
UNIVERSIDADE FEDERAL FLUMINENSE

GUILHERME ROLIM E SOUZA

MODEL AND SOLUTION FOR THE DATA

AGGREGATOR POSITIONING PROBLEM IN

SMART GRIDS

NITERÓI

2016

UNIVERSIDADE FEDERAL FLUMINENSE

GUILHERME ROLIM E SOUZA

MODEL AND SOLUTION FOR THE DATA

AGGREGATOR POSITIONING PROBLEM IN

SMART GRIDS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como req-
uisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Sistemas de Computação.

Orientador:

CÉLIO VINICIUS NEVES DE ALBUQUERQUE

Co-orientador:

IGOR MONTEIRO MORAES

NITERÓI

2016

GUILHERME ROLIM E SOUZA

MODEL AND SOLUTION FOR THE DATA AGGREGATOR POSITIONING

PROBLEM IN SMART GRIDS

Dissertação de Mestrado apresentada ao Pro-

grama de Pós-Graduação em Computação da

Universidade Federal Fluminense como req-

uisito parcial para a obtenção do Grau de

Mestre em Computação. Área de concen-

tração: Sistemas de Computação.

Aprovada em maio de 2016.

BANCA EXAMINADORA

Prof. Célio V. N. de Albuquerque - Orientador, UFF

Prof. Igor Monteiro Moraes - Co-Orientador, UFF

Prof. Diego Gimenez Passos, UFF

Prof. Rodrigo de Souza Couto, UERJ

Dr. Arlan Luiz Bettiol, A Vero Domino

Niterói

2016

À minha família.

Acknowledgments

Aos meus pais, Gilma Caminha Rolim e Souza e Walder Santos e Souza, e meus

avós, Guiomar Caminha Rolim e Gilson Rangel Rolim, por proporcionarem uma ótima

base e incentivo para minha educação.

Ao meu irmão Felipe Rolim e Souza por me apoiar e me ajudar sempre que necessário.

Aos meus orientadores Célio Vinicius Neves de Albuquerque e Igor Monteiro

Moraes pelas orientações que me permitiram evoluir e aperfeiçoar este trabalho.

Ao professor Diego Gimenez Passos, que me ajudou ao longo do desenvolvimento

deste trabalho com sugestões e novas ideias.

Ao professor Raphael Pereira de Oliveira Guerra, que me deu uma ótima ideia

de otimização para a implementação de um dos algoritmos deste trabalho.

À todos os meus amigos e companheiros de laboratório que me apoiaram. Em espe-

cial Mateus Carvalho Azis e João Felipe Nicolaci Pimentel que me ajudaram com

ideias e dicas na implementação de uma ferramenta fruto deste trabalho.

À Marister Monteiro Luz do Outão, sempre disposta a resolver meus problemas.

Aos professores do Instituto de Computação da UFF, que compartilharam sua sabedo-

ria e experiências ao longo desses anos.

À CELESC e ANEEL por �nanciarem o projeto TELE-SIRIS (SImulador de Redes

InteligenteS) que atuou como base para o desenvolvimento deste trabalho.

À Universidade Federal Fluminense, à CAPES e à FAPERJ, que proporcionaram

infraestrutura e recursos para a realização deste trabalho.

Resumo

As redes elétricas inteligentes (Smart Grids) representam a próxima etapa na dis-
tribuição e�ciente de energia e exigem uma série de novas arquiteturas que se comunicam
entre si. Esta nova abordagem implica que, em adição ao �uxo de energia, as redes elétricas
inteligentes produzem um �uxo bidirecional de informação. A infraestrutura de medição
avançada (Advanced Metering Infrastructure - AMI) é uma rede de comunicação de mé-
dia distância cujo principal objetivo é prover comunicação entre medidores inteligentes,
presentes em cada residência, e agregadores de dados (Data Aggregation Points - DAPs).

Este trabalho foca em determinar o número mínimo de DAPs, e suas posições, de
forma que cada medidor inteligente seja capaz de transmitir seus dados através de um
enlace bem estabelecido. Para tal, este problema é modelado para um problema de
otimização conhecido como Set Covering Problem (SCP) que age sobre um conjunto de
bons enlaces pré-calculados de acordo com estimativas de propagação de sinal. O modelo
é estendido para considerar a técnica de múltiplos saltos e redundância de medidores, caso
um DAP falhe.

Para solucionar o SCP, uma heurística baseada no método de divisão e conquista
é proposta. A heurística divide o problema em subregiões de acordo com a estimativa
do consumo de memória para solucioná-la. A divisão é realizada através do método
de clusterização K-Means. Resultados mostram que a heurística proposta é capaz de
encontrar soluções próximas à ótima para grandes instâncias, reduzindo drasticamente a
quantidade de memória RAM necessária e o tempo de execução.

Palavras-chave: Redes Elétricas Inteligentes, Infraestrutura de Medição Avançada,
Planejamento de Agregadores de Dados, Planejamento de Redes.

Abstract

Smart Grids represent the next step in e�cient energy distribution and demand a
series of new architectures that communicate with each other. This approach means that,
in addition to energy, Smart Grids also induce a bidirectional information �ow. The
Advanced Metering Infrastructure is a middle-range communication network which main
aim is to provide communication between smart meters, present in each home, and data
aggregation points (DAPs).

This work focuses on determining the minimum number of DAPs and their positions
in order that every smart meter is able to forward its data through a well established
communication link. To do so, we model this problem as a well known optimization prob-
lem called Set Covering Problem that acts based upon a preprocessed set of good quality
links determined by path loss propagation estimates. The model is further extended to
consider multiple hops communication and smart meters coverage redundancy, in case a
DAP fails.

To solve the SCP, a divide-and-conquer heuristic is proposed. The heuristic splits the
problem in sub-regions according to a memory consumption estimate to solve it. The
split is performed by the clustering method, K-Means. Results show that our proposed
heuristic is capable of �nding near-optimal solutions for huge instances while greatly
reducing the required amount of RAM memory and execution time.

Keywords: Smart Grids, Advanced Metering Infrastructure, Data Aggregator Planning,
Network Planning.

List of Figures

1.1 Smart Grid modules and their relations. 4

1.2 An example of advanced metering infrastructure. 5

2.1 A Set Covering Problem example considering a minimum redundancy of 1

unit. 8

2.2 A Set Covering Problem example considering a minimum redundancy of 2

units. 8

2.3 Successful delivery rate per distance for urban, suburban and rural scenar-

ios and IEEE 802.15.4/802.11g devices. 11

2.4 An example of a coverage matrix based on the meters and possible instal-

lation sites. 13

2.5 Coverage matrix comparison with and without multiple hops. 14

3.1 Initial memory consumption per dimension. The X-Axis corresponds to

the number of meters and installation sites. 16

3.2 Memory consumption per dimension with �xed number of installation sites. 17

3.3 Memory consumption per dimension with �xed number of meters. 17

3.4 Two coverage matrices with the same density but di�erent distributions. . 19

3.5 Solving time per density on a 100x100 SCP. A time limit of 500 seconds

was set. 20

3.6 Solving time per density on a 150x150 SCP. A time limit of 500 seconds

was set. 20

3.7 Memory consumption per density for the 100x100 and 150x150 SCPs. . . . 21

4.1 Two examples of both unfeasible and feasible DAPs substitution. 25

5.1 Meter distribution in the Florianopolis instance. 27

List of Figures vii

5.2 Meter distribution in the Niterói instance. 28

5.3 An example of block in the Urban Grid instance. 29

5.4 An example of block in the Suburban Grid instance. 29

5.5 Preliminary heuristics comparison. 30

5.6 Grid and MOSKOU heuristics comparison. 31

5.7 Maximum number of hops and redundancy variation analysis for MOSKOU's

solutions in the Florianópolis instance. 32

5.8 Solution's quality with varying number of hops considering a redundancy

value of 1. 33

5.9 Execution time in seconds per hop for all instances considering a redun-

dancy value of 1. 34

5.10 Instance density per hop for the Florianópolis and Niterói instances. 35

5.11 Instance density per hop for the Urban and Suburban Grid instances. . . . 35

5.12 Solution's quality with varying redundancy. 36

5.13 Instance's average redundancy for each input redundancy. 37

5.14 Execution time in seconds for varying redundancy. 38

5.15 Execution time and solution's gap with varying memory limit. The number

of sub-instances generated is also presented for each hop. 40

5.16 Solution and maximum gap from the optimal for the Urban Grid instance. 41

5.17 Solution and maximum gap from the optimal for the Suburban Grid instance. 42

6.1 TELE-SIRIS module's screen. 45

B.1 Division process of the proposed Heuristic. 51

C.1 Loss x Distance in the adjusted curve for the Extended Hata SRD. 52

List of Tables

2.1 SDR for IEEE 802.15.4 in all scenarios. 12

2.2 SDR for IEEE 802.11g in all scenarios. 12

3.1 Memory estimation coe�cients for 32 and 64 bit systems. 18

C.1 Noise values for each scenario. 52

Contents

1 Introduction 1

1.1 Smart Grids . 3

1.1.1 Advanced Metering Infrastructure (AMI) 3

1.2 Related Work . 5

2 The Set Covering Problem: Formulation and Reduction 7

2.1 SCP Mathematical Formulation . 7

2.2 Reduction: The DAP planning problem as an SCP 9

2.3 Communication Link Estimation Calculation 10

2.3.1 Successful Delivery Rate Distance Limit 12

2.4 Creating the SCP . 13

3 Theoretical Basis for the Heuristic's Construction 15

3.1 SCP Dimension: Memory Impact . 16

3.2 SCP Density: Impact on Memory and Solving Time 18

4 The MOSKOU Heuristic 22

5 Results 26

5.1 Instances . 26

5.1.1 Florianópolis Instance . 27

5.1.2 Niterói Instance . 27

5.1.3 Urban Grid Instance . 28

Contents x

5.1.4 Suburban Grid Instance . 29

5.2 Heuristic Comparison Results . 29

5.3 Maximum Number of Hops and Redundancy Impact on the Solution . . . 32

5.3.1 Maximum Number of Hops Variation: Behavior Analysis 33

5.3.2 Redundancy Variation: Behavior Analysis 36

5.4 Memory Limit Variation Experiment . 38

5.4.1 Solving Time Limit Evaluation . 41

6 Conclusion 43

6.1 Contributions . 44

6.2 Future Work . 46

References 47

Appendix A -- Density Based Creation Algorithm 50

Appendix B -- Grid Heuristic Algorithm 51

Appendix C -- BER Calculation 52

C.1 Extended Hata SRD Curve Adjustment . 53

Chapter 1

Introduction

Current electrical grids are characterized by a unidirectional �ow of electricity which is

transmitted from generators to consumers. Based on a set of communication technologies,

a new electrical grid architecture named Smart Grid is currently under development.

