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Resumo

O cálculo de distâncias geodésicas é um importante tópico de pesquisa no processamento
de geometria e análise de formas em malhas, pois é um componente básico de muitos
métodos usados nessas áreas. Diferentes abordagens têm sido propostas para calcular
distâncias geodésicas incluindo métodos exatos e aproximados. Métodos aproximados são
em muitos casos a melhor escolha, pois são mais eficientes do que os métodos exatos e,
ao mesmo tempo, produzem resultados próximos da distância exata. Muitos métodos
têm sido propostos para o cálculo de distâncias geodésicas aproximadas, por exemplo,
variações do método Fast Marching e mais recentemente por métodos espectrais e de
fluxo de difusão. Estas abordagens são muito eficientes para a consulta da distância,
mas geralmente dependem de uma etapa de pré-processamento que pode ser computa-
cionalmente intensa. Neste trabalho, apresentamos um algoritmo paralelo iterativo para
calcular distâncias geodésicas aproximadas em malhas que não requer nenhum passo de
pré-processamento. A convergência do algoritmo iterativo proposto depende do número
de anéis em torno dos pontos de origem, a partir dos quais a informação da distância se
propaga. Assim, nosso método é particularmente eficiente para a computação de distân-
cias geodésicas de múltiplas fontes. Nos experimentos, mostramos como nosso método
escala com o tamanho do problema e comparamos seu erro médio e os tempos de proces-
samento com os de outros métodos encontrados na literatura. Também demonstramos
seu uso para resolver dois problemas comuns de processamento de geometria: o problema
de amostragem regular e a tesselação de Voronoi em malhas.

Palavras-chave: marcha rápida, distância geodésica, malhas triangulares, modelos tridi-
mensionais.



Abstract

The computation of geodesic distances is an important research topic in geometry pro-
cessing and shape analysis on meshes as it is a basic component of many methods used in
these areas. Different approaches have been proposed for computing geodesic distances
including exact methods and approximate ones. Approximate methods are in many cases
the best choice as they are more efficient than the exact methods and yield results that
are not far from the optimum distance. Many methods have been proposed for approxi-
mate geodesic distance computation, for instance, variations of the Fast Marching method
and more recently by spectral and diffusion flow-based methods. These approaches are
very efficient for distance query but usually depend on a pre-processing step which can
be computationally intensive. In this work, we present an iterative parallel algorithm
for computing approximate geodesic distances on meshes that do not require any pre-
processing step. The convergence of our iterative algorithm depends on the number of
rings around the source points from which distance information propagates. Hence, our
method is particularly efficient for multisource geodesic distance computation. In the ex-
periments, we show how our method scales with the size of the problem and compare its
mean error and processing times with such measures computed with other methods found
in the literature. We also demonstrate its use for solving two common geometry processing
problems: the regular sampling problem and the Voronoi tessellation on meshes.

Keywords: fast marching, geodesic distance, triangular meshes, tridimensional models
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Chapter 1

Introduction

The computation of geodesic distances on meshes is of paramount importance to many

geometry processing and shape analysis algorithms, for example: Parameterization [11],

shape retrieval [16], isometry-invariant shape classification [3], mesh watermarking [1],

object recognition [8], skinning [19], just to mention a few. Because it is a basic step for

many geometrical algorithms the efficiency of its computation is a very important issue.

Meshes are usually described as graphs. Consequently one natural approach to solve

the problem of geodesic computation on meshes is to generalize the ideas of distances on

graphs to compute distance maps on surface representations. This was the path pursued

by [13] which proposed a continuous Dijkstra method that is able to yield exact results.

Later, [20] refined such method and proposed an approximate version that is more efficient.

Other researches approached the problem via physical phenomena analogy, for instance,

based on models for propagation of waves and diffusion of heat. The Fast Marching

approach belongs to the class of those first methods and aims to solve the so called

Eikonal Equation. The Geodesics on Heat belongs to the second class and explores the

relation between heat kernel computation and distances on surfaces. Recently a new class

of spectral methods was proposed in [4].

These methods, although powerful, have its idiosyncrasies and different drawbacks.

We describe in details these drawbacks in Chapter 3 and how we tackled them by proposing

a new method in Chapter 5.

Here, we propose a parallel algorithm for the computation of distance maps on meshes

that produces very competitive results and is simple to implement. As the Fast Marching

method, it is also inspired by the grassfire propagation but does not require any priority

queue. Instead, we propagate distances simultaneously in a band around the frontier of
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the propagation in a sequence of phases. Our experiments show that no more than c
√
n

iterations, where c is a small constant and n is the number of vertices, are necessary for the

convergence of the method. We provide a theoretical computational complexity congruent

with the experimental results. Our method is specially appropriate to the solution of the

multisource distance map computation.

1.1 Contribution

We introduce an iterative parallel algorithm called Parallel Rings Propagation to compute

distances maps from a set of multiple sources on triangular meshes. Our method is

based on the propagation of distance information from the inner to the outer rings of the

sources where each vertex is updated in parallel independently, exploring the powerful

parallel architectures in the GPUs. It is specially appropriate for problems where multiple

sources are required and queries will not be performed later. We present our results for

problems with such characteristics: the Regular Point Sampling and the Voronoi Diagram

on Meshes.

1.2 Outline

This work is organized as follows. In Chapter 3, we describe some of the most important

works related to distance computation on graphs and minimal geodesic computation on

meshes. Next, in Chapter 4, we describe and define some concepts and results that were

used to inspire and develop our algorithm. The proposed method is presented in Chapter

5. In Chapter 6, we present the results produced by our algorithm. We first show two

applications of our method: a parallel solution to the Farthest Point Sampling Problem

and a parallel solution to the problem of computing the Voronoi Diagram on meshes.

Next, we present the speedup of our parallel method for different meshes and measure the

distance error for each experiment. We also compare our results with the exact method

of [13] and the Fast Marching algorithm of [10]. Finally in Chapter 7, we present the

conclusions.



Chapter 2

Introdução

O cálculo de distâncias geodésicas em malhas é de suma importância para muitos proble-

mas nas áreas de processamento geométrico e análise de formas, por exemplo: parametriza-

ção [11], recuperação de formas [16], classificação de formas isométricas invariantes [3],

Watermarking em malhas [1], reconhecimento de objetos [8], skinning [19], apenas para

mencionar alguns. A eficiência do cálculo de distâncias geodésicas é uma questão muito

importante, porque ela é um passo básico em muitos algoritmos geométricos e portanto,

ainda é alvo de investigação.

Um grafo é a estrutura de dados normalmente utilizada para descrever uma malha.

Consequentemente, uma abordagem natural para resolver o problema de computação

geodésica em malhas é generalizar as ideias de distâncias em grafos para calcular mapas de

distância em representações de superfícies. Este foi o caminho proposto por Mitchell [13],

quem propôs um método de Dijkstra contínuo capaz de calcular distâncias exatas. Mais

tarde, Surazhsky [20] refinou esse método e propôs uma versão mais eficiente, calculando

uma aproximação do mapa de distâncias.

