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Resumo

Um importante atributo das organizações é a sua eficiência, objeto da atenção de Data
Envelopment Analysis (DEA), uma técnica não-paramétrica formulada através de um
modelo de programação linear que, utilizando-se dos conceitos de input virtual e output vir-
tual aplicados sobre dados observados, consegue comparar a eficiência entre organizações
semelhantes. Por outro lado, o porte, um outro importante atributo das organizações,
usualmente não tem sido calculado a partir de uma apreciação ampla dos aspectos que as
compõem mas, tão somente a partir de um único aspecto escolhido para representá-las,
o que pode ocasionar vieses. Com o objetivo de se obter uma medida mais justa para
o porte e baseado em DEA, este trabalho propõe uma nova medida denominada porte
relativo. Na sequência, novos modelos não lineares de programação matemática são pro-
postos com o objetivo de estabelecer a melhor relação entre eficiência, porte relativo e
uma certa disponibilidade (ou indisponibilidade) de capital (orçamento). Em adendo, as
questões de supereficiência e sobreporte são endereçadas por meio de novos algoritmos.
Ao final, estes conceitos são aplicados em um estudo de caso envolvendo os planos de
saúde brasileiros.

Palavras-chave: Gestão de Capital, csw-eficiência, Porte Relativo, Supereficiência,
Data Envelopment Analysis, Programação não-Linear, Planos de Saúde



Abstract

An important attribute of organizations is their efficiency, the object of attention of Data
Envelopment Analysis (DEA), a nonparametric technique formulated through a linear
programming model that, using the virtual input and virtual output concepts applied to
observed data, is able to compare the efficiency itself among similar organizations. On the
other hand, the size, another important attribute of organizations, have not usually been
calculated from a broad appreciation of the aspects that make them, but solely from one
aspect chosen for their representations, which can cause biases. In order to get a fairer
measure of size and based on DEA, this paper proposes a new measure called relative
size. Further, new nonlinear models of mathematical programming are proposed in order
to establish the best relationship between efficiency, relative size and a certain availability
(or unavailability) of capital (budget). In addendum, the superefficiency and relative
oversize issues are addressed through new algorithms. Finally, these concepts are applied
in a case study involving the Brazilian health plans.

Keywords: Capital Management, csw-efficiency, Relative Size, Superefficiency, Data
Envelopment Analysis, Non-linear Programming, Health plans
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Chapter 1

Introduction

DEA (Data Envelopment Analysis) has been widely used since 1978 in order to determine

relative efficiency of organizations. It provides an empiric-based method for modeling

operational environment supported by a linear programming model, which avoids the

determination of production functions, generally a hard task. However, all DEA scientific

effort remain on the efficiency attribute. In this chapter is introduced a new possibility for

DEA formulation, regarding other organization attribute, that is its size. Furthermore,

both efficiency and size are combined in order to guide management of capital(budget) in

organizations, which is the focus of present research.

1.1 Introduction

It would be very helpful if a user-friendly tool could estimate what kind of transformation

would happen in an organization in the presence of some constraints of efficiency, size or

capital (budget) or, even better, if that tool could be accurate about the most appropriate

future operational scenario. These are common situations that require a lot of mental and

emotional efforts from the decision maker, due to a lack of accessible objective informa-

tions that could, at least, somehow guide him. It is possible that, regarding to economic

theory, some models can predict the impacts of management of capital in countries, states

or in companies, as well as in [24] where Intel Corporation uses a combined framework

with Martingale model of forecast evolution, stochastic programming, Monte Carlo sim-

ulation and isoprofit analysis to optimize capital investment in its supply chain. It seems

to be very complex (and expensive) and not affordable, in general, to those small and

medium-sized organizations. For these, there are few perspectives in being assured about

determining jointed goals for capital, size and efficiency. In other words, there is not an
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easy way to attach the appropriate goals to an available capital (or to be saved) or to

efficiency or size rates, regarding the production characteristics of these organizations.

1.2 Motivation

From this point, a kind of tool to guide this management of capital must be suport by

a reliable technique but, also, easy to model productive behavior issues, which obviously,

does not demand the settlement of complex production functions. The major requisite

for the right modeling would be decision maker’s knowledge about his own organization

and the market environment.

A technique that seems to be suited to these requisites is Data Envelopment Analysis

(DEA), a fractional linear programming formulation proposed by Charnes, Cooper and

Rhodes in 1978 [8] able to determine the efficiency of a production unit (orDMU , Decision

Making Unit). It demands, mainly, well defined data, which is much more dependent

to the knowledge of organization features, and avoids the determination of production

functions.

The inner concept inDEA is to combine different inputs and outputs through weighted

sums getting dimensionless virtual input and virtual output. The ratio from the latter to

the former generates the efficiency concept (subject to constraints). There is an extensive

DEA literature exploring many issues related to the efficiency itself and its attributes,

e.g. frontier, DMU reference set, weights, slacks, etc. Thus, virtual input and output

are an acceptable approximation of a organization production function, which is crucial

to determine its operating system. From this perspective, virtual input and output could

be explored in determining other organizational attributes, as size.

Organization size in literature is usually determined by a proxy variable, as it can

be observed in flying companies load and passengers capacity [32]. It’s easy to observe

that the choice of just one variable may be an unfair measurement of organization’s

size which would lead to an inadequate analysis. For example, in the extreme, take

an Information Technology Company exponentially profitable and valued with only few

teammates against another regular one, with hundred of employees, but very far from

the former in terms of profits and market value. In this case it’s hard to determine

the relative size between them, if either profits/value or number of employees are taking

account. Through this research it is intended to formulate a new measure for organization

size, which is broadly representative.



1.3 Objectives 3

At last, since it is defined both efficiency and size, supported by DEA, this research

aims to build mathematical programming models that look for determine exact arrange-

ments of capital, efficiency and size appropriate to a specific organization and a given

strategic decision.

1.3 Objectives

The objectives of the present research are defined as follows:

Main Objectives:

• develop a new formulation for organization size based on DEA′s virtual input and

virtual output concepts;

• formulate mathematical programming models for management of capital combined

with efficiency and size, both based on DEA;

• apply the management of capital models to the Brazilian health plans area.

Specific Objectives:

• review of DEA bibliography;

• review of specific DEA common weights bibliography;

• formulate theoretical basis for a new size concept;

• develop mathematical programming models for a single DMU ;

• develop mathematical programming models for a DMUs subset;

• survey of DEA bibliography applied to health area;

• select the appropriate variables in a DEA modeling for a health plans sector;

• build a DMUs set used in a DEA modeling for Brazilian health plans;

• apply the management of capital models to health plans sector;

• analyse outcomes consistency;

• build a software application in order to solve the management of capital models.
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1.4 Conceptual Architecture

This work is based on a three-step conceptual architecture, structured as follows (Figure

1.1):

Classic	  DEA	  
CCR	  Model	  

KAO’s	  Model	  
(common	  set	  
of	  weights)	  

Management	  
of	  Capital	  
Models	  

1) DEA Efficiency 
2) Relative Size 
1) l2-Efficiency 1) csw-efficiency 

2) Relative Size 
3) Capital 

Figure 1.1: Conceptual Architecture

• the first step consists of using the classic DEA CCR input oriented technique to

determine the efficiency scores which work as benchmarks in further steps;

• the second step involves the computing of common set of weights, relative sizes and

`2-efficiencies;

• the third step identifies the appropriate management of capital model and performs

the specific instance modeling, defining goals for capital (budget), efficiency and size

as well as setting the lower bounds for all input and output variables. At the end,

csw-efficiencies and new relative sizes are all computed.

1.5 Document Structure

This document is organized as following:

• Chapter 2 presents the basic concepts of Data Envelopment Analysis;

• Chapter 3 presents theoretical bases for Relative size and `2-efficiency concepts;

• Chapter 4 presents Management of Capital models for a single DMU ;
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• Chapter 5 presents Management of Capital models for a DMUs subset;

• Chapter 6 presents an application to Brazilians health plans;

• Conclusions presents a review of work results, observing positive aspects as well as

the ones to be improved, and future directions are pointed;

• Appendix presents the DEACM User’s Guide, a software application for solving

management of capital models.



Chapter 2

Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric technique to measure relative

efficiency proposed by Charnes, Cooper and Rhodes in 1978 [8]. It extends the Farrel’s

work [9] in determining efficiency frontiers and it is able to handle multiple diverse inputs

and outputs. It is used to identify the relative efficiency of a production unit under

observation, called Decision Making Unit (DMU), against a efficiency frontier built by

itself and others DMU ′s, taking part of a reference set. The following requisites must be

attained:

• DMUs set has to be homogeneous, so it must perform the same tasks and meet the

same goals;

• DMUs have to operate under the same environment assumptions;

• Inputs and outputs parameters have to be the same for each DMU , varying only

about their intensity and magnitude.

An important concept introduced by DEA is to combine inputs (X) and outputs

(Y ) linearly so they form the virtual input and output one. Doing this, the model is

able to handle multiple inputs and outputs as dimensionless unique entities, which was a

limitation to earlier Farrel’s approach [9]. Thus, a virtual input is the sum of products of

each input by its weight and a virtual output, in the same way, is the sum of products of

each output by its own weight. The weights denote how each input and output contribute

in composing the productive process.



2.1 DEA Fractional Formulation 7

2.1 DEA Fractional Formulation

In determination of relative efficiency, DEA aims to maximize the ratio of the virtual

output (Y ) by the virtual input (X), defined in Equation 2.1. The result of this process is

the greatest efficiency that DMU in observation (DMU0) can reach when it is compared

to a frontier built by DMUs with the best practices. The value 1 in maximization process

means that the DMU0 is efficient when it is compared to others DMUs. On other hand,

a value less than 1 means that DMU0 is inefficient if compared to others DMUs of the

set, which reach the ratio 1 before the DMU0, that is the condition to stop the model

computation. Then, it is said that others DMUs, which reach the value 1, compounds the

efficiency frontier and ’envelop’, in other words, bound, those ones so called inefficients.

The fractional linear programming of DEA [8] is

e∗0 = max

(∑s
r=1 urYr0∑m
i=1 viXi0

)
(2.1)

s.t. :

s∑
r=1

urYrj

m∑
i=1

viXij

≤ 1, ∀ j = 1, . . . , n. (2.2)

ur, vi ≥ 0, ∀ r = 1, . . . , s and i = 1, . . . ,m. (2.3)

where:

• Y and X: are parameters that denote the DMUs observed outputs and inputs

values;

• s, m and n: are the amount of outputs, inputs and DMUs, respectively;

• u and v: are variables that represent inputs and outputs weights;

• 2.1: is the objective function that determines the maximization of the ratio of virtual

outputs by virtual inputs;

• 2.2: is the constraint that, by defining the possibilities allowed for variables u and

v, set limits to the objective function maximization. Thus, the productive behavior

of DMU0 is referenced by the DMUs observation set, that bounds and determines

the DMU0 relative efficiency.
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This formulation is called CCR and it provides constant returns to scale (CRS),

which means that the virtual output changes proportionally along with the virtual input.

2.2 DEA Linear Formulation

Since the objective function 2.1 is a ratio and the variables u and v are superior unbounded,

the global optimum value can be obtained from infinite optimal solutions. In other words,

if (u*, v*) is an optimal solution, then (αu*, αv*) is also optimal for α > 0. In order

to obtain a representative solution, the Charnes-Cooper transformation can be used to

convert the fractional DEA into a linear form.

2.2.1 Charnes-Cooper Transformation

From DEA fractional model, the virtual input (objective function denominator) can be

rewritten as it follows:

m∑
i=1

viXi0 =
1

t
(2.4)

and

m∑
i=1

tviXi0 = 1 (2.5)

Replacing 2.4 in objective function 2.1, we obtain:

s∑
r=1

turYr0 (2.6)

So, if we set:

ωi = tvi (2.7)

and

µr = tur (2.8)

And replacing u and v variables in 2.2:
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s∑
r=1

µr
t
Yrk

m∑
i=1

ωi
t
Xik

≤ 1 (2.9)

and

s∑
r=1

µrYrk −
m∑
i=1

ωiXik ≤ 0 (2.10)

Finally, the DEA fractional programming form can be rewritten in a linear one, taking

2.6, 2.5, 2.8, 2.7 and 2.10, as it follows:

e∗0 = max

(
s∑
r=1

µrYr0

)
(2.11)

s.t. :
m∑
i=1

ωiXi0 = 1, (2.12)

s∑
r=1

µrYrj −
m∑
i=1

ωiXij ≤ 0, ∀ j = 1, . . . , n. (2.13)

µr, ωi ≥ 0, ∀ r = 1, . . . , s and i = 1, . . . ,m. (2.14)

2.2.2 CCR Primal

The formulation above is called CCR primal input oriented form of DEA and its optimal

value is the efficiency score of DMU0. This input oriented form aims to the input min-

imization while the opposite, the output orientation, aims to the output maximization

and its optimal value is the transposed one obtained from the input orientation.

The CCR primal is also called multiplier form, since its solution are two vectors of

weights that multiply the input and output values in order to produce the virtual output

and input in the maximum ratio. Theses weights designate how input and outputs are

combined in the production dynamics of DMU0.

2.2.3 CCR Dual

CCR dual form is called the envelop form, in which an efficiency frontier is built and

it bounds, or envelops, DMU0. In dual form the constraints represent the inputs and
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outputs, differently from the primal, in which the constraints represent the DMUs sample,

which contains the DMUs benchmarks to DMU0 and it can present just one DMU .

The variables are: θ, which keeps the efficiency score; and λ, which points how inputs

(or outputs) of a DMU from the reference set may be weighted in order to project a

benchmark to DMU0, or how much the DMU0 could reduce its inputs (or increase its

outputs) to perform just as well as in the efficiency frontier.

The CCR dual input oriented formulation is as it follows:

e∗0 = min θ (2.15)

s.t. :
n∑
k=1

λkXik − θXi0 ≤ 0, ∀ i = 1, . . . ,m. (2.16)

n∑
k=1

λkYrk − Yi0 ≥ 0, ∀ r = 1, . . . , s. (2.17)

θ, λk ≥ 0, ∀ k = 1, . . . , n. (2.18)

2.3 DEA Strenghts

These are the most important aspects that support the use of DEA:

• Does not require a specific production function [25];

• Handles multiple different inputs and outputs, simultaneously [37];

• Can be employed even with small number of DMUs [30];

• Defines good practices and performance targets.

2.4 DEA Weaknesses

On the other hand, the major criticisms rely on:

• Specifying a model populated with good quality data is a very hard task when

complex production processes are involved [25];

• Highly sensitiveness to outliers observations instead of average observations, since

it is a data-driven technique;
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• The efficiency definition is strongly dependent on the DMUs sample and it re-

quires some complementary strategies to distinguish the statistical noise from the

inefficiency [27] [19].

2.5 Comments

After the initial proposition, DEA has become object of great interest in the academic

community and many extensions have been proposed so far. Some other models were

proposed, as BCC (Banker, Charnes and Cooper) [4] that is highly used and it considers

the scale efficiency introducing a new scalar variable in the linear programming model,

or the new Netwotk DEA [22] that decomposes a DMU in smaller functional parts,

when they are connected as in a network, have their outputs used as inputs in the next

production stage.

Liu et al 2013 [28] presents a survey about DEA application papers that demonstrates

how this technique is spread from banking system, health sector, education or agriculture.

Through this work we try to experiment its power in capital management issues.



Chapter 3

Relative size and `2-efficiency

As seen previously, each instance of DEA on a DMU under observation (DMUj) must

lead to its relative efficiency, that is, how much it is efficient when it is compared to other

DMUs in the sample. Thus, DEA is able to estimate the relative efficiency among all

involved DMU ′s which is a very important attribute for the organizations. According to

Figure 3.1.a, it can be assumed that tanα =
bj
aj

, where the coordinates (aj,bj) are virtual

input and output, represents the relative efficiency of DMUj.

b 

a 0 

Relative Area Concept 

(a) DMUJ efficiency as tangent of α 
 

(b) Relative Area of DMUJ  

b 

a 0 

(aj,bj) 

αj 

(aj,bj) 

Figure 3.1: Relative area concept (a) DEA efficiency represented through tanαj; (b)
Relative area represented through virtual input and virtual output.

However, an interesting issue that could emerge in DEA are other observations over

its graphical representation that could determine different attributes from the scores of

relative efficiency. One could be interested, for instance, in the area below the segment

P1P2 with P1 = (0, 0) and P2 = (aj, bj) (Figure 3.1.b) that might be related to how large
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is DMUj operation (for some j ∈ {1, . . . , n}) compared to others DMUs in the set. It

seems to be an interesting view to be introduced, since in literature, only one variable

is chosen as a proxy of operation size, which may bring bias in size determination. This

comparative measure over DMUj operation size could be named as relative size and it

is derived from areas comparison (relative area). Since DEA tries to optimally combine

different components (represented by input and output variables) of organizations, it

sounds to be reasonable to determine relative sizes which are also based on their virtual

inputs and outputs. Some hurdles however may be found in the direct application of the

standard DEA. The DMUs in DEA individually select the most advantageous weights in

the computation of their efficiency scores which may prevent a fair comparison among the

DMUs. As a consequence, the standard DEA CCR model is not exactly appropriated

for dealing with this question. Note that any consistent measure of relative size, allowing a

fair comparison among DMUs, should not consider weights dedicated to only one DMU .

In order to overcome this hurdle, we can consider different models based on common

set of weights which allow us to determine new efficiency scores (represented here by `2-

efficiencies) and define relative size on a more consistent basis. More specifically, in the

work of Kao and Hung [23], the authors use the vector of DEA efficiencies as a target and

propose different efficiency scores based on a common set of weights (the `p-efficiencies,

for some integer p ≥ 1). Based on the work of Yu [45], the authors in [23] deal with the

`p-norm to compute the distance between a vector of `p-efficiencies and the target vector

of DEA efficiencies. Some other works regarding common set of weights can be found in

[12, 16, 34].

In this work, the framework proposed in [23] is used to deal with a common set of

weights and define scores of relative size. In other words, based on the standard DEA

technique and `p-efficiencies we hope to determine a comparative measure of how large is

a DMU when it is compared to other DMUs in the set. For this purpose, we fix p = 2

and deal with a quadratic programming problem to determine a vector of `2-efficiencies.

That will guarantee us uniqueness and Pareto’s optimality1 which allow us to consistently

define new efficiencies and relative sizes on a common set of weights. Here, we will denote

by s̃j (for 0 < s̃j ≤ 1), the relative size of DMUj and we say that DMUj is bigger than

DMUk, if and only if, s̃j > s̃k. The concepts of relative size and `2-efficiency enable

us to deal with different objectives and solve several problems related to management

of capital2 allowing controlled modifications of budget, relative size and efficiency scores.

1We say that a solution is Pareto efficient, or Pareto optimal, if it is impossible to make any individual
improvement without making at least one individual worse for any allocation of resources

2Here, we use the term ”management of capital” to denote any economic activity carried out by one
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In addition, we introduce the concept of range area, used in the joint representation of

csw-efficiencies (more particularly, the `2-efficiencies) and relative sizes. We say that a

DMU0 is inside the range area if its efficiency score and relative size are both positive

and less or equal than one.

