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Resumo

Classi�cação multirrótulo é um importante tópico de pesquisa na área de mineração de
dados. Diferente da classi�cação tradicional monorrótulo, onde cada instância está sempre
associada a apenas uma classe, na classi�cação multirrótulo cada instância pode estar
associada a mais de uma classe. A popularidade crescente da classi�cação multirrótulo
pode ser explicada em razão da sua aplicabilidade em vários problemas relevantes, tais
como: categorização de texto, análise biomolecular, classi�cação de vídeo, diagnóstico
médico, entre outros. Nos últimos anos têm crescido, por consequência, a importância e o
interesse de seleção de atributos para essa tarefa. Técnicas de seleção de atributos têm por
objetivo a identi�cação de atributos relevantes para a classi�cação, removendo atributos
redundantes ou irrelevantes da base de treinamento. Entretanto, os métodos propostos
para a tarefa de seleção de atributos especí�ca para bases de dados multirrótulo estão
espalhados na literatura de classi�cação multirrótulo, sem uma categorização proposta
para descrevê-los e permitir uma comparação objetiva. Uma das contribuições deste
trabalho é a criação de uma taxonomia visando a categorização das técnicas de seleção
de atributos para a classi�cação multirrótulo.

Além da seleção de atributos, outra questão relacionada à classi�cação multirrótulo
é a avaliação do desempenho de cada estratégia. Há uma grande quantidade de medidas
que foram adaptadas do paradigma monorrótulo ou desenvolvidas especi�camente para o
paradigma multirrótulo, e cada trabalho da literatura opta por um subconjunto distinto
de medidas, di�cultando a comparação dos resultados. Tendo em vista essa di�culdade,
outra contribuição deste trabalho é uma extensa avaliação da correlação e a relevância
das medidas de desempenho para a tarefa de classi�cação multirrótulo.

Por �m, o trabalho propõe a adaptação de uma técnica de seleção de atributos mo-
norrótulo para o paradigma multirrótulo, a comparação experimental com outras técnicas
conhecidas de seleção multirrótulo de atributos e, como principal contribuição, a criação
de um novo método de seleção baseado na seleção de atributos do tipo lazy e especí-
�co para o contexto multirrótulo. Resultados experimentais demonstram que as técnicas
propostas são competitivas em relação às técnicas de seleção multirrótulo atualmente em
uso na literatura, além de serem claramente mais escaláveis em um cenário em que a
quantidade de informação das bases de dados é crescente.

Palavras-chave: Seleção de Atributos, Classi�cação Multirrótulo, Aprendizado Lazy.



Abstract

Multi-label classi�cation is an important topic of research in the data mining area. Unlike
traditional single-label classi�cation, where each instance is always associated with a uni-
que class label, in multi-label classi�cation each instance can be associated with more than
one class label. The increasing popularity of multi-label classi�cation can be explained
due to its applicability in many relevant problems, such as: text categorization, biomole-
cular analysis, video classi�cation, medical diagnosis, among others. In the last few years,
consequently, there has been substantial research in feature selection for this task. Feature
selection aims at identifying relevant features for classi�cation, by removing redundant
or irrelevant features from the training data set. However, the methods proposed for the
feature selection speci�c to multi-label data sets are scattered in the multi-label classi�-
cation literature, with no common framework to describe them and to allow an objective
comparison. One of the contributions of this work is the formulation of a taxonomy for
categorizing existing feature selection techniques for multi-label classi�cation.

Besides feature selection, another problem related to multi-label classi�cation is the
performance evaluation of each strategy. There are many measures adapted from the
single-label paradigm or developed speci�cally for the multi-label paradigm. Each di�e-
rent work in the area employs a distinct subset of measures, so it is di�cult to compare
results across them. This work presents an extensive analysis of the correlation and
relevance of performance measures for the multi-label classi�cation task.

Finally, this thesis proposes an adaptation of a single-label technique to the multi-label
paradigm, which is compared experimentally with some well-known multi-label feature se-
lection techniques; and, as our main contribution, the creation of a novel selection method,
based on lazy feature selection and speci�c for the multi-label paradigm. Experimental
results show that the proposed technique is competitive relative to multi-label feature
selection techniques currently used in the literature, and is clearly more scalable, in a
scenario where there is an increasing amount of data.

Keywords: Feature Selection, Multi-label Classi�cation, Lazy Learning.
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Chapter 1

Introduction

A large body of research in supervised learning deals with the analysis of single-label

data, where instances are associated with a single label from a set of class labels [75].

More speci�cally, the single-label classi�cation problem can be stated as the process of

predicting the class label of new instances described by their feature values.

However, in many important data mining applications, such as text categorization,

biomolecular analysis, scene classi�cation and medical diagnosis, the instances are asso-

ciated with more than one class label. This characterizes the multi-label classi�cation

problem, a recent and relevant topic of research, that has become a very common real-

world task [85].

In a broad way, two groups of classi�cation strategies have been proposed to deal

with multi-label data. In the �rst group, the multi-label data is converted into single-

label data and then the classi�cation problem is solved using single-label classi�ers. The

second group is related with proposals for adapting or extending single-label classi�ers to

cope with multi-label data. In the former group one can �nd popular methods like label

powerset and binary relevance transformations, and in the latter group common adap-

tations are: the multi-label k-nearest neighbors, the multi-label Naive Bayes classi�er,

multi-label AdaBoost, among others [11, 75].

In single-label classi�cation, an instance can be classi�ed either correctly or incorrec-

tly. But in multi-label classi�cation, an instance can be classi�ed as partially correct,

as the predicted subset of labels can di�er not completely from the actual subset that

belongs to the instance. So, the evaluation of methods that learn from multi-label data

requires di�erent measures than those used in single-label contexts [77]. There are more

than twenty performance measures adapted from the single-label paradigm or developed
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speci�cally for the multi-label paradigm [74]. However, di�erent work in the area employ

distinct subsets of measures, so it is di�cult to compare results across them. A contri-

bution of this work is an analysis of multi-label measures commonly used in multi-label

work and a correlation analysis between them. This analysis aims at guiding the decision

of which subset of measures should be selected for reporting computational experiments

in the multi-label paradigm.

The performance of a classi�cation method is closely related to the inherent quality of

the training data. Redundant and irrelevant features may not only decrease the classi�er's

accuracy but also make the process of building the model or running the classi�cation

algorithm slower. Feature selection is a data preprocessing step which aims at identifying

relevant features for a target data mining task � speci�cally in this work, the classi�cation

task. Feature selection techniques are usually applied for removing from the training set

features that do not contribute to, or even decrease, the classi�cation performance [27, 41].

There is an extensive literature regarding feature selection for single-label classi�ca-

tion, which has been summarized in surveys [10, 27, 48]. In the last few years, given

the increasing popularity of multi-label classi�cation, there has been signi�cant research

speci�cally in the area of feature selection for multi-label classi�cation.

The aforementioned methods proposed for the feature selection task are scattered in

the multi-label classi�cation literature, with no common framework to describe them and

to allow an objective comparison. One of the contributions of this thesis is the proposal

of a taxonomy for these methods in order to review and categorize multi-label feature

selection techniques.

This thesis also presents, as an important contribution to the multi-label area, a novel

feature selection technique based on the adaptation of the single-label information gain

measure. Information gain, which is based on the entropy concept, is a common measure

of feature relevance in single-label �lter strategies that evaluate features individually [80].

Previously, multi-label feature selection techniques in the literature used this measure

after transforming the multi-label data set into a single-label one [3, 49, 57, 62, 68, 73,

80, 89]. The adaptation proposed in this thesis does not rely on transformation, and it

is evaluated against these latter methods. The results show a signi�cant improvement in

the computational performance.

Lazy feature selection strategy was proposed for single-label classi�cation [52]. It is

based on the hypothesis that postponing the selection of features to the moment at which

an instance is submitted for classi�cation can contribute to identifying the best features for
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the correct classi�cation of that particular instance. The main contribution of this thesis

is a novel multi-label feature selection technique based on two characteristics: (a) the use

of the information gain measure which was adapted for multi-label feature selection as

a previous contribution; and (b) a multi-label adaptation of the lazy strategy to bene�t

the multi-label classi�cation. This novel technique is compared experimentally with other

multi-label feature selection techniques, and the results show that it is both competitive

and much more scalable than current techniques used in the literature.

This work is organized as follows.

(a) Chapter 2 presents a bibliographic review of relevant work related to multi-label

classi�cation.

(b) Chapter 3 reviews the measures used in multi-label classi�cation and presents

a correlation analysis between them, guiding researchers in how to select suitable

subsets of measures.

(c) Chapter 4 presents a multi-label feature selection taxonomy and reviews current

work in the area, categorizing them according to this taxonomy.

(d) Chapter 5 presents the adaptation of the information gain measure and compares

it experimentally with transformation-based methods currently employed in the

literature.

(e) Chapter 6 proposes the main contribution of this thesis: a novel multi-label feature

selection technique based on the lazy paradigm and on the information gain multi-

label adaptation. The experimental results con�rm that the proposed technique

is competitive when compared with other feature selection techniques used in the

literature, and much more scalable for larger data sets.

(f) Chapter 7 presents the concluding remarks of the thesis.



Chapter 2

Multi-label Classi�cation

2.1. Introduction

The classi�cation task can be stated as the process of predicting the class label of an

instance described by a vector of feature values, given a training set where each instance

is described by a vector of features and by a class label. Traditional classi�cation is

performed as a single-label task, where each data instance is associated with a single class

label. Well-known single-label classi�cation techniques include decision trees [54, 55],

k-NN (k-Nearest Neighbors) [6, 9], Naive Bayes [15], neural networks [60], associative

classi�ers [40], SVM (Support Vector Machines) [2] and others.

The single-label classi�cation problem can be formally de�ned as follows [22].

De�nition 1 (Single-Label Classi�cation). Let X = X1, ..., Xd be a set of d

predictive features and L = l1, ..., lq be a set of q class labels, where q ≥ 2. Consider

a training data set D composed of N instances of the form (x1, c1), (x2, c2), ..., (xN , cN).

In this data set, each xi corresponds to a vector (x1, ..., xd) that stores values for the d

predictive features in X and each ci ∈ L corresponds to a single class label. The goal of

the single-label classi�cation task is to learn from D a function (a.k.a. classi�er) y that,

given an unlabeled instance t = (x, ?), is capable of e�ectively predicting its class label

c, i.e., y(t) → c . When |L| = 2 the problem is called a binary single-label classi�cation

problem. Otherwise, it is called a multiclass single-label classi�cation problem.

On the other hand, in the multi-label classi�cation task, each data instance may be

associated with multiple labels. Multi-label classi�cation is suitable for many domains

such as text categorization, scene and video classi�cation, medical diagnosis, applications

in microbiology [57], and it is also a challenging problem in bioinformatics [38]. In all these
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cases, the task is to assign, for each unseen instance, a label set whose size is unknown a

priori [85].

The multi-label classi�cation problem can be formally de�ned as follows [22, 74].

De�nition 2 (Multi-Label Classi�cation). Let X = X1, ..., Xd be a set of d

predictive features and L = l1, ..., lq be a set of q class labels, where q ≥ 2. Consider a

training data set D composed of N instances of the form (x1, Y1), (x2, Y2), ..., (xN , YN).

In this data set, each xi corresponds to a vector (x1, ..., xd) that stores values for the d

predictive features in X and each Yi ⊂ L corresponds to a subset of labels. The goal of

the multi-label classi�cation task is to learn from D a classi�er h that, given an unlabeled

instance t = (x, ?), is capable of e�ectively predicting its set of labels (a.k.a. labelset) Y ,

i.e., h(t) → Y .

The strategies proposed to deal with multi-label classi�cation rely mainly on problem

transformation, where the multi-label problem is transformed into one or a set of single-

label problems; and on algorithm adaptation, where the single-label learning algorithms

are adapted to handle multi-label data directly [11, 77]. Both paradigms are presented in

the next two sections.

2.2. Strategies Based on Data Set Transformation

The simplest way to apply a classi�cation strategy to a multi-label data set is to transform

it into a single-label data set. Then a traditional classi�cation technique � like k-NN or

a decision tree � can be employed to perform the classi�cation task. This way, the trans-

formation technique allows the usage of one or more single-label classi�cation algorithms,

which have been thoroughly studied and perfected over the last decades.

There are plenty of algorithms to transform a multi-label data set into a single-label

one, mainly with the focus on classi�cation. In the next subsections the more common

transformation algorithms are described. Also, Appendix A shows a multi-label data set

and the corresponding single-label data sets after applying the most common transforma-

tion methods.

2.2.1. Copy and Select Transformations

A simple family of transformations used to convert a multi-label data set into a single-

label one is the select transformation. It consists of selecting for each instance one label
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among its label subset. The label selected can be the most frequent label in the data set

(select-max), the least frequent label (select-min), a random label (select-random) or it

can simply discard every multi-label example (select-ignore) [1, 3, 75].

Another family is the copy transformations, that consists in copying each multi-label

instance n times, where n is the number of labels assigned to that instance. Each copied

instance is then assigned one distinct single label from the original set. A variation of

the copy transformation is the copy-weight, which associates a weight 1/n to each copied

instance, according to the number n of labels of the original instance [77]. This variation

can only be employed if the classi�er is able to handle weighted instances.

Figure 2.1 illustrates the generic process of multi-label classi�cation using a simple

transformation on the original data set. A data transformation is applied to a multi-label

data set, which is then used to train a traditional single-label classi�er. The single-label

classi�er is expected to output not only a single prediction, but a probability distribution

over the labels. This classi�er is then applied to unlabeled new instances and a label

ranking procedure can be used to select a set of labels for each new instance. Usually, a

threshold on the label probability is used to select the more relevant labels. The dashed

arrow indicates that the subsequent process is not always executed. For instance, for

a label ranking data mining task it is not necessary to process the ranking and obtain

a multi-label classi�cation as an output, because the label ranking itself is the desired

output.

2.2.2. Label Powerset Transformation

Label powerset (LP) is another kind of transformation which creates one new label for

each di�erent subset of labels that exists in the multi-label training data set. Thus, the

new set of labels corresponds to the powerset of the original set of labels.

Table 2.1 gives a small example of a multi-label data set. There are four di�erent

labels for this data set: A, B, C and D. Some of the instances are associated with more

than one label. When applying an LP transformation, the new set of labels becomes: A,

BC, D and ABC.

After this transformation process, a single-label classi�cation algorithm can handle

the transformed data set and produce a classi�er. This classi�er can then be used to

assign one of these new labels to new instances, which can then be mapped back to the

corresponding subset of the original labels [78] � for instance, ABC becomes {A,B,C}.
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Figure 2.1: Multi-label classi�cation based on select and copy transformations

Table 2.1: Small multi-label data set example
instance features classes

1 0.5, x A
2 0.1, y B,C
3 0.3, x D
4 0.5, z B,C
5 0.1, w A,B,C
6 0.2, z A
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Figure 2.2: Multi-label classi�cation based on label powerset transformation

Label powerset is recommended only for data sets with a small number of labels, as

the possible powerset combinations are 2L, where L is the number of distinct labels in the

data set. For data sets with a large number of labels, the resulting powerset data tends

to become sparse and therefore making it harder for the classi�er to work.

Figure 2.2 illustrates the generic process of multi-label classi�cation using the powerset

transformation on the original data set. The data transformation is applied to a multi-

label data set, which is then used to train a traditional single-label classi�er. Afterwards,

the single-label classi�er is employed to classify each new instance into one of the new

labels, which is then mapped back into the corresponding multi-label set. Instead of

yielding a single label class as the result, the classi�er can output a probability distribution

over all powerset labels. Then a single label ranking can be obtained by sorting the original

labels by the probabilities from the powerset that contains them [77].

The original label powerset technique has been extended and improved in subsequent

work. Two variations are the pruned problem transformation (PPT), proposed in [56], and

the random k-labelsets (RAKEL), proposed in [78]. The PPT method prunes away label

sets that occur fewer times than a small user-de�ned threshold (e.g., 2 or 3) [77], splitting

them in smaller label sets that occur more frequently. This overcomes the problem of

creating rarely used classes, and thus reduces over�tting via pruning [56]. The RAKEL
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Figure 2.3: Multi-label classi�cation based on binary relevance transformation

method constructs an ensemble of LP classi�ers trained using di�erent and small random

subsets of the set of labels [77]. The result is then combined in a ranking by averaging

the prediction of each LP classi�er, per label, and a threshold is employed to sort relevant

from irrelevant labels.

2.2.3. Binary Relevance Transformation

Binary relevance (BR) is an important and well-known transformation technique that

produces a binary classi�er for each di�erent label of the original data set. In its simplest

implementation, each resulting classi�er is capable of predicting if a label is relevant for

a new instance. So, each classi�er handles the data as single-labeled, since it gives a

relevance feedback for just one speci�c label. The method is called �binary relevance�,

because each label is considered as relevant or non-relevant.

Figure 2.3 illustrates the generic process of multi-label classi�cation using the binary

relevance transformation process. The data transformation is applied to the multi-label

data set, generating L single-label data sets, where L is the number of distinct labels in

the data set. Each single label data set corresponds to one label and contains all instances

of the original data set, labeled positively or negatively depending on the occurrence of
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the corresponding label in the original label set of the instances. Each of these data sets

is used to train a traditional single-label classi�er. Then, in the classi�cation phase, each

classi�er outputs a prediction for one single label, either positive or negative. The multi-

label classi�cation can be achieved by combining the results of all single-label classi�ers.

As binary relevance learns a single binary model for each di�erent label, it has linear

complexity with respect to the number of labels [74].

Binary relevance does not take into account label correlations. Without this infor-

mation, it may fail to accurately predict a speci�c label combination [74]. In order to

minimize this drawback, several techniques have been proposed to extend and improve

the binary relevance technique [19, 21, 29, 47, 58].

In [21], the SVM algorithm was extended with a BR algorithm to consider for each

instance the prediction of multiple labels individually. It also tries to handle correlation

between labels by learning a second level of binary models, that follows the paradigm of

stacked generalization, widely used in neural nets and adopted in subsequent multi-label

work for musical titles, image and video processing [74]. In [87], multiple combinations

of binary relevance with classi�cation methods are employed in a number of multi-label

data sets. BR is coupled with the following classi�ers: k-NN, C4.5, random decision trees,

Naive Bayes and SVM.

In [29], the algorithm called Ranking by Pairwise Comparison (RPC) was proposed.

This strategy learns to predict whether a label is favored over others in order to create

a label ranking. So, instead of training L classi�ers for the set of L labels, RPC trains

a classi�er for each pair of labels, resulting in L ∗ (L− 1)/2 predictors, i.e., a quadratic

number of classi�ers [47]. Di�erent ranking algorithms allow the ensemble of pairwise

classi�ers to adapt to di�erent loss functions on label rankings [29].

In [19], the Calibrated Ranking by Pairwise Comparison (CRPC) was proposed as an

extension of the RPC technique. It introduces an additional arti�cial label used as a cali-

bration factor to separate relevant from irrelevant labels. This label splits a ranking into

a positive and a negative part, equivalent to a threshold value. Experimental results with

text and gene data sets reveal that the calibrated pairwise ranking approach outperforms

the original binary relevance ranking (BR) and also the pairwise ranking strategy (RPC).

HOMER [76] stands for Hierarchy Of Multilabel classi�ERs. It constructs multiple

classi�ers, each one dealing with a smaller set of labels, balancing them in a tree-shaped

hierarchy built recursively.
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The Classi�er Chains (CC) method [58] is based on the binary relevance transforma-

tion. However, instead of processing each binary transformation independently, it uses a

stacking-like process that evaluates each label according to the previous classi�cations. In

the CC's training phase, it organizes all q labels in a randomly-ordered chain. The �rst

classi�er in the chain is trained using just the features that compose the feature set X.

Then, the next classi�er is trained using a di�erent feature space, that is X augmented

with the classi�cation information of the �rst label in the chain. The next in the chain has

X plus two new features, and so on. The feature space for each binary model is extended

with the label relevances of all previous classi�ers. By forming these chains of labels, the

method is able to consider correlations between them.

Some variations of the Classi�er Chains try to improve the performance of the classi�er

by changing the ordering of chains. Some of them are the One-to-One Classi�er Chains

(OOCC) [8], which assigns a label sequence to each new instance in the test set based on

the label sequences that perform well in similar training instances; the Genetic Algorithm

for Optimizing CC (GACC) method [23, 24], which makes use of an evolutionary algorithm

to optimize chain classi�ers; and the Ensembles of Classi�er Chains (ECC) [59], which

extends the original method by using a bagging scheme and ordering each binary model

randomly, therefore resulting in di�erent chains that predict di�erent label sets.

2.3. Strategies Based on Algorithm Adaptation

The previous section described data transformations used to enable single-label classi�ers

to indirectly handle multi-label data. The use of simple transformations, label powersets

or multiple binary classi�ers generally results in ignoring the correlation between labels, as

each single-label classi�er cannot deal with multiple labels at once, or with more than one

pair of labels (in the case of pairwise implementations). This motivated the adaptation of

classi�cation algorithms which could handle multi-label data directly, without the need

of transforming it into single-label data.

Figure 2.4 represents the process of multi-label classi�cation based on algorithm adap-

tation, where the multi-label data is given directly to the classi�er. Any classi�er learner

capable of handling multi-label data without any data transformation is placed in this

category.

Most traditional classi�ers employed in single-label problems have been adapted to the

multi-label paradigm [77]. The C4.5 decision-tree learning algorithm has been adapted



2.3. Strategies Based on Algorithm Adaptation 12

Figure 2.4: Multi-label classi�cation based on algorithm adaptation

to handle multi-label data [5] by allowing multiple labels in the leaves of the tree. An

SVM algorithm that minimizes the ranking loss metric has been proposed [16]. A multi-

label adaptation of the Naive Bayes algorithm was also proposed [83]. MMAC (Multi-

class, Multi-label Associative Classi�cation) is an algorithm that follows the paradigm

of associative classi�cation which deals with the construction of multi-label classi�cation

rule sets using association rule mining [75].

Several k-NN adaptations were proposed [77], and one of them is the Multi-label k-NN

[85]. For each unseen instance, it identi�es the K nearest neighbors in the training set.

Then, based on statistical information gained from the subset of labels of these neighboring

instances, the maximum a posteriori (MAP) principle is employed to determine the label

set for the unseen instance.

IBLR (Instance Based Learning by Logistic Regression) classi�er [4] is an adaptation

which combines the instance-based learning concept of the KNN algorithm with logistic

regression. It also considers the labels of neighbored instances as features, in order to aid

the classi�cation.

The BR+KNN classi�er can be adapted by using a single search instead of transfor-

ming the multi-label data set using the BR approach. It �nds the k nearest neighbors and

at the same time it makes independent predictions for each label [67]. While BR followed

by k-NN has a computational complexity of L times the cost of computing the k nearest

instances, where L is the number of labels in the data set, this adaptation runs much
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faster, and is more scalable than other classi�cation algorithms based on transformation.

So, this algorithm can be considered as an adaptation, as the data set is not transformed.

This adaptation is used in this thesis and is referred as BRKNN classi�er. When the

transformation is used instead, it is referred as BR +KNN classi�er.

2.4. Chapter Summary

In this chapter, we review the multi-label classi�cation problem, and summarize the com-

mon ways to handle the task. One solution is to transform the multi-label data set into

a single-label one. Another solution is adapting a classi�cation technique to deal with

multi-label data directly. Among the transformation-based methods, the following have

been presented: the copy and select transformations; the label powerset transformation

and its extensions, like PPT and RAKEL; and the binary relevance transformation and

its extensions, like RPC and Classi�er Chains. Among the classi�ers based on algo-

rithm adaptation, we presented the Multi-Label k-NN, the Multi-Label Decision Trees

and others.

One of the challenges in multi-label classi�cation is the large number of measures that

can be used to evaluate the performance of a classi�er. In order to settle the problem of

which measures to use, in the next chapter a correlation analysis of these measures and

guidelines for researchers are presented.



Chapter 3

Correlation Analysis of Performance Me-

asures for Multi-Label Classi�cation

3.1. Introduction

In single-label classi�cation, an instance can be classi�ed either correctly or incorrectly.

However, in multi-label classi�cation, an instance can be classi�ed as partially correct, as

the predicted label subset can di�er, not completely, from the actual label subset that

belongs to the instance. So, the evaluation of methods that learn from multi-label data

requires di�erent measures than those used in single-label context [77].

In order to evaluate the performance of multi-label classi�ers, many measures were

adapted from the single-label paradigm, like Precision and Recall; and some were deve-

loped speci�cally for the multi-label paradigm, like Hamming Loss and Subset Accuracy.

However, di�erent subsets of measures have been used in multi-label experiments arbitra-

rily, with the absence of proper justi�cation.

For instance, in [4, 83, 85], the adopted measures for evaluating the proposed algo-

rithms were: Hamming Loss, One Error, Coverage, Ranking Loss and Average Precision.

In [78], the measures were Hamming Loss and Example-Based F-Measure. In [3], Micro-

Averaged F-Measure and Macro-Averaged F-Measure. In [73], the measures were Ham-

ming Loss and Example-Based Accuracy; and in [68], just the Micro-F Measure was used

to report the results. In [46], a total of 16 multi-label measures were used to evaluate a

large number of multi-label classi�ers.

The adoption of arbitrary measures without an objective analysis of correlation or bias

can lead to misleading conclusions, as an experiment evaluated with a subset of measures

may appear to perform di�erently than when evaluated with another subset. Also, as dif-
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ferent publications in the area currently employ distinct subsets of measures, it is di�cult

to compare results across publications. In this chapter, a thorough analysis of multi-label

evaluation measures is provided, along with concrete suggestions for researchers to make

an informed decision when choosing evaluation measures for multi-label classi�cation.

3.2. Multi-label Measures

Many di�erent evaluation measures speci�cally developed for multi-label classi�cation

have been proposed in the literature. According to [86], these measures can be grouped

into example-based and label-based. Also, they can be grouped into classi�cation (or

bi-partition) measures and ranking measures. Figure 3.1 illustrates the main multi-label

measures according to this categorization.

Figure 3.1: Multi-label evaluation measures categorization [86]

Example-based measures compute the classi�cation performance for each instance,

averaging the overall result after classifying all instances. On the other hand, label-based

measures decompose the evaluation process into separate values for each label, averaging

them subsequently over all labels [77]. These groups and the measures that belong to

each one of them are going to be explained in further detail in the following subsections.

Our notation follows the same standards proposed in [74], where a multi-label data

set is denoted D, with |D| = N . For each example (xi, Yi), i = 1, . . . , N , xi is the set of

feature values and Yi is the set of true labels, with each element belonging to the set of

q labels L = {λj : j = 1, . . . , q}. Given an instance xi, the set of predicted labels by a

multi-label classi�er is denoted by Zi. The rank of labels predicted by a method is denoted

as ri, and ri(λ) is the rank position of a label λ. The most relevant label receives the

highest rank (1), while the least relevant one, receives the lowest rank (q). Additionally,
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H is the model generated by the multi-label learning task, capable of predicting a subset

of labels given an unseen instance.

3.2.1. Example-based Classi�cation Measures

Hamming Loss is one of the most well-known multi-label measures. It takes into account

the prediction error (when an incorrect label is predicted) and the missing error (when a

relevant label is not predicted), normalized over the total number of classes and the total

number of instances [67]. It is de�ned by Equation 3.1.

HammingLoss(H,D) =
1

N

N∑
i=1

|Yi△Zi|
|L|

, (3.1)

where △ stands for the symmetric di�erence of two sets, which is equivalent to the XOR

operation in Boolean logic [77].

Subset Accuracy or Exact Match [20] is de�ned by Equation 3.2. It considers as

correct only the examples that are exactly classi�ed, and ignores partially correct values.

This is a rigid measure, particularly in the case of data sets of high label cardinality,

where it is very hard to achieve an exact match.

Subset Accuracy(H,D) =
1

N

N∑
i=1

I(Yi = Zi), (3.2)

where I is a function that maps a true logic proposition to 1 and false to 0. The Subset

0/1 Loss is similar to Subset Accuracy, but it measures if Yi ̸= Zi. This is equivalent to

1− Subset Accuracy.

The single-label performance measures Accuracy, Precision, Recall and F-Measure

were adapted for the multi-label problem, taking into account partially correct classi�ca-

tion.

Accuracy, de�ned by Equation 3.3, tries to convey the overall e�ectiveness of a clas-

si�er [66].

Accuracy(H,D) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(3.3)

Precision, de�ned by Equation 3.4, measures the agreement of the labels with the
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positive labels given by the classi�er.

Precision(H,D) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Zi|

(3.4)

Recall (or Sensitivity), de�ned by Equation 3.5, measures the e�ectiveness of a clas-

si�er to retrieve positive labels.

Recall(H,D) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi|

(3.5)

F-Measure, de�ned by Equation 3.6, is the harmonic mean of Precision and Recall.

F-Measure(H,D) =
1

N

N∑
i=1

2 |Yi ∩ Zi|
|Zi|+ |Yi|

(3.6)

3.2.2. Example-based Ranking Measures

Example-based Ranking measures take into account the label ranking generated by the

classi�er, averaging the results over all the examples.

One Error evaluates how frequently the top-ranked label is not in the set of the

relevant labels of the instance [77], de�ned by Equation 3.7.

One Error(H,D) =
1

N

N∑
i=1

δ(argmin ri(λ)), (3.7)

where

λ ∈ L, δ(λ) =

{
1 if λ /∈ Yi,

0 otherwise.

Coverage, de�ned by Equation 3.8, evaluates how far it is needed, on average, to go

down the ranked list of labels in order to cover all the relevant labels of the example [77].

