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Profa. D.Sc. Cláudia Maria Lima Werner, UFRJ

Niterói
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Resumo

Um documento multimı́dia declara uma coleção de itens de mı́dia e relações entre eles no
tempo e espaço. Desde sua autoria/geração até sua execução, um documento passa por
diferentes etapas. Tais etapas representam o ciclo de vida de um documento multimı́dia. A
especificação contida em um documento pode mudar de etapa a etapa, pois um documento
é especificado (ou buscado), instanciado, adaptado e pode ter seu conteúdo e estrutura
editada dinamicamente. A consistência de um documento multimı́dia ao longo do seu
ciclo de vida significa que o documento sempre seguirá as diretrizes expressas em tempo
de autoria/geração. É importante, portanto, garantir que um dado documento continue
consistente. Este trabalho trata deste problema por meio da validação espaço-temporal
de um documento em diferentes etapas de seu ciclo de vida.

O esquema de validação proposto se baseia em um modelo geral chamado Simple
Hypermedia Model (SHM), que captura a semântica de documentos multimı́dia. A
partir de SHM duas representações de um documento são posśıveis. A primeira captura
o leiaute de um documento em termos de seu estado ao longo de sua execução por meio
de uma teoria de reescrita. Nós a chamamos RWT (rewrite theory). Validação em RWT
é feita através de model-checking. A segunda representação captura o leiaute de um
documento em termos de intervalos e ocorrências de eventos por meio de fórmulas em
Satisfatibilidade Módulo Teorias (SMT). Nós a chamamos SMT . Validação em SMT é
feita através de um solver SMT.

Devido às diferentes caracteŕısticas de RWT e SMT , cada técnica de validação com-
plementa a outra em termos da expressividade de SHM e do tipo de propriedades a
serem investigadas.

Palavras-chave: Validação de documentos multimı́dia, Ciclo de vida de documentos
multimı́dia, Apresentação multimı́dia interativa, Autoria multimı́dia, Teoria de reescrita,
Satisfatibilidade módulo teorias, SHM, Maude, NCL, SMIL.



Abstract

A multimedia document declares a collection of media items and relations among them in
time and space. From document authoring/generation to execution, a document passes
through di↵erent phases. Such phases represent the life cycle of a multimedia document.
The specification contained in a document may change from phase to phase, as a document
is specified (or queried), instantiated, adapted and may have its content or structure
dynamically edited. By consistency of a multimedia document along its life cycle we
mean that it always follows the guidelines expressed at authoring/generation time. It is
important, therefore, to guarantee that the document remains consistent. In this work,
we address this issue by performing spatio-temporal consistency validation at di↵erent
steps.

The proposed validation scheme relies on a general model called Simple Hypermedia
Model (SHM), which can capture the semantics of multimedia documents. From SHM
two representations of a document are possible. The first captures the layout of a docu-
ment in terms of its state throughout its execution by means of a rewrite theory. We call
it RWT (rewrite theory). Validation in RWT is performed through model-checking. The
second representation captures the layout of a document in terms of intervals and event
occurrences by means of Satisfiability Modulo Theories (SMT) formulas. We call it SMT .
Validation in SMT is performed through an SMT solver.

Due to di↵erent characteristics of RWT and SMT , each validation technique com-
plements the other in terms of expressiveness of SHM and the kind of properties to be
investigated.

Keywords: Multimedia document validation, Multimedia document life cycle, Inter-
active multimedia presentation, Multimedia authoring, Rewriting theory, Satisfability
modulo theories, SHM, Maude, NCL, SMIL.
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Chapter 1

Introduction

Multimedia documents are present in our daily life as web pages, digital TV programs,

smartphone applications, advertising screens and so on. A multimedia document1 de-

scribes media items and relations among them either in time, space or both [Hardman

1998]. Such a description is usually textual, by means of some integration or authoring

language. In the literature, both terms integration language and authoring language are

used as synonyms. In this work, we use the former.

When executed, the specification contained in a document yields a particular ar-

rangement of media items in time and space. This arrangement is called a multimedia

document presentation or just multimedia presentation2. Di↵erent from a document, a

presentation is the result that is actually presented to the viewer. Usually, both terms

document and presentation are used as synonyms. In this text, whenever such a distinc-

tion is not necessary, we may use the term document for meaning either a document or a

presentation.

Multimedia environments have evolved in the past years due to the arrival of new

types of displays, besides the increase in computer power and storage capacity. Among

such evolutions we highlight:

• personalization of a document presentation for a given viewer [Laborie et al. 2011];

• splitting a presentation in an array of displays (for example a TV set and a second

screen) [Sarkis et al. 2014, ITU 2009];

• new displays (such as touch screens or with embedded motion sensors) improving the

1Hereinafter, we will use just the word “document” meaning a multimedia document.
2Hereinafter, we will use just the word “presentation” meaning a multimedia document presentation.
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interface of a presentation with the viewer and enabling new kinds of inputs [Guedes

et al. 2015];

• mixed reality browsers enabling content synchronization according to the viewer

geographical position [Lemordant et al. 2013];

• dynamic editing of a presentation (for example by means of annotation [Teixeira et

al. 2012] or live editing [Soares et al. 2012]);

• dynamic generation of documents according to user queries (such as dynamic web

documents).

In order to cope with those changes, we update in this work the definitions presented

in [Hardman 1998]. A document no longer describes just one presentation3, but a set of

possible presentations. This set is restricted according to the viewer context so that the

most suited presentation to the viewer is chosen. The viewer context contains information

about its exhibition device, viewing preferences, and anything else that may influence

the presentation. Although a document may yield di↵erent presentations, they are not

completely di↵erent among each other, as they must follow the document specification.

1.1 Motivation

The specification contained in a document may vary along its life cycle, i.e., from its cre-

ation (authoring or generation) to its execution. It ranges from synchronization relations

expressed in a high-level abstraction integration language to low-level executing events

and incremental modifications may be performed over it. It is important, however, to

guarantee that a document remains consistent to its specification, i.e., to the guidelines

expressed at its creation, along its life cycle.

We believe that the consistency of a document can be maintained along its life cycle by

means of validation. The idea is to combine the document specification with properties

representing its main guidelines and validate it in order to guarantee that any change

performed at a given life cycle step does not make a document inconsistent.

Several works published in the literature address the validation of multimedia docu-

ments. Most of them perform document validation at authoring, either by means of the

automatic correction of the document (when authoring is performed through constraints)

3Let us assume all presentations of a given document di↵ering just by viewer interactions as one for
a moment.
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or by providing to the author messages to help correcting the document. An example of

the former is presented in [Elias et al. 2006] and an example of the latter is presented

in [Gaggi and Bossi 2011].

It is also possible to find approaches for validating the document and adapting it

to the viewer context. Two examples are seen in [Bertino et al. 2005] and [Laborie et

al. 2011]. [Bertino et al. 2005] focuses on the document validation but also provides

adaptation to the viewer context. [Laborie et al. 2011], on the other hand, focuses on the

document adaptation. The proposed adaptation approach, however, takes into account

author’s guidelines and tries to maintain a “minimum distance” between the behavior of

the adapted document in relation to the original one.

The validation provided by such works has a preventive role. Although they provide

validation not only at authoring, they investigate if the document is executable and if no

inconsistency may arise during execution. Such approaches, however, do not take into

consideration the case where a document is dynamically edited. Besides, given that great

part of the works need some kind of human interaction to correct the document, the case

where a document is generated is not covered.

In this work we define a sequence of steps for representing the life cycle of multimedia

documents. It relies on ideas presented by works related to document authoring and adap-

tation, generalizing them in order to identify steps where validation is necessary. The life

cycle proposed here comprises three main steps, which are called: authoring/generation,

instantiation and execution.

At the authoring/generation step, a document is created either by an author or by

an automatic generation process. A document created at this step should be able to be

instantiated into one or several presentations, thus it is important to guarantee that no

misuse of constructs of the integration language(s) used occurs and no inconsistency arises

from the set of relations among media items composing the document.

At the instantiation step, a document is instantiated into a possible presentation ac-

cording to the viewer context as given through the querying process. Thus it is important

to guarantee that the instantiation process chooses the most suited presentation to the

viewer, considering the set of possible presentations described by that document.

At the execution step, the presentation unfolds and reacts to viewer interactions.

During execution, it is possible that a presentation improves its content and behavior

according to the occurrence of executing events, such as, for example, viewer interaction
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or live editing. At this point, it is important to guarantee that the presentation stays

consistent according to properties defined by the author, which we refer as author guide-

lines. For example, suppose we have a “two videos in sequence” presentation and an

author guideline stating that videos should not be presented in parallel. If we add a third

video, the presentation should evolve into a “three videos in sequence” presentation and

not something else.

As seen, di↵erent steps in the document life cycle demand di↵erent guarantees. Each

guarantee acts locally, at one step, in order to keep the document globally consistent,

i.e., throughout its life cycle. The research presented in this work fits in the main idea of

maintaining the consistency of a document along its life cycle. It proposes an approach

for validating documents that is intended to be used in di↵erent steps of a document life

cycle.

1.2 Goals

The main goal of this work is to provide the validation of a document along its life cycle.

By validation we mean the process of verifying if a set of properties over a multimedia

document can be satisfied together.

The types of multimedia document taken into consideration for the validation ap-

proach proposed in this work are the ones specified using a declarative authoring language.

Applications such as interactive Digital TV programs are good use cases for the applica-

tion of the validation techniques presented in this work. On the other hand, applications

such as games, where the application logic is better specified using a general-purpose

programming language, are not good use cases. It is worth highlighting that a web doc-

ument can also be considered as a good use case in the case where its synchronization

is described in a declarative fashion, either by embedding Synchronized Multimedia Inte-

gration Language (SMIL) [W3C 2008b] or Nested Context Language (NCL) [ITU 2009]

tags in it or even using Web Animations. The case where the synchronization is specified

using Javascript code is out of the scope of this work.

Properties to be validated over a document may express (but are not limited to):

(i) syntax rules of an integration language;

(ii) constraints associated to a given content;

(iii) temporal and spatial relationships among content;
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(iv) author’s design choices; and

(v) the viewer’s context.

Relying on the life cycle defined in this work we identify where, i.e., in which step,

validation is necessary and its requirements. Based on such information, we design a

validation approach to be used at di↵erent moments in a document life cycle.

This work proposes a general model called Simple Hypermedia Model (SHM) for

representing a document layout in either time and space for the purpose of validation.

In the temporal dimension, media items are represented by media fragments and, in the

spatial dimension, by rectangular regions. Relations are expressed in SHM by the set of

operators defining either causal relations or constraints.

The SHM model evolved from previous work [dos Santos 2012, dos Santos et al.

2013a], where we proposed a validation approach based on a rewrite theory [Meseguer

2012] we call here RWT . It captures the layout of a presentation in terms of its state

throughout its execution. A document in RWT is described by a rewrite theory R
RWT

,

which induces a transition system S
RWT

, where each state represents the state of the

presentation as a whole in a given moment of its execution, and each transition models

the viewer interaction or a time lapse. Validation is performed by model-checking over

S
RWT

.

In this work we have refined theory RWT in order to improve its e�ciency [dos Santos

et al. 2012a, dos Santos et al. 2013b, dos Santos et al. 2015a] and enable the spatio-

temporal validation of multimedia documents [dos Santos et al. 2015b]. The refined

theory RWT will be presented in Chapter 4.

Moreover, we also refine the SHM model in order to enable the definition of con-

straints. Moreover, we extend SHM enabling a second validation technique called

SMT [dos Santos et al. 2015b]. It captures the layout of a document in terms of in-

tervals and event occurrences. A document in SMT is described by Satisfiability Modulo

Theories (SMT) [Barrett et al. 2009] formulas and validation is performed through an

SMT solver.

RWT is more suited for expressing documents where events and di↵erent occurrences

of media fragments are important features. On the other hand, SMT is more suited for

expressing documents where numeric dependencies among media fragment intervals or

regions are important features. Besides its power of expressiveness, the choice for a given

validation approach may depend on the type of validation to be performed. Thus, one
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approach or the other is chosen according to the presentation life cycle step.

1.3 Contributions

This thesis main contributions are:

• The refinement of RWT theory for improving its e�ciency;

• The definition of a multimedia document life cycle, which brings the following con-

tributions:

– The definition of a general sequence of steps for multimedia document handling;

– The definition of validation requirements for di↵erent steps of a document life

cycle;

– The discussion of which technique is more suited for di↵erent steps of a docu-

ment life cycle.

• The definition of a validation approach based on two di↵erent validation techniques,

which brings the following contributions:

– The definition of a formal representation of the document presentation state

throughout its execution;

– The definition of a validation approach based on the document state;

– The definition of a formal representation of the document layout based on

constraints;

– The definition of a validation approach based on constraints;

– The design of a validation approach to be used at di↵erent steps of a document

life cycle.

• The implementation of tools for performing document validation using each pro-

posed validation technique.
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1.4 Thesis Structure

The remainder of this text is structured as follows.

Chapter 2 defines the life cycle of a multimedia document and presents how some works

published in the literature fit in the proposed life cycle and the validation requirements

for di↵erent life cycle steps. This chapter also discusses di↵erent types of validation for

a given document, which are the validation of the document structure and the validation

of the document behavior. The latter may consider just the temporal relations declared

in a document, the spatial ones or the combination of both.

Chapter 3 presents related work published in the literature considering the validation

of multimedia documents. Related works are divided according to the type of validation

they provide and the approach used for validation.

Chapter 4 introduces the abstract definition of the SHM model for both temporal

and spatial axes. It also presents the general architecture of the validation approach

proposed in the work with its two validation techniques. For the validation technique

based on the document state, it presents the rewriting logic theory used to represent

a multimedia document together with its validation through model-checking. For the

validation technique based on constraints, it presents the representation of a multimedia

document as SMT formulas together with its validation through SMT solving.

Chapter 5 presents implementation details of the validation approach proposed in this

work. It presents the tools that implements each validation technique and their practical

results. The chapter also presents a document example and its representation in the

SHM model together with a discussion about the use of each validation technique.

Chapter 6 concludes this thesis, restating its contributions and presenting future

works.



Chapter 2

Multimedia Document Life Cycle and
Validation

A multimedia document specifies a collection of media items - also know as its content

- and a set of relations in time, space or both - also know as its layout [Hardman 1998].

Media items represent human-consumable information units, such as audio, video, image,

etc. Relations in a document are defined among media items and may take into account

event occurrences, such as viewer interactions (including motion recognition), the result

of a computation (e.g., by an auxiliary script) or a query (e.g., to an external server)

performed at runtime or even arrival of the user at some geographical position.

A document’s content and relations describe a set of possible presentations. This set

of presentations is restricted according to the viewer context, in order to choose a subset

of presentations more suited to the viewer. For example, adjusting the presentation size

to the viewer exhibition device size, suppressing or not an audio presentation due to the

availability of an audio channel, etc.

In addition, this subset of presentations are further restricted according to viewer

interactions during the presentation. For example, suppose a document where a given

media item m2 is presented, given that a viewer interacts with media item m1. Figure 2.1

presents two possible presentations obtained from that document di↵ering if the viewer

interaction happens or not.

m1
m2

t

(a) Viewer interacted with m1

m1

t

(b) Viewer did not interact with m1

Figure 2.1: Possible presentations due to viewer interaction
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The specification contained in a document is described with an integration language.

In the declarative programming paradigm, focus of this work, integration languages pro-

vide constructs with a high degree of abstraction for declaring the document content and

its spatio-temporal layout. The idea of a declarative integration language is to separate

the description of a document from the specificities of its execution [Hardman 1998]. The

level of abstraction varies according to the paradigm followed by the integration language.

A discussion about paradigms can be seen in [Blakowski and Steinmetz 1996,Boll 2001,dos

Santos 2012].

Another benefit of declarative programming, in the multimedia scenario, is to ease

the task of creating multimedia documents. Such goal is important since multimedia

documents can be used in di↵erent areas, such as web, digital TV and IP Television

(IPTV); and by di↵erent author profiles, such as developers and content producers.

2.1 Multimedia Document Life Cycle

The specification contained in a document may vary from its creation to its execution.

It ranges from synchronization relations expressed in a high-level abstraction integra-

tion language to low-level executing events. Di↵erent works related to documents com-

monly assume a document life cycle composed of conception, storage and execution steps

(authoring-related works [Muchaluat-Saade 2003, Bulterman et al. 2013]) or of concep-

tion, adaptation and execution steps (adaptation-related works [Lemlouma and Layäıda

2004,Na and Furuta 2001]). Relying on such ideas we define a document life cycle that is a

generalization of such approaches. The life cycle presented here was also inspired by [Bul-

terman et al. 2013] and was designed so that approaches like [Sarkis et al. 2014,Lemlouma

and Layäıda 2004, Laborie et al. 2011,Teixeira et al. 2012, Soares et al. 2012] could fit

into it. Figure 2.2 depicts the proposed life cycle of a document.

Integration

Content Base

Template Base

Author

Publishing

Querying

Interpretation

Viewer Context

Scheduling

Exhibition

Viewer

Dynamic

content

layout

document document

properties

presentation

message

message

api

query

request

update, query

document

authoring/generation

instantiation execution

Figure 2.2: Multimedia document life cycle

The life cycle presented here comprises three main steps, which are called: author-
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ing/generation, instantiation and execution, represented by dotted rectangles, which are

subdivided into smaller steps, represented by filled rectangles.

Regarding the authoring/generation step, it is important to highlight three aspects.

(i) Documents are also considered as content. (ii) A template is considered as a general

layout that is instantiated at Integration step for a given content. Thus it may represent

from constructions in a given integration language to “documents with holes”. (iii) A

document may be created either by an author or by an automatic generation process.

In the former it is possible for the author of a document to use templates in order to

improve its authoring as discussed in [Damasceno et al. 2014]. In the latter, documents

are created according to the viewer query by combining existent content into predefined

templates. It is worth noticing that the author has an important role in the creation of

such templates.

According to a query/request from the Viewer, the Integration step will either (i)

organize the content available in the Content Base according to the layout described in

the Template Base or (ii) if the user query/request yields a document already stored in

the Content Base, the Integration step relays such document and does not create a new

one. It is worth noticing that when a new document is created at the Integration step, the

resulting document is both stored in the Content Base for future use and used as input

for the Publishing step.

Publishing represents the transmission of a document to the viewer according to the

received query/request. The published document, at the Interpretation step, is instanti-

ated into a presentation, according to the viewer context. The viewer context is composed

by properties expressing (but are not limited to):

(i) viewer information such as language, location, gender, age, etc;

(ii) characteristics of the exhibition device(s) available such as screen size, playable

media item types, network availability, etc;

(iii) viewer preferences such as predisposition to interaction, preferred media items, etc.

Therefore, the document to be executed is the one most suited to the viewer characteristics

and preferences and the available exhibition device(s). Moreover, at the interpretation

step, it is also possible for a document to be translated from the language it was created

(and stored) into a language to be used in its presentation as presented in [Silva et al.

2013].
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Scheduling keeps the presentation synchronization, exhibiting each content at the cor-

rect time, space and exhibition device. Exhibition acts as an interface between the presen-

tation and the viewer, relaying viewer interactions back to Scheduling. During execution,

in reaction to event occurrences, the Dynamic step accesses Application Programming

Interfaces (APIs) available at Scheduling for editing the presentation. Examples of such

APIs are Document Object Model (DOM) [W3C 2000], SMIL DOM [W3C 1999a], NCL

Live Editing Commands [Soares et al. 2006] and Web Animations [W3C 2014]. Besides

gathering or exchanging information with the network, the Dynamic step may store new

content in the Content Base and templates in the Template Base or may query new

information from them.

2.1.1 Use Cases

Usually, when talking about a multimedia document life cycle, the literature breaks it

down into two sides: the server/broadcaster side and the client/viewer side. In the client

(or viewer) side, we have essentially the steps related to the document execution. The

client can be made as complex as possible - on the other hand as simple as possible -

regarding how many steps we push into it. The server (or broadcaster) side keeps the

remaining steps. The simpler the client is, the more complex the server is, and vice-versa.

A common division seen in Digital TV and IPTV environments [ETSI 2008, ATSC

2009,ARIB 2014,ITU 2009] and also in the web, is to use the Publishing step as a division

between the server and client sides. The work in [Lemlouma and Layäıda 2004] presents

a di↵erent division, following the idea of having simple clients, where just the Exhibition

step is in the client. In such a scenario, a document is created and its execution is

handled by the server. The client receives media object samples to be presented, for a

given moment, and communicates presentation and viewer interaction events back to the

server.

This section presents works that implement parts of the life cycle presented in Fig-

ure 2.2. The works presented cover di↵erent areas in multimedia research and inspired

the life cycle proposed here. The following paragraphs present those works together with

a discussion about the steps they implement.

The work in [Sarkis et al. 2014] presents an approach for splitting a multimedia

application in two screens. This work fits in the life cycle presented in Figure 2.2 as

follows. At the Integration step, document elements are annotated with information about

the screen where they will be presented, according to the received query. The annotated
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document is sent, in the Publishing step, to both clients identified in the received query.

Following, at the Interpretation step, a given client splits the document maintaining the

elements to be presented in the client screen and “hiding” the remaining elements. During

execution, the Dynamic step receives viewer interaction and maintains the communication

among both screens so that the document as a whole maintains its synchronization.

The work in [Laborie et al. 2011] proposes an approach for the client-side adaptation of

documents. It implements the Interpretation step so that a given document is translated

into an abstract model, as a set of objects and spatio-temporal relations among them.

Relations in this model are represented by constraints. Besides relations, constraints may

also represent author guidelines. The adaptation process combines document constraints

with constraints representing the Viewer Context. Given that the resulting constraint

set is satisfiable, the document can be adapted without changes. On the opposite case,

document relations have to be changed until the constraint set turns satisfiable.

Both works presented in [Teixeira et al. 2012] and [Soares et al. 2012] act at the

Dynamic step. The work in [Teixeira et al. 2012] proposes an approach for document

annotation and the work in [Soares et al. 2012] proposes an approach for client-side

adaptation of documents.

In [Teixeira et al. 2012], the Dynamic step is implemented as an extension of the

client middleware to allow the user to insert text, sound or images in a presentation.

It captures viewer interaction events to create annotations about the TV content being

presented. The annotations produced are synchronized to the main presentation by means

of an NCL document. Although not explored in the paper, the resulting document, i.e.,

with the annotations created by the viewer, can be sent back to the Content Base so that

it can be provided to other viewers as a response to future queries or even shared with

other clients watching the same presentation.

In [Soares et al. 2012], the Dynamic step is implemented using a Lua script that,

reacting to some presentation or viewer interaction event, triggers a request to the Content

Base for gathering new video objects related to the one being presented at the time. It

then creates a new document with the new content to be included in the presentation by

comparing the old and new documents determining the changes to be produced in order

to turn the former in the latter. Following, it will send a set of commands using the NCL

Live Editing Commands [Soares et al. 2006] API, for producing the changes on the fly.
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2.1.2 Validation Requirements

In order to keep the consistency of a document along its life cycle, validation is necessary

at di↵erent steps. In this section, we discuss the role of validation across the steps in

Figure 2.2 together with its requirements.

Initially it is important to guarantee that content and template(s) combined at the

Integration step yield a consistent document. This can be achieved by performing valida-

tion at Integration step over properties associated to both content and templates, besides

properties over the document being created, which we refer as author guidelines. Val-

idation at Integration step should be able to support di↵erent multimedia integration

paradigms (relation, event, composition, etc). It is worth mentioning, however, that some

declarative multimedia languages provide the possibility of using auxiliary scripting lan-

guages (such as Lua of NCL and JavaScript for HyperText Markup Language (HTML))

for implementing facilities not supported by the given language. The validation approach

proposed in this work does not tackle such scripting languages, focusing only on the

declarative multimedia language used for the document creation.

According to the paradigm used at Integration step, it is possible to validate the

document at the same time it is described or not. For example, in a constraint-based

approach, such as [Jourdan et al. 1998], relations may be validated as they are created. On

the other hand, in an event-based approach, such as [dos Santos et al. 2015a], validation

may have to wait for the creation of a set of relations before being performed. At this step

of the document life cycle, validation has a preventive role, investigating if a document

can be instantiated and, once presented, may not lead to execution errors. In case an error

is found, a validation tool can either: (i) automatically “correct” the document or (ii)

give feedback to the author to “correct” the document (this is represented in Table 2.1 by

+/-). Moreover, validation is also partial since the content (or even layout) of a document

may be changed dynamically during execution.

After authoring/generation, performing validation along the document life cycle al-

ways (or almost always) has to yield an executable presentation, even by means of some

automatic “error correction”. Errors at this point would interrupt the current requested

document without presenting anything to the viewer. Although giving feedback to the

author would be interesting for future improvements, it would not help correcting the

document in the process of being presented. Moreover, time is an important matter,

since taking a long time to yield a result would make the viewer wait too long for the

start of the presentation (Interpretation) or lead to presentation lags (Scheduling).
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During the instantiation process at Interpretation, it is necessary to guarantee that

a document can be instantiated into a presentation taking into account the viewer con-

text. This is achieved by validating the combination of both properties associated to the

document and the ones expressing the viewer context. According to the way a document

is described, and given that more than one presentation can be instantiated from a doc-

ument, validation can be seen as a way to provide personalization and help document

adaptation, by choosing the document instance more suited to the viewer’s context. Be-

sides, given that both adaptation and the validation we present may be done using the

same techniques, we refer to adaptation as a special case of validation.

Once a document is executing, it may evolve either by viewer interaction or incremen-

tal changes performed by the Dynamic step. Similar to collaborative writing [Sun et al.

1998], at this point, it is important to provide intention preservation, to avoid turning the

presentation into something incoherent with the author guidelines. The same way vali-

dation is performed in the Interpretation step, at Dynamic it should be able to combine

properties representing the presentation to properties representing incremental changes

in order to always return an executable presentation. Thus, an incremental change may

be ignored if it yields an inconsistent presentation. Depending on the event that triggers

the Dynamic step, time may be an important issue or not (this is represented in Table 2.1

by +/-). When the Dynamic step has to perform some incremental change due to viewer

interaction, taking a long time to yield a result would lead to presentation lags. On the

other hand, when an incremental change is not triggered by viewer interaction, it (and its

validation) may be performed in advance, thus avoiding presentation lags.

It is important to highlight that author guidelines are properties to be preserved along

the document life cycle. Due to personalization (at Interpretation step) or to incremental

changes (at Dynamic step), relations expressing the document layout may be changed.

Author guidelines represent a way to guide such changes in order to provide intention

preservation [Sun et al. 1998] across the document life cycle.

During the Scheduling step, it is also important to support changes in the spatio-

temporal layout of the presentation according to viewer interactions, such as interactive

animations. One example of interactive animation is the change in the spatial layout of a

presentation according to a dragging event. Given that the presentation (and its exhibition

environment) supports such kind of viewer interaction, it is important to guarantee that

the viewer will not perform an interaction that yields inconsistency in the presentation.

This may be achieved by placing validation at the Exhibition step, combining properties
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related to the document and the ones describing the interactive action. Thus interactive

actions that turn the document layout inconsistent could be disabled.

Table 2.1 summarizes the validation requirements for each step in a multimedia doc-

ument life cycle. Symbol ‘+’ indicates an important requirement and symbol ‘-’ indicates

a less important requirement.

Integration Interpretation Scheduling Dynamic

Automatic correction +/- + + +
Author feedback + - - -
Response time - + + +/-

Table 2.1: Validation requirements for life cycle steps

2.2 Multimedia Document Validation

As presented in Section 2.1, a multimedia document describes a set of possible presenta-

tions, restricted at the execution step, when a single presentation is chosen. The resulting

presentation, therefore, represents the execution of a given document. Considering au-

thoring/generation and execution, a document may be defined in two di↵erent forms,

one representing its description and another representing its execution. The first repre-

sents the set of constructs in a given integration language used to define a document.

The second represents the resulting behavior of those constructs when such document is

executed.

Section 2.1 also presented the importance of validation at di↵erent steps of a document

life cycle, as a way to guarantee the consistency of a given document. As it happens for a

document, inconsistencies may be perceived in two di↵erent forms, as certain properties

are not satisfied. We shall classify document validation properties as structural and

behavioral. In Section 2.2.1, we define structural properties and, in Section 2.2.2, we

define behavioral properties. In the last section, structural and behavioral validation are

discussed.

2.2.1 Structural Properties

Since its creation, the eXtensible Markup Language (XML) [W3C 2008a] has been used

as concrete syntax for multimedia languages. XML elements are used for representing

media items and their synchronization relationships. Examples of XML-based declarative
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multimedia languages are NCL [ITU 2009] and SMIL [W3C 2008b]. NCL is part of the

standard for Digital Television (DTV) in Brazil and Latin America [ABNT 2011]. It is

also part of the ITU standard for IPTV services [ITU 2009]. SMIL is a standard for

multimedia presentations on the web [W3C 2008b].

Syntax rules defined by a multimedia language grammar and its static semantics

induce a set of structural invariants representing properties a document should follow to

be considered structurally consistent. We identify in related work [Araújo et al. 2008,Neto

et al. 2011] the following structural properties:

• The lexical and syntactic structure of a document should be well-formed and in

accordance to the authoring language grammar. For example, XML tags [W3C

2008a] must be correctly closed and follow the language namespace.

• Every document element must only contain valid child elements and in the correct

cardinality.

• Every document element must only contain valid attributes and the required ones

must be defined.

• Every element identifier, when it is the case, must be unique.

• Attributes with related values must follow the constraints defined by the multimedia

language. For example, NCL defines attributes type and subtype for the transition

element [ITU 2009]. For every value of attribute type, NCL defines a set of values

that may be used for attribute subtype. Another example are NCL attributes com-

ponent and interface, where a given element referred in attribute interface has to

be a child of the one referred in attribute component.

• References between elements must follow the constraints defined by the multimedia

language. For example, NCL defines attributes that may refer to just one kind of

element or a group of elements. In element media, attribute descriptor can only

refer to descriptor elements, while attribute refer can only refer to media elements.

• Elements inside a composition can not refer to the ones outside the same composi-

tion.

• A composition can not create a nesting loop. That is, it can not nest itself directly

or through other compositions.
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• An element can not create a reuse loop. That is, it can not reuse itself directly or

through other elements.

2.2.2 Behavioral Properties

Behavioral properties are used to verify the existence of inconsistencies in the resulting

spatio-temporal layout of a document, which is given by the combination of the layout

induced by the dynamic semantics of constructs in a multimedia language (among which

we have relations) and properties representing author’s guidelines or exhibition device

characteristics.

The layout of a document is commonly defined in two axes, temporal and spatial.

In the temporal axis, media items are placed in time either with absolute values or in

relation to other media items or event occurrences, such as viewer interactions. In the

spatial axis, media items are placed in relation to the screen size, another media item or

into predefined channels.

Usually, media item positions are defined relative to the screen, in absolute values

(pixels) or relative (percentage) values. Although their initial position is static, it may

change over time. Some multimedia languages allow changing media item position in

response to the occurrence of events in the presentation. Such a change may comprise:

moving a media around by changing, for example, its left/top attributes; or resizing

a media by changing, for example, its width/height attributes. Such changes may be

instantaneous or incremental over a time interval.

It is possible that the resulting spatio-temporal layout does not fit the author’s ex-

pectations due to incorrect use of multimedia language constructs. Author guidelines

represent document expected behaviors and shall be defined together with a document in

order to avoid mismatches between “what the author wants” and “what the author gets”.

We identify in related work the following guidelines:

• Every document element has to be reached during this document execution.

• A document element execution must end.

• The execution of the document as a whole must end. The document execution ends

if every document element presentation ends and there is no execution loop (for

example a media item restarting its presentation every time it ends).
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• Two distinct document elements should not use the same presentation device re-

source (screen position or audio channel, for example) simultaneously, avoiding their

superposition.

Although di↵erent approaches in the literature also identify those behaviors as expected

[Santos et al. 1998,Oliveira et al. 2001,Júnior et al. 2012], they may not be the author’s

intention. For example, if a document represents a game, the author may expect it to

never end its execution.

The previous guidelines represent general guidelines to be applied to every document.

Besides, the author may define specific guidelines for a given document. For example,

he/she may define that two given media objects A and B must be presented one after the

other during document execution. In previous works, we refer to such kind of guidelines

as author-defined properties [dos Santos 2012,dos Santos et al. 2013a].

At authoring/generation, a usual attempt to verify if a document follows the author’s

guidelines is through document simulation. In this process, the author executes the

document several times and, taking the role of the Viewer, observes if the resulting spatio-

temporal layout fits its expectations. This process, however, is usually not e↵ective since

several executions would be necessary for the verification of undesired behaviors, and

may be incomplete, from a correctness perspective, since the computations representing

the document presentation may be infinite. Moreover, in the case where a document

is automatically generated inside a production cycle, simulating the execution of the

document would be costly, if possible.

2.2.3 Structural and Behavioral Validation

Structural inconsistencies arise when a document does not follow the properties presented

in Section 2.2.1. On the other hand, behavioral inconsistencies arise when document

relations and/or author’s guidelines in combination are inconsistent, as presented in Sec-

tion 2.2.2.

The structural validation of a document is important since a structurally inconsistent

document may not be executable or even readable. The structural validation should be

performed before the behavioral one, since the former may turn the latter impossible to

be performed.

In previous works [dos Santos 2012,dos Santos et al. 2013a], we presented an approach

for the structural validation of documents based on an equational theory E = (⌃, E),
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where ⌃ represents the abstract syntax and E the structural properties presented in

Section 2.2.1 of a given multimedia language. Such validation was also refined in recent

works about document validation [dos Santos et al. 2012a, dos Santos et al. 2013b, dos

Santos et al. 2015a]. The validation approach presented here relies on those existent

approaches for the structural validation, thus focusing only on the behavioral one.

The type of behavioral validation provided depends on the type of relations and prop-

erties supported by the validation tool. In this section, in order to illustrate it, we present

a series of small examples of a document d that presents two media items A and B. For

each example, the position of A and B is defined in absolute values. Each figure repre-

sents an example, where the dashed rectangle represents the screen (at some moment) and

solid rectangles represent the region where a media item is presented. Arrows between

two screens represent a time lapse and arrows between regions inside the same screen

represent movement, which can be done incrementally over a time period whose duration

is presented over the arrow.

Case 1. This example describes a static spatial layout, i.e., A and B do not change

their position over time. This case is a pure temporal example, where A is presented (just)

before B in time. Figure 2.3 presents the spatio-temporal layout the author perceives from

document d.

BA t1

Figure 2.3: Case 1 spatio-temporal layout

Considering the above temporal layout example, most of the author’s expectations

can be described with temporal properties. For example, the author may want to ensure

that, for this document, A before B, or that not(A together B). However, it is also

possible for the author to express spatial properties. For example, the author may wish

to ensure that A sideof B, or A samesize B. Since the spatial layout is static, spatial

validation can be done over the initial position of media items.

Case 2. This example involves the change over time of the spatial layout of a mul-

timedia document. In this example, A has a fixed position and B moves across the

screen, changing its position incrementally over t1 time units. Figure 2.4 presents the

spatio-temporal layout the author perceives from document d.

Validating the spatio-temporal layout of such an example is not so simple as statically

validating the spatial layout and, in parallel, validating the temporal layout. For example,
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t1

A
B B

Figure 2.4: Case 2 spatio-temporal layout

suppose the author wishes to ensure that, at some point, while moving across the screen,

B will overlap A. This requires verifying if, in at least one moment during the document

execution, A and B will overlap. Such kind of property has to be encoded by composing

temporal and spatial properties, such as somepoint(A overlap B).

The examples above present documents where (i) the spatial and temporal layout are

independent or (ii) the spatial layout is dependent on the temporal one. As seen above,

we call the second case a spatio-temporal layout.

A purely temporal validation acts just in the temporal axis, verifying the consistency of

temporal relations among media items. On the other hand, a purely spatial validation acts

just in the spatial axis, verifying the consistency of spatial relations among media items.

The spatio-temporal validation acts in both axes simultaneously, considering the case

where media items change their position in relation to time. In our proposal, behavioral

properties can be used for spatio-temporal validation [dos Santos et al. 2015b].



