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Mestrado.
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Resumo

A eficiência de processos de difusão de informação em redes complexas depende muito
não apenas da estrutura da rede mas também dos nós escolhidos para iniciar a difusão,
os chamados seeds. Além disso, em diversos cenários reais, nós distintos impõem custos
distintos para iniciar uma difusão, como é o caso do marketing viral, onde o custo dos nós
correlaciona-se com a estrutura local dos mesmos. O problema conhecido como budgeted
influence maximization (BIM) consiste em determinar um conjunto de seeds cuja difusão
maximiza o total de nós influenciados, dado que o custo total dos seeds limita-se a um
orçamento (budget). Este trabalho investiga estrategias eficientes para BIM sob o modelo
determińıstico de difusão baseado em limiares fixos. Em particular, introduz-se o con-
ceito de extended surrounding sets (conjuntos evolventes estendidos): seeds relativamente
baratos que são vizinhos de nós caros porém estruturalmente privilegiados, os quais serão
influenciados a custos mais baixos e assim contribuirão para a difusão. De modo a medir
o desempenho de maneira mais eficaz, é introduzido o conceito de “poder de difusão”,
o qual captura a fração de nós influenciados ao fim do espalhamento descontando-se a
fração de seeds. É mostrado como essa abordagem pode mudar completamente o entendi-
mento acerca da eficácia de uma dada estratégia. Experimentos numéricos com diversas
redes complexas de larga escala (oriundas de bases de dados reais) indicam que o método
aqui apresentado é superior a estratégias que se baseiam na razão centralidade/custo dos
nós para escolher os seeds. Uma ideia chave deste trabalho é que geralmente obtém-se
maior poder de difusão quando considera-se a vizinhança de dois saltos de um vértice ao
cercá-lo, ao invés de considerar-se apenas os seus vizinhos imediatos.

Palavras-chave: epidemia em redes, maximização de influência, estratégias de se-
meadura, custo de nó variável, rede social.



Abstract

The efficiency of information diffusion processes on complex networks highly depends on
the network structure and the nodes chosen to start the diffusion, known as seeds. More-
over, in various realistic scenarios, different nodes have different costs to start a diffusion,
such as in viral marketing, where node costs are correlated with their local structure. The
budgeted influence maximization (BIM) problem consists of determining a seed set whose
diffusion maximizes the total number of nodes influenced, provided that the total cost
of the seeds is within a given budget. We investigate efficient seeding strategies for BIM
under the deterministic fixed threshold diffusion model. In particular, we introduce the
concept of extended surrounding sets: relatively cheap seeds neighboring expensive, yet
structurally privileged nodes that will ultimately be influenced at lower costs and thus
contribute to the diffusion. In order to measure performance more effectively, it is intro-
duced the concept of “diffusion power”, which captures the fraction of nodes influenced
at the end of the spreading discounting the fraction of seeds. We show how this approach
may completely change the understanding around a strategy’s effectiveness. Numerical
experiments with several large-scale complex networks (from real data social networks)
indicate our method outperforms strategies that seed nodes based on their centrality/cost
ratios. A key insight from our evaluation is that larger diffusion power is generally at-
tained with the surrounding sets that consider the two hop neighborhood of central nodes,
as opposed to their immediate neighbors.

Keywords: network epidemic, influence maximization, seeding strategies, variable node
cost, social network.
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Caṕıtulo 1

Introduction

Spreading phenomena on complex networks, such as the diffusion of rumors or diseases

among individuals and the sharing of online content that go viral on the Internet, have

received an ever-growing attention both from the academia and industry. Understand-

ing how such dynamics can be long lasting, reaching large fractions of the underlying

networks, or die out quickly after a negligible spread, is a fundamental step in design-

ing more effective diffusion processes. These include more efficient marketing campaigns

across Internet users and more effective disease spreading prevention among individuals

in society [28]. Likewise, cascading failures across Internet routers or in power systems

can also be studied within the same framework [31, 21].

Models for diffusion processes in networks rely on the network epidemics framework,

wherein an epidemic refers to any recursive dynamic by which propagators such as viruses,

ideas, rumors, and failures, infect a fraction of the neighbors of those already infected

nodes. Most importantly, an epidemic spreads through the edges of the network according

to some law. It usually starts from a relatively small set of nodes, infected through some

exogenous process. Intuitively, this set of initial spreaders, i.e. the set of seeds, plays a

fundamental role on the propagation unfolding, as those structurally privileged in some

sense are likely to maximize some aspect of the diffusion.

In this sense, to maximize the number of nodes an epidemic reaches corresponds to

the influence maximization (IM) problem [13], which defines the influence of a set of

seeds in a network as its expected number of activations, i.e. the expected number of

nodes infected at the end of the spreading. Classically, IM problems try to identify, for a

relatively small number φ, which φ-seeds are the more influential. Clearly, φ represents a

constraint in terms of resources to perform the seeding, like an initial budget that covers

an intrinsic cost to infect nodes at time zero, i.e. a cost to start an epidemic. Moreover, φ
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also means this intrinsic cost is the same for all nodes, since it is always possible to seed

any φ among them, irrespective of their particular properties or attributes.

However, assuming identical node costs is inadequate in many scenarios, most notably

in viral marketing campaigns in online social networks (OSN) [16, 26, 6], but also epidemic

routing on computer networks [29], for instance. Indeed, popular individuals (celebrities)

on Twitter are paid differently to tweet sponsored marketing messages [16]. Likewise,

through contracts of largely different values, Facebook pays companies and celebrities to

sustain live video streaming content, raising users’ exposure to advertisements [26]. And

similarly, popular Instagram users are paid differently to post photos alongside sponsored

products [6]. In another context, studies regarding predictable Delay-Tolerant Networks

(DTNs) have also considered epidemic routing assuming variable node costs and limited

initial budget [29].

IM problems where nodes have different initial costs to be seeded were recently for-

malized as the budgeted influence maximization (BIM) problem [25]. Given an initial

budget and nodes’ cost, what is the most influential seed set? Clearly, a seeding strat-

egy must consider not only the estimated influence of a node, but also its cost towards

the budget. Let us consider, for instance, both Twitter and Instagram social networks,

mentioned above. Figure 1.1 illustrates how largely (orders of magnitude) the values paid

for celebrities to post sponsored content may differ from one another in both networks.

The exact numerical values and celebrity names are found on [16] and [6] for Twitter and

Instagram networks, respectively. The plots of Fig.1.1 are as follows. For each celebrity

(labeled dot), the x axis denotes his/her number of followers, while y axis is the value they

charge for posting either sponsored tweets (Fig. 1.1(a)) or sponsored photos (Fig. 1.1(b)).

Both axes are log-scaled. Notice, for instance, on Fig. 1.1(b) a huge difference between

Jojo (McCarthy) and Scott (Disick) with respect to both their number of followers and

their sponsored posts value—orders of magnitude. The same fact can be observed in

Fig. 1.1(a), for instance, between Frankie (Muniz) and Kloe (Kardashian). Thus, it is

reasonable to assume that differences among node costs, like those illustrated on Fig. 1.1,

are to a certain extent related to the nodes’ structural properties (in this case, the number

of followers).

Clearly, effective seeding strategies must exploit the inherent cost-effectiveness in BIM.

Is it better to seed more nodes at the lowest cost possible? Or to seed a few nodes better

positioned at a much higher average cost? Moreover, how to cope with the correlation

between node centrality and node cost?
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(a) Twitter (b) Instagram

Figure 1.1: Payment received by different celebrities for posting sponsored content in
Twitter (left) and Instagram (right) networks, compared to their number of followers
(axes log-scaled).

This work investigates efficient seeding strategies for the BIM problem under a cor-

related node cost model (i.e., higher node degree, higher cost) and the linear threshold

model (i.e., a node becomes infected if k or more neighbors are infected). Two key con-

tributions are as follows: (i) the concept of extended surrounding sets : relatively cheap

seeds near (distance of one or two hops) expensive, yet structurally privileged nodes that

will become infected at lower costs, and hence contribute to the epidemic. Surrounding

expensive, central nodes by cheap seeds has shown to be advantageous for the spreading

independently of how node centrality is assessed; (ii) a more meaningful concept to as-

sess epidemic performance, called diffusion power, which subtracts the fraction of seeds

from the total fraction of nodes influenced at the end of the spreading. This metric is

fundamental to properly compare and understand the effectiveness of different seeding

strategies for BIM. Opposite to the unit-cost IM, two different strategies for BIM, upon

receiving the same initial budget, may still hugely vary in their number of seeds. In par-

ticular, a small set of seeds that influence a large number of nodes should be valued higher

than a huge set of seeds that influence just a few nodes. Diffusion power thus captures

the benefits (infected non-seeds) of an investment (budget).

We empirically evaluate different seeding strategies on 7 real networks, varying pa-

rameters for node cost, budget, and infection threshold. We show that even when the

cost of those most central nodes is larger than the budget, effective epidemics can be
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still induced. Moreover, we show that cost-aware seeding strategies that select nodes by

their cost-effectiveness fail to trigger effective epidemics much earlier than strategies that

surround central nodes, considering increasing values of the network threshold. An im-

portant insight is that better cost-effectiveness is achieved if the two-hop neighbors of a

central node v are also leveraged in order to have v surrounded, as opposite of considering

v’s direct neighbors only. Last, we believe the main contributions and findings of this

work, such as the node surround concept and the measurement of epidemic performance,

can be applied to other contexts.