Outras pesquisas abordaram o problema por meio de analogias com fenômenos físicos,

por exemplo, baseados em modelos de propagação de ondas e difusão de calor. A abor-

dagem dos algoritmos de Marcha Rápida (Fast Marching) pertence aos primeiros métodos

que resolvem a equação Eikonal. A Geodésica sobre o Calor (Heat on Flow) pertence à

segunda classe e explora a relação entre o núcleo de calor (Heat Kernel) e o cálculo de dis-

tâncias em superfícies. Recentemente, uma nova classe de métodos espectrais foi proposto

em [4].

Estes métodos, embora poderosos, têm suas idiossincrasias e diferentes desvantagens.

Nós descrevemos em detalhes estas desvantagens no Capítulo 3 e como as tratamos através
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do desenvolvimento de um novo método apresentado no Capítulo 5.

Aqui, propomos um algoritmo paralelo para o cálculo de mapas de distâncias em mal-

has que produz resultados muito competitivos e é simples de implementar. Semelhante ao

método de Marcha Rápida, nosso método também é inspirado pela propagação de fogo,

mas não requer uma fila de prioridade. Em vez disso, propagamos distâncias simultane-

amente em uma faixa ao redor da fronteira da propagação em uma sequência de fases.

Nossos experimentos mostram que não mais que c
√
n iterações, onde c é uma pequena

constante e n é o número de vértices, são necessárias para a convergência do método.

Nós fornecemos uma complexidade computacional teórica congruente com os resultados

experimentais. Mostramos também que nosso método é especialmente apropriado para a

solução do cálculo do mapa de distâncias a partir de muitas fontes.

2.1 Contribuição

Introduzimos um algoritmo paralelo iterativo chamado Parallel Rings Propagation para

calcular mapas de distâncias a partir de um conjunto de múltiplas fontes em malhas tri-

angulares. Nosso método baseia-se na propagação de informações de distância do interior

para os anéis externos das fontes onde cada vértice é atualizado em paralelo de forma in-

dependente, explorando as poderosas arquiteturas paralelas nas GPUs. O Parallel Rings

Propagation é especialmente apropriado para problemas onde várias fontes são necessárias

e que não envolvem muitas consultas posteriormente ao cálculo das distâncias. Apresen-

tamos nossos resultados para problemas com tais características: Amostragem Regular em

Malhas e Diagrama de Voronoi sobre Malhas.

2.2 Organização

Este trabalho é organizado da seguinte forma. No Capítulo 3, descrevemos alguns dos

trabalhos mais importantes relacionados à computação de distâncias geodésicas em mal-

has. Em seguida, no Capítulo 4, descrevemos e definimos alguns conceitos e resultados

que foram utilizados para inspirar e desenvolver nosso algoritmo. O método proposto é

apresentado no Capítulo 5. No Capítulo 6, apresentamos os resultados produzidos pelo

nosso algoritmo. Mostramos duas aplicações do nosso método: uma solução paralela

para o problema de amostragem do ponto mais distante e uma solução paralela para o

problema da computação do diagrama de Voronoi em malhas. A seguir, apresentamos a
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aceleração do nosso método paralelo para diferentes malhas e medimos o erro de distância

para cada experimento. Também comparamos nossos resultados com o método exato de

[13] e o algoritmo Marcha Rápida (Fast Marching) de [10]. Finalmente no Capítulo 7,

apresentamos as conclusões.



Chapter 3

Related Works

The exact computation of geodesic distances on surfaces was proposed by Mitchell et al.

[13]. The MMP algorithm, proposed by them, is based on a continuous Dijkstra algorithm

and its computational complexity is O(n2 log n).

Due to its high computational cost, approximate methods were developed. These

methods present a better performance and maintain a comparable level of accuracy. A

fast implementation of the MMP algorithm was presented in [20]; they also proposed

an approximate and faster algorithm that requires less memory with a computational

complexity of O(n log n).

Over the last decade, several approximate methods were proposed to compute dis-

tances by solving the Eikonal equation:

|| 5 φ|| = 1 (3.1)

where φ is a distance function. We can divide these approaches into two families, the Fast

Marching, and the Fast Sweeping.

The Fast Marching methods were introduced by Sethian to solve distance computation

on regular grids [18] and later were extended to triangular meshes by Kimmel and Sethian

[10].

The Fast Marching (FM) is a popular algorithm which maintains the spirit of the

Dijkstra algorithm because it uses a priority queue. It is a single-source to all-vertices

algorithm, whose main advantage is the fast calculation of distances of vertices that are

close to the source vertices. However, due to the sequential requirement of the priority

queue, it is not possible to parallelize this algorithm.
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The Fast sweeping approaches [15] have linear computational complexity O(n). How-

ever they require a lot of sweeps to converge, specially when the grids are unstructured

[9].

A parallel version of the Fast Marching algorithm on parametric surfaces was proposed

by Weber [21]. In this method, the surface must be divided into several regular grids.

Then, the distance map is computed for each grid, using a parallel version of Fast Marching

algorithm based on the Raster Scan algorithm [5]. Finally, the reconstruction is done by

joining the distance maps of each grid via the Dijkstra algorithm. Up to now, this method

is the fastest and highly parallelizable for computing geodesic distances on triangular

meshes but the error of the computed distance map depends on the distortion of the

parameterization.

Recently a different technique called the Heat method was introduced by Crane [4].

The Heat Method requires the solution of the Poisson equation and has its spirit based

on the spectral graph theory because it requires computing the Laplacian operator. This

method is adaptable to many kinds of representations because it is possible to compute the

Laplacian operator for many different models including triangular meshes, point clouds

and polygonal meshes. However, the accuracy of the distance map computation is sensitive

to the choice of a parameter, which is done experimentally.



Chapter 4

Background

In the next Chapters we present some of the basic concepts and results in which our

method is based on.

4.1 Basic concepts

The distance between two points x and y in a set of points X can be defined by a function

d : X ×X → < satisfying:

(a) d(x, y) ≥ 0

(b) d(x, y) = 0, if and only if x = y

(c) d(x, y) = d(y, x)

(d) d(x, z) ≤ d(x, y) + d(y, z)

The function d is a metric and the tuple (X, d) is a metric space. For subsets of

Euclidean spaces, d can be defined by the Euclidean norm ||x− y||22. Meanwhile, for more

general spaces, the notion of distance cannot be well described by a metric induced by

the Euclidean norm. This is the case for n− d manifolds, i.e., sets of points which locally

are homeomorphic to n− d Euclidean open subsets.

The notion of distance on a manifold M can be defined, though, in terms of length

of paths on M. A path on a manifold M is a parameterized curve given by a map

γ(t) : t → M, where t ∈ I = [a, b]. According to [6], γ is a geodesic at t ∈ I if the

field of its tangent vectors γ′(t) are parallel along γ at t. In other words, if the covariant

derivative Dγ′(t)
dt

= 0. We can say that a parameterized curve γ is a geodesic if it is
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a geodesic at all t ∈ I and a minimizing geodesic or shortest path when it is given by

arg infγL(γ) =
∫ b
a

√
γ(t)′TGγ(t)′dt. Based on these concepts we define a length metric

as dL(x, y) = infL(γ), γ : [a, b]→M,γ(a) = x, γ(b) = y.