Chapter 3

Related Work

The literature is rich on the discussion about document validation. In general, each work

focuses either on structural or behavioral validation. Therefore, this chapter presents

related work separating structural validation, in Section 3.1, from behavioral validation,

in Section 3.2.

3.1 Structural Validation Works

3.1.1 NCL-Inspector

NCL-Inspector [Honorato and Barbosa 2010] is a tool based on other tools for code quality

critique that supports the author in terms of code quality. The idea behind it is to search

the NCL code for coding problems or even suggesting best programming practices. Its full

documentation [Honorato 2010] presents several best practices identified in NCL authoring

and problems reported by the NCL community.

The code validation, called author inspection, is done following a set of rules. Each

rule corresponds to a coding problem or best practice the author should follow. Every rule

set created can be used to extend the tool capabilities and is stored as a rule repository,

making it possible for authors to exchange rules as needed.

Each rule represents an NCL code pattern and an action to be performed when that

pattern is found. The specification of a rule may be done using XML Stylesheet Language

Transformations (XSLT) [W3C 1999b] and Java languages. During a rule creation, the

author may test it through an available mini-test framework. That framework follows a

Test-driven Development (TDD) approach.
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The validation of each rule can be done either in the document Abstract Syntax

Tree (AST) or over the code text. The idea is to provide a way to validate NCL document

elements as a whole and their hierarchy, or specific text details, for example, the use of

the tabulation character (\t) for code indenting. In the first approach, the document is

parsed creating the AST that represents its XML structure. Then the tool walks through

the AST searching for patterns of existent rules. Whenever a pattern is found, the action

described in the rule is executed presenting an error or warning message to the author. A

similar approach is used when validating the document regarding its code text. In that

case, the di↵erence is that AST is not used.

3.1.2 NCL-validator

NCL-validator is a tool following the validation process presented in [Araújo et al. 2008].

The process, defined for validating documents created with the NCL language, is divided

into four steps called: (1) lexical and syntactic validation, (2) structural validation, (3)

contextual and reference validation, and (4) semantic validation. As we will discuss later,

NCL-validator does not implement the semantic validation step.

The (1) lexical and syntactic validation investigates the lexical and syntactic structure

of the XML document. It searches for XML tags that are not correctly written (e.g., a

tag is not closed) and if there are not tags that are not defined in the NCL language

grammar. The (2) structural validation investigates the structure defined by the XML

elements inside a document. It validates if all NCL elements have only valid attributes and

if the required ones are defined. It also validates if the children of a given NCL element are

correct and in the correct cardinality. The (3) contextual and reference validation checks

if references among elements are correct and if they are in the same scope. It means

that attributes that make reference to other NCL elements must refer to an element that

exists and of the type required in the NCL grammar. Besides, elements must be inside the

same NCL context (which represents a scope). The (4) semantic validation investigates if

document parts are not reached during the document execution. This can happen because

of missing links in the NCL document or alternatives (in content control elements) that

are never evaluated as true. It is worth highlighting that these steps were used as a base

for the set of desirable properties we identified in [dos Santos 2012].

Although NCL-validator is an implementation of that validation process, the semantic

validation step is not implemented. According to the paper, it was left as future work since

it does not endanger the NCL document validation. NCL-validator is used as a library
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by NCL-Eclipse [Azevedo et al. 2009] and NCL Composer [Lima et al. 2010] authoring

tools. When authoring errors are found, the tool returns error or warning messages to

the author identifying the correspondent problem found. It is worth to notice that this is

one of the few validation tools currently available for NCL documents.

Focusing on extending NCL-validator for the incremental validation of NCL docu-

ments, a new version of the tool is presented in [Neto et al. 2011]. Di↵erent from the

prior version, it now defines a metalanguage for representing NCL language grammar

rules. The idea of using such metalanguage is to make the tool independent of the NCL

profile used and possibly the multimedia authoring language used.

This metalanguage is composed by four primitives. The primitive ELEMENT de-

scribes an element of the NCL language. The primitive ATTRIBUTE describes an at-

tribute of a given element. The primitive REFERENCE describes a reference between two

elements. The primitive DATATYPE describes a data type used in an element attribute

and a regular expression that gives its possible values.

The set of primitives describing the grammar of a language (NCL in the case) is used

as a set of rules that must be satisfied by a document. Every rule is applied to the element

it describes and when a rule is not satisfied, an error or warning message is presented to

the author. For the incremental validation of NCL documents, only the rules related to

the elements recently modified and the ones related to them are applied. An additional

structure is used for identifying the elements that have changed since the last validation

and the ones that may be influenced by their changes.

Di↵erent from the work in [Neto et al. 2011] our validation is not intended to be

performed at document fragments, but in the complete document. Moreover, structural

properties are coded directly in the metalanguage elements used to describe NCL, which

makes it di�cult for the user to create its own set of rules, as it is possible in [Honorato

and Barbosa 2010] and in this work.

3.1.3 VAMP

VAMP [Troncy et al. 2010] is an approach to validate MPEG-7 descriptions [ISO/IEC

2001]. The MPEG-7 standard defines a set of constraints to the use of multimedia de-

scriptions. Besides those constraints, the author also has to follow the ones defined by the

MPEG-7 profile [ISO/IEC 2005] in use. However, as stated in [Troncy et al. 2010], those

constraints do not prevent variability in the use of descriptions. Di↵erent descriptions can
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be used with the same meaning and sometimes the same description can be used with

di↵erent meanings, depending on the author and annotation tool used. The idea behind

VAMP is to reduce the variability in the use of MPEG-7 descriptions, therefore, allowing

the interoperability among di↵erent annotation tools. The tool also aims at validating

descriptions use to verify constraints defined by the MPEG-7 standard and the MPEG-

7 profile used. VAMP authors call a violation every time a description is used with a

meaning di↵erent from the one specified in the standard or in the profile used.

Although both MPEG-7 and MPEG-7 profiles define an XML Schema [W3C 2004b], it

is not enough to prevent all possible violations. In [Troncy et al. 2010], the authors present

a set of violations that yield perfectly valid documents with respect to the MPEG-7 XML

Schema. The approach used by VAMP is to use an ontology Web Ontology Language -

Description Logic (OWL-DL) [W3C 2004a] for representing the concepts described in the

standard and profile. Besides the ontology, logical rules (Horn clauses [Baral and Gelfond

1994]) are used to represent the constraints in the use of description elements.

3.1.4 Schema Validation

Whenever a multimedia language is XML-based, language elements and their hierarchy

are usually defined using an XML Schema [W3C 2004b]. A common approach for validat-

ing the structure of an XML document is to use XML Schema-based validators. Those

validators are used to verify if a given document satisfies the restrictions defined in the

language Schema.

It is important to notice, however, that restrictions present in a language Schema are

defined over element types, such as:

• an element of a given type must define a given attribute;

• an element of a given type must have a given element as child;

• the value of a given element attribute must be of a given type (string, number,

another element id, etc).

One can notice that those restrictions do not fit for constraints about element instances,

such as:

• both elements A and B must refer to element C;
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• element A, child of B can only refer to C i↵ C is also a child of B.

That is why XML documents with authoring errors may yield perfectly valid doc-

uments with respect to a language Schema, such as the examples presented in [Troncy

et al. 2010]. This kind of verification is important for our work and other works pre-

sented in this section. That explains why other techniques are used together or not with

Schema-based validators.

3.2 Behavioral Validation Works

We classify the related work presented in this section according to the reasoning principle

applied for document validation. The first group of papers (Section 3.2.1) relates to

validation by investigating the document state over its execution. This may be done by

reachability analysis or the application of axioms over the document state. The second

group of papers (Section 3.2.2) relates to validation by checking the consistency of a set

of constraints. Some of the approaches discussed do not primarily address validation but

could be considered as such.

3.2.1 Reachability of States

3.2.1.1 Santos et al Approach

In [Santos et al. 1998], the authors present an approach for the temporal validation of

multimedia documents. The approach presented in the paper did not assume, a priori,

a specific model to express and compose temporal relations, but used generic authoring

models. The document to be validated is translated, automatically, into the real-time

process algebra framework RT-LOTOS. In order to translate the multimedia document

into Real-Time LOTOS (RT-LOTOS) processes, general mapping rules were used. Also,

the definition of RT-LOTOS process libraries were used for specifying the behavior of

reusable document parts. The modularity and hierarchy of RT-LOTOS allow the combi-

nation of processes specifying the document presentation with other processes modeling

the available presentation platform.

A minimum reachability graph is built from the RT-LOTOS formal specification such

that each node in the graph represents a reachable state and each edge the occurrence of

an event or temporal progression. The validation is achieved by verifying, for example,

if the state corresponding to the end of the presentation can be reached from the initial
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state. Similarly, verifying if a media item will be executed is performed by determining if

a state where it is being executed is reachable from the initial state.

The paper presented di↵erent possible undesired behavior situations to be validated,

which are: qualitative, if they do not depend on an object duration, and quantitative, if

they depend on an object duration. The possible undesired behaviors can also be intrinsic

if they do not depend on the platform where the document is presented and extrinsic if

they depend on it. In the last case, it is considered if platform resources are blocking

or non-blocking. Blocking resources are the ones that can not be used by two objects

at the same time. An audio channel, according to the paper, is an example of blocking

resource. In addition, presentation component delays were also considered. Regarding

those delays, the document behavior may become undesired. The possible undesired

situations listed in the paper were used as a basis for the set of desirable properties

presented in Section 2.2.2 [dos Santos 2012].

The tool presented in [Santos et al. 1998] can verify Nested Context Model (NCM)

[Soares et al. 2000] and SMIL [W3C 2008b] documents. It is worth noticing that the tool

was created for earlier versions of both document types. Besides, the tool itself is not

available for practical tests.

3.2.1.2 caT

The context aware Trellis (caT) system [Na and Furuta 2001] is an evolution of Trel-

lis [Furuta and Stotts 2001] to provide adaptation of a document presentation according

to the user context. Like in Trellis, in caT an author creates a multimedia document

using Petri nets. Each place of the Petri net represents a media item, while transitions

represent synchronization relationships among media items.

The work presented Petri nets as a good candidate for modeling multimedia docu-

ments, since its synchronization is easy to model and allows the validation of document

properties. Basic Petri nets, however, are not convenient for representing and validating

complex systems, since their tokens do not have identity. To overcome this limitation,

the paper proposes Petri nets with identifiable tokens, called High-Level Petri nets.

The caT system provides the separation among document specification and presenta-

tion, allowing multiple presentations for a document specification. To reduce the author-

ing graphical complexity and improve net reuse, caT incorporates hierarchical Petri nets.

The authoring tool supports a tool for the validation of hierarchical Petri nets, through
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its reachability graph.

The validation tool builds the reachability tree of the validated document. The author

defines limit values for the occurrence of dead links (transitions that may not be triggered),

places with token excess, besides other options, as the validation maximum time. Then

the tool investigates the existence of a terminal state, that is, if there is a state where no

transitions are triggered. It also investigates the limitation property, that is, if no place in

the net has an unlimited number of tokens and the safeness property, that is, if each place

in the net has a token. The limitation validation is important since tokens may represent

scarce system resources. It is worth to highlight that the properties validated by caT were

used as a basis for the set of desirable properties presented in Section 2.2.2 [dos Santos

2012].

In the paper the authors also present a browser for the execution of documents created

using caT. This browser takes into account information about the viewer in order to

provide adaptation of the document to be presented. Adaptation is provided with tokens

associated to viewer information. According to the document Petri net, those tokens will

trigger the presentation of specific content.

3.2.1.3 HMBS

Hypermedia Model Based on Statecharts (HMBS) [Oliveira et al. 2001] is a model where

an author creates multimedia applications through statecharts. HMBS is a generalization

of hypertext models based on hypergraphs and, according to the authors, its use can be

seen as a way to encourage a structured development, since the document structure is

defined before content is added to the model. An HMBS presentation is described by a

statechart, where states represent pages (i.e. the information presented to the user) and

transactions and events represent a set of possible link activations.

The validation of an HMBS presentation is performed over a reachability tree, which

is built from the presentation statechart. From the reachability tree, it is possible to

determine if a given page is reachable or not from a given initial state. Similarly, it is

possible to determine if a group of pages is presented simultaneously or not, by searching

state configurations containing the states associated to those pages. The reachability

graph also allows the detection of configurations from which no other page may be reached

or that present cyclical paths.

The reachability graph also allows determining the maximum number of simultaneous
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windows necessary to present the application. Analyzing the graph and determining the

maximum number of active states, it is possible to determine a better layout for the

application. It is worth to highlight that the properties validated by HMBS were used as

a basis for the set of desirable properties presented in Section 2.2.2 [dos Santos 2012].

3.2.1.4 Felix Approach

In [Felix 2004], the author presents a formal approach for the verification of behavioral

properties of concurrent systems. It presents a notation for the description the components

of a system and their temporal constraints. Such a description is transformed into a timed

automata net that indicates the system temporal behavior. Its verification is done through

model checking using UPPAAL [Larsen et al. 1997].

As a use case, this work uses the notation it proposes for the description of NCL

temporal relations and temporal dependencies among nodes and their anchors. Such

a description is transformed into a timed automata net that indicates the document

temporal layout. The transformation creates a state machine for each media item and a

synchronizer machine for each link declared in the document. A synchronizer machine is

used for tying together the occurrence of events in media state machines. In this work,

only presentation and selection multimedia events are considered while creating the timed

automata net representing a given document. Attribution events are not supported. User

interaction itself is modeled as an automaton indicating when the user will interact with

parts of the document.

The validation of an NCL document is performed over the timed automata net that

represents it using temporal logic formulas defined by the author. The work also presents

a tool where the author can define the temporal-logic formulas to be used for validation.

3.2.1.5 Gaggi and Bossi Approach

In [Gaggi and Bossi 2011], authors define a formal semantics for SMIL temporal aspects

through a set of inference rules inspired by Hoare logic. The rules describe the document

state before and after the execution of a given SMIL construct. Thus, in the authoring

phase, the structure of a SMIL document may be enriched with assertions expressing

temporal properties. The validation of the SMIL document, therefore, is based on those

properties.

The verification is done during the authoring phase, whenever the author wants or
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when he saves the application. This is done to diminish the occurrence of error messages

during the application creation. The work presented the choice of inserting temporal

assertions in a SMIL document as a way of diminishing the validation complexity, since

this approach does not require the translation of the document being created to some

formalism and then perform its validation.

The validation of a document is performed by the application of axioms, also defined

in the proposed semantics, that verify if a given construct or set of constructs correctly

changes the document state. Otherwise, it presents to the author the problem found so

it can be corrected. Another application resulting from the defined formal semantics is

the concept of equivalence, which guarantees that two sets of SMIL constructs may be

replaced, without changing the presentation layout.

3.2.1.6 SMIL Builder

In [Bouyakoub and Belkhir 2011], authors present an incremental authoring tool for SMIL

documents called SMIL Builder. It checks the consistency of the temporal layout of a

document whenever the author performs a modification in the document. The idea is to

check if a given change in the document may turn it inconsistent. If so, the change is

rejected and an error report is presented to the author.

Both the incremental editing and consistency checking are supported by the H-SMIL-

Net model [Bouyakoub and Belkhir 2008]. H-SMIL-Net extends Petri Nets in order to fully

represent SMIL temporal concepts. Inconsistencies are detected either by construction

over the Petri Net, for example, more arcs than possible for a transition, or by verification

of the firing times of transitions in the model.

3.2.1.7 Junior et al Approach

In [Júnior et al. 2014], authors propose a model-driven approach for the behavioral

validation of NCL documents. In the proposed approach, NCL documents are translated

into Petri Nets in a two-step transformation. The transformation presented in [Júnior et

al. 2012] is done as follows. In the first step, the document is represented in a language

called FIACRE as a set of components and processes (representing the behavior of a

component). The second step transforms the FIACRE representation into a Petri Net.

The document validation is then performed over the resulting Petri Net using a model-

checking tool and temporal logic formulas representing the properties to be validated.
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Spatial validation is briefly discussed in [Júnior et al. 2012] and is performed over the

document initial positioning.

3.2.1.8 King et al Approach

In [King et al. 2004], they define extensions for the SMIL language allowing document

authors to describe how the spatio-temporal layout should change in reaction to events.

Changes in position and size are described by a set of expressions, which may consider the

state of the presentation. The paper presents an approach for calculating at runtime the

value of such expressions, and therefore spatial layout changes to be performed. Although

such an approach does not refer to validation, it is an interesting example of how to

parameterize the rules that specify the spatial layout of a presentation by time or event

occurrence.

3.2.2 Constraint Checking

3.2.2.1 Bertino et al Approach

In [Bertino et al. 2005], they proposed an authoring model based on constraints. A

document in that model consists of several topics, where each topic is composed by

semantically-related media items. All relations, temporal, layout and structural, are spec-

ified in a single step. So, the document author defines a set of high-level constraints that

will be used by the system to automatically group media items into topics. The pre-

sentation generation process is responsible for three main tasks: consistency checking,

presentation structure generation and topics generation.

The system enlarges the set of constraints with others that, even not explicitly defined,

are consequences of the constraints defined by the author. Consistency checking is then

performed over the constraint set. If an inconsistency arises, the system applies relaxation

techniques, to reduce the constraint set to a consistent one. When such a reduction is not

possible, author review is required.

The presentation structure generation process creates a direct graph that represents

its structure. Each vertex of such graph represents a topic and each edge a connection

between topics. This process always returns a consistent graph, otherwise, the author

should review the declaration. After this step, the system relates media items to topics

and builds, for each topic, the spatial layout and the temporal sequence of media items

belonging to it.
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3.2.2.2 Laborie et al Approach

In [Laborie et al. 2011], they present an approach for the automatic adaptation of the

layout of a document according to the exhibition device. The proposed approach creates

an abstract description of a document that will be used for document adaptation. In such

a description, a document is represented as a set of objects and constraints representing

temporal and spatial relations among objects.

Besides the document itself, the proposed approach also takes into account a profile

comprising device constraints together with viewer preferences. Device constraints may

relate to the ability of the exhibition device to present multiple video objects at a time,

for example.

Given the set of potential document executions Ms given by the abstract description

and the set of potential executions Mp given by the profile, the adaptation process calcu-

lates Ms \Mp to determine if some adaptation is required or not. In case the document

has to be adapted, the goal is to change document relations such that it now complies with

the given profile. Moreover, adaptation is performed such that the (behavioral) distance

from the previous declaration is minimum.

3.2.2.3 Elias et al Approach

In [Elias et al. 2006], they propose an authoring model based on constraints. It defines

two operators, TEMPORAL and SPATIAL, to model temporal and spatial relations,

respectively. Each operator allows the author to define a priority value, so that in order

to maintain the consistency of the constraint set, whenever necessary, constraints are

removed according to this priority value. In case two inconsistent constraints have the

same priority, relaxation techniques are applied to determine the one to be removed.

Besides the verification of inconsistencies among constraints, this approach also enables

the author to verify if the constraint set is incomplete, that is, if there is one or more

media items that are not reached during presentation.

The consistency checking is done by finding the minimum spanning tree T in the

constraint graph. Constraints that create cycles are removed to maintain the acyclic

nature of T. Completeness checking is done by searching all media items reachable from

the first media item. If this search returns the vertex set of T, then all items are reached

directly or indirectly from the initial one. Otherwise, the author has to define constraints

to make the constraint set complete.



3.3 Related Work Comparison 32

With the use of the SPATIAL operator, it is possible to determine if A overlaps B and

vice versa. The spatial consistency is checked the same way as the temporal one. Each

spatial constraint is associated to an interval, such that a given (spatial) constraint has

to be satisfied inside a given interval. Although [Elias et al. 2006] does not define spatial

attributes in function of time, it represents an example of constraint parameterized by

time.

3.2.2.4 Belouaer and Maris Approach

In [Belouaer and Maris 2012], they present an SMT [Barrett et al. 2009] approach for

solving spatio-temporal planning problems. A set of constraints modeling the spatial

disposition of items and their hierarchy is used to describe both the initial state of a given

problem and its goal. Other constraints model actions that change the spatial position of

items.

Actions may define an inherent duration and also at which moment (in time) they

should be applied. By solving the problem, taking into account the constraints represent-

ing actions, it is possible to verify if the goal can be achieved or not. Although this work

does not refer to documents, it is an interesting example on how spatial constraints can

be parameterized by time in order to cover both spatial and temporal dimensions.

3.3 Related Work Comparison

This chapter presented related work considering both structural and behavioral validation

of multimedia documents. The works presented in [Honorato and Barbosa 2010,Araújo

et al. 2008,Neto et al. 2011,Troncy et al. 2010,W3C 2004b] are related to the structural

validation of multimedia documents.

In Section 3.2, behavioral validation approaches are discussed according to the reason-

ing principle applied and its cover in both temporal and spatial axes. Table 3.1 summarizes

those works classification and its position in the document life cycle according to its three

main steps: authoring/generation, instantiation and execution.

The works presented in [Na and Furuta 2001, Oliveira et al. 2001] are related to

the behavioral validation of multimedia documents. However, given that the document

authoring is performed over Petri nets and statecharts, respectively, we may consider

them to implicitly perform the structural validation. The remaining works do not discuss
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[Santos et al. 1998] 3 3 3
[Na and Furuta 2001] 3 3 3 3
[Oliveira et al. 2001] 3 3 3

[Felix 2004] 3 3 3
[Gaggi and Bossi 2011] 3 3 3

[Bouyakoub and Belkhir 2011] 3 3 3
[Júnior et al. 2012] 3 3 3
[King et al. 2004] 3 3 3

[Bertino et al. 2005] 3 3 3 3
[Laborie et al. 2011] 3 3 3 3
[Elias et al. 2006] 3 3 3

This work 3 3 3 3 3*

Table 3.1: Related work comparison

if some kind of structural validation is performed before the behavioral one.

As can be seen in Table 3.1, the works presented in [Santos et al. 1998,Na and Furuta

2001,Oliveira et al. 2001,Felix 2004,Gaggi and Bossi 2011,Bouyakoub and Belkhir 2011]

present a purely temporal approach, where the validation of a document is performed by

investigating its state over its execution. In [Santos et al. 1998, Na and Furuta 2001,

Oliveira et al. 2001, Felix 2004], it is done by reachability analysis, in [Bouyakoub and

Belkhir 2011] it is done by verifying the consistence of the underlying Petri Net and

in [Gaggi and Bossi 2011] by analyzing if the document state changes according to some

axioms. Validation of the spatial layout of a document is not discussed in those papers.

The works presented in [Júnior et al. 2012,Bertino et al. 2005, Laborie et al. 2011]

cover both temporal and spatial dimensions, where the validation of a document is per-

formed by consistency checking over a set of constraints. In [Júnior et al. 2012], the

authors briefly discuss the spatial validation, and present it as performed over the docu-

ment initial positioning. In [Bertino et al. 2005,Laborie et al. 2011], the spatial dimension

is static, since spatial constraints do not change over time. Moreover, reasoning about

time and space is performed as two separated problems.

Finally, the approach we propose in this work and the one presented in [Elias et
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al. 2006] provide a truly spatio-temporal validation, given that spatial constraints may

change over time. Although [King et al. 2004] supports changes in spatial constraints

over time, it is not intended for providing document validation.

The works presented in this chapter act in di↵erent parts of the document life cycle

(Figure 2.2), as seen in Table 3.1, regarding the three main steps: authoring/generation,

instantiation and execution.

Great part of related work, including those related to the structural validation act at

authoring/generation, as expected, since they propose tools or approaches for improving

document authoring. Both [Bertino et al. 2005,Laborie et al. 2011] take into account the

viewer context for providing adaptation for documents prior to its execution and so they

also act at instantiation. The validation provided by such works has a preventive role.

They investigate if the document is executable and if no inconsistency may arise during

execution. Such approaches, however, do not take into consideration the case where a

document is dynamically edited.

[King et al. 2004] is the only work that acts at execution since it proposes a calcula-

tion at runtime of presentation attributes, however, its focus is not document validation.

Finally, the work presented in [Belouaer and Maris 2012] is not taken into account in

Table 3.1 as it is not related to multimedia documents.

In previous works [dos Santos 2012,dos Santos et al. 2013a], we presented a validation

approach for documents that acts at authoring/generation. Such an approach focuses on

both the structural and behavioral validation of document. First it performs the structural

validation and, given that a document is structurally consistent, the behavioral one. The

same approach is presented in this thesis [dos Santos et al. 2012a, dos Santos et al.

2013b,dos Santos et al. 2015a,dos Santos et al. 2015b] where we refine model SHM and

the rewrite theory RWT that will be presented in Chapter 4, providing validation in both

time and space.

Besides the aforementioned approach, we also have experiments about using the vali-

dation approach proposed here for validating documents at execution as will be presented

in Chapter 5. The idea is to provide validation at every step of a document life cycle.

In this work, we focus on the behavioral validation of multimedia documents. As will

be presented in the following chapters, this work extends our previous validation approach

by providing two validation techniques and proposing its use across di↵erent steps of a

document life cycle.



Chapter 4

Proposed Validation Approach

This work follows a formal approach for the validation of multimedia documents. Thus, a

document to be validated is described into a formal representation of its behavior. Such

representation has to be as simple as possible (easing the document representation), yet

expressive (so that it is possible to represent the document behavior).

4.1 Simple Hypermedia Model

The validation approach here proposed is based on a general and abstract model, called

Simple Hypermedia Model (SHM), for representing documents. Model SHM is designed

to address the following requirements:

(i) deal with di↵erent authoring paradigms, such as event-based, constraint-based, etc.;

(ii) allow describing both the temporal and spatial layout of a presentation;

(iii) allow describing spatial attributes in function of time;

(iv) be able to perform document validation at di↵erent steps of the document life cycle.

Model SHM was designed based on the Nested Context Model (NCM) [Soares and

Rodrigues 2005], the conceptual model of NCL. It is simpler than NCM since it aims at

representing only the content and spatio-temporal layout of multimedia documents and

not their structure and some presentation parameters (such as sound level, transparency

and transitions). Thus, several NCM entities are not present in SHM, such as the ones

for defining presentation parameters (descriptors, transitions). In addition, SHM does
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not define composite nodes for improving document logical structure (context nodes) or

content control (switch nodes).

SHM represents the document content by its smallest pieces of information, which

are called fragments.

Definition 1 (Fragment). A document fragment, or fragment for short, represents a

subpart of a document. It may represent (i) a document composition as a whole, (ii) a

subpart of a media item in time or space, or (iii) a document variable.

A subpart of a media item in time represents a subinterval of the media item pre-

sentation interval, possibly the whole media item presentation interval. A subpart of a

media item in space represents a slice of a media item spatial region, possibly the whole

media item region. 4

Both the temporal and spatial layout of a document in SHM are described through

relations among fragments. Similar to NCM, SHM relations can also be defined using

causal relations. SHM temporal and spatial relations are described in Sections 4.1.1 and

4.1.2, respectively.

In previous works [dos Santos 2012,dos Santos et al. 2013a], we proposed a validation

approach based on a rewrite theory we call here RWT . RWT is based on events, such

that the temporal layout of a document is specified through causal relations among event

occurrences in document fragments.

In this work [dos Santos et al. 2012a,dos Santos et al. 2013b,dos Santos et al. 2015a],

RWT was refined in order to improve its e�ciency and diminish the state explosion

problem. Among such improvements we highlight (i) the redefinition of a document

temporal progression, calculating a delta for which the document can be elapsed without

compromising the occurrence of events; and (ii) enabling the user to restrict the number

of interactions to occur over a fragment and using a predefined delay among interactions.

Moreover, we also refined RWT [dos Santos et al. 2015b] enabling it to represent the

spatial layout of a document and defining relations for changing the position of fragments

either instantaneously or incrementally over a time interval. A more detailed description

of RWT refinements is presented in Appendix D.

The spatial layout in RWT is specified by absolute positions of fragments on the

exhibition device. Given that the complete description of a document layout in RWT

must be specified for each instant of the document execution, we say that this approach

works over the whole layout description.
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Targeting on allowing the partial description of a presentation layout, in either tem-

poral and spatial axis, and inspired by related work (See Chapter 3), this work presents an

extension of the SHM model. The SHM’s abstraction level was increased by including

in the model the possibility of defining constraints. The idea is to be able to describe the

presentation layout either through causal relations and/or constraints. Moreover, such an

abstract representation allows us to combine the representation of a given document with

constraints from di↵erent steps in the document life cycle, thus being able to perform the

validation at those di↵erent steps.

This section describes the modeling of multimedia documents for providing document

validation. This is performed through model SHM. Section 4.1.1 presents the model-

ing of temporal aspects of a document, including its temporal relations. Section 4.1.2

presents the modeling of spatial relations between media items. Section 4.1.3 discusses

the representation of variables in SHM and their use together with spatial and tem-

poral relations. Finally, Section 4.2 describes the general architecture for the validation

approach proposed in this work.

4.1.1 Temporal Axis

SHM allows representing relations based on events and on intervals. An event occurrence

represents a viewer interaction, a change in the state of a media fragment presentation or

a change in the value of media fragment attribute.

SHM assigns to each component a state machine representing its presentation, selec-

tion and attribution states. The presentation state machine is associated to media items,

media item fragments and compositions, representing their presentation during execution.

The presentation state of a composition is dependent on the presentation state of its inner

elements. The selection state machine is associated to visual media items (video and im-

age) and its fragments. It represents viewer selection over such elements. The attribution

state machine is associated to document variables and represents changes in their value.

Figure 4.1 presents the state machine used by SHM, which is based on NCM.

sleeping

paused

occurring

stop||abort resume

pause

start

stop||abort

Figure 4.1: State changes

Each fragment presentation starts in the sleeping state. As the presentation unfolds,
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it will eventually change to the occurring state. It remains in the occurring state for a

given period of time, given by its duration. After its duration, it goes back to the sleeping

state. This behavior is called the natural end of a fragment presentation. A similar

behavior is seen for the attribution and selection state machines.

The attribution state machine also starts in the sleeping state and goes to the occurring

state when the correspondent variable has its value changed. It will remain in the occurring

state until the change is complete and then it will go back to the sleeping state. If the

change is instantaneous, then it will spend no time at occurring going automatically

back to sleeping. On the other hand, if the change is continuous, due to an animation

for example, than it will remain in the occurring state until the change is done, or the

animation finishes, for example. It is worth noticing that intermediate values can be

accessed. It means that the player does not need to wait until the attribution state

machine goes back to the sleeping state to check a variable value.

The selection state machine also starts in the sleeping state and goes to the occurring

state when the viewer selects a component. It will remain in the occurring state until

the viewer ends the selection, i.e., the button is released, and then it will go back to the

sleeping state.

Given the behavior presented above for state machines, it is possible to project a

fragment presentation, attribution or selection in the time axis. Figure 4.2 presents the

projection of a fragment presentation in the time axis. In the figure, an interval If

indicates when fragment f is presented along the document presentation. In the example

shown in Figure 4.2, interval IA is associated to fragment A.

sleeping

occurring

sleeping

IA

I

�
A I

+
A time

Figure 4.2: Fragment projection

Interval IA endpoints (I�A and I

+
A ) represent the begin and end times of the pre-

sentation of fragment A, according to its definition in a document. As it can be seen

in Figure 4.2, A is in the occurring state inside interval IA and in the sleeping state

elsewhere.

During its presentation, it is possible for a fragment to be paused, thus entering the

paused state. It occurs due to relations specified in the document, which may take into
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account viewer interaction. While in the paused state, a fragment remains being presented

and its duration counting clock is interrupted. Once paused, a fragment can go back to the

occurring state according to relations specified in the document. Figure 4.3 modifies the

example shown in Figure 4.2 by pausing fragment A for x seconds starting at t1 seconds

after its begin time. In the figure, interval Ifp represents the amount of time fragment f

remains paused.

sleeping

occurring

paused

oc.

sleeping

IA

IAp

I

�
A

I

�
Ap

I

+
Ap

I

+
A

t1 x

time

Figure 4.3: Paused fragment projection

As it can be seen in Figure 4.3, fragment A is in the paused state inside a given

projection IAp (I�Ap
 t  I

+
Ap
) and either in the occurring or sleeping state elsewhere. In

theory, selection and attribution state machines support pausing a viewer selection and

an attribution, respectively. However, although theoretically possible, there is currently

no real use for pausing a viewer selection or attribution. Therefore, both attribution and

selection are represented just by a projection indicating when they are in the occurring

state.

From Figure 4.3, it is possible to notice that, given the existence of a “pause interval”,

the resulting duration of interval IA will be its original value plus the duration of IAp .

It is possible for fragments to have an infinite duration. It can be achieved by two

ways:

(i) a media item does not have an inherent duration (e.g., an image) and no temporal

relation defines a duration for it;

(ii) a media item has an inherent duration, but once paused, it never returns to the

occurring state.

In the second case, although an interval If , representing media fragment f , has an inherent

duration, it will be infinite, given that Ifp is infinite. A similar behavior arises when a

fragment is paused once again whenever it resumes its presentation, in some kind of “pause

loop”. This sequence of pause intervals, however, can be seen as just one pause interval

with an infinite duration.
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Given the possibility of projecting an element over the temporal axis, we are able to

express relations in time either by Allen’s relations [Allen 1983] between time intervals

and/or causal relations among events. In Figure 4.4 we recall the set of Allen relations,

where rectangles represent time intervals.

A

B

A before B

A

B

A meets B

A

B

A overlaps B

A

B

A starts B

A

B

A during B

A

B

A finishes B

A

B

A equals B

Figure 4.4: Allen’s relations between time intervals

Causal relations are described among the occurrence of events. A causal relation

{✏1, . . . , ✏m} ! ✏n

expresses that event ✏n will occur when the first event in {✏1, . . . , ✏m} occurs. If no event

in {✏1, . . . , ✏m} occurs during document execution, event ✏n will not occur either.

Causal relations may be applied from time to time whenever the document presen-

tation reaches a configuration where an event occurs. During presentation, events may

occur when the state of document fragments change. Such changes are produced either

by the natural end of a fragment presentation, viewer interaction or as a result of the

application of causal relations.

Figure 4.5 presents an example of temporal layout composed by two out of three

media fragments. Media fragment m1 is presented since the beginning of the document

presentation and when it ends, eitherm2 orm3 will be presented. The choice is done taking

into account the number of times viewer interactions are performed over m1 (represented

as # in the figure). Given that the viewer selects m1 less than three times, m2 is presented,

otherwise, m3 is presented.

m1

m2 / m3

s1 s2 s3
. . .

sn

time

Figure 4.5: Presentation example

In this example, besides fragments, intervals are used to represent predicates. In this
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case, two predicates are represented: p1 : s < 3 and p2 : s � 3, where s represents

the amount of times m1 is selected. Interval Ip1 , representing predicate p1, starts at the

beginning of the document presentation and ends with the occurrence of event s3 or with

the end of the document presentation. Interval Ip2 , representing predicate p2, starts with

the occurrence of event s3 and ends with the end of the document presentation. Such

behavior is represented by causal relations {s3, I+D} ! I

+
p1

and s3 ! I

�
p2
, where ID is an

interval representing the whole document presentation and endpoint I

+
D represents the

document presentation end. Figure 4.6 presents the two possible temporal layouts for

this example.

Im1

Im2

Ip1

ID

s1 s2

time

(a) One or two selections

Im1

Im3

Ip1
Ip2

ID

s1 s2 s3
. . .

sn

time

(b) Three or more selections

Figure 4.6: Possible temporal layouts

In Figure 4.6a, given that only two selections occurred, i.e., s3 did not occur, then

interval Ip1 ends with the document. Thus, interval Im2 is presented. In Figure 4.6b,

given that three or more selections occurred, i.e., s3 did occur, then interval Ip1 ends

with s3 and interval Ip2 starts with s3 and ends with the document. Thus, interval Im3 is

presented.

4.1.2 Spatial Axis

In the spatial axis, fragments are represented as rectangular regions. The region position

and size is given by the author directly or by spatial relations. Relations in space are

expressed by Randell, Cui and Cohn (RCC) relations [Randell et al. 1992]. RCC relations

are presented in Figure 4.7, where rectangles represent spatial regions.

Although RCC relations enable regions to be arranged in space, they may not be

enough to represent the exact spatial layout expected by an author. Suppose, for example,

the four configurations presented in Figure 4.8. Each example represents a di↵erent spatial

layout relating media fragments A and B.

