
communication. MCCSIS’08 - IADIS Multi

Conference on Computer Science and
Information Systems; Proceedings of ICT,
Society and Human Beings 2008, 2008 pp

192 - 196.

EC1 - SCOPUS -

Priority assessing
method for aviation
multi-project based

on fuzzy
comprehensive

evaluation

2008

Yu J., Zhang J., Li Y.. Priority assessing
method for aviation multi-project based on

fuzzy comprehensive evaluation. 2008
International Conference on Wireless

Communications, Networking and Mobile
Computing, WiCOM 2008, 2008 pp - .

EC1 - SCOPUS -

Intercity commute
patterns in Central

Texas
2008

Zhan F.B., Chen X.. Intercity commute
patterns in Central Texas. Proceedings of

SPIE - The International Society for
Optical Engineering, 2008 pp - .

EC1 - SCOPUS -

Using the CAT for 3D
sketching in front of

large displays
2008

Zhang H., Hadim J., Granier X.. Using the
CAT for 3D sketching in front of large
displays. Lecture Notes in Computer

Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2008 pp 8 - 19.

EC1 - SCOPUS -

Application of
geo-spatial
information

technology in the
engineering manage
of roller compaction

construction

2008

Zhang J., Chen X., Zhong C., Wu H., Duan
S.. Application of geo-spatial information
technology in the engineering manage of

roller compaction construction.
International Geoscience and Remote

Sensing Symposium (IGARSS), 2008 pp
III1312 - III1315.

EC1 - SCOPUS -

3-D axon structure
extraction and

analysis in confocal
fluorescence

microscopy images

2008

Zhang Y., Zhou X., Lu J., Lichtman J.,
Adjeroh D., Wong S.T.. 3-D axon structure

extraction and analysis in confocal
fluorescence microscopy images. 2007
IEEE/NIH Life Science Systems and

Applications Workshop, LISA, 2008 pp 241
- 244.

EC1 - SCOPUS -

Applying SE methods
achieves project

success to evaluate
hammer and fixed

cutter grinders using
multiple varieties and
moistures of biomass
feedstock for ethanol

Production

2008

Zirker L.R., Wright C.T., Hamelin R.D..
Applying SE methods achieves project

success to evaluate hammer and fixed cutter
grinders using multiple varieties and

moistures of biomass feedstock for ethanol
Production. 18th Annual International

Symposium of the International Council on
Systems Engineering, INCOSE 2008, 2008

pp 2357 - 2368.

EC1 - SCOPUS -

Categorization using
semi-supervised

clustering
2008

Jianying Hu; Singh, M.; Mojsilovic, A.; ,
Categorization using semi-supervised
clustering, Pattern Recognition, 2008.

ICPR 2008. 19th International Conference
on , vol., no., pp.1-4, 8-11 Dec. 2008

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 167

Table A.1: Complete list returned by systematic mapping review.

IEEE Student Branch
profile: Strength in

numbers
2008

Causer, C.; , IEEE Student Branch profile:
Strength in numbers, Potentials, IEEE ,
vol.27, no.6, pp.4-5, November-December

2008

EC1 - IEEE -

Lessons Learned from
the SDSS Catalog

Archive Server
2008

Thakar, A.R.; , Lessons Learned from the
SDSS Catalog Archive Server, Computing
in Science & Engineering , vol.10, no.6,

pp.65-71, Nov.-Dec. 2008

EC1 - IEEE -

Relighting with real
incident light source 2008

Yifan Chen; Xubo Yang; Shuangjiu Xiao;
Xiaodong Ding; , Relighting with real

incident light source, Mixed and
Augmented Reality, 2008. ISMAR 2008.

7th IEEE/ACM International Symposium
on , vol., no., pp.157-158, 15-18 Sept. 2008

EC1 - IEEE -

The changing
landscape of

multimedia SoC
design

2008

Dutta, S.; , The changing landscape of
multimedia SoC design, Consumer

Electronics, 2008. ISCE 2008. IEEE
International Symposium on , vol., no.,

pp.1, 14-16 April 2008

EC1 - IEEE -

The ENTHRONE 2
metadata

management tool
(MATool) (WISE

2008 MATool
demonstration)

2008

Lugmayr, A.; , The ENTHRONE 2
metadata management tool (MATool)
(WISE 2008 MATool demonstration),

Computer Systems and Applications, 2008.
AICCSA 2008. IEEE/ACS International
Conference on , vol., no., pp.1013-1018,

March 31 2008-April 4 2008

EC1 - IEEE -

Web-Based Intelligent
CSCW Exploiting

Context-Based
Reasoning

2008

Sakurai, Y.; Gonzalez, A.J.; Nguyen, J.;
Takada, K.; Uchida, K.; Tsuruta, S.; ,

Web-Based Intelligent CSCW Exploiting
Context-Based Reasoning, Signal Image
Technology and Internet Based Systems,

2008. SITIS ’08. IEEE International
Conference on , vol., no., pp.490-497, Nov.

30 2008-Dec. 3 2008

EC1 - IEEE -

Whither the CIO?
Evolution from keeper
of the infrastructure

to firm innovator
2008

Fortino, A.; , Whither the CIO? Evolution
from keeper of the infrastructure to firm
innovator, Management of Engineering &

Technology, 2008. PICMET 2008. Portland
International Conference on , vol., no.,

pp.1878-1886, 27-31 July 2008

EC1 - IEEE -

Design and
development of a
terrestrial digital
video broadcast

demodulation core:
An international

collaborative effort

2007

Ashikhmin A., De Lind Van Wijngaarden
A.J., Haibo Z., Hochwald B.M., Marzetta
T.L., Purohit V., Qinghong C., Wilford
P.A., Zhou S.-R., Zuniga M.A., Zuranski

E.S.. Design and development of a
terrestrial digital video broadcast

demodulation core: An international
collaborative effort. Bell Labs Technical

Journal, 2007 pp 97 - 118.

EC1 - SCOPUS -

Art & complexity:
An exploration of

aesthetics
2007

Birkin G.. Art & complexity: An
exploration of aesthetics. Creativity and

Cognition 2007, CC2007 - Seeding
Creativity: Tools, Media, and
Environments, 2007 pp 278 - .

EC3 - SCOPUS -

Visualizing
endangered

indigenous languages
of French Polynesia

with LEXUS

2007

Cablitz G., Ringersma J., Kemps-Snijders
M.. Visualizing endangered indigenous

languages of French Polynesia with LEXUS.
Proceedings of the International Conference
on Information Visualisation, 2007 pp 409 -

414.

EC1 - SCOPUS -

The karst
collaborative
workspace for
analyzing and

annotating scientific
datasets

2007

Collins L.M., Northup D.E., Martinez
M.L.B., Van Reenen J., Baker M.A.,

Crowley C.R., Powell J.E., Freels-Stendel
B., Heckethorn S.K., Park J.C.. The karst
collaborative workspace for analyzing and

annotating scientific datasets. Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics), 2007 pp 3 - 12.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 168

Table A.1: Complete list returned by systematic mapping review.

Development of fully
automatic inspection

systems for large
underground concrete
pipes partially filled

with wastewater

2007

Elkmann N., Althoff H., Kutzner S., Stuerze
T., Saenz J., Reimann B.. Development of
fully automatic inspection systems for large
underground concrete pipes partially filled

with wastewater. Proceedings - IEEE
International Conference on Robotics and

Automation, 2007 pp 130 - 135.

EC1 - SCOPUS -

Finding the way:
Improving access to
the collections of the

Royal Scottish
Geographical Society

2007

Fenton C.. Finding the way: Improving
access to the collections of the Royal

Scottish Geographical Society. Program,
2007 pp 353 - 364.

EC1 - SCOPUS -

Agile-CAD for reverse
engineering 2007

Ferreira R., Leal I., Alves N., Bartolo P..
Agile-CAD for reverse engineering.
Proceedings of the 3rd International
Conference on Advanced Research in

Virtual and Rapid Prototyping: Virtual and
Rapid Manufacturing Advanced Research
Virtual and Rapid Prototyping, 2007 pp

257 - 261.

EC1 - SCOPUS -

An ASIC circuit for
timing measurements
with strip detectors,

designed for the
SiliPET project

2007

Gola A., Fiorini C., Di Domenico G.,
Zavattini G., Auricchio N.. An ASIC circuit

for timing measurements with strip
detectors, designed for the SiliPET project.

IEEE Nuclear Science Symposium
Conference Record, 2007 pp 370 - 374.

EC1 - SCOPUS -

The readout
electronics and the
DAQ system of the

DRAGO Anger
Camera

2007

Gola A., Fiorini C., Porro M., Zanchi M..
The readout electronics and the DAQ
system of the DRAGO Anger Camera.

IEEE Nuclear Science Symposium
Conference Record, 2007 pp 1334 - 1337.

EC1 - SCOPUS -

Digital architectural
reconstruction: New

media technology and
their use as

educational tools in
the Arabian Gulf

2007

Hawker R.W.. Digital architectural
reconstruction: New media technology and

their use as educational tools in the
Arabian Gulf. WIT Transactions on the
Built Environment, 2007 pp 587 - 595.

EC1 - SCOPUS -

The great Buddha
project: Digitally

archiving, restoring,
and analyzing

cultural heritage
objects

2007

Ikeuchi K., Oishi T., Takamatsu J., Sagawa
R., Nakazawa A., Kurazume R., Nishino K.,

Kamakura M., Okamoto Y.. The great
Buddha project: Digitally archiving,

restoring, and analyzing cultural heritage
objects. International Journal of Computer

Vision, 2007 pp 189 - 208.

EC1 - SCOPUS -

Library composition
and adaptation using

c++ concepts
2007

Jarvi J., Marcus M.A., Smith J.N.. Library
composition and adaptation using c++
concepts. GPCE’07 - Proceedings of the

Sixth International Conference on
Generative Programming and Component

Engineering, 2007 pp 73 - 82.

EC1 - SCOPUS -

Model-based design of
an embedded vision
application: A field

report
2007

Kogler J., Hemetsberger H., Kubinger W.,
Borbely S.. Model-based design of an

embedded vision application: A field report.
Proceedings of the 4th IASTED

International Conference on Signal
Processing, Pattern Recognition, and

Applications, SPPRA 2007, 2007 pp 233 -
238.

EC1 - SCOPUS -

Building an
experimental

infrastructure for
B3G testing using an

event-based
distributed system

2007

Kormentzas G.. Building an experimental
infrastructure for B3G testing using an

event-based distributed system. 2007 16th
IST Mobile and Wireless Communications

Summit, 2007 pp - .

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 169

Table A.1: Complete list returned by systematic mapping review.

Design and
implementation of

gradient vector flow
snake to detect a
reference object in
pelvic X-rays for

preoperative total hip
arthroplasty planning

application

2007

Kristanto W., Van Ooijen P.M.A., The B.,
Duifhuis H., Mengko T.R., Oudkerk M..
Design and implementation of gradient
vector flow snake to detect a reference
object in pelvic X-rays for preoperative

total hip arthroplasty planning application.
Journal of Digital Imaging, 2007 pp 373 -

380.

EC1 - SCOPUS -

Quality assessment of
the fire hazard

forecast based on a
fire potential index

for the Mediterranean
area by using a

MSG/SEVIRI based
fire detection system

2007

Laneve G., Cadau E.G.. Quality assessment
of the fire hazard forecast based on a fire
potential index for the Mediterranean area

by using a MSG/SEVIRI based fire
detection system. International Geoscience
and Remote Sensing Symposium (IGARSS),

2007 pp 2447 - 2450.

EC1 - SCOPUS -

From endoscopic
imaging and
knowledge to

semantic formal
images

2007

Le Guillou C., Cauvin J.-M., Solaiman B.,
Robaszkiewicz M., Roux C.. From

endoscopic imaging and knowledge to
semantic formal images. Lecture Notes in

Computer Science (including subseries
Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2007 pp

189 - 201.

EC1 - SCOPUS -

Lawrence Blaine is
unwell: A web-based

international
’community of

practice’ to engage
nursing students in
the planning and

delivery of health care

2007

Lindsay B.. Lawrence Blaine is unwell: A
web-based international ’community of

practice’ to engage nursing students in the
planning and delivery of health care.

Proceedings of the International Conference
on e-Learning, ICEL, 2007 pp 299 - 306.

EC1 - SCOPUS -

Fuzzy colored timed
petri nets for software
project management

2007

Looney C.G., Dascalu S.. Fuzzy colored
timed petri nets for software project

management. 20th International Conference
on Computer Applications in Industry and
Engineering 2007, CAINE 2007, 2007 pp

168 - 173.

EC1 - SCOPUS -

Fusion of
multispectral video
sequences based on
the trajectories of
moving objects

2007

Morin F., Bilodeau G.-A.. Fusion of
multispectral video sequences based on the
trajectories of moving objects. ROSE 2007
- International Workshop on Robotic and

Sensor Environments, Proceedings, 2007 pp
120 - 124.

EC1 - SCOPUS -

Improving
cross-cultural

communication
through collaborative

technologies

2007

O’Brien A.J., Alfano C., Magnusson E..
Improving cross-cultural communication

through collaborative technologies. Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in

Bioinformatics), 2007 pp 125 - 131.

