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RESUMO 

Quando diversos desenvolvedores alteram um software em paralelo, em algum 

momento as alterações concorrentes precisam ser reintegradas (i.e., sofrer merge) ao software 

em desenvolvimento. Diversas técnicas de merge foram propostas, mas nenhuma delas 

resolve de forma automática todos os casos possíveis. Na verdade, de 10 a 20% dos casos de 

merge falham por conta de conflitos. Nestes casos, os desenvolvedores devem intervir 

manualmente para resolvê-los. Atualmente poucas informações sobre a natureza dos conflitos 

de merge são conhecidas. Há diversas questões de pesquisa em aberto, como, por exemplo: 

(1) qual a quantidade de regiões em conflito por merges que falharam? (2) qual a quantidade 

de linhas de código nas regiões em conflito? (3) quantos constructos da linguagem existem 

em cada região em conflito? (4) quais os padrões entre constructos da linguagem podem ser 

observados nas regiões em conflito? (5) qual a distribuição de decisões dos desenvolveres na 

resolução das regiões em conflito? (6) qual a dificuldade de resolução dos tipos de conflitos 

encontrados? (7) quais padrões entre constructos da linguagem e decisões dos 

desenvolvedores podem ser observados nas regiões em conflito? (8) qual a correlação entre a 

quantidade de desenvolvedores e o número de commits, merges e merges que falharam? Para 

responder estas perguntas, nesta Tese realizamos um estudo quantitativo e qualitativo 

detalhado da natureza de merges por meio da: (1) análise dos conflitos de merge de milhares 

de projetos open source; (2) coleta e classificação das resoluções que os desenvolvedores 

utilizaram para tratar conflitos; e (3) análise das relações entre vários aspectos dos conflitos 

de merge e a estratégia de resolução. As respostas a essas questões de pesquisa deram origem 

a recomendações que podem apoiar desenvolvedores de ferramentas de merge a tratar alguns 

tipos de conflitos automaticamente ou aprimorar o processo de merge. Finalmente, como uma 

prova de conceito, uma das recomendações identificadas durante as análises foi implementada 

e avaliada, apresentando resultados promissores.  

 
Palavras-chave: Merge de Software, Conflitos de Merge, Resolução de Merge 

 

  



 
 

ABSTRACT 

When multiple developers change a software system in parallel, these concurrent 

changes need to be merged to appear together in the software being developed. Numerous 

merge techniques have been proposed to support this task, but none of them can fully 

automate the merge process. Indeed, it has been reported that some 10 to 20% of all merge 

attempts result in a merge conflict, meaning that a developer has to intervene to manually 

complete the merge. To date, we have little insight into the nature of these merge conflicts. 

Multiple research questions are still open, such as: (1) what is the distribution in number of 

conflicting chunks for merge failures? (2) What is the distribution in size of conflicting 

chunks, as measured in lines of code (LOC)? (3) What is the distribution in language 

constructs involved in conflicting chunks? (4) What, if any, patterns exist in the language 

constructs of failed merges involving multiple conflicting chunks? (5) What is the distribution 

of developer decisions? (6) What is the distribution in difficulty level of kinds of conflicting 

chunks? (7) What, if any, patterns exist between the language constructs of conflicting chunks 

and developers’ decisions? (8) What is the correlation between the number of developers and 

the number of commits, merges, and failed merges? This thesis contributes with an in-depth 

quantitative and qualitative study of merge conflicts by: (1) dissecting the merge conflicts 

found in the histories of thousands of open source projects, (2) collecting and classifying the 

manual resolution strategies that developers used to address these merge conflicts, and (3) 

analyzing the relationships between various aspects of the merge conflicts and the chosen 

resolution strategies. Our findings give rise to three primary recommendations for future 

merge techniques, that – when implemented – can help automatically resolve certain types of 

conflicts and provide the developer with tool-based assistance to more easily resolve other 

types of conflicts. Finally, as a proof of concept, we implemented one of our 

recommendations in a tool. The evaluation of this proof-of-concept tool showed promising 

results.  

 

Keywords: Software Merge, Merge Conflict, Merge Resolution. 
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CHAPTER 1  –  INTRODUCTION 

 

1.1 MOTIVATION 

According to Bersoff (1980), “no matter where you are in the system life cycle, the 

system will change, and the desire to change it will persist throughout the life cycle”. Based 

on this statement, one can conclude that the software evolution process, that is, the process 

through which change are (systematically or not) introduced into a software project, is close 

to the daily business of software developers and users. Such evolution is required to attend the 

needs of users who work in and interact with a dynamic world, in which requirements change 

all the time due to changes in laws, rules, preferences, technologies, and so on (Lehman et al., 

1997). 

In this context arises Software Configuration Management, a Software Engineering 

discipline that offers support for software evolution (Dart, 1991). This discipline is supported 

by systems, such as the Version Control System (VCS), that manage changes in software 

artifacts (e.g., source code, documentation, and so on) and enable controlled access to a 

repository in which these artifacts and their change history are stored. VCS allows software 

developers to obtain a set of artifacts (i.e., a configuration), edit them, and share their 

contributions with other developers. 

The use of branches in configuration management repositories is essential to software 

development, as it enables concurrent work (Berczuk et al., 2003). Branches are independent 

development lines that allow software artifacts to evolve in an isolated way, in parallel with 

the main line of development (mainline). By making changes to a branch, a developer can 

implement a feature or make a bug fix in isolation from changes made by other developers. 

However, once the changes are finished, they must be integrated with the project mainline (or 

another branch) to be available to other developers and, eventually, to the users. An approach 

to do so is to apply a merge tool, which implements some underlying merge technique to 

automate as much as possible the task of combining the changes made on the branch with the 

code in the mainline (Mens, 2002).  

Many merge techniques have been developed over the years. These techniques differ 

considerably in what kind of information they use to compare two versions of an artifact and 

identify conflicting changes. A conflicting change happens when developers edit the source 

code of an artifact and generate versions that cannot be integrated automatically. A very 
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common example of conflicting change happens when two developers edit the same lines of 

code of a given Java class. A significant number of merge techniques rely on lines of code as 

the basis for combining the changes made in a branch with the code in the mainline; these 

techniques are called unstructured merge techniques (Hunt, J. W.; McIlroy, 1976; Miller; 

Myers, 1985; Myers, 1986; Berlage; Genau, 1993; Oster et al., 2006; Chacon, 2009). Other 

techniques, termed structured merge techniques, rely on syntax (Westfechtel, 1991; Binkley 

et al., 1995; Buffenbarger, 1995; Hunt, J. J.; Tichy, 2002; Shen; Sun, 2004, 2005; 

Apiwattanapong et al., 2007) and semantics (Berzins, 1994; Jackson; Ladd, 1994). Hybrid 

approaches that mix aspects of both unstructured and structured techniques, termed semi-

structured merge techniques, have been explored as well (Apel et al., 2011, 2012; Leßenich et 

al., 2014). 

Other techniques were developed to identify conflicts that can end up in a failed merge 

or to identify the failed merges as soon as possible. Failed merges are the result of conflicting 

changes and take place when the merge approach fails in an attempt to integrate two different 

versions of a given artifact. The so-called awareness approaches work while developers are 

coding, enabling the identification of conflicts that can generate a failed merge. Some 

examples of awareness approaches are Palantir (Sarma; van der Hoek, 2002; Sarma et al., 

2003, 2012), Crystal (Brun et al., 2011a, b), and WeCode (Guimarães; Silva, 2012). On the 

other hand, continuous integration approaches try to identify failed merges as soon as 

possible and report the conflict to developers or integrators that, in theory, will resolve these 

conflicts and share the resolution with other developers. 

Despite all of these advances, it is well known that, in practice, merge tools are not 

perfect – they cannot account for every possible concurrent changes that different developers 

may make. When a merge fails, the developer has to step in, analyze the respective changes 

and the conflict reported by the merge tool, and resolve the conflict manually. Software merge 

is known as a difficult task, one that developers wish to avoid as much as possible (Berlin; 

Rooney, 2006; Duvall et al., 2007). Still, it has been reported that 10 to 20% of all merges fail 

(Mens, 2002; Brun et al., 2011b), with some projects experiencing rates of over 50% (Kasi; 

Sarma, 2013). 

There are few studies about how merges take place and how they are resolved (Brun et 

al., 2011b; Kasi; Sarma, 2013; Leßenich et al., 2014; Cavalcanti et al., 2015; Yuzuki et al., 

2015; Santos; Kulesza, 2016). To the best of our knowledge, among these few studies, just 

one (Yuzuki et al., 2015) tried to understand where conflicts take place by analyzing a set of 

conflicts that occurred in method declarations of ten Java projects. However, this study brings 
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shallow evidences due to the restricted number of projects. Moreover, they did not search for 

patterns that can be explored to support merge resolution nor investigated how conflicts are 

usually resolved. Due to the lack of information about the nature of software merge conflicts, 

there is little evidence about the direction that developers of merge tools should follow and 

what features actually provide concrete benefits to the users.  

1.2 METHODOLOGY 

To spur the development of new merge techniques, reducing the failure rate for merge, 

we posit that it is necessary to take a deep dive into merge conflicts. How do they look like in 

detail? How do developers resolve them? Are there relationships between the nature of certain 

merge conflicts and the resolution strategies used by developers? If we were to have answers 

to these questions, perhaps it could be possible to identify new heuristics, build support for 

certain types of merge conflicts, or at least address repetitive situations that are seen all the 

time in practice. It may of course also be possible that nearly every single conflict is unique in 

its own right, and that it is thus highly unlikely that we might ever be able to develop better 

merge tools. Regardless of the answer, knowing it is important to future research. 

The research work reported in this Thesis comprises three stages. First, we performed 

a manual analysis of five open source projects mainly written in Java to characterize the failed 

merges that occurred in these projects. This detailed manual analysis of each failed merge 

case allowed us to determine the most important aspects that should be addressed to 

characterize merges resulting in conflict. It also allowed us to discover the information that 

could be relevant to find patterns and strategies that improve the quality of software merge 

(that is, to build techniques and tools that might automatically resolve some of those failed 

merges without requiring the intervention of a developer).  

For each failed merge, we collected its conflicting chunks (as a failed merge might be 

the result of conflicts in multiple, disjoint parts of the artifacts), the size of each chunk in lines 

of code, the programming language constructs contained in the chunks, and the way 

developers chose to resolve each chunks. We then looked for patterns among various aspects 

of the conflicting chunks (e.g., size, language constructs) and the resolutions chosen by the 

developers. We also guided our analyses by source code examples that illustrate the patterns 

and heuristics proposed for each case. 

Next, we performed a broader, automatic analysis of software merge involving more 

than 2,700 open source projects written in Java and about 25 thousand failed merges, 

summing up 175,805 conflict chunks. While the manual analysis was helpful to understand 
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the object under analysis, the automatic analysis allowed the generalization of the results to a 

class of software projects (open source software written in Java), reducing the external threat 

to validity imposed by the limited number of projects analyzed manually. In addition, by 

running an automatic analysis we also mitigated the internal threat to validity resulting from 

the hard and error prone process of collecting information manually, performed by a single 

researcher.  

Finally, as a proof of concept of one of our heuristics, we implemented an approach 

that helps developers to deal with failed merges comprising more than one conflicting chunk 

by ordering these chunks according to their dependencies. This approach demonstrates that 

the information collected in the manual and automatic analysis can lead to the development of 

improved merge approaches. The ordering approach is composed of two algorithms that 

handle dependencies extracted from chunks and order them in the sequence that should 

facilitate the work of the developers assigned to resolve a failed merge. For example, the 

resolution of former chunks can help on the resolution of later chunks. 

1.3 GOALS 

The main goal of this Thesis is to present the results of the analyses about the nature of 

failed merges. These analyses are guided by the following questions:  

1. What is the distribution in number of conflicting chunks for merge failures?  

2. What is the distribution in size of conflicting chunks, as measured in lines of code 

(LOC)? 

3. What is the distribution in language constructs involved in conflicting chunks? 

4. What, if any, patterns exist in the language constructs of failed merges involving 

multiple conflicting chunks?  

5. What is the distribution of developer decisions?  

6. What is the distribution in difficulty level of kinds of conflicting chunks? 

7. What, if any, patterns exist between the language constructs of conflicting chunks 

and developers’ decisions? 

8. What is the correlation between the number of developers and the number of 

commits, merges, and failed merges? 

By answering these questions, we identified some opportunities that can lead to 

improvements for automatic or semi-automatic (by providing guidance to developers) merge 

resolution. As a secondary contribution of this Thesis, we implemented a proof-of-concept 
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merge resolution tool that orders the chunks of a failed merge exploiting their dependencies. 

We also provide an initial validation for this tool by comparing its results with those provided 

by traditional VCS.  

1.4 MAIN CONTRIBUTIONS 

After running the manual and automatic analysis, we could collect evidences that (1) 

conflicting chunks generally contain all of the necessary information to resolve them – 87% 

of the chunks do not need extra code beyond the one in the versions that generated the 

conflict; (2) the resolution order of conflicting chunks matter – 46% of the failed merges 

analyzed manually have dependences between pair of chunks that can be explored in order to 

ease further resolutions; and (3) past choice of how conflicting chunks were resolved can 

inform future choices – information of how a specific kind of conflict was previously resolved 

can suggest future resolutions. Moreover, our proof-of-concept tool showed that ordering 

chunks can improve assistance in 48.39% of the failed merges and 35.48% of the failed 

merges have lower noise among conflicting chunks when compared to the traditional 

approaches in VCS.  

1.5 ORGANIZATION 

The Thesis is organized in five chapters including this Introduction. Chapter 2 presents 

some background information about VCS, along with related work about merge analysis.  

Chapter 3 presents the manual and automatic analyses performed to characterize failed 

merges. It establishes a terminology that serves as a basis to understand the subsequent 

analyses and their results. Then, the analyses and their respective research questions are 

introduced. Next, we describe which projects were selected for manual analysis, which were 

selected for automatic analysis, as well as the detailed processes through which data were 

collected. Finally, the results of the analysis are presented and discussed.  

Chapter 4 presents the proof-of-concept tool to order conflicting chunks comprised in 

failed merges. To do so, we present some concepts as dependencies and dependency graph. 

Then, we present the algorithms used to order the chunks. Finally, we show a case study and 

evaluate the approaches in a set of 31 failed merges.  

Finally, Chapter 5 concludes this Thesis showing the contributions of this work, 

limitations, and future work.   
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CHAPTER 2  –  SOFTWARE MERGE 

2.1 INTRODUCTION  

Developers create branches in VCS to allow parallel and isolated work during 

software development. Thus, developers can perform corrective tasks, adaptive tasks, or other 

kinds of maintenance activities without generating side effects in the tasks performed 

simultaneously by other developers. Nonetheless, once a comprehensive set of tasks is 

concluded, developers have to combine their changes with those performed by other 

developers. The combination of changes is called merge and is thoroughly discussed in 

Section 2.4. Several developers may also work in the same branch, implying a lower degree 

of isolation. In this case, each change performed by a developer leads to the immediate need 

of a merge. This situation looks simpler than the previous, given that each merge integrates 

the contents affected by a single change, and not two or more independent sequences of 

changes made over time and probably involving a larger number of software artifacts.  

Merge tools can support the combination of changes performed by two or more 

developers (Mens, 2002). During the evolution of a software product, some changes will be 

automatically combined by current merge approaches, while others will demand the support 

of developers playing the role of integrators. Usually, merge cases are resolved automatically 

when developers change different parts of the software artifacts. On the other hand, there are 

situations in which traditional merge approaches are unable to avoid conflicts (i.e., conflicts 

take place when developers change the same structure in parallel, such as, the same line in a 

source code file) and the work of an integrator is required. In the former case, the merge tool 

may miss some existing conflict (false negative). In the latter case, the merge tool may 

indicate a conflict that could have been automatically resolved (false positive). 

Software merge is a common problem, faced on a daily basis by developers. In this 

context, merge tools are an important resource to perform this task automatically, becoming 

essential to deliver products to the user in due time (Shen; Sun, 2004). Consequently, 

software merge is considered a hot topic by researchers that intend to reduce the cost of 

software integration through automated tasks. Research on software merge encompasses 

merge of models (Murta et al., 2008; Koegel et al., 2010), images (Silva Junior et al., 2012), 

and text files (Mens, 2002; Shen; Sun, 2004, 2005). However, we still do not have a clear 

vision of how software merge happens in practice and the very nature of software merge 
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conflicts. This vision would provide valuable information to the development of better merge 

approaches in the future.  

This chapter is divided into six sections, including this introduction. Section 2.2 

presents an overview of VCS, explores some concepts, and introduces how repositories of 

different kinds of VCS can be organized. Section 2.3 explores the policies adopted by VCS. 

Section 2.4 shows the different kinds of merge (i.e., physical, syntactical, and semantic) 

highlighting the main characteristics of them and giving some examples. Section 2.5 

introduces researches comparing different merge approaches, assigning developers to perform 

the merge, and so on. Finally, we conclude this chapter in Section 2.6 presenting some final 

remarks.  

2.2 VERSION CONTROL SYSTEMS AND THEIR REPOSITORIES 

A VCS allows the storage, retrieval, comparison, and comprehension of software 

evolution. Among these tasks, the storage of artifacts is done in a repository. Every time an 

artifact or a set of them is stored, a new version is created (Berczuk et al., 2003). Artifact 

retrieval is performed through requests of one or a set of artifacts (i.e., a configuration) to the 

repository. Comparison is performed using VCS commands that allow identifying the 

differences between stored versions, the so-called deltas. Finally, software evolution can be 

analyzed through queries based on the software development history, using VCS commands 

to recover information such as who changed a given artifact, which lines were changed (for 

file-based VCS), when the changes occurred, and the goal of these changes. It is important to 

highlight that repository management is always performed automatically, avoiding manual 

tasks that might be counterproductive and error prone. For instance, when developers are not 

using VCS repositories, they may overwrite artifacts during development tasks.  

VCSs can be classified either as centralized (CVCS) or distributed (DVCS), according 

to their architecture. CVCS uses a single remote repository (i.e., a central repository). Some 

examples of CVCS are CVS (Fogel; Bar, 2001), Perforce (Wingerd, 2005), and Subversion 

(Collins-Sussman et al., 2008). Figure 1 presents the traditional work cycle of a CVCS, with 

its three main commands: checkout, commit, and update. The checkout command is 

responsible for obtaining artifacts from the repository to a workspace1. The workspace is a 

                                                 
1 Workspaces keep software developers isolated from changes performed by other 

developers until an update or a pull is performed to sync the workspace with other 

repositories.  
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copy, on the developer’s machine, of the artifacts recovered from the repository. After 

executing the checkout command, the developer can change the artifacts in the workspace and 

then execute the commit command. At this moment, the VCS integrates the edited contents in 

the workspace with the contents of the repository. If some change was performed in the 

central repository meanwhile, the developer needs to update the contents of the workspace 

before committing the integrated content. The update command synchronizes the changes 

performed in the remote repository with those performed in the local workspace. After the 

update, the workspace will have all the changes performed in the remote repository. 

Consequently, there may happen conflicts during this integration and these conflicts must be 

resolved by the developer before executing the commit.   

 
Figure 1. Work cycle in CVCS. 

Differently from CVCS, DVCS includes support for many repositories in its 

architecture. The work cycle of a DVCS is roughly the same as of a CVCS, regarding their 

checkout and commit commands. However, the first difference is the clone command, which 

copies the whole remote repository to the developer’s workstation (Chacon, 2009). During the 

execution of a clone operation, the developer’s workstation receives the whole repository 

instead of just a specific configuration in the workspace as in a CVCS. Figure 2 shows a 

hypothetic example of a DVCS architecture, which is comprised of three repositories: one 

bare repository (i.e., repository without workspace) that is the reference for other two standard 

repositories (i.e., repositories attached to a workspace). It is worth mentioning that DVCS 

allows developers to share (dashed arrows in the figure) artifact with other repositories beside 

the reference repository.   

Repository 

Workspace 

Check-out 

Update 

Commit 
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Figure 2. Work cycle in DVCS. 

A DVCS also has commands to synchronize the content of different repositories. As 

shown in Figure 2, the clone command copies the whole repository, including the software 

development artifacts and their history of changes. Then, the developer can act as in a CVCS, 

changing artifacts and committing these changes to the local repository, until he/she decides 

to share the local contributions with other developers. Then, the developer runs the push 

command, which sends all the local changes to a remote repository. Nevertheless, the 

developer may execute the pull command to bring all changes registered in a remote 

repository to the local repository. Thus, as in the update for CVCS, conflicts can happen 

during execution of a pull for DVCS.  

2.3 CONCURRENCY CONTROL  

Most well-known VCSs support two policies of concurrency control (Sarma et al., 

2003; Prudêncio et al., 2012): pessimistic and optimistic. In the former, a lock is used to 

serialize the access to software artifacts. Consequently, an artifact cannot be edited in parallel 

(i.e., just one developer can edit the artifact in a specific time), avoiding concurrent changes 

by two or more developers. Therefore, low-level conflicts are avoided. Although the 

pessimistic policy avoids developers having the obligation of resolving low-level conflicts, 

high-level conflicts may still occur, as artifacts have dependencies to other artifacts. 

Moreover, it might lead to unnecessary serialization, as two or more developers may want to 

change different parts of an artifact in parallel, without generating conflicts. In addition, 

according to Mens (2002), the pessimistic policy is not well suited for projects having a large 

development team.  

Repository 

(Reference) 

Repository 
 

Repository  
 

Clone/ pull 

Push Push 
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On the other hand, the optimistic policy allows two or more developers to edit the 

same artifact in parallel. If two developers change the same artifact, one developer may have 

to merge the changes performed by both due to conflicts (e.g., changes performed over the 

same artifact, which cannot be automatically combined). Additionally, in some cases, the 

developer in charge of merging artifacts must reach an agreement with the other developer to 

decide on the resolution of the conflict. This occurs because the changes can have diverging 

intentions that are not in the domain of knowledge of a single developer.  

Pessimistic concurrency control policies cannot be applied for DVCS due to its 

distributed nature. Consequently, conflicts can arise during the synchronization of 

repositories. Hence, the use of merge tools in the context of DVCS is even more important, 

since each clone represents the creation of an implicit branch. Moreover, developers can be 

geographically distributed, making the communication harder and the failed merges more 

challenging to resolve.  

Different VCS adopt different concurrent control policies. For instance, RCS (Tichy, 

1985) and Visual SourceSafe (Serban, 2007) opted for the pessimistic policy. Subversion 

(Collins-Sussman et al., 2008) implements both policies and the developers can choose 

between pessimistic or optimistic. Finally, CVS (Cederqvist, 2003),  Mercurial (O’Sullivan, 

2009), and Git (Chacon, 2009) use only the optimistic policy. 

2.4 MERGE 

Merge support is necessary during all the development life cycle of large scale 

systems (Perry et al., 1998; Mens, 2002). This is enforced by Walrad and Strom (2002), who 

highlight the need of branches to support the development and maintenance of software 

systems. These branches need to be integrated to the mainline and, consequently, merge arises 

as one of the main resources for delivering software systems with high quality and within the 

schedule constraints imposed to software projects (Shen; Sun, 2004). 

Software merge can be defined as an operation that combines the changes performed 

in different development lines (Mens, 2002). Furthermore, merge algorithms can be classified 

considering how the differences between development lines are obtained (i.e., during the 

edition of artifacts or after) and the resources used (e.g., text file structures, language 

elements, or application domain), among others. These algorithms are also classified as 

unstructured (i.e., the physical merge), structured (i.e., the syntactical and semantic merges), 

and semi-structured algorithms (i.e., a combination between unstructured and structured 

merge algorithms). The aforementioned characteristics are discussed in the next subsections. 
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2.4.1 PHYSICAL MERGE 

Physical merge (Hunt, J. W.; McIlroy, 1976; Miller; Myers, 1985; Myers, 1986; 

Berlage; Genau, 1993; Chacon, 2009), or textual merge, represents the first category of merge 

algorithms implemented in VCS (Shen; Sun, 2004). In this kind of merge, the artifacts are 

combined considering only the structures present in text files (Mens, 2002). Hence, the 

differences between two files are identified considering characters, words, or lines. 

Consequently, physical merge arises as a software merge approach that is able to integrate 

textual files regardless of their type (e.g., Java, XML, C, and so on), but with limited 

applicability on binary files. 

Physical merge algorithms can vary in granularity and this choice affects the quality 

and computational cost of the merge. For instance, the finest and indivisible grain in text files 

is the character, and it can lead to a precise representation about what was really changed by 

the developers in a given artifact. However, it can also lead to inefficient results in practice 

(Mens, 2002), due to the amount of detail involved in the comparison. On the other hand, 

adopting the entire text file as an indivisible grain would generate a huge amount of conflicts 

if two developers change a given file in parallel, even if the changes were made in different 

parts of the file. Therefore, the line grain is used in the traditional merge algorithms to 

represent the indivisible unit of software artifacts. 

Merge algorithms may also be classified as two-way or three-way. Two-way merge 

can be used to combine software artifacts without a common ancestor. This algorithm 

identifies the differences between two artifacts and combines them. However, it does not have 

the exact information about the changes that were performed in the artifact. For example, if a 

line was added in one file or removed from the other. Figure 3 shows an example of such 

situation. In this example, a two-way merge can generate four different results. The merge 

algorithm cannot know if line two was changed from “double meters;” to “double meters = 

0;” or from “double meters = 0;” to “double meters;”, or even if both were added 

concomitantly. Conversely, it is also not possible to decide if line four was changed from 

“double kilometers =0;” to “double kilometers” or vice-versa. Under those circumstances, 

merge results can be any combination illustrated in Figure 3. 
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Figure 3. Usage example of two-way merge. 

Therefore, two-way merge is unable to clearly identify the intention of the developer 

during his/her changes in the software artifact. To solve this limitation, three-way merge uses 

a common ancestor of the versions generated by the developers. The ancestor is the reference 

used to decide if a line was added or removed, following a simple heuristic: if a line does not 

exist in the common ancestor and exists in the version generated by the developer, then this 

line was added; on the other hand, if a line exists in the common ancestor but no longer exists 

in the developer’s version, then it was removed.  

Figure 4 shows an example of three-way merge. In this example, the same changes 

shown in Figure 3 were performed, but this scenario has a common ancestor. Thus, the merge 

algorithm realizes that the contents of line 4 was changed from “double kilometers;” to 

“double kilometers = 0;” on the left-hand side. While, on the right-hand side, line 2 was 

changed from “double meters;” to “double meters = 0;”. Consequently, the common ancestor 

helps on identifying the intention of the changes. 

class Transformacao{ 
  double meters = 0; 
  double centimeters; 
  double kilometers; 
} 

class Transformation{ 
  double meters; 
  double centimeters; 
  double kilometers = 0; 
} 

class Transformation{ 
   double meters; 
   double centimeters; 
   double kilometers; 
} 

class Transformation{ 
   double meters = 0;  
   double centimeters; 
   double kilometers = 0; 
} 

class Transformation{ 
   double meters; 
   double centimeters; 
   double kilometers = 0; 
} 

class Transformation{ 
   double meters = 0; 
   double centimeters; 
   double kilometers; 
} 
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Figure 4. Usage example of three-way merge. 