3.1 `2-efficiency and Relative Area

In the standard DEA CCR Model, we consider a set of n DMUs and matrices X and

Y with coordinates Xij and Yrj denoting, respectively, the i-th input (for i = 1, . . . ,m)

and the r-th output (for r = 1, . . . , s) of DMUj (for j = 1, . . . , n). In this model, the

DMU being considered selects the most advantageous weights subjected to constraints

in which ratios of total weighted outputs to total weighted inputs of all DMU ′s never

exceed the unity (see chapter 2). In other words, DEA technique provides a measure of

relative efficiency of a particular decision making unit (DMU0) in order to compare it to a

piece-wise efficiency frontier compound by DMUs of the reference set. Formally, without

loss of generality, we can consider the following input-oriented CCR Model with costs

associated to inputs which computes costs-based efficiency [10]. If we assume unitary

costs then we have the standard input-oriented CCR Model as proposed in [8] (technical

efficiency):

e∗0 = max

(
s∑
r=1

urYr0

)
(3.1)

s.t. :
m∑
i=1

viAi0Xi0 = 1, (3.2)

s∑
r=1

urYrj −
m∑
i=1

viAi0Xij ≤ 0, ∀ j = 1, . . . , n. (3.3)

ur, vi ≥ ε > 0, ∀ r = 1, . . . , s and i = 1, . . . ,m. (3.4)

with vi and ur denoting, respectively, the weights associated to the inputs and outputs.

Further, vector (A10, . . . , Am0) represents positive costs of DMU0 associated to inputs.

The constant ε is a small non-Archimedean quantity to avoid unwanted zero weights. In

the model (3.1)-(3.4), the goal is to maximize the efficiency score under the constraints

in which efficiencies of all DMU ′s are less or equal than 1. We denote by e∗0 the DEA-

or more DMUs involving saving or investment of resources.
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efficiency of DMU0 and say that DMU0 is efficient whenever e∗0 = 1, otherwise, DMU0

is inefficient.

Suppose that DMU0 under investigation selects weights (u0
r, v

0
i ) for maximizing its

efficiency score. We denote by a0
j =

∑m
i=1 v

0
iAi0Xij and b0

j =
∑s

r=1 u
0
rYrj, respectively, the

virtual inputs with costs (or just, virtual inputs) and virtual outputs of DMUj related to

DMU0. In addition, we say that e0
j = b0

j/a
0
j denotes the efficiency of DMUj related to

DMU0. Note in the DEA CCR Model that if DMU` is under investigation then e`k ≤ e∗k

for k = 1, . . . , n.

As discussed earlier, the DMUs in DEA individually select the most advantageous

weights in the computation of their efficiency scores, which may prevent a fair comparison

among the DMUs. Therefore, if we are searching for a common set of weights, DEA

efficiencies can be considered as target solutions for all DMUs. In other words, the idea

is to find a common set of weights which produces efficiency scores that are closest to

the target solution. In order to accomplish that, we can deal with the ideas described in

[23] and [45]. After solving the CCR Model for each DMUj, we build a target vector

e∗ = (e∗1, . . . , e
∗
n) of DEA efficiencies and find an optimal common set of weights (ū, v̄)

to compute a new vector e(ū, v̄) = (e1(ū, v̄), . . . , en(ū, v̄)) of `p-efficiencies. In this case,

the distance between e(ū, v̄) and the target solution e∗ is minimized. Obviously, we have

ej(ū, v̄) ≤ e∗j , for j = 1, . . . , n. Making use of the ideas presented in Yu[45], the authors in

[23] propose a model to compute a family of distance measures for integers p ≥ 1. Here,

for our purposes, we can consider the following optimization model:

min Dp(e(u, v)) =

(
n∑
j=1

(e∗j − ej(u, v))p

)1/p

(3.5)

s.t. : ej(u, v) =

∑s
r=1 urYrj∑m

i=1 viAijXij

≤ 1, ∀ j = 1, . . . , n. (3.6)

ur, vi ≥ ε > 0, ∀ r = 1, . . . , s and i = 1, . . . ,m. (3.7)

where p represents the distance parameter and Aij > 0 (for i = 1, . . . ,m) denote

costs associated to inputs. In the works of [23] and [45], the authors assume Aij = 1

for i = 1, . . . ,m. The objective function (3.5) minimizes the distance (denoted here

by `p-distance) between a vector of `p-efficiencies and the target solution (vector of DEA

efficiencies). In other words, function (3.5) guides the solution towards the DEA efficiency

vector. Constraints (3.6) guarantee that `p-efficiencies are always less or equal than their

corresponding DEA efficiencies and constraint (3.7) ensures positive weights.
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In the model above, all deviations are equally weighted for p = 1 and it seems to be a

natural choice in many applications. Note that as p increases, more weight is attributed to

larger deviations. As discussed in [23], Pareto optimal solutions are attained for 1 ≤ p <

∞. In addition, optimal solutions for p = 1 and p = ∞ may not be unique which would

cause difficulties in comparing the efficiency scores. In this case, a conflict might occur

since two or more different optimal solutions may be associated to different efficiency

scores (see [23] and [45]). Hence, in order to attain our objectives, the Euclidean distance

obtained for p = 2, simultaneously guarantee us uniqueness and Pareto’s optimality which

is crucial for a consistent definition of relative size.

Further, the deviations of individual efficiency scores to their corresponding DEA

efficiencies have the smallest variance and it is the best choice from the statistical point of

view (see [23]). Thus, from now on, we only deal with the Quadratic Problem by assuming

p = 2 and we will refer it as ModelQP. Note that ModelQP is a linearly constrained

quadratic program and can be solved without difficulty by commercial NLP solvers.

Therefore, given a set of optimal weights (ū, v̄) for ModelQP, we define āj =
∑s

i=1 v̄iAijXij

and b̄j =
∑s

r=1 ūrYrj, respectively, the virtual input with costs and virtual output of DMUj

associated to (ū, v̄), for j = 1, . . . , n.

Now, we introduce the following definition:

Definition 1 (`2-efficiency and Relative Area) Consider an optimal solution (ū, v̄) for

ModelQP above. Then, (i) `2-efficiency of DMUj is denoted by ēj = b̄j/āj; and, (ii)

relative area r̄j of DMUj is denoted by r̄j = (āj b̄j)/2, ∀ j = 1, . . . , n. 2

We say that DMUj is `2-efficient whenever ej(ū, v̄) = 1, otherwise DMUj is `2-

inefficient. Note that `2-efficiencies are bounded on the (0, 1] interval and r̄j > 0, for

j = 1, . . . , n. Further, if (ū, v̄) is optimal for ModelQP then all solutions (kū, kv̄) for k > 0

are also optimal for ModelQP (see [23]). This means that any decreasing or increasing of

relative area (function of k > 0) does not affect the `2-efficiencies and preserves the order

of relative areas. Note that, if r̄j > 0 is associated to (ū, v̄) then r̃j = k2r̄j is the new

relative area associated to (kū, kv̄), for k > 0.

3.2 Relative Size and Range Area

Here, we will especially be concerned to the following problem. Assume that ē0 > 0 and

r̄0 > 0 denote, respectively, the `2-efficiency and the relative area of DMU0. Further,
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consider two parameters ke > 0 and ks > 0, denoting the updating rates of `2-efficiency

and relative size of the DMU0. Thus, if (ā0, b̄0) represents the coordinates of DMU0,

obtained from ModelQP, then we hope to determine new coordinates (ã0, b̃0) such that

ẽ0 = keē0 and r̃0 = ksr̄0. The pair (ẽ0, r̃0) denotes, respectively, a new csw-efficiency and

relative area of DMU0. Note that, every `2-efficiency is also a csw-efficiency, however,

the opposite is not true. Formally, the following result can be established:

Theorem 1 Consider a DMU0 with coordinates (ā0, b̄0). In addition, consider parame-

ters ke > 0 and ks > 0 such that ẽ0 = keē0 and r̃0 = ksr̄0. Then, ã0 = ā0(ks/ke)
1/2 and

b̃0 = b̄0(kske)
1/2.

Proof: To prove this result two consecutive shifts of DMU0 are combined. Firstly, the

`2-efficiency is preserved along with a displacement from (ā0, b̄0) to (a′0, b
′
0) by assuming

k′e = 1 and k′s = ks > 0 (translation movement). Secondly, there is a movement from

(a′0, b
′
0) to (ã0, b̃0), preserving the relative area by setting k′′e = ke > 0 and k′′s = 1

(rotation movement).

Since k′e = 1 and k′s > 0 in the translation movement, thus e′0 = ē0 and r′0 = k′sr̄0. In

addition, note that e′0 = b′0/a
′
0 = b̄0/ā0. Thus, from Definition 1 above is obtained that:

a′0b
′
0

2
= k′s

ā0b̄0

2
⇒ a′0 = ks

ā0b̄0

b′0
⇒ a′0 = ks

ā0b̄0

a′0e
′
0

⇒ (a′0)2 = ks
ā0b̄0

e′0

Therefore, as ē0 = b̄0/ā0, is got:

a′0 =

√
ksā0b̄0

ē0

⇒ a′0 = ā0

√
ks. (3.8)

Similarly,
a′0b
′
0

2
= k′s

ā0b̄0

2
⇒ b′0 = ks

ā0b̄0

a′0
⇒ b′0 = b̄0

√
ks (3.9)

which concludes the translation movement. Now, consider r′0 = r̃0 and set k′′e = ke > 0

and k′′s = 1 to execute the rotation movement from (a′0, b
′
0) to (ã0, b̃0). Thus:

ã0b̃0

2
= k′′s

a′0b
′
0

2
⇒ ã0 =

a′0b
′
0

b̃0

(3.10)

Since ẽ0 = kee
′
0, is obtained:

b̃0

ã0

= ke
b′0
a′0
⇒ b̃0 = ke

b′0ã0

a′0
(3.11)



3.2 Relative Size and Range Area 18

After replacing, (3.11) and (3.8) in (3.10) can be concluded that:

(ã0)2 =
(a′0)2

ke
⇒ ã0 =

a′0√
ke
⇒ ã0 = ā0

√
ks
ke

(3.12)

Analogously, from (3.10) and (3.11), respectively, can be stated that:

b̃0 =
a′0b
′
0

ã0

and ã0 =
a′0b̃0

keb′0
. (3.13)

Finally, since b′0 = b̄0

√
ks, is obtained:

(b̃0)2 = (b′0)2ke ⇒ b̃0 = b̄0

√
kske

which proves the result. 2

Now, consider the following definition:

Definition 2 (Relative Size and Normalization) Let (āj, b̄j) be the coordinates of DMUj

associated to (ū, v̄), obtained from ModelQP, and let r̄j = (āj b̄j)/2 be their corresponding

relative areas for j = 1, . . . , n. Then, s̃j = r̄j/r̄ is denoted the relative size of DMUj

where r̄ = max{r̄j, ∀ j = 1, . . . , n}. In addition, it is said that all DMU ′s are nor-

malized if their new coordinates (ãj, b̃j) are such that ẽj = ēj and s̃j = (ãj b̃j)/2, for

j = 1, . . . , n. 2

Note that s̃j ∈ (0, 1] for j = 1, . . . , n. Further, if s̃k = 1 for some k ∈ {1, . . . , n} then

DMUk has the maximum relative size in the set. Observe in the normalization above

that ẽj = ēj and s̃j = r̃j = αr̄j, for j = 1, . . . , n and some α > 0 (translation movement).

Therefore, as an immediate consequence of Theorem 1 we have the following result:

Corollary 1 Consider (āj, b̄j) for j = 1, . . . , n, the coordinates of DMUj associated to

(ū, v̄) (optimal solution of ModelQP). Then, ãj = āj/
√
r̄ and b̃j = b̄j/

√
r̄ denote the new

coordinates of DMUj after normalization.

Proof: To prove that, it is sufficient to execute a translation movement of each DMUj

by setting ks = 1/r̄ and ke = 1 in Theorem 1. 2

Observe in the ModelQP above that D2(e(ū, v̄)) = D2(e(ũ, ṽ)) for ũ = ū/
√
r̄ and ṽ =

v̄/
√
r̄. This means that the normalization in the computation of relative sizes (obtained
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DMUj A1j X1j A2j X2j Y1j DEA efficiency `2-efficiency r̄j s̃j
1 2 2 1 5 2 0.60 0.60 3.70 0.13
2 4 2 5 2 1 0.15 0.15 3.70 0.13
3 2 3 1 4 5 1 1 13.8 0.50
4 4 4 3 6 3 0.23 0.22 22.2 0.80
5 3 5 5 5 4 0.32 0.32 27.1 1

Table 3.1: Example with 5 DMUs. Computation of `2-efficiencies, relative areas and
relative size.

for ks = 1/r̄ and ke = 1) does not affect the `2-efficiencies and preserves the ordering

of relative areas. To illustrate these concepts consider the following example with five

DMUs, each of them with two inputs and one output as detailed in Table 3.1.

I II 

III IV 

b ~ 

a ~ 

s 
~ 

e 
~ 

DMU5 

DMU3 

0 0 

DMU1 

Possible representations of the range area 

DMU4 DMU2 

2

1 

1 

DMU0 

Efficiency frontier 

DMU5 

DMU3 

Maximum relative size frontier 

2

(a) Virtual inputs and outputs (b) Relative sizes and efficiencies 

DMU0  =  DMU4    

DMU1 DMU2 

Figure 3.2: Possible representations of the Range area (a) Range area represented through
virtual inputs with costs and virtual outputs; (b) Range area represented through relative
sizes and `2-efficiencies. We assume that DMU0 ≡ DMU4 is under investigation.

Note that virtual inputs with costs and virtual outputs of DMUj can be represented,

equivalently, by normalized coordinates (ãj, b̃j) (see the highlighted region of Figure 3.2.a).

Further, the area below any segment P1P2 with P1 = (0, 0) and P2 = (ãj, b̃j) denotes the

relative size s̃j of DMUj and angle αj (with tan(αj) = ej(ũ, ṽ) = b̃j/ãj), represents the

`2-efficiency of DMUj. Here, we denote by range area, the set all coordinates (ãj, b̃j)

corresponding to relative areas less or equal than one (relative sizes) and such that 0 <

tan(αj) ≤ 1, for j = 1, . . . , n. In addition, note in Figure 3.2.a that all DMU ′s over the

green line have maximum relative size while all DMU ′s over the blue line are `2-efficient.

An equivalent representation with coordinates representing efficiency scores and relative

sizes is detailed in Figure 3.2.b, which explicits displacements of the range area from a
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DMU0 ≡ DMU4. Finally, for example, observe in Table 3.1 that DMU3 is both DEA

efficient and `2-efficient while DMU5 displays the maximum relative size.

3.3 Comments

Since we introduce the concepts of `2-efficiency and relative size (along with range area),

we are ready to show further how to combine them in the solution of a number of problems

regarding management of capital. In this way, through the vector of `2-efficiencies, new

goals can be established so that new efficiency scores (csw-efficiencies) and relative sizes,

inside the range area, are determined.

In order to achieve the goals, we use some linear and nonlinear objective functions

and constraints in chapters 4 and 5, in which all proposed models can be solved by

most available commercial NLP solvers. However, some of the models are non-convex

and they can return a local optimum solution which may represent a drawback in some

situations. To be more confident about the quality of the tested instances, a number

of commercial solvers is used in order to compare different solution strategies (BARON

15.9.22, DONLP2, LOQO 6.02, MINOS 5.51, SNOPT 7.2− 8 and LANCELOT). Despite

the non-convexity, all of the tested models are well behaved and they produced the same

optimal solution for all the tested instances.



Chapter 4

Management of capital of single
DMU

In management of capital problems we assume that inputs associated to DMUs have

different costs, and a manager may establish a number of objectives and directions moti-

vated by different economic scenarios. Here, we propose a framework that jointly evaluate

three parameters relating efficiency, capital and relative size. For instance, a manager can

define new goals of relative size and/or efficiency in the constraints while minimizing the

capital (or budget) of DMU0 necessary to achieve that. In this case, quantities of indi-

vidual items in the inputs should be eliminated, acquired or relocated. In such models, a

negative (resp., positive) capital in the value of the objective function indicates that any

saving (resp., investment) should be made in order to achieve the goals. For instance,

in the case of a downturn of the economy, some decreasing of the relative size and/or

efficiencies may be wanted trying to save the maximum amount of capital (“negative cap-

ital”). Another alternative is to inject a fixed amount of capital (“positive capital”) by

purchasing or relocating some items in the inputs of DMU0 while maximizing its relative

size or efficiency.

After determining the vectors of `2-efficiency and relative size, we are now ready to

deal with a set of mathematical programming models which aims to guide the financial

capital management on a particular DMU . These models are based on three parameters,

i.e., capital (or budget), relative efficiency and relative size. Thus, given a particular

DMU , the idea is to optimize one of the three parameters subjected to a number of

constraints. The other two parameters will be part of the constraints and will be fixed

according to a strategy defined by the manager. In other words, minimization of capital,

maximization of the efficiency score or maximization of size are three different problems

addressed in the management of capital.
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Thus, consider the range area as in chapter 3 and a DMU0 under investigation with

coordinates (ã0, b̃0), `2-efficiency ẽ0 = e0(ũ, ṽ) = b̃0/ã0 and relative size s̃0 = (ã0b̃0)/2. In

order to clarify the possible strategies to be conducted by the manager, without loss of gen-

erality, turn back to the example of Figure 3.2 (page 19), assuming that DMU0 ≡ DMU4.

Initially, note that we have a one-to-one correspondence between points in the range area

of Figure 3.2.a and the unitary square of Figure 3.2.b. So, we can indistinctly denote

the range area through the highlighted regions of Figures 3.2.a and 3.2.b, respectively.

Additionally, observe in the Figure 3.2.b, the presence of four sectors denoting possible

displacements of DMU0. In this way, any financial operation performed by DMU0 will

indicate removals or acquisitions of resources (inputs) in order to achieve the goal inside

one of the sectors.

The strategy to be adopted by the manager is usually motivated by external factors

and it will depend on the economic scenario. For instance, in the model of minimization

of capital, to force a movement of DMU0 towards a selected sector, the tight constraints

of relative size and efficiency must be derived. A slowdown in the economy, for example,

may result in a reduction of the relative size by the manager (to fit a decreasing demand)

while keeping the same efficiency score. This corresponds to a new point between sectors

III and IV (see Figure 3.2.b). In this case, the model of minimization of capital can

indicate (through an updating of inputs Xi0), a negative budget showing the possibility

of a better use of the available resources by DMU0. On the other hand, note that any

point of sector III (even with negative budget) is not so interesting from the economic

point of view since it represents a simultaneous reduction of efficiency and relative size.

A more ambitious movement should be a concurrent increasing of efficiency and rel-

ative size (sector II). If the model of capital minimization returns a positive value, new

budget must be available in order to attain the goals, which shows some hardness to

be achieved. Otherwise, a negative budget seems much harder and points out that a

reduction of the available resources (inputs) must be implemented to attain the goals.

Note that the solution indicated by the model may be regular, difficult or very difficult

to achieve (see Table 4.1). In this case, a more appropriate and feasible movement could

be adopted by the manager.

