
UNIVERSIDADE FEDERAL FLUMINENSE

DANIEL LOPES CINALLI

Integrating Collective Intelligence into
Multi-Objective Optimization Evolutionary

Algorithms: Interactive Preferences and Reference
Points for a Facility Location Problem

NITERÓI

2017



UNIVERSIDADE FEDERAL FLUMINENSE

DANIEL LOPES CINALLI

Integrating Collective Intelligence into
Multi-Objective Optimization Evolutionary

Algorithms: Interactive Preferences and Reference
Points for a Facility Location Problem

Defesa de Proposta de Tese de Doutorado
apresentada ao Programa de Pós-Graduação
em Computação da Universidade Fed-
eral Fluminense como requisito par-
cial para a obtenção do Grau de
Doutor em Computação. Área de con-
centração: Inteligência Arificial

Orientador:
Profa. Dr. Ana Cristina Bicharra Garcia

Co-orientador:
Prof. Dr. Luis Martí Orosa

NITERÓI

2017



to Raphaela, Murilo and Caio.



Acknowledgments

to be written...



Abstract

Some organizations have to assign and manage facilities in an optimized way. Those ac-
tivities involve many stakeholders with multiple conflicting objectives. Multi-objective
optimization evolutionary algorithms have been successfully applied to several complex
synthetic and real-world multi-objective problems (MOPs). Although these algorithms
have proved themselves as a valid approach to the MOP, there is still need for improve-
ments on the performance of the search process. This work introduces a novel approach
meant for bringing collective intelligence methods into the optimization process carried out
by evolutionary multi-objective optimization algorithms. In particular, it describes the
extension of some well-known algorithms (Non-dominated Sorting Genetic Algorithm-II,
S-metric Selection Evolutionary Multi-objective Algorithm, Strength Pareto Evolution-
ary Algorithm 2) to include collective online preferences into the optimization process.
In these new methods —called CI-NSGA-II, CI-SMS-EMOA and CI-SPEA2—, groups of
decision makers can highlight the regions of the Pareto frontier that are more relevant to
them as to focus the search process mainly on those areas. Additionally, the integration
of interactivity and cooperation into the evolutionary algorithms refines users’ preferences
and improves the reference points throughout the evolutionary progress. Rather than a
unique or small group of decision makers with unilateral preferences, the application of
dynamic group preferences aggregates consistent collective reference points and creative
solutions to enhance multi-objective results. In order to analyse the results, three new
performance indicators based on preferences are introduced to evaluate the quality of
approximations set. As part of this work, the algorithms’ performances are tested when
faced with some synthetic problems as well as a real-world case of facility location. The
experiments demonstrate the advantages of a collective intelligence operator integrated
into the multi-objective evolutionary algorithm.

Keywords: collective intelligence; preferences; reference points; evolutionary multi-
objective optimization algorithms; facility location problem.



Resumo

Certas organizações têm a necessidade de gerenciar e distribuir recursos de maneira
otimizada. Essas atividades, em geral, envolvem muitos stakeholders com múltiplos ob-
jetivos conflitantes. A otimização evolutiva multi-objetivo foi aplicada com sucesso em
diversos problemas complexos multi-objetivo (MOP) do mundo real. Embora esses algo-
ritmos tenham uma abordagem válida para resolução de MOP, ainda existe necessidade de
melhorar a performance do processo de busca. Este trabalho introduz um novo método
que visa integrar inteligência coletiva ao processo de otimização conduzido pelos algo-
ritmos evolucionários multi-objetivo. Em particular, a pesquisa descreve a extensão de
alguns algoritmos clássicos (Non-dominated Sorting Genetic Algorithm-II, S-metric Se-
lection Evolutionary Multi-objective Algorithm, Strength Pareto Evolutionary Algorithm
2 ) para a inclusão de preferências coletivas no processo de otimização em tempo real.
Nesses métodos —chamados CI-NSGA-II, CI-SMS-EMOA e CI-SPEA2—, os grupos de
tomadores de decisão podem ressaltar as regiões da frente de Pareto que sejam mais rel-
evantes a eles e, por conseguinte, focar o processo de busca principalmente nessas áreas.
Além disso, a combinação de interatividade e cooperação nos algoritmos evolucionários
refinam as preferências dos usuários e aperfeiçoam os pontos de referência durante o pro-
gresso evolutivo. Em lugar de um único ou pequeno grupo de tomadores de decisão com
preferências unilaterais, a aplicação dinâmica de preferências agregam pontos de referên-
cia consistentes e soluções criativas para melhorar os resultados multi-objetivos. A fim
de analisar os resultados, três novos indicadores de performance baseados em preferências
são apresentados para avaliar a qualidade das frents de aproximação. Como parte desse
trabalho, as performances dos algoritmos são testadas com problemas de benchmark e com
um problema de alocação de recursos. Os experimentos demonstram as vantagens de um
operador de inteligência coletiva integrado aos algoritmos evolucionários multi-objetivo.

Palavras-chave: inteligência coletiva; preferências; pontos de referência; algoritmos
evolutivos multi-objetivo; problema de alocação de recursos.
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Chapter 1

Introduction

1.1 Multi-Objective Problem

Many real-life decision problems require dealing with trade-offs between multiple con-

flicting objectives. Those problems are known as multi-objective optimization problems

(MOPs) as they consider more than one criteria to be simultaneously optimized [73]. Fre-

quently, the solution of a MOP is not a single point that optimizes all the objectives at the

same time, but, instead, a possibly infinite set of points that represent different trade-offs

between the objectives known as Pareto-optimal set (PS). A decision maker (DM) has

to select which of those solutions are the ones to be carried out in practice according to

some a priori high-level preferences.

Several examples come from everyday life and permeate different areas like engineer-

ing, financial, logistics, personal routine, among others. Figure 1.1 illustrates one situation

of decision-making involving conflicting objectives. It refers to the process of purchasing

an automobile car [60]. The buyer must decide if he/she should pick the most comfort

and expensive car, or the cheapest and less comfort vehicle. Actually, this decision pro-

cess is not a single objective one. The buyer still can choose cars between these extreme

solutions where a trade-off between these two criteria exists (points A, B and C). The

DM will prioritize the objective cost and sacrifice the comfort, or vice-versa, according to

his/her personal preferences.

When the National Aeronautics and Space Administration (NASA) began to study

its post-Apollo human spaceflight programs in the seventies, these projects had to debate

over the optimal shuttle design that best balanced operational cost, development of tech-

nology and capability. Facing a budget constraint at the time, NASA planners needed

to decide over many shuttle orbiters and others system components characteristics to
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A. Single Objective Optimization 
When an optimization problem, while modeling a 

physical system, involves only one objective function, the 
task of finding the lone optimal solution is called single-
objective optimization and the problem is called single-
objective optimization problem (SOP). The main goal of 
single objective optimization is to find the “best” solution, 
which corresponds to the minimum or maximum value of a 
single objective function that lumps all different objectives 
into one. The type of optimization is useful as a tool which 
should provide decision makers with insights into the 
nature of the problem, but usually cannot provide a set of 
alternative solutions that trade different objectives against 
each other. 

B.Multi Objective Optimization 
When an optimization problem involves more than one 

competing or conflicting objective functions, the task of 
finding one or more optimum solutions is known as multi-
objective optimization and the problem is called multi-
objective optimization problem (MOP).Most real-world 
search and optimization problems naturally involve 
multiple objectives. Different solutions may produce trade-
offs (conflicting scenarios) among different objectives. A 
solution that is better with respect to one objective requires 
a compromise in other objectives. On a multi objective 
optimization [5] with conflicting objectives, there is no 
single optimal solution. The interaction among different 
objectives gives rise to a set of compromised solution, 
largely known as trade-off. So when an optimization 
problem involves more than one objective function, the 
task of finding one or more optimum solutions is known as 
multi-objective optimization. 

1. Some Real-World Examples of MOPs 

¾ Purchase of an automobile car from a show room 
� Conflicting objectives –  Maximize    

comfort factor.  
                             Minimize purchase cost. 

¾ Product design of  an appliance in a factory  
� Conflicting objectives – Maximize 

performance (accuracy, reliability etc.). 
                     Minimize production cost. 

¾ Allocation of facilities in hospitals 
� Conflicting objectives – Maximize 

attention time to patients.  
                     Minimize time to provide facilities to patients. 

                    Minimize the cost of operations.  

¾ Economic  load dispatch in power  systems 
� Conflicting objectives – Minimize fuel 

cost.  
                     Minimize total real power loss. 

                               Minimize emission 

¾ Land use management 
� Conflicting objectives – Maximize 

economic return 
                              Maximize carbon sequestration 

                               Minimize soil erosion 

¾ Polynomial Neural Network (PNN) 
� Conflicting objectives – Minimize 

architectural complexity 
                              Maximize classification accuracy 

¾ Predictive data mining classification tasks 
� Conflicting objectives – Maximize 

predictive accuracy of classification 
model 

             Minimize complexity of the model (size of model)  

An Example of MOP: Car-Buying Decision-Making 
Problem which is widely accepted is explained in detail 

 
The high level information required for car buying 

decision making problem can be pointed out as below 
which is qualitative, subjective and experience based. This 
information is required in two ways:  

Figure 1.1: Multi-objective situation in real-life. It considers the cost and the comfort
objectives to exemplify a trade-off set in a process of purchasing a car. Figure taken
from [60].

lower the development costs of the resulting designs [115]: propulsion system, glide or

power-assisted landing, primary structural material, extent of cross-range manoeuvrabil-

ity, safety, aerodynamic heating and pressure. The designers, for example, had to find

the optimum distribution of heat resistant materials based on the angle of atmospheric

re-entry. If the angle is too steep, there is more friction on the nose and wing leading

edges of the shuttle. If the angle is too shallow, the surface temperature will be con-

centrated on the spacecraft’s underside. The designers and engineers wanted to decrease

the angle in order to install the heat shield on the spacecraft’s underside. But, at the

same time, they wanted to preserve the cold as much as possible in that area to avoid

premature deterioration of the heat shield. That conflicting situation made the entities

involved disagree in many strategies to locate the required heat protection and choose the

right angle to re-entry. Figure 1.2 shows the temperature distribution on a space shuttle

according to the angle of atmospheric re-entry.

1.2 Facility Location Problem

The facility location problem [54, 106] is a branch of operations research concerned with

the assignment of available facilities and resources to achieve the organization’s strategic

goals. This area has received significant attention due to the number of endeavours

that must reduce costs and optimize their operations: manufacturing plants, storage

facilities, public transport planning, equipment for oil spills, warehouses, vehicle routing,
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Figure 1.2: This figure shows the temperature distribution on a space shuttle during
upper atmosphere re-entry. If the angle is too steep, there is more friction on the nose
and wing leading edges of the shuttle (red); too shallow, and the surface temperature
will be concentrated on the spacecraft’s underside. The designers wanted to decrease the
angle in order to keep the heat resistant materials on the spacecraft’s underside. But, at
the same time, they wanted to preserve the cold as much as possible on that area to avoid
premature deterioration of the heat shield.

fire stations, hospitals, etc.

In this context, the petroleum industry manages an optimal placement and intercon-

nection of extraction and transportation equipment to increase extraction, pumping, and

generation of oil, while keeping costs and robustness at optimal levels. Offshore plant op-

eration must balance the conflicting needs for materials and the application of machinery

in an economic way to maximize the different aspects related to operational effectiveness.

These circumstances describe a multi-objective optimization and decision making problem

with many stakeholders looking for efficient approaches.

Figure 1.3 shows a fleet of specialized vessels for pipeline installation and subsea

construction. Different decision targets can be considered in this resource placement

problem: the transportation requirements and restrictions; the cost; the production; the

safety of the environment and workers; the robustness of the production chain; the quality

of the industrial assets and etc. But as more objectives compete among each other, the

problem becomes harder to solve and comprehend.
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Figure 1.3: Multiple business activities of an oil & gas industry. The picture shows a fleet
of specialized vessels for pipeline installation and subsea construction. Also, it illustrates
offshore and onshore infrastructures responsible for processing the collect oil or gas [3].

1.3 Multi-Objective Optimization Methods

Multi-objective optimization refers to the process of finding a set of feasible solutions to

a problem by trading off the optimal values of two or more functions. MOPs have been

addressed with a wide variety of methods. The techniques are classified into two broad

categories [50]: deterministic and heuristic.

Deterministic methods have been successfully applied in optimization. However, some

problem characteristics may reduce the algorithm effectiveness. Many of the deterministic

approaches that are based on gradient information of the parameters have difficulties with

the local optima, plateaus or ridges in the search landscape. Gradient-based methods use

the derivatives of the objective function to guide the search. They can perform well on

unimodal functions and quickly converge to an optimal solution, but are not efficient in

multimodal functions, non-differentiable or discontinuous problems. Branch and bound

search techniques need heuristics to limit the search space. Depth-first and breadth-first

require too much computational time with large-sized problems. Another very common

approach to solve MOPs constructs a single aggregate objective function (AOF) which

combines all of the objectives.

The scalarization of the vector-valued problem converts the original multiple-objective

problem into a single-objective optimization. Prominent examples of this technique are

the weighted-sum approach, ε-constraint [124], weighted metrics, Benson’s method [27],
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lexicographic, min-max, among others. All of these methods try to find the optimal

Pareto front using different approximation techniques. Note that scalarizing approaches

are feasible if there are only a few objectives [158], because the number of combinations

of weighting coefficients for objectives grows exponentially with the number of objectives.

The approximation of the entire Pareto-optimal frontier requires extensive time and

computational resource. In the general case, optimization problems and, hence, MOPs,

are NP-hard [15]. Moreover, some of those algorithms are sensitive to the shape or

continuity of the Pareto front. For that reason deterministic search techniques are usually

unsuitable to handle the complexity of this task.

Metaheuristic and stochastic approaches are frequently the only viable alternative to

handle MOPs. Among existing metaheuristics there can be mentioned the evolutionary

computation, simulated annealing, tabu search, Monte Carlo, ant colony and memetic al-

gorithms [169]. Evolutionary algorithm (EAs) [16] is a nature-inspired computational ap-

proach that uses stochastic operators (variation, evaluation and selection) to work on op-

timization problems. The application of evolutionary algorithms to MOPs has prompted

the creation of multi-objective optimization evolutionary algorithms (MOEAs) [50]. EAs

can find a finite population of optimal solutions in one iteration run and disregard any par-

ticular shape of the underlying fitness landscape. They approximate the optimal Pareto

front as a discrete set of points.

1.4 Problem Description

As mentioned in the previous section, multi-objective problems can be hard or even im-

possible to solve exactly. Most classical and optimization methods find difficulties to

reach a global perspective and often converge to a locally optimal solution having inferior

objective function values. Although MOEA is a valid approach for multi-objective opti-

mization, in complex cases the computation of the entire Pareto-optimal frontier is still a

time-consuming and onerous process.

Some MOP characteristics further complicate the final step of the optimization pro-

cess. In the end of the optimization, the set of all non-dominated solutions may contain

infinite points. The decision maker (DM) must identify which of those solutions are the

ones that satisfy her/his preferences and would be realized in practice. Most of the time,

the DM is not interested in finding solutions covering the entire trade-off set, but only

a small sub-set within relevant regions of her/his preference. This task can be rather
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complex and requires in-depth knowledge of the problem being solved, something that is

impossible in many practical situations.

In problems with a large number of objective functions to be optimized, the number

of non-dominated points used to represent the whole Pareto front (PF ) increases exponen-

tially. The solutions obtained in these higher order spaces do not dominate one another

and, therefore, the set of optimal solutions becomes the entire solution space. This is not

only an issue for the MOEAs due to the computational resources necessary to generate the

trade-off set, but it also causes severe difficulties for the DMs to understand the obtained

solutions and then to make decisions.

DM’s preferences can be expressed as reference points (Section 2.7). Interactive tech-

niques and reference points can be used to mitigate those inconveniences and steer the

search for a suitable resolution in preferred areas of PF . The interlace of the search process

and DM preferences improves the population quality throughout the evolutionary process

and leads to compromise solutions of practical interest. These approaches allow the opti-

mization algorithm to reduce the search area and thus reaching satisfactory solutions at

a lower computational cost.

On the other hand, it remains challenging to identify a-priori reference points for an

unknown problem and elicit preferences to the optimization process. Despite the different

manners to articulate the preferences in MOEAs, the approximation of the Pareto-optimal

frontier still needs too much time and computational resource to calculate a great number

of function evaluations.

1.5 Integrating Collective Intelligence in MOEAs

In practice, optimization problems pose difficulties in defining a priori reference points

or preferences. Because of the lack of expert knowledge on the problem at hand, the DM

preferences can be biased, unilateral, incomplete or even nonexistent.

Collective intelligence (COIN) methods [117] put forward a paradigm that allows elu-

cidating knowledge from groups of (not necessarily expert) individuals. In this regard,

collective reference points obtained by the interaction and aggregation of multiple opin-

ions can be used to produce an accurate and unbiased representation of preferences and,

hence, reference points. Built upon the subjectivity of the crowds and human cognition,

the intelligence of participatory actions addresses dynamic collective reference points to

overcome MOPs difficulties and guide the exploration of preferred solutions.
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The integration of collective intelligence in MOEAs replaces a single reference point

in the search process by a global preference of all the participants involved in the op-

timization. The collective reference point has an advantage over traditional interactive

approaches because their results are not driven by a single DM, but a group of people

that delimits their collective area of interest and preferences in the objective space. The

combination of COIN into evolutionary algorithms is the main contribution of this work.

It addresses the problem of finding the optimal solutions with less function evaluation

and focusing the search on relevant regions of the Pareto front at a lower computational

cost.

Thus, this work describes how to implement a collective intelligence operator to bias

the search during the optimization phase and restrict the objective space. Besides the four

main operators based on the theory of evolution: selection, crossover, mutation and elite-

preservation; the COIN-based variation operator receives rational collaborations from the

participants to improve the overall quality of evolutionary population and positively affect

further generations. The underlying idea here is to submit some of the MOEA candidate

solutions to be modified and expect that they are improved by the collective. The modified

solutions are then re-injected to the population and, therefore, go through the rest of the

steps of the evolutionary process. This calls for a special problem rendering that allows

members of the collective to interact with and modify the solutions.

The synergy of actions and the heterogeneity inside collective environments develop

creative solutions based on the crowds’ subjectivity and cognition. From a larger perspec-

tive, the COIN operator brings a subjective input to the optimization engine and gives a

new collective intelligence component to work along the random operators from stochastic

methods.

Facility location problems can be used as the application domain for the collective

intelligence operators. Most of the location problems are connected to a real-world case

example and their objectives are meaningful to human participants. Hence, those prob-

lems can interact with crowd’s cognition to obtain optimal solutions for complex problems

of facility location. The proposed interactive COIN-MOEAs (Section 4) embeds human

characteristics (strategic thinking, 3D spatial reasoning and orientation) into the opti-

mization process. Some potential benefits are noted especially in cases of problems with

multi-objective environments and spatial requirements for task execution, such as: logis-

tics problems, oil field development planning and routing.
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1.6 Objectives and Contributions

This thesis seeks to solve the problem:

• the approximation of the Pareto-optimal frontier needs extensive time and compu-

tational resource to calculate a great number of function evaluations;

In order to address this research problem, the thesis:

1. brings a new useful connection between different fields: multi-objective evolutionary

algorithms and collective intelligence;

2. applies collective intelligence as a new operator to compute a fewer number of eval-

uation of alternatives in the evolutionary process;

3. iteratively refines the search parameters and finds out a preferred sub-set of the

Pareto-optimal front (relevant regions);

4. implements 3 new performance indicators to evaluate the outcome sets of the preference-

based interactive algorithms;

5. obtains optimal solutions for complex multi-objective facility location problems with

spatial orientation;

With regard to the firsts objectives, the thesis puts forward the integration of real-

time collective preferences and interactive behaviour into three existing MOEAs: Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) [64], S-metric Selection Evolutionary

Multi-objective Algorithm (SMS-EMOA) [28], Strength Pareto Evolutionary Algorithm

2 (SPEA2) [179]; and, therefore, introduces a collective intelligence version of them. The

new algorithms overcome difficulties derived from choosing a priori reference points and

propose an online approach to define preferences with the support of collective environ-

ments. They produce better solutions in the sense that they iteratively refine the search

parameters and generate more appropriated points for DM final choice.

While executing this task it became evident the lack of adequate performance in-

dicators that take into account preferences. Therefore, the work also introduces three

new performance indicators that are used to evaluate the quality of the optimal frontier

approximation driven by the online collective preferences.
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With regard to the last objective, experiments with the facility location problem

demonstrated the effectiveness of the proposed algorithms as they yield better solutions

at a lower computational cost. Based on the results, the COIN operator is a competitive

advantage as it decreases the number of required function evaluations in the optimization

process and provides faster analysis of preferred alternatives only.

1.7 Structure of the Thesis

The rest of this document is organized as follows. Chapter 2 covers some required formal

definitions of multi-objective optimization, collective intelligence field and clustering algo-

rithms. It outlines different techniques of reference points and interactive MOEAs. Chap-

ter 3 describes the application domain for the collective intelligence operators. Chapter

4 presents the hypothesis of COIN as a genetic operator to bias the optimization search.

Subsequently, it proposes the new algorithms based on interactive and collective intel-

ligence techniques. Chapter 5 introduces three new performance indicators and shows

the more appropriate ones from the classical literature to evaluate the quality of points

around the collective reference points. After that, Chapter 6 analyses the performance of

the algorithms when faced with benchmark problems and a facility location case study.

Finally, Chapter 7 puts forward some conclusive remarks and future work directions.

For reference purposes, a number of complementary appendixes are included in this

document. Appendix A lists all the publications related to this work so far. Appendix

B lists the submitted materials for publication. Appendix C presents the formula of the

scalable multi-objective test problems used for experiments in this thesis. Appendix D

presents some collective decision-making techniques to combine singular inputs into a

global perspective for decision. The tools used as part of the system architecture are

presented in more detail in Appendix E. Appendix F describes the Conover-Inman hy-

pothesis test.



Chapter 2

Foundations

2.1 Multi-Objective Optimization

MOP can be stated as follows:

Definition 2.1 (Multi-Objective Optimization Problem). A MOP can be stated as fol-

lows:

minimize F (x) = {f1(x), . . . , fk(x)} ,
subject to gi(x) ≤ 0 , hj(x) = 0 .



 (2.1)

where x ∈ Ω is an n-dimensional decision variable. The solution to this problem can

be expressed by relying on the Pareto dominance relationship.

Definition 2.2 (Pareto dominance relation). A x is said to dominate v (denoted as

x ≺ v) iff ∀fi, fi(x) ≤ fi(v) ∧ ∃fj s.t. fj(x) < fj(v).

There are other forms of Pareto dominance and two objective vectors may be incom-

parable (ie, not dominated by each other):

Definition 2.3 (Weak Pareto dominance). A x weakly dominates v (x 4 v) iff ∀fi,
fi(x) ≤ fi(v).

Definition 2.4 (Strict Pareto dominance). The strictly dominance x ≺≺ v stands only

on iff ∀fi, fi(x) < fi(v).

Definition 2.5 (Incomparable solutions). The decision variables can also be incomparable

(x ‖ v) when ¬ (x 4 v) ∧ ¬ (v 4 x).
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Figure 2.1: Decision and objective spaces in Dent problem. Figure taken from [120].

A solution x ∈ Ω is Pareto optimal if there does not exist another solution x′ ∈ Ω

such that F (x′) ≺ F (x). Considering a set of points, the non-dominated subset can be

constructed using the Pareto dominance relation:

Definition 2.6 (Pareto-optimal set). The solution of a MOP is a (possibly infinite)

Pareto-optimal set PS = {x ∈ Ω,@x′ ∈ Ω such that F (x′) ≺ F (x)} that contains all the
elements of Ω that are not Pareto-dominated (≺) by any other element [51].

Definition 2.7 (Pareto-optimal front). The projection of PS through F () is known as

the Pareto-optimal front, PF .

The space Rk which contains the set of the attainable objective vectors Z is re-

ferred to as the objective space. The boundary of Z is denoted by ∂Z. The mapping

between decision space and objective space in a two dimensional minimization case is il-

lustrated by the Dent problem [143] in Figure 2.1 [122]. This problem minimizes F (x) =

{f1(x), f2(x)}, such that f1(x) = 1
2

(√
1 + (x1 + x2)2

√
1 + (x1 − x2)2 + x1 − x2

)
+ d,

f2(x) = 1
2

(√
1 + (x1 + x2)2

√
1 + (x1 − x2)2 − x1 − x2

)
+ d; where d = λe−(x1−x2)2 , λ =

0.85 and x ∈ [−1.5, 1.5]2.

Figure 2.2 demonstrates the set of individuals that are dominated (green dots) by

a given individual (blue dot), the ones that dominate it (in red) and those that are

incomparable.

In other contexts, MOPs solutions are called non-inferior, admissible or efficient so-

lutions. The elements of this set are non-dominated with respect to all the others. The

Dent problem has a connected convex-concave-convex front (see Figure 2.3). Although
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Figure 2.2: The dominance relation in Dent problem. Considering a given point (blue
dot), in red are the points that dominate it and in green are the points that are dominated
by the blue dot. Figure taken from [120].

elements of this solution set are equality optimal, it is required an interaction with a

human decision maker to select the appropriated answer for the desired purpose.

On some optimization techniques is useful to know the lower and upper bounds of

PF [100]. The ideal point is sometimes used as a reference point which the method should

optimize towards.

Definition 2.8 (Ideal point). The ideal point denotes the array with the lower bound of all

objective function and usually corresponds to a non-existent solution: z∗i = minz∈Z zi,∀i ∈
{1, . . . , k}. If all objective functions would be optimized individually, the composition of

the values represent the ideal objective.

Definition 2.9 (Utopian point). The utopian point is a vector strictly better than the

ideal point in the search space: z∗∗i = z∗i − εi,∀i ∈ {1, . . . , k} and εi > 0.

Definition 2.10 (Nadir point). In turn, the nadir point is the upper bound of each

objective function in the Pareto-optimal set: znad
i = maxz∈Z zi,∀i ∈ {1, . . . , k}. It is the

worst value of every objective function of the PS.

Figure 2.4 illustrates the lower (z∗i , z∗∗i ) and upper bounds (znad
i ) of PF .

A subset X of Rn is convex if for any two pair of solutions x1, x2 ∈ X and α ∈ [0, 1],

the following condition is true: αx1 + (1 − α)x2 ∈ X [141]. The intersection of all the

convex sets containing a given subset X of Rn is called the convex hull of X. The convex

hull of a set of points is the smallest convex set that contains the points.
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Figure 2.3: The non-dominated front in Dent problem. Figure taken from [120].

Definition 2.11 (CHIM). The convex hull of individual minima (CHIM) [59] is the set

of points in Rk that are convex combinations of F ∗i − F ∗:

H =

{
Φβ : β ∈ Rk,

k∑

i=1

βi = 1, βi ≥ 0

}
(2.2)

where x∗i is the global minimizers of fi(x), ∀i ∈ {1, . . . , k}. Let F ∗i = F (x∗i ), ∀i ∈
{1, . . . , k}; and Φ is a pay-off matrix k x k whose the ith column is F ∗i − F ∗.

2.2 Evolutionary Computation

Scientists and engineers have frequently inspired in the nature and process of biological

organisms to address those problems. There is a large set of approaches available for this

purpose: evolutionary computation, ant-colony optimization, swarm intelligence, neural

networks and molecular (DNA) computation. Their application can be seen across a

growing number of disciplines, such as combinatorial optimization, complex data analy-

sis and time-series prediction, trajectory planning in robotics, manufacturing and facility

scheduling, aircraft design, resource allocation, evolution of rules for solving expert prob-

lems, communication network design, among others.

Probabilistic methods have proved to be capable of finding optimal or near-optimal

solutions in a reasonable computational time. Evolutionary computation (EC) represents
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Figure 2.4: The ideal (z∗i ) and utopian (z∗∗i ) point representing the lower bounds of PF .
The nadir point (znad

i ) representing the upper bound of PF . Figure taken from [60].

a group of stochastic search techniques and optimization methods that simulate the nat-

ural evolution process. Genetic algorithm (GA) is a branch of EC. First developed by

John Holland in the seventies [15, 93], GAs are inspired by Darwin’s theory [58] about

reproduction and natural selection – survival of the fittest. The genetic algorithms are

adaptive heuristic search that not only exploit correlations in the search space, but also

explore new and unknown areas to avoid local optimum points. In this way, they cover

a wide range of problems like constraint satisfaction, combinatorial optimization, among

others. GAs are often used to highly multimodal functions, discrete or discontinuous

functions, NP-complete combinatorial problems and highly multimodal functions.

In the genetic algorithms, each candidate solution to a problem is represented as an

individual with an associated fitness value. The population of candidate solutions P is

evolved by successively applying four main operators: selection, crossover, mutation and

elite-preservation [127]. At each iteration t, the best individuals are selected for survival

and are included in the next generation population Pt+1. In this way solutions which are

good can be used to generate better or similar solutions. The operation stops when some

termination criterion is reached.

The standard GA has the following steps shown in Algorithm 2.1: 1) Choose initial

population Pt; 2) Calculate the fitness function and associate the fitness score to each

individual; 3) Loop until one or more pre-specified termination criteria are met.; 4) Per-
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Figure 2.2: Simplified schematic representation of an evolutionary algorithm iteration. Individuals of the
current population, P t, have their fitness values calculated (1). Evolutionary operators are applied to the
population by taking into account the fitness of each individual (2). This causes that an offspring population,
P0t, containing new individual to be generated (3). The original and offspring populations are merged (4),
producing the next iteration population, P t+1 (5).