Coverage(H,D) =
1

N

N∑
i=1

max ri(λ)− 1, (3.8)

where λ ∈ Yi.

Ranking loss expresses the number of times that irrelevant labels are ranked higher
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than relevant labels [77], given by Equation 3.9.

Ranking Loss(H,D) =
1

N

N∑
i=1

1

|Yi||Yi|
{(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi×Yi}, (3.9)

where Yi is the complementary set of Yi with respect to L.

Average Precision, de�ned by Equation 3.10, computes for each relevant label the

proportion of relevant labels that are ranked before it, and �nally averages over all relevant

labels [67].

Average Precision(H,D) =
1

N

N∑
i=1

1

|Yi|
∑
λ∈Yi

|λ′ ∈ Yi : ri(λ
′) ≤ ri(λ)|

ri(λ)
(3.10)

3.2.3. Label-based Classi�cation Measures

Any measure for single-label classi�cation can be adapted as a label-based measure for

multi-label classi�cation. The calculation of these measures for all labels can be achieved

using two averaging operations, called macro-averaging and micro-averaging [77].

Let Tp, Tn, Fp and Fn denote the true positives, true negatives, false positives and

false negatives evaluated by a single-label classi�er, respectively. The traditional measures

Accuracy, Precision, Recall and F-Measure are given by the Equations 3.11, 3.12, 3.13

and 3.14, respectively.

Accuracy(H,D) =
Tp + Tn

N
(3.11)

Precision(H,D) =
Tp

Tp + Fp

(3.12)

Recall(H,D) =
Tp

Tp + Fn

(3.13)

F-Measure(H,D) =
2 Tp

2 Tp + Fp + Fn

(3.14)

Let B(Tp, Tn, Fp, Fn) be any of these four evaluation measures. The macro-averaged
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and micro-averaged versions of B are calculated as de�ned by Equations 3.15 and 3.16,

respectively.

Bmacro(H,D) =
1

q

q∑
i=1

B(Tpi, Fpi, Tni, Fni) (3.15)

Bmicro(H,D) = B(

q∑
i=1

Tpi,

q∑
i=1

Fpi,

q∑
i=1

Tni,

q∑
i=1

Fni) (3.16)

It is worth mentioning that micro-averaging has the same result as macro-averaging

for some measures, such as accuracy; and that Hamming Loss represents the average

error, which is equal to 1 minus the value of (macro/micro) accuracy [74].

3.2.4. Label-based Ranking Measures

Area Under the Curve (AUC) or Balanced Accuracy is a statistical measure that corres-

ponds to the total area under the Receiver Operating Characteristic curve. This curve

represents the fraction of true positives out of the total actual positives (i.e., Recall) ver-

sus the fraction of false positives out of the total actual negatives. It was introduced only

recently in multi-label classi�cation, to measure the ability of a classi�er to avoid false

classi�cation [66].

As the AUC is a measure for the single-label classi�cation domain, it can also be

adapted to multi-label by macro-averaging (macroAUC) or micro-averaging (microAUC)

its results.

3.2.5. Multi-label Measures in the Literature

In [69], a systematic review on experimental multi-label learning was presented. A total of

64 papers were selected, all of them consisting of publications which report experimental

results for multi-label learning research. This work also counted the number of times each

measure was used to report a multi-label result. Even though example-based ranking

measures were not assessed in this count, a signi�cant number of the 64 papers used

them in their experimental reports, including [4, 7, 73, 83, 85, 88], which used One Error,

Coverage, Ranking Loss and Average Precision. So we have also counted these speci�c

measures in order to evaluate their use in the literature.

Table 3.1 shows individual results collected using each multi-label measure (in the
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Evaluation Measures #Collected Number of Papers
Hamming-Loss 1474 55
Accuracy 1016 26
F-Measure 859 18
Precision 623 18
Recall 623 18
Subset-Accuracy 612 10
Ranking Loss 440 8
Coverage 432 8
Micro F-Measure 492 15
One Error 366 7
Macro F-Measure 331 12
Average Precision 262 10
Subset 0/1 loss 240 3
Macro Precision 133 5
Micro Precision 131 4
Micro Recall 129 3
Macro Recall 127 2
Micro AUC 7 1
Macro AUC 7 1

Table 3.1: Statistics for each evaluation measure, adapted from [69]

�#Collected� column) and the number of times each multi-label measure was employed

by a selected work (in the �Number of Papers� column).

The Hamming Loss measure was the most used to evaluate the multi-label experi-

ments, in 55 out of the 64 publications. The other example-based measures were adopted

in a range varying between 10 and 26 publications, like the micro F-Measure in 12 publica-

tions and the macro F-Measure was used in 15 publications. The most used ranking-based

measure was Average Precision, in 10 publications. Micro and Macro AUC were used only

in 1 publication assessed in the survey.

3.3. Correlation among Multi-label Measures

In the previous section it was showed that many multi-label measures exist and are em-

ployed together in a large number of publications. However, each work decides on a

di�erent small subset of these measures to report their experiments, or elects a large

number of measures, like the survey conducted in [46], which employed sixteen measures.

If the subset of chosen measures contains measures that are strongly correlated, while le-

aving out other important measures that are not correlated, the experimental evaluation

can be misleading.

To the best of our knowledge, this correlation analysis has not been considered so far

in the literature. This analysis is provided below, by evaluating the correlation among

measures in a large number of multi-label experiments. The analysis compared the results

from multi-label classi�ers in order to �nd out which multi-label measures are correlated
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name domain instances
features labels

nominal numeric distinct cardinality
bibtex text 7,395 1,836 0 159 2.402
birds audio 645 2 258 19 1.014
CAL500 music 502 0 68 174 26.044
corel5k images 5,000 499 0 208 2.028
emotions music 593 0 72 6 1.869
enron text 1,702 1,001 0 53 3.378
�ags-ml images 194 9 10 7 3.392
genbase biology 662 1186 0 27 1.252
medical text 978 1449 0 45 1.245
scene image 2,407 0 294 6 1.074
yeast biology 2417 0 103 14 4.237

Table 3.2: Multi-Label data sets used for analysis of measures

to each other. Commonly used multi-label data sets and classi�cation algorithms were

elected, and the experiments were executed using the Mulan framework [77]. Mulan is an

open-source Java library for learning from multi-label data sets, built on top of the Weka

tool [79]. The library includes a variety of state-of-the-art algorithms for performing:

multi-label classi�cation, ranking and a few simple feature selection techniques.

Currently, there is a limited number of publicly available multi-label data sets. Most

of the initiatives that compare multi-label learning algorithms experimentally adopt a

subset of these available data sets. In Table 3.2, the data sets which are used in this work

to evaluate multi-label classi�cation algorithms are provided. The �rst two columns show

the name and the domain associated to the data set. The �instances� column presents

the number of instances of the data set. The �features� columns show the number of

nominal and numeric features. The �distinct� subcolumn in the �labels� column shows

the number of distinct labels over all instances in the data set, and the �cardinality�

subcolumn represents the average number of labels of each instance, which in the multi-

label setting is always greater than 1.

Mulan contains an evaluation framework that calculates a rich variety of performance

measures [77]. Sixteen measures were chosen, among the most commonly adopted in

articles related to multi-label classi�cation and feature selection, and which were described

in the previous sections, i.e.: Hamming Loss, Subset Accuracy (equivalent to Subset 0/1

loss), Accuracy, F-Measure, Precision, Recall, Micro F-Measure, Macro F-Measure, Micro

Precision, Macro Precision, Micro Recall, Macro Recall, Coverage, One Error, Average

Precision and Ranking Loss. The Micro and Macro AUC were not selected because they

do not have a widespread use in the multi-label literature. The selected measures are also

the same used in [46] for the evaluation of multi-label classi�cation techniques.

A large number of classi�cation techniques have been employed, from both transfor-
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mation and algorithm adaptation paradigms. Table 3.3 summarizes and categorizes the

multi-label classi�ers used for the evaluation. The transformation techniques used were:

Label Powerset, Binary Relevance, Classi�er Chains, PPT, RaKEL and HOMER, coupled

with the k-NN, decision trees (J48) and Naive Bayes single-label classi�ers. The algorithm

adaptations employed in this experiment were the ML-kNN, the IBLR classi�er and the

BRKNN adaptation. These are common multi-label classi�ers used in the literature [46].

Paradigm Classi�er Base Classi�er

Data Transformation

Binary Relevance
k-NN

Decision Tree
Naive Bayes

Label Powerset
k-NN

Decision Tree
Naive Bayes

Classi�er Chains
k-NN

Decision Tree
Naive Bayes

RaKEL
k-NN

Decision Tree
Naive Bayes

HOMER k-NN
PPT k-NN

Algorithm Adaptation
ML-KNN not applicable
IBLR not applicable

BRKNN adaptation not applicable

Table 3.3: Multi-label classi�ers used in the experiments

3.3.1. Analysis of Pearson Correlation

For the �rst correlation analysis, an execution for all classi�ers (16) was performed, using

all data sets (11) and using a total of 16 di�erent measures for each case. This leads to

more than 2,500 results (16*11*16). After consolidating these results by averaging them,

each pair of measures were compared using Pearson Correlation, considering the group of

results achieved for every classi�er and data set. Pearson's correlation coe�cient is given

by:

ρX,Y =
cov(X, Y )

σxσy

, (3.17)

where cov is the covariance and σx is the standard deviation of X.

Table 3.4 summarizes the results. Pearson's correlation coe�cient varies from -1 to

1. The absolute correlation value is reported, since a negative correlation is as important

as a positive correlation, especially considering that some measures are the complement

of others. The results that achieved a value equal or greater than 0.8 are marked in bold.

The matrix is mirrored around its main diagonal.
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Multi-label measure HL SA EbA EbF EbP EbR maF MaF maP MaP maR MaR AP Co OE RL

Hamming Loss (HL) 1 0.41 0.07 0.07 0.01 0.21 0.10 0.01 0.21 0.08 0.32 0.15 0.10 0.01 0.01 0.25
Subset Accuracy (SA) 0.41 1 0.88 0.79 0.77 0.67 0.73 0.78 0.71 0.80 0.56 0.65 0.67 0.23 0.54 0.52

Ex-Based Accuracy (EbA) 0.07 0.88 1 0.98 0.95 0.88 0.94 0.88 0.79 0.89 0.79 0.77 0.86 0.23 0.71 0.48
Ex-Based F Measure (EbF) 0.07 0.79 0.98 1 0.97 0.91 0.96 0.86 0.76 0.86 0.83 0.76 0.87 0.22 0.73 0.44
Ex-Based Precision (EbP) 0.01 0.77 0.95 0.97 1 0.81 0.94 0.79 0.82 0.83 0.72 0.64 0.85 0.22 0.77 0.43

Ex-Based Recall (EbR) 0.21 0.67 0.88 0.91 0.81 1 0.87 0.79 0.54 0.74 0.95 0.85 0.81 0.25 0.63 0.45
Micro-avg F-Measure (maF) 0.10 0.73 0.94 0.96 0.94 0.87 1 0.90 0.80 0.90 0.86 0.79 0.90 0.33 0.81 0.41
Macro-avg F-Measure (MaF) 0.01 0.78 0.88 0.86 0.79 0.79 0.90 1 0.71 0.98 0.79 0.91 0.83 0.26 0.71 0.40
Micro-avg Precision (maP) 0.21 0.71 0.79 0.76 0.82 0.54 0.80 0.71 1 0.79 0.48 0.49 0.77 0.25 0.75 0.44
Macro-avg Precision (MaP) 0.08 0.80 0.89 0.86 0.83 0.74 0.90 0.98 0.79 1 0.71 0.82 0.84 0.25 0.72 0.41

Micro-avg Recall (maR) 0.32 0.56 0.79 0.83 0.72 0.95 0.86 0.79 0.48 0.71 1 0.90 0.80 0.36 0.66 0.41
Macro-avg Recall (MaR) 0.15 0.65 0.77 0.76 0.64 0.85 0.79 0.91 0.49 0.82 0.90 1 0.76 0.29 0.60 0.42
Average Precision (AP) 0.10 0.67 0.86 0.87 0.85 0.81 0.90 0.83 0.77 0.84 0.80 0.76 1 0.40 0.89 0.68

Coverage (Co) 0.01 0.23 0.23 0.22 0.22 0.25 0.33 0.26 0.25 0.25 0.36 0.29 0.40 1 0.40 0.36
OneError (OE) 0.01 0.54 0.71 0.73 0.77 0.63 0.81 0.71 0.75 0.72 0.66 0.60 0.89 0.40 1 0.64

Ranking Loss (RL) 0.25 0.52 0.48 0.44 0.43 0.45 0.41 0.40 0.44 0.41 0.41 0.42 0.68 0.36 0.64 1

Table 3.4: Multi-label measures compared with Pearson correlation

Depending on the domain, a value greater than 0.5, 0.6 or 0.7 is considered a high

correlation between two variables. In this work a conservative value of 0.8 was adopted to

represent highly correlated measures, and above 0.9 for very high correlation. In Figure

3.2, the correlation results are presented in a graphical representation. Each dashed line

connecting two measures means that the measures presented a correlation equal or greater

than 0.8. Bold lines represent a correlation greater or equal than 0.9.

According to the criteria adopted, most of multi-label measures are highly correlated

(Pearson correlation ≥ 0.8) with at least another one, a few are not correlated with any

other (Hamming Loss, Coverage and Ranking Loss) and some of them are correlated with

only a few others (Micro-averaged Precision, Micro-averaged Recall, Subset Accuracy and

One Error). The following measures are strongly correlated (Pearson correlation ≥ 0.8)

with eight other measures: Example-Based F-Measure, Average Precision, Example-Based

Precision and Example-Based Accuracy.

Additionally, further analysis showed that by varying the subset of classi�ers used

in the experiments, the end result varied by less than 5% on average, and the graphical

representation of correlation between measures still holds.

3.3.2. Analysis of Spearman Correlation

Spearman's rank correlation coe�cient is also used to measure the strength of association

between two variables. It is used in this work as an alternative analysis of correlation

between multi-label measures. While Pearson correlation is computed on the true values

of the variables and depicts linear relationships, the Spearman correlation is computed on

ranks and depicts monotonic relationships. It also does not make any assumptions about

the frequency distribution of the variables [90].

Consider that n is the sample size and xi and yi depict the rank of the variable scores
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Figure 3.2: Graphical representation of pairwise correlation between evaluation measures

Xi and Yi, respectively. The Spearman correlation coe�cient is given by:

ρ =
6
∑

d2i
n(n2 − 1)

, (3.18)

where di = xi − yi is the di�erence between ranks.

Analogously to the previous table, Table 3.5 summarizes the results of the Spearman

correlation coe�cient, which also varies from -1 to 1. The absolute values are reported,

and the results that achieved a value greater or equal than 0.8 are marked in bold.

As can be seen in the results, the Spearman correlation coe�cient achieves values

directly comparable to the previous Pearson correlation analysis. In fact, considering the

0.8 threshold, with the exception of a few pairs, the coe�cient for the same measures

from both tables are marked in bold. This reinforces the notion that there are measures
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Multi-label measure HL SA EbA EbF EbP EbR maF MaF maP MaP maR MaR AP Co OE RL

Hamming Loss (HL) 1 0.31 0.05 0.06 0.00 0.15 0.08 0.05 0.23 0.10 0.24 0.08 0.03 0.04 0.05 0.45
Subset Accuracy (SA) 0.31 1 0.87 0.77 0.75 0.64 0.72 0.78 0.69 0.82 0.53 0.64 0.71 0.64 0.49 0.55

Ex-Based Accuracy (EbA) 0.05 0.87 1 0.97 0.93 0.84 0.91 0.87 0.74 0.88 0.74 0.74 0.84 0.55 0.67 0.47
Ex-Based F Measure (EbF) 0.06 0.77 0.97 1 0.95 0.89 0.95 0.88 0.72 0.87 0.82 0.77 0.86 0.55 0.72 0.42
Ex-Based Precision (EbP) 0.00 0.75 0.93 0.95 1 0.77 0.91 0.80 0.79 0.84 0.69 0.64 0.83 0.48 0.74 0.41

Ex-Based Recall (EbR) 0.15 0.64 0.84 0.89 0.77 1 0.84 0.78 0.51 0.72 0.95 0.88 0.79 0.56 0.62 0.43
Micro-avg F-Measure (maF) 0.08 0.72 0.91 0.95 0.91 0.84 1 0.91 0.78 0.91 0.84 0.79 0.91 0.62 0.80 0.39
Macro-avg F-Measure (MaF) 0.05 0.78 0.87 0.88 0.80 0.78 0.91 1 0.69 0.97 0.76 0.88 0.85 0.67 0.69 0.43
Micro-avg Precision (maP) 0.23 0.69 0.74 0.72 0.79 0.51 0.78 0.69 1 0.78 0.48 0.49 0.77 0.48 0.73 0.47
Macro-avg Precision (MaP) 0.10 0.82 0.88 0.87 0.84 0.72 0.91 0.97 0.78 1 0.70 0.81 0.87 0.66 0.71 0.44

Micro-avg Recall (maR) 0.24 0.53 0.74 0.82 0.69 0.95 0.84 0.76 0.48 0.70 1 0.91 0.79 0.62 0.65 0.38
Macro-avg Recall (MaR) 0.08 0.64 0.74 0.77 0.64 0.88 0.79 0.88 0.49 0.81 0.91 1 0.77 0.68 0.58 0.44
Average Precision (AP) 0.03 0.71 0.84 0.86 0.83 0.79 0.91 0.85 0.77 0.87 0.79 0.77 1 0.69 0.88 0.62

Coverage (Co) 0.04 0.64 0.55 0.55 0.48 0.56 0.62 0.67 0.48 0.66 0.62 0.68 0.69 1 0.53 0.48
OneError (OE) 0.05 0.49 0.67 0.72 0.74 0.62 0.80 0.69 0.73 0.71 0.65 0.58 0.88 0.53 1 0.55

Ranking Loss (RL) 0.45 0.55 0.47 0.42 0.41 0.43 0.39 0.43 0.47 0.44 0.38 0.44 0.62 0.48 0.55 1

Table 3.5: Multi-label measures compared with Spearman correlation

which are strongly correlated, and others that are more independent.

3.3.3. Guidelines for Choosing Measures in a Multi-label Setting

To create guidelines for choosing measures, we carefully analyze these correlation results,

assuming that two strongly correlated measures should not appear together in an overall

report of the performance of a multi-label technique. We also take into account three

other criteria: popularity in the literature, the choice of including or not label ranking

measures and the number of desired measures, suggesting the adoption of the following

guidelines:

(a) Small set of measures: the smaller choice of measures should consider employing

the measures that are not correlated with others (Hamming Loss, Coverage and Ran-

king Loss), and one from the main cluster of correlated measures (either Example-

Based F-Measure or Example-Based Accuracy, because they are the ones with most

correlations to other measures). This is equivalent to choosing one representative

measure for each connected component of the graph in Figure 3.2.

(b) Small set of measures discarding ranking-based measures: alternatively, one

could discard one or both ranking-based measures (Coverage and Ranking Loss) if

the focus is not on producing rankings of labels � even though these measures

could still be useful in a pure multi-label classi�cation task, by evaluating how far

incorrectly predicted labels are to the actual subset of labels.

(c) Exact match evaluation: Subset Accuracy is a measure commonly used in the

literature and evaluates the capacity of one algorithm to yield an exact set of correc-

tly predicted labels. The alternative measure Subset 1/0 Loss is almost equivalent

to it (yielding 1− SubsetAccuracy score), and can be used instead.



3.3. Correlation among Multi-label Measures 26

(d) Focus on ranking measures: Ranking Loss and Coverage are not correlated with

any other measure, and should be adopted for researchers dealing speci�cally with

the multi-label ranking task. One Error and Average Precision are also ranking-

based measures, but are correlated with each other (not strongly). As they are both

commonly used in the literature, we suggest the following set of measures: Ran-

king Loss, Coverage, One Error, Average Precision, Hamming Loss and, optionally,

Subset Accuracy.

The same intuition can be used for selecting other subset of measures. For instance,

if one needs to evaluate the Recall or the Precision of an algorithm, the use of F-Measure

should be avoided, because it is strongly correlated with them. The only exception should

be made for measures used extensively in the related literature, for comparison purposes.

Throughout this work, we elected the following measures to evaluate our algorithms:

Hamming Loss, Subset 1/0 Loss, Example-Based Accuracy and Ranking Loss.

Figure 3.3: Graphical representation of the 12 lesser correlated measures
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3.4. Chapter Summary

In this chapter we have presented a correlation analysis of multi-label measures used in

the literature. We argue that the adoption of these measures in multi-label experimental

comparisons without an objective criteria can lead to biased conclusions due to correlation

between measures.

The main contribution of this chapter is to provide a comprehensive and detailed

analysis of the correlation that exists between multi-label measures by experimenting

with multiple classi�cation techniques and data sets from various domains.

Based on this analysis, we are able to take an informed decision when choosing per-

formance measures for evaluating multi-label classi�cation.

In the next chapter, we begin our feature selection review and contribution in the

multi-label setting. We propose a taxonomy for categorizing multi-label feature selection

techniques and review the current literature on the topic.



Chapter 4

Multi-label Feature Selection

4.1. Introduction

According to [26], feature selection techniques are employed to identify relevant and infor-

mative features, primarily to improve the classi�er predictive accuracy. In general, besides

this main goal, there are other important motivations: the reduction and simpli�cation of

the data set, the acceleration of the classi�cation task, the simpli�cation of the generated

classi�cation model, and others.

Traditional feature selection techniques can generally be categorized into three appro-

aches: embedded, wrapper or �lter [42]. Embedded strategies are incorporated into the

algorithm responsible for the induction of the classi�cation model. Decision tree induction

algorithms can be viewed as having an embedded feature selection technique, since they

internally select the features that will be tested at each node of the generated tree.

Wrapper and �lter strategies are performed in a preprocessing phase and they se-

arch for the most suitable feature set to be used by the classi�cation algorithm or by

the classi�cation model inducer. In wrapper feature selection, the adopted classi�cation

algorithm itself is used to evaluate the quality of candidate feature subsets, while in �l-

ter feature selection, feature quality is evaluated independently from the classi�cation

algorithm using a measure which generally takes into account the feature and class label

distributions. Among common �lter measures, there are those that evaluate each feature

individually, as exempli�ed by Information Gain Ranking [54] and Relief [31, 35]; and

measures that evaluate subsets of features, combined with a heuristic search for �nding

the best subset, like the Correlation-based Feature Selection [28] and Consistency-based

Feature Selection [43]. There are also hybrid strategies which try to combine the wrapper

and the �lter approaches [44].
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Figure 4.1: Taxonomy proposed for multi-label feature selection

Feature selection techniques intended speci�cally for multi-label classi�cation have

been developed in recent years. Even though there are many publications on this topic, it

is still considered an active research area [14, 68] and, to the best of our knowledge, there

is no work that surveys or categorizes the current multi-label feature selection techniques.

In the next subsections, we propose a novel taxonomy for multi-label feature selection,

and based on this taxonomy, we review the feature selection techniques for multi-label

classi�cation that have been proposed in the literature.

One of the contributions of the thesis is a comprehensive survey and a taxonomy

of multi-label feature selection techniques. Figure 4.1 shows our proposed taxonomy for

categorizing multi-label feature selection. It aims at categorizing the feature selection

techniques according to characteristics inherent to the multi-label paradigm.

This taxonomy is composed of two main categories based on the multi-label clas-

si�cation paradigms already explained in our work: transformation-based methods and

direct methods. The transformation-based and direct categories are described in the next

sections.
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4.2. Multi-label Feature Selection Based on Transforma-

tion

The simplest way to employ feature selection to a multi-label data set is to change it

into a single-label data set and apply a traditional feature selection technique. There are

plenty of algorithms to transform a multi-label data set into a single-label one.

Methods to transform a multi-label data set into single-label data were described in

Chapter 2, in the multi-label classi�cation context. In the next sections, we present the

copy, select, label-powerset and binary relevance transformations in the feature selection

context, and review previous work that employed these methods.

4.2.1. Strategies Based on Single Data Transformation

Single data transformation for multi-label feature selection consists of changing the multi-

label data into one single-label data set and applying a traditional feature selection tech-

nique. Single data transformation encompasses both simple and label powerset transfor-

mations.

The following common simple transformation techniques: select-max, select-min,

select-random, select-ignore, copy and copy-weight; and the label powerset transforma-

tion, used to convert a multi-label data set into a single-label one were described in

Chapter 2. These transformations have also been employed to perform feature selection

over multi-label data.

Figure 4.2 presents a feature selection model to represent this category of transfor-

mations applied to the multi-label data. It initially converts the original multi-label data

into a single-label data set using one of the transformations. Then a traditional single-

label feature selection is employed to the data. The output of this process is a list of the

selected features. Optionally, a subsequent process � indicated with dashed lines � can

be employed to deliver the original multi-label data containing only the corresponding

selected features. This way a multi-label classi�er can be used to perform its predictions

over the multi-label data.

In [3], these data set transformations were used to allow the application of traditional

feature selection techniques to the text categorization problem. According to the model

in Figure 4.2, the multi-label data were transformed into a single-label data set after

executing the following simple transformations: copy, select-ignore, select-max and select-
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Figure 4.2: Transformation Based/Single multi-label feature selection

min. They also proposed a new transformation � from multi-label into single-label data

� based on the entropy measure, which reweights each instance using this metric as a

variation of the copy-weight transformation described before in subsection 2.2.1.

Note that after employing a feature selection technique, it is possible to deliver to the

classi�er either the transformed single-label data set, or the original multi-label data set

maintaining only the corresponding selected features. In the latter case this is required

if it is necessary to run a multi-label classi�er after the feature selection. Nonetheless,

as these feature selection techniques based on a simple data transformation disregard the

correlation between labels or subsets of labels, they might fail to identify a suitable feature

set for correct classi�cation of some speci�c instances.

The label powerset transformation is also directly applied to the task of multi-label

feature selection based on transformation, as it is capable of delivering a single-label data

set with each subset of labels converted into a new class label.

In [73], several multi-label classi�cation strategies were evaluated and compared for

the task of automated decision of emotion in a music data set. For the empirical evaluation

of feature selection, the use of a label powerset transformation was proposed to produce

a single-label data set, and then a common feature selection measure was employed (χ2

statistic) to select the best features. They veri�ed that, for the evaluated data set, using

the ML-KNN algorithm [85] as the classi�er and the label powerset to apply the feature

selection achieved a better Hamming Loss result than without feature selection.

The label powerset transformation is also used for feature selection in [68], in con-

junction with the relief and information gain measures. With this feature selection, it

was possible to reduce the dimensionality of the data sets without compromising the
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classi�cation performance.

The label powerset transformation tends to create too many classes, causing over�tting

and imbalance problems [37]. In [14], the pruned problem transformation (PPT) [56], an

improvement over the label powerset, was used for multi-label feature selection on three

real-world data sets from di�erent domains: gene, semantic scene and emotion (in music)

classi�cation. Then a multi-label k-NN algorithm was employed over the original multi-

label data containing only the selected features. When compared with the χ2 statistic

adopted in [73], and also with a non feature selection scenario, the mutual information

measure allowed the classi�cation phase to achieve a better result in terms of the Hamming

Loss and the accuracy of the classi�er.

The feature selection techniques can be categorized as wrapper, embedded or �lter. An

algorithm from any of these categories can be applied after a single data transformation.

However, all publications reviewed in this subsection are categorized as Transformation

Based/Single/Filter. This means that there is a lack of work evaluating single-label

embedded and wrapper feature selection techniques for multi-label classi�cation.

4.2.2. Strategies Based on Binary Relevance Transformation

A di�erent line of attacking the multi-label feature selection problem is to transform the

multi-label data set into several single-label data sets and use existing feature selection

methods on each data set, particularly those that follow the �lter paradigm [77].

The process of transforming a multi-label data set into several single-label ones was

explained in Chapter 2. The same technique can be employed for feature selection. For

each di�erent label in the original data set, a binary single-label data set is created, and

then feature selection is executed.

Figure 4.3 represents a feature selection model based on the binary relevance (BR)

transformation. Each label from the data set is considered individually in order to perform

the feature selection. Then the single-label feature selection is applied once for each single-

label data set.

There are two ways to handle the feature selection result on a BR approach. The �rst

one, is to apply the classi�cation method directly to each single-label data set obtained

after the feature selection step. We call this the Internal approach. As the multi-label

data set is transformed into a single-label data set, both the classi�er and the feature

selection techniques are able to handle the data. After the feature selection, each reduced
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Figure 4.3: Transformation Based/Binary Relevance multi-label feature selection

single-label data set will serve as input for a single-label classi�er. After the classi�cation

step, the results are combined analogously to Figure 2.3 in Chapter 2.

Another way to handle the feature selection result of each binary model, which we

call the External approach, is to combine the results from each feature selection into a

single output, and then output the reduced data set to a multi-label classi�er. In this

case there is the need to aggregate the feature selection results before classi�cation.

A typical way to output a list of selected features is ensuring a score threshold or a

�xed number of features across the rankings (e.g., the top 500 features). Other ways to

combine the multiple feature rankings produced by the binary classi�ers is to consider the

overall maximum score or the average score of each feature across the binary models [73].

The feature selection used in this External strategy can be a �lter or a wrapper technique.