In present models, e′0 and s′0 denotes, respectively, the new csw-efficiency and relative

size of DMU0 inside the range area. Essentially, we want DMU0 to move from (ẽ0, s̃0) to

(e′0, s
′
0). Thus, in the model of minimization of capital, given parameters 0 < ke ≤ 1/ẽ0

and 0 < ks ≤ 1/s̃0, it is expected to determine new inputs and outputs in the constraints
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OBJECTIVE
TARGET

AREA HARDNESS
Capital Size Efficiency

Minimize Capital c0

-
s′0 < s̃0

e′0 ≥ ẽ0 IV High(∀ c0)

e′0 < ẽ0 III Regular/Low(∀ c0)

-
s′0 ≥ s̃0

e′0 ≥ ẽ0

II Very High(c0 < 0)

II High(c0 ≥ 0)

e′0 < ẽ0 I Regular/Low(∀ c0)

Maximize Size s0

c̄0 < 0 -

e′0 ≥ ẽ0

IV High(s0 < s̃0)

II Very High(s0 ≥ s̃0)

e′0 < ẽ0

III Regular/Low(s0 < s̃0)

I Very High(s0 ≥ s̃0)

c̄0 ≥ 0 -

e′0 ≥ ẽ0

II High(s0 ≥ s̃0)

IV Regular/Low(s0 < s̃0)

e′0 < ẽ0 I,III Regular/Low(∀ s0)

Maximize Efficiency e0

c̄0 < 0

s′0 < s̃0 -
III Regular/Low(e0 < ẽ0)

IV High(e0 ≥ ẽ0)

s′0 ≥ s̃0
-

I High(e0 < ẽ0)

II Very High(e0 ≥ ẽ0)

c̄0 ≥ 0

s′0 < s̃0 -
III Regular/Low(e0 < ẽ0)

IV High(e0 ≥ ẽ0)

s′0 ≥ s̃0 -
II High(e0 ≥ ẽ0)

I Regular/Low(e0 < ẽ0)

Table 4.1: Definition of strategies in the management of capital. Parameters c0, s0 and
e0, respectively, denote the objective function value in the problems of Minimization of
Capital, Maximization of Relative Size and Maximization of Efficiency.
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such that e′0 = keẽ0 and s′0 = kss̃0. Therefore, if 1 < ke ≤ 1/ẽ0 (resp., 0 < ke < 1)

then some increasing (resp., some decreasing) of the efficiency score is wanted. Similarly,

if 1 < ks ≤ 1/s̃0 (resp., 0 < ks < 1) then some increasing (resp., decreasing) of the

relative size is wanted. Thus, the objective is to find the minimum capital c0 necessary

to attain goals e′0 and s′0 inside the range area (see Table 4.1). It is interesting to point

out that it is possible to deal with the capital minimization model even for ke = ks = 1.

In this case, a negative budget c0 < 0 means that some rearrangement of entries (inputs)

may be implemented to produce an economy of the available resources within the same

production levels.

Now, for instance, suppose that a fixed capital c̄0 > 0 will be invested to attain a

production (virtual output) with an improved efficiency e′0 = keẽ0, for some ke > 1. In

this case, it is searched to maximize the relative size of DMU0 (represented by s0 in Table

4.1) and simultaneously achieve e′0 with budget c̄0 > 0 (sector II). Another possibility

is to maximize the efficiency score (represented by e0) assuming a fixed budget c̄0 to be

saved (negative capital) and a new improved relative size equal to s′0 = kss̃0 for ks > 1

(sectors I or II). In short, many possibilities of improvement can be investigated by the

manager as summarized in the Table 4.1. The final decision on the choice of the better

strategy will depend on the costs and technical difficulties involved in the operation.

As a final comment, note that any of the three optimization problems considered

above can indicate a movement of DMU0 out of the range area. It is said that DMU0

is super-efficient if e′0 > 1. Similarly, it is said that DMU0 is oversized or has relative

oversize, if s′0 > 1. As a consequence, since all positions in the range area are relative, their

corresponding efficiency scores (csw-efficiencies) and/or relative sizes must be updated.

Later, in subsections 4.3 and 5.3, it is presented how to use Theorem 1 to deal with

super-efficiency and relative oversize. In other words, it is displayed how to update the

virtual inputs with costs and virtual outputs to determine new relative positions of all

DMUs inside the range area.

In the sequence some auxiliary notation is defined. As discussed earlier, coefficients

Aij (for i = 1, . . . ,m and j = 1, . . . , n) denote the cost of input i associated to DMUj.

Thus, given matrices Xij and Yij which are influenced by the cost of individual items

Aij, the idea is to determine matrices X̄ij and Ȳij, representing new values of inputs and

outputs. In order to accomplish that, we introduce variable δij (resp., φrj) to represent

the variation of input i (resp., output r) associated to DMUj. In this way, constraints

X̄ij = Xij + δij > 0 and Ȳij = Yrj + φrj > 0, respectively, will express new values for
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inputs and outputs. It is important to remark that these constraints can be changed in

real applications since more expensive items, for example, tend to be reduced first. In

order to prevent essential items to be eliminated during the process, we can introduce

specific bounds for both X̄ij and Ȳij. Thus, based on specific aspects of each problem,

we can assume δij ≥ −Xij + Lij and φrj ≥ −Yrj + Urj for Lij, Urj ≥ ε > 0. Therefore,

after solving ModelQP (chapter 3) to obtain normalized weights (ũ, ṽ) and determine the

efficiency scores and relative sizes of all DMUs, we describe the following models for the

problem of management of capital of a single DMU .

4.1 Minimization of capital

As discussed earlier, in the problem of minimization of capital, a goal must be established

by the manager according to a predetermined strategy. Essentially, given a DMU0 under

investigation with `2-efficiency ẽ0 and relative size s̃0, the idea is to reach one of the fours

sectors of the range area using the lowest possible capital (see Figure 3.2.b). To do that,

positive constants ke and ks are set to compute e′0 and s′0, respectively, the new efficiency

score and new relative size of DMU0. As displayed in Table 4.1, combinations of ke and

ks determine the new coordinates of DMU0. Formally, we establish

the following model for the problem of minimization of capital, represented here by

ModelMC:

c0 = min

(
m∑
i=1

Ai0δi0

)
(4.1)

s.t. :

(
m∑
i=1

ṽiAi0(Xi0 + δi0)

)(
s∑
r=1

ũr(Yr0 + φr0)

)
= 2kss̃0; (4.2)

s∑
r=1

ũr(Yr0 + φr0)− (keẽ0)
m∑
i=1

ṽiAi0(Xi0 + δi0) = 0; (4.3)

δi0 ≥ −Xi0 + Li0; ∀ i = 1, . . . ,m. (4.4)

φr0 ≥ −Yr0 + Ur0; ∀ r = 1, . . . , s. (4.5)

The objective function (4.1) returns the value of the minimum capital c0 considering

the cost of the individual items assigned to DMU0. In the constraints (4.2) and (4.3),

are updated both Xi0 and Yr0 to compute the new relative size and efficiency of DMU0,

respectively, s′0 and e′0. Finally, constraints (4.4) and (4.5) define bounds imposed on the
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variables to ensure that new inputs and outputs of DMU0 (X̄ij and Ȳij) are bigger than

their corresponding lower bounds.

In addition, if 0 < ke ≤ 1/ẽ0 and 0 < ks ≤ 1/s̃0, constraints (4.2) and (4.3) above

guarantee that exactly one point (with coordinates (a′0, b
′
0)) belongs to one of the four

sectors of the range area (see Figure 3.2.b). If these constraints are too restrictive, the

manager can define larger areas so that the objective would be more easily attainable.

For instance, we can change (4.2) and (4.3), respectively, by less restrictive constraints:

2k′ss̃0 ≤

(
s∑
r=1

ũr(Yr0 + φr0)

)(
m∑
i=1

ṽiAi0(Xi0 + δi0)

)
≤ 2k′′s s̃0 (4.6)

and

k′eẽ0 ≤
∑s

r=1 ũr(Yr0 + φr0)∑m
i=1 ṽiAi0(Xi0 + δi0)

≤ k′′e ẽ0 (4.7)

with 0 < k′s < k′′s ≤ 1/s̃0 and 0 < k′e < k′′e ≤ 1/ẽ0. This is a more generic ap-

proach since there is no need the displacements to be restricted to one of the four sectors

considered in the Figure 3.2.b.

In addition, note from constraints (4.2) and (4.3) above that, depending on the values

of parameters ke and ks (if ke > 1/ẽ0 or ks > 1/s̃0), we can found a pair (e′0, s
′
0) associated

to coordinates (a′0, b
′
0) out of the range area. As mentioned earlier, since all efficiency

scores and sizes are relative, we must update all relative positions (ãj, b̃j) for j = 1, . . . , n,

to new coordinates inside the range area. Afterward in subsection 4.3, we show how to

use Theorem 1 to solve this problem.

As a final comment, note that constraint (4.2) considered in the evaluation of the

relative area is a bi-linear equality constraint and may produce a non-convex feasible

region. Despite of that, as mentioned earlier, the problem seems to be well behaved for

all tested solvers and it returned the same optimal solutions in all evaluated instances.

4.2 Maximization of relative size or csw-efficiency

In this subsection, consider two different objectives. Firstly, we maximize the relative size

of DMU0, and secondly its efficiency score. In both cases, we assume that a fixed budget

c̄0 (“negative” or “positive”) is settled beforehand. As discussed previously, a negative
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(resp., positive) capital indicates that some saving (resp., investment) of the available

resources is wanted to attain maximum relative sizes or csw-efficiencies. Therefore, in

the first case, in order to maximize the relative size of DMU0 we consider the following

nonlinear programming formulation, represented here by ModelMS:

max

(
s∑
r=1

ũr(Yr0 + φr0)

)(
m∑
i=1

ṽiAi0(Xi0 + δi0)

)
/2 (4.8)

s.t. :
m∑
i=1

Ai0δi0 = c̄0; (4.9)

s∑
r=1

ũr(Yr0 + φr0)− (keẽ0)
m∑
i=1

ṽiAi0(Xi0 + δi0) = 0; (4.10)

δi0 ≥ −Xi0 + Li0; ∀ i = 1, . . . ,m. (4.11)

φr0 ≥ −Yr0 + Ur0; ∀ r = 1, . . . , s. (4.12)

In the objective function (4.8), we maximize the value of relative size of DMU0.

Constraint (4.9) shows how to update the inputs of DMU0 with budget c̄0. Constraint

(4.10) guarantees a new efficiency score e′0 with rate ke > 0. Finally, constraints (4.11)

and (4.12) impose lower bounds on the variables.

Now, in the second problem, we want to maximize the efficiency score of DMU0 with

budget c̄0, it is sufficient to change the objective function (4.8) by function

e0(φ, δ) =

∑s
r=1 ũr(Yr0 + φr0)∑m

i=1 ṽiAi0(Xi0 + δi0)
(4.13)

and constraint (4.10) by

(
s∑
r=1

ũr(Yr0 + φr0)

)(
m∑
i=1

ṽiAi0(Xi0 + δi0)

)
= 2kss̃0. (4.14)

with ks > 0 denoting the rate of the new relative size s′0. Here, ModelME denotes

the problem of maximization of efficiency. Similarly to subsection 4.1, we assume that

0 < ks ≤ 1/s̃0 (for ModelME) and 0 < ke ≤ 1/ẽ0 (for ModelMS). The situations where

ks > 1/s̃0 and ke > 1/ẽ0 will be discussed in the next subsection. In addition, note in

both problems that the value of the objective function can also be bigger than 1. Thus,

Theorem 1 can be used to ensure us new csw-efficiencies and relative sizes inside the range

area.
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4.3 Super-efficiency and Relative Oversize

As said earlier, new targets of efficiency and relative size may correspond to points which

don not belong to range area (which features super-efficiency and relative oversize). In

this case, rotation and translation movements are introduced here to recover the csw-

efficiencies (not necessarily, `2-efficiencies) and the relative sizes of all DMUs in the

range area.

In this subsection, all the steps presented earlier in the management of capital are

generalized and Theorem 1 is used to evaluate two new possible situations: namely, the

super-efficiency and relative oversize. In order to simplify the discussion is only considered

the problem of Minimization of Capital, represented here by ModelMC, and the other two

cases are analogous.

Thus, after determining (ẽ0, s̃0) (resp., the `2-efficiency and relative size of DMU0), we

can consider the updating rates ke, ks > 0 and solve ModelMC to obtain new coordinates

(e′0, s
′
0) such that e′0 = keẽ0 > 1 (super-efficiency) and/or s′0 = kss̃0 > 1 (relative oversize).

In this case, since all positions are relative and DMU0 will be out of the range area, it

is necessary to define a mechanism to update the efficiencies and relative sizes of all

DMUs. In order to accomplish that, we deal with Theorem 1 that allows to determine

new coordinates (inside the range area) through translation and rotation movements. In

other words, Theorem 1 is used to correct the perturbation caused by DMU0.

In order to summarize the results, we can consider the following algorithm, divided

in two parts. In the first part, from Step 01 to Step 07, weights (ũ, ṽ), `2-efficiencies and

relative sizes of all DMU ′s are determined. In the second part, from Step 08 to Step 12,

the problem of management of capital is solved to obtain new csw-efficiencies and relative

sizes.

Algorithm 1: { Minimization of Capital of DMU0. }
Inputs: Matrices X, Y,A; DMU0; lower bound matrices L and U , and parameters

ke, ks > 0.

Outputs: Matrices X̄, Ȳ ; capital c0, csw-efficiencies e′ = (e′1, . . . , e
′
n) and relative sizes

s′ = (s′1, . . . , s
′
n) and coordinates (a′j, b

′
j) for j = 1, . . . , n.

Begin.

01. Compute the vector of DEA efficiencies e∗ = (e∗1, . . . , e
∗
n);



4.3 Super-efficiency and Relative Oversize 29

02. (ū, v̄) ← SolveModelQP (X, Y,A, e∗);

03. Compute virtual inputs (with costs) and outputs (āj, b̄j), for j = 1, . . . , n;

04. Compute: ẽj ← b̄j/āj and r̄j ← (āj b̄j)/2, for j = 1, . . . , n;

05. r̄ ← max{r̄j, ∀ j = 1, . . . , n};
06. s̃j ← r̄j/r̄, for j = 1, . . . , n;

07. Determine the normalized weights ũ = ū/
√
r̄ and ṽ = v̄/

√
r̄ ;

08. Compute: ãj = āj/
√
r̄ and b̃j = b̄j/

√
r̄ for j = 1, . . . , n;

09. (c0, δ, φ)← ExecuteModelMC(X, Y,A, L, U, ke, ks, ũ, ṽ);

10. (X̄, Ȳ )← UpdateXY (δ, φ,X, Y );

11. Compute: α0 ← keẽ0 and β0 ← kss̃0;

12. If ((α0 > 1) or (β0 > 1)) then {evaluate super-efficiency or oversize}
a← max{1, α0};
b← max{1, β0};
ke ← 1/a and ks ← 1/b;

For j = 1, 2, . . . , n do {update all efficiencies and relative areas}
a′j ← ãj(ks/ke)

1/2;

b′j ← b̃j(kske)
1/2;

e′j ← b′j/a
′
j;

s′j ← (a′jb
′
j)/2;

end for;

else {all DMU’s are inside the range area}
e′j ← ẽj; for j = 1, . . . , n;

s′j ← s̃j; for j = 1, . . . , n;

end if;

13. If α0 > 1 then e′0 ← 1 else e′0 ← α0; {update position of DMU0}
14. If β0 > 1 then s′0 ← 1 else s′0 ← β0;

15. Return (c0, e
′, s′, a′, b′, X̄, Ȳ );

end.

In Step 1, through the CCR-Model, the vector e∗ of DEA efficiencies is computed

and used in the determination of a common set of weights (Step 2). From Steps 3 to 5,

`2-efficiencies, virtual inputs with costs and virtual outputs are computed and they will

be used in the calculation of r̄ (maximum relative area). In Step 6 the relative size of all

DMU ′s is computed. In Step 7, using Corollary 1, the vector of common set of weights is

normalized. In Step 8, the coordinates of all DMU ′s are computed inside the range area.
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In Step 9 (through ModelMC), the minimum capital c0 and the changes on the inputs

and outputs, represented by vectors δ and φ, respectively, are returned. In Step 10, δ and

φ are used to calculate new matrices X̄ and Ȳ and in Step 11, the new efficiency score

α0 and relative size β0 of DMU0 are determined, along with the updating rates ke and

ks. In Step 12, the possibility of super-efficiency and relative oversize is evaluated. Note

that, if α0 ≤ 1 and β0 ≤ 1 then the associated vector (a′0, b
′
0) is inside the range area, and

only an updating of the coordinates of DMU0 is performed. Otherwise, DMU0 is out

of the range area and it will affect the relative position of all DMU ′s in the set. Thus,

in order to reevaluate their csw-efficiencies into the range area, Theorem 1 is used to

determine new coordinates (a′j, b
′
j), for j = 1, . . . , n. In Steps 13 and 14 the displacement

of DMU0 inside the range area is computed. Finally, in Step 15, the updated matrices X̄

and Ȳ , capital c0 to be saved/invested, vector e′ = (e′0, . . . , e
′
n) with new csw-efficiencies

and vector s′ = (s′0, . . . , s
′
n) of relative sizes are returned.

Note that, after substituting ãj =
∑m

i=1 ṽiAi0Xij and b̃j =
∑s

r=1 ũrYrj in equations

a′j = ãj(ks/ke)
1/2 and b′j = b̃j(kske)

1/2, respectively, it is easy to identify new weights:

v′i = ṽi

√
ks
ke

and u′r = ũr
√
kske for i = 1, . . . ,m. (4.15)

Assuming the same cost matrix A in the management of capital, it is important to

remark that after computing new matrices X̄ and Ȳ , another set of optimal weights

can be obtained, say (u∗r, v
∗
i ), which is determined through a new execution of ModelQP.

Therefore, even if the coordinates (u′r, v
′
i) define a feasible solution with a common set of

weights, they do not represent an optimal solution to this new problem. Note that, the

csw-efficiencies and the relative sizes of all DMUs were determined by the perturbation

caused by moving DMU0 out of the range area and the weights (u′r, v
′
i) were adjusted to

reevaluate their relative positions. Thus, a new execution of ModelQP with matrices X̄

and Ȳ and new DEA efficiencies may return a different efficiency score (`2-efficiency) for

DMU0 (see the Example 1). Hence, an interesting question to investigate is the quality

of the decision taken by DMU0 after a new execution of ModelQP.

Example 1: In order to illustrate the discussions presented in subsections 4.1, 4.2

and 4.3 respectively, return to the example of Table 3.1. Initially, some parameters must

be set regarding lower bounds for inputs and outputs (L10 = 3, L20 = 4, U10 = 2). Firstly,

consider the model of minimization of capital and a hypothetical scenario where the

managers of a company want to define an emergency plan motivated by some undesirable
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external factor, for instance, due to an unexpected growth of demand. In this context,

we suppose they want to evaluate the minimum budget necessary for doubling size (to

meet the growing demand) allowing a reduction of 10% in the efficiency score. Remind

that DMU0 ≡ DMU4 in Table 3.1 with coordinates (ẽ4 = 0.22, s̃4 = 0.80). In this case,

ke = 0, 9 and ks = 2 in Algorithm 1 must be set.

Thus, after solving ModelMC, the minimum budget (c0 = $2.12) is obtained, as

presented in Table 4.2. Further, as β0 > 1, the new coordinates (α0, β0) are out of

the range area, which configures a relative oversize situation (see Step 12). Therefore,

the execution of Algorithm 1 determine new coordinates (e′j, s
′
j) inside the range area for

j = 1, . . . , n (represented from columns 5 to 14). The objective function value of each

model is denoted in bold.

In a second moment, according to subsection 4.2, assume that DMU4 access a positive

budget c̄0 equal to $2.12 monetary units, the same value found in previous minimization of

capital. Then, it is expected to obtain the maximum improvement of its relative size while

decreasing its efficiency score by 10%. In this scenario, ModelMS points exactly the same

value for relative size that was used as target in previous model (β0 = 1.60), once again,

reaching the same coordinates (α0, β0), out of the range area. A precise correspondence

between ModelMC and ModelMS is observed (Table 4.2).