1.1 Related Work

The influence maximization (IM) problem has been broadly investigated since the semi-

nal work of Kempe et al. [13]. This pioneering paper provides framework for the general

problem, proving its hardness (it is an NP-Hard problem) and providing an approximate

greedy algorithm with provable performance (constant factor of optimal). This approx-

imate algorithm is based on submodular objective functions, which is shown to be the

case for some epidemic models. However, despite being polynomial time, the approximate

greedy algorithm has very high complexity which has lead to a myriad of approaches to

tackle the problem more efficiently [13, 2, 14, 8, 12, 1, 7, 30, 20, 4]. Moreover, there are

various scenarios where the epidemic model does not yield submodular objective func-

tions (or cannot be shown to yield) which is for example, the case of the classical Linear

Threshold Model [10], considered in this work.

Therefore, many of prior works focused on heuristics to determine the best seed set,

exploring structural features of the network as well as features associated with nodes (e.g.,

labels). For example, computationally-inexpensive heuristics based on node degree [8] and

other simple features (such as node homophily) have been considered [1, 17]. Heuristics

based on k-core decomposition of the network [27] have also been explored [14], showing

a correlation between influential spreaders and highly connected regions of the network.

This idea has been explored by various subsequent works that also adapt and augment

with node rankings [4], communities [30], disjoint paths [7] , and local neighborhoods [20].

However, all these prior works implicitly assume that nodes have the identical costs, since

the constraint is simply the number of seeds.

There are also recent works that have investigated problems related to epidemics

where node costs are not fixed (over time) or identical across the network. For example,
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Leskovec et al. [18] propose strategies for placing sensors on a network to more quickly

detect a diffusion. Arthur et al. [2] propose strategies to price products and provide

cashback (discount) to nodes in the network to induce recommendations to neighbors.

Miyanchi et al. [22] formulate an optimization problem to allocate a fixed budget to

a bipartite network of marketing channels and customers with variable node costs (no

diffusion is considered). None of these works is considered the specific BIM problem.

However, BIM has recently been formulated and investigated by Nguyen et al. [25].

The authors depart from the framework introduced by Kempe et al. [13] and tackle

the problem using the independent cascades model. They establish a submodular, cost-

normalized objective function, from which they determine a greedy algorithm with ap-

proximation guarantees to a constant factor. Other works have also investigated the

problem [11, 9]. Han et al. [11] tackle BIM with a heuristic combining two seeding strate-

gies based on node influence (and not cost) and on node cost (and not influence). Last,

Souza et al. [9] characterize the performance of simple and traditional seeding strategies

to solve the BIM problem, motivating the need for more clever strategies.

Despite addressing the BIM problem, these prior works have the following limitations.

The theoretical result of Nguyen et al.[25] assumes that the initial budget is larger than

the cost of any node. Moreover, their numerical evaluation uniformly assigns random

costs to nodes, from a small range (less than a factor of 10). Similarly, Han et al. [11]

assume that the initial budget is larger than the cost of any node, but also that the cost

of a node is linearly tied to its argued centrality. These assumptions, however, do not

properly capture real-world pricing practices, such as those adopted by celebrities (nodes)

for promoting viral marketing in online social networks [26, 16, 6]. In particular, there

is no reason to assume that external agents (e.g. sponsors) are always provided large

enough resources (budget) to seed even those more expensive nodes. Last, the work of

Souza et al. [9] focus on demonstrating (i) how the assumption of nodes with different costs

may dramatically impact strategies performances according to their decisions on seeding,

and (ii) the strong need of leveraging network structure on BIM problems, by showing

that “blind” strategies are highly sensitive to parameter variations. They demonstrate

that none of such strategies can be considered consistently superior in terms of inducing

broad epidemics. However, no efficient strategies for BIM are proposed.

None of these previous works assesses the total influence of a seed set by considering

only the number of nodes influenced during the spreading. Moreover, in this work we

propose a flexible node cost model that strictly depends on the network structure. It
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allows for an arbitrary range of values, without making strong assumptions on both the

budget and the node cost.

1.2 Text Organization

The remainder of this text is organized as follows. In chapter 2 are presented the epidemic

model, the node cost model, the budget model and the problem statement. Chapter 3

describes the different seeding strategies, including the node surround concept. Chap-

ter 4 presents the different performance metrics—including diffusion power—, the net-

work datasets, and reports the results of experiments performed over various scenarios.

Finally, we conclude with a discussion in Chapter 5.
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Models

The study of the BIM problem requires a clear definition of the nodes’ costs model,

the budget model, the epidemic model, the diffusion model, and the network model.

In this section we specify the different models used in our study, some of which are

first proposed here (cost model and budget model). As for the network, we will not

consider any particular model but work directly with different real networks, as described

in Section 4.2.

2.1 Epidemic and diffusion models

We adopt the classical SI model for network epidemics, widely used to represent diffusion

of ideas or viruses [24]. In this model nodes may assume one of only two states: susceptible

(S) or infected (I). Moreover, nodes can only transition from the S to the I state. Thus,

infected nodes never return to the susceptible state.

Let G = (V,E) be a network with node set V and undirected edge set E. Let N(v)

denote the set of neighbors of node v ∈ V and d(v) = |N(v)| the degree of node v ∈ V .

We consider a discrete time model, indexed by t = {0, 1, 2, ...}. Let S(t) and I(t) denote

the respective sets of susceptible and infected nodes at time t, such that S(t) ∪ I(t) = V

and S(t) ∩ I(t) = ∅.

A set of nodes is assumed to be infected at time zero, the seed set, denoted I(0). The

epidemic then unfolds on the network until some quiescence time tq, corresponding to the

first time t such that I(t) = I(t+ i),∀i ∈ N. Thus, I(tq) denotes the set of infected nodes

at the end of the epidemic.

State transitions, i.e., conditions under which a susceptible node becomes infected,
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are based on the Linear Threshold Model with fixed and identical thresholds [10, 24],

wherein the diffusion evolves deterministically. Let θ ∈ N∗ denote the fixed threshold,

then a susceptible node becomes infected at t+ 1 if its number of infected neighbors at t

is greater than or equal to θ. More formally:

∀v ∈ V, v ∈


I(t) if v ∈ I(t− 1),

I(t) if |N(v) ∩ I(t− 1)| ≥ θ,

S(t) otherwise.

(2.1)

2.2 Cost and budget models

A reasonable assumption regarding the cost of a node is to establish a cost dependency on

some notion of node centrality. Intuitively, those more central nodes in a network (such

as celebrities in Twitter) tend to be the more expensive ones, likewise. The centrality of a

node, however, is typically context-dependent, and strongly relates to the phenomenon be-

ing studied. A number of metrics, such as degree, closeness and PageRank [24], have been

proposed in order to capture how important (central) a node is under some perspective.

While actual costs could depend on various metrics for centrality, and also on features

not directly encoded in the network structure, this work considers the cost of a node v

as being dependent on v’s degree. Although a simplification, to consider a node central

agreeing to its number of relationships is a quite natural and broadly employed approach

for studying network epidemics. Among other examples, degree is related to popularity in

online social networks, influential articles in a citation network, promiscuity in a sexual

relationship network and sociability in a friendship network. Intuitively, the larger the

degree of a node v, the more likely v is to either influence or be influenced. Indeed, em-

pirical studies with real data have already pointed out that larger degree nodes are also

the more active ones in viral marketing campaigns [12]. Therefore, the cost c : V → R+

of a node v ∈ V is given by:

c(v) = d(v)α , (2.2)

where d(v) is the degree of v and α ∈ R+ is a fixed parameter that controls the dependence

of the cost on the degree. Note that the unit-cost IM in our model corresponds to the

particular case wherein α = 0. Is noteworthy that α here controls the impact of d(v) on

the cost of v because degree centrality is the chosen proxy of importance.
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We also define the cost of a set of nodes, which is simply the sum of the cost of

each node in the set. As a useful convention, we consider the cost of an empty set as ∞
(infinity). Formally, given a set W ⊆ V of nodes,

c(W ) =

 ∞ if W = ∅,∑
∀w∈W

d(w)α otherwise.
(2.3)

We propose a budget model that depends on the network structure and node cost

model. This allows for a more direct comparison among networks of different sizes and

structures and also among different models for node cost. The idea for the budget is to

pay for a given fraction of the network nodes at the cost of the average degree. Thus, let

d = (
∑
∀v∈V d(v))/n denote the average degree of a network G = (V,E) of size n = |V |.

Then, the budget b is defined as follows:

b = kn · c(d) = kn(d)α , (2.4)

where α is the same applied to the node cost, and k is a fixed fraction. Since it clearly

does not make sense to establish an initial budget incapable of performing any seeding,

we define a lower limit for k such that b can always seed at least the cheapest node of

the network. Thus, let vm ∈ V denote a node with the smallest cost. Then, the initial

budget b is such that b ≥ c(vm), which implies that kn(d)α ≥ d(vm)α, and hence k ≥
(1/n)(d(vm)/d)α. We therefore consider a fraction k such that (1/n)(d(vm)/d)α ≤ k ≤ 1.

Note that b is directly proportional to both the cost (d)α of the (virtual) node with average

degree and the size n of the network.

A brief discussion on the models for cost and budget is worth it at this point. Our

node cost model (Eq. 2.2), based on the node degree, implies that the average node

cost corresponds to E[d(v)α]. Note, however, that α 6= 1 ⇒ E[d(v)]α 6= E[d(v)α], i.e.

the average degree cost does not correspond to the average node cost. Thus, a natural

question is why not model the budget as a function of the expected cost rather than a

function of the average degree. As previously discussed, in many different real situations

there already exists a fair understanding on how central a node is; conversely, it is still

an open question how these nodes are assigned costs. For instance, on [16] the value paid

for a celebrity to tweet sponsored content weakly correlates with the number of followers.
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Indeed, although degree has proven a reasonable proxy of importance in real cases [12], it

may also not be that influential when assessing how valuable in terms of cost a node is [5].