In [18], a round robin aggregation method was proposed, which considers the best

features of each binary model in sequence, and a variation named rand-robin, that selects

the best features in a roulette fashion inversely to the frequency of each label in the original

data set. The process of combining the lists of features is also known as aggregation. This

is the approach shown in Figure 4.3. After the aggregation process, indicated by a dashed

line, there is an optional step of removing the features from the original multi-label data

set to produce a corresponding data set with the chosen features only.
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In [80], common feature selection measures (document frequency, information gain,

mutual information, χ2 statistic and term strength) were evaluated in a text categori-

zation multi-label problem. Each label was evaluated separately, which is equivalent to

an external binary relevance transformation. After applying the feature selection to this

data set, the k-NN classi�cation technique was employed. Up to 98% of the features were

removed without losing categorization accuracy, when using the information gain and χ2

techniques; the same result occurred when 90% of features were removed with the docu-

ment frequency metric; and 50-60% with term strength. Mutual information achieved an

inferior performance compared to the other methods.

Some text classi�cation work [49, 89] employed the binary relevance technique to

apply single-label feature selection measures, like information gain and χ2 statistic.

In [62], several �lter feature selection techniques were applied in text categorization

data sets. Again, each label was considered individually, which is equivalent to a BR

transformation. Then the following feature selection measures were applied to the data

sets: document frequency, information gain, a binary version of information gain and the

χ2 statistics. From the resulting feature ranking of each measure, both the average and

the maximum value were considered as an aggregated score. The empirical results showed

in [62] suggested that combining the use of multiple feature selection was advantageous for

eliminating rare words in a consistent way across di�erent classi�ers. In the experimental

evaluation on [14], the max and avg aggregation strategies were also used for the BR.

The BR transformation is also used for feature selection in [68], in conjunction with

the relief and information gain measures. This feature selection strategy is compared with

the LP transformation using the same measures, with the conclusion that both methods

achieved a similar performance in the experiments with data sets from various domains

commonly used in multi-label work.

In [71], BR was used to apply feature selection in conjunction with several aggrega-

tion techniques to data sets from the text categorization domain. The best results were

achieved by using the maximum score across all labels with the χ2 measure.

In [78], the RAKEL method was proposed and evaluated on three data sets from

di�erent domains (semantic scene, gene and textual classi�cation). In the data transfor-

mation step, RAKEL constructs an ensemble of label powersets. Then feature selection

was applied to the textual data set to reduce the computational cost of training. The

χ2 statistic was used separately for each label in order to obtain di�erent rankings of all

features, and in the aggregation step the top 500 features were selected (i.e., the features
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with the highest score over all labels). This same label-based approach was applied in

[57] for a text-categorization data set (Reuters) in conjunction with the information gain

measure.

As it occurs with single transformation-based feature selection, there is a lack of

work evaluating embedded and wrapper feature selection techniques after a BR trans-

formation. All techniques described in this subsection are categorized as Transformation

Based/BR/Filter/External, except for [13], which is categorized as Transformation Ba-

sed/BR/Filter/Internal.

As it occurs with classi�cation, the use of binary relevance transformation can cause

a loss of information from the multi-label data, like label dependence, an important issue

in multi-label learning [69].

4.2.3. Summary of Publications on Transformation Based Feature

Selection

Table 4 shows publications related to multi-label feature selection that rely on data trans-

formation. The �Data Transformation� column speci�es which transformation technique

described in our taxonomy was used. In the case of the binary relevance transformation,

we also specify how the multiple lists of features were combined (indicated by the `+'

sign): either using the average or maximum score, in the case of the Internal approach,

or selecting a speci�c number of top features, in the case of the External approach.

The �Feature Selection� column indicates which feature selection technique was used

� all of them single-label techniques, relying on the data transformation executed before.

The �Classi�er� column shows which classi�cation strategy was employed, in some cases

combined with some data transformation technique, indicated by the `+' sign (e.g., RA-

KEL + SVM). Finally, the �Data Sets (domain)� column lists the data sets used and to

which domains they belong, in parentheses.

We observe that most publications employed a data transformation technique from

just one paradigm (simple transformations, label powerset-based or binary relevance-

based). The BR approach is usually External. The feature selection strategies used are

simple �lters that evaluate one feature at a time. Furthermore, most of them aim to

evaluate one or two classi�ers, using data sets from just one or a few multi-label domains.
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Publication Data Transformation Feature Selection Classi�er Data Sets (domain)

[3]

Single/Filter/copy

SVM
Single/Filter/select-ignore information gain Reuters-21578 (text)

Single/Filter/select-min χ2 statistic Reuters RCV1-v2 (text)
Single/Filter/select-max OCFS

Single/Filter/entropy-based

[80]

document frequency
information gain k-NN OSHUMED (text)

BR/External/Filter mutual information Regression (LLSF) Reuters-22173 (text)

+top features χ2 statistic
term strength

[73]
Single(LP)/Filter

χ2 statistic Multi-Label k-NN Emotions (music)
BR/External/Filter
+ avg and max

[89] BR/External/Filter

χ2 statistic
Naive Bayes

Reuters-21578 (text)
information gain

correlation coe�cient
Logistic Regression

odds ratio

[14]
Single(PPT)/Filter mutual information Multi-Label k-NN

Yeast (gene)

Single(LP)/Filter χ2 statistic SVM
Scene (image)

Emotions (music)

[49]
BR/External/Filter

document frequency
k-NN RCV1-v2 (text)

+max, avg and min
χ2 statistic

information gain

[62]

document frequency k-NN
BR/External/Filter information gain Naive Bayes Reuters-21578 (text)
+ avg and max binary information gain SVM Reuters RCV1 (text)

χ2 statistic Rocchio

[78]
BR/External/Filter

χ2 statistic
RAKEL+SVM

tmc2007 (text)
+ top 500 features BR+SVM

[13] BR/Internal/Filter information gain
BR+kNN Reuters RCV1 (text)
BR+SVM EUROVOC (text)

[57]
BR/External/Filter

information gain
BR+Naive Bayes

Reuters RCV1 (text)
+ top 500 features LP+Naive Bayes

[68]
Single(LP)/Filter information gain

BRKNN Various Domains
BR/External/Filter relief

[71]
BR/External/Filter χ2 statistic

BR+SVM Various Domains
+avg,max,round/rand-robin bi-normal separation

[64]
Single(LP)/Filter mutual information maximization

Multi-Label k-NN
Scene (image)

BR/External/Filter
joint mutual information max. Yeast (gene)

+ max

Table 4.1: Summary of publications on ML feature selection based on transformation

4.3. Direct Multi-label Feature Selection

Several feature selection techniques were proposed to deal directly with the multi-label

data. They consist mostly of algorithm adaptations of well-known feature selection te-

chniques. Unlike the previous categories, in this case there is no transformation of the

multi-label data. In [38], a feature selection algorithm based on this model is claimed to

perform better than common techniques that transform the multi-label data into single-

label.

We will categorize these multi-label feature selection techniques in three sub-categories:

Filter, Wrapper and Embedded, in the same way they are categorized for their single-label

counterparts [42], and according to our proposed taxonomy.

4.3.1. Strategies Based on the Filter Strategy

Filter strategies generally use an evaluation function which depends only on the properties

of the data set, so they are independent of any particular learning algorithm.

Figure 4.4 illustrates this approach, which typically employs a heuristic search strategy
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and a metric able to evaluate subsets of features. The heuristic search can be also a ranker

which evaluates each feature individually by a speci�c metric. Afterwards, the ranking is

processed to output the selected features, either by establishing a metric value threshold

or selecting the top n features from the ranking. Then this result can be combined with

the original multi-label data to produce a new data set with only the selected features.

Figure 4.4: Direct/Filter multi-label feature selection

In [36], the well-known technique FCBF (Fast Correlation-Based Filter), introduced

in [82], is extended to handle multi-label data. The technique consists of transforming

the data set into a directed graph and applying the symmetrical uncertainty measure

to evaluate the features of the data set. This feature selection is applied in conjunction

with the IBLR-ML [4] and ECC [59] classi�ers, and data sets from multiple domains are

evaluated.

Some feature extraction techniques were adapted from single-label counterparts, like

PCA (Principal Component Analysis) and LSI (Latent Semantic Indexing). They produce

a ranking of features after applying a technique to reduce the number of features, either

by removing irrelevant features, or by creating a projection of the feature space. For

instance, in [81] it is proposed the Multi-label Latent Semantic Indexing (MLSI). It is a

feature extraction technique based on dimensionality reduction, as an extension of the LSI

technique to make use of multi-label information. Feature extraction is a task di�erent

from feature selection [41], so it is not the focus on this thesis.

In [50], a multi-label �lter adaptation based on the information gain measure was

proposed. The technique was evaluated on various multi-label data sets and coupled

with ML-KNN, BR-KNN, CC, and other classi�ers. It achieved an overall better result

than the LP and copy transformations, and competitive results against the BR trans-

formation. In terms of scalability, the multi-label information gain �lter outperformed

the other transformation-based techniques when coupled with the BR-KNN classi�er and

assessed with data sets from the Yahoo directory (more than 30,000 features). In [39],

an adaptation based on the information gain measure was proposed, and the experimen-
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tal results con�rmed it as an e�ective approach compared with other feature selection

techniques.

Similarly, in [88], the MDDM method � Multi-label Dimensionality reduction via

Dependence Maximization � is proposed. It consists of a dimensionality reduction method,

like PCA, aimed to the multi-label domain. It creates a ranking of features by maximizing

the dependence between the features and the associated class labels using a well-known

dependence measure. It is compared with other similar methods like PCA and MLSI

coupled with the multi-label k-NN classi�er and eleven Yahoo web-pages data sets.

Filter strategies can also consider subsets of features instead of single features. After

a number of iterations, the feature subset with the best metric value is selected. Like in

other multi-label feature selection techniques, a subsequent process can be employed to

deliver the original multi-label data with the corresponding selected features.

In [34], a new multi-label feature selection technique designed for graph classi�cation

is proposed, called gMLC. It is based on an e�cient search for optimal subgraph features

for graph objects with multiple labels, and evaluates each subset with a particular criteria.

Graph data sets are evaluated with this method and compared with a BR transformation

coupled with the information gain measure, and also with a technique that selects the top

k-frequent subgraph features.

Common single-label feature selection techniques were adapted to the multi-label

paradigm recently. The reliefF measure was adapted in [53] and [69]. The mutual infor-

mation measure was adapted in [37]. The correlation-based feature selection technique,

capable of handling subset of features, instead of individual features, was adapted to the

multi-label setting in [30].

4.3.2. Strategies Based on the Wrapper Strategy

The wrapper approach for feature selection [33] consists in a method that searches for

a relevant subset of features and employs a classi�cation technique to evaluate it. In

other words, given a multi-label learning algorithm, the method searches for the subset

of features that optimizes a multi-label measure function on the training data set [77].

Figure 4.5 shows a suitable model for the wrapper paradigm, that is capable of han-

dling multi-label data directly. It works as follows: the data set is submitted to a heuristic

search algorithm, and for each selected subset of features, the classi�cation algorithm is

used to evaluate it. The best subset of features according to the classi�cation performance
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is then selected.

Note that in a wrapper approach the adopted classi�er can belong to any one of the

multi-label categories described in the multi-label classi�cation sections.

Figure 4.5: Direct/Wrapper multi-label feature selection

In [83], a wrapper technique is used over the data set to identify the best feature set.

The wrapper feature selection implements a genetic algorithm as the search component.

To evaluate this method, the Multi-label Naive Bayes classi�er � proposed in the same

work � is employed to select the best features. The classi�cation achieved a better result

when coupled with the feature selection. Also, it achieved a better performance when

compared with the following classi�ers: ADTBoost.MH, Rank-SVM, BR+Naive Bayes

and CNMF (Constrained Non-negative Matrix Factorization) [45].

In [65], the HOML � Hybrid Optimization based Multi-Label feature selection � is

proposed. It consists of a hybrid wrapper feature selection technique, combining simula-

ted annealing, genetic algorithm and hill-climbing to optimize the search for an optimal

subset of features. HOML is compared with other wrapper algorithms that employ the

following heuristic search algorithms: simulated annealing, forward selection, backward

selection and genetic algorithms; all of them coupled with the following base classi�ers:

ML-KNN [85], BP-MLL [84], Rank-SVM [16] and MLNB [83]. Experimental results on

two multi-label data sets favor the HOML technique.

4.3.3. Strategies Based on the Embedded Strategy

There is also the case of embedded feature selection algorithms, where the classi�cation

process itself performs the feature selection naturally as part of learning. Techniques like

decision trees [54, 55] are examples of classi�cation algorithms that employ an embedded

feature selection strategy. In order to build a decision tree model, the learning algorithm

selects the features to produce the branches, and the leaves of the tree represent the class

labels.
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Other examples of classi�er learning algorithms with embedded feature selection are

neural networks, random forests and feature selection using the weight vector of SVM

classi�ers [27]. There is not a general model for the embedded strategy, as the selection

of an optimal subset of features is built into the classi�er construction [63], so it is highly

dependent on the classi�er.

In [5], a multi-label decision tree was proposed as an extension of the C4.5 algorithm,

by allowing multiple labels in the leaves of the tree. In [12], a multi-label boosting

algorithm was combined with decision trees to produce a novel method � ADTBoost.MH

� capable of handling multi-label data.

In [38], the PRECOMN technique is proposed, based on a previous technique named

MEFS (Multi-label Embedded Feature Selection). It consists in an embedded technique

coupled with the ML-KNN algorithm. It combines the sequential backward search algo-

rithm with an evaluation measure, named prediction risk criterion, to evaluate the subset

of features. The technique is evaluated on one data set, and results show that it achie-

ves a better performance than the ML-KNN classi�cation without feature selection, and

another classi�cation technique called COMN, that was also proposed in the work.

The Correlated LaRank SVM method proposed in [25] is a dimensionality reduction

technique incorporated into the SVM classi�er with a ranking system of labels, an exten-

sion of LaRank SVM (Label Ranking SVM). The feature selection is incorporated into

the classi�cation algorithm; hence it is categorized as an embedded technique.

4.3.4. Summary of Publications on Direct Multi-label Feature Se-

lection

Table 4 describes the publications that employ multi-label feature selection techniques

that are capable of handling the task without transformation. They are correspondent to

the Direct category in our proposed taxonomy. The �Feature Selection Category� column

speci�es which of the three categories � Filter,Wrapper or Embedded � the work is focused

on.

The �Feature Selection Technique� column indicates which multi-label techniques were

used � all of them capable of handling the data directly. If the feature selection method

is embedded, it is speci�ed in which classi�er the feature selection is inserted. The �Clas-

si�er� and �Data Sets (domain)� columns are analogous to the ones in Table 4.

In this table we see that direct multi-label feature selection methods have been applied
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Publication Feature Selection Feature Selection Classi�er Data Sets (domain)
Category Technique

[5] Embedded C4.5H Phenotypic data (gene)

[12] Embedded ADTBoost.MH
Reuters-21450 (textual)
Newsgroups (textual)

[25] Embedded Correlated LaRank SVM
Scene (image)
Yeast (gene)

Yahoo webpages (web)

[38] Embedded PRECOMN (based on ML-KNN) Yeast (gene)

[32] Embedded Predictive Clustering Trees Feature Ranking

Bibtex (text)
Emotions (music)
Enron (text)
Medical (text)

[36] Filter FCBF extension
IBRL-ML

Various domains
ECC

[34] Filter gMLC BoosTexter SVM Graph

[83] Wrapper
Scene (image)

Genetic Algorithm (wrapper) Multi-label Naive Bayes Yeast (gene)
Synthetic data sets

[65] Wrapper

ML-KNN
HOML BP-MLL Yeast (gene)

(Hybrid optimization ML FS) Rank-SVM TCM CHD (medical)
Multi-label Naive Bayes

[53] Filter ReliefF-ML ML Lazy Ranking Algorithms Various domains

[69] Filter ReliefF-ML BR-KNN Synthetic data sets

[37] Filter Mutual Information ML
Enron (text)

Multi-Label Naive Bayes Scene (image)
Yeast (gene)

[30] Filter ML-Correlation-based FS
ML-KNN

Bioinformatics gene data
ML-RBF (neural network)

[50] Filter ML Information Gain Various classi�ers Various domains

[39] Filter ML Information Gain
ML-KNN

Various domains
Rand-SVM

Table 4.2: Summary of publications on direct multi-label feature selection

to data set from few domains. It would be interesting to develop work which evaluates

this category of feature selection over a higher number of data sets from various domains.

4.4. Discussions and Conclusions

In this chapter, we have surveyed previous work and proposed an original categorization

for the current feature selection techniques that deal with multi-label data. Up to this

time, they were scattered in the literature with no common framework to describe them.

With this new categorization, we expect to make it more straightforward to describe,

classify, evaluate, compare and combine multi-label feature selection algorithms.

Among simple transformation methods, entropy-based transformation achieved better

results for text data sets and coupled with SVM classi�er in [3]. LP transformation for

feature selection is more popular and achieves competitive results in various domains.

However, it is generally outperformed by the BR transformation for most measures [50,

73, 68, 64], with the exception of the Subset Accuracy measure that is more sensitive on

label dependency.

Our categorization showed that there is no work based on transformation methods

which employ a wrapper or embedded strategy. All of them, both single and BR trans-

formations employ a �lter strategy. The analysis of how well these other strategies scale

and perform on transformed multi-label data sets is therefore an open problem.
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Direct methods achieve better results than transformation methods in terms of per-

formance in the case of relief and mutual information methods [70] and in terms of compu-

tational scalability [50]. For a more thorough analysis, �lter techniques like in [36] should

be evaluated with other multi-label classi�ers. Wrapper and embedded techniques should

be assessed on more domains.

Other unexplored subjects in the multi-label feature selection domain are: how well

the current algorithms scale with respect to labels; how they handle class imbalance; the

ability of methods to consider label correlations; an empirical comparison of representative

methods from each category, in order to better visualize the pros and cons of the each one;

evaluating and comparing the performance of direct multi-label feature-selection methods

in the �lter, wrapper and embedded categories; and evaluating and comparing methods

which apply binary relevance feature selection externally with the ones which apply it

internally.

Another relevant question is to determine whether a speci�c category is able to achieve

better experimental results when combined with a speci�c classi�cation method or a

speci�c multi-label domain. So, in the next chapter, we propose a direct �lter technique

to handle multi-label data, adapted from the information gain metric. Then we compare

it with common transformation-based techniques which employ the same information

gain metric. We also employ many classi�cation techniques and data sets from multiple

domains, and evaluate the results.



Chapter 5

Information Gain Adaptation for Multi-

label Data

5.1. Introduction

This chapter proposes a novel feature selection technique based on the information gain

metric and capable of handling multi-label data directly. The adaptation of the informa-

tion gain is based on the multi-label decision-tree classi�er [5], and is constructed as a

general �lter feature selection technique, which could be coupled with any classi�er.

The proposed adaptation is then compared with well-known transformation-based

feature selection techniques. The compared techniques are coupled with various multi-

label classi�ers and data sets from various domains, in a comprehensive evaluation.

The techniques are also compared in terms of scalability with large data sets, evalu-

ating which algorithms are more computationally e�cient.

5.2. Information Gain Feature Selection Adaptation

This work employs the information gain measure to evaluate multi-label feature selection

techniques currently used in the literature. It also adapts this measure to create a direct

multi-label feature selection �lter technique.

The information gain measure is based on the entropy concept. It is commonly used

as a measure of feature relevance in �lter strategies that evaluate features individually

[80], and this method has the advantage of being fast. Let D be a data set composed by

N instances of the form (x1, c1), (x2, c2), ..., (xN , cN). In this data set, each xi corresponds
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to a vector (x1, ..., xd) that stores values for the d predictive features in X and each

ci ∈ L corresponds to a single class label. Let m be the number of distinct class values

{c1, c2, ..., cm}, in a single-label context. The entropy of the class distribution in D,

represented by Entropy(D), is de�ned by Equation 5.1.

Entropy(D) = −
m∑
i=1

pi ∗ log2(pi), (5.1)

where pi is the probability that an arbitrary instance in D belongs to class ci.

The concept de�ned in Equation 5.1 is used by the single-label feature selection stra-

tegy known as Information Gain Attribute Ranking [80] to measure the ability of a feature

to discriminate between class values.

In [5], the C4.5 algorithm was adapted for handling multi-label data. This proposed

decision tree algorithm allowed multiple labels at the leaves of the tree, by using an adap-

tation of entropy calculation. Let (x1, Y1), (x2, Y2), ..., (xN , YN), N ≥ 1, be a multi-label

data set composed by N instances. Each feature Xi corresponds to a vector (xi1, ..., xid)

that stores values for the d predictive features in X and each Yi ⊂ L corresponds to a sub-

set of labels. The entropy of the label set distribution in D, represented by Ent.ML(D),

is de�ned by Equation 5.2

Ent.ML(D) = −
l∑

i=1

p(λi) ∗ log2p(λi) + q(λi) ∗ log2q(λi), (5.2)

where p(λi) is the probability that an arbitrary instance in D belongs to class label λi,

q(λi) = 1− p(λi), and l is the number of labels in the data set.

An intuition into the reason for this multi-class entropy formula is to compute the

number of bits needed to describe all the labels an instance belongs to [5]. One bit per

label should su�ce to represent any subset of labels, but this is usually more bits than

actually needed. Suppose one label Y1 occurs in 80% of the instances. Then it is expected

that one instance is more likely to belong to label Y1 then not to belong.

We have adopted this formula to create an information gain feature selection capable

of handling multi-label data. By using this as a �lter approach, the feature selection can

be employed with any multi-label classi�er.

Let Dji, 1 ≤ j ≤ d and 1 ≤ i ≤ N , be the partition of D composed of all instances

whose value of feature Xj is equal to xji. The entropy of the label distribution in D,

restricted to the values of feature Xj, 1 ≤ j ≤ dj, represented by Ent.ML(D,Xj), is
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de�ned by Equation 5.3.

Ent.ML(D,Xj) =

dj∑
i=1

[(
|Dji|
|D|

) ∗ Ent.ML(Dji)] (5.3)

The Multi-Label Information Gain measure for each feature is computed by subtrac-

ting from the entropy of the label distribution in D the value of the entropy restricted to

the values of feature Xj, 1 ≤ j ≤ dj. This is given by Equation 5.4.

MLInfoGain(D,Xj) = Ent.ML(D)− Ent.ML(D,Xj) (5.4)

The proposed feature selection is a �lter which work as follows: it computes the

MLInfoGain values for each feature Xj in D. Next, all the scores are sorted in a ranking.

In order to list the selected features as an output, it is necessary to inform the number

of selected features. This can be either a percentage of the total number of features or

a score threshold to split the ranking. In this work the percentage of features is used in

order to compare each technique with equal conditions. This proposed feature selection

is named MLInfoGain from now on.

In Appendix C these equations are revisited and used to compute the MLInfoGain

scores for a multi-label data set example.

5.3. Experimental Evaluation

5.3.1. Methodology

The proposed information gain adaptation (MLInfoGain) was compared with other multi-

label feature selection techniques by executing a large number of experiments. For this

purpose we have elected commonly used multi-label data sets and classi�cation algorithms.

The experiments were executed using the Mulan framework [77]. Mulan is an open-

source Java library for learning from multi-label data sets with a variety of state-of-the-art

algorithms. We used in our experiments data sets from various domains available in the

Mulan site1. Most of the initiatives that compare multi-label learning algorithms adopt

a subset of these available data sets.

In Table 5.1, we show the data sets used to evaluate multi-label classi�cation and

1http://mulan.sourceforge.net
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name domain instances
features labels

nominal numeric distinct cardinality
bibtex text 7,395 1,836 0 159 2.402
birds audio 645 2 258 19 1.014
CAL500 music 502 0 68 174 26.044
corel5k images 5,000 499 0 208 2.028
emotions music 593 0 72 6 1.869
enron text 1,702 1,001 0 53 3.378
�ags-ml images 194 9 10 7 3.392
genbase biology 662 1,186 0 27 1.252
medical text 978 1,449 0 45 1.245
scene image 2,407 0 294 6 1.074
yahoo text 5,423±1,259 0 32,786±7,990 31±6 1.481±0.154
yeast biology 2,417 0 103 14 4.237

Table 5.1: Multi-label data sets used in the experiments

feature selection algorithms.

The �rst two columns show the name and the domain associated to the data set.

The �instances� column presents the number of instances of the data set. The �features�

column shows the number of nominal and numeric features. The �distinct� subcolumn in

the �labels� column shows the number of distinct labels over all instances in the data set,

and the �cardinality� subcolumn represents the average number of labels of each instance,

which in the multi-label setting is always superior to 1.

The feature selection techniques compared were: Binary Relevance (Transformation-

based/BR/External), Copy Transformation (Transformation-based/Single), Label Power-

set (Transformation-based/Single) and our proposed Multi-label Information Gain tech-

nique (Direct/Filter). The categorization in parenthesis refers to the taxonomy presented

in Chapter 4. All transformation methods are coupled with the single-label information

gain ranking method, in order to achieve an unbiased comparison, and so they are all

categorized as a Filter feature selection.

The information gain measure requires discrete feature values. Therefore, the transformation-

based techniques adopted the recursive entropy minimization heuristic [17] to discretize

continuous features. This heuristic is a supervised technique, which uses the class infor-

mation to select the best cut points for discretizing numeric features. It was coupled with

a minimum description length criterion [61] to control the number of intervals produced

over the continuous space. This procedure is commonly used in the single-label context.

The proposed direct multi-label feature selection adaptation (MLInfoGain) also re-

quires discrete feature values. However, there is no supervised technique currently in use

for discretizing multi-label data sets, to the best of our knowledge. Hence, in order to

discretize features without transforming the data set, a simple unsupervised technique
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with 10 bins was adopted for the multi-label information gain technique.

Each feature selection technique was experimented with nine executions in which we

varied the percentage of selected features between 10% and 90%, in increments of 10%. We

evaluated the classi�ers using 10-fold cross-validation. As an example, Table 5.2 shows

the results obtained with the BR-KNN classi�er, for the Hamming Loss measure and

the proposed Multi-label Information Gain technique, compared with the results without

feature selection (100%) as a baseline. In bold we mark the results that achieved a value

equal or better than the baseline. It is possible to see that most of the feature selection

options improve the predictive performance of the classi�cation algorithm, reducing the

number of features and achieving a better Hamming Loss score.

Data Multi-label Information Gain No Sel.
Set 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
bibtex 0.0132 0.0134 0.0135 0.0137 0.0138 0.0139 0.0141 0.0142 0.0143 0.0143
birds 0.0438 0.0454 0.0468 0.0459 0.0458 0.0457 0.0459 0.0461 0.0461 0.0454
CAL500 0.1435 0.1423 0.1417 0.1412 0.1420 0.1423 0.1422 0.1419 0.1422 0.1425
Corel5k 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094
emotions 0.2139 0.2128 0.2081 0.2022 0.1949 0.1918 0.1929 0.1890 0.1901 0.1934
enron 0.0580 0.0596 0.0604 0.0604 0.0581 0.0576 0.0565 0.0571 0.0568 0.0580
�ags-ml 0.2655 0.2540 0.2474 0.2595 0.2637 0.2630 0.2681 0.2712 0.2661 0.2749
genbase 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038
medical 0.0160 0.0169 0.0175 0.0175 0.0176 0.0177 0.0182 0.0184 0.0182 0.0180
scene 0.1559 0.1351 0.1152 0.1084 0.0999 0.0957 0.0935 0.0931 0.0928 0.0920
yeast 0.2137 0.2086 0.1971 0.1963 0.1969 0.1959 0.1953 0.1942 0.1964 0.1952

Table 5.2: Results achieved with the BR-KNN classi�er for the Hamming Loss measure

We have employed a large number of classi�cation techniques, from both the trans-

formation paradigm as well as the algorithm adaptation paradigm. Table 5.3 summarizes

and categorizes the multi-label classi�ers used for the evaluation. The transformation

techniques used were: Label Powerset, Binary Relevance, Classi�er Chains, RaKEL and

HOMER, coupled with the k-NN, Decision trees (J48) and Naive Bayes single-label clas-

si�ers. The algorithm adaptations employed in this experiment were the ML-kNN and

the IBLR classi�er.

Mulan contains an evaluation framework that calculates a rich variety of performance

measures [77]. The following multi-label measures were chosen to evaluate the results:

Hamming Loss, Subset 0/1 Loss (counterpart of Subset Accuracy), Example-based Ac-

curacy and Ranking Loss. They were chosen based on our conclusions in Chapter 3, i.e.,

current use in the literature and their diversity, since measures with similar equations are

more likely to yield results correlated with each other. Their formulas were presented in

Chapter 3. Example-based Accuracy values were inverted, so that all measures have the

same pattern: the lower the value, the better.

Table 5.4 shows the overall result of each feature selection technique coupled with the
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Paradigm Classi�er Base Classi�er

Data Transformation

Binary Relevance
k-NN

Decision Tree
Naive Bayes

Label Powerset
k-NN

Decision Tree
Naive Bayes

Classi�er Chains
k-NN

Decision Tree
Naive Bayes

RaKEL
k-NN

Decision Tree
Naive Bayes

HOMER k-NN
PPT k-NN

Algorithm Adaptation
ML-KNN not applicable
IBLR not applicable

BRKNN adaptation not applicable

Table 5.3: Multi-label classi�ers used in the experiments

BRKNN classi�er, which is the adaptation derived from the BR + KNN classi�er and

described in Chapter 2. Each table section presents the result for a speci�c performance

measure. The �rst column indicates the data set used. �BR+InfoGain�, �Copy+InfoGain�

and �LP+InfoGain� stand for a transformation followed by the single-label information

gain measure to rank and select features. �MLInfoGain� corresponds to the multi-label

information gain technique proposed in this work. �No Sel.� is the result without feature

selection, and also our baseline. Each cell shows the result of the multi-label measure

achieved in the best case among the di�erent percentages used in the experiment. The

evaluation measures vary between 0 and 1, and the lower the value, the better. In pa-

renthesis it is indicated the percentage of selected features that achieved the best value

for each technique, and in case of ties the smaller percentage is reported. Bold values

show the results that achieved a result equal or better than the baseline. Underlined

values show the best result achieved in each row, for the given data set. At the end of

the table the results are summarized. The �Best values (underlined)� shows the number

of times that the technique achieved the best value in the experiment. The �≤ baseline

score (bold)� shows the number of times that the technique achieved a value equal or

better than the classi�cation without feature selection.

