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“The mind, once expanded to the dimensions of

larger ideas, never returns to its original size.”

Oliver Wendell Holmes
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Resumo

Esta tese trata dois problemas de coleta e entrega um-para-um: o Problema de Rotea-
mento de Veículos com Coleta e Entrega Fracionária Um-para-um (PRVCEFU) e o Pro-
blema de Roteamento de Veículos com Coleta e Entrega Premiada (PRVCEP). Ambos são
problemas NP-difíceis e importantes para várias aplicações práticas, incluindo o trans-
porte de produtos a granel por navios e sistemas de compartilhamento de bicicletas. Três
atributos desafiadores de roteamento de veículos são combinados neste estudo, coleta e
entrega um-para-um, coleta e entrega fracionária e seleção de clientes, que são conheci-
dos por exigirem vizinhanças avançadas de buscas locais e procedimentos de exploração
eficientes. Inicialmente, desenvolvemos um algoritmo heurístico baseado na metaheurís-
tica Iterated Local Search (ILS) e no método Random Variable Neighborhood Descent
(RVND) para resolver o PRVCEFU. O núcleo deste algoritmo consiste em uma busca em
grande vizinhança que lida eficientemente com localizações de coleta e entrega e cargas
fracionárias, reduzindo o problema de encontrar a melhor combinação de inserção de um
par de coleta e entrega em uma rota para um problema de caminho mínimo com recur-
sos limitados, que é resolvido via programação dinâmica. Em seguida, os rótulos não
dominados são obtidos para cada rota separada e um problema da mochila é resolvido
para encontrar o melhor plano de inserção, considerando a solução completa. Experimen-
tos computacionais em instâncias da literatura mostraram o desempenho competitivo do
algoritmo proposto, encontrando novas melhores soluções em 92 de 93 casos e também
superando os métodos anteriores na média. Novas instâncias para o PRVCEFU e tam-
bém novos resultados são relatados, produzindo consistentemente boas soluções em várias
execuções. Os bons resultados encontrados no PRVCEFU nos motivaram a adaptar este
algoritmo para resolver o PRVCEP. Então, novamente, um ILS combinado com o RVND
foi usado, porém agora a ideia foi permitir que o algoritmo aceitasse soluções inviáveis
durante seu processo de busca. A fim de reduzir o espaço de busca de soluções inviáveis,
o conceito de busca local granular também foi incorporado ao algoritmo. O algoritmo
proposto teve um desempenho competitivo em instâncias da literatura, encontrando 20
resultados melhores ou iguais em 36 instâncias do que os métodos anteriores.

Palavras-chave: roteamento de veículos; coleta e entrega um-para-um; coleta e entrega
fracionária; seleção de clientes; metaheurísticas; grandes vizinhanças



Abstract

This thesis deals with two one-to-one pickup and delivery problems: the Multi-vehicle one-
to-one Pickup and Delivery Problem with Split Loads (MPDPSL) and the Multi-Vehicle
Profitable Pickup and Delivery Problem (MVPPDP). Both are NP-hard problems and
important for various practical applications, including bulk product transportation by
ships and bike-sharing systems. Three challenging vehicle routing attributes are combined
in this study, one-to-one pickup and delivery, split loads, and selection of customers, which
are known to require advanced local-search neighborhoods and exploration procedures.
Initially, we developed a heuristic algorithm based on Iterated Local Search (ILS) and
Random Variable Neighborhood Descent (RVND) to solve the MPDPSL. The core of this
algorithm consists of a new large-neighborhood search that efficiently deals with pickup
and delivery locations and split loads reducing the problem of finding the best insertion
combination of a pickup and delivery pair into a route to a resource-constrained shortest
path problem, which is solved via dynamic programming. Next, non-dominated labels are
obtained for each separate route and a knapsack problem is solved to find the best insertion
plan considering the whole solution. Computational experiments on benchmark instances
showed the great performance of the proposed algorithm, finding new best solutions on 92
out of 93 instances and also outperforming previous methods in average. New instances
for the MPDPSL and also new results are reported, producing consistently good solution
on several runs. The good results found on the MPDPSL motivated us to adapt this
algorithm for solving the MVPPDP. Then, again, an ILS combined with a RVND was
used, but now the idea was to allow the algorithm to accept infeasible solutions during its
search process. In order to reduce the search space of infeasible solutions, a granular local
search concept was also incorporated into the algorithm. The proposed algorithm had a
great performance on instances from the literature, finding 20 better or equal results on
36 instances than previous methods.

Keywords: vehicle routing, one-to-one pickup and delivery; split loads; customer selec-
tion; metaheuristics; large neighborhoods
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Chapter 1

Introduction

The great competition that exists in the industrial sphere means that more and more

industries need technological tools to aid their decision-making. With the help of these

tools, the entire process from production to sale of products becomes more efficient,

facilitating industrial management. It is known that in many countries, as in Brazil,

the road system is considered the main form of distribution of products and services.

Obtaining a reduction of expenses with the transportation of the products can enable a

reduction of the price of the final product. In this way, computational methods responsible

for solving vehicle routing problems are of great importance for industries.

In the transportation field, the Vehicle Routing Problem (VRP) is an important com-

binatorial optimization problem that has been the focus of extensive research effort since

1960 [36]. The VRP aims to find minimum-cost itineraries to service a set of geographi-

cally distributed customers with a fleet of vehicles, in such a way that each customer is

visited once and the capacity of each vehicle is respected. Over the years, the classical ver-

sion of the VRP has been increasingly-well solved, but as new applications are discovered,

many additional constraints, objectives, and other decision subsets, called “attributes” in

[68], are combined with the classical problem, leading to new challenges.

In the meantime, a vehicle routing attribute has drawn considerable research attention

over the years: the “one-to-one” pickup and delivery problem, which requires each service

to be performed as a pair, in such a way that each pickup precedes its associated delivery,

and both visits occur in the same route (see [22], [11] and [49] for surveys on pickup

and delivery problems). Once again, an essential ingredient of state-of-the-art heuristics

for this problem is the efficient exploration of a variety of neighbor solutions during the

search, a task which tends to be more complex when pairs of deliveries are relocated or

exchanged instead of single visits.
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More recently, two problems have gained prominence in the context of one-to-one

pickup and delivery problems: the Multi-Vehicle One-to-one Pickup and Delivery Problem

with Split Loads (MPDPSL) [23] and the Multi-Vehicle Profitable Pickup And Delivery

Problem (MVPPDP)[28].

The MPDPSL aims to find itineraries for a homogeneous vehicle fleet in order to collect

and deliver products to a set of geographically-distributed one-to-one pickup and delivery

customers. These itineraries must take into account that a customer may be serviced by

several vehicles, each one taking one part of the product. The objective in the MPDPSL

is to find minimum distance routes using at most all available vehicles, respecting capacity

and maximum driving distance per vehicle, as well as precedence between pickups and

deliveries. The MPDPSL is NP-hard [46] and commonly found in practice, for example

in parcel delivery services or car hauling applications. Combining pickups and deliveries

with split loads leads to a difficult problem, even for neighborhood-centered heuristics,

due to the large variety of possible service modes for each product. As a consequence few

methods are available to address this problem.

The MVPPDP is a similar problem compared to the MPDPSL. It also has a set of

paired pickup and delivery customers that have to be attended by a homogeneous vehicle

fleet. However, it does not allow a pair of customers to be visited by more than one

vehicle. Another difference is that there is a revenue to be obtained associated with each

customer if this customer is visited by any vehicle. The objective in the MVPPDP is to

find the set of customers and routes that maximizes the total profit, which is given by the

sum of all revenues minus the total travel costs. These routes must respect the capacity,

the maximum travel time and the precedence of pickups over deliveries. The MVPPDP

is also NP-hard [28] and has practical importance, for example in tramp ship routing.

It is also noteworthy that in the MVPPDP, not necessarily all pairs of customers must

be visited by a vehicle. Thus, a method for solving the MVPPDP must have an efficient

procedure for choosing which pairs of customers are going to be visited, by which vehicles

and in which order.

Given the great difficulty of finding optimal solutions for these problems, heuristic

strategies are usually used. In this way, the goal is to obtain good quality solutions in

acceptable computational times. The interest in the incorporation of exact models in

heuristics has grown, one reason is because the commercial software for solving these

models have become more powerful. Another reason is because the exact resolution of

subproblems is considered to be an acceptable procedure to include into a heuristic, as
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subproblems are normally easier to solve by exact methods. This combination is known

as “hybrid algorithm”.

Thus, the main objective of this thesis is to propose the study of an efficient heuristic

to solve one-to-one pickup and delivery problems. Initially, we designed a hybrid heuristic

algorithm based on the Iterated Local Search (ILS) and on the Random Variable Neighbor-

hood Descent (RVND) to solve the MPDPSL. The method relies on various local-search

neighborhoods to cover all problem characteristics, combining changes of pickup locations,

delivery locations, and load-splitting decisions. Larger neighborhoods are also considered,

by reducing the problem of finding the best combination of pickup and deliveries with

split loads – for one product – to a resource-constrained shortest path and solving it by

dynamic programming. Extensive experiments on benchmark instances demonstrate the

very good performance of the method on classic instances, outperforming previous algo-

rithms within the same computational time. In addition, new instances and solutions are

introduced for the MPDPSL.

After showing the effectiveness of the first algorithm, we investigated its performance

on a similar one-to-one pickup and delivery problem and we adapted our algorithm to

solve the MVPPDP. Now, the large-neighborhood proposed previously was not fully usable

anymore, as it considers inclusions of split loads. As the MVPPDP is a very restrictive

problem, we designed a heuristic algorithm that allows working with infeasible solutions,

related to the violation of the duration constraint. The idea is to explore the infeasible

search space of the MVPPDP and see if better feasible solutions can be obtained. This

algorithm adopts some previously-defined neighborhoods, new neighborhoods for increas-

ing the profits and also a repairing neighborhood that tries to get a feasible solution from

an infeasible one. Working with infeasible solutions makes the search space much larger

and, thus, we adopted the idea of granular local search to reduce the time spent on each

neighborhood. Computational experiments were conducted on benchmark instances from

the literature and the results show the great ability of the proposed method to achieve

good solutions, being able to even find new best solutions within the same time limits of

state-of-the-art algorithms.

1.1 Structure of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 describes the basic concepts of the methods used in this thesis. The Multi-
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Vehicle One-to-one Pickup and Delivery Problem with Split Loads is studied in Chap-

ter 3. The contributions on the Multi-Vehicle Profitable Pickup and Delivery Problem

are detailed in Chapter 4. Finally, in Chapter 5, the conclusions and future works are

presented.



Chapter 2

Basic Concepts

2.1 Variable Neighborhood Descent

The Variable Neighborhood Descent (VND) [43] explores the space of solutions through

systematics changes of the neighborhood structures. The authors were inspired by three

principles when they created this method:

• A local optimum with respect to one neighborhood structure is not necessarily so

for another;

• A global optimum is a local optimum with respect to all possible neighborhood

structures;

• For many problems local minima with respect to one or several neighborhoods are

relatively close to each other.

According to the authors, an important and empirical observation is that a local op-

timum usually contains information about the global optimum [12, 33]. This information

can be several variables with the same value in both. However, it is not usual to know

which are these variables, which induces systematic investigations of the neighborhood

structure that contains this local optimum until a better solution is found.

In the Algorithm 1 the pseudocode of the VND applied to a minimization problem is

presented. The input data is an evaluation function f , a neighborhood set N , a number of

different neighborhood structures r and a solution s. At each iteration of the VND a local

search is performed on a neighborhood structure, starting with the first one. At the end

of this local search, the best neighbor of the current solution related to this neighborhood
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structure is obtained. If this best neighbor is not better than the current solution, then a

new local search in the next neighborhood structure is performed. If this best neighbor

is better than the current solution, then the current solution becomes that best neighbor

and the local search is restarted in the first neighborhood structure. The method ends

when no improvement is found in any of the adopted neighborhoods and returns the

best solution obtained during its execution, that is, the best solution with respect to all

neighborhood structures.

Algorithm 1: Variable Neighborhood Descent
input : f(.), N(.), r, s
output: Refined solution s

1 k ← 1 ; /* Current neighborhood structure */
2 while (k ≤ r) do
3 Find the best neighbor s′ ∈ N (k)(s);
4 if (f(s′) < f(s)) then
5 s← s′;
6 k ← 1

7 end
8 else
9 k ← k + 1

10 end
11 end
12 Return s;

The classic version of VND considers searches on neighborhood structures following a

pre-established order. However, recent work has proven the efficiency of an approach that

establishes random orders for exploring the neighborhood structures, producing a better

diversification of the search. The successful use of such strategy, called Random Variable

Neighborhood Descent (RVND), is reported in [59] and [60].

2.2 Iterated Local Search

Iterated local search (ILS) [40] is a global optimization method that explores the search

space by successive perturbations from local optima solutions. By doing so, the intention

is to prevent a search stagnation in a local optimum which is considerably worse than the

global optimum. In a perturbation, the number of modified components of a solution is

called the perturbation strength. The perturbations must be strong enough to conduct

the search to different regions in search space, but they also need to be weak enough to

avoid behaving like a random restart. It is important to notice that, according to [40],
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a good perturbation may turn an excellent solution in an excellent starting point for the

local search phase.

Algorithm 2: ILS
input : s
output: Refined solution s

1 s0 ← GenerateInitialSolution();
2 s∗ ← LocalSearch(s0);
3 while termination condition is not met do
4 s′ ← Perturbation(s∗);
5 s

′∗ ← LocalSearch(s′);
6 s∗ ← AcceptanceCriterion(s∗, s′∗,);
7 end

To develop an ILS algorithm, four procedures must be defined: GenerateInitialSo-

lution (line 1), to provide an initial solution for the heuristic; LocalSearch (line 5), to

explore the search space in order to find a local optimum; Perturbation (line 4), which

modifies the current solution in a new point of the search space and AcceptanceCriterion

(line 6), to determine which solution will be used in the next iteration.



Chapter 3

Multi-Vehicle One-to-one Pickup and De-
livery Problem with Split Loads

3.1 Introduction

A classical restriction of the VRP is that each delivery is done in one block, by a single

vehicle. In [26], the authors raised this restriction, allowing the total demand of a customer

to be served during several visits, leading to the split delivery vehicle routing problem

(SDVRP). At first, one might think that allowing split deliveries results in increased

costs since more visits may be performed. Yet, this relaxation leads to a larger solution

space, opening the way to lower costs. This problem variant is known to be notably more

difficult to solve than the classical VRP from an exact method standpoint, and requires

more advanced classes of neighborhoods to be properly solved via metaheuristics [57].

As both “pickup and deliveries” and “split deliveries” attributes lead to more complex

neighborhood searches, combining them together in one vehicle routing variant poses sig-

nificant methodological challenges, thus partly explaining the reduced number of methods

proposed for the Multi-vehicle one-to-one Pickup and Delivery Problem with Split Loads

(MPDPSL) despite its practical relevance, for example in bike-sharing systems. So far,

two main articles have considered this variant. The first paper on the topic, by [47],

addresses a practical application faced by a logistic company which provides outsourced

services. Later on, [23] solve this problem for the transportation of bulk products by ship,

where each load is already packaged in multiple containers, and mail services collect and

deliver multiple packets between origin and destination pairs. This second method pro-

duces solutions of higher quality than [47] on the available instances. Note that, despite

the claim of a multi-vehicle algorithm in [23], the experimental analyses of both papers
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are restricted to the case with a single vehicle (PDPSL). This is due to the fact that,

without any global resource constraint on a route (e.g., distance or time), and since the

depot does not act as a replenishment facility, it is always profitable and feasible to merge

successive trips.

The aim of this Chapter is to pursue on this research line, by proposing improved

heuristic resolution approaches for the MPDPSL, new larger neighborhoods with effi-

cient exploration procedures, and experimental analyses on distance-constrained multi-

vehicle benchmark instances. More precisely, we propose a hybrid heuristic called IPDS,

based on iterated local search (ILS) with random variable neighborhood descent (RVND),

which incorporates classical neighborhoods and shaking procedures with larger dynamic

programming-based neighborhoods for joint service reinsertions and optimization of split

loads. As such, the key contributions of this Chapter are:

1. a simple and efficient hybrid heuristic for the MPDPSL;

2. new dynamic programming based neighborhoods for split pickup-and-delivery prob-

lems;

3. new state-of-the-art results for single-vehicle benchmark instances; and finally,

4. new experimental analyses on new multi-vehicle benchmark instances.