Models c0 α0 β0

DMU1 DMU2 DMU3 DMU4 DMU5

e′1 s′1 e′2 s′2 e′3 s′3 e′4 s′4 e′5 s′5
ModelMC 2.12 0.20 1.60 0.60 0.08 0.15 0.08 1.00 0.31 0.20 1.00 0.32 0.63
ModelMS 2.12(c̄0) 0.20 1.60 0.60 0.08 0.15 0.08 1.00 0.31 0.20 1.00 0.32 0.63
ModelME1 2.12(c̄0) 0.79 1.60 0.60 0.08 0.15 0.08 1.00 0.31 0.79 1.00 0.32 0.63
ModelME2 10(c̄0) 0.79 1.60 0.60 0.08 0.15 0.08 1.00 0.31 0.79 1.00 0.32 0.63

Table 4.2: Management of Capital with DMU0 ≡ DMU4.

In the ModelME will be considered two different instances, represented respectively,

by ModelME1 and ModelME2. In ModelME1, it is intended to maximize the efficiency

score ofDMU0 with budget c̄0 = $2.12 and doubling its relative size. An expressive growth

of efficiency score can be observed (α0 = 0.79), denoting that DMU0 can reach such effi-

ciency by attaining these goals. Once again coordinates (α0, β0) display themselves out of

range area, featuring a relative oversize situation. Finally, in the row ModelME2, assume

that a bigger budget (c̄0 = $10) must be used by DMU0 while keeping the same relative

size (β0 = 1.60). In this case, despite the fact of higher capital availability to attain the

target of relative size, the efficiency score reaches the same rate (α0 = 0.79). In short, a

number of different simulations may help in the definition of a strategy to be adopted by

the manager. 2
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4.4 Comments

Models ModelMC and ModelMS show consistent behaviors, since there are correspon-

dences among capital (budget) and relative size, not mattering they are objective func-

tions or parameters goals in different models. Differently, in ModelME the use of capital

and relative size parameters with values obtained from ModelMC and ModelMS previous

computations, do not lead to the same values for relative efficiency as those which were set

as parameters previously. That happens because the direction of the model is maximiza-

tion, which takes the efficiency to its highest value attainable in the presence of capital

and relative sizes goals. Sometimes, however, such situation is not achievable against the

hard task that is to operate in higher levels of efficiency. On the other hand, the use of

minimization direction to the model seems to be desirable in some situations, since one

could decide to run its production unit in lowest efficiency level enough to reach capital

and relative size goal. In this case, the new minimization of efficiency model presents

complete correspondence to minimization of capital and maximization of size models.

The DMUs obtained from management of capital models may lead to new bench-

marks in a next round of DEA′s efficiency computing.

In the following chapter, the minimization of capital and the maximization of efficiency

models are extended to manage a subset of DMUs, considering different approaches.



Chapter 5

Management of capital restricted to a
subset of DMUs

Similarly to the management of capital imposed to a particular DMU , this approach

can be extended in such way that can collectively determine new goals of performance

restricted to a subset Ψ of DMUs. In order to guide this analysis, the Euclidean distance

between vectors of `2-efficiencies and DEA efficiencies is dealt and this distance is used to

find policies of capital distribution. In this case, the capital (negative or positive) destined

to all DMUs of Ψ must be distributed and used to update their corresponding items in

the inputs.

After computing the optimal vector of `2-efficiencies, we establish some objectives

that collectively determine new consumption input targets for a subset Ψ of DMUs. A

possible objective would be the minimization of the total capital destined to the subset.

For example, suppose that a manager wants to decrease by 10% the distance between the

vectors of `2-efficiencies and DEA efficiencies restricted to Ψ (this is equivalent to increase

further their efficiency scores towards the DEA efficiencies). In this way, the objective

would be the minimization of the total capital along with the establishment of the policies

of capital distribution among the DMUs. As a consequence, capital cj (or budget)

destined to DMUj could be used to eliminate, acquire or relocate its corresponding items

in the inputs. Another objective would be the inputs modification of all DMUs by fixing

a total budget (positive or negative) and minimizing the distance between the vectors of

DEA efficiencies and `2-efficiencies. In other words, this is equivalent to maximize the

efficiency scores of all DMUs of Ψ dealing with a fixed budget necessary to accomplish

that.

In next subsections two main objectives are presented: Minimization of the Total
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Capital and Maximization of Global Efficiency. In both cases, only movements inside the

range area are allowed. Additionally, two main approaches will be considered: i) the

altruistic approach in which the DMUs of Ψ help the targets of the entire set of DMUs;

and ii), the selfish approach in which the DMUs of Ψ cooperate among themselves to

help their own targets. Finally, in subsection 5.3, it is displayed how to use Theorem 1 to

extend these two problems and how to deal with displacements out of the range area.

In this chapter the proposed models are slightly more difficult than those ones pro-

posed in chapter 4. In addition to the bi-linear constraint associated to relative area, we

also include some nonlinear fractional constraints. Despite of that, similarly to chapter

4, all tested instances produced the same optimal solution (local or global) for all tested

solvers.

5.1 Minimization of the Total Capital

In the problem of Minimization of the Total Capital, we assume that new efficiency scores

and relative sizes are settled for all DMUs of Ψ and the objective is to minimize the

total capital c0 necessary to achieve that. As mentioned above, negative (resp., positive)

capital in the solution indicates that any saving (resp., investment) must be made in order

to attain the goals.

In order to present these models, both on altruistic and selfish approaches, consider

the normalized vectors (ũ, ṽ), which are the optimal common set of weights of ModelQP.

In addition, assume D̃ ≡ D2(e(ũ, ṽ)) and values ẽj and s̃j, respectively, the `2-efficiency

and relative size of DMUj for j = 1, . . . , n. In addition, consider a parameter td > 0, the

expected updating rate of the Euclidean distance between e(ũ, ṽ) and e∗ (resp., vectors

of csw-efficiencies and DEA efficiencies). Finally, set 0 < tj ≤ 1 as the parameters

used in the definition of lower bounds for the relative sizes of every DMUj of Ψ. Then,

the following formulation can be established and denoted here by ModelMTC1, for the

problem of Minimization of the Total Capital on the altruistic approach:



5.1 Minimization of the Total Capital 35

c0 = min

(∑
j∈Ψ

m∑
i=1

Aijδij

)
(5.1)

s.t. :

(
n∑
j=1

(
e∗j −

∑s
r=1 ũr(Yrj + φrj)∑m

i=1 ṽiAij(Xij + δij)

)2
)1/2

= tdD̃; (5.2)

2tj s̃j ≤

(
s∑
r=1

ũr(Yrj + φrj)

)(
m∑
i=1

ṽiAij(Xij + δij)

)
≤ 2; ∀ j ∈ Ψ. (5.3)

s∑
r=1

ũr(Yrj + φrj)−
m∑
i=1

ṽiAij(Xij + δij) ≤ 0; ∀ j ∈ Ψ. (5.4)

δij ≥ −Xij + Lij; ∀ i = 1, . . . ,m and j ∈ Ψ. (5.5)

φrj ≥ −Yrj + Urj; ∀ r = 1, .., s and j ∈ Ψ. (5.6)

δij = 0 and φrj = 0; ∀ i = 1, . . . ,m, r = 1, . . . , s and j /∈ Ψ. (5.7)

The objective function (5.1) returns the value of the minimum capital c0 and computes

the budget cj =
∑m

i=1Aijδij destined to each DMUj of Ψ. In the constraint (5.2), a new

vector of efficiencies is determined (the ratio of virtual outputs to inputs) in which the

Euclidean distance from the target solution is exactly tdD̃. A parameter td > 1 (resp.,

td < 1) means that a reduction (resp., an improvement) of the total efficiency is required.

Note that, through parameter td, new efficiency goals were established for the entire set

of DMUs (altruistic approach). Constraint (5.3) indicates that new relative sizes varies

between tj s̃j and 1 for each DMUj of Ψ with 0 < tj ≤ 1. Constraint (5.4) ensures

that new csw-efficiencies do not exceed the unity. Note that DEA efficiencies e∗j can be

exceeded, associated to matrices X and Y . However, the new DEA efficiencies (less or

equal than one), associated to matrices X̄ and Ȳ , are never exceeded. Finally, constraints

(5.5), (5.6) and (5.7) guarantee new matrices X̄ and Ȳ with coefficients bigger than their

corresponding lower bounds L and U (established by the manager). Observe that only

inputs and outputs associated to DMUs of Ψ are updated.

Note in the proposed model, due to constraint (5.2), that only the changes in the

matrices X and Y associated to DMUs of Ψ will help, collectively, to reach the efficiency

goals of all n DMUs in the set. In order to attain this objective, the efficiency of some

DMUs of Ψ (altruistic approach) may even worsen. Another possibility is to pursue

the goals only restricted to DMUs of Ψ (selfish approach). In order to accomplish that,
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constraint (5.7) is deleted and defined

D̃Ψ =

(∑
j∈Ψ

(
e∗j −

∑s
r=1 ũrYrj∑m

i=1 ṽiAijXij

)2
)1/2

. (5.8)

After that, we substitute constraint (5.2) by(∑
j∈Ψ

(
e∗j −

∑s
r=1 ũr(Yrj + φrj)∑m

i=1 ṽiAij(Xij + δij)

)2
)1/2

= tdD̃Ψ. (5.9)

Here, we represent the selfish approach by ModelMTC2.

5.2 Maximization of Global Efficiencies

In the problem of Maximization of Global Efficiencies, given a fixed amount of capital c̄0

(positive or negative) and specific lower and upper bounds on the relative sizes, we expect

to define a mechanism to distribute the capital c̄0 among the DMUs of Ψ in order to

maximize their efficiency scores. On the altruistic approach, we minimize the Euclidean

distance between the n-dimensional vector of csw-efficiencies and the DEA efficiencies.

Similarly, on the selfish approach, we minimize the Euclidean distance only restricted to

the coordinates of Ψ.

Formally, we have the following formulation on the altruistic approach, represented

here by ModelMGE1:

min

(
n∑
j=1

(
e∗j −

∑s
r=1 ũr(Yrj + φrj)∑m

i=1 ṽiAij(Xij + δij)

)2
)1/2

(5.10)

s.t. :
s∑
r=1

ũr(Yrj + φrj)−
m∑
i=1

ṽiAij(Xij + δij) ≤ 0; ∀ j ∈ Ψ. (5.11)

∑
j∈Ψ

(
m∑
i=1

Aijδij

)
= c̄0; (5.12)

2tj s̃j ≤

(
s∑
r=1

ũr(Yrj + φrj)

)(
m∑
i=1

ṽiAij(Xij + δij)

)
≤ 2; ∀ j ∈ Ψ. (5.13)

δij ≥ −Xij + Lij; ∀ i = 1, . . . ,m and j ∈ Ψ. (5.14)

φrj ≥ −Yrj + Urj; ∀ r = 1, . . . , s and j ∈ Ψ. (5.15)

δij = 0 and φrj = 0; ∀ i = 1, . . . ,m, r = 1, . . . , s and j /∈ Ψ. (5.16)
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The objective function (5.10) denotes the distance between the n-dimensional vector of

efficiencies (with common set of weights) and the vector of DEA efficiencies. Inequality

(5.11) means that the new efficiency scores do not exceed the unity. Equality (5.12)

computes the changes on the inputs and determines the budget cj =
∑m

i=1Aijδij assigned

to each DMUj of Ψ. Constraint (5.13), for 0 < tj ≤ 1, determines relative sizes varying

between their corresponding lower and upper bounds. Finally, (5.14),(5.15) and (5.16)

are constraints imposed on the variables. Note that all changes in the inputs and outputs

associated to DMUs of Ψ will help in the improvement of all n csw-efficiencies towards

their corresponding DEA efficiencies.

Similarly, on the selfish approach (denoted here by ModelMGE2), it is sufficient to

delete constraint (5.16) and substitute objective function (5.10) by

min

(∑
j∈Ψ

(
e∗j −

∑s
r=1 ũr(Yrj + φrj)∑m

i=1 ṽiAij(Xij + δij)

)2
)1/2

. (5.17)

As a final comment, note on the selfish approach that for |Ψ| = 1, the movement of

the DMU under investigation is only towards its DEA solution. This procedure differs

slightly from that of chapter 4 in which some displacements of DMU0 out of the range

area are allowed.

In the next section, consider the possibility of super-efficiency of one or more DMUs

(both on altruistic and selfish approaches). This will allow that even efficient DMUs can

increase further their efficiency scores.

5.3 Super-efficiency of one or more DMUs

Consider a subset Ψ of DMUs and each one with its corresponding `2-efficiency and

relative size. In addition, suppose that DMUs want to collaborate with each other

(selfishly or not) in order to update their efficiencies scores and collectively achieve new

goals in the constraints. Here, the idea is to allow that one or more DMUs of Ψ can escape

from the range area. IN order to accomplish that, a different procedure is proposed which

objective is to determine the Euclidean distance between the vectors of csw-efficiencies

and DEA super-efficiencies.

Some definitions of DEA super-efficiencies can be found in the literature (see for
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instance [40, 2, 26, 29]). Here, to compute the DEA super-efficiency (Ej) of a DMUj,

this DMUj must be removed from the set of constraints (inequality (3.3) of the DEACCR

Model and its efficiency score is maximized. Thus, in order to obtain a new target vector of

DEA super-efficiencies, this procedure is repeated, one at a time, for each efficient DMU

of Ψ. The remaining DMUs, out of Ψ, continue with their respective DEA efficiencies.

Thus, note that a new target vector of DEA super-efficiencies allows that even efficient

DMUs can improve their efficiency score and escape from the range area. Therefore, to

restore efficiencies and relative sizes of all DMUs, Theorem 1 is used again to update

their relative positions inside the range area.

In order to summarize this discussion, without loss of generality, a procedure for

maximizing the csw-efficiencies of all DMU ′s of Ψ on the selfish approach is presented.

The case of minimization of capital is analogous and it is omitted here. In order to

accomplish that, first consider the following changes of ModelMGE2, as detailed in the

sequence:

min

(∑
j∈Ψ

(
E∗j −

∑s
r=1 ũr(Yrj + φrj)∑m

i=1 ṽiAij(Xij + δij)

)2
)1/2

(5.18)

s.t. :
s∑
r=1

ũr(Yrj + φrj)− E∗j
m∑
i=1

ṽiAij(Xij + δij) ≤ 0; ∀ j ∈ Ψ. (5.19)

∑
j∈Ψ

(
m∑
i=1

Aijδij

)
= c̄0; (5.20)(

s∑
r=1

ũr(Yrj + φrj)

)(
m∑
i=1

ṽiAij(Xij + δij)

)
≥ 2tj s̃j; ∀ j ∈ Ψ. (5.21)

δij ≥ −Xij + Lij; ∀ i = 1, . . . ,m and j ∈ Ψ. (5.22)

φrj ≥ −Yrj + Urj; ∀ r = 1, . . . , s and j ∈ Ψ. (5.23)

This formulation, including super-efficiencies and on the selfish approach, is denoted

by ModelSE2. Similarly, it can be defined from ModelMGE1 a formulation of super-

efficiency on the altruistic approach, denoted here by ModelSE1.

Note in the formulation above that DEA super-efficiencies are dealt as a target in-

stead of DEA efficiencies (objective function 5.18). Essentially, the idea is to update the

Euclidean distance between the vector of csw-efficiencies and vector E∗j = (E∗1 , . . . , E
∗
n)

∀ j ∈ Ψ . In the constraint (5.19), we assume that the new csw-efficiency of DMUj is
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always less or equal than E∗j . In the constraint (5.20), the exact budget c̄0 assigned to all

DMUs of Ψ is defined. Here, in the constraint (5.21), the upper bounds on the relative

sizes for DMUs of Ψ are not imposed (obviously other constraints can be considered by

the manager). Note that constraints (5.19) and (5.21) allow to escape from the range

area. Finally, constraints (5.22) and (5.23) are lower bounds imposed on the variables.

Therefore, we state the following procedure for maximizing csw-efficiencies over Ψ on

the selfish approach.

Algorithm 2: { Maximization of csw-efficiencies over Ψ - selfish approach}
Inputs: Matrices X, Y,A; capital c̄0; subset Ψ; lower bounds L,U and parameters tj > 0

for j ∈ Ψ.

Outputs: Matrices X̄, Ȳ ; capital cj destined to DMUj, ∀ j ∈ Ψ; csw-efficiencies

e′ = (e′1, . . . , e
′
n) and relative sizes s′ = (s′1, . . . , s

′
n).

Begin.

01. Compute normalized weights (ũ, ṽ);

02. Compute `2-efficiencies ẽj and relative sizes s̃j, for j = 1, . . . , n;

03. For j = 1, ..., n do

If j ∈ Ψ then

E∗j ← Compute DEA super-efficiency of DMUj;

else

Ej ← e∗j ;

end if;

04. (δ, φ)← SolveModelSE2(X, Y,A, L, U,Ψ, c̄0, E
∗, tj, ũ, ṽ);

05. (X̄, Ȳ )← UpdateXY (δ, φ,X, Y );

06. (a′j, b
′
j)← FindV IV O(ũ, ṽ, X̄, Ȳ , A)∀ j ∈ Ψ;

07. Compute: e′j = b′j/a
′
j and s′j = (a′jb

′
j)/2∀ j ∈ Ψ;

08. α← max{e′j, ∀ j ∈ Ψ};
09. β ← max{s′j, ∀ j ∈ Ψ};
10. If ((α > 1) or (β > 1)) then {evaluate super-efficiency or oversize}

a← max{1, α};
b← max{1, β};
ke ← 1/a and ks ← 1/b;

For ∀ j = 1, . . . , n do {update efficiencies and/or relative sizes}
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e′j ← kee
′
j;

s′j ← kss
′
j;

end for;

end if;

11. Return (e′, s′, cj, X̄, Ȳ );

end.

In the Steps 1 and 2, the normalized common set of weights (ũ, ṽ), efficiency scores

ẽj and relative sizes s̃j for j = 1, . . . , n are computed (see also Steps 1 to 7 of Algorithm

1). In the Step 3, the DEA super-efficiencies of every DMUj of Ψ are determined and

set Ej = e∗j , for every j /∈ Ψ. In Step 4, ModelSE2 is executed to determine the changes

(δ, φ) associated to DMUs of Ψ. In the Step 5, matrices X̄ and Ȳ are updated, and in

Step 6 (a′j, b
′
j), new virtual inputs and outputs for all DMUj with ∀ j ∈ Ψ, are computed.

Note that, a′j = ãj and b′j = b̃j (equivalently, e′j = ẽj and s′j = s̃j) for every j /∈ Ψ. In

other words, the super-efficiency allows that only coordinates associated to DMUs of Ψ

are updated. These coordinates will be used in the determination of α and β, respectively,

the biggest efficiency and relative area of all DMUs of Ψ (Steps 7, 8 and 9). In the Step

10, if some efficiency score or relative area is bigger than one, parameters ke and ks are

used to update their csw-efficiencies and relative sizes to new coordinates (e′j, s
′
j) inside

the range area. Finally, in Step 11, the csw-efficiencies and relative sizes of all n DMUs

and budget cj assigned to every j ∈ Ψ are returned.

Similarly to Algorithm 1, note that matrices X̄ and Ȳ (along with cost matrix A)

define a new problem with another set of DEA efficiencies. Therefore, a new set of `2-

efficiencies can be computed again, through ModelQP . Thus, an interesting question

is to investigate the relation between the csw-efficiencies of ModelSE2 and the optimal

efficiencies of ModelQP associated to matrices X̄, Ȳ and A.