• Offspring generation (variation): which applies a range of evolutionary operators to
synthesize offspring individuals from the current (parent) population. This process is
supposed to prime the fittest individuals so they play a bigger role in the generation of
the offspring.

• Parents and offspring combination (environmental selection): that merges the parent
and offspring individuals to produce the population that will be used in the next it-
eration. This process often involves the deletion of some individuals using a given
criterion in order to keep the amount of individuals bellow a certain threshold.

In single-objective optimization the determination of the fitness of an individual is straight-
forward, as the value of the function being optimized can be directly used as fitness.

The selection process should bias better ranked individuals with regard to less perform-
ing ones to prompt the first ones to take a more active role in the synthesis of offspring.
There are different strategies to carry this out. For example, the fitness-proportionate selec-
tion assigns a higher selection probability to individuals with higher fitness. It is like a casino
roulette in individuals are assigned circular sectors proportionate to their fitness. Similarly,
tournament selection repeatedly selects the best individual of a randomly chosen population
subset. Truncation selection directly extracts a population subset that contains the best indi-
viduals. This subset is generally the top third or half of the population. There are, of course,
many other selection strategies. The choice of selection method depends on the nature of
the problem and it is tightly connected with the form of population ranking.

The generation of new individuals give EAs the ability of exploring the search space.
Some of the forms of generating new individuals have a natural inspiration. In this class we
find the crossover operator that interchanges parts of the chromosomes of two individuals.

Figure 2.5: At generation t, individuals from population Pt are ranked according their
fitness values (1). In (2) and (3), evolutionary operators modify the current population
and create a new offspring population, P ′t . Step (4) combines original and offspring
populations to produce (5) the next population Pt+1. Figure taken from [119].

form selection; 5) Perform crossover; 6) Perform mutation; 7) Assign the fitness values to

the new offspring population P ′t and perform elitism. The elitism keeps the good genetic

characteristics for the next generation Pt+1 and removes the individuals with worst fitness

values.

Algorithm 2.1 Standard Genetic Algorithm.
1: choose initial populationPt
2: calculate the fitness function
3: while fitness value != termination criteria do
4: selection
5: crossover
6: mutation
7: calculate the fitness function
8: end while

The processes of a genetic algorithm iteration are represented in Figure 2.5. It is

plainly shown on the diagram how the algorithm mimics the evolutionary process observed

in nature.

The candidate solutions are encoded as finite-length string of values and often referred

to as a chromosome or individuals. Each chromosome contains a set of characteristics
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(genes) that conveys the decision variables of the problem. The search space G of genetic

algorithms usually represents a string chromosome as a fixed-length tuple of genes ik:

G = {∀ (i[1], i[2], . . . , i[n]) : i[k] ∈ Gk∀k ∈ 1..n} (2.3)

The stochastic operators are responsible for iteratively updating the current popula-

tion. As already mentioned, the simplest form of genetic algorithm involves three types of

operators: selection, crossover and mutation. The selection emphasizes the fitter individ-

uals in the population. The main idea of selection is to prefer individuals for reproduction

with high fitness over low-fitted ones. This will create offspring for the next generation

with the belief that their individuals will have even higher fitness.

Different selection mechanisms are available in the literature [127,140]: roulette wheel

selection, stochastic uniform sampling, tournament selection, rank-based selection, steady

state selection, Boltzmann selection, sigma scaling, among others. A proper balance

between the selection pressure and the variation operators must be maintained. A strong

selection pressure may overestimate suboptimal highly fit individuals and compromise the

diversity needed for evolution, whereas a week selection pressure will result in too slow

progress (slow finishing).

Crossover is the primary instrument of variation in GAs. Basically, the crossover

operator exchanges the genetic information of two individuals and produces one or two

offspring. There is a crossover probability pc that controls if the two selected individuals

go through recombination or will be simply copied to the offspring population.

There are many variants of crossover [33, 127]: one-point crossover, two-point and

N-point crossover, uniform crossover, linear crossover, arithmetic crossover, etc. Figure

2.6 presents the most popular crossover techniques. The one-point crossover chooses a

single position at random and swaps the two tails after the position to form two new

offspring. The two-point crossover chooses two positions at random and exchange the

segments between them. In uniform crossover, every string value is exchanged with a

certain probability, pe, known as the swapping probability.

The crossover operator depends on the chromosome encoding, fitness function and

other implementation details. It is still a very important open problem. There is not a

definitive direction on the type of crossover that it is more appropriate for most of the

problems.

Mutation randomly changes some of the values in a chromosome with a certain prob-
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Figure 2.6: Variants of crossover operator [140]. The one-point crossover chooses a single
position at random and swaps the two tails after the position. The two-point crossover
chooses two positions at random and exchange the segments between them. The uniform
crossover exchanges each string value with a certain probability (pe).

ability. It operates on one parent individual and produces one offspring with changes.

Currently there are numerous different types of mutation operator: random mutation,

normally distributed mutation, polynomial mutation, flip bit, uniform and non-uniform

mutation, etc. Figure 2.7 shows a mutated offspring after variation in its fifth position.

The mutation operator preserves diversity in the population. It allows the genetic

algorithm to explore areas not explored by crossover, because it causes an unexpected

movement in the search space. As a result, mutation prevents the population from stag-

nating at local optima.

2.3 Multi-Objective Evolutionary Algorithms

A non-dominated solution set may contain infinite points. Evolutionary algorithms (EAs)

are a successful alternative for multi-objective optimization because of its search technique

that relies on finite population of candidate solutions and the generation of many possible

answers in every single run.
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Figure 2.7: Mutated offspring after variation in its fifth position [23].

Multi-objective evolutionary algorithms (MOEAs) follow the common concepts of

EAs. In every generation t, they find a set of individuals non-dominated by the rest

of the population. The parent and the offspring population sizes are µ and λ, respec-

tively [81]. A space of individuals i ∈ I represents the candidate solutions of a population

P : P (t) = (i1(t), . . . , iµ(t)) ∈ Iµ. A problem-specific fitness function F : I → R mea-

sures if certain solution satisfies the objective functions. Some operators in charge of

reproduction (crossover and mutation) and selection create offspring generations until a

termination criterion is reached, such as: a candidate with acceptable quality; a previ-

ous computational constraint; neither non-dominated solutions comes out. After running

a MOEA, the final population detains an approximation set (S) of all non-dominated

solutions with finite size that can be an appropriate representation of PS.

The use of evolutionary algorithms has a number of practical advantages: (i) concept

is simple to understand; (ii) inherently parallel and easily distributed; (iii) find multiple

optimal solutions for multi-objective optimization; (iv) flexible building blocks for hybrid

applications, like the algorithms proposed in this work.

2.4 Facility Location

This subsection presents the facility location problems in more details and, specially, a

particular problem related to the Oil & Gas area named: field development planning

(FDP).

Operations research (OR) is the application of advanced analytical methods to im-

prove decision making and problem-solving. OR is often concerned with using techniques

such as mathematical modeling to evaluate complex situations and determine the maxi-

mum or minimum of some real-world objective [35]. It addresses a wide range of problems,

such as: optimal search, routing, supply chain management, transportation, scheduling,
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allocation, facility location, among others.

The facility location problem, also known as location analysis or k-center problem,

is related to the process of assigning and managing facilities in an optimized way. It is

concerned with how to place and efficiently utilize resources to achieve an organization’s

strategic goal, such as: minimization of operating cost, maximization of profit, fulfillment

of demands, enlargement of sales coverage and market shares, among others. These

problems have been studied extensively in operations research and management science

field.

Many economical and logistic problems deal with a scenario where the competition

for shared and scarce resources plays a major role in the decision process. Facility loca-

tion decisions often involve large capital outlays and long-term planning horizons. Poor

decisions in this domain may not be recovered without a large amount of money and time

being expended. Consequently the expected result can get compromised if appropriate

actions are not taken in an optimized manner. Examples are subsea layout design for the

oil & gas exploration, vehicle routing, manufacturing plants, warehouse facilities, etc.

The facility location problem consists of a set of demand points D, a set of potential

facility sites F , a fixed cost for opening each facility and a variable cost for each facility.

The goal is to define positions for a subset S of facilities that should be opened and

assigned to D. All the demand points must be serviced by a facility and the sum of

fixed costs, variable costs, and transportation costs (usually modeled by distance) are

minimized.

The properties assumed in the problem define different types of facility location. The

number of new facilities that need to be located in the area of interest characterizes a

single facility problem, with only one new facility to be settled, or a multi facilities problem

with more than one facility to be located simultaneously. The capacity and services of

the facility set two more types of problem. If facility can supply an infinite demand

with unlimited capacity then it is denominated uncapacitated facility location problems

(UFLP) and when facility’s capacity of supply is limited then it is called capacitated

facility problems (CFLP). An additional variation on the facility location problem is

classified depending on number of services it is providing. A facility can supply only one

type of service like in a food shop or can provide a group of services like in a general

hospital.

There are three types of representation of space in location allocation problem: dis-

crete, continuous and network-based. In discrete space model there are given a set of
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choices for the facility’s location. The most commonly studied location problem in discrete

model is the UFLP, also known as plant location problem or warehouse location problem.

The continuous location consider any location within the space (usually Euclidean). The

network-based model depends on graph-theoretic approach and representation. Regard-

less the space model, there can be some forbidden areas where the facility should not be

placed or the designated route should not cross. For example new facility may not be

built over water body and routes should avoid ineligible regions.

2.4.1 Classical Facility Location Problems

The Fermat-Weber problem is, historically, the first facility location problem studied as

early as in the 17th century [30,70]. The problem is defined with a given finitely distinct

points D1, D2, . . . , Dm in Rn and positive multipliers w1, w2, . . . , wm ∈ R+. It has to find

a point F ∈ Rn that minimizes the function:

min f(F ) =
m∑

i=1

wi‖F −Di‖, (2.4)

here ‖F −Di‖ denotes the Euclidean distance of X ∈ Rn. In other words, given m points,

it requires finding a point P such that the sum of the Euclidean distances from P to the

given points is minimum. The m points can be interpreted as customers location, P is

the warehouse to be located and the weights wi are the cost per unit distances of shipping

the requirements to customers position.

Megiddo [125, 126] proved the Fermat-Weber problem is NP-hard. Tellier [153] pro-

posed a geometrical solution and some iterative optimizing methods were used to ad-

dress this problem. Kulin and Kuenne [109] suggested an algorithm based on iteratively

reweighted least squares generalizing Weiszfeld’s algorithm [159, 164] for the unweighted

problem.

The set covering problem (SCP) is a classical complexity theory question presented

in Karp’s 21 NP-complete problems paper [102]. Given a ground set of n elements U =

x1, x2, . . . , xn, a collection of m subsets S = S1, S2, . . . , Sm of that ground set where

Si ⊆ U , and an integer k. A set cover is a collection of subsets from S satisfied that every

elements in U belongs to one of the subsets. A cost function c : S → Z+ denotes the cost

of a subset. The cost of the set cover is the sum of costs of each subsets in the collection

of selected subsets. Formally, the goal is to find a set cover that minimizes the cost.

The set cover problem was studied extensively in the literature and applied to a wide
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range of problems, such as scheduling, delivery and routing problem, manufacturing, etc.

The set cover is a NP-hard problem and many algorithms have been developed for solving

it. Greedy algorithms were proposed by Chvatal [40] and Haouari [89]. Others heuristics

such as those based on Lagrangian relaxation [38, 110] and meta-heuristics [11, 134] were

developed based on the problem-specific information of the SCP.

2.4.2 Field Development Planning

There are many decision making problems whose information is spatial (geographical).

In offshore field development, the equipment placement and submarine pipeline route for

the hydrocarbons transportation demand a critical analysis. The Field Development Plan

(FDP) is a key process of the Oil & Gas industry. FDPs evaluate multiple development

options for a oil field and decide the appropriate scenario based on assessing trade-offs

among numerous factors, such as: environmental impact, geophysics, geology, reservoir

and production engineering, infrastructure, well design and construction, completion de-

sign, surface facilities, economics and risk assessment.

The FDPs comprise all process and activities required to manage an optimal place-

ment of subsea equipment and the type of installations arrangements to develop an oil

field. It is a complex engineering optimization problem. The mathematical model is char-

acterized by a large number of design variables with objectives defined on high-dimensional

spaces. It must comply with many constraints from the real-world. The routes have to

overcome natural obstacles on the bottom of the sea and the marine environment (clime,

depth, tides, corrosion, waves, etc) influences the choosing of subsea facilities.

Therefore, the selection of a submarine pipeline route that determines a good per-

formance of the committed resources must be described and treated as a multi-objective

facility problem. Figure 2.8 illustrates the conceptual study for the Ivar Aasen field lo-

cated in the northern part of the North Sea. There are three oil well placed in a particular

formation connected to two offshore platforms.

2.5 Collective Intelligence

Since the beginning of the 2000s, the development of social network technologies and

interactive online systems has promoted a broader understanding of the “intelligence”

concept. A new phenomenon appeared based not only on the cognition of one individual,

but also placed on a network of relationships with other people and the external world.
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Figure 2.8: Conceptual study for the Ivar Aasen field with three oil well placed in a
particular formation connected to two offshore platforms [1].

The field known as collective intelligence (COIN) [111,117] is defined as the self-organized

group intelligence arisen from participatory and collaboration actions of many individuals.

Shared tasks or issues are handled by singular contributions in such a manner that their

aggregation process creates better results and solves more problems than each particular

contribution separately [91,149]. This phenomenon develops a sui generis intelligence. It

raises a global experience of collective attitudes without centralized control, bigger than

its isolated pieces and sub-product of their combination.

COIN involves groups of individuals collaborating to create synergy and augment the

intellectual processes of human beings. A decision-making process over the Internet has

to manage users’ interactions. It must get valuable knowledge concealed or dispersed in

the group, even when the participants are not specialized in the subject. This environ-

ment includes large and heterogeneous audiences that are mostly independent among each

others. Therefore, the problem must be decomposed in tasks that sustain diversity and

transient members’ attendances to align the interest of crowds.

Collective decision-making engages all the knowledge generated in the first stage of

users’ interaction and aggregates singular inputs into a global perspective for a decision.

Some techniques to extract the group opinion or preferences are [163]: voting, recommen-

dation systems, judgement aggregation, prediction markets and rating scales. While some

initiatives collect the best information available from the crowd: wikis, document ranking

and deliberation maps; others approaches like the elicitation of ideas assembles answers
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or suggestions to make all the inputs converge as a consensus.

Some COIN initiatives have proven their effectiveness over a wider range of areas.

Amazon’s Mechanical Turk [78] site outsources digital tasks that are difficult for comput-

ers, but not for humans, such as: tagging images, writing product descriptions, identifying

performers on music and so on. InnoCentive site hosts companies’ problems and offers a

cash prize to the one who presents the most preferred solution. Both initiatives harness

collective ideas, elaborate global preferences to hit the target and outperform a design

expert. Affinova delivers a service to companies who want to improve their innovation

and marketing rates in consumer packaged goods, retail, financial services and design. Its

platform empowers teams to develop ideas, collect consumer feedback and predict the best

execution plan for them. Danone, a global food company, used their services to launch

the Activia product line in USA and the result beat the initial forecast by four times [6].

Another example is the puzzle game about protein folding: Foldit; it uses the human

brain’s natural three-dimensional pattern matching to solve the problem of protein struc-

ture prediction. The highest scoring solutions are analysed by researchers and validated

if applicable in real problems or not. Users in Foldit has already helped to decipher the

crystal structure of the Mason-Pfizer monkey virus (M-PMV) retroviral protease [104].

The free and easy-to-use application VizWiz [29] recruits web volunteers, including

from Mechanical Turk marketplace, to help blind and visually impaired people. It sends

photos with recorded questions about text labels, colors or icons and get answers back

in real time from online sources. Duolingo is a platform for practice and learning of

several languages. Its gamified background motivates the users to earn experience points

as they progress on dictations and lessons. The site uses crowdsourcing to discuss or

fix grammar topics and translate real content from the web. MatLab, a famous matrix-

based language for fast numeric computation, launched a coding contest which entries

are scored and ranked online [85]. The challenges are manifold, such as finding the n-th

Fibonacci number as quickly as possible to plan or develop routes for the rovers in Mars.

All the entries are visible and the contestants can modify an existing one and submit it

again as their own entry. This strategy promotes a kind of co-opetition (collaboration

plus competition) that makes the solutions evolve by the collaboration of many people.

Xprize, a non-profit organization, defines itself as an innovation engine and a catalyst for

the benefit of humanity. This institution stimulates prize competitions on subjects like:

global development and sustainable solutions; energy and climate change; life sciences

and education. There is a monetary rewards for the winners, but the real intention is

to encourage the global collectivity to invest the intellectual capital required for difficult
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problems.

There are plenty of examples that promote the collaboration of many participants

to achieve better outcomes. This advantage motivates the incorporation of collective

intelligence within MOEAs.

2.6 Clustering Algorithms

Inside collective environment, contributions come from different people. Clustering algo-

rithms distinguish the users with similar preferences to perform a cooperative evolution

or decision making choice.

2.6.1 Gaussian Mixture Model

A mixture model is a probabilistic model to reveal distributions of observations in the

overall population [19,146]. Given a data set Y = {y1, . . . ,yN} where yi is a d-dimensional

vector measurement with the points created from density p(y), a finite mixture model is

defined as:

p (y|Θ) =
K∑

k=1

αkpk (y|zk, θk) (2.5)

Let K ≥ 1 be the number of components, pk (y|zk, θk) be the mixture components

where each k is a density or distribution over p (y) and parameters θk, z = 〈z1, . . . , zk〉
be a K-ary random variable defining the identity of the mixture component that pro-

duced y and αk = pk (zk) are the mixture weights representing the probability that y

was generated by component k. Hence, the parameters for a mixture model is Θ =

{α1, . . . , αK , θ1, . . . , θK}, 1 ≤ k ≤ K.

The Central Limit Theorem [84], explains why many applications that are influenced

by a large number of random factors have a probability density function that approximates

a Gaussian distribution. Let Y be a sequence of random variables that are identically

and independently distributed, with mean µ and variance σ2. The distribution of the

normalised sum Sn = 1√
n
(y1 + . . .+ yN) approaches the Gaussian distribution, G(µ, σ2),

as n→∞.

In a Gaussian mixture model, each of the K components is a Gaussian density with

parameters θ = {µk,Σk}, y ∈ Rd and function as:
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pk (y|θk) =
1

(2π)d/2 |Σk|1/2
e−

1
2

(y−µk)tΣ−1
k (y−µk) (2.6)

The expectation maximization (EM) algorithm [68] for Gaussian mixture is a particu-

lar way of implementing the maximum likelihood estimation in probabilistic models with

incomplete or missing data values. EM learns the parameters θk guessing a distribution

for the unobserved data and finds the cluster to which a singular chromosome most likely

belongs. It starts with an initial estimation of Θ and iterates between E-step and M-step

of the algorithm to update Θ until convergence.

E-step estimates the posterior distribution of the latent variables taking into account

the current parameters and the observed data. The membership weight wik computes

the probability of all data points yi to the mixture components k. In the M-Step, the

algorithm uses the calculated membership weights to find new model parameters values.

Let wik be the weights where 1 ≤ k ≤ K and 1 ≤ i ≤ N .

wik = p (zik = 1|y,Θ) =
pk (y|zk, θk)αk∑K

m=1 pm (y|zm, θm)αm
(2.7)

After E and M steps the convergence is computed using the value of the log-likelihood

log l (Θ). The algorithm stops when there are no significant changes in the convergence

from one iteration to the next.

log l (Θ) =
N∑

i=1

log p (y|θ) =
N∑

i=1

(
log

K∑

k=1

αkpk (y|zk, θk)
)

(2.8)

2.6.2 K-means

K-means is another popular algorithm for cluster analysis [151]. It sets apart n observa-

tions (y1, . . . ,yn) into k clusters S = {S1, S2, . . . , Sk}, where k ≤ n and each observation

yi is a d-dimensional real vector that belongs to the set Sj whose mean yields the least

within-cluster sum of squares:

argmin
S

k∑

i=1

∑

y∈Si

‖ y − µi ‖2 (2.9)

The algorithm starts with k means (µ1, . . . , µk) and iterates between two steps: a)

assignment of y to the cluster with the nearest mean; b) recalculation of the clusters’
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centroids.

2.7 Reference Points and Interactive MOEAs

2.7.1 Preferences

The current state-of-the-art MOEAs are capable of obtaining reliable approximations of

the Pareto optimal front. Many evolutionary frameworks have been applied to MOPs and

broadly used to optimization. Some MOEAs like: SMS-EMOA [28]; MO-CMA-ES [95];

NSGA-II [64]; MOEA/D [174] or SPEA2 [179], exploit a set of solutions in parallel and

supply a starting point to new developments on the field. They look for the Pareto optimal

set, PS, that ideally contains all non-dominated solutions uniformly distributed along the

optimal frontier.

However, the optimal frontier (PF ) might be extremely large or possibly infinite and

the DMs still must identify a final answer to their demands from this trade-off set. The

challenge is no longer just to obtain a diversity of answers in the entire high-dimensional

Pareto front, but also retrieve the expected solutions aligned to consistent preferences of

the DMs. In most of the cases, their preferences are determined in the objective space.

Preferences are user-defined parameters and denote values or subjective impressions

regarding the trade-offs points. It transforms qualitative feelings into quantitative values

to bias the search during the optimization phase and restrict the objective space. In

this sense, a reliable preference vector improves the trade-off answers obtained. Usually,

preference is represented by a set of criteria I, where i ∈ I corresponds to one preference

information assigned to one attribute. The boundaries are usually set by the ideal (z∗),

utopian (z∗∗) and nadir (znad) points [167].

Local preferences can be expressed as a vector of weights over the objectives [56], a

lexicographic sorting of objectives [22,74], a set of constrains [73], a trade-off information

or reference points for the search [51,60], among others representations.

MOEAs techniques are classified by their articulation of preferences: a priori approach

performs decision before the searching process; interactive (progressive) method combines

search and decision making; a posteriori technique searches before making decision.

Some traditional a priori techniques are dependent to the selection of objectives’

weights or boundaries. The weighted summethod [56] associates a weight to each objective

function and takes its sum to revert the problem to a mono-objective equation: F (x) =
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∑M
m=1 λm.fm(x). Lexicographic ordering method [22, 74] prevents the manipulation of a

priori weights by setting priorities to the objective functions and arrange them in order

of importance. The ε-constraint approach selects one objective function to be optimized

and restricts all the others within user-specified inequality constraints [73]: min fi(x);

subject to fk(x) ≤ εk where k = 1, . . . , n; k 6= i. Distance-to-a-reference method [51]

compares a vector f ∈ Rk correspondent to an ideal or reference objective chosen by the

decision maker against a solution candidate x. The Goal Attainment technique [60] also

uses a vector f ∈ Rk of reference objective function plus a weighted vector w to minimize

a scalar coefficient Ψ in such a way that: fi(x)− wi.Ψ ≤ xk, where i = 1, . . . , k.

The Guided Multi-Objective Evolutionary Algorithm (G-MOEA) proposed by Branke

et al. [36] allows to specify linear trade-offs between objectives. G-MOEA uses these trade-

off information to modify the definition of dominance and guide the search towards the

more desired regions of the Pareto-optimal front. The DM specifies maximal and minimal

acceptable weightings for one criterion over the other. For example, in a two-objectives

problem the decision maker has to specify how many units of the first objective (f1) he

is willing to trade for one unit of the second objective (f2).

x ≺ y⇔ (f1(x) + a12f2(x) ≤ f1(y) + a12f2(y)) ∧
(a21f1(x) + f2(x) ≤ a21f1(y) + f2(y))

(2.10)

Reference points and interactive techniques aggregate different strategies to discover

more relevant solutions in PF . Instead of a computation of the whole front, these methods

get suggestions or hints to highlight the regions and operate only on areas previously

selected to get a preferred sub-set of the front.

2.7.2 Reference Point

The reference point approach [168] concentrates the search of Pareto non-dominated solu-

tions in the vicinity of a set of selected preference points. It is based on the achievement

scalarizing function that uses a reference point to capture the desired values of the ob-

jective functions. Let z0 be a reference point for an k-objective optimization problem

of minimizing F (x) = {f1(x), ..., fk(x)}, the reference point scalarizing function can be

stated as follows:
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σ
(
z, z0,λ, ρ

)
= max

i=1,...,k

{
λi(zi − z0

i )
}

+ ρ

k∑

i=1

λi
(
zi − z0

i

)
, (2.11)

where z ∈ Z is one objective vector, z0 = 〈z0
1 , ..., z

0
k〉 is a reference point vector, σ is

a mapping from Rk onto R, λ = 〈λ1, ..., λk〉 is a scaling coefficients vector, and ρ is an

arbitrary small positive number. Therefore, the achievement problem can be rebuilt as:

min σ (z, z0,λ, ρ).

Since the decade of 80’s, there have been several works on interactive multi-objective

methods using reference points and reference directions as preferences. Those approaches

were applied mainly in the classical multi-objective programming field. But in the last 15

years they have also emerged in evolutionary multi-objective area.

Deb et al. [66] proposed a reference-point-based NSGA-II procedure (R-NSGA-II) to

find a set of solutions in the neighbourhood of the corresponding Pareto-optimal front.

A minimum weighted normalized Euclidean distance calculates the preference distance

of a solution and uses that information to bias the selection operator. They extend the

number of reference points to cover more than one region in Pareto front and reach more

significant solutions. The Synchronous R-NSGA-II [76] is a similar approach, but uses

three different scalarizing functions instead of the Euclidean distance. The Light Beam

Search based EMO [63] modified the NSGA-II crowding operator by the light beam search

to incorporate a-priori preferences and produce a set of solutions in the region of interest.

The decision maker (DM) must supply an aspiration and a reservation point to determine

the direction of the search. Another variation of the original NSGA-II, the RD-NSGA-

II [62] let the user supply one or more reference directions to project efficient solutions

on the Pareto-optimal frontier. The principle is the application of multiple achievement

scalarizing functions (σ) to generate non-dominated fronts. Said et al. [25] presented a

new dominance relation, named reference solution-based dominance (r-dominance), that

replaces the Pareto dominance and favours solutions near the reference point indicated.

Pfeiffer and others [137] rank the solutions according their Euclidean distances to each

reference point. Those points close to the reference points are assigned with the lowest

crowding distance, which favours its selection by the algorithm. The negotiation sup-

port system called W-NSS-GPA [24] takes the reference points and the decision makers’

hierarchy levels as weights to calculate an aggregation point of all preferences.

Figure 2.9 shows five reference points and their respective points in Pareto frontier

extracted from the well-known ZDT1 test suite [178].
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Figure 2.9: R-NSGA-II solution for ZDT1 problem with five reference points taken from
[66].

In many-objective optimization problems, the high dimension of objective space makes

a large number of individuals become non-dominated to each other. This condition may

not produce enough selection pressure for a population to converge to a satisfactory

Pareto front approximation. The NSGA-III [61] uses reference points on a hyperplane

to overcome this issue and guide the search process through a diverse population. In

DI-EMOA [20], decision makers specified region of interests of the objectives and defined

the desirability functions (DF) accordingly. A desirability index (DI) was then defined

as a scalarization operator to map multiple DF values to a single value. The DI was

used as the secondary criterion of the non-dominated sorting procedure. A DI-based

archiving mechanism was also proposed. The DF-SMS-EMOA [160] maps the objectives

to desirability functions normalized in the domain [0, 1], d : Y → [0, 1]. Then, values of

different objectives and units become comparable. The preferences are represented by the

difference between the actual desirability and the maximum value of one: the smaller the

difference is, the better the quality of the solution in the corresponding objective.

2.7.3 Interactive Evolutionary Multi-Objective

Interactive genetic algorithm (IGA) incorporates the evaluation of users on the candidates

of evolutionary algorithms to solve problems whose optimization objectives are complex

to be defined with exact functions [148]. Users’ subjectivities are employed as fitness
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values to drive the search throughout the evolution process.

IGAs were successfully applied to get feedback of transitional results throughout the

evolution process and steer the search towards preferred parts of the PF . This behaviour

gives the DMs a chance to extend their knowledge about the problem and review their

preference model over time.

MOEAs can handle intermediate non-dominated solutions to the decision maker and

improve the search with a reference point or fitness function adjustments. W-HYPE [37]

applied the weighted hypervolume indicator in an interactive fashion to change the op-

timization goal of the algorithm. The DM indicates preferred solutions in the current

population and, as a consequence, this affects the weight function used by the hypervol-

ume indicator. iMOEA/D [82], an interactive version of the decomposition based MOEA,

asks the DMs to analyse some current solutions and use their feedback to renew the pre-

ferred weight region in the following optimization. It converts the a MOP into a set of

single-objective problems. PI-EMO [65] changes progressively the value function after

every few generations to lead the optimization on more preferred solutions. After t gen-

erations, the user analyses η (≥ 2) well-sparse non-dominated solutions and provides a

complete or partial ranking of preference information about them. The task is to con-

struct a polynomial value function satisfying the given preference hint. Thiele et al. [155]

introduced a preference-based interactive algorithm (PBEA) that adapts the fitness eval-

uation with an achievement scalarizing function to guarantee an accurate approximation

of the desired area in Pareto-optimal front.