It is worth noticing that all examples can be described by relation pover , since in each
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A

B

A dcon B

disconnected

A

B

A econ B

externally connected

B

A

A pover B

partially overlapping

B

A

B

A tpp B

tangential proper part

B

A

B

A ntpp B

non-tangential proper part

A/B

A equal B

Figure 4.7: RCC spatial relations between active regions

BA

B

A

B

A

B

A

Figure 4.8: Possible cases of A pover B

one A partially overlaps B. However, they cannot be considered the same spatial layout

since A and B assume di↵erent relative positions in each example.

To be able to describe the relative position between regions, we extended RCC spatial

relations (except equal), so that relations are parameterized by the angle between region

centers [dos Santos et al. 2015b]. Moreover, relations dcon, pover and ntpp are also

parameterized by the distance between region centers. The angle and distance between

two regions are calculated as presented in Figure 4.9. It presents two disconnected regions

A and B with A being at an angle ↵ and distance d with respect to B.

A

B

d

↵

Figure 4.9: Angle and distance between regions

We represent such an example by the formula A dcon(↵, d) B. Angle ↵ can be

described in degrees or, if such precision is not necessary, by an (intra)cardinal direction.

Thus, the example of Figure 4.9 may also be represented by the formula A dcon(NW , d) B.
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If the direction information is given as a(n) (intra)cardinal point, the angle is given

as follows.

E = 0, NE = 45, N = 90, NW = 135,

W = 180, SW = 225, S = 270, SE = 315 (4.1)

for each of these angles, a delta of 22.5 is considered. In case the angle is defined as a

number, the delta is considered as 0. For each relation using an angle, constraints about

the angle among regions are applied. Moreover, if a precise distance is not necessary, d

may be omitted from the formula. Such idea is depicted in Figure 4.10.
N

S

E

NE

SESW

W

NW
N

S

E

NE

SESW

W

NW 22,5

67,5112,5

157,5

202,5

247,5 292,5

337,5

Figure 4.10: (Intra)Cardinal directions

4.1.3 Variable Handling

Multimedia documents often use variables to store information useful for building the

spatio-temporal layout of a presentation. For example, in the document presented in

Figure 4.6, a variable is used to store the number of interactions performed by the viewer.

SHM represents variables the same way it represents media fragment attributes.

As presented in Section 4.1.1, an attribution state machine holds the state of a variable

and its value. Whenever the value of a variable is changed, the state of the attribution

state machine associated to it goes from sleeping to occurring and back to sleeping state.

Given that changes in the value of variables are usually instantaneous, the state machine

does not remain in the occurring state as it happens with selection state machines.

During presentation, it is possible for variables to change their value. A common way

to achieve it is to declare relations that change the value of a variable in response to an

event occurrence. This change can be either discrete, or incremental over a time interval.

In the latter, the relation provides, together with the new values, the duration for the

change and the increment by which values have to be changed.

In SHM there are two relations to define the value of a variable, relations set and

animate. Both relations may be associated to time intervals, so that a variable a has
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its value equals to v inside an interval I, similar to what is done in [Belouaer and Maris

2012]. Figure 4.11 depicts this idea.

a =? a = v

a =?
I

time

Figure 4.11: Value in relation to time

Relation set defines a discrete value change. Relation animate defines an incremental

change over interval i by defining the value of a variable as a polynomial1 of order n > 1

with the time t 2 [0, i.duration] as the polynomial’s variable. Time value t is calculated

in function of the global presentation time as t = T � i.init . Time values t are calculated

according to the number of increments for the value change. It is worth noticing that each

incremental change acts like a discrete one, i.e., the state of the attribution state machine

associated to the given variable goes from sleeping to occurring and back to sleeping state,

as discussed before.

In time, intervals represent predicates over the value of variables. An example is pre-

sented in Figure 4.6 where two intervals were used to represent that the viewer interacted

with the presentation less than three times (p1) or three or more times (p2).

In the spatial dimension, variables are used to represent positioning attributes. By

using relations set and animate presented above, SHM models changes in the spatial

layout of a document in relation to time. Moreover, the use of a polynomial for defining the

value of a positioning attribute is interesting since it brings the possibility to represent

complex animations such as the ones provided by SMIL/SVG animation [W3C 2008b,

W3C 2011] or Web Animations [W3C 2014]. In such an approach, animation paths,

keyframes and so on, are represented by polynomial interpolation.

4.2 Validation Approach Architecture

As it could be seen previously in this chapter, from model SHM it is possible not only to

reason about document fragments in terms of their state along the presentation, but also

about their projections in the temporal axis (as intervals). SHM allows the description

of relations both as causal relations over event occurrences or as constraints over intervals.
1Polynomials were chosen for relation animate so that changes in the value of a given variable due to

complex animations (for example moving an item along a path) may be represented (aproximated) by
polynomial interpolation.
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For validation purposes, therefore, we may get from SHM two representations of a

document. One in terms of its state along the presentation, and another in terms of its

intervals. We consider that the document state comprises the state of all media fragments

and variables declared in a document. Moreover the “state of a media fragment” is

considered to be not only its presentation state in time, but also its position in space.

Figure 4.12 depicts the general architecture of the proposed validation approach.

L1 L2 . . .

Ln

SHM

⌧

RWT

⌧

SMT

RWT SMT

Figure 4.12: Validation approach architecture

Figure 4.12 highlights the role of the SHM model, as an abstract representation

for the purpose of validating documents described with di↵erent authoring paradigms

(documents specified in languages L1 to Ln), as discussed in the beginning of this section.

In order to take advantage of the two possible representations for a document, the

validation approach we propose in this work is composed of two subparts, as seen in

Figure 4.12.

The first part produces from the SHM model, through transformation ⌧

RWT

, a rep-

resentation of a document in terms of its states. The resulting representation is described

into a rewriting theory we call RWT [dos Santos et al. 2013b,dos Santos et al. 2015a,dos

Santos et al. 2015b]. In theory RWT , document fragments are represented as state

machines and causal relations are modeled as equations that change their state along

document presentation. Moreover, temporal constraints are modeled as linear temporal

logic formulas and validation is performed through model-checking.

The second part produces from the SHM model, through transformation ⌧

SMT

, a rep-

resentation of a document in terms of intervals. The resulting representation is described

as a set of SMT formulas we call SMT . In SMT , document fragments are represented as

projections in the temporal and spatial axis along document presentation. Both causal

relations and constraints are represented as SMT assertions and validation is performed

through SMT solving [Moura and Bjørner 2011].
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The SHM model is built to cover both approaches RWT and SMT . RWT is more

suited for expressing documents where events and di↵erent occurrences of media frag-

ments are an important feature. On the other hand, SMT is more suited for expressing

documents where numeric dependencies among media fragment intervals represent an

important feature.

Besides its power of expressiveness, the choice for a given approach may depend on

its e�ciency and the type of validation to be performed. Thus, according to where in the

presentation life cycle validation is performed, one approach or the other is chosen. A

discussion about the use of each approach is presented in Section 5.6.1.

The following sections present both RWT and SMT in more details, together with

translations ⌧
RWT

and ⌧

SMT

, respectively.

4.3 Validation Based on Document State

As presented in Section 4.1, from the SHM model, we can get a representation of a

document in terms of its states [dos Santos et al. 2013b,dos Santos et al. 2015a,dos Santos

et al. 2015b]. It is done by describing a given document as a rewriting theory [Meseguer

2012]. We call such approach RWT . In this section, we present how the representation

d

RWT

is obtained from document d through transformation ⌧

RWT

(d).

The formalization presented in this section relies on the Rewriting Logic calculus

and model checker evaluation. On Appendix B, we present an overview of the necessary

Rewriting Logic elements to explain our approach (its calculus, rewrite theories modulo

associativity, commutativity and identity axioms, and reflective metatheories) and the

Maude language, an implementation of Rewriting Logic.

RWT describes the general behavior of multimedia documents as a rewrite theory

R
RWT

= (⌃, E,R) where ⌃ and E denote the document structure, and R denotes the

(possibly) non-deterministic behavior of a document. Intuitively, the deterministic be-

havior of the application of causal relations is captured by E and the non-determinism

induced by viewer interaction and time is captured by R. For a given document d, a the-

ory d

RWT

extends R
RWT

providing document specific information, such as the fragments

and causal relations declared by document d. The following section presents theory R
RWT

in details.



4.3 Validation Based on Document State 47

4.3.1 Rewrite Theory R
RWT

In RWT , document fragments, i.e., compositions, media items, media fragments and

variables, are represented by information units, or units for short. Document relations

(rel for short) define a temporal order for the presentation of units. The representation

of a given document in R
RWT

is presented in Definition 2.

Definition 2 (R
RWT

). The representation of a document through its state is specified

in Rewriting Logic as the theory

R
RWT

= (⌃, E,R)

where ⌃ represents the signature of R
RWT

, E its equational part and R its rules. ⌃ de-

clares sortsMachineType,MachineState, ClockVal and sort UnitAtt , subsort of Component ,

whose elements are constructed with operators state, occur, clock and value. Terms of

Conf , representing the document state as a whole, are formalized as a set of components,

using the set constructor Set{Component}, and a number representing a global clock.

The set constructor in Maude allows rewriting modulo associative, commutative, idem-

potence and identity (constant empty) as discussed in Section B.4. Sorts MachineType,

MachineState, UnitAtt , Component and Conf are declared in Maude as follows:

1 s o r t s MachineType MachineState ClockVal UnitAtt Component .

2 subsor t UnitAtt < Component .

3 subsor t InfNat < ClockVal .

4

5 ops pre s e l a t t : �> MachineType [ c to r ] .

6 ops s l e e p i n g occur r ing paused : �> MachineState [ c to r ] .

7 op none : �> ClockVal [ c to r ] .

8

9 op value : Qid InfNat �> UnitAtt [ c to r ] .

10 op value : Qid St r ing �> UnitAtt [ c to r ] .

11 op s t a t e : Qid MachineType MachineState �> UnitAtt [ c to r ] .

12 op occur : Qid MachineType InfNat �> UnitAtt [ c to r ] .

13 op c l ock : Qid MachineType ClockVal �> UnitAtt [ c to r ] .

14

15 op < | > : InfNat Set{Component} �> Conf [ c to r ] .

16

17 op dur : Qid MachineType �> InfNat .

⌃ also declares sorts EventTransition and Action, both subsort of Component . Elements

of sort EventTransition are constructed with operators init, end, hang, halt and return.

Elements of sort Action are constructed with operators start, stop, abort, pause and

resume. Both sorts are declared in Maude as follows:

1 s o r t s EventTrans i t ion Action .

2 subsor t EventTrans i t ion Action < Component .

3

4 ops i n i t end hang ha l t re turn : Qid MachineType �> EventTrans it ion [ c to r ] .

5 op key : Qid St r ing �> EventTrans it ion [ c to r ] .

6 ops s t a r t stop abort pause resume : Qid MachineType �> Action [ c to r ] .
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E gives the semantics of elements of sorts UnitAtt and Action as a set of equations.

Equations natural, start, stop, abort, pause and resume are declared as follows:

1 vars N M : InfNat . var ID : Qid . var MT : MachineType .

2

3 eq [ natura l ] : s t a t e ( ID ,MT, occur r ing ) occur ( ID ,MT,N) c l ock ( ID ,MT, 0 ) = s t a t e ( ID ,MT, s l e e p i n g ) occur (

ID ,MT, s N) c l ock ( ID ,MT, none ) end ( ID ,MT) .

4

5 ceq [ abort ] : abort ( ID ,MT) s t a t e ( ID ,MT, occur r ing ) c l o ck ( ID ,MT,M) = s t a t e ( ID ,MT, s l e e p i n g ) c l o ck ( ID ,

MT, none ) hang ( ID ,MT) i f M > 0 .

6 ceq [ abort ] : abort ( ID ,MT) s t a t e ( ID ,MT, paused ) c l ock ( ID ,MT,M) = s t a t e ( ID ,MT, s l e e p i n g ) c l o ck ( ID ,MT,

none ) hang ( ID ,MT) i f M > 0 .

7 eq [ abort ] : abort ( ID ,MT) s t a t e ( ID ,MT, s l e ep i n g ) = s t a t e ( ID ,MT, s l e e p i n g ) .

8

9 eq [ pause ] : pause ( ID ,MT) s t a t e ( ID ,MT, occur r ing ) = s t a t e ( ID ,MT, paused ) ha l t ( ID ,MT) .

10 eq [ pause ] : pause ( ID ,MT) s t a t e ( ID ,MT, paused ) = s t a t e ( ID ,MT, paused ) .

11 eq [ pause ] : pause ( ID ,MT) s t a t e ( ID ,MT, s l e e p i n g ) = s t a t e ( ID ,MT, s l e ep i n g ) .

12

13 eq [ resume ] : resume ( ID ,MT) s t a t e ( ID ,MT, paused ) = s t a t e ( ID ,MT, occur r ing ) re turn ( ID ,MT) .

14 eq [ resume ] : resume ( ID ,MT) s t a t e ( ID ,MT, occur r ing ) = s t a t e ( ID ,MT, occur r ing ) .

15 eq [ resume ] : resume ( ID ,MT) s t a t e ( ID ,MT, s l e e p i n g ) = s t a t e ( ID ,MT, s l e e p i n g ) .

16

17 eq [ s t a r t ] : s t a r t ( ID ,MT) s t a t e ( ID ,MT, s l e ep i n g ) c l o ck ( ID ,MT, none ) = s t a t e ( ID ,MT, occur r ing ) c l o ck ( ID

,MT, dur ( ID ,MT) ) i n i t ( ID ,MT) .

18 eq [ s t a r t ] : s t a r t ( ID ,MT) s t a t e ( ID ,MT, occur r ing ) = s t a t e ( ID ,MT, occur r ing ) .

19 eq [ s t a r t ] : s t a r t ( ID ,MT) s t a t e ( ID ,MT, paused ) = s t a t e ( ID ,MT, paused ) .

20

21 ceq [ stop ] : stop ( ID ,MT) s t a t e ( ID ,MT, occur r ing ) occur ( ID ,MT,N) c l ock ( ID ,MT,M) = s t a t e ( ID ,MT,

s l e e p i n g ) occur ( ID ,MT, s N) c l ock ( ID ,MT, none ) end ( ID ,MT) i f M > 0 .

22 ceq [ stop ] : stop ( ID ,MT) s t a t e ( ID ,MT, paused ) occur ( ID ,MT,N) c l ock ( ID ,MT,M) = s t a t e ( ID ,MT, s l e ep i n g )

occur ( ID ,MT, s N) c l ock ( ID ,MT, none ) end ( ID ,MT) i f M > 0 .

23 eq [ stop ] : stop ( ID ,MT) s t a t e ( ID ,MT, s l e e p i n g ) = s t a t e ( ID ,MT, s l e e p i n g ) .

R declares rule step as follows:

1 var SC : Set{Component} .

2

3 op dt : Set{Component} �> InfNat .

4 op e l ap s e : Set{Component} InfNat �> Set{Component} .

5 op d i s ca rd : Set{Component} �> Set{Component} .

6 ops check a c t i v e : Set{Component} �> Bool .

7

8 c r l [ s tep ] : < N | SC > => < N + dt (SC) | e l ap s e ( d i s ca rd (SC) , dt (SC) ) > i f check (SC) and ac t i v e (SC)

and min (N,max) == N .

it is worth noticing that the document execution is bound to a maximum duration specified

(by the user) in constant max. Document dependent information is provided by the

constructors max, ini, doc declared as follows:

1 op max : �> Nat .

2 op i n i : �> Action .

3 op doc : �> Set{Component} .

4

5 op run : �> Conf .

6 eq run = < 0 | i n i , doc > .

constructor run is a macro for constructing the document’s initial state. 4

Lemma 1. The set of equations E is Church-Rosser and terminating.

Proof. (Sketch.) By construction, through document transformation, there are no two

elements constructed with operators state, occur, clock or value, having the same id
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and machine type (when applicable). Moreover, links are built in a way that it is not

possible to have two elements of sort Action with the same id.

Hence, equations in E have disjoint left-hand sides and therefore no critical pairs to

be joined arise.

Lemma 2. The set of rules R is coherent with respect to E.

Proof. (Sketch.) R defines conditional rule step, whose condition includes function check.

Such a function verifies if function elapse was already applied (i.e., the document con-

figuration does not contain elapse at the top), if the set of components has no element

of sort Action and no element clock with value 0.

Hence, the rule step can only be applied after equations in E have been applied.

Therefore R is coherent with respect to E.

Theorem 1. The theory R
RWT

is preregular, Church-Rosser, sort-decreasing and coherent

Proof. (Sketch.) R
RWT

is Church-Rosser and coherent by Lemmata 1 and 2. The proof

of preregularity and sort-decreaseness is done by structural induction over terms in T⌃,E

by verifying that each term has a least sort.

The proof for Theorem 1 was automated by the application of the Church-Rosser

checker tool provided by the Maude Formal Environment (MFE) [Durán et al. 2011].

The use of MFE together with the validation approach presented in this work is a future

work. It is worth noticing that the proof is related to the part of the specification that is

document independent.

Theory R
RWT

represents the behavior of a document, with ⌃ providing constructors

for representing the state of a document, which is comprised by the states of units ; E

represents the behavior of parts of the document in terms of causal relations, and R

represents the behavior of the document presentation as a whole.

Every unit, representing a document fragment, is associated with event state machine

configurations that represent state information for a given unit. Every information about

a unit is represented in ⌃ as an element of sort UnitAtt . It declares operators state,

occur, clock and value, to represent respectively the unit ’s state, occurrences counter,

countdown clock (to register the amount of time it will remain in the occurring state) and

value (in case it represents a document variable). Thus it describes the state machines

for representing an element presentation, selection and attribution states. Such state
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machines follow the one presented in Figure 4.1. We repeat that figure here to improve

this section readability.

sleeping

paused

occurring

stop||abort resume

pause

start

stop||abort

Figure 4.13: State changes

It is worth noticing that every attribute is parameterized by the unit identification and

the type of the state machine configuration (i.e., presentation, selection or attribution),

except for value, which is used only for variables. In this case, the (attribution) type is

implicit.

A given document declares relations (rel for short) to define a temporal order for

the execution of its units. In SHM, relations are defined through causal relations or

contraints. In RWT , we represent only causal relations for defining the temporal order

for the execution of units. Constraints, as will be discussed later, are used for describing

the expected behavior of a document. A rel has a condition to be satisfied before the

relation is applied. This condition is triggered by event transitions and when the rel

condition is satisfied, a set of actions is executed. Event transitions and rel actions are

represented respectively as elements from sorts EventTransition and Action.

The semantics of units and actions are defined in E as a set of equations. Equa-

tion natural represents the natural end of units, while equations start, stop, abort,

pause and resume declare the semantics of its homonymous state changes as presented

in Figure 4.1.

The occurrence of such changes in the state machine of a given unit produces e↵ects,

besides in its state, in its countdown clock and occurrences counter. The semantics,

therefore, of such state changes are defined as follows.

• whenever a start action is fired on a state machine its state changes to occurring

and its countdown clock is set to the unit duration;

• whenever a pause action is fired on a state machine its state changes to paused and

its countdown clock is paused;

• whenever a resume action is fired on a state machine its state changes to occurring

and its countdown clock is resumed;
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• whenever a stop action is fired on a state machine its state changes to sleeping, its

countdown clock is set to zero and its occurrences counter is incremented;

• whenever an abort action is fired on a state machine its state changes to sleeping

and its countdown clock is set to zero;

Rels are represented as equations in E, whose condition is represented in terms of event

transitions and unit attributes in the left-hand side of the equation, while the actions to

be performed are declared in the right-hand side of the equation. The rel example below

starts the presentation of unit u2 and changes the value of unit u3 to “bog”, when the

presentation of unit u1 reaches its end and the value of unit u3 is equal to “foo”.
1 eq [ r e l ] : end ( ’ u1 , pre ) value ( ’ u3 , ‘ ‘ foo ’ ’ ) = s t a r t ( ’ u2 , pre ) s t a r t ( ’ u3 , a t t ) value ( ’ u3 , ‘ ‘ bog ’ ’ ) .

Listing 4.1: Rel example

It is worth highlighting that (i) whenever a rel is applied, it consumes an event transition,

(ii) a rel action will be applied only if its target unit is in a state where it can be applied

(e.g., a start action can only be applied to a unit in the sleeping state), and (iii) the

application of a rel may trigger the application of another rel.

The behavior of the document as a whole in R
RWT

is given by R with rules. Rule

step performs a temporal progression in the document presentation. User interaction, on

the other hand, may occur at any moment during the presentation of a unit. To simulate

user interaction, for each interaction enabled unit u auxiliary units uaux represent delays

from the beginning of the presentation of u to the moment the user interacted with it.

The number of auxiliary units uaux to be created is defined by the user. Rules for user

interaction, therefore, will trigger the selection of u whenever a uaux ends its presentation.

Theory R
RWT

is represented as a Maude module RRWT, which represents the general

behavior for multimedia documents. The complete description of module RRWT is pre-

sented in Appendix E. For each particular document, we declare another module that

extends theory R
RWT

defining the document initial configuration in terms of its units,

its rels, interaction rules, an initial action and information about unit ’s duration. The

document initial configuration and unit ’s duration are declared by equations that use op-

erators doc and dur, respectively. An initial action for starting the document execution is

declared by an equation that uses operator ini. Document rels are specified as equations

as seen in Listing 4.1.

Listing 4.2 presents parts of a Maude module representing a document. The complete

example is presented in Appendix F.
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1 mod ’JOAO i s

2 in c lud ing ’BOOL .

3 in c lud ing ’RNCL .

4 s o r t s none .

5 none

6 none

7 none

8 eq ’ doc . Set ‘{Component ‘} = ’ ‘ , [ ’ ‘ , [ ’ s t a t e [ ’ ’ animation . Qid , ’ pre . MachineType , ’ s l e e p i n g .

MachineState ] , ’ ‘ , [ ’ occur [ ’ ’ animation . Qid , ’ pre . MachineType , ’ 0 . Zero ] , ’ c l o ck [ ’ ’ animation . Qid , ’ pre

. MachineType , ’ none . ClockVal ] ] ] , . . . ] [ none ] .

9

10 eq ’ dur [ ’ ’ animation . Qid , ’ pre . MachineType ] = ’ s ˆ 7 1 [ ’ 0 . Zero ] [ none ] .

11 . . .

12

13 eq ’ i n i t [ ’ ’ body . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ animation . Qid , ’ pre . MachineType ] [ none ] .

14 . . .

15

16 r l ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType ] ] ] =>

17 ’< | > [ ’T: InfNat , ’ d i s ca rd [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ key [ ’ ’ i con . Qid , ’ ”RED” . St r ing ] ] , ’

s t a r t [ ’ ’ i con . Qid , ’ s e l . MachineType ] ] ] ] [ l a b e l ( ’ i con+s e l e c :RED) ] .

18

19 r l ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType ] ] ] =>

20 ’< | > [ ’T: InfNat , ’ d i s ca rd [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ key [ ’ ’ i con . Qid , ’ ”RED” . St r ing ] ] , ’

s t a r t [ ’ ’ i con . Qid , ’ s e l . MachineType ] ] ] ] [ l a b e l ( ’ i con+s e l e c :RED) ] .

21 endm

Listing 4.2: Document example

Let us take as example element ’animation in line 8. It declares a unit for representing

a video media item. Such unit is built with constructions state, occur and clock

2.

Equation dur in line 10 represents the duration of such a video and the equation in

line 13 starts ’animation’s presentation when the document starts its presentation. Both

rules in lines 16 and 19 represent user interaction with unit ’icon3.

4.3.2 Modeling Spatio-temporal Relations

Variables are used (but are not limited) to store the position of units in RWT . A given

variable represents the value of a given positioning attribute - left, top, width or height.

To be able to relate a given variable to a unit, RWT provides functions left , top, width

and height , defined as follows:

left , top,widht , height : MedId ! VarId (4.2)

where MedId and VarId are sets of identifiers for media items and variables in SHM,

respectively. Thus, we can evaluate the value of the left attribute of unit A, by evaluating

the value of the unit whose id is left(A).

2Constructors state, occur and clock are metarepresented by operations ’state[...], ’occur[...]
and ’clock[...], respectively. Moreover, operator ’ ‘, [...] is the metarepresentation for the set
formation constructor , .

3Operator ’< | >[...] is the metarepresentation for a configuration in R
RWT

.
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Causal relations are used in RWT for changing the position and/or size of a unit, by

changing the value of its positioning attributes. This change can be either discrete, or

incremental over a time interval as seen in Section 4.1.3.

In case the change is incremental, the relation provides, together with the new values,

the duration for the change and the increment by which values have to be changed. Such

relations are modeled in RWT by adding an auxiliary unit to represent the delay between

two incremental changes. For example, suppose the following causal relation.

[r ] A.begin !
(

B.left := 400

during : 4s by : 10px

)
if B.left == 0

It states that whenever the document reaches a configuration where media item A

begins its presentation and B’s left position is equal to 0, B’s positioning attribute left

changes its value by an increment of 10 pixels for 4 seconds. The left value changes 400

pixels, with an increment of 10 pixels, thus 40 incremental changes are produced over 4

seconds. Therefore each change occurs at each 0.1 seconds.

For representing such an example, a unit C will be created to represent the delay

between changes with a duration of 0.1 seconds. It will start its presentation at the first

time the value is changed and will be restarted as each increment is performed. The

following rewrite rules represent such behavior.

[r
init

] A.pre.begin !

8
>><

>>:

left(B).att .start ,

left(B).value + = 10,

C.pre.start

9
>>=

>>;
if left(B).value == 0 (4.3)

[r inc] C.pre.end !

8
>><

>>:

left(B).att .start ,

left(B).value + = 10,

C.pre.start

9
>>=

>>;
if C.pre.occur < 40 (4.4)

where operation + = represents an increment operation over the value of variables.



4.3 Validation Based on Document State 54

4.3.3 RWT Document Validation

Given a document d, according to Section 4.3.1, d
RWT

is the metarepresentation of a

rewriting logic theory representing d, where d

RWT

includes the rewriting theory R
RWT

.

Metaterm d

RWT

represents a Maude module and declares the initial state of document

d with an equation for operator doc and the initial action for starting the document

execution with an equation for operator ini. The initial term t0, that represents the

initial state of d is built as follows

t0 = < 0 | doc, ini >

Maude allows us to either rewrite or search term to. The rewrite command chooses

one of the possible traces of a term rewrite. However, opposite to equations, rules may

be non-deterministic, thus producing concurrent rewrites. In Maude we can search in the

“space state” of a term rewrite using command search.

Therefore, we can validate the behavior of a document in three possible ways. (i) Using

the rewrite command to simulate document d, presenting one possible presentation for it.

(ii) Using the search command to present all possible presentations of d or to present traces

that leads the document state to the pattern defined in the search command. (iii) Using

the modelCheck command to verify the existence of a given behavior in every possible

execution of d.

Theory d

RWT

induces a transition system S
RWT

= (S,!), where the state in S are

terms in the equational theory (⌃, E) of R
RWT

and the transition relation ! is captured

by the rules in R of R
RWT

. Therefore, a given document presentation is captured by

computations in S
RWT

and therefore as rewrites in R
RWT

. A one step rewrite in R
RWT

corresponds exactly to a transition in S
RWT

.

As seen before, SHM declares relations either as causal relations or constraints.

Causal relations in RWT are used for defining the temporal order of units. Constraint

relations, on the other hand, are used for describing the expected behavior of the docu-

ment.

SHM temporal and spatial relations (see Sections 4.1.1 and 4.1.2) are formalized as

Linear Temporal Logic (LTL) [Pnueli 1977] formulas. An LTL formula ' is defined as

follows, where X, F , G, U , W and R are called temporal operators.
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' ::= > | ? | p | ¬(') | (' ^ ') | (' _ ') | (' ! ') | (4.5)

(X') | (F') | (G') | (' U') | (' W') | (' R') (4.6)

X' (next) states that a formula ' must be valid for the following state. F' (future)

states that a formula ' must be valid for some future state. G' (global) states that a

formula ' must be valid for all states in a path. '1 U '2 (until) states that a formula

'1 must be valid until a formula '2 becomes valid. '1 W '2 (weak until) states that a

formula '1 must be valid until a formula '2 becomes valid or '1 must be valid for all

states in the path. '1 R '2 (release) states that a formula '1 must be valid until a formula

'2 becomes valid and both '1 and '2 must be valid at the same time for some state.

It is worth noticing that formulas in the temporal axis describe the evolution of

(part of) the document state through several states. For example, formula A meets B is

described by the following LTL formula.

i1 meets i2 = F

 
(i1.pre.occurring ^ i2.pre.sleeping)^
X(i1.pre.sleeping ^ i2.pre.occurring)

!
(4.7)

The other Allen relations [Allen 1983] are described by the following LTL formu-

las.

i1 before i2 = F

0

BB@

(i1.pre.occurring ^ i2.pre.sleeping) ^
X(i1.pre.sleeping ^ i2.pre.sleeping) ^
F (i1.pre.sleeping ^ i2.pre.occurring)

1

CCA (4.8)

i1 overlaps i2 = F

0

BB@

(i1.pre.occurring ^ i2.pre.sleeping) ^
X(i1.pre.occurring ^ i2.pre.occurring) ^
F (i1.pre.sleeping ^ i2.pre.occurring)

1

CCA (4.9)

i1 starts i2 = F

0

BB@

(i1.pre.sleeping ^ i2.pre.sleeping) ^
X(i1.pre.occurring ^ i2.pre.occurring) ^
F (i1.pre.sleeping ^ i2.pre.occurring)

1

CCA (4.10)
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i1 during i2 = F

0

BB@

(i1.pre.sleeping ^ i2.pre.occurring) ^
X(i1.pre.occurring ^ i2.pre.occurring) ^
F (i1.pre.sleeping ^ i2.pre.occurring)

1

CCA (4.11)

i1 finishes i2 = F

0

BB@

(i1.pre.sleeping ^ i2.pre.occurring) ^

F

 
(i1.pre.occurring ^ i2.pre.occurring) ^
X(i1.pre.sleeping ^ i2.pre.sleeping)

!

1

CCA (4.12)

i1 equals i2 = F

0

BBBBBBBBBB@

(i1.pre.sleeping ^ i2.pre.sleeping) ^
X(i1.pre.occurring ^ i2.pre.occurring) ^

F

 
(i1.pre.occurring ^ i2.pre.occurring) ^
X(i1.pre.sleeping ^ i2.pre.sleeping)

!
^

¬F
 

(i1.pre.occurring ^ i2.pre.sleeping) _
(i1.pre.sleeping ^ i2.pre.occurring)

!

1

CCCCCCCCCCA

(4.13)

On the other hand, formulas in the spatial axis consider the values of positioning

attributes inside a given state. They are combined with a temporal operator for repre-

senting a spatio-temporal layout. As a usage example of a spatial formula, suppose we

want to verify if, at some time, A and B will overlap in space. Thus we write the following

formula

F (A pover B) (4.14)

where we combine spatial relation pover with temporal operator F (future).

The RCC relations [Randell et al. 1992] are described by the following LTL for-

mulas, where lj = left(ij).value, tj = top(ij).value, wj = width(ij).value and hj =

height(ij).value.

i1 dcon i2 =

i1.pre.occurring ^ i2.pre.occurring ^ 
(l1 > (l2 + w2)) _ ((l1 + w1) < l2) _
(t1 > (t2 + h2)) _ ((t1 + h1) < t2)

!
(4.15)
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i1 econ i2 =

i1.pre.occurring ^ i2.pre.occurring ^0

BBBBB@

( ((l1 = (l2 + w2)) _ ((l1 + w1) = l2)) ^
(t1  (t2 + h2)) ^ (t2  (t1 + h1)) ) _

( ((t1 = (t2 + h2)) _ ((t1 + h1) = t2)) ^
(l1  (l2 + w2)) ^ (l2  (l1 + w1)) )

1

CCCCCA

(4.16)

i1 pover i2 =

i1.pre.occurring ^ i2.pre.occurring ^0

BBBBBBBBBBBBBBBB@

( (l1 < l2) ^ ((l1 + w1) > l2) ^ ((l1 + w1) < (l2 + w2)) ^
(t1 < (t2 + h2)) ^ (t2 < (t1 + h1)) ) _

( (l2 < l1) ^ ((l2 + w2) > l1) ^ ((l2 + w2) < (l1 + w1)) ^
(t1 < (t2 + h2)) ^ (t2 < (t1 + h1)) ) _

( (t1 < t2) ^ ((t1 + h1) > t2) ^ ((t1 + h1) < (t2 + h2)) ^
(l1 < (l2 + w2)) ^ (l2 < (l1 + w1)) ) _

( (t2 < t1) ^ ((t2 + h2) > t1) ^ ((t2 + h2) < (t1 + h1)) ^
(l1 < (l2 + w2)) ^ (l2 < (l1 + w1)) )

1

CCCCCCCCCCCCCCCCA

(4.17)

i1 tpp i2 =

i1.pre.occurring ^ i2.pre.occurring ^0

BBBBBBBB@

(((w1 < w2) ^ (h1  h2)) _ ((h1 < h2) ^ (w1  w2))) ^0

BBBBB@

( ((l1 = l2) _ ((l1 + w1) = (l2 + w2))) ^
(t1 � t2) ^ ((t1 + h1)  (t2 + h2)) ) _

( ((t1 = t2) _ ((t1 + h1) = (t2 + h2))) ^
(l1 � l2) ^ ((l1 + w1)  (l2 + w2)) )

1

CCCCCA

1

CCCCCCCCA

(4.18)

i1 ntpp i2 =

i1.pre.occurring ^ i2.pre.occurring ^ 
(l1 > l2) ^ ((l1 + w1) < (l2 + w2)) ^
(t1 > t2) ^ ((t1 + h1) < (t2 + h2))

!
(4.19)
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i1 equal i2 =

i1.pre.occurring ^ i2.pre.occurring ^ 
(l1 = l2) ^ (w1 = w2) ^
(t1 = t2) ^ (h1 = h2)

!
(4.20)

In case the formula is parameterized by an angle, function angle is called together with

the formulas presented previously to determine the angle between region centers. Function

angle is parameterized by the expected angle in either degrees or one (intra)cardinal

direction.

4.4 Validation Based on Constraints

Section 4.1 presented the general model SHM and how it represents multimedia docu-

ments. It also presented the general architecture for the validation approach proposed

in this work, where from SHM we get a representation of a document as a set of SMT

formulas. We call such a representation SMT . In this section, we present how the repre-

sentation d

SMT

is obtained from document d through transformation ⌧

SMT

(d).

SMT [Moura and Bjørner 2011] is a satisfaction problem where formulas combine

logical connectives such as conjunction, disjunction and negation, with atomic formulas

in the form of linear arithmetic inequalities. An example of SMT formula is presented as

follows.

(v1  v2) ^ (v3 _ (v1 > v2))

As seen in the example, formulas are composed by variables, representing either boolean

or arithmetic values. A solution for such a formula is an assignment, mapping variables

vi to values that make the formula true.

An SMT solver builds the formula representing the whole satisfaction problem from

assertions. Each assertion is a formula like the one presented above, and the whole

satisfaction problem is given by the conjunction of assertions. In this work, each assertion

models a constraint representing either document relations or properties that must hold

during document validation.

It is worth noticing that some SMT solvers call variables in a formula constants. We

shall use the term constant to refer to an SMT formula variable in order to avoid conflict

with the term variable referring to multimedia document variables.

The preceding paragraphs presented a brief description of SMT, a more complete
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description of SMT is found in Appendix C.

4.4.1 Satisfaction Problem d
SMT

In SMT , document fragments are represented by their projections in the temporal and

spatial dimensions. SHM relations are represented in SMT by assertions, which may

include inequalities among event occurrences. The representation of a document d as a

satisfaction problem d

SMT

is presented in Definition 3.