Example 2: In order to illustrate the models of subsections 5.1, 5.2 and 5.3, respec-

tively, return to the example of Table 3.1. For instance, assume that Ψ = {DMU3, DMU4}
and all models run under altruistic approach. Once again some parameters must be

set, related to lower bounds for inputs and outputs (L13 = 1, L23 = 2, U13 = 1) and

(L14 = 2, L24 = 3, U14 = 2). In addition to this, assume that in the constraints the DMU4

must keep its relative size, at least equal to s̃4 = 0.80 (t4 = 1) while DMU3 with s̃3 = 0.50

is admitted to become 10% smaller (t3 = 0.9). For short, the models are referred by their
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last characters in Table 5.1 (for instance, we change ModelMTC1 by MTC1).

Models c0 α β
DMU1 DMU2 DMU3 DMU4 DMU5
e′1 s′1 e′2 s′2 c3 e′3 s′3 c4 e′4 s′4 e′5 s′5

MTC1 -11.28 1.00 1.00 0.60 0.13 0.15 0.13 -2.30 1 0.45 -8.98 0.22 0.80 0.32 1.00
MGE1 -11.28 (c̄0) 1.00 1.00 0.60 0.13 0.15 0.13 -2.30 1 0.45 -8.98 0.23 0.82 0.32 1.00
SE1 -11.28(c̄0) 3.12 1 0.19 0.13 0.05 0.13 -2.12 1 0.45 -9.16 0.07 0.80 0.10 1.00

Table 5.1: Management of the Total Capital with Ψ = {DMU3, DMU4}. Altruistic
approach with 5 DMU ′s

Firstly, the ModelMTC1 (see subsection 5.1) is dealt. Assume in the constraints a new

vector of csw-efficiencies 20% farther from its target solution (e∗j ,∀ j = 1, . . . , n), in other

words, set td = 1.2. This means that overall or global efficiency (function of the Euclidean

distance), decreases from 1.256−5 to 1.507−5. This situation is possible whenever the

coalition of DMUs of Ψ may face, for instance, to some adverse circumstances when

they are prevented to perform as regularly. Therefore, the ModelMTC1 searches for

the lowest total budget required for all DMUs of Ψ to properly satisfy the constraints.

In this example, since td = 1.2, is admitted that any DMU of Ψ could present even

a worsening on its efficiency score to help the entire set of DMUs. The model found

that $11.28 monetary units could be saved, distributed on $2.30 for DMU3 and $8.98 for

DMU4. The new relative sizes remain on their lowest bound, respectively, s′3 = 0.45 and

s′4 = 0.80. The efficiency scores are kept (e′3 = ẽ3 = 1, e′4 = ẽ4 = 0.22) (see Table 5.1).

A fact to be observed is that the budget saving distribution remains strongly on DMU4

(c̄4 = −8.98), explained by its more expensive costs. The values of α and β (up to one)

ensure that we have no displacements out of the range area.

Secondly, it is expected to maximize the global efficiency of all DMUs of Ψ (Subsec-

tion 5.2). The ModelMGE1 is applied to an instance with the same budget found previ-

ously (c̄0 = −$11.28), and kept all other constraints on the relative size. In this scenario,

the model seems to work properly, with the same previous capital saving c̄3 = −$2.30, ef-

ficiency score e′3 = 1 and relative size s′3 = 0.45 for DMU3. For DMU4, although keeping

the same capital saving (c̄4 = −$8.98), the efficiency score slightly increased to e′4 = 0.23

and relative size to s′4 = 0.82. In these first models, the new values found for efficiencies

and relative sizes of all DMUs of Ψ are kept in the range area (α = 1.00, β = 1.00).

Hence, there is no variation on these attributes for remaining DMUs out of Ψ. In Table

5.1, the values in bold are associated with the objective function being considered.

Finally, in model ModelSE1 super-efficiency is addressed. Here, it is allowed that

DMUs of Ψ can escape from the range area. In present instance, after computing the

DEA super-efficiencies of DMU3 and DMU4, respectively, are obtained E∗3 = 3.12 and

E∗4 = 0.23. Note that DMU3 extrapolates the range area (see Figure 5.1(a)). Therefore,
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Figure 5.1: Movements towards the DEA solution. Subset Ψ = {DMU3, DMU4}. (a)
Construction of DEA super-efficiencies (red points); (b) Repositioning all DMU ′s inside
the range area (yellow points).

ModelSE1 indicates that DMU3 still remains out of the range area (α = e′3 = 3.12) and

Algorithm 2 can be executed in order to restore the coordinates of all DMUs inside the

range area (see Table 5.1 from columns 5 to 16). Thereafter, a displacement (down and

to the right) of all DMUs is observed. See the Figure 5.1(b). Observe that new relative

sizes kept their lower bounds and the capital distribution is similar to ModelMGE1, once

again influenced by the cost matrix A. 2

5.4 Comments

Although the present models are nonlinear and non-convex constrained, they are regularly

computed by some NLP solvers, which present the same results for each instance. There

is not a model that deals with relative size in its objective function, due to a lack of theory

that could develop this concept as well as that happened to efficiency, which would be a

future direction to this research. Results obtained from MTC1 and MGE1 are acceptable

and correspondent, which strengthens they use. It is evident that the vector of costs (Aij)

influence the capital sharing among DMUs.

In the next chapter, an application with Brazilian health plans sector is developed.



Chapter 6

Brazilian Health Plans Modeling

Indeed, while hospitals/clinics are directly liable to health delivery, health plans are taking

on a growing relevant role in countries health systems funding and, as a consequence,

health care management itself. According to World Health Statistics 2015, between 2000

and 2012 private health plan global expenditure grew from 1.26% to 1.31% of Gross

Domestic Product (GDP). In Brazil, at the same time, the GDP moved from 1.53% to

2.01%, which means, by 31.37%[43]. Since both providers and health plans are connected

in the same economic chain, the latter performance must be meaningful and, thus, it

would be reasonable to gauge also the health plans efficiency.

Brazilian supplementary health sector was chosen for an application of management

of capital models mainly because it is well suited for non-parametric approach, when it is

given the challenge in determination of its production function. Along with, it is a well

known activity about which there are enough knowledge and expertise required in the

outcome analysis. On the other hand, in Brazil, health plans sector became an important

actor in country health funding, that in 2014 was liable for about R$120 billions and 72

million people [3].

The management of capital models require three phases to be applied: first, DEA

modeling must be performed with its related efficiencies identified; second, common set

of weights, relative sizes and `2-efficiencies must be computed; and, third, managerial

scenario modeling must be set with outcome analysis. It is important to observe that in

phases 1 and 2, original DEA′s CCR input oriented model (chapter 2) and KAO′s model

(chapter 3) are extended with the introduction of costs parameters A[i, j] (∀ i = 1, . . . ,m

and ∀ j = 1, . . . , n), in which m denotes the number of input variables and n, in turn,

the number of DMUs.
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6.1 Phase 1 - DEA Modeling

According to Golany&Roll[18], DEA modeling may be a three-step process: 1. Variables

selection, when the appropriate inputs and outputs are identified; 2. DMUs selection,

where the target is defined based on DEA principles and available data; and, 3. model

choice, that concerns with the most suited DEA approach, according to the characteristics

of the production system being modeled, and orientation, that determines whether is

better to maximize outputs or minimize inputs.

6.1.1 Variables Selection

The process involving the determination of inputs and outputs is characterized by two

procedures: first, a start list of variables is created; second, the suggested variables are

assessed [18].

In order to obtain the variables start list, Almeida2010 [1] proposes a DEA literature

review related to object area. Thus, a DEA applied to health plan literature survey

was performed and also headed by a specific search proceeded in Scopus and Web of

Knowledge index engines using the combined terms ”Health+DEA” and ”Health+Data

Envelopment Analysis” with 394 results for former combination and 137 for latter. After

a selective reading, 9 papers were admitted to be related to health plan and DEA, which

can be seen in Table 6.1, exposing their number of citations, kind of efficiency addressed

and country of the study.

Table 6.1: Health plan DEA literature survey
Reference Cited Efficiency Addressing Country

Bryce1994[6] 40 Performance USA
Rosenman1997[36] 19 Performance USA

Siddharthan2000[39] 17 Performance USA
Rollins2001[35] 7 Performance USA
Brockett2004[5] 6 Performance USA

Yang2006[44] 26 Performance Canada
Sampaio2007[38] 0 Performance Brazil

Fernandes2007[14] 3 Performance Brazil
Carrington2011[7] 0 Performance Australia

All papers are concerned with efficiency as operational performance and USA (55.5%)

is the most frequently studied country, which concentrated all the attention in the begin-

ning, since Bryce1994[6] with a HMO′s comparative efficiency study using DEA, stochas-

tic production frontier and fixed-effects regression, until Brockett2004[5], in which DEA
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is used to assess the comparative efficiency between indemnity health insurance providers

and HMO, through the provider’s autonomy. The latest paper is from 2011, which assess

the evolving of premiums paid in Australian’s PHI (Private Health Insurance) system

regarding the companies efficiency[7]. There are two papers about Brazilian private health

plansl[38][14] which assess the sector in terms of how efficiency is determined by managed

care and from an economic/financial perspective.

Table 6.2: Health plans attributes survey

ATTRIBUTES P
A

P
E
R

(
S
)

1
B

ry
c
e
1
9
9
4

2
R

o
se

n
m

a
n
1
9
9
7

3
.

S
id

d
h
a
rt

h
a
n
2
0
0
0

4
R

o
ll
in

s2
0
0
1

5
B

ro
c
k
e
tt

2
0
0
4

6
Y

a
n
g
2
0
0
6

7
F
e
rn

a
n
d
e
s2

0
0
7

8
S
a
m

p
a
io

2
0
0
7

9
C

a
rr

in
g
to

n
2
0
1
1

F
R

E
Q

U
E
N

C
Y

METHODOLOGY CLASS

Comparative DEA x 1
Extended DEA x 1
Classic DEA x x 2
Two-stage DEA x x x x x 5

NON-DEA TECHNIQUE

Stocastic Production Frontier / Fixed Effects Regression x 1
Malmquist Index x 1
Theory of Games x 1
Regression Analysis x x 2
Multivariate Analysis x 1
None x x x 3

DEA MODEL
CCR x x x x 4
BCC x x x x x 5

ORIENTATION Input x x x x x 5
Output x x 2

EFFICIENCY Performance x x x x x x x x 8
Quality 0

SET SIZE

< 50 x x x 3
≥50, <100 x 1
≥100, <200 x x 2
≥200, <500 x x 2
≥500, <1000 0
>1000 x x 2

DATA SOURCE Primary 0
Secondary x x x x x x x x x 8

This literature survey encompasses how DEA is used to model health plans regard-

ing methodology class, non-DEA associated technique, DEA model and orientation, effi-

ciency approach, set size, data source and input/output variables. Some input and output

variables had to be adjusted to a common denomination or meaning, so they could be

compiled together. As can be seen in Table 6.2, a two-stage DEA is the main methodol-

ogy (55.5%) carried with several different non-DEA technologies. The second stage often

uses a technique to examine explanatory variables influence over the observations set,

as multivariate analysis to determine the influence of models types and ownership over

Florida’s HMO′s[36] or Malmquist Index to introduce efficiency measuring in raising pre-

miums analysis over time in Australian private health sector[7]. BCC model, to isolate

the pure technical efficiency, is more used (55.5%) and input orientation is predominant,

which highlights the focus in minimizing inputs rather to maximize outputs, which agrees

with the larger input variable set identified.

There are 18 different input variables, emphasizing administrative and medical costs

(44.4%, each one), which evidences the minimizing costs concern (Table 6.3). Capital
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Table 6.3: Input health plans variables survey
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1 Bryce1994 x x x x
2 Rosenman1997 x x x

3. Siddharthan2000 x x x x x x
4 Rollins2001 x x

5 Brockett2004 x x
6 Yang2006 x x x x x x

7 Fernandes2007 x x x x x x
8 Sampaio2007 x x

9 Carrington2011 x x x

FREQUENCY 2 1 1 2 1 1 1 4 4 2 2 4 2 1 2 2 1 1

assets also appears with 44.4%, mainly because of Brazilian papers [38][14] which are

focused on economic/financial issues. All other input variables are sparse over the input

set. We can notice that some papers use typical assistance variables, as impatient days[6]

and emergency room visits[39], putting health plans efficiency directly connected to health

delivery levels.

In turn, output set has 7 variables and it is highly concentrated on the number of

clients (66.6%) (Table 6.4), which shows how it composes the main proxy to health plan

size. Indeed, number of clients (or lives as it is commonly said) is the primary focus of

managerial decision in health plans area since it supports the break-even point overcome.

The other data are sparse.

According to this literature review, thus, administrative and medical costs may be

eligible as input variables, while, as output variable, the number of clients is prevalent.

However, an important issue raised from the health plan sector refers to the optimization of

premiums payment. As a business, a health plan must look for maximize this variable, but

preserving the customers attainability. Trying to model this aspect, Income/Premiums

variable will also be consider as a second output. A fact to be noted is the absence of any

variable regarding quality issues, pointed by MoreyFL1990 [31] as a way to make broader

comparative analysis. Keeping the assessment focus on performance undervalues what is

actually perceived by the clients and society in medical services delivered by health plans.
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Table 6.4: Output health plans variables survey
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1 Bryce1994 x
2 Rosenman1997 x

3. Siddharthan2000 x
4 Rollins2001 x x

5 Brockett2004 x x x
6 Yang2006 x x

7 Fernandes2007 x x
8 Sampaio2007 x x

9 Carrington2011 x x

FREQUENCY 6 2 2 1 1 2 2

Since variables start list is set, a method must be applied in order to choose the most

appropriated variables among the suggested ones. These methods were developed aiming

more reliable results and they are based on the identification of the most important

and contributory variables of the object of study [1]. According to Dyson2001 [13], a

lack of important variables is the first pitfall in variables selection. Based on variables

homogeneity, a simple method is correlation analysis which enables to delete variables

that are highly correlated, since they are redundant [21]. In order to mitigate subjectivity

mistakes in variables exclusion some research propose a three stage analysis [42] [20]: 1.

Compute all efficiency rates for selected variables; 2. Identify the meaningfulness level of

each variable, withdrawing them slowly; and, 3. Compute efficiency rate of new data set.

In opposite direction, called stepwise, Wagner&Shimshak2007 [41] proposes to start from

a initial pair {input,output} and, little by little, adding new variables and computing the

corresponding efficiency rate. For the purpose of this application, which mainly aims the

applicability of management of capital models, the former method, correlation analysis is

employed among administrative costs, medical costs, clients and incomes/premiums.

6.1.2 DMUs Sample

Since the variables are preliminarily identified, DMUs must be set. Because of high

sensitiveness to outliers observations in DEA, DMU ′s set size must follow a tight relation
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to the number of variables. Considering n, m and r to represent respectively, number of

DMUs, inputs and outputs, there are two main approaches relating them, as follows:

1. Dyson2001 [13] proposes that n ≥ 2(m × s); and, 2. Cooper&Seiford&Tone2000

[11] presents,in turn, that n ≥ max{m × s; 3(m + s)}. This way, latter expression is

chosen in this application, thus DMU ′s set must be larger than 12. In Brazil, health

plans data source is provided by ANS (National Agency of Supplementary Health) and

it can be retrieved from www.ans.gov.br. At the end of 2014 there were 1.040 medical

health plans active, classified into small (clients ≤ 20.000), medium (clients > 20.000

and clients ≤ 100.000) and large (clients > 100.000). For each group, 10 DMUs (Health

Plans) are randomly selected as the base sample in this application.

6.1.3 DEA Model

According to chapter 3, capital management models require the use of CCR input oriented

model.

6.1.4 Sample Assessment

Since the variables and DMU ′s characteristics are defined, the associated data must be

retrieved and selected from www.ans.gov.br, referring to year of 2014. The input variables

are the medical costs and the administrative costs while the number of clients and the

income/premiums are the output variables. Medical and administrative costs mean the

total sum of this expenses (in million of reais) over the year, number of clients refers to this

amount at the end of the year (in thousand) and income/premiums refer to total costumers

payments (in million of reais). One could argue about the expected strong correlation

among inputs and among outputs, but the experience points that it is a admissible choice

and, to mitigate it and provide a sharper and refined data comparison, a larger DMU ′s

set is provided, with 30 health plans. In this application, as input variables are already

based on monetary values, all A[i, j] parameters are assumed to be 1.

The result data sample is presented in Table 6.5.

The efficiency scores obtained from CCR input model on the data sample are pre-

sented in Tables 6.6 and 6.7, while the related discriminant analysis in Table 6.8. DMUs

A, E, H, W and C1 are considered DEA efficients and none of them is classified as small.

On the other hand, DMU N presents the lowest efficiency (60%) and it is classified as

small (12.000 lives) . That was expected to happen because small health plans present
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Table 6.5: Health Plans Data Sample
DMU Medical Costs Administrative Costs Clients Income/Premiums Size

A 11831 669 4084 13660 large
B 7116 562 1694 8610 large
C 468 30 218 525 large
D 243 29 154 333 large
E 196 30 324 261 large
F 221 27 62 233 medium
G 22 7 28 29 medium
H 44 2 41 47 medium
I 125 11 54 137 medium
J 88 7 45 97 medium
K 9 2 3 10 small
L 13 13 6 20 small
M 23 3 19 27 small
N 8 11 12 11 small
O 32 7 16 39 small
P 2402 193 1612 2588 large
Q 122 18 107 145 large
R 279 37 224 310 large
S 146 33 142 218 large
T 1150 146 569 1336 large
U 14 2 20 17 small
V 29 12 22 48 medium
W 7 4 32 16 medium
X 28 4 21 35 medium
Y 56 6 42 70 medium
Z 139 23 29 155 medium

A1 16 4 12 22 small
B1 16 3 16 21 small
C1 21 4 20 36 small
D1 14 7 10 20 small
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huge challenges to operate due to its size, which prevent them to scale back office costs.

Efficiency average is high (83%), the variance is 0.014 and standard deviation is 0.12,

which it is compatible with society general appreciation of this sector, that makes no

distinction among health plans services delivery.