Through an interconnected set of modules and infrastructures, Smart Grids are able to

analyze energy demands in real time, allowing the optimization of energy generation,

transmission and distribution [9] [31].

For Smart Grids to become possible, it is necessary that a smart meter is deployed

in each residence. Smart meters allow remote charging [21] and are responsible for keep-

ing track of their users' energy consumption which is transmitted to the power utility

provider periodically. Nevertheless, smart meters must be integrated to the Smart Grid

network using a communication technology. This integration is performed by the Ad-

vanced Metering Infrastructure (AMI), which provides coverage for smart meters through

a set of Data Aggregation Points (DAPs). Data collected by these meters are periodically

transmitted to one or more DAPs. The connectivity between DAPs and meters can be

established either by wired or wireless technologies [26]. DAPs transmit the collected

data from the neighborhood to its provider's processing center via long-distance commu-

nication technologies such as GPRS, 3G and 4G cellular network [20], LTE [4], or IEEE

802.16 (WiMAX) [12].

The most common wired communication technologies used between meters and DAPs

comprehends the optical �ber and PLC (Power Line Communication). Optical �bers are

a reliable and secure communication technology but possesses high cost of installation

and maintenance [7]. PLC, on the other hand, takes advantage of the current electrical

wiring to transmit data but is susceptible to faults, noises and interference generated by

devices connected to the same power line [10]. Wireless technologies present an alternative

1 Introduction 2

to reduce installation costs demanded by wired infrastructures. Moreover, the wireless

infrastructure is disassociated from the electrical one, meaning that possible electrical

failures (e.g. wire breaks) do not interfere with the communication between the AMI

devices, assuming they are equipped with a battery or even solar panels. There is no

standard on which communication technology should be used between meters and DAPs

though short and medium distance communication standards such as IEEE 802.15.4 and

IEEE 802.11 are recommended [12]. In this work it is assumed that the communication

between meters and DAPs happens exclusively through wireless communication. By doing

so, to correctly solve the studied problem, our proposed model takes into account the

adversities imposed by wireless technologies.

One of the greatest challenges for an AMI is to properly plan the DAPs' positions.

The manual analysis of the best DAPs' positions is costly and hard to execute in practice,

especially in dense neighborhoods. Planning an entire city, for example, involves consid-

ering thousands of meters, one for each residence. This work focuses on determining the

minimum number of DAPs and their positions such that every smart meter is able to

forward its data through a well established communication link. To do so, we reduce this

problem to a well-known optimization problem called Set Covering Problem (SCP) [15]

that acts based upon a preprocessed set of good quality links determined by path loss

propagation estimates. The model is further extended to consider multiple hop commu-

nications and smart meters coverage redundancy, in case a DAP fails. This reduction is

possible because the communication load between meters and DAPs is negligible. There-

fore, the main objective of a Smart Grid planning is to place DAPs so that all smart

meters are covered. By solving the SCP it is possible to obtain the minimum number of

DAPs needed, as well as their deployment positions. As this work evolved, a number of

heuristics were proposed to solve and optimize the modeled problem.

The remaining of this work is organized as follows. Section 1.1 details Smart Grids

application and explains the concept of an AMI. Related work is presented in Section 1.2.

Chapter 2 describes the mathematical formulation of the Set Covering Problem and how

the Smart Grid planning with multiple hops and considering minimum redundancy is

reduced to it. Chapter 3 explains the theoretical basis for developing our heuristic, named

MOSKOU, which is then explained in Chapter 4. Chapter 5 presents our results for

multiple types of instances. Finally, Chapter 6 presents conclusions and future work.

1.1 Smart Grids 3

1.1 Smart Grids

Since its creation, there have not been considerable changes on the current electri-

cal grid's core functionality. Nonetheless, with the evolution of computer systems and

networks in the XXI century, it was natural to expect that the electric grids su�ered a

modernization and embodied these new technologies [17]. To this intent, the Smart Grid

architecture was proposed. Smart Grids refer to the use of modern communication and

information techniques to increase energy distribution e�ciency and reliability [22]. The

National Institute of Standards and Technology (NIST) [1] proposed a conceptual model

for Smart Grids communication that determines seven di�erent modules that intercon-

nect with each other. These modules and their relations are presented in Figure 1.1. The

power generation module is composed of power plants that both generate and stores en-

ergy. The generated energy reaches the consumers by traveling through the transmission

and distribution lines. In Smart Grids, both transmission and distribution lines become

more active, exchanging information with consumers' smart meters, energy market and

operations modules. Service providers are responsible for consumers charging and of-

fers third party services to consumers. The energy market balances the energy o�er and

demand by integrating the power generation, service provider and operations modules.

Finally, the operations module communicates with every other module, collecting data

that allows it to e�ciently manage the grid.

Each Smart Grid module possesses di�erent actors that connect with other modules,

creating interconnected networks. These networks possess their own speci�c function-

alities, protocols and application requirements (e.g. maximum latency and minimum

network bandwidth). This work focuses on the Advanced Metering Infrastructure which

provides connection between consumers and the grid. The AMI is better explained in the

following section.

1.1.1 Advanced Metering Infrastructure (AMI)

In a Smart Grid, the Advanced Metering Infrastructure (AMI) [28] is responsible

for measuring, collecting and analyzing consumers' energy usage. Service providers are

able to obtain detailed information of the power consumption of its users, ensuring a

greater control in the power distribution and avoiding energy waste. The AMI allows

consumers to obtain information regarding the electrical grid status, verifying power rates

and consumption in almost real time.

1.1 Smart Grids 4

Figure 1.1: Smart Grid modules and their relations.

In order to do so, the AMI employs Data Aggregation Points (DAPs) as intermediary

nodes that provide communication coverage to smart meters. A DAP can communicate

with multiple smart meters in the neighborhood where it has been deployed. Consumer

data received by a DAP is forwarded to the service provider's processing center where it

can be analyzed. The data tra�c between meters and provider is characterized by the

exchange of short messages. In an AMI, smart meters generate negligible amount of load

on the network, of the order of a 2400-byte packet every 240 minutes, as indicated by

NIST [1]. This low amount of communication load is one of the main reasons why this

work's planning model is based on a coverage optimization problem, as will be explained

in Chapter 2. Additionally, through DAPs, the processing center is capable of sending

commands and requisitions to meters. Analogously, the communication load from provider

to smart meters is also low, of the order of 25-byte packets per event, but, for some

applications, it must obey the latency limit of 1 minute.

To e�ciently connect the smart devices without excessive costs for the communica-

tion infrastructure is one of the main challenges of an AMI planning. In this work, we

consider that the communication between AMI devices occurs via the wireless medium in

order to reduce costs [29]. As mentioned in Chapter 1, for the communication between

meters and DAPs, short and medium distance communication standards such as IEEE

802.15.4 and IEEE 802.11 can be used, whereas between DAPs and provider, longer range

1.2 Related Work 5

Figure 1.2: An example of advanced metering infrastructure.

technologies such as GPRS, 3G cellular network, LTE, 4G or IEEE 802.16 (WiMAX) are

recommended [12]. Figure 1.2 shows an example AMI. The meters of each residence,

represented by circles in this �gure, connect to a DAP that forwards the meter generated

data to the provider's processing center using a long distance technology. The DAPs,

represented as black diamonds, can be deployed on any electric pole, as shown in the

�gure.

This work assumes that the communication between meters and DAPs happens ex-

clusively through the wireless medium. Communication between DAPs and power distri-

bution centers is out of the scope of this work. It is considered that all DAPs are capable

of forwarding data generated by smart meters.

1.2 Related Work

Souza et al. propose a positioning mechanism for DAPs in an RF-Mesh network [23].

Their work introduces an algorithm that identi�es the best position to install these

DAPs based on the number of hops obtained from the Breadh-First Search, Dijkstra and

Bellman-Ford methods. The best positions are obtained through an exhaustive search

1.2 Related Work 6

that compares the number of hops for each possible installation site. Additionally, this

algorithm allows the positioning of more than one DAP. In this case, the K-means cluster-

ing method is executed previously, dividing the meters into clusters. For each cluster, the

exhaustive search is executed considering the closest positions to its center. The authors

also propose a mathematical formulation for the problem and are able to solve it through

Binary Linear Programming, having as input the number of DAPs that will be used. The

disadvantage of this work is the need to previously indicate the number of DAPs that

must be used.

Finding the least number of DAPs needed and their positions is not trivial. Such

number is considered in the work of Aalamifar et al [2], which proposes a reduction of

the DAP positioning problem to a facility location problem [8] and a heuristic to solve

it based on the K-means algorithm. The reduced problem focuses on positioning the

least number of DAPs on possible installation sites while considering both installation

and transmission costs. In addition to �nding the least number of required DAPs, the

proposed problem also focuses on minimizing the communication's link path loss between

meters and DAPs. However, the mathematical formulation of this condition makes the

problem computationally complex, which is an obstacle when searching for the optimal

solution, especially in city-sized instances that may contain thousands of meters and

possible installation sites to consider.

The simulation of Souza et al considers a topology containing 67 smart meters. The

biggest instance size on which the heuristic of Aalamifar et al was submitted contains a

total of 17121 smart meters. In this work our biggest instance contains a total of 29002

smart meters and 12140 possible DAP installation sites. In order to reduce the problem's

complexity, the solution proposed in this work executes a pre-processing which �lters the

links between meters and possible installation sites thus creating a subset of reliable links.

Consequently, there is no need to formulate the path loss minimization since the coverage

information is based on this pre-processed subset. This pre-processing allows the DAP

positioning problem to be reduced to a simple Set Covering Problem. The pre-processing

and reduction are addressed in the following chapter.

Chapter 2

The Set Covering Problem: Formulation

and Reduction

This chapter details the mathematical formulation of the Set Covering Problem (SCP)

and how it was modi�ed to consider redundancy values for smart meter coverage. Next,

it explains how the DAP planning in Smart Grids is reduced to the SCP.

2.1 SCP Mathematical Formulation

The classic SCP is described as follows: given a set M , of size m, and n subsets

Sj ⊆ M , where j ∈ N = {1, ..., n}, each containing a non-negative cost cj, the objective

is to select one or more subsets Sj, such that each element of M belongs to at least

one of these subsets, while minimizing the sum of the costs. In this work we create a

new mathematical formulation that relates each element of M with a minimum value of

subsets that must cover it. This value is indicated as the bi variable. The mathematical

formulation of this problem is as follows:

min
n∑

j=1

cj · xj

subject to:
∑
j∈N

aijxj ≥ bi,∀i ∈M (1)

xj ∈ 0, 1,∀j ∈ N. (2)

The xj decision variable is equal to 1 if the Sj subset belongs to the solution and 0 if

not. The aij coe�cient is equal to 1 if the element i belong to Sj and 0 otherwise. The

matrix A = (aij), i = 1, ...,m , j = 1, ..., n, is called coverage matrix. In the coverage

matrix each line represents an element to be covered and each column represents a subset.