During the physical merge, conflicts may be identified. Figure 4 illustrates a merge 

scenario on which no low-level conflict took place because the changes were made in 

different regions of the software artifact. However, conflicts can occur when developers edit 

the same region of an artifact. A conflict leads to a decision problem about which version 

content should be taken as a resolution: the left-hand side, the right-hand side, a combination 

of some lines from each version, the concatenation of both versions, or a new code? This 

decision must be delegated to a developer who knows the application domain, or to 

specialized tools that can help developers in conflict resolution. 

Figure 5 shows a scenario in which conflict occurs during the merge. In this scenario, 

line three, which had the content “double centimeters;”, has now two possible resolutions: 

based on the change of the left-hand side, it should be “double centimeters = 0;”, while 

considering the change in the right-hand side, it should be “double centimeters = 0.0;”. This 

scenario presents a conflict because the merge algorithm does not know which change to pick, 

given that the line was changed in parallel to different contents. Therefore, the algorithm 

shows both alternatives and asks the developers for a resolution. 

class Transformation{ 
  double meters = 0; 
  double centimeters; 
  double kilometers; 
} 

class Transformation{ 
  double meters; 
  double centimeters; 
  double kilometers = 0; 
} 

class Transformation{ 
  double meters; 
  double centimeters; 
  double kilometers; 
} 

class Transformation{ 
  double meters = 0; 
  double centimeters; 
  double kilometers = 0; 
} 
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Figure 5. Conflicting scenario using three-way merge. 

When a merge attempt fails, a conflict may manifest itself in multiple parts of the 

artifacts. That is, it is possible – and frequently happens – that, when artifacts are in conflict, 

the conflict exhibits itself in several regions across the artifacts. We term each pair of those 

regions that is in conflict a conflicting chunk. 

Figure 5 illustrates a conflicting chunk using Git notation (Chacon, 2009), the DVCS 

that hosts all projects in this Thesis, that was created for didactical goals. It uses three marks: 

the beginning mark, represented by “<<<<<<<”, which is followed by the version in which 

changes are to be integrated (in this case HEAD, the last version of the branch on which the 

user is working; this is the version in the workspace of the developer in Git); the separator, 

“=======”, which demarks the code that differs between the two versions in conflict; and 

the ending mark, “>>>>>>>”, which is followed by the version from which the changes are to 

be taken, in this case 1a2b3c. Although marks differ per merge tool, all merge tools provide 

conceptually equivalent results. 

Two-way and three-way merge approaches are state-based. State-based algorithms 

derive the changes through comparisons among different versions of the same artifact. For 

class Transformation{ 
  double meters; 
  double centimeters = 0.0; 
  double kilometers; 
} 

class Transformation{ 
  double meters; 
  double centimeters = 0; 
  double kilometers; 
} 

class Transformation{   
  double meters; 
  double contimeters; 
  double kilometers; 
} 

class Transformation{ 
  double meters = 0; 
<<<<<<< HEAD 
  double centimeters = 0; 
======= 
  double centimeters = 0.0; 
>>>>>>> 1a2b3c 
  double kilometers = 0; 
} 
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instance, three-way merge uses the diff algorithm to verify how the artifact evolution took 

place from one version to another. A sequence of addition and removal operations is obtained 

by using heuristics that classify changes based on the chosen granularity (e.g., lines of source 

code). Nevertheless, this approach has some limitations to identify the developer’s intention.   

Besides two-way and three-way merge, another state-based approach is called 

differential synchronization (Fraser, 2009). This approach performs the synchronization and 

combination of software artifacts in real time. It differs from the traditional merge algorithms 

because it neglects the isolation generated by workspaces. Differential synchronization 

proposes that merge should be performed in both directions to maintain the artifact in the 

workspace and in the central repository as similar as possible at all times. However, there are 

situations in software development scenarios that require the isolation, such as when a 

developer explicitly asks for isolation using branches.   

Operation-based algorithms are used to deal with the limitations in capturing the real 

intention of developers. This kind of algorithm obtains information about the changes while 

developers edit the source-code and stores these changes in an operation history (Berlage; 

Genau, 1993). The operations stored can be as complex as necessary to represent the real 

intention of developers. An example of an operation-based approach for software merge was 

proposed by Shen and Sun (2004) and uses addition and removal operations to represent the 

developer’s intention. Figure 6 presents an overview of how this approach acts in the example 

used along with this section. The operation in the left-hand side is represented by the notation 

Ad(“static ”, 2, 10), which means an insertion of the content “static ” in line 2 and position 10. 

In the right-hand side, we can observe the operation Ad(“ = 0”, 2, 16). Thus, the result is 

obtained by applying the following sequence of operations: first the operation Ad(“ = 0”, 2, 

16) is applied in the line 2 position 16 of the common ancestor; then, operation Ad(“static ”, 

2, 10) is applied in the line 2 position 10 of the resulting file, leading to the artifact presented 

in Figure 6. Note that if the opposite order of application were chosen, the operation Ad(“ = 

0”, 2, 16) should be changed to keep the context. Then, after applying Ad(“static ”, 2, 10), the 

displacement of 6 positions in the line should be considered in the operation Ad(“ = 0”, 2, 16), 

which should be transformed to Ad(“ = 0”, 2, 22). 
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Figure 6. Operation-based merge example. 

This example shows that operation-based approaches using the character grain 

describe the developer’s intention in a better way than state-based approaches using the line 

grain. Some examples of operation-based approaches are: GINA (Berlage; Genau, 1993), an 

approach that allows optimistic policy differently from previous ones (Ellis; Gibbs, 1989; 

Rhyne; Wolf, 1992); IceCube (Kermarrec et al., 2001), an approach that tries to reorder 

operations to avoid conflicts; approaches based on operation transformation (Ellis; Gibbs, 

1989; Ressel et al., 1996; Suleiman et al., 1997; Vidot et al., 2000; Molli et al., 2003; Cart; 

Ferrie, 2007); and approaches based on commutative replicated data type (Oster et al., 2006; 

Preguica et al., 2009; Weiss et al., 2009; Roh et al., 2011), which was created to work with 

commutative operations (i.e., operations that can be applied in different orders without 

affecting the final result).   

However, this kind of merge approach needs to be integrated into the development 

environment, which makes operation-based merge intrusive because developers need to install 

plug-ins in their environments to map the operations during development and generate the 

operation log history. This limitation can make the operation-based approach unrealistic for 

big and complex software projects, which generally have developers geographically 

distributed and, additionally, each developer or development team has preferences about the 

environment used to do their work.  

class Transformacao{ 
  double meters = 0; 
  double centimeters; 
  double kilometers; 
} 

class Transformacao{ 
  double static meters = 0; 
  double centimeters; 
  double kilometers = 0; 
} 

class Transformacao{ 
  double meters; 
  double contimeters; 
  double kilometers; 
} 

class Transformation{ 
  double static meters; 
  double centimeters; 
  double kilimoters; 
} 
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Physical merge represents a category of algorithm largely used in practice. One of the 

biggest users of physical merge is the VCS, which uses line grain due to efficiency, 

scalability, and precision (Mens, 2002). The usage of the line grain has the drawback of not 

being able to combine changes performed in parallel over the same line. Nevertheless, 

according to studies performed in industry, this fact does not represent a big problem since 

90% of the changed files are combined in an automatic way using the line grain. However, 

according to Mens (2002), the 10% of the merge cases that do not have automatic resolution 

should use syntactical and/or semantic information of software artifacts to be resolved.  

2.4.2 SYNTACTICAL MERGE 

Syntactical merge represents a category of merge approaches that is more powerful 

than physical merge (Mens, 2002) due to its ability to take into account the structure of the 

software, which is related to the programming language or notation in which the artifacts are 

represented. Moreover, this kind of approach is not influenced by changes that do not have 

syntactical relevance, such as adding whitespaces and tabs to the source code in programming 

languages like Java and C++. Some examples of syntactical merge approaches are described 

by Westfechtel (1991), Binkley et al. (1995), Buffenbarger (1995), Hunt et al. (2002), Shen 

and Sun (2005), and Apiwattanapong et al. (2007). 

Syntactical merge can be divided into two categories: tree-based and graph-based. 

Consequently, syntactical merge requires an initial step that consists in transforming the 

content of the artifacts into an Abstract Syntax Tree (AST) or a graph. Thus, the comparison 

of programs using this kind of approach consists in walking on the tree or graph and looking 

for different nodes. In other words, after the transformation of the source code in its tree or 

graph representation, characteristics strictly related to its textual representation are not 

identified as conflicts, unless these characteristics are part of the grammar of the language. 

Figure 7 shows a syntactical merge example that presents the Transformation class 

with two attributes: meters and centimeters. The initial step transforms the source code into 

the structure of an AST representing the class contents in a higher-level abstraction. Next, the 

AST that represent the software artifacts are compared. On the left-hand side of Figure 7, 

whitespaces were added before the attributes meters and centimeters to organize the source 

code. In parallel, on the right-hand side, the attributes were initialized with zero. Considering 

those differences, a syntactical merge algorithm can combine the changes because just the 

assignments to zero have syntactic impact in the code. It is important to highlight that the 

formatting characteristics of the merge result will depend on the AST writer. Therefore, 
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developers have no guarantee that the formatting characteristics of the source code will be 

preserved after the merge. 

 
Figure 7. An example of syntactical merge. 

Although syntactical merge can resolve merge cases in which physical merge would 

lead to conflicts, it still has some disadvantages. The main drawback is that syntactical merge 

is language dependent, that is, if the merge algorithm was developed for the Java language, it 

can only merge files written in this language. On the other hand, physical merge is language 

independent because it only relies on structures that all text files have (e.g., lines, words, and 

characters). Thus, if an approach intends to resolve merges for several languages, it needs to 

provide many translators to build the AST or graph representations from the source code and 

also create the textual representation of the source code from the AST. Another disadvantage 

of syntactical merge is its low efficiency, because depending on the desired precision, the 

problem of identifying differences between trees or graphs can be NP-complete (Zhang; 

Jiang, 1994). Finally, another drawback is the loss of textual formatting since the code must 

be translated to a tree and translated back to text afterwards. 

Westfechtel (1991) proposed a merge technique that uses a context-free grammar and 

Binkley et al. (1995) proposed an approach that takes into account the behavior of procedure 

calls while performing merges. These two techniques are a step toward structured merge, but 

they fail in simple situations such as renaming a variable or method. Hunt et al. (2002) 

class Transformation{ 
  double meters = 0; 
  double centimeters = 0; 
} 

class Transformation{ 
    double meters; 
    double centimeters; 
} 

class Transformation{ 
  double meters; 
  double centimeters; 
} 

class Transformation{ 
    double meters = 0; 
    double centimeters = 0; 
} 
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introduced an extensible language-aware merge technique that deals with renaming and non-

local conflicts (i.e., conflicts that can be in different files or entities), but cannot identify 

differences in the behavior caused by dynamic binding.  

Shen and Sun (2005) worked on an approach that does the repositioning of operations 

and syntactical verification to realize if the merge result has conflicts. This approach is 

implemented in a VCS called FORCE (Shen; Sun, 2005) and takes into account operations to 

add and remove textual structures. Both operations, adding and removing, are described in 

function of the line and position of each edition as shown in the example of Figure 6. The 

authors show some examples where conflicts can be identified, but the approach still presents 

limitations regarding which conflicts should be reported.  For instance, consider the piece of 

code “a = 1;” that is edited by two developers. Assume that the first developer changes the 

previous version to “a = a + 1;” and the second edits the same piece of code to “a = 1 + a;”. 

Since FORCE is operation-based, it identifies that the changes were performed in different 

areas and the final result will be “a = a + 1 + a;”, which does not represent the intention of 

the developers, although the result is correct from a syntactical point-of-view.  

Finally, Apiwattanapong et al. (2007) proposed an approach to differentiate Java files 

that takes into consideration the constructs of that programming language. Given two 

programs, the algorithm identifies the matching language constructs (e.g., classes, methods, 

and so on) and, for each pair of constructs, it shows the similarities and differences between 

them. The diff represents an initial step towards merge and, consequently, can be treated as a 

related approach in this topic. However, as any syntactical merge, it has limitations related to 

the number of programming languages that it can deal with – the current implementation 

works only with programs written in Java.  

2.4.3 SEMANTIC MERGE 

Semantic merge represents a more powerful category of merge algorithms when 

compared to physical and syntactical merge. This category can identify conflicts that physical 

and syntactical merges cannot because it is related to semantic aspects of the programming 

language and the behavior of the software system. Figure 8 presents a scenario with the 

Transformation class that has the method transform, which was designed to convert a value 

represented in centimeters to meters while preserving the original signal. Again, consider a 

scenario in which two developers change the same artifact in parallel. The first developer 

performs the change represented in the left-hand side of Figure 8 to convert values from 
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centimeters to kilometers. In parallel, the second developer performed the change represented 

in the right-hand side, ensuring that the output of the method will always be positive.  

 
Figure 8. An example of semantic conflict. 

These changes generate neither physical (i.e., there are no changes in the same area) 

nor syntactical (i.e., the final result is respecting the Java language grammar) conflicts. 

However, they generate a semantic conflict, that is, the expected behavior of the program is 

not preserved (i.e., when the signal of cm is negative, the signal will be changed, which 

disagrees with the initially established rules). 

Semantic conflicts can be classified as static or behavioral (Mens, 2002). Static 

semantic conflicts can be extracted from the language semantics. For instance, a static 

semantic conflict happens when a variable is renamed to two different names by two 

class Transformation{ 
… 

  public static double transform(double cm){ 
         
    return cm/100000; 
 
  } 
} 

class Transformation{ 
… 

  public static double transform(double cm){ 
     
    return cm/100; 
 
  } 
} 

class Transformation{ 
… 

  public static double transform(double cm){ 
     
    if(cm < 0){ 
      cm = cm * (-1); 
    }      
 
    return cm/100; 
 
  } 
} 

class Transformation{ 
… 

  public static double transform(double cm){ 
     
    if(cm < 0){ 
      cm = cm * (-1); 
    }      
     
    return cm/100000; 
 
  } 
} 
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developers in parallel. Static conflicts can be identified through complex techniques, such as 

the construction of program dependency graphs (Horwitz; Reps, 1992) and program slicing 

(Weiser, 1981). In contrast, behavioral semantic conflicts are captured when the changes 

performed in parallel result in an artifact that does not have the behavior designed by the 

developer, as presented in Figure 8. This kind of conflict cannot be extracted from AST or 

graphs representing the program. Behavioral semantic conflicts resolutions can use test cases 

or OCL restrictions to guarantee that the changes being merged do not affect the expected 

behavior of the software.  

Semantic merge can identify conflicts that physical and syntactical merges cannot 

(Mens, 2002). Nevertheless, it also has some disadvantages and limitations. For instance, 

semantic techniques are domain dependent (i.e., they depend on the relations extracted from 

the programming language and on the domain of the application) and the application domain 

cannot be extracted from an AST. Therefore, this kind of merge approach still demands 

research to be useful in practice.  

Few researchers are currently interested in semantic merge. Bersinz (1994) proposed a 

language-independent semantic model to combine software artifacts that uses Boolean algebra 

and establish condition under which a set of changes can be merged independently (i.e., non-

conflicting situations). On the other hand, the authors also show situations in which changes 

cannot be merged. On their turn, Jackson and Ladd (1994) proposed a diff approach that 

receives procedures as input and generates a report summarizing the differences between 

them. This approach does not actually merge the artifacts, but show the semantic differences 

between them. 

2.4.4 SEMI-STRUCTURED MERGE 

The merge techniques proposed in the previous subsections present tradeoffs among 

precision, generality, and performance. Physical merge is the most general technique, but it is 

not precise because it works over textual structures with no knowledge about how these 

structures connect to each other and can be interpreted. Moreover, physical merge shows high 

performance when working in the line grain, but loses performance when working with 

characters. On the other hand, syntactical and semantic merges are more precise, but they 

demand more computational resources than physical merge. In addition, they work over 

specific file types, being less general. 

 In an attempt to reconcile precision, generality, and performance, researchers have 

explored semi-structured merge techniques that combine aspects of both unstructured and 
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structured merge techniques (Apel et al., 2011, 2012; Leßenich et al., 2014). Apel et al. 

(2011), for instance, sought to build a merge tool that can address different programming 

languages. To this end, they parameterize the merge tool using multiple programming 

language grammars, falling back to unstructured merge when an unknown language is found. 

This offered a reconciliation of precision and generality, but suffered in performance. Hence, 

this topic was treated in subsequent work by using auto-tuning (Apel et al., 2012; Leßenich et 

al., 2014). This technique uses unstructured merge by default and, in cases in which a certain 

merge case leads to conflicts, structured merge takes place. With auto-tuning, the authors 

reduced the time spent in structured merge, applying unstructured when it can solve the 

problem and relying on structured merge only when necessary. As a consequence, this 

approach is more exposed to false negative conflicts than structured merge.  

2.5 MERGE ANALYSIS  

Some work studied how frequent are the different types of conflicts (Brun et al., 2010, 

2011a; Kasi; Sarma, 2013; Santos; Kulesza, 2016), the effort of integrating software artifacts 

when using specific merge approaches (Leßenich et al., 2014; Cavalcanti et al., 2015), how to 

assign developers to resolve merge conflicts (Costa, C.; Figueiredo; Ghiotto; et al., 2014; 

Costa, C.; Figueiredo; Murta, 2014), and how conflicting merges are usually resolved (Yuzuki 

et al., 2015). 

Brun et al. (2011a) analyzed the frequency of physical, syntactical, or semantic 

conflicts in the history of the following software projects: Git, Perl5, Voldemort, Gallery3, 

Insoshi, jQuery, MaNGOS, Rails, and Samba. They observed that physical conflicts occur in 

16% of the merges, while syntactical and semantic conflicts happen in 1.4% and 6.4% of the 

merges, respectively. This represents around 20% of merge failures. In contrast, Kasi and 

Sarma (2013) made a similar analysis on four software projects (Perl, Storm, Jenkins, and 

Voldemort) that exhibited 40%, 44%, 34%, and 54% merge failures, respectively. Both works 

show that merge conflicts are frequent and approaches to deal with them are welcome.  

Santos and Kulesza (2016) observed the amount and types of merge conflicts that 

happen when evolving and merging the SIGAA project2. They analyzed the following kinds 

of merge conflicts: (1) direct conflicts, which represent a pair of code changes applied to the 
                                                 
2 SIGAA is a web information system designed to automate business processes for 

universities focusing on different and complementary aspects, such as academic, 

administration, planning and management. 
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same code element (e.g., attributes, methods) by both the source (i.e., the system that has the 

changes) and target systems (i.e., the system that will receive the changes) when source and 

target evolved from the same source; (2) indirect conflicts, which happen when code changes 

applied to the source system are located in the call graph of code changes in the target system; 

and (3) pseudo-conflicts, which happen when the source and the target systems modify the 

same class or interface, but different and independent code elements (attributes or methods). 

Based on these conflict types and the number of development issues (i.e., issues created 

during development as the ones related to new requirements, bug fix, and so on) they 

concluded that 65.18% of the issues do not have conflict, 5.6% have direct conflicts, 18,83% 

have indirect conflicts, and 10.34% have pseudo conflicts. Moreover, 5.6% of the detected 

conflicts are direct, 68.14% are indirect, and 22.20% are pseudo-conflicts. These results show 

that about 35% of all issues involve conflicts and few of these are direct conflicts, which are 

easy to find. Thus, approaches that identify conflicts and/or help developers to resolve them 

are needed. 

Another group of work analyzes how semi-structured merge improves unstructured 

merge (Leßenich et al., 2014; Cavalcanti et al., 2015). In the first work (Leßenich et al., 

2014), the authors analyzed 50 projects and 434 merge cases concluding that, in almost all 

projects, structured merge reports fewer and smaller (i.e., less lines of code) conflicts than 

unstructured merge. In addition, structured merge is substantially slower, but the results are 

improved with auto-tuning. In a second study (Cavalcanti et al., 2015) 60 projects and 3,266 

merge cases were analyzed (7.5 times more merge cases than in the former study). The 

authors also concluded that the number of unstructured conflicts is higher than those reported 

by semi-structured merge approaches. They suggest that using semi-structured merge can 

decrease the manual integration effort without compromising the correctness of the software.  

Other researchers characterized the problem of assigning developers to merge 

branches (Costa, C.; Figueiredo; Ghiotto; et al., 2014; Costa, C.; Figueiredo; Murta, 2014) 

and proposed a tool to help on this task (Costa, Catarina et al., 2016b, a). They could observe 

that some merge cases have up to 50 developers changing files in each branch and that, in 

most cases, there are few intersections of developers across branches. Moreover, they run a 

survey with 164 developers and could observe that most developers try to commit early to 

avoid merge conflicts and, when merge conflicts arise, they contact other developers to 

resolve conflicts together. They also proposed an approach that aims at analyzing the 

developers who changed key files in the branch histories and in the history before branching 

to rank them and indicate who are more capable to resolve the conflicts.  
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Finally, Yuzuki et al. (2015) analyzed the characteristics of conflicts in method 

declarations over the following Java projects: James, JRobin, Maven Plugins, and seven 

Eclipse extensions (Ajdt, Gmp graphiti, Jumula core, Paho mqtt java, Scout sdk, Stardust ui 

web, and UML2). They observed how conflicts are generated and concluded that 44% of the 

conflicts were due to concurrent changes (e.g., changes in the same part of the method made 

by 2 or more developers), while 48% were due to removing methods, and 8% were caused by 

renames. They also observed how the conflicts are resolved classifying in 1-way (i.e., 

selecting one of the versions in conflict) or other (i.e., other solution including some content 

from the versions in conflict or adding new code). In this analysis, they concluded that 99% of 

the conflicts inside methods were resolved by choosing one of the conflicting versions, which 

is a pattern that repeats in eight projects. 

2.6 FINAL REMARKS  

In this chapter, we discussed the relevance of software merge and presented some few 

works that shed some light on the nature of merge conflicts. For instance, some works show 

the number of merges that presents physical, syntactical, or semantic conflicts during the 

merge attempt. Other works discuss how people react to a failed merge when it happens and 

who should be in charge of resolving conflicts. Finally, some work started to step over the 

ground of failed merges by analyzing specific types of failed merge and how such type of 

failed merge is usually resolved.  

Considering the aforementioned discussion, we can conclude that there is a gap in the 

literature that needs to be filled: the absence of studies that analyze the characteristics of 

scenarios involving software merge, diving into the source code and providing evidences that 

would help us to have a deeper understanding of the nature of failed merges. Which are the 

characteristics of failed merges? How are the conflicts resolved? Are there patterns in the 

conflicts? To the best of our knowledge, the only work that discusses this subject was 

conducted by Yuzuki et al. (2015). However, this study considers only 10 Java projects and 

focused on a very specific language construct: method declaration. As a consequence, deepest 

studies that collect more information about a larger number of software projects might be 

useful and important to guide developers with concrete evidences to improve merge 

techniques.  
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CHAPTER 3  –  ANALYSES OVER SOFTWARE MERGE CONFLICTS 

 

3.1 INTRODUCTION 

Although merge is a technique largely used in VCS to integrate versions that evolve in 

parallel, there is no study to understand the nature of failed merges. To contribute in the 

understanding of how the failed merges look like and build knowledge to support the 

development of new merge techniques that reduce the failure rate, we present an analysis 

performed manually to examine the history of five open source projects, finding the merges 

that conflicted while these projects were developed.  

For each conflicting merge, we collected the following data: (1) the number of 

conflicting chunks (as a merge conflict might be the result of conflicts in multiple, disjoint 

parts of the involved artifacts), (2) the size of each of these chunks in lines of code, (3) the 

programming language constructs contained in each chunk, and (4) the way developers chose 

to resolve different conflicting chunks (as it is possible that they used different strategies to 

resolve different parts of the same merge conflict). Having this in hand, we then looked for 

patterns between various aspects of the conflicting chunks (e.g., size, subset of language 

constructs) and the kinds of resolutions chosen by the developers (i.e., wholesale adopt one of 

the versions, concatenate both version in either order, combine code from both versions 

without writing new code, and mix existing code from one or both versions with newly 

written code). Finally, we confirmed whether the patterns found in the manual analyses were 

due to the selected projects or might be found in similar ones through automatic analyses that 

were performed over a set of almost three thousand open source projects.  

The remainder of this chapter is organized as follows. Section 3.2 describes the 

terminologies used in this chapter. Section 3.3 introduces the analyses that we did in this 

chapter. Section 3.4 describes how we performed the manual analyses and Section 3.5 

presents the steps we followed to have the automated results. Section 3.6 presents our results, 

characterizing merge conflicts, resolution strategies, and the relationships between them. 

Section 3.7 discusses the implications of our findings. Section 3.8 covers threats to validity. 

Section 3.9 concludes the analyses presenting the main findings. 
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3.2 TERMINOLOGY 

As discussed in Section 2.4.1, failed merges can be comprised of a multitude of 

conflicting chunks, as the one presented in Figure 9. However, this representation in 

sometimes difficult do understand. To ease comprehension, we adopt the side-by-side 

representation depicted in Figure 10.  We refer to the code on the left-hand side of Figure 10 

as version 1 (before the separator in Figure 10, representing the changes made in the 

workspace of the developer) and the code on the right-hand-side of Figure 10 as version 2 

(after the separator in Figure 10, representing the version from which the changes are to be 

integrated into the workspace; often this will be the main branch). 
public RuleStopState stopState; 
<<<<<<< HEAD 
  public boolean isPrecedenceRule; 
======= 
 
  @Override 
  public int getStateType() { 
    return RULE_START; 
  } 
>>>>>>> b80ad5052d1b693be6e5c0a2b 
} 

Figure 9. Conflicting chunk of merge b14ca5 from ANTLR4.  
public RuleStopState stopState; 

version 1 version 2 
public Boolean isPrecedenceRule; @Override 

public int getStateType() { 
  return RULE_START; 
} 

} 

Figure 10. Simplified side-by-side representation for the conflicting chunk of Figure 9.  

A specific goal of the Thesis is to dive into the nature of conflicting chunks. 