3.2 Problem statement

The Multi-Vehicle One-to-one Pickup and Delivery Problem with Split Loads (MPDPSL)

was defined by [23] when generalizing its single-vehicle version, the Pickup and Delivery

with Split Loads (PDPSL), proposed by [47].

Consider a graph G = (V,E), where V = P ∪D∪{0, 2n+1} includes the vertices asso-
ciated to n pickup and delivery (p-d) pairs of customers as well as the vertices {0, 2n+1},
representing the initial and final depots locations. The set P = {1, 2, . . . , n} represents the
pickup customers, while the set D = {n+1, . . . , 2n} represents the corresponding delivery

customers. In this way, each service i has a pickup customer i ∈ P and the corresponding

delivery customer (n+ i) ∈ D. The set of edges is defined as E = {(i, j)|i, j ∈ V 2}.

A homogeneous fleet with m vehicles is available. Each vehicle k ∈ {1, . . . ,m} has the
same capacity limit C. A demand qi is associated to each pickup and delivery customer

i ∈ V . This demand is positive, qi > 0, for the pickup customer i ∈ P and negative,
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qn+i = −qi, for the delivery customer (n+ i) ∈ D. As well as previous works and without

loss of generality, we also assume that qi ≤ C for all services i. Each vehicle must depart

and return from the depot without any load, that is, q0 = q2n+1 = 0. When a vehicle

arrives at a pickup customer, it can collect all available load or just a part of it. Moreover,

when a vehicle arrives at a delivery customer, all load from this vehicle intended for this

customer is delivered. A distance cost dij is associated with each edge (i, j) ∈ E, and

each vehicle is constrained by a maximum travel distance T .

The objective of the MPDPSL is to design a set of up tom routes, starting and ending

at the depot, with minimum travel distance, in such a way that the whole service of each

pickup and delivery is satisfied, the route distance limit is respected as well as vehicle

capacities, and each pickup precedes its delivery in the same route.

3.2.1 Mathematical formulation

A mathematical model for the MPDPSL is presented in [46]. This mathematical model

is a nonlinear programming formulation that uses techniques from the formulation of the

PDPSL with “Soft” Time Windows [54]. The following notation was used in this nonlinear

programming formulation:

3.2.1.1 Parameters

dij is the amount required for delivery between pickup customer i and delivery customer

j,

cij is the distance between node i and node j, assuming that costs are symmetric such

that cij = cji.

P is the set of pickup customers

D is the set of delivery customers

Ni is the number of possible stops at a pickup customer (or delivery customer) i on a

route

K is the maximum number of possible routes (dependent on the total loads to delivered)

M is a large number
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3.2.1.2 Decision Variables

xinik is the distance the vehicle has traveled on the k-th route when visiting the i-th

pickup customer for the ni-th time,

yjnjk is the distance the vehicle has traveled on the k-th route when visiting the j-th

delivery customer for the nj-th time,

zijninjk is the amount picked up from pickup customer i on the ni-th visit to be dropped

off at delivery customer j on the nj-th visit on the k-th route,

uijninjk is 1 if the ni-th visit to pickup customer i is before the nj-th visit to pickup

customer j on the k-th route; 0 otherwise,

vijninjk is 1 if the ni-th visit to pickup customer i is before the nj-th visit to delivery

customer j on the k-th route; 0 otherwise,

wijninjk is 1 if the ni-th visit to delivery customer i is before the nj-th visit to delivery

customer j on the k-th route; 0, otherwise,

rinik is 1 if pickup customer i is visited ni times on route k; 0 otherwise,

tjnjk is 1 if delivery customer i is visited ni times on route k; 0 otherwise,

ydepot,k is the distance the vehicle has traveled when it returns to the depot on the k-th

route,

pk is 1 if route k is used; 0 otherwise.

3.2.1.3 Formulation

The nonlinear programming formulation was stated as:

min
∑
k∈K

ydepot,k (3.1)

Subject to:

∑
j∈D

∑
nj∈Nj

zijninjk ≤ 1−
∑

l∈P :l 6=i||nl<ni

∑
j∈D

∑
nl∈Nl

∑
nj∈Nj

zljnlnjkulinlnikvijninjk
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i ∈ P, ni ∈ Ni, k ∈ K (3.2)

cijrinikrjnjk −M(1− rinik) ≤ xinik − xjnjk +Muijninjk ≤M − cijrinikrjnjk

i, j ∈ P, i 6= j, ni, nj ∈ Nj, k ∈ K (3.3)

cijriniktjnjk −M(1− rinik) ≤ xinik − yjnjk +Mvijninjk ≤M − cijriniktjnjk

i ∈ P, j ∈ D,ni, nj ∈ Nj, k ∈ K (3.4)

cijtiniktjnjk −M(1− tinik) ≤ yinik − yjnjk +Mwijninjk ≤M − cijtiniktjnjk

i, j ∈ D, i 6= j, ni, nj ∈ Nj, k ∈ K (3.5)

ydepot,k − yjnjk ≥ cj,depotpk j ∈ D,nj ∈ Nj, k ∈ K (3.6)

xi1k ≥ ci,depotpk i ∈ P, k ∈ K (3.7)

rinik ≤M
∑
l∈D

∑
nl∈Nl

zilninlk i ∈ P, ni ∈ Ni, k ∈ K (3.8)

Mrinik ≥
∑
l∈D

∑
nl∈Nl

zilninlk i ∈ P, ni ∈ Ni, k ∈ K (3.9)

tjnjk ≤M
∑
l∈P

∑
nl∈Nl

zljnlnjk j ∈ D,nj ∈ Nj, k ∈ K (3.10)

Mtjnjk ≥
∑
l∈P

∑
nl∈Nl

zljnlnjk j ∈ D,nj ∈ Nj, k ∈ K (3.11)

uijninjk ≤M
∑
l∈D

∑
nl∈Nl

zilninlk i, j ∈ P, ni ∈ Ni, nj ∈ Nj, k ∈ K (3.12)

uijninjk ≤M
∑
l∈D

∑
nl∈Nl

zjlnjnlk i, j ∈ P, ni ∈ Ni, nj ∈ Nj, k ∈ K (3.13)

uiinimik = rimik i ∈ P, ni,mi ∈ Ni,mi > ni, k ∈ K (3.14)

vijninjk ≤M
∑
l∈D

∑
nl∈Nl

zilninlk i ∈ P, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.15)

vijninjk ≤M
∑
l∈P

∑
nl∈Nl

zljnlnjk i ∈ P, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.16)

wijninjk ≤M
∑
l∈P

∑
nl∈Nl

zlinlnik i, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.17)
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wijninjk ≤M
∑
l∈P

∑
nl∈Nl

zljnlnjk i, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.18)

wjjnjmjk = tjmjk j ∈ D,nj,mj ∈ Nj,mj > nj, k ∈ K (3.19)∑
i∈P

∑
j∈D

∑
ni∈Ni

∑
nj∈Nj

∑
k∈K

zijninjk = dij (3.20)

xinik ≤Mrinik i ∈ P, ni ∈ Ni, k ∈ K (3.21)

xinik ≥ rinik i ∈ P, ni ∈ Ni, k ∈ K (3.22)

yjnjk ≤Mtjnjk j ∈ D,nj ∈ Nj, k ∈ K (3.23)

yjnjk ≥ tjnjk j ∈ D,nj ∈ Nj, k ∈ K (3.24)∑
i∈P

∑
ni∈Ni

xinik ≤Mpk k ∈ K (3.25)

∑
j∈D

∑
nj∈Nj

yjnjk ≤Mpk k ∈ K (3.26)

∑
i∈P

∑
j∈D

∑
ni∈Ni

∑
nj∈Nj

zijninjk ≤Mpk k ∈ K (3.27)

xinik + ε ≤ xini+1k +M(1− rini+1k) i ∈ P, ni+1 ∈ Ni, k ∈ K (3.28)

yjnjk + ε ≤ yjnj+1k +M(1− tjnj+1k) j ∈ D,nj+1 ∈ Nj, k ∈ K (3.29)

rinik ≥ rini+1k i ∈ P, ni ∈ Ni, k ∈ K (3.30)

tjnjk ≥ tjnj+1k j ∈ D,nj ∈ Nj, k ∈ K (3.31)

zijninjk ≤ vijninjk i ∈ P, j ∈ D,ni, nj ∈ Nj, k ∈ K (3.32)

pk+1 ≤ pk k ∈ K (3.33)

xinik ≥ 0 ∀i ∈ P, ni ∈ Ni, k ∈ K (3.34)

yjnjk ≥ 0 ∀j ∈ D,nj ∈ Nj, k ∈ K (3.35)

zijninjk ≥ 0 ∀i ∈ P, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.36)

ydepot,k ≥ 0 ∀k ∈ K (3.37)
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uijninjk ∈ {0, 1} ∀i, j ∈ P, ni ∈ Ni, nj ∈ Nj, k ∈ K (3.38)

vijninjk, eijninjk ∈ {0, 1} ∀i ∈ P, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.39)

wijninjk ∈ {0, 1} ∀i, j ∈ D,ni ∈ Ni, nj ∈ Nj, k ∈ K (3.40)

rinik ∈ {0, 1} ∀i ∈ P, ni ∈ Ni, k ∈ K (3.41)

tjnjk ∈ {0, 1} ∀j ∈ D,nj ∈ Nj, k ∈ K (3.42)

pk ∈ {0, 1} ∀k ∈ K (3.43)

The objective (3.1) is to minimize the total distance traveled by all vehicles, when

they arrive at the final depot. The capacity of each vehicle is controlled by constraints

(3.2). Constraints (3.3-3.5) define the order of the pickup and delivery customers and

force to correctly calculate the distances required to travel. Constraints (3.6-3.7) state

that if a vehicle is used, then it must leave from the initial depot and finishes its travel

at the final depot. Constraints (3.8-3.9) ensure that a pickup customer is only visited if a

load is picked up and vice versa. The same idea is also valid for a delivery customer (3.10-

3.11). Constraints (3.12-3.19) give conditions for the precedence variables, if a costumer

is not visited, then they are set to zero. Constraints (3.20) ensure that all loads must

be picked up. Constraints (3.21-3.24) define that if no distance was traveled to reach

a customer, then this customer is not visited and vice versa. Constraints (3.25 - 3.26)

prohibit customers on a route from being visited if the route is not used. Constraints

(3.27) impede that loads are delivered by a route that does not exist. Constraints (3.28 -

3.31) prevent customers from being visited out of order, based on ni. Constraints (3.32)

prohibit a load to be delivered if the delivery customer is visited before the corresponding

pickup customer. Constraints (3.33) maintain the order of the routes.

3.2.2 Illustrated examples

Figure 3.1 illustrates a possible solution for an instance with seven p-d pairs, served

by two vehicles. In this example, the set of pickup customers is P = {1, 2, 3, 4, 5, 6, 7}
and the set of corresponding delivery customers is D = {8, 9, 10, 11, 12, 13, 14}. The

initial and final depots are in the same location, represented by 0. The capacity of the

vehicle is C = 100 and the maximum travel distance is T = 2100. In this solution

Route 1 = {0, 5, 3, 10, 6, 13, 7, 12, 14, 1, 8, 4, 11, 0} and Route 2 = {0, 5, 2, 9, 12, 0}. The

distance for Route 1 is 1708.58 and the distance for Route 2 is 652.97, thus the total
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Figure 3.1: Example of a possible solution in MPDPSL

distance is 2361.55.

Analysing the p-d pair from customer 5 to customer 12, we observe that q5 = +57

units must be collected at customer 5 and this load must be delivered at customer 12

(that is, q12 = −57). This service is fulfilled partly by vehicle 1 (16 units), and partly by

vehicle 2 (41 units).

We adopt for the MPDPSL the same definition of a split load as in the literature

about the SDVRP [8]. A split load occurs when a load is partitioned into more than the

minimum number of splits that are necessary to fulfil all demand. Therefore, if a demand

is 24 and the vehicle capacity is 10, the minimum number of trips required to fulfil such a

demand is 3. If this demand is supplied in 4 or more trips, then the service is considered

as being split. Note that the MPDPSL is notably different from the SDVRP as more

than one split load can occur in the same route in the optimal solution. Due to this

characteristic, the size of a solution can increase significantly. In some cases this growth

can even be exponential, as illustrated in Figure 3.2.

In this example, there are only two pairs of customers and one vehicle with capacity

C = 100 and distance limit T =∞. Customer 1 requires 99 units of load, while customer

2 needs 100 units of load. The distance between customer 2 and customer 4 is very small

(d24 = d42 = ε). Thus, the optimal solution for this vehicle is, firstly, to visit customer
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Figure 3.2: In the MPDPSL, there is no bound on the number of multiple splits in a
single route. An example.

1 and collect 99 units of load. Then it would go to customer 2 and collect 1 unit of

load, delivering this load at customer 4 and repeating this operation until the demand is

fulfilled, that is, more 99 times collecting 1 unit at customer 2 and delivering at customer 4.

Finally, the vehicle would deliver the remaining 99 units at customer 3 and go back to the

depot. The optimal solution performs 202 visits instead of 4. This is of course an extreme

case of the classical MPDPSL, as in practical applications a base service time would be

counted (e.g., as part of the travel distance), hence increasing d24. Nevertheless, a good

heuristic should be able to find multiple split loads, as these situations can naturally

occur.

3.3 Related literature

3.3.1 One-to-one Pickup and Delivery Problem (PDP)

In [22], the authors reported the developments in the are of exact and heuristic algorithms

for one-to-one PDPs.

A tabu search heuristic was presented in [21] for the multi-vehicle Dial-a-Ride Problem

(DARP), in which there may be a time window, for each pair of customers on their de-

sired departure or arrival time. The objective of this problem is to find a set of minimum

cost vehicle routes capable of accommodating all requests, respecting vehicle capacity,

route duration and a maximum travel time. The authors proposed a procedure for neigh-
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bourhood evaluation, which adjusts the time for visiting the customers on the routes

to minimize distance and ride times. Results are reported on randomly generated and

real-life instances.

In [10] a two-stage heuristic is presented for the PDP with time windows. The first

stage applies a Simulated Annealing to minimize the number of vehicles and the second

stage applies Large Neighborhood Search (LNS) [55] to minimize the total distance. The

computational results showed that the algorithm has improved 10 (17%) of the 56 best

published solutions to the Solomon benchmarks and also matching or improving the best

solutions in 46 problems (82%).

An adaptive large neighbourhood search heuristic was proposed in [53] for the same

problem (PDP with Time Windows). This heuristic is an extension of the previously

proposed LNS and contains some sub-heuristics that are used based on their historic

performance. Tests were performed on more than 350 instances with up to 500 requests

and the algorithm was able to improve more than 50% of the best known solutions in the

literature.

3.3.2 Split Delivery Vehicle Routing Problem (SDVRP)

The first papers dealing with the Split Delivery Vehicle Routing Problem (SDVRP) were

[26, 27]. The authors showed how advantageous the VRP is when allowing split deliveries,

influencing not only on the total distance traveled, but also on the reduction of the number

of vehicles used. A two-stage heuristic was developed to solve SDVRP. The first stage

builds a solution for the VRP using the Clarke & Wright Saving’s algorithm [19]. In

the second stage local searches are performed on this initial solution using two moves

proposed by the authors. The first move, called k-split interchange, duplicates the visit to

a customer on different routes that have sufficient residual capacity to meet the customer’s

demand. The second move, named route addition, removes all existing split deliveries of a

customer and creates a new route that will only visit this customer with its full demand.

In both phases swap-based (swap) and edge-removal (2-opt) moves, both inter-route and

intra-route, were also used. Furthermore, 540 instances were created, with up to 150

customers, which served to perform the tests.

In [6] the authors developed an algorithm based on Tabu Search to solve the SDVRP.

This algorithm consists of three phases and uses the strategy Route First - Cluster Second.

Initially, in the first phase, a solution is constructed using the GENIUS algorithm [29]

to create the routes. In the second phase, insertion moves are performed, removing a
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customer that is served on one or more routes and reinserting it in another route. When

reinserting the customer, the residual capacity of the vehicle is taken into account. The

cheapest insertion criterion is used for each reinsertion. In the third and last phase, the

GENIUS algorithm is again applied in an attempt to improve the resulting solution. It

is also noted that if there are k-split cycles, they are removed in the third phase. The

authors performed computational experiments with 49 instances with up to 199 clients,

such instances were created by the authors themselves.