EC1 - SCOPUS -

Enhancing
multimodal

annotations with
pen-based

information

2007

Pimentel M.G., Goularte R., Cattelan R.G.,
Santos F.S., Teixeira C.. Enhancing

multimodal annotations with pen-based
information. Proceedings ISM Workshops

2007 9th IEEE International Symposium on
Multimedia - Workshops, 2007 pp 207 - 212.

EC1 - SCOPUS -

Mastering DICOM
with DVTk 2007

Potter G., Busbridge R., Toland M., Nagy
P.. Mastering DICOM with DVTk. Journal

of Digital Imaging, 2007 pp 47 - 62.
EC1 - SCOPUS -

Maximizing the
adoption of fixed

number portability
within the EU: An
empirical analysis

2007

Prezerakos G.N., Polykalas S.E..
Maximizing the adoption of fixed number
portability within the EU: An empirical

analysis. Telecommunications Policy, 2007
pp 179 - 196.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 170

Table A.1: Complete list returned by systematic mapping review.

Management
competences, not

tools and techniques:
A grounded

examination of
software project
management at

WM-data

2007

Rose J., Pedersen K., Hosbond J.H.,
Kraemmergaard P.. Management

competences, not tools and techniques: A
grounded examination of software project

management at WM-data. Information and
Software Technology, 2007 pp 605 - 624.

EC1 - SCOPUS -

The ALOS Kyoto &
carbon initiative 2007

Rosenqvist A., Shimada M., Milne A.K..
The ALOS Kyoto & carbon initiative.
International Geoscience and Remote

Sensing Symposium (IGARSS), 2007 pp
3614 - 3617.

EC1 - SCOPUS -

Algorithm
visualization: A

report on the state of
the field

2007

Shaffer C.A., Cooper M., Edwards S.H..
Algorithm visualization: A report on the

state of the field. SIGCSE 2007: 38th
SIGCSE Technical Symposium on

Computer Science Education, 2007 pp 150 -
154.

EC1 - SCOPUS -

An application of
Google Earth for

Forest Inventory in
Alishan area

2007

Shih C.-H., Lau C.-C.. An application of
Google Earth for Forest Inventory in

Alishan area. 28th Asian Conference on
Remote Sensing 2007, ACRS 2007, 2007 pp

1645 - 1652.

EC1 - SCOPUS -

A new approach to
the computer support
of strategic decision
making in enterprises
by means of a new

class of understanding
based management
support systems

2007

Tadeusiewicz R., Ogiela M., Ogiela L.. A
new approach to the computer support of
strategic decision making in enterprises by

means of a new class of understanding
based management support systems.

Proceedings - 6th International Conference
on Computer Information Systems and
Industrial Management Applications,

CISIM 2007, 2007 pp 9 - 13.

EC1 - SCOPUS -

RAVE - An open,
extensible,

detector-independent
toolkit for

reconstruction of
interaction vertices

2007

Waltenberger W., Moser F.. RAVE - An
open, extensible, detector-independent
toolkit for reconstruction of interaction

vertices. IEEE Nuclear Science Symposium
Conference Record, 2007 pp 104 - 109.

EC1 - SCOPUS -

Simulation of
hounsfield units for a

computed
tomography scanner

and different
phantom inserts

2007

Wysocka-Rabin A., Qamhiyeh S., Jakel O..
Simulation of hounsfield units for a

computed tomography scanner and different
phantom inserts. EUROCON 2007 - The

International Conference on Computer as a
Tool, 2007 pp 2361 - 2366.

EC1 - SCOPUS -

Technology-enhanced
language learning: A

case study
2007

Yang S.C., Chen Y.-J..
Technology-enhanced language learning: A
case study. Computers in Human Behavior,

2007 pp 860 - 879.

EC1 - SCOPUS -

3D part retrieval in
product data

management system
2007

You C.-F., Chen T.-P.. 3D part retrieval in
product data management system.

Computer-Aided Design and Applications,
2007 pp 117 - 125.

EC1 - SCOPUS -

Using hue, saturation,
and value color space

for hydraulic
excavator idle time

analysis

2007

Zou J., Kim H.. Using hue, saturation, and
value color space for hydraulic excavator

idle time analysis. Journal of Computing in
Civil Engineering, 2007 pp 238 - 246.

EC1 - SCOPUS -

A General
Architecture in

Support of
Personalized,
Interactive

Multimedia Services
in the Mobile

Broadcast Convergent
Environment

2007

Wang Hui; Song Yali; Tang Xiaosheng;
Zhang Ping; , A General Architecture in

Support of Personalized, Interactive
Multimedia Services in the Mobile

Broadcast Convergent Environment,
Testbeds and Research Infrastructure for

the Development of Networks and
Communities, 2007. TridentCom 2007. 3rd

International Conference on , vol., no.,
pp.1-6, 21-23 May 2007

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 171

Table A.1: Complete list returned by systematic mapping review.

A Management
Platform for
Multimedia

Distribution in
Country-wide

Networks

2007

Uchoa, D.C.; Kulesza, R.; Matushima, R.;
Kopp, S.; Bressan, G.; Silveira, R.M.; , A

Management Platform for Multimedia
Distribution in Country-wide Networks,
Network Operations and Management

Symposium, 2007. LANOMS 2007. Latin
American , vol., no., pp.20-27, 10-12 Sept.

2007

EC1 - IEEE -

A Practical Color
Transfer Algorithm
for Image Sequences

2007

Yao-Hsien Huang; Chung-Hsin Liu; , A
Practical Color Transfer Algorithm for

Image Sequences, Intelligent Information
Hiding and Multimedia Signal Processing,
2007. IIHMSP 2007. Third International
Conference on , vol.1, no., pp.577-580,

26-28 Nov. 2007

EC1 - IEEE -

A Relevance Feedback
Algorithm Based on

SVM Model’s
Dynamic Adjusting
for Image Retrieval

2007

Yihua Zhou; Weimin Shi; Lijuan Duan;
Cuiying Niu; , A Relevance Feedback

Algorithm Based on SVM Model’s Dynamic
Adjusting for Image Retrieval,

Computational Intelligence and Security
Workshops, 2007. CISW 2007.

International Conference on , vol., no.,
pp.287-290, 15-19 Dec. 2007

EC1 - IEEE -

A study on
development of real

time monitoring
system for field

integrated
management - overall
automation of steel

construction -

2007

Hyun Tae Ju; Chi Su Son; Kyung Hun Kim;
Kyung Hwan Kim; Jae Jun Kim; , A study

on development of real time monitoring
system for field integrated management -
overall automation of steel construction -,
Control, Automation and Systems, 2007.
ICCAS ’07. International Conference on ,
vol., no., pp.1937-1941, 17-20 Oct. 2007

EC1 - IEEE -

Fault Management
based on peer-to-peer

paradigms; A case
study report from the

CELTIC project
Madeira

2007

Leitner, M.; Leitner, P.; Zach, M.; Collins,
S.; Fahy, C.; , Fault Management based on
peer-to-peer paradigms; A case study report

from the CELTIC project Madeira,
Integrated Network Management, 2007. IM

’07. 10th IFIP/IEEE International
Symposium on , vol., no., pp.697-700, May

21 2007-Yearly 25 2007

EC1 - IEEE -

Knowledge-Based
Recognition of Utility
Map Sub-Diagrams

2007

Hickinbotham, S.J.; Cohn, A.G.; ,
Knowledge-Based Recognition of Utility
Map Sub-Diagrams, Document Analysis

and Recognition, 2007. ICDAR 2007. Ninth
International Conference on , vol.1, no.,

pp.213-217, 23-26 Sept. 2007

EC1 - IEEE -

Management of QoS
Metadata for
Consuming

Interactive Digital
Media at Home

2007

Lugmayr, Artur; , Management of QoS
Metadata for Consuming Interactive Digital

Media at Home, Multimedia Workshops,
2007. ISMW ’07. Ninth IEEE International
Symposium on , vol., no., pp.221-226, 10-12

Dec. 2007

EC1 - IEEE -

openSourcePACS: An
Extensible

Infrastructure for
Medical Image
Management

2007

Bui, A.A.T.; Morioka, C.; Dionisio, J.D.N.;
Johnson, D.B.; Sinha, U.; Ardekani, S.;
Taira, R.K.; Aberle, D.R.; El-Saden, S.;
Kangarloo, H.; , openSourcePACS: An

Extensible Infrastructure for Medical Image
Management, Information Technology in

Biomedicine, IEEE Transactions on , vol.11,
no.1, pp.94-109, Jan. 2007

EC1 - IEEE -

SISTER Service
Information

Scheduling and
Transmission and Epg
contRol - A new open
source SW solution
for local/regional

operators

2007

Caravantes, J.R.L.; Fernandez, S.; Ceacero,
C.; , SISTER Service Information

Scheduling and Transmission and Epg
contRol - A new open source SW solution
for local/regional operators, Mobile and
Wireless Communications Summit, 2007.
16th IST , vol., no., pp.1-5, 1-5 July 2007

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 172

Table A.1: Complete list returned by systematic mapping review.

Using A Convective
Weather Forecast
Product to Predict
Weather Impact on

Air Traffic:
Methodology and
Comparison with

Actual Data

2007

Klein, A.; Kavoussi, S.; Hickman, D.;
Simenauer, D.; Phaneuf, M.; MacPhail, T.;

, Using A Convective Weather Forecast
Product to Predict Weather Impact on Air
Traffic: Methodology and Comparison with
Actual Data, Integrated Communications,
Navigation and Surveillance Conference,

2007. ICNS ’07 , vol., no., pp.1-10, April 30
2007-May 3 2007

EC1 - IEEE -

Construction
workspace planning:

Assignment and
analysis utilizing 4D

visualization
technologies

2006

Dawood N., Mallasi Z.. Construction
workspace planning: Assignment and

analysis utilizing 4D visualization
technologies. Computer-Aided Civil and
Infrastructure Engineering, 2006 pp 498 -

513.

EC1 - SCOPUS -

WORLDMAPPER:
The world as you’ve
never seen it before

2006

Dorling D., Barford A., Newman M..
WORLDMAPPER: The world as you’ve

never seen it before. IEEE Transactions on
Visualization and Computer Graphics, 2006

pp 757 - 764.

EC1 - SCOPUS -

Single organ
segmentation filters
for multiple organ

segmentation.
2006

Furst J.D., Susomboom R., Raicu D.S..
Single organ segmentation filters for

multiple organ segmentation.. Conference
proceedings : ... Annual International
Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE
Engineering in Medicine and Biology

Society. Conference, 2006 pp 3033 - 3036.

EC1 - SCOPUS -

Video traffic
management in

HSDPA via GEO
satellite

2006

Giambene G., Giannetti S., Niebla C.P.,
Ries M.. Video traffic management in

HSDPA via GEO satellite. 2006
International Workshop on Satellite and
Space Communications, IWSSC, 2006 pp

188 - 192.

EC1 - SCOPUS -

Evaluating
evaluation:

Introducing a
research project on

the impact of improve
your library: A
self-evaluation

process for school
libraries

2006

Gildersleeves L.. Evaluating evaluation:
Introducing a research project on the

impact of improve your library: A
self-evaluation process for school libraries.

Aslib Proceedings: New Information
Perspectives, 2006 pp 73 - 88.

EC1 - SCOPUS -

DARPA autonomous
airborne refueling

demonstration
program with initial

results

2006

Hansen J., Romrell G., Nabaa N., Andersen
R., Myers L., McCormick J.. DARPA

autonomous airborne refueling
demonstration program with initial results.
Proceedings of the Institute of Navigation -
19th International Technical Meeting of the
Satellite Division, ION GNSS 2006, 2006 pp

674 - 685.

EC1 - SCOPUS -

Vision guided
manipulator for
optimal dynamic

performance
2006

Jamaluddin M.H., Said M.A., Sulaiman M.,
Horng C.S.. Vision guided manipulator for
optimal dynamic performance. SCOReD
2006 - Proceedings of 2006 4th Student

Conference on Research and Development
Towards Enhancing Research Excellence in

the Region, 2006 pp 147 - 151.

EC1 - SCOPUS -

Synchronization
strategies for spatial

information
organization

2006

Kukulenz D., Kasper J.. Synchronization
strategies for spatial information
organization. Proceedings of the

International Conference on Information
Visualisation, 2006 pp 174 - 180.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 173

Table A.1: Complete list returned by systematic mapping review.

The global lambda
visualization facility:

An international
ultra-high-definition

wide-area
visualization
collaboratory

2006

Leigh J., Renambot L., Johnson A., Jeong
B., Jagodic R., Schwarz N., Svistula D.,

Singh R., Aguilera J., Wang X., Vishwanath
V., Lopez B., Sandin D., Peterka T., Girado

J., Kooima R., Ge J., Long L., Verlo A.,
DeFanti T.A., Brown M., Cox D., Patterson
R., Dorn P., Wefel P., Levy S., Talandis J.,
Reitzer J., Prudhomme T., Coffin T., Davis

B., Wielinga P., Stolk B., Bum Koo G.,
Kim J., Han S., Kim J., Corrie B.,

Zimmerman T., Boulanger P., Garcia M..
The global lambda visualization facility: An
international ultra-high-definition wide-area

visualization collaboratory. Future
Generation Computer Systems, 2006 pp 964

- 971.