2.1 SCP Mathematical Formulation 8

Figure 2.1: A Set Covering Problem example considering a minimum redundancy of 1
unit.

Figure 2.2: A Set Covering Problem example considering a minimum redundancy of 2
units.

Equation 1 guarantees that every element i of M is covered by at least bi subsets.

In the classic SCP, bi = 1,∀i ∈ M , indicating that all elements must be covered by at

least 1 subset in the solution, but this value may be increased to require higher levels of

coverage. Restriction 2 guarantees that xj can be only 0 or 1. The minimization function

includes the cj variable which indicates the cost of including the j-th subset in a solution.

When cj is equal for all j ∈ N , the problem is known as Unique Cost SCP [25].

Figure 2.1 exempli�es an SCP coverage matrix considering bi = 1,∀i ∈M , indicating

that elements must be covered by at least 1 subset. Notice that for this example, subsets

0, 1 and 2 cover all elements of the problem, thus representing a feasible solution. The

objective of the SCP, however, is to minimize the number of subsets in the solution. An

optimal solution for this instance would be to select subsets 0 and 3.

Figure 2.2 shows another example of SCP but considering bi = 2,∀i ∈ {1...4} and
b0 = 1. To solve this problem, lines 1, 2, 3 and 4 must be covered by 2 di�erent columns

whilst line 0 must be covered by only one. For this example, an optimal solution is

choosing columns 1, 2 and 3.

2.2 Reduction: The DAP planning problem as an SCP 9

2.2 Reduction: The DAP planning problem as an SCP

We can reduce the DAP planning problem to the SCP by looking at the smart meters

as elements to be covered and the possible DAP installation sites as subsets containing

some of those elements (i.e., containing all the meters that would be covered if a DAP was

installed at that site). In the examples of Figures 2.1 and 2.2, meters would be represented

by lines of the coverage matrix, while electrical poles (or other available installation sites)

would be represented by columns. The B array is created based on the input redundancy

value and coverage information. The values of the B array correspond to the number

of installation sites (subsets) that must cover each meter (element). All positions of the

B array are initialized as the input redundancy value. Nonetheless, if a smart meter

cannot be covered by a quantity of DAPs equal or greater than the input redundancy, its

associated value in the B array must correspond to the greatest number of DAPs that

can cover it, ensuring the solution's feasibility. To better illustrate the B array creation,

assume that a redundancy value of 3 is stipulated while planning an instance that contains

a total of 3 meters (M1,M2 and M3). Due to its positions, each meter can be covered

by a di�erent set of installation sites. Assume that the �rst meter (M1) can be covered

by 5 di�erent installation sites, the second (M2) by 2 and the third (M3) by none. The

corresponding value in the B array for these meters are, respectively, 3, 2 and 0. This

is equivalent to saying that a feasible solutions corresponds to a con�guration in which

meter M1 is covered by 3 or more di�erent DAPs, meter M2 by 2 and M3 by 0. If all

values in the B array were set to 3 instead, there would be no feasible solution because

the model would consider that meters M2 and M3 must be covered by 3 or more subsets,

which is not possible. For this reason, if the input redundancy cannot be achieved by a

meter, its value in the B is set to the maximum number of installation sites that is able

to cover it.

In order to create the SCP it is necessary to estimate which meter is capable of

establishing a reliable communication with which installation site assuming a DAP is

deployed on it. This estimate is important because it dictates how close the SCP is to a

real scenario. If this estimate is poorly calculated, the optimal solution of the generated

SCP will be unreliable. As mentioned in Section 1.2, we execute a pre-processing to

determine a subset of reliable links that will be used to create the SCP. In this way,

it is not necessary to extend the SCP with a path loss minimization factor, since only

reliable links which guarantee communication are considered. Therefore, the optimization

problem itself remains simple. The communication link estimate is presented in the next

2.3 Communication Link Estimation Calculation 10

section.

2.3 Communication Link Estimation Calculation

The central metric to evaluate a wireless communication between a DAP and a smart

meter is the Successful Delivery Rate (SDR) [16] of packets. The SDR estimation is

obtained as a function of several parameters, such as the path loss, signal to noise ratio

(SNR), modulation technique, chosen technology, transmission power, antenna gains and

receiver sensitivity. The SDR is also associated with a propagation loss model, which

must be adequately chosen to correctly represent the AMI environment.

There is a considerable number of propagation models in the literature. To be applica-

ble for an AMI, the propagation model must be�t the frequency ranges and transmission

powers of both smart meters and DAPs. To this extent, di�erent propagation models were

studied such as the Okumura-Hata [19, 13], Hata COST 231 [5], the Wal�sch-Ikegami [27]

and, �nally, the Extended Hata-SRD [6]. The �rst two models are applicable only at dis-

tances that exceed 1 km. The third model requires many parameters that are di�cult to

obtain in practice, such as the average width of streets, buildings separation distance etc.

The most suitable propagation model studied was the Extended Hata-SRD, which is ideal

for short-range devices (up to 100 m). This model is also characterized as a non line-of-

sight model and takes a scenario type as input. There are 3 distinct types of scenarios:

urban, suburban and rural, as recommended by ITU-R SM. 2028-1 [3]. Urban scenarios

are characterized by countless sources of noises and interference plus a large number of

buildings that hinders the signal propagation. Rural scenarios are the opposite, with

practically no buildings and little source of noises/interference. The suburban scenario

possesses characteristics of both urban and rural scenarios.

In this work, we use the Extended Hata SRD as our propagation model. With a

propagation model, the SDR can be obtained from the Bit Error Rate (BER). The BER

between two devices is calculated as a function of six input variables.

BER = f(sce, tech, power, h1, h2, d) (1)

In equation 1, sce stands for the chosen scenario and determines the average noise

and expected attenuation. The variable tech represents the parameters of the employed

transmission technology, including its modulation and data rates; power is the trans-

mission power in dBm of the devices; h1 and h2 represent the antenna heights of both

transmitter and receptor devices; d is the distance between devices. The BER calculation

2.3 Communication Link Estimation Calculation 11

Figure 2.3: Successful delivery rate per distance for urban, suburban and rural scenarios
and IEEE 802.15.4/802.11g devices.

is well-known in the telecommunications �eld and can be obtained in the literature such

as in [24]. Further details of the BER calculation are shown in Appendix C

With the BER calculated, the next step is to calculate the Successful Delivery Rate

(SDR). Equation 2 shows the SDR calculation, where n is the size of a packet in bits.

The SDR represents the chance that a packet is transmitted without error. Therefore, it

can be obtained as the chance that every bit is correctly transmitted. For this reason, the

complementary probability of BER is raised to the power of n, indicating that all n bits

must be correctly transmitted.

SDR = (1−BER)n (2)

Figure 2.3 shows the SDR values for IEEE 802.15.4 and IEEE 802.11g devices for all

types of scenarios. For IEEE 802.15.4 devices we considered a 0 dBm transmission power

and data rate of 250 kbps. For IEEE 802.11g devices we considered 20 dBm transmission

power and data rate of 6 Mbps. The chosen power values and data rates are typical

of smart grid devices that employ these technologies. We can see that the SDR varies

considerably for di�erent types of scenarios.

2.3 Communication Link Estimation Calculation 12

Table 2.1: SDR for IEEE 802.15.4 in all scenarios.
SDR Urban SDR Suburban SDR Rural

6 m 0.99 1.00 1.00
7 m 0.81 1.00 1.00
8 m 0.31 1.00 1.00
9 m 0.02 0.99 1.00
10 m 0.00 0.92 1.00
11 m 0.00 0.71 1.00
19 m 0.00 0.00 0.95

20 m 0.00 0.00 0.88

Table 2.2: SDR for IEEE 802.11g in all scenarios.
SDR Urban SDR Suburban SDR Rural

19 m 0.99 1.00 1.00
20 m 0.95 1.00 1.00
21 m 0.78 1.00 1.00
31 m 0.00 0.96 1.00
32 m 0.00 0.90 1.00
33 m 0.00 0.77 1.00
64 m 0.00 0.00 0.93
65 m 0.00 0.00 0.90

66 m 0.00 0.00 0.85

2.3.1 Successful Delivery Rate Distance Limit

We consider that the subset of reliable links are composed of links with SDR superior

to 90%. The value of 90% was chosen precisely to �lter unreliable links. This value can

be easily changed and directly impacts the SCP's solution accuracy. For example, if such

limit is lowered to 70% the planning will consider that a DAP are able to cover farther me-

ters and consequently the number of DAPs on the solution tends to drop when compared

to a solution with a SDR limit of 90%. However, the increased range of communication

provided by the decreased SDR limit may correspond to a poor, or even nonexistent,

communication link in real scenarios that are not well represented by this model. Ta-

bles 2.1 and 2.2 show the SDR values per distance for both IEEE 802.15.4 and IEEE

802.11g devices. The maximum range of a DAP is determined by the maximum distance

in which the SDR remains above 90%. In this way, the DAP range for IEEE 802.15.4

devices are 6 m, 10 m and 19 m for urban, suburban and rural scenarios respectively. The

IEEE 802.11g standard, however, is able to achieve the farther distances of 20 m, 32 m

and 65 m. It is important to highlight that this table was generated considering the base

transmission rates of both technologies as well as transmission powers of 0 dBm and 20

dBm, for IEEE 802.15.4 and IEEE 802.11g respectively. The transmission power directly

2.4 Creating the SCP 13

impacts the BER calculations, and by increasing it, so does the successful delivery rate

and, consequently, the DAP communication range.

2.4 Creating the SCP

As explained in the previous sections, a subset of reliable links can be obtained based

on the SDR estimated for a given distance. Based on these estimates it is possible to

determine a maximum radius around a DAP within which meters can establish a reliable

connection to it. To reduce the DAP positioning problem to an SCP it is necessary to

obtain the geographical positions of meters and installation sites in order to create the

coverage matrix. For each installation site, we verify which meters are within a DAP's

communication range if it is deployed at it. Meters that satisfy these conditions are

represented by 1 (0 is assigned otherwise). Figure 2.4 exempli�es this process. The

communication ranges are represented by dashed circles, meters are represented by �lled

circles and installation sites by �lled diamonds. The resultant coverage matrix is also

illustrated. Notice that the meters inside the reliable transmission range of an installation

site are assigned the value 1 in the correspondent position of the coverage matrix, while

0 is assigned otherwise.

Figure 2.4: An example of a coverage matrix based on the meters and possible installation
sites.