Additionally, the literature discussed in the Chapter 2 motivates us to go toward a syntactical 

analysis, programming language-dependent approach as a way to improve the current merge 

approaches. Thus, we asked questions such as what kinds of language constructs (e.g., for, 

while, if, class, variable, method) are part of conflicting chunks and how often, or which 

patterns may exist in the language constructs that appear together in conflicting chunks. As 

discussed in the following, we selected five Java projects to analyze, which is why we used 

the Java language specification to create the list of language constructs for our analysis, 

including statements (e.g., for, while, if), definitions (e.g., class, variable, method), 

invocations, and so on. We decided to also include annotations (e.g., @Override, @NotNull), 

as they can change the semantics of method or variable declarations. To use the conflict in 

Figure 10 as an example, the conflicting chunk contains the following language constructs: 

variable in version 1, and annotation, method declaration, variable, and return in version 2.  
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Another concept we use in our analysis is the kind of conflict, which allows classifying 

different conflicting chunks. We define the kind of conflict as the concatenation of all of the 

unique language constructs (in alphabetical order) that are present in a conflicting chunk. To 

assign a type of conflict for a given conflicting chunk, then, we take the language constructs 

from both version 1 and version 2, sort them, remove duplicates, and concatenate the 

remaining ones. In Figure 10, the kind of conflict is “annotation, method declaration, 

variable”.  

When developers face a failed merge, they have to resolve the conflicting chunk(s). 

Exactly how they do that is what we term a developer decision. We study developer decisions 

on a conflicting chunk basis, and identify five different ways of resolving the conflict: (1) 

adopt the code of version 1, (2) adopt the code of version 2, (3) concatenate both versions, in 

either order, (4) combine select code from both versions without writing any new code, and 

(5) mix existing code with newly written code. We identify these choices in the remainder of 

the Thesis as: version 1 (V1), version 2 (V2), concatenation (CC), combination (CB), and new 

code (NC). For the automatic analysis, a new choice was added to represent the case in which 

none (NN) of the versions nor new code was used in the merge resolution performed by the 

developer. In such a case, the solution is empty. 

Finally, as part of our analysis we want to quantify the difficulty that a particular kind 

of conflict poses. For this, the size of the code in the conflicting chunks is obviously 

important, but another indication is provided by the choices a developer makes in resolving a 

kind of conflict. A kind of conflict that is always resolved with new code (i.e., type NC) is 

presumably more difficult than a kind of conflict that can be resolved by always choosing 

version 1 or version 2, for example. To provide a (relatively crude, but as we shall see 

effective) basis for comparison, we distinguish between cheap chunks (conflicting chunks that 

are resolved through choosing version 1, version 2, or concatenation) and expensive chunks 

(resolved through combination or new code). The motivation is that the latter two types of 

conflict require a developer to engage in depth with the conflicting chunks, and generally 

involve more time and effort. 

3.3 ANALYSES 

The focus of our work is on understanding merge conflicts in detail, together with the 

resolutions that developers frequently use to address these conflicts. The more we understand 

about failed merges, more opportunities might be found to design new merge tools that 

leverage on the lessons learned. To build this understanding, we identified seven incremental 
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analyses that we manually performed on the conflicts in the history of five different Java 

projects (see below for the projects we selected). Afterwards, the same analyses were 

automatically performed in a much larger set of projects, adding one new analysis (RQ8). 

Each analysis adds detail to the previous analyses either by performing a more fine-grained 

study of earlier results or by correlating findings from previous analyses with factors that 

could explain them. We describe each analysis briefly here, and detail them further in Section 

3.5 when we discuss our results. 

RQ1. What is the distribution in number of conflicting chunks for merge failures?  

The number of conflicting chunks involved in a merge failure influences the difficulty 

of resolving the overall conflict. The more chunks, the more places developers need to 

examine and crosscheck while resolving a conflict. This is equally true for tools: it is likely to 

be more difficult to develop effective merge tools that can consider the full complexity of a 

multitude of chunks being in conflict as compared to just one or a few. Our first analysis, 

then, focuses on understanding the number of conflicting chunks that appear in merge 

failures. 

RQ2. What is the distribution in size of conflicting chunks, as measured in lines of code 
(LOC)? 

When it comes to the anticipated difficulty of resolving a particular merge conflict, 

complementary to the number of conflicting chunks is the size of those conflicting chunks: 

the higher the LOC, the more code has to be inspected and worked with to resolve that 

conflicting chunk – whether by a developer or a merge tool. Hence, our second analysis 

focuses on assessing the distribution of LOC in conflicting chunks. 

RQ3. What is the distribution in language constructs involved in conflicting chunks? 

As already alluded to, the kind of conflict can similarly influence the difficulty of 

resolving it. As one example, suppose the only language construct involved in a conflicting 

chunk is import. Concatenating the two import statements, like semi-structured merge (Apel 

et al., 2011) does, will likely resolve the conflict in most cases, and is an operation that could 

easily be performed by a tool (perhaps with some checks whether both imports are truly 

needed in the final merged result after all conflicting chunks have been processed). Whether 

or not the creation of such heuristics is a viable direction for new merge tools depends on the 

kind of conflicts and the frequency with which they appear. Our third analysis, then, focuses 

on uncovering the language construct involved in conflicting chunks. 
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RQ4. What, if any, patterns exist in the language constructs of failed merges involving 

multiple conflicting chunks?  

When a failed merge involves multiple conflicting chunks, it may be that certain 

dependencies exist that are indicative of certain heuristics that could help resolve the conflict. 

For instance, if one conflicting chunk involves an import and another conflicting chunk a 

method invocation, resolving the method invocation conflict first could well help in resolving 

the import conflict. Understanding which patterns exist across chunks is the focus of our 

fourth analysis. 

RQ5. What is the distribution of developer decisions?  

From all the different decisions that developers can make, only one demands addition 

of new code (NC). If the majority of decisions does not involve new code, a sensible first step 

forward is to develop a new merge tool that presents five options (version 1, version 2, 

concatenation, combination, and none) and assists the developer in choosing from among 

them (and, in the case of combination, in selecting and organizing the desired lines of code 

from each of the two versions). Conversely, if most conflicting chunks are NC, this approach 

would not help as much. Understanding the resolutions that developers choose, then, should 

give us a first indication of the space of possible merge tools that should be designed next, 

and is the focus of our fifth analysis. 

RQ6. What is the distribution in difficulty level of kinds of conflicting chunks? 

While the first five research questions examine properties of conflicting chunks, our 

next analysis assesses the chunks through the lens of the kinds of conflicts they contain and 

what the chosen developer decisions reveal about their respective difficulty levels. This 

analysis provides a first look at the distribution of developer decisions as related to difficulty 

levels. It might be, for instance, that nearly all kinds of conflicting chunks require NC 

developer decisions, or that very few ever involve CC decisions. This, in turn, begins to 

provide preliminary evidence as to what kind of tool support may be required. 

RQ7. What, if any, patterns exist between the language constructs of conflicting chunks and 

developers’ decisions? 

Our seventh analysis takes a closer look at the relationship between the kinds of 

conflicting chunks and developer decisions by examining whether the presence of certain 
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language constructs or combinations thereof might explain the difficulty level of resolutions. 

That is, rather than examining the kind of conflict in its entirely, we look at individual and 

smaller combinations of language constructs to examine whether some of them can predict 

certain developer decisions. If this is the case, one could imagine heuristics that encapsulate 

these patterns in the support offered by new merge tools. It might also be that there is an 

absence of predictive power, in which case each failed merge needs to be treated uniquely. 

RQ8. What is the correlation between the number of developers and the number of commits, 

merges, and failed merges? 

There is some folklore concerning merge. For instance, it is accepted that the number 

of commits, merges, and conflicting merges in a project is proportional to the number of 

developers involved in the project. However, to the best of our knowledge no experimental 

analysis has verified this “common sense”. Thus, our final analysis uses correlation to 

evaluate whether there are strong relations between the number of developers and the number 

of commits, merges, and failed merges in each project.  

3.4 THE DESIGN OF THE MANUAL ANALYSES 

In this section, we introduce the process that was followed to extract the information 

reported in the manual analyses. Section 3.4.1 presents constraints that guided the selection of 

the open source projects that were manually analyzed and shows information related to the 

usage of VCS by the developers working on these projects. Section 3.4.2 describes the steps 

that were manually performed to collect the information required to perform the proposed 

analyses, such as developer decisions and language constructs. 

3.4.1 SELECTION OF OPEN SOURCE PROJECTS 

We engaged in a careful process of selecting suitable open source projects as the basis 

for our analysis. After inspecting and considering a number of systems to build an initial 

understanding of merge conflicts, we articulated the following constraints for selecting 

potential systems: (1) they all should have the same main programming language (in our case 

we chose Java, as it is one of the most popular programming languages (Cass, 2015)), since 

this would allow us to study similarities and differences among systems, (2) the system had to 

have more than 1,000 commits, in order to identify systems that had seen serious development 

effort, and (3) it had to have more than 10 developers, in order to increase our chances of 

identifying meaningful conflicts.  



45 
 

Out of the resulting set of systems, we selected a corpus of five projects in the manual 

analyses: ANTLR4, a parser for programming languages; Lombok, a project that helps in 

writing succinct boilerplate code through annotations; MCT, a NASA-developed real-time 

monitoring platform; Twitter4J, an API for accessing Twitter; and Voldemort, a distributed 

key-value storage system. Table 1 presents key statistics related to the history of these 

projects: the total number of commits over the history of the project (#Commits); the number 

of merges (#Merges); the number of developers who performed at least one commit (#Dvl); 

the number of failed merges (#FM); and the total number of conflicting chunks (#CC).  

 Table 1. Key statistics of the selected projects.  

Project #Commits #Merges #Dvl #FM #CC 
ANTLR4 2,870 352 14 27 86 
Lombok 1,636 106 13 22 69 
MCT 1,013 206 16 17 52 
Twitter4J 1,938 211 84 38 98 
Voldemort 4,275 480 54 65 401 
Total 11,732 1,355 181 169 706 
Java total - - - 147 616 

 

We manually examined all 1,355 merges performed in these projects, out of which 

169 (12.5% – in line with the 10 - 20% range reported elsewhere (Mens, 2002; Brun et al., 

2011b)) were in conflict, with a total of 706 conflicting chunks. Because all of these projects 

had some auxiliary files not written in Java, some merges pertained to those auxiliary files. 

We performed our analysis on the 147 failed merges and 616 conflicting chunks that were in 

the Java files only.  

3.4.2 DATA COLLECTION 

To construct Table 1 and perform the detailed analysis presented in Section 3.6, we 

manually examined all the Java merges of all five projects, recording the language constructs 

involved in the conflicting chunks and the developer decision that was applied to each of the 

conflicting chunks. Although this was a time-consuming task, we felt it was preferred to do a 

manual analysis rather than an automated analysis, for several reasons. First, we felt it would 

help us understand the issues in much greater detail, shaping future automated analyses, but 

not putting the proverbial “cart before the horse”. Second, observations from our manual 

inspections fueled the formulation of the analyses we described in Section 3.3, as engaging 

with the conflicts at a very detailed level helped us begin to understand what sorts of 
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phenomena were present in the data we were collecting. Finally, performing a manual 

analysis helped us identify particularly enlightening examples, with some of them presented 

in this Thesis. Overall, we are able to provide a more qualitative and deeper exploration due 

to the experiences gained in manual extraction and analysis of the data. 

To extract the data, we replayed each merge that belongs to a specific project by 

performing the following steps: (1) identifying the parents of the merged version, (2) redoing 

the merge of the parents, and (3) observing if the merge failed or not. For each failed merge, 

we analyzed each conflicting chunk (as captured in the format shown in Figure 10) to record 

the language constructs that were part of it, cataloguing if the language construct belonged to 

version 1 or version 2. By doing this manually, we were able to add interpretation where it 

was needed, for instance by ignoring whitespace as a source of conflicts. More importantly, 

however, we could address issues such as the one illustrated by Figure 11. From the merge 

result (as shown at the bottom with new code added by a developer), we can deduce that the 

situation was the one in which a pair of developers had each added a method, only one of 

which was needed, but in somewhat adjusted form. Thus, the conflict does not concern 

method signature, return statement, method invocation, and variable, as a naïve approach 

would have documented, but just two method declarations: adjustSeekIndex and reset.  Thus, 

this conflict was recorded as a method declaration conflict.  
@Override 

version 1 version 2 
protected int adjustSeekIndex(int i) { 
  return skipOffTokenChannels(i); 

 

public void reset() { 
  super.reset(); 
  p = nextTokenOnChannel(p, channel); 

} 
 

merge resolution 
@Override 
protected int adjustSeekIndex(int i) { 
  return nextTokenOnChannel(i, channel); 
} 

Figure 11. Conflicting chunk of merge 18f535 and its new code resolution in ANTLR4. 

This situation arose multiple times, in various forms involving different language 

constructs. In each of the cases it turned out that the outermost language construct (typically a 

language declaration, but sometimes also a for or an if) was the governing concern regarding 

the conflict and its resolution. We therefore documented the outermost language constructs 

involved in each of the conflicting chunks we found. 

We also examined each conflicting chunk and its subsequent merge result (as checked 

in to the repository) to understand how the developer ultimately resolved each conflicting 

chunk that originally resulted in the failed merge. By studying the merged source code and the 

original conflicting chunk, we determined whether the chosen solution was one of the 
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versions (V1 or V2), a concatenation of the versions (CC, consisting of version 1 followed by 

version 2 or vice versa), the combination of code from both versions without newly written 

code (CB), or a merge involving additional new code (NC). For example, Figure 11 shows a 

resolution in which the developer chose only a few lines across both versions, and changed a 

line from “return skipOffTokenChannels(i);” to “return nextTokenOnChannel(i, channel);”. 

Thus, the developer decision was NC. 

It is worth mentioning that we extracted developers’ decisions from the commit 

immediately after the failed merge. However, to account for situations in which developers 

postponed the resolution (they, for instance, might comment on a conflict and delegate its 

resolution to another developer, or they could simply override the other developer’s changes 

for now to resolve the conflict at a later time), we did not only analyze the immediate next 

commit, but also any commits up to one month after the original commit. If such a later 

commit changed the code of the originally conflicting merge, we examined whether it 

represented a postponed resolution by checking whether any code from the original merge 

conflict was now included. This occurred in few cases; six times to be precise. 

3.5 THE DESIGN OF THE AUTOMATIC ANALYSES 

To determine whether the answers found by the manual analysis for the questions 

proposed in Section 3.3 were due to specificities of the selected projects or could be 

generalized to, in the least, the larger population of open source Java projects, we needed 

information from a large number of software projects. We chose to collect this data from 

GitHub3, which allows creating free repositories in the cloud. Free repositories are usually 

public and data about the software projects residing in them can be collected both by cloning 

the repositories or using an API. 

The process of collecting information about merges comprises four steps: (1) extract 

GitHub metadata, (2) select projects, (3) analyze project repositories, and (4) analyze data 

extracted from repositories. 

Cloning repositories can be very costly due to the size of the files that participate in 

the history of the project. In order to reduce the overall computational cost of our analysis, we 

first used the API provided by GitHub that enables us to collect limited project metadata and 

select a sample of relevant projects based on this information. Some metadata we extracted in 

this first step are the last date/time the project was updated, the number of developers per 

                                                 
3 https://github.com 
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project, and the size of source code (measured in bytes) written in each language used in the 

project. As a result of this step, we extracted metadata from 1,997,541 projects. 

Next, we selected all active Java projects from this sample. A project was classified as 

active if it was updated at least once since January, 2015. A project was classified as Java if 

the amount of code written in Java was greater than the amount of code written in any other 

programming languages. The selected projects have on average 92.79% of Java source code 

with standard deviation of 13.29%, showing that the projects are mainly coded in Java. After 

filtering the projects in our sample according to these criteria, we selected 13,576 projects. 

Then, we cloned the repositories of these projects and extracted fine-grained 

information about merge cases. Figure 12 shows an overview of the steps performed to obtain 

such information. After cloning the repository, we selected all the merge commits and 

classified them as failed or successful merge. To do so, we replayed each merge and checked 

if conflicts arose, as in the manual analyses, by automatically executing the following steps: 

(1) identifying the parents of the merged version, (2) redoing the merge of the parents, and (3) 

observing if the merge failed or not. When the merge does not fail, we classify it as a non-

conflicting merge (i.e., the cases on which merges are resolved automatically) or a fast-

forward (i.e., the cases on which the merge just updates the head pointer of the mainline) and 

the analysis of this merge is concluded. Otherwise, we collect complementary information 

about the failed merges.  

Then, we selected the projects that have at least one failed merge and are not forks of 

other projects in our dataset. We took this decision because we are interested in projects that 

have failed merges and we do not intend to count the same merge twice or more, as forks may 

share part of the history. Thus, selecting just the main repositories, we avoid taking the 

replicated commits that are copied when a developer forks a given project. After applying this 

criterion, our sample was reduced to 3,796 projects. Finally, we discarded projects that do not 

have conflicts in Java files. After applying this criterion, we selected a corpus composed by 

2,731 projects to perform the automatic analysis and answer the research questions. These 

projects have together 25,328 failed merges and 175,805 conflicting chunks. 

As explained in Section 2.4.1, failed merges have one or more conflicting chunks 

distributed in the source code files. Thus, when a failed merge is found, the analysis identifies 

all files containing conflicting chunks. To identify these files, we ran a Git command that lists 

all files in conflict and parsed these files to find the conflicting chunks based on the source 

code marks that delimit the conflict. For each conflicting chunk, we identified how developers 

resolved it and which language constructs were involved in its source code. The developer 
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decision is identified by comparing the final decision of the developer assigned to resolve the 

conflict with one of the decisions listed in Section 3.2. This comparison was not sensitive to 

formatting characters such as blank spaces, which would end up in a new code decision 

whenever a developer changes just indentation, for instance. If none of these reflect the final 

resolution, a new code resolution is identified. To extract the language constructs, we parsed 

the files of version 1 and version 2 and collected the outermost constructs inside the area of 

these versions, using a similar procedure to that used in the manual analysis and discussed in 

Section 3.4.2. At the end of the analysis of each commit, we stored the following data: the 

merge status (i.e., conflicting, non-conflicting, or fast-forward), the files involved in the 

conflict, the conflicting chunks, and the developer decision for each chunk. 

 
Figure 12. Repository analysis activities. 

As previously discussed, our focus is to analyze projects coded in Java. However, our 

current implementation allows us to extract some data like LOC, developer decisions, and 



50 
 

number of conflicting chunks, independently of the programming language of the project. In 

other words, the research questions RQ1, RQ2, RQ5, and RQ8, which are not related to 

language constructs, can be answered for any project under Git. On the other hand, the 

research questions RQ3, RQ4, RQ6, and RQ7 can be answered only for Java projects. The 

current version of our implementation can collect language constructs of Java projects. 

Consequently, new parsers must be implemented to analyze projects coded in other 

programming languages. 

It is also important to highlight that we do not have problems with crossing method 

boundaries during language constructs extraction. Some conflicting chunks do not have well-

formed source code, not allowing the parser to extract the AST directly from the chunk source 

code. For example, only one part of method declaration may be comprised in a chunk. To 

deal with this problem, we parse the source code of the versions that generated the merge and 

then we calculate the relative area of the source code in version 1 and 2 to collect the 

language constructs that are inside this area. 

Finally, we did not measure the time spent to collect the information from the projects 

we analyzed. However, the process described in Figure 12 for the 13,576 projects took about 

4 months. This time is mainly related to collecting syntactical information, as most part of the 

computational cost is concentrated in the AST extraction.  

3.6 RESULTS 

This section presents our results, organized per each of the analyses outlined in 

Section 3.3. Aiming at facilitating the identification of the results related to the manual and 

automatic analyses, we use manual analyses to mark the begin of the manual results and 

automatic analyses to highlight the begin of the automatic results.  

RQ1. What is the distribution in number of conflicting chunks for merge failures?  

Considering the manual analyses, Figure 13 shows the number of failed merges 

involving different numbers of conflicting chunks for the five projects of our corpus. Most 

failed merges involved just 4 or fewer conflicting chunks (111 out of 147, 76%) and more 

than half involved merely 1 or 2 conflicting chunks (87 merges, 59%). Such low numbers 

provide initial hope that opportunities may exist for newly designed merge tools. This, of 

course, depends on the nature of the conflicting chunks, as fewer chunks do not necessarily 

mean less complicated resolutions. We return to this topic in subsequent analyses.  
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Figure 13. Histogram of conflicting chunks. 

Four failed merges involved more than 20 conflicting chunks each, with 1 of them 

involving as many as 39. Manually inspecting these four cases revealed that they are very 

complex merges: no simple heuristic would be able to address them. Instead, all four involved 

NC as the resolution strategy for at least some of the conflicting chunks, combining code from 

both versions with additional new code. 

Finally, we observe that a non-trivial number of failing merges exist with a number of 

conflicting chunks from 5 to 17. Overall, a quite even distribution exists, with none of the 

projects we studied standing out: conflicts from each of the five projects appeared across the 

spectrum. We manually examined the conflicts and, as we shall discuss later in more detail, 

the conflicts ranged from simple to resolve to being very difficult to resolve, with some 

amenable to automation and some not. 

Considering the automatic analyses, Figure 14 shows that the number of failed 

merges having a given number of conflicting chunks in the larger sample of projects in our 

corpus obeys almost the same distribution of Figure 13. To improve visualization, we limited 

the chart to failed merges having up to 11 chunks. As well as in the manual analysis, most 

failed merges have few conflicting chunks: 40% of the failed merges have a single conflicting 

chunk and 90% of these merges have up to 10 chunks. The remaining 10% of the failed 

merges have up to 10,315 chunks. However, a deeper analysis considering the difficulty of 

each failed merge, as presented in the manual analysis, was not possible since this analysis is 

subjective and we increased our corpus from 147 to 25,328 failed merges, being hard to 

analyze by hand. 
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Figure 14. Distribution of conflicting chunks by failed merges. 

The results of manual and automatic analyses give the same message: (1) most 

failed merges comprise few conflicting chunks and (2) around 60% of the failed merges have 

more than one chunk. The first conclusion can motivate the creation of automatic approaches 

that deal with only one chunk, which can decrease the challenges when compared to the ones 

with more chunks.  

RQ2. What is the distribution in size of conflicting chunks, as measured in lines of code 

(LOC)? 

Considering the manual analyses, Figure 15 shows the relationship between the 

number of lines of code in version 1 and the number of lines of code in version 2 for each 

conflicting chunk of the five projects comprising our corpus (with the bottom left rectangle of 

the top figure blown-up in the bottom figure). First, we note that the number of lines of code 

that are in conflict in version 1 varies from 0 to 313, and in version 2 from 0 to 270. 95.94% 

of the conflicting chunks, however, have less than 50 LOC in both version 1 and version 2. 

This means that developers have at most 100 LOC in total to examine when they resolve these 

conflicting chunks. When we focus on the chunks with at most 5 LOC in each version, this 

still accounts for 51.46% of the cases, meaning that in over half of the conflicting chunks, 

developers have to look at merely 10 LOC total. Note that in a number of cases one of the 

versions in the conflicting chunk has zero LOC; this is the result of a change that in its 

entirety consists of the removal of lines of code. 
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Figure 15. Relationship between LOC in version 1 and 2. 

Our second observation is that it is relatively rare for the two versions of a conflicting 

chunk to both having high numbers of LOC (see Table 2). It is more common for 1 to be large 

(i.e., having more than 50 LOC), and the other to be relatively small. Just 6 out of 616 chunks 

in our sample have more than 50 LOC in both versions. Perhaps unsurprisingly, manual 

examination of these ‘unbalanced’ conflicting chunks shows that the version with the high 

number of LOC often involves language constructs that encompass other constructs, such as 

class declaration and if statement. These kinds of statements often cover larger, wholesale 

changes to a piece of code. 
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Table 2. Distribution of chunks by LOC interval. 

Project LOCV1 ≤ 50 
LOCV2 ≤ 50 

LOCV1 ≤ 50 
LOCV2 > 50 

LOCV1 > 50 
LOCV2 ≤ 50 

LOCV1 > 50 
LOCV2 > 50 

ANTLR4 73 0 0 1 
Lombok 38 3 3 2 
MCT 57 0 1 1 
Twitter4J 88 2 2 1 
Voldemort 335 3 4 1 
Total 591 8 10 6 

 

Table 3 provides an alternative view, examining the median (Med), average (Avg), 

and standard deviation (Std) of the conflicting changes in version 1 and version 2, per project. 

In four of the five projects, version 1 represents the larger average change, except for MCT, in 

which version 2 is on average larger. Overall, we observe that the average is consistently 

larger than the median, and the standard deviation is far larger than the average. This implies 

that some extremely large and rare (thus, insensitive to the median) chunks are found for all 

projects, as observed in Table 2.  
 

Table 3. Average Size of Conflicting Chunks. 

Project 
Version 1 Version 2 

Med Avg Std Med Avg Std 
ANTLR4 3 6.20 9.56 2 5.97 11.68 
Lombok 4.5 6.73 17.26 7 4.85 9.31 
MCT 2 20.57 50.18 2 26.72 54.28 
Twitter4J 3 14.58 39.99 4 9.08 13.52 
Voldemort 2 7.77 25.41 3 7.40 12.38 

 

MCT also stands out in terms of the average size of its conflicting chunks: they are 

much larger than the other systems. This is perhaps not surprising, given the high average 

number of lines of code added per check-in for MCT: 467.74. Still, as compared to the 4 other 

systems (ANTLR4 427.74; Twitter4J 205.79; Voldemort 197.94; Lombok 104.97), this does 

not seem to entirely explain the difference, especially with respect to ANTLR4, which has the 

smallest average size per conflicting chunk yet the second-largest average number of added 

lines of code per check-in. 

Considering the automatic analyses, Figure 16 shows the distribution of the number 

of LOC in conflict in version 1 (horizontal axis) and in version 2 (vertical axis) for the 
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conflicting chunks identified for the sample of projects. We observe that there exist huge 

conflicting chunks (with up to 26 thousand LOC in conflict, 12 thousand LOC in version 1 

and 14 thousand LOC in version 2), but these are rare. Moreover, the chart in Figure 16.a 

shows that the number of conflicting chunks having more than 2,000 LOC in each version 

represents only 0.05% of the conflicting chunks. To have a better view of this distribution, we 

focus on smaller conflicts in other charts. 

  
                          (a)                                                                                                          (b) 

  
                                     (c)                                                                                                            (d) 

Figure 16. Distribution of LOC in the conflicting chunks before (a) and after filtering 
out chunks with more than 500 LOC (b), 100 LOC (c), and 50 LOC (d) in each version. 

Figure 16.b, Figure 16.c, and Figure 16.d show more details about the distribution of 

LOC in conflicting chunks, which progressively zoom into the regions close to the origin of 



56 
 

the Cartesian-plane. Chart (b) shows the conflicting chunks having up to 500 LOC in either 

version 1 or 2. Chart (c) focus the region with up to 100 LOC in each version, and Chart (d) 

shows conflicting chunks with up to 50 LOC in each version. We observe that 94.20% of the 

conflicting chunks have up to 50 LOC in each version in conflict (165,616 out of 175,805). 

Moreover, 68% of the chunks have up to 10 LOC and slightly more than half the chunks 

(50.17%, or 88,200 chunks) have 5 or less LOC in conflict. Therefore, the results observed in 

the five projects used in the manual analysis can also be found in the larger sample used for 

the automatic analysis. 