A memetic algorithm with population management was proposed by [13]. The algo-

rithm consists of a Genetic Algorithm combined with a local search procedure and uses

a distance measure to control population diversity. The local search is performed using

three types of moves. The first one is based on the k-split interchange [26, 27], with a

procedure that seeks for the best way to split the delivery of a customer. The other two

moves are based on exchanges of pairs or trios of customers, considering the possibility

of splitting the delivery of these customers. The algorithm was tested on the instances of

[6] and was able to overcome the Tabu Search, from the same work, in many cases.

The SDVRP which imposes the use of a minimum number of vehicles was addressed

in [15]. The authors proposed to use the Scatter Search meta-heuristic to address this

problem. Two heuristic procedures are designed to generate the initial solution, one

named Big Tour and the other based on the Clarke & Wright Savings algorithm. Both

were adapted to incorporate split deliveries into the solution. The algorithm also uses

local searches based on classical-adapted VRP moves to improve solutions. The authors

also tested their algorithm on the instances of [6] and concluded that the results can be

compared to the best known results so far.

Again, the SDVRP with a minimum number of vehicles was also addressed in [2, 3] and

the authors introduced a constructive procedure that is based on an angle control measure.

The built solution passes through local searches using the Variable Neighborhood Descent.

The moves used in these searches are the classical of the VRP and some specific to

the SDVRP. Later, in [1], the authors used some of these ideas and opted for a Tabu

Search with vocabulary building to solve the same problem. This vocabulary building

is a population-based approach that from a set of solutions can discover good attributes

from these solutions that can generate new quality solutions. This approach was able to

greatly improve the last two algorithms developed by the same authors.

A study on metaheuristics based on local searches was performed in [25]. The idea was

to adapt four classic VRP moves to deal with split deliveries. The following metaheuristics
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were tested: Simulated Annealing, Threshold Accepting, Record-to-Record, Attribute-

based Local Search Beam and Attribute-based Hill Climber. The latter was the one that

presented the best results when compared to results found in the literature.

In [56] a multi-start heuristic based on the Iterated Local Search was proposed. The

algorithm uses the Random Variable Neighborhood Descent in the local search phase of

ILS. Classical neighborhood structures of the VRP are explored, as well as specific struc-

tures for the SDVRP. The initial solution is generated using two greedy criteria, cheapest

insertion and nearest insertion, and two insertion strategies, parallel and sequential. Per-

turbations are characterized by the use of the Multiple-k-split mechanism that applies

the k-split interchange method to 5, 6 or 7 customers, such amount is selected randomly.

Computational tests were performed with 324 instances found in the literature and the

algorithm was able to match or outperform the best results in the literature on 90% of

the cases.

3.3.3 Pickup and Delivery Problem with Split Loads (PDPSL)

In the literature, the classic pickup and delivery problem (PDP) is widely represented.

Still [41] was the first work on a problem related to the PDPSL, with the difference that it

considers one commodity with simultaneous pickups and deliveries instead of one-to-one

requests. The objective consists of first minimizing the fleet size and then the distance.

The paper proposed a mixed integer programming (MIP) formulation for this problem and

a route construction heuristic, which firstly determines the minimum number of vehicles

required and then builds routes based on a cheapest insertion criterion. An additional

MIP formulation and an extension of this heuristic, using parallel clustering, were later

proposed in [42].

The benefits of allowing split loads in the one-to-one PDP was evaluated in [47], hence

defining the PDPSL. The objective of the PDPSL is to find a single route with minimum

cost, fulfilling the required demand. A heuristic based on simulated annealing and tabu

search was developed and random large-scale instances were created. The authors ob-

served that the benefits of split loads are closely linked to three characteristics of the

instances: the load size, the cost associated with the pickup or delivery and the percent-

age of loads which have pickup and delivery locations in common. They also showed,

for a given set of origins and destinations, that the greatest benefits are observed when

the load size is greater than half the capacity of the vehicle. A variant of the problem

addressed in [47] can be found in [62], with additional time-window constraints. This
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work describes an algorithm that inserts shipments into vehicles using multiple-insertion

heuristics for static and real-time test cases.

In [48], an empirical analysis of the heuristic presented in [47] was performed. The

authors noted that when demands are between 51% and 60% of the capacity of the vehicle,

up to 30% transportation costs can be saved. The potential savings due to split loads also

depends on the percentage of loads to be collected or delivered in a common location, and

the average distance from an origin to a destination relative to the distance from origin

to origin and destination to destination.

For the first time the PDPSL with multiple vehicles and distance constraints was con-

sidered in [23], hence formally defining the MPDPSL. The authors developed a heuristic

based on tabu search and simulated annealing. The initial solution is built using a variant

of the savings algorithm by [19], and then improved by local searches based on swap and

insert/split neighborhoods. The simulated annealing is then used in combination with

a tabu list to control move acceptance. Experiments were conducted on the instances

from [47], as well as adapted instances from [53]. However, since no distance limits are

associated to the vehicles, it is always optimal to merge the routes into a single one, such

that these instances cannot be viewed as multi-vehicle test cases.

3.4 Methodology

As noted previously, few heuristics have been designed for the MPDPSL, and these meth-

ods were only evaluated on benchmark instances that require the use of a single vehicle.

This section aims to study the MPDPSL, providing not only an efficient algorithm for it,

with new large neighborhoods, but also performing experiments with distance constraints.

3.4.1 General structure of the method

The proposed algorithm for the MPDPSL combines together an ILS with random variable

neighborhood descent. This is done by replacing the classical local search of the ILS by

a two step approach: first, a RVND which finds a local optimum with respect to several

simple enumerative neighborhoods, and second, an improvement procedure which explores

a large neighborhood via dynamic programming. The pseudo code of this iterated local

search for the pickup and delivery problem with split loads (that we refer as IPDS), is

shown in Algorithm 3.
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Algorithm 3: IPDS
input : Tmax, pmax

1 s← greedyInitialSolution();
2 s← RVND(s);
3 s← RCSP_insertion(s);
4 while time ≤ Tmax do
5 s′ ← Perturbation(s,pmax);
6 s′ ← RVND(s′);
7 s′ ← RCSP_insertion(s′);
8 if f(s′) < f(s) then
9 s← s′ ;

10 end
11 end
12 Return s ;

The IPDS algorithm receives as input the time limit Tmax for executing the algorithm

and the number pmax, which is the maximum limit of perturbations. At the beginning

of the execution, a solution s is built via a greedy constructive heuristic (line 1). This

solution is improved by means of the RVND (line 2) and the new large neighborhood

search (line 3), that we call RCSP insertion. Then, iteratively, to escape from local

optima, a perturbation is applied on the current solution s, generating a new solution

s′ (line 5), which is improved by the RVND and RCSP insertion (lines 6–7). The best

solution s is always stored (lines 8–10) during the course of the method. This process

is iterated until a termination criterion, here a time limit (line 4), and the best found

solution is returned.

We now detail the components of the algorithm: the construction of the initial solu-

tion, the local and large neighborhood improvement procedures, and finally the pertur-

bation operator. With the exception of the large neighborhood operator, all procedures

are relatively simple and classic, hence leading to a well-performing algorithm which can

be easily reproduced.

3.4.2 Initial solution

The initial solution s is produced by a greedy constructive heuristic. Iteratively, this

heuristic computes for each pickup customer i its best insertion position, with minimum

increase of distance. The pickup customer i with the shortest distance increase is inserted

at each iteration, and the corresponding delivery (n+i) is added in its best position after i.

Note that the method seeks to insert either full deliveries or full truckloads (min{qi, C}),
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resulting in an initial solution without split loads. If no feasible insertion is found because

of the distance constraints, then a new route is created.

After the construction, the initial solution is improved by the two-phase local search,

including the RVND and the RCSP insertion procedures, which allows to introduce split

loads in the solution.

3.4.3 Local search procedures

We first recall the concept of block [16], which is needed to describe some neighborhoods.

A block Bi is defined as a sequence of consecutive visits that starts at a pickup customer

i and ends at the corresponding delivery customer (n + i). A block Bi is a simple block

if there is no customer between i and (n + i). Bi is a compound block when there is at

least one block Bj ∈ Bi such that Π(i) < Π(j) < Π(n + j) < Π(n + i), where Π(i) is the

position of the customer i in the route. It is noteworthy that a compound block cannot

contain a pickup customer without its corresponding delivery customer and vice versa.

3.4.4 Random Neighborhood Variable Descent

As in the random neighborhood variable descent of [59] and [60], there is no predefined

order for the neighborhoods, that is, before every execution of the local search, a new

neighborhood order is randomly chosen. Each neighborhood is defined relatively to one

type of move, which can be applied on different p-d pairs and routes. Each neighborhood

is efficiently pre-evaluated exhaustively, considering the moves in random order of p-

d pairs, and applying the first improving move. After each improvement, the search

restarts from the first neighborhood structure. Otherwise, the search continues on the

next neighborhood structure and finishes when all the neighborhoods have been examined

without success. We now define the intra-route and inter-route neighborhoods used by

the IPDS algorithm, as well as a post-optimization procedure derived from an optimality

condition of the MPDPSL.

3.4.4.1 Intra-route neighborhood structures:

N (1) – PairSwap considers two pairs of customers (i, n + i) and (j, n + j) and swaps

the pickup customer i with the pickup customer j, as well as the delivery customer

(n+ i) with the delivery customer (n+ j).
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N (2) – PairShift considers a pair of customers (i, n + i) and relocates the pickup cus-

tomer i in a position of the interval [Π(i)−∆,Π(i) + ∆] and the delivery customer

(n+ i) in a position of the interval [Π(i) + 1,Π(i) + ∆]. During preliminary exper-

iments, we observed that ∆ = 5 led to a good trade-off between move exploration

exhaustiveness and CPU time.

N (3) – PickShift relocates a pickup customer i in another position before the delivery

customer (n+ i).

N (4) – DelShift relocates a delivery customer (n+ i) in another position after the pickup

customer i.

N (5) – BlockSwap swaps a block Bi with another block Bj.

N (6) – BlockShift relocates a block Bi in another position.

3.4.4.2 Inter-route neighborhood structures:

N (7) – InterPairSwap selects a pair of customers (i, n + i) from a route k1 and another

pair (j, n + j) from a route k2 and swaps the pickup customer i with the pickup

customer j. The delivery customer (n + i) is swapped with the delivery customer

(n+ j).

N (8) – InterPairShift takes a pair of customers (i, n + i) from a route k1 and transfer

this pair to a route k2. After defining Π(i) in k2, the delivery customer is inserted

in a position of the interval [Π(i) + 1,Π(i) + ∆].

N (9) – InterBlockSwap selects a block Bi from a route k1 and another block Bj from a

route k2 and swaps them.

N (10) – InterBlockShift transfers a block Bi from a route k1 to a route k2.

Finally, we rely on the following theorem to perform a solution post-optimization after

each local search:

Theorem 1 ([23]) If the distance matrix satisfies the triangle inequality, then there ex-

ists an optimal solution of the MPDPSL such that between each visit to a pickup customer

i and its corresponding delivery (n + i) no other pickups or deliveries of this same p-d

pair occur.
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As such, we scan the solution and search for visits to the same p-d pair (i, n + i)

appearing in the order i → i → n + i → n + i in a route (with possible visits to other

customers in-between). If this situation occurs, the two visits can be merged as one single

visit while maintaining feasibility and improving the total distance. There are 2 × 2

possibilities for insertion of the merged p-d in place of the previous services, and the best

one in terms of distance is chosen.

3.4.5 A new large neighborhood search for the MPDPSL

The improvement procedure of the previous section relies on the enumeration of many

possible moves to produce improved solutions. However, we know that MPDPSL solutions

can include an arbitrarily large number of visits to the same p-d pair (as illustrated in

Figure 3.2). Enumerating all possible combinations of splits and placements of visits would

take an exponential time. For this reason, previous methods adopted strategies which limit

the number of split loads [47, 23]. To address this issue, we propose a larger (exponential-

size) neighborhood, which seeks to optimize the split loads and can be efficiently explored

via dynamic programming.

In the proposed neighborhood search, called RCSP insertion, the problem of finding

the best relocation combination of pickup and delivery pairs, with possible split loads, is

addressed as a resource-constrained shortest path problem (RCSP) followed by a knapsack

problem. This optimization is conducted once for each p-d pair, considering the pairs in

random order and applying the first improving move. For each pair x, the method works

as follows.

– Remove all occurrences of the service x from all routes.

– Phase 1: For each route σ = (σ1, . . . , σn(σ)) with n(σ) visits, evaluate the possible

insertions of the p-d pair x via dynamic programming, and characterize all non-

dominated trade-offs Sσ =
⋃
i{(sdσi, s

q
σi)} between the detour distance sdσi and the

delivered load quantity sqσi.

– Phase 2: Based on the known labels for each route, find the best combination of

insertions in all routes in order to fulfill the total demand qx. This selection can be

performed by solving a knapsack problem.
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3.4.5.1 Phase 1: Evaluation of non-dominated insertions for each route.

This problem is assimilated to a resource-constrained shortest path problem in an acyclic

directed graph H = (V ′, A), illustrated in Figure 3.3. The set V ′ is divided into two

groups of nodes: V ′ = Vroute ∪ Vinsert, where Vroute = {v1, . . . , vn(σ)} contains one node

per visit in the route σ, and the set Vinsert = {vp
1 , v

d
1 , . . . , v

p
n(σ)−1, v

d
n(σ)−1} contains a copy

of the pickup vertex vp
i and a copy of the delivery vertex vd

i between each successive pair

of vertices (vi, vi+1) in Vroute, for a total of 3× n(σ)− 2 nodes in V ′.

Customer Depot

_____________________________________________________

_____________________________________________________

Figure 3.3: Auxiliary graph H for a route containing n(σ) = 6 visits

The arc set A is also divided into two sets A = Atravel ∪ Aload. Each arc is charac-

terized by a detour distance δdist
a and a delivered load δload

a . The arcs in Atravel (dashed

arrows in Figure 3.3) can either connect successive visits in Vroute, or connect a visit

vi with its candidate pickup vp
i , or connect a candidate delivery vd

i with the next visit

vi+1. Each such arc a represents a pure vehicle relocation without any load destined for

customer x, and thus δload
a = 0. On the other hand, the arcs in Aload (solid arrows on

the figure) correspond to trips which carry some load of x. The following cases can be

distinguished.

– Direct arc: a = (vp
i , v

d
i ). This arc corresponds to a direct travel between the

pickup and delivery locations of x, characterized by δdist
(vpi ,v

d
j )

= dx,n+x and δload
(vpi ,v

d
j )

=

C −
i∑

k=1

qσk .

– Indirect pickup–delivery arc: a = (vp
i , v

d
j ) with i < j. This arc corresponds to a

detour starting at the pickup location of x, visiting the locations (σi+1, σi+2, . . . , σj),
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and ending at the delivery location of x. As such,
δdist
(vpi ,v

d
j )

= dx,σi+1
+ dσj ,x, and

δload
(vpi ,v

d
j )

= C −maxl∈{i,...,j}

l∑
k=1

qσk .

– Indirect delivery-delivery arc: a = (vd
i , v

d
j ) with i < j. This arc corresponds to

a travel starting at the delivery location of x, returning to the pickup location of x,

visiting the locations (σi+1, σi+2, . . . , σj), and ending at the delivery location x. As

such, 
δdist
(vpi ,v

d
j )

= dn+x,x + dx,σi+1
+ dσj ,x, and

δload
(vpi ,v

d
j )

= C −maxl∈{i,...,j}

l∑
k=1

qσk .

After the construction of the graph H, the resource constrained shortest path problem

is solved by a simple labeling algorithm, which computes for each vertex v a set of labels

Sv = {svi | i ∈ {1, . . . , |Sv|}}, where each label svi = (sdist
vi , sload

vi ) is characterized by its

detour distance and its total delivery quantity. Starting at the depot with Sv1 = {(0, 0)},
the labels are iteratively propagated in topological order of the nodes as follows:

for v ∈ (vp
1 , v

d
1 , v2, v

p
2 , v

d
2 , . . . , vn(σ)),

Sv =
⋃

w|(w,v)∈A

⋃
swi∈Sw

{(sdist
wi + δdist

(w,v), s
load
wi + δload

(w,v))}.
(3.44)

At each step of the construction, non-dominated labels are eliminated from the set Sv.

A label svi is dominated by a label svj if sdist
vi ≥ sdist

vj , and min{sload
vi , qx} ≤ min{sload

vj , qx}.
Moreover, a completion bound is used to eliminate additional labels. Indeed, any label

svij of a node vi ∈ Vroute which fulfills all needed demand, i.e., such that sload
vij
≥ qx, leads

to a distance bound of sdist
vij

. Any label which exceeds the best known distance bound can

be pruned from the search.