EC1 - SCOPUS -

A benchmark
approach for
compilers in

reconfigurable
hardware

2006

Lopes J.J., Silva J.L.E., Marques E.,
Cardoso J.M.P.. A benchmark approach for

compilers in reconfigurable hardware.
Proceedings - The 6th IEEE International

Workshop on System on Chip for Real Time
Applications, IWSOC 2006, 2006 pp 120 -

124.

EC1 - SCOPUS -

Operational
exploitation of

QuickBird imagery
for high accuracy
airport mapping

2006

Low C., Bannerman K., Roberston B.C.,
Brunke S., Martin S.. Operational

exploitation of QuickBird imagery for high
accuracy airport mapping. International

Geoscience and Remote Sensing Symposium
(IGARSS), 2006 pp 4209 - 4212.

EC1 - SCOPUS -

Metadata handling:
A video perspective 2006

Madhwacharyula C.L., Davis M., Mulhem
P., Kankanhalli M.S.. Metadata handling:
A video perspective. ACM Transactions on
Multimedia Computing, Communications

and Applications, 2006 pp 358 - 388.

EC1 - SCOPUS -

Development and
design of a

multimedia tool for
technology-transfer in
industrial processes

2006

Marino P., Dominguez M.A., Otero S.,
Merino M.. Development and design of a
multimedia tool for technology-transfer in
industrial processes. EISTA 2006 - 4th Int.

Conf. on Education and Information
Systems: Technologies and Applications,

Jointly with SOIC 2006 - 2nd Int. Conf. on
SOIC and PISTA 2006 - 4th Int. Conf. on
PISTA, Proceedings, 2006 pp 118 - 122.

EC1 - SCOPUS -

A multi-year data set
of cloud properties
derived for CERES
from Aqua, Terra,

and TRMM

2006

Minnis P., Sun-Mack S., Trepte Q.Z., Chen
Y., Brown R.R., Gibson S., Heck P.W.,

Dong X., Xi B.. A multi-year data set of
cloud properties derived for CERES from
Aqua, Terra, and TRMM. International

Geoscience and Remote Sensing Symposium
(IGARSS), 2006 pp 1780 - 1783.

EC1 - SCOPUS -

Classification for the
ripeness of papayas

using artificial neural
network (ANN) and

threshold rule

2006

Saad H., Hussain A.. Classification for the
ripeness of papayas using artificial neural

network (ANN) and threshold rule.
SCOReD 2006 - Proceedings of 2006 4th

Student Conference on Research and
Development Towards Enhancing Research
Excellence in the Region, 2006 pp 132 - 136.

EC1 - SCOPUS -

Automated
acquisition planning

for commercial
satellite imagery

2006

Seeker J., Rowe J., Robson M., Vachon
P.W.. Automated acquisition planning for
commercial satellite imagery. International
Geoscience and Remote Sensing Symposium

(IGARSS), 2006 pp 3279 - 3282.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 174

Table A.1: Complete list returned by systematic mapping review.

Fraction images
derived from terra
MODIS data for

mapping burned area
in Acre State,

Brazilian Amazonia

2006

Shimabukuro Y.E., Duarte V., Arai E., De
Freitas R.M., De Morrison Valeriano D., De
Sensoriamento Remoto D., Brown I.F., De
Los Rios Maldonado M.. Fraction images

derived from terra MODIS data for
mapping burned area in Acre State,
Brazilian Amazonia. International

Geoscience and Remote Sensing Symposium
(IGARSS), 2006 pp 4161 - 4164.

EC1 - SCOPUS -

3D navigable
interface for

interactive movie
Gormenghast Explore

2006

Sussner J., Lohse L., Thomas M., Garcia
G., Alonso I., Munoz A.. 3D navigable

interface for interactive movie Gormenghast
Explore. Proceedings - Second International

Conference on Automated Production of
Cross Media Content for Multi-Channel

Distribution, AXMEDIS 2006, 2006 pp 242
- 247.

EC1 - SCOPUS -

A tool for concurrent
image development 2006

Wong J., Capretz M.A.M.. A tool for
concurrent image development. WSEAS

Transactions on Computers, 2006 pp 2364 -
2371.

OK EC4 SCOPUS Image

A product data
dependencies network

to support conflict
resolution in design

processes

2006

Ouertanf, M.Z.; Grebici, K.; Gzara-Yesilbas,
L.; Blanco, E.; Rieu, D.; , A product data
dependencies network to support conflict

resolution in design processes,
Computational Engineering in Systems

Applications, IMACS Multiconference on ,
vol.2, no., pp.1189-1196, 4-6 Oct. 2006

EC1 - IEEE -

A product data
dependencies network

to support conflict
resolution in design

processes

2006

Ouertanf, M.Z.; Grebici, K.; Gzara-Yesilbas,
L.; Blanco, E.; Rieu, D.; , A product data
dependencies network to support conflict

resolution in design processes,
Computational Engineering in Systems

Applications, IMACS Multiconference on ,
vol., no., pp.1189-1196, 4-6 Oct. 2006

EC1 - IEEE -

Animated
Visualization of
Software History
using Evolution

Storyboards

2006

Dirk Beyer; Ahmed E. Hassan; , Animated
Visualization of Software History using

Evolution Storyboards, Reverse
Engineering, 2006. WCRE ’06. 13th
Working Conference on , vol., no.,

pp.199-210, Oct. 2006

EC1 - IEEE -

Appropriateness of
e-learning resources
for the development

of transversal skills in
the new European
Higher Education

Area

2006

Vicent, L.; Avila, X.; Riera, J.; Badia, D.;
Anguera, J.; Montero, J.A.; ,

Appropriateness of e-learning resources for
the development of transversal skills in the

new European Higher Education Area,
Frontiers in Education Conference, 36th

Annual , vol., no., pp.6-11, 27-31 Oct. 2006

EC1 - IEEE -

Challenges in the
Adoption of Medical
Information Systems

2006

Maass, M.; Eriksson, O.; , Challenges in the
Adoption of Medical Information Systems,

System Sciences, 2006. HICSS ’06.
Proceedings of the 39th Annual Hawaii

International Conference on , vol.5, no., pp.
95b, 04-07 Jan. 2006

EC1 - IEEE -

Distributed
Scheduling for
WIMAX Mesh

Network
2006

Makarevitch, B.; , Distributed Scheduling
for WIMAX Mesh Network, Personal,

Indoor and Mobile Radio Communications,
2006 IEEE 17th International Symposium

on , vol., no., pp.1-5, 11-14 Sept. 2006

EC1 - IEEE -

Focusing ISAR
images using the

AJTF optimized with
the GA and the PSO
algorithm-comparison

and results

2006

Brinkman, W.; Thayananthan Thayaparan;
, Focusing ISAR images using the AJTF

optimized with the GA and the PSO
algorithm-comparison and results, Radar,
2006 IEEE Conference on , vol., no., pp. 8

pp., 24-27 April 2006

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 175

Table A.1: Complete list returned by systematic mapping review.

Multi-dimensional
Dependency and

Conflict Resolution
for Self-adaptable

Context-aware
Systems

2006

Preuveneers, D.; Berbers, Y.; ,
Multi-dimensional Dependency and Conflict
Resolution for Self-adaptable Context-aware

Systems, Autonomic and Autonomous
Systems, 2006. ICAS ’06. 2006

International Conference on , vol., no.,
pp.36, 16-18 July 2006

EC1 - IEEE -

Single Organ
Segmentation Filters
for Multiple Organ

Segmentation
2006

Furst, J.D.; Susomboom, R.; Raicu, D.S.; ,
Single Organ Segmentation Filters for

Multiple Organ Segmentation, Engineering
in Medicine and Biology Society, 2006.
EMBS ’06. 28th Annual International

Conference of the IEEE , vol., no.,
pp.3033-3036, Aug. 30 2006-Sept. 3 2006

EC1 - IEEE -

Towards an Efficient
Integration, Structure
and Exploration of

Landscape
Architecture Project

Information

2006

Favetta, F.; Laurini, R.; , Towards an
Efficient Integration, Structure and

Exploration of Landscape Architecture
Project Information, Multimedia and Expo,
2006 IEEE International Conference on ,

vol., no., pp.397-400, 9-12 July 2006

EC1 - IEEE -

Volume estimation
from uncalibrated
views applied to

wound measurement
2005

Albouy B., Treuillet S., Lucas Y., Pichaud
J.C.. Volume estimation from uncalibrated

views applied to wound measurement.
Lecture Notes in Computer Science

(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in

Bioinformatics), 2005 pp 945 - 952.

EC1 - SCOPUS -

Eye tracking in
coloured image scenes

represented by
ambisonic fields of
musical instrument

sounds

2005

Bologna G., Vinckenbosch M.. Eye tracking
in coloured image scenes represented by
ambisonic fields of musical instrument
sounds. Lecture Notes in Computer

Science, 2005 pp 327 - 337.

EC1 - SCOPUS -

Comparing faculty
information seeking

in teaching and
research: Implications

for the design of
digital libraries

2005

Borgman C.L., Smart L.J., Millwood K.A.,
Finley J.R., Champeny L., Gilliland A.J.,

Leazer G.H.. Comparing faculty
information seeking in teaching and

research: Implications for the design of
digital libraries. Journal of the American

Society for Information Science and
Technology, 2005 pp 636 - 657.

EC1 - SCOPUS -

Managing algorithmic
skeleton nesting
requirements in
realistic image

processing
applications: The

case of the
SKiPPER-II Parallel

Programming
EnviRonment’s
operating model

2005

Coudarcher R., Duculty F., Serot J., Jurie
F., Derutin J.-P., Dhome M.. Managing

algorithmic skeleton nesting requirements in
realistic image processing applications: The

case of the SKiPPER-II Parallel
Programming EnviRonment’s operating

model. Eurasip Journal on Applied Signal
Processing, 2005 pp 1005 - 1023.

EC1 - SCOPUS -

Influences of image
disturbances on 2D

face recognition
2005

Daum H.. Influences of image disturbances
on 2D face recognition. Lecture Notes in
Computer Science, 2005 pp 900 - 908.

EC1 - SCOPUS -

Global seamless
network

demonstrator: A
comprehensive
ASON/GMPLS

testbed

2005

Foisel H.-M., Gerlach C., Gladisch A.,
Szuppa S., Weber A.. Global seamless

network demonstrator: A comprehensive
ASON/GMPLS testbed. IEEE

Communications Magazine, 2005 pp - .

EC1 - SCOPUS -

Using photography as
a metaphor for
teaching image

synthesis
2005

Geigel J., Schaller N.C.. Using photography
as a metaphor for teaching image synthesis.
Computers and Graphics (Pergamon), 2005

pp 257 - 265.

EC1 - SCOPUS -

Reconstructing
camera projection

matrices from
multiple pairwise
overlapping views

2005

Goldberger J.. Reconstructing camera
projection matrices from multiple pairwise
overlapping views. Computer Vision and
Image Understanding, 2005 pp 283 - 296.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 176

Table A.1: Complete list returned by systematic mapping review.

Painless project
management with

FogBugz
2005

Gunderloy M.. Painless project
management with FogBugz. Painless

Project Management with FogBugz, 2005
pp 1 - 184.

EC1 - SCOPUS -

Color quality analysis
of a system for digital

distribution and
projection of cinema

commercials

2005

Hardeberg J.Y., Farub I., Stjernvang G..
Color quality analysis of a system for
digital distribution and projection of
cinema commercials. SMPTE Motion
Imaging Journal, 2005 pp 146 - 151.

EC1 - SCOPUS -

Capturing content for
virtual museums:
From pieces to

exhibits
2005

Hemminger B., Bolas G., Schiff D..
Capturing content for virtual museums:

From pieces to exhibits. Journal of Digital
Information, 2005 pp - .

EC1 - SCOPUS -

Incorporating 3D
virtual anatomy into

the medical
curriculum

2005

Imielinska C., Molholt P.. Incorporating 3D
virtual anatomy into the medical

curriculum. Communications of the ACM,
2005 pp 49 - 54.

EC1 - SCOPUS -

Pattern recognition
techniques for the
emerging field of
bioinformatics: A

review

2005

Liew A.W.-C., Yan H., Yang M.. Pattern
recognition techniques for the emerging

field of bioinformatics: A review. Pattern
Recognition, 2005 pp 2055 - 2073.

EC1 - SCOPUS -

Project management
in multi-disciplinary
collaborative research

2005

Lloyd S., Simpson A.. Project management
in multi-disciplinary collaborative research.

IEEE International Professional
Communication Conference, 2005 pp 602 -

611.

OK EC1 SCOPUS -

Too much or too
little: Visual

considerations of
public engagement

tools in environment
impact assessments

2005

Mak A.S.-H., Lai P.-C., Kwong R.K.-H.,
Leung S.T.-S.. Too much or too little:

Visual considerations of public engagement
tools in environment impact assessments.

Lecture Notes in Computer Science
(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in
Bioinformatics), 2005 pp 189 - 202.