The adoption of the parameter α is therefore consequence of such lack of accurate cost

predictors. Yet, α allows the cost function to capture aspects observed in real cases, such

as non-linear relation between centrality and cost, and nodes differing in their costs by

orders of magnitude [26, 16, 6]. Furthermore, the budget modeling based on the average

degree cost (d
α
) also represents an advantage compared to the expected cost, as the latter

requires the degree distribution of the network, while the former is immediately derived

from one single parameter (d).

A more realistic model for the budget (as well as node cost) is beyond our scope, as

we turn our attention to seeding strategies that yield efficient epidemics within the given

constraints by the budget and the cost. Moreover, the different seeding strategies (to be

presented) receive the same initial budget, yielding a direct and fair comparison. Last,

we will adopt very small values for k, such as k = 10−4, leading to really limited budgets

and hence stressing the importance of the seeding strategy. Clearly, seeding under large

budgets loosen the demand for smart choices on the seeds.

Concerning the node cost model, its sole parameter α > 0 plays a fundamental role

in the trade-off between node centrality (degree) and cost. Intuitively, if the costs across

the network present low variations (small α), then the seeding strategy can focus on the

network structure and target those more central nodes. Conversely, if costs differ by many

orders of magnitude (large α), these surely must be the strategies’ primary concern. In

what follows we make a rigorous argument for the role of α in the node cost model.

Proposition 2.2.1. Given a network G = (V,E), the proposed node cost model, the

budget model with budget b, and a sufficiently large α, we have:

1. For every v ∈ V , if d(v) > d then c(v) > b;

2. For every v ∈ V , if d(v) < d then b > c(v);

3. Let U = {v ∈ V |d(v) < d}. Then b > c(U).

Proof. Note that the cost of a node v ∈ V is given by c(v) = d(v)α and the budget is

given by b = kn(d)α, where n = |V | and 0 < k ≤ 1. Thus, c(v) > b⇔ d(v)α > kn(d)α ⇔(
d(v)

d

)α
> kn. Since d(v)

d
> 1 when d(v) > d, we have that for sufficiently large α the

result holds. In particular,
(
d(v)

d

)α
> kn⇔ α > ln(kn)

ln(
d(v)

d
)
⇔ α > log d(v)

d

(kn). The proof for

case 2 follows along the same lines.
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The proof for case 3 follows similarly, since b > c(U)⇔ kn(d)α >
∑

v∈U d(v)α (I). Note

that
∑

v∈U d(v)α < |U |(d∗)α, where d∗ = maxv∈U d(v). Thus, to accomplish condition (I)

it is sufficient to provide that kn(d)α > |U |(d∗)α. Rewriting, it follows that kn(d)α >

|U |(d∗)α ⇔ ln(kn)+α·ln(d) > ln(|U |)+α·ln(d∗)⇔ α·ln(d)−α·ln(d∗) > ln(|U |)−ln(kn)⇔
α · ln(d/d∗) > ln(|U |/kn) ⇔ α > ln(|U |/kn)

ln(d/d∗)
, which means that α > log d

d∗
(|U |/kn) is

sufficiently large to meet case 3.

Note that Proposition 2.2.1 states that the budget will never be large enough to pay

for nodes with a degree higher than average but at the same time will always be sufficient

to pay for nodes with degree smaller than the average, for a sufficiently large α. Thus,

increasing α increases likewise the influence of node costs over the strategies’ decisions.

It is also interesting to consider the degrees that can be included in the seed set, in

the sense that there is enough budget to pay for them. This is stated in the following:

Proposition 2.2.2. Given a network G = (V,E), the proposed node cost model and the

budget model with budget b, it holds that c(v) ≤ b⇔ d(v) ≤ d(kn)1/α,∀v ∈ V .

Proof. Note that c(v) ≤ b⇔ d(v)α ≤ kn(d)α, which in turn means that d(v) ≤ d(kn)1/α.

Proposition 2.2.2 determines what degrees can be included in the seed set. To il-

lustrate, lets consider a real example (Hep-Ph network, to be presented later), where

n = 12008, d = 19.735, k = 5× 10−4 and α = 2. In this case, if d(v) ≤ 48 then c(v) < b.

Thus, only nodes with degree less than or equal to 48 can possibly enter the seed set.

This next result shows the other direction: nodes costs become relatively identical

with sufficiently small α.

Proposition 2.2.3. For a given network G = (V,E), as α → 0 the cost of a node

v becomes, at the same proportion, a negligible factor for a seeding strategy to decide

whether to seed v,∀v ∈ V .

Proof. Let vs, vl ∈ V denote the nodes with the smallest and the largest degrees of the

network, respectively. Then c(vs) ≤ c(v) ≤ c(vl),∀v ∈ V , i.e. d(vs)
α ≤ d(v)α ≤ d(vl)

α.

Note that ∀v ∈ V, α → 0 ⇒ d(v)α → 1 and therefore d(vl)
α − d(vs)

α → 0, which means

that c(vl)− c(vs)→ 0, i.e. all nodes tend to have the same cost, thus allowing the seeding
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to be more and more driven by node centrality (which in our model corresponds to node

degree).

It is worth noting that the particular case wherein α = 0 implies |I(0)| = bknc. Indeed,

α = 0 ⇒ d(v)α = 1,∀v ∈ V , what in turn means that c(v) = 1,∀v ∈ V , i.e. all nodes

have unitary cost. Moreover, for a budget b = kn( d )α it holds α = 0 ⇒ kn( d )α = kn.

Trivially, b = kn covers the unitary cost of bknc nodes.

2.3 Problem Statement

In order to measure the effectiveness of a given seed set I(0) ⊂ V , we consider the following

metric σ : V → N:

σ(I(0)) = |I(tq)| − |I(0)|, (2.5)

where tq is the quiescence time (smallest time at which no other node becomes infected).

Note that this metric captures the ability of the seed set to induce an epidemic. In

particular, it distinguishes seed nodes (paid influence) from nodes infected along the

epidemic (real benefit).

Thus, given a network G = (V,E), the node cost model and the budget model with

budget b, the goal is to determine a seed set I(0) ⊂ V that maximizes σ(I(0)) such that

c(I(0)) ≤ b. Namely, the seed set I(0) that maximizes the performance as measured by

σ(·).

Note that this problem is at least as hard as unit-cost IM, which has been shown

to be NP-hard [13]. As discussed in Section 1.1, a common approach to tackle epidemic

seeding is to show that the objective function (σ(·) in this case) is submodular and then

propose a polynomial time greedy algorithm that approximates the optimal solution to a

constant factor. Unfortunately, σ(·) in our case is not submodular, in particular because

the linear threshold model does not yield submodular objective functions [13]. Moreover,

we are interested in the “diffusion power” of the seed set, and not just the total number of

infected nodes. Thus, we resort to another approach, namely to design computationally

efficient seeding strategies based on heuristics tailored to the problem at hand, where

nodes have variable costs and diffusion follows the linear threshold model.
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Seeding Strategies

A common approach in the design of seeding strategies for the IM problem is to rank

nodes according to some criteria and then consider them sequentially for inclusion in the

seed set. We follow this framework, but we divide this process in two steps: (i) nodes

are ranked and considered in sequence; (ii) a node is considered to be placed in the seed

set, ignored, or surrounded (as detailed later). Note that (i) determines a global ordering

of the nodes, taking into account their position in the network, but not their cost, while

(ii) takes into account the cost and attempts to buy “more for less”, i.e. it leverages

the importance of node v ∈ S(0) by not seeding v directly, but its cheapest neighbors to

ensure that v ∈ I(1).

In the following, we first describe the two adopted node rankings. We then formalize

the node surrounding process in Sections 3.3 and 3.4, wherein we define the surrounding

set and the extended surrounding set, respectively. Next, we present in Section 3.5 both

the seeding policies and the seeding strategies (i.e. “ranking-policy” combinations) that

will be evaluated in Chapter 4. Finally, in Section 3.6 we present a cost-aware node

ranking metric that considers centrality/cost-to-surround ratio. Benefits and drawbacks

of these cost-weighted rankings are shown in Chapter 4.

3.1 Degree centrality ranking

As discussed in Chapter 2, degree may not be the best feature to consider when estimating

nodes’ importance on spreading processes [5]. Under the linear threshold model with fixed

thresholds such a fact is perhaps easier to visualize due to its diffusion dynamics, wherein

the sole condition for a node v to become infected at time t is the number of neighbors

already infected at time t − 1. The node degree therefore acts like a valve: if v has less
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than θ neighbors then it will never become infected unless v itself is a seed. Nevertheless,

as also discussed in Chapter 2, it is also unclear what are the main node features that yield

large epidemics, thus making node degree a simple yet reasonable alternative. Moreover,

degree centrality as a measure of node importance presents three major benefits. First,

a common property to a wide variety of real networks, irrespective of their nature, is a

heavy-tailed degree distribution, meaning that nodes with degrees orders of magnitude

larger than the average occur with non-negligible probability. Although this condition

may impose a constraint for seeding (since the cost of such nodes may be prohibitive), it

also means that frequently there exists a set of a few nodes that, together, are neighbors

of a large fraction of the network. The surrounding set approach thus becomes specially

attractive since important, yet cost-prohibitive, nodes will surely get infected at time

t = 1, if conveniently surrounded by seeds. Second, on real networks, the set of neighbors

of the largest degree nodes is mostly formed by nodes with small degrees. This observation

is captured by the notion of degree assortativity [23], i.e. the extent to which neighbors in

a network are similar with respect to their degree. Finally, large degree nodes naturally

tend to have numerous neighbors in common, meaning that part of the nodes used to

surround a large degree node may also contribute to surround other large degree nodes,

allowing them to be surrounded by using less new seed nodes. Therefore, one of the node

rankings adopted is degree centrality, wherein network nodes are sorted with respect to

their degree, from the largest to the smallest.