At the end of the labeling procedures, and for each route σ, the set of non-dominated

labels S(σ) = Svn(σ) is stored. For single-vehicle problem instances, the best insertion of

visits to the service pair x corresponds to the only non-dominated label s ∈ S(σ) such

that sload ≥ qx. In the case with multiple vehicles, the best re-insertion of visits for the

pair x can involve multiple routes. As described in the following paragraph, the best

combination of insertions can be found by solving a knapsack problem based on the labels

S(σ) for each route σ.
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3.4.5.2 Phase 2: Combination of insertions in multiple vehicles.

In the presence of multiple vehicles, the algorithm searches for a good combination of

insertions in different routes in order to cover the total demand. This problem can be

formulated as a knapsack problem with an additional conflict constraint that limits the

selection to one label at most in each route. For each label sσj ∈ S(σ), for each route σ,

we associate a binary decision variable yσj which equals 1 if and only if the label sσj is

selected. The resulting problem is formulated in Equations (3.45–3.48).

min
∑
σ∈R

∑
sσj∈S(σ)

sdist
σj yσj (3.45)

∑
σ∈R

∑
sσj∈S(σ)

sload
σj yσj ≥ qx (3.46)

∑
sσj∈S(σ)

yσj ≤ 1 σ ∈ R (3.47)

yσj ∈ {0, 1} σ ∈ R, sσj ∈ S(σ) (3.48)

To solve this problem, we tested different exact techniques, either based on dynamic

programming or integer programming. In our experiments, these methods led to a signif-

icant computational-time overhead. We thus opted for a heuristic resolution (as in [13]

for the SDVRP), using a simple greedy heuristic which iteratively selects the label sσj
with maximum ratio sload

σj /sdetour
σj , and matches in most cases the optimal result. The

associated new MPDPSL solution is accepted if it improves the distance of the current

solution.

3.4.6 Perturbation operator

The last component of the IPDS algorithm, the perturbation operator, is designed to

escape from the local minima of the previous neighborhood improvement procedures. It

consists of relocating npert random p-d pairs from their original routes to new random

positions, inserting both pickup and deliveries consecutively. The number of pairs npert

to be relocated, which determines the strength of the perturbation, is randomly selected

in {1, 2, ..., pmax} with uniform distribution. As such, pmax is a method parameter which

establishes a maximum limit on the impact of the perturbation.
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3.5 Computational results

Our computational experiments have been conducted on the two existing sets of PDPSL

instances from previous literature, as well as new MPDPSL instances. The first set

originates from [47], and the second from [23]. All these instances were generated in a

way that each load occupies 51% to 60% of the capacity of the vehicle. In this setting,

the savings related to split loads tend to be the greatest [47].

The first set of instances was randomly generated by [47]. It contains three subsets of

15 instances each. These subsets have 75, 100 and 125 pickup and delivery pairs. In each

instance, the pickups can occur in five different locations, and each subset has a different

number of delivery locations: 15, 20 and 25 delivery locations, respectively. The second

set of instances was randomly generated in [23], adapting the set of instances from [53],

leading to four subsets of 12 instances each, with 50, 100, 250 and 500 pickup and delivery

pairs. In this set, every visit location is randomly generated.

The IPDS algorithm was developed in C++ using OptFrame [20], a computational

framework for the development of efficient heuristic algorithms for combinatorial opti-

mization problems. Each test was executed on a single core of a Intel Core 2 Quad 2.4

GHz, 4 GB of RAM and in Ubuntu 14.04. It is important to highlight that the computer

used is very similar to the one used in [23]. Furthermore, the IPDS uses only two main

parameters: the strength of the perturbation operator pmax, which has been set to 3 (as

this value provided a robust and good parameter setting in our preliminary experiments)

and the stopping criterion Tmax, which has been set for each instance group to the CPU

time of the current state-of-the-art method of [23].

Depending on the instance set, previous authors have either reported results on a

single run, or best results over multiple runs. Both measures tend to be influenced by

the variance of the performance of an algorithm. We thus opted to report the average

solution quality over several runs, which is a better estimate of the average behavior of

an algorithm. For each instance, we obtain a value for the solution using IPDS, zipds, and

compute (Eq. 3.49) the percentage gap relative to the value of the best known solution

(BKS), zbks, collected for each instance from [47] and [23].

Gap = 100× (zipds − zbks)/zbks (3.49)

The objective in the MPDPSL is to minimize the total travel costs, hence if Eq. (3.49)
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returns a positive gap, it means that this solution has a greater value compared to the

best known solution, therefore it is a worst solution in terms of quality. Moreover, if a

negative value is returned, then the solution obtained has a lower value than the best

known solution, thus a new best known solution is found.

3.5.1 Performance comparisons on PDPSL instances

3.5.1.1 Instances from [47]

Both [47] and [23] present the solution quality of one run per instance. To provide a

reliable estimate of performance, we repeated our experiments 20 times with different

random seeds, and report the average solutions on each instance. The best results are

also indicated to establish bounds for future research. We adopted the same time limits

as [47] and [23]: 25.50 minutes per run for each instance with 75 pairs, 56.20 minutes for

each instance with 100 pairs, and 95.90 minutes for each instance with 125 pairs. Tables

3.1, 3.2 and 3.3 display the results on these instances. For each instance, the result of the

best method is highlighted in boldface.

Table 3.1: Results for the PDPSL with 75 pairs – Instances from [47]
Time limit set to 25.5 minutes per run

Nowak et al. Şahin et al. IPDS
Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
75_1A 3796.32 3830.12 0.89 3894.34 2.58 3786.30 -0.26 3727.32 -1.82
75_1B 3808.16 3857.12 1.29 3842.88 0.91 3764.84 -1.14 3683.20 -3.28
75_1C 3790.03 3810.50 0.54 3790.03 0.00 3767.15 -0.60 3686.44 -2.73
75_1D 3799.32 3799.32 0.00 3862.23 1.66 3755.47 -1.15 3707.17 -2.43
75_1E 3788.37 3868.96 2.13 3820.87 0.86 3781.96 -0.17 3719.38 -1.82
75_2A 3161.69 3313.48 4.80 3177.98 0.52 3104.55 -1.81 3044.34 -3.71
75_2B 3169.92 3296.36 3.99 3179.00 0.29 3102.96 -2.11 3069.97 -3.15
75_2C 3121.97 3203.25 2.60 3121.97 0.00 3085.99 -1.15 3040.38 -2.61
75_2D 3117.69 3266.42 4.77 3117.69 0.00 3074.07 -1.40 3010.40 -3.44
75_2E 3148.70 3332.59 5.84 3168.66 0.63 3109.04 -1.26 3075.34 -2.33
75_3A 3897.12 4058.37 4.14 3910.04 0.33 3892.26 -0.12 3817.39 -2.05
75_3B 3868.75 4172.42 7.85 3868.75 0.00 3860.70 -0.21 3771.77 -2.51
75_3C 3858.71 4090.65 6.01 3900.38 1.08 3866.62 0.20 3787.46 -1.85
75_3D 3845.05 4110.39 6.90 3888.20 1.12 3850.45 0.14 3762.61 -2.14
75_3E 3893.36 4052.23 4.08 3908.01 0.38 3826.36 -1.72 3733.67 -4.10
Avg 3.72 0.69 -0.85 -2.66

Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

From these experiments, IPDS appears to produce solutions of higher quality than

the methods of Nowak and Şahin, as it was able to find better average results on all 45

instances. The best performance appears to be achieved for larger data sets. Considering



3.5 Computational results 30

Table 3.2: Results for the PDPSL with 100 pairs – Instances from [47]
Time limit set to 56.2 minutes per run

Nowak et al. Şahin et al. IPDS
Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
100_1A 4992.59 5073.40 1.62 4992.59 0.00 4886.80 -2.12 4823.76 -3.38
100_1B 5036.55 5036.55 0.00 5042.30 0.11 4921.42 -2.29 4861.49 -3.48
100_1C 5015.09 5029.38 0.29 5015.09 0.00 4922.82 -1.84 4813.72 -4.02
100_1D 4996.08 5012.97 0.34 4996.08 0.00 4922.44 -1.47 4831.00 -3.30
100_1E 5015.26 5130.15 2.29 5015.26 0.00 4896.29 -2.37 4792.94 -4.43
100_2A 4204.28 4450.06 5.85 4258.49 1.29 4169.72 -0.82 4096.25 -2.57
100_2B 4306.73 4484.47 4.13 4306.73 0.00 4225.95 -1.88 4156.74 -3.48
100_2C 4215.07 4473.39 6.13 4259.09 1.04 4201.15 -0.33 4134.60 -1.91
100_2D 4244.77 4424.57 4.24 4267.37 0.53 4194.76 -1.18 4089.79 -3.65
100_2E 4228.82 4559.26 7.81 4228.82 0.00 4200.25 -0.68 4132.97 -2.27
100_3A 5126.71 5294.37 3.27 5126.71 0.00 4987.04 -2.72 4934.62 -3.75
100_3B 5084.70 5371.74 5.65 5161.29 1.51 5042.60 -0.83 4974.61 -2.17
100_3C 5075.45 5216.80 2.78 5098.71 0.46 5004.95 -1.39 4938.02 -2.71
100_3D 5106.32 5467.79 7.08 5106.32 0.00 5010.16 -1.88 4941.18 -3.23
100_3E 5076.14 5572.47 9.78 5076.14 0.00 5029.86 -0.91 4884.24 -3.78
Avg 4.08 0.33 -1.51 -3.21

Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

Table 3.3: Results for the PDPSL with 125 pairs – Instances from [47]
Time limit set to 95.9 minutes per run

Nowak et al. Şahin et al. IPDS
Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
125_1A 5950.44 6020.05 1.17 6002.15 0.87 5762.68 -3.16 5682.79 -4.50
125_1B 5938.94 5938.94 0.00 5998.06 1.00 5785.19 -2.59 5678.06 -4.39
125_1C 5933.69 5977.69 0.74 5933.69 0.00 5758.32 -2.96 5625.24 -5.20
125_1D 6060.85 6138.94 1.29 6083.59 0.38 5802.33 -4.27 5701.05 -5.94
125_1E 5906.34 6024.26 2.00 5906.34 0.00 5755.05 -2.56 5660.45 -4.16
125_2A 5396.85 5717.54 5.94 5444.23 0.88 5262.65 -2.49 5183.40 -3.96
125_2B 5456.91 5745.38 5.29 5460.81 0.07 5313.86 -2.62 5209.02 -4.54
125_2C 5412.81 5667.26 4.70 5412.81 0.00 5289.23 -2.28 5145.39 -4.94
125_2D 5475.40 5778.58 5.54 5494.71 0.35 5321.00 -2.82 5234.01 -4.41
125_2E 5419.02 5780.01 6.66 5419.02 0.00 5281.44 -2.54 5191.63 -4.20
125_3A 6237.20 6934.05 11.17 6252.24 0.24 6128.28 -1.75 6050.78 -2.99
125_3B 6300.04 6918.16 9.81 6300.04 0.00 6152.84 -2.34 6057.74 -3.85
125_3C 6324.66 6607.30 4.47 6332.93 0.13 6129.45 -3.09 6024.87 -4.74
125_3D 6317.05 7239.79 14.61 6359.16 0.67 6166.94 -2.38 6040.13 -4.38
125_3E 6257.16 6776.37 8.30 6277.38 0.32 6137.54 -1.91 6057.75 -3.19
Avg 5.45 0.33 -2.65 -4.36

Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB
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the average gap for each set of instances, we observe negative gaps on every set (−0.85%,

−1.51% and −2.65%), which represent an average improvement over the best known

solutions in the literature. Considering the best results out of 20 runs, we observe a

significant improvement of the previous BKS, finding 45 new best solutions with 3.41%

of improvement, in average.

To validate the statistical significance of these results, we conducted a Friedman test

comparing the solution values for each instance. This test led to a value p < 2.2 ×
10−16, which indicates a significant difference of performance. We also performed pairwise

Wilcoxon tests to locate these differences which, as reported in Table 3.4, support the

existence of significant differences between all three methods: IPDS is significantly better

than Şahin’s algorithm, which is in turn significantly better than Nowak’s algorithm.

Table 3.4: Results of pairwise Wilcoxon tests – Instances from [47]

Algorithms p-value
Şahin–Nowak 2.12× 10−10

IPDS–Nowak 5.68× 10−14

IPDS–Şahin 5.68× 10−14

3.5.1.2 Instances from [23]

A second set of instances was introduced in [23] and the authors also presented the best

solutions found after 20 runs for each instance with 50, 100 and 250 p-d pairs. For the

instances with 500 pairs, the authors presented the best solutions over 5 runs. As indicated

by the authors in a private communication, the reported time values in [23] correspond to

the average time of one run. These values also depend on the specific instance. As such,

we have defined for each group of instances a termination criterion Tmax which is smaller

or equal to the average CPU time of [23]: 5 seconds for the instances with 50 service

pairs, 40 seconds for the instances with 100 pairs, 5 minutes for the instances with 250

pairs, and 1 hour for the instances with 500 pairs. Tables 3.5–3.8 display the results of

these experiments. In these tables, the solution quality of the best method is highlighted

in boldface.

Since [23] measure the best solution quality over several restarts (20 or 5), the com-

parison is established with the best solution of IPDS over the same number of runs. When

analyzing the tables, we observe that IPDS produces best solutions of higher quality (bet-

ter than the BKS) on 47 instances out of 48. The significance of these improvements is

again confirmed by a pairwise Wilcoxon test with a value p = 2.35×10−13. The magnitude
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Table 3.5: Results for the PDPSL with 50 pairs – Instances from [23]
Time limit set to 5 seconds per run

Şahin et al. IPDS
Instance Time(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
50A 4.5 16791.20 15481.36 -7.80 15913.01 -5.23
50B 4.3 17115.50 15422.03 -9.89 15814.13 -7.60
50C 4.5 14956.00 14131.43 -5.51 14591.86 -2.43
50D 4.3 16290.00 14947.06 -8.24 15345.82 -5.80
50E 7.6 11397.50 9517.49 -16.49 9895.06 -13.18
50F 7.4 9532.59 8429.16 -11.58 8927.89 -6.34
50G 6.2 9665.06 8820.07 -8.74 9175.39 -5.07
50H 11.2 9199.58 7608.63 -17.29 7930.69 -13.79
50I 5.8 14469.40 12864.70 -11.09 13235.73 -8.53
50J 6.5 13200.20 11891.39 -9.92 12131.98 -8.09
50K 2.3 12759.30 12337.42 -3.31 12594.40 -1.29
50L 4.4 14867.80 13426.21 -9.70 13973.27 -6.02
Avg 5.7 -9.96 -6.95

Table 3.6: Results for the PDPSL with 100 pairs – Instances from [23]
Time limit set to 40 seconds per run

Şahin et al. IPDS
Instance Time(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
100A 25.1 27301.2 25398.19 -6.97 26268.75 -3.78
100B 19.4 27090.1 25027.88 -7.61 26020.76 -3.95
100C 34.0 27221.3 25319.76 -6.99 25833.95 -5.10
100D 19.0 28574.7 26110.15 -8.62 27177.34 -4.89
100E 74.7 15320 13498.17 -11.89 14022.84 -8.47
100F 95.8 17574.2 13548.03 -22.91 13919.54 -20.80
100G 50.1 14888.4 14508.21 -2.55 15062.04 1.17
100H 57.9 16259.7 14445.99 -11.15 15021.09 -7.62
100I 32.4 24994.4 22603.21 -9.57 23292.98 -6.81
100J 37.5 23025.5 21284.65 -7.56 21843.80 -5.13
100K 30.4 24509 22435.89 -8.46 23248.32 -5.14
100L 49.3 23994.7 20705.86 -13.71 21400.98 -10.81
Avg 43.8 -9.83 -6.78

Table 3.7: Results for the PDPSL with 250 pairs – Instances from [23]
Time limit set to 5 minutes per run

Şahin et al. IPDS
Instance Time(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
250A 287.3 58847.6 56857.45 -3.38 58821.37 -0.04
250B 253.0 57559.1 55871.66 -2.93 57637.00 0.14
250C 299.5 57495.9 56483.36 -1.76 58107.41 1.06
250D 356.1 59396.7 57368.20 -3.42 59438.78 0.07
250E 3174.6 31736.8 28327.20 -10.74 29454.09 -7.19
250F 1123.1 27596 24820.19 -10.06 25562.37 -7.37
250G 1089.3 29421.8 26552.49 -9.75 27549.93 -6.36
250H 939.5 31911.5 27326.55 -14.37 28656.36 -10.20
250I 468.2 50154.8 48124.77 -4.05 50165.75 0.02
250J 448.8 53636.2 51119.88 -4.69 52868.55 -1.43
250K 537.5 50084.4 46946.17 -6.27 49128.23 -1.91
250L 392.3 54393.4 52580.00 -3.33 55067.03 1.24
Avg 780.8 -6.23 -2.66
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Table 3.8: Results for the PDPSL with 500 pairs – Instances from [23]
Time limit set to 1 hour per run

Şahin et al. IPDS
Instance Time(s) Best-5 Best-5 Gap(%) Avg-5 Gap(%)
500A 2124.6 106674 105536.28 -1.07 107176.11 0.47
500B 2374.2 110881 107657.18 -2.91 109636.75 -1.12
500C 1985.8 109181 107676.77 -1.38 109991.16 0.74
500D 2247.0 109746 104432.98 -4.84 107220.16 -2.30
500E 10860.4 63068.4 62322.13 -1.18 63411.06 0.54
500F 10815.8 68829.7 62951.49 -8.54 64701.06 -6.00
500G 11101.8 70038.8 67147.93 -4.13 69658.51 -0.54
500H 16763.8 60568.5 60489.14 -0.13 62636.44 3.41
500I 5075.4 93178.2 94264.57 1.17 97404.34 4.54
500J 4698.0 96984.8 94512.62 -2.55 97141.73 0.16
500K 4539.6 97429.5 96717.63 -0.73 98134.65 0.72
500L 5996.2 98102.7 95634.88 -2.52 97539.59 -0.57
Avg 6548.6 -2.40 0.00

of these improvements is also larger than previously, with an improvement of 7.11% in

average (comparing best solutions together), which seems to indicate that these instances

with a wider diversity of possible pickup and delivery locations are more difficult to solve,

and remain challenging for future works.