Table 6.6: Efficiency Scores - DMU ′s A to O
DMU A B C D E F G H I J K L M N O

Efficiency 1.00 0.97 0.95 0.97 1.00 0.74 0.69 1.00 0.85 0.88 0.63 0.67 0.82 0.60 0.69

Table 6.7: Efficiency Scores - DMU ′s P to D1
DMU P Q R S T U V W X Y Z A1 B1 C1 D1

Efficiency 0.87 0.80 0.77 0.84 0.80 0.92 0.80 1.00 0.83 0.92 0.69 0.76 0.81 1.00 0.65

Table 6.8: Discriminant Analysis
Average Standard Deviation Covariance Minimum

0.83 0.12 0.014 0.60

Table 6.9 presents the variables correlation in data sample. One can note that ad-

ministrative and medical costs, as inputs, are strongly correlated (0.98) as well as clients

and income/premiums, are as outputs (0.96). Although literature review identified them

as the most used in health plans sector, correlation results would lead to a choice among

them, in order to reduce the variables set. However, experience says, for instance, that

despite medical and administrative costs are correlated, the latter is much more influenced

by managerial decisions than the former, which would suggest an efficiency aspect. At the

time, even with clients and income/premiums in a tight correlation, one issue can arise

with determinant relevance, that is, the ratio between income/premiums to clients, which

point out how health plan are efficient in charging their costumers. In order to mitigate

correlation issues, by making these ones not obvious but crucial efficiency aspects to be

assessed, a larger DMU set is built so DEA technique can be sharper in determining

relative efficiencies. Indeed, in this sample, while ratio administrative costs to medical

costs is, in average, about 5% in efficient DMUs, it is by 137% in worst efficient one, and

it is a very important managerial observation in this kind of business. On the other hand,

the ratio income/premiums to clients reaches 3.34 in efficient DMUs while, in the worst

one, it is only about 0.91. These findings are absolutely relevant in health plan business

and support the present variables selection.
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Table 6.9: Variables Correlation
Variables Medical Costs Administrative Costs Clients Income/Premiums

Medical Costs 1 - - -
Administrative Costs 0.98 1 - -
Clients 0.96 0.94 1 -
Income/Premiums 0.99 0.98 0.96 1

6.2 Phase 2 - Relative sizes and `2-efficiencies

Next step consists on identifying relative sizes and `2-efficiencies, which are central con-

cepts in further management of capital modeling. Aiming this, a common set of weights

must be computed before, following what was presented in chapter 3 in which an extended

KAO′s model is used. Thus, v̄1 = 0.00059261 and v̄2 = 0.00187859 were found as medical

and administrative costs weights, respectively, denoting that the latter is more considered

by the model than the former. Besides, clients and income/premiums are weighted with

ū1 = 0.0001 and ū2 = 0.000498865, showing an inclination to the last one. As results,

just DMU C1 `2-efficiency reaches its DEA efficiency (ē = e∗ = 1). Some other DMU ′s

`2-efficiencies are very far from their correspondent DEA efficiencies as, for example,

DMU ′s L and N, both of them are classified as small.

Regarding relative area issue, one DMU (A) appears with the most expressive value

(29.85), almost three times larger than the second one. Indeed, DMU A is one of the

largest health plans in Brazil and it is the maximum relative size (s̃A = 1). This discrep-

ancy makes other DMUs to present very small amounts of relatives sizes, which brings

some difficulties in dealing with this parameter in further assessment.

Finally, the common set of weights need to be normalized in order to be used in

further capital management models. In order to accomplish that, the ratio of vectors

(v̄i,ūr) to
√
r̄ = 29.85, in which r̄ is the largest relative area, must be computed. At

the end, are obtained ṽ1 = 0.00010845, ṽ2 = 0.000343789 and ũ1 = 0.0000183, ũ2 =

0.0000912943 as input and output variables normalized weights, respectively. Now, haven

`2-efficiencies, relatives sizes and normalized common set of weights already identified,

capital management models prerequisites are filled.

6.3 Phase 3 - Management of Capital

Management of capital is based on relationship among relative efficiency, relative size

and a budget availability mediated by mathematical programming models. However, in
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Table 6.10: Relative sizes and `2-efficiencies
DMU DEA Efficiency `2-efficiency Relative Area Relative Size

A 1.00 0.87 29.85 1.00
B 0.97 0.85 11.77 3.94× 10−1

C 0.95 0.85 0.0473 1.58× 10−3

D 0.97 0.91 0.0180 6.03× 10−4

E 1.00 0.94 0.0140 4.70× 10−4

F 0.74 0.67 0.0111 3.72× 10−4

G 0.69 0.66 0.0002 7.58× 10−6

H 1.00 0.92 0.0004 1.37× 10−5

I 0.85 0.78 0.0035 1.17× 10−4

J 0.88 0.81 0.0017 5.78× 10−5

K 0.63 0.58 0.00002 8.05× 10−7

L 0.67 0.33 0.00002 5.69× 10−6

M 0.82 0.80 0.00001 4.96× 10−6

N 0.60 0.26 0.00001 2.85× 10−6

O 0.69 0.66 0.00003 1.13× 10−5

P 0.87 0.81 1.29 1.74× 10−5

Q 0.80 0.78 0.0044 1.47× 10−4

R 0.77 0.75 0.0208 6.96× 10−4

S 0.84 0.83 0.0091 3.06× 10−4

T 0.80 0.76 0.3457 1.15× 10−2

U 0.92 0.87 0.0001 2.11× 10−6

V 0.80 0.66 0.0005 1.74× 10−5

W 1.00 0.96 0.0001 2.19× 10−6

X 0.83 0.81 0.0002 7.86× 10−6

Y 0.92 0.88 0.0009 2.91× 10−5

Z 0.69 0.63 0.0050 1.68× 10−4

A1 0.76 0.72 0.0001 3.46× 10−6

B1 0.81 0.80 0.0001 3.06× 10−6

C1 1.00 1.00 0.0002 6.67× 10−6

D1 0.65 0.51 0.0001 3.94× 10−6
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order to make it work, some parameters must be set, related to input costs and inputs

and outputs variations bounds, admitted in managerial scenario. In this applicatin, as

input variables are already expressed with monetary values, all costs are assumed to be 1

(A[i, j] = 1,∀i ∈ 0..m,∀j ∈ 0...n). On the other hand, all new inputs and outputs (X̄, Ȳ )

are admitted to be, at least, the half of original values (X̄ ≥ X
2
, Ȳ ≥ Y

2
). Finally, 6

DMUs are randomly chosen from the DMU sample as the object of further management

of capital applications (Table 6.11), each 2 from a health plans clients size category.

Table 6.11: DMUs subsample for management of capital application
Size Medical Costs Administrative Costs Clients Income/Premiums DEA Efficiency `2-efficiency Relative Size Category

A 11831 669 4084 13660 1.00 0.87 1.00 large

C 468 30 218 525 0.95 0.85 1.58× 10−3 large

F 221 27 62 233 0.74 0.67 3.72× 10−4 medium

C1 21 4 20 36 1.00 1.00 6.67× 10−6 medium

K 9 2 3 10 0.63 0.58 8.05× 10−7 small

N 8 11 12 11 0.60 0.26 2.85× 10−6 small

This application is organized as follows in next sections: first, all models for a single

DMU are applied to each one of Table 6.11; second, the models for subset of DMUs are

applied. For each application, the same parameters rates are used and DMU ′s behav-

iors are inspected and compared, observing specific aspects of health plans business. A

DEACM (Data Envelopment Analysis Capital Management) software, to perform man-

agement of capital modeling, was developed. Now it is hosted in AWS (Amazon Web

Services) cloud service and can be accessed in http://52.91.19.81:8080/deacm. The fol-

lowing technologies were employed in its development:

• Java 8 : programming language;

• JHipster : Java projects generator, with Spring Boot and AngularJS;

• Spring Boot : Java framework for corporate applications development based on con-

vention rather than configuration;

• AngularJS : Javascript framework for ’web single-page’ applications development;

• AMPL: a language for mathematical programming language;

• Apache Commons Math: a mathematical/statistics components library;

• Apache TomCat : a web server;

• Apache Commons CSV : a library for CSV files processing;

• Apache Commons IO : a library for I/O tasks;
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• Bower : a web packages manager;

• Maven: Java projects dependencies manager;

• BootStrap: CSS framework for web applications;

• BootStrap Material Design: bootstrap theme for Googles’s ”material design” style.

6.3.1 Single DMU - Minimization of Capital

As we already know, management of capital models deal with the relations among capital

(budget), relative size and csw-efficiency. In this subsection, given relative size and csw-

efficiency parameters as goals, ModelMC searches to the minimum capital to achieve them.

Here, in order to make possible the results analysis and comparison, four combinations

of parameters are applied for each DMU in focus, with relative size rate assuming values

1.1 or 0.9 (Ks = 1.1, Ks = 0.9) and csw-efficiency rates also presenting the same values

(Ke = 1.1, Ke = 0.9), covering all possible movements in the range area.

Table 6.12: Minimization of Capital - DMU0 ≡ A.

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
-4044 1.1 1.1 1 0.96 II -5916 1872 0 1415
-3579 1.1 0.9 1 0.78 I -5916 2336 0 -102
-4464 0.9 1.1 1 0.96 IV -5916 1451 0 -102
-4044 0.9 0.9 1 0.79 III -5916 1872 0 -1475

For DMU0 ≡ A, one can observe that all instances bring a negative capital (budget),

meaning that, despite the movement in the range area, a saving can always be done

(Table 6.12). DMU A is the maximum reference size (s̃A = 1) and, indeed, it is one of

the biggest Brazilian health plans. Because of this, in the two first instances in which

(Ks > 1) a relative oversize happens and, then, Algorithm 1 (chapter 4, section 4.3)

must be applied. The displacements in the range area are previously defined, along with

Ks and Ke variations. It is clear that the model aims to minimize Medical Costs input

because it presents larger amounts when minimization effort is more efficient. On the

other hand, Administrative Costs always increases, which is not so desirable to business

but it is necessary to accomplish mainly relative size goals. It is interesting to note that

the same capital is obtained as well for Ks = 1.1 and Ke = 1.1 (increasing) as for Ks = 0.9

and Ke = 0.9 (decreasing) and it is a consistent outcome.

In the sequence, analyzing another large health plan (DMU0 ≡ C) it is clear that it

follows the same behavior of the previous one (Table 6.13). Once again the minimization

effort falls on Medical Costs, because of its larger amounts, which agrees with a reasonable
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Table 6.13: Minimization of Capital - DMU0 ≡ C.

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
-160 1.1 1.1 1.74× 10−3 0.94 II -234 74 0 56
-141 1.1 0.9 1.74× 10−3 0.77 I -234 92 0 -3
-177 0.9 1.1 1.42× 10−3 0.94 IV -234 57 0 -3
-160 0.9 0.9 1.42× 10−3 0.77 III -234 74 0 -56

managerial decision. All instances present some increase in Administrative Costs input,

which is needed in order to reach relative size goals. As this input has a strong weight,

it makes sense to use it in health plan size balancing due to a less use of capital. Since

Income/Premiums is more important then Clients, the model prefers the former when

dealing with output variables. Indeed, in Brazilian health plans market, strongly based on

corporate contracts, it seems that is better rather to improve the ratio income/premiums

to clients than to look for new clients.

Table 6.14: Minimization of Capital - DMU0 ≡ F .

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
-76 1.1 1.1 4.09× 10−4 0.74 II -111 35 0 23
-65 1.1 0.9 4.09× 10−4 0.61 I -111 45 0 -2
-85 0.9 1.1 3.35× 10−4 0.74 IV -111 26 0 -2
-76 0.9 0.9 3.35× 10−4 0.61 III -111 35 0 -25

Next two health plans (DMU0 ≡ F and DMU0 ≡ C1), though classified as mediums,

present quite different behaviors. While DMU F throughly accompanies the first two

large ones, mainly because it still has many clients (Table 6.14), DMU C1 is in the

border between medium and small health plans. Thus, in two similar instances in which

both parameters relative size and csw-efficiency are increasing (Ks = 1.1, Ke = 1.1) or

decreasing (Ks = 0.9, Ke = 0.9), ModelMC indicates the use of Clients output variable.

Table 6.15: Minimization of Capital - DMU0 ≡ C1.

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
-7.5 1.1 1.1 7.30× 10−6 1 II -11 3.5 -3.6 4.7
-6.4 1.1 0.9 7.30× 10−6 0.94 I -11 4.5 0 -0.2
-8.5 0.9 1.1 6.00× 10−6 1 IV -11 2.4 0 -0.2
-7.5 0.9 0.9 6.00× 10−6 0.94 III -11 3.5 -4 -3.2

DMU C1 is csw-efficient (e
′
= 1) and there is a superefficiency occurrence in the first

instance with the respective use of Algorithm I (chapter 4, section 4.3) to put the DMU

back in the range area. This must be the factor which induces the use of Clients, when

extreme situations are placed and a health plan already efficient has to use up the least

important weight to reach the goals (Table 6.15).

The last two health plans are the smaller (DMU0 ≡ K,DMU0 ≡ N). Despite K be

the smallest DMU , it still follows the standard behavior of other DMUs (except DMU
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C1). This happens because of its csw-efficiency (e
′

= 0.58) is not far from others (Table

6.16).

Table 6.16: Minimization of Capital - DMU0 ≡ K.

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
-2 1.1 1.1 9.00× 10−7 0.64 II -3 1 0 1

-1.6 1.1 0.9 9.00× 10−7 0.52 I -3 1.5 0 0
-2.4 0.9 1.1 7.00× 10−7 0.64 IV -3 0.5 0 0
-2 0.9 0.9 7.00× 10−7 0.52 III -3 1 0 -1

On the other hand, DMU N presents the least csw-efficiency (e
′
= 0.26) and it is not

possible to ModelMC to reach a size increase of 10% limited to a csw-efficiency increase of,

at most, also 10%. It would require a larger efficiency rate and, because of this, the two

first instances are infeasible. Indeed, this health plan presents a catastrophic situation

in which the administrative costs overcome the medical costs. It could be said that it

is driven to bankruptcy. In the last instances DMU N still behaves in its own way,

decreasing Administrative Costs in order to decrease relative size and only decreasing

Income/Premiums in order to decrease csw-efficiency (Table 6.17).

Table 6.17: Minimization of Capital - DMU0 ≡ N .

Capital Ks Ke Size csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
- 1.1 1.1 - - - - - - -
- 1.1 0.9 - - - - - - -

-1.2 0.9 1.1 2.60× 10−6 0.29 IV 0 -1.2 0 -0.14
0.26 0.9 0.9 2.60× 10−6 0.24 III 0.26 0 0 -1.4

Finally, it can be said the the Minimization of Capital model works properly, trying, in

most of situations, to save capital through the input with larger amounts (Medical Costs)

and keeping the variable with least important weight to extreme situations (Clients),

mainly when DMU is already csw-efficient, which is suitable to health plans manage-

rial decisions. Along with, Administrative Costs input variables, with strong weight, is

employed moderately to balance the capital minimization process.

6.3.2 Single DMU - Maximization of Size

The start decision in order to experiment the Maximization of Size model (ModelMS) is

to use the results obtained in subsection 6.3.1 as capital parameter (c̄). Thus, it can be

observed if this model presents results compatible to those ones from ModelMC. In this

direction csw-efficiency parameter set (Ke = 1.1, Ke = 0.9) is repeated twice for each

DMU .
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As well as in the minimization of capital of DMU0 ≡ A, there is oversize situation in

two first instances, which is properly expected (Table 6.18). Besides Administrative Costs

in second instance and Income/Premiums in first instance, there are not other differences

in any values, which strengthens the correspondence between ModelMC and ModelMS.

Table 6.18: Maximization of Size - DMU0 ≡ A.

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1 1.1 -4044 0.96 II -5916 1872 0 1416
1 0.9 -3579 0.79 I -5916 2337 0 -101
1 1.1 -4464 0.96 II -5916 1452 0 -101
1 0.9 -4044 0.79 I -5916 1872 0 -1475

In turn, for DMU0 ≡ C although values are very close, some slight differences can be

found (Table 6.19). First, the relative size differs in 0.00000590, 0.00001030, 0.00000410

and 0.00000410 units respectively from first to fourth instances, that means a 0.5% vari-

ation, absolutely acceptable. Besides, the first three results for Income/Premiums are

bigger than from ModelMC. Once again, they are not so meaningful since the variation is

about 5%, which does not commit the results (Table 6.19).

Table 6.19: Maximization of Size - DMU0 ≡ C.

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1.75× 10−3 1.1 -160 0.94 II -234 74 0 59
1.75× 10−3 0.9 -141 0.77 I -234 93 0 -1.3
1.43× 10−3 1.1 -177 0.94 IV -234 57 0 -2.1
1.43× 10−3 0.9 -160 0.77 III -234 74 0 -56

The next two DMU ′s are medium health plans, thus some change is expected regard-

ing the first two, which are large health plans. Along with what happened in ModelMC,

DMU F completely follows the behavior of DMU ′s A and C. Indeed, a similar change

in relative size occurred, that is, −0.00000170, 0.00000440, 0.00000030 and −0.00000140

respectively for each instance, which remains irrelevant (1%). Besides, there is only one

difference in second instance for Income/Premiums. All other results match exactly to

ModelMC (Table 6.20).

Table 6.20: Maximization of Size - DMU0 ≡ F .

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
4.08× 10−4 1.1 -76 0.74 II -111 35 0 23
4.14× 10−4 0.9 -65 0.61 I -111 46 0 -0.6
3.35× 10−4 1.1 -85 0.74 IV -111 26 0 -2
3.33× 10−4 0.9 -76 0.61 III -111 35 0 -25

As already registered, DMU C1 is csw-efficient (e
′

= 1) thus some special character-

istics are expected to happen. First, the difference in relative sizes are larger, mainly in

first instance (20%), when superefficiency occurred and ModelMS decided not to exhaust
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Medical Costs lower bound and, on the other hand, not to increase Administrative Costs

too much. It may be an intelligent decision on scenario without growth in Clients and

Income/Premiums. It must be remembered that DMU C1 is in the frontier between

medium and small health plans (Table 6.21).

Table 6.21: Maximization of Size - DMU0 ≡ C1.

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
6.10× 10−6 1.1 -7.5 1 II -9.5 2 0 0
7.40× 10−6 0.9 -6.4 0.94 I -11 4.6 0 -0.14
6.10× 10−6 1.1 -8.5 1 IV -11 2.5 0 0
6.10× 10−6 0.9 -7.5 0.94 III -11 3.5 0 -3.8

At last, small health plans are experimented. DMU K reaches the previous relative

size in instance three and four. In first two it did not happen. It must be remembered that

DMU K is the smallest one and it must be very difficult to grow, specially in a situation

of capital saving. A factWhat can be observed is that the model does not exhaust Medical

Costs, using more Administrative Costs to handle the goal achievement. Also, it does not

deal with output variables change (Table 6.22).

Table 6.22: Maximization of Size - DMU0 ≡ K.

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
7.00× 10−7 1.1 -2 0.64 II -3 0.3 0 1
7.00× 10−7 0.9 -1.6 0.52 I -3 1.5 0 0
7.00× 10−7 1.1 -2.4 0.64 IV -3 0.5 0 0
7.00× 10−7 0.9 -2 0.52 III -3.7 1.7 0 0

Since DMU N presents a special situation, in which Administrative Costs overcome

Medical Costs, it is expected that their results are also different. Indeed, no movement

happens with Administrative Costs which is along with a managerial decision in a unbal-

anced situation. One other aspect to be considered is that relative size seems to be directly

influenced by csw-efficiency. The relative sizes match exactly the values of ModelMC, and

there are few differences in variables amount in third instance (Table 6.23).

Table 6.23: Maximization of Size - DMU0 ≡ N .

Size Ke Capital csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
2.90× 10−6 1.1 -1.2 0.29 II -1.2 0 0 0.75
2.60× 10−6 0.9 0.26 0.24 I 0.26 0 0 -1.4
2.90× 10−6 1.1 -1.2 0.29 IV -1.2 0 0 0.75
2.60× 10−6 0.9 0.26 0.24 III 0.26 0 0 -1.4

Concluding the experiment, ModelMS seems to work with a strong correspondence

with ModelMC, which strengthens both validation and movements in the range area re-

main the same. It was not expected and it is nor even interesting that models inserted in
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the same context present discrepant or antagonistic results. In specific and border situa-

tions or due to the objective function some differences are observed but totally explained,

restricted to csw-efficient DMU ′s.

6.3.3 Single DMU - Maximization of Efficiency

In the same direction of subsection 6.3.2, the capital obtained in ModelMC experiments

are used as parameters values in maximization problems. The other parameter is relative

size rate whose values are Ks = 1.1 and Ks = 0.9 and they are applied twice each one.