We also observed that it is relatively rare for the two versions of a conflicting chunk to 

both have high numbers of LOC. Out of the 175,805 chunks in our sample, 165,616 (94.20%) 

have less than 50 LOC in either version, 6,042 (3.44%) have more than 50 LOC in 1 version 

and less than 50 LOC in the other, and only 4,147 (2.36%) chunks have more than 50 LOC in 

both versions. The analysis also shows a certain concentration of projects having complex 

conflicting chunks: 1,546 out of 2,731 projects (56.61%) have only chunks with less than 50 

LOC in both versions, while only 700 (25.63%) projects have at least 1 chunk with more than 

50 LOC in both versions. Only 95 (3.47%) projects have more than 10 chunks with more than 

50 LOC in each version and only 4 projects have more than a hundred of such chunks. 

Wro4J4 has the highest number of the most complex cases: 179 (8.61%) chunks with more 

than 50 LOC in each version, though 2 other projects (Axis2/java5 and StatET6) have up to 

38.57% and 42.37% of their chunks as complex ones. Such complex chunks account for on 

average 5% of the chunks in our projects, while the simplest chunks represent about 91.33% 

of the chunks of any given project.  

The average size of version 1 over our sample projects (average across projects of the 

average within project) is 19.5 LOC, while version 2 has an average of 27.6 LOC. The 

average standard deviations (average across projects of the standard deviation within project) 

are 20.6 and 28.6 LOC, respectively, for version 1 and version 2. The median size of version 

1 and version 2 (median across projects of the medians within projects) are 2.0 and 2.5 LOC. 

These numbers, as well as the point clouds extending in the diagonal and along the axis in 

Figure 16.b, show that some large conflicting chunks drag the mean of the chunks upward and 

increase the standard deviation despite the concentration of most chunks near the origin of the 

chart. Nevertheless, these conflicting chunks are not frequent enough to affect the median. 
                                                 
4 https://github.com/wro4j/wro4j 
5 https://github.com/apache/axis2-java 
6 https://github.com/walware/statet 



57 
 

The results of manual and automatic analyses present the same conclusion: (1) 

more than 95% of the chunks have up to 50 LOC in each version and (2) it is relatively rare to 

have more than 50 LOC in both versions. This is an interesting result since developers in most 

of the chunks should look at most 100 LOC to resolve their conflicts, which is also interesting 

for automatic approaches because the number of possible combinations of LOC decreases.  

RQ3. What is the distribution in language constructs involved in conflicting chunks? 

Considering the manual analysis, we first examined the number of language 

constructs present in conflicting chunks, leading to the results shown in Table 4. We observe 

that almost all conflicting chunks consist of up to 4 language constructs (594 out of the 616 

chunks, 96%). A negative correlation exists between the number of language constructs (first 

column) and the number of conflicting chunks (remaining columns), varying from -0.85 to -

0.98 across the 5 projects (Spearman rank-order correlation, which we selected because the 

Shapiro-Wilk test indicated non-normality in our data with a p-value smaller than 0.001). 

Table 4. Number of Conflicting Chunks per Number of Language Constructs. 

# Language 
constructs 

Number of conflicting chunks 

ANTLR4 MCT Lombok Voldemort Twitter4J Total 

1 30 (41%) 28 (61%) 29 (49%) 183 (53%) 50 (54%) 320 (52%) 

2 25 (34%) 6 (14%) 21 (36%) 95 (28%) 23 (25%) 170 (28%) 

3 10 (14%) 7 (15%) 7 (12%) 32 (9%) 10 (11%) 66 (11%) 

4 6 (8%) 2 (4%) 0 (0%) 24 (7%) 6 (6%) 38 (6.2%) 

5 1 (1%) 1(2%) 1 (1.5%) 9 (2.7%) 3 (3%) 15 (2.4%) 

6 1 (1%) 2 (4%) 1 (1.5%) 0 (0%) 0 (0%) 4 (0.6%) 

7 1 (1%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 2 (0.3%) 

8 0 (0%) 0 (0%) 0 (0%) 1 (0.3%) 0 (0%) 1 (0.2%) 
 

The low number of language constructs involved is not surprising, given our decision 

to only record the outermost language constructs when nesting is present (as described in 

Section 3.4.2). Because the code in either version of a single conflicting chunk is contiguous, 

it is rare for there to be lots of ‘top level’ language constructs. The table, thus, should be 

interpreted as recording the distribution of how many language constructs are the primary 

reason for a conflict (e.g., a for loop has been added, an if statement has been added, a method 

declaration has been added). 
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Given this, and examining the table further, we see that 52% of conflicting chunks 

involve a single language construct and 80% just 1 or 2. Because of the limited set of 

language constructs combinations that occur frequently (see below), we believe this suggests 

that an exploration of specialized merge techniques that deal with few language constructs is 

an important direction forward. For instance, consider the conflict in Figure 17, taken from 

the Twitter4J project. A traditional, general merge technique cannot resolve this conflict, 

because the same area was edited in parallel. A tailored merge technique that understands that 

the two if statements each address a different condition could suggest to simply concatenate 

the two, which is indeed the resolution that the developer chose.  
} 

version 1 version 2 
if (!json.isNull("lang")) { 
  lang = getUnescapedString("lang", json); 

if (!json.isNull("scopes")) { 
  JSONObject s… = json.getJSONObject("scopes"); 
  if (!s….isNull("place_ids")) { 
    JSONArray p… = s….getJSONArray("place_ids"); 
    int len = p….length(); 
    String[] placeIds = new String[len]; 
    for (int i = 0; i < len; i++) { 
      placeIds[i] = p….getString(i); 
  } 
  scopes = new ScopesImpl(placeIds); 
} 

} 

Figure 17. Conflicting chunk from merge 3a3869 of project Twitter4J. 

We analyzed which language constructs occurred most frequently in conflicting 

chunks, and juxtaposed this with the frequency of the language constructs across the whole 

code base (calculated based on the last version of each project). Table 5 presents the results, 

when focusing on a single language construct at a time. The symbol Æ is used when the 

percentage of the language construct in the conflicting chunk is lower than across the whole 

code base, with the symbol Å signaling the opposite. Because a language construct can occur 

more than once in a conflicting chunk, the total number of language constructs is higher than 

the total number of conflicting chunks we reported in Table 1. The seven language constructs 

listed in Table 5 represent nearly 80% of the language constructs in conflicting chunks. 
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Table 5. Most frequent language constructs. 

Language 
construct 

Number of occurrences 
Conflicting chunks Source code  

Method invocation 252 (22.32%) 250,469 (39.26%) Æ 
Variable 208 (18.42%) 104,410 (16.37%) Å 
Method declaration 118 (10.45%) 40,171 (6.30%) Å 
Commentary 112 (9.92%) 44,983 (7.05%) Å 
If statement 97 (8.59%) 21,646 (3.39%) Å 
Import 64 (5.67%) 33,408 (5.24%) Å 
Method signature 62 (5.49%) 40,171 (6.30%) Æ 

 

The 3 most frequently involved language constructs are method invocation, variable, 

and method declaration, which together account for over 50% of the language constructs in 

conflicting chunks. This, in and of itself, is interesting: it implies that larger, wholesale 

changes are often the source of conflicts, rather than smaller, local changes. Table 6 provides 

a refined view on this observation, listing the most frequent kinds of conflicts (per the 

definition we introduced in Section 3.2). We observe that method invocation is often not a 

standalone change, but one that has other changes surrounding it in a conflicting chunk. It 

appears alone a mere 63 out of 252 times, with all other occurrences being in combination 

with other language constructs. The same is true for variable: 37 individual occurrences are 

complemented by 58 combinations of variable with method invocation, 19 occurrences of if 

statement, method invocation, and variable, and others.  

Table 6. Most frequent kinds of conflicts. 

Kind of conflict Occurrences 
Method invocation 63 
Import 60 
Method invocation, variable 58 
Method declaration 57 
Variable 37 
If statement 20 
Method signature 19 
If statement, method invocation, variable 19 

 

An interesting example of a particular kind of conflict is method invocation, the most 

frequent language construct in Table 5, with variable, the second most frequent. Examining 

this kind of conflict, we found that it often concerns a method that is called to initialize or 
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assign a value to a variable (one version changed the method being called; the other the 

variable name). The last line of Table 6 represents an ‘expansion’ of this combination: this 

kind of conflict frequently captures the initialization of a variable depending on the condition 

of an if statement (Figure 18 shows an example). Although this combination of language 

constructs may represent other cases but conditional initialization, most of its occurrences 

represent an opportunity to create heuristics to address and resolve these cases. 

assigns.add(new SingleNameReference(field.name,fieldPos)); 
version 1 version 2 

args.add(new Argument(…, Modifier.FINAL)); Argument argument = new Argument(…); 
Annotation[] copiedAnnot… = 
copyAnnotations(…); 
if (copiedAnnot….length != 0) 
  argument.annotations = copiedAnnot…; 
args.add(new Argument(…, 0)); 

} 

Figure 18. Chunk from Lombok´s merge that generated commit 4e152f. 

Excluding import, which by virtue of where it must appear in the source code nearly 

always occurs alone in a conflicting chunk, other language constructs occur as part of kind of 

conflicts that involve multiple language constructs over 50% of the time. While this is on one 

hand encouraging, in that it means different kinds of conflicts exist that can perhaps be 

addressed through techniques tailored for each, the payoff of such an approach diminishes 

relatively quickly. For instance, even the if statement, method invocation, variable kind of 

conflict appears only 19 times (out of 616 total conflicting chunks, this is just 3%). Still, 

amortized across the many projects under development today, 3% of conflicting chunks 

represents a non-trivial development effort that can be eased. 

We also mined for association rules involving language constructs occurring together 

in conflicting chunks. Table 7 shows these association rules, presented in the form of “A Æ 

B” and measured in terms of support (s%), confidence (c%), and lift (L). This states that a 

pattern of having language constructs “A” along with language constructs “B” in the same 

conflicting chunk happened in s% of all 616 chunks. Additionally, out of all the conflicting 

chunks that have “A”, c% of them also have “B”. Finally, the fact of having “A” increased the 

frequency of having “B” by L. The association rules presented in Table 7 have minimum 

absolute support of 12 (2%) occurrences and at least 50% confidence. Thus, for all the rules, 

“A” and “B” occur together in at least 12 conflicting chunks and in at least 50% of the chunks 

that “A” occurs, “B” also occurs. 

The association rule if statement, variable Æ method invocation has 80% confidence, 

meaning that 80% of the conflicting chunks that have if statement and variable also have 

method invocation. In addition, the lift for this rule is 1.96, which means that the occurrence 
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of if statement and variable increases the probability of method invocation in the same chunk 

by 96%. On the other hand, the association rule variable Æ method invocation has 63% 

confidence, which means that 63% of the conflicting chunks that have variable also have 

method invocation. This decrement of confidence compared to the more specific rule indicates 

that if statement has a strong influence on using method invocation to set variable values. This 

pattern is confirmed considering lift values: while the rule if statement, variable Æ method 

invocation has lift equal to 1.96, the rule variable Æ method invocation has lower lift (1.54). 

Note that the direction of association rules matters. For instance, while variable Æ 

method invocation has 63% confidence, method invocation Æ variable only has 52% 

confidence. This happens because, as we already discussed, variables often use method 

invocations to initialize their values, as in the example shown in Figure 18. 

Table 7. Relation among language constructs that belong to conflicting chunks. 

Association rule Sup. Con. Lift 
Annotation Æ method declaration 3% 64% 3.34 
For statement Æ variable 2% 67% 1.98 
If statement, variable Æ method invocation 6% 80% 1.96 
Commentary, method invocation Æ variable 4% 66% 1.95 
Commentary, if statement Æ variable 2% 63% 1.87 
If statement, method invocation Æ variable 6% 62% 1.84 
Method invocation, method signature Æ variable 2% 58% 1.72 
Method signature, variable Æ method invocation 2% 70% 1.71 
Try statement Æ method invocation 4% 69% 1.69 
Return statement Æ method invocation 3% 69% 1.69 
Try statement, variable Æ method invocation 2% 68% 1.66 
Commentary, variable Æ method invocation 4% 66% 1.61 
Try statement Æ variable 6% 53% 1.57 
Commentary, if statement Æ method invocation 2% 63% 1.54 
Variable Æ method invocation 21% 63% 1.54 
Method invocation, try statement Æ variable 2% 52% 1.54 
If statement Æ method invocation 9% 60% 1.47 
Method invocation Æ variable 21% 52% 1.27 

 

These association rules give further meaning to the results presented in Table 5, and 

particularly provide directionality to the co-occurrences shown in Table 6. As such, they may 

help in formulating new heuristics that explore these directionalities. Consider the conflicting 



62 
 

chunk presented in Figure 19, which is covered by the association rule return statement Æ 

method invocation. The conflict could not be automatically resolved, because each version 

uses a different method invocation. However, a heuristic that looks at the return type of the 

method declaration and selects the method invocation that matches it should be able to assist 

developers in the resolution of this conflict. While such a heuristic would not solve all merge 

conflicts involving the association rule return statement Æ method invocation, given the 

confidence of 69% and lift of 1.69, offering the heuristic as an option for a developer to apply 

if it is so appropriate can significantly reduce effort. 

+ categorySlug + "/members.json"); 
version 1 version 2 

return fac….createUserListFromJSONArray(res); return fac….createUserList(res.asJSO…(), res); 
} 

Figure 19. Conflicting chunk extracted from Twitter4J project resulting of the merge 
98caafc. 

Finally, a rule that stands out in terms of lift is annotation Æ method declaration, 

denoting that if a conflicting chunk has annotation, the chances of also having method 

declaration is 3.34 times higher than when not having annotation. This is expected, as some 

annotations are meant to add metadata to method declarations and, consequently, should 

occur together with this language construct (Figure 20 shows an example in the form of 

@override). 

} 
version 1 version 2 

  @Override 
  public short getId() { 
    return 15; 
  } 

  public ProxyUnreachableExce…(Throwable t) { 
    super(t); 
  } 

} 

Figure 20. Conflicting chunk from project Voldemort of merge 66c832.  

Considering the projects selected for automatic analysis, Figure 21 shows the 

percentage of conflicting chunks having a given number of language constructs. For instance, 

88 thousand chunks (50% of our sample) have a single language construct. Moreover, more 

than 90% of the chunks in our sample have up to 4 language constructs. On the other hand, 

about one percent of the chunks have eight or more constructs. Thus, this leads to a 

distribution which is close to the one presented in the manual analysis. 
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Figure 21. Distribution of the number of conflicting chunks based on the number of 

language constructs. 

Considering the automatic analyses, we identified which language constructs occur 

most frequently in conflicting chunks, as well as their specific kind of conflict (i.e., the kind 

of conflict that the language construct appears alone). Table 8 presents the most frequent 

language constructs found in conflicting chunks (first column), their counting (second 

column), and the counting of kinds of conflict that they appear alone (third column). The 

numbers in parenthesis denote the percentage of language constructs in chunks where the 

language constructs appear (from a total of 375,851 occurrences of language constructs in 

chunks) – in the second column – and the percentage of chunks where the kind of conflict 

with a single language construct appears (from the total of 175,805). As previously discussed, 

the percentage in the second column is from a total greater than the number of chunks because 

different language constructs may appear together in the same chunk. It is worth mentioning 

that the eleven constructs in Table 8 represent almost 90% of the language constructs found in 

conflicting chunks. 

Still analyzing this table, we can observe that the seven most frequent language 

constructs found in the manual analysis are among the eight most frequent language 

constructs found in the automatic analysis. The Attribute construct was identified among the 

most frequent constructs for the automatic analysis. In the manual analysis, attributes were not 

distinguished from variables and, thus, merging their data together would place variables as 

the second most frequent construct in the automatic analysis, replicating the two topmost 

constructs of the manual analysis. Therefore, we confirm the findings of manual analysis 

concerning the frequency of certain language constructs in a bigger number of projects.  
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Table 8. Most frequent language constructs. 

Language construct Frequency among 
Language Constructs 

Frequency among 
Kinds of Conflicts 

Method invocation 75,045 (19.97%) 13,549 (7.71%) 
Commentary 55,081 (14.66%) 19,447 (11.06%) 
Variable 40,332 (10.73%) 1,595 (0.91%) 
If statement 32,943 (8.76%) 7,570 (4.31%) 
Attribute 31,176 (8.29%) 6,634 (3.77%) 
Import 24,267 (6.46%) 20,538 (11.68%) 
Method signature 23,177 (6.17%) 3,606 (2.05%) 
Method declaration 20,500 (5.45%) 3,632 (2.07) 
Annotation 12,458 (3.31%) 1,191 (0.68%) 
Return statement 11,227 (2.99%) 207 (0.12%) 
For statement 5,771 (1.54%) 299 (0,17%) 

 

Table 9 shows the most frequent kinds of conflicts found by the automatic analysis. 

Contrasting the information of this figure with Table 6, we notice that the most frequent kinds 

of conflicts found while performing the manual analysis are also in this table, which confirms 

again the results presented in the manual analysis for a broader range of projects. 

We also extracted association rules involving language constructs occurring together 

in conflicting chunks of the projects selected for automatic analysis. That led to a huge 

number of association rules, and we subsequently changed the association rules notation to 

represent both directions with the ' symbol and save space while presenting these rules. In 

this case, the association rules have two confidence values: the first identifies the confidence 

from the left to the right (J) and the second identifies the confidence in the opposite direction 

(I). The different values of confidence show that the rules may be stronger in one direction 

than in the other. As a consequence, we can trust more in the direction of higher confidence 

values.   
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Table 9. Most frequent kinds of conflicts. 

Kind of conflict Occurrences 
Import 20,538 
Comment 19,447 
Method invocation 13,549 
Method invocation, Variable 8,865 
If statement 7,570 
Attribute 6,634 
Attribute, Method invocation 5,317 
Method declaration 3,632 
Method signature 3,606 
Comment, Method invocation 3,469 
If statement, Method invocation, Variable 2,978 
If statement, Method invocation 2,725 
Comment, Method declaration 2,488 
Attribute, Comment 2,110 
Annotation, Method declaration 2,041 

 

Table 10 presents the top ten association rules in terms of support. The association 

rules involve language construct combinations in the antecedent and consequent and, for any 

given rule, all kinds of conflict involving a superset of its antecedent are subject to the rule 

(that is, the consequent is to be found with the given probability).  

Table 10. Association rules of chunks with highest support. 

Association rule Sup. Confidence Lift 
J I 

If statement ' Variable 9% 50% 41% 2.19 
Variable ' Method invocation 20% 88% 47% 2.05 
Return statement ' Method invocation 6% 85% 13% 2.00 
If statement ' Method invocation 12% 65% 29% 1.53 
Method signature ' Method invocation 8% 62% 19% 1.46 
Attribute ' Method invocation 10% 55% 23% 1.30 
Variable ' Comment 7% 31% 23% 0.99 
Comment ' If statement 6% 18% 31% 0.98 
Comment ' Attribute 5% 17% 3% 0.94 
Method invocation ' Comment 12% 27% 37% 0.88 

 

As in the manual analysis, we can learn some lessons from this table. For instance, 

88% of all chunks having variable and 55% of the chunks having attributes also have method 

invocation. This enforces the argument from Table 7 reporting that 63% of the chunks having 
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variable also have method invocation, particularly if we take into account that variables and 

attributes are both handled as variable in the manual analysis. Table 7 also shows a rule 

stating that 60% of the chunks having if statement also have method invocation. In the 

automatic analysis we observe an increment of 5% in this frequency, thus enforcing that 

having conflicts in an if statement together with a method invocation is a common pattern. 

Finally, the automatic analysis shows that having return statements in a chunk increases the 

chances of having method invocation by 100%. Furthermore, 85% of the chunks having a 

return statement also have method invocation. This rule shows an increment in support, 

confidence, and lift all together, showing that this is also a pattern frequently related to failed 

merges. We can still observe a clear direction in this rule: 85% of the conflicts in return 

statement also involve method invocation, but just 13% of conflicts in method invocation 

involve return statement. 

In the end, the automatic analysis ascertains and supports major rules found while 

performing the manual analysis, showing at the same time that the rules are recurrent and that 

the set of projects selected for manual inspection can represent the larger population of open 

source software written in Java at least in what concerns failed merges. 

The results of manual and automatic analyses have the same message relating the 

number of language constructs by chunks and the most frequent language constructs in 

conflicting chunks. Nevertheless, the results for the association rules cannot be generalized so 

far, as very distinct results were found in the manual and automatic analysis.  

RQ4. What, if any, patterns exist in the language constructs of failed merges involving 

multiple conflicting chunks?  

When a failed merge involves multiple chunks, it might be that certain dependencies 

exist that are indicative of strategies that could help resolve the conflict. For instance, Figure 

22 depicts a case in which it is desirable to resolve chunk A before chunk B, as the change in 

the signature of the createField method affects its invocation. Consequently, attempting to 

resolve chunk B first is likely to be ineffective.  

Considering the manual analyses, we first collected the data presented in Table 11 to 

determine whether opportunities may exist for new merge tools that explore dependencies 

among chunks. This table has the following columns: “total”, representing the number of 

failed merges per project; “conflicting chunks > 1”, representing the number of failed merges 

that involve two or more conflicting chunks; and “dependencies”, representing the number of 
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failed merges that involve dependencies among chunks. We determined the presence of 

dependencies through a manual analysis focused on syntactical dependencies, that is, using 

the same language constructs across different chunks. Thus, there are no false positives 

considering, for instance, local variables with the same identifier in different scopes.  

 
} 

version 1 version 2 
private static FieldDeclaration  
      createField(LoggingFramework framework, 
            Annotation source, 
            ClassLiteralAccess loggingType, 
            String logFieldName, 
            boolean useStatic) { 

public static FieldDeclaration  
      createField(LoggingFramework framework, 
            Annotation source,  
            ClassLiteralAccess loggingType, 
            String loggerCategory) { 

int pS = source.sourceStart, pE = source.sourceEnd; 
Conflicting chunk A 

ClassLiteralAccess loggingType = selfType(owner, source); 
version 1 version 2 

FieldDeclaration field = 
     createField(framework, 
           source, 
           loggingType, 
           logFieldName, 
           useStatic); 

FieldDeclaration field =      
     createField(framework, 
           source, 
           loggingType, 
           loggerCategory); 

fieldDeclaration.traverse(new SetGeneratedByVisitor(source), typeDecl.staticInitializerScope); 
Conflicting chunk B 

Figure 22. Dependent chunks of merge f956ba from project Lombok. 

Table 11. Dependencies in failed merges. 

Projects 
Failed merges 

Total Conflicting chunks > 1 Dependencies 
ANTLR4 22 12 (55%) 3 (14%) 
Lombok 14 9 (64%) 3 (21%) 
MCT 18 9 (50%) 4 (22%) 
Twitter4J 36 21 (58%) 6 (17%) 
Voldemort 57 41 (72%) 26 (46%) 
Total 147 92 (63%) 42 (29%) 

 

Across the 5 projects we analyzed, the percentage of failed merges that involve 

multiple conflicting chunks and have dependencies among 2 or more of the conflicting chunks 

varies from 14% to 46%. When considering just the failed merges with multiple conflicting 

chunks, a range of 25% to 63% of them involve dependencies, indicating that a significant 

opportunity exists for new merge tools to leverage these dependencies in assisting developers 

to find the best order in which the chunks should be addressed for resolution. 

Table 12 lists the most frequent association rules for conflicts involving different 

(combinations of) language constructs across merges, with support and confidence thresholds 

of 10% and 50%, respectively. The table is similar to Table 7, but instead of providing results 
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at the level of individual chunks, it presents association rules at the level of entire failed 

merges. The first rule, as an example, is to be interpreted as follows: a method signature and a 

variable co-occur in 20% of all failed merges (whether in a single chunk or across chunks). 

Additionally, the presence of a method signature in a chunk of a failed merge means a 

variable is also in some chunk of the same failed merge 94% of the cases, while having 

method signature present in a chunk of a failed merge increases the chances of having 

variable in some chunk of the same failed merge by 82% as compared to the frequency that 

variable usually appear in failed merges. 

Table 12. Relation among language constructs that belong to failed merges. 

Association rule Sup. Con. Lift 
Method signature Æ variable 20% 94% 1.82 
Method declaration, method invocation Æ variable 20% 91% 1.76 
If statement Æ method invocation, variable 24% 69% 1.75 
Annotation Æ method declaration 11% 73% 1.72 
Commentary, method invocation Æ variable 24% 85% 1.64 
If statement, method invocation Æ variable 24% 85% 1.64 
If statement, variable Æ method invocation 24% 90% 1.63 
Method declaration, variable Æ method invocation 14% 86% 1.56 
Commentary, variable Æ method invocation 24% 85% 1.54 
Method signature Æ method invocation 18% 84% 1.52 
If statement Æ variable 27% 76% 1.47 
If statement Æ method invocation 28% 80% 1.45 
Method invocation, variable Æ commentary 24% 60% 1.40 
Method invocation Æ variable 39% 72% 1.39 
Variable Æ method invocation 39% 76% 1.38 
Commentary Æ variable 28% 65% 1.26 
Commentary Æ method invocation 28% 65% 1.18 
Import Æ method invocation 16% 52% 1.01 
 

Unsurprisingly, the rule method signature Æ method invocation, which represents a 

situation where method signature and method invocation occur together in 18% of failed 

merges, did not appear when considering single chunks. Method invocation, after all, tends to 

appear in a different part of a source file where the corresponding declaration is made. 

Association rules such as this one may thus be the source for heuristics to prune the search 

space of alternative orderings for resolving conflicting chunks. More surprisingly, though, is 
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the presence of association rules such as method signature Æ variable. This association rule 

appears to be quite disconnected, in some ways, but a closer inspection reveals that it 

indicates some common cases that might be exploited. For instance, Figure 23 shows an 

example of method signature Æ variable, in which the method signature provides a clue on 

how to resolve the variable conflict by looking at its return type (Token vs. Symbol).    

// public List<Integer> states; 
version 1 version 2 

… 
public int s = -1; 
public Token start, stop; 

public Symbol start, stop; 
… 
public int ruleIndex; 

/** Set during parsing to identify which alt of rule parser is in. */ 
Conflicting chunk A 

} 
version 1 version 2 

public Token getStart() { return start; } 
public Token getStop() { return stop; } 

… 
public Symbol getStart() { return start; } 
public Symbol getStop() { return stop; } 
… 

/** Used for rule context info debugging during parse-time, not so much for ATN debugging */ 
Conflicting chunk B 

Figure 23. Dependent chunks of merge 92ae0f from project ANTLR4. 

Considering the automatic analyses, we also analyzed the association rules extracted 

from failed merges occurring in the larger sample of projects. Table 13 shows the top ten 

association rules regarding support. As in the manual analysis, we realize that the support of 

the association rules increased for rules extracted from failed merge. A lesson we can learn 

from this table is that in most of the cases, nine to be precise, the difference between the 

directions of the rules is greater than 10% and in 5 rules this difference is greater than 20%. 