3.2 Triangle centrality ranking

When considering the very condition that allows an influence to propagate upon a network

under the Linear Threshold Model with fixed thresholds, it is immediate to notice that,

at each time step t, it is necessary that at least one susceptible neighbor of some infected

node has at least θ−1 other infected neighbors to become infected at t+1. This highlights

the importance of triangles on the network, i.e. subsets of three nodes connected to each

other or, more formally, cliques of size 3. Indeed, a node is more likely to adopt the

behavior of its neighbors when these are also neighbors from each other [3], an interesting

phenomenon already referred to as a “gravitational force” [15] a node’s neighbors exert on

it. We therefore propose a node ranking based on triangles, defined as follows. First, we

compute for every node vi the number τ ′i of triangles that have vi as a vertex. Formally,

let N(vi) be the set of neighbors of vi and 1(·) the indicator function. Then:
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τ ′i =

 0 if |N(v)| < 2,∑
∀uj ,uk∈N(vi),j<k

1 (uk ∈ N(uj)) otherwise.
(3.1)

Next, we determine τ ′′i , which is the sum of τ ′j from every neighbor vj of vi, plus τ ′i :

τ ′′i = τ ′i +
∑

∀uj∈N(vi)

τ ′j. (3.2)

The triangle centrality of node vi is given by τ ′′i , and larger is more central. Note that

the definition of τ ′′i implies that every triangle of τ ′i is being counted three times, while

triangles common to two of vi’s neighbors but not to vi itself are being counted twice.

Thus, τ ′′i reflects a higher appreciation of vi’s own triangles, a desirable feature since at

each step of the diffusion, the sole condition for a new infection to occur relates only with

those susceptible nodes directly neighboring the infected ones.

The second node ranking adopted, therefore, is triangle centrality, wherein the assessed

importance of each node corresponds to its τ ′′ index. It is worth noting that such a

score provides a very different information from that of the node’s clustering coefficient

(CC) [24], as the latter captures a relative measure—nodes with same CC may hugely

differ with respect to their absolute number of triangles.

Hereafter, to distinguish the node rankings, we will denote degree centrality by V d

and triangle centrality by V t.

3.3 The Surrounding Set

Intuitively, under different scenarios, cost-unaware strategies are more likely to exhaust

the budget prior to achieving the minimum number of seeds needed to induce a large

epidemic. A fundamental question is “how to obtain a relatively numerous set of seeds

while leveraging those expensive, well-ranked ones?”. To tackle this problem, we propose

surrounding sets, defined as follows. Let θ denote the network epidemic threshold and

γ : S → N denote the “distance” of a node v ∈ S(0) from I(1), i.e. γ(v) is the number of

v’s neighbors that still need to be seeded in order to ensure v ∈ I(1), as follows:
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γ(v) = max(0, θ − |N(v) ∩ I(0)|). (3.3)

A surrounding set of node v has size γ(v) and is given by the set function Γ : S → S,

defined as

Γ(v) =

{
∅ if |N(v) ∩ S(0)| < γ(v),

arg min(c({w1, w2, · · · , wγ(v)}))∀w ∈ {N(v) ∩ S(0)} otherwise.

(3.4)

Note that Γ(v) 6= ∅ means that Γ(v) contains the cheapest γ(v) susceptible neighbors of

v. Also, note that if all nodes in Γ(v) are seeded, v gets infected at t = 1. Thus, for each

v ∈ S(0), if |N(v)∩I(0)| ≥ θ, v is said to be directly surrounded, since certainly v ∈ I(1).

Algorithm 1 describes the construction of the surrounding set.

Computational complexity: Prior to executing any of the later described algorithms,

including Alg. 1, a pre-processing is made, only once, for each node in the network, such

that its neighbors are sorted ascending by their costs. To sort the d(v) neighbors of

a single node v is O(d(v) log d(v)). The overall computation for all nodes is therefore

O(
∑

i d(vi) log d(vi)). However, note that this operation depends on the number of neigh-

bors of each node, what ultimately depends on the number m = |E| of edges of the

network. Indeed, every edge determines two neighbors, hence a total of 2m neighbors

must be sorted. Thus, the pre-processing is O(m logm). Regarding Alg. 1, its complexity

is dominated by iterating over γ(v) neighbors of v (lines 7-13), which in the worst case

corresponds to θ. Thus Alg. 1 is O(θ).

3.3.1 Tiebreakers

Tiebreak is an important matter during the above mentioned pre-processing stage of

sorting each node’s neighbors with respect to their cost. The reason is that nodes with

identical costs are frequently different with respect to their neighborhoods. Every time the

minimum cost can be achieved by more than one node, preference is given as follows. For

V d, preference is given to the node with the largest sum over the degree of its neighbors,

and for V t, the node with largest τ ′ score. Formally, let ψ : S × S → S denote the

function that receives a pair of susceptible nodes eligible for composing Γ(v) and returns
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the preferred node:

ψ({w1, w2}) =


w1 if c(w1) < c(w2),

w2 if c(w2) < c(w1),

arg maxw∈{w1,w2}
∑
∀u∈N(w) d(u) if V d,

arg maxw∈{w1,w2} τ
′
w if V t.

(3.5)

Note that to use the τ ′′ score as the tiebreaker for V t would be less appropriate than

τ ′, as τ ′′ carries information about a region, not a node. A high τ ′′ score means that the

subgraph induced by v, v’s neighbors, and v’s neighbors’ neighbors has a large number of

triangles, which does not imply that τ ′ is also large (particularly, even τ ′ = 0 is possible!).

The τ ′′ score therefore is a good indicator of highly triangulated regions. However, it is

better for a surrounding node to have itself a large number of triangles, as this increases

the chance that this same node can also contribute to surround others, what in turn

increases the chances of triggering the epidemic.

3.4 The Extended Surrounding Set

We now describe the extended surrounding set concept proposed in this work. The goal

is to achieve a more effective budget usage by extending the surrounding set approach

(described in Section 3.3) to the two-hop neighborhood of each node, as follows. Let

Γ(·) be as described in Eq. 3.4. Now let ρ : S → S denote the function that receives a

node w ∈ S(0) and returns the cheaper set between {w} and w’s surrounding set Γ(w) as

follows

ρ(w) =

{
{w} if c(w) < c(Γ(w)),

Γ(w) otherwise.
(3.6)

Remembering that c(∅) = ∞ (as in Eq. 2.3) and γ(v) is the number of seeds needed to

surround v, the extended surrounding set (ESS) Γ+(v) of a node v is
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Γ+(v) =


∅ if |N(v) ∈ S(0)| < γ(v),

arg min(c(ρ(w1) ∪ ρ(w2) ∪ · · ·
∪ρ(wγ(v))))∀w ∈ {N(v) ∩ S(0)} otherwise.

(3.7)

It is immediate to notice that if Γ+(v) is seeded, v becomes infected, at most, when t = 2.

Moreover, note that it is always the case that c(Γ+(v)) ≤ c(Γ(v)). Yet, c(Γ+(v)) may not

be optimal with respect to cost minimization in the two-hop neighborhood of v. Since

the formation of the surrounding set Γ(w) of each w ∈ N(v) does not predict which other

nodes are also going to be surrounded, it is not clear whether some 2nd hop neighbors of v,

once seeded, would contribute in surrounding more than one 1st hop neighbor w of v. To

illustrate such a fact, let us consider the hypothetical network of Figure 3.1. Consider its

epidemic threshold is θ = 2. Also, assume that the cost of a node is linearly proportional

to its importance (degree), i.e., the cost function c(v) = d(v)α is such that α = 1. Finally,

consider a seeding strategy that aims at leveraging the importance of the most central

node, labeled v. For better visualization, borders of the 1st hop neighbors of v are thicker.

Starting by Figure 3.1(a) and supposing arbitrary units of cost, note that to seed v

directly would cost 10. Now, by observing Figure 3.1(b), note that to surround v with its

γ(v) = 2 cheapest direct neighbors (surrounding set) would reduce such a cost to 8, since

Γ(v) = {i, h} and c(Γ(v)) = c({i, h}) = d(i)α+d(h)α = 8. When adopting the ESS for this

purpose, however (Figure 3.1(c)), the overall cost drops to 6 since Γ+(v) = {Γ(a),Γ(b)} =

{e, f, c, d} and c({e, f, c, d}) = 6. Yet, c(Γ+(v)) is not the minimum achievable from v’s

two-hop neighborhood. Indeed, Figure 3.1(d) shows that further savings are still possible,

as seeding {d, f, g} would yield a total cost of 5 for having v infected (in this case, when

t = 2).

Finally, Algorithm 2 describes the construction of the extended surrounding set (ESS),

which is the actual approach employed in this work.

Computational complexity: Two scopes of Alg. 2 present an overall dominant com-

plexity, as follows. To form an ESS it is necessary to firstly determine, for each neighbor

w of v (line 8), w’s surrounding set (line 10). Therefore, the O(θ)-complex surrounding

set computation is performed d(v) times. Moreover, after such iterations, the array of size

d(v) = n containing the surrounding set of each of v’s neighbors is then sorted ascending

by cost (line 20), which is O(n log n). Thus, Alg. 2 is O(nθ + n log n) = O(n(θ + log n)).
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(a) direct seeding (b) v’s surrounding set

(c) v’s extended surrounding set (d) optimal

Figure 3.1: Comparison of methods for leveraging the importance of a central node in a
network. α = 1.0 and θ = 2.