4.2 Distance maps

The problem of computing distance maps on manifolds from multiple sources is defined

as follows. The single source distance map problem is a particular case of the multiple

source problem and will not be explicitly defined.

Definition 4.1 (Multiple Source Distance Map Problem - MSDMP). Given a metric

space (M, dL) and a set of source points S ⊂ M define a map dS(x) = dL(s, x) that

associates to each x ∈M the distance to a point s ∈ S.

One way to solve the problem of computing distance maps is to simulate the propaga-

tion of a signal (the distance information) from the source points towards all other points

in the space. For the sake of argument, consider that the signal propagates with constant

speed |v| = 1 where v is a velocity vector. In nature, signals like light and sound travel

according to the Fermat Principle, i.e., by choosing the quickest path. Hence, the signal

that propagates from a point source s will choose the direction of propagation that causes

the greatest increase in distance. This direction is the gradient of the distance function

||∇dS ||. One can show that the gradient of the distance function is parallel to the tangent

of the minimal geodesic γ(t)′. Thus, as ||γ(t)′|| = 1, it is also possible to show (see [2])

that for a manifoldM,

||∇MdV || = 1 (4.1)

where ||∇MdV || = 1 is the intrinsic gradient of distance function onM. Equation 4.1 is

the Eikonal Equation seen before defined on manifolds.

4.3 Discrete Distance Maps

Many graphical objects are described by 2-d manifolds, embedded in a three dimensional

space, that is, embedded surfaces. Surfaces are usually represented by piecewise linear

representations known as triangle meshes T = (V,E, F ), where V is the set of vertices, E
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the set of edges and F the set of faces. We now state the problem of computing distance

maps on a triangulated mesh T .

Definition 4.2 (Multiple Source Discrete Distance Map Problem - MSDDMP). Let T

be a triangulated mesh. Given a subset S ⊂ V called source set, compute a map dS(v) :

V → < that associates to each v ∈ V the minimum distance to S.

In the literature, one can find many ways to solve the MSDDMP problem as it was

summarized in Chapter 3. Our method is closer in essence to the Fast Marching method

and it also uses a modification of its update function. Hence, for the sake of comprehen-

siveness, we present it in the next subsections.

4.4 Fast Marching algorithm

Algorithm 4.1 Fast Marching algorithm [21, 2]
Require: Triangular mesh (V, F ), source vertices S ⊂ V
Ensure: Distances map d : V → R
1: ∀v ∈ V : d(v)⇐∞, ∀s ∈ S : d(s)⇐ 0
2: R⇐ S
3: G⇐ V \R
4: B ⇐ {}
5: while B 6= V do
6: v ⇐ arg min

v∈R
d(v)

7: R⇐ R \ {v}
8: B ⇐ B ∪ {v}
9: for all v0 ∈ N (v) do

10: G⇐ G \ {v0}
11: R⇐ R ∪ {v0}
12: for all (v0, v1, v2) ∈ F (v0) do
13: update(d, v0, v1, v2)
14: end for
15: end for
16: end while
17: return d

The Fast Marching algorithm (Algorithm 4.1), simulates the propagation of the dis-

tance information in a discrete set. It is possible to make an analogy with the propagation

of fire in a grass land, what is called here in the text as fire propagation. In the beginning,

each source vertex s ∈ S has its distance fixed to zero (d(s) = 0, s ∈ S) and is inserted

on a priority queue R (red vertices), whose priority is defined in terms of the smallest

distance. All other vertices v /∈ S are labeled with distance equal to infinity (d(v) =∞).
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At each step, one vertex v is selected from the priority queue and inserted in the list of

processed vertices B (black vertices); for all neighbor vertices v0 ∈ N (v) of v, all triangles

incident to it F (v0) are updated using Algorithm 4.2, which was proposed by Kimmel and

Sethian in [10]. The new vertices on the updated triangles are inserted in the priority

queue R and the algorithm proceeds until all vertices are processed, that is, B = V .

Algorithm 4.2 Calculate the planar update to (v0, v1, v2) [21, 2]
Require: Distance map d : V → R, triangular face (v0, v1, v2) ∈ F
Ensure: A new distance d(v0)
1: x1 ⇐ v1 − v0

2: x2 ⇐ v2 − v0

3: X ⇐ (x1, x2)
4: t⇐ (d(v1), d(v2))T

5: Q⇐ (XTX)−1

6: p⇐
1TQt+

√
(1TQt)2 − 1TQ1 · (tTQt− 1)

1TQ1
7: n⇐ XQ(t− 1)
8: if QXTn < 0 then
9: d(v0)⇐ min{d(v0), p}

10: else
11: d(v0)⇐ min{d(v0), d(v1) + ‖x1‖, d(v2) + ‖x2‖}
12: end if

The update step (see Algorithm 4.2) is one of the distinctiveness of the Fast Marching

method. It yields a linear local approximation to the continuous distance and guarantees

that the solution obeys both the consistence condition and the monotonicity condition

(QXTn < 0) of the signal propagation. When considered together, they guarantee that,

for a given triangle, defined by three vertices x0, x1, x2, if x0 and x1 are closer to the source

set, then x3 cannot be reached by the signal before x0 and x1, producing a correct solution

for the Eikonal Equation. In geometrical terms this means that the triangles in the mesh

cannot be obtuse [2]. One solution for dealing with meshes that have such triangles is

to subdivided or to locally unfold the mesh [10]. Further in the text, we show that our

method yields correct results even when dealing with meshes with obtuse triangles.

Both exact and Fast Marching based methods rely, to a lesser or greater extent, on

the use of priority queues which makes it tough to devise their corresponding parallel ver-

sions. Thus, we decided to completely abandon the use of priority queues in the proposed

method. Instead of fixing the final distance for the closest vertex, at each iteration, we

update the distances on subsets of vertices that are good candidates for the propagation

of distance information. More precisely we take advantage of the discrete topological

structure of the mesh which can be decomposed in rings around the source vertices to
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propagate the information simultaneously and in an independent way in multiple phases

until the distances converge.



Chapter 5

Proposed Method

Inspired by the intuitive propagation idea of the Fast Marching algorithm, we developed

an algorithm that simulates the fire propagation as a set of sequential iterations. The key

idea to simulate this behavior is to sort the vertices by levels (rings), which mark off the

limit scope of the fire propagation.

In this Chapter, we define the rings propagation and also provide an upper bound to

the number of rings from a source vertex, for a given triangle mesh. Then, we describe

the proposed algorithm and its parallel version. Finally, we present a complexity analysis

and explain how to leverage the properties of our method to solve the multi-source version

of the problem.

