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Resumo

O problema de inpainting consiste no preenchimento de regiões perdidas ou deterioradas
em imagens e vídeos, de tal forma que o padrão de preenchimento não produza artefatos
que destoem do dado original. Além da restauração de dados perdidos, a técnica de
inpainting também pode ser usada para remoção de objetos indesejados. A possibilidade
de aquisição de dados geométricos a partir da popularização de dispositivos de aquisição
de geometria 3D tornou relevante a questão de inpainting em malhas. Malhas são geradas
a partir de nuvens de pontos que são obtidas dos dispositivos de aquisição de forma 3D.
Após os processos de digitalização e triangulação, as malhas apresentam frequentemente
orifícios devido a defeitos na nuvem original. Uma das causas mais comuns é a oclusão.

Na presente dissertação, abordamos o problema de inpainting em superfícies através
de um novo método baseado em aprendizado de dicionários e codificação esparsa. O uso da
técnica de aprendizado de dicionários para resolver o problema de inpainting em imagens
têm obtido resultados bastante satisfatórios; por outro lado, sua aplicação em superfícies
descritas por malhas de triângulos ainda é um desafio. Nosso método aprende o dicionário
através da subdivisão da malha em retalhos (patches) e reconstrói a malha através de um
método de reconstrução inspirado no método Non-local Means sobre os códigos esparsos.
Nosso método tem como vantagens a capacidade de preencher as regiões perdidas ao
mesmo tempo em que remove ruído e realça características importantes da malha. Além
disso, é globalmente coerente, uma vez que a representação esparsa baseada nos dicionários
captura toda a informação geométrica no domínio transformado. Apresentamos duas
variações do método: uma direta na qual o modelo é reconstruído e restaurado diretamente
da representação no domínio transformado e uma segunda, adaptativa, na qual as regiões
perdidas são recriadas iterativamente através da propagação sucessiva do código esparso,
computado no bordo dos furos, que guia reconstruções locais. O segundo método produz
melhores resultados para regiões extensas porque os códigos esparsos dos novos retalhos
são adaptados de acordo com os códigos esparsos dos retalhos do bordo.

Finalmente, apresentamos e analisamos resultados experimentais que demonstram o
desempenho de nosso método comparado com os da literatura.

Palavras-chave: Inpainting em superfícies, aprendizagem de dicionários, codificação
esparsa, Non-local means, equação de Poisson, métodos preenchimento de buracos, malhas
triangulares.



Abstract

The problem of inpainting consists of filling missing or damaged regions in images and
videos in such a way that the filling pattern does not produce artifacts that deviate from
the original data. In addition to restoring the missing data, the inpainting technique can
also be used to remove undesired objects. The search for surface inpainting solutions
became more relevant when the 3D geometry acquisition devices came into mainstream.
Meshes are typically generated from point clouds that are obtained from 3D shape ac-
quisition devices. After the scanning and triangulation processes, the meshes often have
holes due to defects in the original cloud. One of the most common causes is occlusion.

In this dissertation, we address the problem of inpainting on surfaces through a new
method based on dictionary learning and sparse coding. The use of the dictionary learning
techniques to solve the inpainting problem in images has obtained successful results; on
the other hand, its application on surfaces described by triangle meshes is still a challenge.

Our method learns the dictionary through the subdivision of the mesh into patches
and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means
method on the computed sparse codes. One of the advantages of our method is that it
is capable of filling the missing regions and simultaneously removes noise and enhances
important features of the mesh. Moreover, the inpainting result is globally coherent as
the representation based on the dictionaries captures all the geometric information in the
transformed domain. We present two variations of the method: a direct one, in which the
model is reconstructed and restored directly from the representation in the transformed
domain and a second one, adaptive, in which the missing regions are recreated iteratively
through the successive propagation of the sparse code computed in the hole boundaries,
which guides the local reconstructions. The second method produces better results for
large regions because the sparse codes of the patches are adapted according to the sparse
codes of the boundary patches. Finally, we present and analyze experimental results that
demonstrate the performance of our method compared to the literature.

Keywords: Surface Inpainting, Dictionary learning, Sparse coding, Non-local means,
Poison equation, Hole-filling methods, Triangular meshes.
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Chapter 1

Introduction

The surface inpainting problem can be defined as the task of in filling missing regions so

that these regions are not highly noticeable with respect to the surrounding mesh. This

problem is also known as hole filling and mesh completion [2]. The main goal of inpainting

is to restore damaged parts of the surface, but it can also be used to remove some not

desired objects, present in the scenario to be scanned (e.g. a house behind an occluding

tree).

3D shape acquisition devices produce point clouds that are typically converted into

mesh representations before any kind of geometric processing. The produced meshes often

present holes because of imperfections in the original points cloud, which can be due to

several reasons. The most common is occlusion, but low reflectance, constraints in the

scanner placements and lack of enough coverage of the object by the scanner, in case of

scanning some art pieces, are also common causes [11].

Scanned 3D objects have become a primary asset, in many applications domains

(medicine, manufacturing, art, cultural heritage, 3D printing, architecture, and construc-

tion, entertainment industry, etc) [12] . Because of this, it is quite important to inpaint

the missing information present in the acquired models as a post-processing task.

1.1 Main Contribution

In this dissertation, we present a new method to address the surface inpainting problem

via dictionary learning and sparse coding.

Our method is quite different from most methods found in the literature because it

tackles the problem in a transformed domain instead of working directly in the mesh
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domain, considering the whole mesh information and not only the information of the

hole surroundings. The proposed method is inspired by the inpainting methods based on

dictionary learning technique, which have been successfully applied to images. However,

adapting these techniques is quite challenging because of the non-uniform sampling of the

considered surfaces.

Our method learns the dictionary through the subdivision of the mesh into patches

and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means

method on the computed sparse codes.

The main contributions of the present dissertation are:

• We introduce a new surface inpainting method capable of filling the missing regions

and simultaneously remove noise and enhance important features of the mesh.