This shows us that the direction of association rules can tell which language constructs are a 

signal that another language construct will appear in the same failed merge. For instance, the 

occurrence of variable in a conflicting chunk indicates that a method invocation will also be 

in place in 95% of the failed merges, but the occurrence of a method invocation leads to 

having variable in just 66% of the failed merges.  

By comparing Table 12 and Table 13, one can observe the higher values of support of 

the results generated in the automatic analysis, as well as a side-effect of having many rules 

comprising a single construct in the antecedent and in the consequent. This effect is generated 

because a chunk with if statement, method invocation, and variable supports the association 

rule “if statement, method invocation Æ variable” and “method invocation Æ variable”, but a 

chunk comprising the constructs method invocation and variable just supports the second 

association rule. Thus, rules having a single construct in the antecedent tend to show higher 

support values in the large mining space provided by the automatic analysis. Future analyses 
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looking at rules with low support but very high lift may show less frequent but important 

patterns. 

Table 13. Association rules of merges with highest support. 

Association rule 
Sup Confidence Lift 

 J I  
Variable ' Method invocation 42% 95% 66% 1.49 
Comment ' Method invocation  34% 72% 53% 1.13 
If statement ' Method invocation 32% 89% 50% 1.39 
Attribute ' Method invocation 30% 78% 47% 1.22 
If statement ' Variable 27% 76% 62% 1.71 
Variable ' Comment 26% 60% 56% 1.27 
Method signature ' Method invocation 24% 89% 38% 1.39 
Attribute ' Comment 23% 61% 49% 1.29 
If statement ' Comment 22% 62% 48% 1.31 
Method declaration ' Method invocation 22% 72% 34% 1.12 

 

An interesting result in Table 13 is related to the association rules with method 

signature or method declaration in the antecedent, and method invocation in the consequent. 

Contrasting these rules with the ones in Table 10, we observe, for instance, that "method 

signature Æ method invocation” had its support and confidence increased from 8% to 24% 

and from 62% to 89%, respectively. Another case of interest happens with method declaration 

because the rule “method declaration ' method invocation” is not shown in Table 10 because 

it has support of just 4%, but appears in the rules extracted from failed merges with 22% of 

support. These cases enforce the arguments that generally a change/conflict in the method 

signature or method declaration generates a change/conflict in the method invocation.   

The results of manual and automatic analyses show different association rules that 

should be analyzed by a specialist to select the more promising ones to create new heuristics 

to resolve frequent types of conflicts. For example, any developer would say that method 

declaration and method invocation are related language constructs. However, the dependency 

between Method signature and Variable is not so simple to be identified without help of 

association rules, even though they are connected when there is an encapsulation of the fields.   

RQ5. What is the distribution of developer decisions?  

Considering the manual analyses, Erro! Fonte de referência não encontrada. shows 

that, across the 616 conflicting chunks found in the 5 projects, the primary choice that 

developers make when facing the need to resolve a conflicting chunk is to select 1 of the 
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versions (56%), either version 1 (V1, 21%) or version 2 (V2, 35%). This was, to us, quite an 

unexpected result. Given all the commentary and folklore around the merge problem and how 

difficult it is said to be to resolve merge conflicts (Duvall et al., 2007; Chacon, 2009), we had 

expected new code to be the most common choice. It is not, however: only 19% of conflicting 

chunks are resolved with an approach that involves writing new code. This means that a full 

81% of the conflicting chunks are resolved using only the contents from the code contained 

by the conflicting chunk without actually adding or editing lines of code (V1, V2, 

concatenation, and combination). While this does not necessarily mean that doing so is trivial, 

it does mean that merge resolution through one of these four strategies could well be 

supported not by yet more automation, but maybe through tool support that assists developers 

in making one of these four choices in the first place and, in the latter two cases, by helping 

them select and order the necessary lines of code. 

 
Figure 24. How developers resolve conflicts. 

Considering the predominance of resolutions based on version 1 and version 2, we 

selected a sample of merges that were resolved using these developer decisions. This sample 

shows that in some cases the code of both versions is equivalent (i.e., they perform the same 

task), changing just few parts or even being almost equal, but just changing the indentation 

(i.e., false-positive conflicts generated when using the physical merge). Another characteristic 

that we could notice is that in some cases one of the versions had its contents totally or 

partially removed, which transforms it in a resolution that does not perform the same task of 

its original version (that is, the source code of both versions is significantly different). 

Therefore, the developers should make the choice for one of the versions instead of 

combining them.   
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Figure 25 breaks down Figure 24 by project, and offers some interesting insights. 

First, some projects have up to 25.68% of resolutions involving new code, which, while more 

than the average of 19%, still reinforces that, for each of the projects, the majority of conflicts 

are resolved without writing new code. Second, some significant differences exist across the 

projects. For instance, the predominance of choices for version 2 in Voldemort (45.35%) is 

contrasted by a mere 4.35% choice of version 2 in MCT. MCT, on the other hand, had a high 

percentage of resolutions involving combination, especially when compared to Voldemort, 

where this choice was rarely made. As a final example, Twitter4j had half the resolutions 

(11.83%) involving new code compared to ANTLR4 (25.68%). It is clear that different 

projects can exhibit unique trends, which might be useful when it comes to supporting 

developers – even if simply by showing statistics on past resolution choices. 

 
Figure 25. How conflicting chunks are resolved in each project. 

We also analyzed resolution choices per developer. This information is summarized in 

Table 14, which lists, per project, the developers who performed at least 1 merge, the number 

of conflicting chunks each developer resolved (CH), the percentage of each decision (V1 – 

version 1; V2 – version 2; CC – concatenation; CB – combination; or NC – new code) that 

each developer took, and the percentage of conflicting chunks that they resolved in each 

project (Total). The last column sums up to 100% for each project.  

One pattern immediately stands out: for 4 of the projects, a single developer resolved 

the majority of the merge conflicts, despite the fact that the projects had code contributions 

from many more developers (Table 1 shows code contributions by 14, 13, 16, and 84 

developers to ANTLR4, MCT, Lombok, and Twitter4j, respectively). Especially for 

Twitter4j, this is a remarkable pattern: it indicates that one developer has the role of 
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gatekeeper. This is not out of line with typical open source practice, in which numerous 

contributors may submit patches, but few have actual commit privileges to integrate the 

patches into the main branch of development. ANTLR4, as well as Lombok, seem to have a 

pair of developers that assume that role, whereas in Voldemort the responsibility appears 

more divided (with four to six developers who resolve most merge failures). 
 

Table 14. How each developer resolves conflicting chunks. 

Project Developer CH V1 V2 CC CB NC Total 
ANTLR4 Terence Parr 28 25% 21% 14% 14% 25% 38% 
ANTLR4 Sam Harwell 46 24% 17% 11% 22% 26% 62% 
Lombok Roel Spilker 13 0% 46% 23% 31% 0% 22% 
Lombok Reinier Zwitserloot 46 22% 17% 7% 30% 24% 78% 
MCT Peter B. Tran 1 0% 100% 0% 0% 0% 2% 
MCT Dan Berrios 3 0% 0% 67% 33% 0% 7% 
MCT Christopher Webster 4 0% 0% 0% 25% 75% 9% 
MCT Victor Woeltjen 38 29% 3% 16% 34% 18% 83% 
Twitter4J Danaja 1 100% 0% 0% 0% 0% 1% 
Twitter4J Jsirois 2 100% 0% 0% 0% 0% 2% 
Twitter4J John Corwin 3 33% 67% 0% 0% 0% 3% 
Twitter4J Takao Nakaguchi 5 0% 80% 0% 0% 20% 5% 
Twitter4J Yusuke Yamamoto 82 29% 32% 11% 16% 12% 88% 
Voldemort Ismael Juma 2 0% 0% 50% 0% 50% 1% 
Voldemort Jay Kreps 6 0% 33% 0% 0% 67% 2% 
Voldemort Vinoth Chandar 6 50% 0% 17% 0% 33% 2% 
Voldemort Neha 7 0% 100% 0% 0% 0% 2% 
Voldemort Alex Feinberg 20 45% 50% 0% 0% 5% 6% 
Voldemort Lei Gao 26 31% 46% 8% 0% 15% 8% 
Voldemort Kirk True 44 14% 34% 18% 18% 16% 13% 
Voldemort Chinmay Soman 49 16% 51% 18% 4% 10% 14% 
Voldemort Roshan Sumbaly 87 10% 41% 8% 11% 29% 25% 
Voldemort Bhupesh Bansal 97 19% 51% 11% 2% 18% 28% 

 

While a number of developers have no clear preference, some developers appear more 

likely to resolve conflicts in the same manner. For instance, Lei Gao resolved conflicting 

chunks in almost 50% of the cases by choosing V2 (out of 26 total conflicting chunks); Takao 

Nakaguchi made the same choice in four out of 5 of the cases. Some of these patterns are 

related to the fact that one failed merge can involve multiple conflicting chunks, meaning that 

each of the conflicting chunks of that failed merge was resolved in the same way (by choosing 

one version, each time). Examples exist, however, of failed merges in which developers used 
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a variety of strategies. Roshan Sumbaly, for instance, facing a failed merge (970260) 

involving 28 conflicting chunks, chose V1 4 times and V2 12 times, combined both versions 5 

times, and wrote new code in 7 instances.  

We also examined whether the number of conflicting chunks in a failed merge had any 

effect on develop decisions as to how to resolve the conflicts. Table 15 shows the results, with 

column “Project” identifying the project, “#Chunks” offering a classification of the number of 

conflicting chunks involved in a failed merge (1, 2, 3-5, 6-15, and 16+), FM counting the 

number of failed merges with that number of chunks, “Total” presenting the total number of 

conflicting chunks, and the remaining columns identifying the chosen resolution strategies.  
 

Table 15. Distribution of failed merges by conflicting chunks. 

Project #Chunks FM Total V1 V2 CC CB NC 
ANTLR4 1 10 10 30% 30% 10% 10% 20% 
ANTLR4 2 4 8 38% 38% 25% 0% 0% 
ANTLR4 3-5 5 19 32% 11% 5% 16% 37% 
ANTLR4 6-15 3 37 16% 16% 14% 27% 27% 
ANTLR4 16+ - - - - - - - 
Lombok 1 9 9 22% 33% 33% 11% 0% 
Lombok 2 2 4 0% 0% 50% 25% 25% 
Lombok 3-5 4 15 13% 7% 7% 47% 27% 
Lombok 6-15 2 14 36% 43% 0% 14% 7% 
Lombok 16+ 1 17 6% 24% 0% 41% 29% 
MCT 1 5 5 0% 20% 0% 40% 40% 
MCT 2 6 12 8% 8% 42% 17% 25% 
MCT 3-5 1 4 50% 0% 50% 0% 0% 
MCT 6-15 2 25 32% 0% 4% 44% 20% 
MCT 16+ - - - - - - - 
Twitter4J 1 15 15 47% 13% 13% 13% 13% 
Twitter4J 2 8 16 38% 19% 25% 13% 6% 
Twitter4J 3-5 11 40 28% 40% 5% 18% 10% 
Twitter4J 6-15 2 22 18% 50% 5% 9% 18% 
Twitter4J 16+ - - - - - - - 
Voldemort 1 16 16 13% 31% 19% 6% 31% 
Voldemort 2 12 24 25% 29% 17% 8% 21% 
Voldemort 3-5 8 33 6% 45% 9% 9% 30% 
Voldemort 6-15 17 154 18% 56% 12% 3% 11% 
Voldemort 16+ 4 117 20% 37% 9% 10% 25% 
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*/ 
version 1 version 2 

CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR 
cannot generate '<arg>' code as of version " + 
Tool.VERSION, ErrorSeverity.ERROR_ONE_OFF), 

CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR 
cannot generate <arg> code as of version " + 
Tool.VERSION, ErrorSeverity.ERROR), 

 
 

original merge resolution 
*/ 
CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate <arg> code as of version " + 
Tool.VERSION, ErrorSeverity.ERROR), 
 

eventual merge resolution 
*/ 
CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate <arg> code as of version " + 
Tool.VERSION, ErrorSeverity.ERROR_ONE_OFF), 

Figure 26. Conflicting chunk extracted from project ANTLR4 of merge d85ea0 that was 
resolved by a commit using the contents of version 2, but in a latter commit the 

resolution was changed to the contents of version 1 with a small tweak. 

Table 16 tallies the number of times a commit (with associated chunks) changed code 

from a previous commit in the month before, together with the number of times such a 

commit (and its associated chunks) actually represented a postponed resolution. Clearly, not 

every change to code from a previous commit is a postponed resolution, since it is natural for 

future changes to build on previous changes. The majority of these commits were indeed of 

this nature, but six of the commits represented postponed merges. Two of those (1 for 

ANTLR4 and Lombok each) are merges in which a single conflicting chunk was postponed 

(out of 1 chunk for ANTLR4 and 8 chunks for Lombok); the other 4 involved a total of 11 

conflicting chunks that were postponed. This is an interesting result, as it indicates that it is 

not necessarily the failed merges with high number of chunks that are postponed (recall from 

the discussion in Section 3.5 that a non-trivial portion of merges involve greater than five 

conflicting chunks).  

Table 16. Changes in conflicting chunks areas. 

Project 
Merges Conflicting Chunks 

Changed Postponed Changed Postponed 
ANTLR4 3 (11%) 1 (4%) 3 (3%) 1 (1%) 
Lombok 5 (23%) 1 (5%) 15 (22%) 1 (1%) 
MCT 5 (29%) 0 (0%) 17 (33%) 0 (0%) 
Twitter4J 4 (11%) 0 (0%) 7 (7%) 0 (0%) 
Voldemort 20 (31%) 4 (6%) 58 (14%) 11 (3%) 
Total 37 (22%) 6 (4%) 100 (14%) 13 (2%) 

 

Overall, postponed merges happen fairly rarely (4% of the time) and involve only 2% 

of all conflicting chunks, but nonetheless do take place. In manually examining all six of the 
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failed merges that were postponed, no apparent pattern or reason seems to dominate. In one 

case, the developer adjusted the variable name due to a rename refactoring that they 

postponed (see Figure 27). In other cases, the developers commented or simply left the source 

code in conflict to resolve it afterwards. For instance, in Figure 28 we observe 2 developers 

working in parallel on the same class on the same day, choosing to postpone the merge of a 

commentary region multiple times. In fact, they performed a series of rebases and, in the end, 

simply merged without removing the merge markers. One week later one of them committed 

(05f23e) with a message “code clean up” that finally removed the merge markers. 
 

Version 1 version 2 
if ( !isDirectDesc… && !callSuper && implicit 
) { 

errorNode.addWarning("… If this is 
intentional, add 
'@EqualsAndHashCode(callSuper = false)' 
to your type."); 

if ( !isDirectDesc… && !callSuper ) { 
errorNode.addWarning("…"); 

 

} 
 

original merge resolution 
if ( !isDirectDesc… && !callSuper && implicit ) { 
  errorNode.addWarning("… If this is intentional, add '@EqualsAndHashCode(callSuper = false)' 
to your type."); 
} 

 
eventual merge resolution 

if ( !isDirectDesc… && !callSuper && implicitCallSuper ) { 
  errorNode.addWarning("… If this is intentional, add '@EqualsAndHashCode(callSuper = false)' 
to your type."); 
} 

Figure 27. Conflicting chunk extracted from project Lombok (merge 4e152f) that was 
resolved by a commit using the contents of version 1, but in a latter commit (f1124a) was 

changed due to a refactoring. 
first rebase with postponed resolution 

… 
======= 
>>>>>>> add clientId for voldemort client 
… 
 

second rebase with postponed resolution 
… 
<<<<<<< HEAD 
======= 
>>>>>>> add clientId for voldemort client 
======= 
>>>>>>> Adding System store functionality 
… 
 

merge with postponed resolution 
… 
<<<<<<< HEAD 
<<<<<<< HEAD 
======= 
>>>>>>> add clientId for voldemort client 
======= 
>>>>>>> Adding System store functionality 
======= 
>>>>>>> leigao/client-registry 
… 

Figure 28. Sequence of two rebases (a21bf2, 234ac9) followed by a merge (3fbef9), all 
with postponed resolutions, in project Voldemort. 
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Across all 13 conflicting chunks that were part of postponed merges, the dominant 

developer decision for the original resolution was new code (8 occurrences) followed by 

version 2 (5 occurrences), and for the eventual resolution was new code (12 occurrences) 

followed by 1 version 1. From this, we can observe that postponed merges seem to address 

situations that are complex to resolve (though not necessarily with a large number of chunks), 

and generally require new code to be written. 

Considering the automatic analyses, Figure 29 presents the distribution of developers' 

decisions based on the number of conflicting chunks resolved according to each decision. In 

compliance with results from the manual analysis, most chunks are resolved by the choice of 

1 of the versions, either Version 1 – in 50% of the chunks – or Version 2 – in 25% of the 

chunks. Moreover, 3% of the conflicting chunks are resolved through the concatenation of 

Version 1 with Version 2, or vice-versa. Additionally, 9% of the chunks are resolved by 

combining subsets of Version 1 and Version 2. Finally, 13% of the conflicting chunks need 

new code to be resolved, while only 0.4% of the chunks are resolved using none of the 

versions, that is, the developer resolves to exclude the content of both versions.   

 

Figure 29. Distribution of developer decisions. 

By comparing the charts in Figure 29 and Figure 24, we observe that the number of 

merge resolutions involving new code decreased from 19% to 13%. This shows that even 

considering a huge number of projects the source code used to resolve conflicting chunks is 

frequently present in one of the versions, either as a full version or its parts. Another decision 

that changed drastically in frequency is version 1, which increased from 21% to 50% – half of 

the chunks analyzed in the 2,731 projects selected for automatic analysis are resolved by 
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picking version 1. This is surprising if compared to the frequency of adding new code, but can 

be explained if we take into account that developers resolve merges to integrate their changes 

and they might frequently choose the version that has their contributions to some task.  

Only 13% of our sample of conflicting chunks needs complex resolutions on which 

developers introduce new code. However, a closer look on the distribution of developer 

resolutions in our sample reveals that many projects have a significant portion of their 

conflicting chunks resolved manually, as can be observed in the large inter-quartile range and 

elongated upper-whisker for the third box-plot from left to right in Figure 30. The vertical 

axis of this box-plot presents the percentage of chunks in a project that were resolved by a 

given developer decision. We can observe that, for any given developer decision, at least one 

project had all of its conflicting chunks resolved according to that decision. By concentrating 

on the box-plot representing the introduction of new code (NC), we observe that despite of the 

low mean number of failed merges requiring new code (close to 10%), more than 20% of the 

chunks of 25% of the projects required the addition of new code. Furthermore, the trend for 

selecting resolutions for failed merges may depend on other characteristics of the projects and 

some projects seem more likely to use specific decisions. 

 
Figure 30. Box-plots for the distribution of developer decisions. 
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The results of manual and automatic analyses show the same message: few chunks 

are resolved by using new code. This motivate the creation of automatic approaches, since in 

most of the cases the source code used in the resolution of chunks is already in the version 1 

or 2. 

RQ6. What is the distribution in difficulty level of kinds of conflicts? 

Based on the concept of cheap and expensive chunks presented in Section 3.2, we 

analyzed the approximate difficulty of different kinds of conflicts with the help of the 

following Cost Ratio: 

𝐶𝑅 = (#𝐸𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒 𝑐ℎ𝑢𝑛𝑘𝑠)/(#𝐶𝑜𝑛𝑓𝑙𝑖c𝑡𝑖𝑛𝑔 𝑐ℎ𝑢𝑛𝑘𝑠) 

For each kind of conflict found in the five projects selected for manual analysis, we 

catalogued the developer decisions that were made for the conflicting chunks in which that 

kind of conflict occurred, and then assigned the appropriate weight (cheap or expensive) 

based on the developer decisions made. The above cost ratio, then, is calculated as the 

percentage of expensive chunks over all chunks with that kind of conflict. The higher the CR 

value, the more difficult the kind of conflict appears to be resolved. Considering the manual 
analyses, Table 17 shows the kinds of conflicts that appear in more than ten conflicting 

chunks, in ascending order of their CR.  

The kind of conflicts consisting only of variable or import seems to be the easiest to 

resolve, as these chunks rarely involve writing new code. Concatenation is the most frequent 

decision in resolving these kinds of conflicts, with version 1 and version 2 also chosen 

frequently. Perhaps counter intuitively, combination is also used at times. This represents 

situations in which multiple variables or multiple imports are in conflict, and developers 

rearrange them, or a subset, in a new order. An example is shown in Figure 31, with the 

developer adopting both versions of the conflicting chunk but reordering some imports 

according to their preferred order.  

On the other hand of the spectrum, the kinds of conflicts of commentary and if 

statement, method invocation seem to be most difficult to resolve, most often involving 

combination and new code as the resolution strategies (relative to the total number of kinds of 

conflicts of that type). Commentary is unsurprising, as comments are normally written in 

natural language and thus not a good match for automation. The fact that the if statement, 

method invocation kind of conflict appeared among the most difficult surprised us, however, 

especially when compared to the if statement, method invocation, variable kind of conflict. 
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The latter has more language constructs involved, but appears significantly easier to address. 

Inspecting the two kinds of conflicts closely, we noticed that the if statement, method 

invocation, variable kind of conflict often consisted of a conditional method invocation that 

assigned a variable a value, whereas the if statement, method invocation usually involved 

more complex behavior. The example in Figure 32, for instance, shows a situation in which 

concatenation and even combination would fail: the message id of Native Backup had to be 

updated to 30.  

 

Table 17. Cost ratio of resolving kinds of conflicts. 

Kind of conflict V1 V2 CC CB NC CR 

Variable 9 
(24.3%) 

8 
(21.6%) 

13 
(35.1%) 

4 
(10.8%) 

3 
(8.1%) 19% 

Import 12 
(20.0%) 

14 
(23.3%) 

22 
(36.7%) 

10 
(16.7%) 

2 
(3.3%) 20% 

If statement, method invocation,  
variable 

4 
(21.1%) 

10 
(52.6%) 

1 
(5.3%) 

2 
(10.5%) 

2 
(10.5%) 21% 

Method declaration 10 
(17.5%) 

24 
(42.1%) 

11 
(19.3%) 

4 
(7%) 

8 
(14%) 21% 

If statement 6 
(30.0%) 

7 
(35%) 

1 
(5%) 

1 
(5%) 

5 
(25%) 30% 

Commentary,  
method declaration 

4 
(25.0%) 

5 
(31.3%) 

2 
(12.5%) 

3 
(18.8%) 

2 
(12.5%) 31% 

Method signature 5 
(26.3%) 

8 
(42.1%) 

0 
(0%) 

1 
(5.3%) 

5 
(26.3%) 32% 

Method invocation 6 
(9.5%) 

31 
(49.2%) 

5 
(7.9%) 

10 
(15.9%) 

11 
(17.5%) 33% 

Method invocation,  
variable 

17 
(29.3%) 

20 
(34.5%) 

1 
(1.7%) 

10 
(17.2%) 

10 
(17.2%) 34% 

If statement,  
method invocation 

2 
(16.7%) 

3 
(25%) 

2 
(16.7%) 

2 
(16.7%) 

3 
(25%) 42% 

Commentary 4 
(28.6%) 

4 
(28.6%) 

0 
(0%) 

1 
(7.1%) 

5 
(35.7%) 43% 
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import com.sun.tools.javac.tree.JCTree.JCLiteral; 
version 1 version 2 

import com.sun.tools.javac.tree.JCTree.JCPri…; 
import com.sun.tools.javac.tree.JCTree.JCU…; 
import com.sun.tools.javac.tree.TreeMaker 

 

import com.sun.tools.javac.tree.JCTree.JCMod…; 
import com.sun.tools.javac.tree.JCTree.JCTyp…; 
import com.sun.tools.javac.tree.TreeMaker; 
import com.sun.tools.javac.util.List; 
import com.sun.tools.javac.util.Name; 

/** 
 

merge resolution 
import com.sun.tools.javac.tree.JCTree.JCLiteral; 
import com.sun.tools.javac.tree.JCTree.JCMod…; 
import com.sun.tools.javac.tree.JCTree.JCPri…; 
import com.sun.tools.javac.tree.JCTree.JCTyp…; 
import com.sun.tools.javac.tree.JCTree.JCU; 
import com.sun.tools.javac.tree.TreeMaker; 
import com.sun.tools.javac.util.List; 
import com.sun.tools.javac.util.Name; 
/** 

Figure 31. Conflicting chunks among import declarations from project Lombok (merge 
45697b). 

A final highlight concerns the method declaration kind of conflict. Developers decide 

upon 1 version or the other in the vast majority of cases (version 1 in 10 cases, version 2 in 

24) and quite frequently they also concatenate both (11 cases). Only in four cases did they 

combine the two by choosing a subset of lines of each, and in eight cases did they integrate 

the two with new code to help them do so. 

 
} 

version 1 version 2 
if (hasInitiateRebalanceNodeOnDonor()) { 
  output.write…(28, 
getInitiateRebalanceNode…()); 
} 
if (hasDeleteStoreRebalanceState()) { 
  output.write…(29, 
getDeleteStoreRebalanceS…()); 

if (hasNativeBackup()) { 
  output.write…(28, getNativeBackup()); 
 

} 
 

merge resolution 
} 
if (hasInitiateRebalanceNodeOnDonor()) { 
  output.write…(28, getInitiateRebalanceNode…()); 
} 
if (hasDeleteStoreRebalanceState()) { 
  output.write…(29, getDeleteStoreRebalanceS…()); 
} 
if (hasNativeBackup()) { 
  output.write…(30, getNativeBackup()); 
} 

Figure 32. Conflicting chunk from project Voldemort from merge 491863. 

Considering the automatic analyses, Table 18 shows the kinds of conflicts that appear 

in more than 2,000 conflicting chunks collected from the larger sample of projects, in 

ascending order of CR. Surprisingly and differently from Table 17, commentary appears as 

the most simple kind of conflict to resolve, being frequently resolved by adopting version 1 

(76.5%). On the other hand, method declaration is the second easiest kind of conflict to 

resolve, as developers typically resolve conflicting declarations by picking the new version 

(version 1), the old one (version 2), or by concatenating both method declarations, if they do 
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not have the same goal; few cases indeed demand that developers add new code to the 

declaration. 