Analogously, it is possible to construct the coverage matrix considering the possibility

of multihop communication. In this case, we have to consider that meters are capable

of acting as relay nodes, allowing DAPs to reach meters which, otherwise, would be

unreachable. Given an installation site and its directly reachable meters, we consider

2.4 Creating the SCP 14

Figure 2.5: Coverage matrix comparison with and without multiple hops.

that this site also reaches all meters that have these reachable meters as neighbors. This

process can be repeated for an arbitrary number k of times, potentially adding more

meters to the coverage set of each installation site and requiring up to k+1 hops for the

meters to reach their DAPs. Figure 2.5 compares the coverage matrices built considering

only 1 hop communication and up to 2 hops in the same scenario. Using 2 hops, meter

M1 can serve as a relay for installation site P1 to also cover M2.

Chapter 3

Theoretical Basis for the Heuristic's Con-

struction

The SCP can be solved by either using a linear programming solver, such as the

CPLEX [14] and GLPK [18], or employing a heuristic. Solvers return the optimal solution

but may need a great amount of memory and processing capability depending on the

size and complexity of the problem. On the other hand, heuristics are often capable

of obtaining good solutions while requiring less computational resources and in shorter

execution time.

Nevertheless, results of this work have shown that SCP instances based on the smart

grid planning problem possess distinct characteristics that allows them to be more easily

solved due to its typical small density, as will be explained later in this chapter. How-

ever, the amount of required memory is an obstacle to �nding optimal solutions for big

instances. This chapter analyzes the behavior of SCP instances regarding the required

amount of RAM memory and execution time based on their dimension (i.e. size) and

it's density (i.e. percentage of 1's on the coverage matrix). This analysis serves as basis

for our heuristic's construction, which adopts a divide-and-conquer approach, splitting

the problem in smaller ones that are optimally solved. Our proposed heuristic is named

MOSKOU and, for simplicity, is addressed as such from now on.

To optimally solve each sub-problem generated by the MOSKOU heuristic, we em-

ployed the GLPK solver. For this reason, all results in this chapter were obtained using

the GLPK and both memory and execution evaluation are linked to this speci�c solver.

If another solver is to be used, new results must be gathered to adapt the MOSKOU

heuristic to it. All the following tests were executed on a Windows 64-bits, 3 GHz Intel

Core i5 CPU with 8 GB of RAM memory. In order to guarantee the feasibility of this

3.1 SCP Dimension: Memory Impact 16

evaluation, we imposed a time limit of 500 seconds for each execution of the solver.

3.1 SCP Dimension: Memory Impact

Prior to starting to solve the Set Covering Problem, the solver needs to allocate an

initial amount of memory su�cient to attend its mathematical restrictions. For the SCP,

these mathematical restrictions are linked to the number of elements to be covered and

the subsets that cover them. As mentioned in Chapter 2, the elements to be covered are

the smart meters whereas the subsets are the possible installation sites' coverage range.

Therefore, an initial amount of memory can be predicted based on the number of meters

and installation sites alone. It is important to notice that this amount may increase

according to the coverage matrix's density, which will be analyzed later.

Figure 3.1: Initial memory consumption per dimension. The X-Axis corresponds to the
number of meters and installation sites.

Figure 3.1 shows the increase of the initial memory consumption according to the

SCP's dimension. The plotted values were obtained experimentally. The Y-Axis indicates

the initial amount of memory in megabytes for a problem containing a number of meters

and installation sites equivalent to the value on the X-Axis. For example, a problem

containing 3000 meters and 3000 installation sites requires an initial amount of memory

of approximately 1400 MB.

Figure 3.2 compares the amount of memory required as a function of only the number

of meters (X-Axis), but parametrized by the number of installation sites (the �gure shows

curves for 1000, 2000, 3000 and 4000 installation sites). With a �xed number of installation

3.1 SCP Dimension: Memory Impact 17

Figure 3.2: Memory consumption per dimension with �xed number of installation sites.

Figure 3.3: Memory consumption per dimension with �xed number of meters.

sites, the function grows linearly with the number of meters. By �xing the number of

meters instead, the behavior is nearly the same with negligible variation as can be seen

in Figure 3.3.

Based on these data, we determined an approximated function to estimate the initial

amount of required memory for a given problem based solely on the problem's dimension.

This function is useful, for example, to determine if a given instance is solvable according

3.2 SCP Density: Impact on Memory and Solving Time 18

to the computer's memory limit and is employed on the MOSKOU heuristic's division

phase. Algorithm 1 shows how the estimation function is computed. The values of the

coe�cients a, b and c were obtained by �tting a trending line to the experimental data

shown in 3.1 and are shown in Table 3.1 for 32 and 64 bit systems (64 bit system use more

memory because the sizes of certain data types are larger). To evaluate our estimate's

accuracy, we generated 100 random instances with the number of installation sites and

meters varying from 500 to 5000 and compared the gap between the real used memory

and its estimate. We obtained an average gap of 0.2% for these instances with a maximum

gap of 1.2% and a minimum of 0.03% which are negligible amounts for the purpose of

evaluating the feasibility of solving a given instance in a certain system.

input : Num. of meters, Num. of installation sites
output: Memory estimation

1 minV al← min(Num. of meters, Num. of installation sites) ;
2 maxV al← max(Num. of meters, Num. of installation sites) ;
3 memEst ← a×minV al2 + b×minV al + c ;
4 Memory estimation ← memEst× (maxV al/minV al);

Algorithm 1: Initial memory estimation function.

Table 3.1: Memory estimation coe�cients for 32 and 64 bit systems.
32-bits 64-bits

a 10.727× 10−5 15.368× 10−5

b 10.449× 10−4 16.504× 10−4

c 92.379× 10−3 −91.447× 10−3

3.2 SCP Density: Impact on Memory and Solving Time

The density of an SCP is de�ned as the percentage of 1's in the coverage matrix.

For example, the coverage matrix of an SCP with 20 elements (meters) and 30 subsets

(installation sites) has 600 (i.e. 20 x 30) pairs. If that instance has a density of 20%,

that means 120 of the 600 pairs are set to 1. As will be demonstrated, the SCP's density

is directly associated to its complexity, which impacts on its memory consumption and

solving time. To evaluate this impact, we generated random SCPs instances with varying

densities from 1% to 100% in an additive fashion. In other words, for an instance with 100

meters and 100 installation sites, an initial SCP is randomly generated with 1% density,

i.e. 100 random pairs of its coverage matrix are set to 1. Next, the instance density is

incremented by 1% by randomly replacing zeros with ones in the coverage matrix. The

process is repeated until 100% density is obtained. Notice, however, that the density

3.2 SCP Density: Impact on Memory and Solving Time 19

value only determines the number of 1's in the coverage matrix but does not contain

information on its distribution. For example, Figure 3.4 shows two coverage matrices

with the same amount of elements (5), subsets (5) and density (20%). Notice that in the

coverage matrix of Figure 3.4(a) all 1's are distributed on only one subset, denoting that

column 0 can cover all elements while the remaining columns are not able to cover any.

However, in Figure 3.4(b) the 1 values su�er a more balanced distribution in which all

subsets are capable of covering one distinct element. Since it's impracticable to analyze

all density distributions, we generated our instances according to Algorithm 4 depicted in

Appendix A.

(a) Figure A (b) Figure B

Figure 3.4: Two coverage matrices with the same density but di�erent distributions.

Figure 3.5 shows the solving time for a SCP with 100 meters and 100 installation sites.

Since the instances were randomly created, we repeated the tests 5 times with di�erent

seeds. The middle curve is the average result of all instances, whereas the top and bottom

curves are the maximum and minimum values. While the curves present some statistical

�uctuation, it is possible to notice that the solving time is short for densities up to 5%

and rises until approximately 22% to decrease right afterwards. While, at �rst, increasing

the density makes the problem harder, at some point the installation sites are capable

of covering a greater portion of meters, thus simplifying the solver's choices. One of the

simplest case scenarios happens with 100% density, i.e, when every installation site covers

every meter. Therefore, the optimal solution comes down to choosing only one installation

site, which is simple and virtually instantaneous.

Figure 3.6 shows the same kind of experiments, but considering instances with 150

meters and 150 installation sites. By increasing the number of meters and installation

sites by 50% each, the average solving time peak reached the stipulated 500 seconds limit.

However, for densities lesser than 5% and higher than 55% the optimal solution was found

in less than 1 second.

Figure 3.7 compares the amount of memory used on both the 100x100 and 150x150 in-

3.2 SCP Density: Impact on Memory and Solving Time 20

Figure 3.5: Solving time per density on a 100x100 SCP. A time limit of 500 seconds was
set.

Figure 3.6: Solving time per density on a 150x150 SCP. A time limit of 500 seconds was
set.

stances mentioned above. It is important to notice that even though the solving time drops

as the density gets closer to 100%, the memory consumption rises linearly. Additionally,

with 100 meters and installation sites, the maximum solving time reached approximately

8 seconds whereas with 150 it exceeded the stipulated 500 seconds time limit. However,

the maximum memory di�erence on both instances was only 3 MB. In this work we do

not estimate the amount of memory based on the instance's density because typical smart

grid SCP densities are small enough to barely interfere on the total required memory.

3.2 SCP Density: Impact on Memory and Solving Time 21

To conclude this chapter, it is important to elucidate that most SCP instances created

based on Smart Grids scenarios possess tiny density values, typically lesser than 1%.

For example, the largest density value, considering a maximum of 4 hops, found for the

instances presented in Section 5 is only 1.07%, which was obtained for the Niterói instance.

On the other hand, these instances are characterized by the high amount of meters and

possible installation sites that must be analyzed. Usually, these instances can be optimally

solved in small amount of time but require a great amount of RAM memory, which is the

main hindrance to solve them. For this reason, the MOSKOU heuristic, explained on the

following chapter, employs a divide-and-conquer approach based on the memory usage

estimation.

Figure 3.7: Memory consumption per density for the 100x100 and 150x150 SCPs.

Chapter 4

The MOSKOU Heuristic

The SCP instances resulted from the reduction of the DAP planning problem follow a

geographical pattern, i.e. meters reachable by an installation site are limited to a region

around it. Due to this characteristic, those instances belong to a particular type o SCP

known as Euclidean SCP. Yelbay et al. [30] explain that Euclidean SCPs present small

complexity and that the progress of solvers over the years allowed them to be rapidly

solved. Still, the typical scale of the DAP planning problem requires the solvers to use

very signi�cant amounts of memory, which often prevents the optimal solution to be

found. By noticing that memory consumption is often the bottleneck for solving the DAP

planning problem, the MOSKOU heuristic employs the divide-and-conquer approach,

splitting large, unfeasible instances into smaller sub-instances that can be solved within

the available amount of memory. The individual results are then merged by a post-

optimization method, composing the solution of the original instance. MOSKOU stands

for Memory Oriented Split using K-Means with post-Optimization Unification.