EC1 - SCOPUS -

Researching ERP
adoption: An
internet-based

grounded theory
approach

2005

Oliver D., Whymark G., Romm C..
Researching ERP adoption: An

internet-based grounded theory approach.
Online Information Review, 2005 pp 585 -

603.

EC1 - SCOPUS -

Active
appearance-based
robot localization
using stereo vision

2005

Porta J.M., Verbeek J.J., Krose B.J.A..
Active appearance-based robot localization
using stereo vision. Autonomous Robots,

2005 pp 59 - 80.

EC1 - SCOPUS -

Designing image
processing software
for those without a
computer science

degree

2005

Reineke N.. Designing image processing
software for those without a computer

science degree. Scientific Computing and
Instrumentation, 2005 pp 27 - 28.

EC1 - SCOPUS -

Image interpolation
for virtual sports

scenarios
2005

Rodriguez T., Reid I., Horaud R., Dalal N.,
Goetz M.. Image interpolation for virtual

sports scenarios. Machine Vision and
Applications, 2005 pp 236 - 245.

EC1 - SCOPUS -

Photorealistic 3D
reconstruction from
handheld cameras

2005

Rodriguez T., Sturm P., Gargallo P.,
Guilbert N., Heyden A., Jauregizar F.,

Menendez J.M., Ronda J.I.. Photorealistic
3D reconstruction from handheld cameras.
Machine Vision and Applications, 2005 pp

246 - 257.

EC1 - SCOPUS -

Run-time
reconfigurable

hardware blocks for
multimedia
applications

2005

Sakr N., Groza V.. Run-time reconfigurable
hardware blocks for multimedia

applications. Canadian Conference on
Electrical and Computer Engineering, 2005

pp 1996 - 1999.

EC1 - SCOPUS -

Multimodal video
indexing: A review of
the state-of-the-art

2005

Snoek C.G.M., Worring M.. Multimodal
video indexing: A review of the

state-of-the-art. Multimedia Tools and
Applications, 2005 pp 5 - 35.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 177

Table A.1: Complete list returned by systematic mapping review.

Revision control
practices applied to

computer
configurations

2005

Sprague R.. Revision control practices
applied to computer configurations.

Proceedings ACM SIGUCCS User Services
Conference, 2005 pp 356 - 359.

EC1 - SCOPUS -

Bayesian method for
motion segmentation

and tracking in
compressed videos

2005

Treetasanatavorn S., Rauschenbach U.,
Heuer J., Kaup A.. Bayesian method for

motion segmentation and tracking in
compressed videos. Lecture Notes in
Computer Science, 2005 pp 277 - 284.

EC1 - SCOPUS -

E-learning: What the
literature tells us
about distance
education: An

overview

2005

Williams P., Nicholas D., Gunter B..
E-learning: What the literature tells us
about distance education: An overview.

Aslib Proceedings: New Information
Perspectives, 2005 pp 109 - 122.

EC1 - SCOPUS -

Open source software
for medical image
processing and
visualization

2005

Yoo T.S., Ackerman M.J.. Open source
software for medical image processing and

visualization. Communications of the ACM,
2005 pp 55 - 59.

EC1 - SCOPUS -

An evaluation system
for string extraction
in the airline coupon

project
2005

Yan Heping; Zhiyan Wang; Sen Guo; , An
evaluation system for string extraction in

the airline coupon project, Document
Analysis and Recognition, 2005.

Proceedings. Eighth International
Conference on , vol., no., pp. 930- 934 Vol.

2, 29 Aug.-1 Sept. 2005

EC1 - IEEE -

Enriching multimedia
content description

for broadcast
environments: from a

unified metadata
model to a new
generation of
authoring tool

2005

Rousseau, B.; Jouve, W.; Berti-Equille, L.; ,
Enriching multimedia content description
for broadcast environments: from a unified

metadata model to a new generation of
authoring tool, Multimedia, Seventh IEEE
International Symposium on , vol., no., pp.

8 pp., 12-14 Dec. 2005

EC1 - IEEE -

Introducing agile
development (XP)
into a corporate

Webmaster
environment - an
experience report

2005

Ganis, M.; Leip, D.; Grossman, F.; Bergin,
J.; , Introducing agile development (XP)

into a corporate Webmaster environment -
an experience report, Agile Conference,

2005. Proceedings , vol., no., pp. 145- 152,
24-29 July 2005

EC1 - IEEE -

Workflow-based
Remote-Sensing
Image Processing
Application in

ImageGrid

2005

Ran Zheng; Hai Jin; Qin Zhang; Ying Li; ,
Workflow-based Remote-Sensing Image
Processing Application in ImageGrid,
Parallel and Distributed Computing,
Applications and Technologies, 2005.
PDCAT 2005. Sixth International

Conference on , vol., no., pp. 390- 394,
05-08 Dec. 2005

EC1 - IEEE -

Codesign
methodology for
computer vision

applications
2004

Albaladejo J., De Andres D., Lemus L.,
Salvi J.. Codesign methodology for

computer vision applications.
Microprocessors and Microsystems, 2004 pp

303 - 316.

EC1 - SCOPUS -

Grid databases for
shared image analysis
in the mammoGrid

project
2004

Amendolia S.R., Estrella F., Hauer T.,
Manset D., McClatchey R., Odeh M.,

Reading T., Rogulin D., Schottlander D.,
Solomonides T.. Grid databases for shared
image analysis in the mammoGrid project.
Proceedings of the International Database
Engineering and Applications Symposium,

IDEAS, 2004 pp 302 - 311.

EC1 - SCOPUS -

Managing a portfolio
of overlay paths 2004

Antonova D., Krishnamurthy A., Ma Z.,
Sundaram R.. Managing a portfolio of

overlay paths. Proceedings of the
International Workshop on Network and
Operating System Support for Digital

Audio and Video, 2004 pp 30 - 35.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 178

Table A.1: Complete list returned by systematic mapping review.

Spin images for
retrieval of 3D

objects by local and
global similarity

2004

Assfalg J., Del Bimbo A., Pala P.. Spin
images for retrieval of 3D objects by local

and global similarity. Proceedings -
International Conference on Pattern

Recognition, 2004 pp 906 - 909.

EC1 - SCOPUS -

MatDL: Integrating
digital libraries into
scientific practice

2004

Bartolo L.M., Lowe C.S., Feng L.Z., Patten
B.. MatDL: Integrating digital libraries into

scientific practice. Journal of Digital
Information, 2004 pp - .

EC1 - SCOPUS -

Get more work out of
your day 2004

Bass S.. Get more work out of your day. PC
World (San Francisco, CA), 2004 pp 55 - .

EC1 - SCOPUS -

RAW: Conveying
minimally-mediated

impressions of
everyday life with an
audio-photographic

tool

2004

Bitton J., Agamanolis S., Karau M.. RAW:
Conveying minimally-mediated impressions
of everyday life with an audio-photographic

tool. Conference on Human Factors in
Computing Systems - Proceedings, 2004 pp

495 - 502.

EC1 - SCOPUS -

Lighting up storage
2004

Carr J.. Lighting up storage. Network
Magazine, 2004 pp 72 - 74.

EC1 - SCOPUS -

Change detection and
analysis of

housebreaking in 2008
Beijing olympic main
venue using airborne
remote sensing photos

2004

Chen X., Dai Q., Feng C., Ma J.. Change
detection and analysis of housebreaking in

2008 Beijing olympic main venue using
airborne remote sensing photos.

International Geoscience and Remote
Sensing Symposium (IGARSS), 2004 pp

3884 - 3887.

EC1 - SCOPUS -

Texture classification
using Kernel
independent

component analysis
2004

Cheng J., Liu Q., Lu H., Chen Y.-W..
Texture classification using Kernel
independent component analysis.

Proceedings - International Conference on
Pattern Recognition, 2004 pp 620 - 623.

EC1 - SCOPUS -

Did the great masters
use optical

projections while
painting? Perspective

comparison of
paintings and
photographs of
Renaissance
chandeliers

2004

Criminisi A., Stork D.G.. Did the great
masters use optical projections while
painting? Perspective comparison of

paintings and photographs of Renaissance
chandeliers. Proceedings - International

Conference on Pattern Recognition, 2004 pp
645 - 648.

EC1 - SCOPUS -

Temporal soil
moisture estimates

from Radarsat-1 and
Envisat ASAR for
flood forecasting

2004

Deschamps A., Pultz T.J., Pietroniro A.,
Best K.. Temporal soil moisture estimates
from Radarsat-1 and Envisat ASAR for

flood forecasting. International Geoscience
and Remote Sensing Symposium (IGARSS),

2004 pp 2119 - 2122.

EC1 - SCOPUS -

A bayesian framework
for robust human

detection and
occlusion handling
using human shape

model

2004

Eng H.-L., Wang J., Kam A.H., Yau W.-Y..
A bayesian framework for robust human
detection and occlusion handling using

human shape model. Proceedings -
International Conference on Pattern

Recognition, 2004 pp 257 - 260.

EC1 - SCOPUS -

Landslide risk
analysis by means of

remote sensing
techniques: Results

from the ESA/SLAM
project

2004

Farina P., Moretti S., Colombo D.,
Fumagalli A., Manunta P.. Landslide risk

analysis by means of remote sensing
techniques: Results from the ESA/SLAM

project. International Geoscience and
Remote Sensing Symposium (IGARSS),

2004 pp 62 - 65.

EC1 - SCOPUS -

Detection of optic
disc in retinal images

by means of a
geometrical model of

vessel structure

2004

Foracchia M., Grisan E., Ruggeri A..
Detection of optic disc in retinal images by

means of a geometrical model of vessel
structure. IEEE Transactions on Medical

Imaging, 2004 pp 1189 - 1195.

EC1 - SCOPUS -

Edwards plateau:
Analysis of land cover

trends
2004

Friesen B.A., Hester D.J., Casey K.A..
Edwards plateau: Analysis of land cover

trends. International Geoscience and
Remote Sensing Symposium (IGARSS),

2004 pp 2639 - 2642.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 179

Table A.1: Complete list returned by systematic mapping review.

Locating text in
historical collection

manuscripts
2004

Gatos B., Pratikakis I., Perantonis S.J..
Locating text in historical collection

manuscripts. Lecture Notes in Artificial
Intelligence (Subseries of Lecture Notes in

Computer Science), 2004 pp 476 - 485.

EC1 - SCOPUS -

Project scheduling
with irregular costs:

Complexity,
approximability, and

algorithms

2004

Grigoriev A., Woeginger G.J.. Project
scheduling with irregular costs: Complexity,

approximability, and algorithms. Acta
Informatica, 2004 pp 83 - 97.

EC1 - SCOPUS -

Project-based,
asynchronous

collaborative learning
2004

Hafner W., Ellis T.J.. Project-based,
asynchronous collaborative learning.

Proceedings of the Hawaii International
Conference on System Sciences, 2004 pp

197 - 206.

EC1 - SCOPUS -

Application of soft
computing to

automatic music
information retrieval

2004

Kostek B.. Application of soft computing to
automatic music information retrieval.
Journal of the American Society for

Information Science and Technology, 2004
pp 1108 - 1116.

EC1 - SCOPUS -

Multi-level
anchorperson

detection using
multimodal
association

2004

Lan D.-J., Ma Y.-F., Zhang H.-J..
Multi-level anchorperson detection using
multimodal association. Proceedings -
International Conference on Pattern

Recognition, 2004 pp 890 - 893.

EC1 - SCOPUS -

Fusing a laser range
finder and a stereo
vision system to

detect obstacles in 3D
2004

Romero L., Nunez A., Bravo S., Gamboa
L.E.. Fusing a laser range finder and a

stereo vision system to detect obstacles in
3D. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer

Science), 2004 pp 555 - 561.

EC1 - SCOPUS -

I/O brush: Drawing
with everyday objects

as ink
2004

Ryokai K., Marti S., Ishii H.. I/O brush:
Drawing with everyday objects as ink.

Conference on Human Factors in
Computing Systems - Proceedings, 2004 pp

303 - 310.

EC1 - SCOPUS -

Virtual Building for
Construction Projects 2004

Sheppard L.M., Potel M.. Virtual Building
for Construction Projects. IEEE Computer
Graphics and Applications, 2004 pp 6 - 12.

EC1 -
IEEE,

SCOPUS
-

Deforestation
detection in brazilian
amazon region in a
near real time using
terra modis daily

data

2004

Shimabukuro Y.E., Duarte V., Anderson
L.O., Arai E., Valeriano D.M., Santo

F.D.B.E., Aulicino L.C.M.. Deforestation
detection in brazilian amazon region in a

near real time using terra modis daily data.
International Geoscience and Remote

Sensing Symposium (IGARSS), 2004 pp
3405 - 3408.

EC1 - SCOPUS -

Liquid edition 5.5
2004

Singer D.. Liquid edition 5.5. Computer
Graphics World, 2004 pp 42 - .

EC1 - SCOPUS -

Xbox security issues
and forensic recovery

methodology
(utilising linux)

2004

Vaughan C.. Xbox security issues and
forensic recovery methodology (utilising

linux). Digital Investigation, 2004 pp 165 -
172.

EC1 - SCOPUS -

Toys today; engineers
tomorrow? 2004

Weber A.. Toys today; engineers
tomorrow?. Assembly, 2004 pp 72 - 74.