• The inpainting result is globally coherent due to the fact that the proposed method

uses the whole remaining shape.

We present two variations of the method: a direct one, in which the model is recon-

structed and restored directly from the representation in the transformed domain and a

second one, adaptive, in which the missing regions are recreated iteratively through the

successive propagation of the sparse code computed in the hole boundaries, which guides

the local reconstructions. The second method produces better results for large regions

because the sparse codes of the patches are adapted according to the sparse codes of the

boundary patches.



Chapter 2

Introdução

O problema de inpainting em superfícies pode ser definido como a tarefa de preencher

regiões, de tal forma que estas regiões não destoem das características das regiões circun-

dantes na malha. Este problema é também conhecido como preenchimento de buracos

[2]. O objetivo principal do inpainting é restaurar partes danificadas da superfície, mas

também pode ser usado para remover alguns objetos não desejados, presentes no cenário

a ser digitalizado (por exemplo, remover parte de uma árvore que esconde parte de uma

casa).

Dispositivos de aquisição de forma 3D produzem nuvens de pontos, as quais são

tipicamente convertidas em representações baseadas em malhas, antes que qualquer tipo

de processamento geométrico possa ser realizado. As malhas produzidas freqüentemente

apresentam buracos devido a imperfeições nas nuvens de pontos originais, o que pode ser

explicado por diferentes razões. A mais comuns incluem oclusão parcial, baixa reflectância

e restrições no posicionamento do scanner. No caso peças de arte, a falta de cobertura do

objeto pelo scanner também é uma causa frequente [11].

Objetos 3D digitalizados tornaram-se um recurso primário em muitos domínios de

aplicações (medicina, fabricação, arte, patrimônio cultural, impressão 3D, arquitetura e

construção, Indústria do entretenimento, etc) [12]. Devido a isso, é muito importante

fazer o inpainting das informações ausentes nos modelos adquiridos, como uma tarefa de

pós-processamento.
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2.1 Contribuição principal

Nesta dissertação, apresentamos um novo método para abordar o problema de inpaint-

ing em superfícies, baseado em aprendizagem de dicionários e codificação esparsa. Nosso

método é bastante diferente da maioria dos métodos encontrados na literatura porque

aborda o problema num domínio transformado, em vez de trabalhar diretamente no

domínio da malha, considerando a informação da malha inteira e não somente da infor-

mação na vizinhança do buraco. O método proposto é inspirado nos métodos de inpainting

baseados na técnica de aprendizagem de dicionários, as quais foram aplicadas com sucesso

em imagens. No entanto, a adaptação destas técnicas é desafiador devido à amostragem

não uniforme das superfícies. Nosso método aprende o dicionário através da subdivisão da

malha em retalhos e reconstrói a malha através de um método de reconstrução inspirado

no método Non-local Means aplicado ao vetor de códigos esparso.

As principais contribuições da presente dissertação são:

• Introduzimos uma novo método para inpainting de superfícies capaz de preencher

as regiões ausentes e simultaneamente eliminar o ruído, além de melhorar as carac-

terísticas importantes da malha.

• O resultado do processo de inpainting é globalmente coerente, devido ao fato de que

o método proposto usa a informação global da malha e não somente as informações

na vizinhança dos buracos.

Apresentamos duas variantes do método: uma direta, na qual o modelo é reconstruído

e restaurado diretamente a partir da representação no domínio transformado e uma se-

gunda, adaptável, em que as regiões que faltam são recriadas iterativamente através da

sucessiva propagação do código esparso calculado nos limites dos buracos, que guia as

reconstruções locais. O segundo método produz melhores resultados para regiões grandes

porque os códigos esparsos sao adaptados de acordo com os códigos esparsos dos retalhos

do bordo.



Chapter 3

Related Works

In the literature, there exists many different approaches used to solve the surface in-

painting problem. For simplicity, we can divide the inpainting approaches into main two

groups. The geometry-based methods and texture-based methods.

3.1 Geometry-based approaches

These methods are also called structural because they preserve smoothness between the

inpainted patch and the remaining mesh. The smoothness can be measured by a certain

degree of curvature. Geometry-based approaches also can be divided into two categories:

the voxel-based and the triangle-based methods. The main difference between them is the

representation.

In the case of a voxel-based approach, it is necessary to first convert the mesh repre-

sentation into a voxelized representation. Curless and Levoy [13] proposed a volumetric

method in voxel space. David [14] uses a volumetric diffusion technique from the hole

boundary to the interior based on a space carving information. These approaches are

suitable for complex holes but also may generate incorrect topology in some cases [38].

In triangle-based approaches, there also exists also different kind of approaches. We

refer readers to the survey in [32], which presents a quantitative comparison for hole

filling methods. The interpolating-based methods are one of the most simple approaches;

they create smooth and continuous patches across the boundaries. Wang and Oliveira

[35] proposed a method that creates an interpolating patch using moving least squares

to fit polynomial functions. Pfeifle and Seidel [31] create an interpolating patch using

triangular B-splines and Branch [6] uses a radial basis functions interpolator. Although
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these approaches generate good results for disk-shaped holes, they are not appropriate to

deal with complex holes in regions of high curvature.

One of the most popular approaches to deal with complex holes is the method proposed

by Liepa [25], which is a complete method for filling holes. It uses a dynamic programming

algorithm for the mesh triangulation, which takes into account dihedral angles and areas.

After the initial triangulation, the algorithm performs a refinement step, based on the

Umbrella operator, which is similar to the Laplacian. The main drawback of this algorithm

is the high complexity of the mesh triangulation algorithm, which is O(|E|3), where |E|
is the number of edges in the mesh.

Jun [21] developed a method that divides a complex hole into pieces. Then, each

sub-hole is filled with a planar triangulation. Finally, the generated mesh is improved

using sub-division and refinement.