5.1 Rings propagation

The rings propagation relies on the concept of rings; essentially, a ring in a graph G is

composed of all vertices v of G, such that the length of the shortest path p, from v to the

source s, in the associated unweighted graph G′, is constant and equal to k. For example,

the ring V1 ∈ V is considered a level one ring because the shortest path from each v ∈ V1

to s is comprised by only one edge. We can extend this definition to rings V2, V3, ..., Vρ,

where ρ is the number of rings on a mesh.

Definition 5.1 (Vertices at ring r). Let T = (V,E, F ) be a triangular mesh and S ⊂ V

the set of source vertices; Vr ⊂ V is the set of vertices at ring r and is defined by the

recurrence relation

Vr =

{
v ∈ N (Vr−1) : v 6∈

r−1⋃
r′=0

Vr′

}
where V0 = S. We can define the following properties of ring:
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Figure 5.1: Rings propagation with 3 samples; in green V0 = S; in blue V1, in red V2,
in purple V3 and in black V4.

1.
ρ⋃
r=0

Vr = V

2. ∀r, r′ ∈ [0, ρ], r 6= r′ : Vr ∩ Vr′ = ∅

3.
ρ∑
r=0

|Vr| = |V |

where ρ is the number of rings from S ∈ V in a triangular mesh.

Figure 5.1, shows the rings at different levels, defining a ring propagation from three

sources. The color blue marks the vertices that belong to ring V1, in red are the vertices

that belong to V2, in purple and black the vertices that belong to V3 and V4 respectively.

Theorem 5.1. [Number of rings ρ] Let T = (V,E, F ) be a triangular mesh, s ∈ V be a

source vertex such that it is possible order all rings Vr by their number of vertices in a

crescent way. Then the number of rings ρ from s satisfies ρ = O(
√
n), where n = |V |.

A proof to Theorem 5.1 is give in Appendix A, in the same way, we can prove that

for a triangular mesh T = (V,E, F ) and a set of sources vertices S ⊂ V , the number of

rings is ρ = O
(√

n
m

)
, where m = |S|.

5.2 Ring Propagation-based algorithm

We present our approach based on the frontier propagation which is determined by the

propagation of distance information through the meshes’ rings.
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In the proposed method, we define a band formed by a set of consecutive rings of the

mesh, around each ring Vr. The band will have its distances updated for a number of

iterations K. For a given predefined K we show that the distances converge.

Algorithm 5.1 Proposed method: Parallel Ring Propagation (PRP).
Require: Triangular mesh (V, F ), source vertices S ⊂ V , Vr and r ∈ [0, ρ]
Ensure: Distances map d : V → R
1: dk current distance map at iteration k
2: ∀v ∈ V : d0(v)⇐∞
3: ∀s ∈ S : d0(s)⇐ 0
4: d0 ⇐ d1

5: for k ⇐ 1 to K do
6: for all v0 ∈

⋃k
r=bk/2c Vr (in parallel) do

7: for all (v0, v1, v2) ∈ F (v0) do
8: update(dk, v0, v1, v2)
9: end for

10: end for
11: end for
12: return d⇐ dK

Algorithm 5.1 implements the fire propagation, updating in each k iteration, the

current distance map dk, as a function of the previous distance map dk−1 at iteration

k − 1, for all vertices; (see Algorithm 5.2). This propagation requires a number K of

iterations to make the distance map converge to the minimum error; K is proportional to

the number of rings ρ from the sources vertices.

Algorithm 5.2 Planar update FM modified.
Require: Distance map dk : V → R, triangular face (v0, v1, v2) ∈ F
Ensure: A new distance dk(v0)
1: x1 ⇐ v1 − v0

2: x2 ⇐ v2 − v0

3: X ⇐ (x1, x2)
4: t⇐ (dk−1(v1), dk−1(v2))T

5: Q⇐ (XTX)−1

6: p⇐
1TQt+

√
(1TQt)2 − 1TQ1 · (tTQt− 1)

1TQ1
7: n⇐ XQ(t− 1)
8: if QXTn < 0 then
9: dk(v0)⇐ min{dk−1(v0), p}

10: else
11: dk(v0)⇐ min{dk−1(v0), dk−1(v1) + ‖x1‖, dk−1(v2) + ‖x2‖}
12: end if

One of the most important operations in the rings propagation algorithm is the dis-

tance update operation. Our distance update is a modification of the distance update of
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the Fast Marching method, considering a previous distance map dk−1. Consequently, it

is possible to update all vertices independently (see Line 6 in Algorithm 5.1), since each

vertex v0 updates its new distance dk(v) according to the distance map dk−1 computed in

the preceding iteration k − 1.

We can take advantage of the mesh’s ring structure to sort the vertices and avoid

unnecessary updates in a given iteration k. It is only necessary to update the vertices

v ∈
⋃k
r=1 Vr because the distances of the sources vertices V0 = S are equal to zero and the

distances of the vertices v ∈
⋃K
r=k+1 Vr are d(v) =∞; they have not been reached yet by

the fire propagation and all vertices in their neighborhood have infinite distance values.

Theorem 5.2. [Maximum number of iterations K] Let T = (V,E, F ) be a triangular

mesh, s ∈ V be a source vertex such that it is possible order all rings Vr by their number

of vertices in a crescent way. Then, the maximum of iterations is K = O(
√
n), where

n = |V |.

An sketch of the proof of Theorem 5.2 is giving in the Appendix A.2 and also it is

supported by the experimental evaluation in Chapter 6. Based on the Theorem 5.2, the

proposed PRP algorithm has an upper bound for the estimate of the number of iterations

that are necessary to update the distances of all vertices of the mesh. Furthermore, the

PRP algorithm sets an updating layer, because it is not necessary to update all the vertices

v ∈
⋃k
r=1 Vr. As the frontier travels forward, there will be vertices whose distances have

already converged; these vertices are located in the first rings of the propagation. Based

on the proof A.2, by Lemma A.2, the number of iterations k to update all vertices v ∈ Vr
is k = 2r− 1; we can observe that in the iteration k the vertices in the ring r = k−1

2
have

computed their final distance; then we can defined an updating layer between all vertices

included in the rings r =
[⌊

k
2

⌋
, k
]
; Algorithm 5.1 updates all vertices in this layer (see

line number 6).

5.3 Parallelization

The Parallel Ring Propagation algorithm completely eliminates the dependency of the

priority queue which is necessary for the classical Fast Marching algorithm. Also, we

introduced an upper bound to estimate the number of iterations that are necessary for

the convergence of our algorithm.

These advantages of our method permits us to reuse the calculations of the previous

distance maps. Furthermore, as the calculation of distances is independent for each vertex
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v0, the loop (see Line 6 in Algorithm 5.1) is highly parallelizable in SIMD and GPU

processors.

5.4 Algorithm Complexity and Comparison

In a first analysis of the Parallel Ring Propagation algorithm, the number of threads T will

not be considered, because T is a constant that potentially will improve the performance

of the PRP algorithm. We further discuss the impact of T , which will have a strong effect

when T ≈
√
n.

The Parallel Ring Propagation (Algorithm 5.1) sorts the vertices by levels (the rings)

and updates the vertices in each iteration. We claim that the number of levels is O(
√
n)

by Theorem 5.1, and that the vertices sorting by levels has complexity of O(n).