With the BR-KNN classi�er, the proposed multi-label information gain technique

(MLInfoGain) achieved a competitive result, holding the best performance in 22 cases,

out of the 44 experiments. The BR+InfoGain also achieved the best result in 22 cases.

Only in 8 cases the result without feature selection achieved the best result, indicating

that in most cases feature selection is helpful. In 41 cases, the proposed multi-label

information gain technique was able to yield a value equal or better than the baseline

(without feature selection).
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0128 (10%) 0.0132 (10%) 0.0137 (20%) 0.0132 (10%) 0.0143

birds 0.0447 (30%) 0.0458 (90%) 0.0456 (80%) 0.0438 (10%) 0.0454

CAL500 0.1411 (80%) 0.1416 (40%) 0.1410 (30%) 0.1412 (40%) 0.1425

Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094

emotions 0.1917 (90%) 0.1910 (80%) 0.1951 (90%) 0.1890 (80%) 0.1934

enron 0.0525 (10%) 0.0579 (10%) 0.0523 (10%) 0.0565 (70%) 0.0580

�agsml 0.2510 (20%) 0.2570 (20%) 0.2540 (20%) 0.2474 (30%) 0.2749

genbase 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038

medical 0.0139 (10%) 0.0160 (10%) 0.0162 (10%) 0.0160 (10%) 0.0180

scene 0.0958 (90%) 0.0932 (90%) 0.0947 (90%) 0.0928 (90%) 0.0920
yeast 0.1924 (70%) 0.1971 (50%) 0.1945 (90%) 0.1942 (80%) 0.1952

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8817 (10%) 0.9120 (10%) 0.9516 (30%) 0.9118 (10%) 0.9754

birds 0.4945 (50%) 0.5084 (70%) 0.5069 (70%) 0.4852 (20%) 0.5039

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9992 (50%) 0.9994 (70%) 0.9992 (90%) 0.9994 (30%) 1.0000

emotions 0.6985 (30%) 0.6883 (70%) 0.7035 (90%) 0.6732 (80%) 0.7085

enron 0.8908 (10%) 0.8837 (40%) 0.8996 (40%) 0.8866 (40%) 0.9195

�agsml 0.8084 (20%) 0.8450 (20%) 0.8087 (20%) 0.8034 (30%) 0.8547

genbase 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785

medical 0.4530 (10%) 0.5471 (10%) 0.5471 (10%) 0.5359 (10%) 0.5982

scene 0.4130 (90%) 0.4088 (90%) 0.4088 (90%) 0.4005 (80%) 0.4038

yeast 0.7985 (90%) 0.8014 (90%) 0.8056 (90%) 0.7964 (80%) 0.8018

EXAMPLE-BASED ACCURACY (INVERTED)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7894 (10%) 0.8369 (10%) 0.8848 (30%) 0.8369 (10%) 0.9289

birds 0.4443 (30%) 0.4560 (90%) 0.4535 (80%) 0.4282 (10%) 0.4482

CAL500 0.8094 (80%) 0.8107 (70%) 0.8099 (60%) 0.8106 (40%) 0.8144

Corel5k 0.9915 (80%) 0.9928 (70%) 0.9941 (80%) 0.9925 (70%) 0.9975

emotions 0.4702 (70%) 0.4686 (80%) 0.4871 (50%) 0.4643 (80%) 0.4851

enron 0.6530 (10%) 0.7314 (20%) 0.7000 (10%) 0.7162 (70%) 0.7973

�agsml 0.3953 (20%) 0.3945 (20%) 0.3903 (20%) 0.3824 (30%) 0.4364

genbase 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463

medical 0.3815 (10%) 0.4799 (10%) 0.4828 (10%) 0.4718 (10%) 0.5437

scene 0.3881 (90%) 0.3831 (90%) 0.3837 (90%) 0.3750 (80%) 0.3802

yeast 0.4975 (90%) 0.5037 (90%) 0.5002 (90%) 0.4965 (80%) 0.4998

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1342 (10%) 0.1807 (10%) 0.2296 (30%) 0.1805 (10%) 0.2830

birds 0.0861 (70%) 0.0889 (90%) 0.0878 (40%) 0.0872 (60%) 0.0864

CAL500 0.2301 (70%) 0.2301 (30%) 0.2295 (40%) 0.2310 (90%) 0.2310

Corel5k 0.1887 (10%) 0.1997 (10%) 0.2254 (10%) 0.1983 (10%) 0.3243

emotions 0.1624 (70%) 0.1623 (80%) 0.1599 (90%) 0.1584 (60%) 0.1610

enron 0.1165 (10%) 0.1096 (10%) 0.1260 (10%) 0.1087 (10%) 0.1655

�agsml 0.1815 (50%) 0.1855 (20%) 0.1816 (50%) 0.1891 (40%) 0.1978

genbase 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052

medical 0.0350 (10%) 0.0438 (10%) 0.0445 (10%) 0.0437 (10%) 0.0475

scene 0.0925 (90%) 0.0902 (90%) 0.0927 (90%) 0.0905 (90%) 0.0889
yeast 0.1757 (90%) 0.1766 (90%) 0.1797 (90%) 0.1755 (80%) 0.1778

Best values (underlined) 22 7 10 22 8
≤ baseline score (bold) 39 33 31 41

Table 5.4: Best results achieved with the BRKNN classi�er
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It is worth noting the behaviour for some data sets: the genbase data set is not a�ected

by feature selection, which indicates that it can be drastically reduced without compromi-

sing its performance; on the other hand, the scene data set achieves a better performance

with most of its features, indicating that it is less suitable for feature selection.

Table 5.5 corresponds to a summarized result of the other classi�ers performance when

coupled with feature selection, similar to the last row of the previous table. It shows the

number of times that each feature selection achieved a result better than (≤) the baseline
score, considering the evaluated data sets and the four performance measures adopted in

this work. For instance, the third row in the table refers to the �BRKNN� classi�er, which

corresponds to the summarized last row of Table 5.4. The full tables for all classi�ers are

presented in the Appendix B.

The results indicate that most of the time the feature selection was bene�cial for the

overall classi�cation. For instance, when using the RAKEL + K-NN classi�er, the BR

+ InfoGain feature selection achieved a performance equivalent or better than the result

without feature selection 37 times out of 44 results (i.e., 4 measures ∗ 11 data sets). For

the Copy + InfoGain feature selection this result was achieved 32 times; for the LP +

InfoGain 31 times; and for the proposed MLInfoGain this result occurred 39 times.

Classi�er BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain
BR + DecisionTree 42 40 42 42
BR + NaiveBayes 37 30 31 37
BRKNN 39 33 31 41
CC + DecisionTree 43 38 40 40
CC + K-NN 38 37 35 43
CC + NaiveBayes 32 29 30 36
HOMER + K-NN 37 36 38 39
IBLR_ML 38 34 31 37
LP + DecisionTree 42 38 38 41
LP + K-NN 39 39 36 43
LP + NaiveBayes 32 27 30 30
ML-KNN 39 28 27 37
PPT + K-NN 30 25 25 26
RAKEL + K-NN 37 32 31 39
RAKEL + DecisionTree 37 32 33 35
RAKEL + NaiveBayes 37 28 29 34

Table 5.5: Number of times that each feature selection achieved a result better than (≤)
the baseline score

5.3.2. Statistical Evaluation

The same procedure described in [46] was followed. The Friedman test was employed

in order to evaluate if the di�erences in performance of the multi-label feature selection

techniques are statistically signi�cant. A non-parametric test makes no assumption about

the data distribution, unlike, for instance, a paired t-test which assumes data normality.
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The feature selection techniques were ranked according to their performance for each

classi�cation algorithm and data set. The best performing technique was ranked �rst,

the second best was ranked second, and so on. In case of ties, the ranks were averaged.

From the average ranks of the techniques, the Friedman statistic was calculated, and then

at a signi�cance level of 5%, the hypothesis that techniques performed equally in mean

ranking was rejected.

Then a post-hoc Nemenyi test was used to compare each feature selection techniques

to each other. The performance of two techniques is considered signi�cantly di�erent

if their average ranks di�er by more than a critical distance value. Figure 5.1 shows

the results from the Nemenyi post-hoc test for the four di�erent measures used in the

experiments for the BRKNN classi�er. Each diagram presents an enumerated axis with

the average ranks of each technique. The best ranked are at the right-most side of the

diagram. The lines for the average ranks of the algorithms that do not di�er signi�cantly

(at the signi�cance level of 0.05) are connected with a line.

Figure 5.1: Critical diagram for each measure in the BRKNN classi�er from the Nemenyi
post-hoc test at 0.05 signi�cance

The diagrams show that for most measures the MLInfoGain feature selection techni-

que is signi�cantly better than the Copy+InfoGain and LP+InfoGain techniques. Howe-

ver, when comparing MLInfoGain and BR+InfoGain techniques, the diagrams reveal no

signi�cant di�erence.
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5.3.3. Experiments on Large Multi-label Data Sets

Most multi-label classi�cation methods either do not scale or have unsatisfactory per-

formance [72]. So, feature selection becomes an important task for large data sets. In

order to evaluate which feature selection techniques scales better, we have also conducted

experiments on larger multi-label data sets.

The number of features is the criteria we used to de�ne a large data set, given that

we are assessing feature selection techniques. Among the data sets used before, the one

with the most number of features was the bibtex data set, with 1,836 features.

So, we have chosen 11 independently compiled data sets from the Yahoo! directory

[72], each one with more than 5,000 instances and 30,000 features, being suitable for the

scalability experiments.

For these experiments, the BRKNN classi�er was employed. It is implemented in Mu-

lan using a single search for k nearest neighbors but at the same time making independent

predictions for each label [67]. This adaptation was described in Chapter 2. This BRKNN

adaptation runs much faster than the transformation-based BR technique followed by the

k-NN algorithm. This makes BRKNN the most scalable classi�cation algorithm used in

this work, and the reason to employ this algorithm for the experiments with larger data

sets.

Table 5.6 shows the result of the experiment with larger data sets executed in a

similar fashion as the previous one. We used BR+InfoGain and the proposed MLInfoGain

techniques with the 10% parameter of selected features. Other percentages were evaluated,

but there is no signi�cant di�erence in the results, except for the larger classi�cation time.

Each row shows the result on a Yahoo data set. Columns �HLoss�, �SLoss�, �EbAcc� and

�RLoss� show the result of the Hamming Loss, Subset 0/1 Loss, Example-based Accuracy

(inverted) and Ranking Loss, respectively. Column �Time(s)� shows the total execution

CPU time of the experiment (feature selection time + classi�cation time), in seconds.

The computer used in the experiments was an AMD FX 8210 8-Core 3.1 Ghz with 8 Gb

of RAM and a 64 bit OS.

The same non-parametric statistical test used before shows no signi�cant di�erence

between both techniques for the performance measures. However, the computational

time of MLInfoGain is much smaller than the BR+InfoGain. The BR approach takes

roughly 100 times more to execute the same experiment when compared with the direct

MLInfoGain approach. Higher computational time also occurs on experiments with the
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Data Set
BR+InfoGain 10% MLInfoGain 10%

HLoss SLoss EbAcc RLoss Time(s) HLoss SLoss EbAcc RLoss Time(s)
Arts 0.0595 0.8991 0.8770 0.1941 53,692 0.0617 0.9280 0.9128 0.2093 686

Business 0.0267 0.4464 0.3000 0.0745 93,634 0.0270 0.4497 0.3026 0.0767 1,015
Computers 0.0360 0.6497 0.5900 0.1509 186,670 0.0368 0.6439 0.5812 0.1604 1,869
Education 0.0413 0.8771 0.8578 0.1658 142,035 0.0427 0.9192 0.9035 0.1854 1,487

Entertainment 0.0578 0.7621 0.7390 0.1778 125,560 0.0578 0.8113 0.7944 0.1933 1,726
Health 0.0430 0.6890 0.6141 0.1292 110,008 0.0456 0.7299 0.6295 0.1342 1,174

Recreation 0.0559 0.8262 0.8117 0.1990 122,812 0.0584 0.8757 0.8624 0.2328 1,647
Reference 0.0317 0.6342 0.6002 0.2009 133,902 0.0326 0.6839 0.6546 0.2107 1,344
Science 0.0343 0.9054 0.8940 0.2100 120,105 0.0350 0.9456 0.9379 0.2264 1,069
Social 0.0254 0.6204 0.5937 0.1277 334,846 0.0276 0.6849 0.6579 0.1341 3,080
Society 0.0537 0.7762 0.7207 0.1898 215,605 0.0547 0.8075 0.7620 0.1998 2,442

Table 5.6: Result of experiments on large data sets with BRKNN classi�er

Copy and LP transformations, and the results are not reported in this work due to their

low performance.

It is worth noting that running this experiment with large data sets and without

feature selection is faster than using the BR approach, because the transformation process

takes a large amount of time. This is the main advantage of the MLInfoGain approach,

which is faster than any feature selection based on transformation and it also accelerates

the classi�cation by reducing the number of features.

5.4. Chapter Summary

In this chapter, an adaptation of the information gain feature selection technique to

handle multi-label data directly was proposed. This �lter technique, named MLInfoGain,

was experimentally compared with various multi-label feature selection methods based

on transformation. All compared techniques were coupled with di�erent classi�cation

techniques and data sets from di�erent domains.

Experimental results indicated that the proposed multi-label information gain feature

selection strategy (MLInfoGain) achieved a competitive performance against the other

techniques and outperformed the baseline on most cases. For larger data sets, the propo-

sed technique scaled much better than the other feature selection methods, signi�cantly

outperforming the transformation-based techniques in terms of computational e�ciency.

In the next chapter, we advance our research on direct multi-label feature selection

techniques, by proposing a further adaptation based on the lazy paradigm.
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Lazy Multi-label Feature Selection

6.1. Introduction

This chapter presents one of the main contributions of this thesis: a new method for

multi-label feature selection based on the lazy paradigm. This method has two main

characteristics: (a) the use of the information gain measure that was adapted for multi-

label feature selection in Chapter 5 and in [50]; and (b) a multi-label adaptation of the

single-label lazy strategy proposed in [52].

The goal of this novel technique is to bene�t the multi-label classi�cation and be

more scalable than the current techniques used in the literature. The lazy adaptation

is compared experimentally with other multi-label feature selection techniques and the

results are reported.

6.2. Lazy Feature Selection

In conventional feature selection strategies, features are selected in a preprocessing phase.

The features which are not selected are discarded from the data set and no longer parti-

cipate in the classi�cation process.

In [52], a lazy feature selection strategy was proposed based on the hypothesis that

postponing the selection of features to the moment at which an instance is submitted for

classi�cation can contribute to identifying the best features for the correct classi�cation

of that particular instance. For each di�erent instance to be classi�ed, it is possible to

select a distinct and more appropriate subset of features to classify it.

Below we give a single-label example from [52] to illustrate the fact that the classi-
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�cation of certain instances could take advantage of features discarded by conventional

feature selection strategies.

In Table 6.1, the same data set, composed of two features � X, Y � and the class C,

is represented twice. The left occurrence is ordered by the values of X and the right one

is ordered by the values of Y . It can be observed in the left occurrence that the values of

X are strongly correlated with the class values making it a useful feature. Only value 4

is not indicative of a unique class value.

Furthermore, as shown in the right occurrence, feature Y would be a strong candidate

to be eliminated since its values do not properly discriminate between the classes. Howe-

ver, there is a strong correlation between the value 4 of feature Y and the class value B,

which would be lost if this feature were discarded. The classi�cation of an element with

value 4 in the Y feature would clearly take advantage of the presence of this feature.

Data Set Sorted by X Data Set Sorted by Y

� X � � Y � � C � � X � � Y � � C �

1 2 B 2 1 A

1 3 B 3 1 B

1 4 B 4 1 A

2 1 A 1 2 B

2 2 A 2 2 A

2 3 A 3 2 B

3 1 B 1 3 B

3 2 B 2 3 A

3 4 B 4 3 B

4 1 A 1 4 B

4 3 B 3 4 B

4 4 B 4 4 B

Table 6.1: Single-label Data Set Example

A conventional feature selection strategy (an �eager� selection strategy) � is likely

to select feature X in detriment of Y , regardless of the instances that are submitted for

classi�cation. Hence, the main motivation behind the proposed lazy feature selection is the

ability to assess the feature values of the instance to be classi�ed, and use this information

to select features that discriminate the classes well for those particular values.

6.3. Multi-label Adaptation

In the previous section, a single-label data set that motivates the lazy feature selection

was presented, indicating a situation where it could be worthwhile to avoid discarding

features from the data set.

Table 6.2 presents an analogous multi-label example. Again, the data set, composed
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of two features � X, Y � and their labels, is represented twice. The left occurrence is

ordered by the values of X and the right one is ordered by the values of Y .

Data Set Sorted by X Data Set Sorted by Y

� X � � Y � � Labels � � X � � Y � � Labels �

1 1 A 1 1 A

1 2 B 2 1 A

1 3 B 3 1 B,C

1 4 A,B 4 1 B

2 1 A 1 2 B

2 2 A 2 2 A

2 3 A 3 2 B,C

2 4 A,B 4 2 A,C

3 1 B,C 1 3 B

3 2 B,C 2 3 A

3 3 B,C 3 3 B,C

3 4 A,B 4 3 A

4 1 B 1 4 A,B

4 2 A,C 2 4 A,B

4 3 A 3 4 A,B

4 4 A,B 4 4 A,B

Table 6.2: Multi-label Data Set Example

It can be observed in the left occurrence that the values of X are strongly correlated

with at least one label value. The instances with X = 1 do not have the label C among

their labels. When X = 2, the label A is present, and the label C is not. For the instances

with X = 3, the label B is always present. The value X = 4 is the only one that is not

strongly correlated with any labels. Nonetheless, this makes X a useful feature, because

most of its values are correlated to at least one label (or its absence).

On the other hand, as shown in the right occurrence, the values Y = 1, Y = 2 and

Y = 3 do not have a strong correlation with any label. Y would be a strong candidate

to be eliminated, since most of its values do not properly discriminate a label. However,

there is a very strong correlation between the value 4 of feature Y and the three labels

values: A, B and the absence of C (or ¬C). This correlation would be lost if this feature

were discarded. The multi-label classi�cation of an element with value 4 in the Y feature

would clearly take advantage of the presence of this feature.

So we present in this small multi-label example a motivation for postponing the selec-

tion of features to the moment at which an instance is submitted for classi�cation. This

way the selection can take a more informed decision on which features to keep on the data

set.

Lazy feature selection is a general strategy, as it can employ di�erent evaluation mea-

sures to evaluate the quality of the features. This work proposes to instantiate the strategy

analogous to the original work [52], using an entropy-based criterion to rank features [80].
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This entropy measure was extended to the multi-label setting in [5], where the C4.5 al-

gorithm was adapted for handling multi-label data. This decision tree algorithm allowed

multiple labels at the leaves of the tree, by using an adaptation of entropy calculation,

described in the previous chapter and revisited in Equation 5.2.

Ent.ML(D) = −
l∑

i=1

p(λi) ∗ log2p(λi) + q(λi) ∗ log2q(λi), (5.2 revisited)

where p(λi) is the probability that an arbitrary instance in D belongs to class label λi,

q(λi) = 1− p(λi), and l is the number of labels in the data set.

Chapter 5 also presented the formula for computing the entropy of the label dis-

tribution in D, restricted to the values of feature Xj, 1 ≤ j ≤ dj, represented by

Ent.ML(D,Xj) and de�ned by Equation 5.3.

Ent.ML(D,Xj) =

dj∑
i=1

[(
|Dji|
|D|

) ∗ Ent.ML(Dji)], (5.3 revisited)

where Dji, 1 ≤ i ≤ dj, is the partition of D composed of all instances whose value of

feature Xj is equal to xji.

These equations were used in the MLInfoGain technique in Chapter 5, as an adapta-

tion of the Information Gain Ranking [54] for the multi-label context. This technique is

considered as �eager�, which is the opposite of �lazy�. It is able to select the features as a

data preprocessing step.

In order to adapt this concept to the lazy paradigm, each individual feature value

needs to be measured separately from the others. The entropy of the label distribution

in D, restricted to the value xji, 1 ≤ i ≤ dj and to the label lk, 1 ≤ k ≤ q, of feature Xj,

1 ≤ j ≤ d, represented by Ent.ML(D,Xj, xji, lk) is de�ned by Equation 6.1.

Ent.ML(D,Xj, xji, lk) = Ent.ML(Djik). (6.1)

For each label lk this equation gives a di�erent entropy value. The closer the entropy

Ent.ML(D,Xj, xji, lk) is to zero, the greater the chance that the value xji of feature Xj

is a good discriminator for label lk. Equation 6.2 aggregates the result for all q labels in

D using the min function, in order to identify feature values which best discriminate at

least one label.
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LazyEnt.ML(D,Xj, xji) = mink=q
k=1Ent(Djik). (6.2)

For computing the lazy multi-label information gain, for each feature Xj, if the discri-

mination ability of the speci�c value xji of Xj (Ent.ML(D,Xj, xji)) is better than (less

than) the overall discrimination ability of feature Xj (Ent.ML(D,Xj)) then the former

will be considered for ranking Xj. This is given by Equation 6.3.

LazyML.IG(D,Xj , xji) = Ent.ML(D)−min[Ent.ML(D,Xj), LazyEnt.ML(D,Xj , xji)]

(6.3)

The choice of considering the minimum value from both the entropy of the speci�c

value and the overall entropy of the feature was motivated in [52] by the fact that some

instances may not have any relevant features considering their particular values. In this

case, features with the best overall discrimination ability will be selected. In other words,

if the values of an instance do not help the feature selection (lazy), then select the best

features in the data set regardless, considering the multi-label information gain measure

(eager).

As it was done with the equations from Chapter 5, in Appendix C the equations

from this chapter are revisited and used to compute the Lazy MLInfoGain scores for a

multi-label data set example.

The proposed lazy adaptation of the multi-label information gain works as follows:

for each instance I to be classi�ed, the value LazyML.IG(D,Xj, xji) for each feature

Xj and value xji is computed, where i is the index of the feature value for this speci�c

instance I. The scores are sorted in a ranking. The �lter strategy implemented in this

work selects a percentage r of the best features. After the feature selection phase, the

multi-label classi�cation will only use the best features according to the percentage r to

classify instance I. For the next instance, this process is repeated. This feature selection

technique is categorized as Direct/Filter according to our taxonomy.

Any feature selection lazy adaptation should be coupled with a lazy multi-label clas-

si�er, because the `lazy module' is called at classi�cation time for every new instance.

This restriction is motivated by the target classi�er not requiring to construct a model

as a preprocessing step. For instance, a decision tree classi�er would not bene�t from

the lazy adaptation, because the tree model would need to be reconstructed for every

new instance. On the other hand, the k-NN classi�er, being a lazy classi�er, does not
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construct a model in the preprocessing phase. So after receiving a new instance to be

classi�ed, it could call the `lazy module', select the suitable features for that instance, and

then compute the neighbors distances and proceed with the classi�cation.

6.4. Experiments with BRKNN Classi�er

6.4.1. Methodology

The multi-label lazy feature selection (Lazy MLInfoGain) was implemented in Mulan [77],

the same open-source framework used in the previous experiments of this work.

The lazy feature selection was incorpored into the BRKNN classi�er. The BRKNN

classi�er was implemented using a single search for k nearest neighbors [67], the same used

in Chapter 5 and described in Chapter 2. The lazy feature selection was executed within

the algorithm just before the actual classi�cation takes place. The classi�er considered

only the r features selected in a lazy manner to compute its neighbors distances, for each

test instance. This implies that for di�erent instances distinct subsets of features were

used. The experiments were executed with the default parameter settings in the Mulan

tool, using the original BRKNN classi�er.

Table 6.3 shows the overall result of each feature selection technique coupled with

the BRKNN classi�er. Each table section presents the result for a speci�c performance

measure. The �rst column indicates the data set used, and the other columns indicates

which feature selection technique was applied before the classi�cation. �BR+InfoGain�,

�Copy+InfoGain� and �LP+InfoGain� stand for a transformation followed by the single-

label information gain measure to rank and select features. �MLInfoGain� corresponds to

the multi-label information gain technique proposed in Chapter 5. �Lazy MLInfoGain� is

the lazy adaptation proposed in this chapter.

�No Sel.� is the result without feature selection, and also the baseline. Each cell shows

the result of the multi-label measure achieved in each case, varying between 0 and 1, and

the lower the value, the better. In parenthesis we show the percentage of selected features

that achieved the best value for each technique, and in case of ties we report the smaller

percentage. Bold values show the results that achieved a score equal or better than the

baseline, and underlined values show the best result achieved in each row. At the end of

the table we summarize the results.

With the BRKNN classi�er, the proposed lazy multi-label information gain technique
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.0128 (10%) 0.0132 (10%) 0.0137 (20%) 0.0132 (10%) 0.0128 (10%) 0.0143

birds 0.0447 (30%) 0.0458 (90%) 0.0456 (80%) 0.0438 (10%) 0.0445 (30%) 0.0454

CAL500 0.1411 (80%) 0.1416 (40%) 0.1410 (30%) 0.1412 (40%) 0.1415 (60%) 0.1425

Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094

emotions 0.1917 (90%) 0.1910 (80%) 0.1951 (90%) 0.1890 (80%) 0.1912 (70%) 0.1934

enron 0.0525 (10%) 0.0579 (10%) 0.0523 (10%) 0.0565 (70%) 0.0508 (30%) 0.0580

�agsml 0.2510 (20%) 0.2570 (20%) 0.2540 (20%) 0.2474 (30%) 0.2521 (30%) 0.2749

genbase 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038

medical 0.0139 (10%) 0.0160 (10%) 0.0162 (10%) 0.0160 (10%) 0.0163 (10%) 0.0180

scene 0.0958 (90%) 0.0932 (90%) 0.0947 (90%) 0.0928 (90%) 0.0918 (60%) 0.0920

yeast 0.1924 (70%) 0.1971 (50%) 0.1945 (90%) 0.1942 (80%) 0.1949 (40%) 0.1952

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.8817 (10%) 0.9120 (10%) 0.9516 (30%) 0.9118 (10%) 0.8772 (10%) 0.9754

birds 0.4945 (50%) 0.5084 (70%) 0.5069 (70%) 0.4852 (20%) 0.4914 (30%) 0.5039

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9992 (50%) 0.9994 (70%) 0.9992 (90%) 0.9994 (30%) 0.9976 (10%) 1.0000

emotions 0.6985 (30%) 0.6883 (70%) 0.7035 (90%) 0.6732 (80%) 0.6968 (90%) 0.7085

enron 0.8908 (10%) 0.8837 (40%) 0.8996 (40%) 0.8866 (40%) 0.8720 (30%) 0.9195

�agsml 0.8084 (20%) 0.8450 (20%) 0.8087 (20%) 0.8034 (30%) 0.8192 (20%) 0.8547

genbase 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785

medical 0.4530 (10%) 0.5471 (10%) 0.5471 (10%) 0.5359 (10%) 0.5440 (10%) 0.5982

scene 0.4130 (90%) 0.4088 (90%) 0.4088 (90%) 0.4005 (80%) 0.3930 (70%) 0.4038

yeast 0.7985 (90%) 0.8014 (90%) 0.8056 (90%) 0.7964 (80%) 0.8014 (90%) 0.8018

EXAMPLE-BASED ACCURACY (Inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.7894 (10%) 0.8369 (10%) 0.8848 (30%) 0.8369 (10%) 0.7887 (10%) 0.9289

birds 0.4443 (30%) 0.4560 (90%) 0.4535 (80%) 0.4282 (10%) 0.4349 (30%) 0.4482

CAL500 0.8094 (80%) 0.8107 (70%) 0.8099 (60%) 0.8106 (40%) 0.8120 (70%) 0.8144

Corel5k 0.9915 (80%) 0.9928 (70%) 0.9941 (80%) 0.9925 (70%) 0.9876 (20%) 0.9975

emotions 0.4702 (70%) 0.4686 (80%) 0.4871 (50%) 0.4643 (80%) 0.4754 (60%) 0.4851

enron 0.6530 (10%) 0.7314 (20%) 0.7000 (10%) 0.7162 (70%) 0.6202 (20%) 0.7973

�agsml 0.3953 (20%) 0.3945 (20%) 0.3903 (20%) 0.3824 (30%) 0.3955 (20%) 0.4364

genbase 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463

medical 0.3815 (10%) 0.4799 (10%) 0.4828 (10%) 0.4718 (10%) 0.4867 (10%) 0.5437

scene 0.3881 (90%) 0.3831 (90%) 0.3837 (90%) 0.3750 (80%) 0.3669 (70%) 0.3802

yeast 0.4975 (90%) 0.5037 (90%) 0.5002 (90%) 0.4965 (80%) 0.5004 (90%) 0.4998

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.1342 (10%) 0.1807 (10%) 0.2296 (30%) 0.1805 (10%) 0.1412 (10%) 0.2830

birds 0.0861 (70%) 0.0889 (90%) 0.0878 (40%) 0.0872 (60%) 0.0868 (70%) 0.0864

CAL500 0.2301 (70%) 0.2301 (30%) 0.2295 (40%) 0.2310 (90%) 0.2285 (70%) 0.2310

Corel5k 0.1887 (10%) 0.1997 (10%) 0.2254 (10%) 0.1983 (10%) 0.2025 (10%) 0.3243

emotions 0.1624 (70%) 0.1623 (80%) 0.1599 (90%) 0.1584 (60%) 0.1574 (50%) 0.1610

enron 0.1165 (10%) 0.1096 (10%) 0.1260 (10%) 0.1087 (10%) 0.1039 (20%) 0.1655

�agsml 0.1815 (50%) 0.1855 (20%) 0.1816 (50%) 0.1891 (40%) 0.1832 (50%) 0.1978

genbase 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052

medical 0.0350 (10%) 0.0438 (10%) 0.0445 (10%) 0.0437 (10%) 0.0431 (10%) 0.0475

scene 0.0925 (90%) 0.0902 (90%) 0.0927 (90%) 0.0905 (90%) 0.0851 (60%) 0.0889

yeast 0.1757 (90%) 0.1766 (90%) 0.1797 (90%) 0.1755 (80%) 0.1803 (60%) 0.1778

Best values
17 6 7 18 21 6

(underlined)

≤ baseline score
39 33 31 41 41

(bold)

Table 6.3: Best results achieved with the BRKNN classi�er, comparing feature selection
techniques with the proposed LazyMLInfoGain technique
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(Lazy MLInfoGain) achieved a competitive result, holding the best performance in 21

cases, out of the 44 experiments. The non-lazy MLInfoGain technique achieved the best

result in 18 cases, and the BR+InfoGain transformation technique achieved the best

result in 17 cases. Only in 6 cases the result without feature selection achieved the best

result. In 41 cases, both the proposed multi-label information gain technique and the lazy

adaptation were able to yield a value equal or better than the baseline (without feature

selection).