Definition 3 (d
SMT

). The representation of a document through its intervals is specified

in SMT as a satisfaction problem

d

SMT

= a1 ^ a2 ^ . . . ^ an

where ai is an assertion, i.e., a logical formula combining logical connectives with atomic

formulas, which can be either boolean formulas or arithmetic inequalities. Assertions are

parameterized by constants, which can be either boolean or arithmetic. d
SMT

defines the

following constants for representing a fragment projection.

f :abeg
, f :amid

, f :aend
, f :aexp

, T, I 2 R�0

e:tplc, e:splc 2 Bool

where constants f :abeg, f :amid, f :aend, f :aexp, e:tplc and e:splc represent a fragment projec-

tion (its begin, center, end, expected size and if its part of the temporal/spatial layout)

in a given axis a 2 {t, x, y}. Constant T represents the global presentation time and

constant I represents an infinite time. Constants f :abeg, f :amid, f :aend, f :aexp are related

as follows.

f :abeg
< f :aend (4.21)

f :amid =
�
f :abeg + f :aend

�
/2 (4.22)

f :aend = f :abeg + f :aexp (4.23)

Furthermore, constants f :splc and f :tplc are related as follows.
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�
f :tplc ^ T > f :t beg ^ T < f :tend ^ f :splc

 _
��¬f :tplc _ T < f :t beg _ T > f :tend

� ^ ¬f :splc (4.24)

Given the existence of several projections of a given fragment, it is assumed that a pro-

jection k has to occur after a projection k � 1. Moreover, given that a projection k

exists, it means that a projection k � 1 also exists. This is formalized by the following

constraints.

f :abeg
k � f :aend

k�1, k > 1 (4.25)

f :aplc
k ! f :aplc

k�1, k > 1 (4.26)

Moreover, given the existence of a pause projection for a given fragment f , the following

constraints apply.

f :t beg < f
p

:t beg ^ f
p

:tend  f :tend (4.27)

f
p

:tplc ! f :tplc (4.28)

f
p

:tplc ! f
p

:texp > 0 (4.29)

¬f
p

:tplc ! f
p

:texp = 0 (4.30)

f :texp = v + f
p

:texp (4.31)

Finally, constant I is related to constant T as follows.

T  I (4.32)

Every fragment f projection in a document is inside a canvas defined as follows.
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canvas :t beg = 0 (4.33)

canvas :t beg  T  canvas :tend (4.34)

canvas :x beg = 0 (4.35)

canvas :ybeg = 0 (4.36)

canvas :x exp = screen.width (4.37)

canvas :yexp = screen.height (4.38)

Thus the following assertion apply.

f :abeg � canvas :abeg ^ f :aend  canvas :aend (4.39)

for each axis a. Allen’s relations are represented by the following assertions.

a before b ⌘ a:tend < b:t beg (4.40)

a meets b ⌘ a:tend = b:t beg (4.41)

a overlaps b ⌘ a:t beg < b:t beg ^ b:t beg < a:tend ^ a:tend < b:tend (4.42)

a starts b ⌘ a:t beg = b:t beg ^ a:tend < b:tend (4.43)

a during b ⌘ a:t beg > b:t beg ^ a:tend < b:tend (4.44)

a finishes b ⌘ a:t beg > b:t beg ^ a:tend = b:tend (4.45)

a equals b ⌘ a:t beg = b:t beg ^ a:tend = b:tend (4.46)

Similar to Allen’s relations, RCC relations are represented by the following assertions.

a dcon b ⌘ a:x beg
> b:x end _ a:x end

> b:x beg _
a:ybeg

> b:yend _ a:yend
< b:ybeg

(4.47)

a econ b ⌘

((a:x beg = b:x end _ a:x end = b:x beg)^
a:ybeg  b:yend ^ a:yend � b:ybeg)_
((a:ybeg = b:yend _ a:yend = b:ybeg)^
a:x beg  b:x end ^ a:x end � b:x beg)

(4.48)
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a pover b ⌘

(a:x beg
< b:x beg ^ a:x end

> b:x beg ^ a:x end
< b:x end

^a:ybeg
< b:yend ^ a:yend

> b:ybeg)_
(a:x beg

> b:x beg ^ a:x beg
< b:x end ^ a:x end

> b:x end

^a:ybeg
< b:yend ^ a:yend

> b:ybeg)_
(a:ybeg

< b:ybeg ^ a:yend
> b:ybeg ^ a:yend

< b:yend

^a:x beg
< b:x end ^ a:x end

> b:x beg)_
(a:ybeg

> b:ybeg ^ a:ybeg
< b:yend ^ a:yend

> b:yend

^a:x beg
< b:x end ^ a:x end

> b:x beg)

(4.49)

a tpp b ⌘

((a:x exp
< b:x exp ^ a:yexp  b:yexp)_

(a:x exp  b:x exp ^ a:yexp
< b:yexp))^

(((a:x beg = b:x beg _ a:x end = b:x end)^
a:ybeg � b:ybeg ^ a:yend  b:yend)_
((a:ybeg = b:ybeg _ a:yend = b:yend)^
a:x beg � b:x beg ^ a:x end  b:x end))

(4.50)

a ntpp b ⌘ a:x beg
> b:x beg ^ a:x end

< b:x end^
a:ybeg

> b:ybeg ^ a:yend
< b:yend

(4.51)

a equal b ⌘ a:x beg = b:x beg ^ a:x end = b:x end^
a:ybeg = b:ybeg ^ a:yend = b:yend

(4.52)

For each RCC relation defining an angle, the following additional assertions are applied,

where a is the angle, d is the distance between the fragment region centers and k is a

delta for the angle (see Section 4.1.2).
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c

max

= cos((a+ k) ⇤ (⇡/180)) ⇤ d
c

min

= cos((a� k) ⇤ (⇡/180)) ⇤ d
s

max

= sin((a+ k) ⇤ (⇡/180)) ⇤ d
s

min

= sin((a� k) ⇤ (⇡/180)) ⇤ d

c

min

< c

max

! (c
min

 a:xmid � b:xmid  c

max

) (4.53)

c

min

> c

max

! (c
max

 a:xmid � b:xmid  c

min

) (4.54)

c

min

= c

max

^ c

max

> 0 ! (c
max

 a:xmid � b:xmid  d) (4.55)

c

min

= c

max

^ c

max

< 0 ! (�d  a:xmid � b:xmid  c

max

) (4.56)

s

min

< s

max

! (s
min

 b:ymid � a:ymid  s

max

) (4.57)

s

min

> s

max

! (s
max

 b:ymid � a:ymid  s

min

) (4.58)

s

min

= s

max

^ s

max

> 0 ! (s
max

 b:ymid � a:ymid  d) (4.59)

s

min

= s

max

^ s

max

< 0 ! (�d  b:ymid � a:ymid  s

max

) (4.60)

In the above assertions, the auxiliary variables c

min

, c
max

, s
min

and s

max

are used for

calculating the angle between two fragments. Causal relations in SMT are defined over

the set of event occurrences Evt = { , } ( representing event start and representing

event stop) and document fragments (represented here by sort Fragment). Thus a relation

r : ✏ ! A, where ✏ is an event occurrence and A = Evt ⇥ Fragment is represented in

SMT as follows.

✏ ! e ⌘ e:t beg = !(✏) ^ e:tplc if ¬(e:t beg  !(✏) < e:tend) (4.61)

✏ ! e ⌘ e:tend = !(✏) if e:tplc ^ (e:t beg  !(✏) < e:tend + e:texp) (4.62)

where !(✏) denotes the time when event ✏ occurs. Finally, relations set and animate are

defined as follows, where i is the interval for which variable x is set to value v.

�
i :tplc ^ T > i :t beg ^ T < i :tend

 ! x = v (4.63)

Such that, given that T ’s value is between i :t beg and i :tend, then variable x’s value is equal

to v. 4
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The SHM model, as presented in Section 4.1, is based on events, where document

fragments (media items, media fragments and compositions) are associated to state ma-

chines representing its presentation, selection and attribution states. Event occurrences,

as presented in Figure 4.1, represent changes in the state of fragments that occur dur-

ing document presentation. We repeat that figure once again to improve this section

readability.

sleeping

paused

occurring

stop||abort resume

pause

start

stop||abort

Figure 4.14: State changes

It is possible to project the presentation, selection and attribution of document frag-

ments in time, as presented in Section 4.1.1. Each projection is an interval representing

the amount of time a media item is in the occurring or paused state. Figure 4.3 presented

an example where projections represent the occurring and paused states of a fragment.

We repeat Figure 4.3 here to improve this section readability.

sleeping

occurring

paused

oc.

sleeping

IA

IAp

I

�
A

I

�
Ap

I

+
Ap

I

+
A

t1 x

time

Figure 4.15: Paused element projection

Di↵erent from the temporal dimension, in the spatial dimension, SHM represents

document fragments as rectangular regions. Such a representation is presented in Sec-

tion 4.1.2.

In SMT , document fragments are represented by their projections in the temporal

dimension and by their rectangular regions in the spatial dimension. Regions in space are

represented by their projection in either x and y axes. Projections in time or space are

represented using the following constants:

• f :abeg represents the begin of a projection of fragment f in axis a;

• f :amid represents the center of a projection of fragment f in axis a;

• f :aend represents the end of a projection of fragment f in axis a;
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• f :aexp represents the expected size of a projection of fragment f in axis a.

The constraint in Equation 4.21 states that a projection must have a size bigger than

zero. The constraint in Equation 4.22 defines the center of a projection in relation to its

begin and end. Besides the above constraints, in Equation 4.23 SMT relates the end of

projection with its expected size. It is important to highlight, however, that such relation

is asserted together with other relations that constrain the end of a projection, as will be

discussed latter in this section.

It is possible for a given document fragment to be presented more than once during

document presentation. In this case, a fragment will enter in the occurring state more

than once. As a result we have more than one projection for such a fragment in time. Each

individual projection of a fragment f in time is called an occurrence of f . It is important

to notice that, whenever a fragment has a projection in time, it implies that the given

fragment will also have a projection in space, i.e., in the x and y axes. Exceptions to this

are media items without visual representation, such as an audio object, viewer selection

and variable attribution. A subscript k 2 [1, n] represents di↵erent occurrences of f in a,

where n is the total number of occurrences of f in a.

Besides constants for defining the fragment projection, SMT defines the boolean con-

stants f :tplc and f :splc with the following meaning:

• f :tplc indicates if a given projection is considered or not to be part of the temporal

layout;

• f :splc indicates whether or not the media item is being presented on the screen.

As an example of use of constant f :tplc, suppose the example presented in Figure 4.6

where either interval Im2 or interval Im3 are part of the resulting temporal layout. In the

case where Im2 is presented (Figure 4.6a), we have

m
2

:tplc = true ^m
3

:tplc = false,

while in the second case, where Im3 is presented (Figure 4.6b), we have

m
2

:tplc = false ^m
3

:tplc = true.

As an example of use of constant f :splc, suppose the example presented in Figure 4.6a,

where intervals Im1 and Im2 are presented at di↵erent times on the exhibition device. In
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the beginning of the document presentation, only Im1 is presented. At this point we have

m
1

:splc = true ^m
2

:splc = false,

while after Im1 ends its presentation, we have

m
1

:splc = false ^m
2

:splc = true.

The relation between both constants f :tplc and f :splc is given by Equation 4.24, which

has the following meaning. Whenever a fragment is part of the temporal layout (i.e.,

f :tplc = true) and global time T is inside the fragment’s projection in time (i.e., between

f :t beg and f :tend), variable f :splc is true and false elsewhere.

From Figure 4.3, it is possible to notice that, given the existence in time of a “pause

projection” fp of fragment f , the resulting size of f ’s projection will be its original value

plus the size of fp. Definition 3 states that a given “pause projection” has to be inside

the fragment projection (Equation 4.27); if a “pause projection” exists, than the fragment

projection also exists (Equation 4.28); the expected size of a “pause projection” is greater

than zero if it exists or equal to zero in the opposite case (Equations 4.29 and 4.30); and

that the size of a fragment projection is its declared size plus the “pause projection” size

(Equation 4.31).

As discussed in Section 4.1.1, it is possible for a fragment to have an infinite duration.

This is represented in SMT by setting the end of a fragment projection equals to a

constant I, representing an infinite time.

Every element is represented inside a canvas, which represents the document as a

whole in both time and space. In the spatial axis, the canvas has the size of the exhibition

device. In the temporal axis, the canvas does not have a predefined size.

It is worth noticing that the constants used in the representation of document frag-

ments in either space and time introduce some redundancy. Some examples of redundant

constant are f :amid, f :aexp and f :splc. This redundancy was included in order to ease the

definition of expressions over projections.

As seen in Section 4.1.1, SHM enables defining both causal relations and constraints.

Such relations are represented in SMT by assertions, which may include inequalities

among the constants representing projections and boolean operations over variables f :tplc

and f :splc.

Constraints are expressed in time with Allen’s relations [Allen 1983] between time
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intervals and in space by RCC relations [Randell et al. 1992]. Definition 3 presents the

representation of both Allen and RCC relations in terms of constants f :abeg, f :amid, f :aend,

f :aexp, e:tplc and e:splc between two fragments a and b.

In Section 4.1.2, we presented an extension of RCC relations (except equal), so that

they are parameterized by the angle and distance between region centers. Moreover,

relations dcon, pover and ntpp are also parameterized by the distance between region

centers. Definition 3 also defines additional constraints to be applied whenever a given

RCC relation defines an angle.

Recalling Section 4.1.1, causal relations are defined over event occurrences in the form

{✏1, . . . , ✏m} ! ✏n

where event ✏n will occur when the first event in {✏1, . . . , ✏m} occurs. If no event in

{✏1, . . . , ✏m} occurs during document execution, event ✏n will not occur either.

In this section, state changes depicted in Figure 4.1 are represented with the following

graphical notation: (start), (stop), (abort), (pause) and (resume).

Given that a fragment state may be projected in the temporal axis as presented above,

we have the following equivalences:

• e ⌘ ep: given that the pause state is represented by a “pause projection”, pausing

a fragment e is equivalent to starting a “pause projection” ep.

• e ⌘ ep: given that the pause state is represented by a “pause projection”, resuming

a fragment e is equivalent to stopping a “pause projection” ep.

• e ⌘ e: aborting or stopping a fragment e will produce the same output in the

resulting presentation, i.e., e will end its presentation4.

Therefore, it is possible to reduce the set of event occurrences to be used in causal relations

to { , }. It is worth mentioning that, by treating actions and as the same, we loose

expressiveness in comparison to SHM. Such a loss is given by the fact that we can not

create properties di↵erentiating both actions.

In Definition 3, Equation 4.61 states that the begin of a fragment projection will

happen at the same time of event ✏, given that it does not occur while the given fragment

4In NCL, both actions are used together as a way to provide two di↵erent ways of ending an element’s
presentation, and thus avoiding triggering links (a will not trigger links specified for a and vice versa).
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is already being presented. Equation 4.62 states that the end of a fragment projection

will happen at the same time of event ✏, given that it occurs while the given fragment is

being presented.

It is possible to observe that more than one event may be defined at the left-hand

side of a causal relation, i.e., more than one event occurrence may trigger the relation.

As stated at the definition of causal relations, whenever more than one event is defined at

the left-hand side of a causal relation, the first one to occur will be the one triggering the

relation. SMT models such a behavior with operator first . It receives as parameter a list

of events and returns the first one to occur. For example, suppose the following causal

relation:

{✏1, ✏2} ! e

It will be represented by the following constraint:

e:tend = first(✏1, ✏2)

Such that the value of e:tend will be the same of (i) e1 or e2, in case just one of them occurs;

(ii) the first to occur between e1 and e2, in case both occur; or (iii) the first argument of

function first , in case both e1 and e2 occur at the same time. For this specific example,

function first represents the following formula.

�9✏2 ^ (!(✏2) < !(✏1) _ ¬9✏1) ^ e:tend = !(✏2)
 _

�9✏1 ^ (!(✏1)  !(✏2) _ ¬9✏2) ^ e:tend = !(✏1)
 

It is worth noticing that, when relations define the end of a projection, operator first

may define an additional default value to be chosen when none of the events occurs. Such

a default value may be the one defined in Equation 4.23 when the fragment has an intrinsic

duration or equals to infinite (constant I) otherwise.

Section 4.1.3 presented relations set and animate, which may be used for defining the

value of a given variable instantaneously or incrementally, respectively. Both relations are

associated to a given interval such that the value of a given variable x is equal to v inside

such interval and some other value (possibly the same) outside. Value v will be either a

number or a polynomial in function of constant T .
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4.4.2 SMT Document Validation

In the previous sections, we presented how representation d

SMT

is obtained from document

d through transformation ⌧

SMT

(d). In short, document fragments are represented as a

set of constants and document relations are represented by constraints, i.e., formulas

containing inequalities over those constants.

In order to provide validation for a given document, constraints representing that

document’s spatio-temporal layout are fed to an SMT solver. The solver than computes

the conjunction of all constraints. When the whole formula holds, it presents back a

possible valuation for constants. Validation in SMT , therefore, can be provided in the

following ways.

The first way to provide validation is by checking the possibility of evaluating d

SMT

.

Given that no valuation is provided by the SMT solver, it is possible to infer that the set

of relations in d is inconsistent. It is worth mentioning that this approach is commonly

used during document creation, as a new relation is included in the document layout.

Whenever validation returns an error, it is possible to infer that the new relation made

the document layout inconsistent.

The second way to provide validation is by computing the conjunction d

SMT

^ P ,

where P represents a given property or the viewer context. In the first case, given that a

valuation is provided by the solver, it is possible to infer that a given property P holds.

In the second case, given that a valuation is provided by the solver, it is possible to infer

that d is adapted to the viewer context.

Finally, a third way of providing validation for d is to compute the conjunction d

SMT

^
¬P , where P represents an undesirable behavior. In that case, given that no valuation

is provided, it is possible to infer that this behavior will never occur during document

execution.



Chapter 5

Implementation and Use

This chapter presents the implementation of the validation approach presented in Chap-

ter 4. Both validation techniques, presented in Chapters 4.3 and 4.4 have been imple-

mented into validation tools, presented in Sections 5.1 and 5.3, respectively.

Moreover, this chapter also presents practical results about the use of both validation

techniques. Section 5.2 describes the results obtained by using our RWT implementation

and Section 5.4 does the same for the SMT implementation. At the end of this chapter,

Section 5.5 presents a use case where both validation techniques may be applied and

Section 5.6 provides a discussion about the choice for a given technique and limitations

in the tools here presented.

5.1 RWT Implementation

This section presents the tools that implement the validation approach proposed in this

work. The tools presented in this section are used for the validation of NCL documents.

Each tool is described in one of the following sections.

5.1.1 aNaa

API for NCL Authoring and Analysis (aNaa) is an API built for being used by other

tools that focus on the authoring of NCL documents. The idea is to improve such tool

by providing the validation of a document being created. aNaa partially implements

the validation approach proposed in this work, dealing only with the RWT validation

technique, described in Chapter 4.3.
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The process of transforming an NCL document into a rewriting theory in the RWT

approach and performing its validation is done in the following steps. (i) First aNaa

gathers the information contained in an NCL document and represents it as an equational

theory E = (⌃, E). (ii) It triggers the application of a set of Maude equations in E to

create a Maude module representing the given document in RWT . (iii) Finally, it calls

Maude to perform the validation using the Maude model-checker tool. Figure 5.1 presents

the architecture of aNaa.

aNa

MaudeManager

ValidationManager

aNaa

Figure 5.1: aNaa API architecture

In order to gather the information contained in an NCL document necessary for

providing its validation, aNaa extends the API for NCL Authoring (aNa) API [dos Santos

et al. 2012b]. aNa was created to represent an NCL document. Its structure is optimized

so the author of NCL tools that manipulate NCL XML code does not need to worry

about the language representation. aNa defines Java classes that represent NCL elements

following the characteristics presented in Section A.1.

Every aNa class is extended with new methods to create the representation of a

given NCL element into E . The most important methods are the getElementId() and

the createElement() methods. The former creates a unique identification for a given

NCL element. The latter creates a string representing a given NCL element in Maude as

specified in theory E .

Theory E = (⌃, E) is an equational theory that represents the syntax of XML elements

with ⌃ and E represents the mapping of such elements into RWT . ⌃ is defined as follows.

1 s o r t s AttributeName Attr ibuteValue Attr ibute Att r ibuteSet .

2 s o r t s ElementName Element ElementSet .

3

4 subsor t Attr ibute < Attr ibuteSet .

5 subsor t Element < ElementSet .

6

7 op a t t r ( , ) : AttributeName Attr ibuteValue �> Attr ibute [ c to r ] .

8

9 op empty : �> Attr ibuteSet .

10 op : Att r ibuteSet Att r ibuteSet �> Attr ibuteSet [ a s soc comm id : empty c to r ] .

11

12 op { | ; } : ElementName Qid Qid Att r ibuteSet �> Element [ c to r ] .

13

14 op empty : �> ElementSet [ c to r ] .

15 op : ElementSet ElementSet �> ElementSet [ a s soc comm id : empty c to r ] .



5.1 RWT Implementation 72

Thus, for each multimedia language to be translated into RWT , theory E is extended.

The ⌃ of the extended theory defines constants of sorts ElementName and AttributeName,

one for each element and attribute in the given language, respectively. Moreover, ⌃ will

also have constructs for representing the possible attribute values as elements of sort

AttributeValue.

For the validation of NCL documents, we extend theory E into theory E
NCL

as dis-

cussed above. For a given document, aNaa represents in theory E
NCL

a document by a set

of elements, represented by sort ElementSet . For each NCL element of a given document,

one element of sort Element is created. Each element e of sort Element , a unique id

(represented as a quoted identifier, i.e., a String preceded by a quote) is defined. For a

given NCL element, all its attributes are represented as elements of sort Attribute. The

hierarchy of NCL elements is represented by indicating, for each element e, the id of its

parent element, captured by the second parameter in operator { | }. When element e

is the document root element, it will declare ‘nil as its parent element id.

Suppose the following example of NCL element presented in Listing 5.1.

1 <media id=”vdoComercial ” s r c=”comerc ia l .mp4” d e s c r i p t o r=”dComercial”>

2 <area id=”a r ea In t e r ” begin=”16s ” end=”76s”/>

3 <\media>

Listing 5.1: NCL element example

Listing 5.2 gives the representation of the NCL element presented in Listing 5.1 as a

term in theory E
NCL

produced by method createElement() from aNaa.

1 {media ’ELM142 ’ELM130 | a t t r ( id , s t r (” vdoComercial ”) ) , a t t r ( src , s t r (” comerc ia l .mp4”) ) , a t t r ( de s c r i p to r ,

e id ( ’ELM028) ) , a t t r (mediaType , s t r (”AUDIO”) ) , a t t r ( duration ,num(107 . 0 , S) ) } ,

2 { area ’ELM143 ’ELM142 | a t t r ( id , s t r (” a r ea In t e r ”) ) , a t t r ( begin ,num(16 . 0 , S) ) , a t t r ( end ,num(76 . 0 , S) )

} ,

Listing 5.2: NCL element representation in E
NCL

The description of the process implemented by the equations in E

NCL

for transforming

an NCL document into RWT is presented in Appendix A.

Although aNaa is implemented for validating NCL documents, we have also imple-

mented an extension of E for the SMIL language. Theory E
SMIL

will define the constants

for representing SMIL elements in ⌃
SMIL

and the mapping from SMIL to RWT in E

SMIL

.

The description of the process implemented by equations in E

SMIL

for transforming a

SMIL document into RWT is also presented in Appendix A.

Finally, after getting the representation of a document in RWT , aNaa triggers the

document validation using its model-checker tool. The validation process using Maude is
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presented in Section 4.3.3.

In order to be able to call Maude for executing the validation, aNaa implements pack-

ages MaudeManager and ValidationManager. Figures 5.2 and 5.3 present the diagrams

of both packages.

Figure 5.2: MaudeManager package

Figure 5.2 presents the MaudeManager package. It is used to control the Maude

tool and has two main classes: Runner and Manager. The Runner class calls Maude

as a system process and creates objects for writing an input into Maude and reading its

output. Class Runner provides method runCommand(), which receives as a parameter

a Maude command to be executed and returns an object of class Result. Class Result is

used for storing the information provided by Maude about a given executed command.

The Manager class defines an interface for receiving errors and warnings from Maude and

accessing a Runner in order to send a command to Maude.

Figure 5.3 presents the ValidationManager package. It is responsible for performing

the document validation and has two main classes: Analyzer and AnalysisListener. The

Analyzer class extends the Manager from the MaudeManager package. It receives the

document to be validated (as Java objects in aNaa) through method loadDoc(). Addi-

tionally, this method receives information about how to perform the validation, such as

the number of viewer interactions to be performed over a selectable media item.

The transformation from NCL is triggered by method ncl2shm(). It uses method

createElement() of each document element for creating the representation of the document

using the equational theory E . It will then load the Maude module declaring ⌃
NCL

(as
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Figure 5.3: ValidationManager package

presented above) and the document representation E
NCL

(d). It then sends a command to

Maude for rewriting E
NCL

(d) into its representation in RWT .

Once the Maude module representing the document in RWT is created, validation

is performed by calling method behaviorAnalyze() providing a property to be validated.

Function behaviorAnalyze() executes the Maude model-checker tool whenever it is called

in order to perform the validation of a given property.

While executing the transformation and the document validation, class Analyzer pro-

duces an output that can be presented to the user. The AnalysisListener class defines an

interface for receiving this output, which can be the result of a property validation (either

true or a counterexample), a progress indicator or an error in the tool execution.

The aNaa API was tested by validating documents developed by the NCL community

available at the NCL Club. A more detailed discussion is presented in Section 5.2.

Two tools were built upon the aNaa API. They are briefly presented in Section 5.1.2

and 5.1.3.
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5.1.2 Property editor

In [Batista 2015], the author presents an editor for creating user-defined properties to be

validated in a multimedia document. The editor presented in [Batista 2015] is built upon

the aNaa API. Figure 5.4 presents the property editor interface.

Figure 5.4: Property editor interface

The editor provides to the author a graphical way for defining behavioral properties

and perceiving the validation result. In its current implementation, the editor performs

only the validation of temporal properties. It represents the Allen’s relations presented

in Section 4.1.1 as unitary test types. For each created test, the user chooses the media

items to be considered. The media items to be used for creating tests are gathered from

the document to be validated.

Once the tests are created, the user has the option of validating a single test or the

test suite as a whole. The tool shows the result of the test, marking as green and red

media items that passed the test or not, respectively.

A usability test [Batista 2015] was conducted with the property editor with test sub-

jects ranging from experts to users without knowledge of NCL. The tool was evaluated

using the System Usability Scale (SUS) technique. Test subjects were also able to provide

general comments about the tool.
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5.1.3 aNaa4Web

We have implemented a validation tool for NCL documents on top of aNaa. It is called

aNaa4Web. Figure 5.5 presents the tool interface.

Figure 5.5: aNaa4Web interface

Using aNaa4Web, the author chooses a document to be validated. The information

about the document is presented in the upper part of the tool as seen in Figure 5.6.

Figure 5.6: Document information in aNaa4Web

Once the document is open, the tool asks the user to provide the duration of document

media items. For each media item with a duration (audio and video), the tool presents

a field where the user can indicate its value. Figure 5.7 presents the field for indicating

media item duration.

Finally, the user can choose to validate the document. Error and warning messages

are presented as indicated in Figure 5.8.

Following the error messages presented by the tool, the user can correct the document

accordingly.
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Figure 5.7: Media item duration

Figure 5.8: Error and warning messages

The aNaa4Web tool was used by NCL developers and in classes where the NCL

language was taught. In order to enable its user evaluation the aNaa4Web tool provides

a SUS-like questionnaire.

5.2 RWT Implementation in Practice

Since its adoption as a standard for Digital TV, both NCL standard [ABNT 2011] and its

reference implementation have evolved in the past few years. We used our RWT validation

technique to validate real documents created by the NCL community which are available

at a code repository called NCL Club (http://clube.ncl.org.br). They were created

in di↵erent moments in time, and therefore, they comply with di↵erent versions of the

NCL standard and its reference implementation. As a consequence, they may not work as

expected or simply do not work at all in the current version of NCL standard (2011) and

its reference implementation (version 0.12.4). Most of the validated documents are non-

trivial with respect to document structure (many levels of nested document elements),

number of declarations (a few thousand lines of declarations) and size of the associated

automata (millions of states).

Although it is not the focus of this work, the RWT technique also allows for the struc-

tural validation of multimedia documents. Therefore, while validating such documents we

identified the following structural problems: (i) links instantiating parameterized connec-

tors without defining the value of its parameters; (ii) wrong references among elements,

through their identifiers. As we mentioned before, these problems arose as consequence

of the evolution of the standard and they are not related to the authoring process per se.

http://clube.ncl.org.br
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However, our tool was able to identify inconsistencies in real NCL documents that arose

from the standard evolution.

The behavioral analysis identified documents that could not end (up to a time bound

defined by the validation tool used), depending on how the user interacts with them,

and also documents that simply did not work at all with respect to the NCL reference

implementation. In a careful analysis of the documents that did not work, by comparing

their traces in Maude and their execution in the Ginga-NCL reference implementation,

we were able to identify errors in the Ginga-NCL middleware reference implementation

version 0.12.41.

The first problem found regards NCL context elements and its inner elements. Intu-

itively, suppose c a context element, Ei the set of its inner elements and Ep ✓ Ei, such

that every element e 2 Ep is mapped by a port of c. While c is in the occurring state, it

would keep relaying start actions to elements in Ep. This behavior is incorrect: once in

the occurring state, an NCL node should not accept start actions. Furthermore, once c is

in the occurring state and receives a stop action, it should be relayed to every element in

Ei. However, the stop action is not relayed to the elements in Ei that represent possibly

reused nodes.

The second problem found regards NCL switch elements. Suppose a switch s that

define rules [r1, . . . , rn]. The evaluation of rules follows their order and the first rule ri

whose condition is evaluated as true is chosen. However, in the reference implementation,

given that two rules ri and rj (i < j) have conditions evaluated as true, the last one (rj)

is chosen.

These problems were reported back to the group that maintains Ginga-NCL to be

addressed in future releases of the reference implementation.

As an indication of a reasonable performance of our implementation, we present per-

formance results of the validation of three real documents found in the NCL Club. A

brief overview about each document is given as follows.

“First João” presents an animation about a famous Brazilian soccer player named

Garrincha. It synchronizes a video and a photo of kids performing the same dribbles as

Garrincha with the main video. The user may interact with the application pressing the

red key at the moment a soccer shoes icon appears. The animation is resized and a video

of a kid thinking about shoes starts playing.

1Version available at http://www.ginga.org.br

http://www.ginga.org.br
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“Live More” presents a TV show discussing health and welfare. While the TV show

is playing, an interaction icon appears. If the user presses the remote control red key, four

di↵erent meal options appear. The user chooses a meal by pressing one of the colored

keys of the remote control. When a meal is chosen, the user is informed about the quality

of his choice, telling whether there are missing nutrients or nutrients in excess.

“Day’s Route” presents a non-linear show where the user can make his own narrative

line by choosing the next sight in a city tour around Rio de Janeiro. At the beginning of

the show, the user may choose to interact or not with the application. If the user chooses

not to interact, a default tour is presented.

Table D.1 summarizes the characteristics of the three documents. As an indication

of the document sizes, it presents their number of NCL elements and the number of

fragments and causal relations when represented in SHM.

Table 5.1: Document sizes and validation time comparison

Document “First João” “Live More” “Day’s Route”

NCL

Elements 160 121 229
Nodes 9 14 33
Anchors 11 15 18
Links 8 9 16

SHM
Fragments 17 17 26
Relations 15 13 30

R
RWT

States 19 23 45
Transitions 19 26 44

Validation Structural
Invariants 663 469 850

Time 1,490ms 856ms 2,197ms
Average 2.25ms 1.83ms 2.58ms

Behavioral
Properties 23 31 33

Time 386ms 936ms 882ms
Average 16.78ms 30.19ms 26.72ms

The behavioral validation of each document creates the document RWT counterpart

and model-checks it verifying the behavioral properties. Table D.1 presents the time spent

for the behavioral validation and statistics of the SHM counterpart of each document.

It also presents the number of properties tested for each document. The tests presented

here were conducted in an Intel i5 computer with 16GB memory.

In order to indicate the reasonable performance of our tool, we compared it with two

other tools used for NCL document validation. Both tools were presented in Chapter 3.

It is worth noticing that the durations presented for both tools are estimated.
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The first one [Neto et al. 2011] is a structural validation tool and part of the Com-

poser2 authoring tool. It was used for the analysis of “First João”, “Live More” and

“Day’s Route”. The time it spents for the structural validation was around 4s, 3.5s and

9s, respectively.

The second one [Júnior et al. 2014] is a behavioral validation tool. It was used for

the analysis of “First João” and “Live More”. The same behavior identified by our tool

was identified using this tool. The time it spents for the behavior validation was around

15s and 40s, respectively3.

5.3 SMT Implementation

SMT Validator is a tool implemented for performing the SMT validation technique

presented in Chapter 4.4. The validator tool is implemented in Lua on top of the

Yices2 [Dutertre 2014] solver. Figure 5.9 presents the architecture of the SMT Validator

tool.

Figure 5.9: SMT Validator architecture

SMT Validator is implemented using object orientation in Lua, as presented in Fig-

2http://composer.telemidia.puc-rio.br
3Information kindly given by the authors of [Júnior et al. 2014]
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ure 5.9. It is divided in two main packages: lib and model. Package lib defines classes for

the interface with the solver. The Yices2 API is implemented in C. Class yices uses the

Lua C API in order to export all the Yices2 API functions to Lua. Class smt creates an

abstraction layer on top of yices. It provides functions for the operations used for rep-

resenting document elements and relations. It also provides functions for controlling the

Yices2 API, such as creating a context, backtracking, checking the context and evaluating

constants.

Package model defines classes for representing the document as a whole, media items

and spatio-temporal relations. Classes allen, rcc, spatial and animation define relations

to be used in the document representation in SMT . It is worth noticing that, by calling

the functions defined in each class, the given relation is automatically translated into

constants and formulas in the Yices2 solver.

Classes item and model are responsible for creating the representation of a media

item and the document as a whole, respectively. Listing 5.3 presents an extract of the

representation of an NCL document in SHM using the SMT Validator tool.

1 l o c a l model = r equ i r e ( ’ model ’ )

2 l o c a l a l l e n = r equ i r e ( ’ model . a l l en ’ )

3

4 m = model : new{ s c ena r i o = SCENARIO.ST, x s i z e = 640 , y s i z e = 480 , num selec = 1}
5 m: in i t document ( )

6

7 animation = m: new item{ t s i z e = 71}
8 segIcon = m: new item ( )

9 animation : anchor ( segIcon , 45 , 51)

10 animation : p l ace anchor s ( )

11

12 icon = m: new item{ t s i z e = 6 , x i n i t = 560 , y i n i t = 55 , x s i z e = 54 , y s i z e = 32 , cond end = true ,

s e l e c t a b l e = true }
13 shoes = m: new item{ t s i z e = 13 , x i n i t = 96 , y i n i t = 288 , x s i z e = 160 , y s i z e = 120}
14

15 ���������� media items mapped by port s

16 m: i n i t ({ animation })

17

18 ���������� Link l I c on ( onBegin segIcon �> s t a r t i con )

19 m: p lace ({ seg Icon } , { icon , shoes })

20 m: c ond i t i ona l ( i con :BEG() , { seg Icon :BEG() })

21

22 ���������� Link lBegingShoes ( onSe l e c t i on [RED] icon �> stop icon ; s t a r t shoes )

23 m: p lace ({ i con . i s e l e c [ 1 ] } , { shoes })

24 m: c ond i t i ona l ( i con :END() , { i con . i s e l e c [ 1 ] :BEG() })

25 m: c ond i t i ona l ( shoes :BEG() , { i con . i s e l e c [ 1 ] :BEG() })

26

27 ���������� Check the document

28 pr in t (m: check ( ) )

29 m: end document ( )

Listing 5.3: Document representation using SMT Validator

As presented in Listing 5.3, the tool represents the concepts presented in Chapter 4

for the SHM model in Lua. Each document element is modeled as a Lua table (using

Lua’s object orientation) and each SHM relation is modeled as a function, having as
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parameter the fragments that participate in the given relation.

Class model is responsible for the creation of the representation of the document as a

whole and triggering the solver execution and getting the solver response. As a use case,

given that the solver provided a valuation to the constants representing the document

elements, this information is presented back to the user in a graphical representation.