Zhao [38] proposed a robust hole-filling method that uses an advancing front strategy

for the mesh generation. In a subsequent step, the positions of the vertices are optimized

by solving the Poisson equation.

A method that minimizes the variational curvature between the inpainted patch and

its surroundings was proposed by Caselles [11].

Brunton [8] developed a method for filling holes in meshes by curve unfolding.

Although the geometry-based methods produce a smooth inpainting result, the tex-

ture is still missing. In order to overcome this issue, the texture-based approach were

developed.

3.2 Texture-based approaches

Image inpainting methods work similarly to methods applied to texture synthesis. Gen-

erally, these methods progressively propagate the texture patches until they cover the

missing regions [2].

Geometry and texture-based methods present different analysis and implementation

tools. We believe that sparse signal recovery methods on surfaces are capable of in-

troducing some texture, as shown in the work proposed by Zhong [39]. As far as we

are concerned, this is the first work that addresses the surface inpainting problem using

sparsity constraints. It represented the shape in a transformed domain, using the eigen-

functions of the Laplacian as atoms of the fixed dictionary. The main difference between
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our method is that we learn a dictionary from the input mesh instead of using the Lapla-

cian eigenfunctions as dictionary atoms, which produces a more adaptative inpainting

result.



Chapter 4

Surface Inpainting Problem

The problem of surface inpainting can be stated as follows: Let a triangle mesh T =

(V,E, F ), where V , E and F are the set of vertices, edges and faces. We can define a

function f over each vertex, such that f : V → R3, which denotes the mesh coordinates

for each vertex.

(a) V ′ (b) V − V ′ (c) V

Figure 4.1: Surface Inpainting problem. 7.4a Set of known vertices. 4.1b Set of unknown
vertices. 7.4b All vertices.

We assume that V ′ ⊂ V are the known vertices and V −V ′ correspond to the unknown

surface hole vertices. We define a maskM as a projection matrix with dimensions |V ′|×|V |
as follows:

M(i, j) =

1 if vi is the jth vertex ∈ V ′

0 otherwise

Denote x′ = f(V ′) as the signal over the visible vertices of x = f(V ), such that x′ =

Mx. Generally, the inpainting problem can be formulated as a constrained optimization
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problem:

x̂ = arg min
x
Pr(x) s.t. ‖Mx− x′ ‖2

2< ε (4.1)

where the data term ‖ Mx− x′ ‖2
2 guarantees the closeness between the known informa-

tion and the resultant information. The term Pr(x̂) is a prior that regularizes certain

properties of the reconstructed signal.

The proposed method computes the approximate signal in a transformed domain in-

stead of computing it directly in the mesh domain. Consider a dictionary D = (d1, ..., dm),

where di is a dictionary atom. We represent x as a linear combination of the dictionary

atoms.

x = Dα =
m∑
i=1

αidi

where α = (α1, ..., αm)T represents the coefficients of x with respect to the dictionary D.

Finally, in order to estimate the coefficients α we impose the sparsity of the coefficients

as a prior. Thus, the surface inpainting problem formulations is as follows:

α̂ = arg min
α
‖ α ‖0 s.t. ‖MDα− x′ ‖2

2< ε (4.2)

The pseudo-norm l0 counts the non-zero elements of α and D is the dictionary that

will be learn as part of the proposed method.



Chapter 5

Background

5.1 Sparse Coding

Sparse coding is an operation to obtain the codification (coefficients) as sparse as possible

to construct a sparse representation. These concepts belong to the Sparse-Land model,

which is a way for synthesizing signals according to a prior defined by a transform [16].

A sparse representation is based on the idea that a signal can be decomposed as a sparse

linear combination of atoms, which are understood in a base called dictionary y ≈ Dα̂.

The minimization problem of sparse coding is formulated as follows:

α̂ = argmin
α
‖ y −Dα ‖2 s.t. ‖ α ‖0≤ L (5.1)

Note that in this formulation, the dictionary is given. The representation is guided

by the sparse codes α, where α are the sparse coefficients to approximate the signal y as

sparse as possible. This implies that only the meaningful atoms are considered [16]. The

term ‖ α ‖0 measures the sparsity of the decomposition and can be understood as the

number of non-zero coefficients in α, this is controlled by the regularization term L.

The solution to the equation with the norm l0 is an NP-hard problem. Fortunately,

it is possible to relax the norm under certain conditions and find out an approximate

solution. The class of greedy methods can yield a good enough approximate solution

for the problem. One example is the Orthogonal Matching Pursuit (OMP) algorithm,

which is an iterative greedy algorithm that chooses the best matching projections of a

multidimensional data onto a dictionary D [10]. The OMP algorithm [16] is summarized

in Algorithm 1.
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Algorithm 1 Orthogonal Matching Pursuit (OMP) algorithm
Require: Dictionary D, sparsity constraint L
Ensure: Sparse coding vector α
1: Γ = ∅
2: for i = 1, ..., L do
3: Select the atom which most reduces the objective function
4:

i′ ← argmin
i∈ΓC
{min

α′
‖ x−DΓ∪{i}α

′ ‖2
2}

5: Update the active set: Γ→ Γ ∪ {i′}
6: Update the residual (orthogonal projection)
7:

r → (I −DΓ(DT
ΓDΓ)−1DT

Γ )x

8: Update the coefficients
9:

αΓ → (DT
ΓDΓ)−1DT

Γx

10: end for
11: return α

5.2 Dictionary Learning

One important component of the sparse coding optimization problem is the dictionary.

A wise choice of a proper dictionary is a relevant issue because it has significant impact

in the performance of the sparse decomposition problem. Most of the dictionaries used

are pre-constructed dictionaries such us those based on wavelets, contourlets, curvelets

and more. However, these dictionaries present some limitations in the proficiency to

make sparse the signals and in most cases they are restricted to signals of a certain type

[16]. This gave origin to another approach, from the learning point-of view, for obtaining

dictionaries that helps to approximate the signal as sparse as possible.