These preliminary results indicate an improvement over the non-lazy MLInfoGain te-

chnique proposed in the previous chapter. To con�rm this, in the next section a statistical

analysis is used to evaluate these results.

6.4.2. Statistical Evaluation

The same statistical analysis conducted in Chapter 5 was used to evaluate if the di�erences

in performance of the multi-label feature selection techniques are statistically signi�cant.

The �ve feature selection techniques were ranked according to their performance for

each data set and percentage of selected features. The best performing technique was

ranked �rst, the second best was ranked second, and so on. In case of ties, the ranks

were averaged. From the average ranks of the techniques, the Friedman statistic was

calculated, and then at a signi�cance level of 5%, the hypothesis that the techniques

performed equally well in average ranking was rejected.

Then a post-hoc Nemenyi test was used to compare the feature selection techniques to

each other. The performance of two techniques is considered signi�cantly di�erent if their

average ranks di�er by more than a critical distance value. Figure 6.1 shows the results

from the Nemenyi post-hoc test for the four di�erent measures used in the experiments

for the BRKNN classi�er. Each diagram presents an enumerated axis with the average

ranks of each technique. The best rankings are at the right-most side of the diagram.

The lines for the average ranks of the algorithms that do not di�er signi�cantly (at the

signi�cance level of 0.05) are connected with a line.

The diagrams show that the proposed Lazy MLInfoGain generally outperforms the

original MLInfoGain (eager) with a signi�cant di�erence, except for the Example-based

Accuracy. It also outperforms the Copy+InfoGain and LP+InfoGain techniques for all

measures. The second best feature selection algorithm is the BR+InfoGain, which is not

signi�cantly worse than Lazy MLInfoGain, and not signi�cantly better than the original
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Figure 6.1: Critical diagram for each measure with the BRKNN classi�er from the Ne-
menyi post-hoc test at 0.05 signi�cance

MLInfoGain. The other results are similar to the ones obtained in the previous chapter.

6.4.3. Experiments on Large Multi-label Data Sets for BRKNN

This section reports the experiments on larger multi-label data sets, analogous to the ones

reported in Chapter 5. The same 11 independently compiled data sets from the Yahoo!

directory [72] were chosen, each one with more than 5,000 instances and 30,000 features.

Table 6.4 shows the result of the experiment with larger data sets executed in a

similar fashion as the previous one. The feature selection techniques compared are the

MLInfoGain proposed in Chapter 5 and the proposed Lazy MLInfoGain proposed in this

chapter. Both techniques selects 10% of features from the data sets. Each row shows

the result on a Yahoo data set. Columns �HLoss�, �SLoss�, �EbAcc� and �RLoss� show

the result of the Hamming Loss, Subset 0/1 Loss, Example-based Accuracy (inverted)

and Ranking Loss, respectively. Column �Time(s)� shows the total execution time of the

experiment (feature selection time + classi�cation time), in seconds. The computer used

in the experiments was an AMD FX 8210 8-Core 3.1 Ghz with 8 Gb of RAM and a 64

bit OS.
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Data Set
MLInfoGain 10% Lazy MLInfoGain 10%

HLoss SLoss EbAcc RLoss Time(s) HLoss SLoss EbAcc RLoss Time(s)
Arts 0.0617 0.9280 0.9128 0.2093 686 0.0615 0.9213 0.9071 0.2027 1,111

Business 0.0270 0.4497 0.3026 0.0767 1,015 0.0273 0.4505 0.3062 0.0773 1,590
Computers 0.0368 0.6439 0.5812 0.1604 1,869 0.0362 0.6515 0.5887 0.1518 2,832
Education 0.0427 0.9192 0.9035 0.1854 1,487 0.0429 0.9109 0.8954 0.1693 2,188

Entertainment 0.0578 0.8113 0.7944 0.1933 1,726 0.0566 0.7993 0.7811 0.1708 2,750
Health 0.0456 0.7299 0.6295 0.1342 1,174 0.0442 0.6927 0.6147 0.1367 1,738

Recreation 0.0584 0.8757 0.8624 0.2328 1,647 0.0586 0.8828 0.8699 0.2128 2,584
Reference 0.0326 0.6839 0.6546 0.2107 1,344 0.0315 0.6523 0.6217 0.1818 2,141
Science 0.0350 0.9456 0.9379 0.2264 1,069 0.0346 0.9316 0.9240 0.2064 1,762
Social 0.0276 0.6849 0.6579 0.1341 3,080 0.0266 0.6500 0.6239 0.1249 4,795
Society 0.0547 0.8075 0.7620 0.1998 2,442 0.0549 0.7803 0.7264 0.1967 3,694

Table 6.4: Result of experiments on large data sets with BRKNN classi�er, comparing
MLInfoGain with Lazy MLInfoGain feature selection

For these Yahoo! directory data sets, the Lazy MLInfoGain generally outperformed

the original non-lazy MLInfoGain technique, specially for the Example-Based Accuracy

and Ranking Loss measures. In terms of computational time, the Lazy technique was

slower due to the overhead associated with the postponing of feature selection to the

classi�cation time. This di�erence is not signi�cant when compared with transformation-

based techniques, which takes more time for the classi�cation. For instance, Table 6.5

compares the performance of BR + InfoGain and the Lazy MLInfoGain.

Data Set
BR+InfoGain 10% Lazy MLInfoGain 10%

HLoss SLoss EbAcc RLoss Time(s) HLoss SLoss EbAcc RLoss Time(s)
Arts 0.0595 0.8991 0.8770 0.1941 53,692 0.0615 0.9213 0.9071 0.2027 1,111

Business 0.0267 0.4464 0.3000 0.0745 93,634 0.0273 0.4505 0.3062 0.0773 1,590
Computers 0.0360 0.6497 0.5900 0.1509 186,670 0.0362 0.6515 0.5887 0.1518 2,832
Education 0.0413 0.8771 0.8578 0.1658 142,035 0.0429 0.9109 0.8954 0.1693 2,188

Entertainment 0.0578 0.7621 0.7390 0.1778 125,560 0.0566 0.7993 0.7811 0.1708 2,750
Health 0.0430 0.6890 0.6141 0.1292 110,008 0.0442 0.6927 0.6147 0.1367 1,738

Recreation 0.0559 0.8262 0.8117 0.1990 122,812 0.0586 0.8828 0.8699 0.2128 2,584
Reference 0.0317 0.6342 0.6002 0.2009 133,902 0.0315 0.6523 0.6217 0.1818 2,141
Science 0.0343 0.9054 0.8940 0.2100 120,105 0.0346 0.9316 0.9240 0.2064 1,762
Social 0.0254 0.6204 0.5937 0.1277 334,846 0.0266 0.6500 0.6239 0.1249 4,795
Society 0.0537 0.7762 0.7207 0.1898 215,605 0.0549 0.7803 0.7264 0.1967 3,694

Table 6.5: Result of experiments on large data sets with BRKNN classi�er, comparing
BR+InfoGain with Lazy MLInfoGain feature selection

Even though the results from most measures favor slightly the BR + InfoGain techni-

que for these Yahoo! directory data sets, the computational time of the Lazy MLInfoGain

is signi�cantly better, as it occurred with the non-lazy MLInfoGain technique.

6.5. ML-KNN Lazy Feature Selection

We have also incorporated the lazy attribute selection into the ML-KNN, which is another

classi�er capable of handling multi-label data directly. The lazy attribute selection was

executed within the algorithm just before the actual classi�cation takes place. Analogous

to the BRKNN implementation, the classi�er considered only the r features selected in a
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lazy manner to compute its neighbors distances, for each test instance. Again, this implies

that for di�erent instances distinct subsets of features were used. The experiments were

executed with the default parameter settings in the Mulan tool, using the original ML-

KNN classi�er.

Table 6.6 shows the overall result of each feature selection technique coupled with

the ML-KNN classi�er. The results are reported similarly to the experiments with the

BRKNN classi�er in Table 6.3.

HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.0126 (20%) 0.0129 (20%) 0.0133 (30%) 0.0130 (10%) 0.0135 (70%) 0.0136

birds 0.0479 (30%) 0.0477 (80%) 0.0472 (90%) 0.0463 (10%) 0.0472 (90%) 0.0473

CAL500 0.1381 (40%) 0.1380 (50%) 0.1381 (20%) 0.1380 (70%) 0.1379 (70%) 0.1388

Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (70%) 0.0094

emotions 0.1903 (60%) 0.1921 (80%) 0.1966 (70%) 0.1898 (90%) 0.1929 (70%) 0.1951

enron 0.0502 (10%) 0.0531 (90%) 0.0502 (10%) 0.0520 (70%) 0.0517 (50%) 0.0524

�agsml 0.2489 (40%) 0.2622 (90%) 0.2622 (90%) 0.2570 (90%) 0.2447 (80%) 0.2536

genbase 0.0048 (10%) 0.0048 (10%) 0.0048 (10%) 0.0048 (10%) 0.0048 (10%) 0.0048

medical 0.0126 (10%) 0.0149 (10%) 0.0148 (10%) 0.0147 (10%) 0.0150 (20%) 0.0151

scene 0.0899 (90%) 0.0879 (90%) 0.0911 (90%) 0.0867 (90%) 0.0860 (80%) 0.0862

yeast 0.1915 (90%) 0.1935 (60%) 0.1945 (90%) 0.1925 (80%) 0.1934 (60%) 0.1933

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.8619 (20%) 0.8807 (10%) 0.9154 (30%) 0.8818 (10%) 0.8955 (10%) 0.9396

birds 0.5085 (40%) 0.5240 (80%) 0.5210 (90%) 0.5100 (10%) 0.5116 (60%) 0.5085

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9972 (90%) 0.9980 (90%) 0.9988 (90%) 0.9980 (90%) 0.9958 (30%) 0.9982

emotions 0.6816 (80%) 0.6866 (70%) 0.7019 (60%) 0.6832 (70%) 0.7087 (60%) 0.7169

enron 0.9013 (10%) 0.9424 (90%) 0.9125 (10%) 0.9172 (60%) 0.8996 (50%) 0.9260

�agsml 0.8087 (10%) 0.8500 (40%) 0.8297 (60%) 0.8603 (80%) 0.8034 (70%) 0.8453

genbase 0.0890 (10%) 0.0890 (10%) 0.0890 (10%) 0.0890 (10%) 0.0890 (10%) 0.0890

medical 0.3967 (10%) 0.4816 (10%) 0.4776 (30%) 0.4633 (10%) 0.4745 (20%) 0.4940

scene 0.3743 (90%) 0.3760 (90%) 0.3797 (80%) 0.3685 (70%) 0.3722 (60%) 0.3752

yeast 0.8097 (90%) 0.8101 (60%) 0.8192 (70%) 0.8113 (80%) 0.8035 (50%) 0.8126

EXAMPLE-BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.7538 (20%) 0.7840 (10%) 0.8307 (30%) 0.7849 (10%) 0.7918 (10%) 0.8640

birds 0.4519 (80%) 0.4622 (80%) 0.4617 (90%) 0.4511 (10%) 0.4505 (40%) 0.4515

CAL500 0.8018 (40%) 0.8033 (50%) 0.8023 (20%) 0.8007 (40%) 0.7999 (70%) 0.8028

Corel5k 0.9849 (90%) 0.9829 (90%) 0.9897 (90%) 0.9834 (90%) 0.9666 (20%) 0.9853

emotions 0.4427 (80%) 0.4507 (80%) 0.4601 (60%) 0.4423 (70%) 0.4578 (70%) 0.4674

enron 0.6074 (10%) 0.6898 (90%) 0.6254 (10%) 0.6586 (60%) 0.5906 (40%) 0.6684

�agsml 0.3679 (40%) 0.3982 (90%) 0.3917 (40%) 0.3863 (40%) 0.3733 (80%) 0.3896

genbase 0.0584 (10%) 0.0584 (10%) 0.0584 (10%) 0.0584 (10%) 0.0584 (10%) 0.0584

medical 0.3245 (10%) 0.4100 (10%) 0.4045 (30%) 0.3902 (10%) 0.3997 (20%) 0.4187

scene 0.3280 (90%) 0.3322 (90%) 0.3356 (80%) 0.3256 (70%) 0.3270 (60%) 0.3330

yeast 0.4804 (90%) 0.4875 (60%) 0.4889 (90%) 0.4848 (80%) 0.4843 (90%) 0.4838

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain LazyMLInfoGain No Sel.
bibtex 0.1351 (20%) 0.1577 (10%) 0.1845 (30%) 0.1563 (10%) 0.1432 (10%) 0.2083

birds 0.0742 (10%) 0.0759 (90%) 0.0753 (40%) 0.0724 (80%) 0.0745 (70%) 0.0746

CAL500 0.1830 (30%) 0.1820 (40%) 0.1823 (40%) 0.1825 (80%) 0.1823 (70%) 0.1828

Corel5k 0.1325 (80%) 0.1340 (80%) 0.1346 (90%) 0.1338 (60%) 0.1281 (10%) 0.1340

emotions 0.1624 (50%) 0.1591 (80%) 0.1601 (90%) 0.1546 (60%) 0.1587 (50%) 0.1633

enron 0.0883 (10%) 0.0919 (70%) 0.0898 (10%) 0.0924 (90%) 0.0892 (30%) 0.0920

�agsml 0.1844 (40%) 0.1906 (90%) 0.1906 (90%) 0.1952 (30%) 0.1909 (40%) 0.2012

genbase 0.0062 (10%) 0.0062 (10%) 0.0062 (10%) 0.0062 (10%) 0.0062 (10%) 0.0062

medical 0.0329 (10%) 0.0384 (30%) 0.0389 (30%) 0.0393 (90%) 0.0372 (10%) 0.0395

scene 0.0799 (90%) 0.0791 (90%) 0.0792 (90%) 0.0787 (90%) 0.0762 (60%) 0.0774

yeast 0.1636 (80%) 0.1644 (90%) 0.1660 (90%) 0.1649 (80%) 0.1663 (60%) 0.1652

Best values
23 7 7 13 19 7

(underlined)

≤ baseline score
39 28 27 37 40

(bold)

Table 6.6: Best results achieved with the ML-KNN classi�er, comparing feature selection
techniques with the proposed LazyMLInfoGain technique

With the ML-KNN classi�er, the proposed lazy multi-label information gain technique

(Lazy MLInfoGain) also achieved a competitive result, holding the best performance in

19 cases, out of the 44 experiments. The non-lazy MLInfoGain technique achieved the
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best result in 13 cases, and the BR+InfoGain transformation technique achieved the best

result in 23 cases. Only in 7 cases the result without feature selection achieved the best

result. In 40 cases, the proposed Lazy MLInfoGain was able to yield a value equal or

better than the baseline (without feature selection).

The corresponding statistical evaluation yields a similar result when compared with

the BRKNN classi�er. These results indicate that the lazy MLInfoGain technique is also

a competitive feature selection technique when coupled with other multi-label classi�ers.

6.5.1. Experiments on Large Multi-label Data Sets for ML-KNN

This section reports the experiments on larger multi-label data sets, when the feature

selection strategies are coupled with the ML-KNN classi�er. The same 11 independently

compiled data sets from the Yahoo! directory were chosen, each one with more than 5,000

instances and 30,000 features.

Feature selection strategies based on transformation, i.e., Copy+InfoGain, LP+InfoGain

and BR+InfoGain were unable to yield a classi�cation result in the proposed con�gura-

tion: AMD FX 8210 8-Core 3.1 Ghz with 8 Gb of RAM and a 64 bit OS. An �Out of

Memory� error occurred for all data sets. Besides a higher number of instances and fea-

tures, each data set has also a varying number of labels between 20�40. The experiments

showed that the ML-KNN is not as scalable as the BRKNN adaptation.

Table 6.7 shows the result of the experiment with larger data sets executed with the

proposed Lazy MLInfoGain feature selection technique. Each row shows the result on a

Yahoo data set. Columns �HLoss�, �SLoss�, �EbAcc� and �RLoss� show the result of the

Hamming Loss, Subset 0/1 Loss, Example-based Accuracy (inverted) and Ranking Loss,

respectively. Column �Time(s)� shows the total execution time of the experiment (feature

selection time + classi�cation time), in seconds. As the Lazy MLInfoGain does not rely

on data transformation, it was able to run without problems. It is compared with the

results of the BRKNN classi�er presented before. Both classi�ers achieve similar results

in terms of performance, except for the Ranking Loss measure, which is better (lower)

with the ML-KNN classi�er; and for the computational time, which is better (faster) with

the BRKNN classi�er. For instance, the ML-KNN execution of the Social data set and

10% of feature selection with Lazy MLInfoGain takes 15,298 seconds, or 4.24 hours.

The experiments with larger data sets and the ML-KNN classi�er reinforced the con-

clusion that the proposed direct feature selection techniques � MLInfoGain and Lazy
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Data Set
BR-KNN + Lazy MLInfoGain 10% ML-KNN + Lazy MLInfoGain 10%

HLoss SLoss EbAcc RLoss Time(s) HLoss SLoss EbAcc RLoss Time(s)
Arts 0.0615 0.9213 0.9071 0.2027 1,111 0.0625 0.9103 0.8903 0.1570 3,536

Business 0.0273 0.4505 0.3062 0.0773 1,590 0.0275 0.4581 0.3070 0.0376 7,043
Computers 0.0362 0.6515 0.5887 0.1518 2,832 0.0369 0.6367 0.5627 0.0782 11,113
Education 0.0429 0.9109 0.8954 0.1693 2,188 0.0427 0.9343 0.9226 0.0926 9,460

Entertainment 0.0566 0.7993 0.7811 0.1708 2,750 0.0571 0.7572 0.7280 0.1101 12,911
Health 0.0442 0.6927 0.6147 0.1367 1,738 0.0449 0.7113 0.6300 0.0633 5,657

Recreation 0.0586 0.8828 0.8699 0.2128 2,584 0.0595 0.8670 0.8468 0.1592 11,512
Reference 0.0315 0.6523 0.6217 0.1818 2,141 0.0322 0.8141 0.7978 0.0813 6,353
Science 0.0346 0.9316 0.9240 0.2064 1,762 0.0357 0.9175 0.9048 0.1317 4,545
Social 0.0266 0.6500 0.6239 0.1249 4,795 0.0272 0.6383 0.6114 0.0994 15,298
Society 0.0549 0.7803 0.7264 0.1967 3,694 0.0562 0.7663 0.7037 0.0739 11,309

Table 6.7: Result of experiments on large data sets with Lazy MLInfoGain (10%) feature
selection and the BRKNN and ML-KNN classi�ers

MLInfoGain � are more scalable than the well-known techniques used in the literature

and which relies on transformation. The former techniques were able to yield a classi�-

cation result for these larger data sets, while the latter techniques ran out of memory.

6.6. Chapter Summary

In this chapter, a new method for multi-label feature selection was proposed, based on the

lazy paradigm. The lazy strategy for single-label feature selection was reviewed, and then

a corresponding example of a multi-label data set was presented. This example indicated

how a lazy strategy could also bene�t the multi-label feature selection by postponing the

selection to the classi�cation moment.

The proposed lazy strategy for the multi-label context was implemented as a new

direct feature selection method based on the information gain measure. An experimental

evaluation was conducted with various multi-label feature selection methods and data sets

from di�erent domains. Two multi-label classi�ers were used to assess the lazy adaptation:

BRKNN and ML-KNN.

Experimental results and a statistical analysis con�rmed that the Lazy MLInfoGain

outperformed the non-lazy (eager) MLInfoGain proposed in the previous chapter. Since

the MLInfoGain method was already competitive compared with other techniques, the

lazy adaptation can be also considered as a competitive feature selection technique for

multi-label classi�cation. In terms of scalability, the proposed technique was able to run at

faster times than the transformation-based techniques. Moreover, for the experiment with

larger data sets coupled with the ML-KNN classi�er, the transformation-based techniques

were unable to yield a classi�cation result due to memory restrictions. This reinforces the

importance of employing direct feature selection methods for larger data sets.
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In the next chapter, we review the contributions of this work and present our conclu-

ding remarks.



Chapter 7

Conclusions

Multi-label classi�cation is currently an important topic of research in the data mining

area. It is a popular research topic and it has applicability in many relevant problems,

such as: text categorization, biomolecular analysis, video classi�cation, medical diagnosis,

among others. In the last few years there has been substantial research in feature selection

speci�cally for multi-label classi�cation.

The main goal of this thesis is to contribute to the development of multi-label classi�-

cation, and more speci�cally to the feature selection aimed at this task. The contributions

are listed and reviewed below:

(a) Correlation Analysis of Performance Measures for Multi-Label Classi�-

cation (Chapter 3): There are many performance measures adapted from the

single-label paradigm or developed speci�cally for the multi-label paradigm. Each

di�erent work in the area employs a distinct subset of measures, so it is di�cult

to compare results across them. The thesis presented an analysis of the correla-

tion and relevance of performance measures for the multi-label classi�cation task.

Many measures were pointed as highly correlated with others, when using the Pe-

arson Correlation and the Spearman Correlation. Next, guidelines for researchers

were provided in order to select a suitable subset of measures when working with

multi-label classi�cation.

(b) Multi-label Feature Selection (Chapter 4): The methods proposed for the

feature selection speci�c to multi-label data sets are scattered in the multi-label

classi�cation literature, without a proposed categorization to describe them and to

allow an objective comparison. This chapter reviews the feature selection problem

for multi-label classi�cation and formulates a taxonomy for categorizing the existing
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feature selection techniques.

(c) Information Gain Adaptation for Multi-label Data (Chapter 5): This chap-

ter proposed the MLInfoGain feature selection technique. It consists of an adapta-

tion of a single-label technique to the multi-label paradigm, using the information

gain measure. It was compared experimentally with some well-known multi-label

feature selection techniques. Experimental results indicated that the proposed stra-

tegy (MLInfoGain) achieved a competitive performance against the other techniques

and outperformed the baseline on most cases. For larger data sets, the proposed

technique scaled much better than the other feature selection methods, signi�can-

tly outperforming the transformation-based techniques in terms of computational

e�ciency.

(d) Lazy Multi-label Feature Selection (Chapter 6): The lazy strategy for single-

label feature selection is based on the hypothesis that postponing the selection of

features to the classi�cation moment can contribute to identifying the best features

for the correct classi�cation of a particular instance. This chapter proposed a novel

selection method for multi-label classi�cation, based on the lazy feature selection

paradigm and on the previous direct adaptation of the information gain measure.

An experimental evaluation was conducted with various multi-label feature selection

methods and data sets from di�erent domains. Two multi-label classi�ers were used

to assess the lazy adaptation: BRKNN and ML-KNN. Experimental results and

a statistical analysis con�rmed that the Lazy MLInfoGain outperformed the non-

lazy (eager) MLInfoGain proposed in the previous chapter. It was also a scalable

method for feature selection, running faster than the techniques which relies on data

transformation. Therefore, the lazy strategy was able to yield competitive results

for the multi-label scenario.

7.1. Future Work

An unexplored subject in the multi-label feature selection scenario is to determine whether

a speci�c category is able to achieve better experimental results when combined with a

speci�c classi�cation method or a speci�c multi-label domain. The evaluation in Chapters

5 and 6 indicated that direct �lter techniques are much more e�cient in terms of CPU time

and scalable, when compared to transformation-based techniques. Further evaluations of

speci�c combinations of classi�cation and feature selection techniques are still an open

topic for multi-label research.
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Other unexplored subjects in the multi-label feature selection domain which remain

are: how well the current algorithms scale with respect to labels; how they handle class

imbalance; the ability of methods to consider label correlations; an empirical comparison

of representative methods from each category in order to better visualize the pros and

cons of each one; evaluating and comparing the performance of direct multi-label feature-

selection methods in the �lter, wrapper and embedded categories; and evaluating and

comparing methods which apply binary relevance feature selection externally with the

ones which apply it internally.

Experimental results in this thesis compared �lter feature selection techniques, either

based on data transformation or as a direct approach. But the performance of the classi�-

cation depended on the number of features selected, which is a user-de�ned parameter. In

practice, it may be di�cult to select a proper value for this parameter, that is, the value

that produces the best performance for the classi�cation task. In [51], two approaches

to overcome this drawback were proposed: the use of a wrapper-based strategy and the

combination of multiple number of features using a voting approach. As future work,

these strategies can be adapted to multi-label feature selection techniques.

The proposed direct multi-label feature selection adaptations (MLInfoGain and Lazy

MLInfoGain) require discrete feature values. However, there is no supervised technique

currently in use in the literature for discretizing multi-label data sets. It is an open

problem for future work that could bene�t multiple techniques in the multi-label area.

Furthermore, regarding extensions of the Lazy MLInfoGain technique, it is possible

to adapt other measures for the multi-label context besides information gain. A to-

pic of investigation is the adaptation of measures that evaluate subsets of features, like

Correlation-based Feature Selection [28] and Consistency-based Feature Selection [43].
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Appendix A - Transformations on

Multi-Label Data Sets

This Appendix shows a multi-label data set and the corresponding single-label data sets

after applying the most common transformation methods.

Table 7.1 presents a simple multi-label example. The data set is composed of two

features � X, Y � and their labels � A, B or C.

� X � � Y � � Labels �

1 1 A

1 2 B

1 3 B

1 4 A,B

2 1 A

2 2 A

2 3 A

2 4 A,B

3 1 B,C

3 2 B,C

3 3 B,C

3 4 A,B

4 1 B

4 2 A,C

4 3 A

4 4 A,B

Table 7.1: Multi-label Data Set Example

Table 7.2 shows the result of transforming the previous multi-label example into a

single-label data set using a copy transformation. This transformation consists in copying

each multi-label instance n times, where n is the number of labels assigned to that ins-

tance. Each copied instance is then assigned one distinct single label from the original

set. One of the characteristics of this transformation is the increase of the number of

instances. The original multi-label data set has 16 instances, and the transformed data

set has 24 instances. Another characteristic is the presence of instances with the same

feature values, due to the copying process.

Table 7.3 shows the result of transforming the multi-label example into a single-label

data set using a label powerset transformation. It creates one new label for each di�erent

subset of labels that exists in the original multi-label data set. One of the characteristics
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� X � � Y � � Labels �

1 1 A

1 2 B

1 3 B

1 4 A

1 4 B

2 1 A

2 2 A

2 3 A

2 4 A

2 4 B

3 1 B

3 2 B

3 3 B

3 4 A

3 1 C

3 2 C

3 3 C

3 4 B

4 1 B

4 2 A

4 2 C

4 3 A

4 4 A

4 4 B

Table 7.2: Data Set Example after Copy transformation

of this transformation is preserving the number of instances. However, the number of

distinct labels (or classes) increases: 3 labels in the original multi-label data set becomes

the powerset A, B, AB, AC and BC in the example. The missing C and ABC label

combinations do not appear in the original data set.

� X � � Y � � Labels �

1 1 A

1 2 B

1 3 B

1 4 AB

2 1 A

2 2 A

2 3 A

2 4 AB

3 1 BC

3 2 BC

3 3 BC

3 4 AB

4 1 B

4 2 AC

4 3 A

4 4 AB

Table 7.3: Data Set Example after LP transformation

Table 7.4 shows the result of transforming the multi-label example into three single-

label data sets using a binary relevance transformation. It produces a binary classi�er for

each di�erent label of the original data set. The new labels LA, LB and LC are binary

labels, which can assume the value of 0 or 1.
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Data Set LA Data Set LB Data Set LC

� X � � Y � � LA � � X � � Y � � LB � � X � � Y � � LC �

1 1 1 1 1 0 1 1 0

1 2 0 1 2 1 1 2 0

1 3 0 1 3 1 1 3 0

1 4 1 1 4 1 1 4 0

2 1 1 2 1 0 2 1 0

2 2 1 2 2 0 2 2 0

2 3 1 2 3 0 2 3 0

2 4 1 2 4 1 2 4 0

3 1 0 3 1 1 3 1 1

3 2 0 3 2 1 3 2 1

3 3 0 3 3 1 3 3 1

3 4 1 3 4 1 3 4 0

4 1 0 4 1 1 4 1 0

4 2 1 4 2 0 4 2 1

4 3 1 4 3 0 4 3 0

4 4 1 4 4 1 4 4 0

Table 7.4: Data Set Example after BR transformation

The three transformation strategies presented in this Appendix create a resulting

single-label data set which can be used by any traditional single-label classi�cation tech-

nique. However, each case has an overhead created by the transformation: the increase

of instances (for the Copy transformation), the increase of labels or classes (for the LP

transformation) or the increase of the number of data sets (for the BR transformation).