EC1 - SCOPUS -

ASTER - A geological
mapping tool for

Canada’s north. Case
study: The Belcher

Islands, Hudson Bay,
Nunavut, Canada

2004

Wickert L.M., Budkewitsch P.. ASTER - A
geological mapping tool for Canada’s north.
Case study: The Belcher Islands, Hudson

Bay, Nunavut, Canada. International
Geoscience and Remote Sensing Symposium

(IGARSS), 2004 pp 1300 - 1303.

EC1 - SCOPUS -

Rendering complexity
in

computer-generated
pen-and-ink
illustrations

2004

Wilson B., Ma K.-L.. Rendering complexity
in computer-generated pen-and-ink
illustrations. NPAR Symposium on
Non-Photorealistic Animation and

Rendering, 2004 pp 103 - 111.

EC1 - SCOPUS -

A novel approach to
detecting adult

images
2004

Yang J., Fu Z., Tan T., Hu W.. A novel
approach to detecting adult images.

Proceedings - International Conference on
Pattern Recognition, 2004 pp 479 - 482.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 180

Table A.1: Complete list returned by systematic mapping review.

GenExplore:
Interactive

exploration of gene
interactions from
microarray data

2004

Ye Y., Wu X., Subramanian K.R., Zhang
L.. GenExplore: Interactive exploration of
gene interactions from microarray data.

Proceedings - International Conference on
Data Engineering, 2004 pp 860 - .

EC1 - SCOPUS -

A novel approach to
design classifiers

using genetic
programming

2004

Muni, D.P.; Pal, N.R.; Das, J.; , A novel
approach to design classifiers using genetic
programming, Evolutionary Computation,

IEEE Transactions on , vol.8, no.2, pp. 183-
196, April 2004

EC1 - IEEE -

Creating cyberworlds:
experiences in

computer science
education

2004

Gutierrez, M.; Thalmann, D.; Vexo, F.; ,
Creating cyberworlds: experiences in

computer science education, Cyberworlds,
2004 International Conference on , vol., no.,

pp. 401- 408, 18-20 Nov. 2004

EC1 - IEEE -

Modelling intelligent
agents for

organisational
memories

2003

Arenas A.E., Barrera-Sanabria G..
Modelling intelligent agents for

organisational memories. Lecture Notes in
Artificial Intelligence (Subseries of Lecture
Notes in Computer Science), 2003 pp 430 -

437.

EC1 - SCOPUS -

Contextual Analysis
of Multisource Raster

Data by a
Region-based

Segmentation Tool in
a Voronoi Structure

2003

Chakroun H., Benie G.B.. Contextual
Analysis of Multisource Raster Data by a

Region-based Segmentation Tool in a
Voronoi Structure. International Geoscience
and Remote Sensing Symposium (IGARSS),

2003 pp 1788 - 1792.

EC1 - SCOPUS -

Accelerated image
processing on FPGAs 2003

Draper B.A., Ross Beveridge J., Willem
Bohm A.P., Ross C., Chawathe M..

Accelerated image processing on FPGAs.
IEEE Transactions on Image Processing,

2003 pp 1543 - 1551.

EC1 - SCOPUS -

A 3D-TV system
based on video plus
depth information

2003

Fehn C.. A 3D-TV system based on video
plus depth information. Conference Record

of the Asilomar Conference on Signals,
Systems and Computers, 2003 pp 1529 -

1533.

EC1 - SCOPUS -

Panoptes: Scalable
low-power video

sensor networking
technologies

2003

Feng W.-C., Code B., Kaiser E., Shea M.,
Feng W.-C.. Panoptes: Scalable low-power

video sensor networking technologies.
Proceedings of the ACM International
Multimedia Conference and Exhibition,

2003 pp 90 - 91.

EC1 - SCOPUS -

ELFNI (Electronic
Libraries for Northern
Ireland project): An

overview
2003

Frawley R.. ELFNI (Electronic Libraries for
Northern Ireland project): An overview.

Program, 2003 pp 94 - 102.
EC1 - SCOPUS -

Macintosh OS X - A
Smooth Migration 2003

Hanselman S.E., Pegah M.. Macintosh OS
X - A Smooth Migration. 31st Annual ACM

SIGUCCS Fall Conference (SIGUSS
Conference Proceedings, 2003 pp 129 - 134.

EC1 - SCOPUS -

Needs and Trends of
IT-Based

Construction Field
Data Collection

2003

Hwang S., Trupp T., Liu L.. Needs and
Trends of IT-Based Construction Field
Data Collection. Towards a Vision for

Information Technology in Civil
Engineering, 2003 pp 77 - 85.

EC1 - SCOPUS -

Four-primary-color
LCD for natural

vision
2003

Komura S., Hiyama I., Ohyama N..
Four-primary-color LCD for natural vision.

Information Display, 2003 pp 18 - 21.
EC1 - SCOPUS -

Coordinating
dependencies in
complex system

development projects
2003

Lillieskold J.. Coordinating dependencies in
complex system development projects.

IEEE International Engineering
Management Conference, 2003 pp 400 - 404.

EC1 - SCOPUS -

Embedded
GNU/Linux -
Drawing the
big-picture

2003

Mc Guire N.. Embedded GNU/Linux -
Drawing the big-picture. Proceedings of the

IEEE International Conference on
Industrial Technology, 2003 pp 1237 - 1242.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 181

Table A.1: Complete list returned by systematic mapping review.

Computer aided
diagnosis for breast

masses detection on a
telemammography

system

2003

Mendez A.J., Souto M., Tahoces P.G., Vidal
J.J.. Computer aided diagnosis for breast
masses detection on a telemammography

system. Computerized Medical Imaging and
Graphics, 2003 pp 497 - 502.

EC1 - SCOPUS -

Using High-Capacity
Data Networks and
Uncompressed Video

Transmissions for
Distributed Television

Productions in
Real-Time

2003

Naegele-Jackson S., Holleczek P., Metz A..
Using High-Capacity Data Networks and
Uncompressed Video Transmissions for
Distributed Television Productions in

Real-Time. Proceedings of the International
Conference on Communications in

Computing, 2003 pp 126 - 129.

EC1 - SCOPUS -

An Approach for
Designing Ubiquitous
Web Applications: A

Case Study
2003

Perrone V., Paolini P.. An Approach for
Designing Ubiquitous Web Applications: A

Case Study. Proceedings of the Second
IASTED International Conference on

Communications, Internet, and Information
Technology, 2003 pp 348 - 354.

EC1 - SCOPUS -

Pixel classification
through

divergence-based
integration of texture
methods with conflict

resolution

2003

Puig D., Garcia M.A.. Pixel classification
through divergence-based integration of
texture methods with conflict resolution.
IEEE International Conference on Image

Processing, 2003 pp 1037 - 1040.

EC1 - SCOPUS -

MINERVA: An
INSAR monitoring
system for volcanic

hazard
2003

Usai S., Sansosti E., Tampellini L.,
Borgstrom S., Ricciardi G., Spaans J., Pepe
A., Guarino S., Maddalena V., Van Persie
M., Berardino P., Lanari R., Fornaro G.,

Seifert F.M.. MINERVA: An INSAR
monitoring system for volcanic hazard.
International Geoscience and Remote

Sensing Symposium (IGARSS), 2003 pp
2433 - 2435.

EC1 - SCOPUS -

Boosting first-pass
yield 2003

Wagner S., Clark D.. Boosting first-pass
yield. Assembly, 2003 pp 38 - 45.

EC1 - SCOPUS -

A synchronous
groupware and some

scenarios for
conducting a software
engineering lab with
distributed teams

2003

Werner S., Hunger A., Schwarz F., Schutz
C., Jung M.. A synchronous groupware and
some scenarios for conducting a software
engineering lab with distributed teams.

Proceedings of the IASTED International
Conference on Computers and Advanced

Technology in Education, 2003 pp 636 - 641.

EC1 - SCOPUS -

Application of
humanoid robots to
building and home

management services
2003

Sawasaki, N.; Nakajima, T.; Shiraishi, A.;
Nakamura, S.; Wakabayashi, K.; Sugawara,

Y.; , Application of humanoid robots to
building and home management services,

Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International
Conference on , vol.3, no., pp. 2992- 2997

vol.3, 14-19 Sept. 2003

EC1 - IEEE -

Policy based
management for next

generation mobile
networks

2003

Iacono, S.; Arneodo, F.; Cardoso, K.;
Genet, M.G.; Zeghlache, D.; , Policy based

management for next generation mobile
networks, Wireless Communications and

Networking, 2003. WCNC 2003. 2003 IEEE
, vol.2, no., pp.1350-1354 vol.2, 20-20

March 2003

EC1 - IEEE -

Share it! - the
architecture of a
rights-managed

network of
peer-to-peer
set-top-boxes

2003

Walker, J.; Morris, O.J.; Marusic, B.; ,
Share it! - the architecture of a

rights-managed network of peer-to-peer
set-top-boxes, EUROCON 2003. Computer
as a Tool. The IEEE Region 8 , vol.1, no.,

pp. 251- 255 vol.1, 22-24 Sept. 2003

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 182

Table A.1: Complete list returned by systematic mapping review.

Snow cover mapping
using SPOT

VEGETATION with
high resolution data:
application in the
Moroccan Atlas

Mountains

2003

Hanich, L.; de Solan, B.; Duchemin, B.;
Maisongrande, P.; Chaponniere, A.; Boulet,
G.; Chehbouni, G.; , Snow cover mapping

using SPOT VEGETATION with high
resolution data: application in the

Moroccan Atlas Mountains, Geoscience and
Remote Sensing Symposium, 2003. IGARSS
’03. Proceedings. 2003 IEEE International ,
vol.4, no., pp. 2829- 2830 vol.4, 21-25 July

2003

EC1 - IEEE -

InSAR end-to-end
simulation

environment
2002

Farhat M., Lauzon F., Trudeau A., Fiset
R.. InSAR end-to-end simulation

environment. International Geoscience and
Remote Sensing Symposium (IGARSS),

2002 pp 1480 - 1482.

EC1 - SCOPUS -

Eliciting user
preferences using

image-based
experience sampling

and reflection

2002

Intille S., Kukla C., Ma X.. Eliciting user
preferences using image-based experience
sampling and reflection. Conference on
Human Factors in Computing Systems -

Proceedings, 2002 pp 738 - 739.

EC1 - SCOPUS -

Bidirectional
Conversion between

XML Documents and
Relational Data Bases

2002

Jacinto M.H., Librelotto G.R., Ramalho
J.C., Henriques P.R.. Bidirectional

Conversion between XML Documents and
Relational Data Bases. Proceedings of the

International Conference on Computer
Supported Cooperative Work in Design,

2002 pp 437 - 443.

EC1 - SCOPUS -

A database-centric
and web-automatic

hypertext application
design method

2002

Seng J.-L., Wang I.-P.. A database-centric
and web-automatic hypertext application

design method. Journal of Computer
Information Systems, 2002 pp 91 - 109.

EC1 - SCOPUS -

ARKTOS: A
knowledge

engineering software
tool for images

2002

Soh L.-K., Tsatsoulis C.. ARKTOS: A
knowledge engineering software tool for
images. International Journal of Human
Computer Studies, 2002 pp 469 - 496.

EC1 - SCOPUS -

A testbed for
configuration

management policy
programming

2002

Van Der Hoek A., Carzaniga A.,
Heimbigner D., Wolf A.L.. A testbed for

configuration management policy
programming. IEEE Transactions on

Software Engineering, 2002 pp 79 - 99.

EC1 -
IEEE,

SCOPUS
-

Character string
extraction from color

documents
2001

Hase H., Shinokawa T., Yoneda M., Y. Suen
C.. Character string extraction from color
documents. Pattern Recognition, 2001 pp

1349 - 1365.

EC1 - SCOPUS -

The wired for peace
project: International

diplomacy and the
virtual private

network

2001

Powers P., Oboronko V.. The wired for
peace project: International diplomacy and

the virtual private network. IEEE
Distributed Systems Online, 2001 pp - .

EC1 - SCOPUS -

Design of a graphical
input to a decision
support system for
conflict resolution

2001

Song A., Hipel K.W., Kilgour D.M.. Design
of a graphical input to a decision support
system for conflict resolution. Proceedings
of the IEEE International Conference on
Systems, Man and Cybernetics, 2001 pp

1252 - 1257.

EC1 -
IEEE,

SCOPUS
-

Access and flexibility
in a changing

marketplace-case
study: the 2002 Salt
Lake City Winter

Games

2001

Kingman, S.; Richardson, K.; , Access and
flexibility in a changing marketplace-case
study: the 2002 Salt Lake City Winter

Games, Communications Magazine, IEEE ,
vol.39, no.7, pp.94-99, Jul 2001

EC1 - IEEE -

Environmental
accounting at Ricoh 2001

Hatano, H.; Uramoto, H.; , Environmental
accounting at Ricoh, Environmentally

Conscious Design and Inverse
Manufacturing, 2001. Proceedings

EcoDesign 2001: Second International
Symposium on , vol., no., pp.654-657, 2001

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 183

Table A.1: Complete list returned by systematic mapping review.