The dictionary learning approach builds empirically a dictionary from a training

database of signal instances. Because of this it is able to adapt to any type of signals that

complies with the Sparse-Land model [16]. t However, this approach present some draw-

backs. The computational load is higher compared to the pre-constructed dictionaries

and the training methodology is restricted to low dimensional signals. Thus, dictionary

learning techniques usually require the signalto be divided into small patches[1].
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Formally, the dictionary learning problem can be formulated as:

min
D
‖ Y −Dα ‖2

2 s.t. ‖ α ‖0≤ L (5.2)

Given signal Y , the solution to Equation 5.2 learns a dictionary and its sparsest

representation α over the unknown dictionary D, updating D until the proper dictionary

is found, considering the sparsity constraints for α, in this formulation L is the sparsity

regularization term.

In the literature, it is possible to find approaches to solve this problem for images.

For instance, the Method of Optimal Directions (MOD) applied to speech and electrocar-

diogram (ECG) signals, proposed by Egan et al. [18] and the K-SVD algorithm proposed

by Aharon et al. [1].

Dictionary learning has been applied to image processing tasks. For instance, denois-

ing, inpainting, compressed sensing and demosaicing are examples of image processing

problems that can be successfully solved via dictionary learning[20]. An image denoised

via Dictionary Learning is shown in Figure 5.1.

5.2.1 The K-SVD algorithm

K-SVD is an iterative algorithm used to build a dictionary from a set of input signals. It

was proposed by Aharon [1] and is comprised of two main stages. The sparse coding stage

and dictionary learning stage. In the dictionary learning stage, the dictionary atoms are

updated using Single Value Decomposition (SVD).

Given the set of signals Y , a dictionary D is built to sparsely represent the data by

approximating theto make sparse the signals solution to Equation 5.2.

The general algorithm for K-SVD algorithm is described in Algorithm 2. The param-

eter ε ensures the similarity between the input signal and the approximate Dα signal.

5.3 Non-local-means

The non-local means is a method proposed by Buades [9] to solve the image denoising

problem. It has its spirit based on the non-local averaging of all pixels in the image. The
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(a) (b)

(c) (d)

Figure 5.1: Image denoising via Dictionary Learning. 5.1a Barbara image with Gaussian
noise; 5.1b Barbara image recovered; 5.1c Barbara original image; 5.1d Dictionary learned
from the Barbara image with Gaussian noise.

non local value of a pixel i of an image I is:

NL[v](i) =
∑
j∈I

w(i, j)v(j) (5.3)

The discrete noisy image is v = v(i)|i ∈ I, the weights w(i, j) depend on the similarity

between neighborhoods of the pixels v(Ni) and v(Nj). The weights are defined as:

w(i, j) =
1

Z(i)
e−
‖v(Ni)−v(Nj)‖2,σ

h2 (5.4)

where the standard deviation of the Gaussian kernel is σ > 0.
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Algorithm 2 The K-SVD dictionary-learning algorithm [16]
Require: Set of training signals Y
Ensure: Trained dictionary D
1: Initialize Dictionary: Build D(0) ∈ Rnxm, either by using random entries, or using
m randomly chosen examples.

2: while ‖ Y −Dα ‖2
2> ε do

3: Sparse Coding Stage: Use a pursuit algorithm to approximate the solution of

α′i = argmin
α
‖ yi −D(k−1)α ‖2

2 s.t ‖ α ‖0≤ k0

obtaining sparse representations α′i for 1 ≤ i ≤M . These form the matrix X(k)

4: K-SVD Dictionary-Update Stage:
5: for j0 = 1, 2, ...,m do
6: Update the columns of the dictionary and obtain D(k)

7: Define the group of examples that use the atom aj0,

ωj0 = {i|1 ≤ i ≤M,X(k)[j0, i] 6= 0}

8: Compute the residual matrix

Ej0 = Y −
∑
j 6=j0

djα
T
j

, where xj are the j′th rows in the matrix X(k).
9: Restrict Ej0 by choosing only the columns corresponding to ωj0 , and obtain ER

j0.

10: Apply SVD decomposition ER
j0 = U∆V T

11: Update the dictionary atom dj0 = u1, where u1 is the higher value of matrix U ,
obtained from SV D decomposition.

12: end for
13: end while
14: return D

Finally, the term Z(i) is the normalizing constant:

Z(i) =
∑
j

e−
‖v(Ni)−v(Nj)‖2,σ

h2 (5.5)

where the parameter h acts as a degree of filtering and controls the decay of the

exponential function.

Arias [2] proposed a variational framework for the Non-local (NL) image inpainting.

They derived three different inpainting schemes. The patch NL-means, patch NL-medians

and patch-NL Poisson.
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5.4 Poisson Equation

Poisson Equation is widely used for many geometry processing applications. For instance,

fairing, mesh editing [37] and mesh completion [22]. The discrete solution of the Poisson

PDE on a triangular mesh, is formulated as follows [5]:

∆kf = b (5.6)

The function f : S → R is defined by the values at the mesh vertices fi = f(vi).

The Laplace Beltrami ∆f can be discretized using the cotangents formula obtaining the

Laplacian matrix L. Therefore, the discretization of the Equation 5.7 leads to the linear

system:

Lkx = b (5.7)

The boundary conditions are represented as b and k is the order of the Laplacian. In

this work, we compute the bi-Laplacian matrix L2 to compute an initial reconstruction

of the mesh geometry for large holes. This yields the minimum curvature surface patch

that satisfies the boundary conditions.

5.5 Principal Curvatures

The curvature on surfaces measures the deviation of a surface from a flat plane. It can

be understood as the rate of change of the normal along the surface [7].

Consider a surface X, a trajectory described by Γ : [0, L] → X and the acceleration

vector Γ̈ in a direction v ∈ TxX where TxX is the tangent plane at a point x.