This thesis focuses on feature selection techniques which do not rely on transformation.

Instead, the proposed techniques are able to handle the original multi-label data set di-

rectly.



Appendix B - MLInfoGain Compared with

Transformation-based Techniques

This Appendix shows the complete results of each feature selection technique used in

Chapter 5 coupled with various classi�cation algorithms. The tables are analogous to

Table 5.4. Each table section presents the result for a speci�c performance measure.

The �rst column indicates the data set used. �BR+InfoGain�, �Copy+InfoGain� and

�LP+InfoGain� stand for a transformation followed by the single-label information gain

measure to rank and select features. �MLInfoGain� corresponds to the multi-label in-

formation gain technique proposed in this work. �No Sel.� is the result without feature

selection, and also our baseline. Each cell shows the result of the multi-label measure

achieved in the best case among the di�erent percentages used in the experiment. The

evaluation measures vary between 0 and 1, and the lower the value, the better. In pa-

renthesis it is indicated the percentage of selected features that achieved the best value

for each technique, and in case of ties the smaller percentage is reported. Bold values

show the results that achieved a result equal or better than the baseline. Underlined

values show the best result achieved in each row, for the given data set. The �n/a� value

indicates that the experiment did not �nish due to an out of memory error.

At the end of each table the results are summarized. The �Best values (underlined)�

shows the number of times that the technique achieved the best value in the experiment.

The �≤ baseline score (bold)� shows the number of times that the technique achieved a

value equal or better than the classi�cation without feature selection.
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0141 (10%) 0.0146 (20%) 0.0161 (20%) 0.0146 (20%) 0.0201

birds 0.0501 (90%) 0.0498 (80%) 0.0505 (80%) 0.0498 (50%) 0.0510

CAL500 0.1726 (60%) 0.1718 (40%) 0.1723 (20%) 0.1727 (30%) 0.1741

Corel5k n/a n/a n/a n/a n/a
emotions 0.2004 (70%) 0.1999 (70%) 0.2027 (60%) 0.1985 (60%) 0.2095

enron 0.0531 (10%) 0.0579 (90%) 0.0532 (10%) 0.0573 (90%) 0.0578

�agsml 0.2460 (50%) 0.2576 (80%) 0.2516 (20%) 0.2482 (50%) 0.2592

genbase 0.0022 (10%) 0.0022 (10%) 0.0022 (10%) 0.0022 (10%) 0.0022

medical 0.0132 (10%) 0.0153 (10%) 0.0152 (10%) 0.0153 (10%) 0.0171

scene 0.0964 (90%) 0.0949 (90%) 0.0952 (90%) 0.0940 (80%) 0.0937
yeast 0.2163 (80%) 0.2179 (80%) 0.2170 (90%) 0.2162 (80%) 0.2182

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8449 (10%) 0.8744 (10%) 0.9202 (30%) 0.8718 (10%) 0.9586

birds 0.4900 (60%) 0.5100 (80%) 0.5100 (80%) 0.5007 (80%) 0.5162

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k n/a n/a n/a n/a n/a
emotions 0.6833 (40%) 0.6866 (70%) 0.6866 (60%) 0.6850 (80%) 0.7137

enron 0.8743 (10%) 0.8813 (50%) 0.8825 (50%) 0.8731 (50%) 0.9060

�agsml 0.7976 (20%) 0.8245 (60%) 0.7990 (10%) 0.7832 (10%) 0.8340

genbase 0.0468 (10%) 0.0468 (10%) 0.0468 (10%) 0.0468 (10%) 0.0468

medical 0.4059 (10%) 0.4837 (10%) 0.4816 (10%) 0.4796 (10%) 0.5277

scene 0.3818 (90%) 0.3747 (90%) 0.3760 (90%) 0.3698 (80%) 0.3727

yeast 0.7989 (80%) 0.7973 (80%) 0.7956 (90%) 0.7923 (90%) 0.7989

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7049 (10%) 0.7522 (10%) 0.8169 (30%) 0.7492 (10%) 0.8733

birds 0.4122 (60%) 0.4312 (80%) 0.4320 (80%) 0.4173 (20%) 0.4379

CAL500 0.7439 (60%) 0.7412 (40%) 0.7417 (20%) 0.7437 (60%) 0.7460

Corel5k n/a n/a n/a n/a n/a
emotions 0.4222 (70%) 0.4250 (80%) 0.4305 (60%) 0.4243 (60%) 0.4412

enron 0.6054 (10%) 0.6478 (10%) 0.6355 (10%) 0.6401 (50%) 0.7387

�agsml 0.3686 (60%) 0.3792 (60%) 0.3711 (20%) 0.3654 (50%) 0.3857

genbase 0.0235 (10%) 0.0235 (10%) 0.0235 (10%) 0.0235 (10%) 0.0235

medical 0.3277 (10%) 0.4074 (10%) 0.4063 (10%) 0.4053 (10%) 0.4547

scene 0.3446 (90%) 0.3385 (90%) 0.3387 (90%) 0.3327 (80%) 0.3390

yeast 0.4575 (90%) 0.4593 (80%) 0.4566 (90%) 0.4583 (60%) 0.4600

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.2643 (10%) 0.2985 (10%) 0.3442 (30%) 0.2949 (10%) 0.3868

birds 0.1771 (90%) 0.1715 (20%) 0.1755 (70%) 0.1643 (10%) 0.1815

CAL500 0.3686 (70%) 0.3674 (70%) 0.3675 (20%) 0.3720 (90%) 0.3734

Corel5k n/a n/a n/a n/a n/a
emotions 0.1929 (60%) 0.1947 (80%) 0.2026 (30%) 0.1988 (60%) 0.2091

enron 0.2523 (10%) 0.2505 (50%) 0.2702 (10%) 0.2626 (10%) 0.2887

�agsml 0.2275 (50%) 0.2382 (60%) 0.2390 (20%) 0.2369 (90%) 0.2479

genbase 0.0071 (10%) 0.0071 (10%) 0.0071 (10%) 0.0071 (10%) 0.0071

medical 0.0934 (10%) 0.1208 (10%) 0.1138 (10%) 0.1161 (10%) 0.1405

scene 0.1420 (90%) 0.1405 (90%) 0.1397 (90%) 0.1374 (80%) 0.1421

yeast 0.2357 (90%) 0.2377 (80%) 0.2365 (90%) 0.2357 (60%) 0.2366

Best values
23 10 6 17 6

(underlined)
≤ baseline score

37 36 38 39
(bold)

Table 7.1: Best results achieved with the HOMER + K-NN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a n/a n/a n/a
birds 0.0489 (10%) 0.0543 (90%) 0.0545 (90%) 0.0521 (70%) 0.0530

CAL500 n/a n/a n/a n/a n/a
Corel5k 0.0125 (10%) 0.0125 (10%) 0.0120 (40%) 0.0124 (10%) 0.0139

emotions 0.2457 (50%) 0.2488 (60%) 0.2463 (90%) 0.2466 (60%) 0.2491

enron 0.0603 (10%) 0.0678 (10%) 0.0616 (10%) 0.0681 (10%) 0.0689

�agsml 0.2695 (60%) 0.2717 (90%) 0.2674 (80%) 0.2658 (90%) 0.2709

genbase 0.0059 (10%) 0.0059 (10%) 0.0059 (10%) 0.0059 (10%) 0.0059

medical 0.0193 (10%) 0.0217 (10%) 0.0220 (10%) 0.0215 (10%) 0.0250

scene 0.1246 (90%) 0.1240 (90%) 0.1247 (90%) 0.1228 (70%) 0.1214
yeast 0.2500 (70%) 0.2491 (90%) 0.2540 (80%) 0.2516 (80%) 0.2512

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a n/a n/a n/a
birds 0.5054 (60%) 0.5443 (90%) 0.5348 (10%) 0.5303 (80%) 0.5287

CAL500 n/a n/a n/a n/a n/a
Corel5k 0.9920 (60%) 0.9940 (60%) 0.9938 (30%) 0.9942 (60%) 0.9982

emotions 0.7673 (60%) 0.7792 (70%) 0.7893 (90%) 0.7675 (60%) 0.8011

enron 0.8878 (10%) 0.8972 (70%) 0.8966 (10%) 0.8961 (60%) 0.9213

�agsml 0.8708 (50%) 0.8808 (70%) 0.8755 (60%) 0.8655 (50%) 0.8858

genbase 0.1072 (10%) 0.1072 (10%) 0.1072 (10%) 0.1072 (10%) 0.1072

medical 0.5501 (10%) 0.6064 (10%) 0.6064 (10%) 0.6003 (10%) 0.6882

scene 0.5251 (90%) 0.5251 (90%) 0.5293 (90%) 0.5160 (70%) 0.5160

yeast 0.8664 (90%) 0.8622 (90%) 0.8626 (90%) 0.8655 (90%) 0.8622

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a n/a n/a n/a
birds 0.3998 (60%) 0.4363 (90%) 0.4162 (10%) 0.4209 (10%) 0.4191

CAL500 n/a n/a n/a n/a n/a
Corel5k 0.9028 (90%) 0.9061 (20%) 0.9215 (30%) 0.9137 (60%) 0.9088

emotions 0.4327 (60%) 0.4406 (80%) 0.4361 (90%) 0.4348 (60%) 0.4405

enron 0.5803 (10%) 0.6400 (10%) 0.5929 (10%) 0.6398 (60%) 0.6806

�agsml 0.3740 (60%) 0.3814 (70%) 0.3786 (60%) 0.3734 (90%) 0.3803

genbase 0.0595 (10%) 0.0595 (10%) 0.0595 (10%) 0.0595 (10%) 0.0595

medical 0.3606 (10%) 0.4023 (10%) 0.4051 (10%) 0.3981 (10%) 0.4624

scene 0.3329 (90%) 0.3319 (90%) 0.3338 (90%) 0.3273 (70%) 0.3244
yeast 0.4630 (80%) 0.4625 (90%) 0.4671 (90%) 0.4657 (80%) 0.4651

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a n/a n/a n/a
birds 0.1179 (80%) 0.1200 (50%) 0.1190 (50%) 0.1193 (50%) 0.1197

CAL500 n/a n/a n/a n/a n/a
Corel5k 0.1974 (20%) 0.1978 (20%) 0.2001 (20%) 0.1985 (10%) 0.2015

emotions 0.1556 (90%) 0.1552 (90%) 0.1600 (90%) 0.1543 (90%) 0.1615

enron 0.1089 (10%) 0.1129 (10%) 0.1120 (10%) 0.1124 (10%) 0.1235

�agsml 0.1818 (30%) 0.1820 (20%) 0.1840 (30%) 0.1775 (50%) 0.1867

genbase 0.0231 (10%) 0.0231 (10%) 0.0231 (10%) 0.0231 (10%) 0.0231

medical 0.0424 (10%) 0.0470 (10%) 0.0474 (10%) 0.0465 (10%) 0.0506

scene 0.0912 (90%) 0.0888 (90%) 0.0911 (90%) 0.0889 (90%) 0.0884
yeast 0.1673 (80%) 0.1653 (90%) 0.1690 (90%) 0.1668 (80%) 0.1661

Best values
22 8 5 10 9

(underlined)
≤ baseline score

30 25 25 26
(bold)

Table 7.2: Best results achieved with the PPT + K-NN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a 0.0140 (20%) 0.0130 (10%) 0.0140

birds 0.0393 (10%) 0.0413 (50%) 0.0419 (50%) 0.0388 (10%) 0.0441

CAL500 0.1510 (10%) 0.1501 (10%) 0.1525 (10%) 0.1503 (10%) 0.1684

Corel5k 0.0094 (10%) 0.0095 (10%) 0.0094 (10%) 0.0095 (10%) 0.0097

emotions 0.2093 (60%) 0.2099 (60%) 0.2131 (80%) 0.2119 (60%) 0.2178

enron 0.0472 (20%) 0.0485 (90%) 0.0476 (40%) 0.0483 (80%) 0.0485

�agsml 0.2400 (90%) 0.2348 (90%) 0.2348 (90%) 0.2417 (80%) 0.2414

genbase 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011

medical 0.0098 (20%) 0.0100 (10%) 0.0100 (10%) 0.0100 (10%) 0.0102

scene 0.1008 (60%) 0.1021 (90%) 0.1010 (90%) 0.1007 (70%) 0.1012

yeast 0.2230 (70%) 0.2237 (40%) 0.2286 (90%) 0.2245 (30%) 0.2257

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a 0.8522 (60%) 0.8569 (10%) 0.8534

birds 0.4448 (10%) 0.4557 (40%) 0.4680 (50%) 0.4494 (20%) 0.4820

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9974 (30%) 0.9960 (90%) 0.9982 (90%) 0.9962 (80%) 0.9976

emotions 0.7385 (60%) 0.7303 (20%) 0.7318 (10%) 0.7334 (50%) 0.7522

enron 0.8672 (20%) 0.8802 (80%) 0.8784 (50%) 0.8737 (80%) 0.8843

�agsml 0.7563 (90%) 0.7471 (90%) 0.7471 (90%) 0.7568 (90%) 0.7466
genbase 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287

medical 0.3201 (10%) 0.3273 (10%) 0.3262 (10%) 0.3273 (10%) 0.3416

scene 0.4354 (80%) 0.4371 (50%) 0.4387 (80%) 0.4346 (70%) 0.4396

yeast 0.8759 (60%) 0.8800 (20%) 0.8870 (80%) 0.8788 (70%) 0.8837

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a 0.6944 (60%) 0.7211 (10%) 0.6893
birds 0.3578 (10%) 0.3643 (40%) 0.3779 (50%) 0.3585 (10%) 0.3946

CAL500 0.7649 (60%) 0.7646 (30%) 0.7660 (70%) 0.7666 (90%) 0.7707

Corel5k 0.9468 (90%) 0.9432 (90%) 0.9487 (90%) 0.9432 (90%) 0.9425
emotions 0.4765 (60%) 0.4746 (60%) 0.4752 (80%) 0.4759 (50%) 0.4902

enron 0.5432 (20%) 0.5662 (90%) 0.5483 (80%) 0.5599 (80%) 0.5665

�agsml 0.3680 (80%) 0.3626 (90%) 0.3626 (90%) 0.3723 (90%) 0.3699

genbase 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138

medical 0.2348 (20%) 0.2408 (10%) 0.2391 (10%) 0.2416 (10%) 0.2520

scene 0.3750 (80%) 0.3767 (50%) 0.3749 (90%) 0.3729 (70%) 0.3753

yeast 0.5108 (70%) 0.5129 (40%) 0.5208 (90%) 0.5121 (30%) 0.5126

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex n/a n/a 0.2648 (60%) 0.3113 (10%) 0.2618
birds 0.1221 (20%) 0.1065 (50%) 0.1094 (50%) 0.1146 (30%) 0.1366

CAL500 0.2869 (70%) 0.2830 (80%) 0.2825 (80%) 0.2852 (80%) 0.2869

Corel5k 0.6650 (90%) 0.6577 (90%) 0.6630 (90%) 0.6564 (90%) 0.6565

emotions 0.1779 (60%) 0.1781 (60%) 0.1816 (80%) 0.1767 (60%) 0.1891

enron 0.1930 (60%) 0.2031 (90%) 0.1926 (80%) 0.2015 (90%) 0.2005

�agsml 0.2121 (80%) 0.2184 (90%) 0.2184 (90%) 0.2238 (80%) 0.2330

genbase 0.0026 (10%) 0.0026 (10%) 0.0026 (10%) 0.0026 (10%) 0.0026

medical 0.0715 (20%) 0.0750 (30%) 0.0748 (30%) 0.0752 (30%) 0.0777

scene 0.0979 (60%) 0.1003 (80%) 0.1005 (90%) 0.1000 (80%) 0.0999

yeast 0.2085 (70%) 0.2111 (50%) 0.2146 (80%) 0.2125 (50%) 0.2135

Best values
22 13 11 12 9

(underlined)
≤ baseline score

37 32 33 35
(bold)

Table 7.3: Best results achieved with the RK + DecisionTree classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0128 (10%) 0.0132 (10%) 0.0136 (30%) 0.0132 (10%) 0.0143

birds 0.0450 (30%) 0.0461 (90%) 0.0467 (90%) 0.0450 (60%) 0.0458

CAL500 0.1456 (20%) 0.1470 (40%) 0.1456 (50%) 0.1461 (30%) 0.1473

Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) n/a

emotions 0.1937 (50%) 0.1974 (90%) 0.1982 (90%) 0.1954 (90%) 0.1955

enron 0.0525 (10%) 0.0581 (10%) 0.0519 (10%) 0.0566 (70%) 0.0580

�agsml 0.2526 (50%) 0.2613 (20%) 0.2534 (50%) 0.2546 (20%) 0.2791

genbase 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038

medical 0.0137 (10%) 0.0158 (10%) 0.0159 (10%) 0.0160 (10%) 0.0178

scene 0.0936 (90%) 0.0931 (90%) 0.0959 (90%) 0.0922 (80%) 0.0924

yeast 0.1998 (70%) 0.2000 (90%) 0.2036 (90%) 0.2021 (80%) 0.2015

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8786 (10%) 0.9081 (10%) 0.9474 (30%) 0.9078 (10%) 0.9735

birds 0.4929 (70%) 0.5054 (90%) 0.5037 (80%) 0.4867 (60%) 0.5038

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9990 (50%) 0.9994 (10%) 1.0000 (10%) 0.9990 (40%) n/a

emotions 0.6580 (50%) 0.6613 (20%) 0.6615 (50%) 0.6648 (90%) 0.6666

enron 0.8855 (10%) 0.8837 (40%) 0.8908 (50%) 0.8843 (30%) 0.9130

�agsml 0.7621 (10%) 0.8082 (90%) 0.7616 (50%) 0.7776 (10%) 0.8292

genbase 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785

medical 0.4417 (10%) 0.5236 (10%) 0.5297 (10%) 0.5266 (10%) 0.5808

scene 0.3357 (90%) 0.3336 (90%) 0.3378 (90%) 0.3286 (80%) 0.3295

yeast 0.7795 (90%) 0.7815 (80%) 0.7795 (90%) 0.7774 (80%) 0.7770

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7836 (10%) 0.8308 (10%) 0.8791 (30%) 0.8298 (10%) 0.9247

birds 0.4254 (30%) 0.4392 (70%) 0.4386 (80%) 0.4284 (60%) 0.4375

CAL500 0.7759 (80%) 0.7780 (50%) 0.7744 (50%) 0.7762 (40%) 0.7784

Corel5k 0.9912 (40%) 0.9921 (30%) 0.9947 (30%) 0.9910 (50%) n/a

emotions 0.4253 (50%) 0.4292 (70%) 0.4287 (50%) 0.4267 (90%) 0.4266

enron 0.6420 (10%) 0.7256 (20%) 0.6844 (10%) 0.7083 (70%) 0.7827

�agsml 0.3826 (20%) 0.3925 (20%) 0.3798 (50%) 0.3809 (20%) 0.4172

genbase 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463

medical 0.3669 (10%) 0.4562 (10%) 0.4644 (10%) 0.4617 (10%) 0.5228

scene 0.2974 (90%) 0.2957 (90%) 0.3022 (90%) 0.2913 (80%) 0.2931

yeast 0.4649 (90%) 0.4655 (90%) 0.4695 (90%) 0.4679 (80%) 0.4686

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.3783 (10%) 0.4101 (10%) 0.4505 (30%) 0.4090 (10%) 0.4845

birds 0.1963 (30%) 0.2031 (70%) 0.2056 (70%) 0.2009 (50%) 0.2059

CAL500 0.4187 (70%) 0.4157 (40%) 0.4139 (90%) 0.4162 (80%) 0.4147

Corel5k 0.7433 (40%) 0.7439 (30%) 0.7472 (30%) 0.7422 (30%) n/a

emotions 0.2163 (80%) 0.2105 (90%) 0.2176 (90%) 0.2138 (90%) 0.2104
enron 0.3229 (10%) 0.3825 (10%) 0.3453 (10%) 0.3622 (50%) 0.4416

�agsml 0.2397 (50%) 0.2315 (20%) 0.2472 (50%) 0.2399 (90%) 0.2679

genbase 0.0231 (10%) 0.0231 (10%) 0.0231 (10%) 0.0231 (10%) 0.0231

medical 0.1400 (10%) 0.1736 (20%) 0.1702 (10%) 0.1716 (20%) 0.1958

scene 0.1448 (90%) 0.1431 (90%) 0.1476 (90%) 0.1426 (80%) 0.1447

yeast 0.2501 (90%) 0.2500 (90%) 0.2536 (80%) 0.2515 (30%) 0.2527

Best values
27 9 12 15 7

(underlined)
≤ baseline score

37 32 31 39
(bold)

Table 7.4: Best results achieved with the RAKEL + K-NN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0128 (10%) 0.0132 (10%) 0.0137 (30%) 0.0132 (10%) 0.0143

birds 0.0480 (90%) 0.0495 (90%) 0.0497 (90%) 0.0481 (80%) 0.0495

CAL500 0.1616 (30%) 0.1628 (70%) 0.1633 (20%) 0.1625 (20%) 0.1646

Corel5k 0.0100 (40%) 0.0096 (40%) 0.0098 (30%) 0.0094 (90%) n/a

emotions 0.2008 (70%) 0.2053 (90%) 0.2055 (90%) 0.1999 (90%) 0.2098

enron 0.0527 (10%) 0.0587 (90%) 0.0527 (10%) 0.0577 (90%) 0.0587

�agsml 0.2496 (20%) 0.2612 (40%) 0.2474 (70%) 0.2523 (20%) 0.2688

genbase 0.0044 (10%) 0.0044 (10%) 0.0044 (10%) 0.0044 (10%) 0.0044

medical 0.0133 (10%) 0.0153 (10%) 0.0147 (10%) 0.0153 (10%) 0.0174

scene 0.0958 (90%) 0.0956 (90%) 0.0974 (90%) 0.0942 (90%) 0.0945

yeast 0.2120 (80%) 0.2144 (80%) 0.2150 (80%) 0.2113 (80%) 0.2126

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8621 (10%) 0.9003 (10%) 0.9409 (30%) 0.8994 (10%) 0.9685

birds 0.4991 (70%) 0.5100 (70%) 0.5130 (80%) 0.5006 (60%) 0.5161

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9942 (50%) 0.9950 (10%) 0.9972 (10%) 0.9480 (10%) n/a

emotions 0.6411 (70%) 0.6443 (70%) 0.6529 (80%) 0.6495 (70%) 0.6580

enron 0.8643 (10%) 0.8819 (20%) 0.8761 (10%) 0.8714 (70%) 0.8866

�agsml 0.7824 (20%) 0.8076 (40%) 0.7666 (70%) 0.7674 (10%) 0.8184

genbase 0.0755 (10%) 0.0755 (10%) 0.0755 (10%) 0.0755 (10%) 0.0755

medical 0.3977 (10%) 0.4724 (10%) 0.4653 (10%) 0.4735 (10%) 0.5358

scene 0.3153 (90%) 0.3149 (90%) 0.3195 (90%) 0.3124 (90%) 0.3137

yeast 0.7526 (80%) 0.7530 (70%) 0.7497 (80%) 0.7530 (80%) 0.7501

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7651 (10%) 0.8206 (10%) 0.8695 (30%) 0.8194 (10%) 0.9122

birds 0.4333 (40%) 0.4418 (70%) 0.4464 (50%) 0.4302 (50%) 0.4536

CAL500 0.7502 (40%) 0.7494 (70%) 0.7534 (50%) 0.7515 (70%) 0.7555

Corel5k 0.9762 (20%) 0.9723 (10%) 0.9803 (10%) 0.9716 (20%) n/a

emotions 0.4109 (70%) 0.4188 (90%) 0.4195 (90%) 0.4129 (90%) 0.4248

enron 0.6116 (10%) 0.6894 (10%) 0.6341 (10%) 0.6804 (50%) 0.7363

�agsml 0.3824 (80%) 0.3926 (40%) 0.3701 (70%) 0.3806 (20%) 0.4036

genbase 0.0442 (10%) 0.0442 (10%) 0.0442 (10%) 0.0442 (10%) 0.0442

medical 0.3189 (10%) 0.3998 (10%) 0.3913 (10%) 0.4014 (10%) 0.4712

scene 0.2839 (90%) 0.2822 (90%) 0.2880 (90%) 0.2799 (90%) 0.2813

yeast 0.4704 (80%) 0.4729 (80%) 0.4734 (80%) 0.4691 (80%) 0.4697

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1297 (10%) 0.1715 (10%) 0.2166 (30%) 0.1695 (10%) 0.2690

birds 0.0952 (80%) 0.0989 (90%) 0.1008 (90%) 0.1000 (50%) 0.1029

CAL500 0.2876 (40%) 0.2883 (40%) 0.2908 (20%) 0.2877 (70%) 0.2949

Corel5k 0.2333 (30%) 0.2300 (40%) 0.2447 (20%) 0.2329 (20%) n/a

emotions 0.1730 (70%) 0.1712 (90%) 0.1751 (90%) 0.1725 (90%) 0.1742

enron 0.1327 (10%) 0.1461 (20%) 0.1392 (10%) 0.1482 (20%) 0.1664

�agsml 0.1878 (70%) 0.1840 (40%) 0.1827 (50%) 0.1874 (20%) 0.1954

genbase 0.0041 (10%) 0.0041 (10%) 0.0041 (10%) 0.0041 (10%) 0.0041

medical 0.0394 (10%) 0.0484 (20%) 0.0478 (20%) 0.0491 (10%) 0.0507

scene 0.0952 (90%) 0.0927 (90%) 0.0954 (90%) 0.0913 (90%) 0.0928

yeast 0.2171 (80%) 0.2185 (90%) 0.2188 (80%) 0.2164 (80%) 0.2182

Best values
24 8 11 17 5

(underlined)
≤ baseline score

38 37 35 43
(bold)

Table 7.5: Best results achieved with the CC + K-NN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0130 (10%) 0.0134 (10%) 0.0146 (10%) 0.0133 (10%) 0.0146

birds 0.0446 (30%) 0.0462 (50%) 0.0458 (50%) 0.0445 (10%) 0.0494

CAL500 0.1392 (10%) 0.1386 (10%) 0.1396 (10%) 0.1388 (10%) 0.1615

Corel5k 0.0094 (10%) 0.0095 (10%) 0.0094 (10%) 0.0095 (10%) 0.0098

emotions 0.2317 (50%) 0.2311 (20%) 0.2313 (10%) 0.2254 (10%) 0.2474

enron 0.0497 (10%) 0.0513 (90%) 0.0504 (70%) 0.0504 (80%) 0.0508

�agsml 0.2501 (90%) 0.2598 (90%) 0.2456 (80%) 0.2443 (50%) 0.2627

genbase 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011

medical 0.0096 (20%) 0.0100 (10%) 0.0100 (10%) 0.0100 (10%) 0.0103

scene 0.1340 (60%) 0.1314 (70%) 0.1307 (60%) 0.1305 (70%) 0.1368

yeast 0.2159 (10%) 0.2153 (10%) 0.2253 (20%) 0.2140 (10%) 0.2454

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8344 (10%) 0.8508 (20%) 0.8588 (70%) 0.8495 (20%) 0.8602

birds 0.4882 (10%) 0.4990 (60%) 0.4960 (70%) 0.4853 (10%) 0.5146

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9974 (30%) 0.9958 (90%) 0.9982 (90%) 0.9962 (80%) 0.9974

emotions 0.7774 (10%) 0.7724 (10%) 0.7640 (10%) 0.7706 (10%) 0.8162

enron 0.8673 (10%) 0.8878 (70%) 0.8884 (70%) 0.8860 (70%) 0.8972

�agsml 0.7884 (10%) 0.8292 (90%) 0.8042 (10%) 0.8090 (50%) 0.8450

genbase 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287

medical 0.3191 (20%) 0.3262 (10%) 0.3283 (10%) 0.3242 (10%) 0.3447

scene 0.5621 (60%) 0.5567 (70%) 0.5571 (60%) 0.5609 (70%) 0.5734

yeast 0.9007 (20%) 0.8986 (30%) 0.9317 (20%) 0.8920 (20%) 0.9317

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.6796 (20%) 0.6878 (60%) 0.6921 (70%) 0.6879 (80%) 0.6936

birds 0.3917 (30%) 0.4149 (50%) 0.4122 (50%) 0.3982 (10%) 0.4265

CAL500 0.7868 (60%) 0.7819 (80%) 0.7899 (70%) 0.7859 (70%) 0.7933

Corel5k 0.9419 (90%) 0.9370 (90%) 0.9432 (90%) 0.9371 (90%) 0.9367
emotions 0.5284 (50%) 0.5235 (30%) 0.5202 (20%) 0.5169 (10%) 0.5377

enron 0.5659 (10%) 0.5918 (90%) 0.5723 (70%) 0.5818 (80%) 0.5871

�agsml 0.3779 (50%) 0.3977 (90%) 0.3690 (80%) 0.3752 (50%) 0.3989

genbase 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138

medical 0.2312 (20%) 0.2405 (10%) 0.2398 (10%) 0.2401 (10%) 0.2535

scene 0.4618 (90%) 0.4544 (70%) 0.4575 (60%) 0.4569 (50%) 0.4647

yeast 0.5312 (20%) 0.5268 (30%) 0.5589 (80%) 0.5298 (30%) 0.5605

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1595 (90%) 0.1630 (90%) 0.1558 (90%) 0.1631 (90%) 0.1585

birds 0.1480 (10%) 0.1454 (40%) 0.1459 (40%) 0.1461 (10%) 0.1579

CAL500 0.1827 (10%) 0.1843 (10%) 0.1835 (10%) 0.1829 (10%) 0.3045

Corel5k 0.1418 (40%) 0.1434 (20%) 0.1438 (10%) 0.1434 (40%) 0.1472

emotions 0.2425 (10%) 0.2287 (10%) 0.2294 (10%) 0.2212 (10%) 0.2915

enron 0.1381 (10%) 0.1196 (10%) 0.1605 (10%) 0.1161 (10%) 0.1723

�agsml 0.2180 (40%) 0.2002 (20%) 0.2226 (10%) 0.2240 (40%) 0.2802

genbase 0.0028 (10%) 0.0028 (10%) 0.0028 (10%) 0.0028 (10%) 0.0028

medical 0.0522 (10%) 0.0661 (10%) 0.0688 (10%) 0.0660 (10%) 0.0743

scene 0.2036 (10%) 0.2425 (70%) 0.2356 (60%) 0.2333 (80%) 0.2465

yeast 0.2028 (10%) 0.2054 (10%) 0.2089 (10%) 0.2033 (10%) 0.3097

Best values
22 13 9 15 6

(underlined)
≤ baseline score

42 40 42 42
(bold)