We start the analysis of the complexity of the PRP algorithm with the number of

operations f(K) in the main loop of the Algorithm 5.1:

f(K) = c
K∑
k=1

k∑
r=b k2c

|Vr| (5.1)

where K is the number of iterations and c is a constant.

Let r′ = arg max
r∈[0:ρ]

|Vr| be the ring with the highest number of vertices, and |Vr′| the

maximum number of vertices in r′. Thus, we affirm that:

c

K∑
k=1

k∑
r=b k2c

|Vr| ≤ c

K∑
k=1

k∑
r=b k2c

|Vr′|

f(K) ≤ c|Vr′ |
K∑
k=1

k∑
r=b k2c

1

f(K) ≤ c|Vr′ |
K∑
k=1

k

2
=
c

2
|Vr′|

K∑
k=1

k =
c

4
|Vr′ |K(K + 1)

f(K) = O
(
|Vr′ |(K2 +K)

)
f(K) = O

(
|Vr′|K2

)
and by Theorem 5.2, K = O(

√
n), consequently the number of operations f in function
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of n is:

f(n) = O (|Vr′|n)

For the sake of argument, we consider |Vr′ | ≤ cr′ where c is a constant (see Appendix

A.1), and in the worst case we have that r′ = ρ and ρ = O(
√
n). Hence, we can conclude

that the complexity of the main loop is:

f(n) = O(n
√
n). (5.2)

This complexity is impacted by the number of sources m; as the number of rings, for

m > 1 sources, is ρ = O
( √

n√
m

)
and the number of iterations K = O

( √
n√
m

)
, we can affirm

that the complexity of the PRP algorithm with m > 1 sources is O
(
n
√
n√
m

)
.

5.4.1 Application: Farthest Point Sampling

The Farthest Point Sampling (FPS) is a generic algorithm introduced by Eldar [7]. It

generates a regular sampling and calculates the farthest vertex and inserts in S a new

sample in each iteration, as described in the Algorithm 5.3.

Algorithm 5.3 Farthest Point Sampling (FPS)
Require: Triangular mesh (V, F ), source vertex s ∈ V , number of samples m
Ensure: Sampling vertices set S ⊂ V
1: S ⇐ {s}
2: while |S| < m do
3: d⇐ compute_geodesics(V, F, S)
4: s⇐ arg max

v∈V
d(v)

5: S ⇐ S ∪ {s}
6: end while
7: return S

The FM algorithm (Algorithm 4.1) has a complexity of O(n log n) similar to the Di-

jkstra algorithm. The complexity of the FPS algorithm without taking into consideration

the cost of calculating distances is O(mn), where m is the number of samples S. However,

to compute a sub-sampling in a triangular mesh, we must compute the distance map with

the FM algorithm in each iteration. Hence the FPS algorithm complexity is O(mn log n).
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The number of operations f(n) of the FPS algorithm using the PRP algorithm is

f(n) =
m∑
i=1

(
c1
n
√
n√
i

+ c2n

)
(5.3)

where c1 and c2 are constants, the terms inside the sum in Equation 5.3 represent the

operations in each iteration: the PRP algorithm (Algorithm 5.1) which computes the

geodesic distance map (first term) and the selection of the vertex with the maximum

distance from the i sources (second term). Equation 5.4 reduces Equation 5.3:

m∑
i=1

(
c1
n
√
n√
i

+ c2n

)
≤ c

m∑
i=1

n
√
n√
i

= cn
√
n

m∑
i=1

1√
i

(5.4)

Proof. We can prove that:
m∑
i=1

1√
i

= O(
√
m) (5.5)

as a consequence of the following facts:

m∑
i=1

1√
i

=
1

1
+

1√
2

+
1√
3

+
1

2
+

1√
5

+
1√
6

+
1√
7

+
1√
8

+
1

3
+

1√
10

+ · · ·+ 1

b
√
mc

+ · · ·+ 1√
m

we use the fact that different (k + 1)2 − k2 = 2k + 1 where k ∈ N, to limit:

m∑
i=1

1√
i
≤
b
√
mc∑

i=1

2i+ 1

i
(5.6)

m∑
i=1

1√
i
≤ 2
√
m−

b
√
mc∑

i=1

1

i

m∑
i=1

1√
i
≤ 2
√
m−Hb√mc (5.7)

where Hb√mc ∼ lnb
√
mc is a Harmonic number. Hence, we can affirm that:

m∑
i=1

1√
i

= O(
√
m). (5.8)
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Combining Equation 5.4 with Equation 5.5 we obtain

cn
√
n

m∑
i=1

1√
i

= O(n
√
n
√
m) = O(

√
mn3/2) (5.9)

In this partial complexity analysis, we did not consider the effects of the number of

threads in the parallelization.

Algorithm Complexity
Update Fast Marching O(1)
Fast Marching O(n log n)
Farthest Point Sampling O(mn log n)
Update Fast Marching modified O(1)
Parallel Ring Propagation O

(√
n
m
n
T

)
Farthest Point Sampling with PRP O

(√
mn3/2

T

)
Table 5.1: Comparison of complexity algorithm analysis.

The computational complexity analysis of FPS is O(mn log n) using FM, whereas

the parallel version of FPS using PRP has complexity of O(
√
mn3/2). As the number of

samples grows, there is an increase in the performance of the algorithm.

Table 5.1 summarizes the analyzed algorithms. We include the term T to the proposed

algorithm because the parallelization is a feature in our algorithm, and also has impact

in the FPS algorithm.

5.4.2 Lower bound to m and T
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Figure 5.2: Lower bounds to m and T for n ∈ [1 : 10000]

The number of samplesm = |S| is less than the total vertices of the mesh n = |V |, i.e.,
m < n. Given the complexities calculated above, we can estimate the minimum number of
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samples m as a function of n, necessary to make the parallel version of the FPS algorithm,

using the Parallel Ring Propagation, outperform the original FPS algorithm.

Notice that the calculation of the distances using a priority-queue-based Fast March-

ing algorithm is more efficient than our approach without parallelization, as the time

complexity of PRP algorithm is O
(
n3/2
√
m

)
with m = 1. Nevertheless, the PRP algorithm

is highly parallelizable, because it discards the use of the priority queue. In addition, the

performance increases according to the number of samples m, as shown in the analysis

that follows.

The PRP algorithm is more efficient that FM algorithm for some m0 ≤ m where

m < n; we compare the complexities between the FM algorithm and the PRP algorithm

with the next equation:

c1n log n > c2
n
√
n

√
m0

(5.10)

where c1 and c2 are constants. Reducing this comparison, we obtain

m0 >
cn

log2 n
(5.11)

where c depends on c1 and c2.

As the result does not contradict the conditionm < n, we can conclude that whenm >
cn

log2 n
, the PRP algorithm has a better performance, without considering the performance

gained with the parallel implementation. Figure 5.2a, illustrates the behavior of Equation

5.11, for values of n ∈ [1 : 10000]; we can observe that for meshes with 10000 vertices,

the FPS using the Rings Propagation algorithm outperforms the original FPS when the

number of samples is greater than 60.