A point x ∈ X has multiple curvatures because for each direction v ∈ TxX, a curve Γ

passing through Γ(0) = x in the direction Γ̇(0) = v may have a different normal curvature

kn. There exists two special curvatures, the principal curvatures which can be defined as:

• Minimum Principal curvature:

k1 = min
v∈TxX

< N, Γ̈ >
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• Maximum Principal curvature:

k2 = max
v∈TxX

< N, Γ̈ >

The principal directions are defined as follows:

• Minimum Principal direction:

T1 = arg min
v∈TxX

< N, Γ̈ >

• Maximum Principal direction:

T2 = arg max
v∈TxX

< N, Γ̈ >

Principal curvatures over an elliptic and a hyperbolic surfaces are depicted in Figure

5.2.

Figure 5.2: The Principal curvatures over an elliptic surface (left) and a hyperbolic surface
(right). In an elliptic surface both principal curvatures are positive, conversely, in the
hyperbolic surface the principal curvatures have different signs [7].



Chapter 6

Surface Inpainting with Dictionary learn-
ing

In this chapter, we present the method we propose to solve the problem of inpainting in

surfaces described by meshes. In the first section, we describe an overview of the method

and point out each main step that is part of our pipeline. In the following sections, each

step is presented in detail.

Input mesh Dictionary learning Hole Detection

Hole Triangulation 
    and Fairing

Direct or Adaptative
    Sparse Coding

Inpainted  mesh

Figure 6.1: Surface inpainting via Dictionary Learning proposed method.
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6.0.1 Overview of the method

An overview of the proposed method is depicted in Figure 6.1. The first step is to learn the

dictionary from the input data. This stage is composed by the following substeps: patch

creation, patch normalization and the building construction of the continuous dictionary.

The next step is responsible for building the topology of the missing regions. In order

to achieve this, a hole triangulation stage is performed. This stage has two steps: hole

detection and hole triangulation. For large holes, it is necessary to apply a fairing step to

the triangulation and inital topology, making the surface smoothly blend with the holes’

contours. Finally, we apply the sparse coding algorithm using the trained dictionary to

finally reconstruct the patches for the missing regions. We present here two approaches:

a direct approach which is appropriate for small holes and an adaptative approach which

is suitable for large holes, where it is necessary to deduce the sparse codes in patches that

did not exist before in the mesh.

6.1 Dictionary Learning on Triangular meshes

Input mesh Patch Creation

Dictionary

Patch normalization

Dictionary Learning

Figure 6.2: Dictionary Learning for triangular meshes method.

Previously, in the background section, we introduced the dictionary learning method

applied to images. The main difference between image and surface dictionary learning is

the non-uniform sampling in the latter. In the next subsections we describe some methods

proposed in the literature to deal with this problem.

The process used to train the dictionary for surfaces is depicted in Figure 6.2. In an
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analogous way to image inpainting, the whole surface must be divided into small patches

because the training methodology is restricted to low dimensional signals. However, the

surface patches present different orientations (normals), and for that reason, it is necessary

to re-oriented them. Then, a tangent plane is fitted over the points to create a height map

for each patch. After this, the signal for the training step is represented by the values of

the constructed height map instead of the patches coordinates in R3.

6.1.1 Patch Creation

The subdivision of an image into patches is simple because of the uniform sampling.

Nevertheless, in surfaces, it is a non-trivial task. We define a surface patch as a growing

region, which has its origin at a center point that we denoted by seed. The region is

expanded according to a given radius by computing the minimal geodesics from the seeds.

Formally a patch is defined as follows:

Definition 6.1.1 (Patch). Let T = (V,E, F ) be a triangular mesh. A patch p is a tuple

(sp, Vp) where sp ∈ V and Vp ⊆ V is a set of vertices inside a geodesic ball with radius r:

Vp = {v ∈ V : d(sp, v) ≤ r}

where d is the geodesic distance function d : V × V → R and sp is the center point or

seed.

In this formulation, the radius is a very important factor, because it defines the patch

size, which has a strong influence in the mesh’ reconstruction result. First, because it

defines the degree of overlapping between the patches, which serves to create redundancy

and allows a better representation of the signal. Second, because when the patches’ size

is too large, the results tend to present oversmoothing artifacts. This can be explained

by the fact that dictionary learning is usually solved as an optimization problem and in

many cases the solution is trapped in local minima [28]. Therefore, a good policy is to

reduce the patches’ size to obtain the finest details as possible.

The radius r is scaled by a factor σ, called overlapping factor and can be set by the

user to handle the degree of smoothness in the reconstruction. The minimun radius is a

lower bound and it is coherent with the mesh geometry. It is computed as follows:

• Considering all vertices as seed points: A straightforward way to compute the

patches’s radius is by averaging the lengths of the edges of the mesh.
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• Considering a subset of vertices seed points: Using all vertices is computa-

tionally intensive. Therefore, one important step is to perform a sampling to define

the seeds to be used in the subsequent steps. The radius is computed according to

Equation 6.1:

r = max
v∈V

dv(v, S) (6.1)

where dv(v, S) is the minimal geodesics distance from the vertex v to the set of seed

points S.

We consider two criteria for a good sampling [7]:

• r-covering: The sampling must guarantee the covering of the whole surface.

• r-separated: The sampling must contain a subset of samples that are well sepa-

rated.

The r-covering property can be understood as the point-to-set distance as follows:

dv(v, S) ≤ r (6.2)

where the distance dv(v, S) is the minimum point-to-set distance.

dv(v, S) = inf
s∈S

dv(v, s) (6.3)

These properties are guaranteed by using the Farthest Point Sampling algorithm in

the sampling step of our method.