Table 7.6: Best results achieved with the BR + DecisionTree classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0641 (10%) 0.0908 (90%) 0.0910 (90%) 0.0909 (90%) 0.0874

birds 0.2223 (10%) 0.3555 (90%) 0.3554 (90%) 0.1579 (10%) 0.3528

CAL500 0.1620 (10%) 0.1566 (10%) 0.1605 (10%) 0.1602 (10%) 0.3187

Corel5k 0.0097 (10%) 0.0113 (10%) 0.0103 (10%) 0.0113 (10%) 0.0127

emotions 0.2557 (90%) 0.2532 (90%) 0.2540 (90%) 0.2568 (90%) 0.2521
enron 0.1072 (10%) 0.1967 (10%) 0.1388 (10%) 0.1975 (10%) 0.2177

�agsml 0.2453 (20%) 0.2681 (40%) 0.2533 (40%) 0.2548 (20%) 0.3214

genbase 0.0041 (10%) 0.0041 (10%) 0.0041 (10%) 0.0041 (10%) 0.0338

medical 0.0188 (10%) 0.0221 (90%) 0.0221 (90%) 0.0220 (80%) 0.0253

scene 0.2160 (10%) 0.2322 (40%) 0.2307 (40%) 0.2208 (50%) 0.2419

yeast 0.2418 (10%) 0.2421 (10%) 0.2344 (10%) 0.2453 (10%) 0.3029

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.9244 (10%) 0.9404 (90%) 0.9405 (90%) 0.9406 (90%) 0.9392

birds 0.9689 (90%) 0.9736 (90%) 0.9752 (90%) 0.9271 (10%) 0.9674

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9944 (70%) 0.9938 (80%) 0.9958 (80%) 0.9944 (80%) 0.9954

emotions 0.7825 (10%) 0.7960 (90%) 0.7859 (90%) 0.7925 (10%) 0.7943

enron 0.9865 (10%) 0.9977 (10%) 0.9959 (10%) 0.9982 (10%) 0.9994

�agsml 0.8711 (20%) 0.8911 (40%) 0.8555 (60%) 0.8708 (50%) 0.9642

genbase 0.0997 (10%) 0.0997 (10%) 0.0997 (10%) 0.0997 (10%) 0.7220

medical 0.5460 (10%) 0.6259 (20%) 0.6381 (30%) 0.6208 (20%) 0.7341

scene 0.8322 (10%) 0.8367 (90%) 0.8384 (90%) 0.8243 (90%) 0.8309

yeast 0.8974 (10%) 0.8854 (10%) 0.9003 (30%) 0.8941 (10%) 0.9053

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7824 (10%) 0.8157 (90%) 0.8164 (90%) 0.8159 (90%) 0.8126

birds 0.8549 (90%) 0.8679 (90%) 0.8698 (90%) 0.8431 (10%) 0.8509

CAL500 0.7727 (20%) 0.7882 (50%) 0.7823 (20%) 0.7732 (30%) 0.7971

Corel5k 0.8592 (90%) 0.8530 (90%) 0.8573 (90%) 0.8535 (90%) 0.8512
emotions 0.4740 (80%) 0.4718 (90%) 0.4716 (90%) 0.4748 (80%) 0.4708
enron 0.6919 (10%) 0.8024 (10%) 0.7510 (10%) 0.8028 (10%) 0.8047

�agsml 0.4049 (20%) 0.4184 (40%) 0.4105 (60%) 0.4201 (20%) 0.4962

genbase 0.0524 (10%) 0.0524 (10%) 0.0524 (10%) 0.0524 (10%) 0.6987

medical 0.3716 (10%) 0.4443 (20%) 0.4524 (20%) 0.4419 (20%) 0.6294

scene 0.5394 (10%) 0.5494 (40%) 0.5459 (40%) 0.5270 (60%) 0.5476

yeast 0.5399 (10%) 0.5359 (10%) 0.5656 (60%) 0.5402 (10%) 0.5804

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0658 (10%) 0.0938 (20%) 0.1004 (50%) 0.0936 (20%) 0.1121

birds 0.1660 (90%) 0.1751 (80%) 0.1728 (80%) 0.1240 (10%) 0.1674

CAL500 0.2265 (10%) 0.2178 (10%) 0.2218 (10%) 0.2169 (10%) 0.3250

Corel5k 0.1277 (30%) 0.1239 (30%) 0.1265 (30%) 0.1236 (30%) 0.1397

emotions 0.2041 (70%) 0.2014 (90%) 0.2070 (90%) 0.2020 (70%) 0.1981
enron 0.1337 (10%) 0.1973 (10%) 0.1595 (10%) 0.1989 (10%) 0.2378

�agsml 0.1836 (20%) 0.2053 (40%) 0.1960 (30%) 0.1971 (30%) 0.2904

genbase 0.0073 (10%) 0.0073 (10%) 0.0073 (10%) 0.0073 (10%) 0.1816

medical 0.0417 (10%) 0.0351 (10%) 0.0354 (10%) 0.0352 (10%) 0.1306

scene 0.1347 (20%) 0.1562 (40%) 0.1541 (40%) 0.1512 (50%) 0.1857

yeast 0.2194 (10%) 0.2264 (10%) 0.2180 (10%) 0.2273 (10%) 0.2577

Best values
24 10 8 13 5

(underlined)
≤ baseline score

37 30 31 37
(bold)

Table 7.7: Best results achieved with the BR + NaiveBayes classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0130 (10%) 0.0134 (10%) 0.0145 (50%) 0.0134 (10%) 0.0146

birds 0.0440 (10%) 0.0485 (30%) 0.0484 (60%) 0.0478 (20%) 0.0499

CAL500 0.1652 (10%) 0.1636 (10%) 0.1652 (10%) 0.1616 (10%) 0.1761

Corel5k 0.0095 (10%) 0.0096 (10%) 0.0095 (10%) 0.0096 (10%) 0.0099

emotions 0.2434 (20%) 0.2401 (10%) 0.2440 (10%) 0.2291 (10%) 0.2550

enron 0.0518 (40%) 0.0535 (90%) 0.0522 (60%) 0.0530 (90%) 0.0525

�agsml 0.2545 (90%) 0.2700 (90%) 0.2537 (70%) 0.2568 (20%) 0.2685

genbase 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011 (10%) 0.0011

medical 0.0095 (20%) 0.0096 (10%) 0.0100 (10%) 0.0096 (10%) 0.0102

scene 0.1386 (60%) 0.1417 (60%) 0.1420 (60%) 0.1412 (70%) 0.1444

yeast 0.2585 (30%) 0.2504 (30%) 0.2633 (80%) 0.2549 (30%) 0.2682

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8245 (10%) 0.8421 (20%) 0.8494 (70%) 0.8403 (20%) 0.8546

birds 0.4758 (10%) 0.5082 (60%) 0.5022 (50%) 0.4947 (20%) 0.5208

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9900 (30%) 0.9922 (80%) 0.9952 (90%) 0.9920 (70%) 0.9928

emotions 0.7470 (20%) 0.7303 (10%) 0.7489 (60%) 0.7336 (10%) 0.7522

enron 0.8596 (10%) 0.8696 (90%) 0.8579 (40%) 0.8672 (80%) 0.8731

�agsml 0.7008 (10%) 0.7416 (90%) 0.7166 (10%) 0.7255 (80%) 0.7574

genbase 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287 (10%) 0.0287

medical 0.3017 (10%) 0.2997 (10%) 0.3068 (10%) 0.2946 (10%) 0.3222

scene 0.4454 (60%) 0.4549 (60%) 0.4545 (60%) 0.4570 (70%) 0.4624

yeast 0.8366 (30%) 0.8324 (20%) 0.8544 (70%) 0.8357 (20%) 0.8469

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.6791 (20%) 0.6901 (40%) 0.6961 (70%) 0.6919 (80%) 0.6980

birds 0.4035 (10%) 0.4233 (50%) 0.4136 (50%) 0.4188 (40%) 0.4322

CAL500 0.7633 (50%) 0.7727 (90%) 0.7695 (60%) 0.7683 (90%) 0.7706

Corel5k 0.9417 (90%) 0.9387 (90%) 0.9432 (90%) 0.9380 (90%) 0.9379
emotions 0.5059 (20%) 0.5068 (10%) 0.5182 (60%) 0.4936 (10%) 0.5297

enron 0.5665 (30%) 0.5829 (90%) 0.5605 (70%) 0.5776 (90%) 0.5767

�agsml 0.3880 (10%) 0.4076 (90%) 0.3855 (70%) 0.3905 (30%) 0.4081

genbase 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138 (10%) 0.0138

medical 0.2204 (20%) 0.2211 (10%) 0.2287 (10%) 0.2190 (10%) 0.2419

scene 0.3947 (60%) 0.4076 (60%) 0.4090 (60%) 0.4051 (70%) 0.4134

yeast 0.5668 (70%) 0.5671 (30%) 0.5732 (90%) 0.5660 (50%) 0.5720

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1632 (90%) 0.1660 (90%) 0.1623 (90%) 0.1664 (90%) 0.1646

birds 0.1411 (10%) 0.1385 (40%) 0.1454 (50%) 0.1482 (20%) 0.1631

CAL500 0.3003 (10%) 0.2894 (10%) 0.2969 (10%) 0.2894 (10%) 0.3638

Corel5k 0.1783 (30%) 0.1778 (10%) 0.1828 (10%) 0.1781 (10%) 0.1869

emotions 0.2660 (10%) 0.2484 (10%) 0.2580 (10%) 0.2230 (10%) 0.3066

enron 0.1449 (10%) 0.1320 (10%) 0.1670 (60%) 0.1316 (10%) 0.1719

�agsml 0.2598 (10%) 0.2056 (20%) 0.2589 (20%) 0.2589 (20%) 0.2898

genbase 0.0028 (10%) 0.0028 (10%) 0.0028 (10%) 0.0028 (10%) 0.0028

medical 0.0711 (20%) 0.0812 (70%) 0.0811 (50%) 0.0794 (10%) 0.0812

scene 0.2411 (60%) 0.2394 (60%) 0.2433 (60%) 0.2356 (90%) 0.2489

yeast 0.2758 (10%) 0.2644 (10%) 0.2814 (10%) 0.2738 (10%) 0.3238

Best values
21 13 11 15 6

(underlined)
≤ baseline score

43 38 40 40
(bold)

Table 7.8: Best results achieved with the CC + DecisionTree classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1512 (90%) 0.1521 (90%) 0.1535 (90%) 0.1521 (90%) 0.1419
birds 0.2474 (20%) 0.3638 (90%) 0.3638 (90%) 0.1795 (10%) 0.3589

CAL500 0.3946 (80%) 0.3799 (70%) 0.3788 (90%) 0.3743 (90%) 0.3940

Corel5k 0.0212 (90%) 0.0219 (90%) 0.0227 (90%) 0.0216 (90%) 0.0175
emotions 0.2501 (90%) 0.2484 (90%) 0.2518 (90%) 0.2515 (90%) 0.2470
enron 0.1205 (10%) 0.1934 (10%) 0.1668 (10%) 0.1909 (10%) 0.2142

�agsml 0.2469 (20%) 0.2756 (40%) 0.2505 (50%) 0.2521 (30%) 0.3046

genbase 0.0035 (20%) 0.0035 (20%) 0.0035 (20%) 0.0035 (20%) 0.0336

medical 0.0196 (10%) 0.0221 (90%) 0.0221 (90%) 0.0221 (90%) 0.0249

scene 0.2023 (10%) 0.2271 (40%) 0.2250 (40%) 0.2161 (50%) 0.2368

yeast 0.2815 (10%) 0.2831 (10%) 0.2755 (20%) 0.2840 (10%) 0.3039

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.9247 (10%) 0.9375 (10%) 0.9375 (80%) 0.9386 (90%) 0.9378

birds 0.9689 (90%) 0.9736 (90%) 0.9736 (90%) 0.9271 (10%) 0.9674

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9900 (90%) 0.9886 (80%) 0.9918 (90%) 0.9892 (80%) 0.9914

emotions 0.7823 (20%) 0.7825 (90%) 0.7724 (90%) 0.7842 (90%) 0.7740

enron 0.9612 (10%) 0.9947 (10%) 0.9941 (10%) 0.9947 (10%) 0.9988

�agsml 0.8350 (50%) 0.8753 (40%) 0.8453 (60%) 0.8400 (50%) 0.9284

genbase 0.0785 (20%) 0.0785 (20%) 0.0785 (20%) 0.0785 (20%) 0.7175

medical 0.5399 (10%) 0.6422 (20%) 0.6524 (20%) 0.6361 (20%) 0.7270

scene 0.7906 (10%) 0.8326 (90%) 0.8330 (90%) 0.8172 (90%) 0.8247

yeast 0.8862 (80%) 0.8904 (50%) 0.8577 (20%) 0.8871 (70%) 0.8916

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8364 (90%) 0.8381 (90%) 0.8382 (90%) 0.8379 (90%) 0.8335
birds 0.8546 (90%) 0.8680 (90%) 0.8694 (90%) 0.8449 (10%) 0.8508

CAL500 0.8223 (70%) 0.8203 (50%) 0.8166 (90%) 0.8159 (90%) 0.8216

Corel5k 0.8629 (90%) 0.8566 (90%) 0.8623 (90%) 0.8565 (90%) 0.8541
emotions 0.4680 (90%) 0.4660 (90%) 0.4680 (90%) 0.4674 (90%) 0.4636
enron 0.6651 (10%) 0.7918 (10%) 0.7514 (10%) 0.7911 (10%) 0.8006

�agsml 0.3913 (20%) 0.4166 (30%) 0.4070 (40%) 0.4005 (30%) 0.4699

genbase 0.0443 (20%) 0.0443 (20%) 0.0443 (20%) 0.0443 (20%) 0.6935

medical 0.3825 (10%) 0.4439 (10%) 0.4574 (10%) 0.4455 (10%) 0.6247

scene 0.5203 (10%) 0.5444 (40%) 0.5408 (40%) 0.5218 (60%) 0.5425

yeast 0.5762 (80%) 0.5822 (90%) 0.5721 (60%) 0.5780 (70%) 0.5816

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1256 (10%) 0.1319 (80%) 0.1340 (90%) 0.1314 (80%) 0.1333

birds 0.1658 (90%) 0.1763 (80%) 0.1742 (80%) 0.1290 (10%) 0.1674

CAL500 0.4265 (80%) 0.4173 (70%) 0.4138 (90%) 0.4100 (90%) 0.4271

Corel5k 0.1575 (90%) 0.1571 (90%) 0.1576 (90%) 0.1570 (90%) 0.1585

emotions 0.2019 (90%) 0.2022 (90%) 0.2066 (90%) 0.1979 (70%) 0.1990

enron 0.1526 (10%) 0.2208 (10%) 0.1937 (10%) 0.2208 (10%) 0.2374

�agsml 0.1925 (20%) 0.2184 (20%) 0.2046 (40%) 0.2031 (30%) 0.2827

genbase 0.0071 (10%) 0.0071 (10%) 0.0071 (10%) 0.0071 (10%) 0.1786

medical 0.0440 (10%) 0.0408 (10%) 0.0411 (10%) 0.0403 (10%) 0.1330

scene 0.1287 (20%) 0.1531 (40%) 0.1500 (40%) 0.1458 (50%) 0.1808

yeast 0.2694 (10%) 0.2720 (10%) 0.2677 (60%) 0.2738 (10%) 0.2777

Best values
22 6 10 15 7

(underlined)
≤ baseline score

32 29 30 36
(bold)

Table 7.9: Best results achieved with the CC + NaiveBayes classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0154 (20%) 0.0157 (20%) 0.0159 (50%) 0.0156 (20%) 0.0162

birds 0.0465 (30%) 0.0493 (90%) 0.0488 (80%) 0.0476 (10%) 0.0494

CAL500 0.2255 (10%) 0.2273 (10%) 0.2253 (10%) 0.2252 (10%) 0.2309

Corel5k 0.0147 (10%) 0.0169 (10%) 0.0189 (10%) 0.0165 (10%) 0.0224

emotions 0.1816 (80%) 0.1867 (80%) 0.1869 (90%) 0.1802 (90%) 0.1883

enron 0.0537 (10%) 0.0558 (90%) 0.0534 (10%) 0.0547 (70%) 0.0564

�agsml 0.2408 (40%) 0.2568 (40%) 0.2501 (70%) 0.2499 (40%) 0.2703

genbase 0.0029 (10%) 0.0029 (10%) 0.0029 (10%) 0.0029 (10%) 0.0029

medical 0.0147 (10%) 0.0185 (40%) 0.0182 (10%) 0.0180 (30%) 0.0189

scene 0.0887 (90%) 0.0854 (90%) 0.0880 (90%) 0.0841 (90%) 0.0834
yeast 0.1924 (50%) 0.1930 (90%) 0.1940 (90%) 0.1923 (80%) 0.1934

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8729 (10%) 0.8948 (10%) 0.9097 (50%) 0.8921 (20%) 0.9159

birds 0.4976 (60%) 0.5070 (80%) 0.5086 (80%) 0.4945 (30%) 0.5193

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9976 (90%) 0.9982 (70%) 0.9994 (90%) 0.9980 (80%) 0.9972
emotions 0.6580 (80%) 0.6715 (80%) 0.6765 (40%) 0.6613 (90%) 0.6798

enron 0.8949 (10%) 0.9043 (70%) 0.9002 (30%) 0.8966 (60%) 0.9348

�agsml 0.7934 (40%) 0.8342 (40%) 0.7990 (70%) 0.7990 (50%) 0.8555

genbase 0.0483 (10%) 0.0483 (10%) 0.0483 (10%) 0.0483 (10%) 0.0483

medical 0.4233 (10%) 0.5092 (40%) 0.4980 (50%) 0.5112 (30%) 0.5267

scene 0.3677 (90%) 0.3540 (90%) 0.3623 (90%) 0.3498 (80%) 0.3440
yeast 0.7948 (80%) 0.7981 (90%) 0.8022 (90%) 0.7919 (70%) 0.7964

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7381 (10%) 0.7814 (10%) 0.8094 (50%) 0.7818 (20%) 0.8192

birds 0.4123 (90%) 0.4276 (90%) 0.4228 (90%) 0.4096 (80%) 0.4314

CAL500 0.8024 (90%) 0.8033 (70%) 0.8006 (30%) 0.8007 (10%) 0.8051

Corel5k 0.9646 (50%) 0.9663 (40%) 0.9714 (90%) 0.9649 (40%) 0.9676

emotions 0.4314 (80%) 0.4396 (80%) 0.4478 (60%) 0.4335 (90%) 0.4482

enron 0.6186 (10%) 0.6593 (70%) 0.6293 (10%) 0.6356 (70%) 0.6871

�agsml 0.3715 (40%) 0.3895 (40%) 0.3799 (70%) 0.3802 (40%) 0.4117

genbase 0.0242 (10%) 0.0242 (10%) 0.0242 (10%) 0.0242 (10%) 0.0242

medical 0.3263 (10%) 0.4028 (10%) 0.3923 (50%) 0.4043 (30%) 0.4116

scene 0.3306 (90%) 0.3192 (90%) 0.3279 (90%) 0.3148 (90%) 0.3098
yeast 0.4742 (80%) 0.4749 (90%) 0.4807 (90%) 0.4728 (80%) 0.4758

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1388 (10%) 0.1574 (10%) 0.1671 (40%) 0.1575 (10%) 0.1679

birds 0.0834 (10%) 0.0864 (50%) 0.0866 (50%) 0.0879 (40%) 0.0902

CAL500 0.3193 (90%) 0.3226 (90%) 0.3223 (30%) 0.3206 (80%) 0.3185
Corel5k 0.2522 (10%) 0.2687 (90%) 0.2648 (90%) 0.2682 (90%) 0.2600

emotions 0.1496 (50%) 0.1507 (60%) 0.1509 (80%) 0.1493 (90%) 0.1496

enron 0.1003 (20%) 0.1027 (30%) 0.1016 (10%) 0.1019 (70%) 0.1059

�agsml 0.1894 (40%) 0.1911 (50%) 0.1879 (80%) 0.1848 (60%) 0.2036

genbase 0.0053 (10%) 0.0053 (10%) 0.0053 (10%) 0.0053 (10%) 0.0053

medical 0.0474 (10%) 0.0611 (30%) 0.0627 (60%) 0.0603 (20%) 0.0655

scene 0.0782 (90%) 0.0766 (90%) 0.0782 (90%) 0.0769 (90%) 0.0760
yeast 0.1626 (70%) 0.1638 (90%) 0.1648 (90%) 0.1633 (80%) 0.1635

Best values
27 5 7 14 11

(underlined)
≤ baseline score

38 34 31 37
(bold)

Table 7.10: Best results achieved with the IBLR-ML classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0192 (10%) 0.0205 (80%) 0.0205 (80%) 0.0204 (70%) 0.0205

birds 0.0542 (10%) 0.0552 (10%) 0.0561 (30%) 0.0535 (30%) 0.0586

CAL500 0.1990 (20%) 0.1961 (40%) 0.1991 (50%) 0.1992 (90%) 0.1997

Corel5k 0.0162 (20%) 0.0162 (10%) 0.0167 (10%) 0.0161 (10%) 0.0168

emotions 0.2593 (70%) 0.2561 (40%) 0.2546 (30%) 0.2597 (20%) 0.2778

enron 0.0669 (10%) 0.0699 (20%) 0.0683 (10%) 0.0696 (10%) 0.0717

�agsml 0.2646 (40%) 0.2969 (90%) 0.2681 (60%) 0.2664 (30%) 0.2931

genbase 0.0019 (10%) 0.0019 (10%) 0.0019 (10%) 0.0019 (10%) 0.0019

medical 0.0116 (10%) 0.0127 (10%) 0.0132 (10%) 0.0125 (10%) 0.0135

scene 0.1413 (60%) 0.1421 (70%) 0.1420 (70%) 0.1404 (60%) 0.1437

yeast 0.2720 (60%) 0.2731 (40%) 0.2805 (80%) 0.2727 (20%) 0.2779

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8366 (10%) 0.8541 (40%) 0.8563 (60%) 0.8541 (40%) 0.8544

birds 0.5053 (10%) 0.5085 (10%) 0.4974 (10%) 0.5020 (30%) 0.5254

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9782 (20%) 0.9822 (10%) 0.9856 (80%) 0.9812 (10%) 0.9868

emotions 0.7590 (60%) 0.7455 (20%) 0.7605 (30%) 0.7456 (60%) 0.7944

enron 0.8643 (10%) 0.8843 (30%) 0.8726 (30%) 0.8796 (30%) 0.8913

�agsml 0.7263 (50%) 0.7537 (90%) 0.7371 (10%) 0.7324 (10%) 0.7532

genbase 0.0272 (10%) 0.0272 (10%) 0.0272 (10%) 0.0272 (10%) 0.0272

medical 0.3068 (10%) 0.3180 (10%) 0.3241 (10%) 0.3129 (10%) 0.3375

scene 0.4512 (60%) 0.4512 (70%) 0.4520 (70%) 0.4474 (60%) 0.4529

yeast 0.8581 (20%) 0.8556 (30%) 0.8635 (90%) 0.8527 (30%) 0.8647

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7105 (10%) 0.7378 (80%) 0.7377 (90%) 0.7368 (80%) 0.7361

birds 0.4026 (10%) 0.4107 (10%) 0.4085 (30%) 0.4079 (30%) 0.4266

CAL500 0.7931 (20%) 0.7885 (40%) 0.7937 (70%) 0.7934 (90%) 0.7960

Corel5k 0.9106 (20%) 0.9169 (10%) 0.9238 (80%) 0.9165 (10%) 0.9250

emotions 0.5276 (70%) 0.5193 (20%) 0.5238 (30%) 0.5280 (60%) 0.5631

enron 0.6217 (10%) 0.6564 (70%) 0.6356 (60%) 0.6474 (80%) 0.6575

�agsml 0.4070 (40%) 0.4401 (90%) 0.4076 (60%) 0.4075 (30%) 0.4347

genbase 0.0174 (10%) 0.0174 (10%) 0.0174 (10%) 0.0174 (10%) 0.0174

medical 0.2349 (10%) 0.2505 (10%) 0.2597 (10%) 0.2455 (10%) 0.2645

scene 0.4043 (60%) 0.4058 (70%) 0.4078 (70%) 0.4024 (60%) 0.4107

yeast 0.5777 (60%) 0.5774 (40%) 0.5891 (80%) 0.5781 (20%) 0.5862

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.4117 (80%) 0.4126 (90%) 0.4126 (80%) 0.4127 (80%) 0.4148

birds 0.2367 (90%) 0.2341 (50%) 0.2326 (50%) 0.2355 (30%) 0.2365

CAL500 0.6506 (10%) 0.6543 (30%) 0.6540 (20%) 0.6521 (80%) 0.6576

Corel5k 0.7531 (80%) 0.7484 (90%) 0.7491 (90%) 0.7478 (90%) 0.7502

emotions 0.3191 (50%) 0.3156 (20%) 0.3066 (40%) 0.3206 (50%) 0.3442

enron 0.5406 (40%) 0.5595 (90%) 0.5272 (60%) 0.5454 (90%) 0.5488

�agsml 0.4891 (90%) 0.5013 (90%) 0.5013 (90%) 0.5030 (90%) 0.4972

genbase 0.0076 (10%) 0.0076 (10%) 0.0076 (10%) 0.0076 (10%) 0.0076

medical 0.1298 (10%) 0.1313 (10%) 0.1369 (10%) 0.1278 (10%) 0.1393

scene 0.2097 (90%) 0.2109 (80%) 0.2105 (70%) 0.2133 (60%) 0.2125

yeast 0.3949 (90%) 0.3982 (40%) 0.3996 (90%) 0.3949 (50%) 0.3993

Best values
26 10 10 14 5

(underlined)
≤ baseline score

42 38 38 41
(bold)