The necessity of multiple human interactions may cause user fatigation and deserves

attention in order to avoid slow and expensive performance. Distinct approaches with

fuzzy logic and machine learning concepts simulate users’ preferences to prevent this is-

sue and alleviate the constant interruption of the algorithm. The algorithm IGAMII [14]

applies fuzzy logic to simulate the human decision maker and relieve the constant inter-

action during the evolution. In BC-EMO [131], the Support Vector Ranking algorithm

is used to learn an approximation of the DM utility function. Based on the concept of

coevolving a family of decision-maker preferences together with a population of candidate

solutions, Wang et al. [18] proposed the PICEA-g algorithm. PICEA-g does not ask

users to provide reference points; instead, it evolves these reference points (called goals

in the algorithm) by preferring those dominated by fewer solutions. On the other hand,

solutions are regarded as better if they dominate more goals, especially when the goals

are dominated by few solutions.
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Not only evolutionary algorithms, such as genetic algorithms, can be used to answer

multi-objective problems. The bee colony optimization is a swarm intelligence based

algorithm that explores the natural behaviour of honeybees to resolve multi-objective

numerical functions [173]. Particle swarm optimization is another adaptive method based

on a set of individual particles swarming spread in the parameter space of the problem. It

can also be interactive and applied to MOPs (IMOPSO). The particles values are updated

according its objective function to reach the best solution [90,132,165].

Yazdani [170], for instance, presents a particle swarm multi-objective optimization

enhanced with a fuzzy logic-based controller to evaluate the search space throughout the

iterations. Inspired by ‘divide and conquer" strategy, the general idea is to break down

the problem into several simpler ones and use fuzzy logic to select which part should be

chosen for the next iteration. Wickramasinghe and Li [165,166] incorporated the reference

point theory into two multi-objective particle swarm algorithms: non-dominated sorting

PSO (NSPSO) [113] and maximinPSO [114]. Through multiples reference points, the

decision maker guides the search and spreads the solutions along different areas of Pareto

front. The distance metric updates particles positions and velocities according to their

proximity to preferred regions in the objective space.



Chapter 3

Application Domain

The domain application of this research is the multi-objective facility location problems

with spatial orientation. The optimal placement of facilities is critical for activities where

the balanced allocation of resources advises the right strategy for an enterprise. It involves

many stakeholders that must consider multiple objectives and operational constraints

simultaneously.

Some facility location problems have to evaluate geographical information to support

decision-making. Besides choosing the available resources to be used, the spatial nature

of the problem takes into account factors like avoiding obstacles, designing trajectories,

and preventing proximity to competitors’ facilities. The correct 2D/3D orientation of

elements in the scenario directly influences the configuration of the best solutions and,

therefore, affects the distribution of non-dominated points in the trade-off set.

The facility location problem is strategic in nature. The constraints on the location

and placement of multiple facilities emulate real-life situations. These problems carry out

money transactions. They charge large sums of capital resources and produce economic

effects in the short and long run. For example, investors set oil company valuations based

on the ability and positive experiences the company had in the previous field development

projects. As a result, the Oil & Gas industry is under pressure from stakeholders to

capitalize discoveries and optimal solutions as quickly as possible.

However, the complexity of these location problems is usually high and requires sub-

stantial computational effort to solve them. The time spent on these activities is associ-

ated with money. Then, it will be important to develop heuristic algorithms that lead to

efficient, effective and fast solutions for practical multi-objective location problems.
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Figure 3.1: Total primary energy supply by fuel and the final consumption by sector. 1

Includes agriculture, commercial and public services, residential, and non-specified other.
2 Peat and oil shale are aggregated with coal. 3 Includes geothermal, solar, wind, heat,
etc. Figure taken from [10].

3.1 Oil Field Development Problem

The oil market still represents a significant share of the world energetic matrix. According

to the International Energy Agency (IEA), the oil and gas are the main source of energy

with about 52.5% of the market share [10]. Figure 3.1 presents the total primary energy

supply by fuel and the final consumption by sector.

One special case of facility location problem with spatial orientation is the field de-

velopment planning. As presented in Section 2.4.2, the FDP performs feasibility and

conceptual studies for pipeline installation and subsea construction. It is responsible for

the definition and sizing of the main piping, drilling and subsea support equipment to de-

liver the infrastructure for a complete field development. Figure 3.2 illustrates the tools

for pipelaying and subsea equipment installation.

This work focuses on the problem of selecting the optimal submarine pipeline routes

employed to carry the oil & gas from wells to offshore platforms. For this purpose,

multiple conflicting development objectives must be addressed: operational flexibility

and scalability, capital versus operating costs, environmental impact, project risk and

uncertainty, among others.

The submarine pipeline route for the oil has to overcome not only natural obstacles

on the seafloor, but remained subsea equipment, pipelines and flowlines. Also, there may

be constraints to access a specific area on the bottom of the sea, such as regions with

corals or competitors oils fields. Figure 3.3 shows some oil & gas routes connected to one
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Figure 3.2: Tools for pipelaying and subsea equipment installation. Figure taken from [5].

Floating Production Storage Offloading (FPSO) unit.

The lifetime of an oil reservoir varies between 15 to 30 years and may be extended

up to 50 years. The wells go through different stages during this cycle: production

increase, stabilization period, injection of water to maintain a satisfactory volume and,

the final stage, production decrease. The choosing of subsea facilities follows the technical

constraints and uses innovation to tackle challenges such as extreme water depth and

rugged sea-floor terrain. Pipes can be flexible with internal diameters ranging from 2"

to 20" or rigid pipes up to 16" diameter. The offshore platforms have progressed in

deepwater installation and today they can operate in water depths beyond 2.800 meters.

The early phases of a FDP conceptual study are the most important. It is where

the most value is created or lost. Mistakes in this phase cannot be recovered in the

project execution. Oil & Gas fields are rarely straightforward nowadays. There is difficult

fluids, obscure location to drill and complex facilities to allocate in an optimal way. The

combination of these factors needs special consideration. In the general case, the selection

of a route is based on a specialist decision. The expert engineer manually investigates

the seabed bathymetry and the available information regarding obstacles to validate the

design of a FDP. But this is a very complex and expensive process to be based purely on

the expertise of an engineer. It involves a large number of design variables with objectives

defined on high-dimensional spaces. The field development project may contain around
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Figure 3.3: The subsea development of an Oil & Gas field. Different submarine pipeline
routes connected to one FPSO. Figure taken from [2].

50 wells and 8 offshore platforms producing 100.000 oil barrels a day for 30 years. The

flexible lines may cost $10.000 USD per meter and a large oil field may contain hundreds

kilometres of lines. The platform cost ranges between 1 to 2 billion USD approximately.

The economy drives the success of this business. It is expected that the traditional

approach with interactive and manual analysis should be replaced by a more robust pro-

cedure. In the current model, the design time needed to assess an optimal pipeline route

is too long and it is subjected to interpretation misleads. The market leading company

in planning and development phase of oil and gas projects takes months to draft a FDP

project with the support of many experts. The general idea of this work is to use a dif-

ferent technique to provide more accurate results and minimize the costs associated with

the installation and operation of subsea facilities.

3.2 Computational Representation and Time Complex-
ity

In most of the models for location theory, the facilities are represented as points in the

Euclidean plane (2D space) or vertices of a given graph. The routes can be represented

as straight lines or curves. Topological relations like distance, connectivity, inclusion,

adjacency and overlapping between spatial objects must be precisely defined to reflect all
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the real-life behaviour of the objects.

The location problems differentiate between continuous and discrete problems with

respect to the decision space. In the discrete world, space can be represented as a surface

divided into a regular grid of cells (raster model). A matrix M(i, j) defines all the cells,

named as pixels. Field development planning is a complex problem whether in discrete

or continuous world simulation. But a continuous representation requires more computa-

tional effort in this type of problem due to the increase of facility positions available (x,y

coordinates) and object boundaries.

Considering a simplified example to illustrate the complexity of FDP in discrete world,

let n be the available positions (cells) in the 2D space and two distinct facilities (f1 and

f2) to be connected through line segments (sequence of positions in n). The number of

arrangements of any subset of n distinct objects is the number of one-to-one sequences

that can be formed from any subset of n distinct objects. It takes the form of:

n!
n∑

k=0

1

k!
≈ n!e (3.1)

The asymptotic complexity of this simplified example is O(n!)



Chapter 4

Proposal

This chapter presents the idea of integrating collective intelligence into a genetic operator

to improve the overall quality of evolutionary population.

4.1 Proposal of COIN-based Selection and Variation
Operators

Meta-heuristics approaches, like MOEAs, confront difficulties with complex scenarios of

high-dimension and large problem space. The potential number of objectives necessary

to describe the environment or the incapacity to comprehend and map all the variables to

a correct fitness function can prevent a solution in a reasonable time and quality. On the

other hand, human beings are used to multi-objective situations in their everyday lives.

Those complex scenarios that are hard for a computer might be easier or natural to the

human mind.

Persons are able to improve the multi-objective algorithms with cognitive and subjec-

tive evaluation to find better solutions. The human ability to see complex solutions is a

motivation to involve people in tasks that are currently difficult for computers. It is pos-

sible for non-experts to make useful contributions to problems and leverage the computer

methods to create novel results.

COIN is a different level of abstraction and can be a special contribution to make

MOEAs go beyond their reach. Human characteristics such as perception, spatial reason-

ing, strategy, weighting factors, agility, among others subjectivities might be introduced

into the algorithm to generate a better pool of answers and enhance the optimization

process. A group of people can understand conflicting situation involving multiples ob-
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jectives and may use their collective intelligence to trump expert’s abilities. The wisdom

arisen from the diversity of many individuals is able to discover creative resolutions.

While some MOEAs techniques construct a partial order of preferences based on

a priori reference points to give a stronger selection pressure among Pareto-equivalent

solutions, others progressive methods combine simultaneously the preferences information

and the search for solutions. But very few MOEAs consider more than one user for

reference point selection or evolutionary interaction. They neglect a collective scenario

where many users could actively interact and take part of the decision process throughout

the optimization.

The association of collective intelligence features to multi-objective optimization field

raises the understanding of preferences from an individual context to a collective percep-

tion and has yet to be properly addressed. This work presents a collective intelligence

operator to bias the search during the optimization phase and restricts the objective space.

The main idea underlying this method is to drive the DM’s search towards relevant re-

gions in Pareto-optimal set and, also, promote the usage of COIN as a creative search for

new individuals. By means of people’s heterogeneity and common sense, the COIN oper-

ator iteratively refine the search parameters with rational collaborations to improve the

overall quality of evolutionary population. The suggested approach decreases the number

of function evaluations, accelerate the convergence and achieve relevant regions of Pareto

front at a lower computational cost.

As to the quality and performance aspects of the proposal, the measure indicated

contains both the quality of the outcome as well as the computational resources spent to

generate this result. Regarding the latter aspect, it is advisable to keep the number of

fitness evaluations or the overall runtime under observation [182].

A collective reference point produced by the interaction and aggregation of multiple

opinions may provide a more accurate reference point than designed by only one DM

(unilateral). A unique decision maker carries the risk of having mistaken guidelines or poor

quality in terms of search parameter. In addition to the risk of a biased preference, the lack

or unavailability of expert decision makers increases the difficulties to elicit preferences

that will explore interested areas of the objective space. Conversely, the synergy of actions

and the heterogeneity inside collective environments develop creative resolutions based on

the subjectivity and cognition of the crowds.

In practical terms, the COIN-based operator is responsible for aggregating the users’

contributions to the current population P at generation t. After the reproduction op-
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erators (crossover and mutation), the COIN operator chooses the best individuals and

submits them to the collective intelligence. There are two types of collective intelligence

operators proposed: COIN-based Selection operator and COIN-based Variation operator.

The COIN-based Selection operator performs a voting process where the current in-

dividuals from PF are handed to collective members for judgement. Participants select

the best ones of the group in a pairwise comparison manner. In the end of the process,

the selected individuals will be used as samples to discover the collective preferences. The

comparison of individuals defines a pattern of preference that guides the exploitation of

points in areas of interest.

The COIN-based Variation operator, by contrast, submits some of the current in-

dividuals from PF to the members of the collective. Then, participants can use their

cognition and reasoning skills to improve or produce new individuals to be placed back

in the population. They can manipulate and change the values of intermediate MOEAs

solutions. The COIN variation operator is responsible for aggregating the users’ rational

contributions into the current population P . Both operators return a rational input to

the current population.

Exploration consists of probing a larger area of the search space. This global search

operation tries to find new and unknown regions with promising solutions. It diversifies

the search in order to avoid the local optimum. Exploitation, on the other hand, operates

in a limited area of the search space. This local search operation tries to improve a

promising solution already at hand by intensifying the search in its vicinity.

In this regard, the creation of new EA individuals built under rational supervision

may reveal interesting effects on the optimization search. The first is the exploitation

of points on a limited area of the search space. The user contributions not only give a

new individual to the population, but also indicate an area of interest to perform the

search. This local search operation tries to improve a promising solution already at hand

by intensifying the search in its vicinity.

Another positive effect is the exploration of new areas in the search space. The

contributed individuals may bias the search to new and unknown regions with promising

solutions. It diversifies the search in order to avoid the local optimum and explore areas

driven by the collectivity.

The collective intelligence variation operator can be seen as a sort of local search as

it can be presumed to provide improvements over currently existing solutions.
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The collective reference points are defined based on the overall contributions. Whether

they are a complete new individual or a set of users’ votes, the contributions represent the

collective preferences and are used to delimitate areas of interest on the approximation

set during the optimization process.

Some types of facility location problems request complex spatial reasoning and ori-

entation to obtain a satisfactory solution. For example, if one have to trace many routes

avoiding obstacles and minimizing the setup cost of resources allocation. This kind of

problem is still difficult for computers to fully understand and produce acceptable alter-

natives. This question becomes even more complex if there are more objectives in place,

like shortest distance and client demands. Usually, computers inspect many intermedi-

ate solutions of poor quality that are easily recognized as unreasonable by humans. The

approaches in this work use the human natural three-dimensional pattern matching to

produce rational improvements to the intermediate solutions of MOEAs.

4.2 Algorithms

Problems with a large optimal frontier cause extreme difficulties for the DMs to make

decisions. Due to the great number of solutions in the trade-off set, the DM has to

identify those points that satisfy his preferences. Hence, there is an issue regarding the

computational resources necessary to generate the complete trade-off set, but also there

is a concern to choose one of the available solutions from the Pareto-optimal front.

The articulation of preferences during the optimization phase of MOEAs helps to

retrieve the DM’s expected solutions at the end of the process. Instead of computing the

whole front, the preferences can bias the search to a small sub-set within relevant regions

of DM interest.

Considering many different approaches to represent the DM preferences in the evo-

lution process, the reference point is more suitable for driving the optimization on areas

previously selected by the user. Reference points are simple to understand and operate.

When a point is defined in the objective space, the closest region in PF to the reference

point is the preferred region. The reference points can be applied before the searching

process (a priori) or interactively.

The a priori reference point requires a previous knowledge of the problem being solved,

which is impractical in many situations. On the other hand, the interactive approach

allows constant adjustments in the reference point during the optimization. It calls for
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a lower degree of cognitive complexity because the DMs can improve their knowledge

about the problem and review their preferences at each interaction with the evolution

mechanism.

For that reason, the new algorithms are extensions of the classical MOEAs: NSGA-II

[64], SPEA2 [179] and SMS-EMOA [28]. The main changes on the original methods are the

incorporation of COIN as an operator; the transformation of the continuous evolutionary

process into an interactive one; and the adoption of collective reference points to drive

the search towards relevant regions in Pareto-optimal front.

All the references points are discovered online with the support of a genuine collective

intelligence of many users. The algorithms allow the DMs to choose multiple reference

points simultaneously whether they are feasible (deducible from a solution vector) or

infeasible points.

4.2.1 CI-NSGA-II

The NSGA-II [64] is a non-domination based genetic algorithm for multi-objective op-

timization. It adopts two main concepts: a density information for diversity and a fast

non-dominated sorting in the population. The crowding distance uses the size of the

largest cuboid enclosing two neighbouring solutions to estimate the density of points in

the front. Solutions with higher values of this measure are preferred rather than points in

a more crowded region (smaller values) because they are better contributors to a uniformly

spread-out Pareto-optimal front. The non-dominated sorting places each individual into

a specific front such that the first front τ1 is a non-dominant set, the second front τ2 is

dominated only by the individuals in τ1 and so on. Each solution inside the front τn re-

ceives a rank equal to its non-domination level n. The selection operator prefers a minor

domination rank (irank) and higher values of crowding distance (idist).

The selection operator uses the rank (irank) and crowding distance (idist) in a binary

tournament. The partial order ≺c between two individuals i and j, for example, prefers

the minor domination rank if they are from different fronts or otherwise, the one with

higher values of crowding distance. Then, crossover and mutation are applied to generate

an offspring population.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ idist > jdist) (4.1)

In algorithm 4.1, the new CI-NSGA-II converts the original NSGA-II into an interac-
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tive process. The variable MAXgeneration receives the maximum number of generations

for evolution. The variable block, used in the inner while loop, represents the iteration

interval which means the number of generations to run without external user interruption.

Until the first interaction step with the participants through the CollectiveContribu-

tions() procedure, the algorithm uses the standard crowding distance in order to come

up with a good spread of the solutions. After the CollectiveContributions() procedure,

however, the COIN operator (COIN Selection()) starts focusing on preferred areas of the

search space based on the user contributions.

Algorithm 4.1 The Collective Intelligence NSGA-II.
1: generation←MAXgeneration
2: block ← SUBSETgeneration
3: while i < generation do
4: while block do
5: offspring ← Tournament(pop)
6: offspring ← Crossover(offspring)
7: offspring ←Mutation(offspring)
8: pop← COIN Selection(pop+ offspring)
9: i+ +

10: end while
11: front← PF(pop)
12: contributions← CollectiveContributions(front)
13: pop← contributions
14: Θ← ExpectationMaximization(contributions)
15: pop← ReferencePointDistance(pop,Θ)
16: end while

After crossover and mutation, the subroutine CollectiveContributions() suspends the

evolution progress and submits some individuals from the population to the users’ evalu-

ation. The objective here is to address some of the MOEA intermediate solutions to be

modified and improved by the collective intelligence participants. The modified solutions

are then re-introduced to the population and, therefore, follow the remaining steps of the

evolutionary process.

This approach allows members of the collective to interact with and modify the solu-

tions. As presented in Section 4.1, the collective intelligence are engaged in two different

manners: a selection operator that compares the individuals and chooses the best can-

didate, or a variation operator that improves current individuals from the population.

Both approaches discover online collective reference points with the support of a genuine

collective intelligence of many users. But, the variation operator offers the users a chance

for rational improvement on the individuals and the evolution process.
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Figure 4.1: Three online collective reference points and their Gaussian distribution applied
to the ZDT1 test.

Enhanced by collective subjectivity and cognition, the successive stages of evolution

are improved via group’s preferences in a direct crowdsourcing fashion. It allows the

collective to act as DMs to choose multiple reference points simultaneously.

Inside collective environment, the contributions come from different people. Assum-

ing the Central Limit Theorem [84], the inputs have a distribution that is approximately

Gaussian. Therefore, after each collective interaction, the subroutine ExpectationMax-

imization() gets the users’ collaboration as a Gaussian Mixture model to emulate the

evaluation landscape of all participants’ preferences. It discovers a pattern of rational

preference among the participants’ contributions that leads the exploration of areas of

interest.

The expectation maximization approach (see Chapter 2) creates online reference

points (Θ) for search optimization. Whether the user’s collaboration is a simple vote

on the best individual presented to him (pairwise comparison) or a complete re-edited

individual, the clustering algorithm distinguishes the users with similar preferences to

perform a cooperative evolution and a decision making choice through the collective ref-

erence points. Figure 4.1 shows an example of three online reference points and the

Gaussian distribution of their points from the well-known ZDT1 test suite [178].

Finally, the procedure ReferencePointDistance() calculates the minimum distance

from each point in the population to the nearest collective reference points in Θ. This

way, the point near the reference point is favoured and stored in the new population.

CI-NSGA-II develops a partial order similar to the NSGA-II procedure, but replaces the

crowding distance operator by the distance to collective reference points (iref). The partial

order ≺c between two individuals i and j, for example, prefers the minor domination rank
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if they are from different fronts or, otherwise, the one with lower values of reference point

distance.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ iref < jref) (4.2)

This algorithm performs the COIN Selection() operation based on the new partial

order. Like NSGA-II, individuals with minor domination rank are preferred. But if they

belong to the same front, the one with the closest reference point distance is used instead.

Considering the same population P and the partial order method, Figure 4.2 illustrates

the individuals from NSGA-II and CI-NSGA-II last front for ZDT1 problem with one

reference point. The green dots represent individuals selected by the partial order rule

and the rejected individuals are in red. It is clear that the former algorithm chooses a

more diverse distribution of individuals, whereas the latter concentrates on the solutions

closest to the reference points and tends to reject the more distant ones.

CI-NSGA-II prioritizes the points close to the online collective reference point. The

algorithm consumes preference information to explore satisfactory solutions for DMs.

4.2.2 CI-SMS-EMOA

The SMS-EMOA [28] is a steady-state algorithm that applies the non-dominated sorting as

a ranking criterion and the hypervolume performance measure (S) as a selection operator.

After the non-domination ranking, the next step is to update the last front population,

Pworst. It replaces the member with the minimum contribution to Pworst hypervolume by

a new individual that increases the hypervolume covered by the population.

In algorithm 4.2, the new CI-SMS-EMOA converts the original SMS-EMOA into an

interactive process. The CollectiveContributions() and ExpectationMaximization() sub-

routines have the same purpose and work as the CI-NSGA-II. In the COIN Selection()

operation, individuals with minor domination rank (irank) are preferred. If they belong

to the same front, the one with the maximum contribution to the hypervolume of the set

and the closest reference point distance (iref) is selected.

The procedure Hype-RefPoint Distance() gets the hypervolume contribution (S) and

calculates the minimum distance from each solution in the population to the nearest

collective reference points in Θ. This way, the solution with high hypervolume values and

short reference point distance is favoured and stored in the new population.



4.2 Algorithms 45

NSGA-II									

CI-NSGA-II									
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Figure 4.2: NSGA-II and CI-NSGA-II last front selection, respectively. The green dots
represent individuals selected by the partial order rule and the red ones are those rejected.

4.2.3 CI-SPEA2

The strength Pareto evolutionary algorithm 2 (SPEA2) [179] developed a fitness assign-

ment strategy based on the number of individuals one solution dominates and it is domi-

nated by. SPEA2 implements elitism by keeping an external population (archive) of size

N . The archive preserves the best solutions since the beginning of the evolution.

The strength ST (i) for each individual i is the number of population members it

dominates: ST (i) = |{j : j ∈ Pt ⊕ P̄t ∧ i ≺ j}|; where ⊕ is the multiset union, Pt and

P̄t are the population and archive population at generation t, respectively. The fitness

F (i) for a individual i is given by the strength of its dominators: F (i) =
∑
ST (j); where

j ∈ Pt ∨ P̄t, j ≺ i. High values of F (i) means the individual i is dominated by many

others and F (i) = 0 corresponds to a non-dominated individual.
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Algorithm 4.2 The Collective Intelligence SMS-EMOA.
1: generation←MAXgeneration
2: block ← SUBSETgeneration
3: while i < generation do
4: while block do
5: offspring ← Tournament(pop)
6: offspring ← Crossover(offspring)
7: offspring ←Mutation(offspring)
8: pop← COIN Selection(pop+ offspring)
9: i+ +

10: end while
11: front← PF(pop)
12: contributions← CollectiveContributions(front)
13: pop← contributions
14: Θ← ExpectationMaximization(contributions)
15: pop← Hyper-RefPoint Distance(pop,Θ, S)
16: end while

SPEA2 uses a nearest density estimation technique, adapted from the kNN method

[145], to distinguish individuals having the same fitness values. This density function is

a function of the distance to the k-th nearest data point and it is added to the fitness

function F .

After fitness assignment, the algorithm implements an archive truncation method to

guarantee a good spread of non-dominated solutions. All the non-dominated solutions

are stored in P̄t. If the archive is too small (| P̄t |≤ N), then the N− | P̄t | dominated

individuals are selected according to their fitness values F . In turn, if the archive is too

large the individuals with the worst density are removed from P̄ .

In the new CI-SPEA2 (algorithm 4.3), the subroutine COIN Selection() computes the

strength of all individuals and the non-dominated members are copied to the archive P̄t.

The k-th nearest data point used to calculate the original density function in SPEA2 was

substituted by the collective reference points Θ. If the archive | P̄t |≤ N , the algorithm

chooses the nearest individuals to the collective reference point until the archive size is

reached. Otherwise, if | P̄t |> N , it removes the more distant ones proportionally to the

number of individuals in each reference point cluster. This way, the archive keeps the

same distribution of points around its reference points.

The procedure RefPointDistance() sets the minimum distance between each solution

in the population (Pt + P̄t) and the collective reference points in Θ.



4.2 Algorithms 47

Algorithm 4.3 The Collective Intelligence SPEA2.
1: generation←MAXgeneration
2: block ← SUBSETgeneration
3: while i < generation do
4: while block do
5: archive← COIN Selection(pop+ archive)
6: offspring ← Tournament(archive)
7: offspring ← Crossover(offspring)
8: offspring ←Mutation(offspring)
9: pop← offspring

10: i+ +
11: end while
12: front← PF(pop)
13: contributions← CollectiveContributions(front)
14: pop← contributions
15: Θ← ExpectationMaximization(contributions)
16: pop, archive← RefPoint Distance(pop, archive,Θ)
17: end while

4.2.4 Projection of Reference Points

The necessity of multiple human interactions to address the collective reference points

may cause user fatigation. In addition to that, the participants may not be available to

take part on each interruption of the evolution process. The question of how to alleviate

the users’ burden or assistance in the new algorithms is important.

In practice, a distinct approach can be included into the three algorithms proposed:

the projection of the reference points. At each generation t, the reference points can be

repositioned based on the current approximation set S. The approach maps the trends

of user preferences and automatically selects new reference points without the need for a

user’s interaction.

The proposed algorithms are extended with the reference point projection approach.

The new versions of the algorithms are named as: CI-NSGA-II-P, CI-SMS-EMOA-P and

CI-SPEA2-P. They reduce the user burden in interactive MOEAs to create the collective

reference points and keep finding the most preferred solutions.

Let Pt be the population at generation Gt with size N and Qt be the offspring. The

new approximation set St for this generation t are clustered closely around the J collective

reference points zj ( j ∈ 1, . . . , J). The points are clustered based on the closest distance

to one of the collective reference points and associated to them.

For each cluster Cj, the ideal point is determined by identifying the array with the
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Figure 4.3: Reference point and its corresponding cluster

lower bound of all objective function z∗j . Then, a reference line is defined by joining the

collective reference point zj with the ideal point z∗j . The perpendicular distance of each

point in Cj from the corresponding reference line is calculated. In two-dimension, the

distance of a point (x0, y0) from the line that passes through two points P1 = (x1, y1) and

P2 = (x2, y2) is defined as follows:

distance(P1, P2, (x0, y0)) =
|(y2 − y1)x0 − (x2 − x1)y0 + x2y1 − y2x1|√

(y2 − y1)2 + (x2 − x1)2
(4.3)

The solution with the closest perpendicular distance is named representative-point.

Finally, the coordinate of the point in the reference line which is closest to the representative-

point become the new reference point to the generation Gt+1. Figure 4.3 illustrates a

reference point z3 and its cluster C3 of individuals in St. Figure 4.4 shows the reference

line for three different clusters and ideal points.

4.2.5 Complexity of the Algorithms

The new algorithms are based on the classical MOEAs: NSGA-II, SPEA2, and SMS-

EMOA. The overall worst-case complexity of the NSGA-II is O(MN2) [64], where M

is the number of dimensions and N is the population size. The SPEA2 has the worst

runtime complexity of the truncation operator: O(K3), where N̄ is the size of the archive

and K = N + N̄ . But on average the SPEA2 has the complexity of O(K2 logK) [179].

The bottleneck of SMS-EMOA is the high time complexity for computing the values of

the hypervolume. In a two-dimensional space the complexity is O(N2). But in the case
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of high-dimensional MOPs, the complexity grows exponentially: O(NM+1) [77].

The algorithms proposed in this work: CI-NSGA-II; CI-SPEA2; CI-SMS-EMOA; CI-

NSGA-II-P; CI-SPEA2-P; CI-SMS-EMOA-P do not increase the asymptotic complexity

of the original algorithms. The Gaussian Mixture procedure in the new algorithms, used to

reveal distributions of observations in the overall population and determine the collective

reference point, has the complexity of O(MN+GN2), where G is the number of mixtures.

Other operations have smaller complexity. The ideal point and the association of the

points to a cluster Cj on the reference point projection for the algorithms: CI-NSGA-II-P;

CI-SMS-EMOA-P; CI-SPEA2-P; requires a total ofO(MN) andO(MNH) computations,

respectively.



Chapter 5

Assessing Performance in Preference-
Based MOEAs

5.1 Multi-Objective Performance Indicators

The multi-objective algorithms have two main goals with respect to the optimization

process: a) a good convergence to the Pareto-optimal front; b) a good diversity in obtained

points, even when preferred areas are appointed instead of the whole PF . In the last

decades, several metrics were implemented to evaluate the outcome sets of MOEAs and

used to compare the performance of different evolutionary approaches. The analysis of

two sets of trade-off solutions requires an appropriate study of the performance indicators

available.

There are a variety of approaches that analyse the distribution of points in the ob-

jective function space and the accuracy in terms of convergence. Considering an approx-

imation set S, the performance indicators can be grouped as cardinality, accuracy and

diversity metrics [101, 138]. The cardinality of S refers to the number of non-dominated

solutions that exists in S. Accuracy metrics evaluate the convergence or closeness of S to

the known Pareto-optimal front. Finally, the diversity metrics exam the distribution and

extent of the approximation set S.