Algorithm 2 shows how the MOSKOU heuristic works. The heuristic takes an instance

to solve as input and a numeric value that determines the maximum amount of RAM

memory to use. These values are represented as Instance and MemLim, respectively.

The Instance input is added to the SubInstances set and while the SubInstances set

is not empty, an element is chosen from it (line 4) and it is veri�ed if the estimated

amount of memory required to solve it exceeds the memory limit (line 5). The memory

estimation function corresponds to Algorithm 1 of Chapter 3. If the memory estimation

of an instance exceeds the memory limit, it is divided into two smaller instances by the

clustering algorithm K-Means (line 6), with K = 2. More speci�cally, the K-Means

algorithm acts upon the set of meters, dividing it into two subsets. For each of these

subsets a new sub-instance is generated composed by the associated subset of meters and

4 The MOSKOU Heuristic 23

input : Instance, MemLim
output: Solution

1 SolvableInstances ← {};
2 SubInstances ← Instance ;
3 while SubInstances 6= ∅ do
4 Inst ← GetElement(SubInstances);
5 if MemoryEstimation(Inst) ≥ MemLim then

6 SubInst1, Subinst2 ← Kmeans2(Inst);
7 SubInstances ← SubInstances ∪ SubInst1;
8 SubInstances ← SubInstances ∪ SubInst2;
9 end

10 else

11 SolvableInstances ← SolvableInstances ∪ Inst;
12 end

13 SubInstances ← SubInstances − Inst;
14 end

15 Solution ← {};
16 foreach Inst ∈ SolvableInstances do
17 Solution ← Solution ∪ Solve(Inst);
18 end

19 Post-Optimization(Solution);
20 return Solution;

Algorithm 2: MOSKOU heuristic algorithm.

a all installation sites that are able to cover any of these meters.

The K-Means algorithm ensures that the split sub-instances are formed by meters and

installation sites that are geographically near one another. Therefore, it is possible that

the split sub-instances possess no relation to one another (e.g.: di�erent neighborhoods

of a city) which increases the probability that the joint solution is, indeed, close to the

optimal. However, even if the split sub-instances are related to one another (e.g., a

neighborhood split in half), a post-optimization method is applied to soften the inaccuracy

imposed by the division.

The new sub-instances created after the split are added to the SubInstances set (lines

7,8) to be further analyzed regarding their memory consumption. Whenever the memory

estimation is lesser than the limit, the analyzed instance is added to the SolvableInstances

set, indicating that it can be optimally solved. When the SubInstances set is empty,

each element in SolvableInstances is applied to the solver and their solutions joined

(line 16,17). The joined solution is applied to a post-optimization method and returned

as the �nal result (lines 19,20).

Naturally, the optimal solution of each sub-instance is not necessarily part of the

4 The MOSKOU Heuristic 24

input : Solution, Redundancy
output: Optimized Solution

1 succeded ← true ;
2 while succeeded do

3 succeded ← false ;
4 foreach installation site 6∈ Solution do

5 replaceableInstallationSites ← {};
6 foreach selectedInstallationSite ∈ Solution do

7 if CanBeRemoved(selectedInstallationSite,Redundancy) then
8 replaceableInstallationSites ← replaceableInstallationSites ∪

{selectedInstallationSite};
9 end

10 end

11 if |replaceableInstallationSites| ≥ 2 then

12 foreach toReplace ∈ replaceableInstallationSites do
13 Solution ← Solution − {toReplace};
14 end

15 Solution ← Solution ∪ {installation site};
16 succeeded ← true;
17 break;
18 end

19 end

20 end
Algorithm 3: Post-optimization algorithm.

optimal solution of the complete problem. There is a high chance of unnecessary DAPs

on the solution, mainly at the edges of each sub-instance. Hence, we propose a post-

optimization method that aims at reducing these redundancies by �nding an installation

site position that can replace 2 or more already placed DAPs. Algorithm 3 shows the

post-optimization pseudo-code.

The input solution comprises all installation sites selected by the �rst stage of the

heuristic. The post-optimization method checks for each installation site that does not

take part in the solution (line 4) if there is a set of 2 or more selected installation sites that

can be removed if the analyzed installation site becomes selected. If such set exists (line

11), the replacement occurs (lines 12 to 15) and the process restarts from the beginning.

If the number of selected installation sites is no longer reducible, the post-optimization

�nishes.

To determine if an installation site is removable, it is imperative that after the sub-

stitution, the redundancy of all meters that were covered by the analyzed DAPs remains

equal or greater than the established redundancy. If the redundancy of one of these me-

ters were inferior to the established redundancy, it must not further decrease. Figure 4.1

4 The MOSKOU Heuristic 25

(a) An unfeasible substitution example.

(b) A feasible substitution example.

Figure 4.1: Two examples of both unfeasible and feasible DAPs substitution.

shows a visual exempli�cation of the above mentioned condition considering a minimum

redundancy of 2. The number above each meter represents the number of DAPs that cover

it (i.e. its redundancy). Links between meters and DAPs are represented by a green line.

In this example, the post optimization method veri�es if installation site P1 can replace 2

or more DAPs. Notice that, for the �rst example in Figure 4.1(a), by removing both D1

and D2 and assuming that P1 is now part of the solution, meter M1's redundancy drops

below the established redundancy. Therefore the substitution is not possible. It is also

important to notice that redundancy of meter M2 remains the same because installation

site P1 is now in charge of covering it. At the same time, meter M3's redundancy drops

to 2 which is not a problem, since the established redundancy is also 2. The example in

Figure 4.1(b) shows a viable substitution in which both DAPs D1 and D2 are replaced by

a new DAP placed in installation site P1. Therefore, when installation site P1 is being

analyzed for this instance, the method CanBeRemoved returns true when analyzing both

DAPs D1 and D2.

Chapter 5

Results

The goal of this chapter is to compare the performance of the MOSKOU heuristic

with the linear programming exact method and other heuristics. The comparison takes

into account the execution time, quality of the solution (i.e. the number of required

DAPs) and the memory requirements. The utilized solver was GLPK [18]. All methods

were executed on only one thread on a 3 GHz Intel Core i5 CPU with 8 GB of RAM

memory. Instance characteristics and results are shown in the following subsections. All

tests considered IEEE 802.11g devices transmitting at 20 dBm with a �xed 6 Mb/s rate.

We set a solving time limit of 60 seconds for the GLPK solver. Exceptionally for the

Grid instances the solver had di�culty �nding the optimal solution and exceeded the

time limit. When the time limit is exceeded, the solver returns the best solution found

so far. In subsection 5.4.1 we discuss that the values returned from the solver when the

time limit is reached have a small gap compared to the optimal solution.

It is important to highlight that a multi-threaded approach is also possible when exe-

cuting the MOSKOU heuristic. However, the main hindrance when solving a Smart Grid

instance is the amount of RAM memory needed. Therefore, a multi-threaded approach is

not bene�cial since the available memory is limited. Nonetheless, a heuristic that utilizes

a distributed solver on multiple machines to increase the available amount of RAM can

be implemented and is one of our recommendations for future work.

5.1 Instances

We evaluate the performance of the MOSKOU heuristic in four di�erent instances

that are explained below.

5.1 Instances 27

5.1.1 Florianópolis Instance

The Florianópolis instance was created based on real geographical positions of elec-

trical poles in the city of Florianópolis, Brazil. This instance represents a power feeder

on the neighborhood of Agronômica which is one of the regions addressed in the SIRIS

(SImulador de Redes InteligenteS) project. Pole positions and the number of smart me-

ters in this neighborhood were obtained from the power distribution company CELESC.

Based on these values, the instance of Florianópolis contains a total of 12140 electrical

poles (i.e. installation sites) and 29002 meters. Figure 5.1 shows this region. We consider

this instance as an urban scenario.

Figure 5.1: Meter distribution in the Florianopolis instance.

5.1.2 Niterói Instance

The Niterói instance is based on the real positions of streets and houses at the neigh-

borhoods of Icaraí and São Francisco in the city of Niterói, Brazil. Meters were distributed

along the streets spaced from one another by a distance varying randomly from 15 to 25

m. The distance between the electrical poles varied randomly from 30 to 50 meters.

5.1 Instances 28

Figure 5.2 shows this region, which contains a total of 3666 smart meters and 1030 pos-

sible installation sites. Due to its density and distribution we consider this instance as a

suburban scenario.

Figure 5.2: Meter distribution in the Niterói instance.

5.1.3 Urban Grid Instance

The Urban Grid instance was generated based on the average of 2000 smart meters

per km2 as indicated by NIST[1]. We consider blocks of 100x100 m2 each containing 20

smart meters randomly placed to maintain the same proportion. Each block is separated

from one another by 10 m. Each block contains a total of 36 installation sites positioned

according to a grid formation. In total, the Urban Grid instance contains 8000 meters and

12200 poles (installation sites). Figure 5.3 shows an example of block in the Urban Grid

instance. The Urban Grid instance, as well as the Suburban Grid instance detailed in the

following subsection, have a particularity regarding the proportion of installation sites per

meter. Unlike the instances of Florianópolis and Niterói, the number of installation sites

on both Urban and Suburban Grid instances is greater than the number of meters. The

degree of choices a solver must analyze is directly associated to the number of installation

sites and has a major impact on both execution time and memory required.

5.2 Heuristic Comparison Results 29

Figure 5.3: An example of block in the Urban Grid instance.

5.1.4 Suburban Grid Instance

The Suburban Grid instance was generated analogously to the Urban Grid but with

an average of 800 smart meters per km2 as indicated for suburban scenarios. Just as in

the Urban Grid instance we consider blocks of 100x100 m2, but each block now contains 8

meters randomly placed. The installation site distribution remains the same. However, to

simulate a suburban scenario each block now contains 16 poles (installation sites) instead

of 36. In total, the Suburban Grid instance contains 3200 meters and 4920 installation

sites. Figure 5.4 shows a block in the Suburban Grid instance.

Figure 5.4: An example of block in the Suburban Grid instance.

5.2 Heuristic Comparison Results

In this section we compare the MOSKOU heuristic with two other heuristics regarding

solution quality (i.e. Number of DAPs) and execution time. The �rst heuristic adopts a

greedy approach, choosing �rst the installation sites that can cover the greatest amount of

smart meters until all possible meters are covered. Due to it's simplicity, greedy heuristics

are able to �nd a result in small amount of time but usually return bad solutions. The

second heuristic, named Grid heuristic, was developed on the initial stages of this work

5.2 Heuristic Comparison Results 30

and adopts a divide-and-conquer approach that splits the problem in �xed sized cells that

are optimally solved independently and its results joined afterwards. The Grid heuristic

is explained in Appendix B.