It is worth highlighting that the implementation of the SMT Validator in Lua brings

the possibility of integrating it with an NCL player (as a module of the NCL document

itself), thus providing validation of a document at execution time. An application of the

validator with such a goal is discussed in Section 5.4.

5.4 SMT Implementation in Practice

In [Amorim et al. 2015, Amorim et al. 2016], they presented an approach for defining

the spatial layout of NCL document through templates. It defines the XTemplate 4.0

language and processor for defining and processing NCL spatio-temporal templates. The

main idea is enabling the author to indicate media items to be used in a given document,

then the template processor automatically creates regions and descriptors necessary for

declaring the position and size of such items.

An evolution of the approach presented in [Amorim et al. 2016] is the definition of

the so-called dynamic layouts. In such an approach, the spatial layout of a document is

defined through spatial constraints. The development of dynamic layouts is build upon

the SMT approach presented in Chapter 4.4.

Focusing on improving the declaration of dynamic layouts, we defined additional spa-

tial relations for providing the alignment/distribution of media items. The following rela-

tions are defined: sep-x, align-x, dist-x (and respectively -y) and flow. Su�x -x indicates

that a given operator is defined in the x axis and su�x -y for the y axis.

Relation sep defines a separation among regions in a given axis. An example of relation

sep is depicted in Figure 5.10. In SMT , relation sep will define the spacing between the

border of two elements with constraints as follows.

a sep�x(d) b ⌘ b:x beg = a:x end + d (5.1)

a sep�y(d) b ⌘ b:ybeg = a:yend + d (5.2)

Relation align aligns regions in a given axis, according to one of three endpoints: init,
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A

B

d

Figure 5.10: Relation A sep�x(d) B

middle or end. The endpoint to be used is indicated in the first parameter of the relation.

An example of relation align is depicted in Figure 5.11. In SMT , relation align will set

A

B

C

Figure 5.11: Relation align�y(end , A,B,C)

to equal the constants representing the same endpoint in all of its elements. For example,

relation align�y(end , a, b, c) is represented as follows.

a:yend = b:yend ^ b:yend = c:yend

Relation dist distributes regions in a given axis with a same spacing among them.

The spacing is defined related to one of the three endpoints the same way as done for

relation align. An example of relation dist is depicted in Figure 5.12. In SMT , relation

A B

C

d d

Figure 5.12: Relation dist�x(middle, d, A,B,C)

dist is represented in a similar way to what is done for representing relation align. For

example, relation dist�x(middle, d, a, b, c) is represented as follows.

b:xmid = a:xmid + d ^ c:xmid = b:xmid + d

Finally, relation flow defines a region inside which regions are organized in a flow. At

a given moment in the document presentation, the regions to be considered inside the flow
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are the ones being presented. That means that the arrangement of flow internal regions

may change according to the begin/end of fragments execution. Figure 5.13 depicts an

example of relation flow of media items A, B and C, and the rearrangement of the layout

when media item B ends its presentation.

A B C

(a) Arrangement of items A, B and C

A C

(b) Rearrange after item B ends

Figure 5.13: Relation flow(A,B,C)

In SMT , relation flow is defined with constraints specifying that a given element at

position l in the flow is either at the right or above its predecessor l � 1, given that the

latter is being presented. Otherwise the same rule is enforced between the element at

position l and l � 2.

Although some overlap arises from both RCC and alignment/distribution relations,

they are important for enabling a more concise representation of the presentation spatial

layout, and thus, making the declaration of dynamic layouts easier.

5.5 Use Case

5.5.1 Multimedia Document Example

We present in this section a multimedia document to exemplify how our validation ap-

proach is applied. The example presents touristic information about the state of Rio de

Janeiro in Brazil. It presents the state map along with pins in di↵erent cities: Rio de

Janeiro, Niterói, Teresópolis and Paraty. For each city, a promotional video and additional

photos are presented whenever the viewer clicks in the correspondent pin. Figure 5.14

illustrates some screens of the document presentation.

The presentation begins by the presenting Rio de Janeiro state map with a fade

animation. After the fading is done, the pins indicating main cities start to appear, one

after the other, also with a fade animation (Figures 5.14a and 5.14b). From this point

on, the presentation waits for viewer interaction.

Whenever the viewer clicks on a pin, some information about the city is presented,



5.5 Use Case 85

(a) (b) (c) (d)

Figure 5.14: Use case document presentation

such as: the city name, its promotional video and additional photos about the city. The

city name is presented above the video center-aligned with it and the additional photos

are all presented below the video using the whole screen width (Figures 5.14c and 5.14d).

The video is aligned with its correspondent pin (the videos for Rio, Niterói and Paraty

above the pin and aligned horizontally with it, and the video for Teresópolis on the right

side of the pin and aligned vertically with it) unless it would cause an overlapping with

another video. When an overlapping occurs, the video will be shifted to the right until

no overlapping is done.

The additional photos presented for each city are gathered form Google Images during

the presentation. It is done by querying with Google Web Search API the city name and

getting the first eight photos returned by the query. Thus, the photos will change as the

search in Google yields new results4.

It is also possible for the presentation to behave di↵erently according to the viewer

context in two ways. (i) If the viewer device is not capable of presenting more than one

video at a time, when clicking on a city pin, any other video being presented is stopped

before starting the presentation of the current city video. (ii) For smaller device screens,

less than 900 pixels width, video objects are all presented in the same location, under the

map, and one at a time.

5.5.2 Representation in SHM

Twenty two fragments are used to represent such a document inside SHM, five for each

city and two for the map. The naming scheme for fragments related to city content

is as follows: the first letter of city name ([R]io de Janeiro, [N]iterói, [T]eresópolis and

[P]araty) plus a letter representing the content type (p for the pin, v for the video, n for

4A version of this presentation using HTML5 and Web Animations is available online at https:

//rawgit.com/joeldossantos/usecase/master/tourism.html

https://rawgit.com/joeldossantos/usecase/master/tourism.html
https://rawgit.com/joeldossantos/usecase/master/tourism.html
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the name and f for the additional photos). Moreover, an additional letter a indicates a

fragment representing the animation of a given content. For example, the map animation

is represented by fragment Ma, while Rp represents the pin of Rio de Janeiro.

Equation 5.3 presents the set of fragments for the use case.

(
M,Ma,Rp,Rpa,Rn,Rv ,Rf ,Np,Npa,Nn,Nv ,Nf ,

Tp,Tpa,Tn,Tv ,Tf ,Pp,Ppa,Pn,Pv ,Pf

)
(5.3)

Three properties represent the viewer context: two for the screen size (SWidth and

SHeight) and one for the ability to present multiple videos at a time or not (Multi).

Map M is presented centralized on the exhibition device and its size is defined ac-

cording to the screen size. The following rules specify the spatial layout for M .

M.width =

8
<

:
SWidth ⇤ 4/5 if SWidth < 900

600 if SWidth � 900

M.height =

8
<

:
SWidth ⇤ 43/75 if SWidth < 900

430 if SWidth � 900

M tpp(90) canvas (5.4)

Each city pin is placed in relation to M as follows. For simplicity, rules that are

applied to all pins are defined as ⇤p.
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⇤p.width = 40

⇤p.height = 40

Rp ntpp(236, 126f) M

Np ntpp(247, 103f) M

Tp ntpp(212, 47f) M

Pp ntpp(206, 330f) M

f =

8
<

:
SWidth/750 if SWidth < 900

1 if SWidth � 900
(5.5)

Pin positions take into account the map size. Thus, their distance to M are calculated

according to factor f . According to Equation 5.5, the pin for the city of Rio de Janeiro,

for example, has 40 pixels width and height. It is located inside the map (non-tangential

proper part relation), and at an angle of 236 degrees and a distance of 126⇥f pixels from

the center of the map.

Position for each city video, name and additional photos are defined as follows, where

⇤v , ⇤n and ⇤f are used for representing rules that are applied over all video objects, city

names and additional photos, respectively.

⇤v .width =

8
<

:
SWidth/2 if SWidth < 900

300 if SWidth � 900

⇤n econ(90) ⇤v

⇤f .width = SWidth ⇤ 9/10
⇤f .top = ⇤v .bottom + 10

⇤f tpp(270) canvas (5.6)

According to Equation 5.6, a video width is half of the screen width in case it is smaller

than 900 pixels and fixed at 300 pixels otherwise. The name of each city is presented above

the video and externally connected to it (econ relation). Additional photos have 90% of

the screen width and are presented 10 pixels below its video.
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Whenever the screen size is smaller than 900 pixels, position for videos is defined as

follows.

⇤v dcon(270) M

⇤v sep-y(40) M (5.7)

where each video is presented 40 pixels below the map.

On the other hand, whenever the screen size is bigger or equal than 900 pixels, posi-

tions for videos are defined as follows.

Tv dcon(0) Tp

Tv sep-x (10) M _ align-x (end ,Tv , canvas)

Pv dcon(270) Pp

Pv sep-y(40) M

Rv dcon(S) Rp ^ Rv dcon(L, 310) Pv

Rv sep-y(10) M

Nv dcon(S) Np ^ Nv dcon(L, 310) Pv _
Nv dcon(SW ) Np ^ Nv dcon(L, 310) Rv

Nv sep-y(10) M (5.8)

According to Equation 5.8, the video for the city of Rio de Janeiro, for example, is

located 10 pixels below the map and it is presented below the city pin and 10 pixels on

the right side of the video for the city of Paraty, in case the latter is presented. It is

important to notice, that either videos Rv and Nv may be shifted to the right whenever

video Pv or Rv is being played.

In the temporal axis, the presentation of the map and the pins are done in a given

order and with a fade animation, as specified as follows.
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Ma starts M

⇤pa starts ⇤p
Ma meets Rpa

Rpa meets Npa

Npa meets Tpa

Tpa meets Ppa (5.9)

The map is the first to be presented together with its animation. After the map

animation ends the animation for the pins of Rio, Niterói, Teresópolis and Paraty are

executed, in this sequence.

Whenever a pin is selected, its correspondent video is played. Such behavior is speci-

fied by the following causal relation

⇤ps ! ⇤v� (5.10)

where ⇤ps represents the selection of a pin and ⇤v� the initial endpoint of video ⇤v .

Whenever a video is presented, the city name and additional photos are presented as

well. The additional photos to be presented in a given instant are the ones related to the

last selected pin. Such behavior is specified by the following rules, where superscripts �

and + represent the initial and final endpoint of a fragment, respectively.

⇤n equals ⇤v
⇤f � ! ⇤v�

Rf + ! �
Rv+

,Nf �,Tf �,Pf �
 

Nf + ! �
Nv+

,Rf �,Tf �,Pf �
 

Tf + ! �
Tv+

,Rf �,Nf �,Pf �
 

Pf + ! �
Pv+

,Rf �,Nf �,Tf �
 

(5.11)

According to Equation 5.11, additional photos are presented one at a time. They

start their presentation together with its associated video and can be presented until the

end of the video or until additional photos for another video start playing.



5.5 Use Case 90

Up to now, video objects may be presented at the same time. Whenever the screen

size is smaller than 900 pixels or property Multi is false, to ensure that videos are not

presented at the same time, the following rules are issued, where superscript s represents

the duration of a fragment.

Rv+ ! �
Rv� + Rv s

,Nv�
,Tv�

,Pv� 

Nv+ ! �
Nv� + Nv s

,Rv�
,Tv�

,Pv� 

Tv+ ! �
Tv� + Tv s

,Rv�
,Nv�

,Pv� 

Pv+ ! �
Pv� + Pv s

,Rv�
,Nv�

,Tv� (5.12)

5.5.3 Example Validation

Analyzing this presentation according to the life cycle presented in Figure 2.2, it is possible

to see that, at the Interpretation step, the presentation is adapted according to the viewer

context, i.e., its screen size and possibility to present multiple videos together. At the

Scheduling step, the presentation layout is changed due to viewer interaction and also the

content retrieved from the web search. The Dynamic step represents the search for new

images according to the city chosen.

The representation SHM(d) of the use case document in model SHM is given by

Equations 5.3-5.12. By the composition SHM(d)\P , where P is a set of properties, we

are able to validate d against P . To illustrate our validation approach we present in the

following paragraphs three validation use cases.

Use case 1: At Interpretation, the author creates a property stating that no video

should be overlapped by additional photos. In this case, P represents the author-defined

property

(Rv dcon Nf ^ Rv dcon Tf ^ Rv dcon Pf ) ^
(Nv dcon Rf ^ Nv dcon Tf ^ Nv dcon Pf ) ^
(Tv dcon Rf ^ Tv dcon Nf ^ Tv dcon Pf ) ^ . . . ^
(Pv dcon Rf ^ Pv dcon Nf ^ Pv dcon Tf ) (5.13)

If the composition of SHM(d) and P holds, then the author is able to verify that

the presentation layout is as it expects. However, as discussed in Section 2.1.2 validation

at this point has a preventive role since parts of the document may be edited during
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execution. In this case, such a property may be “carried along” the document through its

life cycle. At the following steps (i.e., Interpretation and Scheduling), once the document is

edited, such properties may be reenforced in order to maintain the document consistency.

Use case 2: At Interpretation, the document is adapted to the viewer context. In

this case, P represents the viewer context, which for the use case would be the triple

hSWidth, SHeight ,Multii. Thus, the document is adapted according to the screen size or

the capability of presenting multiple videos. The validation performed at this step will

result in a model representing the presentation adapted to the user context. We represent

it by SHMC(d).

Use case 3: At Scheduling, the document layout is (re)generated according to the

images retrieved from the web search. In this case, the adapted document is validated

against the current presentation time and the events, such as viewer interaction, that

occurred up to the current time as follows.

SHMC(d) \ T = t \ {e1, . . . , en}

where T is the global presentation time (see Section 4.1.3), t is the current presentation

time and {e1, . . . , en} a list of events that occurred up to time t. By performing validation

for a given presentation time, it is possible to (re)calculate the spatial layout of the

presentation according to fragments being presented at time t.

5.6 Closing Remarks

Section 5.5 presented a use case document designed to represent real world multimedia

documents. It involves presenting di↵erent types of media items (image, video, text)

representing items either with or without an inherent duration. Media items are presented

with or without animation and their spatial layout varies according to the items being

presented at a time. Moreover, the use case document declares a temporal layout where

media items are presented according to both deterministic and non-deterministic events,

such as viewer interaction. Given such characteristics, the use case document represents

a meaningful set of multimedia documents.

Equations 5.3-5.12 present the representation of use case document d in model SHM
as SHM(d). Given that d is a meaningful example of document and that SHM is

expressive enough to represent it, it is possible to infer that SHM is expressive enough

for representing real world multimedia documents.
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In the following sections we discuss the choice for a given validation technique in

Section 5.6.1 and limitations in the implementations presented in this chapter.

5.6.1 Validation Technique Choice

The validation approach presented in this work provides two techniques for performing

document validation (see Figure 4.12), they are RWT and SMT . Each technique has the

ability of representing a given aspect of SHM. RWT focuses on event occurrences and the

document state throughout its presentation and SMT focuses on numeric dependencies

among intervals (or regions).

RWT works upon the complete representation of d, generating all states of a presenta-

tion during its execution. Besides, due to its event-based nature, it allows for investigating

properties that are related to fragments that can occur several times during the presen-

tation. For example, we could use RWT in our use case for investigating if from any

given state of the presentation we are able to go back to a state where just the map and

the pins are presented. Such a property is represented using RWT by the following LTL

formula.

p

RWT

: G

 
F

 
M.pre.occurring ^ ⇤p.pre.occurring ^
⇤v .pre.sleeping ^ ⇤f .pre.sleeping ^ ⇤n.pre.sleeping

!!

(5.14)

By model-checking p

RWT

over R
RWT

(d), we are able to verify that every state of the

document has a future state where only the map and pins are presented. This is expected

since all items related to a given video (city name and photos) and the video itself are

presented for a finite interval.

RWT performs better than SMT in such kind of scenario. Since SMT represents

fragments as intervals, for each occurrence fi, i 2 [1, n] of a given fragment f along the

presentation, one interval must be created. In the case where n is not known a priori,

using SMT would be cumbersome. Moreover, representing such kind of property in SMT

is not an easy task.

Di↵erent from RWT , SMT does not expect the complete representation of d, thus

even when d represents a partial document, SMT can be used to validate it. Due to its

numerical nature, SMT allows for investigating properties related to: (i) the duration

of fragments, (ii) the relative position of event occurrences in time and (iii) the relative
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position of regions in space. For example, we could use SMT in our use case for investi-

gating if it is possible for two videos to start their presentation at the same time. Such a

property is represented in SMT , for videos Rv and Nv , by the following formula.

p

SMT

: Rv :tplc ^ Nv :tplc ^ Rv :t beg = Nv :t beg (5.15)

By solving SHM(d)\p

SMT

in the SMT solver, it is possible to see that such situation

is only possible when the viewer selects the pin for both cities at the same time. Given

that we enforce that two di↵erent selection events can not happen at the same time, such

situation would not be possible.

SMT performs better than RWT in such kind of scenario. Since RWT represents the

document presentation by its di↵erent states along execution, di↵erent traces are provided

by the interleaving of rules step and rules representing viewer interaction as discussed in

Section 4.3.3, simulating viewer interaction at di↵erent instants of a fragment presentation.

Generating every possible combination of viewer interaction for finding a document state

where both Rv and Nv start at the same time would lead to an explosion in the number

of states created by RWT .

5.6.2 Tool Limitations

This chapter presented two tools that partially implement the validation approach pro-

posed in this work. The general architecture of our proposal was depicted in Figure 4.12.

We recall it here to improve this section readability.

L1 L2 . . .

Ln

SHM

⌧

RWT

⌧

SMT

RWT SMT

Figure 5.15: Validation approach architecture

The idea depicted in Figure 4.12 is to provide the translation from a given multimedia

language Li to SHM and from the latter to either RWT or SMT in order to provide

document validation. Currently, our validation tools implement only part of the proposed

architecture.
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aNaa implements the left-hand side of Figure 4.12. It provides a mapping from NCL

to RWT . Such mapping was discussed in Chapter 4.3 and Section 5.1.1. SMT Validator,

on the other hand, partially implements the right-hand side of Figure 4.12. It provides a

mapping from SHM (or at least from the Lua table representing it) to SMT . Although

we have already explored mappings from NCL to SHM, it is not yet automated.

A limitation regarding the implementation, therefore, is the lack of integration of both

approaches. A future work in this direction is to provide a representation of SHM in

either Java and/or Lua so that we can translate a given document to it and then to either

RWT or SMT .

Although SHM is intended to be used for representing di↵erent multimedia lan-

guages, we currently provide tools that only considers NCL documents. As it was pre-

sented in Section 5.1.1, we have extended the equational theory E for the SMIL language.

It is available as a Maude module so that we can provide validation for SMIL documents

using RWT . However, we have not integrated it with aNaa such that the tool could work

with both NCL and SMIL documents. Such integration was also left as future work.

A limitation of the tools that implement the validation approach here proposed is

that they consider media fragments only as a subpart of a media item in time. A future

work is to refine those tools to consider also fragments as a subpart of a media item in

space.

The validation approach presented in this work is intended to be used in di↵erent steps

of a multimedia document life cycle. However, it is currently implemented for working

only at the authoring/generation phase. A future work is to provide an implementation

of the validation proposed here so that it can be used in di↵erent parts of a document life

cycle.
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Conclusion

A multimedia presentation may change and evolve during its life cycle. From author-

ing/generation to execution, a document is created (or queried/requested), instantiated,

adapted and may have its structure changed. Thus, it is important to maintain the con-

sistency of a presentation along its life cycle. The research presented in this work fits in

the main idea of maintaining the consistency of a document along its life cycle. It pre-

sented an approach for validating documents. Such an approach is intended to be used

in di↵erent steps of a document life cycle.

The proposed validation relies on a general model SHM for representing a document

d. From SHM, two validation techniques are possible. They are called RWT and SMT .

The first captures the behavior of a document d in terms of its state throughout

its execution. This is achieved with use of the rewrite theory RWT , which induces a

transition system S
RWT

(d) = (S,!), where each state in S represents the state of d as

a whole in a given moment of its execution, and each transition in ! models the user

interaction or a time lapse. Validation in RWT is performed by means of model-checking.

The second captures the behavior of a document d in terms of intervals and event

occurrences. This is achieved with use of an SMT solver, where SMT formulas are used to

represent fragment intervals and regions together with relations among them. Validation

in SMT is performed by solving the resulting formulas.

Due to the di↵erent characteristics of RWT and SMT , each technique complements

the other in terms of the expressiveness of SHM and the kind of properties to be in-

vestigated. A discussion about the choice for each kind of validation is presented in

Section 5.6.1.
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6.1 Contributions

In this section we recall the main contributions of this thesis. They are presented in the

following paragraphs.

One contribution of this work is the definition of the life cycle of multimedia docu-

ments. As it was presented in Chapter 2, this life cycle was inspired in related work so

that di↵erent works about multimedia documents could fit in its steps.

The definition of a life cycle for multimedia documents makes it possible to investi-

gate the validation requirements at di↵erent steps. The di↵erent requirements are also

presented in Chapter 2. The idea is to be able to perform document validation at di↵erent

steps in order to maintain the document consistent in the whole life cycle.

Targeting on validating multimedia documents at di↵erent steps in its life cycle, the

main contribution of this work is to propose a validation approach based on a general

model called SHM. The SHM model was presented in Chapter 4. The idea of SHM
is to provide a formal representation of the behavior of multimedia documents.

Besides the definition of the SHM model, the validation approach presented in this

work uses two validation techniques for providing document validation. Each technique

focuses on a di↵erent characteristic and type of properties to be validated. The first

technique, presented in Section 4.3 validates a multimedia document based on its state

along its execution. The second technique, presented in Section 4.4 validates a multimedia

document based on constraints. Additional contributions from using those two techniques

is the formalization of a multimedia document as rewriting logic theory and as a set of

constraints, respectively.

In order to be able to use the di↵erent techniques presented here, both techniques

were implemented in validation tools. Each tool partially implements one of the validation

technique as discussed in Chapter 5. The same Chapter also presents a discussion about

which technique is more suited for di↵erent steps of the document life cycle.

Finally, another contribution of this work, related to the implementation of the tech-

niques presented here, is its use for finding and reporting errors in the reference imple-

mentation of middleware Ginga-NCL. Thus being able to provide feedback to the group

responsible for the middleware implementation.

Those contributions were presented during this thesis. In the following section we

discuss some future and ongoing works.



6.2 Future Works 97

6.2 Future Works

As presented in Section 5.6.1, two complementary techniques (RWT and SMT ) are pro-

vided for performing validation over SHM(d). Currently, at a given step of the document

life cycle, the choice for a validation technique to be used is left for the author. A future

work is to investigate a way to automatically choose one of them based on the character-

istics of the document and the properties to be validated.

As discussed in Chapter 2, validation at a given step should preserve a set of properties

representing what we call author guidelines. Our definition of a document life cycle,

together with validation requirements for each step lays the base for providing a validation

approach with intention preservation. A future work is to provide a way for the author

to specify such guidelines.

One requirement for providing validation after the authoring/generation phase was to

have some kind of automatic “error correction” so that it would always yield an executable

presentation. The idea behind such automatic correction is to avoid the interruption of

the presentation. As presented in Chapter 5 both tools that implement the validation

approach proposed here only provide feedback to the author for performing document

validation. A future work is to investigate approaches such as the one presented in [Laborie

et al. 2011] for providing such automatic correction.

It is worth highlighting that, providing both the possibility of defining author guide-

lines and an automatic “error correction” we would be able to tackle the main idea of

maintaining the consistency of a document along its life cycle.

Given a property to be validated over a document, both tools presented in Chapter 5

present back to the author just if the property is valid or not. A future work is to present

back to the author more intuitive messages. One example is to use the information in

the trace presented as an answer by the Maude model checker to build an animation or a

sequence of NCL link activations up to the point of failure.

As discussed in Chapter 5, both validation tools consider media fragments as a subpart

of a media item in time. A future work is to consider also media fragments as a subpart of

a media item in space as well. A side e↵ect of such refinement is the possibility of, by the

composition of fragment regions, be able to define more complex forms for representing

media items.

The validation approach presented here models a few characteristics (such as screen
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size) of the execution platform of a multimedia document. A future work is to represent

other platform characteristics such as failure rates so that validation may present, for

example, a percentage of execution where the document will be valid.

The current implementation of SMT uses Lua and the SMT solver Yices2 [Dutertre

2014]. As an ongoing work we are integrating SHM with the NCL language to provide

dynamic layout adaptation of NCL presentations. A future work is to integrate RWT as

well so to further investigate its use in such a scenario. Another future work is to update

SMT for using the Z3 SMT solver [Moura and Bjørner 2008].

In the document life cycle presented in Chapter 2 templates may be used for the

creation of multimedia documents. The use of templates can be seen as a way to support

authors easing the creation of documents or even as a way for providing the automatic

generation of documents. Given the existence of a Template Base, it is important to

guarantee that templates may not introduce inconsistencies in its instances. A future work

is to extend the validation approach proposed here for providing template validation.
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D. C.; ROISIN, C.; LAYAÏDA, N. Spatio-temporal validation of multimedia documents.
In: Proceedings of the 2015 ACM Symposium on Document Engineering. New York, NY,
USA: ACM, 2015. (DocEng ’15).

[dos Santos et al. 2012b]DOS SANTOS, J. A. F.; SILVA, J. V.; VASCONCELOS, R. R.;
SCHAU, W.; WERNER, C.; MUCHALUAT-SAADE, D. C. ana: Api for ncl authoring.
In: Proceedings of the 18th Brazilian Symposium on Multimedia and the Web - Workshop
of Tools and Applications. [S.l.: s.n.], 2012.
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tion for mobile devices. In: IEEE International Conference on Mobile Data Management.
[S.l.: s.n.], 2004. p. 106–111.



References 103

[Lemordant et al. 2013]LEMORDANT, J.; MICHEL, T.; RAZAFINAHAZO, M. Mixed
reality browsers and pedestrian navigation in augmented cities. In: The Graphical Web
Conference. San Francisco, United States: [s.n.], 2013.

[Lima et al. 2010]LIMA, B.; AZEVEDO, R. G. A.; MORENO, M.; SOARES, L. F. G.
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APPENDIX A -- Multimedia languages mapping

Chapter 5 presented the general approach for mapping multimedia documents to the

SHM implementation in RWT . It is performed by representing a given document d in

an equation theory E = (⌃, E), where ⌃ represents the syntax of XML documents and E

provides mappings from a given multimedia language into RWT .

As presented in the same section, we have extended E for both NCL and SMIL

languages. Those languages were chosen because they are standard declarative languages

based on di↵erent paradigms for describing multimedia synchronization. NCL uses an

event-based synchronization model and SMIL uses a hierarchy of temporal containers

to specify synchronization relationships. In this appendix we give an overview of both

languages and describe their mappings to RWT .

A.1 NCL

Nested Context Language (NCL) [ABNT 2011, ITU 2009] is an XML-based based mul-

timedia language that describes a document in terms of nodes and links. NCL nodes

represent media items and the document structure, while NCL links represent synchro-

nization relationships among nodes.

An NCL node has one of two types: content node or composite node. A content

node represents a media item (text, image, video, audio, etc) and a composite node

represents a group of nodes, either content or composite. The idea of a composite node

is to structure the NCL document providing “black boxes” that can be reused across

documents. Following this approach, NCL links are declared inside compositions and can

only relate nodes that are children of a given composition. A content node is declared in

NCL by element media, while a composite node is declared by element context.

A special type of composite node is the NCL switch. Switches also represents a

group of nodes, but it attaches conditions to nodes. The ideia behind a switch is to
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provide alternative content by following rules, where each rule specifies the condition to

be attached to a given node. The condition specified in a switch rule defines a test over

the value of a global variable. The NCL standard [ITU 2009] presents a set of predefined

global variables representing system attributes. Moreover, an author can also define its

own global variables. The set of global variables to be used inside a document is declared

in a special type of content node called settings. Whenever a switch is presented only one

of its inner nodes is presented. The chosen node is the first one whose rule was evaluated

to true.

NCL defines how content nodes are presented on the screen with regions and descrip-

tors. Regions define screen regions where content nodes will be presented and descriptors

define presentation characteristics of content nodes, for example, duration, volume, a

region where a content node using this descriptor will be presented, etc. With that sepa-

ration, a same region can be reused in several descriptors, and a same descriptor can be

reused in several nodes.

Links can relate nodes or subparts of them. Therefore nodes inside a composite node

can be made directly accessible by providing mappings to them (in NCL such mappings

are called ports). A subpart of a content node can be either a sub-interval of a media

item presentation (e.g. a sequence of frames of a video) or a local variable of that node.

Subparts of a node content are called anchors while local variables are called properties.

Every content node has a special type of anchor, called lambda anchor, which represents

the node entire content (i.e. the node itself).

Temporal relations in NCL are specified by hypermedia connectors [Muchaluat-Saade

and Soares 2002]. Connectors define generic relations that can be used across the docu-

ment. A given connector specifies the semantics of a relation without defining the partic-

ipants of the relationship. NCL connectors define causal relations where a condition has

to be satisfied before a set of actions is applied. A connector condition is triggered by an

event occurrence in its source node, anchor or property and possibly a test over the value

of properties or the state of anchors. A connector action triggers a change in the state

of its target anchors. Event occurrences signal a change in the state of a state machine

associated to nodes, anchors and properties.

NCL is an event-based multimedia language [Blakowski and Steinmetz 1996, Pérez-

Luque and Little 1996]. A multimedia event is an occurrence in time with duration that

happens during document execution, such as node presentation, viewer interaction or

change of variable values. Therefore, each document element has associated to it state
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machines representing its presentation, selection and attribution states. A presentation

state machine represents a node presentation, a selection state machine represents a viewer

interaction and an attribution state machine represents a property value change. The state

of a document element is the current state of its associated state machine.

Every state machine starts in the sleeping state. As the NCL document executes, it

eventually transits to the occurring state. If we suppose a state machine associated with

a node representing a video object, as the first frame of the video begins its presentation,

the node presentation machine transits to the occurring state. State machines remain

in the occurring state for a given period of time. Thus, besides its state, every state

machine has a countdown clock that registers the time it remains in the occurring state.

The presentation state machine of the node will remain in the occurring state while its

video frames are presented. As soon as the last frame of the video finishes its presentation

(i.e. its clock reaches zero), the node’s presentation machine goes back to the sleeping

state. This is what we call the natural end of a node presentation. It is important to

highlight that not all nodes may have a natural end. One example is a node representing

an image, which does not have an inherent duration. In that case the presentation state

machine of that node will remain in the occurring state indefinitely.

Every time a state changes from occurring to sleeping, the so-called occurrences

counter is incremented. Such a counter enables the author to create relationships for

a specific occurrence. For example, “whenever video v ends its presentation for the third

time, start image i”.

Links are defined by referencing a connector and defining a set of binds, associating

each connector role to a node interface. Therefore, several links can reuse the same

connector defining only the participant nodes. In this work, as a simplification, we refer

to a link-connector pair just as link.

Figure A.1 presents an example of NCL document. We follow the same symbols

used in NCL documentation [Soares and Barbosa 2012]: (i) solid circles represent content

nodes, (ii) dashed circles represent composite nodes, (iii) filled squares represent node

interfaces, (iv) arrows represent links and (v) dashed lines represent port mappings.

The document in Figure A.1 defines three nodes N1, N2 and N3. Both N2 and N3 are

inside composition C2, and both N1 and C2 are inside composition C1, which represents

the document body. Port P1 maps to node N1, which means that node N1 will be executed

when the document (composition C1) begins. Port P2 maps to node N2, which has anchor

A2 inside it.
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Figure A.1: NCL document example

The document also defines links L1, L2 and L3. Link L1 will start the presentation of

node C2 when node N1 ends its presentation. Link L2 will start the presentation of node

N2 when anchor A2 starts its presentation. Link L3 will end the presentation of node

N2 when anchor A2 ends its presentation. An extract of the NCL code of this example

presented in Listing A.1.

1 <ncl>

2 <head> . . . </head>

3 <body id= ’C1 ’>

4 <port id= ’P1 ’ component= ’N1 ’/>

5 <media id= ’N1 ’ src= ’ video1 .mp4 ’ . . ./>

6

7 <context id= ’C2 ’>

8 <port id= ’P2 ’ component= ’N2 ’/>

9 <media id= ’N2 ’ src= ’ video2 .mp4 ’ . . .>

10 <area id= ’A2 ’ begin= ’ 5 s ’ end= ’ 15 s ’/>

11 </media>

12 <media id= ’N3 ’ src= ’ image . png ’ . . ./>

13

14 <link id= ’L2 ’ xconnector= ’ onBeginStart ’>

15 <bind role= ’ onBegin ’ component= ’N2 ’ in t e r f ac e= ’A2 ’/>

16 <bind role= ’ s t a r t ’ component= ’N3 ’/>

17 </link>

18 <link id= ’L3 ’ xconnector= ’ onEndStop ’>

19 <bind role= ’onEnd ’ component= ’N2 ’ in t e r f ac e= ’A2 ’/>

20 <bind role= ’ stop ’ component= ’N3 ’/>

21 </link>

22 </context>

23

24 <link id= ’L1 ’ xconnector= ’ onEndStart ’>

25 <bind role= ’onEnd ’ component= ’N1 ’/>

26 <bind role= ’ s t a r t ’ component= ’C2 ’/>

27 </link>

28 </body>

29 </ncl>

Listing A.1: NCL document example
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A.2 Mapping NCL to RWT

This section discusses the mapping of NCL to RWT . This is provided as a set of equations

that transforms a term in the equational theory E
NCL

into RWT . For simplicity, we shall

call this process ⌧
NCL

.

While translating an NCL document to RWT , units are produced for representing

document nodes, together with equations (using constructor dur) for the unit duration.

For content nodes, ⌧
NCL

produces units for the node’s lambda anchor together with all

anchors and properties declared for that node. For each composite node (context and the

body of an NCL document) it produces a unit representing the whole node. Thus, all

content information is preserved by this transformation modulo the hierarchical structure,

which is not relevant for RWT , since we are interested only in the document’s behavior.

According to user definition (recall function ncl2shm() presented in Section 5.1.1),

⌧

NCL

creates units (u
aux

) for each selection enabled anchor inside the document, together

with rules to start the selection state machine configuration of a unit once one of its u
aux

finishes its presentation.

For each content node inside the document, we create rels (as equations) to preserve

the order of anchor presentation. Those rels are created as follows:

•For a start action a rel starts other anchors defined for the content node, respecting

their order with respect to the target anchor of the start action.

•For each action: stop, pause, resume and abort a rel relays that action to all units

representing anchors of the content node.

Moreover, we also create rels that end the presentation of the unit representing the

lambda anchor, when units representing anchors declared for the content node end their

presentation.

For each composite node inside the document, we create rels to relay actions performed

over the composite node as a whole to inner nodes as follows:

•For a start action a rel relays that action to all units representing inner nodes of

the composite node that are mapped by ports.

•For each action: stop, pause, resume and abort a rel relays that action to all units

representing inner nodes of the composite node.
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Moreover, we also create rels that end the presentation of the unit representing the

composite node, when all of its internal units have ended their presentation and to start

its presentation when at least one internal unit has begun its presentation.

For each link, ⌧
NCL

produces a rel relating units representing the nodes (or node in-

terfaces) declared in the link. Once all links in the NCL document are translated into rels,

we simplify the rel set for a given document. This process of rel simplification follows the

second normal form presented in [Lima and Soares 2013]. We perform this simplification

step in the document transformation in order to guarantee that no concurrence appear in

the rel equations set. Consider the following example:

eq [r1] : end(u1, pre) = start(u2, pre) .

eq [r2] : end(u1, pre) = start(u3, pre) .

A rel, once applied, removes from the term an event transition. Since both, r1 and

r2 have the same condition in the NCL document, if we do not join them together in

the associated equation (see equation r1++r2 below), a non-confluent equational theory

would arise.

eq [r1++r2] : end(u1, pre) = start(u2, pre) start(u3, pre) .

Listing A.2 presents the Maude specification of the NCL document in Figure A.1.