A performance indicator is said unary if it receives as parameter only one approxima-

tion set S to be evaluated. Formally, an unary metric is denoted as: I(S) : T → R, where
T is the set of all approximation sets. If the indicator receives as parameter two approxi-

mation sets, S0 and S1, the metric is said to be binary and denoted as I(S0, S1) : T 2 → R.

It is worth noting that unary metrics assign a quality value to an approximation set,

while binary metrics take into account the relationship between two approximation sets
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(S0, S1) in terms of dominance to discover which one is better. For that reason, the unary

quality indicators are most commonly used in the literature [182].

5.1.1 Cardinality Indicators

The cardinality indicators quantify the number or ratio of non-dominated solutions in S.

Usually, these indicators are kept as the prerequisite ahead of the distribution or accu-

racy metrics. Because if the number of non-dominated solutions in any two approximation

sets (S, S ′) for comparison differs or is too small in size, the distribution and accuracy

indicators would become statistically insignificant.

The optimal solution (PS) set obtained by the optimizers is termed as A. A finite

number of non-dominated solutions that approximates the true PF is termed as B.

5.1.1.1 Overall Non-dominated Vector Generation

The Overall Non-dominated Vector Generation (ONVG) gives the number of the non-

dominated solutions in the optimal solution set (A) [157]:

ONV G(A) = |A| (5.1)

The Overall Non-dominated Vector Generation Ratio (ONVGR) gives the ratio of the

optimal solution set (A) with respect to the true Pareto-optimal front (B):

ONV GR(A,B) =
|A|
|B| (5.2)

5.1.1.2 Error Ratio

Similar to the ONVGR indicator, the Error Ratio (ER) considered the solution intersec-

tions between A and B instead [156]. It is defined as:

ER(A,B) = 1− |A| ∩ |B||B| (5.3)
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5.1.1.3 Ratio of Non-dominated Individuals

The Ratio of Non-dominated Individuals (RNI) verifies the proportion of non-dominated

individuals in the approximation set S [150]:

RNI(S) =
|S̄|
n
, (5.4)

where S̄ denotes the set of non-dominated individuals in population S and n is the

number of point in S.

5.1.1.4 Coverage of Two Sets Indicator

The Coverage of Two Sets [180,181] is another measure widely used:

C(X ′, X ′′) =
|{a′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ≺ a′′}|

|X ′′| , (5.5)

whereX ′, X ′′ ⊆ X are two sets of decision vectors and function C maps the percentage

of domination from one set to another in the interval [0, 1]. But it does not express how

much better one set is over the other. Although convex regions may be preferred by the

hypervolume indicator, the coverage of two sets technique has no restriction related to

the shape of Pareto front.

5.1.2 Accuracy Indicators

The accuracy metrics evaluate the convergence or the proximity of S to the known Pareto-

optimal front.

5.1.2.1 Pareto-optimal Front Coverage Indicator

Pareto-optimal Front Coverage indicator, DS→PF
, is a proximity indicator [34] that defines

the distance between an achieved approximation set S and their closest counterpart in

the current Pareto-optimal front:

DS→PF
(S) =

1

|S|
∑

x∈S

min
x′∈PS

{d (x,x′)} , (5.6)

where d is the Euclidean distance between two points. It is also known as Generational
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Distance (GD). If the Pareto-optimal front is continuous, a correct formulation of this

indicator calls for a line integration over S. Small values of DS→PF
indicate proximity to

the Pareto-optimal front. This measure of quality does not necessarily represent a diverse

solution, because it describes on average how far away the elements of S are from the

trade-off front PF . Its main drawback is the obligation to previously know the true front,

what may be unfeasible for real applications.

5.1.2.2 ε-Indicator

Epsilon indicators rely on the epsilon dominance concept. In this performance, ε defines

the value required to translate/scale the optimal solution set PS such that PS dominates

PF [107,182]. It takes the form of:

Iε+(A,B) = inf
ε∈R
{∀y ∈ B, ∃x ∈ A such that x 4 ε+ y} (5.7)

5.1.2.3 Maximum Pareto Front Error

The Maximum Pareto Front Error (MPFE) evaluates the largest distance in the objective

space between any individual xi in the approximation front and the corresponding closest

vector xj in the true Pareto front PF [156,171].

MPFE(S) = max
i
di, (5.8)

where di = minj‖f(xi)−PF (xj)‖ is the distance in objective space between individual

xi and the nearest member in PF .

5.1.3 Diversity Indicators

Diversity in the pool of final solutions guarantees good representations of alternatives

to decision makers. The diversity indicators focus on the distribution and spread of the

solutions. Figure 5.1 illustrates the the difference between distribution and spread. The

points in 5.1a are well distributed but they have a poor spread, because the approximation

set S does not contain the extreme points (0,1),(1,0) of the PF . Figure 5.1b, on the other

hand, have a good spread but poor distribution.
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Fig. 1. Two components (distribution and spread) in diversity metrics.

where S
⋂

P denotes the solutions existing in both S and P .
By replacing P with reference set R, the Ratio of the Reference
Points Found in [54, 55] is proposed as C1R = |S ⋂

R|
|R| .

As mentioned in Section II, set P consists of a finite
number of non-dominated solutions that approximate the true
PFs. Hence, it is often infeasible to arrive at the exact same
solutions (usually comprising of real values in the objective
space) in both S and P . For this reason, the metric Non-
dominated Points by Reference Set (C2R) [55], which adopts
the Pareto dominance concept, is introduced as follows:

C2R(S, R) =
|{s⃗ ∈ S|!r⃗ ∈ R : r⃗ ≺ s⃗}|

|S| . (5)

In other words, Eq. 5 estimates how many solutions of S are
non-dominated by reference set R.

In contrast to the eight capacity metrics presented, which
only elicit information from one optimal solution set, the
Coverage of Two Sets (or Metric C) in [44, 45] concentrates
on the overlaps between two optimal solution sets.

C(S1, S2) =
|{s⃗2 ∈ S2|∃s⃗1 ∈ S1 : s⃗1 ≼ s⃗2}|

|S2|
. (6)

Note that this metric is independent of PF (P ) or reference
set (R). Based on pairwise comparisons between solutions, the
computational complexity of C1R and C2R is O(m|S| · |R|),
and that of C(S1, S2) is O(m|S1| · |S2|).

B. Convergence Metrics

Convergence metrics measure the degree of proximity based
on the distance between the solutions in S to those in PF (P ).

The Generational Distance (GD) metric [6, 42] is among
those commonly used in MOEAs, and has the formulation as:

GD(S, P ) =
(
∑|S|

i=1 dq
i )

1/q

|S| , (7)

where di = min
p⃗∈P

||F (s⃗i) − F (p⃗)||, s⃗i ∈ S and q = 2. Thus,

di is the smallest distance from s⃗ ∈ S to the closest solution
in P . Hereafter || · || denotes the Euclidean distance unless
explicitly indicated. Two similar metrics have been proposed
as γ index [52] and M∗

1 [56] with q = 1.
Among the convergence metrics, Zitzler et al. introduced

the commonly used metric ϵ-indicator [47] as follows:

I1
ϵ+(S, P ) = inf

ϵ∈R
{∀p⃗ ∈ P |∃s⃗ ∈ S : s⃗ ≼ p⃗ + ϵ}, (8)

and s⃗ ≼ p⃗·ϵ is an alternative formulation of s⃗ ≼ p⃗+ϵ. In these
two metrics, ϵ thus defines the value required to translate/scale
the optimal solution set S such that S dominates P .

The metric Seven Points Average Distance (SPAD) in [57],
on the other hand, considers the solution distance between S
and reference set R. The formulation of SPAD is defined as:

SPAD(S, R) =

∑|R|
i=1 di

|R| , (9)

where di = min
s⃗∈S

||F (r⃗i)−F (s⃗)||, r⃗i ∈ R. The seven points in

R are generated as: (0, 1
3fmax

2 ), (0, 2
3fmax

2 ), (0, fmax
2 ), (0, 0),

( 1
3fmax

1 , 0), ( 2
3fmax

1 , 0), (fmax
1 , 0), where fmax

1 and fmax
2

denote the maximum values of objective 1 and objective 2,
respectively. Thus, SPAD only applies to 2-dimensional PFs.
Another constraint of SPAD is that the solutions of R are
strictly linearly distributed, irregardless of the shapes of PFs.

Based on the analysis of the above metrics, the time com-
plexity of GD, γ index, M∗

1 and ϵ-indicator is O(m|S| · |P |),
and that of SPAD is O(m|S|).

C. Diversity Metrics
Diversity metrics indicate the distribution and spread of

solutions in the optimal solution set S. To illustrate the
difference between distribution and spread, Fig. 1 showcases
two representative examples. Particularly, the 5 non-dominated
solutions of S in Fig. 1(a) possess good distribution but
poor spread, since S does not contain the extreme points
(0, 1), (1, 0) of the 2-dimensional PF. On the other hand,
Fig. 1(b) illustrates the example of an optimal solution set
with good spread but unfavorable distribution.

1) Distribution in diversity metrics: Distribution is derived
from the discrepancy of pairwise solutions in set S.

In [52], Deb et al. proposed a metric ∆′ that compares all
the solutions’ consecutive distances with the average distance:

∆′(S) =

|S|−1∑

i=1

(di − d̄)

|S| − 1
, (10)

where di is the Euclidean distance between consecutive solu-
tions in S, and d̄ is the average of di. If all the pair of consec-
utive solutions share equal distance, then di = d̄, ∆′(S) = 0,
and S has a perfect distribution. To find consecutive solutions,
the prerequisite of this metric is to sort the solutions of S by
lexicography order.

Two similar metrics have also been introduced in [56, 57].
The M∗

3 metric [56] considers the maximum distance instead
of the average distance in ∆′. In [57], the Spacing (SP) metric

is designed as SP(S) =

√∑|S|
i=1(di − d̄)2/(|S| − 1), where

di = min
s⃗j∈S,s⃗j ̸=s⃗i

||F (s⃗i) − F (s⃗j)|| and si ∈ S. In contrast to

the consecutive distance in ∆′, metric SP calculates the closest
distance of pairwise solutions in S.

In addition to the parameter-free metrics ∆′, M∗
3 and SP,

the following two metrics are designed with user-specified
parameters. The M2∗ metric in [56] is equipped with a niche
radius σ and takes the form of:

M∗
2 (S) =

∑
s⃗1∈S |{s⃗2 ∈ S| ||s⃗1 − s⃗2|| < σ}|

|S| − 1
. (11)

(a) Good distribution, poor spread.
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where S
⋂

P denotes the solutions existing in both S and P .
By replacing P with reference set R, the Ratio of the Reference
Points Found in [54, 55] is proposed as C1R = |S ⋂

R|
|R| .

As mentioned in Section II, set P consists of a finite
number of non-dominated solutions that approximate the true
PFs. Hence, it is often infeasible to arrive at the exact same
solutions (usually comprising of real values in the objective
space) in both S and P . For this reason, the metric Non-
dominated Points by Reference Set (C2R) [55], which adopts
the Pareto dominance concept, is introduced as follows:

C2R(S, R) =
|{s⃗ ∈ S|!r⃗ ∈ R : r⃗ ≺ s⃗}|

|S| . (5)

In other words, Eq. 5 estimates how many solutions of S are
non-dominated by reference set R.

In contrast to the eight capacity metrics presented, which
only elicit information from one optimal solution set, the
Coverage of Two Sets (or Metric C) in [44, 45] concentrates
on the overlaps between two optimal solution sets.

C(S1, S2) =
|{s⃗2 ∈ S2|∃s⃗1 ∈ S1 : s⃗1 ≼ s⃗2}|

|S2|
. (6)

Note that this metric is independent of PF (P ) or reference
set (R). Based on pairwise comparisons between solutions, the
computational complexity of C1R and C2R is O(m|S| · |R|),
and that of C(S1, S2) is O(m|S1| · |S2|).

B. Convergence Metrics

Convergence metrics measure the degree of proximity based
on the distance between the solutions in S to those in PF (P ).

The Generational Distance (GD) metric [6, 42] is among
those commonly used in MOEAs, and has the formulation as:

GD(S, P ) =
(
∑|S|

i=1 dq
i )

1/q

|S| , (7)

where di = min
p⃗∈P

||F (s⃗i) − F (p⃗)||, s⃗i ∈ S and q = 2. Thus,

di is the smallest distance from s⃗ ∈ S to the closest solution
in P . Hereafter || · || denotes the Euclidean distance unless
explicitly indicated. Two similar metrics have been proposed
as γ index [52] and M∗

1 [56] with q = 1.
Among the convergence metrics, Zitzler et al. introduced

the commonly used metric ϵ-indicator [47] as follows:

I1
ϵ+(S, P ) = inf

ϵ∈R
{∀p⃗ ∈ P |∃s⃗ ∈ S : s⃗ ≼ p⃗ + ϵ}, (8)

and s⃗ ≼ p⃗·ϵ is an alternative formulation of s⃗ ≼ p⃗+ϵ. In these
two metrics, ϵ thus defines the value required to translate/scale
the optimal solution set S such that S dominates P .

The metric Seven Points Average Distance (SPAD) in [57],
on the other hand, considers the solution distance between S
and reference set R. The formulation of SPAD is defined as:

SPAD(S, R) =

∑|R|
i=1 di

|R| , (9)

where di = min
s⃗∈S

||F (r⃗i)−F (s⃗)||, r⃗i ∈ R. The seven points in

R are generated as: (0, 1
3fmax

2 ), (0, 2
3fmax

2 ), (0, fmax
2 ), (0, 0),

( 1
3fmax

1 , 0), ( 2
3fmax

1 , 0), (fmax
1 , 0), where fmax

1 and fmax
2

denote the maximum values of objective 1 and objective 2,
respectively. Thus, SPAD only applies to 2-dimensional PFs.
Another constraint of SPAD is that the solutions of R are
strictly linearly distributed, irregardless of the shapes of PFs.

Based on the analysis of the above metrics, the time com-
plexity of GD, γ index, M∗

1 and ϵ-indicator is O(m|S| · |P |),
and that of SPAD is O(m|S|).

C. Diversity Metrics
Diversity metrics indicate the distribution and spread of

solutions in the optimal solution set S. To illustrate the
difference between distribution and spread, Fig. 1 showcases
two representative examples. Particularly, the 5 non-dominated
solutions of S in Fig. 1(a) possess good distribution but
poor spread, since S does not contain the extreme points
(0, 1), (1, 0) of the 2-dimensional PF. On the other hand,
Fig. 1(b) illustrates the example of an optimal solution set
with good spread but unfavorable distribution.

1) Distribution in diversity metrics: Distribution is derived
from the discrepancy of pairwise solutions in set S.

In [52], Deb et al. proposed a metric ∆′ that compares all
the solutions’ consecutive distances with the average distance:

∆′(S) =

|S|−1∑

i=1

(di − d̄)

|S| − 1
, (10)

where di is the Euclidean distance between consecutive solu-
tions in S, and d̄ is the average of di. If all the pair of consec-
utive solutions share equal distance, then di = d̄, ∆′(S) = 0,
and S has a perfect distribution. To find consecutive solutions,
the prerequisite of this metric is to sort the solutions of S by
lexicography order.

Two similar metrics have also been introduced in [56, 57].
The M∗

3 metric [56] considers the maximum distance instead
of the average distance in ∆′. In [57], the Spacing (SP) metric

is designed as SP(S) =

√∑|S|
i=1(di − d̄)2/(|S| − 1), where

di = min
s⃗j∈S,s⃗j ̸=s⃗i

||F (s⃗i) − F (s⃗j)|| and si ∈ S. In contrast to

the consecutive distance in ∆′, metric SP calculates the closest
distance of pairwise solutions in S.

In addition to the parameter-free metrics ∆′, M∗
3 and SP,

the following two metrics are designed with user-specified
parameters. The M2∗ metric in [56] is equipped with a niche
radius σ and takes the form of:

M∗
2 (S) =

∑
s⃗1∈S |{s⃗2 ∈ S| ||s⃗1 − s⃗2|| < σ}|
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(b) Poor distribution, good spread.

Figure 5.1: Distribution and spread of the solutions [101].

5.1.3.1 Spread

The spread indicator (∆) [49,60] provides information related to the extent of the spread

of the obtained Pareto front. It is defined as follows:

∆ =

∑M
m=1 d

e
m +

∑|S|
i=1 |di − d̄|∑M

m=1 d
e
m + |S|d̄

, (5.9)

where di is a neighbouring distance measure, d̄ is the mean value of this distance

measure, dem is the distance between the extreme solutions of S, |S| is the quantity of the

obtained non-dominated objective vectors. The smaller the value is, the more diverse is

the front.

5.1.3.2 Maximum Spread Indicator

This indicator measures the length of the diagonal of a hyperbox formed by the extreme

function values found in the approximation set [176]:

D =

√√√√
M∑

m=1

(
|S|

max
i=1

f im −
|S|

min
i=1

f im

)2

(5.10)

5.1.3.3 Spacing

The spacing indicator analyses the distribution of the obtained non-dominated set. It

measures the spacing with a relative distance measure between the consecutive solutions
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in S [60]:

SP =

√√√√ 1

|S|

|S|∑

i=1

(
di − d̄

)2 (5.11)

where di = mink∈S∧k 6=i
∑M

m=1 |f im − fkm| and d̄ is the mean value d̄ =
∑|S|

i=1 di/|S|.

5.1.3.4 Uniform Distribution

The Uniform Distribution (UD) measures the distribution of non-dominated points on

the trade-off set S [150]:

UD(S) =
1

1 +Dnc

, (5.12)

where Dnc =
√∑

xi∈S (nc(xi)− n̄c(x̄))2 / (|S| − 1) is the standard deviation of niche

count of the overall set of non-dominated individuals in S, nc(xi) = | {xj ∈ S : ‖xi − xj‖ < α} |−
1 and n̄c(x̄) is the average of nc(xi).

5.1.4 Accuracy-Diversity Indicators

Accuracy-Diversity indicators measure both the convergence and diversity of S on a single

scale.

5.1.4.1 Hypervolume Indicator

The Hypervolume (HV) or S-metric indicator [75,181] calculates the volume of the union

of hypercubes ai defined by a non-dominated point mi and a reference point xref defined

as:

S(M) = Λ({⋃i ai|mi ∈M})
= Λ(

⋃
m∈M{x|m ≺ x ≺ xref}) .

(5.13)

It is a quantitative metric that computes the region space covered by all non-dominated

points. This performance indicator can be used independently to evaluate the efficiency

of different multi-objective algorithms and does not require knowledge of the true Pareto-

optimal front on beforehand, which is an advantage for real-world problems rather than
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Figure 5.2: Dominated Hypervolume in two and three dimensions. The left figure shows
the covered area of a minimization case whereas the right one shows the covered volume
of a maximization case. Figure taken from [55].

synthetic ones like ZDT test suite [178], DTLZ [67] or WFG [94].

Figure 5.2 shows the dominated Hypervolume in two and three dimensions for a set

A = {a1, . . . , a4} ⊂ R2 (minimization case) and Y = {y1, . . . , y5} ⊂ R3 (maximization

case), respectively.

The understanding of performance concerns not only the quality of the approximation

set S in terms of diversity and convergence. But also includes the computational resources

needed to generate this outcome. Due to the the high computational complexity of the

Hypervolume, the runtime of this indicator is exponential and become intractable when

the number of objectives is large (m > 4). Some studies have been addressed to reduce

the computational burden by estimating the Hypervolume indicator with Monte-Carlo

sampling [13,177].

5.1.4.2 Averaged Hausdorff Distance Indicator

The Averaged Hausdorff Distance indicator or ∆p [121, 139, 142] is a metric that analy-

sis both the proximity to the true Pareto front and the distribution of points along it.

∆p combines variations of two performance indicators already described in this chapter:

Generational Distance [34] and Inverted Generational Distance [57]. Let A,B ⊂ RM be
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non-empty finite sets, the ∆p value for p > 0 is termed the averaged Hausdorff distance

between sets A and B. It takes the form of:

∆p(A,B) = max (GDP (A,B) , IGDP (A,B))with

GDP (A,B) =

(
1

|A|
∑

x∈A

d(x, B)P

)1/P

and

IGDP (A,B) =

(
1

|B|
∑

y∈B

d(y, A)P

)1/P

,

(5.14)

where d(u, A) = inf {‖u− v‖ : v ∈ A} for u,v ∈ RM and some vector norm ‖.‖.

5.1.4.3 Inverted Generational Distance

The Inverted Generational Distance (IGD) measures both convergence and diversity of

the approximation set S [57]. It is defined as:

IGD(S) =

∑
v∈B

d(v, S̄)

|B| , (5.15)

where S̄ denotes the set of non-dominated individuals in population S, d(v, S̄) repre-

sents the minimum Euclidean distance between v and the points in S̄.

5.2 Performance Indicators for Preference-Based MOEAs

The performance indicators evaluate the quality of different results and allow compar-

ison between the algorithms. However, the current state-of-the-art diversity indicators

presented in the previous section cannot be employed in this study. That is because

their computation depends on the spread of solutions in the whole Pareto front and, on

contrary, the proposed preference-based algorithms here aim to obtain subsets of solu-

tions close to the collective reference points. In this case, as the goal is not the spread

and distribution of points along the trade-off set, the Hypervolume, Spread and Spacing

indicator are inadequate.

Figure 5.5 illustrates a shortcoming of Inverted Generational Distance and Hyper-

volume metrics [112] when these indicators are applied to a trade-off set with preference
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A. Shortcomings of Regular Metrics
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(c) IGD and HV values for point sets in Fig. 1(b).

Fig. 1: Variations of IGD and HV values with respect to a DM specified reference point zr = (0.16, 0.9).

Let us use two toy examples to illustrate some shortcomings of IGD and HV metrics. In particular, the example EF is a
line (i.e., f2 = 1− f1) having a intercept of one with each objective axis. The DM’s preference information is specified as a
reference point zr = (0.16, 0.9)T in the objective space. Points focusing on the region closest to zr are most relevant to the
DM’s preference information. To calculate the IGD and HV values, we sample 670 evenly distributed points along the EF, and
set the worst point as zw = (1.1, 1.1)T for HV.

1) In Fig. 1(a), two sets of points S1 and S2 have the same cardinality (|S1| = |S2| = 20), but are with different spreads
along the EF. S1 crowds around zr, while S2 evenly distributes along the whole EF. From the DM’s perspective, S1 is
preferable than S2. However, since S2 has a wider spread over the EF, it obviously has better IGD and HV values than
S1. Specifically, IGD(S1) = 3.476E-1 and IGD(S2) = 4.610E-4; HV(S1) = 0.2910 and HV(S2) = 0.6837.

2) In Fig. 1(b), ten sets of points S1 to S10 are created along the EF. Each set contains 40 evenly distributed points and
has the same spread. Fig. 1(c) shows the IGD and HV values obtained by each point set. Since S2 locates in the ROI, it
was supposed to have the best metric values. However, as shown in Fig. 1(c), S2 obtains the second worst metric values,
whereas S5 and S6, far away from the ROI, obtain the best metric values.

In summary, neither IGD nor HV metric is reliable for evaluating the quality of a preferred efficient set. A point set with
additional but unwanted points may obtain a better metric value, thereby making the IGD and HV metrics unsuitable for
performance assessment in the toy example shown in Fig. 1(a). On the other hand, even for different point sets having the
same spread along the EF, their IGD and HV values depend on their positions and the geometric property of EF. This makes
the IGD and HV metrics unsuitable for performance assessment in the toy example shown in Fig. 1(b).

B. Shortcomings of Existing Preference-Based Metrics

To the best of our knowledge, there are two previous attempts, i.e., [31] and [32], to adapt the regular metrics for the
preference-based EMO. Their basic ideas are similar. At first, they merge solutions obtained by all considered algorithms into
a composite set. Then, they specify a preferred region within the composite set. Finally, only solutions falling within this
preferred region are considered for performance assessment. The major difference between [31] and [32] is the setting of the
preferred region. As shown in Fig. 2(a), [31] uses the closest point to the origin as the center of the preferred region. In
contrast, as shown in Fig. 2(b), [32] uses the closest point to the DM supplied reference point as the center. Both these two
metrics do not require any prior knowledge of the EF, and they work for some simple examples. However, they have some
flaws that make them misleading:

1) It is obvious that [31] does not take the DM’s preference information into consideration. For the example in Fig. 2(a),
S1 is obviously preferable than S2 considering the given reference point zr. However, S1 and S2 are distant from each
other, and the origin is closer to points in S2. Therefore, S1 will be wrongly excluded from the preferred region for
performance assessment.

2) On the other hand, although [32] considers the DM’s preference information in computation, it treats points outside
the preferred region equally redundant, e.g., in Fig. 2(b), no point in S2 will be considered in performance assessment.
Considering the example in Fig. 1(b), all ten point sets, except S2, cannot get any meaningful metric value. This gives
the DM a wrong information that S1 to S10, except S2, are equally bad.

Figure 5.3: A shortcoming of IGD and HV indicators. S2 has higher values of IGD and
HV. But S1 should be preferable than S2 because their points are closer to the reference
point z0 provided. Figure taken from [112].

information. Considering the function f2 = 1− f1, the example shows the efficient front

(EF) as a line having a intercept of 1.0 with each objective axis. The reference point z0

is (0.16, 0.9). Two sets of points S1 and S2 have the same cardinality (|S1| = |S2| = 20).

The approximation set S1 is concentrated around z0 and S2 is evenly distributed along

the whole Pareto front. Due to the spread of S2, its IGD and HV have higher values

(IGD(S1) = 3.476E − 1; IGD(S2) = 4.610E − 4;HV (S1) = 0.2910;HV (S2) = 0.6837).

But based on the reference point z0 provided, S1 should be preferable than S2.

The accuracy indicators are one available alternative to measure the performance of

preference-based MOEAs. But relying only on the convergence properties gives just an

one-sided analysis of the outcomes. It would be important to explore different aspects of

the solutions such as the concentration of points around the reference points.

There is a lack of performance indicators that focus only on the proportion of occu-

pied area in PF . Recent studies have focused great attention upon this limitation. The

following subsections present some indicators based on preference areas and three new

ones adopted for the work reported here.

5.2.1 Filatovas Spread

This spread indicator proposed by Filatovas [76] modifies the Spread indicator ∆ [49,60]

by removing the distance between the extreme objective vectors of the approximation set
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S. The formula is defined as follows:

∆P =
1

P

P∑

r=1


 1

|S|d̄

|S|∑

i=1

|di − d̄|


 , (5.16)

where P is the number of non-empty clusters, di is a neighbouring distance measure,

d̄ is the mean value of this distance measure.

5.2.2 User-Preference Composite Front

The User-Preference metric based on a Composite Front (UPCF) is an indicator for

evaluating the performance of preference-based MOEAs [128]. The Composite Front (CF)

is a type of reference set [129], which is a collection of candidate solutions that comprises

a preferred region based on the location of a user-supplied reference point.

In practice, the CF is the collection of all non-dominated solutions from the merged

solution sets of all algorithms that are to be compared. After that, a preferred region is

defined on the composite front based on the location of a provided reference point. The

solution with the least distance to the reference point is called mid-point. Then the points

within a range of r from the mid-point are considered to be in the preferred region.

Once the preferred region is defined, the Hypervolume or Inverted Generational Dis-

tance (IGD) can be applied to evaluate the results of each algorithm which are within the

preferred region. In Figure 5.4, the squares and circles represent the solution sets for two

different preference-based MOEAs. The points in black (whether squares or circles) are

the non-dominated solutions and they form the composite front. The points in gray are

the dominated ones. The parameter r determines the size of the preferred region around

the mid-point.

5.2.3 Ratio of Non-Dominated Points

The Ratio of Non-Dominated Points measures the quantity of non-dominated points found

in the approximation set S that belongs to a known reference set R [88]. It is defined as:

C1R(S) =
|S ∩R|
|R| (5.17)



5.2 Performance Indicators for Preference-Based MOEAs 60

Reference Point

Preferred Region

A

B

f1

f2

(0, 0) Ideal Point

2
δ

Fig. 1. An example to depict the deficiency of the metric proposed in [8].

III. RELATED WORK

All of the metrics discussed so far were designed to
measure the performance of EMO algorithms that approximate
the entire Pareto-optimal front. There has been limited work on
developing metrics for comparing user-preference based EMO
algorithms.

To the best of our knowledge, Wickramasinghe et al. [8]
were the first to propose a metric for comparing user-
preference based EMO algorithms. This metric works by
combining the solution sets of all algorithms that need to be
compared. Then, the closest solution to the ideal point is used
as the center of a hypercube that defines a preferred region.
Figure 1 shows how a preferred region is defined for two
different reference points. The size of the preferred region is
determined by a parameter, δ, which is half the edge length
of the hypercube. Finally, for each of the algorithms, HV is
calculated with respect to a nadir point for all the solutions that
fall within the preferred region. To calculate the nadir point,
this metric uses the solutions from all algorithms inside the
preferred region. The choice of the ideal point is the origin of
the coordinate system for minimization problems.

An advantage of this metric is that it does not require
knowledge of the Pareto-optimal front. However, its major
drawback is that it defines the preferred region based on the
location of the ideal point. This causes misleading results when
the reference point is biased towards one objective more than
the other objectives. This effect is shown in Figure 1. It can
be seen that the solutions for reference point A converged
on the Pareto-optimal front with a minimum distance to the
reference point. However, a bad choice of the ideal point causes
many high quality solutions to fall outside the preferred region.
This shows that the results of this metric can be misleading
depending on the location of the reference point.