Figure 5.5 compares all three heuristics for the Niterói instance. Each external col-

umn represents the maximum number of hops, which was considered to a maximum of

4 hops. Each line exhibits the solution's quality (i.e. number of DAPs) and execution

time in seconds given a redundancy input, which varied from 1 to 3. All heuristics were

submitted to the post-optimization method detailed in Algorithm 3. The optimal solution

is displayed in bold. Green cells indicate the winner, yellow cells the second best value

and red cells the worst values.

Figure 5.5: Preliminary heuristics comparison.

We can see that the greedy heuristic obtained the best execution times but, on the

other hand, had the worst solutions for all results. Both Grid and MOSKOU heuristics

obtained the optimal solution and in practically the same amount of time. This can be

explained by the methodology under which these heuristics were created. Both Grid and

MOSKOU di�er only on the split method employed whenever the available amount of

RAM is to be exceeded. However, the Niterói instance is relatively small and was capable

of being optimally solved with the computer's available memory. Therefore, whenever

an instance can be optimally solved, both Grid and MOSKOU operate in the same way,

creating the problem and applying to the solver without the need to split the problem.

To e�ciently compare the Grid and MOSKOU heuristics, the same experiment was

run for the Florianópolis instance with the only di�erence being that the Greedy heuristic

is omitted due to its poor solution's quality on the previous experiment. Figure 5.6 shows

these results. The optimal solution for the Florianópolis instance is unknown due to

5.2 Heuristic Comparison Results 31

the huge amount of memory needed. We estimate that more than 50 GB of RAM are

required to optimally solve it. We can verify that, for this instance, the performance

of the MOSKOU heuristic surpasses the Grid's in both execution time and solution's

quality. The MOSKOU heuristic was able to obtain slightly better solution qualities

requiring 24.8% less execution times on average. The execution time di�erence gain can

be explained by the number of sub-instances generated by each heuristic. The Grid

Heuristic divides the problem in cells with �xed size at the beginning of it's execution.

By using cells, the Grid Heuristic does not e�ciently group elements. Therefore, the

problem is typically split in a much greater number of sub-instances when compared to

the MOSKOU heuristic. This requires a greater number of problem setups (i.e. creating

the problem) and more calls to the solver (one for each sub-instance), which takes time.

For the Florianópolis instance, the Grid heuristic divided the problem in 27 sub-instances,

whereas the proposed MOSKOU heuristic in only 4. The e�cient split generated by the

MOSKOU is the great advantage of this heuristic in comparison to the Grid one. By

better dividing an instance, it is possible to obtain better quality and in lesser time.

The next section analyzes how the MOSKOU heuristic behaves by varying the maximum

number of hops and meter redundancy.

Figure 5.6: Grid and MOSKOU heuristics comparison.

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 32

5.3 Maximum Number of Hops and Redundancy Im-

pact on the Solution

This section analyzes how the execution time and solution quality are a�ected by

varying the number of hops and redundancy. For an initial experiment we consider the

results of our proposed MOSKOU heuristic for the Florianópolis instance. Figure 5.7

shows these values plus a new value that corresponds to the solving time. The solving

time represents the time spent by the solver to obtain the optimal solutions when the

necessary memory has already been allocated. The solving time exhibited corresponds

to the sum of the solving time for all sub-instances generated. For this instance, 4 sub-

instances have been generated by our heuristic.

Figure 5.7: Maximum number of hops and redundancy variation analysis for MOSKOU's
solutions in the Florianópolis instance.

Naturally, we can verify that the greater the number of hops, the lesser the quantity

of DAPs needed to solve the problem. Nonetheless, as the maximum number of hops

increases, the number of needed DAPs diminishes slower. Results also show that the

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 33

execution time rose with the maximum number of hops. This happened because to create

the coverage matrix with greater number of hops, the heuristic takes more time to compute

the problem because it needs to verify additional set of coverable meters that become

available due to the hop increment. We can conclude that the coverage matrix creation

is the main time consuming process because the solving time was small (less than 7.5

seconds for all cases) and varied little with both redundancy and number of hops. Also,

the redundancy variation had inconclusive impact on the execution time. For 1 hop, by

varying the redundancy from 2 to 3, the execution time was reduced in 36.5 seconds

whereas for 4 hops, the execution time rose 46.1 seconds when varied from 1 to 3. For

2 and 3 hops, the execution time su�ered little variation though rose with 2 hops and

dropped with 3.

5.3.1 Maximum Number of Hops Variation: Behavior Analysis

As observed in the results obtained for the Florianópolis instance, as the number of

hops increased, the required number of DAPs in the solution decreased but slower. It is

not always true, however, that the number of DAPs will decrease every time the maximum

number of hops is incremented. Eventually, a constant value is reached, indicating that

allowing more hops will not improve the solution's quality further more. In an extreme

scenario, this constant value is equal to 1. Nonetheless, the constant value and the number

of hops needed to reach it are linked to the position of smart meters in the instance and

their communication range. Figure 5.8 exhibits the solution's quality for all 4 instances

to a maximum of 20 hops considering a redundancy of 1.

Figure 5.8: Solution's quality with varying number of hops considering a redundancy
value of 1.

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 34

The graphic shows that all instances behave in the same way, with the number of

DAPs quickly dropping at the start to �nally reach a constant value.

(a) Execution time in seconds per hop for the Florianópolis instance.

(b) Execution time in seconds per hop for Niterói, Urban Grid and Suburban Grid
instances.

Figure 5.9: Execution time in seconds per hop for all instances considering a redundancy
value of 1.

Figure 5.9 shows the execution time used to obtain the solution for each hop limit. The

graphic for Florianópolis instance is separated for a better visualization. For both Flori-

anópolis and Niterói instances, the execution time rose as the number of hops increased.

This indicates that new coverage choices kept being created by the hop increment, which

consumes time when creating the coverage matrix. However, for the Urban and Suburban

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 35

grid instances the execution time was maintained similar for all hops with little variation,

indicating that though the number of hops have been increased, it had little or no impact

on the instances' densities. This little impact is associated to the instance's characteristics

such as meter and installation site positions, meaning that the hop increment was unable

to create new communication paths and, for this reason, did not impact on the execution

time. Indeed, this relation can be proven by the graphics in Figures 5.10 and 5.11.

Figure 5.10: Instance density per hop for the Florianópolis and Niterói instances.

Figure 5.11: Instance density per hop for the Urban and Suburban Grid instances.

For Urban and Suburban Grid instances the density variation was negligible enough

not to impact on the execution time and remained constant after 12 hops for the Urban

Grid and after 8 hops for the Suburban Grid. On the other hand, for Florianópolis and

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 36

Niterói, the density kept growing. Additionally, the density growth by incrementing the

number of hops for these instances is, in absolute value, much higher than those of both

Urban and Suburban Grid instances, which is why the execution time growth became more

evident. It is also important to notice that, although the density of Florianópolis did not

rise as fast as Niterói's, it had a greater impact on it's execution time. This happened

because the execution time is also related to an instance's size. A density growth in the

instance of Florianópolis corresponds to much more connections (i.e. number of 1's in the

coverage matrix) and the time to create the coverage matrix is also greater, since there

are more meters and installation sites to analyze.

5.3.2 Redundancy Variation: Behavior Analysis

We conducted an evaluation similar to the previous one but varying the input re-

dundancy value instead of the maximum number of hops. For these results we �xed the

maximum number of hops in only 1 unit. In Figure 5.12 we can notice that the number of

DAPs in the solutions rapidly grows since the initial redundancy variation. This growth

tends to reduce as the redundancy increases until reaching a stabilization value which is

no longer able to increase. In the worst case scenario this value is equal to the number of

installation sites available. For Niterói, Urban Grid and Suburban Grid instances the sta-

bilization value was found for a input redundancy of 4, 6 and 6 respectively. Additionally,

the stabilization value for the Niterói instance corresponds to it's maximum possible value

(1030). For Florianópolis, the number of DAPs kept growing for all the 20 redundancy

values considered.

Figure 5.12: Solution's quality with varying redundancy.

5.3 Maximum Number of Hops and Redundancy Impact on the Solution 37

The number of DAPs in the solution is also related to each instance's peculiarity.

In Figure 5.13, the graphic shows the average redundancy of all meters. For Niterói

and Urban Grid the maximum average redundancy was approximately of 2.5 units. This

indicates that, due to the position of meters and installation sites, an instance may possess

a limitation on providing redundancy coverage for some of its meters and increasing even

more the maximum input redundancy does not a�ect the solution. For the Suburban

Grid instance, the maximum average redundancy was of approximately 3.25, whereas for

Florianópolis, the average redundancy kept growing, as expected. In some cases, the

average redundancy in Florianópolis was greater than the associated input redundancy,

this can be explained because the optimal position of DAPs to ensure the redundancy

restriction for some meters end up causing the redundancy of other meters to be increased

even further. Therefore, it is possible that when the target redundancy is set to 2, for

example, some meters may even be covered by much more DAPs, which increases the

average redundancy.

Figure 5.13: Instance's average redundancy for each input redundancy.

Finally, Figure 5.14 compares the execution time for all instances. There is no vis-

ible impact on the execution time caused by the redundancy variation, though for the

Florianópolis instance the execution time �uctuated from 680 s to 800 s approximately.

5.4 Memory Limit Variation Experiment 38

Figure 5.14: Execution time in seconds for varying redundancy.

5.4 Memory Limit Variation Experiment

Since the optimal solution for the Florianópolis instance is missing, we cannot deter-

mine how close to the optimal the MOSKOU heuristic's solution is. The objective of the

experiment detailed in this section is to analyze the e�ectiveness of the MOSKOU split

by varying the maximum RAM memory limit. We expect that the heuristic is able to �nd

solutions equal or near to the optimal even when the instances are divided in multiple

sub-instances. Therefore, it is possible to infer that for big instances, where the optimal

solution is missing, the MOSKOU heuristic is capable of obtaining good solutions. To this

intent, we gradually varied the memory limit in steps of 10 MB of RAM and collected the

solution's quality for each step for the Niterói instance. This experiment was run for the

Niterói instance because its optimal solutions is known and is the instance which more

closely resembles the Florianópolis one.

Figure 5.15 compares the solution's gap (with respect to the optimal solution) and

execution time per memory limit value. We display results for varying number of maxi-

mum hops from 1 to 4 and �xed redundancy value of 1. The lesser the memory limit, the

5.4 Memory Limit Variation Experiment 39

greater the number of sub-instances generated. The number of sub-instances per memory

limit value is presented at the bottom of the �gure for each hop limit. For the Niterói

instance, with 650 or more megabytes of RAM the MOSKOU does not perform splits

since it is able to solve it optimally.