Algorithm 1 SurroundingSet.
Require: v //{Input. v = node to be surrounded}
Require: Γ //{Output. The surrounding set Γ}
1: Γ← ∅
2: se v /∈ S(0) or d(v) < γ(v) então
3: RETURN Γ
4: fim se
5: total← 0
6: i ← 0 //{Accesses the element Ns(v)i of the set Ns(v) of v’s neighbors, sorted ascending by cost

and descending by the proper tiebreak criterion. }
7: enquanto total < γ(v) faça
8: se Ns(v)i ∈ S(0) então
9: Γ← Γ ∪Ns(v)i

10: total← total + 1
11: fim se
12: i← i+ 1
13: fim enquanto
14: RETURN Γ
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Algorithm 2 ExtendedSurroundingSet.
Require: v, //{Input. v = the node to be surrounded}
Require: Γ+ //{Output. The set Γ+ of eligible nodes (no seeding performed)}
1: Γ+ ← ∅
2: se v /∈ S(0) or d(v) < γ(v) então
3: RETURN Γ+

4: fim se
5: arrayΓ← array[d(v)] //{Creates an array of size |N(v)|. Each position is a set.}
6: // At this point it is guaranteed v can be surrounded.
7: // We thus determine Γ for each neighbor of v, in order to determine Γ+.
8: para i = 1, · · · , d(v) faça
9: se N(v)i ∈ S(0) então

10: Γi ← surroundingSet(N(v)i)
11: se c(N(v)i) < c(Γi) então
12: arrayΓ[i]← {N(v)i}
13: senão
14: arrayΓ[i]← Γi

15: fim se
16: senão
17: arrayΓ[i]← ∅
18: fim se
19: fim para
20: sortCostAscending(arrayΓ)
21: para i = 1, · · · , γ(v) faça
22: Γ+ ← Γ+ ∪ arrayΓ[i]
23: fim para
24: RETURN Γ+

3.5 Seeding Policies and Seeding Strategies

In the following, we describe the two different seeding policies adopted. Each seeding

strategy further evaluated corresponds to the combination of a node ranking and a seeding

policy.

• Node surround (NS): This policy tries to surround each visited node, simply skipping

those for which such task is impossible. First, it determines the ESS Γ+
v1

of v1—the

first node of a given node ranking—, seeding it in case b > c(Γ+
v1

). It then evaluates

v2 in the same way, trying to surround it. Every time a node vi cannot be surrounded

(either because |N(vi) ∩ S(0)| < γ(vi) or c(Γ+
vi

) > b) it is skipped and the ranking

traversing continues. If the ranking is completely traversed prior to the exhaustion

of the effective budget, then it is traversed again, but this time the NS policy tries

to seed each node directly until the budget is no longer effective. When the budget

becomes residual the process stops and the current set I(0) of seeds is regarded

as complete. Two seeding strategies derive from the NS policy, one for each node

ranking. Indeed, we denote NS-D and NS-T the seeding strategies which combine

NS with V d and V t, respectively. Finally, Algorithm 4 describes both strategies.
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Computational complexity: Prior to analyze Alg. 4, we need to first determine the

computation required to try to seed a given number of susceptible nodes, as de-

scribed in Alg. 3. The iteration over the set S ′ of size |S ′| = n (line 2) dominates

the overall complexity. Thus, Alg. 3 is O(n). Considering now Alg. 4, its complexity

is dominated by iterating, in the worst case, over all n network nodes (lines 4-11), in

order to determine their corresponding ESS Γ+ (line 7) and then try to seed those

nodes in Γ+ (line 8). Notice that, because of its definition, the largest size possible

for Γ+ occurs when it is formed by θ surrounding sets of size θ each. Therefore,

in the worst case, Alg. 3 will try to seed |Γ+| = θ2 nodes. That considered, Alg. 4

main complexity thus arises from n formations of the O(n(θ+ log n))-complex ESS

summed to n trials of seeding θ2 nodes. Thus, Alg. 4 is O(n(n(θ + log n) + θ2)),

which is O(nθ(n+ θ)).

• Cheapest nodes (CH): This simple policy is combined only with the degree ranking

V d, but in ascending order, thus starting from the smallest degree of the network.

For each visited node vi, it attempts to seed it directly. Note that the number

of nodes this strategy seeds is the largest possible for a budget b. The budget

here surely becomes residual after one single ranking traversal. The moment when

the budget b is no longer effective, the process stops and the current set I(0) of

seeds is regarded as complete. Because of its simplicity, we have omitted its related

algorithm. Finally, for its uniqueness we will also refer to the seeding strategy

formed by combining CH with V d simply as CH.

Computational complexity: In the worst case, the budget is large enough for the

strategy to keep its network seeding until having ultimately seeded all n = |V | nodes

of the network. Since CH always tries to seed one node at a time, the complexity

of Alg. 3 here is O(1). Thus, CH is O(n).

It is worth to mention that other two seeding policies were also considered along

our investigations, namely “Ranking Preserver” (RP) and “Cost Moderator” (CM). Both

represent variations towards the NS policy, as follows. RP tries always not to skip an

evaluated node in the case it cannot be surrounded, trying then to seed such node directly

prior to evaluate another worse-ranked node. CM in turn evaluates, for each node v, how

much the cost of having v surrounded by k other nodes will be. It then compares this

cost to a ceiling that corresponds to have v surrounded by k virtual nodes whose degree

is d. CM then surrounds v if c(v) is less than the ceiling, skipping v otherwise. Such a

ceiling is based on the fact that the budget also derives from d.
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None of these policies, however, presented results fundamentally distinct to the point

of being included here. Indeed, RP has proven not to be a good policy, as no single of

its results presented superior performance compared to the others, apart from CH. More

than that: RP presented, for almost all considered scenarios, the worst performance among

those policies that surround nodes. CM, on the other hand, had punctually presented

the best results, but by “best” we mean a very small edge compared to NS. For the vast

majority of scenarios, however, it performed either as well as NS or worse than the latter,

revealing that it is not that consistent. For these reasons, and also to provide a cleaner

set of results with fewer curves in the plots, in this work we present strategies based only

on CH and NS. Ultimately, the latter is the core idea throughout the experiments.

Algorithm 3 tryToSeed.
Require: S′ ∈ S(0) //{Input. The set of nodes to be seeded.}
Require: S(0), I(0), b //{Output. Updated S(0), I(0) and b}
1: se b ≥ c(S′) então
2: para todo v ∈ S′ faça
3: S(0)← S(0) \ {v}
4: I(0)← I(0) ∪ {v}
5: b← b− c(v)
6: fim para
7: fim se

Algorithm 4 Strategy NS (Node Surround).

Require: G = (V r, E), δ, θ, b //{Input. δ = minimum cost; V r is either V d or V t}
1: S(0)← V r //{Set of susceptible nodes}
2: I(0)← ∅ //{Set of infected nodes}
3: i← 1
4: enquanto b ≥ δ and i ≤ |V r| faça
5: v ← V r

i //{Next node in the ranking}
6: se v ∈ S(0) então
7: Γ+ ← extendedSurroundingSet(v)
8: tryToSeed(Γ+, S(0), I(0), b) //{Algorithm 3}
9: fim se

10: i← i+ 1
11: fim enquanto
12: i← 1 //{Ranking is traversed again to exhaust the remaining effective budget}
13: enquanto b ≥ δ and i ≤ |V r| faça
14: v ← V r

i

15: tryToSeed({v}, S(0), I(0), b)
16: i← i+ 1
17: fim enquanto
18: RETURN I(0)

3.6 Cost-weighted rankings

The seeding performed by the strategies above described is solely based on local informa-

tion, i.e. the policy that guides whether to seed or surround a node v considers uniquely
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whether the cost of such tasks can be covered by the budget. A clear downside of such

approach is that the moment the strategy evaluates v it may opt to surround it and,

right after, visit a node that, although slightly less central, is likewise much less costly for

being surrounded. Intuitively, if the strategies could always firstly surround those nodes

with better centrality/cost-to-surround ratio, the budget would be used more effectively,

allowing further seeding and hence inducing larger epidemics.

We thus introduce cost-weighted rankings. Their goal is to deliver to NS policy a

node ranking that already embeds a global relation between nodes with respect to both

their centrality and their cost for being surrounded. Cost-weighted rankings are defined

as follows. Given a network G = (V,E), each node v ∈ V is visited prior to any seeding

attempt. For each visited node vi, its argued centrality (either d(v) or τ ′′i ) is divided by

the cost of having vi surrounded (i.e. d(v)/c(Γ+
vi

) or τ ′′i /c(Γ
+
vi

)). Such a division yields a

second score λi ∈ R+ for vi, upon which V is sorted, yielding a ranking VΓ. For every vi

such that Γ+
vi

= ∅ (nodes that cannot be surrounded), its original score is divided by a

constant C = θ · c(dL), where dL is the largest degree of the network and hence c(dL) is

the highest cost. Note that this provokes all of such nodes to become low ranked but still

ordinary comparable.

The adoption of cost-weighted rankings may lead strategies’ performances to either

improve or degrade, depending on whether node costs are more or less dependent on

node centrality, respectively. These behaviors are demonstrated and discussed in Section

4.3. Last, because no actual seeding is performed during VΓ’s formation, and also because

Γ+(·) is not cost-optimal (as shown in Section 3.4), note that VΓ does not yield an optimal

centrality/cost-to-surround relation among nodes either.

Hereafter, cost-weighted rankings will be referred to as V d
Γ and V t

Γ for degree-based

and triangle-based rankings, respectively.
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Evaluation

We start this section by presenting some performance metrics, in particular the concept

of “diffusion power”. We then present the different networks and parametrization used,

followed by evaluation and main findings.

4.1 Performance metrics

Let G = (V,E) denote the network with n = |V | nodes, θ the epidemic threshold, I(0)

the seed set, and tq the quiescence time. We consider the following metrics in order to

evaluate the performance of the seeding strategies:

• Cost per Seed (CS), c = c(I(0))
|I(0)| .

• Fraction of infected nodes at time t, namely |I(t)|/n.