3.5.2 Sensitivity analysis on the components of the method

In order to examine the relative role of each component of the proposed algorithm, we

started from the standard version of the algorithm and generated some alternative con-

figurations by removing, in turn, a different neighborhood:

Base – The standard configuration, with all local-search neighborhoods and the RCSP

insertion;

WN1 – Base configuration without the PairSwap neighborhood;

WN2 – Base configuration without the PairShift neighborhood;

WN34 – Base configuration without the PickShift and DelShift neighborhoods;

WN5 – Base configuration without the BlockSwap neighborhood;

WN6 – Base configuration without the BlockShift neighborhood;

WR – Base configuration, but without the RCSP insertion neighborhood. We note that

the removal of the RCSP insertion neighborhood forces the algorithm to work on a

classic pickup and delivery problem, without possible split moves.
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The resulting algorithms have been all tested on the instances of [47], performing five

runs for each of the 45 data sets, and using the same termination criterion as in Section

3.5.1. Table 3.9 displays, for each variant of the algorithm, the average gap for each set

of instances (Gap-75, Gap-100 and Gap-125) as well as the average gap overall (Avg).

Table 3.9: Results for each configuration of the IPDS – Instances from [47]

Configuration Gap-75 (%) Gap-100 (%) Gap-125 (%) Avg (%)
Base -1.07 -1.82 -2.57 -1.82
WN1 -0.25 -0.93 -1.37 -0.85
WN2 -0.98 -1.58 -2.52 -1.70
WN34 -0.75 -1.55 -2.46 -1.59
WN5 -0.98 -1.74 -2.67 -1.80
WN6 -0.80 -1.45 -1.95 -1.40
WR 48.84 48.93 47.18 48.32

In this table, we observe that the Base configuration leads to the best overall average

gap (−1.82%), as well as the best average gaps on the 75-pairs and 100-pairs instances.

Still, the best average gap on the 125-pairs instances is attributed to the WN5 variant,

without the BlockSwap neighborhood. This effect is possibly due to the variance of the

solution quality of the algorithm on this relatively small sample of 15 instances, but it

also demonstrates that some neighborhoods have a much larger impact than others. In

decreasing order of importance, the most important neighborhood is the proposed RCSP

insertion, followed by the PairSwap neighborhood, the BlockShift, PickShift and DelShift

neighborhoods, and then the others. The RCSP insertion, in our context, is essential

since it manages the optimization of the split loads.

The gaps obtained by all algorithm variants (on all runs) can also be better observed

by means of box plots, as in Figure 3.4. In these box plots, represented without the

results of WR so as to enhance readability, we can observe the general superiority of the

Base configuration, producing approximately 50% of solutions with gaps below −2%. The

removal of PairSwap (WN1) has a large negative impact on the final solutions, followed

by the removal of BlockShift (WN6), the removal of PickShift and DelShift (WN34), the

removal of PairShift (WN2) and the removal of BlockSwap (WN5).

To validate these observations, we performed a Friedman test based on the gap values

of each algorithm. The test led to a value p < 2.2 × 10−16, demonstrating significant

statistical differences. Then, we performed paired-sample Wilcoxon tests to compare the

Base algorithm with all other algorithms. The results of these tests are reported in Table

3.10.
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Figure 3.4: Box plot showing the gaps for each configuration of the IPDS

Table 3.10: Results from paired-sample Wilcoxon tests with the Base algorithm

Algorithms p-value
Base – WN1 3.26× 10−16

Base – WN2 0.18
Base – WN34 0.01
Base – WN5 0.78
Base – WN6 5.05× 10−05

Base – WR < 2.2× 10−16
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These results confirm, with high confidence, the hypotheses that the Base algorithm

produces results of significantly (better) quality than the WN1, WN34, WN6 and WR

configurations, with p-values which are always smaller than a threshold of 0.05. This

highlights the importance of the associated neighborhoods which were deactivated in

these configurations. A pairwise Wilcoxon test between the Base configuration and WN2

and WN5 led to p-values of 0.18 and 0.78, such that the significance of the difference

of performance is not established in these cases. We can still reasonably conjecture that

the associated neighborhoods (PairShift and BlockSwap) also have some impact, which

would be better visible with additional runs and/or test instances. Besides, the CPU

time consumption dedicated to these neighborhoods is very minor, hence our choice to

maintain them in the Base algorithm.

3.5.3 Results with multiple vehicles and distance constraints

As discussed in Section 3.2, the absence of distance constraints in the classical PDPSL

instances leads to solutions with a single vehicle, since merging routes together is always

feasible and profitable. To investigate MPDPSL test cases, we extended the 45 existing

instances from [47] with a distance constraint, set to T = 1000, and measured the per-

formance of IPDS algorithm on the resulting data sets. The algorithm was executed 20

times with different seeds for each instance, and the time limits used in these tests are the

same as in Section 3.5.1. Since no results from previous literature are available on these

instances, the percentage gap was measured relatively to the best solution found in the

20 executions. Tables 3.11, 3.12 and 3.13 display the results of these experiments: the

average solution in the 20 executions (Avg-20), the average gap (Gap), the best solution

in the 20 executions (Best-20), and the standard deviation related to the gaps (Std Dev)

for each instance.

These results aim to provide a useful base for comparisons with future algorithms.

They also reflect the difficulty of the problems, since small standard deviations and small

gaps related to the best solution of all runs are usually good indications of performance.

From these experiments, it appears that the average gaps and their standard deviations

remain moderate, hence illustrating the good performance of the method: 2.36% gap (and

standard deviation of σ = 1.35%) for the 75-pairs set, 2.03% gap (σ = 1.17%) for the

100-pairs set and 2.10% gap (σ = 1.10%) for the 125-pairs set. These values are slightly

higher than for the single-vehicle experiments, with 1.86% gap (σ = 1.08%) for the 75-

pairs set, 1.75% gap (σ = 0.97%) for the 100-pairs set and 1.79% gap (σ = 0.97%) for
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Table 3.11: Results for the MPDPSL with 75 pairs – Instances from [47]
Time limit set to 25.50 mins per run

Instance Best-20 Avg-20 Gap (%) Std Dev (%)
75_1A 3782.93 3865.12 2.17 1.66
75_1B 3747.57 3836.27 2.37 1.62
75_1C 3793.62 3864.07 1.86 1.17
75_1D 3765.05 3835.80 1.88 1.15
75_1E 3757.36 3835.99 2.09 1.44
75_2A 3097.22 3200.18 3.32 1.23
75_2B 3123.89 3181.35 1.84 1.04
75_2C 3110.82 3174.16 2.04 1.19
75_2D 3097.16 3163.17 2.13 1.45
75_2E 3118.38 3192.46 2.38 1.59
75_3A 3866.08 3981.00 2.97 1.32
75_3B 3855.72 3976.12 3.12 1.61
75_3C 3886.66 3959.61 1.88 1.07
75_3D 3870.89 3944.61 1.90 1.16
75_3E 3828.10 3958.88 3.42 1.55
Avg 2.36 1.35

Table 3.12: Results for the MPDPSL with 100 pairs – Instances from [47]
Time limit set to 56.20 mins per run

Instance Best-20 Avg-20 Gap (%) Std Dev (%)
100_1A 4920.25 4993.39 1.49 1.02
100_1B 4940.53 5029.61 1.80 1.08
100_1C 4903.04 5010.18 2.19 1.17
100_1D 4928.88 5012.28 1.69 0.86
100_1E 4869.26 4977.90 2.23 1.05
100_2A 4212.57 4270.83 1.38 0.88
100_2B 4226.56 4304.39 1.84 1.13
100_2C 4213.68 4281.58 1.61 1.06
100_2D 4217.27 4305.97 2.10 1.27
100_2E 4186.25 4275.55 2.13 1.16
100_3A 4982.29 5131.18 2.99 1.31
100_3B 5057.84 5189.52 2.60 1.38
100_3C 5031.36 5137.47 2.11 1.38
100_3D 5049.84 5152.46 2.03 1.35
100_3E 5029.86 5144.86 2.29 1.46
Avg 2.03 1.17
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Table 3.13: Results for the MPDPSL with 125 pairs – Instances from [47]
Time limit set to 95.90 mins per run

Instance Best-20 Avg-20 Gap (%) Std Dev (%)
125_1A 5794.79 5888.54 1.62 0.96
125_1B 5880.96 5966.92 1.46 0.91
125_1C 5738.87 5881.25 2.48 1.22
125_1D 5738.32 5945.99 3.62 1.49
125_1E 5822.20 5915.08 1.60 0.89
125_2A 5310.49 5419.77 2.06 0.87
125_2B 5361.25 5476.77 2.15 1.11
125_2C 5357.90 5417.37 1.11 0.66
125_2D 5331.69 5458.60 2.38 0.98
125_2E 5339.33 5443.11 1.94 1.18
125_3A 6177.11 6283.43 1.72 1.22
125_3B 6205.87 6343.14 2.21 1.17
125_3C 6230.02 6312.84 1.33 0.92
125_3D 6181.96 6351.26 2.74 1.45
125_3E 6128.42 6313.40 3.02 1.52
Avg 2.10 1.10

the 125-pairs set. As such, MPDPSL instances seem more challenging and would deserve

further attention in the coming years.

3.6 Conclusions

In this work, we have considered the multi-vehicle one-to-one pickup and delivery problem

with split loads (MPDPSL). Because of the combination of the “split deliveries” and

“pickups and deliveries” vehicle routing attributes, dealing with this problem via local-

search based heuristics is a challenging task. The sequencing and split deliveries decision

subsets are very interdependent, such that various neighborhoods must be designed to

jointly modify some of these decisions. Moreover, MPDPSL solutions themselves can

involve an arbitrary large number of split loads.

To address this challenge, we proposed a conceptually simple ILS, based on classic

neighborhoods for pickup-and-delivery problems. Yet, to efficiently manage the split de-

liveries, we introduced an additional exponential-sized neighborhood, which iteratively

optimizes the pickup-and-delivery locations and splits for each service, and can be effi-

ciently explored via pseudo-polynomial (dynamic programming-based) algorithms. The

performance of the proposed method has been validated through extensive computational

experiments. For the existing single-vehicle problem instances, this method outperforms

previous algorithms in similar computational time, and finds new best known solutions

for 92 out of 93 instances. We also proposed new multi-vehicle problem instances and
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solutions for future comparisons.

Overall, this work takes place in a general research line which aims at progress-

ing towards an intelligent search and exploration of larger neighborhoods via efficient

dynamic-programming techniques, in comparison with the brute-force enumeration of

simpler neighborhoods. In this regard, the MPDPSL can be considered a very challeng-

ing problem.



Chapter 4

Multi-Vehicle Profitable Pickup And De-
livery Problem

4.1 Introduction

The objective of the Vehicle Routing Problem (VRP) is to find the minimum total route

cost for each vehicle so that all customers are served. There are several variations of

the VRP, where this constraint of visiting all customers is relaxed. In [18], the authors

proposed the Team Orienteering Problem (TOP), in which the objective is to find a

subset of points (customers) for the team (vehicles) to visit and also find a route for each

member of the team so that the time limit per member is respected and the total collected

profit (associated with each point) is maximized. Later, in [5], the authors defined the

Profitable Tour Problem (PTP), changing the objective to the maximization of profit

minus the minimization of the total route cost. The combination of TOP, PTP and the

one-to-one Pickup and Delivery Problem (PDP) inspired the authors of [28] to define the

Multi-Vehicle Profitable Pickup and Delivery Problem (MVPPDP).

The MVPPDP is a multi-level optimization problem that, firstly, requires to select a

subset of customers for the vehicles to visit. Secondly, these customers must be assigned

to each vehicle and finally, a route must be defined for each vehicle. These routes must be

established in order to maximize the total profit, which is given by the sum of all profits,

obtained from serving each customer, minus the travel costs. This problem, for example,

is very relevant for maritime transportation, in particular the tramp ship routing problems

[45, 71], where cargo owners announce their transportation requests in a spot market and

the shipping company decides which request to attend, considering profits, capacity and

travel time.
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As the MVPPDP is a “one-to-one pickup and delivery“ problem, it leads to large

neighborhoods as the method for solving it must work with pairs of customers. In addition,

an algorithm for solving MVPPDP must have an efficient customer selection procedure

in order to obtain good solutions. These reasons can, partly, explain the existence of only

two methods proposed for the MVPPDP, a variable neighborhood search and a guided

local search, both presented in [28]. The authors claimed to obtain good results by using

them on generated benchmark instances for the MVPPDP.

This chapter presents an efficient heuristic resolution for the MVPPDP, relying on

large-neighborhood search with efficient exploration procedures. The MVPPDP is a very

restrictive problem and the previous methods only accept feasible solutions during their

search. This work aims to investigate the performance of an algorithm that allows infeasi-

ble solutions, related to the duration constraint, during its search procedure. By allowing

infeasible solutions, the neighborhoods become larger and, thus, it can contribute to find

better solutions, but also it can increase the computational time. To counterbalance this

effect, the concept of granular local search [63] is applied to reduce this computational

time on large instances.

A heuristic called IPPD based on the iterated local search (ILS) and the random

variable neighborhood descent (RVND) is proposed. This algorithm explores classical

neighborhoods for one-to-one pickup and delivery problems and also explores specific

neighborhoods for selecting customers to include or exclude from the solution. Moreover,

this algorithm performs shaking procedures in order to escape from local optima. Experi-

mental analyses on benchmark instances are also done with the objective of investigating

the effectiveness of the proposed methodology.

The main contributions of the work presented in this chapter are:

1. a simple and efficient heuristic for the MVPPDP;

2. a new strategy for dealing with infeasible solutions for the MVPPDP;

3. granular local searches for one-to-one pickup-and-delivery problems;

4. new results for benchmark instances.
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4.2 Problem statement

The multi-vehicle profitable pickup and delivery problem was formulated by [28], combin-

ing characteristics from the team orienteering problem, the profitable tour problem and

the pickup and delivery problem.

The MVPPDP is very similar to the MPDPSL. It contains a homogeneous fleet of

capacitated vehicles, initial and final depots and also one-to-one pickup and delivery

customers or requests. We assumed that the capacity of each vehicle is always larger than

the demand of each request. This characteristic is called less-than-truckload (LTL) and

is also assumed in the MPDPSL and in [28]. Moreover, each route of the MVPPDP must

start and end at the depot, respect the distance limit, the vehicle capacity and also the

precedence of each pickup over its delivery in the same route.

However, there are some differences between the MVPPDP and the MPDPSL. In the

MVPPDP, when a vehicle arrives at a pickup customer, it must collect all available load

and when it arrives at the corresponding delivery customer, all load must be delivered.

Another difference from the MPDPSL is that each request i has an associated revenue ri
to be obtained if this request is attended. In addition, a solution for the MVPPDP may

not necessarily contains all requests.