Hop on board with
safety 2001

Voros, K.; , Hop on board with safety,
University/Government/Industry

Microelectronics Symposium, 2001.
Proceedings of the Fourteenth Biennial ,

vol., no., pp.91, 2001

EC1 - IEEE -

Infrastructure under
construction:
Continuous

improvement and
learning in projects

2000

Gieskes J.F.B., Ten Broeke A.M..
Infrastructure under construction:

Continuous improvement and learning in
projects. Integrated Manufacturing

Systems, 2000 pp 188 - 198.

EC1 - SCOPUS -

Picture archiving and
communication
systems project

management using
web-based tools

2000

Patel S., Levin B., Gac Jr. R.J., Harding
Jr. D., Chacko A.K., Wider R., Romlein J..

Picture archiving and communication
systems project management using
web-based tools. Journal of Digital

Imaging, 2000 pp 208 - 210.

EC1 - SCOPUS -

Towards a reading of
the vindolanda stylus
tablets: Engineering

science and the
papyrologist

2000

Terras M.. Towards a reading of the
vindolanda stylus tablets: Engineering

science and the papyrologist. Human IT,
2000 pp - .

EC1 - SCOPUS -

A primer for
understanding and

applying data mining
2000

Thuraisingham, B.; , A primer for
understanding and applying data mining,

IT Professional , vol.2, no.1, pp.28-31,
Jan/Feb 2000

EC1 - IEEE -

Insertion of
controller-pilot data
link communications

into the National
Airspace System: is it

more efficient?

2000

Massimini, P.A.; Dieudonne, J.E.;
Monticone, L.C.; Lamiani, D.F.; Brestle,

E.A.; , Insertion of controller-pilot data link
communications into the National Airspace
System: is it more efficient?, Aerospace and

Electronic Systems Magazine, IEEE ,
vol.15, no.9, pp.25-29, Sep 2000

EC1 - IEEE -

Optimal maneuver for
multiple aircraft

conflict resolution: a
braid point of view

2000

Hu, J.; Prandini, M.; Sastry, S.; , Optimal
maneuver for multiple aircraft conflict

resolution: a braid point of view, Decision
and Control, 2000. Proceedings of the 39th

IEEE Conference on , vol.4, no.,
pp.4164-4169 vol.4, 2000

EC1 - IEEE -

Linear Hash
Functions 1999

Alon N., Dietzfelbinger M., Miltersen P.B.,
Petrank E., Tardos G.. Linear Hash

Functions. Journal of the ACM, 1999 pp
667 - 683.

EC1 - SCOPUS -

Character string
extraction from a
color document

1999

Hase, H.; Shinokawa, T.; Yoneda, M.; Sakai,
M.; Maruyama, H.; , Character string

extraction from a color document,
Document Analysis and Recognition, 1999.

ICDAR ’99. Proceedings of the Fifth
International Conference on , vol., no.,

pp.75-78, 20-22 Sep 1999

EC1 - IEEE -

Distribution utility’s
trade-off decisions in
obtaining sources of

electricity
1999

Slavickas, R.A.; Alden, R.T.H.; El-Kady,
M.A.; , Distribution utility’s trade-off

decisions in obtaining sources of electricity,
Power Delivery, IEEE Transactions on ,

vol.14, no.4, pp.1495-1503, Oct 1999

EC1 - IEEE -

Insertion of
controller-pilot data
link communications

into the national
airspace system: is it

more efficient?

1999

Massimini, P.A.; Dieudonne, J.E.;
Monticone, L.C.; Lamiano, D.F.; Brestle,

E.A.; , Insertion of controller-pilot data link
communications into the national airspace

system: is it more efficient?, Digital
Avionics Systems Conference, 1999.

Proceedings. 18th , vol.1/17 pp. vol.1, no.,
pp.5.A.3-1-5.A.3-6 vol.1, Nov 1999

EC1 - IEEE -

Integrating
automated field

design with existing
information systems

1999

Underwood, R.C.; Alberty, S.W.; ,
Integrating automated field design with

existing information systems, Rural Electric
Power Conference, 1999 , vol., no.,

pp.C2/1-C2/6, 1999

EC1 - IEEE -

A.5 Complete list of papers returned by the search expression 184

Table A.1: Complete list returned by systematic mapping review.

Passengers queue
length measurement 1999

Aubert, D.; , Passengers queue length
measurement, Image Analysis and

Processing, 1999. Proceedings.
International Conference on , vol., no.,

pp.1132-1135, 1999

EC1 - IEEE -

Technology and rural
development:

assessing technology
needs of the
Southeastern

Anatolia Project in
Turkey

1999

Oner, M.A.; Basoglu, N.; Ture, E.; ,
Technology and rural development:
assessing technology needs of the

Southeastern Anatolia Project in Turkey,
Management of Engineering and

Technology, 1999. Technology and
Innovation Management. PICMET ’99.
Portland International Conference on ,

vol.1, no., pp.457 vol.1, 1999

EC1 - IEEE -

The significance of
telemedicine in a
rural emergency

department
1999

Stamford, P.; Bickford, T.; Hsiao, H.;
Mattern, W.; , The significance of
telemedicine in a rural emergency

department, Engineering in Medicine and
Biology Magazine, IEEE , vol.18, no.4,

pp.45-52, July-Aug. 1999

EC1 - IEEE -

Delta Algorithms: An
Empirical Analysis 1998

Hunt J.J., Vo K.-P., Tichy W.F.. Delta
Algorithms: An Empirical Analysis. ACM
Transactions on Software Engineering and

Methodology, 1998 pp 192 - 214.

EC1 - SCOPUS -

Giving RAD a good
name 1998

Stapleton Jennifer. Giving RAD a good
name. Computer Bulletin (London), 1998

pp 28 - 29.
EC1 - SCOPUS -

Integrated design.
The scenario-based
four year experience

1998

Dennis, N.D., Jr.; Gross, M.A.; Hall, K.D.;
Schemmel, J.J.; Knowles, D.R.; , Integrated

design. The scenario-based four year
experience, Frontiers in Education

Conference, 1998. FIE ’98. 28th Annual ,
vol.2, no., pp.920 vol.2, 4-7 Nov. 1998

EC1 - IEEE -

Audio/visual
information in

construction project
control

1997

Abudayyeh O.. Audio/visual information in
construction project control. Advances in
Engineering Software, 1997 pp 97 - 101.

OK OK SCOPUS Video

A multimedia
construction delay

management system
1997

Abudayyeh O.Y.. A multimedia
construction delay management system.
Computer-Aided Civil and Infrastructure

Engineering, 1997 pp 183 - 192.

EC1 - SCOPUS -

A multimedia
construction delay

management system
1997

Abudayyeh O.Y.. A multimedia
construction delay management system.

Microcomputers in Civil Engineering, 1997
pp 183 - 192.

EC1 - SCOPUS -

Generation of a 3D
triangular surface

mesh from digitalized
data

1997

Archibald I., Bradley C.H.. Generation of a
3D triangular surface mesh from digitalized

data. Proceedings of SPIE - The
International Society for Optical
Engineering, 1997 pp 134 - 141.

EC1 - SCOPUS -

Framework for
enhancing the quality
and effectiveness of
computer animation

projects

1997

Czuchry Andrew J., Yasin Mahmoud M..
Framework for enhancing the quality and

effectiveness of computer animation
projects. Industrial Management and Data

Systems, 1997 pp 25 - 30.

EC1 - SCOPUS -

Range image
integration for direct
replication of objects

1997

Godin G., Soucy M.-A.A., Boulanger P..
Range image integration for direct

replication of objects. Proceedings of SPIE
- The International Society for Optical

Engineering, 1997 pp 34 - 44.

EC1 - SCOPUS -

Business process
change: A study of

methodologies,
techniques, and tools

1997

Kettinger W.J., Teng J.T.C., Guha S..
Business process change: A study of

methodologies, techniques, and tools. MIS
Quarterly: Management Information

Systems, 1997 pp 55 - 79.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 185

Table A.1: Complete list returned by systematic mapping review.

Using
videogrammetry and

3-D image
reconstruction to

identify crime
suspects

1997

Klasen L.M., Fahlander O.. Using
videogrammetry and 3-D image

reconstruction to identify crime suspects.
Proceedings of SPIE - The International
Society for Optical Engineering, 1997 pp

162 - 169.

EC1 - SCOPUS -

In-house vs.
off-the-shelf graphic

software tools
1997

Martino Linda, Newell Paul Allen. In-house
vs. off-the-shelf graphic software tools.

Computer Graphics (ACM), 1997 pp 40 -
42.

EC1 - SCOPUS -

The FERET (Face
Recognition

Technology) program
1997

Rauss P.J., Phillips J., Moon H., Rizvi
S.A., Hamilton M.K., DePersia A.T.. The
FERET (Face Recognition Technology)
program. Proceedings of SPIE - The

International Society for Optical
Engineering, 1997 pp 2 - 11.

EC1 - SCOPUS -

Recovery of
superquadric

primitives from a
range image using GA

1997

Tanahashi H., Murakami N., Yamamoto K..
Recovery of superquadric primitives from a
range image using GA. Proceedings of SPIE

- The International Society for Optical
Engineering, 1997 pp 28 - 33.

EC1 - SCOPUS -

Supporting diverse
activities with digital
documents: a pilot

study of The Peter F.
Drucker Manuscript
and Archives Project

1997

Palmer, J.W.; , Supporting diverse
activities with digital documents: a pilot
study of The Peter F. Drucker Manuscript

and Archives Project, System Sciences,
1997, Proceedings of the Thirtieth Hawaii
International Conference on , vol.6, no.,

pp.118-126 vol.6, 7-10 Jan 1997

EC1 - IEEE -

A computer-aided
system to improve
production rates in

construction
1996

Christian J., Hachey D.. A computer-aided
system to improve production rates in
construction. Advances in Engineering

Software, 1996 pp 207 - 213.

EC1 - SCOPUS -

European project
retain: new approach

for IBC in
teleradiology and

PACS based on a full
ATM network

1996

Cordonnier Emmanuel, Eichelberg Marco,
Piqueras Joaquim, Treguier Catherine,
Heautot J-Francois. European project

retain: new approach for IBC in
teleradiology and PACS based on a full

ATM network. IEEE International
Conference on Image Processing, 1996 pp 1

- 4.

EC1 - SCOPUS -

Automated analysis
of nerve-cell images
using active contour

models
1996

Fok Y.-L., Chan J.C.K., Chin R.T..
Automated analysis of nerve-cell images

using active contour models. IEEE
Transactions on Medical Imaging, 1996 pp

353 - 368.

EC1 -
IEEE,

SCOPUS
-

Software quality
programmes: A

snapshot of theory
versus reality

1996

Hall T.. Software quality programmes: A
snapshot of theory versus reality. Software

Quality Journal, 1996 pp 235 - 242.
EC1 - SCOPUS -

Factors affecting the
quality of software

project
management:an

empirical study based
on the Capability
Maturity Model

1996

Mcguire E.G.. Factors affecting the quality
of software project management:an

empirical study based on the Capability
Maturity Model. Software Quality Journal,

1996 pp 305 - 317.

EC1 - SCOPUS -

Design of an
object-oriented

multimedia database
for personalized
multimedia news

1996

Quintana Yuri. Design of an object-oriented
multimedia database for personalized

multimedia news. Canadian Conference on
Electrical and Computer Engineering, 1996

pp 282 - 285.

EC1 - SCOPUS -

Fox Movietone News
Preservation Project:

operational and
logistic aspects

1996

Redshaw Rebecca, Wetmore R.Evans. Fox
Movietone News Preservation Project:

operational and logistic aspects. SMPTE
Journal, 1996 pp 544 - 546.

EC1 - SCOPUS -

A.5 Complete list of papers returned by the search expression 186

Table A.1: Complete list returned by systematic mapping review.

Hypermedia support
for collaboration in

requirements analysis
1996

Takahashi Kenji, Potts Colin, Kumar
Vinay, Ota Kenji, Smith Jeffrey D..

Hypermedia support for collaboration in
requirements analysis. Proceedings of the

IEEE International Conference on
Requirements Engineering, 1996 pp 31 - 40.

EC1 - SCOPUS -

Library of congress
digital library effort 1995

Becker Herbert S.. Library of congress
digital library effort. Communications of

the ACM, 1995 pp 66 - .
EC1 - SCOPUS -

DICE video
conference system

and its application in
the EUROMIR

missions

1995

Koudelka O., Hughes C.D., Horle J.,
Riedler W., Skipworth B.. DICE video

conference system and its application in the
EUROMIR missions. Space

Communications, 1995 pp 279 - 287.