Pareto−optimal Front

Reference Point

Preferred Region

Mid−point

f1

f2

2r

Fig. 2. An example of a composite front which is used to define a preferred
region.

IV. PROPOSED METRIC

In this section, we propose a metric to evaluate the perfor-
mance of user-preference based multi-objective evolutionary
algorithms.

In a nutshell, the proposed metric which hereafter is called
user-preference metric based on a composite front (UPCF),
merges the solution set of all algorithms and uses the non-
dominated solutions of the merged solution sets as a replace-
ment for the Pareto-optimal front. This so-called composite
front is a type of reference set commonly used in several
cardinality-based metrics. The composite front is then used
to form a preferred region based on the position of a reference
point provided by the decision maker. Finally, the performance
of each algorithm is measured by calculating IGD or HV for
solutions of each algorithm which are within the preferred
region. UPCF can be coupled with either IGD or HV. In
this paper both of these two popular techniques are used
for the sake of comparison. Measuring both convergence and
diversity of the solution set makes both IGD and HV desirable
candidates for this new metric. The detailed procedure for
applying UPCF is as follows:

Step 1 - Generating a Composite Front: The solution
set of all the algorithms to be compared are merged, and all
non-dominated solutions from this merged set are placed in
another set called the composite front. In Figure 2, squares and
circles show the solution sets for two different user-preference
based algorithms. The solutions shown as black squares form
the composite front, and the solutions shown as gray circles
are those dominated by at least one solution in the composite
front.

Step 2 - Generating a Preferred Region For Each
Reference Point: To define the preferred region, the Euclidean
distances between all the solutions in the composite front and
a reference point is calculated. Then the solution with the

2827

Figure 5.4: The composite front and its preferred region. Squares and circles in black
represent the composite front. The parameter r determines the size of the preferred region
around the mid-point. Figure taken from [128].

5.2.4 R-metric

Li and Deb [112] suggested an indicator to quantitatively evaluate the performance of a

preference-based MOEA using reference points. The R-metric indicator pre-processes the

preferred trade-off set according to a multi-criterion decision-making (MCDM) approach

before applies the IGD or HV performance assessments.

In this method, three parameters are necessary: a) a reference point zr; b) a worst

point zw; c ) the extent of the preferred area, denoted as ∆(0 < ∆ ≤ 1). First of all,

the R-metric will merge all the L approximation sets SC = S1, . . . , SL resulted from L

different preference-based MOEAs. For each Si, i ∈ 1, . . . , L, only the non-dominated

solutions, comparing to those in the composite set Sc, are retained.

Then, some points must be identified for further operation. The centroid of a given

trade-off set S is denoted as zc. The representative point zp is the closest point (zp ∈ Si)
to the centroid zc. The preferred area must have a delimited area ∆, so only the points

inside this region are retained in Si.

The final step computes the Achievement Scalarizing Function (ASF) [167] of zp on

the reference line connecting zr and zw. The formula is defined as follows:
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Algorithm 2: Prescreen Procedure

Input: Preferred efficient sets S1, · · · , SL

Output: Processed S1, · · · , SL

1 for i← 1 to L do

2 Sc ←
L⋃

l=1

Sl\Si;

3 for j ← 1 to |Si| do
4 for k ← 1 to |Sc| do
5 if Sc(k) ≼ Si(j) then
6 Si = Si\{Si(j)};
7 break;
8 end
9 end

10 end
11 end
12 return S1, · · · , SL

iso-ASF point

worst point

representative 
point

centroid

translated

EF

f1

f2

zl

S1

translated S2

reference point zr

zp

S2

S1

zw

zc

centroid zc

Fig. 4: Illustration of the R-metric computation procedure. Notice that the solution translation is according to iso-ASF lines
for the ASF with zr as the reference point and zw − zr as the weight vector.

example, in Fig. 5(a) and Fig. 5(b), both S1 and S2 have the same cardinality (|S1| = |S2| = 11), but S1 has an excessively
wider spread. Therefore, from the DM’s perspective, S2 is preferable than S1, and the corresponding R-metric values will
reflect this fact.

4) Solution Translation: Line 10 to line 16 in Algorithm 1 is the main crux of our method in which the trimmed points
are then translated to their virtual position near the iso-ASF point of zp for us to be able to assess their closeness to zr along
the preferred direction. To this end, we first compute the iso-ASF point of zp (denoted as zl) on the reference line connecting
zr and zw. Thereafter, all trimmed points are translated, along the direction vector zl − zp with the distance ∥zl − zp∥, to the
corresponding virtual position. Fig. 4 gives a simple illustration of the solution translation for two sets of points with regard
to zr and zw.

5) R-metric Computation: In this paper, we choose IGD and HV as the baseline metrics to evaluate the quality of a
preferred efficient set. The resulting R-metric is thus denoted as R-IGD or R-HV depending on the chosen baseline. For R-HV,
we simply compute the hypervolume of the translated points. For R-IGD, we need to pre-process P ∗ before computation.
More specifically, we first choose the closest point to zr in P ∗ as the representative point. Then, we use the filtering procedure
to select sample points that are within a Euclidean distance ∆

2 from the representative point of P ∗. Thereafter, these selected
sample points form the new P ∗ for computation.

B. Further Comments

1) Notice that, when considering the DM’s preference information, the convergence is not only the closeness to the EF, but
also the closeness of the translated points to the ROI along the preferred direction. This re-definition of convergence is

Figure 5.5: The R-metric solution translation of two sets of points (S1 and S2) with regard
to zr and zw. Figure taken from [112].

minimize ASF (x|zrw) = max
1≤i≤m

fi(x− zri )
wi

subject to x ∈ Ω,

(5.18)

where w is the weight vector that implies the relative importance of objectives. Based

on the ASF, each objective vector has a projection, called iso-ASF point, on the reference

line. The iso-ASF point of the representative point zp is denoted as zl. To conclude, all

points from Si are translated to the corresponding virtual position along the direction

vector zl − zp and a regular metrics can be applied for performance assessment. Figure

5.5 exhibits a solution translation for S1 and S2 with regard to zr and zw.

5.2.5 Novel Performance Indicators for Preference-Based MOEAs

This work presents three new indicators based on preference areas.

5.2.5.1 Referential Cluster Variance Indicator

Instead of a good spread of solutions along PF , the Referential Cluster Variance indicator

κ, proposed in this work, wants to obtain subsets of solutions close to the collective

reference point. In this context, a small cluster variance means the individuals from the

sample Y = {y1, . . . ,yN} are clustered closely around the population mean (µ) or the

reference point (z0). A low dispersion for a group of preferred points in PF denotes a

better efficiency of the approach tested. The Referential Cluster Variance indicator κ is
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represented as follows:

κ =
1

N

N∑

i=1

(yi − µ)2 (5.19)

In cases with more than one collective reference point (zj), the points are clustered

based on the closest distance to one of the reference points: Cj = {a ∈ Rk : ‖a − zj‖ ≤
‖a− zi‖,∀i}. Cluster Cj consists of all points for which zj is the closest. The referential

cluster variance is calculated to each cluster separately.

5.2.5.2 Convex Hull Volume Indicator

The convex hull of a set of points in k-dimensional space can be represented as a set of

bounding facets and a collection of vertexes for each facet. A set C is convex if the line

segment between any two points in C lies in C, i.e., for any x1, x2 ∈ C and any Θ with

0 ≤ Θ ≤ 1,Θx1 + (1 − Θ)x2 ∈ C. The convex hull of C (conv C) for n points is then

given by the expression:

conv C =

{
n∑

j=1

λjxj : λj ≥ 0 for all j and
n∑

j=1

λj = 1

}
(5.20)

Convex hull is a well-known geometric object widely used in various fields such as

shape analysis, pattern recognition, geographical information systems, image processing,

etc. There are a few multi-objective evolutionary approaches designed to work with this

geometric concept in the optimization.

The Normal Boundary Intersection method (NBI) [59] projects elements of the CHIM

towards the boundary ∂Z of the objective space Z through a normal vector N . The

intersection point between ∂Z and N the normal pointing is a Pareto optimal point, if

the PF surface is convex. Martínez and Coello [123,172] introduced an archiving strategy

based on the CHIM to find evenly distributed points along the PF . Their convex hull

multi-objective evolutionary algorithm (CH-MOEA) uses an archiving mechanism that

stores non-dominated solutions which are orthogonal to each point of CHIM (h ∈ H).
Likewise, Shan-Fan et al. [144]presented a MOEA where the non-dominated solutions are

picked out from dominated solutions by the quick convex hulls algorithm.

Wang and Emmerich et al. proposed a convex hull-based multi-objective genetic

programming (CH-MOGP) [161,162] that follows similar strategies than SMS-EMOA and
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NSGA-II. But it uses convex hull-based sorting approach as an indicator based selection

schema to rank the individuals into different levels. Monfared [130] also employs convex

hull concepts to elaborate a geometric ranking procedure for non-dominated comparisons

in NSGA-II. Another approach for classifiers comparisons brings the volume under the

convex hull as a MOEA performance indicator [175].

The convex hull method can be extended to measure the quality of the non-dominated

points in the desired region of interest. To best of the author’s knowledge, there are

no reports in the literature concerning the use of convex hull as a MOEA performance

indicator. The idea behind this is to combine the points around each reference point to

form a convex facet of the PF preferred area. Thereafter, the volume of the convex hull

is calculated and used as a scalar indicator for the distribution of points in PF . Small

values of the hull volume (Ψ) indicate concentrated points around the reference points.

In order to compute the convex hull in the plane, some algorithms test all pair of

points. These algorithms run in O(n4) time. But there are several algorithms which

attain the time complexity of O(n log n). The quickhull method [18] uses a divide and

conquer approach similar to quicksort. It has the average case complexity of O(n log n),

but may degenerate to O(n2) in the worst case.

Non-convex problems can use alpha shapes [72] to determine a concave hull of their

points in PF . The alpha shape is a generalization of the convex hull and a subgraph of the

Delaunay triangulation. As with the quickhull, the alpha shape of n points in the plane

can be determined in time O(n log n). The value of alpha (α) controls the geometric

design of the shape. For large α values the shape approaches to the boundary of the

convex hull. On the other hand, as α decreases the shape shows more cavities.

Figure 5.6 illustrates the convex and non-convex enclosure for the non-dominated

points generated by the CI-NSGA-II algorithm. The test problems used were the ZDT1

[178] and DTLZ3 [67], respectively.
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(a) ZDT1

alpha shape 

(b) DTLZ3

Figure 5.6: Convex hull and alpha shape of non-dominated points after CI-NSGA-II
iterations with one reference point.
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5.2.5.3 Reference Set Distance

The Reference Set Distance (C2R) indicates the mean distance between the non-dominated

points from the approximation set S and the reference set R:

C2R(S) =

√√√√√

 1

|S ′|

|S′|∑

i=1

di




2

(5.21)

where S ′ is the set of non-dominated points from S and di is the minimum distance

between the i-th element in S ′ and the reference set R.



Chapter 6

Experimental Results

6.1 Multi-Objective Benchmark Problems

This section presents the results of tests with benchmark problems. As mentioned in

Chapter 4, some traditional performance indicators (like: Hypervolume and Spread) do

not evaluate subsets of solutions close to the collective reference points. For that reason,

this work uses the new indicators to measure the quality of the algorithms: Referential

Cluster Variance (κ), Convex Hull Volume (Ψ) and the Reference Set Distance (C2R);

along with the proximity-based Front Coverage indicator(DS→PF
) and the appropriate

preference-based performance indicators: R-metric and Filatovas Spread (∆P ).

The CI-NSGA-II, CI-SPEA2 and CI-SMS-EMOA are compared with one another and

with respect to the preference-based algorithms: R-NSGA-II, W-HYPE. The scalable

multi-objective test problems ZDT, DTLZ and WFG [50] have a known optimal front

and can be used to benchmark the outcome of all the algorithms. Their features cover

different classes of MOPs and difficulties: convex PF , non-contiguous convex parts, non-

convex, multimodal, etc. For those reasons, the test problems submit the new algorithms

to distinct optimization difficulties and compare their results.

To summarise, the benchmark problems are:

• ZDT1

• ZDT2

• ZDT3

• ZDT4

• ZDT6

• DTLZ1

• DTLZ2

• DTLZ3

• DTLZ4

• DTLZ5

• DTLZ6

• DTLZ7
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• WFG1

• WFG2

• WFG3

• WFG4

• WFG5

• WFG6

• WFG7

• WFG8

• WFG9

The preference-based algorithms are:

• CI-NSGA-II

• CI-SMS-EMOA

• CI-SPEA2

• CI-NSGA-II-P

• CI-SMS-EMOA-P

• CI-SPEA2-P

• R-NSGA-II

• WHYPE

The preference-based performance indicators are:

• R-metric

• κ (Referential Cluster)

• Ψ (Convex Hull)

• C2R (Reference Set)

• DS→PF
(Convergence)

• ∆P (Filatovas Spread)

6.1.1 Simulated DMs

The R-NSGA-II and W-HYPE algorithms use a priori reference points: z0 = (0.3, 0.3),

z0 = (0.3, 0.3, 0.3) and z0 = (0.3, 0.3, 0.3, 0.3, 0.3); for the problems with two, three

or five objectives. The proposed collective intelligence MOEAs, on contrary, create the

reference points interactively based on the participants’ preferences. The main barrier to

such benchmark problems is the involvement of human decision makers into interactive

solution processes, which makes the generation of collective reference points troublesome.

Some artificial DMs methods can be used as techniques of generating preference infor-

mation. Because interactive methods change significantly in the way they handle prefer-

ence information, distinct artificial DMs were created for different preference information

types [116,147,183]. Ojalehto [135] was the first to develop a framework for artificial DMs

based on reference points.

This research provides simulated DMs to emulate the collectivity and implement the

selection operator. The human preference is replaced with an artificial DM that allows to

repetitively evaluate two or more points in a controlled environment. Each simulated DM

has to vote between two individuals (c1 or c2) from the approximation set. They have

a predefined reference point (zj) in the objective space which will be used to bias the

votes. The a priori reference points represent objective values the artificial DMs would



6.1 Multi-Objective Benchmark Problems 68

c1	
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Figure 6.1: The artificial DM’s predefined point will choose candidate c1 because the
distance d1 < d2.

like to achieve. They choose an individual according to the closest distance between its

predefined point zj and each of the two candidates: vote = {c1 : ‖c1 − zj‖ ≤ ‖c2 − zj‖}.
Figure 6.1 illustrates candidates c1 and c2 with their respectively distances (d1 and d2)

to the predefined point x. As d1 < d2, the artificial DM would vote on c1. A total of 100

artificial DMs provide a distribution of preferences that will be used to discover online

reference points. It is important to notice that the collective reference point is built on

the similarity of answers (votes) after the Gaussian Mixture approach.

In this experiment, the artificial DMs abstract the collectivity within a controlled

environment. So the algorithms can be tested, compared and better understood in their

working principles. The quantity of online reference points is directly related to the

number of k clusters in the Gaussian Mixture model. In cases where k is not previously

defined, the experiment used the X-means approach [136] to learn k from the data. This

algorithm searches different values of k and scores each clustering model using the Bayesian

Information Criterion (BIC): BIC(Mj) = ιj(D)−(pj/2) logR, where D is the dataset,Mj

are models corresponding to solutions with different values of k, ιj(D) is the log-likelihood

of the dataset D according to model Mj, pj is the number of parameters in Mj and R is

the number of points in the dataset. X-means chooses the model with the best score.

In addition to the Gaussian Mixture model, the K-means algorithm was implemented

to bring a different clustering technique into the analysis of the algorithms. But the

performance of Gaussian Mixture for these benchmarking cases was consistently better.
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6.1.2 Parameter and Experimental Settings

The benchmark problems that are used in this work are two-objective ZDT functions,

three-objective DTLZ functions, three-objective WFG functions and five-objective WFG

functions. The WHYPE algorithm was implemented on PISA framework [31]. PISA

is a text-based interface for search algorithms. It is a library of ready-to-go modules

that contains optimization problems (test and benchmark problems), selection modules

(evolutionary multi-objective optimizers) and modules for performance assessment. All

the others algorithms were implemented on a python evolutionary framework called DEAP

[79].

The population size has been set to 200 for all the problems, except ZDT4 and ZDT6

with a population size of 100. The crossover and mutation probability are 0.9 and 0.1,

respectively. Table 6.1 shows the number of iterations in each run and the number of

variables for the benchmark problems.

As already mentioned in the previous subsection, the reference points for the simulated

DMs voting and the a priori MOEAs are: z0 = (0.3, 0.3), z0 = (0.3, 0.3, 0.3) and z0 =

(0.3, 0.3, 0.3, 0.3, 0.3) for the problems with two, three or five objectives, respectively.

These reference points are also used by the Reference Set Distance indicator (C2R) to

indicate the mean distance between the non-dominated points and the reference set R.

Assuming the DM’s expectation of the preferred region extension on the R-metric and C2R

indicators is a concentrated area, Deb suggests the ∆ is set to 0.1 for all test problems [112].

6.1.3 Box Plot Results

After 41 independent executions per algorithm on each test problem, the box plots were

used to represent and support a valid judgment of the quality of the solutions and how

different algorithms compare with each other. Figures 6.2 - 6.5 show the distribution of

the performance indicators for the ZDT, DTLZ and WFG problems in the form of box

plots. The box plots are grouped by performance indicators. Each group of box plots

analyses and compares all the preference-based algorithms. For better visualization, all

values were normalized.
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Table 6.1: The number of iterations and variables for the benchmark problems.

Problem Number Objectives Number of Variables Max Generations
ZDT1 2 30 200
ZDT2 2 30 250
ZDT3 2 30 330
ZDT4 2 30 600
ZDT6 2 30 900

DTLZ1 3 12 190
DTLZ2 3 12 200
DTLZ3 3 12 300
DTLZ4 3 12 200
DTLZ5 3 12 600
DTLZ6 3 12 600
DTLZ7 3 12 600

WFG1 3 34 400
WFG2 3 34 400
WFG3 3 34 400
WFG4 3 34 400
WFG5 3 34 400
WFG5 3 34 400
WFG6 3 34 400
WFG7 3 34 400
WFG8 3 34 400
WFG9 3 34 400

WFG1 5 34 400
WFG2 5 34 400
WFG3 5 34 400
WFG4 5 34 400
WFG5 5 34 400
WFG5 5 34 400
WFG6 5 34 400
WFG7 5 34 400
WFG8 5 34 400
WFG9 5 34 400

6.1.4 Statistical Hypothesis Test

Although box plots allow a visual comparison of the results, it is necessary to go beyond

reporting the descriptive statistics of the performance indicators and apply a statisti-

cal hypothesis test. The Conover-Inman procedure [53] is a non-parametric method for

testing equality of population medians. It can be implemented in a pairwise manner to

determine if the results of one algorithm were significantly better than those of the other.

A significance level, α, of 0.05 was used for all tests.

Tables 6.2-6.5 contain the results of the statistical analysis for ZDT, DTLZ and WFG

test problems based on the mean values. Each table compares all the preference-based

algorithms by the performance indicators used in the experiments.
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Figure 6.2: Distribution of the performance indicators for ZDT problems. Each group of
box plots compares all the preference-based algorithms.
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Figure 6.3: Distribution of the performance indicators for DTLZ problems. Each group
of box plots compares all the preference-based algorithms.
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Figure 6.4: Distribution of the performance indicators for WFG problems. Each group of
box plots compares all the preference-based algorithms.



6.1 Multi-Objective Benchmark Problems 74

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
FG

-1
 5

D
∆P

0.0

0.2

0.4

0.6

0.8

1.0 Ψ

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0 R-metric

0.0

0.2

0.4

0.6

0.8

1.0 C2R

0.0

0.2

0.4

0.6

0.8

1.0

W
FG

-4
 5

D

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
FG

-6
 5

D

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
FG

-7
 5

D

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
FG

-8
 5

D

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
FG

-9
 5

D

0.0

0.2

0.4

0.6

0.8

1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.5: Distribution of the performance indicators for WFG problems with five ob-
jectives. Each group of box plots compares all the preference-based algorithms.
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Table 6.2: ZDT results of the Conover-Inman statistical hypothesis [53] tests based on
the mean values. The preference-based algorithms are compared by the performance
indicators used in the experiments. Green cells (+) denote cases where the algorithm
in the row statistically was better than the one in the column. Cells marked in red
(−) are cases where the method in the column yielded statistically better results when
compared to the method in the row. Cases where no significant difference was established
are identified with a “∼”.
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Table 6.3: DTLZ results of the Conover-Inman statistical hypothesis [53] tests based
on the mean values. The preference-based algorithms are compared by the performance
indicators used in the experiments. Green cells (+) denote cases where the algorithm
in the row statistically was better than the one in the column. Cells marked in red
(−) are cases where the method in the column yielded statistically better results when
compared to the method in the row. Cases where no significant difference was established
are identified with a “∼”.
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Table 6.4: WFG results of the Conover-Inman statistical hypothesis [53] tests based on
the mean values. The preference-based algorithms are compared by the performance
indicators used in the experiments. Green cells (+) denote cases where the algorithm
in the row statistically was better than the one in the column. Cells marked in red
(−) are cases where the method in the column yielded statistically better results when
compared to the method in the row. Cases where no significant difference was established
are identified with a “∼”.
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Table 6.5: WFG with 5 objectives results of the Conover-Inman statistical hypothesis [53]
tests based on the mean values. The preference-based algorithms are compared by the
performance indicators used in the experiments. Green cells (+) denote cases where the
algorithm in the row statistically was better than the one in the column. Cells marked in
red (−) are cases where the method in the column yielded statistically better results when
compared to the method in the row. Cases where no significant difference was established
are identified with a “∼”.
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6.1.5 Discussion of the Results

It must be emphasized that the experiments compare the performance of two a priori

preference-based algorithms with the COIN-based interactive algorithms. The final result

from these tests are analysed by the convergence and extension of the preferred region

in the trade-off set. However, the R-NSGA-II and W-HYPE has a predefined reference

point, whereas the COIN MOEAs have to discover the collective reference point at each

interaction. The COIN-based algorithms collect the DMs’ intention during the optimiza-

tion process. This feature enhances the application of the a priori algorithms to problems

where no earlier information is known or available.

In the ZDT tests, the CI-SPEA2-P managed to find a better convergence (DS→PF
) in

3 of the 5 problems, followed by WHYPE and R-NSGA with 2 victories each. Regarding

the Filatovas indicator (∆P ), the CI-NSGA-II won 3 first places against only 1 first place

to R-NSGA and WHYPE. The CI-NSGA-II-P consistently outperformed the others al-

gorithms in the Convex Hull indicator (Ψ) with 4 first places. It demonstrates how the

CI-NSGA-II-P solutions are well concentrated on the reference point area. In the Referen-

tial Cluster Variance indicator (κ), the CI-SPEA2 and CI-SMS-EMOA showed equivalent

score: 4 wins; followed by R-NSGA on the ZDT4 problem. The CI-SMS-EMOA-P had

the best performance regarding the R-metric indicator, followed by 1 first place to each

of the algorithms: CI-NSGA-II, R-NSGA-II and CI-SPEA2. Finally, the winners on the

Reference Set Distance indicator (C2R) were the new COIN-based algorithms for all of

the 5 ZDT problems.

By grouping all the indicators, the COIN-based MOEAs had the best results on 70%

of the ZDT problems. The WHYPE and R-NSGA-II got first places in only 30% of them.

In the general case, when the collective reference point is used, the algorithms get more

victories than the classic ones.

In the DTLZ tests, the CI-SMS-EMOA-P and the R-NSGA-II had the best approx-

imation to the PF with 2 first places each. The WHYPE won 3 second places on this

indicator. Regarding the Filatovas indicator, the CI-SPEA2 outperformed the others al-

gorithms in 4 problems. The first places were distributed between the R-NSGA-II and

the CI-NSGA-II in the Referential Cluster Variance indicator, both with 3 victories. The

R-metric indicator winners were: WHYPE, R-NSGA-II and CI-SMS-EMOA. The CI-

NSGA-II won 3 second places on this indicator. Regarding the Reference Set Distance

indicator, the CI-NSGA-II and CI-NSGA-II-P had the best performance with 3 first places

and 2 first places, respectively.
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Similarly to the ZDT case, after grouping all the indicators, the COIN-based MOEAs

had the best results on 76% of the DTLZ problems. The WHYPE and R-NSGA-II got

first places in only 24% of them.

In the WFG tests, the CI-SMS-EMOA and CI-SPEA2-P managed to find a better

convergence with 2 first places each, followed by CI-NSGA-II. Regarding the Filatovas in-

dicator, the WHYPE won 4 first places and 3 second places. The CI-NSGA-II consistently

outperformed the others algorithms in the Referential Cluster Variance indicator with 7

victories. In the R-metric indicator, the algorithms with the collective reference point

projection had a better efficiency. The CI-NSGA-II-P and CI-SPEA2 showed equivalent

score: 2 wins and 3 second places each. Finally, the winner on the Reference Set Distance

indicator was the R-NSGA-II with 4 first places, followed by the CI-NSGA-II-P with 2

first places and 5 second places.

By grouping all the indicators, the COIN-based MOEAs had the best results on 72%

of the WFG problems. The WHYPE and R-NSGA-II got first places in only 28% of them.

MOPs having more than three objectives are referred to as many-objective optimiza-

tion problems. Pareto dominance-based algorithms such as NSGA-II and SPEA2 usually

have a good performance on multi-objective problems with two or three objectives. But

an increase in the number of objectives degrades their search ability. This is because

almost all points in the current population become non-dominated in early generations

and this undermines the selection pressure toward the PF [99, 103].

However, the search for Pareto optimal solutions in many-objective problems is not

always difficult for Pareto dominance-based algorithms [96,97]. In the WFG tests with five

objectives, the CI-SPEA2 won 3 first places and 2 second places on the Filatovas indicator,

followed by CI-SPEA2-P with 2 first places. The CI-SPEA2 had the best performance

on the Convex Hull indicator too, 4 victories. The CI-NSGA-II outperformed the others

algorithms in the Referential Cluster Variance indicator and R-metric indicator with 3

first places and 2 second places, respectively. The winner on the Reference Set Distance

indicator was the R-NSGA-II with 3 first places, followed by CI-NSGA-II with 2 victories.

By grouping all the indicators, the COIN-based MOEAs had the best results on 80%

of the WFG problems with 5 objectives. The WHYPE and R-NSGA-II got first places in

only 20% of them.

The process of discovering the best algorithm is rather difficult as it implies cross-

examining and comparing the results of their performance indicators. Figures 6.6-6.9
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present a more integrative representation by grouping their indicators.

A higher value of average performance ranking implies that the algorithm consistently

achieved lower values of the indicators being assessed: DS→PF
, ∆P , C2R, Ψ, κ; and higher

values for the R-metric indicator. In this case, lower values mean better convergence to

PF , higher concentration around the collective reference points and small distance to the

collective reference point.

For a given set of algorithms A1, . . . , AK , a set of P test problem instances Φ1, . . . ,ΦP ,

the function δ is defined as:

δ (Ai, Aj,Φp) =





1 if Ai � Aj solving Φp

0 otherwise
(6.1)

where the relation Ai � Aj defines if Ai is better than Aj when solving the problem

instance Φp in terms of the performance indicators: DS→PF
, κ and Ψ. Relying on δ, the

performance index Pp(Ai) of a given algorithm Ai when solving Φp is then computed as:

Pp(Ai) =
K∑

j=1,j 6=i
δ (Ai, Aj,Φp).
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Figure 6.6: Average performance ranking across ZDT test problems.

Considering the Figures 6.6, 6.7, 6.8 and 6.9, the CI-NSGA-II obtained the largest

number of first places in this integrative representation of the indicators. In other words,

the CI-NSGA-II performed better in most of the problems and indicators among all the 8

preference-based algorithms tested. It appears between the first and third places in 64%

of the analysis. Along with the the CI-NSGA-II-P, they cover 77% of the 3 first positions
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Figure 6.7: Average performance ranking across DTLZ test problems.
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Figure 6.8: Average performance ranking across WFG test problems.

in the benchmark problems.

It is worth mentioning that the algorithms with the reference point projection per-

formed close to those without this approach. This behaviour grants the use of the reference

point projection in cases where the human interactions are constrained for some reason.

In summary, the interactive MOEAs and their reference points proved to be well

matched for the range of scalable test problems. According the Tables 6.6-6.9, the R-

NSGA-II outperformed the WHYPE with more first places. The algorithms built upon

NSGA-II performed better and, particularly, the CI-NSGA-II had the best results. Be-

sides, based on the Reference Set Distance indicator that expresses the mean distance
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Figure 6.9: Average performance ranking across five-objective WFG test problems.

between the non-dominated points and the reference set, the proposed COIN MOEAs

dominated the first places of all test problems.

Tables 6.6-6.9 present the mean values (µ) and standard deviation (σ) of the perfor-

mance indicators for all the benchmark problems.
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Table 6.6: Mean values of the performance indicators for the ZDT problems and standard
the deviation in parenthesis.