• Diffusion Power (DP): fraction of nodes infected until tq. discounting the fraction

of seeds. Thus, the DP ∆ : I → R+ of a set I(0) of seeds is

∆(I(0)) =
σ(I(0))

n
=
|I(tq)| − |I(0)|

n
, (4.1)

• Relative Diffusion Power (RDP): fraction of nodes with degree equal to or greater

than θ infected until tq, discounting the fraction of seeds. More formally, let B =

{v ∈ V |d(v) < θ} denote the set of nodes whose degree is smaller than θ. Then, the

RDP ∆r : I → R+ of a set I(0) is
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∆r(I(0)) =
σ(I(0))

n− |B|
. (4.2)

• Average Diffusion Power (ADP) across all epidemic thresholds for a given G. More

formally, let θ1 and θM denote, respectively, the minimum and the maximum values

of θ for a given network G that triggers an epidemic. Note that θ1 = 2 for all

networks and θM assumed different values as indicated in Table 4.1. Yet, let I(0, θi)

denote the seed set of a given strategy when θ = θi. Thus, the average diffusion

power ∆ is given by:

∆ =

M∑
i=1

∆(I(0, θi))

θM − 1
. (4.3)

Notice that the three last metrics are based on the concept of “diffusion power”. They

will be instrumental later in Section 4.3 on clarifying the importance of such a concept.

4.2 Network datasets and evaluation scenarios

The proposed seeding strategies were evaluated empirically with various real, undirected

networks using different scenarios (parametrization). Table 4.1 lists the networks consid-

ered in our evaluation and some basic statistics for each of them, but more information

for those datasets may be found at [19]. Networks had their original names abbreviated

and is refereed henceforward as follows: Fb = “ego-Facebook”; hep = “ca-HepPh”; astro

= “ca-AstroPh”; cmat = “ca-CondMat”; enron = “email-Enron”; Bk = “loc-Brightkite”

and dblp = “com-DBLP”. For each network, we report the number |V | of nodes, number

|E| of edges, Degree Assortativity (DA) [23], percentage of nodes in the largest connected

component (%LCC), average degree d, maximum degree dM , and maximum epidemic

threshold θM used during the experiments. It is worth noting that the minimum degree

in all networks is 1.

Note that the networks have quite different structures, not only with respect to their

sizes (orders of magnitude) but also their connectedness, expressed both by their average

degree d and degree assortativity (DA). For instance, astro has less than 10% of dblp’s size,

but also a 3 times larger average degree. The DA for enron reveals that such network is

slightly disassortative, meaning that neighbors tend to have different degrees. Conversely,
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hep is quite assortative, which indicates neighbors tend to have similar degrees. Also note

that the average degree is more than 20 times smaller than the maximum degree for all

networks, and in some cases more than 100 times smaller (Bk). Those networks, therefore,

provide a structurally rich context to better assess the concept of extended surrounding

sets and the proposed strategies in general.

Table 4.1: Network datasets and some basic statistics.
Network |V | |E| DA %LCC d dM θM
astro 18772 198050 0.21 95.4% 21.10 504 15
cmat 23133 93439 0.13 92.3% 8.08 281 10
Fb 4039 88234 0.064 100% 43.69 1045 13
Bk 58228 214078 0.011 97.4% 7.35 1134 20
dblp 317080 1049867 0.27 100% 6.62 343 11
enron 36692 183832 -0.11 91.8% 10.02 1383 35
hep 12008 118489 0.63 93.3% 19.73 491 15

Besides the used networks, we also consider different scenarios by varying the pa-

rameters associated with the models. In particular, for the node cost (c(v) = d(v)α) we

consider α = {0.5, 1.0, 2.0}, which implies node costs have highly different dependence on

node degree (sub-linear, linear and quadratic, respectively). The initial budget (b = knd
α
)

will be based on k = {0.0005, 0.0002}. These values of k were chosen in order to inten-

tionally restrict strategies to seed only a very small fraction of the network. In addition

to the fact that it raises the importance of selecting seeds well (as discussed in Section

2.2), it also corresponds to a more realistic scenario, considering possible applications.

Yet, such a condition is not guaranteed, as we later demonstrate. The range of epidemic

threshold values adopted is θ = {2, 3, 4, ..., θM} where θM varies according to the network

investigated. It corresponds to the value to which none of the considered strategies man-

ages to induce epidemics, considering the possible values of the other parameters. This

per-network maximum threshold θM is described in Table 4.1.

A simulation scenario corresponds to a network and the parameters k and α upon

which the different strategies and θ values are tested. Note that, given any specific scenario

(i.e. network, k and α), the decision of any considered seeding strategy is deterministic,

and thus a single simulation run is necessary for the evaluation. The considered strategies

are NS-D, NS-T and CH (as described in Section 3.5). Last, because we have extensively

evaluated several combinations for the various parameters, a huge amount of results was

generated. However, to better illustrate and highlight our main findings, we present here

only a subset of all results.
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4.3 Results

We start by reporting how cost aware strategies are superior but still limited when directly

targeting nodes. In particular, we show that NS-based strategies outperform those based

on centrality/cost ratio. Figure 4.1 shows the fraction of infected nodes per threshold at

the quiescence time tq for the networks Fb and astro. Every curve from the different

plots relates to a particular seeding strategy. Each (connected) dot of a given curve

denotes, for a network threshold θ (x axis), the corresponding fraction of infected nodes

at tq, i.e. I(tq)/|V | (y axis). The impact of a node degree on its cost is α = 2.0 (Eq.

2.2) for Fb and α = 0.5 for astro. We will denote by DS the illustrative policy shown in

figures 4.1(a), 4.1(b), 4.1(d) and 4.1(e), which performs direct seeding of each node visited,

budget permitting, skipping the node otherwise. The rankings associated to DS in figures

4.1(a) and 4.1(d) are V d and V t (as defined in sections 3.1 and 3.2), thus forming the

strategies DS-D and DS-T, respectively. In figures 4.1(b) and 4.1(e), rankings are such

that the ordinary position of each node v is given by its centrality/cost ratio, from largest

to smallest, namely d(v)/c(v) and τ ′′v /c(v) for degree and triangle centrality, respectively.

We will thus denote the corresponding strategies by DS-Dc and DS-Tc, respectively.

Comparing Figures 4.1(a) and 4.1(b), it becomes clear the importance of cost-awareness

for BIM. Indeed, by neglecting nodes’ costs (Figure 4.1(a)), DS-T’s performance becomes

already negligible for any θ > 4; conversely, the pondering of nodes’ centrality/cost ra-

tio (Figure 4.1(b)) led DS-Tc to activate more than 60% of the network until θ = 6.

The difference becomes even larger between DS-D and DS-Dc strategies, as the former

induce epidemics already negligible for every θ ≥ 3 (Figure 4.1(a)) whereas the latter

still manages to cover almost 40% of the network when θ = 7 (Figure 4.1(b)). Neverthe-

less, strategies’ performances may still be significantly further improved: Figure 4.1(c)

shows that broad epidemics are still attainable for considerably larger values of θ when

strategies adopt the NS policy over V d and V t. Indeed, θ = 7 is the maximum threshold

to which DS-Dc still manages to induce broad epidemics, influencing almost 40% of the

network (Figure 4.1(b)), whereas NS-D manages to influence more than 40% even when

θ = 9 (Figure 4.1(c)). Considering DS-Tc, note that its spreading is hindered by every

θ > 6 (Fig 4.1(b)), whereas NS-T still manages to influence 20% of the network when

θ = 10 (Figure 4.1(c)). Consider now the different plots for the astro network. Remem-

ber that the cost of a node here grows sub-linearly with the node degree (α = 0.5)—a

completely different cost regime than that of the just analyzed Fb network. Note that,

interestingly, to seed nodes according to their centrality/cost ratio (Fig.4.1(e)) led DS-Dc
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to perform worse than the cost-unaware DS-D strategy (Fig.4.1(d)). This illustrates the

fact captured by Proposition 2.2.3: under diminishing values of α, the need of concern-

ing about node costs also diminishes. Even then, to surround those more central nodes

(Fig.4.1(f)) allowed, for instance, NS-T to induce broad epidemics to more than twice as

many thresholds surpassed by DS-Tc (Fig.4.1(e)).

(a) central nodes first (b) best centrality/cost first (c) central nodes surrounded

(d) central nodes first (e) best centrality/cost first (f) central nodes surrounded

Figure 4.1: Fraction of infected nodes per threshold on the networks Fb (top; α = 2.0)
and astro (bottom; α = 0.5) from cost-unaware strategies (left), cost-aware strategies
that leverage nodes’ centrality/cost ratio (center), and cost-aware strategies that surround
central nodes (right). For both networks, k = 0.0005.

We now report how both the different node rankings and the different values of α

adopted lead strategies to yield both different seed sets and different spreading dynamics.

Thus, we show in Figure 4.2 the log-scaled degree distribution of seeds from each strategy

on the networks Fb (top) and hep (bottom) for α = 0.5 (left), 1.0 (center) and 2.0 (right).

Budget is based on k = 0.0005 and the network threshold is θ = 6 for Fb and θ = 8 for

hep. Note that at every single plot of Figure 4.2 apart from Figure 4.2(a) strategies have

clearly seeded different nodes for a same scenario. Regarding NS-D and NS-T, the reason

lies in their respective node rankings, as both strategies adopt the same policy (NS).
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Moreover, it also becomes clear how the sole variation of α (each column of figures) also

leads NS-strategies to different decisions on seeding, since all other parameters remain

unchanged from one column to another. Focusing now on NS-T, it can be noticed that

such strategy have generally seeded a larger fraction of nodes that are more expensive,

compared to NS-D, as seen on all figures apart from Figure 4.2(a). Such a fact is a

consequence of the ability of the triangle centrality (Eq. 3.2) of locating those regions of

a network where every node tends to be well connected to many others, even those nodes

that compose the surrounding sets. Indeed, later in the evaluation we demonstrate that

NS-T tends to present higher cost per seed, meaning that its seed set tends to be smaller

than NS-D’s (since the budget is same).