6.1.2 Patch Normalization

Before solving the dictionary learning problem stated in Equation 5.2. We represent

each patch geometry Gp = (Xp, Yp, Zp) as a height map Zp defined as a function Zp :

(Xp, Yp) → R defined in a local coordinate systems. For each patch, we construct a

local coordinate system based on a frame defined by the normal Np and the direction of

maximum curvature Tp at the point associated to the patches’ seed sp. Each coordinate

system can be modeled as a linear transformation matrix Ep. Then, a plane is fitted over

the set of points which are projected onto it. Thus, the height map Zp is defined for each
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patch in a local coordinate system permitting an easier manipulation of the geometry

information and the definition of correspondences between the geometry of overlapping

regions among neighboring patches.

Figure 6.3: Maximum Principal curvature direction over a triangular mesh at the point
v.

In this work, we consider only the Maximum Principal Direction to define a local

system of coordinates. In the discrete domain, we consider the multiple directions as the

vectors that form part of the ring of level 1 of the vertex v. This is depicted in Figure 6.3.

Once the maximum direction is obtained, we perform a projection of the vector T2

onto the normal plane PN . Finally the last vector ~R is obtained via the vectorial product

between the normal vector and the projection vector PT2.

~R = ~N × ~PT2

6.1.3 Learning a continuous dictionary on surfaces

When an image is considered as the input signal, a dictionary can be learned from a set of

overlapping patches which describe the features of the whole image. Differently, when the

input signal is a surface, the division into patches does not present a uniform distribution

of the points, i.e., it means each patch contains different number of points and they are

not located on regular grids as in images. Therefore, it is not possible to use the standard

sparse coding algorithms to train the dictionary [26].

Digne et al.[15] proposed an approach to learn a dictionary from point clouds as input

data. This method resamples the surface on a radial grid, introducing interpolation steps,

which affects the performance of the dictionary learning methods.

A more elegant solution to this problem was proposed by Tal and Bronstein [26], where
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a continuous dictionary is learned instead of a discrete one. The dictionary is represented

by a combination of a discrete basis Φx which is obtained by a continuous basis Φ and its

coefficients A.

Then, the dictionary learning problem is defined as:

x ≈ ΦxAα (6.4)

In this formulation A is the set of coefficients to be learned. The atoms of the dictio-

nary are defined as a linear combination of the continuous functions:

D = ΦxA (6.5)

di =
∑
j

aijΦj (6.6)

6.2 Hole Identification

The first step to surface inpainting is the detection of the holes in the mesh. It can be

performed by looking for the boundary edges. In order to do this in an efficient way, the

mesh data must be represented by a topological data structure; in our implementation,

we used the Compact Half Edge (CHE) data structure [24]. Before performing the hole

detection step, it is necessary to consider minimal requirements on meshes. We assume

that the mesh is an oriented manifold. A pre-processing step perform mesh repair oper-

ations if such requirements are not satisfied. Some types of flaws and defects that can

occur in polygon meshes are: Isolated and dangling elements, singular vertices and edges,

topological noise, inconsistent orientation, holes with islands, gaps with partial overlap,

self-intersections, and others. We refer the readers to the mesh repairing survey [3], which

analyses and compares numerous mesh repairing methods.

6.3 Hole Triangulation and Fairing

Ou method is directly influenced by the hole triangulation step; for that reason, it is im-

portant to establish the interior mesh connectivity (topology). A proper hole triangulation

must ensure a compatible vertex density between the inserted mesh and the surrounding
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mesh.

In our pipeline we can adopt any method proposed in the literature for hole triangu-

lation and refinement. For instance the methods of Liepa [25] and [38]. However, here we

propose our own way to solve this partial problem.

Mesh with boundaries Hole fairingHole triangulation

Figure 6.4: Hole triangulation and fairing process.

Our method for hole triangulation is based on a piece-wise scheme, because it divides

the complex hole into sub-holes in a similar way to the method proposed by Jun [21].

However, once the complex hole is divided, each sub-hole is filled with an advancing front

method, which is similar to the method presented in [38], to create the initial triangulation.

Finally, if the hole is large, we perform a fairing step based on the Poisson equation, in

order to make the surface smooth. The complete process for this stage is depicted in

Figure 6.4.

The proposed hole-filling algorithm is described in 4. The advancing front method

consists in iteratively adding new triangles until the hole is covered; the new triangles

are created according to the rules depicted in Figure 6.5. The size of the edges is chosen

by averaging the sizes of the boundary edges, to enforce the coherence with the size of

the edges of the surrounding mesh. This method is more efficient and robust than the

traditional 3D polygon triangulation methods because it is always able to patch the hole

whatever its shape is [38].

In this approach, we create an inpainted patch starting from the boundary edges of

the hole. Then, the advancing front method reduces the boundary edges until rests only

a small hole (a triangle). Finally, we merge the inpainted patch and the initial mesh to

get the new mesh without holes.

Finally, if the hole is large, the coordinates of the mesh vertices are optimized by

solving the Poisson equation (5.7), achieving a smoothing surface.
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Algorithm 3 Create new triangles
Require: Triangular mesh T = (V,E, F ), input vertex vi ⊂ V , angle θ
Ensure: Triangular mesh T = (V,E, F ) including new triangles.
1: if θ ≤ 75◦ then
2: Add the triangle composed by f = vi−1, vi, vi+1

3: else if θ > 75◦ and θ ≤ 135◦ then
4: Create a new vertex vn between vi−1 and vi+1.
5: Add two triangles: f1 = {vi−1, vi, vn} and f2 = {vn, vi, vi+1}
6: else if θ > 135◦ then
7: Create two new vertices vn1 and vn2 between vi−1 and vi+1

8: Add three new triangles: f1 = {vi−1, vi, vn1}, f2 = {vn1, vi, vn2} and f3 =
{vn2, vi, vi+1}

9: end if
10: return T

Algorithm 4 Hole-filling
Require: Triangular mesh T = (V,E, F ), boundary vertices B ∈ V .
Ensure: Triangular mesh without holes.
1: Project the vertices b ∈ B to the plane ajusted to the boundary using PCA.
2: Q is a priority queue.
3: for all b ∈ B do
4: Calculate the angle θb between two adjacent boundary vertices to vertex b.
5: Q← Q ∪ {θb}
6: end for
7: while Q 6= ∅ do
8: θm = minQ
9: Create the new triangles using Algorithm 3 with the vertex m and the angle θm.