The csw-efficiency, however, are not expected to match, in general, the values dealt in

previous models. That happens because ModelME is able to continue manipulating capital

distribution among inputs variables, even when parameters relative size and capital are

already reached, searching for better efficiencies results. That is, efficiency limits much

more relative size and capital than the opposite. In order to match the same previous

results, an efficiency minimization model is required, which brings the minimum efficiency

rate to accomplish the goals. In present situation, in general, the displacements to areas

I and III are not expected, which would mean efficiency decrease.

Observing DMU0 ≡ A, one can note that ModelME aims to exhaust Administrative

Costs (the highest KAO′s normalized weight) before using the Medical Costs, which is

along with managerial decision to decrease any costs that are not directly connected to

target (health care delivering), in order to make the business more efficient. Along with,

ModelME also indicates the increase of Income/Premiums, which is an expected decision

too (Table 6.24). All instances present superefficiency while the first two also present

relative oversize, when Algorithm I is applied in order to put DMU A back in range area.

Table 6.24: Maximization of Efficiency - DMU0 ≡ A.

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1 1.1 -4044 1 II -3709 -335 0 9731
1 1.1 -3579 1 II -3244 -335 0 8563
1 0.9 -4464 1 IV -4129 -335 0 6277
1 0.9 -4044 1 IV -3709 -335 0 5328

As can be seen with DMU A, the experiment with DMU0 ≡ C leads to similar

results. Once again, ModelME uses all Administrative Costs available, that is, goes to

the lower bound. There is superefficiency in all instances. It must be registered that this

behavior is absolutely expected, since DMU ′s A and C are in the same category, and

may present similar operational characteristics (Table 6.25).

The next two medium health plans F and C1, repeat the same behavior observed
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Table 6.25: Maximization of Efficiency - DMU0 ≡ C.

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1 1.1 -160 1.74× 10−3 II -145 -15 0 382
1 1.1 -141 1.74× 10−3 II -126 -15 0 355
1 0.9 -177 1.42× 10−3 IV -162 -15 0 246
1 0.9 -160 1.42× 10−3 IV -145 -15 0 209

in experiments in subsections 6.3.1 and 6.3.2. DMU F, in its turn, behaves like the

larger plans A and C, using all Administrative Costs decreasing available and presenting

superefficiency in all instances (Table 6.26). It must be said that all these DMUs are

already well efficient, respectively e
′
A = 0.87, e

′
C = 0.85, e

′
F = 0.67 which is enough to

overcome the normalized frontier (e
′
= 1) when subject to ModelME.

Table 6.26: Maximization of Efficiency - DMU0 ≡ F .

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1 1.1 -76 4.09× 10−4 II -62 -14 0 168
1 1.1 -65 4.09× 10−4 II -51 -14 0 146
1 0.9 -85 3.35× 10−4 IV -71 -14 0 109
1 0.9 -76 3.35× 10−4 IV -62 -14 0 93

When DMU0 ≡ C1, on the other hand, mostly because it is csw-efficient, ModelME

is lead to similar circumstances of other models, which is, to use also other output vari-

able Clients in order to get the best efficiency results, that is, increasing the ratio of

Income/Premiums to Clients. As in other DMU ′s, all instances present superefficiency

(Table 6.27).

Table 6.27: Maximization of Efficiency- DMU0 ≡ C1.

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
1 1.1 -7.5 7.30× 10−6 II -5.5 -2 -1.35 28
1 1.1 -6.4 7.30× 10−6 II -4.4 -2 -1.25 25
1 0.9 -8.5 6.00× 10−6 II -6.5 -2 -1.89 18
1 0.9 -7.5 6.00× 10−6 II -5.5 -2 -1.8 16

The next experiment presents very singular observations. First, DMU K does not

increase its relative size without worsening csw-efficiency. It is needed to say that this

is the smallest DMU that, in reality, must faces the biggest challenges to survive. In

this case, ModelME says that, for DMU K size increase with capital (budget) saving,

it is required to invest in operational, sales and marketing structures, which again, is a

good guidance for an executive decision. This action can even support Medical Costs

decreasing. In the two last instances the efficiency grows, with superefficiency in the third

one (Table 6.28).

DMU N presents the worst csw-efficiency and, because of this, it is the only DMU

that does not get the superefficiency. Besides, for the reason it is a small health plan, it



6.3 Phase 3 - Management of Capital 61

Table 6.28: Maximization of Efficiency- DMU0 ≡ K.

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
0.53 1.1 -2 7.00× 10−7 I -3.6 1.6 0 0
0.53 1.1 -1.6 7.00× 10−7 I -3 1.4 0 0

1 0.9 -2.4 7.00× 10−7 IV -1.4 -1.4 0 3
0.99 0.9 -2 7.00× 10−7 IV -1 -1 0 2.5

presents a anomaly already said, in which Administrative Costs overcome Medical Costs.

In last instance ModelME says that in order to decrease in both relative size and efficiency,

DMU N must operate with higher level of Medical Costs, saving Administrative Costs

(Table 6.29).

Table 6.29: Maximization of Efficiency - DMU0 ≡ N .

csw Ks Capital Size Range Area
Inputs Change Outputs Change

Medical Costs Administrative Costs Clients Income/Premiums
0.33 1.1 -1.2 3.10× 10−6 II -0.5 -0.7 -0.76 2.5
0.3 1.1 0.26 3.10× 10−6 II 0.7 -0.4 -0.5 1.6
0.25 0.9 -1.2 2.60× 10−6 III -1.2 0 0 -1
0.29 0.9 0.26 2.60× 10−6 IV 2.3 -2 0 0

At the end, one can say that, in most experiments, single DMU management of

capitals models work properly, with strong consistence among all parameters and results,

i.e. capital (budget), relative size and csw-efficiency. Maximization of efficiency, in turn,

shows higher results for efficiency, which was already explained in this subsection. The

outcome analysis also leads to reasonable managerial decisions for health plans sector,

considering always the amount of input variables (Medical and Administrative Costs),

their weights in inferred production function and DMU ′s relative sizes.

6.3.4 DMUs Subset - Minimization of Total Capital

The following experiments involve the effort to apply managerial decisions regarding

whereas they must be performed not only by one but by a subset of DMUs. In this

sense, there are two models: first, aiming to minimize DMUs subset budget to meet

a general DMU ′s efficiency target, computed through the Euclidean distance from a

csw-efficiencies vector to a `2-efficiencies one; second, trying to minimize this Euclidean

distance subject to a given budget. Both models admit two different approaches, either

considering all DMUs (Altruistic) in efficiency issue or just those ones from a chosen

DMU ′s subset (Selfish). In all experiments all DMUs are not supposed to be smaller

(td ≥ 1).

In this subsection the minimization of capital is experimented in two opposite sit-

uations, with worsening of efficiency and, after, with improving. For each one, both
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approaches are tested.

Thus, the altruistic minimization of capital with efficiency worsening of 10% (Table

6.30) implies in change of DMUs A and C, the largest health plans. ModelMTC suggests

a total budget increase of 90.59 monetary units, distributed on 1.37 to A and 89.22 to

C, which does not promote so much difference to the former but strong transformation

to the latter, both in relative size (increasing) and efficiency (worsening). This model

points out that DMUs must concentrate on let Medical Costs to a little growth in order

to meet the general efficiency demand. It must be a possible situation in a scenario in

which physicians representatives are claiming to wage rising (what happens every year).

Table 6.30: Minimization of Total Capital - Altruistic (td = 1.1, tj = 1, c = 90.59)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A 1.37 1 0.87 - 2 -0.6 0 0
C 89.22 1.83× 10−3 0.73 I 89 0 0 0
F 0 3.72× 10−4 0.67 - 0 0 0 0

C1 0 6.70× 10−6 1 - 0 0 0 0
K 0 8.00× 10−7 0.58 - 0 0 0 0
N 0 2.90× 10−6 0.26 - 0 0 0 0

The same scenario in a selfish approach leads to a budget saving, since ModelMTC

returns only 0.63 as total capital. In a comparison with previous approach one can note

that DMU A remains affected but DMU K, the smallest health plan, assumes a new

role, with changes in relative size and efficiency (Table 6.31).

Table 6.31: Minimization of Total Capital - Selfish (td = 1.1, tj = 1, c = 0.63)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -1.37 1 0.87 - -2 0.6 0 0
C -0.05 1.58× 10−3 0.85 - -0.07 0.02 0 0
F -0.02 3.72× 10−4 0.67 - -0.03 0.01 0 0

C1 -0.002 6.70× 10−6 1 - -0.03 0.001 0 0
K 2 9.00× 10−7 0.51 I 2 0 0 0
N 0 2.90× 10−6 0.26 - 0 0 0 0

The next two experiments deal with efficiency improving of 10% and both behaves

similarly, with movements just in DMU N, with the worst efficiency. In first, Table 6.32,

DMU N needs to save 1.31 of its operational budget to reach the general improvement

efficiency goal, focusing on reduce Administrative Costs and increase Income/Premiums.

Interesting that, when it is about efficiency improvement ModelMTC prefers to use those

more weigthed variables.

Regarding to selfish approach, only 0.63 of capital saving is required to achieve the

efficiency goal (Table 6.33).



6.3 Phase 3 - Management of Capital 63

Table 6.32: Minimization of Total Capital - Altruistic (td = 0.9, tj = 1, c = −1.31)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A 0 1 0.87 - 0 0 0 0
C 0 1.58× 10−3 0.85 - 0 0 0 0
F 0 3.72× 10−4 0.67 - 0 0 0 0

C1 0 6.70× 10−6 1 - 0 0 0 0
K 0 8.00× 10−7 0.58 - 0 0 0 0
N -1.31 2.90× 10−6 0.32 II 0 -1.31 0 1.44

Table 6.33: Minimization of Total Capital - Selfish (td = 0.9, tj = 1, c = −0.63)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A 0 1 0.87 - 0 0 0 0
C 0 1.58× 10−3 0.85 - 0 0 0 0
F 0 3.72× 10−4 0.67 - 0 0 0 0

C1 0 6.70× 10−6 1 - 0 0 0 0
K 0 8.00× 10−7 0.58 - 0 0 0 0
N -0.63 2.90× 10−6 0.29 II 0 -0.63 0 0.65

6.3.5 DMUs Subset - Maximization of Global Efficiency

These experiments deal firstly, with availability of capital and after, its reduction. Thus,

considering a positive capital of 100 monetary units, both approaches altruistic (Table

6.34) and selfish (Table 6.35) perform exactly in the same way, showing that there are no

effects in focusing just a subset of DMUs.

Table 6.34: Maximization of Efficiency - Altruistic (ts = 1, tj = 1, c̄ = 100)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -182 1 0.55 I -335 153 0 1011
C 25 1.95× 10−3 0.62 I 25 0 0 157
F 47 6.47× 10−4 0.57 I 47 0 0 154

C1 0 6.70× 10−6 0.59 I 0 0 0 0
K 0 8.00× 10−7 0.35 I 0 0 0 0
N 210 5.86× 10−4 1 II 210 0 0 493

All DMUs get worse about csw-efficiencies and present a reduction in their relative

sizes, except DMU N, that performs oppositely, becoming csw-efficient (e
′

= 1) and

displaying an expressive growth in its relative size, seeming that ModelMGE puts all the

efforts to make the worst DMU better.

In situations of reduction of capital (−100), both altruistic and selfish approaches

perform equally. Once again keeping all efforts in DMU N (Tables 6.36 and 6.37).

6.3.6 DMUs Subset - Superefficiency

While subsections 6.3.4 and 6.3.5 cannot access superefficiency, the present handle this

situation. For short, only Minimization of Capital model is used and the scenarios of
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Table 6.35: Maximization of Efficiency - Selfish (ts = 1, tj = 1, c̄ = 100)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -182 1 0.55 I -335 153 0 1011
C 25 1.95× 10−3 0.62 I 25 0 0 157
F 47 6.47× 10−4 0.57 I 47 0 0 154

C1 0 6.70× 10−6 0.59 I 0 0 0 0
K 0 8.00× 10−7 0.35 I 0 0 0 0
N 210 5.86× 10−4 1 II 210 0 0 493

Table 6.36: Maximization of Efficiency - Altruistic (ts = 1, tj = 1, c̄ = −100)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -182 1 0.74 I -335 153 0 1011
C 14 1.81× 10−3 0.8 I 14 0 0 117
F 25 5.17× 10−4 0.69 II 25 0 0 95

C1 0 6.70× 10−6 0.8 I 0 0 0 0
K -0.37 8.00× 10−7 0.48 I -0.37 0 0 0
N 43 5.05× 10−5 1 II 43 0 0 115

Tables 6.30 and 6.31 are reproduced, now letting the DMUs of a chosen subset to reach

their superefficiencies.

As consequence, efficients DMUs A and C1 present superefficiency, with scores, re-

spectivelly, of 1.03 and 1.13. In these cases, Algorithm 2 (Section 5.3) is required.

The altruistic approach does not determine any changes for DMUs C1 and N and,

as expected, indicates a total budget saving of −1.32 (Table 6.38), even with a worsening

in general efficiency score. This shows a different result from ModelMTC in which an

additional capital expenditure is demanded (Table 6.38).

When the selfish approach is used, the capital saving is more expressive (−1140),

highly supported by DMU A. Many different movements can be observed. While DMU A

goes towards area II, with strong increase in its efficiency (keeping its maximum reference

size), other DMUs present an important decrease in their efficiency (displacements to

area I)), except DMU C1 (csw-efficient) which keeps its status.

Table 6.37: Maximization of Efficiency - Selfish (ts = 1, tj = 1, c̄ = −100)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -182 1 0.74 I -335 153 0 1011
C 14 1.81× 10−3 0.8 I 14 0 0 117
F 25 5.17× 10−4 0.69 II 25 0 0 95

C1 0 6.70× 10−6 0.8 I 0 0 0 0
K -0.37 8.00× 10−7 0.48 I -0.37 0 0 0
N 43 5.05× 10−5 1 II 43 0 0 115
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Table 6.38: Superefficiency/ModelSE - Altruistic (td = 1.1, tj = 1, c = −1.32)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -1.37 1 0.83 I -2 0.6 0 0
C -0.05 1.58× 10−3 0.81 I -0.07 0.02 0 0
F -0.02 3.72× 10−4 0.64 I -0.03 0.01 0 0

C1 0.49 6.70× 10−6 1 - 0 0.49 0 0
K -0.37 8.00× 10−7 0.6 II 0 -0.37 0 0
N 0 2.90× 10−6 0.25 - 0 0 0 0

Table 6.39: Superefficiency/ModelSE - Selfish (td = 1.1, tj = 1, c = −1140)

DMU cj Size csw Range Area
Inputs Change Outputs Change

Medical Cost Administrative Costs Clients Income/Premiums
A -1101 1 0.91 II -1100 -1 6149 -1
C -30 1.58× 10−3 0.84 I -30 0 0 32
F -14 3.72× 10−4 0.65 I -14 0 0 12

C1 -0.63 6.70× 10−6 1 IV 0 -0.63 0 2.5
K -0.59 8.00× 10−7 0.56 I -0.59 0 0 0.43
N 6 2.90× 10−6 0.18 I 6 0 0 1.6

6.4 Comments

Finally, in general, management of capital models work properly in this application, guid-

ing managerial strategies that are lined with expected decisions in Brazilian health plans.

For subset of DMUs, ModelMGE does not show diferences between Altruistic and Selfish

approaches, which needs to be investigated further. There is not any situation that a

result invalidates another one and, even considering the meaningfulness of the DMU ′s

sample which presents extreme situations on observations, one can conclude that such

models could be admitted to enhance the management tools that support decision mak-

ing process.



Chapter 7

Conclusions and Future Directions

In this work we considered efficiency scores with a common set of weights (csw-efficiencies

and introduced the concepts of relative area, relative size and range area. The preliminary

idea was to define a comparative measure of size based on virtual inputs and outputs. In

addition, we evaluated efficiency and size of DMUs on a number of problems regarding

management of capital. Essentially, the analysis focused on different combinations of

parameters denoting total budget, efficiency scores (with common set of weights) and

relative size. In all cases, a manager could investigate alternatives through different

optimization models and select the best strategy to be adopted.

The concept of relative area relates virtual inputs with costs and virtual outputs and

was used in the definition of relative size. In this way, larger areas are associated with

larger relative sizes and vice versa. Despite of good computational results obtained for

many different solvers, the definition of relative size introduces a bi-linear function which

can produce non-convex models. In order to avoid that, an interesting possibility of

research is to deal with other definitions of relative size also based on virtual inputs and

outputs. For instance, we can consider d̄j = ((āj)
2 + (b̄j)

2)1/2 for j = 1, . . . , n (relative

distance) and then the normalized distance s̃j = d̄j/d̄ with d̄ = max{d̄j, ∀j = 1, . . . , n}
(relative size). Note that d̄j express the Euclidean distance between coordinates (0, 0) and

(āj, b̄j). The main drawback of this definition is that the virtual outputs are always less

or equal than their corresponding virtual inputs (i.e., b̄j ≤ āj). As a consequence, DMUs

with very large outputs and small inputs can correspond to virtual outputs limited above

by small virtual inputs. In this case, the coordinates (āj, b̄j) would be very close to the

origin (0, 0) and we would have an unwanted small relative size measure. In order to

overcome this hurdle, a possible alternative is to consider the ModelQP (3.5)-(3.7) and

deal with DEA super-efficiencies instead of DEA efficiencies computed for all n DMUs
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in the set. After that, we use Theorem 1 to move all DMUs inside the range area and

reevaluate their relative distances (or relative sizes).

In chapters 4 and 5, we considered several questions regarding management of capital

and many possibilities were explored. There were proposed two main approaches. In the

former, goals were settled to be pursued by a single DMU , whereas in the latter, the goals

were set out collectively for a subset Ψ of DMUs. It is important to remark that, even for

|Ψ| = 1, both approaches are slightly different. In the first (chapter 4), we defined goals in

the constraints allowing coordinates out of range area, while in the second cChapter 5), all

displacements are inside the range area and goals were stated by a reference vector of DEA

efficiencies. In a second moment, in chapter 5, if additional targets are established for

all DMUs of Ψ, then a new reference vector of DEA super-efficiencies can be considered

to allow movements out of the range area. We also considered two possible situations,

namely, i) the altruistic approach in which all DMUs of Ψ help the entire set of DMU ′s;

and ii) the selfish approach in which DMUs of Ψ cooperate to help themselves.

Note in chapter 5 that two main optimization problems were considered, namely,

Minimization of the Total Capital and Maximization of Global efficiencies. Thus, an

interesting question to be addressed in the future is to consider the maximization of

relative size of one or more DMUs using a target vector of relative sizes (possibly, a DEA

vector of relative sizes). In this case, in addition to the proposed models for management of

capital, a new optimization problem could be defined which objective should be maximize

the relative size over Ψ, and it is also subjected to fixed targets of capital and efficiency

scores.

A usual problem present in DEA is to establish a fair comparison among DMUs

with very different attributes. For instance, how to compare efficient DMUs with small

relative size before less efficient DMUs with bigger relative sizes? Thus, a possible future

work is deal with clustering techniques (see for instance [33],[17],[15]) to better classify the

DMU ′s attributes relating budget, efficiencies and relative sizes. As an additional topic of

research, it could be worthwhile idea to determine a performance measure combining both

efficiency and relative size. For instance, it could be assumed a performance measure pj of

a DMUj by setting pj = c′ej + c′′sj with c′ + c′′ = 1 and c′, c′′ > 0 denoting, respectively,

the importance of efficiency and relative size in the performance.