EC1 - SCOPUS -

UC Berkeley’s digital
library project 1995

Wilensky Robert. UC Berkeley’s digital
library project. Communications of the

ACM, 1995 pp 60 - .
EC1 - SCOPUS -

A line sweep thinning
algorithm 1995

Fu Chang; Yung-Ping Cheng; Pavlidis, T.;
Tsuey-Yuh Shuai; , A line sweep thinning

algorithm, Document Analysis and
Recognition, 1995., Proceedings of the

Third International Conference on , vol.1,
no., pp.227-230 vol.1, 14-16 Aug 1995

EC1 - IEEE -

A scalable
teleradiology

information system
1995

Ho, B.K.T.; Taira, R.; Kangarloo, H.;
Steckel, R.J.; , A scalable teleradiology
information system, Image Management

and Communications, 1995., Proceedings of
the Fourth International Conference on ,

vol., no., pp.118-124, 20-24 Aug 1995

EC1 - IEEE -

Demonstration of
MMACE prototype

system for helix TWT
design

1995

McDonald, J.A.; , Demonstration of
MMACE prototype system for helix TWT

design, Plasma Science, 1995. IEEE
Conference Record - Abstracts., 1995 IEEE

International Conference on , vol., no.,
pp.148, 5-8 June 1995

EC1 - IEEE -

Towards
heterogeneous
multimedia

information systems:
the Garlic approach

1995

Carey, M.J.; Haas, L.M.; Schwarz, P.M.;
Arya, M.; Cody, W.F.; Fagin, R.; Flickner,

M.; Luniewski, A.W.; Niblack, W.;
Petkovic, D.; Thomas, J.; Williams, J.H.;
Wimmers, E.L.; , Towards heterogeneous

multimedia information systems: the Garlic
approach, Research Issues in Data

Engineering, 1995: Distributed Object
Management, Proceedings. RIDE-DOM ’95.
Fifth International Workshop on , vol., no.,

pp.124-131, 6-7 Mar 1995

OK EC1 IEEE -

Visualization and
database tools for
YAC and cosmid

contig construction
1995

Thomas, S.W.; Rundensteiner, E.A.; Lee,
A.J.; , Visualization and database tools for

YAC and cosmid contig construction,
System Sciences, 1995. Proceedings of the

Twenty-Eighth Hawaii International
Conference on , vol.5, no., pp.4-13 vol.5, 3-6

Jan 1995

EC1 - IEEE -

Scanned well log
image and digital
curve management

1994

Zainalabedin K.A., Derr M.E., Fenn C.J..
Scanned well log image and digital curve
management. Proceedings - Petroleum

Computer Conference, 1994 pp 339 - 342.

EC1 - SCOPUS -

Customizable tool for
the generation of
production-based

systems
1993

Bittencourt G., Marengoni M..
Customizable tool for the generation of

production-based systems. Applications of
Artificial Intelligence in Engineering, 1993

pp 337 - 352.

EC1 - SCOPUS -

Open systems on the
highways 1993

Powell, P.; , Open systems on the highways,
Signals, Systems and Computers, 1993.

1993 Conference Record of The
Twenty-Seventh Asilomar Conference on ,
vol., no., pp.1636-1640 vol.2, 1-3 Nov 1993

EC1 - IEEE -

A.6 Data collected from the selected papers 187

Table A.1: Complete list returned by systematic mapping review.

Imaging tool
applications for

nuclear power plants
1992

Ketchel, J.M.; , Imaging tool applications
for nuclear power plants, Nuclear Science

Symposium and Medical Imaging
Conference, 1992., Conference Record of the

1992 IEEE , vol., no., pp.769-771 vol.2,
25-31 Oct 1992

EC1 - IEEE -

The Minnesota
Imaging Project

research application
for understanding an
emerging technology

1992

Wanninger, L.A., Jr.; , The Minnesota
Imaging Project research application for
understanding an emerging technology,

System Sciences, 1992. Proceedings of the
Twenty-Fifth Hawaii International

Conference on , vol.iv, no., pp.410-419
vol.4, 7-10 Jan 1992

EC1 - IEEE -

Cognitive tools for
locating and

comprehending
software objects for

reuse

1991

Fischer Gerhard, Henninger Scott, Redmiles
David. Cognitive tools for locating and

comprehending software objects for reuse.
Proceedings - International Conference on
Software Engineering, 1991 pp 318 - 328.

EC1 - SCOPUS -

Generating fuzzy
rules by learning from

examples
1991

Wang, L.-X.; Mendel, J.M.; , Generating
fuzzy rules by learning from examples,
Systems, Man and Cybernetics, IEEE

Transactions on , vol.22, no.6,
pp.1414-1427, Nov/Dec 1992

EC1 - IEEE -

An investigation into
software

maintenance–
Perception and

practices

1990

Layzell P.J., Macaulay L.. An investigation
into software maintenance–Perception and

practices. Conference on Software
Maintenance, 1990 pp 130 - 140.

EC1 - SCOPUS -

An efficient
implementation of

decomposable
parameter spaces

1990

Taylor, R.W.; , An efficient implementation
of decomposable parameter spaces, Pattern

Recognition, 1990. Proceedings., 10th
International Conference on , vol.i, no.,

pp.613-619 vol.1, 16-21 Jun 1990

EC1 - IEEE -

CASE: analysis and
design tools 1990

Oman, P.W.; Bowles, A.J.; Mount, R.;
Karam, G.; Kalinsky, D.; Tervonen, M.;

Bundonis, V.; Fischer, H.; Fish, M.;
Longshore, D.; Akiha, N.; , CASE: analysis
and design tools, Software, IEEE , vol.7,

no.3, pp.37-43, May 1990

EC1 - IEEE -

Excellerator: custom
CMOS leaf cell layout

generator
1989

Poirier, C.J.; , Excellerator: custom CMOS
leaf cell layout generator, Computer-Aided
Design of Integrated Circuits and Systems,

IEEE Transactions on , vol.8, no.7,
pp.744-755, Jul 1989

EC1 - IEEE -

An overview of the
Iris object-oriented

DBMS
1988

Fishman, D.H.; , An overview of the Iris
object-oriented DBMS, Compcon Spring

’88. Thirty-Third IEEE Computer Society
International Conference, Digest of Papers ,
vol., no., pp.177-180, Feb. 29 1998-March 3

1988

EC1 - IEEE -

DATA/IMAGE
LOCAL NETWORK:

PRIORITY
RANDOM

SPLITTING WITH
CONFLICT

DETECTION.

1986

Huang Jian-Cheng, Yeh Chia-Lung.
DATA/IMAGE LOCAL NETWORK:

PRIORITY RANDOM SPLITTING WITH
CONFLICT DETECTION.. Proceedings -

IEEE INFOCOM, 1986 pp 510 - 515.

EC1 - SCOPUS -

A.6 Data collected from the selected papers

Title 	Efficient	image-aware	version	control	systems	using	GPU

Author da	Silva	Junior	J.R.,	Clua	E.,	Murta	L.

Published 2015

Reference
da	Silva	Junior	J.R.,	Clua	E.,	Murta	L..	Efficient	image-aware	version	control	systems	using	GPU.	

Software	-	Practice	and	Experience,	2015	pp		-	.

Title Inverse	image	editing:	Recovering	a	semantic	editing	history	from	a	before-and-after	image	pair

Author HU,	S.-M.	et	al.

Published 2013

Reference

HU,	S.-M.	et	al.	Inverse	image	editing:	Recovering	a	semantic	editing	history	from	a	before-and-

after	image	pair.	ACM	Trans.	Graph.,	ACM,	New	York,	NY,	USA,	v.	32,	n.	6,	p.	194:1–194:11,	nov.	

2013.	

Notes
The	paper	presents	an	interesting	approach.	It	does	not	require	any	specific	tool	to	be	used	and	can	be	easily	

integrated	to	an	existent	repository.	Additionally,	to	boost	the	processing,	the	GPU	architecture	has	been	employed.

Publication	Information

Summary
In	this	paper,	the	author	introduces	an	infrastructure	to	support	version	control	of	image	artifacts.	Due	to	the	

amount	of	data	that	must	be	processed,	the	solution	is	implemented	using	a	GPU	architecture,	allowing	a	massively	

parallel	approach	for	version	control,	reaching	a	speedup	over	55	X	if	compared	to	the	same	implementation	in	CPU.	

All	version	control	operations	(diff,	patch,	and	merge)	are	implemented	by	the	author.	Besides	that,	the	approach	

does	not	require	any	specific	tool	to	be	used	and	act	directly	over	the	image	file.	Additionally,	some	image	

transforms	can	be	detected,	being	the	delta	composed	of	just	this	transform	information.

SQ1:	Which	techniques	are	being	used?
The	paper	uses	an	approach	that	works	directly	at	image	files,	without	imposing	tools	to	the	user	in	order	to	

benefefit	from	image	version	control.

SQ2:	Which	tool	support	is	offered?
The	author	released	a	tool	that	can	be	used	to	perform	version	control	over	image	artifacts.

SQ3:	Does	it	integrates	with	existing	VCS?
Yes,	a	plugin	to	be	integrated	to	Mercurial	do	exist.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
It	is	only	necessary	for	situations	where	a	conflict	occur	during	a	merge	operation.

SQ5:	How	the	described	proposal	has	been	evaluated?
It	has	been	evaluated	by	analysing	space	consuption	and	time	for	processing	it	both	on	CPU	and	GPU.	Additionally,	

space	occupied	by	versioning	image	over	common	VCS	are	evaluated	when	using	and	not	using	the	plugin.

Title A	GPU-based	architecture	for	parallel	image-aware	version	control

Author da	Silva,	J.R.,	Pacheco,	T.,	Clua,	E.,	Murta,	L.

Published 2012

Reference

da	Silva,	J.R.,	Pacheco,	T.,	Clua,	E.,	Murta,	L.	2012.	A	GPU-based	architecture	for	parallel	image-

aware	version	control.	Software	Maintenance	and	Reengineering	(CSMR),	2012	16th	European	

Conference	on,	10	pages.

Summary

Summary
In	this	paper,	the	author	introduces	an	approach	to	recover	a	semantically	meaningful	editing	history	from	a	source	

image	and	an	edited	one.	Their	technique	supports	the	detection	of	global	and	local	linear	and	non-linear	color	

changes,	the	insertion	and	removal	of	objects,	and	cropping.	

SQ1:	Which	techniques	are	being	used?
The	proposed	architecture	is	aimed	to	process	and	extract	semantically	information	from	modifications,	such	as	

when	some	object	is	moved	in	a	photo.	This	kind	of	processing	requires	heavy	processing	to	recognize	objects	on	

photos	and	track	them.

SQ2:	Which	tool	support	is	offered?
This	information	is	not	provided	by	the	author.

SQ3:	Does	it	integrates	with	existing	VCS?
This	information	is	not	provided	by	the	author.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
All	processing	steps	must	be	guided	by	the	user.

SQ5:	How	the	described	proposal	has	been	evaluated?
It	has	been	evaluated	by	analysing	both	time	processing	and	qualitative	change	detection.

Notes
Although	it	produced	interesting	results,	their	technique	requires	considerable	processing	time,	and	so	is	not	

feasible	for	version	control.	Besides	that,	we	believe	that	this	approach	is	tied	to	be	using	In	Adobe	Photoshop.

Title Nonlinear	revision	control	for	images

Author Chen,	H.	T.,	Wei,	L.	Y.,	Chang,	C.	F.

Published 2011

Reference
Hsiang-Ting	Chen,	Li-Yi	Wei,	and	Chun-Fa	Chang.	2011.	Nonlinear	revision	control	for	images.	

ACM	Trans.	Graph.	30,	4,	Article	105	(July	2011),	10	pages.

SQ1:	Which	techniques	are	being	used?

In	this	paper,	the	author	introduces	an	infrastructure	to	support	version	control	of	image	artifacts.	Due	to	the	

amount	of	data	that	must	be	processed,	the	solution	is	implemented	using	a	GPU	architecture,	allowing	a	massively	

parallel	approach	for	version	control,	reaching	a	speedup	over	55	X	if	compared	to	the	same	implementation	in	CPU.	

All	version	control	operations	(diff,	patch,	and	merge)	are	implemented	by	the	author.	Besides	that,	the	approach	

does	not	require	any	specific	tool	to	be	used	and	act	directly	over	the	image	file.

SQ1:	Which	techniques	are	being	used?
The	paper	uses	an	approach	that	works	directly	at	image	files,	without	imposing	tools	to	the	user	in	order	to	

benefefit	from	image	version	control.

SQ2:	Which	tool	support	is	offered?
The	author	released	a	tool	that	can	be	used	to	perform	version	control	over	image	artifacts.

SQ3:	Does	it	integrates	with	existing	VCS?
Yes,	a	plugin	to	be	integrated	to	Mercurial	do	exist.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
It	is	only	necessary	for	situations	where	a	conflict	occur	during	a	merge	operation.

SQ5:	How	the	described	proposal	has	been	evaluated?
It	has	been	evaluated	by	analysing	space	consuption	and	time	for	processing	it	both	on	CPU	and	GPU.

Notes
The	paper	presents	an	interesting	approach.	It	does	not	require	any	specific	tool	to	be	used	and	can	be	easily	

integrated	to	an	existent	repository.	Additionally,	to	boost	the	processing,	the	GPU	architecture	has	been	employed.

Summary
In	this	paper	the	author	introduces	a	GIMP	plugin	for	performing	image	version	control.	According	to	the	author,	

depending	upon	GIMP	editor	to	perform	image	version	control	is	considered	a	negative	point.	As	a	consequence,	

only	modifications	performed	through	GIMP	over	images	can	be	versioned.	As	the	main	characteristic,	the	author	

represents	image	modifications	through	a	directional	acyclic	graph.	Linear	and	nonlinear	operations	are	covered	by	

this	plugin.	Unfortunately,	only	one	image	artifact	can	be	versioned	each	time.