Table 7.11: Best results achieved with the LP + DecisionTree classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0163 (10%) 0.0186 (20%) 0.0199 (20%) 0.0186 (10%) 0.0228

birds 0.0507 (20%) 0.0544 (70%) 0.0551 (60%) 0.0517 (10%) 0.0552

CAL500 0.1947 (90%) 0.1963 (40%) 0.1968 (90%) 0.1947 (60%) 0.1975

Corel5k 0.0158 (80%) 0.0160 (60%) 0.0150 (70%) 0.0160 (60%) 0.0162

emotions 0.2069 (70%) 0.2047 (70%) 0.2061 (50%) 0.2046 (70%) 0.2050

enron 0.0616 (10%) 0.0670 (10%) 0.0627 (10%) 0.0656 (70%) 0.0681

�agsml 0.2652 (50%) 0.2798 (20%) 0.2703 (50%) 0.2645 (40%) 0.2941

genbase 0.0049 (10%) 0.0049 (10%) 0.0049 (10%) 0.0049 (10%) 0.0049

medical 0.0153 (10%) 0.0174 (10%) 0.0174 (10%) 0.0171 (10%) 0.0196

scene 0.0954 (90%) 0.0955 (90%) 0.0972 (90%) 0.0929 (80%) 0.0931

yeast 0.2170 (80%) 0.2171 (60%) 0.2190 (80%) 0.2169 (90%) 0.2188

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8108 (10%) 0.8400 (10%) 0.8809 (30%) 0.8384 (10%) 0.9252

birds 0.4867 (80%) 0.4914 (70%) 0.4975 (70%) 0.4929 (80%) 0.5007

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9766 (90%) 0.9770 (60%) 0.9790 (80%) 0.9762 (40%) 0.9802

emotions 0.6596 (20%) 0.6647 (70%) 0.6562 (80%) 0.6495 (70%) 0.6648

enron 0.8549 (10%) 0.8784 (80%) 0.8596 (10%) 0.8602 (50%) 0.8778

�agsml 0.7568 (40%) 0.7932 (90%) 0.7413 (10%) 0.7513 (10%) 0.8145

genbase 0.0845 (10%) 0.0845 (10%) 0.0845 (10%) 0.0845 (10%) 0.0845

medical 0.3957 (10%) 0.4377 (10%) 0.4336 (10%) 0.4265 (10%) 0.4765

scene 0.3158 (90%) 0.3141 (90%) 0.3174 (90%) 0.3062 (80%) 0.3062

yeast 0.7489 (70%) 0.7505 (90%) 0.7551 (90%) 0.7456 (80%) 0.7551

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.6890 (10%) 0.7407 (10%) 0.7904 (30%) 0.7404 (10%) 0.8502

birds 0.4147 (80%) 0.4163 (70%) 0.4240 (70%) 0.4118 (10%) 0.4292

CAL500 0.7824 (90%) 0.7843 (40%) 0.7857 (70%) 0.7830 (60%) 0.7866

Corel5k 0.9129 (20%) 0.9132 (30%) 0.9230 (50%) 0.9105 (30%) 0.9228

emotions 0.4282 (70%) 0.4293 (70%) 0.4270 (50%) 0.4211 (70%) 0.4268

enron 0.6440 (10%) 0.7204 (10%) 0.6614 (10%) 0.7019 (70%) 0.7418

�agsml 0.3931 (50%) 0.4093 (20%) 0.3990 (50%) 0.3945 (40%) 0.4426

genbase 0.0502 (10%) 0.0502 (10%) 0.0502 (10%) 0.0502 (10%) 0.0502

medical 0.3123 (10%) 0.3598 (10%) 0.3572 (10%) 0.3516 (10%) 0.3986

scene 0.2822 (90%) 0.2817 (90%) 0.2861 (90%) 0.2747 (80%) 0.2751

yeast 0.4773 (80%) 0.4789 (90%) 0.4791 (80%) 0.4771 (90%) 0.4806

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.5686 (20%) 0.5741 (10%) 0.5805 (10%) 0.5741 (10%) 0.5842

birds 0.3437 (10%) 0.3469 (40%) 0.3456 (40%) 0.3531 (90%) 0.3513

CAL500 0.6899 (70%) 0.6892 (20%) 0.6867 (10%) 0.6922 (70%) 0.6963

Corel5k 0.7623 (80%) 0.7617 (80%) 0.7593 (30%) 0.7618 (80%) 0.7646

emotions 0.6045 (40%) 0.6239 (60%) 0.6059 (40%) 0.6101 (70%) 0.6388

enron 0.6458 (60%) 0.6167 (70%) 0.6323 (50%) 0.6336 (60%) 0.6485

�agsml 0.7504 (80%) 0.7532 (60%) 0.7453 (10%) 0.7369 (80%) 0.7547

genbase 0.0425 (10%) 0.0425 (10%) 0.0425 (10%) 0.0425 (10%) 0.0425

medical 0.3428 (10%) 0.4150 (10%) 0.4200 (10%) 0.4131 (10%) 0.4650

scene 0.2714 (70%) 0.2660 (70%) 0.2665 (80%) 0.2653 (60%) 0.2740

yeast 0.6501 (20%) 0.6444 (30%) 0.6544 (90%) 0.6476 (20%) 0.6502

Best values
23 7 9 21 6

(underlined)
≤ baseline score

39 39 36 43
(bold)

Table 7.12: Best results achieved with the LP + K-NN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0155 (10%) 0.0158 (10%) 0.0161 (30%) 0.0158 (10%) 0.0172

birds 0.0766 (90%) 0.0787 (80%) 0.0791 (80%) 0.0769 (90%) 0.0768

CAL500 0.1948 (70%) 0.1955 (70%) 0.1971 (90%) 0.1961 (10%) 0.1972

Corel5k 0.0161 (90%) 0.0160 (10%) 0.0163 (90%) 0.0160 (10%) 0.0160

emotions 0.2373 (80%) 0.2351 (90%) 0.2334 (90%) 0.2317 (70%) 0.2326

enron 0.0559 (20%) 0.0604 (90%) 0.0573 (40%) 0.0600 (90%) 0.0589

�agsml 0.2596 (30%) 0.2853 (40%) 0.2494 (10%) 0.2522 (20%) 0.3054

genbase 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0536

medical 0.0136 (10%) 0.0143 (10%) 0.0144 (10%) 0.0143 (10%) 0.0278

scene 0.1361 (20%) 0.1324 (40%) 0.1314 (40%) 0.1222 (50%) 0.1369

yeast 0.2419 (90%) 0.2424 (90%) 0.2439 (90%) 0.2417 (90%) 0.2415

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7957 (10%) 0.8010 (20%) 0.8124 (40%) 0.8014 (10%) 0.8319

birds 0.8634 (90%) 0.8665 (80%) 0.8665 (80%) 0.8621 (10%) 0.8603
CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9700 (30%) 0.9694 (70%) 0.9716 (90%) 0.9688 (40%) 0.9706

emotions 0.7422 (90%) 0.7372 (90%) 0.7238 (90%) 0.7422 (80%) 0.7321

enron 0.8397 (20%) 0.8585 (90%) 0.8455 (50%) 0.8585 (90%) 0.8508

�agsml 0.6961 (50%) 0.8040 (90%) 0.6703 (10%) 0.6955 (20%) 0.7990

genbase 0.0922 (10%) 0.0922 (10%) 0.0922 (10%) 0.0922 (10%) 0.6102

medical 0.3528 (10%) 0.3773 (10%) 0.3773 (10%) 0.3804 (10%) 0.6534

scene 0.4545 (20%) 0.4537 (40%) 0.4516 (40%) 0.4284 (50%) 0.4629

yeast 0.8167 (70%) 0.8188 (80%) 0.8200 (90%) 0.8155 (90%) 0.8134

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.6860 (10%) 0.6981 (10%) 0.7164 (30%) 0.6981 (10%) 0.7584

birds 0.7893 (90%) 0.8016 (80%) 0.8021 (80%) 0.7962 (90%) 0.7924

CAL500 0.7840 (70%) 0.7867 (70%) 0.7897 (40%) 0.7904 (70%) 0.7899

Corel5k 0.9139 (90%) 0.9034 (30%) 0.9101 (90%) 0.9021 (30%) 0.9139

emotions 0.4938 (50%) 0.4892 (90%) 0.4872 (90%) 0.4854 (70%) 0.4879

enron 0.5922 (10%) 0.6522 (90%) 0.6026 (20%) 0.6481 (90%) 0.6379

�agsml 0.3958 (30%) 0.4304 (40%) 0.3832 (10%) 0.3867 (20%) 0.4619

genbase 0.0523 (10%) 0.0523 (10%) 0.0523 (10%) 0.0523 (10%) 0.6054

medical 0.2810 (10%) 0.2953 (10%) 0.2993 (10%) 0.2972 (10%) 0.5796

scene 0.3826 (20%) 0.3669 (40%) 0.3645 (40%) 0.3442 (50%) 0.3853

yeast 0.5299 (90%) 0.5312 (90%) 0.5343 (90%) 0.5271 (90%) 0.5293

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.3445 (30%) 0.3483 (30%) 0.3536 (50%) 0.3478 (30%) 0.3652

birds 0.1963 (90%) 0.2018 (80%) 0.2036 (80%) 0.1980 (90%) 0.1990

CAL500 0.4676 (70%) 0.4684 (80%) 0.4720 (90%) 0.4716 (70%) 0.4699

Corel5k 0.6630 (90%) 0.6566 (60%) 0.6560 (90%) 0.6574 (60%) 0.6619

emotions 0.2805 (90%) 0.2772 (80%) 0.2775 (90%) 0.2764 (90%) 0.2772

enron 0.3225 (40%) 0.3546 (90%) 0.3279 (40%) 0.3490 (90%) 0.3410

�agsml 0.4589 (90%) 0.4507 (90%) 0.4507 (90%) 0.4426 (90%) 0.4418
genbase 0.0257 (10%) 0.0257 (10%) 0.0257 (10%) 0.0257 (10%) 0.4515

medical 0.1265 (10%) 0.1393 (10%) 0.1406 (10%) 0.1419 (10%) 0.1957

scene 0.1853 (30%) 0.1747 (40%) 0.1754 (40%) 0.1653 (50%) 0.1913

yeast 0.3339 (90%) 0.3422 (90%) 0.3430 (90%) 0.3331 (90%) 0.3297
Best values

23 6 10 16 7
(underlined)
≤ baseline score

32 27 30 30
(bold)

Table 7.13: Best results achieved with the LP + NaiveBayes classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0126 (10%) 0.0129 (20%) 0.0133 (30%) 0.0130 (10%) 0.0136

birds 0.0479 (30%) 0.0477 (80%) 0.0472 (90%) 0.0463 (10%) 0.0473

CAL500 0.1381 (40%) 0.1380 (50%) 0.1381 (20%) 0.1380 (70%) 0.1388

Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094

emotions 0.1903 (60%) 0.1921 (80%) 0.1966 (70%) 0.1898 (90%) 0.1951

enron 0.0502 (10%) 0.0531 (90%) 0.0502 (10%) 0.0520 (70%) 0.0524

�agsml 0.2489 (40%) 0.2622 (90%) 0.2622 (90%) 0.2570 (90%) 0.2536

genbase 0.0048 (10%) 0.0048 (10%) 0.0048 (10%) 0.0048 (10%) 0.0048

medical 0.0126 (10%) 0.0149 (10%) 0.0148 (10%) 0.0147 (10%) 0.0151

scene 0.0899 (90%) 0.0879 (90%) 0.0911 (90%) 0.0867 (90%) 0.0862
yeast 0.1915 (90%) 0.1935 (60%) 0.1945 (90%) 0.1925 (80%) 0.1933

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8614 (10%) 0.8807 (10%) 0.9154 (30%) 0.8818 (10%) 0.9396

birds 0.5085 (40%) 0.5240 (80%) 0.5210 (90%) 0.5100 (10%) 0.5085

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9972 (90%) 0.9980 (90%) 0.9988 (90%) 0.9980 (90%) 0.9982

emotions 0.6816 (80%) 0.6866 (70%) 0.7019 (60%) 0.6832 (70%) 0.7169

enron 0.9013 (10%) 0.9424 (90%) 0.9125 (10%) 0.9172 (60%) 0.9260

�agsml 0.8087 (10%) 0.8500 (40%) 0.8297 (60%) 0.8603 (80%) 0.8453

genbase 0.0890 (10%) 0.0890 (10%) 0.0890 (10%) 0.0890 (10%) 0.0890

medical 0.3967 (10%) 0.4816 (10%) 0.4776 (30%) 0.4633 (10%) 0.4940

scene 0.3743 (90%) 0.3760 (90%) 0.3797 (80%) 0.3685 (70%) 0.3752

yeast 0.8097 (90%) 0.8101 (60%) 0.8192 (70%) 0.8113 (80%) 0.8126

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7457 (10%) 0.7840 (10%) 0.8307 (30%) 0.7849 (10%) 0.8640

birds 0.4519 (80%) 0.4622 (80%) 0.4617 (90%) 0.4511 (10%) 0.4515

CAL500 0.8018 (40%) 0.8033 (50%) 0.8023 (20%) 0.8007 (40%) 0.8028

Corel5k 0.9849 (90%) 0.9829 (90%) 0.9897 (90%) 0.9834 (90%) 0.9853

emotions 0.4427 (80%) 0.4507 (80%) 0.4601 (60%) 0.4423 (70%) 0.4674

enron 0.6074 (10%) 0.6898 (90%) 0.6254 (10%) 0.6586 (60%) 0.6684

�agsml 0.3679 (40%) 0.3982 (90%) 0.3917 (40%) 0.3863 (40%) 0.3896

genbase 0.0584 (10%) 0.0584 (10%) 0.0584 (10%) 0.0584 (10%) 0.0584

medical 0.3245 (10%) 0.4100 (10%) 0.4045 (30%) 0.3902 (10%) 0.4187

scene 0.3280 (90%) 0.3322 (90%) 0.3356 (80%) 0.3256 (70%) 0.3330

yeast 0.4804 (90%) 0.4875 (60%) 0.4889 (90%) 0.4848 (80%) 0.4838

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1249 (10%) 0.1577 (10%) 0.1845 (30%) 0.1563 (10%) 0.2083

birds 0.0742 (10%) 0.0759 (90%) 0.0753 (40%) 0.0724 (80%) 0.0746

CAL500 0.1830 (30%) 0.1820 (40%) 0.1823 (40%) 0.1825 (80%) 0.1828

Corel5k 0.1325 (80%) 0.1340 (80%) 0.1346 (90%) 0.1338 (60%) 0.1340

emotions 0.1624 (50%) 0.1591 (80%) 0.1601 (90%) 0.1546 (60%) 0.1633

enron 0.0883 (10%) 0.0919 (70%) 0.0898 (10%) 0.0924 (90%) 0.0920

�agsml 0.1844 (40%) 0.1906 (90%) 0.1906 (90%) 0.1952 (30%) 0.2012

genbase 0.0062 (10%) 0.0062 (10%) 0.0062 (10%) 0.0062 (10%) 0.0062

medical 0.0329 (10%) 0.0384 (30%) 0.0389 (30%) 0.0393 (90%) 0.0395

scene 0.0799 (90%) 0.0791 (90%) 0.0792 (90%) 0.0787 (90%) 0.0774
yeast 0.1636 (80%) 0.1644 (90%) 0.1660 (90%) 0.1649 (80%) 0.1652

Best values
30 9 7 16 9

(underlined)
≤ baseline score

39 28 27 37
(bold)

Table 7.14: Best results achieved with the ML-KNN classi�er
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HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0614 (10%) 0.0845 (90%) 0.0845 (90%) 0.0845 (90%) 0.0810

birds 0.1691 (30%) 0.2198 (90%) 0.2213 (90%) 0.1323 (10%) 0.2142

CAL500 0.1690 (10%) 0.1633 (10%) 0.1653 (10%) 0.1642 (10%) 0.2859

Corel5k 0.0097 (10%) 0.0112 (10%) 0.0103 (10%) 0.0111 (10%) 0.0127

emotions 0.2439 (20%) 0.2512 (80%) 0.2537 (90%) 0.2481 (70%) 0.2540

enron 0.0992 (10%) 0.1646 (10%) 0.1278 (10%) 0.1642 (10%) 0.1739

�agsml 0.2296 (20%) 0.2598 (40%) 0.2377 (50%) 0.2388 (30%) 0.3259

genbase 0.0040 (10%) 0.0040 (10%) 0.0040 (10%) 0.0040 (10%) 0.0339

medical 0.0185 (10%) 0.0220 (80%) 0.0220 (80%) 0.0219 (80%) 0.0247

scene 0.1636 (90%) 0.1626 (90%) 0.1632 (90%) 0.1564 (70%) 0.1615

yeast 0.2498 (10%) 0.2434 (10%) 0.2431 (10%) 0.2456 (10%) 0.2721

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.9229 (10%) 0.9394 (90%) 0.9393 (90%) 0.9394 (90%) 0.9377

birds 0.9705 (90%) 0.9689 (80%) 0.9736 (80%) 0.9209 (10%) 0.9673

CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000

Corel5k 0.9946 (70%) 0.9940 (80%) 0.9960 (70%) 0.9944 (80%) 0.9952

emotions 0.7470 (10%) 0.7740 (10%) 0.7775 (90%) 0.7673 (80%) 0.7859

enron 0.9847 (10%) 0.9982 (10%) 0.9959 (20%) 0.9982 (30%) 0.9994

�agsml 0.7405 (20%) 0.8800 (40%) 0.7429 (10%) 0.7579 (10%) 0.9026

genbase 0.0967 (10%) 0.0967 (10%) 0.0967 (10%) 0.0967 (10%) 0.7220

medical 0.5409 (10%) 0.6259 (20%) 0.6381 (30%) 0.6208 (20%) 0.7352

scene 0.6967 (10%) 0.7017 (90%) 0.7013 (90%) 0.6884 (90%) 0.6980

yeast 0.8949 (20%) 0.8867 (10%) 0.8763 (10%) 0.8904 (10%) 0.8966

EXAMPLE BASED ACCURACY (inverted)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7797 (10%) 0.8126 (90%) 0.8132 (90%) 0.8127 (90%) 0.8093

birds 0.8481 (90%) 0.8563 (90%) 0.8581 (90%) 0.8273 (10%) 0.8441

CAL500 0.7628 (20%) 0.7766 (50%) 0.7730 (40%) 0.7676 (30%) 0.7840

Corel5k 0.8595 (90%) 0.8535 (90%) 0.8576 (90%) 0.8536 (90%) 0.8512
emotions 0.4822 (60%) 0.4834 (60%) 0.4873 (90%) 0.4750 (80%) 0.4891

enron 0.6818 (10%) 0.7804 (10%) 0.7422 (10%) 0.7820 (10%) 0.7779

�agsml 0.3628 (20%) 0.4023 (40%) 0.3803 (30%) 0.3781 (30%) 0.4880

genbase 0.0510 (10%) 0.0510 (10%) 0.0510 (10%) 0.0510 (10%) 0.6995

medical 0.3696 (10%) 0.4422 (20%) 0.4498 (20%) 0.4398 (20%) 0.6314

scene 0.4551 (90%) 0.4537 (90%) 0.4543 (90%) 0.4387 (90%) 0.4511

yeast 0.5341 (10%) 0.5266 (10%) 0.5502 (70%) 0.5287 (10%) 0.5507

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1627 (30%) 0.1641 (40%) 0.1778 (60%) 0.1643 (40%) 0.1899

birds 0.1334 (90%) 0.1442 (90%) 0.1453 (90%) 0.1346 (80%) 0.1342

CAL500 0.3471 (40%) 0.3473 (50%) 0.3491 (90%) 0.3484 (90%) 0.3503

Corel5k 0.5650 (90%) 0.5562 (90%) 0.5591 (90%) 0.5561 (90%) 0.5524
emotions 0.2161 (90%) 0.2137 (90%) 0.2240 (90%) 0.2142 (80%) 0.2135
enron 0.2083 (40%) 0.2139 (90%) 0.2094 (60%) 0.2135 (90%) 0.2122

�agsml 0.2531 (40%) 0.2518 (40%) 0.2493 (50%) 0.2443 (30%) 0.3328

genbase 0.0169 (10%) 0.0169 (10%) 0.0169 (10%) 0.0169 (10%) 0.5226

medical 0.0933 (10%) 0.0809 (10%) 0.0832 (10%) 0.0797 (10%) 0.2181

scene 0.1273 (40%) 0.1287 (40%) 0.1277 (50%) 0.1174 (60%) 0.1383

yeast 0.2629 (80%) 0.2672 (90%) 0.2686 (70%) 0.2651 (50%) 0.2639

Best values
26 8 7 15 4

(underlined)
≤ baseline score

37 28 29 34
(bold)

Table 7.15: Best results achieved with the RK + NaiveBayes classi�er



Appendix C - Application of the MLInfoGain

and Lazy MLInfoGain Equations

This Appendix provides an example of multi-label training data set and applies the equa-

tions given in Chapters 5 and 6 on this example.

Table 6.2 presents the multi-label example, already provided in Appendix A and in

Chapter 6. The data set, composed of two features �X, Y � and their labels, is represented

twice. The left occurrence is ordered by the values of X and the right one is ordered by

the values of Y .

Data Set Sorted by X Data Set Sorted by Y

� X � � Y � � Labels � � X � � Y � � Labels �

1 1 A 1 1 A

1 2 B 2 1 A

1 3 B 3 1 B,C

1 4 A,B 4 1 B

2 1 A 1 2 B

2 2 A 2 2 A

2 3 A 3 2 B,C

2 4 A,B 4 2 A,B

3 1 B,C 1 3 B

3 2 B,C 2 3 A

3 3 B,C 3 3 B,C

3 4 A,B 4 3 A

4 1 B 1 4 A,B

4 2 A,B 2 4 A,B

4 3 A 3 4 A,B

4 4 A,B 4 4 A,B

Table 7.1: Multi-label Data Set Training Example

C.1. Computing the MLInfoGain measure

The entropy of the label set distribution in D, represented by Ent.ML(D), was de�ned

by Equation 5.2.

Ent.ML(D) = −
l∑

i=1

p(λi) ∗ log2p(λi) + q(λi) ∗ log2q(λi), (5.2 revisited)
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where p(λi) is the probability that an arbitrary instance in D belongs to class label λi,

q(λi) = 1− p(λi), and l is the number of labels in the data set.

The data set consists of three labels � A, B and C. Hence, the sum is computed as

follows:

= p(λA) ∗ log2p(λA) + q(λA) ∗ log2q(λA) (for label A)

=
10

16
∗ log2(

10

16
) + (1− 10

16
) ∗ log2(1−

10

16
)

= 0.625 ∗ −0.6780 + 0.375 ∗ −1.415

= 0.9544

= p(λB) ∗ log2p(λB) + q(λB) ∗ log2q(λB) (for label B)

=
10

16
∗ log2(

10

16
) + (1− 10

16
) ∗ log2(1−

10

16
)

= 0.625 ∗ −0.6780 + 0.375 ∗ −1.415

= 0.9544

= p(λC) ∗ log2p(λC) + q(λC) ∗ log2q(λC) (for label C)

=
4

16
∗ log2(

4

16
) + (1− 4

16
) ∗ log2(1−

4

16
)

= 0.25 ∗ −2 + 0.75 ∗ −0.415

= 0.8112

These intermediate results of each label show that label λA has the same entropy than

label λB, and both have more entropy than label λC . This can be observed in the data

set by noticing that labels λA and λB are more evenly distributed across the instances,

so it is harder to predict if they belong to a given instance; while label λC appears in

only four instances, so it is easier to predict if it belongs or not to a given instance. The

corresponding sum for the data set which gives Ent.ML(D) is:

Ent.ML(D) = 0.9544 + 0.9544 + 0.8112

= 2.7201

The next step is to compute the entropy of the label distribution in D, restricted

to the values of feature Xj, 1 ≤ j ≤ dj, represented by Ent.ML(D,Xj) and de�ned by
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Equation 5.3.

Ent.ML(D,Xj) =

dj∑
i=1

[(
|Dji|
|D|

) ∗ Ent.ML(Dji)], (5.3 revisited)

where Dji, 1 ≤ i ≤ dj, is the partition of D composed of all instances whose value of

feature Xj is equal to xji.

First, the computation of Ent.ML(Dji) is required. It is the same procedure showed

before for computing Ent.ML(D), but restricted to a partition of the data set for instances

where the feature value occurs. This partition is showed in Table 7.2.

� X � � Y � � Labels �

1 1 A

1 2 B

1 3 B

1 4 A,B

Table 7.2: Data Set Partition where X = 1

The computation of Ent.ML(DX1) (feature X and value 1) is:

= p(λA) ∗ log2p(λA) + q(λA) ∗ log2q(λA) (feature X=1 for label A)

=
2

4
∗ log2(

2

4
) + (1− 2

4
) ∗ log2(1−

2

4
)

= 0.5 ∗ −1 + 0.5 ∗ −1

= 1

= p(λB) ∗ log2p(λB) + q(λB) ∗ log2q(λB) (feature X=1 for label B)

= frac34 ∗ log2(
3

4
) + (1− 3

4
) ∗ log2(1−

3

4
)

= 0.75 ∗ −0.415 + 0.25 ∗ −2

= 0.8112

= p(λC) ∗ log2p(λC) + q(λC) ∗ log2q(λC) (feature X=1 for label C)

=
0

4
∗ log2(

0

4
) + (1− 0

4
) ∗ log2(1−

0

4
)

= 0 + 1 ∗ 0

= 0



C.1. Computing the MLInfoGain measure 100

=> Ent.ML(DX1) = 1 + 0.8112 + 0

= 1.8112

The value of Ent.ML(D,X), i.e., the multi-label entropy of data set D restric-

ted to the feature X is the sum of Ent.ML(DX1), Ent.ML(DX2), Ent.ML(DX3) and

Ent.ML(DX4), multiplied by the frequency |Dji|
|D| on each case. The value |Dji|

|D| corres-

ponds to 4
16

= 1
4
= 0.25 for all feature values of X, because each value appears 4 times in

the data set. The computation is given below:

=> Ent.ML(D,X) =

(
|DX1 |
|D|

∗ Ent.ML(DX1)

)
+

(
|DX2 |
|D|

∗ Ent.ML(DX2)

)
+(

|DX3 |
|D|

∗ Ent.ML(DX3)

)
+

(
|DX4 |
|D|

∗ Ent.ML(DX4)

)
= Ent.ML(D,X) = (0.25 ∗ 1.8112) + (0.25 ∗ 0.8112)+

+ (0.25 ∗ 1.6225) + (0.25 ∗ 2.6225)

= Ent.ML(D,X) = 1.7169

The multi-label entropy of D restricted to feature X is then equal to 1.7169. The

same computation for feature Y yields the value of 2.1556.

The last step for computing the MLInfoGain measure is given by Equation 5.4.

MLInfoGain(D,Xj) = Ent.ML(D)− Ent.ML(D,Xj) (5.4 revisited)

Here the entropy of the multi-label data set, Ent.ML(D), is used. The multi-label

information gain for features X and Y are computed as follows.
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=> MLInfoGain(D,X) = Ent.ML(D)− Ent.ML(D,X)

= 2.7201− 1.7169

= 1.0032

=> MLInfoGain(D, Y ) = Ent.ML(D)− Ent.ML(D, Y )

= 2.7201− 2.1556

= 0.5645

For the information gain, the higher, the better. So, feature X would be ranked better

than feature Y , because its multi-label information value is higher.

C.2. Computing the Lazy MLInfoGain measure

One aspect of the Lazy MLInfoGain measure is considering each individual feature values

separately from the others. This is important because the lazy strategy works at classi-

�cation time: when an instance is submitted, with speci�c values for each feature, then

the best suited features are ranked and selected by the strategy.

The entropy of the label distribution in D, restricted to a speci�c value xji, 1 ≤ i ≤ dj

and label lk, 1 ≤ k ≤ q, of feature Xj, 1 ≤ j ≤ d is given by Equation 6.1.

Ent.ML(D,Xj, xji, lk) = Ent.ML(Djik). (6.1 revisited)

This is the same intermediate computation done in section C.1 for Ent.ML(DXj
).

For instance, the computation of feature X and value 1 is:

= p(λA) ∗ log2p(λA) + q(λA) ∗ log2q(λA) (feature X=1 for label A)

=
2

4
∗ log2(

2

4
) + (1− 2

4
) ∗ log2(1−

2

4
)

= 0.5 ∗ −1 + 0.5 ∗ −1

= 1

Table 7.3 shows the lazy entropy scores for all feature values and labels in the multi-
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label data set. An entropy of 1 indicates that the value is evenly distributed for a speci�c

label. For instance, when Y = 1, half of the instances have the label A, and so the entropy

is equal to 1 (harder to predict). On the other hand, when Y = 4, the entropy is 0 for all

labels, because they are always the same: A, B and ¬C (not C).

� Value � � Label A � � Label B� � Label C �

X = 1 1 0.8112 0

X = 2 0 0.8112 0

X = 3 0.8112 0 0.8112

X = 4 0.8112 1 0.8112

Y = 1 1 1 0.8112

Y = 2 1 1 1

Y = 3 1 1 0.8112

Y = 4 0 0 0

Table 7.3: Lazy Entropy Scores for each Value and Label in the Example Data Set

After computing Ent.ML(D,Xj, xji, lk) for all feature values and labels, the next step

is given by Equation 6.2, which aggregates the result for all q labels in D using the min

function, in order to identify feature values which best discriminate at least one label.

LazyEnt.ML(D,Xj, xji) = mink=q
k=1Ent(Djik). (6.2 revisited)

For instance, when X = 4 the equation LazyEnt.ML(D,X, 4) results in min (0.8112,

1, 0.8112), which is equal to 0.8112. A higher entropy indicates that this feature value

is harder to predict, according to the information gathered from the training data set.

On the other hand, when Y = 4, the equation results in min (0, 0, 0), which is 0. This

indicates that this feature value is strongly correlated with at least one label, so it can

aid the classi�cation task.

The last step of the Lazy MLInfoGain technique is computing the LazyML.IG score,

which is used in the ranking and is given by Equation 6.3.

LazyML.IG(D,Xj , xji) = Ent.ML(D)−min[Ent.ML(D,Xj), LazyEnt.ML(D,Xj , xji)]

(6.3 revisited)

It computes the lazy multi-label information gain of a speci�c value for the ranking

lazy strategy. As an example, the values for an instance with X = 4 and Y = 4 are
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computed as follows.

=> LazyML.IG(D,X, 4) = Ent.ML(D)−

min[Ent.ML(D,X), LazyEnt.ML(D,X, 4)]

= 2.7201−min(1.0032, 0.8112)

= 2.7201− 0.8112

= 1.0989

=> LazyML.IG(D,Y, 4) = Ent.ML(D)−

min[Ent.ML(D, Y ), LazyEnt.ML(D, Y, 4)]

= 2.7201−min(0.5645, 0)

= 2.7201− 0

= 2.7201

For the information gain, the higher, the better. So, for the Lazy MLInfoGain strategy,

the Y feature would be ranked higher than theX feature, for an instance containingX = 4

and Y = 4 values. Despite the fact that X has a higher multi-label information gain

overall (used in the MLInfoGain �eager� strategy), by postponing the feature selection to

the moment of classi�cation, when the values of the instance are known, the lazy strategy

can take a more informed decision and keep the features with higher lazy multi-label

information gain scores.