Another observation extracted by comparing Table 17 to Table 18 is that the kind of 

conflict comprising attribute and method invocation is one of the hardest to resolve. For the 

sample of projects involved in the automatic analysis, 9.5% of the chunks presenting this kind 

of conflict are resolved by combining both versions, while 21% are resolved by inserting new 

code. In the manual analysis, these developer decisions sum up 17.2% of the choices to 

resolve chunks of the method invocation, variable kind. Finally, 9.6% of the chunks involving 

import are resolved by adding new code, against 3.3% as observed in the manual analysis. We 

analyzed some conflicting chunks that comprise only import declarations and were resolved 

using new code to understand why this happened. We observed that in some cases the 

developers changed the use of wildcard by the direct use of the imports, avoiding using the 

whole content of the packages. Also, the developers changed the context of conflicting 

chunks, which does not allow us to find the correct boundaries of chunks and, as a 

consequence, classify their resolution as new code. Additionally, we also noticed that in some 

cases developers add new import declarations that are complementary to the ones that are 

already in place. For instance, when there is an import declaration to List and the developer 

add an import to ArrayList. All in all, although the chunks resolutions were classified as new 

code, the resolutions can be automated using refactoring tools that organize the imports. 
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Table 18. Cost ratio of resolving kinds of conflicts. 

Kind of conflict V1 V2 CC CB NC NN CR 

Commentary 14874  
(76.5%) 

3505 
(18%) 

127  
(0.7%) 

249 
(1.3%) 

649 
(3.3%) 

43 
(0.2%) 5% 

Method declaration 1885 
(51.9%) 

1209 
(33.3%) 

153 
(4.2%) 

161 
(4.4%) 

220 
(6.1%) 

4 
(0.1%) 12% 

Comment, Method invocation 2383 
(68.7%) 

525 
(15.1%) 

62 
(1.8%) 

187 
(5.4%) 

288 
(8.3%) 

24 
(0.7%) 16% 

Method invocation 7594 
(56%) 

3458 
(25.5%) 

334 
(2.5%) 

745 
(5.5%) 

1393 
(10.3%) 

25 
(0.2%) 19% 

Method signature 2035 
(56.4%) 

943 
(26.2%) 

2 
(0.1%) 

53 
(1.5%) 

569 
(15.8%) 

4 
(0.1%) 21% 

Comment, Method declaration 1197 
(48.1%) 

769 
(30.9%) 

84 
(3.4%) 

167 
(6.7%) 

264 
(10.6%) 

7 
(0.3%) 21% 

Annotation, Method declaration 926 
(45.4%) 

590 
(28.9%) 

137 
(6.7%) 

132 
(6.5%) 

250 
(12.2%) 

6 
(0.3%) 23% 

Attribute, Comment 1053 
(49.9%) 

463 
(21.9%) 

170 
(8.1%) 

233 
(11%) 

186 
(8.8%) 

5 
(0.2%) 25% 

Attribute 3093 
(46.6%) 

1634 
(24.6%) 

445 
(6.7%) 

428 
(6.5%) 

1019 
(15.4%) 

15 
(0.2%) 28% 

Method invocation, Variable 3949 
(44.5%) 

2591 
(29.2%) 

62 
(0.7%) 

835 
(9.4%) 

1419 
(16%) 

9 
(0.1%) 34% 

If statement, Method invocation 1326 
(48.7%) 

638 
(23.4%) 

59 
(2.2%) 

410 
(15%) 

290 
(10.6%) 

2 
(0.1%) 35% 

Import 7338 
(35.7%) 

5377 
(26.2%) 

2058 
(10%) 

3493 
(17%) 

1964 
(9.6%) 

308 
(1.5%) 36% 

If statement, Method invocation, 
Variable 

1345 
(45.2%) 

801 
(26.9%) 

25 
(0.8%) 

384 
(12.9%) 

420 
(14.1%) 

3 
(0.1%) 37% 

If statement 3773 
(49.8%) 

1688 
(22.3%) 

47 
(0.6%) 

128 
(1.7%) 

1932 
(25.5%) 

2  
(0%) 37% 

Attribute, Method invocation 2130 
(40.1%) 

1349 
(25.4%) 

196 
(3.7%) 

506 
(9.5%) 

1114 
(21%) 

22 
(0.4%) 44% 

 
The results of manual and automatic analyses show that the same situations in 

different set of projects can have different level of difficulty. For instance, import 

declarations is classified as easy in the corpus of the manual analyses and hard in the corpus 

of the automatic analyses. However, even in cases where the chunks resolutions are classified 

as new code, after a deeper analysis it was possible to observe that these resolutions can also 

be applied in a systematic way.  
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RQ7. What, if any, patterns exist between the language constructs of conflicting chunks and 

developer decisions?  

Considering the manual analyses, our seventh analysis focuses on the possible 

relationships between language constructs and developer decisions, which we explored 

through association rules. Table 19 shows 20 association rules extracted from the 5 projects 

selected for manual analysis, ordered by lift, having absolute support threshold of 6 

occurrences. Support values are small for most of the rules due to the large number of 

potential combinations among language constructs and developer decisions, resulting in a vast 

space that is sparsely covered by the 616 conflicting chunks. However, various patterns still 

exist, which we discuss in the following. 

Table 19. Relationship Between Language Constructs and Resolutions.  

Association rules Sup. Con. Lift 
Annotation, method invocation Æ new code 1% 75% 3.95 
Annotation, variable Æ new code 1% 58% 3.07 
Import Æ concatenation 4% 34% 2.98 
For Æ combination 1% 33% 2.50 
Method invocation, try statement Æ combination 1% 32% 2.40 
For statement, try statement Æ V2 1% 75% 2.12 
Commentary, method signature, variable Æ V2 1% 75% 2.12 
Commentary, method signature Æ V2 2% 67% 1.88 
Try statement Æ combination 1% 25% 1.88 
Method declaration, method invocation Æ new code 1% 35% 1.86 
For statement, variable Æ V2 1% 64% 1.82 
Method signature, variable Æ V2 2% 60% 1.70 
Commentary, for statement Æ V2 1% 60% 1.70 
Annotation Æ new code 1% 32% 1.68 
Return Æ new code 1% 31% 1.62 
Method invocation, method signature, variable Æ V2 1% 57% 1.61 
Commentary, method declaration Æ combination 1% 21% 1.59 
If statement, method invocation Æ combination 2% 21% 1.55 
Method declaration, variable Æ new code 1% 29% 1.50 
Commentary, method invocation, variable Æ V2 2% 52% 1.47 

 

First, we note that 8 out of 20 cases involve version 2 as developer decision. Having 

version 2 as the most common choice developers make (see also Figure 24) is, in a way, not 

surprising. By choosing version 2 over version 1, the developer resolving a conflict is 

choosing to keep established code that was recently added by other developers to the main 
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branch, instead of “overwriting” it with the changes they made in their own workspace. 

Existing changes usually impose a certain degree of inertia, causing developers to refrain 

from modifying it.  

Second, Table 19 includes the association rule import Æ concatenation with 34% of 

confidence, meaning that in 34% of the conflicting chunks that have import, the developer 

decision is concatenation. Moreover, this association rule has lift 2.98, denoting a strong 

relation between import and concatenation (i.e., when import is involved, it increases the 

chances of choosing concatenation by 198%). A question is why developers do not choose 

concatenation all the time, as only 36.7% of developer decisions are concatenation (20% 

version 1, 23.3% version 2, 16.7% combination, and 3.3 new code). The issue here is the fact 

that resolving just the chunk pertaining to the import does not take place in isolation – other 

resolutions, to other conflicting chunks, dictate what import statements are ultimately needed. 

That is, developers take care to not over-include imports when they do not need them. 

Third, the association rule annotation, method invocation Æ new code has the highest 

lift and confidence values, indicating that this is a difficult conflict that does not lend itself 

well to choosing one of the versions, concatenating the versions, or combining the versions’ 

existing code in some way. The same is true for annotation, variable Æ new code. Based on 

inspecting these examples, the reason is that annotations tend to add extra complexity to the 

code that involves serious subtleties. For instance, Figure 33 shows a conflicting chunk in 

which both developers had the same goal – serialize the object as text – and both decided to 

use overriding to accomplish it. They, however, each chose to override a different method 

from the superclass (toString() versus getText()). Given that an @override annotation 

indicates that changes in a method may lead to side effects in the behavior of the superclass 

due to polymorphism, care must be taken when the changes are merged. In this example, the 

resolution consisted of using version 2, but replacing setup with lazyInit from version 1.  
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} 
version 1 version 2 

/** Grab *all* tokens from stream and return 
string */ 
@Override 
public String toString() { 
  lazyInit(); 
 
  fill(); 
  return toString(0, tokens.size()-1); 
} 

/** Get the text of all tokens in this buffer. 
*/ 
@NotNull 
@Override 
public String getText() { 
  if ( p == -1 ) 
    setup(); 
  fill(); 
  return getText(Interval.of(0,size()-1)); 
} 

@NotNull 
 

merge resolution 
} 
/** Get the text of all tokens in this buffer. */ 
@NotNull 
@Override 
public String getText() { 
  lazyInit(); 
  fill(); 
  return getText(Interval.of(0,size()-1)); 
} 
@NotNull 

Figure 33. Conflicting chunk with annotations from project ANTLR4 (merge 18f535). 

Considering the automatic analyses, we also collected association rules among 

combinations of language constructs and developer decisions to analyze whether some 

decisions are frequently applied to conflicting chunks with certain language constructs in the 

larger sample of projects. As for the manual analysis just described, such rules were collected 

on a conflicting chunk basis, as different chunks pertaining to the same failed merge may be 

resolved differently. Table 20 shows the ten association rules having the highest lift. Support 

values (as percentages of the total number of chunks) are small for most rules due to the huge 

number of potential combinations of language constructs and developer decisions, which 

creates a large space of rules which is not densely covered even taking into account that our 

sample comprises 175,805 conflicting chunks.  

As in the manual analysis, import is mostly resolved by concatenation. The automatic 

analysis reveals that combination is also frequently used to resolve conflicts involving import. 

Conversely, we notice the dominance of indications to new code resolutions among the ten 

rules presenting the highest lift in Table 20. Other interesting situation happens for rules that 

appear both in the manual and automatic analysis with similar lift, but leading to different 

developer decisions. For instance, method signature, variable points to resolution using 

version 2 in the manual analysis and new code in the automatic one. This denotes that such 

rule is not as common as suggested by the manual analysis and further analyses should be 

executed to understand if patterns are maintained for the same project and organization.  
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Table 20. Relation between language constructs and resolutions with highest lift. 

  

We could also realize by comparing the tables that the confidence values for all rules 

in Table 20 are much smaller than in Table 19. However, even a rule that appears thrice as 

much in the manual analysis might appear so many times with a smaller confidence that the 

nominal number justifies the investment in developing merge tools targeted specifically to 

address it. 

The results of manual and automatic analyses show interesting results. For 

instance, both point to specific resolutions that can be applied to a small or a large set of 

projects. For example, import is mostly resolved by concatenation. However, in some cases 

they diverge in terms of resolutions, which is the result of analyzing a huge number of 

projects with different methodologies and developers that can make different decisions when 

they face a conflict.  

RQ8. What is the correlation between the number of developers and the number of commits, 

merges, and failed merges? 

Most developers and researchers on software merge make an assumption that the 

number of developers has a direct effect in the number of commits, merges, and failed 

merges. It is generally assumed that the higher the number of developers, the higher the 

number of failed merges (Cavalcanti et al., 2015). The intuition behind the common sense is 

that more developers working on a project increases the chances of parallel work over the 

same artifact and, therefore, leads to the need to integrate these changes manually. This 

assumption motivated the development of awareness approaches (Brun et al., 2011b) and was 

used as a criterion to select projects in studies that analyze merge scenarios (Cavalcanti et al., 

Association rules Sup. Conf. Lift 
Import  J Concatenation 1% 9% 2.59 
Import J Combination 2% 17% 1.97 
Method invocation, method signature  J New code 2% 21% 1.61 
Method signature, variable  J New code 1% 20% 1.55 
Method invocation, Return statement  J New code 1% 20% 1.53 
Return statement J New code 1% 19% 1.45 
Attribute, method invocation J New code 2% 18% 1.45 
Method signature J New code 2% 18% 1.44 
Comment, method invocation, variable J New code 1% 18% 1.41 
Comment, variable J New code 1% 18% 1.39 



88 
 

2015). However, to the best of our knowledge, there is no study that provides strong 

evidences about the correlation between the number of developers and failed merges. 

Considering the automatic analyses, we calculated the number of developers, commits, 

merges, and failed merges in the automatic corpus, as well as the correlations among these 

measures. Such correlations are shown in the Table 21.  

Table 21. Correlations among the number of developers, commits, merges, and failed 
merges. 

First Variable Second Variable Correlation 
Developers Commits 0.64 
Developers Merges 0.70 
Developers Failed merges 0.49 
Commits Merges 0.78 
Commits  Failed merges 0.65 
Merges Failed merges 0.81 

 

The interpretation of the strength of correlation values is not universal. According to 

Cohen (1992), values in the interval [0.1, 0.25) are considered weakly correlated, while values 

in the interval [0.25, 0.40) represent a moderate correlation, and values in the interval [0.4,1] 

are strongly correlated. On the other hand, Dancey and Reidy (2007) consider weak 

correlation in the interval [0.10, 0.40), moderate in the interval [0.40, 0.70), and strong 

correlation for values in the interval [0.70, 1]. Henceforth, we consider the more conservative 

Dancey and Reidy classification.  

According to our findings, developers and failed merges are only moderately 

correlated (correlation equals to 0.49). On the other hand, we observe that the number of 

merges is a good proxy for the number of failed merges. The number of merges has a strong 

correlation with failed merges (0.81) and can be easily extracted from the log of VCS, while 

the number of failed merges can only be determined by examining the contents of the files 

involved in a merge, requiring researchers to clone the project repository to collect data and 

replay all the merges cases. Therefore, researchers interested in projects having a high number 

of failed merges may select projects with a high number of merges, calculating the number of 

merges from the log of the VCS instead of replaying all the merge cases to identify if they 

failed or succeeded. 

Researchers might also be interested in projects with a high number of merges. The 

number of developers can be used as proxy to select such projects, since it is strongly 
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correlated with the number of merges (0.70) and can be extracted using a single query from 

the GitHub API, thus avoiding the cost of cloning the project’s repository and then parsing the 

output of the log command. An interesting observation, though, is that the transitivity 

property does not hold for correlation. Although the number of developers is a good proxy for 

the number of merges, and the number of merges is a good proxy for the number of failed 

merges, we cannot conclude that the number of developers is a good proxy for the number of 

failed merges. 

3.7 DISCUSSION 

Grounded in the results presented in the previous section, we now return to the 

original question that motivated our study in the first place: by examining in great detail the 

nature of merge conflicts, might it be possible to unearth information that could assist in the 

design of future merge tools? We believe the answer to this question is ‘yes, but with 

caution’, an answer upon which we expand in the following. 

It is clear from the results that merge conflicts represent a difficult problem to tackle 

generically. Some conflicts are small, involving a single conflicting chunk with merely a few 

language constructs (sometimes even just one). Other conflicts are large, with many 

conflicting chunks and many different language constructs involved. What may work in 

supporting one, may not work so well in the other. Even when merge conflicts are similar, of 

roughly the same size and with the same language constructs involved, it is apparent that 

developers still choose different ways of resolving the conflicts. A single, general, and 

automated solution, then, may not result in what the developer wanted. This is especially 

problematic if a developer does not carefully inspect the results of their merges to discover 

cases in which a merge produced the wrong result. 

Based on our results, we believe a space exists between searching for techniques that 

aim to automate resolution of all possible conflicts and techniques that offer a single base 

approach and defer to the user when the base approach encounters a problem. Specifically, we 

advocate an approach in which, in case of a conflict that results in a failed merge, several 

possible resolutions are identified and suggested to the developer in a convenient manner. 

From these, the developer chooses the resolution of choice and is further supported in 

executing this resolution if it requires some manual engagement.  

Supporting this observation is the fact that a limited set of language construct 

combinations occurs frequently. The identification of ‘several possible resolutions’, a 

necessary step as required by the approach suggested in the previous paragraph, is more 
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feasible by focusing on these combinations and developing a dedicated technique for each of 

the combinations. In the following, we substantiate the idea of assisted merge conflict 

resolution with three incremental conclusions that we draw from the results in the previous 

section.  

Conflicting chunks generally contain all of the necessary information to resolve them. As 

shown in Figure 29, only 13% of the conflicting chunks require developers to write extra code 

beyond what is already present in the chunk (as part of version 1, version 2, or both), given 

that the developers chose version 1, version 2, concatenation, and combination as the choices 

of resolving the conflicting chunk in 87% of the cases. This means that the necessary 

resources for resolving conflicts are in most cases inside the conflicting chunks. While a 

developer certainly may need to look elsewhere in the code, for the actual change that must be 

generated, the source code lines in the conflicting chunk suffice. An example is shown in 

Figure 34, in which the solution is to concatenate the contents of version 1 (i.e., variable) and 

version 2 (i.e., annotation and method declaration).  

public final class RuleStartState extends ATNState { 
  public RuleStopState stopState; 

version 1 version 2 
public boolean isPrecedenceRule; @Override 

public int getStateType() { 
  return RULE_START; 
} 

} 
 

merge resolution 
public final class RuleStartState extends ATNState { 
  public RuleStopState stopState; 
  public boolean isPrecedenceRule; 
 
  @Override 
  public int getStateType() { 
    return RULE_START; 
  } 
} 

Figure 34. Conflicting chunk (top) and its resolution (bottom) of merge b14ca56 from 
project ANTLR4. 

More complex examples exist as well, in which the developer interleaves lines of code 

from version 1 and version 2. Figure 33 shows an example of this. While the resolution is 

non-trivial, with the developer needing to carefully order the lines of code from both of the 

versions, again no new code was written. 

To assist developers in these kinds of efforts, we believe effort is necessary to re-

envision merge tools, for example, to support developers in quickly reshuffling the lines of 

code from both versions into a single version, perhaps by drag and drop of relevant blocks of 

code from a column on the left (version 1) and a column on the right (version 2) to a middle 

column (merged version). Or, if the number of conflicting lines of code is small, a merge tool 
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could generate a set of reasonable permutations (excluding permutations that are syntactically 

incorrect or fail test cases) and present those to the developer. The latter solution likely 

requires the creation of various heuristics, as the number of possible permutations grows to 

the number of potential combinations of the lines involved. A combination of search-based 

software engineering techniques with smart ways of pruning the search tree will be necessary 

to identify most likely candidates. 

The resolution order of conflicting chunks matters. Sixty-three percent of failed merges 

analyzed in the manual analysis consist of multiple conflicting chunks, while in the automatic 

analysis this number slightly falls to 59% of the failed merges having more than 1 chunk. In 

traditional merge tools, once a merge fails, the developer is presented with all conflicting code 

at once for them to resolve as they please. The merge tool provides an editor in which the 

entire code of both versions is presented side-by-side, with color-coded marks indicating 

where the conflicting chunks reside. From there on, developers are left to their own devices, 

manually working out the desired result. 

We observe that resolving conflicting chunks in a given order often can be more 

effective. For instance, Figure 22 presented a conflict between the method signatures of 

createField (conflicting chunk A) and a conflict between their method invocations 

(conflicting chunk B). In this case, resolving chunk A before chunk B is advised, since the 

choice of method signature decides the subsequent choices of method invocation. Table 11 

further lends support, showing that 46% of failed merges with more than 1 conflicting chunk 

exhibited dependencies. Returning to the ANTLR4 example in Figure 23, we see that the 

failed merge involves two conflicting chunks. Resolving one of these chunks first would 

determine how the other chunk is to be resolved. Because dependencies exist on the presence 

of both variables in the method declaration, we know which method to choose should the 

variable be resolved. On the other hand, because methods have return types that must be 

compatible with the types of the variable, resolving the conflicts the other way around also 

would work; that is, once the developer chooses the return type, the rest of the merge conflict 

should be able to be handled automatically again.  

Rather than leaving it up to the developers to decide in which order they resolve 

multiple conflicting chunks, the association rules presented in Table 12 and Table 13 can be a 

source of support in the matter. For instance, the pattern method signature Æ method 

invocation says that 84% of the merges with conflicts in method signature found in the 5 

projects manually analyzed also have conflicts in method invocation. This result is also 
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supported by the automatic analysis, in which the confidence for this rule is 89%, leading to a 

larger number of merges that fit. Note that the opposite rule (method invocation Æ method 

signature) does not even appear in Table 12 due to having confidence lower than 50%, but in 

Table 13 we can see that the confidence is 38% and, thus, much lower than the opposite 

direction. This indicates that changes in the method signature imply changes in method 

invocation, and not the other way around – giving directionality to the order in which a 

developer might want to resolve chunks.  

Of course, not every set of conflicting chunks is covered by our set of association rules 

and, even when they are, the order implied for some set is not necessarily the order in which it 

should be resolved. This means, once again, that any merge tool that builds on this 

information takes an advisory rule: instead of automation, it should offer suggestions from 

which the developer can choose. One way that this could be done is simply through visually 

highlighting dependencies among conflicting chunks in the merge resolution tool. Another 

way might be to encode the set of association rules in an expert system that, together with 

some general rules inspired by the Java grammar, can field queries as to what the best order is 

for a given subset of conflicting chunks. Again, heuristics are likely needed here. 

Finally, we note that, as conflicting chunks are resolved by the developer, more 

information becomes available that might make it possible for the merge tool to resume 

merging automatically again. In the case of import Æ method invocation, for instance, 

choosing the method invocation should generally suffice for the merge tool to automatically 

choose the import necessary, rather than continuing with the manual approach of asking the 

developer for which import to use. This is equally true in the examples of Figure 22 and 

Figure 23. In both cases, resolving one of the conflicting chunks should cause the merge tool 

to resolve the other conflicting chunk automatically by choosing one of the two versions.  

Past choices of how conflicting chunks were resolved can inform future choices. Every 

merge is performed in isolation, meaning that any knowledge from how previous conflicting 

merges were addressed is not used. This, however, leaves an important opportunity on the 

table. In the answers of  RQ5 and RQ7, particularly, we showed how some developers exhibit 

certain patterns in their choices and how certain kinds of conflicts are resolved in similar 

ways. In particular, Table 19 and Table 20 show some association rules relating language 

constructs with developer decision. For instance, the presence of import declaration increases 

the chances of concatenation by 200%, which makes the lift an important metric to make 

decisions about the future resolutions. Based on this information, a straightforward extension 
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to existing merge tools would be to identify such historical patterns, and present them to 

developers when a similar situation appears (i.e., one could imagine a tool that communicates 

to the developer ‘In the past, you resolved 16 conflicts like this, 8 of those by choosing 

version 2, 6 by choosing version 1, and 2 by writing new code.’). 

This idea, however, can be taken further: what if it may be possible to develop a 

‘learning merge tool’? Such learning may play out at different levels. For instance, returning 

to the observation that it is often helpful to resolve conflicting chunks in a certain order, it 

may be possible for a tool to learn, based on the kinds of conflicts, association rules, and past 

ordering choices of the developer, what different preferred orders are for different situations. 

As another, and more elaborate example, one can think of merge tools that analyze 

historical changes in detail and attempt to build patterns from these changes. It may be, for 

instance, that a merge tool might learn that in 64% of cases a conflict in method parameters 

exists with 1 of the parameters used in the newly written code, and that that parameter must 

be renamed accordingly in the code of version 1. Such a pattern is invisible to individual 

developers, but a learning approach might discover it. 

The idea of a learning merge tool is not necessarily limited to a developer, project, or 

organization. It might even be possible to push it into the realm of the crowd, by building 

upon the idea that code is regular (Devanbu, 2015) and that repetitive patterns of change exist 

and might be resolved through the application of repeatable solution patterns. The collective 

wisdom of the crowd concerning how to merge may well outperform the design of any set of 

heuristics an individual or team could come up with. 

3.8 THREATS TO VALIDITY 

Although we made every attempt to reduce the threats to validity to our work as much 

as we could, a few uncontrolled factors may have influenced the observed results. 

Regarding internal validity, we observe that language constructs and developer 

decisions were extracted manually for the manual analysis, which may have inadvertently 

introduced data collection errors. To mitigate this risk, we (after the fact) double-checked 

every language construct and developer decision. Furthermore, we performed an automatic 

analysis in which language constructs were identified by a program, eliminating the chances 

of a researcher wrongly cataloguing a given construct. Nevertheless, a few differences can be 

observed if we compare the collection of language constructs in the manual and automatic 

analyses. For instance, the manual analysis made no difference between attributes and 

variables, while these are handled as distinct constructs in the automatic analysis. On the 
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other hand, we note that tallying language constructs and developer decision is not a 

subjective task – a construct is there, or not, and a decision is one of six that could be made. 

As compared to coding a conversation, for instance, much less risk exists for biasing results. 

With respect to construct validity, which refers to misalignments between a study’s 

intent and its design, all analyzed data stems from real, open source software projects, 

capturing failed merges that actually happened and were handled by developers. Therefore, 

we are able to report on situations that happened in practice – documenting what we intended 

to observe: how developers address merge conflicts. On the other hand, our study only 

observes ‘after the fact’ outcomes of failed merge resolution, not the strategies a developer 

uses leading up to the eventual resolution. We, thus, may still miss important information. At 

the same time, we believe that our focus on capturing resolutions in great detail adds an 

important dimension to the literature on merge conflicts. Finally, we cannot guarantee that all 

the merge cases performed in the projects were analyzed. Git has a rebase command (Chacon, 

2009) that is able to rewrite the history of projects and, as a consequence, the developers can 

hide part of the projects history that can comprise merges.  

Regarding conclusion validity, which concerns the correctness of findings, our corpus, 

even with thousands of projects, led to a number of association rules having small support. 

For instance, Table 20 presents support of up to 2%. Therefore, some of these rules may not 

hold in different projects profiles. On the other hand, we have identified a set of patterns with 

frequent occurrences of which are difficult to accredit to chance.  

Finally, for external validity we note that the ability to generalize our findings is 

restricted by the common characteristics across our selected projects: all of them are open 

source projects written in Java. Thus, we cannot generalize our results to industrial projects or 

open source projects written in C++, for instance. Our analysis, though, has shown that 

patterns exist in our sample, and we strongly believe similar kinds of patterns may be present 

in other projects and languages. Thus, we recognize the need to confirm all of our findings 

with a broader study involving other projects profiles, changing the programming language 

and, maybe, using projects from the industry instead of open source software.  

3.9 FINAL REMARKS 

In this chapter, we analyzed by hand more than a thousand merges from five open 

source projects, selected the merges that led to a conflict, and catalogued the conflicting 

chunks, the language constructs involved in the conflicting chunks, and the resolution 

strategies that developers used to address each failed merge and its chunks. We then examined 
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the data from a number of different perspectives, including the number of conflicting chunks 

per failed merge, the size of the chunks, the language constructs that are part of the conflicting 

chunks, the patterns in language constructs that are present inside and across chunks, the 

developer decisions, the difficulty level of kinds of conflicting chunks, the patterns between 

language constructs and developer decisions, and the correlation among different repository 

metrics. In addition, to mitigate the external threat to validity we performed a similar analysis 

automatically, which enabled us to collect information from almost 3 thousand projects, 

summing up 25,328 failed merges and 175,805 conflicting chunks. 