ZDT1 DS→PF
∆P Ψ κ R-metric C2R

CI-NSGA-II 0.014 (0.006) 0.877 (0.171) 0.004 (0.004) 0.011 (0.011) 0.935 (0.001) 0.052 (0.053)
CI-SMS-EMOA 0.014 (0.003) 0.787 (0.199) 0.003 (0.002) 0.025 (0.017) 0.935 (0.001) 0.110 (0.074)
CI-SPEA2 0.018 (0.005) 1.161 (0.390) 0.007 (0.011) 0.003 (0.005) 0.928 (0.002) 0.026 (0.018)
CI-NSGA-II-P 0.008 (0.002) 0.973 (0.241) 0.002 (0.003) 0.036 (0.012) 0.934 (0.001) 0.154 (0.045)
CI-SMS-EMOA-P 0.009 (0.002) 0.977 (0.291) 0.004 (0.004) 0.069 (0.034) 0.932 (0.003) 0.254 (0.086)
CI-SPEA2-P 0.009 (0.002) 1.267 (0.429) 0.023 (0.023) 0.049 (0.020) 0.929 (0.002) 0.193 (0.066)
R-NSGA-II 0.242 (0.045) 0.662 (0.055) 0.187 (0.054) 0.155 (0.046) 0.933 (0.002) 0.492 (0.083)
WHYPE 0.005 (0.002) 1.002 (0.079) 0.120 (0.036) 0.063 (0.044) 0.925 (0.005) 0.199 (0.141)

ZDT2

CI-NSGA-II 0.005 (0.001) 1.023 (0.283) 0.001 (0.001) 0.033 (0.063) 0.889 (0.004) 0.109 (0.208)
CI-SMS-EMOA 0.007 (0.003) 0.973 (0.176) 0.001 (0.002) 0.111 (0.066) 0.895 (0.005) 0.385 (0.208)
CI-SPEA2 0.021 (0.015) 1.073 (0.490) 0.012 (0.020) 0.018 (0.032) 0.883 (0.002) 0.061 (0.092)
CI-NSGA-II-P 0.008 (0.003) 0.972 (0.224) 0.001 (0.006) 0.057 (0.074) 0.892 (0.004) 0.213 (0.229)
CI-SMS-EMOA-P 0.010 (0.006) 1.033 (0.187) 0.004 (0.004) 0.112 (0.081) 0.896 (0.006) 0.379 (0.227)
CI-SPEA2-P 0.005 (0.004) 1.373 (0.413) 0.014 (0.027) 0.078 (0.041) 0.886 (0.004) 0.341 (0.101)
R-NSGA-II 0.009 (0.004) 1.497 (0.307) 0.022 (0.027) 0.180 (0.092) 0.892 (0.009) 0.523 (0.196)
WHYPE 0.005 (0.001) 1.108 (0.233) 0.260 (0.201) 0.074 (0.003) 0.882 (0.010) 0.237 (0.006)

ZDT3

CI-NSGA-II 0.005 (0.006) 1.119 (0.565) 0.002 (0.007) 0.010 (0.008) 0.938 (0.002) 0.157 (0.052)
CI-SMS-EMOA 0.009 (0.013) 1.497 (0.435) 0.004 (0.008) 0.007 (0.004) 0.940 (0.003) 0.127 (0.066)
CI-SPEA2 0.002 (0.002) 1.297 (0.524) 0.034 (0.046) 0.010 (0.012) 0.939 (0.004) 0.029 (0.033)
CI-NSGA-II-P 0.005 (0.006) 1.603 (0.526) 0.001 (0.003) 0.013 (0.008) 0.940 (0.002) 0.165 (0.052)
CI-SMS-EMOA-P 0.002 (0.003) 1.318 (0.561) 0.001 (0.001) 0.009 (0.007) 0.941 (0.002) 0.092 (0.090)
CI-SPEA2-P 0.001 (0.002) 1.495 (0.466) 0.055 (0.067) 0.061 (0.028) 0.927 (0.005) 0.259 (0.103)
R-NSGA-II 0.001 (0.001) 1.789 (0.081) 0.003 (0.006) 0.074 (0.007) 0.921 (0.003) 0.275 (0.024)
WHYPE 0.054 (0.029) 1.132 (0.441) 0.118 (2.7e-17) 0.039 (0.016) 0.910 (0.005) 1.411 (0.031)

ZDT4

CI-NSGA-II 1.047 (0.691) 1.421 (0.468) 0.003 (0.011) 0.547 (0.768) 0.793 (0.073) 1.206 (0.920)
CI-SMS-EMOA 1.449 (1.166) 1.447 (0.469) 0.041 (0.139) 2.391 (3.853) 0.771 (0.082) 1.909 (1.133)
CI-SPEA2 1.253 (1.895) 1.051 (0.457) 0.007 (0.015) 6.227 (17.90) 0.847 (0.033) 1.277 (1.970)
CI-NSGA-II-P 0.777 (0.318) 1.031 (0.681) 0.001 (0.001) 0.257 (0.246) 0.813 (0.039) 0.974 (0.475)
CI-SMS-EMOA-P 1.493 (0.766) 1.299 (0.682) 0.027 (0.086) 1.510 (1.265) 0.759 (0.061) 1.972 (0.736)
CI-SPEA2-P 0.619 (0.689) 1.141 (0.525) 0.847 (2.054) 2.364 (5.302) 0.870 (0.027) 0.971 (0.728)
R-NSGA-II 0.084 (0.121) 1.503 (0.608) 0.001 (0.001) 0.137 (0.189) 0.767 (0.045) 1.876 (0.589)
WHYPE 13.2 (1.039) – – 3.340 (0.0) 0.475 (0.050) 2.477 (0.051)

ZDT6

CI-NSGA-II 0.066 (0.019) 1.134 (0.389) 0.021 (0.075) 0.014 (0.025) 0.880 (0.002) 0.074 (0.031)
CI-SMS-EMOA 0.077 (0.014) 1.046 (0.360) 0.008 (0.016) 0.013 (0.012) 0.881 (0.002) 0.085 (0.016)
CI-SPEA2 0.050 (0.044) 1.174 (0.368) 0.058 (0.211) 0.068 (0.071) 0.885 (0.005) 0.166 (0.102)
CI-NSGA-II-P 0.070 (0.022) 1.251 (0.381) 0.053 (0.113) 0.027 (0.030) 0.878 (0.004) 0.143 (0.069)
CI-SMS-EMOA-P 0.077 (0.016) 1.139 (0.361) 0.025 (0.041) 0.036 (0.022) 0.878 (0.002) 0.214 (0.070)
CI-SPEA2-P 0.024 (0.008) 1.356 (0.356) 0.010 (0.016) 0.033 (0.024) 0.881 (0.004) 0.122 (0.071)
R-NSGA-II 0.045 (0.007) 1.737 (0.158) 0.022 (0.016) 0.160 (0.016) 0.890 (0.008) 0.459 (0.023)
WHYPE 0.107 (0.021) 1.324 (0.242) 0.074 (0.014) 0.089 (0.007) 0.886 (0.009) 0.266 (0.028)
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Table 6.7: Mean values of the performance indicators for the DTLZ problems and standard
the deviation in parenthesis.

DTLZ1 DS→PF
∆P Ψ κ R-metric C2R

CI-NSGA-II 0.229 (0.231) 0.318 (0.474) 0.0 (0.0) 0.011 (0.019) 0.916 (0.027) 0.272 (0.241)
CI-SMS-EMOA 0.147 (0.171) 0.114 (0.426) 0.0 (0.0) 0.016 (0.02) 0.926 (0.019) 0.227 (0.224)
CI-SPEA2 0.578 (0.326) 0.0 (0.0) 0.0 (0.0) 0.093 (0.157) 0.878 (0.038) 0.612 (0.355)
CI-NSGA-II-P 0.261 (0.287) 0.0 (0.0) 0.0 (0.0) 0.019 (0.033) 0.912 (0.034) 0.328 (0.321)
CI-SMS-EMOA-P 0.052 (0.119) 0.283 (0.57) 0.0 (0.0) 0.014 (0.012) 0.937 (0.013) 0.155 (0.155)
CI-SPEA2-P 1.496 (2.061) 0.615 (0.757) 1.697 (6.35) 38.666 (92.221) 0.894 (0.036) 1.599 (2.089)
R-NSGA-II 65.956 (79.425) 0.88 (0.846) 2706.534 (8319.215) 13.56 (10.844) 0.372 (0.064) 7.047 (1.094)
WHYPE 18.418 (2.473) 0.778 (0.071) 3464.915 (0.0) 61.917 (25.403) 3.432 (0.772) 7.884 (0.844)

DTLZ2

CI-NSGA-II 0.189 (0.14) 1.498 (0.27) 0.0 (0.0) 0.015 (0.028) 0.846 (0.024) 0.092 (0.147)
CI-SMS-EMOA 0.363 (0.276) 1.469 (0.299) 0.0 (0.0) 0.062 (0.064) 0.874 (0.034) 0.302 (0.268)
CI-SPEA2 0.384 (0.306) 1.202 (0.341) 0.043 (0.086) 0.092 (0.072) 0.865 (0.034) 0.399 (0.268)
CI-NSGA-II-P 0.145 (0.168) 1.495 (0.33) 0.0 (0.0) 0.044 (0.037) 0.842 (0.027) 0.265 (0.169)
CI-SMS-EMOA-P 0.217 (0.321) 1.304 (0.188) 0.0 (0.001) 0.082 (0.07) 0.848 (0.034) 0.381 (0.273)
CI-SPEA2-P 0.291 (0.301) 1.049 (0.354) 0.01 (0.038) 0.121 (0.065) 0.869 (0.032) 0.54 (0.204)
R-NSGA-II 0.259 (0.035) 1.459 (0.294) 0.0 (0.0) 0.006 (0.004) 0.857 (0.007) 0.07 (0.054)
WHYPE 0.207 (0.009) 0.538 (0.181) 0.349 (0.0) 0.113 (0.037) 0.84 (0.004) 0.382 (0.006)

DTLZ3

CI-NSGA-II 2.584 (1.354) 1.437 (0.27) 0.008 (0.029) 2.881 (2.21) 0.608 (0.178) 3.195 (1.351)
CI-SMS-EMOA 4.23 (3.368) 1.364 (0.367) 5.891 (11.603) 36.487 (50.53) 0.547 (0.361) 4.251 (3.074)
CI-SPEA2 160.536 (86.576) 0.678 (0.669) 2279.865 (8523.861) 20900.219 (37686.239) 0.562 (0.392) 160.771 (86.48)
CI-NSGA-II-P 3.313 (2.682) 1.649 (0.217) 0.018 (0.035) 5.79 (7.613) 0.627 (0.255) 3.45 (2.697)
CI-SMS-EMOA-P 4.181 (2.467) 1.353 (0.235) 0.005 (0.012) 6.165 (4.615) 0.562 (0.32) 4.41 (2.462)
CI-SPEA2-P 128.404 (48.913) 0.832 (0.703) 169689.67 (412604.401) 8021.122 (11506.598) 0.478 (0.448) 128.74 (48.878)
R-NSGA-II 5.199 (3.556) 0.989 (0.196) 0.015 (0.017) 2.323 (2.397) 0.316 (0.151) 4.997 (3.817)
WHYPE 200.185 (44.507) 0.805 (0.0) 17218.998 (21595.623) 36765.282 (0.0) 0.0 (0.0) 234.892 (0.478)

DTLZ4

CI-NSGA-II 0.016 (0.015) 0.818 (0.897) 0.0 (0.0) 0.101 (0.095) 0.854 (0.022) 0.45 (0.368)
CI-SMS-EMOA 0.005 (0.005) 0.94 (0.885) 0.005 (0.008) 0.165 (0.053) 0.832 (0.026) 0.727 (0.154)
CI-SPEA2 0.002 (0.003) 0.406 (0.673) 0.0 (0.0) 0.202 (0.034) 0.848 (0.017) 0.824 (0.09)
CI-NSGA-II-P 0.025 (0.02) 0.616 (0.777) 0.0 (0.0) 0.09 (0.076) 0.831 (0.02) 0.42 (0.303)
CI-SMS-EMOA-P 0.008 (0.01) 1.18 (0.753) 0.0 (0.0) 0.148 (0.072) 0.838 (0.015) 0.65 (0.233)
CI-SPEA2-P 0.004 (0.005) 0.317 (0.635) 0.0 (0.0) 0.195 (0.033) 0.845 (0.017) 0.806 (0.087)
R-NSGA-II 0.016 (0.007) 0.714 (0.037) 0.0 (0.0) 0.128 (0.006) 0.864 (0.043) 0.615 (0.025)
WHYPE 0.069 (0.026) 0.417 (0.0) 0.384 (0.0) 0.154 (0.052) 0.844 (0.012) 0.506 (0.008)

DTLZ5

CI-NSGA-II 0.663 (0.002) 1.292 (0.606) 0.0 (0.0) 0.104 (0.001) 0.892 (0.001) 0.391 (0.029)
CI-SMS-EMOA 0.634 (0.052) 0.342 (0.567) 0.0 (0.0) 0.157 (0.121) 0.897 (0.009) 0.411 (0.388)
CI-SPEA2 0.877 (0.141) 0.0 (0.0) 0.0 (0.0) 0.251 (0.083) 0.832 (0.029) 0.609 (0.239)
CI-NSGA-II-P 0.663 (0.003) 1.44 (0.325) 0.0 (0.0) 0.103 (0.004) 0.894 (0.002) 0.385 (0.027)
CI-SMS-EMOA-P 0.666 (0.006) 1.151 (0.643) 0.0 (0.0) 0.107 (0.004) 0.892 (0.001) 0.393 (0.025)
CI-SPEA2-P 0.658 (0.012) 0.182 (0.464) 0.0 (0.001) 0.108 (0.009) 0.892 (0.002) 0.396 (0.026)
R-NSGA-II 0.001 (0.0) 1.38 (0.294) 0.0 (0.0) 0.016 (0.0) 0.87 (0.005) 0.571 (0.014)
WHYPE 0.002 (0.0) 0.743 (0.091) 0.002 (0.0) 0.039 (0.0) 0.864 (0.0) 0.619 (0.009)

DTLZ6

CI-NSGA-II 0.146 (0.016) 0.0 (0.0) 0.0 (0.0) 0.011 (0.008) 0.863 (0.011) 0.166 (0.187)
CI-SMS-EMOA 0.843 (0.271) 0.387 (0.642) 0.0 (0.0) 0.212 (0.155) 0.793 (0.042) 0.989 (0.363)
CI-SPEA2 0.294 (0.168) 0.0 (0.0) 0.0 (0.0) 0.053 (0.048) 0.816 (0.037) 0.27 (0.285)
CI-NSGA-II-P 0.188 (0.025) 0.446 (0.748) 0.0 (0.0) 0.072 (0.029) 0.836 (0.016) 0.356 (0.229)
CI-SMS-EMOA-P 0.857 (0.152) 0.0 (0.0) 0.0 (0.0) 0.249 (0.098) 0.755 (0.028) 0.939 (0.143)
CI-SPEA2-P 0.207 (0.0) 0.523 (0.867) 0.0 (0.0) 0.092 (0.008) 0.834 (0.004) 0.453 (0.159)
R-NSGA-II 0.003 (0.001) 1.767 (0.131) 0.0 (0.0) 0.017 (0.002) 0.871 (0.003) 0.34 (0.139)
WHYPE 0.098 (0.008) 0.522 (0.04) 0.025 (0.0) 0.055 (0.018) 0.849 (0.008) 0.403 (0.043)

DTLZ7

CI-NSGA-II 0.026 (0.013) 1.421 (0.33) 0.0 (0.001) 2.176 (0.583) 0.809 (0.023) 1.18 (0.326)
CI-SMS-EMOA 0.033 (0.013) 1.429 (0.412) 0.0 (0.0) 3.108 (0.961) 0.84 (0.036) 1.682 (0.509)
CI-SPEA2 0.166 (0.23) 0.858 (0.644) 0.128 (0.201) 5.438 (1.206) 0.881 (0.022) 2.652 (0.337)
CI-NSGA-II-P 0.014 (0.001) 1.416 (0.367) 0.0 (0.0) 0.837 (0.471) 0.775 (0.02) 0.096 (0.338)
CI-SMS-EMOA-P 0.011 (0.002) 1.555 (0.316) 0.0 (0.0) 1.966 (0.886) 0.824 (0.037) 0.947 (0.667)
CI-SPEA2-P 0.026 (0.01) 0.797 (0.269) 0.0 (0.0) 1.396 (0.738) 0.795 (0.029) 0.567 (0.481)
R-NSGA-II 4.215 (0.866) 0.734 (0.202) 0.677 (0.318) 22.649 (4.893) 0.906 (0.017) 7.564 (0.884)
WHYPE 0.012 (0.001) 0.776 (0.031) 0.025 (0.0) 7.525 (0.0) 0.935 (0.009) 3.408 (0.027)
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Table 6.8: Mean values of the performance indicators for the WFG problems and standard
the deviation in parenthesis.

WFG1 DS→PF
∆P Ψ κ R-metric C2R

CI-NSGA-II 1.13 (0.026) 1.026 (0.232) 6e-05 (0.00012) 0.237 (0.029) 0.614 (0.005) 0.514 (0.059)
CI-SMS-EMOA 1.123 (0.03) 1.269 (0.431) 0.00036 (0.00065) 0.287 (0.037) 0.609 (0.006) 0.589 (0.067)
CI-SPEA2 1.182 (0.022) 0.979 (0.507) 3e-05 (6e-05) 0.26 (0.028) 0.602 (0.004) 0.558 (0.07)
CI-NSGA-II-P 1.137 (0.029) 1.277 (0.307) 7e-05 (0.00016) 0.323 (0.059) 0.603 (0.005) 0.613 (0.086)
CI-SMS-EMOA-P 1.136 (0.027) 1.246 (0.208) 5e-05 (6e-05) 0.382 (0.024) 0.602 (0.006) 0.704 (0.031)
CI-SPEA2-P 1.18 (0.02) 1.127 (0.512) 2e-05 (3e-05) 0.313 (0.042) 0.597 (0.004) 0.561 (0.073)
R-NSGA-II 1.502 (0.055) 1.218 (0.529) 0.001 (0.0) 6.48 (0.55) 0.609 (0.003) 0.041 (0.058)
WHYPE 1.337 (0.014) 0.446 (0.031) 0.03716 (0.02864) 0.224 (0.0) 0.595 (0.005) 0.747 (0.014)

WFG2

CI-NSGA-II 0.116 (0.038) 1.279 (0.312) 0.00095 (0.00147) 0.205 (0.257) 0.825 (0.023) 0.677 (0.437)
CI-SMS-EMOA 0.136 (0.045) 1.034 (0.526) 0.0004 (0.00119) 0.293 (0.34) 0.839 (0.032) 0.979 (0.67)
CI-SPEA2 0.121 (0.025) 0.605 (0.534) 0.00011 (0.00037) 0.373 (0.347) 0.839 (0.028) 1.228 (0.571)
CI-NSGA-II-P 0.139 (0.042) 1.09 (0.456) 0.00317 (0.00477) 0.234 (0.184) 0.813 (0.033) 0.545 (0.445)
CI-SMS-EMOA-P 0.131 (0.047) 1.294 (0.264) 0.00041 (0.00127) 0.129 (0.047) 0.824 (0.023) 0.704 (0.433)
CI-SPEA2-P 0.107 (0.032) 1.244 (0.329) 0.0001 (0.00019) 0.231 (0.287) 0.842 (0.021) 0.947 (0.625)
R-NSGA-II 0.13 (0.03) 1.208 (0.402) 0.00085 (0.00225) 0.226 (0.444) 0.801 (0.028) 5.916 (0.407)
WHYPE 0.141 (0.012) 0.942 (0.046) 1.15454 (0.0) 1.572 (0.183) 0.811 (0.004) 2.299 (0.403)

WFG3

CI-NSGA-II 0.426 (0.092) 0.723 (0.693) 0.0 (2e-05) 0.034 (0.025) 0.656 (0.013) 0.702 (0.18)
CI-SMS-EMOA 0.827 (0.08) 0.138 (0.353) 0.0 (0.0) 0.087 (0.111) 0.622 (0.018) 0.991 (0.391)
CI-SPEA2 0.126 (0.069) 0.805 (0.765) 0.0 (0.0) 0.107 (0.024) 0.679 (0.01) 0.566 (0.249)
CI-NSGA-II-P 0.286 (0.064) 0.171 (0.45) 0.0 (0.0) 0.282 (0.171) 0.625 (0.019) 0.484 (0.241)
CI-SMS-EMOA-P 0.45 (0.109) 0.214 (0.546) 0.0 (0.0) 0.211 (0.114) 0.616 (0.012) 0.481 (0.15)
CI-SPEA2-P 0.187 (0.053) 1.085 (0.625) 0.0 (0.0) 0.557 (0.023) 0.609 (0.003) 0.819 (0.021)
R-NSGA-II 0.124 (0.039) 1.507 (0.2) 0.0 (0.0) 0.136 (0.008) 0.654 (0.004) 4.645 (0.027)
WHYPE 1.337 (0.043) 0.47 (0.0) 0.03972 (0.0) 0.304 (0.01) 0.588 (0.01) 1.462 (0.033)

WFG4

CI-NSGA-II 0.078 (0.048) 1.216 (0.297) 0.0041 (0.01009) 0.078 (0.07) 0.555 (0.017) 2.225 (0.239)
CI-SMS-EMOA 0.057 (0.033) 1.18 (0.241) 0.01278 (0.0229) 0.962 (0.615) 0.57 (0.047) 3.672 (0.402)
CI-SPEA2 0.117 (0.055) 0.89 (0.506) 0.00042 (0.00089) 0.253 (0.11) 0.53 (0.021) 2.648 (0.357)
CI-NSGA-II-P 0.094 (0.058) 1.295 (0.277) 0.01484 (0.01795) 0.73 (0.107) 0.682 (0.048) 0.627 (0.275)
CI-SMS-EMOA-P 0.131 (0.079) 1.186 (0.273) 0.00587 (0.01137) 1.093 (0.777) 0.62 (0.098) 1.407 (1.216)
CI-SPEA2-P 0.059 (0.032) 1.344 (0.25) 0.00488 (0.01331) 0.734 (0.117) 0.633 (0.071) 0.902 (0.558)
R-NSGA-II 0.207 (0.013) 1.515 (0.31) 0.00023 (0.00035) 3.377 (0.235) 0.592 (0.038) 0.071 (0.13)
WHYPE 0.25 (0.007) 0.904 (0.072) 7.14473 (0.0) 2.37 (0.145) 0.562 (0.011) 4.347 (0.012)

WFG5

CI-NSGA-II 0.079 (0.006) 1.422 (0.401) 0.00052 (0.00102) 0.1 (0.063) 0.55 (0.029) 2.368 (0.295)
CI-SMS-EMOA 0.08 (0.007) 1.375 (0.354) 0.00249 (0.00615) 0.244 (0.149) 0.531 (0.016) 2.818 (0.466)
CI-SPEA2 0.075 (0.007) 1.332 (0.276) 0.00083 (0.00219) 0.101 (0.058) 0.55 (0.028) 2.158 (0.391)
CI-NSGA-II-P 0.086 (0.009) 1.556 (0.215) 0.0151 (0.03599) 0.739 (0.118) 0.661 (0.059) 0.63 (0.364)
CI-SMS-EMOA-P 0.079 (0.011) 1.308 (0.282) 0.00287 (0.00673) 0.712 (0.134) 0.633 (0.07) 0.848 (0.516)
CI-SPEA2-P 0.091 (0.005) 1.412 (0.35) 0.00012 (0.00042) 0.799 (0.105) 0.679 (0.055) 0.582 (0.305)
R-NSGA-II 0.103 (0.007) 1.0 (0.148) 2e-05 (3e-05) 2.635 (0.07) 0.606 (0.006) 4.953 (0.036)
WHYPE 0.114 (0.006) 1.021 (0.25) 5.01155 (1.83043) 2.511 (0.0) 0.585 (0.01) 4.447 (0.017)

WFG6

CI-NSGA-II 0.076 (0.01) 1.249 (0.435) 0.00024 (0.00063) 0.089 (0.05) 0.545 (0.022) 2.359 (0.316)
CI-SMS-EMOA 0.08 (0.011) 1.304 (0.289) 0.00287 (0.00487) 0.202 (0.198) 0.549 (0.029) 2.656 (0.34)
CI-SPEA2 0.114 (0.028) 1.122 (0.493) 0.00069 (0.00232) 0.082 (0.059) 0.542 (0.018) 2.329 (0.338)
CI-NSGA-II-P 0.068 (0.008) 1.324 (0.334) 0.00087 (0.00136) 0.641 (0.208) 0.657 (0.054) 0.602 (0.308)
CI-SMS-EMOA-P 0.066 (0.009) 1.326 (0.212) 0.00088 (0.0015) 0.608 (0.166) 0.631 (0.066) 0.772 (0.627)
CI-SPEA2-P 0.087 (0.016) 0.924 (0.636) 2e-05 (8e-05) 0.762 (0.128) 0.657 (0.065) 0.617 (0.334)
R-NSGA-II 0.153 (0.005) 1.04 (0.204) 0.0001 (0.0) 2.648 (0.056) 0.593 (0.003) 4.967 (0.086)
WHYPE 0.437 (0.019) 0.448 (0.0) 9.22655 (0.0) 2.853 (0.078) 0.505 (0.023) 4.452 (0.072)

WFG7

CI-NSGA-II 0.071 (0.088) 0.922 (0.606) 0.0 (0.0) 0.06 (0.053) 0.541 (0.016) 2.356 (0.325)
CI-SMS-EMOA 0.341 (0.168) 0.827 (0.705) 9e-05 (0.00023) 1.15 (0.572) 0.512 (0.037) 4.096 (0.459)
CI-SPEA2 0.088 (0.033) 0.692 (0.685) 0.0 (0.0) 0.138 (0.072) 0.53 (0.016) 2.708 (0.216)
CI-NSGA-II-P 0.252 (0.245) 1.06 (0.499) 0.00015 (0.00044) 0.474 (0.296) 0.62 (0.07) 1.005 (0.65)
CI-SMS-EMOA-P 0.144 (0.191) 1.029 (0.552) 7e-05 (0.00016) 1.165 (1.91) 0.588 (0.11) 2.277 (1.528)
CI-SPEA2-P 0.39 (0.315) 0.887 (0.664) 2e-05 (5e-05) 0.754 (0.1) 0.65 (0.076) 0.803 (0.457)
R-NSGA-II 1.364 (0.069) 1.264 (0.32) 0.00019 (0.00021) 1.644 (1.664) 0.419 (0.1) 3.809 (1.188)
WHYPE 0.275 (0.007) 0.408 (0.0) 9.49827 (0.0) 2.094 (0.0) 0.521 (0.012) 4.178 (0.142)

WFG8

CI-NSGA-II 0.17 (0.022) 1.249 (0.226) 0.00283 (0.00452) 0.083 (0.062) 0.526 (0.015) 2.517 (0.208)
CI-SMS-EMOA 0.114 (0.036) 1.288 (0.329) 0.00176 (0.00375) 0.587 (0.325) 0.529 (0.024) 3.535 (0.526)
CI-SPEA2 0.167 (0.012) 1.161 (0.335) 0.00046 (0.00099) 0.135 (0.075) 0.516 (0.013) 2.694 (0.246)
CI-NSGA-II-P 0.219 (0.03) 1.366 (0.334) 0.00037 (0.00083) 0.579 (0.261) 0.585 (0.06) 1.052 (0.738)
CI-SMS-EMOA-P 0.187 (0.038) 1.325 (0.28) 9e-05 (0.00018) 0.518 (0.338) 0.537 (0.059) 1.996 (0.922)
CI-SPEA2-P 0.235 (0.035) 1.074 (0.44) 0.00019 (0.00038) 0.814 (0.158) 0.539 (0.06) 1.552 (0.809)
R-NSGA-II 0.025 (0.015) 0.731 (0.445) 0.0001 (0.0) 0.833 (0.047) 0.666 (0.007) 0.034 (0.063)
WHYPE 0.408 (0.047) 0.438 (0.036) 6.24101 (3.13704) 2.035 (0.0) 0.511 (0.014) 4.347 (0.049)

WFG9

CI-NSGA-II 0.195 (0.064) 0.288 (0.49) 0.00209 (0.00712) 0.108 (0.115) 0.53 (0.021) 2.657 (0.329)
CI-SMS-EMOA 0.364 (0.24) 0.815 (0.668) 0.00063 (0.00237) 0.503 (0.373) 0.505 (0.057) 3.318 (0.744)
CI-SPEA2 0.233 (0.102) 0.552 (0.715) 1e-05 (4e-05) 0.117 (0.054) 0.522 (0.023) 2.759 (0.271)
CI-NSGA-II-P 0.162 (0.051) 0.551 (0.757) 0.47146 (1.25232) 0.644 (0.28) 0.633 (0.064) 0.824 (0.828)
CI-SMS-EMOA-P 0.275 (0.177) 0.471 (0.532) 0.01537 (0.03918) 0.837 (0.791) 0.58 (0.092) 1.498 (1.403)
CI-SPEA2-P 0.152 (0.037) 1.096 (0.602) 0.17525 (0.44329) 1.013 (0.604) 0.688 (0.012) 0.473 (0.804)
R-NSGA-II 0.186 (0.075) 1.169 (0.641) 0.01504 (0.03656) – (–) 0.679 (0.005) 0.114 (0.217)
WHYPE 0.2 (0.013) 0.505 (0.024) 8.2346 (0.0) 2.109 (0.0) 0.544 (0.02) 4.249 (0.043)
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Table 6.9: Mean values of the performance indicators for the WFG problems with 5
objectives and standard the deviation in parenthesis.