10: Update Q with the angles of the new vertices.
11: end while
12: return T

(a) (b) (c)

Figure 6.5: Rules for the Create new triangles (algorithm) 3. The first case, when θi ≤ 75◦

is shown in Figure 6.5a. The second case, when 75◦ < θ ≤ 135◦ is shown in Figure 6.5b.
Third case, when θi > 135◦ is shown in Figure 6.5c
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6.4 Sparse Coding approaches

6.4.1 Direct Sparse Coding approach

This approach adapts the original dictionary learning techniques for images to surfaces

described by meshes. The inpainting result is good as long as the holes are not bigger

than the patches size. For large holes it is necessary to use iterative, multiscale or texture

synthesis methods [27].

Considering these restrictions, in this method the sparse codes α are computed by

solving the optimization problem (5.1), using the dictionary learned in the previous stage.

Algorithm 5 Direct Inpainting Algorithm
Require: Triangular mesh (V,E, F )
Ensure: Triangular mesh without holes (V,E, F )
1: Train the dictionary
2: Fill the holes wih the proposed Filling Holes Algorithm 4
3: Generate new patches to cover the holes.
4: Compute the α vector for the new patches using the OMP algorithm
5: Reconstruct the surface according the mesh reconstruction step.
6: return T

Algorithm 5 summarizes the proposed Surface Inpainting algorithm with the Direct

Sparse Coding approach.

6.4.2 Adaptative Sparse Coding approach

We believe that the borders of the holes contain the most compatible information with

the interior of the holes. Following this idea, we developed an algorithm which performs

a successive propagation of the patch boundary sparse codes toward the interior hole

patches. So that, the boundary patches are updated until they cover the whole hole.

This strategy was thought that way, because for large holes, the information is quite

limited, especially for the hole patches that are more distant to the hole boundaries.

Consider the following sets: P , V are the initial set of patches and set of vertices

respectively, P ′ and V ′ are the extended set of patches and set of vertices after the hole-

triangulation stage.

Definition 6.4.1. Let B ⊆ V be the set of border patches and s(p) a function that yields
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the seed (center point) of patch p ∈ P . We define Ri ⊆ P ′:

Ri = {p ∈ P ′ : s(p) ∈ V ′(Ri−1)} (6.7)

R0 = {p ∈ P : ∃v ∈ V ′(p) ∩B} (6.8)

(a) (b)

Figure 6.6: Growing regions Ri for the Iterative Inpainting algorithm. 6.6a Initial hole
triangulation; 6.6b The growing regions are R0 (red), R1 (yellow) and R2 (green). The
number of levels to cover the hole is r = 3.

In this definition R0 is the initial set of patches that has an intersection with the

border patches. The sets Ri represent the growing regions in each iteration. The number

of levels needed to cover the hole is denoted as r. An illustration of the growing regions

is depicted in 6.6. The sparse codes of a patch p are obtained by a weighted average of

the sparse codes of its neighboring patches denoted as Np.

Np = {p′ ∈
⋃
i<rp

Ri : |Vp ∩ V ′p | > 0} (6.9)

where rp is the level of the patch p. The weight for a patch p′ is defined as follows:

w(p′) =
|Vp ∩ V ′p |
Wp

(6.10)

where Wp is defined as:

Wp =
∑
p′∈Np

|Vp ∩ V ′p | (6.11)

Algorithm 6 summarizes the proposed Surface Inpainting algorithm with the Adap-

tative Sparse Coding approach.
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Algorithm 6 Surface Inpainting with the Adaptative Sparse Coding approach.
Require: Triangular mesh (V,E, F )
Ensure: Triangular mesh without holes (V,E, F )
1: Train the dictionary
2: Fill the holes wih the proposed Filling Holes Algorithm 4
3: Compute the poisson Equation 5.7, updating the new coordinates.
4: Generate new patches p ∈ P ′ to cover the holes.
5: Compute the α vector for the new patches using the OMP algorithm
6: for i⇐ 1 to r do
7: for all p ∈ Ri do
8: α(p) =

∑
p′∈Np

w(p′)α(p′)

9: end for
10: end for
11: Reconstruct the surface according the mesh reconstruction step.
12: return T

6.5 Mesh reconstruction

Once the dictionary D and the sparse codes α have been learned, we compute the new

height map Zp for each patch p ∈ P ′:

Zp = ΦpAαp (6.12)

The patches have to return to their original position in the mesh by using the inverse

of the transformation matrix Ep, since Ep is a orthonormal basis, we can affirm that

E−1
p = ET

p .

So far, each vertex v has mv estimates (for each patch that contains v). Notice that

the parameter mv is different for each v because each patch contains a different number

of vertices. The set of patches that contain v is denoted as Pv and |Pv| = mv.

The final position G(v) for each vertex v ∈ V ′ is computed by averaging its mv

estimates:

G(v) =
1

mv

∑
p∈Pv

Gp(v) (6.13)

In this work, we perform a better way to averaging the estimates of each vertex, using

a weighted average based on the Non-local means method (see Section 5.3).

We are not aware whether there exists a technique that applies the Non-local means
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method to surfaces, so we adapted the Non-local means method of images to surfaces,

considering the degree of similarity as weights to perform the averaging.