The previous analysis did not contemplate the potential of the Parallel Ring Propa-

gation algorithm. The time complexity of our approach and the FPS algorithm using the

PRP algorithm are shown in Table 5.1. The number of cores is T . In our approach, the

update step is performed simultaneously until it reaches a band, which increases its size

with the number of iterations. In this step, it is important that all the vertices update

their distances before it proceeds to the next iterations.

We can analyze a lower bound to the number of threads T0 ≤ T , in the same way we
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estimated m0:

T0 =
c
√
n√

m log n
(5.12)

The function associated to Equation 5.12 is ploted in Figure 5.2b, for n ∈ [1 : 10000],

considering m = 1; this function is a lower bound to the number of threads that are

required. The parallelization in multicores and GPU improves considerably the time

complexity of our approach against the original FM. In the Chapter 6, we prove the

results of these analysis by presenting results including execution times, speedup and

errors for both the PRP and the FPS based on PRP algorithms.



Chapter 6

Experimental evaluation

(a) fandisk (b) bunny_irregular (c) kitten (d) elephant

(e) bunny (f) tyra (g) armadillo (h) ramesses

Figure 6.1: Geodesic distances map for each mesh in Table 6.1, from m = 1 sources.

We implemented the proposed PRP algorithm using CUDA, a parallel computing

platform and programming model developed by NVIDIA; we used the version 8.0 of the

CUDA toolkit and the GCC 6.2 compiler. The experiments were performed using an

Intel Core i7-6700HQ and a NVIDIA GeForce GTX 960M with 640 cuda cores. We

implemented the classical version of the Fast Marching algorithm that uses a priority
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Serial GPU Serial GPU
Filename Vertices Time (s) Time (s) Speedup Error % Error %
fandisk 6475 0.154 0.006 27.327 1.066e+00 1.065e+00

bunny_irregular 7500 0.188 0.007 28.322 2.138e+00 2.101e+00
kitten 14472 0.335 0.016 20.718 1.134e+00 1.132e+00

elephant 24955 0.580 0.035 16.712 8.954e-01 8.912e-01
bunny 34835 0.803 0.034 23.425 9.578e-01 9.549e-01
tyra 100002 2.462 0.260 9.484 9.283e-01 9.004e-01

armadillo 172974 4.220 0.562 7.504 7.182e-01 6.991e-01
ramesses 826266 20.560 4.243 4.846 6.379e-01 4.584e-01

Table 6.1: Comparison times, mean absolute percent error and speedup.

queue, in order to compare the performance of our algorithm. To compare the accuracy

of the algorithms we used the algorithm to compute exact geodesics [13], included in the

MeshLP package 1.

The performance and accuracy are evaluated over the meshes shown in Figure 6.1.

All experiments used single precision floating point arithmetic. Table 6.1 resumes the

experiments of distance computation from m = 1 sources.

6.1 Performance
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Figure 6.2: FM (CPU) and PRP (GPU) execution times from m = 1 sources.

Table 6.1 and Figure 6.2 show the execution times for the FM algorithm implemented

in CPU, and the PRP algorithm implemented in GPU to compute the geodesics distances

for each mesh, from m = 1 sources. It also Figure 6.3 presents the speedup of the PRP
1MeshLP package: https://github.com/areslp/matlab/tree/master/MeshLP/MeshLP, Geodesics

code: http://code.google.com/p/geodesic/

https://github.com/areslp/matlab/tree/master/MeshLP/MeshLP
http://code.google.com/p/geodesic/
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algorithm over the FM algorithm. We can observe that the speedup decreases in meshes

with a large number of vertices, but there are GPUs with more cuda cores and better

theoretical performance with which these values will be outperformed.
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Figure 6.3: Parallel Ring Propagation speedup from m = 1 sources.

In Chapter 5, we showed the importance of the inverse relation between the complexity

of the PRP algorithm and the number of sources m, in addition to the independence of

distance computation in each iteration, which allows the parallel implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800  900  1000

sp
e
e
d
u
p

# source vertices

fandisk
bunny_irregular

kitten
elephant

bunny
tyra

armadillo
ramesses

Figure 6.4: PRP speedup with m ∈ [1 : 1000].

Figure 6.4 presents the speedup of the PRP algorithm for each mesh from m sources.

Note that the speedup of meshes with large number of vertices increase with the number

of sources m; this is an advantage to compute distances map from many sources. The

execution times for the computation of the geodesics distances fromm = [1 : 1000] sources
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Figure 6.5: Execution times of the PRP algorithm with m ∈ [1 : 1000] for each mesh.

for each mesh is shown in Figure 6.5. We observe that this execution times decrease when

m increase; this behavior is as expected and we can verify the inverse relation between

performance and number of sources in the proposed algorithm PRP.

6.2 Accuracy

We tested the accuracy of the PRP algorithm, performing a comparison of mean absolute

percent error (MAPE) between the FM algorithm and the PRP algorithm, summarized

in Table 6.1. We can observe that PRP algorithm have a MAPE less than of the FM

algorithm; this difference is even greater in the meshes with a large number of vertices.

We evaluate the convergence of the PRP algorithm in relation to the number of iter-
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Figure 6.6: MAPE in function of number of iterations k ∈ [ρ : 2ρ].

ations. In the previous Chapter, we have proved that the number of rings in a triangular

mesh is ρ ≤
√
n, where n is the number of vertices; and we have established a relation

between ρ and the maximum number of iterations K to compute the distances map.

Figure 6.6 presents the absolute mean errors in function to the number of iterations;

each chart starts with an iteration k = ρ (number of rings of the mesh) and finished

in K = 2ρ, (Theorem 5.2). Note that the error decreases as the number of iterations

is increased and it converges in some k ∈ [ρ : 2ρ]. In Appendix B.4 presents also the

absolute mean errors with double precision.

We set the maximum number of iterations K = 2ρ, although this value depends on

of the topology of the triangular mesh and the relation of the propagation of rings and

the geodesic distance map. A more rigorous analysis of this relation has not been done
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(a) (b) (c)

(d) (e)

Figure 6.7: Rings map (rings propagation) in 6.7a and 6.7d, geodesics distances map in
6.7b and 6.7e. Bunny triangular mesh 6.7c.

yet in this work, but we have a preliminary analysis and we proved in Theorem 5.2 that

maximum number of iterations K ≤ 2ρ.

We believe that, when the distances defined by the rings (which are defined by the

combinatorial topology of the mesh) are already close to the expected distances produced

by the fire propagation of PRP, the maximum number of iterations will be ρ, because the

rings propagation will be proportional to the real distance map.