WFG1 5D ∆P Ψ κ R-metric C2R

CI-NSGA-II 0.968 (0.243) 0.12618 (0.02495) 0.126 (0.024) 0.522 (0.007) 0.644 (0.072)
CI-SMS-EMOA 0.955 (0.575) 0.13376 (0.11273) 0.205 (0.038) 0.5 (0.012) 0.813 (0.124)
CI-SPEA2 0.548 (0.504) 0.09378 (0.09202) 0.141 (0.055) 0.503 (0.013) 0.699 (0.145)
CI-NSGA-II-P 0.684 (0.563) 0.10172 (0.08813) 0.242 (0.146) 0.461 (0.025) 1.307 (0.395)
CI-SMS-EMOA-P 0.564 (0.473) 0.14771 (0.24171) 0.648 (0.841) 0.458 (0.077) 1.567 (1.234)
CI-SPEA2-P 0.546 (0.477) 0.31145 (0.2656) 1.038 (0.728) 0.387 (0.036) 2.673 (0.774)
R-NSGA-II 1.269 (0.327) 3.87818 (6.43124) 8.676 (4.317) 0.212 (0.22) 7.185 (1.884)
WHYPE 0.678 (0.03) 0.12259 (0.0) 0.121 (0.0) 0.474 (0.018) 0.707 (0.016)

WFG4 5D

CI-NSGA-II 1.308 (0.092) 0.56507 (0.1493) 0.516 (0.121) 0.342 (0.037) 4.061 (0.475)
CI-SMS-EMOA 0.932 (0.24) 4.4675 (3.96587) 5.562 (3.296) 0.227 (0.089) 7.54 (1.109)
CI-SPEA2 0.001 (0.0) 0.002 (0.0) 1.233 (1.308) 0.291 (0.059) 4.778 (0.956)
CI-NSGA-II-P 1.154 (0.274) 0.50181 (0.41384) 0.612 (0.331) 0.345 (0.031) 3.981 (0.47)
CI-SMS-EMOA-P 0.559 (0.421) 4.68741 (5.97819) 12.629 (2.833) 0.068 (0.061) 9.347 (0.78)
CI-SPEA2-P 0.145 (0.289) 0.01 (0.0) 13.493 (2.437) 0.052 (0.058) 9.47 (0.798)
R-NSGA-II 1.149 (0.544) 8.64512 (7.09465) 13.469 (1.35) 0.005 (0.006) 10.477 (0.242)
WHYPE 0.612 (0.018) 4.0609 (0.87954) 3.948 (1.039) 0.309 (0.131) 5.88 (2.098)

WFG6 5D

CI-NSGA-II 1.0 (0.673) 1.05365 (1.21659) 2.498 (1.754) 0.302 (0.1) 5.343 (1.554)
CI-SMS-EMOA 0.95 (0.489) 2.64464 (2.20507) 3.791 (1.559) 0.273 (0.153) 6.531 (1.098)
CI-SPEA2 0.001 (0.0) 0.002 (0.0) 0.516 (0.297) 0.355 (0.063) 3.772 (0.519)
CI-NSGA-II-P 0.897 (0.639) 6.08015 (5.98706) 11.462 (2.499) 0.095 (0.064) 8.951 (0.743)
CI-SMS-EMOA-P 0.723 (0.646) 0.001 (0.0) 13.042 (2.205) 0.054 (0.044) 9.56 (0.347)
CI-SPEA2-P 0.567 (0.701) 0.66672 (2.49463) 11.037 (2.963) 0.099 (0.066) 8.911 (0.835)
R-NSGA-II 1.17 (0.249) 8.8697 (0.61994) 8.87 (0.62) 0.102 (0.012) 9.183 (0.171)
WHYPE 0.621 (0.0) 5.2361 (0.0) 5.323 (0.0) 0.158 (0.012) 7.52 (0.038)

WFG7 5D

CI-NSGA-II 0.0 (0.0) 0.0 (0.0) 0.433 (0.278) 0.286 (0.042) 4.414 (0.694)
CI-SMS-EMOA 0.226 (0.451) 1.31364 (2.62729) 7.142 (1.673) 0.211 (0.15) 7.983 (0.804)
CI-SPEA2 0.161 (0.322) 0.0 (0.0) 0.671 (0.307) 0.237 (0.015) 5.419 (0.421)
CI-NSGA-II-P 0.226 (0.452) 1.67824 (3.35648) 4.552 (2.994) 0.199 (0.062) 6.73 (1.798)
CI-SMS-EMOA-P 0.0 (0.0) 0.0 (0.0) 8.532 (3.462) 0.105 (0.084) 8.949 (1.009)
CI-SPEA2-P 0.0 (0.0) 0.0 (0.0) 0.309 (0.187) 0.276 (0.023) 4.616 (0.367)
R-NSGA-II 1.018 (0.088) 0.0 (0.0) 7.22 (2.123) 0.199 (0.129) 8.25 (0.581)
WHYPE 0.485 (0.0) 4.31094 (0.0) 4.272 (0.0) 0.261 (0.01) 6.725 (0.016)

WFG8 5D

CI-NSGA-II 1.45 (0.214) 0.37453 (0.11174) 0.372 (0.112) 0.33 (0.058) 4.068 (0.778)
CI-SMS-EMOA 1.146 (0.197) 2.35881 (2.28882) 2.322 (2.283) 0.237 (0.081) 5.701 (1.73)
CI-SPEA2 0.741 (0.664) 0.62431 (0.60756) 0.968 (0.521) 0.366 (0.029) 4.534 (0.731)
CI-NSGA-II-P 1.088 (0.577) 5.69718 (4.65372) 10.13 (1.047) 0.119 (0.036) 8.841 (0.518)
CI-SMS-EMOA-P 0.649 (0.371) 5.52709 (5.44231) 10.36 (3.461) 0.089 (0.056) 8.88 (1.015)
CI-SPEA2-P 0.986 (0.646) 0.0 (0.0) 9.94 (4.728) 0.129 (0.126) 8.162 (2.361)
R-NSGA-II 0.974 (0.036) 10.42521 (0.03873) 0.636 (0.015) 0.601 (0.033) 0.23 (0.264)
WHYPE 0.678 (0.02) 5.22633 (0.0) 5.241 (0.0) 0.194 (0.018) 7.498 (0.126)

WFG9 5D

CI-NSGA-II 0.48 (0.588) 0.0 (0.0) 0.415 (0.219) 0.307 (0.038) 4.532 (0.685)
CI-SMS-EMOA 0.276 (0.553) 1.64257 (3.28515) 5.003 (2.734) 0.143 (0.076) 7.938 (1.254)
CI-SPEA2 0.0 (0.0) 0.0 (0.0) 0.829 (0.613) 0.251 (0.013) 5.305 (0.874)
CI-NSGA-II-P 0.0 (0.0) 0.0 (0.0) 9.063 (5.438) 0.107 (0.111) 8.279 (2.007)
CI-SMS-EMOA-P 0.153 (0.305) 2.35033 (4.70066) 11.783 (2.704) 0.055 (0.044) 9.375 (0.57)
CI-SPEA2-P 0.556 (0.685) 3.08663 (6.17327) 14.656 (1.524) 0.016 (0.028) 9.863 (0.279)
R-NSGA-II 0.633 (0.716) 9.4586 (0.10709) 9.448 (0.103) 0.595 (0.05) 0.099 (0.347)
WHYPE 0.52 (0.0) 6.40395 (0.0) 6.416 (0.0) 0.102 (0.008) 8.311 (0.188)
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As an example, figure 6.10 shows the relevant regions in Pareto front found by the

best run of CI-NSGA-II in terms of DS→PF
, κ and Ψ.

(a) ZDT1 (b) ZDT2

(c) ZDT3 (d) ZDT4

(e) ZDT6 (f) DTLZ1
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(g) DTLZ2 (h) DTLZ3

(i) DTLZ4 (j) DTLZ5

(k) DTLZ6 (l) DTLZ7
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WFG1 

(m) WFG1

WFG2 

(n) WFG2WFG3 

(o) WFG3

WFG4 

(p) WFG4WFG5 

(q) WFG5

WFG6 

(r) WFG6
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WFG7 

(s) WFG7

WFG8 

(t) WFG8WFG9 

(u) WFG9

Figure 6.10: Relevant regions in Pareto front found by CI-NSGA-II for all the test prob-
lems.
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Figure 6.11: Conceptual studies for Oil & Gas field developments covering subsea and
offshore systems. Figure taken from [4].

6.2 Collective Intelligence In a Facility Location Case

The location of operational facilities is a strategic goal for many companies. Usually,

they have to efficiently manage demands in a network environment. The petroleum and

mining industry is one of the domain contexts where these circumstances prevail. Those

companies must extract oil or other geological materials from resource areas and allocate

facilities (offshore platforms or warehouses) in such a way that optimizes its operational

costs and production capacity. More generally, they transform the management of re-

sources into a multi-objective decision making problem with many stakeholders looking

for efficient approaches. Figure 6.11 illustrates a conceptual study for Oil & Gas subsea

field with a specialized vessels and pipeline installation [3].

6.2.1 Problem Formalization

The problem —to put it in simple terms— has to find a good solution for positioning the

processing units according the resource area. It is formally represented as:

min
N∑

i=1

M∑

j=1

σijdij +
M∑

j=1

cjµ (6.2)

max
N∑

i=1

M∑

j=1

σijvj (6.3)
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Let µ be the cost of one processing unit, v the productive capacity of one processing

unit linked to one resource area, M a set of available positions to processing units, N a

set of available positions to resource area and D a distance matrix (def )nxm, where n ∈ N
and m ∈ M . The decision variables are the processing unit cj (j ∈ M) that assumes 1 if

it is placed at position j or 0 otherwise and σij that assumes 1 if there is a link between

the resource area g at position i ∈ N and the processing unit at position j ∈M .

cj =

{
1 if the processing unit is placed

0 otherwise
(6.4)

σij =

{
1 if there is a link between gi and cj
0 otherwise

(6.5)

Regarding the constraints of the problem, let P the available positions of the resource

area inside the extraction area, S the actual positions of all resource areas, R the actual

positions of all processing units and α a distance function. The constraint 6.6 defines that

the quantity of processing units cannot be greater than the number of resource areas; 6.7

limits the link of one resource area to only one processing unit; 6.8 ensures that all the

processing units are allocated at least one time and no more than z times; 6.9 restricts a

resource area g to a unique position inside one specific extraction area in the map.

In 6.10 the minimum distance (k1) allowed between the processing unit and the re-

source area is defined, 6.11 sets the minimum distance (k2) between two different process-

ing units.
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1 ≤
M∑

j=1

cj ≤
N∑

i=1

gi (6.6)

M∑

j=1

σij = 1, ∀i ∈ S (6.7)

1 ≤
N∑

i=1

σij ≤ z, ∀j ∈ R, z ≥ 1 (6.8)

P∑

i=1

gi = 1 (6.9)

α (gi, cj) ≥ k1, ∀i ∈ S,∀j ∈ R (6.10)

α (ci, cj) ≥ k2, ∀i, j ∈ R, i 6= j (6.11)

(6.12)

6.2.2 Chromosome Encoding

The processing unit is computationally represented as a tuple ci =< x, y, t >; where

ci ∈ C = {c1, ..., ck}, t is the type of the unit, x and y are the Cartesian coordinates

of the position. The resource area is represented by the tuple aj =< x, y, l >; where

aj ∈ A = {a1, ..., aq}, l ∈ {1, ..., k} is the index of the processing unit that links a resource

area aj to the unit cj. For example, if the second resource area a2 is linked to the first

processing unit c1, then l = 1.

Each individual candidate route is also encoded as a set of genes. The intermediate

routes rajci between the resource area aj and the processing units ci are appended to the

end of the chromosome. The routes store only the vertices < x, y > of the line segments

that connect the objects. Thus, the chromosome encoding (Figure 6.12) is the aggregation

of these tuples regulated by q resource areas and k processing units.

x	 y	 l	 x	 y	 l	.	.	.	 x	 y	 t	 x	 y	 t	.	.	.	 x	 y	 x	 y	 .	.	.	
a1																															aq														c1																					ck												r1									r2	

ajci	 ajci	

Figure 6.12: Chromosome encoding.
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6.2.3 Gamification

Different constraints from real life and several new interdependencies among the variables

will increase the search complexity of this facility location problem. Progressive articu-

lation of preferences and collective intelligence can implement a dynamism not managed

by a priori methods and enhance its efficiency. Therefore, the situation described is a

candidate for this experiment due to some reasons: a) as a real-world case example, the

objectives and decision variables are meaningful to the group; b) the problem interacts

with crowd’s cognition and requires a 3D spatial reasoning to avoid natural obstacles in

the scenario; c) incentive engines and gamification can be used to retain the users’ interest

on the interaction during the optimization; d) the users’ feedback can be parallelized in

synchrony with the evolution of individuals in an evolutionary algorithm.

Gamification [69] is the integration of game design elements and game engines in

non-game contexts. This is usually intended to increase engagement of players, create

gameful and playful user experiences, motivate them and set clear objectives to guide

a cooperative or competitive behaviour. Games have been used to support science by

leveraging human problem solving ability to work on computationally difficult scientific

problems.

Humans have a more range of exploration methods than computers [20, 21]. Some

players prefer to focus on winning and competition, they try to achieve goals quickly.

Others users focus on a more collaborative behaviour, they work together by combining

strengths to accomplish a set of goals.

In this context, the facility location problem was designed as a game where every

player competes among themselves to obtain points and recognition of success. This

is usually intended to increase engagement of players, create gameful and playful user

experiences, motivate them and set clear objectives to guide a cooperative or competitive

behaviour. The game elements were transformed to preserve the sensitive details of a

major petroleum extraction and processing conglomerate of Brazil. Trucks represent the

resource areas and the warehouses or barracks symbolize the processing units with two

different types. The graphical interface of the game allows the user to manually define

and position any given object.

Software architecture is an abstract and modular description of a system. It refers to

the software elements, structures, properties and interfaces necessary to design a system

[152]. The gamified facility location problem is divided into 5 different layers: database,
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Database

MOEA component

Admin Pages Admin

Interactive
Platform

Users

SOA

Figure 6.13: High level description of the game architecture.

core components of MOEA, communication components, user interactive platform and

the web pages to control the game progress. A high level description of the software

architecture is demonstrated in Figure 6.13. The dashed green box denotes the database

layer, the MOEA’s component is shown in blue, the communication layer is drawn in

yellow, the interactive platform is represented in gray and the administration web pages

layer in black.

The database module uses the SQLite relational database [86]. SQLite is an open

source engine and work with PostgreSQL as a reference platform. It is widely ap-

plied in the data management of several applications, such as: mobile devices, websites,

CAD/CAM products, industrial control, etc [9]. The MOEA’s components were devel-

oped on a python evolutionary framework (DEAP [79]) that controls the genetic operators

and the interactive behavior of the new collective intelligence algorithms.

Following the Service-Oriented Architecture (SOA) model [8,108], the communication

layer provides a collection of web services responsible for transferring messages from the

user platform to the core components of MOEA. This set of functionalities is available

on the internet through RESTful web services [71]. The user interactive platform was

implemented in an open source 3D WebGL game engine called Playcanvas. This platform

supports JavaScript programming language and real-time editing of the code. All par-

ticipants of the collective intelligence will access this graphical interface1 to interact with

the game. Finally, the administrative web pages were developed using Django framework

(Figure 6.14), which follows a model-view-template (MVT) architectural pattern. These

web pages manage the interruption of the evolution process and control when to start or
1http://playcanv.as/p/1ARj738G
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Figure 6.14: Administrative web pages to manage the interruption of the evolution process
and control when to start or finish a problem optimization.

finish a problem optimization.

The code was written primarily in Python language, except for the interactive platform

on Playcanvas that has been developed in JavaScript. The complete source code is avail-

able at GitHub repository: https://github.com/quatrosem/Bangkok. Both the SQLite

database and the admin pages are hosted on PythonAnywhere (www.pythonanywhere.com),

an internet web server. Appendix E brings more details of the tools used as part of the

system architecture.

6.2.3.1 Game Modes

There are two options in the game: a) pairwise comparison, which implements the se-

lection operator; b) free design mode, which implements the variation operator. In the

pairwise comparison mode, the players must vote on the best candidate (individual from

population) between two or more facility location scenarios. As votes on the scenarios

happen, the Gaussian Mixture model calculates the collective reference point to restrict

the search to relevant areas in Pareto front. The players who have chosen the individuals

near the collective reference point receive a higher score. They compete at every evolution

interval for choices around the collective mean. Figure 6.15 exhibits different phases of

the game and the screen for pairwise comparisons of individuals. Note that the early gen-
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erations present less efficient individuals in terms of cost, because the distances between

the processing units and the resource areas are better optimized in the final generations.

(a) Two individuals from the early generations.

(b) Two individuals from the final generations

Figure 6.15: Gamification features and pairwise comparisons.

In the free design mode, some individuals from the population are distributed to the

players who have to fix and change their position arrangement. The dynamic game sce-

nario allows the creation of objects like trucks or warehouses, changing their arrangements

and rebuilding their connections with straight lines or zigzag lines. This game mode uses

the collaboration of people to apply rational improvements in the quality of EA popula-

tion. Figure 6.16 shows the dynamic board scene and its internal representation inside

the algorithm.
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Figure 6.16: Game and Computational representation of the facility location problem.

Trucks represent the resource areas and the warehouses or barracks symbolize the

processing units with two different types. All the participants can control their interac-

tions with the evolutionary algorithm through the buttons: join game; get scene; send

scene;evolve; redraw ; last winner.

• join game: Connect the user’s game instance to the running MOEA. This button

introduces the user in the game.

• get scene: Get one individual scenario from the current Pareto front and display on

the user’s screen.

• send scene: Send the modified individual to the current MOEA population.

• evolve: Run another block of generations on the server.

• redraw : Redraw the original individual in the screen (discard any local modification).

• last winner : Get the best individual from the last ended game.

6.2.3.2 Scenarios of Free Design Mode

There are four different scenarios available in the game: easy, easy obstacles, medium

obstacles and hard obstacles. The first one allows only straight lines to connect objects

and ignores any sort of obstacles. The lines are defined by segments connecting points,

representing for example pre-existent pipelines or flowlines. From second to the fourth

scenario, the zigzag lines have to be used to avoid the obstacles. The level of difficulty

increases according to the number of obstacles in the game scene. The medium and hard

scenarios are complex and simulate aspects of the real world. The placement of facilities

has to consider factors like competition for shared resources and obstructed paths.



6.2 Collective Intelligence In a Facility Location Case 100

The barrier regions simulate real-world constraints where travelling or locating new

facilities are not allowed: mountains, lakes, forests, hazardous and residential areas. In

2D space, this infeasible region is defined as: B = ∪Hh=1Bh ⊂ R2, where H is the set of

barriers. On the other hand, the feasible region is: F = R2 \ int(B). So, all processing

units c1, . . . , ck, resource areas a1, . . . , aq and routes are placed in F . Figure 6.17 shows

the four different scenarios available in the game.

(a) Easy (b) Easy Obstacles

(c) Medium Obstacles (d) Hard Obstacles

Figure 6.17: The four different scenarios available in the game.

In addition, the four scenarios were developed to work in discrete or continuous space.

The objective functions presented in 6.2.1 can also take discrete or continuous values.

Discrete data has a finite set of possible values. Continuous data are not restricted to

separate values. It can occupy any value over a continuous range, which makes the

proposed optimization problem even more difficult.
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6.2.4 Results with Collective Intelligence

In [87], the authors proposed a 5-position schema to describe all location models. The

classification has the following format: Pos1 / Pos2 / Pos3 / Pos4 / Pos5. The Pos1

contains information about the number and type of the new facilities. Pos2 gives in-

formation regarding the decision space: discrete, network or continuous problems. Pos3

expresses particularities of the specific location problem. Pos4 describes the relation of

the facilities. Finally, Pos5 contains information regarding the objective functions.

Based on the 5-position schema, the facility location problem used in this experiment

(Subsection 6.2.1) is then classified as: p, A / R2 / F ,B, wm = 1,mc/ l2 / Q−(
∑
,min)par.

The Pos1 and Pos2 express that the problem must locate many paths of several line

segments (p) and multiple areas (A) in the 2-dimensional space (R2). Pos3 indicates the

existence of a feasible region (F) with barriers (B), where neither placement of facilities

nor paths are allowed. The information in this position also means that the problem is

unweighted (wm = 1) and there is mutual communication between the new facilities (mc).

Pos4 determines the distance function used: Euclidean distance (l2). The last position,

Pos5, stands for a minimization of a multi-criteria problem (Q− (
∑
,min)par).

The coming subsections present the results found for the discrete and continuous

facility location problem.

6.2.4.1 Experimental Settings and Definitions

The experiments were applied in two different computer labs: a Brazilian professional

education center with more than 25 students’ attendance; a private company training

room with engineers and IT analysts. This way, there are two different participants’

profiles. The group of engineer specialists and a second one of IT professionals and

students. Besides, one offshore engineer was selected as the main DM to evaluate the

final scenarios obtained by the COIN algorithms.

There were performed 12 experiments in each lab. The results in the following sub-

sections show the mean values for each distinct game scenario (easy – easy obstacles –

medium obstacles – hard obstacles). The population size has been set to 200 for all the

problems (discrete or continuous). The crossover and mutation probability are 0.9 and

0.1, respectively.

According to the test results in Section 6.1.5, CI-NSGA-II outperformed the algo-

rithms CI-SMS-EMOA and CI-SPEA2. Along with the the CI-NSGA-II-P, they cover
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77% of the 3 first positions in the benchmark problems. As the R-NSGA overcame the

WHYPE, the experiment with a true collectivity compares the new CI-NSGA-II with the

original NSGA-II and R-NSGA-II. The R-NSGA-II uses the ideal point z∗i as a fixed ref-

erence point. The main goal is to analyse the performance of CI-NSGA-II facing distinct

environments and to identify when the collective intelligence has a positive influence on

the results.

The CI-NSGA-II has three variations regarding the sort of input from the collective

intelligence. The CI-NSGA-II Vote variation interrupts the evolution process and asks

the players to choose the best candidate between two scenarios. This variation uses the

COIN-based Selection operator to vote on the most fitting individuals and discover the

collective preferences. In the CI-NSGA-II Fix variation, the participants can interactively

update and redesign all the elements in the game scene. They use their cognition and

reasoning skills to improve the configuration of intermediate MOEAs solutions. The third

variation, CI-NSGA-II Ignition, accepts the collective contributions only in the beginning

of the evolution (first generation), then it runs to the end without interference.

All the three variations aggregate a rational input to the current population. The

time interval for human collaboration is 30 seconds for pairwise comparisons (CI-NSGA-II

Vote) and 60 seconds for game scene update (CI-NSGA-II Fix and CI-NSGA-II Ignition).

In [118], the authors investigate the impact of the number of interactions on the con-

vergence of EMOAs. Based on their findings, the number of human–computer interactions

adopted in these experiments are 6 for the CI-NSGA-II. Regardless, the original NSGA-II

and the R-NSGA runs independently with no interaction.

The users’ contributions maintain a pattern with a constant number of generations

between each interaction. This pattern calls for interactions after 14%, 28%, 42%, 56%,

70% and 84% of the generations (fixed number) have elapsed. Different patterns could

be used to collect the preferences, such as the front-loaded where more interactions oc-

cur during the early stages of the algorithm or the center-loaded pattern under which

more interactions occur during the middle stages of the algorithm. However, the distinct

interaction patterns did not produce statistically significant differences in the results [118].

This work introduces the COIN operator with the purpose of iteratively refine the

search parameters with rational collaborations and improve the overall quality of evolu-

tionary population. It is expected that the suggested approach decreases the number of

function evaluations, accelerates the convergence and achieves relevant regions of Pareto

front at a lower computational cost.
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Thus, the methods used to evaluate the performance of the CI-NSGA-II in the discrete

problem are: the number of function evaluations, fixed distance and fixed time. The

evaluation function is the most time consuming element and it is normally taken for

comparison. In the fixed distance, a minimum distance between the current approximation

set S and the Pareto-optimal front is measured by the front coverage indicator, DS→PF
. A

proximity of DS→PF
= 20 is the criteria to stop the evolution and compare the algorithms.

In the fixed time, the algorithms run in a time interval previously defined.

Among the participants, there is an offshore engineer elected as the main DM. This

role evaluates the final scenarios obtained by the COIN algorithms. For a different analysis

of the results, the offshore engineer provided an a priori reference point to be used as a

comparison. This way, the Reference Set Distance (C2R) performance indicator can be

applied to indicate the distance between the a priori reference point and the outcomes of

COIN algorithms.

To summarise, in the discrete problem, the experiment with a true collectivity com-

pares the algorithms:

• NSGA-II

• R-NSGA-II

• CI-NSGA-II Vote

• CI-NSGA-II Fix

• CI-NSGA-II Ignition

The performance indicators are:

• number of function evaluations

• fixed distance (DS→PF
)

• fixed time

In the continuous problem, the experiment compares the algorithms:

• NSGA-II

• CI-NSGA-II Fix



6.2 Collective Intelligence In a Facility Location Case 104

• R-NSGA-II

The performance indicators are:

• number of function evaluations

• fixed distance (DS→PF
)

• fixed time

• C2R (Reference Set)

• R-metric

• Filatovas Spread (∆P )

• Referential Cluster (κ)

• Convex Hull (Ψ)

6.2.4.2 Discrete Problem

The bi-objective problem is solved using the COIN MOEAs. Tables 6.10 and 6.11 present

the results for fixed time and distance evaluation, respectively. Based on the results, the

original R-NSGA-II won in the Easy and Easy Obstacles scenarios. The problem without

obstacles is so simple that the algorithm took only two seconds to reach a convergence

of DS→PF
= 20. In the case of fixed time: 5", there was not sufficient time to involve a

collective participation of users, so the CI-NSGA-II variations were not applicable (NA).

The CI-NSGA-II Fix and Igni had a better performance in the Medium Obstacles

scenario. Although the R-NSGA-II required less number of function evaluations to reach

the convergence DS→PF
= 20, the CI-NSGA-II Igni results were close and obtained the

lowest Referential Cluster Variance indicator κ, which means the points are clustered

closely around the collective reference point. CI-NSGA-II Fix dominated the values of

the fixed time evaluation.

The great difference in the result appears in the Hard Obstacles scenario. The CI-

NSGA-II Fix succeeded in all three indicators with the support of the collective intel-

ligence. Considering the fixed distance evaluation, the algorithm required 5 times less

function evaluation and performed 3.2 times faster than NSGA-II. In terms of the fixed

time evaluation, it managed to find a better convergence 3.5 times better than R-NSGA-II.
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Table 6.10: Results of fixed time evaluation in discrete problem.

Easy Easy Obstacles

Algorithms Time:5" Time:70"

DS→PF
Num.Eval. κ Ψ DS→PF

Num.Eval. κ Ψ

NSGA-II 7,1 15.440 16,5 e05 2590,0 16,0 91.680 16,2 e05 2974,8
R-NSGA-II 5,54 8.000 14,5 e05 2617,0 11,7 31.600 13,4 e05 1115,6
CI-NSGA-II Vote NA NA NA NA 63,6 19.240 22,4 e05 6632,5
CI-NSGA-II Fix NA NA NA NA 47,0 8.820 5,9 e05 1881,6
CI-NSGA-II Ignition NA NA NA NA 31,6 39.520 0,7 113,0

Medium Obstacles Hard Obstacles

Time:300" Time:900"

NSGA-II 11,2 68.000 18,2 e05 3268,4 57 8.000 17,4 e05 4720,0
R-NSGA-II 22,3 54.000 10,1 e05 4565,6 56 10.400 16,2 e05 9654,0
CI-NSGA-II Vote 16,5 55.000 22,9 e05 3456,5 76,3 7.640 16,6 e05 4089,8
CI-NSGA-II Fix 1,9 29.580 2,1 e05 1196,5 16,2 8.640 10,1 e05 1109,3
CI-NSGA-II Ignition 7,7 55.480 7,2 e05 1656,7 28,9 23.300 10,8 e05 1298,2

Table 6.11: Results of fixed distance evaluation in discrete problem.

Easy Easy Obstacles

Algorithms DS→PF
: 20 DS→PF

: 20

Time Num.Eval. κ Ψ Time Num.Eval. κ Ψ

NSGA-II 3,0 3.440 e05 2896,2 48,6 62.160 18,2 e05 2889,6
R-NSGA-II 1,9 1.200 17,2 e05 3449,8 32,4 11.600 14,7 e05 7130,4
CI-NSGA-II Vote 46,0 3.200 16,5 e05 2272,3 196,3 78.520 28,4 451,6
CI-NSGA-II Fix 63,3 1.380 14,0 e05 4101,7 86,1 20.660 4,3 e05 896,9
CI-NSGA-II Ignition 63,0 1.280 14,8 e05 5581,8 106,9 29.680 2,2 10,25

Medium Obstacles Hard Obstacles

NSGA-II 372,4 68.080 17,5 e05 3743,4 2661,9 22.000 18,3 e05 6270,6
R-NSGA-II 172,4 18.400 16,0 e05 1081,0 2155,7 27.200 15,1 e05 4598,0
CI-NSGA-II Vote 300,0 57.640 25,1 e05 283,5 3058,7 34.820 17,5 e05 3098,4
CI-NSGA-II Fix 249,5 25.180 2,5 e05 1800,0 823,1 4.600 7,7 e05 1267,3
CI-NSGA-II Ignition 179,6 25.280 1,9 e05 1164,3 1448,8 44.100 15,02 e05 2890,9

Altogether, CI-NSGA-II Fix iteratively refines the search parameters and adopts

players collaborations to achieve more appropriated points in the final trade-off set. It en-

courages the creativity and cognition to produce new solutions. Figure 6.18 demonstrates

how the collective intelligence contributions in CI-NSGA-II Fix outperform the regu-

lar NSGA-II and R-NSGA-II from the Medium Obstacles scenario onwards (low values

are desired). This concludes that collective intelligence and reference points enhance the

MOEA results when faced with more complex scenarios. In facility location problems, the

interactive MOEA could benefit from human characteristics, such as 3D spatial reasoning

and strategic thinking.