Notice that nodes N1, N2 and N3 are represented by units representing their lambda

anchors (uN1 , uN2 and uN3). Unit uA2 represents anchor A2 and unit uD represents a

delay for the presentation of unit uA2 with respect to unit uN2 . The set of document’s

anchors is declared by equation doc, while the action to be performed in the document

begin is declared by equation ini. Equation max declares the maximum time allowed for

this document execution before it is considered not to finish.

1 mod EXAMPLE i s

2 protecting RRWT .

3

4 eq max = 3600 .

5 eq i n i = i n i t ( ’ uC1 , pre ) .

6 eq doc = s t a t e ( ’ uC1 , pre , s l e e p i n g ) occur ( ’ uC1 , pre , 0 ) c l o ck ( ’ uC1 , pre , none )

7 s t a t e ( ’uN1 , pre , s l e e p i n g ) occur ( ’uN1 , pre , 0 ) c l o ck ( ’uN1 , pre , none )

8 s t a t e ( ’ uC2 , pre , s l e e p i n g ) occur ( ’ uC2 , pre , 0 ) c l o ck ( ’ uC2 , pre , none )

9 s t a t e ( ’uN2 , pre , s l e e p i n g ) occur ( ’uN2 , pre , 0 ) c l o ck ( ’uN2 , pre , none )

10 s t a t e ( ’uN3 , pre , s l e e p i n g ) occur ( ’uN3 , pre , 0 ) c l o ck ( ’uN3 , pre , none )

11 s t a t e ( ’uA2 , pre , s l e e p i n g ) occur ( ’uA2 , pre , 0 ) c l o ck ( ’uA2 , pre , none )

12 s t a t e ( ’uD, pre , s l e e p i n g ) occur ( ’uD, pre , 0 ) c l o ck ( ’uD, pre , none ) .

13

14 eq dur ( ’uN1 , pre ) = 30 .

15 eq dur ( ’uN2 , pre ) = 20 .
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16 eq dur ( ’uN3 , pre ) = i n f .

17 eq dur ( ’uA2 , pre ) = 10 .

18 eq dur ( ’uD, pre ) = 5 .

19

20 eq [ P1 ] : i n i t ( ’ uC1 , pre ) = s t a r t ( ’uN1 , pre ) .

21 eq [ L1 ] : end ( ’uN1 , pre ) = s t a r t ( ’ uC2 , pre ) .

22 . . .

23

24 eq [ P2 ] : i n i t ( ’ uC2 , pre ) = s t a r t ( ’uN2 , pre ) s t a r t ( ’uD, pre ) .

25 eq [ r e l ] : end ( ’uD, pre ) = s t a r t ( ’uA2 , pre ) .

26 eq [ L2 ] : i n i t ( ’uA2 , pre ) = s t a r t ( ’uN3 , pre ) .

27 eq [ L3 ] : end ( ’uA2 , pre ) = stop ( ’uN3 , pre ) .

28 . . .

29 endm

Listing A.2: NCL document example in RWT

Links L1, L2 and L3 are represented by equations whose left side represents the link

condition and the right side represents the link action. Moreover, ports P1 and P2 are

also represented as equations, that starts the presentation of the nodes mapped by them.

Each port equation has as condition the begin of its parent context presentation.

Given that anchor A2 is presented during N2’s presentation, the additional unit uD

is started whenever node N2 is. An additional equation starts the presentation of anchor

A2 after the end of the auxiliar unit.

A.3 SMIL

Di↵erently from NCL, Synchronized Multimedia Integration Language (SMIL) [W3C

2008b] describes a multimedia document in terms of nodes and containers with tem-

poral semantics. SMIL nodes represent media items and the document structure given

by the temporal containers represent synchronization relationships among nodes.

A SMIL node can be declared by di↵erent elements (ref, text, img, audio, video,

animation and textstream). In practice, each di↵erent element name is a synonym for

ref and is used to help the author infer the content of a given document. A node may

declare all the content of a given media item or just a subpart of it. In the second case, a

SMIL author may crop the begin and end of a given media item presentation by selecting

just the fragment of interest. SMIL defines how nodes are presented on the screen with

regions. Regions define screen regions where nodes using them will be presented.

SMIL containers have a temporal semantics embedded to it. There are three contain-

ers in SMIL: par, seq and excl. Each temporal container defines a reference point for the

presentation of an inner component (node or other container) called syncbase. Whenever

a component declares a delay for its presentation, this delay is considered with respect to
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its syncbase. The syncbase of a component is defined as follows:

•The par container presents its inner components in parallel. It means that the

syncbase of every inner component is the beginning of the presentation of the con-

tainer.

•The seq container presents its inner components in sequence, following the order

they are declared in the document. It means that the syncbase of a component is

the end of its predecessor. The syncbase for the first component is the beginning of

the presentation of the container.

•The excl container presents only one of its inner components at a time. This means

that once a component starts its presentation, another (possible) component being

presented is ended. For this container the default syncbase is set to indefinite.

Therefore, the start time of a given component inside the excl container must be

explicitly related to an event occurrence inside the document (e.g. viewer interaction

or the begin or end of another node or container).

Listing A.3 presents an example where the syncbase of components inside a par container

are overwritten.

1 <par id= ’comp ’>

2 <text id= ’ t i t l e ’ . . . begin= ’ 2 s ’ dur= ’ 5 s ’/>

3 <video id= ’ video ’ . . . begin= ’ 3 s ’/>

4 <audio id= ’ audio ’ . . . begin= ’ video . begin+5s ’/>

5 </par>

Listing A.3: Syncbase overwrite

In the example presented in Listing A.3, node text will begin its presentation two

seconds after the beginning of the presentation of the par container, followed by node

video which will start three seconds after the par container. Node audio will begin its

presentation five seconds after the beginning of the presentation of node video. Notice

that the syncbase for node audio is modified for the beginning of another node and a

delay is also added.

The par container ends its presentation when its last inner component ends its pre-

sentation. This behavior can be overwritten allowing the container to end with the first

inner component to finish or together with a chosen component.

SMIL elements may relate their start time to an event occurrence inside the document

as seen in Listing A.3. The same can be done for their end time. SMIL provides a set of
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event occurrences that can be used for determining an element start or end time. They

are:

•beginEvent: occurs when an element starts its presentation.

•endEvent: occurs when an element ends its presentation.

•pause: occurs when an element is paused.

•resume: occurs when an element resumes its presentation.

•mediacomplete: occurs when an element finishes loading.

•timeerror: occurs when an invalid time value is set to a time attribute.

•activateEvent or click: occurs when the user clicks over an element.

•inBoundsEvent or mouseover: occurs when the mouse pointer enters the ele-

ment.

•outOfBoundsEvent or mouseout: occurs when the mouse pointer exits the ele-

ment.

•focusInEvent: occurs when an element receives focus through the keyboard.

•focusOutEvent: occurs when an element looses focus through the keyboard.

When using events, the author must indicate the element whose event is expected

in the format “element id.event”. It is also possible to add a delay with the format

“element id.event+delay”. Events are particularly useful together with excl containers,

since its inner components do not have a default start time.

SMIL also allows the alternative presentation of content through element switch. It

delimits a set of alternative content and each element inside of the switch defines a con-

dition for its presentation. The conditions are evaluated in the order the elements are

declared inside the document. The first element whose condition is evaluated to true is

presented. If an element does not have a condition, it is considered to be true. Switch

tests are done over global variables representing system attributes. The set of predefined

global variables is defined in the SMIL standard [W3C 2008b].

Figure A.2 presents a SMIL document in pictorial form. We follow the same symbols

used in Figure A.1.



A.4 Mapping SMIL to RWT 115

C

N N N

C
1

1 2

2

3

(seq)
(par last)

Figure A.2: SMIL document example

The document in Figure A.2 defines three nodes N1, N2 and N3. Both N2 and N3

are inside container C2, a par container with its end given by the last element to end

among N2 and N3 (endsync = “last”). Both N1 and C2 are inside container C1, a seq

container, which represents the document body. An extract of the SMIL code of this

example presented in Listing A.4.

1 <smil>

2 <head> . . . </head>

3 <body id= ’C1 ’>

4 <video id= ’N1 ’ src= ’ video1 .mp4 ’ . . ./>

5

6 <par id= ’C2 ’ endsync= ’ l a s t ’>

7 <video id= ’N2 ’ src= ’ video2 .mp4 ’ . . ./>

8 <video id= ’N3 ’ src= ’ video3 . png ’ . . ./>

9 </par>

10 </body>

11 </smil>

Listing A.4: SMIL document example

A.4 Mapping SMIL to RWT

This section discusses the mapping of SMIL to RWT . This is provided as a set of equations

that transforms a term in the equational theory E
SMIL

into RWT . For simplicity, we shall

call this process ⌧
SMIL

.

While translating a SMIL document to RWT , units are produced for representing

document nodes, together with equations (using constructor dur) for the unit duration.

Since every node represents a media item as a whole or a subpart of its content, ⌧
SMIL

produces one units for each node. For each temporal container (par, seq, excl and the

body of a SMIL document) it produces a unit representing the whole container together

with rels for representing its behavior.

The same way it is done for NCL, according to user definition (recall function ncl2shm()
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presented in Section 5.1.1), ⌧
SMIL

creates units (u
aux

) for each selection enabled anchor

inside the document, together with rules to start the selection state machine configuration

of a unit once one of its u
aux

finishes its presentation.

For each temporal container inside the document, we create rels that start the con-

tainer inner unit following their syncbase, as described in Section A.3, and rels that end

the presentation of the unit representing the container, when internal units end their

presentation. Those rels are created as follows:

•For a par container, when the unit representing the container starts its presentation,

a rel will start the presentation of all inner elements, considering delays declared by

inner elements. If a given element overrides its syncbase with respect to an event

occurrence, a di↵erent rel is created having the declared event as condition.

•For a par container, a rel will end the presentation of the unit representing the

container when one of its inner units ends (i.e. the first one ends); when one of its

inner units ends and all other units are in the sleeping state (i.e. the last one ends);

or when a given inner unit ends (i.e. the chosen one ends). The choice is made

depending on the SMIL par container attribute endsync.

•For a seq container, when the unit representing the container starts its presentation,

a rel will start the presentation of the first inner element. Other rels will start the

presentation of the i-th inner element when the previous element ends its presen-

tation. Finally, a rel ends the presentation of the unit representing the container

when the last inner element ends its presentation. Every rel must consider eventual

delays for the presentation of inner elements.

•For an excl container, when a container inner unit starts its presentation, a rel will

start the presentation of the unit representing the container. Besides, for each inner

element, a rel will end the presentation of every other inner unit when it starts its

presentation. For each unit inside the container that overrides its syncbase, with

respect to an event occurrence, a di↵erent rel is created having the declared event

as condition.

For each switch element inside the SMIL document, we create rels (one for each inner

element) that start the presentation of a given inner unit when the unit representing the

switch starts its presentation and the condition attached to the unit is evaluated to true.

Finally, for each node whose syncbase was overwritten by the use of events, ⌧
SMIL
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produces a rel relating the event defined in the node syncbase with the unit representing

itself. The same way it is done for NCL, once all the document behavior is mapped into

rels, we simplify the rel set for a given document.

Listing A.5 presents the Maude specification of the document in Figure A.2. Notice

that nodes N1, N2 and N3 are represented by units uN1 , uN2 and uN3 . Unit uC1 represents

container C1 and unit uC2 represents container C2.

1 mod EXAMPLE i s

2 protecting RRWT .

3

4 eq max = 3600 .

5 eq i n i = i n i t ( ’ uC1 , pre ) .

6 eq doc = s t a t e ( ’uN1 , pre , s l e e p i n g ) occur ( ’uN1 , pre , 0 ) c l o ck ( ’uN1 , pre , none )

7 s t a t e ( ’uN2 , pre , s l e e p i n g ) occur ( ’uN2 , pre , 0 ) c l o ck ( ’uN2 , pre , none )

8 s t a t e ( ’uN3 , pre , s l e e p i n g ) occur ( ’uN3 , pre , 0 ) c l o ck ( ’uN3 , pre , none )

9 s t a t e ( ’ uC1 , pre , s l e e p i n g ) occur ( ’ uC1 , pre , 0 ) c l o ck ( ’ uC1 , pre , none )

10 s t a t e ( ’ uC2 , pre , s l e e p i n g ) occur ( ’ uC2 , pre , 0 ) c l o ck ( ’ uC2 , pre , none ) .

11

12 eq dur ( ’uN1 , pre ) = 25 .

13 eq dur ( ’uN2 , pre ) = 20 .

14 eq dur ( ’uN3 , pre ) = 25 .

15 eq dur ( ’ uC1 , pre ) = i n f .

16 eq dur ( ’ uC2 , pre ) = i n f .

17

18 eq [ C1 ] : i n i t ( ’ uC1 , pre ) = s t a r t ( ’uN1 , pre ) .

19 eq [ C1 ] : end ( ’uN1 , pre ) = s t a r t ( ’ uC2 , pre ) .

20 eq [ C1 ] : end ( ’uC2 , pre ) = stop ( ’uC1 , pre ) .

21

22 eq [ C2 ] : i n i t ( ’ uC2 , pre ) = s t a r t ( ’uN2 , pre ) s t a r t ( ’uN3 , pre ) .

23 eq [ C2 ] : end ( ’uN2 , pre ) s t a t e ( ’uN3 , pre , s l e e p i n g ) = stop ( ’uC2 , pre ) .

24 eq [ C2 ] : end ( ’uN3 , pre ) s t a t e ( ’uN2 , pre , s l e e p i n g ) = stop ( ’uC2 , pre ) .

25 endm

Listing A.5: SMIL document example in RWT

The synchronization relation of container C1 is represented by three relationships.

The first one starts N1 when C1 begins its presentation. The second one starts C2 when

N1 ends its presentation. The third one, ends C1 when C2 ends its presentation.

The synchronization relation of container C2 is also represented by three relationships.

The first one starts N2 and N3 when C2 starts its presentation. The second one ends C2

when N2 ends its presentation and N3 is in the sleeping state. The third one ends C2

when N3 ends its presentation and N2 is in the sleeping state.
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APPENDIX B -- Rewriting logic

This work proposes a validation approach based on model checking. We chose rewrit-

ing logic theory for implementing our validation approach. One motivation for the

use of rewriting theory is the presence of available tools that already implements the

rewriting theory calculus and model checker evaluation strategies. One of such tools is

Maude [Clavel et al. 2007], which implements it with a very competitive rewriting per-

formance as indicated by [Kirchner and Moreau 2001]. In this appendix, we give a brief

overview of rewriting logic, presenting the key concepts for this work.

B.1 Rewriting logic calculus

In rewriting logic1, an equational theory is a pair (⌃, E) with ⌃ a ranked alphabet of

function symbols and E a set of ⌃-equations. Rewriting operates on equivalence classes

of terms modulo a given set of equations E, denoted by [t]E. In this way, rewriting is free

from the syntactic constraints of a term representation thanks to the “structural axioms”

E, in deciding what counts as a data structure; for example, string rewriting is obtained

by imposing an associativity axiom, and multiset rewriting by imposing associativity and

commutativity. Standard term rewriting is obtained as the particular case in which the

set E of equations is empty.

Given a equational theory (⌃, E), its sentences are sequents of the form [t]E ! [t0]E

with t, t

0 ⌃-terms, where t and t

0 possibly involve some variables from the countably

infinite set X = {x1, . . . , xn, . . .}.

The notion of rewrite theory presented below is very general and expressive. In the

first place, as already mentioned, it allows for rewriting modulo “structural axioms” E,

thus increasing the expressive power. In addition, it allows for conditional rules of a

very general form, where the conditions do not require equalities to hold but only the

1This Section borrows and adapts prose from [Meseguer 1992, Section 2.2].
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existence of rewritings among pairs of terms in the condition, which further increases the

expressive power. Finally, it allows labeling of the rewrite rules; this is quite natural for

many applications, and customary for automata (viewed as labelled transition systems)

and for Petri nets, which are both particular instances of this definition.

Definition 4. A (labelled) rewrite theory R is a 4-tuple R = (⌃, E, L,R) where ⌃ is a

ranked alphabet of function symbols, E is a set of ⌃-equations, L is a set called the set

of labels, and R is a set of pairs R ✓ L ⇥ (T⌃,E(X)2)+ whose first component is a label

and whose second component is a nonempty sequence of pairs of E-equivalence classes

of terms, with X = {x1, . . . , xn, . . .} a countably infinite set of variables. Elements of R

are called rewrite rules. For a rewrite rule (r, ([t], [t0]) ([u1], [v1]) . . . ([uk], [vk])) we use the

notation

r : [t] ! [t0] if [u1] ! [V1] ^ . . . ^ [uk] ! [vk].

The part [u1] ! [V1] ^ . . . ^ [uk] ! [vk] is called the condition of the rule, and may

abbreviate it with the letter C. To indicate that {x1, . . . , xn} is a set of variables occurring
in either t, t0, or C, we write r : [t(x1, . . . , xn)] ! [t0(x1, . . . , xn)] if C(x1, . . . , xn), or in

abbreviated notation r : [t(xn)] ! [t0(xn)] if C(xn). 4

Given a rewrite theory R, we say that R entails a sequent [t] ! [t0] and write

R ` [t] ! [t0]

if and only if [t] ! [t0] can be obtained by finite application of the following rules of

deduction:

(1) Reflexivity. For each [t] 2 T⌃,E(X),

[t] ! [t]
.

(2) Congruence. For each f 2 ⌃n, n 2 N,

[t1] ! [t01] . . . [tn] ! [t0n]

[f(t1, . . . , tn)] ! [f(t01, . . . , t
0
n)]

.

(3) Replacement. For each rule

r : [t(x)] ! [t0(x)] if [u1(x)] ! [v1(x)] ^ . . . ^ [uk(x)] ! [vk(x)]
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in R,

[w1] ! [w0
1] . . . [wn] ! [w0

n]

[u1(w/x)] ! [v1(w/x)] . . . [uk(w/x)] ! [vk(w/x)]

[t(w/x)] ! [t0(w0
/x)]

.

That is, for a substitution xi 7! wi, 1  i  n, we can deduce sequents

[uj(w/x)] ! [vj(w/x)], 1  j  k,

then, if in addition we can deduce [wi] ! [w0
i], 1  i  n, we are then allowed to deduce

[t(w/x)] ! [t0(w0
/x)].

(4) Transitivity.
[t1] ! [t2] [t2] ! [t3]

[t1] ! [t3]

Equational logic (modulo a set of axioms E) is obtained from rewriting logic by adding

the following rule:

(5) Symmetry.
[t1] ! [t2]

[t2] ! [t1]

B.2 Rewrite metatheories

Rewriting logic is reflective in a precise mathematical way, namely, there is a finitely

presented rewrite theory U that is universal in the sense that we can represent in U any

finitely presented rewrite theory R (including U itself) as a term R, any terms t, t0 2 R as

terms t, t0, and any pair (R, t) as a term hR, ti, in such a way that we have the following

equivalence

R ` [t] ! [t0] $ U ` [hR, ti] ! [hR, t

0i].

Since U is representable in itself, we can achieve a “reflective tower” with an arbitrary

number of levels of reflection:

R ` [t] ! [t0] , U ` [hR, ti] ! [hR, t

0i] , U ` [hU , hR, tii] ! [hU , hR, t

0ii] . . .
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B.3 Maude

B.3.1 Syntax

This section presents a subset of Maude’ syntax large enough to properly formalize NCL

semantics. (We refer the reader to [Clavel et al. 2007] for a full account of Maude’ syntax,

semantics and applications.)

Maude modules have a mathematical meaning that precisely captures the semantics of

Rewriting Logic theories. A Maude module is a formal specification that is also executable

under certain conditions, as recalled later in this section and thoroughly addressed in

many places such as [Clavel et al. 2007]. For this reason, one may write a Rewriting

Logic specification directly in Maude syntax, which is quite close to many declarative

languages from functional or logic programming realms.

Given a Rewriting Logic theory R = (⌃, E,R), one may declare a Maude system

module (or simply module, as it will be called throughout this paper) for R. Modules are

declared using syntax

mod hRi is . . . endm

where hRi is the module’s name.

The signature ⌃ of R is declared in a Maude module using sort declarations and

operation declarations. A sort is declared as follows:

sort hSorti .

where hSorti means the name of the sort. Sort inclusion can be specified by a subsort

declaration

subsort hSort1i < hSort2i .

meaning that hSort1i is a subsort of hSort2i.

Maude operators are declared using the op keyword with syntax
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op hOpNamei : hSort1i . . . hSort
k

i �> hSorti [hOperAtti] .

where hOpNamei is the name of the operation, sorts hSort1i to hSortki are the list of

arguments sorts and sort hSorti is the result sort. The so-called structural axioms, such as,

associativity, commutativity, idempotence and identity, are declared using hOperAtti with
syntax such as assoc for associative and comm for commutative properties. Operators can

be declared using mixfix syntax, where the symbol identifies the place of an argument.

Equations are declared in Maude using keyword eq but may be conditional with

general form

ceq l = r if u1 = v1 ^ . . . ^ un = vn .

where l = r and ui = vi are ⌃-equations. Equations may be annotated with label or owise

attributes. The former names an equation and the latter specifies that the given equation

should be applied otherwise, when no other equation can, for a given pattern l.

Given a Rewriting Logic theory R, a labeled rewrite rule r : [t]E => [t0]E in R is

specified in Maude using the keyword rl , where r is a label and [t]E , [t0]E are congruence

classes of terms in T⌃,E(X). The general form of a rewrite rule is conditional, declared as

follows

crl [r] : t => t

0 if (
^

i

ui = vi) ^ (
^

k

pk => qk) .

Other modules may be imported by a given module. Importation can be done in

di↵erent modes: protecting , extending or including . Importation in protecting mode

preserves the algebraic semantics of imported module in the importing module by not

adding either “junk” or “confusion”2. Importation in extending mode is looser in the

precise sense of allowing “junk” but no “confusion” to the semantics of the included

module. Finally, module inclusion specifies that there are no guarantees that the algebraic

semantics of the included module will be preserved as both “junk” and “confusion” may

be added to the included module. The importation mode is not enforced by the Maude

interpreter.

2No “junk” means that every data item can be constructed using only the constants and operations
in the signature. A data item that cannot be so constructed is junk. No “confusion” means that two
data items are equivalent if and only if they can be proved equal using the equations.
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B.3.2 Executability constraints

For a given Maude module to be executable, a few constraints must be fulfilled. The

equational part of a given module, denoted (⌃, E), must be confluent, terminating, pre-

regular and sort-decreasing. For the remainder of this Section, let t 2 T⌃. Confluence can

be presented in a diagrammatic form as in Figure B.1.

t

E
⇤
��

E

⇤��
t1

E

⇤
��

t2

E
⇤��

t

0

Figure B.1: Confluence property

Definition 5 (Confluence). A set of equations E is confluent when any two rewritings

t1 and t2, by equational simplification, of a given term t, can always be unified by further

rewriting. If t !⇤
E t1 and t !⇤

E t2, then there is a term t

0 such that t1 !⇤
E t

0 and t2 !⇤
E t

0.

Definition 6 (Termination). A set of equations E is terminating when, for any given

term t, there is no infinite sequence of E-rewriting steps from t.

If a set of equations E is both confluent and terminating, a term t can be reduced to

a unique canonical form t #E, that is, to a term that can no longer be rewritten.

Definition 7 (Preregularity). Preregularity requires each term t to have a least sort that

can be assigned to it.

Definition 8 (Sort-decreasingness). Assuming a set of equations E confluent and termi-

nating, the canonical form t #E of a term t by the equations E should have the least sort

possible among the sorts of all the terms equivalent to it by the equations E. Moreover,

it should be possible to compute this least sort from t #E itself, using only the operator

declarations in ⌃.

Maude assumes that modules are preregular and generates warnings, while loading a

module, otherwise. The equational part of a module (⌃, E) is said Church-Rosser and

terminating when it is confluent, terminating, and sort-decreasing.

A Maude module (⌃, E,R) has both rules R and equations E. Rule rewriting is thus

performed modulo such equations. Equations are divided into a set A of structural axioms
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Figure B.2: Coherence property

(associativity, commutativity, idempotence and identity), for which matching algorithms

are implemented in Maude, and a set E of equations that are assumed Church-Rosser and

terminating as discussed before.

The rules R in the module must be coherent with the equations E modulo A, to allow

proper shu✏e of rewriting with rules (or simply rewriting) and rewriting with equations

(or simply simplification). Without coherence, rewrites could be lost by not performing

a possible rewrite before a simplification. Coherence can be presented in diagrammatic

form as in Figure B.2, where E/A denotes equational reduction modulo axioms A, and

R/A denotes rewriting modulo A.

Definition 9 (Coherence). Coherence means that, given a term t, for each one-step

rewrite of t with some rule in R modulo the axioms A to some term t

0, denoted t !1
R/A t

0,

if u is the canonical term we obtain by rewriting t with the equations and memberships

in E to canonical form modulo A, denoted t !!
E/A u, then there is a one-step rewrite of

u with some rule in R modulo A, u !1
R/A u

0, such that t0 =E[A u

0, which by the Church-

Rosser and termination properties of E modulo A is equivalent to t

0 and u

0 having the

same canonical form modulo A by E.

Maude rewrites modulo E [ A in a clever way: a term is reduced to canonical form

using E before applying any rule in R. Thus, the e↵ect of rewriting modulo E [ A is

achieved with just a matching algorithm for A.

B.4 Set-rewriting theories and Reflection in Maude

We call a set-rewriting theory a subclass of rewriting logic theories that allows for term

rewriting module associative, commutative, idempotence and identity axioms, together

with the rewriting logic calculus. A set-rewriting theory provides atomic concurrent tran-

sitions, which corresponds to applying rewrite rules to a sub-term of a term while the rest
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of the term is not a↵ected by this atomic transition. Thus, rewrites can take place at the

rest of the term at the same time the atomic transition happens.

Listing B.1 presents an example of a set-rewriting theory in Maude, where terms of

sort Conf form “a soup” of terms of sort Elem. Operation (line 9) represents the jux-

taposition of elements that are rewritten modulo associative, commutative, idempotence

and identity axioms. (Idempotence has to be explicitly specified as there is not an e�cient

algorithm for rewriting modulo associative, commutative, idempotence and identity ax-

ioms and therefore there is no implementation for such theories in Maude.) The identity

of is the constant none. The operator attribute ctor is used to determine operations

that appear when a term is reduced to its canonical form.

1 mod FOO i s

2 p ro t e c t i ng NAT .

3

4 s o r t Elem Conf .

5 subsor t Elem < Conf .

6

7 op none : �> Conf [ c to r ] .

8 ops e f : Nat �> Elem [ c to r ] .

9 op : Conf Conf �> Conf [ a s soc comm ctor id : none ] .

10

11 var E : Elem . vars n m : Nat .

12

13 eq [ idem ] : E E = E .

14 eq [ e2 f ] : e (n) = f (n) .

15

16 c r l [ fsum ] : f (n) f (m) => f (n + m) i f m == n + 1 .

17 endm

Listing B.1: Set-rewriting example

The rule in line 16 declares that whenever we find two elements with number parame-

ters di↵ering by 1 in a term of sort Conf “they may react” producing a new element whose

number parameter is the sum of the parameter of the original elements. Notice that the

use of associative, commutative and identity axioms for the construction of terms of sort

Conf , together with the congruence rule of the rewriting logic calculus, allows for very

expressive patterns such as idempotence of terms of sort Elem as subterms of a Conf

term declared in Equation idem. Similarly, equation e2f that replaces terms constructed

with operator e by terms constructed with operator f can be applied anywhere in a term

of sort Conf . Moreover, the application of the rule that identifies two terms constructed

with operator f , with one term parameterized by the successor of the parameter of other

term, in any order, and replaces them by a term constructed by operator f parameterized

by the sum of the parameters, can occur anywhere inside a term of sort Conf .

On a modeling note, set-rewriting enables us to specify simple and yet expressive

theories as the semantics of a specification language. Moreover, from an executability
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perspective, it takes advantage of the term rewriting algorithms implemented in the Maude

system specially designed to perform matching modulo such axioms.

Maude allows modules to be metarepresented as terms in a data type Module of

modules. In such a representation, constants, variables and the name of modules, sorts

and operations are represented as quoted identifiers (a string preceded by ’).

1 mod ’FOO i s

2 p ro t e c t i ng ’NAT .

3

4 s o r t s ’ Conf ; ’Elem .

5 subsor t ’Elem < ’ Conf .

6

7 op ’ none : n i l �> ’ Conf [ c to r ] .

8 op ’ e : ’Nat �> ’Elem [ c to r ] .

9 op ’ f : ’Nat �> ’Elem [ c to r ] .

10 op ’ : ’ Conf ’ Conf �> ’ Conf [ a s soc comm ctor id ( ’ none . Conf ) ] .

11

12 none

13

14 eq ’ [ ’E : Elem , ’E : Elem ] = ’E: Elem [ l a b e l ( ’ idem ) ] .

15 eq ’ e [ ’ n : Nat ] = ’ f [ ’ n : Nat ] [ l a b e l ( ’ e 2 f ) ] .

16

17 c r l ’ [ ’ f [ ’ n : Nat ] , ’ f [ ’m: Nat ] ] => ’ f [ ’ + [ ’ n : Nat , ’m: Nat ] ] i f ’ == [ ’m: Nat , ’ + [ ’ n : Nat , ’ s [ ’ 0 . Zero

] ] ] = ’ t rue . Bool [ l a b e l ( ’ fsum ) ] .

18 endm

Listing B.2: Meta representation of set-rewriting example

Terms constructed by a operation is metarepresented using constructor [ ] with the

first parameter being an identifier and the second parameter a metarepresentation of a

term. For example, as can be seen in line 15 of Listing B.2, term e(n) is metarepresented

as ’e[’n:Nat]. As another example, as seen in line 17, term n + m is metarepresented

as ’ + [’n:Nat,’m:Nat].

B.5 Representing finite transition systems in rewrit-
ing logic

A transition system M = (�,L,!), where � is the set of configurations of M, L is a set of

labels, and !✓ �⇥L⇥�, is represented by a term rewriting system RM as follows,

(�,!) 7! T ((⌃�,E!),R!)

where, T (⌃�,E!) is the initial algebra of the rewriting logic theory (⌃�,E!), ⌃� rep-

resents the signature of states in �, the equations in E! induce rewritings representing

unobservable transitions in !, in an observation theory [Milner 1999] sense, and the rules

in R! induce rewritings representing observable transitions in !.
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This idea is depicted in Figure B.3, where a circle represents a transition system state

and arrows represent transitions between states.

(a) Equation
(b) Rule

Figure B.3: Transition systems and rewriting logic

B.6 Searching and model checking

In Listing B.1 we presented an example of a Maude module. We are able to rewrite a

term built from the operations contained in this module by using the rewrite command.

An example of term rewrite in the module in Listing B.1 is presented in Listing B.3.

1 r ewr i t e in FOO : e (0) e (1 ) e (2 ) e (3 ) e (0 ) e (2 ) .

2 r ew r i t e s : 15 in 0ms cpu (0ms r e a l ) (˜ r ew r i t e s / second )

3 r e s u l t Elem : f (3 )

Listing B.3: Set-rewriting example

The rewrite command chooses one of the possible traces of a term rewrite. However,

as presented in Section B.5 in opposite to equations, rules may be non-deterministic,

thus producing concurrent rewrites. In Maude we can search in the “space state” of a

term rewrite using the command search. In Listing B.4 we present the result of a search

considering the same term used in the example in Listing B.1. In the example we search

for all states with type Conf .

1 search in FOO : e (0) e (1) e (2 ) e (3 ) e (0) e (2) =>⇤ c : Conf .

2

3 So lu t i on 1 ( s t a t e 0)

4 s t a t e s : 1 r ew r i t e s : 4 in 0ms cpu (0ms r e a l ) (100000 r ew r i t e s / second )

5 c : Conf ��> f (0 ) f (0 ) f (1 ) f (2 ) f (2 ) f (3 )

6

7 So lu t i on 2 ( s t a t e 1)

8 s t a t e s : 2 r ew r i t e s : 6 in 0ms cpu (0ms r e a l ) (32967 r ew r i t e s / second )

9 c : Conf ��> f (1 ) f (1 ) f (2 ) f (2 ) f (3 )

10

11 So lu t i on 3 ( s t a t e 2)

12 s t a t e s : 3 r ew r i t e s : 8 in 0ms cpu (0ms r e a l ) (33195 r ew r i t e s / second )

13 c : Conf ��> f (0 ) f (0 ) f (1 ) f (3 ) f (3 )

14

15 So lu t i on 4 ( s t a t e 3)

16 s t a t e s : 4 r ew r i t e s : 10 in 0ms cpu (0ms r e a l ) (30303 r ew r i t e s / second )

17 c : Conf ��> f (2 ) f (2 ) f (2 ) f (3 )

18

19 So lu t i on 5 ( s t a t e 4)

20 s t a t e s : 5 r ew r i t e s : 12 in 0ms cpu (0ms r e a l ) (31496 r ew r i t e s / second )

21 c : Conf ��> f (1 ) f (1 ) f (3 ) f (3 )

22

23 So lu t i on 6 ( s t a t e 5)

24 s t a t e s : 6 r ew r i t e s : 16 in 0ms cpu (0ms r e a l ) (35087 r ew r i t e s / second )
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25 c : Conf ��> f (0 ) f (0 ) f (1 ) f (4 )

26

27 So lu t i on 7 ( s t a t e 6)

28 s t a t e s : 7 r ew r i t e s : 18 in 0ms cpu (0ms r e a l ) (34749 r ew r i t e s / second )

29 c : Conf ��> f (2 ) f (3 ) f (3 )

30

31 So lu t i on 8 ( s t a t e 7)

32 s t a t e s : 8 r ew r i t e s : 22 in 0ms cpu (0ms r e a l ) (37671 r ew r i t e s / second )

33 c : Conf ��> f (1 ) f (1 ) f (4 )

34

35 So lu t i on 9 ( s t a t e 8)

36 s t a t e s : 9 r ew r i t e s : 26 in 0ms cpu (0ms r e a l ) (39393 r ew r i t e s / second )

37 c : Conf ��> f (2 ) f (4 )

38

39 No more s o l u t i o n s .

40 s t a t e s : 9 r ew r i t e s : 28 in 0ms cpu (0ms r e a l ) (39215 r ew r i t e s / second )

Listing B.4: Example of term search

The Maude model checker is executed through commandmodelCheck. This command

receives a term and an LTL formula to be evaluated. It takes into consideration the same

“state space” of the search command. Whenever a formula does not hold, the model

checker produces a counterexample presenting a trace where the given formula does not

hold.

In order to use the Maude model checker with the example in Listing B.1, we have to

extend it by defining sort Conf as a subsort of sort State and declare atomic properties

as presented in Listing B.5.
1 mod EXPL i s

2 p ro t e c t i ng MODEL�CHECKER .

3 p ro t e c t i ng FOO .

4

5 subsor t Conf < State .

6

7 op has : Nat �> Prop .

8

9 var n : Nat .

10 var c : Conf .

11

12 eq f (n) c |= has (n) = true .

13 eq c |= has (n) = f a l s e [ owise ] .

14 endm

Listing B.5: LTL Property definition

In Listing B.5 we define property has to test if there exists an element fi in the term

for a given value of i. In Listing B.6 we present the result of two modelCheck commands

considering the same term used in the examples in Listings B.1 and B.4.
1 reduce in EXPL : modelCheck ( e (0 ) e (1 ) e (2 ) e (3 ) e (0 ) e (2 ) , <> has (1) ) .

2 r ew r i t e s : 9 in 0ms cpu (0ms r e a l ) (34351 r ew r i t e s / second )

3 r e s u l t Bool : t rue

4 ==========================================

5 reduce in EXPL : modelCheck ( e (0 ) e (1 ) e (2 ) e (3 ) e (0 ) e (2 ) , <> has (5) ) .