The relationship between the rings propagation and the geodesic distance map is

depicted in Figure 6.7. The rings propagation and the geodesic distance map over the

circle mesh is proportional and similar, in this case, our algorithm only needs ρ iterations

to compute the correct distance map and update the vertices in the last ring for each

iteration. For the bunny mesh, we observe a similar behavior between the rings map

and the distance map, but this mesh needs more iterations that the number of rings and

recompute the distances not only in the last ring established for each iteration.
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6.3 Farthest Point Sampling and Voronoi Diagrams

Figure 6.8 presents the speedup of the computation ofm samples, using the FPS algorithm

(Algorithm 5.3) with the GPU implementation of the PRP algorithm to compute the

geodesics distances in each iteration. The FPS algorithm exploits the fact that in the PRP

algorithm, the performance increases when the number of samples grows, because the FPS

algorithm in each iteration computes a new sample, which is added to the sources set S.

Figure 6.9 presents some visual results to the computation of m samples using the FPS

algorithm with the geodesics distances computed with the PRP algorithm; also presents

the voronoi regions with m sources, which were computed with the FPS algorithm.
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Figure 6.8: Farthest Point Sampling speedup with m ∈ [1 : 1000].
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(a) (b)

(c) (d)

Figure 6.9: Computation of m = 1000 samples to bunny mesh 6.9a. Voronoi regions in
6.9b, 6.9c and 6.9d; from the calculation of m = 100 samples with the FPS algorithm.



Chapter 7

Conclusion

We presented an efficient and highly parallelizable algorithm to compute approximate

distance maps on triangular meshes with time complexity of O
(√

n
m
n
T

)
. The experiments

show that the distances computed have error around the 1% from the exact method.

The main advantages of our approach are:

• Simplicity: Our approach does not require complicated pre-processing steps that

could lead to introducing some error in the accuracy, for example, parameterization.

• Highly parallelizable: Because the distances in each iteration can be computed

simultaneously and it does not use a priority queue. Furthermore, the proposed

method improves the speedup considerably when used to solve the multisource prob-

lem.

• Accuracy: Our method achieves an accuracy similar to the classical Fast Marching

method.

From the experiments, we can conclude that our method, Parallel Ring Propagation,

achieves good speedup values without any pre-processing time. Especially for problems

where multiple sources are required and queries will not be performed later, such as the

Farthest Point Sampling algorithm, the speedup increases from 20 to 70, as the number of

sources increases. This algorithm has a time complexity of O
(√

mn3/2

T

)
using the Parallel

Ring Propagation algorithm.

The presented method is not the best to calculate intensive queries of pair-wise dis-

tances, but if the pairs are close to each other, the computation of the distances is faster,

because the propagation is bounded by a certain distance radius.
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Finally, as future works, a more rigorous analysis of the number of iterations required

by our algorithm shall be developed and also, we plan perform a robustness analysis of

the proposed method, considering mesh quality criteria.
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APPENDIX A -- Proofs

A.1 Theorem 5.1

Theorem 5.1. [Number of rings ρ] Let T = (V,E, F ) be a triangular mesh, s ∈ V be

a source vertex such that it is possible order all rings Vr by their number of vertices in a

crescent way. Then the number of rings ρ from s satisfies ρ = O(
√
n), where n = |V |.

Proof. Let a triangular mesh T = (V,E, F ) and the sets of vertices Vr at ring r ∈ [1 : ρ].

We can stablish that:

|Vr| − |Vr−1| ≥ c (A.1)

where c ≥ 1 and V0 = {s} is the set containing the source vertex s. Without loss of

generality we can choose a constant c = 1. Then we have

|V ′r | = |V ′r−1|+ 1 (A.2)

where V ′r is a new crescent distribution of rings with the minimum difference such that

V ′r ≤ Vr, r ∈ [1 : ρ′], note that ρ ≤ ρ′; then, we can solve this recurrence: |Vr| = r for all

r ∈ [1 : ρ′]. Now, by
ρ′∑
r=0

|V ′r | = n we have:

1 +

ρ′∑
r=1

r = n

1 +
ρ′(ρ′ + 1)

2
= n

ρ2 ≤ 2 + ρ′2 + ρ′ = 2n

ρ ≤ O(
√
n)
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A.2 Theorem 5.2

To prove Theorem 5.2, we need the next lemmas:

Lemma A.1. Let T = (V,E, F ) be a triangular mesh, and s ∈ V a source vertex; the

number of rings ρ is Ω(log n).

Figure A.1: Counting vertices at ring Vr.

Proof. To count the number of vertices |Vr| at ring r ∈ [1 : ρ], we first consider all possible

vertices in ring Vr that must be connected to ring Vr−1. We can affirm that their sum is at

least equal to degree deg(v)− 3, for each v ∈ Vr−1. The number 3 in deg(v)− 3 accounts

for the two mandatory vertices connecting neighbors in the same ring Vr−1 together with

the neighbor vertex at ring Vr−2. This is the maximum number of vertices that Vr must

have satisfying the constraints given by the degrees of the vertices v ∈ Vr−1 (see Figure

A.1). This is represented by Equation A.3:

|Vr| ≤
∑

v∈Vr−1

(deg(v)− 3)− |Vr−1|, |V0| = 1 (A.3)

We use the maximum degree ∆V = maxv∈V deg(v), to limit the number of vertices at ring

r:

|Vr| ≤
∑

v∈Vr−1

deg(v)− 3|Vr−1| − |Vr−1|

|Vr| ≤
∑

v∈Vr−1

∆V − 4|Vr−1|
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|Vr| ≤ ∆V |Vr−1| − 4|Vr−1|

|Vr| ≤ (∆V − 4)|Vr−1|. (A.4)

Let b = ∆V − 4. Solving recurrence (A.4) we obtain:

|Vr| ≤ br, |V0| = 1

Now, knowing that
ρ∑
r=0

|Vr| = n, where n = |V | we have

ρ∑
r=0

|Vr| ≤
ρ∑
r=0

br

n ≤ bρ+1 − 1

b− 1
≤ bρ+1

logb n ≤ ρ+ 1

therefore, as long as b is limited, we can conclude that the number of rings ρ is Ω(log n).

Lemma A.2. All vertices v ∈ Vr need kr ≤ 2r + log
(

∆v−3
3

)
r − 1 iterations to compute

their final distance 1.

Proof. We will prove by induction that:

kr ≤ 2r + log

(
∆v − 3

3

)
(r − 1)− 1 (A.5)

Base case: When r = 1, all vertices v ∈ V1 compute their final distance at iteration 1,

then k1 = 1 = 2(1)− log
(

∆V −3
3

)
(1− 1)− 1 and (A.5) is true.