The objective of the MVPPDP is to find a set of routes that maximizes the total

profit. The total profit is obtained by the sum of all revenues collected minus the sum of

all travel costs.

4.2.1 Mathematical formulation

In [28], a mathematical model for the MVPPDP is presented. This model is based on [52]

and [49] and uses the following notations:

4.2.1.1 Parameters

n number of pair of customers (there are n pickup customers and n delivery customers)

m number of vehicles

P set of pickup customers, P = {1, . . . , n}

D set of delivery customers, D = {n+ 1, . . . , 2n}
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V set of all customers, the initial depot 0 and the final depot 2n+1, V = P∪D∪{0, 2n+1}

K set of available vehicles, K = {1, . . . ,m}

ri revenue to be obtained when visiting the pair of customers i

qi demand at customer i, qi > 0 for pickup customers and qi < 0 for delivery customers

di service duration at customer i

cij transportation cost when travelling from i to j

tij travel time between customer i and customer j

C loading capacity of a vehicle

T maximum tour time of a vehicle

4.2.1.2 Decision Variables

xijk binary decision variable equals to one if and only if arc (i, j) is used by vehicle k

Qik decision variable that contains the amount of load in vehicle k after visiting the i-th

customer

Bik decision variable representing the beginning of service time of vehicle k at customer

i

4.2.1.3 Formulation

The mathematical model follows:

max
∑
i∈V

∑
j∈V

∑
k∈K

(ri − cij)xijk (4.1)

∑
i∈V

∑
k∈K

xijk ≤ 1 ∀j ∈ V (4.2)

∑
j∈V

∑
k∈K

xijk ≤ 1 ∀i ∈ V (4.3)

xi0k = 0 ∀i ∈ V, ∀k ∈ K (4.4)
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x2n+1,jk = 0 ∀j ∈ V, ∀k ∈ K (4.5)∑
i∈V

(xijk − xjik) = 0 ∀j ∈ V \ {0, 2n+ 1},∀k ∈ K (4.6)

∑
j∈V

(xijk − xn+i,jk) = 0 ∀i ∈ P, ∀k ∈ K (4.7)

∑
j∈V

x0jk =
∑
i∈V

xi,2n+1,k = 1 ∀k ∈ K (4.8)

(xijk = 1)⇒ Qjk = Qik + qj ∀i ∈ V, ∀j ∈ V \ {0},∀k ∈ K (4.9)

Qik ≤ C ∀i ∈ V, ∀k ∈ K (4.10)

Q0k = 0 ∀k ∈ K (4.11)

Bik ≤ Bn+i,k ∀i ∈ P, ∀k ∈ K (4.12)

Bjk ≥ xijk(Bik + di + tij) ∀i ∈ V, ∀j ∈ V, ∀k ∈ K (4.13)

B2n+1,k ≤ T ∀k ∈ K (4.14)

B0k = 0 ∀k ∈ K (4.15)

xijk ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k ∈ K (4.16)

Qik, Bik ≥ 0 ∀i ∈ V, ∀k ∈ K (4.17)

The objective function (4.1) maximizes the total profit, which is the total revenues

collected minus the total travel costs. Each customer must be visited at most once and

this is ensured by constraints (4.2) and (4.3). The vehicles must not enter into the initial

depot and must not leave the final depot, this is defined by (4.4) and (4.5). The flow

conservation is described by constraints (4.6). Each pickup and delivery pair must be

attended by the same vehicle, as stated by (4.7). Each vehicle must start the route at

the initial depot and finish at the final depot (4.8). The vehicle load is controlled by

constraints (4.9), which can be transformed into linear constraints by using the big M

formulation. The amount of load of a vehicle must be at most C (4.10). Vehicles leave the

initial depot empty (4.11). Each pickup customer must be visited before the corresponding

delivery customer (4.12). Constraints (4.13) define that the earliest beginning of service

at customer j is given by the beginning of service at customer i plus the service time at i
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and the travel time between i and j. The total tour length of each vehicle is bounded by

constraints (4.14). Each vehicle starts at the initial depot at time 0 (4.15).

4.2.2 Illustrated example

Figure 4.1 illustrates a possible solution for an instance with ten p-d pairs and two available

vehicles with capacity C = 50 and maximum travel distance T = 5000. In this instance,

the set of pickup customers is P = {1, 2, . . . , 10} and the set of corresponding delivery

customers is D = {11, 12, . . . , 20}. The initial and final depots are at the same location,

represented by 0. In this solution, Route 1 = {0, 10, 20, 8, 7, 18, 4, 14, 17, 0} and Route 2 =

{0, 9, 2, 3, 1, 11, 13, 12, 19, 0}. It is noteworthy that both pair of customers (5, 15) and

(6, 16) are not supplied by any vehicle. The total distance for Route 1 is 4792.23 with

the total revenue collected of 19101 and the total distance for Route 2 is 4892.25 with the

total revenue collected of 27053, thus the total profit is calculated by (19101 + 27053)−
(4792.23 + 4892.25) = 36469.52.

Figure 4.1: Example of a possible solution for the MVPPDP
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4.3 Related literature

4.3.1 Team Orienteering Problem (TOP)

The team orienteering problem defined in [18] was proven to be in the NP-hard class by

[37] and [14]. As a consequence, many heuristics have been developed to this problem in

the literature.

In [34], a LP-based granular variable neighborhood search is proposed to solve the

TOP with hard Time Window constraints. The procedure uses the concept of granular

local search and explores granular neighborhoods instead of complete neighborhoods to

improve the efficiency of the algorithm. Granularity is based on dual information pro-

vided by the optimal solution of the LP problem. Computational results showed that the

algorithm could improve 25 best known solutions.

A simulated annealing is developed in [39] and [38] for the TOP with Time Windows.

The first work proposes two versions of the simulated annealing, a fast version, where the

objective is to find a solution quickly and another version that concentrates on finding

a better quality solution. The second work combines the simulated annealing with a

multi-start hill climbing strategy.

A tabu search is proposed in [61] for the TOP. The tabu search uses an adaptive mem-

ory procedure that alternates between small an large neighborhood during the execution

of the algorithm. Random and greedy strategies were used to build a solution and the

algorithm also deals with infeasible solutions during its process.

Two variants of a generalized tabu search algorithm and a variable neighborhood

search algorithm are used by [7] to solve the TOP. The variable neighborhood search

presented better results than the two variants of the tabu search. The proposed algorithms

were capable of improving 128 benchmark instances.

In [32] an ant-colony optimization algorithm is proposed to solve the TOP. Four

strategies are proposed to construct the candidate solutions: sequential, deterministic-

concurrent and random-concurrent, and simultaneous methods. The computational re-

sults showed that the sequential method can obtain the best solution within less than one

minute for each instance.

A particle swarm optimization-based memetic algorithm is developed in [24] for solv-

ing the TOP. The method contains optimal splitting techniques and genetic crossover

operators.
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An iterative framework incorporating three components is developed by [30]. The

first two components are a local search procedure and a simulated annealing, while the

third component recombines routes to identify high quality results.

Finally, heuristics based on guided local search [65], iterated local search [66] and

path relinking [58] were able to find very good solutions for the TOP in relatively short

amount of time.

4.3.2 Profitable Tour Problem (PTP)

In contrast with the several works on the TOP, there are fewer studies on the profitable

tour problem [9]. An approximation algorithm for the asymmetric PTP is presented by

[44].

Large neighborhoods for the TOP as well as for the PTP are studied in [70]. The pro-

cedure works with standard VRP neighborhoods that works with all customers. Then,

a Select algorithm based on resource constrained shortest paths is used to find opti-

mal subsequence for the visits. This large neighborhood strategy was tested in a local-

improvement method, an iterated local search, and a hybrid genetic search. These new

neighborhoods contributed to achieve new 52 new best solutions.

Three heuristics and one exact procedures for the capacitated TOP and the capaci-

tated PTP were proposed in [5] and [4]. The computational experiments show that the

heuristic procedures often find the optimal solution for instances that can be solved to

optimality by a branch-and-price algorithm.

In [31], a branch-and-cut algorithm for the capacitated PTP is presented. Valid

inequalities are presented and a new family of inequalities are also presented for the ca-

pacitated PTP, called rounded multistar inequalities. The computational results indicate

that the algorithm is competitive with dynamic programming algorithms.

A rich variant of the PTP is studied in [35] and a variable neighborhood search

embedded with an adaptive large neighborhood search is developed.

4.3.3 Multi-Vehicle Profitable Pickup and Delivery Problem
(MVPPDP)

The multi-vehicle profitable pickup and delivery problem was studied for the first time

in [28]. The authors developed a heuristic based on a variable neighborhood search that
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performs the local searches using the variable neighborhood descent. The initial so-

lution is built using a greedy construction heuristic based on cheapest insertion ratio

(revenue/insertion_cost), calculated for each request and then, inserting into the par-

tial solution the request with the highest insertion ratio. The algorithm performs local

searches for minimizing the total distance travelled (InterPairShift, 2-opt, InterPairSwap,

PairSwap, PairShift, PickShift and DelShift) and for including requests that do not be-

long to the current solution (Insert, Replace and GravityCenterExchange). The shaking

procedures are chosen randomly and they either remove a single request from a route or

remove 10% to 40% of the route and then insert new requests based on cheapest insertion.

The authors tested two VNDs, the first one executes the local searches in a sequential

order (GVNSseq) and the second is based on a self-adaptive strategy that chooses the best

order based on solution improvements during the execution of the algorithm (GVNSsa).

The authors also developed a guided local search (GLS) based on the algorithm from [65].

Computational experiments were conducted on 36 generated instances that contain from

20 to 1000 customers. The experiments show that both variants of VNS outperform GLS

in solution quality, but GLS had an advantage in terms of average runtime.

4.4 Methodology

Only two heuristics, one based on the variable neighborhood search (VNS) and the other

based on the guided local search (GLS), have been developed specifically for the MVPPDP.

Both algorithms explore only the feasible search space of solutions for the MVPPDP, in

terms of the total tour time constraint. Because of this constraint, the search space for

the MVPPDP becomes very reduced, therefore highly efficient strategies are required

to reach good solutions and also to avoid getting stuck in local minima. Therefore,

this work aims to investigate the exploration of a larger search space for the MVPPDP,

providing an efficient algorithm for the MVPPDP that deals with solutions containing

routes violating the duration constraint. The motivation of adopting this relaxation is

to help the algorithm to escape from local optima, possibly reaching better solutions. In

addition, as the neighborhoods become larger, the concept of granular local search is also

adopted to prune many unpromising moves during the search with the aim to reduce the

computational time.
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4.4.1 Evaluation of a solution

A solution s for the MVPPDP is evaluated using the evaluation function f(s) showed

in Eq. (4.18), which is responsible for calculating the total profit. In order to obtain the

total profit, the evaluation function f(s) subtracts the total revenue gained by s, obtained

by p(s), from the total travel costs of s, given by c(s). Let d(s) be the total tour time

exceeded by the routes and β a coefficient factor used to penalize the violation of the

duration constraint.

f(s) = p(s)− c(s)− βd(s) (4.18)

We adopted a dynamic strategy for updating the coefficient factor β during the

execution of the proposed algorithm. This strategy widely used for similar problems

[21, 50, 67, 51, 69]. The coefficient factor β starts with the value maxi∈V {ri}, which rep-

resents the maximum revenue of all requests. After each group of umax iterations without

improvement of the proposed algorithm, the value of β can be increased or decreased,

depending on the performance of the algorithm in previous iterations. Let ninfeasible be

the number of all infeasible solutions s, that is if d(s) > 0, found by the algorithm in

the last iterations and nfeasible the number of all feasible solutions s, that is d(s) = 0,

obtained in the last iterations. If more infeasible solutions were produced in the last umax

iterations without any improvement, then the new value is updated to β = β(1 + δ).

On the other hand, if more feasible solutions were generated then β = β/(1 + δ). The

value of δ is randomly chosen in the interval {0.05 . . . 0.1} using an uniform distribution

probability.

4.4.2 General structure of the method

The proposed algorithm for the MVPPDP combines an iterated local search with a random

variable neighborhood descent, which performs, randomly, the local searches of ILS with

the objective of finding a local optimum with respect to several neighborhoods. The

pseudo code of the Iterated local search for the Profitable Pickup and Delivery problem

(named IPPD) is shown in Algorithm 4.

The IPPD algorithm receives as input three parameters: the time limit Tmax for exe-

cuting the algorithm, the maximum limit of perturbations pmax and the maximum number

of iterations without improvement umax. Firstly, the value of β is defined to be the maxi-
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Algorithm 4: IPPD
input : Tmax, pmax, umax

1 β ← maxi∈V {ri};
2 s← greedyInitialSolution();
3 s← RVND(s);
4 u← 0;
5 ninfeasible ← 0;
6 nfeasible ← 0;
7 while time ≤ Tmax do
8 s′ ←Perturbation(s,pmax);
9 s′ ←RVND(s′);

10 if isFeasible(s′) then nfeasible ← nfeasible + 1 ;
11 else ninfeasible ← ninfeasible + 1 ;

12 if f(s′) < f(s) and isFeasible(s′) then s← s′ ;
13 else u← u+ 1 ;

14 if u == umax then
15 δ ← rand(0.05, 0.1);

16 if nfeasible > ninfeasible then β ← β/(1 + δ) ;
17 else β ← β(1 + δ) ;

18 u← 0;
19 ninfeasible ← 0;
20 nfeasible ← 0;
21 end
22 end
23 Return s ;
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mum revenue of all services (line 1). Then, a solution s is built using a greedy constructive

heuristic (line 2) and this solution is improved using the RVND (line 3). Next, (lines 4 –

6), the variable that stores the current number of iterations without improvement, u, is

initialized to zero, as well as the variables ninfeasible and nfeasible, responsible for counting

the number of infeasible and feasible solutions, respectively. Inside the iterative loop of

the algorithm, firstly, a perturbation to escape from local optima is applied on the cur-

rent solution s, generating a new solution s′ (line 8). This new solution s′ is improved

by the RVND (line 9). If s′ is feasible, after been improved by the RVND, then nfeasible

is updated, otherwise ninfeasible must be updated (lines 10 – 11). The best solution s is

updated if s′ has a better evaluation function value and also s′ must be feasible, if not,

then u is incremented (lines 12 – 13). In the end of the process (lines 14 – 21), if the

algorithm has not found improvement on umax iterations, then the value of β is decreased

if nfeasible is greater than ninfeasible (line 16) or increased if nfeasible is less than or equal

to ninfeasible (line 17). After updating β, variables u, ninfeasible and nfeasible are set to

zero again (lines 18 – 20). This iterative loop continues until a termination criterion is

reached, defined here by a time limit (line 7). In the end of the execution the best solution

found is returned (line 23).

The following components of the algorithm are detailed next: the construction of the

initial solution, the local search procedures, and the perturbation operator.

4.4.3 Initial solution

The initial solution s is produced by a greedy constructive heuristic, inspired by [18, 17]

and also used in [28]. Initially m seed p-d customers are included into each route, which

are the farthest away from the depot. Then, to fill up the routes, this heuristic iteratively

computes for each pickup customer i its best insertion ratio, which is the maximum

revenue divided by the minimum increase of distance. The pickup customer i with the

maximum insertion ratio is inserted at each iteration, together with its corresponding

delivery (n+ i), which is included into its best position after i. If no more customers can

be included into the solution, because of the distance constraints, then a new solution is

created and the procedure finishes.

This procedure seeks to consider a long route firstly, and then iteratively includes

closer customers. In [18], the authors stated that the idea of using this strategy is to

quickly build an initial solution and then rely on the improvement phase of the algorithm

for finding better solutions.
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After the construction of this solution, the RVND local search procedures try to

improve it by allowing to rearrange the selected customers and possibly introduces new

customers into the solution.

4.4.4 Local search procedures

The concept of center of gravity (COG) for a route k, also used in [64, 65, 28], must be

defined here to understand how the GravityCenterExchange neighborhood is investigated.

The COG is based on the Cartesian coordinates (xi, yi) of all customers included into the

solution weighted by their corresponding revenues ri. Eqs. (4.19) and (4.20) show how to

calculate the Cartesian coordinates of the center of gravity (xCOG, yCOG).

xCOG =

∑
i∈k

xiri∑
i∈k

ri
(4.19)

yCOG =

∑
i∈k

yiri∑
i∈k

ri
(4.20)

By knowing the center of gravity, then the appropriateness Ai can be calculated using

Eq. (4.21), where ci,COG is the distance cost between the customer i and the COG.