6 r ew r i t e s : 21 in 0ms cpu (0ms r e a l ) (77777 r ew r i t e s / second )

7 r e s u l t ModelCheckResult : counterexample ({ f ( 0 ) f (0 ) f (1 ) f (2 ) f (2 ) f (3 ) , un labe led } { f (1 ) f (1 ) f (2 ) f (2 )

f (3 ) , un labe led } { f ( 2 ) f (2 ) f (2 ) f (3 ) , un labe led } { f (2 ) f (3 ) f (3 ) , un labe led } , { f (2 ) f (4 ) , deadlock })

Listing B.6: modelCheck result
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The first modelCheck command evaluates if there is a future state (from the initial

state) where we have element f1 inside the term. The second modelCheck command

evaluates if there is a future state where we have element f5. The second command

produces a counterexample with a trace where we can not find a state with element f5.
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APPENDIX C -- Satisfiability Modulo Theories

Part of this work proposal is a validation approach based on Satisfiability Modulo Theories

(SMT). In such approach, multimedia document fragments are represented by intervals,

in either time and space, and constraints between such intervals. One motivation for

choosing SMT is the possibility of defining such intervals and constraints in a direct

way, by using variables and inequalities in SMT. Moreover, by solving the resulting

formula that represents a given document it is possible to define a valuation for fragment

intervals. For the implementation of the SMT validation approach, we use the SMT solver

Yices2 [Dutertre 2014].

This appendix is structured as follows. In Section C.1 we present an overview of SMT

and Section C.2 it is presented an overview of the SMT solver Yices2.

C.1 SMT Overview

In this section, we give a brief overview of SMT, presenting the key concepts for this work.

The text here presented borrows and adapts from [Moura and Bjørner 2011].

The propositional satisfiability, or SAT, problem is a well-known constraint satisfac-

tion problem, where a solver decides whether or not a given boolean formula over boolean

variables, called atoms, and composed using logical connectives (such as disjunction, con-

junction, negation, implication and etc) can be made true or not by choosing true/false

values for each atom in the formula. A formulas is, therefore, said to be satisfiable when

it can be made true and unsatisfiable otherwise.

An approach for choosing values to atoms is through systematic search. In such case,

the search space is a tree with each vertex representing an atom and edges representing

the choice of true or false for a given atom. Each possible path from the root node to a

leaf corresponds to an assignment of boolean values for atoms. An assignment that makes

the formula true is called a model.
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In order to build a model, a given search-based solver performs the following actions:

decide, propagate and backtrack. For decide, it chooses an unassigned atom and assign to

it true or false. In propagate, it deduces the consequences of such assignment in other

parts of the formula. Given that a partial assignment leads the formula to false, it means

that some earlier decision must be changed to a di↵erent value, than the solver backtracks.

If backtracking is not possible, than it means that the formula is unsatisfiable.

Satisfiability Modulo Theories (SMT) extends the SAT problem, by making it possible

to use in a given formula, besides boolean variables, predicates expressed in a given theory.

An example is the theory of linear arithmetic, which is used in this work. In such a

case, predicates represent linear arithmetic inequalities. An example of SMT formula is

presented as follows.

(v1  v2) ^ (v3 _ (v1 > v2)) (C.1)

In such a case, variables represent either boolean or arithmetic values.

Solving an SMT formula is performed by integrating di↵erence arithmetic solvers

with SAT solvers. The key idea is to abstract the atoms in an SMT formula as boolean

variables. Taking for example the formula presented in Equation C.1 it can be abstracted

into the following formula.

p1 ^ (v3 _ p2) (C.2)

where atoms (v1  v2) and (v1 > v2) are replaced by boolean variables p1 and p2, respec-

tively.

The abstracted formula is treated as a regular SAT formula. If a solver finds it

satisfiable, the di↵erence arithmetic solver is used to check the model produced by the

SAT solver. Given that the atoms are also found to be satisfiable by the arithmetic solver,

the formula as a whole is satisfiable, otherwise the SAT solver needs to backtrack. Such

process continues until a model is found or no backtrack is possible (thus the formula

will be satisfiable or unsatisfiable, respectively). The resulting model, in this case will be

a mapping from boolean and arithmetic values to the boolean and arithmetic variables

contained in the formula.
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C.2 Yices2

This section presents an overview of the SMT solver Yices2. The text here presented

borrows and adapts from [Dutertre 2014].

Yices2 logic supports the primitive types int and real for arithmetic types, bool for

boolean type among others1. Terms in Yices may represent constants or formulas. The

primitive terms supported are the arithmetic and boolean ones.

Yices maintains a global database of types and terms. Its API provides functions

for constructing types and terms, pretty printing terms and etc. The central structure

of Yices is the context. A context stores assertions to be checked for satisfiability. The

same way as for types and terms, its API provides functions for creating, destroying and

checking contexts, besides adding and removing assertions to contexts.

If the assertions in a context is satisfiable, then the solver can build a model of the

context. Such model maps constants in assertions to concrete values of the same type of

the constant. Once built, a model can be queried and examined independently from the

context. Moreover, further changes in the context do not a↵ect an already created model.

Yices also makes it possible for creating a backtracking point and backtracking to a

previously created backtracking point. Such feature is interesting when some formulas in

the context can be removed if the latter is unsatisfiable.

The declaration of types and terms in Yices2 can be performed using the SMT-LIB

2.0 syntax. Further information about the tool is available in is technical manual2.

1We shall focus here on the types and operations used in our SMT validation implementation.
2
http://yices.csl.sri.com/papers/manual.pdf

http://yices.csl.sri.com/papers/manual.pdf
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APPENDIX D -- RWT Refinements

The RWT theory was first proposed in [dos Santos 2012,dos Santos et al. 2013a] for the

representation of the behavior of multimedia documents. In its first version, RWT was

able to represent the temporal layout of a given document through causal relations among

event occurrences in document fragments.

This work [dos Santos et al. 2012a, dos Santos et al. 2013b, dos Santos et al. 2015a]

presents a refinement of theory RWT mainly by better exploiting the Rewriting logic

calculus and using set-rewriting theories (see Appendix B).

This appendix discusses those refinements made in theory RWT . Before presenting

the refinements, Section D.1 briefly presents the first version of theory RWT , as defined in

[dos Santos 2012,dos Santos et al. 2013a]. Following, Section D.2 discusses the refinements

and Section D.3 presents test results that indicate performance improvements.

D.1 Previous RWT version

This section is based on the definition for the RWT theory presented in [dos Santos 2012].

There, a document d represented in theory RWT as d
RWT

is given by a set of fragments

(A), causal relations (L) and actions (Ia) that are executed as the document begins.

The reader should notice that, in the definition of theory RWT presented in [dos

Santos 2012], fragments are called anchors and causal relations are called links. We have

chosen not to change anchor and link for fragments and causal relations, respectively, to

maintain the consistency of the text.

Theory RWT defined sort anchor , where an element of such sort is formed by its

identification and a set of attributes that represent its state information as follows.

1 s o r t AnchorIdentInfo Attr ibute Att r ibuteSet Anchor .

2 subsor t Attr ibute < Attr ibuteSet .

3 op < | > : AnchorIdentInfo Att r ibuteSet �> Anchor [ c to r ] .

4
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5 op att�value = : St r ing �> Attr ibute [ c to r ] .

6 op att�s t a t e = : EventState �> Attr ibute [ c to r ] .

7 op pre�s t a t e = : EventState �> Attr ibute [ c to r ] .

8 op pre�durat ion = : Nat �> Attr ibute [ c to r ] .

9 op se l�s t a t e = : EventState �> Attr ibute [ c to r ] .

10 op se l�pressedKey = : EventKey �> Attr ibute [ c to r ] .

The state of an anchor presentation (prefix pre), selection (prefix sel) and attribution

(prefix att) follows the state machine presented in Figure 4.1, which is presented again in

Figure D.1.

sleeping

paused

occurring

stop||abort resume

pause

start

stop||abort

Figure D.1: State changes

In order to be able to model and reason over the occurrence of transitions in the

state machine of Figure 4.1, transitions are represented as states in the first version of

RWT . Thus, the set of states is extended with new states representing those transitions.

Figure D.2 presents RWT ’s extended state machine. The original states are represented

in green, while the new “transient” states represented in yellow.
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Figure D.2: Extended state machine

Sort EventState represents the set of states for the extended state machine. Sorts

EventType and EventKey represent the types of state machines and a set of keys related

to viewer selection, respectively. They are defined in RWT as follows.
1 s o r t EventState EventType EventKey .

2

3 ops p r e s en ta t i on s e l e c t i o n a t t r i b u t i o n : �> EventType [ c to r ] .

4 ops s l e e p i n g occur r ing paused stopping abort ing s t a r t i n g pausing resuming : �> EventState [ c to r ] .

5 ops noKey RED GREEN BLUE YELLOW OK : �> EventKey .
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The occurrence of an event, i.e., a transition in the state of a fragment presentation,

selection or attribution is represented by sort EventTransition as follows.

1 s o r t S ta t eTrans i t i on EventTrans i t ion .

2

3 ops s t a r t stop pause resume abort : �> Sta t eTrans i t i on [ c to r ] .

4 op < | | > : S ta t eTrans i t i on EventType AnchorIdentInfo Att r ibuteSet �> EventTrans it ion [ c to r ] .

5 op value = : EventValue �> Attr ibute [ c to r ] .

6 op key = : EventKey �> Attr ibute [ c to r ] .

where the value attribute represents the value to be set in a document variable and the

key attribute represents the key pressed in a viewer selection. The logic of the application

of a transition over an anchor is represented by equations. For example, the equations for

a start transition are defined as follows.

1 var D : DocContent .

2 var I : AnchorIdentInfo .

3 var A : Att r ibuteSet .

4 var Es : EventState .

5 vars Ev Ev ’ : S t r ing .

6 vars Ek Ek ’ : EventKey .

7

8 ceq < s t a r t p r e s en ta t i on | I | none > < I | pre�s t a t e = Es , A > D =

9 < I | pre�s t a t e = s ta r t i ng , A > D i f Es == s l e ep i n g or Es == stopping or Es == abort ing .

10 ceq < s t a r t a t t r i bu t i o n | I | value = Ev > < I | att�value = Ev ’ , att�s t a t e = Es , A > D =

11 < I | att�value = Ev , att�s t a t e = s ta r t i ng , A > D i f Es == s l e ep i n g or Es == stopping or Es

== abort ing .

12 ceq < s t a r t s e l e c t i o n | I | key = Ek > < I | s e l�s t a t e = Es , s e l�pressedKey = Ek ’ , A > D =

13 < I | s e l�s t a t e = s ta r t i ng , s e l�pressedKey = Ek , A > D i f Es == s l e ep i n g or Es == stopping

or Es == abort ing .

A document, in Maude, is represented by the set of fragments that compose it, which

is represented by sort DocContent as follows.

1 s o r t s DocContent .

2 subsor t Anchor EventTrans i t ion < DocContent .

3

4 op none : �> DocContent [ c to r ] .

5 op : DocContent DocContent �> DocContent [ c to r as soc comm id : none ] .

A step in the document execution is represented in RWT with four steps. They are:

(1) the increment of anchor clocks, (2) the evaluation of natural event occurrences, (3)

the evaluation of links and (4) the evolving of states that represent transitions. Those

steps application continues until the document ends.
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(D.1)

The system configuration, represented by sort DocState, is given by DocContent plus

a token to indicate the current document evolution step as follows.
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1 s o r t EvolvingStep EvolvingToken DocContent DocState .

2 subsor t EvolvingToken < DocContent .

3

4 ops formatter imp l i c i t e x p l i c i t : �> EvolvingStep [ c to r ] .

5 op [ : ] : EvolvingStep Nat �> EvolvingToken [ c to r ] .

6

7 op [ ] : Evo lv ingIn fo DocContent �> DocState .

Notice that the previous version of RWT defines three evolving steps: formatter ,

implicit and explicit . During the formatter step, it implements the evolving of states that

represent transitions and the increment of anchor durations (steps evolving and increment

in Equation D.1). During the implicit step, it evaluates natural event occurrences (step

natural in Equation D.1). And during the explicit step, it evaluates links (step links in

Equation D.1). The rules that model the change from one step to another are defined as

follows.

1 var S : EvolvingStep .

2 var T : Nat .

3 var ET : EvolvingToken .

4

5 ��� s t a r t the document s imu la t i on

6 eq run = [ e x p l i c i t : 0 ] [ ( I n i tAc t i on s Document ) l i n k s ] .

7

8 c r l [ e x p l i c i t : T ] [D] => [ f o rmatter : inc (T) ] [ formatter�evolve�doc (D) ] i f not ( ended (D) ) and

docWil lFormatterEvolve (D) .

9 ceq [ e x p l i c i t : T ] [D] = [ formatte r : inc (T) ] [ formatter�evolve�doc (D) ] i f not ( docIsEvolv ing (D

) ) and not ( ended (D) ) and not ( docWil lFormatterEvolve (D) ) .

10

11 c r l [ f o rmatter : T ] [D] => [ imp l i c i t : T ] [ mountEvolvingStep (T, D, Evo lv ingOccurSe lect ion ) D]

i f not ( ended (D) ) and docWi l l Imp l i c i tEvo lve ( se l ec tKey (T) , D) .

12 ceq [ fo rmatter : T ] [D] = [ imp l i c i t : T ] [ mountEvolvingStep (T, D, Evo lv ingOccurSe l ect ion ) D] i f

not ( docIsEvolv ing (D) ) and not ( ended (D) ) and not ( docWi l l Imp l i c i tEvo lve ( se l ec tKey (T) , D) ) .

13

14 c r l [ imp l i c i t : T ] [D] => [ e x p l i c i t : T ] [ l i n k s D] i f not ( ended (D) ) and docWi l lExp l i c i tEvo lve

(D) .

15 ceq [ imp l i c i t : T ] [D] = [ e x p l i c i t : T ] [ l i n k s D] i f not ( docIsEvo lv ing (D) ) and not ( ended (D) )

and not ( docWi l lExp l i c i tEvo lve (D) ) .

At each step, RWT verifies if the document is still executing. If so, it applies the

equations that describe the document behavior inside a step.

After all equations are applied, Maude tests if any modification in the document state

will occur in the next step. If the document state will change, a rule is used to change

the evolving step, and consequently, creating a new state in the transition system. If the

document state will not change, an equation is used, so no new state is created.

Whenever an anchor is in a state representing a transition and no link may be applied,

the formatter step evolves that state to one of the original states in Figure D.1. Besides,

anchors in the occurring state have its clock incremented. The following functions are

used to implement the formatter step.

1 op formatter�evolve�doc : DocContent �> DocContent .

2 op formatter�evolve�anchor : Anchor �> EvolvingToken .

3 op evolve�s t a t e : EventState �> EventState .
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The natural event occurrences are evaluated at the same time, by equations that end

an anchor presentation if the anchor duration was reached, end an anchor attribution once

it is occurring and start an anchor selection once it is sleeping. The following functions

are used to implement the implicit step.

1 op imp l i c i t�evolve�doc : DocContent �> DocContent .

2 op imp l i c i t�evolve�doc : DocContent EventKey �> DocContent .

3 op imp l i c i t�evo lve : AnchorIdentInfo �> EvolvingToken .

4 op imp l i c i t�evo lve : AnchorIdentInfo EventKey �> EvolvingToken .

Finally, a viewer selection defines the key that was pressed. This information is

important since links may define a di↵erent document behavior depending on the key

pressed. When a selection may occur, RWT chooses one element of set EventKey to

represent the key pressed as follows.

1 op mountEvolvingStep : Nat DocContent Bool �> DocContent .

2 op se l ec tKey : Nat �> EventKey .

3

4 eq mountEvolvingStep (T, D, t rue ) = imp l i c i t�evolve�doc (D, se l ec tKey (T) ) .

5 eq mountEvolvingStep (T, D, f a l s e ) = imp l i c i t�evolve�doc (D) .

Links, in RWT , are represented by equations that are applied over anchors whose

state represents a transition, inducing the modification of the state of other anchors.

Since equations are also used in a transition system state definition, a modification of the

document state will be given by the application of all enabled links. Once no other link

can be applied, the states that represent transitions are evolved to the ones in the original

state machine.

Once the equations that represent document links depend on the document that will

be validated, RWT does not define any behavior for the explicit step a priori and it shall

be defined in a separate module providing document-specific information. Fragments of

a module specifying document-specific information are presented as follows.

1 eq Document = < I1 | pre�s t a t e = s l e ep ing , pre�durat ion = 0 , s e l�s t a t e = s l e ep ing , s e l�pressedKey =

noKey > . . . .

2

3 eq l i n k s = exp l i c i t �evo lve (”L1”) . . . .

4

5 eq In i tAc t i on s = < s t a r t p r e s en ta t i on | I1 > .

6

7 eq ET [ e x p l i c i t �evo lve (”L1”) < I1 | pre�s t a t e = s ta r t i ng , A > D ] =

8 ET [ < s t a r t a t t r i bu t i o n | I2 | value = ”yes ” > < I1 | pre�s t a t e = s ta r t i ng , A > D ] .

9 . . .

10

11 eq imp l i c i t�evo lve ( I1 ) < I1 | pre�s t a t e = occurr ing , pre�durat ion = 900 , A > D =

12 < stop pr e s en ta t i on | I1 > < I1 | pre�s t a t e = occurr ing , pre�durat ion = 900 , A > D .

13 . . .

14

15 eq docWi l lExp l i c i tEvo lve (< I1 | pre�s t a t e = s ta r t i ng , A > D) = true .

16 . . .

17

18 eq anchorWi l l Imp l i c i tEvo lve (< I1 | pre�s t a t e = occurr ing , pre�durat ion = 900 , A > ) = true .

19 . . .
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D.2 Theory refinements

Section D.1 briefly presented the previous version of theory RWT . The reader should

notice four key aspects in such a specification, which are:

1.Each step of a document presentation is divided in three evolving steps and, for

each evolving step, RWT first evaluates if some event will occur or not. If it will,

then a rule is used, otherwise an equation is used for changing from one evolving

step to another.

2.A document presentation evolves by incrementing anchor clocks by one.

3.Each evolving step is implemented by functions that traverse all anchors in a doc-

ument changing their attributes.

4.After each increment in anchor clocks, selection may occur.

The first three characteristics have a side e↵ect of diminishing RWT ’s e�ciency since

it has to compute the document state for every increment in anchors clocks, and test

if something will happen. Besides every possible modification in the document state is

controlled by a set of functions. The fourth characteristic has the side e↵ect of augmenting

the state explosion problem, since several viewer selections may occur while an anchor is

being presented.

In our current version of theory RWT , we tackle such problems mainly by adopting

three solutions, which are:

1.Avoid calculating the document state for each time instant and doing so only when

some event may occur.

2.Better exploiting the Rewriting logic calculus passing the control of the application

of equations and rules that model the document execution to the Maude system.

3.Restrict the number of viewer interactions to a user-defined number.

The first solution is achieved by changing anchor clocks to countdown clocks. Thus,

instead of starting it at zero and incrementing it at each document execution step, we

start it with the anchor duration and decrement it at each document execution step.

This simple change enables us to determine the next instant when an event will occur by
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checking the first clock that will reach zero. Therefore, the presentation can jump to this

next point and then calculate the document state after the occurrence of such event.

The second solution is achieved by redefining RWT as a set-rewrite theory. By doing

so we are able to simplify the equations defining RWT ’s behavior (see Section 4.3.1).

Moreover, functions discard and elapse and rule step are constructed in a way that induces

an order for the application of equations as discussed in the proof of Theorem 1. Therefore

we do not need to use functions to control each step of the document execution.

The third solution is achieved by defining rules in the module containing document-

specific information that represent viewer interaction. The amount of rules created will

depend of the number of possible interactions defined by the user. Moreover, each inter-

action is defined to occur at a fraction of the anchor duration.

It is worth noticing that no information about the document execution is lost with the

adoption of solutions 1 and 2. Jumping the document execution to the next instant when

an event occurrence will occur do not represent a lost in information, since no change in the

state of anchors shall occur during that jump, only the increment(or decrement) of anchor

clocks. Some information may be lost by restricting the number of viewer interactions of

an anchor, but we believe it is a tradeo↵ to be considered by the user. A more refined

modeling of viewer interaction, by augmenting the number of possible interactions with

an anchor, tends to augment the number of states and consequently the response time of

validation or a more simple modeling of viewer interaction, by diminishing the number of

possible interactions, with a faster validation.

D.3 Practical results

In Section D.2 we discussed the changes made in RWT to improve its e�ciency and

avoid the state explosion problem. Tests were conducted in order to investigate the gain

obtained with such refinements. This section discusses the conducted tests together with

their results.

Section 5.2 presented test results using RWT for validating three multimedia docu-

ments created by the NCL community. Test results are summarized in Table D.1, which

is presented here to facilitate this section reading.

Table D.1 presents the number of properties validated for a given document, together

with the whole time spent in the validation and the average time spent for validating each
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Table D.1: Document sizes and validation time comparison

Document “First João” “Live More” “Day’s Route”

Properties 23 31 33
Time 386ms 936ms 882ms

Average 16.78ms 30.19ms 26.72ms

property. It is worth noticing that, the bigger the document, in terms of fragments and

causal relations, the bigger the time spent validating it.

The same tests where conducted with the “First João” and “Live More” documents

for the previous version of RWT . The results are presented in Table D.2.

Table D.2: Document sizes and validation time comparison

Document “First João” “Live More”

Properties 23 31
Time 2.5s 5.5s

Average 108.69ms 177.42ms

Besides the refinements presented in this appendix, in our current version of RWT ’s

implementation we use additional fragments for representing media item position in space

as discussed in Section 4.3.2. Thus, an increase in the number of fragments is expected

for representing a given media item. We performed two tests to evaluate our approach.

Test results are presented in Figure D.4.

In the first test we have a document d with two media items A and B. Both A and

B start their presentation as d’s presentation begins. Media A changes its position and

size until it has the same position and size of B and then it remains that way. Document

d’s presentation ends when both A and B finish their presentation. Figure D.3 presents

the spatio-temporal layout for this test.

B

A

B
A

B
A A/B

Figure D.3: Spatio-temporal layout for the first test

The first test consists in incrementing the number n of steps for changing A’s position

and size until it reaches the same position and size of B. For each value of n we ran the

following Maude command and gathered the statistics provided by Maude.

1 red modelCheck ( run , <>(’A equal ’B) ) .
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As the number of steps grows, the number of states in S
RWT

grows linearly with it.

The impact in increasing the number of steps in the time Maude takes to perform the

above command is presented in Figure D.4a. As it can be seen, time also increases linearly

with the number of steps.

In the second test, we fixed the number of steps to 10 and increased the number n of

media items inside the document changing their position. For each value of n we ran the

following two Maude commands and gathered the statistics provided by Maude.
1 red modelCheck ( run , <>(’A1 equal ’B) ) .

2 red modelCheck ( run , <>(’A1 equal ’B /\ . . . /\ ’An equal ’B) ) .

(a) Number of steps X time (ms) (b) Number of items X time (ms)

Figure D.4: Test results

The impact in increasing the number of media items in the time Maude takes to

perform the two commands above is presented in Figure D.4b. As it can be seen, time

grows exponentially with the number of items and the size of the formula to be tested has

almost no impact in time. Testing the execution of each test document alone indicated

that approximately all the time spent by validating the above formula was spent by Maude

in building the transition system where the temporal formulas were verified.

Comparing our approach presented in this thesis to our previous works indicates that

time increases mostly because of the growth in the number of state machines required for

representing the document’s spatial layout. In our tests, for each state machine represent-

ing a media item, five more (four for the positioning attributes and one for the increment

delay) were created. Comparing the time spent to run each document with a similar

one, regarding the number of state machines, but without spatial information, indicates

a small increase in time.

From the graph in Figure D.4a we see a linear growth of time related to the number

of steps for changing the position and size of a media item. For a document with 10000
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steps, the validation is performed in about 6.5 seconds. It is worth mentioning that,

in common multimedia documents, movements of media items take a few seconds, thus,

even with a precision of milliseconds we are still able to give an answer to the author in

a reasonable time. In general, such a huge number of steps is not necessary and can be

abstracted to decrease the overall duration of the validation.
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APPENDIX E -- Module RRWT

1 fmod INFNAT i s

2 including NAT .

3

4 sort InfNat .

5 subsort Nat < InfNat .

6

7 op i n f : �> InfNat [ ctor ] .

8

9 eq i n f + I : InfNat = i n f .

10 eq i n f ⇤ I : InfNat = i n f .

11 eq min( in f , I : InfNat ) = I : InfNat .

12 eq sd ( in f , I : InfNat ) = i n f .

13 endfm

14

15

16

17

18 fmod RNCLSORTS i s

19 sorts MachineType MachineState UnitAtt EventTrans it ion Action Component Conf .

20 subsort UnitAtt EventTrans i t ion Action < Component .

21 endfm

22

23

24

25

26 view Component from TRIV to RNCLSORTS i s

27 sort Elt to Component .

28 endv

29

30

31

32

33 fmod RNCLSIG i s

34 including INFNAT .

35 including STRING .

36 including QID .

37 including RNCLSORTS .

38 including SET{Component} .

39

40

41 sort ClockVal .

42 subsort InfNat < ClockVal .

43

44 ops pre s e l a t t : �> MachineType [ ctor ] .

45 ops s l e e p i n g occur r ing paused : �> MachineState [ ctor ] .

46 op none : �> ClockVal [ ctor ] .

47

48 op value : Qid InfNat �> UnitAtt [ ctor format ( sg o ) ] .

49 op value : Qid St r ing �> UnitAtt [ ctor format ( sg o ) ] .

50 op s t a t e : Qid MachineType MachineState �> UnitAtt [ ctor format ( sg o ) ] .

51 op occur : Qid MachineType InfNat �> UnitAtt [ ctor format ( sg o ) ] .

52 op c l ock : Qid MachineType ClockVal �> UnitAtt [ ctor format ( sg o ) ] .

53

54 ops i n i t end hang ha l t re turn : Qid MachineType �> EventTrans it ion [ ctor format ( sb ! o ) ] .

55 op key : Qid St r ing �> EventTrans it ion [ ctor format ( sb o ) ] .

56 ops s t a r t stop abort pause resume : Qid MachineType �> Action [ ctor format ( s r ! o ) ] .

57
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58 op < | > : InfNat Set{Component} �> Conf [ ctor ] .

59

60 op dur : Qid MachineType �> InfNat .

61

62 op max : �> Nat .

63 op i n i : �> Action .

64 op doc : �> Set{Component} .

65 op run : �> Conf .

66 endfm

67

68

69

70

71 mod RNCL i s

72 including RNCLSIG .

73

74

75 vars n m : InfNat .

76 var id : Qid .

77 var mt : MachineType .

78

79 eq [ a c t i on ] : abort ( id ,mt) , s t a t e ( id ,mt , occur r ing ) , c l o ck ( id ,mt ,m) =

80 s t a t e ( id ,mt , s l e e p i n g ) , c l o ck ( id ,mt , none ) , hang ( id ,mt) .

81 eq [ a c t i on ] : abort ( id ,mt) , s t a t e ( id ,mt , paused ) , c l o ck ( id ,mt ,m) =

82 s t a t e ( id ,mt , s l e e p i n g ) , c l o ck ( id ,mt , none ) , hang ( id ,mt) .

83 eq [ a c t i on ] : abort ( id ,mt) , s t a t e ( id ,mt , s l e e p i n g ) = s t a t e ( id ,mt , s l e e p i n g ) .

84

85 eq [ a c t i on ] : pause ( id ,mt) , s t a t e ( id ,mt , occur r ing ) =

86 s t a t e ( id ,mt , paused ) , ha l t ( id ,mt) .

87 eq [ a c t i on ] : pause ( id ,mt) , s t a t e ( id ,mt , paused ) = s t a t e ( id ,mt , paused ) .

88 eq [ a c t i on ] : pause ( id ,mt) , s t a t e ( id ,mt , s l e e p i n g ) = s t a t e ( id ,mt , s l e e p i n g ) .

89

90 eq [ a c t i on ] : resume ( id ,mt) , s t a t e ( id ,mt , paused ) =

91 s t a t e ( id ,mt , occur r ing ) , r e turn ( id ,mt) .

92 eq [ a c t i on ] : resume ( id ,mt) , s t a t e ( id ,mt , occur r ing ) = s t a t e ( id ,mt , occur r ing ) .

93 eq [ a c t i on ] : resume ( id ,mt) , s t a t e ( id ,mt , s l e e p i n g ) = s t a t e ( id ,mt , s l e e p i n g ) .

94

95 eq [ a c t i on ] : s t a r t ( id ,mt) , s t a t e ( id ,mt , s l e e p i n g ) , c l o ck ( id ,mt , none ) =

96 s t a t e ( id ,mt , occur r ing ) , c l o ck ( id ,mt , dur ( id ,mt) ) , i n i t ( id ,mt) .

97 eq [ a c t i on ] : s t a r t ( id ,mt) , s t a t e ( id ,mt , occur r ing ) = s t a t e ( id ,mt , occur r ing ) .

98 eq [ a c t i on ] : s t a r t ( id ,mt) , s t a t e ( id ,mt , paused ) = s t a t e ( id ,mt , paused ) .

99

100 eq [ a c t i on ] : stop ( id ,mt) , s t a t e ( id ,mt , occur r ing ) , occur ( id ,mt , n) , c l o ck ( id ,mt ,m) =

101 s t a t e ( id ,mt , s l e e p i n g ) , occur ( id ,mt , s n) , c l o ck ( id ,mt , none ) , end ( id ,mt) .

102 eq [ a c t i on ] : stop ( id ,mt) , s t a t e ( id ,mt , paused ) , occur ( id ,mt , n) , c l o ck ( id ,mt ,m) =

103 s t a t e ( id ,mt , s l e e p i n g ) , occur ( id ,mt , s n) , c l o ck ( id ,mt , none ) , end ( id ,mt) .

104 eq [ a c t i on ] : stop ( id ,mt) , s t a t e ( id ,mt , s l e e p i n g ) = s t a t e ( id ,mt , s l e e p i n g ) .

105

106

107

108 eq [ natura l ] : s t a t e ( id ,mt , occur r ing ) , occur ( id ,mt , n) , c l o ck ( id ,mt , 0 ) =

109 s t a t e ( id ,mt , s l e e p i n g ) , occur ( id ,mt , s n) , c l o ck ( id ,mt , none ) , end ( id ,mt) .

110

111

112

113 var sc : Set{Component} .

114

115 op dt : Set{Component} �> InfNat .

116 eq dt ( ( c l o ck ( id ,mt ,m) , s t a t e ( id ,mt , occur r ing ) , sc ) ) = min (m, dt ( sc ) ) .

117 eq dt ( sc ) = i n f [ owise ] .

118

119 op e l ap s e : Set{Component} InfNat �> Set{Component} .

120 eq e l ap s e ( ( c l o ck ( id ,mt ,m) , s t a t e ( id ,mt , occur r ing ) , sc ) , n ) =

121 c l ock ( id ,mt , sd (m, n) ) , e l ap s e ( ( s t a t e ( id ,mt , occur r ing ) , sc ) , n ) .

122 eq e l ap s e ( sc , n) = sc [ owise ] .

123

124

125 var c f : Conf .

126 var ev : EventTrans i t ion .

127 var ac : Action .

128

129 op d i s ca rd : Set{Component} �> Set{Component} .

130 eq d i s ca rd ( ( ev , sc ) ) = d i s ca rd ( sc ) .
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131 eq d i s ca rd ( ( ac , sc ) ) = d i s ca rd ( sc ) .

132 eq d i s ca rd ( sc ) = sc [ owise ] .

133

134 op a c t i v e : Set{Component} �> Bool .

135 eq a c t i v e ( ( s t a t e ( id ,mt , occur r ing ) , sc ) ) = true .

136 eq a c t i v e ( sc ) = f a l s e [ owise ] .

137

138 op check : Set{Component} �> Bool .

139 eq check ( ( ac , sc ) ) = f a l s e .

140 eq check ( ( c l o ck ( id ,mt , 0 ) , sc ) ) = f a l s e .

141 eq check ( e l ap s e ( sc , n ) ) = f a l s e .

142 eq check ( sc ) = true [ owise ] .

143

144 cr l [ s t ep ] : < n | sc > => < n + dt ( sc ) | e l ap s e ( d i s ca rd ( sc ) , dt ( sc ) ) > i f check ( sc ) and ac t i v e ( sc )

and min (n ,max) == n .

145

146

147 eq run = < 0 | i n i , doc > .

148 endm
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APPENDIX F -- Document example

The appendix presents an example of multimedia document specified with the NCL lan-

guage. This example is a real document gathered from the repository of NCL documents

called NCL Club.

The document we shall use as an example here is a fragment of a document called

“First João”. It presents an animation inspired in a chronicle about a famous Brazilian

soccer player named Garrincha. At some point during the animation presentation the

soccer shoes icon appear (Figure F.1a). If the viewer presses the red key of the remote

control, a video of a kid thinking about shoes starts playing (Figure F.1b).

icon

video

(a) Shoes icon

video

kid

(b) Main video resizing

Figure F.1: First João spatio-temporal layout

Figure F.1 presented the spatial layout for a few relevant instants of the document

execution. Listing F.1 presents the complete NCL code for the First João document.

1 <ncl id=”JOAO”>

2 <head>

3 <regionBase >

4 <region id=” r an imat ion ” l e f t= ”0” top=”0” width=”1920” height=”1080”/>

5 <region id=” r i c on ” l e f t= ”1680” top=”126” width=”162” height=”72”/>

6 <region id=” r sho e s ” l e f t= ”288” top=”648” width=”480” height=”270”/>

7 </regionBase>

8

9 <descriptorBase >

10 <descriptor id=”d animation ” region=” r an imat ion ”/>

11 <descriptor id=” d icon ” region=” r i c on ”/>

12 <descriptor id=” d shoes ” region=” r sho e s ”/>

13 </descriptorBase>

14

15 <connectorBase >

16 <causalConnector id=” onKeySe lect ionStopStart ”>

17 <connectorParam name=”keyCode”/>

18 <simpleCondition role=” onSe l e c t i on ” key=”$keyCode”/>

19 <compoundAction operator=” seq ”>

20 <simpleAction role=” stop ” qua l i f i e r= ”par”/>
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21 <simpleAction role=” s t a r t ” qua l i f i e r= ”par”/>

22 </compoundAction>

23 </causalConnector>

24 <causalConnector id=” onBeginStart ”>

25 <simpleCondition role=”onBegin”/>

26 <simpleAction role=” s t a r t ”/>

27 </causalConnector>

28 <causalConnector id=”onEndStop”>

29 <simpleCondition role=”onEnd”/>

30 <simpleAction role=” stop ”/>

31 </causalConnector>

32 </connectorBase>

33 </head>

34

35 <body >

36 <port id=” entry ” component=”animation ”/>

37

38 <media id=”animation ” descr iptor= ”d animation ” src=”animGar . av i ”>

39 <area id=” segIcon ” begin=”45 s ” end=”51 s ”/>

40 </media>

41

42 <context id=” advert ”>

43 <port id=”pIcon” component=” icon ”/>

44

45 <media id=” icon ” descr iptor= ” d icon ” src=” icon . png”/>

46 <media id=” shoes ” descr iptor= ” d shoes ” src=” shoes . av i ”/>

47

48 <link id=” lBegingShoes ” xconnector=” onKeySe lect ionStopStart ”>

49 <bind role=” onSe l e c t i on ” component=” icon ”>

50 <bindParam name=”keyCode” value=”RED”/>

51 </bind>

52 <bind role=” s e t ” component=”animation ” in t e r f ac e= ”bounds”>

53 <bindParam name=”var ” value=”5%,6.67%,45%,45%”/>

54 </bind>

55 <bind role=” s t a r t ” component=” shoes ”/>

56 <bind role=” stop ” component=” icon ”/>

57 </link>

58 </context>

59

60 <link id=” lShowIcon” xconnector=” onBeginStart ”>

61 <bind role=”onBegin” component=”animation ” in t e r f a ce= ” segIcon ”/>

62 <bind role=” s t a r t ” component=” advert ” in t e r f ace= ”pIcon”/>

63 </link>

64 <link id=” lHideIcon ” xconnector=”onEndStop”>

65 <bind role=”onEnd” component=”animation ” in t e r f a ce= ” segIcon ”/>

66 <bind role=” stop ” component=” advert ” in t e r f a ce= ”pIcon”/>

67 </link>

68 </body>

69 </ncl>

Listing F.1: First João NCL code

The First João document defines seven media items, they are: (i) animation for the

Garrincha animation video; (ii) icon for the shoes image; and (iii) shoes for the video of

a kid thinking about shoes.