Induction step: All vertices at ring Vr−1 compute their final distances at iteration kr−1,

and the vertices at ring Vr need at least i iterations from kr−1 to compute their final

distances. The next recurrence equation represents the number of iterations kr that

the vertices v ∈ Vr need to compute their final distances:

kr ≤ kr−1 + i, k1 = 1 (A.6)

solving this recurrence, we obtain:

kr ≤ i(r − 1) + 1 (A.7)
1Considering log = log2
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Note this behavior of the recurrence at the beginning of iteration kr−1+i′, i′ ∈ [1 : i],

in Table A.1:

Table A.1: Vertices updated at iteration i′.

i′ Vertices updated in Vr ∪ Vr−1 Remaining vertices in |Vr|
1 |Vr−1| |Vr|
2 2|Vr−1| |Vr| − |Vr−1|
3 4|Vr−1| |Vr| − (2− 1)|Vr−1|
4 8|Vr−1| |Vr| − (4− 1)|Vr−1|
...
i 2i−1|Vr−1| |Vr| − (2i−2 − 1)|Vr−1|

This means that at each iteration i′, the computed distances in Vr−1 define the final

distances of a total of |Vr−1| vertices in Vr at iteration i′ = 1. When 2i−1|Vr−1| ≥
|Vr| − (2i−2 − 1)|Vr−1| all vertices in Vr have computed their final distances at end

of iteration kr ≤ kr−1 + i. Now, we need to find the value of i:

2i−1|Vr−1| ≥ |Vr| − (2i−2 − 1)|Vr−1|

(2i−1 + 2i−2 − 1)|Vr−1| ≥ |Vr|(
2i

3

4
− 1

)
|Vr−1| ≥ |Vr|

using Equation A.4 we obtain:

2i
3

4
− 1 ≥ ∆V − 4

log 2i ≥ log

(
4

∆V − 3

3

)
i ≥ log 4 + log

(
∆V − 3

3

)

i ≥ 2 + log

(
∆V − 3

3

)
(A.8)

replacing (A.8) in (A.7):

kr ≤
(

2 + log

(
∆V − 3

3

))
(r − 1) + 1

kr ≤ 2r − 2 + log

(
∆V − 3

3

)
(r − 1) + 1

kr ≤ 2r + log

(
∆V − 3

3

)
(r − 1)− 1
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Conclusion: By the principle of induction, (A.5) is true.

Note that in the majority of triangular meshes, the expected value of the maximum

degree ∆v for each ring is 6 , then the number of iterations that the vertices in Vr need

to compute their final distance is:

kr = 2r − 1

this reasoning is supported by the experimental evaluation.

Theorem 5.2. [Maximum number of iterations K] Let T = (V,E, F ) be a triangular

mesh, s ∈ V be a source vertex such that it is possible order all rings Vr by their number

of vertices in a crescent way. Then, the maximum of iterations is K = O(
√
n), where

n = |V |.

Proof. To proof the Theorem 5.2 we use the Lemma A.2 to count the number of iterations

K to compute the final distance to last vertices ring set Vρ is K = 2ρ − 1 and ρ ≤
√
n,

then we can affirm that K ≤ 2
√
n and K = O(

√
n).
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APPENDIX B -- Results

B.1 Mesh topology

(a) (b)

(c)

Figure B.1: Meshes topology.
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B.2 Analysis of the degrees of the vertices

Figure B.2 shows the distribution of mesh degrees considering all the meshes used in the

experiments. We can observe that the predominant degrees are 6, 4 and 5.

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5 6 7 8 9

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

1 49

599

5191

583

51 1

(a) fandisk

 0

 500

 1000

 1500

 2000

 2500

 3000

3 4 5 6 7 8 9 10 11

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

49

571

1962

2603

1569

598

120
26 2

(b) bunny_irregular

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 6 7 8

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

1650

11196

1602

24

(c) kitten

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3 4 5 6 7 8 9

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

8 122

4316

16051

4310

146 2

(d) elephant

 0

 5000

 10000

 15000

 20000

 25000

 30000

3 4 5 6 7 8 9 10 11 22

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

41 450

3955

26174

3888

299 23 3 1 1

(e) bunny

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

3 4 5 6 7 8 9 10 11 12 13

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

116

5659

26294

40370

19533

6156

1477
330 53 11 3

(f) tyra

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

3 4 5 6 7 8 9 10 11 12

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

41
4660

36780

90928

35088

5326
138 10 1 2

(g) armadillo

 0

 50000

 100000

 150000

 200000

 250000

 300000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

degree

520

92052

210680

271438

149538

69694

24135

6472 1421 245 50 11 6 1 2 1

(h) ramesses

Figure B.2: Degree meshes.
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B.3 Analysis of the distribution of rings

Figure B.3 shows the distribution of rings for each mesh in the experiments. We observe

that the curves are non-constant and the vertices are distributed in each ring.
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Figure B.3: Rings meshes distribution.
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Figure B.4 shows the distribution of rings sorted by the number of vertices, and the

functions y = x and y = 2x. We can observe that the curve increases over the minimum

increase constant c = 1, which is considerate in the proofs. This plots confirm that the

number of rings ρ ≤
√
n.

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(a) fandisk

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(b) bunny_irregular

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70  80  90  100

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(c) kitten

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(d) elephant

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(e) bunny

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  50  100  150  200  250

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(f) tyra

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250  300

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(g) armadillo

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  100  200  300  400  500  600  700  800

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

rings

(h) ramesses

Figure B.4: Sorted rings meshes distribution.



B.4 Analysis of error double precision 44

B.4 Analysis of error double precision

 1.06

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 1.13

 1.14

 60  70  80  90  100  110  120

e
rr

o
r 

(%
)

# iter

(a) fandisk

 2.1

 2.12

 2.14

 2.16

 2.18

 2.2

 2.22

 70  80  90  100  110  120  130  140  150
e
rr

o
r 

(%
)

# iter

(b) bunny_irregular

 1.132

 1.134

 1.136

 1.138

 1.14

 1.142

 1.144

 1.146

 1.148

 90  100 110 120 130 140 150 160 170 180 190 200

e
rr

o
r 

(%
)

# iter

(c) kitten

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 140  160  180  200  220  240  260  280

e
rr

o
r 

(%
)

# iter

(d) elephant

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 120  140  160  180  200  220  240  260

e
rr

o
r 

(%
)

# iter

(e) bunny

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 200  250  300  350  400  450

e
rr

o
r 

(%
)

# iter

(f) tyra

 0.715

 0.72

 0.725

 0.73

 0.735

 0.74

 0.745

 0.75

 0.755

 0.76

 0.765

 0.77

 250  300  350  400  450  500  550

e
rr

o
r 

(%
)

# iter

(g) armadillo

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 700  800  900  1000 1100 1200 1300 1400 1500 1600

e
rr

o
r 

(%
)

# iter

(h) ramesses

Figure B.5: Analysis of the error with double precision.


	Introduction
	Contribution
	Outline

	Introdução
	Contribuição
	Organização

	Related Works
	Background
	Basic concepts
	Distance maps
	Discrete Distance Maps
	Fast Marching algorithm

	Proposed Method
	Rings propagation
	Ring Propagation-based algorithm
	Parallelization
	Algorithm Complexity and Comparison
	Application: Farthest Point Sampling
	Lower bound to m and T


	Experimental evaluation
	Performance
	Accuracy
	Farthest Point Sampling and Voronoi Diagrams

	Conclusion
	References
	Appendix A – Proofs
	Theorem 5.1
	Theorem 5.2

	Appendix B – Results
	Mesh topology
	Analysis of the degrees of the vertices
	Analysis of the distribution of rings
	Analysis of error double precision