Notice that even with very restricted amounts of memory limitation the MOSKOU

heuristic is capable of �nding near-optimal solutions. The worst obtained solution oc-

curred for 3 hops with a gap of 6.74%. However, for the same value of memory limit,

the execution time was reduced by 7.4 times. For 1 and 4 hops, the MOSKOU heuristic

was able to �nd the optimal solution with 200 MB of RAM by merging the solutions of

2 sub-instances. On the other hand, for 2 and 3 hops, the MOSKOU heuristic could only

obtain the optimal solution without splitting the original instance.

The graphics also show a strange behavior for 1 and 3 hops, in which a worse solution

was found when the memory limit increased and the available memory was very scarce.

We can see that with 1 hop for this instance, the solution obtained with 10 MB was better

than those with 20 and 30 MB. Analogously, with 3 hops, the solution worsened when

increasing the limit from 30 to 40 MB. This occurrence can be explained by the post-

optimization method that is used in the MOSKOU heuristic. For these values, the instance

was divided in di�erent number of sub-instances, and when the post-optimization method

tried to reduce the number of DAPs, it ended having a better solution by optimizing the

sub-instances generated by the smaller memory limit. However, this event only became

evident due to the very small amount of memory considered (10 - 40 MB) which forced

the instance to be split multiple times. We believe that this problem was induced due

to the very restricted amount of memory used because it only occurred with less than 40

MB. It is also important to notice that even with 10 MB memory limit, the worst solution

gap obtained was less than 7%.

The graphics from Figure 5.15 allow us to conclude that, in general, as the mem-

ory limit grows, so does the solution's quality and the execution time. Naturally, it is

recommended to use the maximum amount of RAM memory available. Furthermore,

these results indicate that the divide-and-conquer approach is suitable for Smart Grid

instances. Additionally, whenever an instance is large enough to fail to achieve its opti-

mal solution given the available memory, the MOSKOU heuristic is able to return a good

quality solution based on the user's chosen memory limit value.

5.4 Memory Limit Variation Experiment 40

Figure 5.15: Execution time and solution's gap with varying memory limit. The number
of sub-instances generated is also presented for each hop.

5.4 Memory Limit Variation Experiment 41

5.4.1 Solving Time Limit Evaluation

As mentioned in the beginning of this chapter, a solving time limit of 60 seconds was

established for the GLPK solver. In other words, after the problem is created and the

memory allocated in the solver, the optimal solution is to be found in a maximum of

60 seconds. If the optimal solution is not found until then, the solver returns the best

solution found so far. It has been observed during the development of this work that if

most optimal solutions are not found in few seconds, the solver is not able to �nd it in a

reasonable amount of time. On the other hand, it has also been observed that the solutions

found by the solver until the time limit is reached are very close to the optimal (since

the solver shows the maximum gap for each found solution). In Figures 5.16 and 5.17

the maximum gap values are presented for both Urban and Suburban Grid instances

respectively. Because the MOSKOU heuristic divided the Urban Grid in 2 sub-instances,

the gap corresponds to the average of both sub-instances.

Figure 5.16: Solution and maximum gap from the optimal for the Urban Grid instance.

As both graphics show, with 1 minute limit the maximum obtained gap for both

instances was only of 1.8%. Furthermore, for the Suburban Grid instance with 1 hop,

the time limit was not exceeded and the optimal solution was found. It is expected that

with more hops, the additional coverage information complicates the problem and, for

5.4 Memory Limit Variation Experiment 42

Figure 5.17: Solution and maximum gap from the optimal for the Suburban Grid instance.

that reason, the time limit ends up being reached. Though it has been observed that the

smallest gaps were obtained with small amount of hops (1 to 3), specially for the Urban

Grid instance, the results do not allow us to conclude that the gap increases with the

number of hops (i.e. density).

Chapter 6

Conclusion

This work presented a reduction of the DAP planning problem in Smart Grids to a

well-known optimization problem and proposed a heuristic method to solve it. We also

extended the problem providing a new mathematical formulation to consider a redundancy

based planning, which is essential to maintain network robustness, softening the impact of

a DAP failure. Our proposed heuristic, named MOSKOU, employs a divide and conquer

approach that splits an instance based on the estimated amount of RAM memory, which

can be calculated based on an instance's dimension. A memory based split was utilized

because results have shown that the SCP created based on Smart Grids is rapidly solved

but consumes a huge amount of memory due to its dimension. The split is based on the K-

Means algorithm which groups meters and installation sites that are geographically related

to one another. Each generated sub-instance is independently applied to a solver, the

solutions merged and applied to a post-optimization method that softens the inaccuracy

imposed by the split. This divide-and-conquer approach is ideal for the AMI planning

because far regions do not interfere with each other due to the limitations of a DAP range.

In this way, it is possible to �nd a near-optimal solution by dividing a city, for example,

in regions that are independent from each other, such as neighborhoods.

The MOSKOU heuristic was compared to a greedy approach and to the Grid heuristic,

which was developed on the early stages of this work. Results have shown that although

the greedy heuristic is able to �nd solutions in just a few seconds, their solutions are poor

and far from the optimal. The only di�erence between the Grid and MOSKOU heuristics

is the split method, whenever there is not enough memory to optimally solve an instance.

The K-Means split method used by the MOSKOU heuristic is able to divide the instance

in groups that include meters and installation sites that are geographically related to one

another. Moreover, this approach allows the instance to be split in less sub-instances in

6.1 Contributions 44

comparison to the Grid heuristic. Consequently, the MOSKOU heuristic's execution time

is reduced and solution's quality improved in comparison to the Grid heuristic.

It is important to remember that our model receives as input the type of scenario

(urban, suburban or rural), communication technology, devices transmission power, max-

imum number of hops and desired redundancy. These input values must be consistent with

the instance in which the DAPs will be deployed. If we poorly characterize an instance's

scenarios, considering an urban center as rural for example, even if the optimal solution

is found, it will not have any usefulness in a real deployment. The same applies when

determining the maximum number of hops: allowing high values of hop limit reduces the

amount of DAPs on the solution but may consider poor or even non-existent communi-

cation paths on a real scenario, specially in urban regions that contain high sources of

noises and interference.

6.1 Contributions

The MOSKOU heuristic is one of the functionalities available in the TELE-SIRIS

(Módulo de Telecomunicações de um Simulador de Redes Inteligentes) project developed

in association with Neo Domino and ANEEL (Agência Nacional de Energia Elétrica).

With the TELE-SIRIS module, the user is able to deploy DAPs over a map and visualize

the connections between devices in real time. All input values are adjustable in the user

interface, such as the scenario, technology, transmission power, maximum number of hops

and redundancy. The module also allows the user to save the current planning and load

it. In Figure 6.1 a planning example is displayed in the TELE-SIRIS module. Other

functionalities are also available, such as visualizing 3G/4G/GPRS DAP coverage area

and collecting planning statistics.

The following publications are results of this work and the TELE-SIRIS module.

1. Rolim, G., Passos, D., Moraes, I., & Albuquerque, C. (2015, October). Mod-

elling the Data Aggregator Positioning Problem in Smart Grids. In Com-

puter and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-

puting (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on (pp.

632-639). IEEE.

6.1 Contributions 45

Figure 6.1: TELE-SIRIS module's screen.

2. Rolim, G., Moraes, I., & Albuquerque, C. (2015, May). Modelo e Solução para

o Problema de Posicionamento de Agregadores em Redes Elétricas In-

teligentes. XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas

Distribuídos.

3. Rolim, G., Moraes, I., & Albuquerque, C. (2015, May). Smart Planner: Uma

Ferramenta de Planejamento para Smart Grids. Salão de Ferramentas -

XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.

4. Rolim, G., Silva, P., Albuquerque, C., Carrano, R., Moraes, I., Bettiol, A., Carniato,

A., Passos, L., Homma, R., Andrade, R., Molina, F., Kinceler, R. & Filho, S. I. V.

(2015, August). Sistema para Planejamento de Instalação de Agregadores

em Redes Elétricas Inteligentes. Congresso de Inovação Tecnológica em Energia

Elétrica 2015 - CITENEL 2015.

5. Rolim, G., Sousa, C., Carrano, C., Moraes, I., Albuquerque, C., Bettiol, A., Car-

niato, A., Passos, L., Homma, R., Andrade R. & Molina, F. (2015, June). Smart

Grid Deployment Planning: Case Study Covering a Brazilian Feeder in

Automation Process. 23rd International Conference on Electricity Distribution

- CIRED

6.2 Future Work 46

6. Rolim, G., Albuquerque, C., Moraes, I., Bettiol, A., Carniato, A., Passos, L.,

Homma, R. & Molina, F. (2015, May). Sistema de Posicionamento de Agre-

gadores de Dados em Redes Elétricas Inteligentes. XVI ERIAC Encuentro

Regional Iberoamericano de Cigré

7. Sousa, C., Rolim, G., Carrano, C., Albuquerque, C., Bettiol, A., Carniato, A.,

Passos, L., Homma, R., Andrade R. & Molina, F. (2015, October). Link Quality

Estimation for Advanced Metering Infrastructure. Innovative Smart Grid

Technologies Conference Latin America - ISGT-LA.

8. Rolim, G., Passos, D., Albuquerque, C., Moraes, I., Carrano, R., Sousa, C., Bettiol,

A., Passos, L., Homma, R., Andrade, R. & Molina, F. (2016, May). Scalability

Evaluation of the Data Aggregator Positioning Problem in Smart Grids.

IEEE/PES T&D Latin America, 2016.

6.2 Future Work

For future work, it is essential that our planning results are veri�ed in a real de-

ployment environment. We expect that our conservative approach for determining good

quality links is able to well represent the environment even though all sources of noises and

interferences are nearly impossible to determine. Moreover, as mentioned in Chapter 5,

we recommend for future work a modi�cation of the MOSKOU heuristic that allows it to

use a distributed solver running on multiple machines. In this way, the heuristic will work

with a greater amount of RAM and obtain better solutions. Finally, we also recommend

for future works an adaptation of our method to consider a new input that determines a

maximum amount of money that must be spent in the planning and considers di�erent

types of DAPs, each with its own hardware peculiarities and buying price. Therefore, the

heuristic must also take in consideration what type of DAP to deploy on an installation

site

References

[1] NIST PAP2 Guidelines for assessing wireless standards for smart grid application.,
2012.

[2] Aalamifar, F.; Shirazi, G. N.; Noori, M.; Lampe, L. Cost-e�cient data
aggregation point placement for advanced metering infrastructure. In IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm), 2014 (2014),
pp. 344�349.

[3] CEPT Administrations. Monte-carlo simulation methodology for the use in shar-
ing and compatibility studies between di�erent radio services or systems. ERC within
the CEPT (2000).

[4] Cheng, P.; Wang, L.; Zhen, B.; Wang, S. Feasibility study of applying lte to
smart grid. In 2011 IEEE First International Workshop on Smart Grid Modeling
and Simulation (SGMS) (2011), IEEE, pp. 108�113.