It is noteworthy to stress that to increase the value of α provokes the budget (b =

kn(d)α) to become larger as well. As a consequence, the observed variation on α (from 0.5

to 2.0) allows all strategies—specially CH—to seed much more nodes from the network.

It even gets to the point of having all nodes of the smallest degrees from both networks to

be seeded. Indeed, when α = 1.0 on Fb (Figure 4.2(b)), almost all CH seeds have degree

d = 1, and some few have degree d = 2, meaning that the budget was sufficient to cover

the cost of all nodes whose degree is 1. When α is raised to 2.0 (Figure 4.2(c)), the cost

of those nodes whose degree is close to the smallest grows much less than the budget.

Thus, the fraction of seeds from CH that have degree d = 1 decreases although all nodes

of such degree were seeded. The reason is that now all nodes of degree d ≤ 4 were seeded,

and budget still remained to seed some few nodes of degree d = 5. Curiously, these seeds

from CH on Figure 4.2(c) also reveal that the Fb network have a larger number of nodes

with degree 2, 3 and 4 than nodes with degree d = 1.

Interestingly, despite the different decisions taken by each strategy, their induced

spreading may either be totally different or reasonably similar. To illustrate that, Figure

4.3 shows the fraction of infected nodes over time of the corresponding epidemics induced

by each set of seeds from Figure 4.2. Thus, Figure 4.3(a) shows the diffusion produced

by seeds from Figure 4.2(a), and so on.

Risings on the network threshold value impact strategies differently. Figure 4.4 shows

the fraction of infected nodes over time for the networks Cmat and HepPh. Curves here

are related to a specific threshold, thus allowing to visualize more than one epidemic at

a time for the same strategy. Therefore, names for each curve additionally include their

respective value of θ. Note that the strategy CH presents higher sensibility to θ. It

transits from a large, long lasting epidemic to a short, negligible one long before a similar
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Degree distribution of seeds for the networks Fb (top) and hep (bottom) when
α = 0.5 (left), 1.0 (center), and 2.0 (right). θ = 6 for Fb and θ = 8 for hep.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Fraction of infected nodes over time for the networks Fb (top) and hep (bot-
tom), for the same parameters of Figure 4.2.



4.3 Results 32

behavior can be observed on another strategy, for growing values of θ (Figure 4.4(b)).

This behavior is not surprising as CH performs “blind” seeding, i.e. it does not leverage

the network structure, and this in turn means that to merely focus on cost many times

does not pay off, specially for larger values of θ. In particular, note that on Figure 4.4(b)

CH-4 forms a set of seeds more than two times larger than NS-T-4 (t = 0) and even

then it does not manage to induce a large spreading; CH-5 (Figure 4.4(a)) does not even

come to start, thus being unnoticeable in the plot. Figure 4.4 also illustrates, again, (i)

the trend of having NS-D showing slightly quicker and larger propagation compared to

NS-T for smaller values of θ (Figure 4.4(b)); and (ii) the trend of having NS-T showing

higher resilience for growing values of θ compared to NS-D. Indeed, this is captured in

Figure 4.4(a) by a larger threshold gap (from θ = 2 to θ = 5), showing that while NS-D-5

influence is negligible, NS-T-5 epidemic still manages to slowly reach more than a quarter

of the network.

(a) CMat (b) HepPh

Figure 4.4: Fraction of infected nodes over time for the networks CMat and HepPh,
considering two different thresholds on each plot: θ = {2, 5} and θ = {3, 4}, respectively.
In both plots, k = 0.0002. For Cmat, α = 0.5 and for HepPh, α = 2.0.

The cost-weighted ranking VΓ (Section 3.6) may significantly increase the resilience

of the different strategies to growing values of θ, i.e. the maximum θ under which the

strategies still manage to induce large epidemics, thus being adopted in many scenarios.

Figure 4.5 shows the fraction of infected nodes per threshold from epidemics simulated

over the networks astro, cmat and hep, when k = 0.0005. Costs are based on α = 2.0,
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hence node degree enormously impacts on the cost. Note that to use VΓ led almost all

strategies to induce epidemics for greater values of θ. Indeed, as mentioned in Section

3.6, Interestingly, our results also demonstrate that the use of VΓ when α ≤ 1 does not

necessarily increases strategies’ resilience, and may even reduce it. Figure 4.6 shows the

fraction of infected nodes per threshold from epidemics simulated over the networks cmat

and Bk, using the regular V d and V t rankings (figures 4.6(a) and 4.6(c)) and their cost-

weighted versions V d
Γ and V t

Γ, respectively (figures 4.6(b) and 4.6(d))when k = 0.0005.

Here, α = 0.5, meaning that the cost variation across the network is much lower, com-

pared to Figure 4.5. Note that V t
Γ does not deliver any visible improvements on NS-D’s

epidemics. Furthermore, considering NS-T, the adoption of V t
Γ diminished its resilience

to epidemic thresholds, as this strategy no longer manages to induce non-negligible epi-

demics when θ = 5 for cmat (Figure 4.6(b)) and θ = 10 for Bk (Figure 4.6(d)). Figures

4.5 and 4.6 therefore illustrate what Propositions 2.2.1 and 2.2.3 capture: how the cost

gradually becomes either a predominant or negligible feature when deciding whether to

seed a node, as the node costs tend to differ or equalize among each other, respectively.

Plots presented up to this point did not consider two important issues:

• despite using the same k for the various networks favors their comparison, these

largely vary in both the size n = |V | (orders of magnitude) and the average degree

d. Consequently, it may be the case that a strategy, upon receiving the budget

(kn(d)α), ends up forming a set I(0) with non-negligible size, specially strategy CH.

As already mentioned, the unit-cost IM problem does not distinguish from the final

set of activated nodes, those which were the initial spreaders. This is not a concern

in there, actually, since its |I(0)| is the same irrespective of the seeding strategy.

In BIM problems, however, |I(0)| not only varies but may assume huge sizes. It

would not be reasonable, therefore, to consider this potentially numerous amount of

paid influence (seeds) when assessing a strategy’s performance. Thus, to properly

capture how influential I(0) is, we exclude |I(0)| from |I(tq)|, in order to obtain

I(0)’s diffusion power (Eq. 4.1). Note that the division by n (network size) allows

to compare different networks.

• for each value of θ, ∀v ∈ S(0), d(v) < θ ⇒ v ∈ S(tq), which means that although

these plots show how many nodes were infected, they provide no indication on the

upper limit of how many could have been infected. To determine this precise value

is a complex task since it depends not only on d(v) (numerical condition) but also

on whether the propagation unfolding will eventually reach v (structural condition).
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(a) astroPh — V d and V t (b) astroPh — V d
Γ and V t

Γ

(c) condMat — V d and V t (d) condMat — V d
Γ and V t

Γ

(e) hepPh — V d and V t (f) hepPh — V d
Γ and V t

Γ

Figure 4.5: Comparison of fraction of infected nodes per threshold for the networks astro,
cmat and hep, when strategies are given regular rankings (left) and cost weighted rankings
(right), for k = 0.0005 and α = 2.0.
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(a) α = 0.5 — V d and V t (b) α = 0.5 — V d
Γ and V t

Γ

(c) α = 0.5 — V d and V t (d) α = 0.5 — V d
Γ and V t

Γ

Figure 4.6: Comparison of fraction of infected nodes per threshold for the networks cmat
and Bk when strategies are given regular rankings (left) and cost-weighted rankings (right),
for k = 0.0005 and α = 0.5.
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Despite the latter being hard to determine, the degree of the node is not only trivially

obtained, but also quite useful as it defines a ceiling for the number of nodes that

can be infected by the epidemic. The relative diffusion power (RDP) of a set I(0)

(Eq. 4.2) provides such indication.

Figure 4.7 compares these three different measures of influence (classical, DP and

RDP) over hep and astro networks, and illustrates how the perception around strategies’

performances changes according to the metric. Note, for instance, that on hep network the

classical approach (Figure 4.7(a)) indicates for any θ > 10 that the CH strategy performs

better than the others, and such a perception is even larger for θ = {14, 15}, wherein

CH seemingly influences around 15% more nodes than any other strategy. A completely

different understanding is captured by DP (Figure 4.7(b)), whereby it becomes evident

that what the classical metric indicated as being larger influence (CH) is, in fact, a huge

number of seeds whose influence is already nonexistent ever since θ = 7. A key property

of DP becomes visible here: it does not take into account the wide-varying number of

initial spreaders when assessing how influential they are.

As an example, the performance of 1000 seeds that manage to influence other 100

nodes is exactly the same of that of 5 nodes that also manage to influence 100, as assessed

by the DP metric. In another example, the classical metric would point out that 1000

promoters that manage to influence 10 other nodes in a viral marketing campaign over

a social network present much better performance than 100 promoters that manage to

influence 100 other nodes, whereas DP properly captures that the latter case is more

advantageous. It is worth to note that the fraction expressed by DP is never equal to

1, as the occurrence of infections imposes the existence of at least θ seeds, and these

are always discounted from the total. Continuing the evaluation, a behavior resemblant

of that of Figure 4.7(b) is observed on astro, wherein the classical assessment (Figure

4.7(d)) points out that CH always manages to influence at least around 11% (≈ 2000

nodes) of that network, being particularly advantageous when θ = {14, 15}. Here again,

DP provides a completely different understanding, making it clear that no single strategy

has actually managed to induce epidemics under such thresholds. Considering now the

seeds’ RDP, it reveals that by considering the DP of the different strategies in comparison

to the maximum number of nodes that could possibly be infected for a given θ, their score

may be significantly raised compared to DP. For instance, when θ = 13 on hep network,

NS-T influences around 17% of its nodes (Figure 4.7(b)), but these correspond to almost

40% of those nodes whose degree allows for infection (Figure 4.7(c)). Interestingly, note

that, because of its definition, RDP may not decay monotonically (as observed in Figure



4.3 Results 37

4.7(c) between θ = 11 and θ = 14). Indeed, this can possibly happen in a network

whenever its number of nodes whose degree is d is greater than those with degree d− 1.