From our analysis, it becomes clear that an all-purpose, general merge technique may 

never be reached: too much variability exists in the developer decisions being made in 

otherwise similar merge conflicts. Semi-automated merge techniques, combined with tailored 

heuristics for handling individual kinds of conflicts that are part of larger conflicts, is where 

we believe the direction of future work lies. This belief is rooted in the facts that: (i) 87% of 

conflicting chunks had all the information needed to resolve them; (ii) 63% of the failed 

merges that have more than 1 chunk have dependencies among chunks; and (iii) some kinds 

of conflicts are frequently resolved in the same way (see Table 19 and Table 20). Especially 

the second recommendation seems to be promising in leading to what would go beyond 

today’s approaches. We currently have no support for ordering conflict chunks during merge, 

and this is a problem especially for the most complex merge cases, with dozens of conflicting 

chunks that depend on each other. We faced this problem and implemented a proof-of-

concept tool for ordering conflicting chunks according to their dependencies, as discussed in 

Chapter 4.  
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CHAPTER 4  –  AN APPROACH TO ORDER CONFLICTING CHUNKS 
CONSIDERING SYNTACTICAL DEPENDENCIES 

4.1 INTRODUCTION  

As observed in the former chapter, about 60% of the failed merges have two or more 

conflicting chunks. In addition, 46% of the failed merges having more than one chunk in the 

projects that were subject to manual analysis7 have dependencies among their chunks. 

Therefore, having multiple conflicting chunks is frequent and the resolution of one conflicting 

chunk may help on the resolution of the subsequent ones. However, current VCS present the 

chunks in the order they appear in the source code files, disregarding syntactical 

dependencies.  

Figure 35 shows two dependent chunks in a merge of the project Lombok: a chunk has 

a conflict in the method declaration (conflicting chunk A) and the other has a conflict in the 

method invocation (conflicting chunk B). In this case, resolving the method declaration first 

gives knowledge to the developer to resolve the method invocation, as the method invocation 

should be compatible with the previously resolved method declaration. As a method may 

have multiple invocations, resolving the method declaration first could support the resolution 

of several other chunks. 

} 
version 1 version 2 

private static FieldDeclaration  
      createField(LoggingFramework framework, 
            Annotation source, 
            ClassLiteralAccess loggingType, 
            String logFieldName, 
            boolean useStatic) { 

public static FieldDeclaration  
      createField(LoggingFramework framework, 
            Annotation source,  
            ClassLiteralAccess loggingType, 
            String loggerCategory) { 

int pS = source.sourceStart, pE = source.sourceEnd; 
Conflicting chunk A 

ClassLiteralAccess loggingType = selfType(owner, source); 
version 1 version 2 

FieldDeclaration field = 
     createField(framework, 
           source, 
           loggingType, 
           logFieldName, 
           useStatic); 

FieldDeclaration field =      
     createField(framework, 
           source, 
           loggingType, 
           loggerCategory); 

fieldDeclaration.traverse(new SetGeneratedByVisitor(source), typeDecl.staticInitializerScope); 
Conflicting chunk B 

Figure 35. Dependent chunks of merge f956ba from Lombok. 

Considering syntactical dependencies, we believe that the current interactive merge 

would be improved generating better assistance to the developers that are responsible for 

                                                 
7 We did not perform this analysis automatically because it demands an extensive computational effort for 

extracting the abstract syntactic trees and detecting the dependencies. 
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merging different versions. Thus, this approach can be used inside IDEs or even in the 

traditional VCS that would be able to present the chunks considering syntactical 

dependencies. Consequently it would help developers that previously did not have any clue 

about the best order to resolve the chunks comprised by a failed merge.  

In this chapter, we embrace the problem of ordering the resolution of chunks 

according to their dependencies as an example of how findings of the previous chapter can 

motivate the research and development of novel merge tools or improve the support provided 

by existing merge tools. We propose an approach that identifies dependencies among chunks 

and indicates a resolution order, aiming at resolving dependencies first, as they may help to 

resolve the dependent chunk. Our approach has the following steps: (1) extract the AST from 

the versions in conflict, (2) search in the AST for language constructs that belong to the 

conflicting chunks, (3) identify dependencies among chunks by identifying dependencies 

among the language constructs that belong to each chunk, and (4) order chunks according to 

their dependencies.  

We analyzed a set of 31 randomly selected failed merges to evaluate the proposed 

approach. We compared the sequential order of chunks provided by the VCS with an order 

that considers the dependencies among chunks. As dependent variables, we observed (1) how 

many conflicting chunks could have been assisted considering the previous resolution 

decisions if a proper resolution order were applied, and (2) how many chunks were between 

two dependent conflicting chunks, which we call noise. Our results show that an approach 

that takes chunk dependencies into account can improve merge resolution when contrasted 

with an approach that uses the order provided by traditional VCS (which we call sequential 

order). 

This chapter is organized into four sections including this one of introduction. Section 

4.2 introduces the main concepts explored in the approach to order chunks, the extraction of 

dependencies, and the algorithm proposed to order the chunks comprised in a failed merge. 

Section 4.3 describes the evaluation of the proposed approach that is mainly composed of a 

study case and a broader evaluation considering a set of 31 failed merges. Finally, Section 4.5 

concludes this chapter presenting our findings.  

4.2 CHUNKS ORDERING  

In this section, we discuss the main concepts used by the proposed approach: the kinds 

of dependencies extracted from language constructs, the creation of a dependency graph to 

represent the dependencies among the conflicting chunks, measures that allow comparing two 
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distinct conflicting chunk orders, and the algorithm that suggests a resolution order based on 

the dependency graph. 

4.2.1 KINDS OF DEPENDENCY 

The current version of the proposed approach considers three kinds of dependencies. 

x Method Declaration vs. Invocation (MDI): Dependency that occurs when a conflicting 

chunk has a method invocation and a second chunk has a method declaration for the same 

method. Figure 35 shows an example of this kind of dependency; 

x Attribute Declaration vs. Usage (ADU): Dependency that happens when a conflicting 

chunk has an attribute usage and a second chunk has an attribute declaration for any 

given attribute. Figure 36 exemplifies this kind of dependency. In this figure, conflicting 

chunk A shows the declaration of attribute implementations and chunk B uses this 

attribute to initialize the variable klass;  

x Variable Declaration vs. Usage (VDU) – Dependency that takes place when a 

conflicting chunk has a variable usage and a second chunk has a variable declaration for 

the same variable. Figure 37 shows an example with variable declarations nextTxn and 

next_init in conflicting chunk A and the respective variable usages in chunk B. 

public String entityResolver = null; 
public String uriResolver = null; 
public String errorListener = null; 

version 1 version 2 
public Hashtable<QName,Class>  
  implementations = 
    new Hashtable<QName,Class> (); 

public Hashtable<QName,Class<?>>  
  implementations =  
    new Hashtable<QName,Class<?>> (); 

public Hashtable<String,String> serializationOptions = new Hashtable<String,String>(); 
public LogOptions logOpt = LogOptions.WRAPPED; 
public Vector<String> extensionFunctions = new Vector<String>(); 
Conflicting chunk A 

public boolean isStepAvailable(QName type) { 
  if (implementations.containsKey(type)) { 

version 1 version 2 
    Class klass = 
      implementations.get(type); 

    Class<?> klass =  
      implementations.get(type); 

    try { 
      Method method = klass.getMethod("isAvailable"); 
      Boolean available = (Boolean) method.invoke(null); 
Conflicting chunk B 

Figure 36. Example of ADU extracted from merge 00b04c of project XML Calabash8.  

                                                 
8 https://github.com/ndw/xmlcalabash1 
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if (debug.val) 
  LOG.debug(String.format("Starting %s thread", this.getClass().getSimpleName())); 

version 1 version 2 
AbstractTransaction nextTxn = null; 
int added = 0; 

AbstractTransaction next_init = null; 

while (this.stop == false) { 
  try { 
    nextTxn = this.initQueue.poll(THREAD_WAIT_TIME, THREAD_WAIT_TIMEUNIT); 
Conflicting chunk A 

  } 
    // Requeue mispredicted local transactions 

version 1 version 2 
  if ( 
    ( 
      nextTxn == null 
      ||  
      added > CHECK_INIT_QUEUE_LIMIT 
    )  
    && 
    this.restartQueue.isEmpty() == false) { 

  if( 
    next_init == null  
    &&  
    this.restartQueue.isEmpty() == false) { 

 

      this.checkRestartQueue(); 
  } 
} // WHILE 
Conflicting chunk B 

Figure 37. Example of VDU extracted from merge 00448a of project H-store9. 

4.2.2 DEPENDENCY GRAPH 

We conceived a structure named dependency graph to show the complete set of 

dependencies among chunks. We perform the following steps to build this structure for a 

given set of artifacts in which conflicts were observed: (1) chunks identification, (2) language 

constructs identification, (3) dependency matrix creation, and (4) dependency graph creation. 

Figure 38 illustrates this sequence of steps. The resulting graph is used as input to generate 

the best chunk ordering for merge resolution.  

 
Figure 38. Activities executed to extract the dependency graph.  

x Chunks identification – By definition, a failed merge comprises one or more conflicting 

chunks. Thus, given the versions (i.e., version 1 and version 2) to be merged, this step 

                                                 
9 https://github.com/apavlo/h-store 
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identifies the chunks that are part of a failed merge to detect dependencies among each 

pair of chunks; 

x Language constructs identification – In this step, we extract the AST for version 1 and 

version 2 of each conflicting chunk. Then, the AST are queried to identify the method, 

attribute, and variable declarations that may be part of the chunks, as well as the method 

invocation, variable, and attribute usages in these chunks;  

x Dependency matrix creation – This step identifies dependencies among chunks and 

builds a dependency matrix. The dependency matrix has N columns and N rows, where N 

is the number of chunks. Each cell is filled with the kinds of dependencies that exist 

between the chunk represented by its row and the chunk represented by its column. Table 

22 presents a dependency matrix for five chunks from a failed merge that was observed on 

project Spring Data Neo4j10. This table can be interpreted as “column C depends on row 

R due to the set of dependencies D presented in the cell on which row R finds column C”. 

For instance, chunk CC3 has an attribute declaration usage (ADU) dependency with CC2; 

x Dependency graph creation – Based on the dependency matrix, the last step generates 

the visualization of the dependencies by producing a directed graph. In this representation, 

a transition from node A to node B indicates that conflicting chunk A depends on 

conflicting chunk B due to a dependency whose kind is described in the edge’s label. 

Figure 39 shows the dependency graph that represents the matrix in Table 22. 

Table 22. Dependency matrix for merge 042b1d5 of project Spring Data Neo4j. 

 CC0 CC1 CC2 CC3 CC4 CC5 
CC0       

CC1      MDI 

CC2    ADU   

CC3  MDI     

CC4      ADU 

CC5       
 

                                                 
10 https://github.com/spring-projects/spring-data-neo4j 
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Figure 39. Dependency graph for merge 042b1d5 of project Spring Data Neo4j. 

4.2.3 MEASUREMENTS OF IMPROVEMENT 

To compare two distinct chunk orders, we consider two measures that can be collected 

from failed merges comprised of more than a single conflicting chunk: assistance and noise. 

When a merge is resolved manually, developers can take advantage of the order that 

chunks appear to use the knowledge acquired in previous resolutions for helping the future 

decisions. Assistance measures how much a specific order of chunks helps the developers 

during merge resolution. For instance, assuming the case in which a conflicting chunk 

comprises a method declaration and another has a method invocation to the same method, the 

resolution of the first chunk could provide information to resolve the second chunk. 

Assistance values range from zero (no assistance – when none of the chunks are benefited by 

the resolution of previous chunks) to one (meaning total assistance – when all the chunks are 

benefited by the resolution of previous chunks). By definition, the first chunk in all the 

sequences has unassigned value (i.e., it is not considered for computing assistance), given that 

it will never receive assistance due to the absence of a previous chunk. 

More formally, let C be the set of conflicting chunks comprising a failed merge, and 

accept that |C| = n. Let M be the n × n dependency matrix for that failed merge and assume 

that M[ci, cj] = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n, if and only if cj depends on ci due to a MDI, ADU, or 

VDU; otherwise, M[ci, cj] = 0. Let S be a complete order of C and let P: S × ci o ℤ be an 
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operator that returns the position of a given conflicting chunk ci within a given sequence S. 

Assume that S[i] returns the chunk that occupies the ith position in the sequence S. Finally, let 

D be a n × n matrix that represents whether any given chunk ci generates knowledge that 

assists in the resolution of chunk cj. D[ci, cj] = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n, if and only if cj can use 

information from ci to find its most adequate resolution; D[ci, cj] = 0, otherwise.  

Deciding whether the resolution of a conflicting chunk can provide information to help 

resolving a second chunk requires analyzing the code in both versions. The existence of one 

or more dependencies between these chunks is an initial indication that one chunk might help 

resolving the other, but in some cases the former might not have enough information to be 

useful. For instance, a given chunk A may use a variable defined in a second chunk B, but 

besides declaring this variable, chunk B does not provide any clue to help a developer 

responsible for resolving the failed merge to understand what the developer who performed 

the change meant with it. In cases such as this D(A, B) is equal to zero, despite of the 

existence of a dependency between chunks A and B.  

Currently, the manual intervention of a researcher is required to determine whether 

resolving a chunk helps in the resolution of another and build the D matrix. The assistance 

provided by S can be thus calculated. 

𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑐𝑗) =  
∑ 𝐷[𝑆[𝑖],𝑐𝑗]

𝑃(𝑐𝑗)−1
𝑖=1

∑ 𝑀[𝑐𝑖,𝑐𝑗]𝑛
𝑖=1

                                                                                      (1) 

𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆) = 1
𝑛−1

∑ 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑐𝑗)𝑛
𝑗=2                                                                        (2) 

Equation (1) calculates the assistance provided by sequence S to a given chunk cj. It 

does so by determining the ratio between the number of chunks that help to resolve the target 

chunk cj and the number of chunks that chunk cj depends on. Then, equation (2) sums all 

individual assistances and divides by the number of chunks able to assist the following chunks 

(n – 1), thus normalizing the measure in the [0, 1] interval. Note that the first chunk in the 

sequence is not considered in the calculation (it is represented by the symbol “-”) since there 

is no previous resolved chunk to provide any clue to help on its resolution. 

As all human beings, software developers have short-term memory limitations 

(Murdock Jr., 1972) and may forget how a given chunk was resolved when addressing a 

different chunk that depends on the former. Noise measures the distance, or the number of 

chunks a developer resolves, in between two chunks that have dependencies. In the best 

scenario, this value would be zero, that is, two dependent chunks would be resolved in a 

contiguous sequence. On the other hand, if there are multiple chunks between two dependent 
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chunks, the noise will be up to one, indicating that many unrelated conflicting chunks may 

lead the developer to forget the decisions made before. Noise cannot be calculated when there 

is no assistance and is represented by the symbol “-” in these cases. 

More formally, let PF: S × ci o ℤ be an operator that returns the position of the first 

chunk in sequence S which ci depends on. Also, let ND: S × ci o ℤ be an operator that counts 

the number of chunks between the position PF(S, ci), inclusive, and the position occupied by 

chunk ci, exclusive, that does not help the resolution ci. Thus, the noise for a given chunk cj is 

calculated using equation (3) in which the “-” symbol represents unassigned, while equation 

(4) calculates the noise for a given sequence S. 

𝑁𝑜𝑖𝑠𝑒(𝑆, 𝑐𝑗) = {
𝑁𝐷(𝑆,𝑐𝑗)

𝑃(𝑆,𝑐𝑗)−𝑃𝐹(𝑆,𝑐𝑗)
, 𝑖𝑓 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑐𝑗) > 0

−, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                      (3) 

𝑁𝑜𝑖𝑠𝑒(𝑆) = {
1

𝐴𝑆(𝑆)
 ∑ 𝑁𝑜𝑖𝑠𝑒(𝑆, 𝑐𝑖) 𝑛

𝑖=2 , 𝑖𝑓 𝐴𝑆(𝑆) > 0
−, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                             (4) 

𝐴𝑆(𝑆, 𝑐𝑗) =  {1, 𝑖𝑓 𝑎𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑐𝑗) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝐴𝑆(𝑆) =  ∑ 𝐴𝑆(𝑆, 𝑐𝑗)𝑐𝑗∈𝑆   

4.2.4 ORDERING ALGORITHM 

Based on the dependency graph extracted from the conflicting chunks that are part of a 

given failed merge, the proposed algorithm, called Context-aware ordering, generates an 

order in which the chunks should be addressed by the developers while resolving the merge.  

Figure 40 shows the Context-aware ordering algorithm. It receives the dependency 

graph as input and returns an ordered list of chunks. It identifies the order under which the 

chunks should be resolved based on their dependencies and groups related chunks together to 

exploit the short-term memory of the developer while resolving subsequent chunks. For 

instance, if chunk A depends on chunk B, chunk A will be resolved immediately after chunk 

B unless it has other dependencies yet unresolved. The algorithm controls the number of 

previously resolved dependencies for each chunk and this number is used to prioritize the 

chunks that have the fewest number of pending dependencies. Therefore, the more 

dependencies of a given chunk were resolved, the more priority this chunk will have in the 

order being built. The algorithm treats cases where circular dependencies among chunks take 
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place by picking the first chunk in the physical order they are presented in the files when there 

are several chunks with the same number of pending dependencies. 

Input:  
- Dependency graph 
 
Output: 
- List of chunks   
 
Algorithm: 
Set all the chunks as unvisited 
 
For each unvisited chunk 
 Calculate the number of dependencies 
 Set the number of resolved dependencies to zero 
 
While there are unvisited chunks 
 Select the chunk c with the lowest number of dependencies and  
                              the highest number of resolved dependencies  
 Mark c as visited 
 Add c to the list 
 For each chunk that depends on c 
  Update the number of dependencies 
  Update the number of resolved dependencies 

Figure 40. A pseudo-code for the Context-aware ordering algorithm. 

Considering the example reported in Figure 39, the Context-aware ordering algorithm 

produces the following sequence of chunks: CC0, CC2, CC3, CC1, CC4, and CC5. As can be 

observed in this sequence, there is no noise between the resolution of two dependent chunks: 

after resolving CC2, CC3 is presented to the developer; after resolving CC3, CC1 is presented 

to the developer; and after resolving CC1 and CC4, CC5 is presented to the developer. 

4.3 CASE STUDY 

In this section, we present a didactical example manually executing the Context-aware 

algorithm to show how the ordering is done and how the metrics (assistance and noise) are 

calculated. This example was extracted from the project Spring Data Neo4J, a project that 

offers advanced features to map annotated entity classes to the Neo4J Graph Database. This 

merge is identified by the SHA-1 042b1d and results from merging revisions 3ba54f and 

4a8f40, which ends up in a failed merge comprising six conflicting chunks that are 

represented from Figure 41 to Figure 46. We refer to these chunks as CC0, CC1, CC2, CC3, 

CC4, and CC5 from now on. They reside in the files CypherQueryBuilder.java (CC0 and 

CC1), StartClause.java (CC2 and CC3), and CypherQueryBuilderUnitTests.java (CC4 and 

CC5).   

CC0 represents a conflict among import declarations that is found in the first lines of 

source code files. In this chunk, some import declarations were changed in version 1, while 
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others were removed in version 2. Although our current implementation does not identify this 

kind of dependency, imports can be in conflict due to conflicts among method invocations and 

other language constructs whose use is enabled through imports. 

import org.springframework.data.neo4j.support.Neo4jTemplate; 
import org.springframework.data.repository.query.parser.Part; 

version 1 version 2 
import org.springframework.util.Assert; 
import java.lang.annotation.Annotation; 
import java.util.ArrayList; 
import java.util.List; 
import static org.springframework.util.StringUtils.*; 

 

/** 
 * Value object to create Cypher queries. 

Figure 41. CC0 – Conflict in import declarations. 

CC1 represents a conflict involving more language constructs (annotation, attribute, 

comment, if statement, method declaration, method invocation, method signature, return 

statement, and variable). Thus, it represents a good candidate to be a source of dependencies 

to others chunks and can depend on other chunks as well. As we currently capture 

dependencies among attribute, variable, and method declarations and their usage, we 

identified that chunk CC1 depends on CC3, which has a method declaration that is used in 

line startClause.merge(partInfo); (in bold in CC1). 

public CypherQueryBuilder addRestriction(Part part) { 
  PersistentPropertyPath<Neo4jPersistentProperty> path =           
    context.getPersistentPropertyPath(part.getProperty()); 

version 1 version 2 
… 
private boolean addedStartClause 
  (PartInfo partInfo) { 
    if (!partInfo.isIndexed()) return false; 
    for (StartClause startClause : startClauses) { 
      PartInfo startPartInfo =  
        startClause.getPartInfo(); 
      if (!partInfo.sameVariable(startPartInfo))  
        continue; 
      if (!partInfo.sameIndex(startPartInfo))  
        return false; 
      startClause.merge(partInfo); 
      return true; 
    } 
  startClauses.add(new StartClause(partInfo)); 
  return true; 
} 
… 
@Override 
public String toString() { 
  … 

  query.addPart(part, path); 
  return this; 
} 

public CypherQueryDefinition buildQuery(Sort sort) { 
  return query.withSort(sort); 

Figure 42. CC1 – Conflict in annotation, attribute, comment, if statement, method 
declaration, method invocation, method signature, return statement, and variable. 

CC2 presents the declaration of two conflicting attributes, partInfo and partInfos, that 

have different types, but similar names, which enforces the probability that they have the 

same goal. As this chunk does not invoke or use any of the methods, variables, or attributes 
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declared in this project, there are no dependencies on other chunks. However, other chunks 

may depend on its conflicting attributes. Furthermore, in our approach we treat constructor 

invocation as method invocation and constructor declaration as method declaration. 

// TODO id-startclause, index-startclause (exact,point,fulltext) 
class StartClause { 

version 1 version 2 
  protected final PartInfo partInfo; private final SortedMap<Integer,PartInfo> partInfos 

   =new TreeMap<Integer, PartInfo> (); 
/** 
* Creates a new {@link StartClause} from the given {@link Neo4jPersistentProperty}, variable 
and the given 

Figure 43. CC2 – Conflict in attribute and method invocation. 

CC3 presents a conflicting chunk with the following language constructs: for 

statement, method declaration, method signature, return statement, and throw statement. This 

chunk accesses the attributes partInfos and partInfos, which were declared on CC2, and has a 

method declaration called by chunk CC1. 

return IteratorUtil.first(partInfos.values()); 
} 

version 1 version 2 
public void merge(PartInfo partInfo) { 
  throw new UnsupportedOperationException 
    ("Merge is not supported"); 

 

public boolean merge(PartInfo partInfo) { 
  for (PartInfo info : partInfos.values()) { 
    if (info.sameIdentifier(partInfo)  
        && info.sameIndex(partInfo)) { 
      continue; 
    } 
    return false; 
   } 
  this.partInfos.put 
   (partInfo.getParameterIndex(), partInfo); 
  return true; 
} 
public boolean sameIdentifier(PartInfo info) { 
  for (PartInfo partInfo : partInfos.values()) { 
    if (!partInfo.sameIdentifier(info))  
      return false; 
  } 
  return true; 
} 
public boolean sameIndex(PartInfo info) { 
  for (PartInfo partInfo : partInfos.values()) { 
    if (!partInfo.sameIndex(info)) return false; 
  } 
  return true; 

  } 
} 

Figure 44. CC3 – Conflict in for statement, method declaration, method signature, 
return statement, and throw statement. 

CC4 shows a conflict involving attribute declarations. This chunk does not use 

language constructs declared in other chunks. Consequently, it does not depend on other 

chunks. However, it has an attribute declaration that is used as a constant, which can generate 

dependency in other chunks.  
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CypherQueryBuilder query; 
  private final String CLASS_NAME = Person.class.getSimpleName(); 

version 1 version 2 
private final String DEFAULT_START_CLAUSE =  
  "start `person`=node:__types__(className=\""    
  + CLASS_NAME + "\")"; 

private String DEFAULT_START_CLAUSE =  
  "START `person`=node:__types__(className=\""  
  + CLASS_NAME + "\")"; 

@Before 

Figure 45. CC4 – Conflict in attributes and initialization. 

Finally, CC5 presents a conflict involving annotation, method declaration, method 

invocation, and variable. This chunk presents a method declaration and has method 

invocations and attribute usages. It depends on chunks CC1 and CC4. The dependency with 

CC1 is due to the usage of a method declaration shown in bold in CC5 (query.toString()). The 

dependency with CC4 is due to the usage of an attribute, also presented in bold in CC5 

(DEFAULT_START_CLAUSE). 

  @Before 
version 1 version 2 

  assertThat 
    (query.toString(),  
     is(DEFAULT_START_CLAUSE  
     +" where `person`.`age`! = {0}  
     return `person`") 
  ); 
} 

  final String className =  
    Person.class.getName(); 
  assertThat 
    (query.toString(),  
     is(DEFAULT_START_CLAUSE  
     +" WHERE `person`.`age`! = {0}  
     RETURN `person`")); 
} 
@Test 
public void 
createsSimpleTraversalClauseCorrectly() { 
  query.addRestriction(new Part("group",  
   Person.class)); 
  assertThat(query.toString(), 
    is(DEFAULT_START_CLAUSE  
    + " MATCH `person`<-[:`members`] 
    -`person_group`  
    RETURN `person`")); 
} 

@Test 
public void buildsComplexQueryCorrectly() { 

Figure 46. CC5 – Conflict in annotation, method declaration, method invocation, and 
variable. 

According to the dependencies among the chunks above, CC1 depends on CC3, CC3 

depends on CC2, and CC5 depends on CC1 and CC4. The dependency matrix of this failed 

merge is represented in Table 22 and Figure 39 shows the dependency graph. The Context-

aware ordering algorithm then produces the following sequence of chunks: CC0, CC2, CC3, 

CC1, CC4, and CC5. In this resolution, all the dependencies are considered, which increases 

assistance. The algorithm also groups chunks that have dependencies, thus decreasing the 

noise. The dependency between CC3 and CC2 has no noise, as CC3 appears right after CC2. 

The next dependency, between CC1 and CC3, occurs because CC1 depends on the method 

declaration in CC3 and, consequently, resolving the method declaration in CC3 can assist in 

the resolution of CC1. Furthermore, the noise is zero because there are not chunks on which 

CC1 does not depend between CC3 and CC1. Finally, CC5 depends on other two chunks: 
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CC1 and CC4. Again, CC1 and CC4 give clues to resolve CC5, resulting in assistance equals 

to 1 and noise equals to 0, since CC5 depends on all chunks between CC1 and CC5. Thus, as 

shown in Table 23, the final numbers for the Context-aware algorithm are 50.00% of 

assistance and 0% of noise. 

Table 23. Metrics extracted by the Context-aware ordering algorithm. 