Ai =
ri

ci,COG
(4.21)

Like in [28], we consider that an appropriateness for a pickup and delivery pair is given

by the sum Ai + An+i. The appropriateness is used in profit-increasing neighborhoods

for inserting new requests into the solution. Requests with maximum appropriateness are

considered first to be included into the solution.

4.4.4.1 Random Neighborhood Variable Descent

The random neighborhood variable descent adopted in IPPD works just like the RVND

described in Chapter 3 (Section 3.4.4), without predefined order for exploring the neigh-

borhoods. However new profit-increasing neighborhoods are incorporated into the RVND
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in order to better explore the search space of the MVPPDP. Moreover, in IPPD, each

neighborhood is efficiently pre-evaluated exhaustively, considering moves in random order

of p-d pairs and routes and applying always the best improving move.

As the IPPD deals with infeasible solutions during the its search, the search space

becomes much bigger, thus the time needed to explore efficiently the search space grows

proportionally. To avoid spending much time on each neighborhood and to seek improve-

ments quickly, the IPPD follows [63] and adopts a similar idea of the granular local search.

In the IPPD, a set of nearest neighborhoods for each pickup customer is initially defined

and, before each move is applied, it is verified if this move involves at least one customer

belonging to the set of nearest neighborhoods for this pickup customer. If this is the case,

then the move is applied, if not, then this move is rejected. In IPPD, the size of this

set for each pickup customer was set to {50, 100, 150, 200, 250, 300} and the value that

provided better results was 250.

All intra-route and inter-route neighborhoods used by IPPD are also used in IPDS

(3.4.4.1 and 3.4.4.2). The IPPD also explores profit-increasing neighborhoods and a re-

pairing neighborhood. The repairing neighborhood structure is used with the intention

of obtaining a feasible solution by removing pairs from the solution.

4.4.4.2 Intra-route neighborhood structures:

N (1) – PairSwap considers two pairs of customers (i, n + i) and (j, n + j) and swaps

the pickup customer i with the pickup customer j, as well as the delivery customer

(n+ i) with the delivery customer (n+ j).

N (2) – PairShift considers a pair of customers (i, n+i) and relocates the pickup customer

i in another position of the route and then finds another position to insert the

corresponding delivery customer (n+ i), after the pickup customer.

N (3) – PickShift relocates a pickup customer i in another position before the delivery

customer (n+ i).

N (4) – DelShift relocates a delivery customer (n+ i) in another position after the pickup

customer i.

N (5) – BlockSwap swaps a block Bi with another block Bj.

N (6) – BlockShift relocates a block Bi in another position.
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4.4.4.3 Inter-route neighborhood structures:

N (7) – InterPairSwap selects a pair of customers (i, n + i) from a route k1 and another

pair (j, n + j) from a route k2 and swaps the pickup customer i with the pickup

customer j. The delivery customer (n + i) is swapped with the delivery customer

(n+ j).

N (8) – InterPairShift takes a pair of customers (i, n + i) from a route k1 and transfer

this pair to a route k2. After defining the position to insert the pickup customer i

in k2, the delivery customer (n+ i) is inserted in a following position.

N (9) – InterBlockSwap selects a block Bi from a route k1 and another block Bj from a

route k2 and swaps them.

N (10) – InterBlockShift transfers a block Bi from a route k1 to a route k2.

4.4.4.4 Profit-increasing neighborhood structures:

N (11) – Insert takes a pair of customers (i, n+ i) not included in the solution and insert

this pair on a route k. The pickup customer i is inserted on a position of k and

the delivery customer (n+ i) is inserted on a following position of k. The pairs are

analysed by following a descending order of appropriateness.

N (12) – Replace takes a pair of customers (i, n + i) not included in the solution and a

pair of customers (j, n+ j) that belongs to the solution and swaps them.

N (13) – GravityCenterExchange removes the farthest pair (i, n + i) from the center of

gravity from a route k and inserts non-included pairs into k as long as the duration

constraints are met. New requests are inserted by considering a descending order of

appropriateness.

4.4.4.5 Repairing neighborhood structure:

N (14) – Remove takes a pair of customers (i, n+ i) and removes it from the solution.

4.4.5 Perturbation operator

The perturbation operator of the IPPD algorithm is based on the Remove neighborhood

and consists in removing npert random p-d pairs from the solution. The number of pairs



4.5 Computational results 55

npert to be removed is randomly selected in {1, 2, ..., pmax} using an uniform distribution

probability. Thus, pmax is a parameter of IPPD that limits the number of perturbation

moves.

4.5 Computational results

The set of instances from [28] was used in order to perform the computational experiments

of the IPPD algorithm. This set contains 36 instances divided in six subsets of six instances

each. These subsets have 10, 25, 50, 125, 250 and 500 pickup and delivery pairs, thus

corresponding to 20, 50, 100, 250, 500 and 1000 customers. They are subdivided into

groups called: small (20 and 50 customers), medium (100 and 250 customers) and large

(500 and 1000 customers). The customer locations were randomly generated on a bi-

dimensional plane (x, y), in which both x and y are in the interval [−1000, 1000] and

both depots are located at (0, 0). Each pair has an integer demand between [1, 50]. The

revenues were generated using three strategies: i) equal for all pairs (F); ii) proportional

to the demands (P); and iii) randomly distributed (R). The distance constraint can be

tight (S) or relaxed (L) and the vehicle numbers vary from 2 to 8.

The IPPD algorithm was also developed in C++ using OptFrame [20]. Each test was

performed on a single core of a Intel Core i7 3.4 GHz, 16 GB of RAM using Ubuntu 14.04.

It is noteworthy that the computer used is similar to the one used in [28]. Moreover, the

IPPD uses three main parameters: the strength of the perturbation operator pmax, which

has been set to maxk∈K |k|, representing the maximum route size of the current solution

(this value is a solution-dependent parameter and provided good solutions during our

preliminary experiments), umax, the maximum number of iterations without improvement

to update the coefficient factor β, which has been set to 5 iterations at most and finally, the

stopping criterion Tmax, which has been set for each group of instances to the same CPU

time of the current state-of-the-art methods from [28]: 1 second per run for each instance

with 20 and 50 customers, 10 seconds for each instance with 100 and 250 customers, and

100 seconds for each instance with 500 and 1000 customers.

Previous authors have reported results over 5 runs, thus we also report the results on

5 runs of the algorithm. For each instance, we obtain a solution using IPPD, zippd. The

percentage gap relative to the best known solution (BKS), zbks is computed according

to Eq. (4.22). All best known solutions were collected from [28] after 20 hours executing

their algorithms on each instance.
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Gap = 100× (zippd − zbks)/zippd (4.22)

The objective in MVPPDP is to maximize the total profit, thus if Eq. (4.22) returns

a negative gap, it means that this solution has a lower value compared to the best known

solution, therefore worst quality. On the other hand, if a positive value is returned, it

means that the solution obtained has a greater value than the best known solution, hence

a new best known solution is found.

4.5.1 Sensitivity analysis on the components of the method

First of all, an analysis on the relevance of each component of the IPPD was done. We

started with the standard version of the algorithm, containing all neighborhoods, and

set alternative configurations by removing different neighborhoods on each test. These

configurations are listed below:

Base – The standard configuration, with all local-search neighborhoods;

WN1 – Base configuration without the PairSwap and InterPairSwap neighborhoods;

WN2 – Base configuration without the PairShift and InterPairShift neighborhoods;

WN34 – Base configuration without the PickShift and DelShift neighborhoods;

WN5 – Base configuration without the BlockSwap and InterBlockSwap neighborhoods;

WN6 – Base configuration without the BlockShift and InterBlockShift neighborhoods;

WN56 – Base configuration without the BlockShift, InterBlockShift, BlockSwap and In-

terBlockSwap neighborhoods;

WN11 – Base configuration without the Insert neighborhood;

WN12 – Base configuration without the Replace neighborhood;

WN13 – Base configuration without the GravityCenterExchange neighborhood;

WN14 – Base configuration without the Remove neighborhood;

WI – Base configuration without dealing with infeasible solutions;

WG – Base configuration without granular local searches.
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The algorithms generated by each configuration were tested on instances from [28],

performing five runs for each of the 36 instances, and using the same stopping criteria

defined in Section 4.5. Table 4.1 shows, for each variant of the algorithm, the average

gap for each set of instances (Gap-(20,50), Gap-(100,250), Gap(500,1000)) as well as the

total average gap (Avg). These gaps are calculated using the obtained solution on each

algorithm and the BKS obtained in [28] after 20 hours running their algorithms for each

instance. All gaps are negative because the stopping criteria is much smaller than 20

hours and the algorithms did not have enough time to reach a better solution than the

BKS or even greater.

Table 4.1: Results for each configuration of the IPPD

Configuration Gap-(20,50) (%) Gap-(100,250) (%) Gap-(500,1000) (%) Avg (%)
Base -0.57 -4.21 -5.79 -3.52
WN1 -0.47 -4.33 -6.26 -3.69
WN2 -1.38 -5.43 -8.10 -4.97
WN34 -0.47 -5.03 -6.95 -4.15
WN5 -0.46 -4.46 -5.70 -3.54
WN6 -0.34 -4.12 -5.35 -3.27
WN56 -0.43 -3.58 -5.75 -3.25
WN11 -23.49 -129.73 -50.66 -67.96
WN12 -0.87 -7.06 -7.71 -5.21
WN13 -0.63 -4.19 -5.70 -3.51
WN14 -0.50 -5.24 -6.34 -4.03
WI -1.58 -9.02 -5.53 -5.38
WG -0.57 -4.04 -6.77 -3.79

In Table 4.1, it is clearly observed that the most relevant neighborhood is the Insert

neighborhood, because removing this neighborhood (WN11) results in the worst gaps of

all configurations. In contrast, the best average gap (−3.25%) is obtained by removing all

block-based neighborhoods. These neighborhoods do not seem to contribute to the quality

of the final solution, at least considering the time limits imposed. Another interesting fact

is that working only with feasible solutions seems to hamper the algorithm for reaching

better quality solutions, as we can see in gaps obtained by WI . Moreover, the use of

granular local searches suggests to contribute for a quickly production of good solutions.

The gaps obtained, on all runs, by all algorithms are better observed by the box plots of

Figure 4.2. The box plots were generated without gaps fromW11 for a better visualisation.

By these box plots we can also see the importance of PairShift, InterPairShift and Replace,

as without using them, the algorithm got worse values of gaps. We can also see a slightly

better performance of the IPPD without using block-based neighborhoods (WN56) over

the rest of the algorithms.
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Figure 4.2: Box plots showing the gaps for each configuration of the IPPD

In order to verify previous analyses, a Friedman test based on the gap values of each

algorithm was performed. The test returned a value p < 2.2×10−16, confirming significant

statistical differences. Next, paired-sample Wilcoxon tests were performed to compare the

Base algorithm with each configuration. The results of these tests are reported in Table

4.2.

Table 4.2: Results from paired-sample Wilcoxon tests with the Base algorithm

Algorithms p-value
Base – WN1 0.78
Base – WN2 0.00
Base – WN34 0.50
Base – WN5 0.95
Base – WN6 0.64
Base – WN56 0.33
Base – WN11 2.2 × 10−16

Base – WN12 0.01
Base – WN13 0.65
Base – WN14 0.48
Base – WI 0.02
Base – WG 0.80

From these results we can statistically confirm the importance of using the Insert,

PairShift, InterPairShift, Replace and also our proposed strategy for dealing with infea-

sible solutions as the value of p was less than threshold of 0.05. Notably, without using

these configurations the algorithm does not generate good solutions. For other configu-
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rations, when comparing with the Base configuration the values of p were not below the

threshold, thus, we cannot attest the difference of performance. Nevertheless, because of

the small time limits and the slightly better performance, we decided to keep the Base

configuration, but removing all block-based neighborhoods to compare these results with

the state-of-art results.

4.5.2 Performance comparisons on MVPPDP instances

Tables 4.3, 4.4 and 4.5 display the GapBKS and the GapAvg obtained after 5 runs for each

algorithm on each instance from [28]. The GapBKS represents the relative percentage

deviation (Eq. 4.22) given by the best solution obtained on each algorithm (5 runs) and

the BKS obtained in [28] after 20 hours running their algorithms for each instance. The

GapAvg is the relative percentage deviation calculated with the average solutions on 5

runs and the BKS. The algorithms GVNSseq, GVNSsa and GLS were all implemented

in [28] and the IPPD corresponds to our WN56 configuration, that is, without exploring

block-based neighborhoods. For each instance, the best result considering all methods is

highlighted in boldface.

Table 4.3: Results for the MVPPDP with 20 and 50 customers on 5 runs for each instance.
Time limit set to 1 second per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

1FS 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2FL 20 -3.38 -3.38 -3.38 -3.38 -3.15 -3.15 -0.41 -0.41
3PS 20 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55
4PL 20 0.00 0.00 0.00 0.00 -1.14 -1.14 0.70 0.70
5RS 20 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00
6RL 20 -2.63 -2.63 -2.63 -2.63 -2.43 -2.43 0.04 0.04
7FS 50 -0.60 -0.60 -0.60 -0.60 -7.83 -7.83 -0.60 -0.60
8FL 50 0.00 -0.37 0.00 -0.66 -1.24 -3.89 0.00 0.00
9PS 50 -4.27 -5.69 0.00 0.00 0.00 0.00 0.00 0.00
10PL 50 0.00 -0.77 0.00 -3.76 -5.31 -7.69 0.00 -2.32
11RS 50 0.00 0.00 0.00 0.00 -0.52 -0.89 0.00 0.00
12RL 50 0.00 -0.03 0.00 -2.01 -4.14 -5.22 -1.95 -1.95

Avg -0.95 -1.17 -0.60 -1.13 -2.19 -2.74 -0.23 -0.43

Looking at these tables, it is evident the good performance of the IPPD algorithm

on small and medium-sized instances, as the average gaps are greater than gaps from the

other algorithms: −0.43% for the small set and −3.58% for the medium set. For the

large set, the best performance observed is for the GVNS with the self-adaptive VND

(GVNSsa). It seems that the IPPD did not have enough time to explore the search space
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Table 4.4: Results for the MVPPDP with 100 and 250 customers on 5 runs for each
instance. Time limit set to 10 seconds per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

13FS 100 -5.02 -5.22 -5.02 -5.46 -6.75 -6.98 -5.83 -5.98
14FL 100 0.00 -0.12 -0.18 -4.22 -0.89 -3.04 0.00 -3.17
15PS 100 -0.95 -3.46 -4.20 -7.22 -1.21 -3.80 -0.39 -2.99
16PL 100 -0.61 -2.59 -3.15 -3.41 -4.83 -7.60 0.60 0.02
17RS 100 -5.99 -5.99 -5.99 -5.99 -3.68 -6.05 0.00 -5.02
18RL 100 -0.28 -1.10 -1.44 -2.07 -2.84 -5.01 0.00 -0.60
19FS 250 -4.37 -5.15 -4.45 -5.89 -7.96 -12.15 -4.54 -6.37
20FL 250 -1.40 -4.35 -2.98 -4.84 -5.10 -5.57 -4.26 -5.49
21PS 250 -3.84 -4.94 -2.77 -4.42 -5.82 -9.91 -1.01 -3.59
22PL 250 -3.30 -4.35 -2.40 -3.32 -7.11 -9.42 -1.09 -3.12
23RS 250 -2.04 -3.15 -1.11 -2.03 -5.11 -7.69 -1.40 -3.57
24RL 250 -3.30 -4.06 -3.22 -5.07 -6.88 -9.14 -1.79 -3.14

Avg -2.59 -3.71 -3.08 -4.50 -4.85 -7.20 -1.64 -3.58

Table 4.5: Results for the MVPPDP with 500 and 1000 customers on 5 runs for each
instance. Time limit set to 100 seconds per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

25FS 500 -2.46 -3.86 -3.23 -4.22 -8.83 -11.69 -4.04 -7.32
26FL 500 -3.64 -4.23 -2.67 -3.92 -3.39 -6.00 -4.10 -7.08
27PS 500 -1.02 -2.52 -1.37 -2.99 -9.19 -11.99 0.72 -1.40
28PL 500 -2.54 -2.99 -2.74 -3.33 -7.52 -8.71 1.82 -0.50
29RS 500 0.00 -2.74 -1.95 -2.65 -12.04 -14.38 -6.29 -8.14
30RL 500 -1.35 -1.95 -0.98 -2.06 -6.73 -9.72 -1.29 -2.07
31FS 1000 -7.25 -9.96 -8.48 -9.27 -8.31 -11.02 -11.80 -14.09
32FL 1000 -5.39 -6.50 -3.80 -5.26 -4.07 -6.52 -10.12 -11.39
33PS 1000 -5.16 -6.13 -4.31 -5.18 -6.83 -7.90 1.47 -1.49
34PL 1000 -3.12 -4.85 -2.55 -3.79 -4.92 -6.23 -3.26 -4.63
35RS 1000 -4.83 -5.54 -3.59 -4.63 -9.25 -12.23 -4.90 -6.53
36RL 1000 -3.20 -4.12 -3.06 -4.03 -5.56 -6.83 -2.90 -4.29

Avg -3.33 -4.62 -3.23 -4.28 -7.22 -9.44 -3.72 -5.75
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of feasible and infeasible solutions, even adopting the concept of granular local search.