The results obtained in a Brazilian health plans application are consistent with pos-

sible managerial decisions, having the models decided about strategies which would be

considered in an actual scenario. Since all inputs present the same costs (Aij), ModelMC
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(Minimization of Capital for a single DMU) consistently searches for reducing Medical

Costs in all instances, which would be a reasonable decision, since this is the largest costs

center of a health plan and may provide bigger savings. In a very small and inefficient

health plans, additionally, this model suggests that some savings must be applied either

to Administrative Costs, which would be suitable since this input variable is more rele-

vant in such scenario. ModelMS (Maximization of Size for a single DMU) is absolutely

correspondent to ModelMC, so that the size parameter of the former is the outcome of

the latter, and that is a result that shows a strong relation between them, which is ex-

pected considering the consistency. ModelME (Maximization of Efficiency for a single

DMU), on the other hand, presents a diverse behavior, supporting efficiency increase too

regarding the goals in Administrative Costs inputs (saving) and Income/Premiums out-

puts (increasing). Indeed, these are the two main areas to be addressed in a health plan

when an efficiency issue comes up and produces the most intense effects. Once again, the

models respond accordingly with a market typical decision. A special fact that differs, in

all these cases, is that the models are able to point out an objective goal.

The choice of altruistic or selfish approaches does not interfere in worsening the over-

all efficiency with Model MTC. As expected, the final cost demanded for new overall

efficiency score is larger in the former than in the latter, dealing, respectively, with Med-

ical Costs (larger amounts, lower weight) and Administrative Costs (smaller amounts,

greater weight). On the other hand, when overall efficiency must be improved, in both

altruistic or selfish approach, the health plan with lowest efficient is picked and its Ad-

ministrative Costs inputs is reduced, which is a decision expected to be made. When

dealing with maximization of global efficiency (ModelMGE), regardless the approach, the

same results are found and based on a general Income/Premiums increase, that is one of

the first attempt in health plans market. Finally, in a superefficiency situation applied to

ModelMTC, (ModelSE1) responds with smaller amounts of capital.

These results encourage in the sense that presented concepts and management of

capital models may be easily used through DEACM , an accessible tool that is available

to small and medium organizations, in which are demanded only the knowledge of their

own business. Finally, the present work carries the purpose to experiment new possibilities

and it is also interested in supporting the search for new applications for DEA.



References

[1] ALMEIDA, M. R. A eficiência dos investimentos do Programa de Inovação Tec-
nológica em Pequena Empresa (PIPE): uma integraçãoo da análise envoltória de
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APPENDIX A -- DEACM USER’S MANUAL

A.1 GENERAL INFORMATION

A.1.1 System Overview

The DEACM stands for Data Envelopment Analysis for Capital Management and is a web

application that is intended to help solve problems related to Capital Management. The

application is based on a Doctoral Thesis of the researcher Ney Paranaguá de Carvalho

that proposed the concept of relative size and show how to use it to solve problems

regarding Capital Management.

The Doctoral thesis proposes a series of mathematical models for optimization prob-

lems regarding Capital Management, that are difficult, error prone and time consuming

to execute them by hand and make sense of the results, specially with a big amount of

data. The DEACM application implements these mathematical models and make it easy

to input data, execute the proposed models and analyze the results.

The major functions performed by the application are:

• Input or load data: this feature enables the user to input data using a web

interface and manually type in the matrix of DMU ′s (Decision Making Units) with

it’s associated data: inputs, outputs and costs. It’s also possible to import a .csv file

with the DMUs data along with the capital management model and it’s parameters

in case of a bigger data;

• Execute base models (DEA and KAO): this feature frees the user for the

need of giving the values of the DEA and KAO’s efficiency as input arguments for

each DMU. This feature saves time and avoid errors in input data;

• Execute capital management models: this feature enables the user to select a

capital management model, give the parameters for that specific model and executes

it. It automates the execution of the mathematical models.
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A.2 Acronyms and Abbreviations

• DEACM - name of the application and stands for Data Envelopment Analysis for

Capital Management

• DEA - stands for Data Envelopment Analysis and it’s a mathematical model used

to measure the efficiency of DMU ′s

• KAO - it’s a reference to the model proposed by C. Kao and H.-T. Hung for com-

mons weights based on DEA

• DMU - stands for Decision Making Unit and it’s the name given for each entity

with inputs and outputs in the DEA model

A.3 SYSTEM SUMMARY

The main goal of the DEACM application is to help the user to solve problems related to

capital management. The capital management here is any economic activity carried out

by one or more DMUs involving saving or investment of resources. To help solving these

problems, the application allows the user to preview the output of controlled modifications

on the budget, relative size and efficiency scores.

For instance, in the case of a downturn of the economy, some decreasing of the relative

size and/or efficiency may be wanted to save capital. In general, motivated by different

economic scenarios, a manager could establish a number of objectives and directions for

the company and use the application to test and preview different scenarios to achieve

those goals based on three parameters relating efficiency, capital and relative size.

A.3.1 Data Flows

The DEACM application follows a step-by-step user interaction to perform it’s functions,

as shown in Figue A.1.

Each step depends of the result of the previous one and it’s results are forwarded to

the following step. The steps are:

• Data Input: this is the first step, where the user manually type in the data or

import a CSV file;
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Figure A.1: DEACM Steps

• Base Models: it’s composed of the two steps, DEA and KAO, which are the basis

for the proposed models for Capital Management. In these step, the application

calculates the DEA and KAO efficiencies for each DMU ;

• Model Selection: in this step, the user selects the Capital Management model to

be executed;

• Parameters: in this step, the user give the parameters for the chosen Capital

Management model;

• Result: it’s the last step, where the application shows the result of the execution

of the selected step with the given parameters.

The details of each step are presented in the following section.

A.4 GETTING STARTED

The DEACM application follows a step-by-step style of user interaction where the fol-

lowing step depends on the previous one to execute. The steps, in the corresponding

order, are: Data Input, DEA, KAO, Model Selection, Parameters and Result.

Inside each step, it’s possible to go back to the previous step by clicking on the step

name at the top bar or by clicking at the go back button. The following sections contains
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the explanation of each step of the DEACM application and how to use it, along with

some special cases.

A.4.1 Data Input

This is the first step of the application where the user enters the data. The data is a

matrix where the lines correspond to a single DMU and the columns are inputs, outputs

and it’s corresponding data. Figure A.2 explain each element, as follows:

Figure A.2: Data Input

• Button 1: Using this button, the user can import a CSV file with the data;

• Button 2: adds a new input to the matrix of data;

• Button 3: adds a new output to the matrix of data;

• Button 4: adds a new DMU to data matrix;

• Button 5: deletes the selected input or output;

• Button 6: This button deletes the selected DMU ;

• Button 7: This button go to the next step which is calculate the DEA.
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A.4.1.1 Importing data

The application supports the import of a CSV file with the input data along with the

model to execute and the data associated to the model. To import a CSV file, you

need to click on the Button 1 - Import CSV File, select the CSV file and click the

Load button, as shown in Figure A.3. If the given file is correct, the application load it’s

contents, automatically executes the DEA, KAO and Model Selection steps and return

to the Parameters step, so the user can change the parameters and execute the model.

Figure A.3: Data Input

If the file is not in the expected format, the application prompt an error message.

A.4.1.2 Adding an input

To add an input, just type in the name of the input on the input box next to the Button

2 - Add Input and click on it. If there is any error, the application will show an error

message, otherwise it will add a new column on the table with the given input name.

A.4.1.3 Adding an output

To add an output, just type in the name of the output on the input box next to the

Button 3 - Add Output and click on it. If there is any error, the application will show



A.5 DEA 78

an error message, otherwise it will add a new column on the table with the given output

name.

A.4.1.4 Adding an DMU

To add a DMU, just click the Button 4 - Add DMU. The application will add a new

line on the table with the DMU name in blank. Now click on the input box in the new

line of the table and type in the DMU name.

A.4.1.5 Deleting an input

To delete an input, click on the arrow icon next to the input name in the table and select

the option delete. This is shown in the figure as Button 5.

A.4.1.6 Deleting an output

To delete an output, click on the arrow icon next to the output name in the table and

select the option delete. This is shown in the figure as Button 5.

A.4.1.7 Deleting an DMU

To delete a DMU , click on the Button 6 - Delete of the corresponding line of the table

data.

A.4.1.8 Go to next step

To go to the next step, just click on the Button 7 - Calculate DEA. If there’s any

error with the given data, then the application will show an error message, otherwise, it

will go to the next step Calculate DEA.

A.5 DEA

This is the second step where the application calculates the first basis model, theDEAmodel.

This step do not require any input or action by the user, it just shows the calculated DEA

efficiency for each DMU given in the previous step, so that the user can easily follow the

calculations ahead and check the values as shown in Figure A.4.
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Figure A.4: DEA Computation

• Button 1: Shows the detail of the selected DMU

• Button 2: Go back to the previous step

• Button 3: Go to the next step Calculate `2-efficiencies (KAOs Model)

A.5.1 DMU Details

To check the DMU detail, you just need to click the Button 1 and a modal window will

appear with the details of the selected DMU as shown in Figure A.5.

A.5.2 Going Back

To go back to the previous step Data Input, you just need to click on the Button 2 -

Go Back or click on the Data Input label at the bar with all step names.

A.5.3 Go to next step

To go to the next step KAO, you just need to click on the Button 3 - Calculate

`2-efficiencies (KAOs Model).
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Figure A.5: DMU Details

A.6 KAO

This is the third step where the application calculates the second basis model, the KAO

model. This step do not require any input or action by the user, it just shows the

calculated DEA and KAO efficiencies along with the Relative Size and Relative Area for

each DMU given in the previous step, so that the user can easily follow the calculations

ahead and check the values as shown in Figure A.6.

A.6.1 DMU Details

To check the DMU detail, you just need to click the Button 1 and a modal window will

appear with the details of the selected DMU as shown in Figure A.5.

• Button 1: Shows the detail of the selected DMU

• Button 2: Go back to the previous step

• Button 3: Go to the next step Choose Capital Management Model.
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Figure A.6: KAO Computation

A.6.2 Going Back

To go back to the previous step DEA, you just need to click on the Button 2 - Go

Back or click on the DEA label at the bar with all step names.

A.6.3 Go to next step

To go to the next step, you just need to click on the Button 3 - Choose Capital

Management Model.

A.7 Model Selection

This is the fourth step where the user selects the capital management model to execute.

The available Capital Management model are splitter into two groups:

• Single DMU : within this group are those models that are applied to a single

target DMU . The available models in this group are:

– Minimization of Capital: this model shows the minimum capital that needs

to be applied to a target DMU constrained by a factor for it’s relative size and
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for it’s efficiency. These factors could increase or decrease the DMUs size

and/or efficiency. The application depends on the user;

– Maximization of Relative Size: this model shows how much the relative

size of a target DMU is likely to grow/shrink according to the available capital

and a efficiency factor;

– Maximization of Efficiency: this model shows how much the efficiency of a

target DMU is likely to grow/shrink according to the available capital and a

relative size factor.

• Subset of DMUs: within this group are those models that are applied to a target

subset of DMUs. The available models in this group are:

– Minimization of Capital: this model shows the minimum capital that needs

to be applied to a target subset ofDMUs constrained by a factor for the relative

size for each DMU and a factor for the distance between the KAO and DEA

efficiencies. These factors could increase or decrease the DMUs size and/or

efficiency. The application depends on the user;

– Maximization of Efficiency: this model shows how much the efficiency of

a target subset of DMUs is likely to grow/shrink according to the available

capital and a relative size factor for each DMU .

Figure A.7 explains the screen elements:

A.7.1 Going Back

To go back to the previous step KAO, you just need to click on the Button 1 - Go

Back or click on the KAO label at the bar with all step names.

A.7.2 Go to next step

To go to the next step, you need to click on the model’s name, then the application will

take you to the next step according to the model that you’ve selected.

A.8 Parameters

This is the fifth step where the arguments for the specific model are set. Since the Capi-

tal Management models are an optimization problem and fundamentally a mathematical
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Figure A.7: Model Selection

model, depending on the given arguments, the problem can be infeasible. Another pos-

sibility, for all models, is that depending on the arguments, the number of variables and

constraints of the model can be too high for the solver give a solution that the problem

is considered infeasible. In both cases, the application shows an error message, but the

interpretation of the model’s argument, it’s feasibility and results are up the user.

The following list is a detail of each model, with it’s arguments and screen elements

explanation.

• Single DMU Models

– Minimization of Capital: this model requires two arguments:

∗ Relative Size Coefficient: it’s a number, representing a factor that will

be used to determined the new size of a target DMU . For example, the

number 0.9 means that the size can be decreased in 10%. The number 1

means the size will be the same and the number 2 means it will be doubled.

∗ `2-efficiency Coefficient: it’s a number, representing a factor that will be

used to determined the new csw-efficiency of a target DMU . For example,

the number 0.9 means that the efficiency can be decreased in 10%. The

number 1 means the efficiency will be the same and the number 2 means it
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will be doubled. This model also requires the user to select a single target

DMU by clicking on the radio box on the column “target” of the table

that contains all the DMUs. For the target DMU , it’s also required the

costs of each input, along with the lower bounds of each input and output.

After all parameters are set, you are ready to execute the model. To

execute it, just click on the Button 3 - Execute on the bottom right

of the screen. If there’s any missing information or wrong parameters,

the application will show an error message, the same goes if the execution

leads to an infeasible problem (Figure A.8).

Figure A.8: Single DMU - Capital Minimization

· Button 1: shows the DMU details, just as in the previous steps;

· Button 2: goes back to the previous step, just as in the previous

steps.

– Maximization of Relative Size: this model also requires two arguments:

∗ Capital: it’s a number, representing the available capital to invest at the

target DMU . For example, the number 10, means 10 monetary units

available to invest at the target DMU ;

∗ `2-efficiency Coefficient: it’s a number, representing a factor that will

be used to determined the new csw-efficiencyof a target DMU . For ex-
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ample, the number 0.9 means that the efficiency can be decreased in 10%.

The number 1 means the efficiency will be the same and the number 2

means it will be doubled.

This model also requires the user to select a single target DMU by clicking

on the radio box on the column “target” of the table that contains all the

DMUs. For the target DMU, it’s also required the costs of each input,

along with the lower bounds of each input and output.

After all parameters are set, you are ready to execute the model. To

execute it, just click on the Button 3 - Execute on the bottom right

of the screen. If there’s any missing information or wrong parameters,

the application will show an error message, the same goes if the execution

leads to an infeasible problem (Figure A.9).

Figure A.9: Single DMU - Maximation of Relative Size

· Button 1: shows the DMU details, just as in the previous steps;

· Button 2: goes back to the previous step, just as in the previous

steps.

– Maximization of Efficiency: this model requires two arguments, too:

∗ Capital: it’s a number, representing the available capital to invest at the
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target DMU . For example, the number 10, means 10 monetary units

available to invest at the target DMU ;

∗ Relative Size Coefficient: it’s a number, representing a factor that will

be used to determined the new relative size a target DMU . For example,

the number 0.9 means that the size can be decreased in 10%. The number 1

means the size will be the same and the number 2 means it will be doubled.

This model also requires the user to select a single target DMU by clicking

on the radio box on the column “target” of the table that contains all the

DMUs. For the target DMU, it’s also required the costs of each input,

along with the lower bounds of each input and output.

After all parameters are set, you are ready to execute the model. To

execute it, just click on the Button 3 - Execute on the bottom right of

the screen. If there’s any missing information or wrong parameters, the

application will show an error message, the same goes if the execution leads

to an infeasible problem (Figure A.10).

Figure A.10: Single DMU - Maximation of Efficiency

· Button 1: shows the DMU details, just as in the previous steps;

· Button 2: goes back to the previous step, just as in the previous

steps.
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• Subset of DMUs Models: This models work the same way as the others, but

they refer to a target subset of DMUs. Both models also have to different ways to

execute, which are:

– DEA Super Efficiency Model: executing the model in this mode will cause

the application to use the DEA Super Efficiency for each DMU of the target

subset. To execute the application with the DEA Super Efficiency, just click

on the Execute button and a pop message will prompt you, as shown in the

Figure A.11.

Figure A.11: Subset of DMUs - Superefficiency Mode

– Altruistic or Selfish: these are the two approaches that the models proposed.

In the altruistic approach, all DMUs of the target subset help the entire set of

DMUs, while in the selfish approach, the DMUs of the target subset cooperate

to help themselves. To choose between the two approaches, just click on the

Execute button and a pop message will prompt you, as shown in Figure A.12.

Figure A.12: Subset of DMUs - Altruistic or Selfish approaches

– Minimization of Capital: this model requires two arguments:

∗ Update Rating of Distance between `2 and DEA efficiencies: it’s

a number, representing a factor that will be used to increase or decrease

the distance between the vector of DEA and KAO efficiencies. For ex-

ample, the number 0.9 means that distance will be decreased in 10%, or

it’s expected an overall efficiency improvement. The number 1 means the

distance will be kept and the number 2 means it will be doubled;

∗ Relative Size Coefficient: it’s a number, representing a factor that will

be used to determined the smaller relative size admitted to each DMU of
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the chosen set.

To select a target DMU, just click on the check box on the column target

of the table that contains all the DMUs. For the target DMUs, are also

required the costs of each input, along with the lower bounds of each input

and output.

After all parameters are set, you are ready to execute the model. To

execute it, just click on the Button 3 - Execute on the bottom right

of the screen. If there’s any missing information or wrong parameters,

the application will show an error message, the same goes if the execution

leads to an infeasible problem (Figure A.13).

Figure A.13: Subset of DMUs - Minimization of Capital

· Button 1: shows the DMU details, just as in the previous steps;

· Button 2: goes back to the previous step, just as in the previous

steps.

– Maximization of Efficiency: this model requires two arguments:

∗ Capital: it’s a number, representing the available capital to invest at the

target DMUs. For example, the number 10, means 10 monetary units

available to be invested at the DMUs of subset;
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∗

∗ Relative Size Coefficient: it’s a number, representing a factor that will

be used to determined the smaller relative size admitted to each DMU of

the chosen set.

To select a target DMU, just click on the check box on the column target

of the table that contains all the DMUs. For the target DMUs, are also

required the costs of each input, along with the lower bounds of each input

and output.

After all parameters are set, you are ready to execute the model. To

execute it, just click on the Button 3 - Execute on the bottom right

of the screen. If there’s any missing information or wrong parameters,

the application will show an error message, the same goes if the execution

leads to an infeasible problem (Figure A.14).

Figure A.14: Subset of DMUs - Maximization of Efficiency

· Button 1: shows the DMU details, just as in the previous steps;

· Button 2: goes back to the previous step, just as in the previous

steps.
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A.9 Results

This is the last step where you can see the model’s result. Each model gives a different

result and the interpretation of the results are up to you.

The result screen shows the model executed, it’s arguments, the model’s result, each

DMU details and if two situations occurred during the execution: relative oversize and

super-efficiency. The oversize situation means that, at least, one of the DMUs got out

of the range area. The same goes to the efficiency.

Figures A.15 to A.19 show the result screen for each model. All the screens share two

buttons, the Go Back Button and the Execute Another Model Button, which takes

you to the previous step or execute another model with the same arguments respectively.

Figure A.15: Result of the Minimization of Capital for a single target DMU



A.9 Results 91

Figure A.16: Result of the Maximization of Relative Size for a single target DMU

Figure A.17: Result of the Maximization of Relative Efficiency for a single target DMU
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Figure A.18: Result of the Minimization of Capital for DMUs subset

Figure A.19: Result of Maximization of Efficiency for DMUs subset
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