Chunk Assistance Noise 
CC0 - - 
CC2 0 - 
CC3 1 0 
CC1 1 0 
CC4 0 - 
CC5 1 0 
Failed merge 60% 0% 

4.4 EVALUATION 

In this section, we evaluate our approach in terms of the assistance it provides to 

developers resolving conflicts. Moreover, we evaluate if it orders the chunks in a way to 

exploit the short-term memory of developers, reducing the noise between dependencies and 

dependent chunks. Our evaluation runs over 31 failed merges and 405 conflicting chunks. We 

compare our approach with a sequential algorithm (introduced in Section 4.4.1) that emulates 

the chunk resolution order induced by some VCS. We aim at answering the following 

research questions: 

1. Does the Context-aware ordering algorithm increase the assistance provided by the 

Sequential algorithm?  

2. Does the Context-aware ordering algorithm reduce the noise generated by the Sequential 

algorithm? 

4.4.1 BASELINE ALGORITHM 

This section introduces the algorithm used as comparison baseline for our approach. 

The Sequential algorithm represents the way traditional VCS present a merge to be resolved. 

For instance, Subversion (Collins-Sussman et al., 2004) has an interactive tool to resolve 

merges in which the chunks are presented following the order they appear in the files.  

The Sequential algorithm receives as input the chunks comprising a failed merge and 

the files in conflict and generates a list of chunks representing the order in which developers 
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should resolve the merge. Figure 47 shows the steps performed by the Sequential algorithm. It 

has an initial step that marks all the chunks as unvisited and then the chunks are selected in 

the order they appear in the conflicting files. 

Input:  
- Set of chunks 
- Set of files 
 
Output: 
- List of chunks   
 
Algorithm: 
Set all the chunks as unvisited 
For each file in files 
 While there are unvisited chunks in the current file 
  Select the first unvisited chunk c 
  Mark c as visited 
  Add c to the list 

Figure 47. A pseudo-code for the Sequential algorithm. 

Considering the example reported in Figure 39, the Sequential algorithm produces the 

following sequence of chunks: CC0, CC1, CC2, CC3, CC4, and CC5. This sequence respects 

only the dependencies that happen to follow the order of the files (e.g., CC5 depends on CC4, 

CC5 depends on CC1, and CC3 depends on CC2), but disregards other dependencies (i.e., 

from CC1 to CC3). 

4.4.2 SELECTION OF OPEN SOURCE PROJECTS 

We analyzed a large set of open source projects capturing information about the nature 

of failed merges. One piece of information is the number of conflicting chunks comprised in 

each failed merges, which enabled us to select merges that fit on the profile that can benefit 

from this approach: failed merges having at least two conflicting chunks. From the subset of 

failed merges comprising two or more chunks, we randomly selected a set of 31 failed merges 

and run our dependency analysis. Table 24 characterizes these 31 failed merges, which are 

ordered by the number of chunks they comprise, presenting their repository URL, SHA-1, and 

number of chunks. From now on, each merge will be identified by the number presented in 

column “#Merge”. The failed merges selected for this analysis were collected from 29 

different projects having from 2 to 32 conflicting chunks (μ = 13.06, σ = 9.55). Based on the 

information of this table, any of the failed merges we studied can be retrieved and analyzed in 

future research.  
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Table 24. Failed merges evaluated in this study. 

#Merge Repository URL Merge 
SHA # Chunks 

1 https://github.com/RedditAndroidDev/Tamagotchi 21f5e0 2 
2 https://github.com/nuxeo/nuxeo 61cde8 2 
3 https://github.com/usc-isi-i2/Web-Karma 29d83b 2 
4 https://github.com/FasterXML/jackson-databind 059d39 3 
5 https://github.com/alexo/wro4j 05d025 3 
6 https://github.com/atlasapi/atlas 003639 4 
7 https://github.com/AKSW/SAIM 044a3c 4 
8 https://github.com/maxcom/lorsource 159d31 4 
9 https://github.com/enonic/xp 04176d 5 
10 https://github.com/rhomobile/rhostudio 043aa3 5 
11 https://github.com/pentaho/modeler 0587bc 5 
12 https://github.com/apavlo/h-store 00448a 6 
13 https://github.com/spring-projects/spring-data-neo4j 042b1d 6 
14 https://github.com/jponge/izpack 5b45fc 6 
15 https://github.com/MinecraftForge/MinecraftForge 039d92 8 
16 https://github.com/android/platform_packages_apps_camera 04c12f 10 
17  https://github.com/fakemongo/fongo 0033c8 13 
18 https://github.com/mozilla-b2g/android-sdk 058ab2 17 
19 https://github.com/Ineedajob/RSBot 09d43f 17 
20 https://github.com/mkarneim/pojobuilder 09b977 18 
21 https://github.com/hector-client/hector 010bf7 18 
22 https://github.com/jenkinsci/jira-plugin 063259 20 
23 https://github.com/openMF/mifosx 01368e 21 
24 https://github.com/eclipse/objectteams 08e2a6 21 
25 https://github.com/ndw/xmlcalabash1 00b04c 22 
26 https://github.com/structr/structr 01c205 22 
27 https://github.com/alexo/wro4j 00961b 23 
28 https://github.com/xetorthio/jedis 055032 24 
29 https://github.com/phenoscape/Phenex 0985bf 30 
30 https://github.com/alexo/wro4j 01851e 32 
31 https://github.com/OpenMEAP/OpenMEAP 0af9d5 32 

4.4.3 DATA COLLECTION 

The data extracted from failed merges in this experiment was collected in a semi-

automated way. This means that part of the data was collected by an automated approach and 

another part was collected manually. Having steps that are performed automatically 

guarantees that all the failed merges are treated equally, which makes the results more reliable 
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since there are no human interferences. On the other hand, the manual steps are mandatory to 

compute assistance, as the researcher determines whether the information provided by the 

resolution of previous chunks can support further resolutions.  
Regarding the automatic steps, we implemented a tool to extract the dependencies 

among chunks. It receives as input the revisions to be merged and performs the steps 

discussed in Section 4.2.2, identifying the conflicting chunks and using the AST to find 

dependencies between pairs of chunks. Finally, it generates the chunks order for the two 

algorithms: Sequential and Context-aware ordering. The researcher, who manually extracts 

the assistance metric used to evaluate the algorithms, uses these sequences. The noise metric 

does not require human intervention and is calculated automatically. 

4.4.4  DOES THE CONTEXT-AWARE ORDERING ALGORITHM INCREASE THE 
ASSISTANCE PROVIDED BY THE SEQUENTIAL ALGORITHM? 

Table 25 shows the assistance for each failed merge and algorithm. The Context-

aware algorithm presents the highest average for assistance (36.35% against 22.30%). 

Actually, in 15 out of 31 failed merges (48.39%) the assistance provided by the Context-

aware ordering algorithm is higher than that provided by the Sequential algorithm, while in 16 

out of 31 merges (51.61%) the assistance is precisely the same. This means that the Context-

aware ordering algorithm would better assist developers than by the Sequential algorithm in 

almost half the failed merges analyzed. 

Figure 48 shows a boxplot that summarizes the results presented in Table 25. There 

are two outliers in the analyzed failed merges when considering the Sequential algorithm. The 

first is the failed merge #16, comprising 10 conflicting chunks and having eight dependencies 

among these chunks, shows 88.89% assistance for both the Sequential and Context-aware 

ordering algorithms. In this specific case, all dependencies point to the same chunk, which 

happens to come first in the source code files. The second is the failed merge #1 that 

comprises 2 chunks, has 1 dependency, and has assistance equals to 100%. This case is 

interesting because when a failed merge has two chunks, the assistance is 0 or 100% as well 

as in failed merges #2 and #3, which the assistance using Context-aware algorithm is better. 
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Table 25. Assistance provided by the ordering algorithms (higher values in bold). 

Merge Number Assistance 
 Sequential  Context-aware 

1  100.00%  100.00% 
2  0.00%  100.00% 
3  0.00%  100.00% 
4  0.00%  50.00% 
5  0.00%  0.00% 
6  33.33%  33.33% 
7  0.00%  50.00% 
8  33.33%  33.33% 
9  50.00%  50.00% 
10  25.00%  25.00% 
11  25.00%  33.33% 
12  40.00%  40.00% 
13  40.00%  60.00% 
14  0.00%  20.00% 
15  14.29%  14.29% 
16  88.89%  88.89% 
17  8.33%  25.00% 
18  25.00%  43.75% 
19  6.25%  6.25% 
20  23.53%  35.29% 
21  5.88%  11.76% 
22  21.05%  21.05% 
23  10.00%  10.00% 
24  15.00%  20.00% 
25  38.10%  38.10% 
26  9.52%  9.52% 
27  15.91%  22.73% 
28  39.13%  39.13% 
29  12.07%  31.03% 
30  8.60%  8.60% 
31  3.23%  6.45% 
Average  22.30%  36.35% 

 

By observing Figure 48 we can see a clear difference among the results of assistance 

provided by the Sequential if compared to the Context-aware algorithm. We applied the 

Wilcox test to the values presented in Table 25 and observed statistically significant 

difference (p-value = 0.0181) at 95% confidence level. Thus, we conclude that our algorithm 

has potential to improve the way developers resolve merge nowadays since the current 
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approach found in VCS does not explore syntactic information. As observed above, in 

48.39% of the cases we can take advantage of syntactic dependencies to extract extra 

information that helps developers while resolving the chunks of failed merges.  

 
Figure 48. Boxplot for the assistance metric over the 31 merges in our sample. 

4.4.5 DOES THE CONTEXT-AWARE ORDERING ALGORITHM REDUCE THE 
NOISE GENERATED BY THE SEQUENTIAL ALGORITHM? 

Table 26 shows the noise values for the Sequential and Context-aware algorithms. The 

Context-aware ordering algorithm presents a lower average noise if compared to the 

Sequential algorithm (10.47% against 25.51%). In 11 out of 31 failed merges (35.48%) the 

noise provided by the Context-aware ordering algorithm is lower than that provided by the 

Sequential algorithm, in 1 out of 31 merges (3.23%) the noise of the Sequential algorithm is 

lower, in 13 out of 31 (41.94%) the noise is the same for both algorithms, and in 6 cases 

(19.35%) the Sequential algorithm did not provide any assistance at all (unassigned noise). 

This information is confirmed by the boxplot presented in Figure 49, which shows a 

median close to zero for the Context-aware ordering algorithm. Actually, this represents a 

negative asymmetric distribution, as the median is equal to the minimum value. The only 

situation in which the Context-aware algorithm has higher noise than the Sequential algorithm 

is in the failed merge #18 and this situation only happens because the Sequential algorithm 

provides less assistance than our proposed algorithm leading to lower noise. As noise is 

treated as a secondary metric, the Context-aware algorithm is still better than the Sequential 

algorithm, since the former just has higher noise because it provides more assistance, which is 

the main goal of the proposed algorithm. By using the Wilcox test, we observe statistically 
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significant differences (p-value = 0.0227) at 95% confidence level between the noise 

generated by the Context-aware ordering algorithm and the produced by the Sequential 

algorithm. Thus, we conclude that the Context-aware ordering algorithm generates on average 

more assistance and lower noise than the Sequential one. 

 Table 26. Noise provided by the ordering algorithms (lower values in bold). 

Merge Number 
Noise 

Sequential Context-aware 
1 0.00% 0.00% 
2 - 0.00% 
3 - 0.00% 
4 - 0.00% 
5 - - 
6 0.00% 0.00% 
7 - 0.00% 
8 0.00% 0.00% 
9 25.00% 0.00% 
10 0.00% 0.00% 
11 75.00% 0.00% 
12 25.00% 25.00% 
13 25.00% 0.00% 
14 - 0.00% 
15 25.00% 0.00% 
16 77.14% 66.03% 
17 0.00% 0.00% 
18 37.50% 46.26% 
19 0.00% 0.00% 
20 45.83% 27.78% 
21 0.00% 0.00% 
22 49.11% 49.11% 
23 0.00% 0.00% 
24 29.17% 8.33% 
25 12.50% 12.50% 
26 0.00% 0.00% 
27 34.38% 20.00% 
28 82.22% 18.52% 
29 54.33% 16.67% 
30 40.48% 23.81% 
31 0.00% 0.00% 
Average 25.51% 10.47% 
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Figure 49. Boxplot for the noise metric over the 31 merges in our sample. 

4.4.6 THREATS TO VALIDITY 

Although we have taken care to reduce the threats to validity to our work, a few 

uncontrolled factors may have influenced the observed results. Regarding internal validity, it 

is worth to observe that the metrics assistance and noise were extracted manually. To mitigate 

this, we tried to follow the same steps and rules to evaluate all failed merges. Furthermore, we 

inspected the failed merge more than once to avoid data collection errors. 

With respect to construct validity, which refers to misalignments between a study’s 

intent and its design, all analyzed data came from real software projects, capturing failed 

merges that actually happened and were handled by developers. Therefore, we are able to 

report on observed situations that happened in practice. However, it was not possible to run an 

experiment with a real development team, which could give us further feedback to improve 

the approach and the quality of our analysis. 

Finally, regarding external validity, we note that the ability to generalize our findings 

is restricted by the common characteristics of our selected failed merges: open-source projects 

coded in Java that comprise from 2 to 32 chunks. Thus, we cannot generalize our results to 

industrial projects or open-source projects written in C++, for instance. Our analysis, though, 

shows that Context-aware algorithm is able to assist developers during merge resolution, 

which justifies the pursuit of additional studies to assess it. 

4.5 FINAL REMARKS 

This chapter presented an approach to order chunks comprised in failed merges. To do 

so, we used dependencies extracted from language constructs related to declarations, usages 
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and invocations, generating a dependency graph that is used to build the order of chunks by 

using the Context-aware ordering algorithm. This algorithm presents improvements if 

compared to the one currently used in VCS, which we called Sequential algorithm. Our 

results show that the Context-aware ordering algorithm presents the highest average 

assistance in 48.39% of the failed merges and only have greater noise in 1 failed merge 

(3.23%). This confirms our expectations that the order in which chunks are resolved can 

provide relevant information for software developers.  
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CHAPTER 5  –  CONCLUSION 

 

5.1 CONTRIBUTIONS 

This work presented an extensive analysis on the nature of software merge conflicts. 

From the results of this analysis, we devised an approach to assist developers during the 

resolution of failed merges comprising more than a single conflicting chunk. As part of this 

work, we studied the related work, designed and executed experiments to analyze the failed 

merges in a set of open source projects written in Java, and evaluated the potential benefits of 

the proposed approach for merge resolution. The main contributions of the Thesis are: 

1) Analysis of the nature of software merge – a detailed manual study over 5 projects, 

followed by an automated analysis over 2,731 projects, answering 8 key research 

questions about where failed merge usually appear, how they are frequently resolved, and 

their patterns of occurrence. Our main findings are:    

a) Conflicting chunks generally contain all the information required to resolve them – 

87% of the chunks do not need extra code beyond those presented in the versions 

under conflict;  

b) The resolution order of conflicting chunks matters – 46% of the manually analyzed 

failed merges have dependences between pairs of chunks that can provide knowledge 

to the resolutions of subsequent chunks; and  

c) Past choices on how conflicting chunks are resolved can inform future choices – 

information of how a specific kind of conflict was previously resolved can suggest 

resolutions for subsequent chunks having similar kinds of conflict. 

2) Conflicting chunk ordering approach – the design and implementation of a proof-of-

concept tool to exploit our finding 1.b discussed before, which could produce an ordering 

for the conflicting chunks of a failed merge based on their syntactical dependencies. Our 

main findings after adopting the proposed algorithm are: 

a) The assistance when considering chunks dependences increases in 48.39% of the 

failed merges and 

b) The noise in between two dependent chunks reduced in 35.48% of the failed merges. 
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5.2 LIMITATIONS 

Despite having the aforementioned contributions, there are some limitations in our 

approach that can be treated in the future to improve the robustness of the analyses and 

provide better results than those reported here. 

5.2.1 WE JUST ANALYZED SOURCE CODE 

The first limitation in our approach is that the results from both the manual and 

automatic analyses of failed merges are based only on the source code and the metadata 

available into the repository of the open source projects. Thus, there are situation in which an 

interpretation of the failed merge cannot precisely represent the real intention of developers or 

even be confirmed by them. This limitation can be reduced through the analysis of the 

messages written by developers in commits. These messages may provide extra information 

on the real intention of developers. Other possibility would be to show the conflicting chunks 

or the whole failed merge to the actual developers that worked on the projects, asking for a 

validation if a given heuristic or checking whether other findings make sense for his/her case. 

Moreover, we could evaluate current approaches to validate if the resolution is effective or not 

considering the developer opinion. We have not interviewed developers or presented our 

findings to those developers involved in the projects we have analyzed. Thus, in the future we 

would like to ask questions to developers about specific chunks or failed merges to see the 

rationale that led to their resolution. We may find that some of resolutions are recurrent and 

follow best practices adopted by the development team. If they are found and happen to be 

shared by a large group of developers, such practices could be implemented in a specialist 

system which would decide for the most suitable resolution based on the characteristics of the 

conflicting chunk and/or failed merge. 

5.2.2 WE JUST CONSIDERED THREE KINDS OF DEPENDENCIES IN THE 
PROOF-OF-CONCEPT TOOL 

Our proof-of-concept tool to order chunks, which in the current version handles only 

three kinds of dependencies, also has limitations. Many other kinds of dependencies could be 

explored, such as: import declaration and method invocation; annotation declaration and 

annotation usage; method interface and method declaration; among others. These 

dependencies could enable us to improve assistance and, consequently, increase the 

expressiveness of our results. Another limitation of our approach is that we can only extract 

the AST from Java source code, limiting its application in multi-language projects or in non-
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Java projects. Although this challenge is well-known in the syntactical merge approaches, it 

can be handled by inserting new kinds of dependencies that are not related to syntactical 

information, for instance, extracting patterns from files that are frequently changed together 

(i.e., logical coupling) and using these rules to order the conflicting chunks. Other alternative 

is to extend the approach to deal with other programming languages by adding extractors for 

these languages and finding language-specific dependencies.  

5.2.3 THE CHUNK ORDERING APPROACH DOES NOT HAVE A GRAPHIC 
INTERFACE 

The chunks ordering algorithm is not currently integrated to an IDEs or does not have 

a standalone user interface through which developers could evaluate the usability of our 

approach. As discussed in the Chapter 4, our approach receives as input the revisions that will 

be merged and, when a failed merge takes place, it returns the sequence of chunks in the order 

that they should be resolved. This interface may not attract people to use the approach. Thus, 

we do not have feedbacks about its usefulness, even though we could show in our 

experiments that it assists developers during failed merge resolutions. 

5.3 FUTURE WORK 

The analysis reported in this document and the proof-of-concept tool opened some 

opportunities for future work. These ideas are reported in the following.  

5.3.1 CROSS-LANGUAGE ANALYSES 

Our analyses were focused on projects written in Java, and our goal was to analyze 

just the occurrences of language constructs in this language. However, a natural evolution of 

our work is to analyze if the patterns hold for other single-language projects or even if multi-

language projects also face similar conflicting and resolution patterns. The former analysis 

could rely on statistics about the usage of programming languages to select the number of 

projects from each language. Then, the results of different languages could be compared to 

determine if there are patterns for certain programming language groups or language-

independent patterns. The latter analysis can be conducted over a randomly selected set of 

projects, showing if the number of cross-language failed merges (that is, failed merges 

comprising conflicting chunks written in different programming languages) is relevant. 
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5.3.2 SEARCH-BASED SOFTWARE ENGINEERING FOR MERGE RESOLUTION 

Chapter 3 reveled that 87% of the chunks have all content necessary to resolve them in 

the lines of code that represent versions 1 and 2. Therefore, Search-based Software 

Engineering approaches that create permutations of these lines of code and test whether they 

compile and pass the test suite would help developers by providing a set of candidate 

resolutions from which he/she could pick one to resolve the failed merge. This might be  

promising since 87% of the chunks would be resolved in a semi-automatic way and the 

remaining 13% would have an initial resolution on which developers could use as baseline. 

Of course, there are challenges to this approach. For instance, the number of candidate 

resolutions can increase exponentially according to the number of lines in version 1 and 2. 

Equation (5) shows the number of candidate resolutions given LOC1 and LOC2, respectively 

representing the LOC from version 1 and 2. Therefore, such approach should consider 

strategies to prone candidate resolutions that are not likely to have good results and, as a 

consequence, reduce the number of candidates to generate the correct resolution in an 

appropriate time. Moreover, this work could explore exact algorithms to find the best 

resolution when the number of candidate resolutions is small, and metaheuristics when there 

is a high number of candidate resolutions. 

∑ ∑ (𝐿𝑂𝐶1
𝑖 ) (𝐿𝑂𝐶2

𝑗 ) (𝑖 + 𝑗
𝑖 )𝐿𝑂𝐶2

𝑗=0
𝐿𝑂𝐶1
𝑖=0                                                                (5)                

5.3.3 RESOLUTION OF CHUNKS BASED ON PREVIOUS RESOLUTION 

Our analyses reveled that there are relations between language constructs and 

developer decisions. Moreover, the evaluation of our proof-of-concept tool showed that the 

order in which chunks are resolved could provide assistance during the resolution of further 

chunks. Based on these facts, previous resolution could be used to predict future resolutions 

automatically or at least to exploit the order of chunks to automatize future resolutions based 

on the previous one. The former approach would rely on the association rules that relate 

language constructs and developer decisions. Thus, a set of rules would be extracted from 

projects developed by the same developers, organizations, or well-known projects that 

probably adopt best practices during software evolution. Then, the association rules could be 

implemented in the form of an expert system which would provide a set of possible 

resolutions from which the developer would pick the one that resolves the failed merge in the 

most appropriate way. The latter approach would explore the syntactical dependencies to 

order the chunks in a way that automatic approaches would take advantage. For instance, 
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assume two chunks A and B comprised in a failed merge. Chunk A presents a conflict 

involving method invocations and chunk B has a set of method declarations in conflict. As 

additional information, chunks A and B have dependencies since the method declarations are 

implementing the behavior of the method invocations. Thus, resolving chunk A gives enough 

resource to resolve chunk B, which will maintain just the method invocations that their 

declarations are still in place.  

5.3.4 SUPPORT AWARENESS APPROACHES  

Table 17 and Table 18 show that some kinds of conflicts are harder to resolve than 

others. Additionally, awareness approaches like Palantir (Sarma et al., 2003), Crystal (Brun et 

al., 2011b), and WeCode (Guimarães; Silva, 2012) try to help developers to detect conflicts 

before than take place and establish a strategy to avoid failed merges. Thus, an additional 

information that could improve warnings given by awareness approaches is the difficulty 

degree that a conflict can have based on the history of the project. Therefore, a developer 

would have the choice of continuing coding if the difficulty degree is low or try to resolve the 

conflict otherwise. Thus, developers would be able to better manage their risks.  

5.3.5 IS THE GRANULARITY IMPORTANT IN THE CORRELATION WITH 
NUMBER OF DEVELOPERS?  

Table 21 shows that the number of developers in a project has lower correlation with 

the number of commits, merges, and failed merges. However, this analysis was performed just 

over the project as a whole. Thus, a future work could consist on performing the same 

analysis considering packages, files, or maybe method declarations and other syntactical 

elements as grains. With this study, we could uncover other correlations for specific parts of 

the project.  

5.3.6 ANALYZE THE DIFFICULTY TO RESOLVE CONFLICTING CHUNKS 
BASED ON LOC 

We analyzed the difficulty to resolve conflicting chunks based on the kind of conflict 

that the conflicting chunk has. However, there are other characteristics that can determine this 

difficulty, for instance LOC. Thus, a possible future work is to analyze the relation between 

the number of LOC and the difficulty to resolve a conflicting chunk. Of course, for this 

analysis, we expect that chunks with higher number of LOC would result in most difficult 

resolutions than the chunks with lower number of LOC.  
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5.3.7 IS IT POSSIBLE TO AUTOMATE NEW CODE RESOLUTIONS? 

During our analyses, we considered that the developer decisions version 1, version 2, 

combination, concatenation, and none are possible to be automated. However, some cases of 

new code are also susceptible to automation. For instance, for a missing import declaration, 

an approach could identify the problem and suggest import declarations that can be used in 

this context. Therefore, a possible future work would be to identify opportunities in the 

chunks with new code and propose heuristics to resolve them.  

5.3.8 USE DEEP LEARNING TO IMPROVE MERGE 

As we could observe, Table 19 and Table 20 show association rules that connect a set 

of language constructs to a specific resolution. However, there is no silver bullet to resolve all 

the merge cases and in some cases the developers can diverge in opinion. Therefore, a future 

work could be to provide automatic resolutions to developers and allow them to classify if the 

resolution make sense or not. By doing so, the developers would provide feedback that the 

tool could learn from and use this knowledge in the following suggestion. This can be used to 

provide accurate feedback for specific developers or to the rest of the development team.  

An open question is related to the data used by the approach to base its decisions. A 

possible solution is to use only the data generated by the developer who is performing the 

merge. However, this generates a problem called cold start: there is no data available when 

the developer starts using the approach. On the other hand, the approach could use data from 

the organization, but this sometimes may not be the best choice since developers have 

different profiles and ways to resolve conflicts. To deal with this tradeoff, a possible solution 

could be start using the data from the organization and, as soon as the developers have enough 

data available, use this data to make decisions.  

5.3.9  THE CHARACTERISTICS OF THE ORGANIZATION, PROJECT, PROCESS, 
AND DEVELOPERS CAN INFLUENCE IN THE FAILED MERGE? 

As deep as we go in the analyses, new questions arise. For instance, is there any 

difference among the failed merges in different organization? Or even within the same 

organization, is there any difference among the failed merges of different developers? These 

and other questions were not treated in our current analyses, but they are important and can 

also generate knowledge to avoid future conflicts or to support the resolution of some 

conflicts. For example, Costa et al. (2016b) observed that some projects have an integrator 

that is responsible to merge most of the versions, and consequently there is a specialist to 
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resolve failed merges. On the other hand, there are projects on which the developer who 

performs the merge is chosen based on the knowledge the he/she has in the changes that took 

place.   

5.3.10 PERFORM QUALITATIVE ANALYSIS OVER THE PROJECTS 

Another future work is to analyze a project that the developers are available to answer 

questions. This would be a great opportunity to see if the obtained results make sense or not 

for the development team. Moreover, this kind of analysis could lead to new studies focused 

on the developers’ doubts.  

5.3.11 USE LOGICAL DEPENDENCY IN THE CHUNKS ORDERING APPROACH 

In the proof-of-concept tool described in Chapter 4, we use syntactical dependencies 

that are closely related to the programming language of the project. This way, we only support 

projects that are written in Java. We have two main options to provide support for non-Java 

projects: (1) implement the mechanism to collect these dependencies from other languages or 

(2) use an alternative way to collect dependencies that does not rely on syntactical aspects. 

This alternative way could extract logical dependencies from files that are frequently changed 

together. This information can be extracted from the logs of VCSs. Consequently, logical 

dependencies could be used to drive the identification of dependencies and provide support to 

any project under VCS control.   
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