(a) Classical (b) DP (c) RDP

(d) Classical (e) DP (f) RDP

Figure 4.7: Fraction of infected nodes (left), Diffusion Power (center) and Relative Diffu-
sion Power (Right) per Threshold for epidemics simulated on the networks hep (top) and
astro (bottom), when α = 2.0 and k = 0.0005.

We continue by reporting the Average Diffusion Power (Eq.4.3) of every strategy

in each network, for α = {1.0, 2.0} and k = {0.0005, 0.0002}, as shown in Figure 4.8.

It illustrates how strategies’ performances tend to increase when these consider two-hop

neighborhoods when surrounding nodes, as opposite to strategies which surround nodes

considering only their one-hop neighbors. Preserving name conventions, we will denote the

former strategies by NS2-D and NS2-T, and the latter, NS1-D and NS1-T. The comparison

is made over two different budget regimes, namely k = {0.0005, 0.0002}, in order to better

illustrate how each strategy behaves as the budget diminishes. On each plot, the x axis is

composed by groups of bars—one group for each network and one bar for each strategy.

The y axis is their corresponding average DP (Eq.4.3). For instance: Table 4.1 shows the

maximum θ applied to the network dblp is 11, thus the average DP of a given strategy
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for dblp shown in Figure 4.8 considers θ = [2, 11]. Although the x axis contains all the

networks considered, our purpose is not to compare them directly, but to provide the

intuition, given a specific network, on the benefits of adopting the extended surrounding

sets. In particular, note that the number of cases at which NS2 strategies present better

performance compared to NS1 tends to be greater as both α increases (figures 4.8(b) and

4.8(d)) and k diminishes (figures 4.8(c) and 4.8(d)).

(a) k = 0.0005;α = 1.0 (b) k = 0.0005;α = 2.0

(c) k = 0.0002;α = 1.0 (d) k = 0.0002;α = 2.0

Figure 4.8: Average Diffusion Power of the different strategies across all evaluated net-
works under two different budgets.

As mentioned in Section 2.2, we are mainly interested in study the influence spreading
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on scenarios for which the budget b is relatively small, i.e. b allows for seeding only a

negligible fraction of the network. Note that since the same k is applied to every network,

b varies according to the corresponding |V | and d. The size of the different networks varies

by orders of magnitude, and this in turn strongly influences b.

Interestingly, in scenarios wherein NS-T have induced larger or equivalent epidemics

compared to NS-D, their set of seeds generally corresponds to those with higher cost per

seed (CS), which in turn implies a smaller number of seeds. For instance, Figure 4.9 shows

the CS per threshold of the different strategies for the networks Bk, when α = {0.5, 1.0},
and cmat, when α = {1.0, 2.0}. Note that, back on Figure 4.8(a), NS2-T have presented

higher DP for that network. The corresponding CS per threshold is on Figure 4.9(b),

which reveals that the cost per seed for NS-T was consistently and significantly higher

than that of NS-D for all considered thresholds. Similarly, let us now consider NS2-T’s

DP for cmat, as shown on figures 4.8(a) and 4.8(b) for α = 1.0 and α = 2.0, respectively.

Note that, on Figure 4.8(a) it presents a performance similar to that of NS2-D, and on

Figure 4.8(b) it manages to be slightly superior. Figures 4.9(c) and 4.9(d) present their

respective CS per threshold.

As indicated by Figure 4.9, note that NS-T tends to consistently seed fewer nodes at

higher costs, as compared to NS-D, and this in turn clarifies why, for many times, the

overall performances of NS-D and NS-T have shown to be similar: the triangle centrality

focuses on the network’s most connected—and hence most expensive—regions. Although

beneficial for the spreading, to seed such regions impose likewise a faster budget exhaus-

tion, leading to a significantly smaller number of initial spreaders, compared to NS-D.

Conversely, the degree centrality does not explore epidemic principles as directly as NS-T

does, but on the other hand it exploits those three major benefits discussed on Section 3.1

(briefly: fraction of nodes directly reached, trend of neighboring cheap nodes, and trend

of having cheap neighbors in common). NS-D therefore counts on a much larger set of

initial spreaders.

The adoption of extended surrounding sets (ESS — Section 3.4) may significantly

lower the cost per seed (CS) when compared to surrounding sets (Section 3.3), as illus-

trated in Figure 4.10. Note, for instance, that for θ = 7 the CS for NS-T significantly

drops from approximately 12 to around 5, leading its RDP to raise from zero to nearly

19%. The degree distribution of the seeds shows how the adoption of ESS increases the

fraction of cheaper nodes in I(0). Note yet that this information is also implicitly given

by the CS, since it varies at the same proportion of |I(0)|. Last, Table 4.2 shows a direct
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(a) Bk ; α = 0.5 (b) Bk ; α = 1.0

(c) cmat ; α = 1.0 (d) cmat ; α = 2.0

Figure 4.9: Cost per seed for each network threshold applied over Bk and cmat networks.
In both plots, k = 0.0005.
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comparison regarding to Figure 4.10, wherein a significant increasing on the number of

nodes surrounded is observed for NS strategies when ESS are used.

Table 4.2: A numeric comparison of the seeding for both surrounding sets and extended
surrounding sets of Figure 4.10 when θ = 7. |I(0)| = number of initial spreaders.

Related figures NS-D NS-T CH
nodes surrounded 4.10(a) and 4.10(c) 53 28 0
seeded directly 4.10(a) and 4.10(c) 1 0 951
|I(0)| 4.10(a) and 4.10(c) 361 81 951
nodes surrounded 4.10(b) and 4.10(d) 74 74 0
seeded directly 4.10(b) and 4.10(d) 1 1 951
|I(0)| 4.10(b) and 4.10(d) 400 199 951
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(a) RDP – SS (b) RDP – ESS

(c) CS – SS (d) CS – ESS

Figure 4.10: RDP (top) and CS (bottom) for the dblp network, employing surrounding
sets (SS — left) and extended surrounding sets (ESS — right) when alpha = 1.0 and
k = 0.0005.
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Conclusion

The understanding on how propagators, like ideas and information, spread in complex

networks lies in the core of many applications, such as viral marketing and information

diffusion. The reach of an epidemic, however, strongly depends on where it starts—the

initial spreaders, i.e. the seeds—, what settles influence maximization as a fundamental,

largely-studied problem.

In this work, we considered a deterministic influence maximization problem where

nodes have variable costs to be seeded, and proposed efficient strategies to tackle this

budgeted influence maximization (BIM) problem. We consider SI epidemics with fixed

thresholds over real networks. The cost of a node is proportional to how central (im-

portant) the node is, and degree centrality is used as a proxy for node importance. We

propose and evaluate the efficiency of different seeding policies, applied over nodes under

different sequences, according to some node ranking. Each heuristic was given an initial

budget and a cost function to perform the seeding. We focused on scenarios where the

initial budget was relatively scarce, as it forces better decisions on seeding and also better

relates to real cases.

Our main results show that heuristics that leverage both cost and network structure

perform better and are more robust, as they present less sensitivity to parameter vari-

ations. We also show that, under risings of the network threshold, to focus solely on

either the node cost or the node centrality leads to seeds whose influence becomes neg-

ligible much earlier, compared with heuristics that consider the cost-centrality trade-off.

Particularly, we show that, for increasing values of the network epidemic threshold, to

seed nodes that are not the cheapest ones nor the most central, but that jointly explore

some known epidemic principle, tends to induce larger epidemics. Indeed, that was the

case regarding the performed exploitation of those more triangulated regions from the
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various complex networks. Moreover, we proposed a novel approach to further leverage

cost-effectiveness on BIM problems, namely the extended surrounding sets (ESS). Our

results indicate ESS generally favors seeding strategies to yield broad influence spreading

through a wider range of network thresholds. Finally, we introduced the concept of dif-

fusion power—a more meaningful metric to assess epidemic performances for BIM. We

demonstrated that, opposite to the unit-cost IM, different strategies in BIM problems,

upon receiving the same initial budget, may still yield seed sets of largely different sizes.

Thus, by considering only the number of non-seeds infected at the end of the spreading,

diffusion power manages to capture the real benefit (infected non-seeds) of an investment

(budget), and hence better suits possible real-world applications. We showed how this

approach may completely change the understanding around a strategy’s effectiveness.

5.1 Future Work

Despite our effort to cover as much as possible of its intrinsic challenges, BIM is still

far from being well understood in real complex networks. In this work we focused on

capturing real-world aspects not before considered, and provided some key insights as

already discussed. Yet, the problem is under many ways still open. In the following we

point out a few aspects either unexplored or not deeply approached in this work, and that

we believe could form the basis for future work towards the design of strategies for BIM.

First, we believe that to study improvements on heuristics towards the ESS formation

is a promising direction, based on our preliminary results. Indeed, although the ESS

adoption has proven advantageous for epidemic performances under many scenarios, it

was shown likewise both that its cost-effectiveness is not optimal regarding an entire two-

hop neighborhood, and that its current algorithm can be computationally demanding,

depending on the network. Second, it would be very opportune to study the problem

considering other network epidemic models, under which the whole idea around ESS

could be further researched, thus providing a better understanding on its applicability.

Last, we believe the study upon new heuristics for ESS could possibly allow to generalize

the leveraged neighborhood radius, currently fixed in two hops.
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