Link lShowIcon (line 58) starts the icon image and link lHideIcon (line 62) ends the

icon image presentation, both synchronized with the animation video. Link lBegingShoes

(line 46) describes the causal relation that starts the presentation of the shoes video and

stop the presentation of the icon when it is selected by the viewer.

The First João document is represented in RWT by the Maude module presented in

Listing F.2.
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1 mod JOAO i s

2 including RNCL .

3

4 eq doc = s t a t e ( ’ body , pre , s l e e p i n g ) , occur ( ’ body , pre , 0 ) , c l o ck ( ’ body , pre , none ) ,

5

6 s t a t e ( ’ animation , pre , s l e e p i n g ) , occur ( ’ animation , pre , 0 ) , c l o ck ( ’ animation , pre , none ) ,

7 s t a t e ( ’ an imat ion l , att , s l e e p i n g ) , occur ( ’ an imat ion l , att , 0 ) , c l o ck ( ’ an imat ion l , att , none ) ,

va lue ( ’ an imat ion l , 0 ) ,

8 s t a t e ( ’ animation t , att , s l e e p i n g ) , occur ( ’ animation t , att , 0 ) , c l o ck ( ’ animation t , att , none ) ,

va lue ( ’ animation t , 0 ) ,

9 s t a t e ( ’ animation w , att , s l e e p i n g ) , occur ( ’ animation w , att , 0 ) , c l o ck ( ’ animation w , att , none ) ,

va lue ( ’ animation w ,1920) ,

10 s t a t e ( ’ animation h , att , s l e e p i n g ) , occur ( ’ animation h , att , 0 ) , c l o ck ( ’ animation h , att , none ) ,

va lue ( ’ animation h ,1080) ,

11

12 s t a t e ( ’ segIcon , pre , s l e e p i n g ) , occur ( ’ segIcon , pre , 0 ) , c l o ck ( ’ segIcon , pre , none ) ,

13

14 s t a t e ( ’ advert , pre , s l e e p i n g ) , occur ( ’ advert , pre , 0 ) , c l o ck ( ’ advert , pre , none ) ,

15

16 s t a t e ( ’ icon , pre , s l e e p i n g ) , occur ( ’ icon , pre , 0 ) , c l o ck ( ’ icon , pre , none ) ,

17 s t a t e ( ’ icon , s e l , s l e e p i n g ) , occur ( ’ icon , s e l , 0 ) , c l o ck ( ’ icon , s e l , none ) ,

18 s t a t e ( ’ i c on l , att , s l e e p i n g ) , occur ( ’ i c on l , att , 0 ) , c l o ck ( ’ i c on l , att , none ) , va lue ( ’ i c on l

, 1680) ,

19 s t a t e ( ’ i c on t , att , s l e e p i n g ) , occur ( ’ i c on t , att , 0 ) , c l o ck ( ’ i con t , att , none ) , va lue ( ’ i con t

, 126 ) ,

20 s t a t e ( ’ icon w , att , s l e e p i n g ) , occur ( ’ icon w , att , 0 ) , c l o ck ( ’ icon w , att , none ) , va lue ( ’ icon w

,162 ) ,

21 s t a t e ( ’ icon h , att , s l e e p i n g ) , occur ( ’ icon h , att , 0 ) , c l o ck ( ’ icon h , att , none ) , va lue ( ’ icon h

, 7 2 ) ,

22

23 s t a t e ( ’ shoes , pre , s l e e p i n g ) , occur ( ’ shoes , pre , 0 ) , c l o ck ( ’ shoes , pre , none ) ,

24 s t a t e ( ’ s hoe s l , att , s l e e p i n g ) , occur ( ’ s ho e s l , att , 0 ) , c l o ck ( ’ shoe s l , att , none ) , value ( ’

s hoe s l , 288 ) ,

25 s t a t e ( ’ shoes t , att , s l e e p i n g ) , occur ( ’ shoes t , att , 0 ) , c l o ck ( ’ shoes t , att , none ) , va lue ( ’

shoes t , 648 ) ,

26 s t a t e ( ’ shoes w , att , s l e e p i n g ) , occur ( ’ shoes w , att , 0 ) , c l o ck ( ’ shoes w , att , none ) , va lue ( ’

shoes w ,480 ) ,

27 s t a t e ( ’ shoes h , att , s l e e p i n g ) , occur ( ’ shoes h , att , 0 ) , c l o ck ( ’ shoes h , att , none ) , value ( ’

shoes h , 270 ) ,

28

29 s t a t e ( ’ s eg Icon+delay , pre , s l e e p i n g ) , occur ( ’ s eg Icon+delay , pre , 0 ) , c l o ck ( ’ s eg Icon+delay , pre ,

none ) ,

30 s t a t e ( ’ i con+se l e c1 , pre , s l e e p i n g ) , occur ( ’ i con+se l e c1 , pre , 0 ) , c l o ck ( ’ i con+se l e c1 , pre , none ) ,

31 s t a t e ( ’ i con+se l e c2 , pre , s l e e p i n g ) , occur ( ’ i con+se l e c2 , pre , 0 ) , c l o ck ( ’ i con+se l e c2 , pre , none ) .

32

33

34 eq i n i = s t a r t ( ’ body , pre ) .

35 eq max = 3600 .

36

37

38 eq dur ( ’ body , pre ) = i n f .

39

40 eq dur ( ’ animation , pre ) = 71 .

41 eq dur ( ’ animation t , a t t ) = 0 .

42 eq dur ( ’ an imat ion l , a t t ) = 0 .

43 eq dur ( ’ animation w , at t ) = 0 .

44 eq dur ( ’ animation h , a t t ) = 0 .

45

46 eq dur ( ’ segIcon , pre ) = 6 .

47

48 eq dur ( ’ advert , pre ) = i n f .

49

50 eq dur ( ’ icon , pre ) = i n f .

51 eq dur ( ’ icon , s e l ) = 0 .

52 eq dur ( ’ i con t , a t t ) = 0 .

53 eq dur ( ’ i c on l , a t t ) = 0 .

54 eq dur ( ’ icon w , at t ) = 0 .

55 eq dur ( ’ icon h , a t t ) = 0 .

56

57 eq dur ( ’ shoes , pre ) = 13 .

58 eq dur ( ’ shoes t , a t t ) = 0 .

59 eq dur ( ’ s hoe s l , a t t ) = 0 .
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60 eq dur ( ’ shoes w , a t t ) = 0 .

61 eq dur ( ’ shoes h , a t t ) = 0 .

62

63 eq dur ( ’ s eg Icon+delay , pre ) = 45 .

64 eq dur ( ’ i con+se l e c1 , pre ) = 10 .

65 eq dur ( ’ i con+se l e c2 , pre ) = 20 .

66

67

68 eq l e f t ( ’ animation ) = ’ an imat ion l .

69 eq l e f t ( ’ i con ) = ’ i c o n l .

70 eq l e f t ( ’ shoes ) = ’ s h o e s l .

71

72 eq top ( ’ animation ) = ’ an imat ion t .

73 eq top ( ’ i con ) = ’ i c o n t .

74 eq top ( ’ shoes ) = ’ sho e s t .

75

76 eq width ( ’ animation ) = ’ animation w .

77 eq width ( ’ i con ) = ’ icon w .

78 eq width ( ’ shoes ) = ’ shoes w .

79

80 eq he ight ( ’ animation ) = ’ animation h .

81 eq he ight ( ’ i con ) = ’ i con h .

82 eq he ight ( ’ shoes ) = ’ shoes h .

83

84

85 eq [ lBegingShoes ] : end ( ’ icon , s e l ) , key ( ’ icon , ”RED”) , value ( ’ an imat ion l , L : InfNat ) , va lue ( ’

animation t ,T: InfNat ) , va lue ( ’ animation w ,W: InfNat ) , va lue ( ’ animation h ,H: InfNat ) = stop ( ’ icon , pre

) , s t a r t ( ’ shoes , pre ) , s t a r t ( ’ an imat ion l , a t t ) , va lue ( ’ an imat ion l , 9 6 ) , s t a r t ( ’ animation t , a t t ) ,

va lue ( ’ animation t , 7 2 ) , s t a r t ( ’ animation w , at t ) , va lue ( ’ animation w ,864 ) , s t a r t ( ’ animation h , a t t ) ,

va lue ( ’ animation h , 486 ) .

86

87 eq [ lShowIcon ] : i n i t ( ’ segIcon , pre ) = s t a r t ( ’ icon , pre ) .

88 eq [ lH ideIcon ] : end ( ’ segIcon , pre ) = stop ( ’ icon , pre ) .

89

90 eq i n i t ( ’ animation , pre ) = s t a r t ( ’ s eg Icon+delay , pre ) .

91 eq end ( ’ s eg Icon+delay , pre ) = s t a r t ( ’ segIcon , pre ) .

92

93 eq i n i t ( ’ icon , pre ) = s t a r t ( ’ i con+se l e c1 , pre ) , s t a r t ( ’ i con+se l e c2 , pre ) .

94 eq end ( ’ icon , pre ) = stop ( ’ i con+se l e c1 , pre ) , stop ( ’ i con+se l e c2 , pre ) .

95

96 eq i n i t ( ’ body , pre ) = s t a r t ( ’ animation , pre ) .

97 eq end ( ’ body , pre ) = stop ( ’ advert , pre ) , stop ( ’ animation , pre ) .

98 ceq < T: InfNat | s t a t e ( ’ body , pre , o ccur r ing ) , occur ( ’ body , pre ,O: InfNat ) , c l o ck ( ’ body , pre ,C: InfNat ) , S

: Set{Component} > =

99 < T: InfNat | s t a t e ( ’ body , pre , s l e e p i n g ) , occur ( ’ body , pre , s O: InfNat ) , c l o ck ( ’ body , pre , none ) , end

( ’ body , pre ) , S : Set{Component} >

100 i f s t a t e ( ’ advert , pre , s l e e p i n g ) , s t a t e ( ’ animation , pre , s l e e p i n g ) , S1 : Set{Component} := S : Set{
Component} .

101 ceq < T: InfNat | s t a t e ( ’ body , pre , s l e e p i n g ) , c l o ck ( ’ body , pre ,C: InfNat ) , S : Set{Component} > =

102 < T: InfNat | s t a t e ( ’ body , pre , o ccur r ing ) , c l o ck ( ’ body , pre , dur ( ’ body , pre ) ) , i n i t ( ’ body , pre ) , S :

Set{Component} >

103 i f s t a t e (Q: Qid , pre , o ccur r ing ) , S1 : Set{Component} := S : Set{Component} /\ (Q: Qid == ’ advert ) or (Q

: Qid == ’ animation ) .

104

105 eq i n i t ( ’ advert , pre ) = s t a r t ( ’ icon , pre ) .

106 eq end ( ’ advert , pre ) = stop ( ’ icon , pre ) , stop ( ’ shoes , pre ) .

107 ceq < T: InfNat | s t a t e ( ’ advert , pre , o ccur r ing ) , occur ( ’ advert , pre ,O: InfNat ) , c l o ck ( ’ advert , pre ,C:

InfNat ) , S : Set{Component} > =

108 < T: InfNat | s t a t e ( ’ advert , pre , s l e e p i n g ) , occur ( ’ advert , pre , s O: InfNat ) , c l o ck ( ’ advert , pre , none )

, end ( ’ advert , pre ) , S : Set{Component} >

109 i f s t a t e ( ’ icon , pre , s l e e p i n g ) , s t a t e ( ’ shoes , pre , s l e e p i n g ) , S1 : Set{Component} := S : Set{Component}
.

110 ceq < T: InfNat | s t a t e ( ’ advert , pre , s l e e p i n g ) , c l o ck ( ’ advert , pre ,C: InfNat ) , S : Set{Component} > =

111 < T: InfNat | s t a t e ( ’ advert , pre , o ccur r ing ) , c l o ck ( ’ advert , pre , dur ( ’ advert , pre ) ) , i n i t ( ’ advert , pre

) , S : Set{Component} >

112 i f s t a t e (Q: Qid , pre , o ccur r ing ) , S1 : Set{Component} := S : Set{Component} /\ (Q: Qid == ’ icon ) or (Q:

Qid == ’ shoes ) .

113

114

115 r l [ i con+s e l e c :RED] : < T: InfNat | end ( ’ i con+se l e c1 , pre ) , S : Set{Component} > =>

116 < T: InfNat | d i s ca rd ( ( s t a r t ( ’ icon , s e l ) , key ( ’ icon , ”RED”) , S : Set{Component}) ) >

.

117
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118 r l [ i con+s e l e c :RED] : < T: InfNat | end ( ’ i con+se l e c2 , pre ) , S : Set{Component} > =>

119 < T: InfNat | d i s ca rd ( ( s t a r t ( ’ icon , s e l ) , key ( ’ icon , ”RED”) , S : Set{Component}) ) >

.

120 endm

Listing F.2: First João RWT code

The Maude module presented in Listing F.2, is used for the document validation in

its metarepresented version metarepresented as presented in Listing F.3.

1 mod ’JOAO i s

2 including ’BOOL .

3 including ’RNCL .

4 sorts none .

5 none

6 none

7 none

8 eq ’ doc . Set ‘{Component ‘} = ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’

‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ ,

[ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ ,

[ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’

‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’

‘ , [ ’ occur [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType , ’ 0 . Zero ] , ’ c l o ck [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType

, ’ none . ClockVal ] ] , ’ s t a t e [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’

i con+s e l e c 1 . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType , ’ 0 .

Zero ] ] , ’ s t a t e [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’ s eg Icon+delay

. Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ s eg Icon+delay . Qid , ’ pre . MachineType , ’ 0 . Zero ] ] , ’

s t a t e [ ’ ’ s eg Icon+delay . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ shoes h . Qid , ’ s

ˆ 270 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ shoes h . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ shoes h . Qid , ’ a t t

. MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ shoes h . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’

shoes w . Qid , ’ s ˆ 480 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ shoes w . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’

shoes w . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ shoes w . Qid , ’ a t t . MachineType , ’ s l e e p i n g .

MachineState ] ] , ’ va lue [ ’ ’ s h o e s t . Qid , ’ s ˆ 648 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ s h o e s t . Qid , ’ a t t . MachineType , ’

none . ClockVal ] ] , ’ occur [ ’ ’ s h o e s t . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ s h o e s t . Qid , ’ a t t .

MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ s h o e s l . Qid , ’ s ˆ 288 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ s h o e s l .

Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ s h o e s l . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’

s h o e s l . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’ shoes . Qid , ’ pre . MachineType , ’ none .

ClockVal ] ] , ’ occur [ ’ ’ shoes . Qid , ’ pre . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ shoes . Qid , ’ pre . MachineType , ’

s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ i con h . Qid , ’ s ˆ 7 2 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ i con h . Qid , ’ a t t .

MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ i con h . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ i con h . Qid

, ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ icon w . Qid , ’ s ˆ 162 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’

icon w . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ icon w . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’

s t a t e [ ’ ’ icon w . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ i c o n t . Qid , ’ s ˆ 126 [ ’ 0 . Zero

] ] ] , ’ c l o ck [ ’ ’ i c o n t . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ i c o n t . Qid , ’ a t t . MachineType

, ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ i c o n t . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ i c o n l . Qid , ’ s

ˆ1680 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ i c o n l . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ i c o n l . Qid , ’ a t t .

MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ i c o n l . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’

i con . Qid , ’ s e l . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ i con . Qid , ’ s e l . MachineType , ’ 0 . Zero ] ] , ’ s t a t e

[ ’ ’ i con . Qid , ’ s e l . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’ i con . Qid , ’ pre . MachineType , ’ none .

ClockVal ] ] , ’ occur [ ’ ’ i con . Qid , ’ pre . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ i con . Qid , ’ pre . MachineType , ’

s l e e p i n g . MachineState ] ] , ’ c l o ck [ ’ ’ advert . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ advert .

Qid , ’ pre . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ advert . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’

c l o ck [ ’ ’ s eg Icon . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ s eg Icon . Qid , ’ pre . MachineType , ’ 0 .

Zero ] ] , ’ s t a t e [ ’ ’ s eg Icon . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ animation h . Qid , ’

s ˆ1080 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ animation h . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’

animation h . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ animation h . Qid , ’ a t t . MachineType , ’ s l e e p i n g .

MachineState ] ] , ’ va lue [ ’ ’ animation w . Qid , ’ s ˆ1920 [ ’ 0 . Zero ] ] ] , ’ c l o ck [ ’ ’ animation w . Qid , ’ a t t .

MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ animation w . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’

animation w . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue [ ’ ’ an imat ion t . Qid , ’ 0 . Zero ] ] , ’

c l o ck [ ’ ’ an imat ion t . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ an imat ion t . Qid , ’ a t t .

MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ an imat ion t . Qid , ’ a t t . MachineType , ’ s l e e p i n g . MachineState ] ] , ’ va lue

[ ’ ’ an imat ion l . Qid , ’ 0 . Zero ] ] , ’ c l o ck [ ’ ’ an imat ion l . Qid , ’ a t t . MachineType , ’ none . ClockVal ] ] , ’ occur

[ ’ ’ an imat ion l . Qid , ’ a t t . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ an imat ion l . Qid , ’ a t t . MachineType , ’ s l e e p i n g

. MachineState ] ] , ’ c l o ck [ ’ ’ animation . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ animation . Qid

, ’ pre . MachineType , ’ 0 . Zero ] ] , ’ s t a t e [ ’ ’ animation . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] , ’

c l o ck [ ’ ’ body . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ body . Qid , ’ pre . MachineType , ’ 0 . Zero ] ] ,

’ s t a t e [ ’ ’ body . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] [ none ] .

9

10 eq ’ i n i . Action = ’ s t a r t [ ’ ’ body . Qid , ’ pre . MachineType ] [ none ] .

11 eq ’max . Nat = ’ s ˆ3600 [ ’ 0 . Zero ] [ none ] .
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12

13 eq ’ dur [ ’ ’ body . Qid , ’ pre . MachineType ] = ’ i n f . InfNat [ none ] .

14

15 eq ’ dur [ ’ ’ animation . Qid , ’ pre . MachineType ] = ’ s ˆ 7 1 [ ’ 0 . Zero ] [ none ] .

16 eq ’ dur [ ’ ’ an imat ion t . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

17 eq ’ dur [ ’ ’ an imat ion l . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

18 eq ’ dur [ ’ ’ animation w . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

19 eq ’ dur [ ’ ’ animation h . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

20

21 eq ’ dur [ ’ ’ s eg Icon . Qid , ’ pre . MachineType ] = ’ s ˆ 6 [ ’ 0 . Zero ] [ none ] .

22

23 eq ’ dur [ ’ ’ advert . Qid , ’ pre . MachineType ] = ’ i n f . InfNat [ none ] .

24

25 eq ’ dur [ ’ ’ i con . Qid , ’ pre . MachineType ] = ’ i n f . InfNat [ none ] .

26 eq ’ dur [ ’ ’ i con . Qid , ’ s e l . MachineType ] = ’ 0 . Zero [ none ] .

27 eq ’ dur [ ’ ’ i c o n t . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

28 eq ’ dur [ ’ ’ i c o n l . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

29 eq ’ dur [ ’ ’ icon w . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

30 eq ’ dur [ ’ ’ i con h . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

31

32 eq ’ dur [ ’ ’ shoes . Qid , ’ pre . MachineType ] = ’ s ˆ 1 3 [ ’ 0 . Zero ] [ none ] .

33 eq ’ dur [ ’ ’ s h o e s t . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

34 eq ’ dur [ ’ ’ s h o e s l . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

35 eq ’ dur [ ’ ’ shoes w . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

36 eq ’ dur [ ’ ’ shoes h . Qid , ’ a t t . MachineType ] = ’ 0 . Zero [ none ] .

37

38 eq ’ dur [ ’ ’ s eg Icon+delay . Qid , ’ pre . MachineType ] = ’ s ˆ 4 5 [ ’ 0 . Zero ] [ none ] .

39 eq ’ dur [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType ] = ’ s ˆ 1 0 [ ’ 0 . Zero ] [ none ] .

40 eq ’ dur [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType ] = ’ s ˆ 2 0 [ ’ 0 . Zero ] [ none ] .

41

42 eq ’ l e f t [ ’ ’ animation . Qid ] = ’ ’ an imat ion l . Qid [ none ] .

43 eq ’ l e f t [ ’ ’ i con . Qid ] = ’ ’ i c o n l . Qid [ none ] .

44 eq ’ l e f t [ ’ ’ shoes . Qid ] = ’ ’ s h o e s l . Qid [ none ] .

45

46 eq ’ top [ ’ ’ animation . Qid ] = ’ ’ an imat ion t . Qid [ none ] .

47 eq ’ top [ ’ ’ i con . Qid ] = ’ ’ i c o n t . Qid [ none ] .

48 eq ’ top [ ’ ’ shoes . Qid ] = ’ ’ s ho e s t . Qid [ none ] .

49

50 eq ’ width [ ’ ’ animation . Qid ] = ’ ’ animation w . Qid [ none ] .

51 eq ’ width [ ’ ’ i con . Qid ] = ’ ’ icon w . Qid [ none ] .

52 eq ’ width [ ’ ’ shoes . Qid ] = ’ ’ shoes w . Qid [ none ] .

53

54 eq ’ he ight [ ’ ’ animation . Qid ] = ’ ’ animation h . Qid [ none ] .

55 eq ’ he ight [ ’ ’ i con . Qid ] = ’ ’ i con h . Qid [ none ] .

56 eq ’ he ight [ ’ ’ shoes . Qid ] = ’ ’ shoes h . Qid [ none ] .

57

58 eq ’ ‘ , [ ’ va lue [ ’ ’ animation h . Qid , ’H: InfNat ] , ’ va lue [ ’ ’ an imat ion l . Qid , ’ L : InfNat ] , ’ va lue [ ’ ’

an imat ion t . Qid , ’T: InfNat ] , ’ va lue [ ’ ’ animation w . Qid , ’W: InfNat ] , ’ end [ ’ ’ i con . Qid , ’ s e l . MachineType

] , ’ key [ ’ ’ i con . Qid , ’ ”RED” . St r ing ] ] =

59 ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ va lue [ ’ ’ animation h . Qid , ’ s ˆ 486 [ ’ 0 .

Zero ] ] , ’ s t a r t [ ’ ’ animation h . Qid , ’ a t t . MachineType ] ] , ’ va lue [ ’ ’ animation w . Qid , ’ s ˆ 864 [ ’ 0 . Zero ] ] ] ,

’ s t a r t [ ’ ’ animation w . Qid , ’ a t t . MachineType ] ] , ’ va lue [ ’ ’ an imat ion t . Qid , ’ s ˆ 7 2 [ ’ 0 . Zero ] ] ] , ’ s t a r t [ ’ ’

an imat ion t . Qid , ’ a t t . MachineType ] ] , ’ va lue [ ’ ’ an imat ion l . Qid , ’ s ˆ 9 6 [ ’ 0 . Zero ] ] ] , ’ s t a r t [ ’ ’

an imat ion l . Qid , ’ a t t . MachineType ] ] , ’ s t a r t [ ’ ’ shoes . Qid , ’ pre . MachineType ] ] , ’ stop [ ’ ’ i con . Qid , ’ pre .

MachineType ] ] [ l a b e l ( ’ lBegingShoes ) ] .

60

61 eq ’ i n i t [ ’ ’ s eg Icon . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ i con . Qid , ’ pre . MachineType ] [ l a b e l ( ’ lShowIcon

) ] .

62 eq ’ end [ ’ ’ s eg Icon . Qid , ’ pre . MachineType ] = ’ stop [ ’ ’ i con . Qid , ’ pre . MachineType ] [ l a b e l ( ’ lH ideIcon ) ]

.

63

64 eq ’ i n i t [ ’ ’ animation . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ s eg Icon+delay . Qid , ’ pre . MachineType ] [ none ]

.

65 eq ’ end [ ’ ’ s eg Icon+delay . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ s eg Icon . Qid , ’ pre . MachineType ] [ none ] .

66

67 eq ’ i n i t [ ’ ’ i con . Qid , ’ pre . MachineType ] = ’ ‘ , [ ’ s t a r t [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType ] , ’ s t a r t

[ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType ] ] [ none ] .

68 eq ’ end [ ’ ’ i con . Qid , ’ pre . MachineType ] = ’ ‘ , [ ’ stop [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType ] , ’ stop [ ’ ’

i con+s e l e c 2 . Qid , ’ pre . MachineType ] ] [ none ] .

69

70 eq ’ i n i t [ ’ ’ body . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ animation . Qid , ’ pre . MachineType ] [ none ] .

71 eq ’ end [ ’ ’ body . Qid , ’ pre . MachineType ] = ’ ‘ , [ ’ stop [ ’ ’ advert . Qid , ’ pre . MachineType ] , ’ stop [ ’ ’

animation . Qid , ’ pre . MachineType ] ] [ none ] .
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72 ceq ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ body . Qid , ’ pre . MachineType , ’ o ccur r ing .

MachineState ] , ’ occur [ ’ ’ body . Qid , ’ pre . MachineType , ’O: InfNat ] , ’ c l o ck [ ’ ’ body . Qid , ’ pre . MachineType , ’

C: InfNat ] ] ] =

73 ’< | > [ ’T: InfNat , ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ body . Qid , ’ pre .

MachineType ] ] , ’ c l o ck [ ’ ’ body . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ body . Qid , ’ pre .

MachineType , ’ s [ ’O: InfNat ] ] ] , ’ s t a t e [ ’ ’ body . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] ]

74 i f ’ ‘ , [ ’ S1 : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ advert . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ,

’ s t a t e [ ’ ’ animation . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] := ’S : Set ‘{Component ‘} [ none ] .

75 ceq ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ body . Qid , ’ pre . MachineType , ’ s l e e p i n g .

MachineState ] , ’ c l o ck [ ’ ’ body . Qid , ’ pre . MachineType , ’C: InfNat ] ] ] =

76 ’< | > [ ’T: InfNat , ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ i n i t [ ’ ’ body . Qid , ’ pre . MachineType ] ] ,

’ c l o ck [ ’ ’ body . Qid , ’ pre . MachineType , ’ dur [ ’ ’ body . Qid , ’ pre . MachineType ] ] ] , ’ s t a t e [ ’ ’ body . Qid , ’ pre .

MachineType , ’ o c cur r ing . MachineState ] ] ]

77 i f ’ ‘ , [ ’ S1 : Set ‘{Component ‘} , ’ s t a t e [ ’Q: Qid , ’ pre . MachineType , ’ o c cur r ing . MachineState ] ] := ’

S : Set ‘{Component ‘} /\ ’ o r [ ’ == [ ’Q: Qid , ’ ’ advert . Qid ] , ’ == [ ’Q: Qid , ’ ’ animation . Qid ] ] = ’ t rue . Bool

[ none ] .

78

79 eq ’ i n i t [ ’ ’ advert . Qid , ’ pre . MachineType ] = ’ s t a r t [ ’ ’ i con . Qid , ’ pre . MachineType ] [ none ] .

80 eq ’ end [ ’ ’ advert . Qid , ’ pre . MachineType ] = ’ ‘ , [ ’ stop [ ’ ’ i con . Qid , ’ pre . MachineType ] , ’ stop [ ’ ’ shoes

. Qid , ’ pre . MachineType ] ] [ none ] .

81 ceq ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ advert . Qid , ’ pre . MachineType , ’ o c cur r ing .

MachineState ] , ’ occur [ ’ ’ advert . Qid , ’ pre . MachineType , ’O: InfNat ] , ’ c l o ck [ ’ ’ advert . Qid , ’ pre .

MachineType , ’C: InfNat ] ] ] =

82 ’< | > [ ’T: InfNat , ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ advert . Qid , ’ pre .

MachineType ] ] , ’ c l o ck [ ’ ’ advert . Qid , ’ pre . MachineType , ’ none . ClockVal ] ] , ’ occur [ ’ ’ advert . Qid , ’ pre .

MachineType , ’ s [ ’O: InfNat ] ] ] , ’ s t a t e [ ’ ’ advert . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] ]

83 i f ’ ‘ , [ ’ S1 : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ i con . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] , ’

s t a t e [ ’ ’ shoes . Qid , ’ pre . MachineType , ’ s l e e p i n g . MachineState ] ] := ’S : Set ‘{Component ‘} [ none ] .

84 ceq ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ s t a t e [ ’ ’ advert . Qid , ’ pre . MachineType , ’ s l e e p i n g .

MachineState ] , ’ c l o ck [ ’ ’ advert . Qid , ’ pre . MachineType , ’C: InfNat ] ] ] =

85 ’< | > [ ’T: InfNat , ’ ‘ , [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ i n i t [ ’ ’ advert . Qid , ’ pre . MachineType

] ] , ’ c l o ck [ ’ ’ advert . Qid , ’ pre . MachineType , ’ dur [ ’ ’ advert . Qid , ’ pre . MachineType ] ] ] , ’ s t a t e [ ’ ’ advert .

Qid , ’ pre . MachineType , ’ o c cur r ing . MachineState ] ] ]

86 i f ’ ‘ , [ ’ S1 : Set ‘{Component ‘} , ’ s t a t e [ ’Q: Qid , ’ pre . MachineType , ’ o c cur r ing . MachineState ] ] := ’S

: Set ‘{Component ‘} /\ ’ o r [ ’ == [ ’Q: Qid , ’ ’ i con . Qid ] , ’ == [ ’Q: Qid , ’ ’ shoes . Qid ] ] = ’ t rue . Bool [ none ]

.

87

88

89 r l ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ i con+s e l e c 1 . Qid , ’ pre . MachineType ] ] ] =>

90 ’< | > [ ’T: InfNat , ’ d i s ca rd [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ key [ ’ ’ i con . Qid , ’ ”RED” . St r ing ] ] , ’

s t a r t [ ’ ’ i con . Qid , ’ s e l . MachineType ] ] ] ] [ l a b e l ( ’ i con+s e l e c :RED) ] .

91

92 r l ’< | > [ ’T: InfNat , ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ end [ ’ ’ i con+s e l e c 2 . Qid , ’ pre . MachineType ] ] ] =>

93 ’< | > [ ’T: InfNat , ’ d i s ca rd [ ’ ‘ , [ ’ ‘ , [ ’ S : Set ‘{Component ‘} , ’ key [ ’ ’ i con . Qid , ’ ”RED” . St r ing ] ] , ’

s t a r t [ ’ ’ i con . Qid , ’ s e l . MachineType ] ] ] ] [ l a b e l ( ’ i con+s e l e c :RED) ] .

94 endm

Listing F.3: First João module metarepresentation

As for the SMT validation, the First João document shall be represented as an SMT

formula. The formula representing it is constructed from the conjunction of all subfor-

mulas sent to the SMT solver. The set of SMT subformulas representing the First João

document is presented in Listing F.4.

1 I > 0

2 T  I

3 canvas:tbeg  T  canvas:tend

4

5 �� Canvas d e f i n i t i o n

6 canvas:tmid = (canvas:tbeg + canvas:tend)/2

7 canvas:tend = canvas:tbeg + canvas:texp

8 canvas:tbeg = 0

9 canvas:texp > 0

10 canvas:tend  I

11 canvas:tplc

12 canvas:splc

13 canvas:xmid = (canvas:xbeg + canvas:xend)/2

14 canvas:xend = canvas:xbeg + canvas:xexp
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15 canvas:ymid = (canvas:ybeg + canvas:yend)/2

16 canvas:yend = canvas:ybeg + canvas:yexp

17

18 �� Animation d e f i n i t i o n

19 animation:tmid = (animation:tbeg + animation:tend)/2

20 animation:tend = animation:tbeg + animation:texp

21 animation:tbeg � canvas:tbeg

22 animation:tend  canvas:tend

23
��

animation:tplc ^ (T � animation:tbeg) ^ (T  animation:tend) ^ animation:splc
�

24 _
�
(¬animation:tplc _ (T < animation:tbeg) _ (T > animation:tend)) ^ ¬animation:splc

� 

25 animation:xmid = (animation:xbeg + animation:xend)/2

26 animation:xend = animation:xbeg + animation:xexp

27 animation:ymid = (animation:ybeg + animation:yend)/2

28 animation:yend = animation:ybeg + animation:yexp

29 segIcon:tmid = (segIcon:tbeg + segIcon:tend)/2

30

31 �� Icon d e f i n i t i o n

32 icon:tmid = (icon:tbeg + icon:tend)/2

33 icon:tbeg < icon:tend

34 icon:tbeg � canvas:tbeg

35 icon:tend  canvas:tend

36
��

icon:tplc ^ (T � icon:tbeg) ^ (T  icon:tend) ^ icon:splc
�

37 _
�
(¬icon:tplc _ (T < icon:tbeg) _ (T > icon:tend)) ^ ¬icon:splc

� 

38 icon:xmid = (icon:xbeg + icon:xend)/2

39 icon:xend = icon:xbeg + icon:xexp

40 icon:ymid = (icon:ybeg + icon:yend)/2

41 icon:yend = icon:ybeg + icon:yexp

42 icon

s

:tmid = (icon
s

:tbeg + icon

s

:tend)/2

43 icon

s

:tend = icon

s

:tbeg + icon

s

:texp

44

45 �� Shoes d e f i n i t i o n

46 shoes:tmid = (shoes:tbeg + shoes:tend)/2

47 shoes:tend = shoes:tbeg + shoes:texp

48 shoes:tbeg � canvas:tbeg

49 shoes:tend  canvas:tend

50
��

shoes:tplc ^ (T � shoes:tbeg) ^ (T  shoes:tend) ^ shoes:splc
�

51 _
�
(¬shoes:tplc _ (T < shoes:tbeg) _ (T > shoes:tend)) ^ ¬shoes:splc

� 

52 shoes:xmid = ((shoes:xbeg + shoes:xend)/2

53 shoes:xend = (shoes:xbeg + shoes:xexp

54 shoes:ymid = ((shoes:ybeg + shoes:yend)/2

55 shoes:yend = (shoes:ybeg + shoes:yexp

56

57 �� Canvas s i z e

58 (canvas:xbeg = 0) ^ (canvas:xexp = 1920) ^ (canvas:ybeg = 0) ^ (canvas:yexp = 1080)

59

60 �� Animation/SegIcon r e l a t i o n

61 animation:texp = 71

62 segIcon:tbeg = animation:tbeg + 45

63 segIcon:tend = animation:tbeg + 51

64
�
(animation:tplc ^ segIcon:tplc) _ (¬animation:tplc ^ ¬segIcon:tplc)

�

65

66 �� Icon s i z e

67 icon:texp = 6

68 (icon:xbeg = 560) ^ (icon:xexp = 54) ^ (icon:ybeg = 55) ^ (icon:yexp = 32)

69

70 �� Icon s e l e c t i o n

71 icon

s

:tplc !
�
(icon:tbeg  icon

s

:tbeg) ^ (icon
s

:tend < icon:tend)
�

72

73 �� Shoes s i z e

74 (shoes:xbeg = 96) ^ (shoes:xexp = 160) ^ (shoes:ybeg = 288) ^ (shoes:yexp = 120)

75 shoes:texp = 13

76

77 �� Port ‘ ‘ entry ’ ’

78 animation:tplc ^ (animation:tbeg = canvas:tbeg)

79

80 �� Link ‘ ‘ lShowIcon ’ ’

81 segIcon:tplc $ icon:tplc

82 icon:tplc ! (icon:tbeg = segIcon:tbeg)

83

84 �� Link ‘ ‘ lBegingShoes ’ ’

85 icon

s

:tplc $ shoes:tplc

86 icon

s

:tplc !
�
(icon:tend = icon

s

:tend) ^ (shoes:tbeg = icon

s

:tbeg)
�

87
��

shoes:splc ^ (animation:xbeg = 96) ^ (animation:xexp = 864) ^ (animation:ybeg = 72) ^ (animation:yexp = 486)
�
_
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88
�
¬shoes:splc ^ (animation:xbeg = 0) ^ (animation:xexp = 1920) ^ (animation:ybeg = 0) ^ (animation:yexp = 1080)

� 

89

90 �� Link ‘ ‘ lHideIcon ’ ’

91 ¬icon

s

:tplc ! (icon:tend = segIcon:tend)

Listing F.4: First João SMT code
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