Thus, the final position G(v) is computed as follows:

G(v) =
∑
p∈Pv

wvpGp(v) (6.14)

where wvp and Z(v) are denoted as:

wvp =
1

Z(i)
e−
‖αv−αp‖

h2 (6.15)

Z(v) =
∑
p∈Pv

e−
‖αv−αp‖

h2 (6.16)

In this formula, the parameter h acts as a degree of filtering and controls the decay

of the exponential function. The magnitude of the h value controls the influence of the

patches in the reconstruction. When h is large, the weights are even more attenuated

when the samples are distant from the point of reconstruction. This leads to a more local

behavior in the reconstruction process. Conversely, when h is small, the weights are less

atenuated and the distant samples contribute more for the reconstruction, producing a

smoother effect [9].
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Experiments and results

In this section, we demonstrate the performance of our methods in filling surface holes.

First, we show the basis that we considered to build the dictionaries, the Gaussian

basis and the Cosine basis, which are depicted in Figures 7.1a. Some example of dictio-

naries learned from the Bunny and Armadillo models are depicted in Figures 7.2a and

7.2b respectively.

(a) (b)

Figure 7.1: Cossine 7.1a and Gaussian 7.1b basis for Dictionary Learning algorithm.

The proposed method, based on dictionary learning, refines the hole filling result,

as soon as the topology is added in the hole triangulation step. Figure 7.3 shows the

inpainting result of the Bunny model with a large hole. This is a complex example because

the whole mesh is not smooth and presents some finer details that we call as texture. Our

results are compared with the hole-filling method of [38]. The inpainted Bunny shape with

our method tends to be more coherent with the whole remaining shape. Furthermore,

the inpainting result presents an enhancement compared to the original Bunny shape,

highlighting the features and removing noise.

An example with a large and curved hole is depicted in Figure 7.4. We can observe the
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(a) (b)

Figure 7.2: Dictionaries atoms learned from shapes. 7.2a Dictionary atoms learned from
the bunny model, the overlapping factor is σ = 2.5; 7.2b Dictionary atoms learned from
the Armadillo model, the overlapping factor is σ = 1.5. Both dictionaries has 16 basis
functions as shown in Figure 7.1.

(a) (b) (c)

(d) (e) (f)

Figure 7.3: Inpainting existing holes on the Bunny model. 7.3a, 7.3d Original Bunny
model with holes; 7.3b, 7.3e Hole-filling result using the method of [38]; 7.3c, 7.3f Hole
filling result using our Adaptative Inpainting method.

mesh triangulation introduced by our method has good quality and approximates well the

missing geometry. Also, the final inpainting result performs a smoothing over the whole
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(a) (b)

Figure 7.4: 7.4a Original Sphere model with a hole. 7.4b Hole-filling result using the
proposed method.

(a) (b) (c)

Figure 7.5: Inpainting existing holes on Armadillo model. 7.5a, Original Armadillo model;
7.5b, Original Armadillo model with holes; 7.5c Hole filling result using our the proposed
method considering all vertices as seeds.

surface, improving the quality of the input mesh. Another example is shown in Figure

7.8, the resultant triangulation of the Wolf shape is coherent with its surroundings.

In Figure 7.5, we can observe the inpainting result of the Armadillo shape. The result

recovers the parts adding some texture as we can observe in the Armadillo’s leg. Another

example can be appreciated in Figure 7.6, where the Armadillo’s arm and forearm are

successfully recovered.

The proposed method is robust to noise. In Figure 7.7a, we can observe a noise
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Figure 7.6: Inpainting existing small holes in Armadillo shape

(a) (b)

Figure 7.7: Inpainting existing holes on Bunny shape with noise. 7.7a Original Bunny
model with noise and small holes. 7.7b Hole-filling result using our Direct inpainting
method .

(a) (b)

Figure 7.8: Inpainting existing large hole on Wolf shape. 7.7a Original Wolf model with
a large hole. 7.7b Hole-filling result using our Iterative inpainting method .
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(a)

(b)

Figure 7.9: Inpainting existing large hole in Armadillo shape. 7.9a Inpainting result using
our Iterative Inpainting method (left). The input Armadillo shape with holes (right). 7.9b
Difference between the inpainting result (left) and the original Armadillo model without
holes (right).

Bunny shape with small holes. The inpainting result with our Direct Inpainting method

is shown in Figure 7.7b, where the model enhances the Bunny features and remove the

noise considerably.

A main shortcoming of the proposed method is the way it deals with scale. As long

as the holes are not significative larger than the patches’ size, the proposed method works

well. Otherwise, the functions learned from the patches can not approximate well the

features for large missing regions. An example of this is shown in Figures 7.9 where a

large hole in the Armadillo shape is inpainted with the Iterative proposed method. We

can observe that there exist a significative difference compared to the original Armadillo

model in the back hard plates of the Armadillo shape. A solution to solve this issue can

be addressed by using a multiscale dictionary so that the details levels can be handled in

a hierarchical data structure. These ideas remain as a future work.



Chapter 8

Conclusions

In this work, we proposed a new method for the surface inpainting problem based on

dictionary learning and sparse coding techniques.

The proposed method works in a transformed domain instead of directly working

on the mesh geometry and topology. The surface is approximated by a sparse linear

combination of atoms of a dictionary and the sparse codes. Once the dictionary is learnt

we can recover the missing information, by estimating the sparse codes in a patch-wise

scheme.

We have demonstrated experimentally the performance of our method for surface

inpainting. Even for complex holes and surfaces with noise, the inpainting results are

quite good. The measurement of the quality of the inpainted result is a subjective task.

However, we assume that from the point of view of an observer, who doesn’t know the

original surface; the inpainting result is good as long as the observer is not able to notice

whether the inpainted result is the original or not.

The main advantages of the proposed method are:

• The inpainting result is globally coherent with the observably parts of the surface.

• The proposed method enhances the whole surface and is robust to noise.

• The inpainting result introduces some texture, especially when the holes are small.

For the future work we plan to design a method to overcome the issues related to the

scale, because for large holes the atoms of the dictionary are not able to learn the texture

patterns of the missing regions. One idea to deal with the scale problem is to learn a

hierarchical dictionary. We are also interested in improve the mesh reconstruction stage
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to avoid an undesired oversmooth result.
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