[5] Damosso, E.; Correia, L. M. COST Action 231: Digital Mobile Radio Towards
Future Generation Systems: Final Report. European Commission, 1999.

[6] Extended Hata SRD for short range devices implemented in the SEAMCAT
simulator. http://tractool.seamcat.org/wiki/Manual/PropagationModels/

ExtendedHata. Accessed on February, 2015.

[7] Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid the new and improved
power grid: A survey. Communications Surveys & Tutorials, IEEE 14, 4 (2012),
944�980.

[8] Farahani, R. Z.; Asgari, N.; Heidari, N.; Hosseininia, M.; Goh, M. Covering
problems in facility location: A review. Computers & Industrial Engineering 62, 1
(2012), 368�407.

[9] Farhangi, H. The path of the smart grid. IEEE Power and Energy Magazine 8, 1
(2010), 18�28.

[10] Galli, S.; Scaglione, A.; Wang, Z. Power line communications and the smart
grid. In Smart Grid Communications (SmartGridComm), 2010 First IEEE Interna-
tional Conference on (2010), IEEE, pp. 303�308.

[11] Gungor, V. C.; Lu, B.; Hancke, G. P. Opportunities and challenges of wireless
sensor networks in smart grid. IEEE Transactions on Industrial Electronics 57, 10
(2010), 3557�3564.

References 48

[12] Gungor, V. C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.;
Hancke, G. P. A survey on smart grid potential applications and communication
requirements. IEEE Transactions on Industrial Informatics 9, 1 (2013), 28�42.

[13] Hatay, M. Empirical formula for propagation loss in land mobile radio services.
IEEE Transactions on Vehicular Technology 29, 3 (1980), 317�325.

[14] IBM. CPLEX optimizer: High-performance mathematical programming solver for
linear programming, mixed integer programming, and quadratic programming.

[15] Karp, R. M. Reducibility among combinatorial problems. Springer, 1972.

[16] Lai, D.; Manjeshwar, A.; Herrmann, F.; Uysal-Biyikoglu, E.; Ke-

shavarzian, A. Measurement and characterization of link quality metrics in en-
ergy constrained wireless sensor networks. In IEEE GLOBECOM'03 (2003), vol. 1,
pp. 446�452.

[17] Ma, R.; Chen, H.-H.; Huang, Y.-R.; Meng, W. Smart grid communication: Its
challenges and opportunities. IEEE Transactions on Smart Grid 4, 1 (2013), 36�46.

[18] Makhorin, A. GLPK (GNU linear programming kit), 2008.

[19] Okumura, Y.; Ohmori, E.; Kawano, T.; Fukuda, K. Field strength and its
variability in VHF and UHF land-mobile radio service. Rev. Elec. Commun. Lab 16,
9 (1968), 825�73.

[20] Parikh, P. P.; Kanabar, M. G.; Sidhu, T. S. Opportunities and challenges
of wireless communication technologies for smart grid applications. In Power and
Energy Society General Meeting, 2010 IEEE (2010), IEEE, pp. 1�7.

[21] Samadi, P.; Mohsenian-Rad, A.-H.; Schober, R.; Wong, V. W.; Jatske-

vich, J. Optimal real-time pricing algorithm based on utility maximization for
smart grid. In Smart Grid Communications (SmartGridComm), 2010 First IEEE
International Conference on (2010), IEEE, pp. 415�420.

[22] Sauter, T.; Lobashov, M. End-to-end communication architecture for smart
grids. IEEE Transactions on Industrial Electronics 58, 4 (2011), 1218�1228.

[23] Souza, G.; Vieira, F.; Lima, C.; Junior, G.; Castro, M.; Araujo, S. Optimal
positioning of GPRS concentrators for minimizing node hops in smart grids consid-
ering routing in mesh networks. In IEEE PES Conference On Innovative Smart Grid
Technologies Latin America (ISGT LA) (2013), pp. 1�7.

[24] Tomazic, S. Encyclopedia of Wireless and Mobile Communications. Taylor &
Francis, 2008.

[25] Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The location of emergency
service facilities. Operations Research 19, 6 (1971), 1363�1373.

[26] Usman, A.; Shami, S. H. Evolution of communication technologies for smart grid
applications. Renewable and Sustainable Energy Reviews 19 (2013), 191�199.

References 49

[27] Walfisch, J.; Bertoni, H. L. A theoretical model of uhf propagation in urban
environments. IEEE Transactions on Antennas and Propagation 36, 12 (1988), 1788�
1796.

[28] Wenpeng, L. Advanced metering infrastructure. Southern Power System Technol-
ogy 3, 2 (2009), 6�10.

[29] Yarali, A.; Rahman, S. Smart grid networks: Promises and challenges. Journal
of Communications 7, 6 (2012), 409�417.

[30] Yelbay, B.; Birbil, S. I.; Bülbül, K. The set covering problem revisited: An
empirical study of the value of dual information. MANAGEMENT 11, 2 (2015),
575�594.

[31] Zhou, J.; Hu, R. Q.; Qian, Y. Scalable distributed communication architectures
to support advanced metering infrastructure in smart grid. IEEE Transactions on
Parallel and Distributed Systems 23, 9 (2012), 1632�1642.

50

APPENDIX A -- Density Based Creation Algorithm

input : meters, poles, density
output: coverage_matrix
// density value is a number between 0(0%) and 1(100%)

1 num_of_1s ← (|meters| × |poles|)× density;
2 i ← 0;
3 meters_aux ← copy of meters;
4 while num_of_1s > 0 do

5 to_be_covered ← choose_meter(meters_aux);
6 meters_aux ← meters - to_be_covered;
7 coverage_matrix ← poles[i] now covers to_be_covered;
8 i++;
9 num_of_1s�;

10 if |meters_aux| == 0 then

11 meters_aux ← copy of meters;
12 end

13 if i == |poles| then
14 i ← 0;
15 end

16 end

17 return coverage_matrix;
Algorithm 4: Algorithm to create instances based on density.

The �rst step of this algorithm is to determine the number of pairs that must be set

to 1. This number is represented by the variable num_of_1s in line 1 and is obtained

based on the number of meters, poles and density. Line 2 initializes a variable i which

represents the pole that will cover the chosen meter. meters_aux starts as a copy of the

meters set. While the num_of_1s is greater than 0 (i.e the density has not been reached

yet) a random meter is chosen from meters_aux (line 5). This meter is removed from

meters_aux (line 6) and is now covered by the pole represented by i. i is incremented,

indicating that the next pole in line will cover the next chosen meter. If the meters_aux

set is empty (line 10), it becomes the original meters set once again. When i reaches the

size of poles it is reset to 0, restarting the sequence of poles that will cover the chosen

meter. When the algorithm ends, the created coverage matrix is returned.

51

APPENDIX B -- Grid Heuristic Algorithm

Like MOSKOU, the Grid heuristic employs a divide-and-conquer approach but, in-

stead of using K-Means, the problem is divided in �xed sized cells which are independently

applied to the exact method. Each cell is a square with size obtained according to the

memory estimation calculation so that no cell bursts the memory limit. For each cell,

an SCP is created from the meters and poles of this cell plus the poles of the neighbor

cells. The poles from neighbor cells are utilized to increase the degree of choice during the

execution. The union of all cells solutions compose the solution to the initial complete

problem. This solution is then submitted to a post-optimization method for re�nement.

Figure B.1 shows the heuristic division procedure. The initial problem, shown as P1, is

divided into a grid G. For each cell of this grid, a sub-problem is created with the meters

and poles of a cell plus the poles of the neighbor cells. The cell C1 generates the sub-

problem S1, C2 generates the sub-problem S2 and C3 generates the S3. Each sub-problem

is optimally solved. The union of the results for S1, S2 and S3 composes the solution to

the problem P1.

Figure B.1: Division process of the proposed Heuristic.

52

APPENDIX C -- BER Calculation

input : sce, tech, distance, power
output: BER estimation

1 loss ← getAdjustedExtendedHataSRD(sce,tech,distance);
2 ReceiverPower ← power - loss;
3 SNR ← ReceiverPower - getNoise(sce);
4 γb ← SNR/spectral_e�ciency;
5 BER← αQ(

√
γb);

6 return BER;
Algorithm 5: BER Calculation.

Figure C.1: Loss x Distance in the adjusted curve for the Extended Hata SRD.

Table C.1: Noise values for each scenario.
Noise Value (dBm)

Urban -79
Suburban -81
Rural -85

Algorithm 5 shows how the BER is calculated. Notice that both h1 and h2 are

ignored because the height di�erence between a smart meter and a DAP is low enough to

C.1 Extended Hata SRD Curve Adjustment 53

not interfere in the result. The loss variable is obtained from the adjusted curves of the

Extended Hata SRD propagation model. The adjusted curves relate the distance with a

loss value for all three types of scenario. Figure C.1 shows the loss values for all three

types of scenarios for 2.4 GHz. This adjusted curve is better explained on the following

section. With the estimated loss, it's possible to obtain the transmission power at the

receiver device, which is calculated as the transmitter power minus loss. The SNR (Signal

to Noise Ratio) corresponds to the estimated transmission power at the receiver minus

the noise of the chosen scenario. The used noise values of each scenario are displayed on

Table C.1. The SNR per bit (γb) is calculated by normalizing the SNR by the spectral

e�ciency. The spectral e�ciency is described as the amount of useful information that

can be transmitted over a given bandwidth during a period of time. Finally, BER is

calculated from a Q function which is de�ned as the probability that a Gaussian random

variable with mean 0 and variance 1 is bigger than
√
γb. The value of α is associated

to the used modulation. For example, 802.11g devices at 6 Mbps (base rate) uses the

BPSK modulation technique and α is set to 0.5. Due to the small load generated in

the communication between meters and DAPs, its recommended to use the standard's

base bit-rate. Small bit-rates tend to increase the probability of success decoding, thus

expanding a DAP's coverage range and reducing the number of DAPs needed to plan a

region.

C.1 Extended Hata SRD Curve Adjustment

It's virtually impossible to incorporate all features of a real environment in our SDR

calculations. For this reason, a conservative approach is adopted to accommodate more

challenging environments. For example, recent �eld tests using IEEE 802.15.4 devices

have shown that wireless links, speci�cally in Smart Grids, present high packet error rate

because of numerous interference sources, noises, dynamic topology changes, fading and

obstructions [11]. In this work, the Extended Hata SRD model was adjusted to add

extra dBs for the path loss to adopt a more pessimistic approach and compensate for

the inability to perfectly model a real environment. In this way, we reduce the chance

of representing connections between smart meters and DAPs that can not be established

due to the amount of noises and obstacles in the environment. Our adjusted Extended

Hata SRD (for 802.11g) is presented in Figure C.1.