Title Generating	photo	manipulation	tutorials	by	demonstration

Author GRABLER,	F.	et	al.

Published 2009

Reference
GRABLER,	F.	et	al.	Generating	photo	manipulation	tutorials	by	demonstration.	In:	ACM	

SIGGRAPH	2009	Papers.	New	York,	NY,	USA:	ACM,	2009.	(SIGGRAPH	’09),	p.	66:1–66:9.

SQ5:	How	the	described	proposal	has	been	evaluated?
Only	the	necessary	space	to	store	each	image	version	was	evaluated.

Notes
The	paper	presents	an	interesting	approach.	However,	its	usage	is	only	possible	for	GIMP	users.	The	majority	of	

graphical	tool	uses	normally	prefer	Photoshop	over	GIMP.	Besides	that,	any	processing	performance	evaluation	was	

made.

SQ2:	Which	tool	support	is	offered?
A	plugin	is	made	available	by	the	author	in	order	to	be	used	in	GIMP.	This	plugin	allows	a	graph	generation	of	

modifications	over	image,	which	allows	the	diff,	patch,	and	merge	operations	to	be	performed.	Besides	that,	the	

plugin	allows	visualizing	the	generated	graph	for	each	image.

SQ3:	Does	it	integrates	with	existing	VCS?
Due	to	the	fact	that	just	a	plugin	is	available,	this	approach	is	restricted	to	GIMP	editor.	So,	any	form	of	VCS	

integration	is	available.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
The	user	is	responsible	for	explicitily	executing	each	operation	through	the	graph	node	selection.

The	proposed	approach	uses	the	command	history	offered	by	GIMP	to	allow	merge	and	diff	over	images.	The	GIMP	

history	can	be	used	to	construct	an	already	performed	command	graph	over	images,	allowing	the	merge	operation	

by	nagivation	through	the	graph	nodes.	

Summary
In	this	paper,	the	author	proposes	a	system	to	automatically	manipulate	photos	using	GIMP	and	creating	visually	

appealing	tutorials.	Unfortunately,	this	approach	requires	GIMP	to	record	all	the	transformations	applied	in	its	

command	sequences,	thus	not	allowing	its	inclusion	in	any	external	VCS.	This	restriction	may	impose	a	barrier	

among	users	that	is	not	flexible	to	change	its	tool	or	even	do	not	want	to.	

SQ1:	Which	techniques	are	being	used?
The	proposed	approach	uses	the	command	history	offered	by	GIMP	to	manipulate	transforms	made	over	images.	

However,	it	is	not	aimed	to	provide	image	versioning,	altough	merge	and	diff	over	images	is	available.

SQ2:	Which	tool	support	is	offered?

Title Audio/visual	information	in	construction	project	control

Author Abudayyeh,	O.

Published 1997

Reference
Abudayyeh	O.,	1997,	"Audio/visual	information	in	construction	project	control",	Advances	in	

Engineering	Software,	v.	28,	n.	,	pp.	97	-	101.

Not	specified.

SQ3:	Does	it	integrates	with	existing	VCS?

Publication	Information

Summary
Althought	not	providing	a	diff,	patch,	nor	merge	operation,	this	paper	enforces	the	necessity	for	any	kind	of	version	

control	over	image	and	video	artifacts.	The	author	simulates	this	control	by	using	a	database	and	storing	a	reference	

to	a	video	or	image	each	time	a	new	aquisition	is	done.	Through	this	architecture,	control	information	and	writing	

and	reading	policy	history	are	stored	in	the	database.

SQ1:	Which	techniques	are	being	used?
The	proposed	approach	uses	a	database	to	manage	video	and	image	artifacts.

SQ2:	Which	tool	support	is	offered?

No	tool	is	available.

SQ3:	Does	it	integrates	with	existing	VCS?
No	integration	is	available.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
The	user	is	responsible	for	explicitily	executing	each	operation	through	the	graph	node	selection.

SQ5:	How	the	described	proposal	has	been	evaluated?
Due	to	the	fact	that	it	is	not	aimed	to	image	versionsing,	no	evaluation	is	performed.

Notes
This	papers	present	some	techniques	that	can	be	applied	for	image	versioning	such	as	image	transforms	and	

recovery.	However,	this	paper	is	aimed	to	provides	an	easy	way	to	build	tutorial	from	images.

No	evaluation	was	done.

Notes
According	to	images	availabe	in	the	paper,	the	Microsoft	Access	database	is	used.	However,	due	to	reduced	

capability	of	this	database,	the	number	of	managed	artifacts	cannot	be	high.

SQ5:	How	the	described	proposal	has	been	evaluated?

This	information	is	not	provided	by	the	author.

SQ4:	What	intervention	degree	is	necessary	by	the	user?
This	information	is	not	provided	by	the	author.

194

APPENDIX B -- Graphics Processing Unit

Graphics processing unit (GPU) is a massively multi-threaded processor that can support,
and indeed expects, thousands or even millions of concurrent threads. This way, exposing
large amounts of fine-grained parallelism is critical for the efficiency of this architecture.

Due to the growing processing capacity of graphics devices, they became an impor-
tant choice for massively parallel computation. In the beginning, the GPU programming
was only possible by using shaders programs, which required knowledge of the graphics
pipeline, such as OpenGL or DirectX, in order to fully explore the device. This sce-
nario has changed by the introduction of CUDA(Computing Unified Device Architecture)
[87, 28], a programming language developed by nVidia, which allows GPU programming
without requiring knowledge of aspects regarding the real time graphics pipeline architec-
ture.

CUDA is a general purpose parallel architecture used to solve a collection of non
graphics problems. For programming, CUDA uses the standard C language, although
some wrappers for others languages do exist. CUDA is based on heterogeneous program-
ming, where some code fragments are executed by the CPU and other fragments are
executed by the GPU, in a concurrent way.

Graphics devices that support CUDA have hundreds or even thousands of cores that
can run up to millions of threads in a fast way. Comparing its processing capacity to
CPU, one can see that there is a great advantage of using them instead of CPU for some
kinds of problems, as is shown in Figure B.1. While an Intel processor can reach some
GFlops, a Titan X GPU can reach over to 7 TFlops, for example.

Programmers often use GPU computation and similar interfaces to accelerate com-
putationally intensive data processing operations, being common to reach fifty times or
more performance on the GPU in relation to the same problem solved by a CPU [25].

Modern NVIDIA GPUs are fully programmable many-core chips built around an array
of parallel processors [76], as can be seen in Figure B.2. The GPU is composed of an array

Appendix B -- Graphics Processing Unit 195

Figure B.1: GPU and CPU processing capacity [28].

Figure B.2: A common GPU architecture [94].

of Stream Multiprocessor (SM), being each one able to support up to 1024 co-resident
concurrent threads. A single SM, as can be seen in Figure B.2, contains many scalar
processors (SP), each one with 1024 32-bit registers. Also, each SM is equipped with a
shared memory that has very low access latency and high bandwidth, similar to a common
L1 cache. The amount of SM and the processors per SM depends on the GPU model.

Additionally, GPUs are composed by the global memory, accessible from both CPU
and GPU during processing. This kind of memory is the largest one found on GPU
architecture and has the same order of magnitude as a RAM memory in CPUs. Since it is
not built in-chip, its latency is large. In fact, using only global memory during processing
can slow down the entire system about 18 ⇥. To avoid this, techniques that uses both

Appendix B -- Graphics Processing Unit 196

global and shared memory are typically adopted.

Being the GPU an independent device used to alleviate the CPU from graphics pro-
cessing at first, it is worth to state that GPU and CPU can work asynchronously. This way,
the CPU can resume its tasks after starting some processing on GPU. This task distribu-
tion is also referred as a heterogeneous architecture. Modern GPUs, such as theKEPLER
architecture, can also run more than one program at the same time, allowing, for example,
the user to play a game while some heavy process is being executed.

Matrices operations are typically very well executed in GPUs. Mapping different data
structures and algorithms to matrices consist on an important starting point for porting
sequential solutions to GPU parallel ones.

197

APPENDIX C -- Dominoes Performance Comparision

In order to evaluate Dominoes regarding performance contrasting GPU with CPU, we
processed a set of operations using different matrices. The matrices used during this eval-
uation were extracted using Dominoes, with different time intervals to produce matrices of
different sizes. For all the experiment, Apache Derby project has been used. Besides that,
all experiments used the [commit|method] ([C|M]) tile. To perform a fair comparison, all
linear transformations in CPU were made in OpenBLAS 1, an open source implementation
of BLAS (Basic Linear Algebra Subprograms) API with many handcrafted optimizations
for specific processor types, including multi-core parallelism features. An Intel Core i7
4.4GHz PC with 16GB RAM and an nVidia GeForce GTX580 graphics card was used for
this evaluation.

In our first experiment, we considered data from a whole year (2013), but varying the
number of months for building the [C|M] tile, leading to different matrices sizes. So, in
the first interaction, one month was considered while in the last twelve months were used.

Initially, Figure C.1 presents the transposition operation applied over different matri-
ces sizes. As expected, using GPU for processing small matrices tends to be slower when
compared to CPU. The main reason for this behavior is due to data transfer from CPU
to GPU memory, which is a slow process. The GPU hides this time by leveraging a high
number of parallel threads. So, for small matrices, the time of transferring data is higher
than the time for processing them. The GPU just becomes faster for matrices size higher
than 261 ⇥ 4135.

Besides that, the time for calculating the support is also presented in Figure C.2, where
time is presented in a log10 scale. The support is calculated in Dominos by multiplying a
Dominoes tile with its transpose. So, the support for tile [C|M], named [commit|commit]
([C|C]), would be equal to [C|C] = [C|M] ⇥ [C|M]T , presenting commits that depend on
each other based on dependency over methods.

1OpenBLAS: http://www.openblas.net

Appendix C -- Dominoes Performance Comparision 198

0	

1	

2	

3	

4	

5	

6	

7	

52
x2
91
	

69
x6
35
	

11
0x
96
2	

13
2x
10
45
	

15
8x
12
42
	

19
4x
18
95
	

26
1x
41
35
	

34
2x
62
30
	

43
4x
70
17
	

48
2x
71
47
	

55
4x
73
85
	

60
2x
79
92
	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Matrix	Size	

GPU	

CPU	

Figure C.1: Transposition operation using different matrix sizes in both CPU and GPU.

1	

10	

100	

1000	

10000	

100000	

52
x2
91
	

69
x6
35
	

11
0x
96
2	

13
2x
10
45
	

15
8x
12
42
	

19
4x
18
95
	

26
1x
41
35
	

34
2x
62
30
	

43
4x
70
17
	

48
2x
71
47
	

55
4x
73
85
	

60
2x
79
92
	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Matrix	Size	

GPU	

CPU	

Figure C.2: Support operation using different matrix sizes in both CPU and GPU. Vertical
axis are presented in log10 scale.

From Figure C.2, it is possible to observe that the time for processing support in
GPU and CPU is almost the same until the matrix of 261 ⇥ 4135. Since then, processing
support operation over CPU increases very fast, while in GPU it keeps almost constant.
As said before, the GPU normally becomes efficient when processing large amount of
independent data.

Finally, the time for calculating the confidence in CPU and GPU over [C|M] tile is
presented in Figure C.3. In this figure, we can see that GPU requires more time for some
matrix sizes. Calculating the confidence requires transferring back and forth data from
CPU to GPU and vice versa at different moments. Due to this fact, the main bottleneck
for processing confidence is data transfer, which is not significant for larger matrices.

Due to the high amount of time required for processing larger matrices on CPU,
we had just used one year for comparing GPU with CPU processing. However, we also

Appendix C -- Dominoes Performance Comparision 199

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	

52
x2
91
	

69
x6
35
	

11
0x
96
2	

13
2x
10
45
	

15
8x
12
42
	

19
4x
18
95
	

26
1x
41
35
	

34
2x
62
30
	

43
4x
70
17
	

48
2x
71
47
	

55
4x
73
85
	

60
2x
79
92
	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Matrix	Size	

GPU	

CPU	

Figure C.3: Confidence operation using different matrix sizes in both CPU and GPU.

processed the whole Derby project on GPU (a period that comprehend data from August
2004 to January 2014), but varying year, as presented in Figure C.4.

0	

20	

40	

60	

80	

100	

120	

60
2x
79
92
	

11
26
x1
01
50
	

17
24
x1
19
11
	

22
99
x1
39
82
	

27
46
x1
58
72
	

37
14
x2
01
55
	

52
64
x2
47
84
	

67
98
x2
91
17
	

74
52
x3
26
37
	

75
73
x4
30
51
	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Matrix	Size	

Transposi5on	

Support	

Confidence	

Figure C.4: Processing transpose, support, and confidence operations on GPU using
different matrices sizes.

According to Figure C.4, the support operation is the one that requires more time
to be processed, reaching about 120 milliseconds for a matrix of 7,573 ⇥ 43,051. On the
other hand, both transposition and confidence operation present a slightly increase when
the matrix size gets increased.