Still, it could achieve better solutions, on average, on two instances of 500 customers

and one of 1000 customers. By working with infeasible solutions, the IPPD was able to

reach new better solutions for the instances 16PL, 4PL, 6RL, 27PS, 28PL and 33PS,

because the gaps found are greater than zero. To sum up, the IPPD got greater or equal

average gaps on 20 instances, the GVNSsa obtained 14 better or equal average gaps, the

GVNSseq found 13 greater or equal average gaps and the GLS was not able to find better

gaps, only the same values for just 3 instances.

Once more, the statistical significance of these results is investigated by performing

a Friedman test to compare the average gap values obtained for each algorithm on each

instance. The Friedman test returned a value p < 4.5 × 10−8, which means that exists

a significant difference of performance. Pairwise Wilcoxon tests were also performed to

locate these differences, and the results are presented in Table 4.6. These tests confirmed

that IPPD is significantly better than the GLS, but it does not differ from the GVNSseq

and the GVNSsa, probably because of the performance presented on large instances.

Nevertheless, because of its good performance on small and medium-size instances, the

IPPD still can be considered an excellent choice for solving the MVPPDP, as it can achieve

very good solutions by exploring larger and infeasible neighborhoods.

Table 4.6: Results of pairwise Wilcoxon tests

Algorithms p-value
IPPD–GLS 0.00

IPPD–GVNSseq 0.60

IPPD–GVNSsa 0.41

4.6 Conclusions

The study of the multi-vehicle profitable pickup and delivery problem has been conducted

in this work. A solution for the MVPPDP is not so trivial to find, because firstly, a good

selection of a subset of customer requests to attend is needed, next an efficient decision of

which vehicle will attend which request and finally what is the best route for each vehicle,

considering a maximum travel time, the capacity of the vehicle and the precedence of a

pickup over the delivery for each request. These characteristics lead the search space of

the MVPPDP to have many basins of attractions. Thus, an efficient method for solving

the MVPPDP must have good techniques to avoid getting trapped in these basins.
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We designed an algorithm with the objective of escaping from these basins of at-

tractions, by allowing it to work with infeasible solutions. This algorithm, called IPPD,

is based on the iterated local search and applies, successively, local searches using the

random variable neighborhood descent. The local searches explore neighborhoods for op-

timizing the order of visits for each vehicle and also for increasing the total profits. In

order to reduce the computational time for all neighborhoods, because the search space

is increased when dealing with infeasible solutions, the idea of granular local search was

applied in the IPPD.

The proposed algorithm was tested on benchmark instances and statistical analyses

proved the very good performance of working with infeasible solutions. Furthermore, the

results obtained were compared to three algorithms from the literature and, the IPPD

produced the best results on small and medium-size instances within the same time limits.

It was even able to find new best solutions on 6 instances. However, probably because of

the time limit, it was not the best algorithm for the large instances, but its performance

was not so far from the other two algorithms, because no statistical difference between

them was found. Thus, the IPPD has potential to be adapted to quickly produce better

solutions for the large set of instances of the MVPPDP.



Chapter 5

Conclusions and Future Work

This thesis proposed an efficient heuristic for one-to-one pickup and delivery problems

(PDP), in which the objective is to find a set of minimum cost routes, which start and

end at a depot, for a fleet of vehicles to service pickup and delivery pairs of customers,

subject to some constraints. The one-to-one PDPs are NP-hard, thus larger instances

may require prohibitive processing times for their exact solution. This fact motivates the

development of heuristics for solving these problems. However, building a heuristic that

deals with one-to-one pickup and delivery pairs is not an easy task, since it must be very

well designed to be capable of working with pairs of customers efficiently, as the search

space becomes larger than working with only one customer at a time.

Therefore, this thesis focused on developing highly-skilled techniques to deal with two

one-to-one PDPs: the Multi-Vehicle One-to-one Pickup and Delivery Problem with Split

Loads (MPDPSL) [23] and the Multi-Vehicle Profitable Pickup And Delivery Problem

(MVPPDP)[28].

The MPDPSL relaxes the classical constraint, obtained from the Vehicle Routing

Problem (VRP), of restricting a customer to be serviced by at most one vehicle, thus,

a pair of customers in the MPDPSL can be attended by more than one vehicle. The

MPDPSL is also defined by a duration constraint, which may force the solution to contain

more than one vehicle for serving all customers. The objective of the MPDPSL is to find a

set of routes using at most all available fleet of vehicles that minimizes the total distance,

respecting the capacity, maximum tour time and also precedence for pickups on deliveries.

In Chapter 3, the MPDPSL is properly defined and we propose an algorithm based on

Iterated Local Search (ILS) and the Random Variable Neighborhood Search (RVND) to

solve the MPDPSL. The core of the algorithm, called IPDS, consists of a new large neigh-
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borhood search, which reduces the problem of finding the best insertion combination of a

pickup and delivery pair into a route to a resource-constrained shortest path problem, and

solves it via dynamic programming. Once the non-dominated labels are known for each

separate route, a knapsack problem is solved to find the best insertion plan in the whole

solution. Our computational experiments on two set of instances of the single-vehicle

version from the literature demonstrate the very good performance of the algorithm. On

the first set of instances, created by [47], the IPDS algorithm was executed 20 times and

it was able to find better average results on all 45 instances within the same time limits

of other two algorithms from the literature, which were executed only once per instance.

The IPDS was even capable of improving the best known solutions for all 45 instances,

with an average improvement of 3.41%. On the second set of instances, created by [23],

the IPDS algorithm was again executed 20 times, limited by the same computational

times of [23], for small and medium instances and 5 times for the largest set of instances

containing 500 pairs of costumers. The best found solutions of IPDS were compared with

the best found solutions of the state-of-the-art from [23] and, again, the IPDS proved

its effectiveness, improving 47 instances from a total of 48. Sensitivity analysis on the

components of the IPDS showed the importance of each neighborhood incorporated on it.

Finally, additional results on new proposed instances for the MPDPSL are also reported,

producing consistently good solutions over 20 runs.

Due to the great performance obtained in solving the IPDS, we decided to address

another one-to-one PDP, in fact the MVPPDP, and inspect the performance of an adap-

tation of the IPDS for solving this problem. Differing from the MPDPSL, the MVPPDP

restricts a pair of customers to be visited by at most one vehicle, but it also imposes

a duration constraint for each vehicle. Each pair of customers in the MVPPDP has a

revenue to be obtained if this pair is attended. The objective of the MVPPDP is to find

a set of routes using at most all available fleet of vehicles that will attend at most all

customers that maximizes the total profit, respecting the capacity, maximum tour time

and precedence for pickups on deliveries as well. The total profit is given by the total

revenue obtained minus the total travel costs.

Chapter 4 defines the MVPPDP and describes a heuristic algorithm, named IPPD,

based on the ILS and the RVND for solving the MVPPDP. The main contribution of this

Chapter is to present the importance of allowing infeasible solutions during the search

phase of a heuristic algorithm to solve the MVPPDP. A dynamic strategy was adopted

for updating a coefficient factor that penalizes the violation of the duration constraint.

To reduce the search space of infeasible solutions, a granular local search was also in-
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corporated into the algorithm. We performed computational experiments on benchmark

instances from the literature [28]. First of all, a sensitivity analysis on each component

of the IPPD was done. This analysis showed the power of the proposed techniques for

solving the MVPPDP, but some neighborhoods that use the concept of blocks were re-

moved from the standard version of the algorithm, because they were not contributing

to the final solution, considering the time limits. Then, the results of this adapted al-

gorithm were compared to three algorithms of the state-of-the-art of the MVPPDP [28]:

two algorithms based on the Variable Neighborhood Search, one with a pre-defined order

of the local searches from the VND (GVNSseq) and the other with a self-adaptive order

of theses local searches from the VND (GVNSsa), and a Guided Local Search (GLS)

algorithm. The gaps for all algorithms were calculated using the best known solution

obtained in [28] after 20 hours of execution for each instance of their algorithms. The

IPPD algorithm had a great performance on the small and medium-sized instances, with

average gaps of −0.43% for the small set and −3.58% for the medium set. For the large

set, even applying granular local searches, the IPPD did not has the best performance,

but also not the worst. It was even capable of improving the best known solution for 3

large instances limited by 100 seconds, instead of 20 hours. Overall, the IPPD was able

to find new best solutions for 6 instances out of 36 instances and this is really impressive,

considering that the time limits are in seconds. To sum up, the IPPD got greater or equal

average gaps on 20 instances, the GVNSsa obtained 14 better or equal average gaps, the

GVNSseq found 13 greater or equal average gaps and the GLS was not able to find better

gaps, only the same values for just 3 instances.

It is noteworthy that both problems (MPDPSL and MVPPDP) are one-to-one pickup

and delivery problems, have common constraints (capacity, precedence and duration), deal

with increasing size of their solutions during the search and are very restrictive problems,

but during this work we realized that even with these many similar characteristics, both

problems need very specific techniques to be efficiently solved. As future works, we intend

to keep following this research line, developing specific techniques to solve these problems,

specially new techniques for adapting our algorithm to quickly solve the MVPPDP, and

also test it with longer time limits. We want also to continue generalizing neighborhoods

and their exploration methods as well as extending the methodology to a wider range

of not only one-to-one PDPs, but also other difficult vehicle routing variants. Another

possible research direction is the “non-standard” hybridization heuristic-exact, involving

dynamic programming rather than mathematical programming.



References

[1] Aleman, R. E., Hill, R. R. A Tabu Search with Vocabulary Building Approach
for the Vehicle Routing Problem with Split Demands. Int. J. Metaheuristics 1, 1
(maio de 2010), 55–80.

[2] Aleman, R. E., Zhang, X., Hill, R. R. A ring-based diversification scheme for
routing problems. International Journal of Mathematics in Operational Research 1,
1 (2009), 163–190.

[3] Aleman, R. E., Zhang, X., Hill, R. R. An Adaptive Memory Algorithm for the
Split Delivery Vehicle Routing Problem. Journal of Heuristics 16, 3 (junho de 2010),
441–473.

[4] Archetti, C., Bianchessi, N., Speranza, M. G. Optimal solutions for routing
problems with profits. Discrete Applied Mathematics 161, 4 (2013), 547–557.

[5] Archetti, C., Feillet, D., Hertz, A., Speranza, M. G. The capacitated
team orienteering and profitable tour problems. Journal of the Operational Research
Society 60, 6 (2009), 831–842.

[6] Archetti, C., Hertz, A., Speranza, M. G. A Tabu Search Algorithm for the
Split Delivery Vehicle Routing Problem. Transportation Science 40, 1 (2006), 64–73.

[7] Archetti, C., Hertz, A., Speranza, M. G. Metaheuristics for the team orien-
teering problem. Journal of Heuristics 13, 1 (2007), 49–76.

[8] Archetti, C., Savelsbergh, M. W. P., Speranza, M. G. Worst-Case Analysis
for Split Delivery Vehicle Routing Problems. Transportation Science 40, 2 (maio de
2006), 226–234.

[9] Archetti, C., Speranza, M. G., Vigo, D. Vehicle routing problems with profits.
Vehicle Routing: Problems, Methods, and Applications 18 (2014), 273.

[10] Bent, R., Hentenryck, P. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers and Operations Research
33, 4 (4 2006), 875–893.

[11] Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G. Static pickup
and delivery problems: a classification scheme and survey. Top 15, 1 (2007), 1–31.

[12] Boese, K. D. Cost versus distance in the traveling salesman problem. UCLA
Computer Science Department, 1995.



References 67

[13] Boudia, M., Prins, C., Reghioui, M. An Effective Memetic Algorithm with
Population Management for the Split Delivery Vehicle Routing Problem. In Hybrid
Metaheuristics (2007), T. Bartz-Beielstein, M. J. B. Aguilera, C. Blum, B. Naujoks,
A. Roli, G. Rudolph, and M. Sampels, Eds., vol. 4771 of Lecture Notes in Computer
Science, Springer, p. 16–30.

[14] Boussier, S., Feillet, D., Gendreau, M. An exact algorithm for team orien-
teering problems. 4OR: A Quarterly Journal of Operations Research 5, 3 (2007),
211–230.

[15] Campos, V., Corberán, A., Mota, E. A scatter search algorithm for the split
delivery vehicle routing problem. In Advances in computational intelligence in trans-
port, logistics, and supply chain management. Springer, 2008, p. 137–152.

[16] Cassani, L., Righini, G. Heuristic algorithms for the tsp with rear-loading. In
35th Annual Conference of the Italian Operations Research Society (AIRO XXXV),
Lecce, Italy (2004).

[17] Chao, I.-M., Golden, B. L., Wasil, E. A. A fast and effective heuristic for the
orienteering problem. European Journal of Operational Research 88, 3 (1996), 475 –
489.

[18] Chao, I.-M., Golden, B. L., Wasil, E. A. The team orienteering problem.
European Journal of Operational Research 88, 3 (1996), 464 – 474.

[19] Clarke, G., Wright, J. W. Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points. Operations Research 12, 4 (julho de 1964), 568–581.

[20] Coelho, I. M., Munhoz, P. L. A., Haddad, M. N., Coelho, V. N., Silva,
M. M., Souza, M. J. F., Ochi, L. S. A computational framework for combinatorial
optimization problems. In VII ALIO/EURO Workshop on Applied Combinatorial
Optimization (Porto, 2011), p. 51–54.

[21] Cordeau, J.-F., Laporte, G. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological 37, 6 (2003),
579–594.

[22] Cordeau, J.-F., Laporte, G., Ropke, S. Recent Models and Algorithms for One-
to-One Pickup and Delivery Problems. Springer US, Boston, MA, 2008, p. 327–357.

[23] Şahin, M., Çavuşlar, G., Öncan, T., Şahin, G., Tüzün Aksu, D. An efficient
heuristic for the Multi-vehicle One-to-one Pickup and Delivery Problem with Split
Loads. Transportation Research Part C: Emerging Technologies 27 (2013), 169–188.

[24] Dang, D.-C., Guibadj, R. N., Moukrim, A. A pso-based memetic algorithm
for the team orienteering problem. In European Conference on the Applications of
Evolutionary Computation (2011), Springer, p. 471–480.

[25] Derigs, U., Li, B., Vogel, U. Local search-based metaheuristics for the split
delivery vehicle routing problem. The Journal of the Operational Research Society
61, 9 (setembro de 2010), 1356–1364.



References 68

[26] Dror, M., Trudeau, P. Savings by Split Delivery Routing. Transportation Science
23, 2 (maio de 1989), 141–145.

[27] Dror, M., Trudeau, P. Split delivery routing. Naval Research Logistics (NRL)
37, 3 (1990), 383–402.

[28] Gansterer, M., Küçüktepe, M., Hartl, R. F. The multi-vehicle profitable
pickup and delivery problem. OR Spectrum 39, 1 (2017), 303–319.

[29] Gendreau, M., Hertz, A., Laporte, G. New Insertion and Postoptimization
Procedures for the Traveling Salesman Problem. Operations Research 40, 6 (novem-
bro de 1992), 1086–1094.

[30] Hu, Q., Lim, A. An iterative three-component heuristic for the team orienteering
problem with time windows. European Journal of Operational Research 232, 2 (2014),
276–286.

[31] Jepsen, M. K., Petersen, B., Spoorendonk, S., Pisinger, D. A branch-and-
cut algorithm for the capacitated profitable tour problem. Discrete Optimization 14
(2014), 78–96.

[32] Ke, L., Archetti, C., Feng, Z. Ants can solve the team orienteering problem.
Computers & Industrial Engineering 54, 3 (2008), 648–665.

[33] Kubiak, M. Distance measures and fitness-distance analysis for the capacitated
vehicle routing problem. In Metaheuristics. Springer, 2007, p. 345–364.

[34] Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R. W. The team ori-
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