Figures 6.19 and 6.20 show the number of function evaluations for each scenario in the

fixed time and fixed distance evaluation, respectively. The CI-NSGA-II Fix consistently
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(b) Fixed Distance on logarithmic scale

Figure 6.18: Results of distance and time measurements for each game scenario in the
discrete problem.

presented the lowest values of function evaluations in the fixed time evaluation. The

R-NSGA-II had the lowest values on the fixed distance evaluation, except for the Hard

Obstacles scenario where the CI-NSGA-II Fix was the winner. As the scenario is getting

more complex, the greater is the advantage of a collective intelligence MOEA in terms of

the computation of function evaluations.

From a practical point of view, the arrangement of facilities involves large sums of

capital resources. This method shows its potential use in finding a handful of preferred

solutions and giving the company a competitive advantage.
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Figure 6.19: Number of function evaluations for each scenario in the fixed time evaluation.
(discrete problem)
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Figure 6.20: Number of function evaluations for each scenario in the fixed distance eval-
uation (discrete problem).

6.2.4.3 Continuous Problem

According the test results in the discrete problem (Section 6.2.4.2), the CI-NSGA-II Fix

outperformed the others variations: CI-NSGA-II Vote and CI-NSGA-II Ignition. For this

reason, the continuous experiment selects only the CI-NSGA-II Fix and compares it with

the original NSGA-II and R-NSGA-II. The methods used to evaluate the performance

of the algorithms are the same adopted in the discrete problem: number of function

evaluations, fixed distance of convergence (DS→PF
), fixed time. But also, the preference-

based indicators: R-metric, Reference Set (C2R), Convex Hull (Ψ), Referential Cluster

(κ) and Filatovas Spread (∆P ); are computed in order to improve the analysis.

The NSGA-II is not a preference-based MOEA. But it is of interest to compare the

convergence of NSGA-II (DS→PF
) with the others MOEAs. As the preference-based indi-

cators have to measure a limited area of the PF and the NSGA-II searches for an entire

Pareto frontier, the preference-based indicators were not applied to NSGA-II.

In the fixed distance, a minimum distance between the current approximation set
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Table 6.12: Results of fixed time evaluation in continuous problem.

Easy

Algorithms Time:5"

DS→PF
Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 21,4 4.000 – – – – –
R-NSGA-II 23,38 48.000 17,3 e05 3066,7 0,296 1278,2 0,2188
CI-NSGA-II Fix NA NA NA NA NA NA NA

Easy Obstacles

Time:70"

DS→PF
Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 59,13 1.600 – – – – –
R-NSGA-II 57,4 5.200 17,1 e05 3066 0,2962 1186,1 0.2994
CI-NSGA-II Fix 74,2 1.200 21,0 e05 3316 0,1261 2111,9 0.5214

Medium Obstacles

Time:900"

DS→PF
Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 52,9 1.600 – – – – –
R-NSGA-II 44 3.200 16,1 e05 3.293 0,237 1169,8 0,4757
CI-NSGA-II Fix 34,1 3.200 10,7 e05 2.180 0,332 1091,0 0,4085

Hard Obstacles

Time:12.000"

DS→PF
Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 29,6 121.600 – – – – –
R-NSGA-II 27,8 119.887 26,34 e05 1.198 0,532 1121,8 0,1727
CI-NSGA-II Fix 17,1 76.822 3,9 e05 993 0,899 989,1 0,0947

S and the Pareto-optimal front is measured by the front coverage indicator, DS→PF
. A

proximity of DS→PF
= 20 is the criteria to stop the evolution and compare the algorithms.

In the fixed time, the algorithms run in a time interval previously defined. C2R indicator

uses a reference point provided by one external user (an offshore engineer elected as the

main DM) to indicate the distance between the a priori preference and the outcomes of

COIN MOEAs.

Tables 6.12 and 6.13 present the results for fixed time and distance evaluation, re-

spectively. The continuous problem is more complex than the discrete one. In this case,

the time interval for the fixed time evaluation experiment was redefined: Medium Obsta-

cles scenario have 900 seconds; Hard Obstacles have 12.000 seconds. In the case of fixed

time: 5", there was not sufficient time to involve a collective participation of users, so the

CI-NSGA-II variations were not applicable (NA).

Based on the results in Table 6.12, the original R-NSGA-II won in the simplest sce-

nario: Easy Obstacles. But the CI-NSGA-II Fix algorithm had a better performance in

the more complex ones: Medium Obstacles and Hard Obstacles.

As the complexity grows, the support of the collective intelligence and reference points

enhance the MOEA results. In the Hard Obstacles scenario (Table 6.13), the CI-NSGA-
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Table 6.13: Results of fixed distance evaluation in continuous problem.

Easy

Algorithms DS→PF
: 20

Time Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 7,6 1.600 – – – – –
R-NSGA-II 5,8 1.600 15,1 e05 3304,9 0,932 2216,1 0,8917
CI-NSGA-II Fix NA NA NA NA NA NA NA

Easy Obstacles

Time Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 274,6 13.600 – – – – –
R-NSGA-II 271,5 12.800 16,2 e05 6999,5 0,333 981,0 0,877
CI-NSGA-II Fix 366,7 6.800 58,9 e05 1991,1 0,422 977,8 0,910

Medium Obstacles

Time Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 4702,7 22.000 – – – – –
R-NSGA-II 3620,7 11.200 22,9 e05 1991,1 0,231 1020,8 0,4799
CI-NSGA-II Fix 1204,9 9.635 12,8 e05 1873,0 0,636 921,1 0,3712

Hard Obstacles

Time Num.Eval. κ Ψ R-metric C2R ∆P

NSGA-II 490.732 120.873 – – – – –
R-NSGA-II 345.600 89.200 16,2 e05 1911,1 0,112 1532,5 0,3147
CI-NSGA-II Fix 92.965 36.912 16,9 e05 1239 0,903 925,1 0,2714

II fix required almost 3 times less function evaluation and performed 3.71 times faster

than R-NSGA-II. When compared with the NSGA-II, the CI-NSGA-II fix performed 5.27

times faster. The number of evaluation function computed by CI-NSGA was smaller since

the Easy Obstacles scenario. The C2R values indicate that CI-NSGA-II fix results are

closer to the a priori reference point provided by the offshore engineer elected as the main

DM. R-metric values were also superior for this algorithm.

As in the discrete problem, Figure 6.21 demonstrates how the collective intelligence

contributions in CI-NSGA-II Fix outperform the regular NSGA-II and R-NSGA-II from

the Medium Obstacles scenario onwards (low values are desired).

Figures 6.22 and 6.23 show the number of function evaluations for each scenario in

the fixed time and fixed distance evaluation, respectively. In the continuous problem, the

CI-NSGA-II Fix consistently presented the lowest values of function evaluations in the

fixed time and distance evaluation. The COIN operator and users’ rational collabora-

tions decrease the number of function evaluations, accelerate the convergence and achieve

relevant regions of Pareto front at a lower computational cost.
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(b) Fixed Distance on logarithmic scale

Figure 6.21: Results of distance and time measurements for each game scenario in the
continuous problem.
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Figure 6.22: Number of function evaluations for each scenario in the fixed time evaluation
(continuous problem).
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Figure 6.23: Number of function evaluations for each scenario in the fixed distance eval-
uation (continuous problem).



Chapter 7

Conclusions and Future Work

7.1 Final Remarks

In this work we have discussed about group preferences in multi-objective optimization

evolutionary algorithms and have introduced a novel approach that brings human subjec-

tivity and cognition into the optimization process. MOEAs can take advantage of decision

makers’ preferences to guide the search through relevant regions of Pareto-optimal front.

Suitable techniques of preference-based multi-objective algorithms and interactive EAs

were pointed out as an alternative to handle the dynamism not expected by a priori

methods. But, particularly, the CI-NSGA-II, CI-SMS-EMOA and CI-SPEA2 were pre-

sented as an interactive approach supported by dynamic group preferences.

The new algorithms apprehend people’s heterogeneity and common sense to improve

the successive stages of evolution in a direct crowdsourcing fashion. Consequently, in-

stead of the entire front, it reaches a smaller sub-set of the front and uses the collective

preferences to support decisions upon multi-objective situations. The wisdom arisen from

the diversity of many individuals is able to enhance MOEAs, overcome their difficulties

and discover creative resolutions.

The approaches have been tested successfully in benchmarking problems. Three dif-

ferent performance indicators (Referential Cluster Variance, Convex Hull Volume and

Reference Set Distance) were presented with the intention to measure the proportion of

occupied area in PF .

A real-world case study regarding facility location was tested successfully against the

algorithms. The multi-objective scenario was reproduced as a game and directed to a

collective intelligence support. Results outlined the benefits of collective reference points
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to unfold solutions designed by a group of people that is more intelligent when is working

together.

The injection of COIN within the original NSGA-II, SPEA2 and SMS-EMOA did not

make radical changes in their structure. Therefore, the research community should be

able to improve and extend the actual achievements.

In the near future, the continuity of this research will explore different features of the

evolutionary process. There is a particular interest in more complex scenarios with many

constraints and non-explicit objectives hidden in the problem. It is important to validate

if the complexity of the environment will favour even more the integration of COIN in

MOEAs. Also, this work wants to create an open platform and different web-scenarios to

apply collective intelligence in different multi-objective problems.

Furthermore, there are plans to apply directional information along with the pro-

jection of the collective reference points during the evolution process. This way, the

technique can extract the intelligence of the crowds and, at the same time, optimize the

search through preferred regions with a minimal number of interruptions in the algorithm.

7.2 Future Directions

This work uncovered some directions for future research. One further research topic in

the field of collective intelligence and interactive multi-objective optimization could be

the implementation of aggregation functions to merge different users’ collaboration. Once

imported in the next population, the individuals produced in the collective environment

with rational supervision are modified by the genetic operators. The crossover and mu-

tation combine or alter the individuals based on random operations. There is a need to

develop more effective aggregation functions to join cognitive inputs from different people

in the optimization process.

In the same context, the participants could collaborate on the same game scenario.

Today, each user edits his own scenario. There is no interaction between the participants.

But one can think about how to share the same intermediate solution to many collabo-

rators. Individuals produced by one player can be updated by others users, a real-time

editing executed by multiple people simultaneously. This way, not only the aggregation

function, but also the collaborative environment will explore the potential and benefits

of the 3C model [80, 154] – cooperation, coordination and communication – to address

rational improvements to the evolution.
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All the objectives in the problem are explicit. Another potential research interest

in the future could be the analysis of MOPs with non-explicit objectives hidden in the

problem. It should be considered if the collective intelligence uses the common sense to

extend the declared objective functions and take into account different constraints or goals

not stated. To this end, one can investigate if the provided answers satisfy the explicit

objectives, but also the hidden ones.

Based on this work, another important development field is the analysis of which kind

of previous information affects the COIN contributions or preferences. For instance, if

the DM expresses part of his preferences, maybe the results would be different. But, it

should be determined which categories of information influence the results and at what

level they change the collective preferences.

The gamification of this problem can also be improved. The game platform (Play-

canvas) allows the creation of different web-scenarios to apply collective intelligence in

distinct multi-objective problems. In this regard, this work motivates the development of

an open platform to diffuse multi-objectives problems and receive multiple collaborators

to help solving these MOPs.
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APPENDIX C -- Multi-Objective Test Problem

This appendix describes the test problems used in the experiments of the thesis: DTLZ

[67], ZDT [178] and WFG [94]. .

C.1 The DTLZ Problem Set

The DTLZ problems are part of the Deb–Thiele–Laumann–Zitzler (DTLZ) family of scal-

able multi-objective test problems to analyse and compare the performance of MOEAs.

C.1.1 DTLZ1

DTLZ1 is anM -objective problem with a linear Pareto-optimal front. The main difficulty

of this problem is to converge to the hyper-plane:
∑M

m=1 fm = 0.5. The fitness landscape

contains a large number of local PFs (11K − 1). A value of k = 5 is recommended.

In the case of M > 3, the Pareto-optimal solutions lie inside the first quadrant of the

unit sphere in a three-objective plot with fM as one of the axes. The objective functions

are expressed as:

f1(x) = 1
2
(1 + g(xM))x1x2 . . . xM−1,

f2(x) = 1
2
(1 + g(xM))x1x2 . . . (1− xM−1),

...

fM−1(x) = 1
2
(1 + g(xM))x1(1− x2),

fM(x) = 1
2
(1 + g(xM))(1− x1),

having g(xM) defined as

g(xM) = 100

[
|xM |+

∑

xi∈xM

(xi − 0.5)2 − cos 20π(xi − 0.5)

]
,
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C.1.2 DTLZ2

This DTLZ2 problem can be used to investigate an MOEA’s ability to scale up its per-

formance in a large number of objectives. The test problem has a simple unimodal fitness

landscape. In [39], the authors declare that the fitness landscape is too simple to dis-

tinguish decision variables of different scales and, therefore, DTLZ2 is not suited for

large-scale optimization.

In the case of M > 3, the Pareto-optimal solutions lie inside the first quadrant of

the unit sphere in a three-objective plot with fM as one of the axes. The parameter

k = |xM | = 10 is suggested and the total number of variables is n = M + k − 1. The

objective functions are expressed as:

f1(x) = (1 + g(xM))
∏M−1

i=1 cos(xi
π
2
),

...

fm(x) = (1 + g(xM))
∏M−m

i=1 cos(xi
π
2
) sin(xM−m+1

π
2
),

...

fM(x) = (1 + g(xM)) sin(x1
π
2
)

with g(xM) defined as

g(xM) =
∑

xi∈xM

(xi − 0.5)2 ;

C.1.3 DTLZ3

The DTLZ3 problem is aM -objective problem with a n-dimensional decision vector based

on the DTLZ2. The Pareto-optimal front lies on the first orthant of a unit hypersphere.

This problem was introduced to test the ability of a MOEA to converge to the global

Pareto–optimal front, since there are 3n−M+1−1 suboptimal fronts parallel to the optimal

one. It is formulated as:

f1(x) = (1 + g(xM))
∏M−1

i=1 cos(xi
π
2
),

...

fm(x) = (1 + g(xM))
∏M−m

i=1 cos(xi
π
2
) sin(xM−m+1

π
2
),

...

fM(x) = (1 + g(xM)) sin(x1
π
2
)
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having g(xM) defined as

g(xM) = 100

[
|xM |+

∑

xi∈xM

(xi − 0.5)2 − cos 20π(xi − 0.5)

]
,

where xM represents the last n−M + 1 features of x ∈ [0, 1]n.

C.1.4 DTLZ4

The DTLZ4 modified the DTLZ2 problem with a different meta-variable mapping. It

presents a highly nonuniform distribution of the Pareto optimal solutions.

The objective functions are expressed as:

f1(x) = (1 + g(xM))
∏M−1

i=1 cos(xαi
π
2
),

...

fm(x) = (1 + g(xM))
∏M−m

i=1 cos(xαi
π
2
) sin(xαM−m+1

π
2
),

...

fM(x) = (1 + g(xM)) sin(xα1
π
2
)

having g(xM) defined as

g(xM) =
∑

xi∈xM

(xi − 0.5)2 ;

The parameter α = 100 is suggested and all variables x1 to xM−1 are varied in [0, 1].

C.1.5 DTLZ5

This problem tests the MOEA’s ability to converge to a curve. It is recommended to use

a higher-objective (M ∈ [5, 10]) version of this problem to study the computational time

complexity of an MOEA.

It is formulated as:

f1(x) = (1 + g(xM))
∏M−1

i=1 cos(θi
π
2
),

...

fm(x) = (1 + g(xM))
∏M−m

i=1 cos(θi
π
2
) sin(θM−m+1

π
2
),

...

fM(x) = (1 + g(xM)) sin(θ1
π
2
)
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with g(xM) defined as

g(xM) =
∑

xi∈xM

(xi − 0.5)2 ;

and θ1, . . . , θM−1 as
θ1 = x1

π
2

θi = π
4(1+g(xM ))

(1 + 2g(xM)xi)

C.1.6 DTLZ6

The DTLZ6 problem is also based on a simpler problem, in this case, the DTLZ5 problem.

As in the previous case, suboptimal fronts are also present with the intention of deceiving

the optimizer.

The objective functions are expressed as:

f1(x) = (1 + g(xM))
∏M−1

i=1 cos(θi
π
2
),

...

fm(x) = (1 + g(xM))
∏M−m

i=1 cos(θi
π
2
) sin(θM−m+1

π
2
),

...

fM(x) = (1 + g(xM)) sin(θ1
π
2
)

with g(xM) defined as

g(xM) =
∑

xi∈xM

x0.1
i ;

and θ1, . . . , θM−1 as
θ1 = x1

π
2

θi = π
4(1+g(xM ))

(1 + 2g(xM)xi)

The Pareto-optimal front corresponds to xi = 0 for xi ∈ xM .

C.1.7 DTLZ7

The DTLZ7 problem has a Pareto-optimal front that consists of a heavily disconnected set

of 2M−1 Pareto-optimal regions. This problem is intended to test an algorithm’s ability

to maintain a robust coverage of all optimal regions. It is formulated as:

fm(x) = xm, for m = 1, . . . ,M − 1;

fM(x) = (1 + g(xM))
[
M −∑M−1

i=1
fi

1+g(xM )
(1 + sin 3πfi)

]
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with g defined as

g = 1 +
9

|xM |
∑

xi∈xM

xi.

The Pareto-optimal front corresponds to xi = 0 for xi ∈ xM .

C.2 The ZDT Problem Set

The ZDT problems are part of the Zitzler–Deb–Thiele (ZDT) family of scalable multi-

objective test problems to analyse and compare the performance of MOEAs.

All the test functions are consist of three main functions: f1, g, h:

minimize τ(x) = (f1(x1), f2(x))

subject to f2(x) = g (x2, . . . , xm)h(f1(x1), g (x2, . . . , xm))

where x = (x1, . . . , xm)

The function f1 assigns the first decision variable only, whereas g uses the remaining

m− 1 variables. The function h receives the function values of f1 and g as parameters.

C.2.1 ZDT1

The ZDT1 test function has a convex Pareto-optimal front:

f1(x1) = x1

g (x2, . . . , xm) = 1 + 9
m∑

i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g

where m = 30, and xi ∈ [0, 1]. The Pareto-optimal front is formed with g(x) = 1.
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C.2.2 ZDT2

The ZDT2 test function is the nonconvex counterpart to ZDT1:

f1(x1) = x1

g (x2, . . . , xm) = 1 + 9
m∑

i=2

xi/(m− 1)

h(f1, g) = 1− (f1/g)2

where m = 30, and xi ∈ [0, 1]. The Pareto-optimal front is formed with g(x) = 1.

C.2.3 ZDT3

The ZDT3 consists of several noncontiguous convex parts:

f1(x1) = x1

g (x2, . . . , xm) = 1 + 9
m∑

i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g − (f1/g) sin(10πf1)

where m = 30, and xi ∈ [0, 1]. The Pareto-optimal front is formed with g(x) = 1.

C.2.4 ZDT4

The ZDT4 test function contains 219 local Pareto-optimal fronts. This problem was

introduced to test the ability of a MOEA to deal with multimodality:
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f1(x1) = x1

g (x2, . . . , xm) = 1 + 10(m− 1) +
m∑

i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√
f1/g

where m = 10, and x1 ∈ [0, 1] and x2, . . . , xm ∈ [−5, 5]. The Pareto-optimal front is

formed with g(x) = 1.

C.2.5 ZDT6

The ZDT6 test function has a nonconvex Pareto-optimal front:

f1(x1) = 1− exp(−4x1) sin6(6πx1)

g (x2, . . . , xm) = 1 + 9((
m∑

i=2

xi)/(m− 1))0.25

h(f1, g) = 1− (f1/g)2

where m = 10, and xi ∈ [0, 1]. The Pareto-optimal front is formed with g(x) = 1.

C.3 The Walking Fish Group Problem Set

The problems to be addressed are part of the Walking Fish Group problem toolkit (WFG).

This is a toolkit for creating complex synthetic multi-objective test problems that can be

devised to exhibit a given set of target features.

Unlike previous test suites where complexity is embedded in the problem, a test

problem designer using the WFG toolkit has access to a series of components to control

specific test problem features (e.g., separability, modality, etc.). The WFG toolkit was

used to construct a suite of test problems that provides a thorough test for optimizers.

This set of nine problems, WFG1 to WFG9, are formulated in such manner that each

poses a different type of challenge to multi-objective optimizers.
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The WFG test suite exceeds the functionality of previous existing test suites. In

particular, it includes a number of problems that exhibit properties not evident in other

commonly used test suites such as the DTLZ and the Zitzler–Deb–Thiele (ZDT) test

suites. These differences include: non-separable problems, deceptive problems, a truly

degenerate problem, a mixed shape Pareto front problem, problems scalable by the number

of position-related parameters, and problems with dependencies between position- and

distance-related parameters. The WFG test suite provides a better form of assessing the

performance of optimization algorithms on a wide range of different problems.

WFG problems are constructed by combining functions that define the shape of the

Pareto-optimal front and a set of transformation functions. The shape functions are [119]

linear1(x1, . . . , xM−1) =
M−1∏

i=1

xi ;

linearm=2,...,M−1(x1, . . . , xM−1) =

(
M−m∏

i=1

xi

)
(1− xM−m+1) ;

linearM(x1, . . . , xM−1) = 1− x1 ;

convex1(x1, . . . , xM−1) =
M−1∏

i=1

(
1− cos

(
xi

π
2

))
;

convexm=2,...,M−1(x1, . . . , xM−1) =

[
M−1∏

i=1

(
1− cos

(
xi

π
2

))
]
(
1− sin

(
xM−m+1

π
2

))
;

convexM(x1, . . . , xM−1) =
(
1− sin

(
xM−m+1

π
2

))
;

concave1(x1, . . . , xM−1) =
M−1∏

i=1

(
1− sin

(
xi

π
2

))
;

concavem=2,...,M−1(x1, . . . , xM−1) =

[
M−1∏

i=1

(
1− sin

(
xi

π
2

))
]
(
1− cos

(
xM−m+1

π
2

))
;

concaveM(x1, . . . , xM−1) = cos
(
xM−m+1

π
2

)
;

mixedM(x1, . . . , xM−1) =

(
1− x1 −

cos 2Aπx1 + π/2

2Aπ

)α
;

discM(x1, . . . , xM−1) = 1− xα1 cos2
(
Axβ1π

)
.

Similarly, the transformation functions are formulated as:
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bPoly(y, α) =yα ;

bFlat(y, A,B,C) =A+ min (0, |y −B|) A(B − y)

B
−min (0, |y − C|) (1− A)(y − C)

1− C ;

bParam(y, u(y′), A,B,C) =yB+(C−B)(A−(1−2u(y′))|b0.5−u(y′)c+A| ;

sLinear(y, A) =
|y − A|

|bA− yc+ A| ;

sDecept(y, A,B,C) =1 + (|y − A| −B)
(
by − A+Bc

(
1− C A−B

B

)

A−B +
bA+B − yc

(
1− C 1−A−B

B

)

1− A−B +
1

B

)
;

sMulti(y, A,B,C) =
1 + cos

[
(4A+ 2) π

(
0.5− |y−C|

2(bC−yc+C)

)]
+ 4B

(
|y−C|

2(bC−yc+C)

)

B + 2
;

rSum(y,w) =

∑|y|
i=1w1yi∑|y|
i=1wi

;

rNonSep(y, A) =

∑|y|
j=1

(
yj +

∑A−2
k=0

∣∣yj − y1+j+k mod |y|
∣∣
)

|y|
A
dA

2
e
(
1 + 2A− 2dA

2
e
) .

There are some other common features for all problems. For example, their decision

vector is

z = [z1, . . . , zk, zk+1, . . . , zn] , 0 ≤ zi ≤ zi,max .

and

zi=1:n,max = 2i ;

zi=1:n,[0,1] =
zi

zi=1:n,max

;

xi=1:M−1 = max(yM , Ai)(yi − 0.5) + 0.5 ;

xM = yM ;

Sm=1:M = 2m ;

Ai=1:M = 1 .
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C.3.1 WFG1

WFG1 skews the relative significance of different parameters by employing dissimilar

weights in its weighted sum reduction. It is separable and unimodal.

minimize fm(x) = xM + Smconvexm(x1, . . . , xM−1); m = 1, . . . ,M − 1;

fM(x) = xM + SMmixedM(x1, . . . , xM−1), α = 1, A = 5 .

where

yi=1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y′ik/(M−1)

]
,

[2 ((i− 1)k(M − 1) + 1) , . . . , 2ik/(M − 1)]) ;

yM = rSum
([
y′k+1, . . . , y

′
n

]
, [2(k + 1), . . . , 2n]

)
;

y′i=1:n = bPoly(y′′i , 0.02) ;

y′′i=1:k = y′′′i ;

y′′i=k+1:n = bFlat(y′′′i , 0.8, 0.75, 0.85) ;

y′′′i=1:k = zi,[0,1] ;

y′′′i=k+1:n = sLinear(zi,[0,1], 0.35) .

C.3.2 WFG2

This is a non-separable problem with a disconnected Pareto-optimal front.

minimize fm(x) = xM + Smconvexm(x1, . . . , xM−1); m = 1, . . . ,M − 1;

fM(x) = xM + SMdiscM(x1, . . . , xM−1), α = β = 1, A = 5 .
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where

yi=1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
,1
)

;

yM = rSum
([
y′k+1, . . . , y

′k + l/2
]
,1
)

;

y′i=1:k = y′′i ;

y′i=k+1:k+l/2 = rNonSep
([
y′′k+2(i−k)−1, y

′′
k+2(i−k)

]
, 2
)

;

y′′i=1:k = zi,[0,1] ;

y′′i=k+1:n = sLinear(zi,[0,1], 0.35) .

C.3.3 WFG3

This is a non-separable and unimodal problem [98].

minimize fm(x) = xM + Sm(1− xM−m+1)x1x2 . . . xM−m; m = 1, . . . ,M − 1

C.3.4 WFG4

WFG4 is a separable and strongly multi-modal problem that, like the remaining problems,

has a concave Pareto-optimal front. This front lies on the first orthant of a hypersphere

of radius one located at the origin.

minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;

where

y1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
,1
)

;

yM = rSum
([
y′k+1, . . . , y

′k + l/2
]
,1
)

;

y′i=1:n = sMulti(zi,[0,1], 30, 10, 0.35) .

C.3.5 WFG5

WFG5 is also a separable problem but it has a set of deceptive locally optimal fronts.

This feature is meant to evaluate the capacity of the optimizers to avoid getting trapped

in local optima.
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minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;

where

y1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
,1
)

;

yM = rSum
([
y′k+1, . . . , y

′k + l/2
]
,1
)

;

y′i=1:n = sDecept(zi,[0,1], 0.35, 0.001, 0.05) .

C.3.6 WFG6

WFG6 is a non-separable problem without the strong multi-modality of WFG4 but with

a simpler non-separable reduction when compared to WFG2.

minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;

where

y1:M−1 = rNonSep
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
, k/(M − 1)

)
;

yM = rNonSep
([
y′k+1, . . . , y

′k + l/2
]
, l
)

;

y′i=1:k = zi,[0,1] ;

y′i=k+1:n = sLinear(zi,[0,1], 0.35) .

C.3.7 WFG7

The WFG7 problem is uni-modal and separable.

minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;
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where

y1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
,1
)

;

yM = rSum
([
y′k+1, . . . , y

′k + l/2
]
,1
)

;

y′i=1:k = y′′i ;

y′i=k+1:n = sLinear (y′′i , 0.35) ;

y′′i=1:k = bParam
(
zi,[0,1], rSum

(
[zi+1,[0,1], . . . , zn,[0,1]],1

)
, 0.98/49.98, 0.02, 50

)
;

y′′i=k+1:n = zi,[0,1] .

C.3.8 WFG8

WFG8 is a non-separable problem.

minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;

where

y1:M−1 = rSum
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
,1
)

;

yM = rSum
([
y′k+1, . . . , y

′k + l/2
]
,1
)

;

y′i=1:k = y′′i ;

y′i=k+1:n = sLinear (y′′i , 0.35) ;

y′′i=1:k = zi,[0,1] ;

y′′i=k+1:n = bParam
(
zi,[0,1], rSum

(
[z1,[0,1], . . . , zi−1,[0,1]],1

)
, 0.98/49.98, 0.02, 50

)
.

C.3.9 WFG9

WFG9 is non-separable, multi-modal and has deceptive local optima. These properties

probably make WFG9 the hardest problem of all the problems of the WFG set.

minimize fm = xM + Smconcavem(x1, . . . , xM−1); m = 1, . . . ,M − 1;
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where

y1:M−1 = rNonSep
([
y′(i−1)k/(M−1)+1, . . . , y

′
ik/(M−1)

]
, k/(M − 1)

)
;

yM = rNonSep
([
y′k+1, . . . , y

′k + l/2
]
, l
)

;

y′i=1:k = sDecept(y′′i , 0.35, 0.001, 0.05) ;

y′i=k+1:n = sMulti (y′′i , 30, 95, 0.35) ;

y′′i=1:n−1 = bParam
(
zi,[0,1], rSum

(
[zi+1,[0,1], . . . , zn,[0,1]],1

)
, 0.98/49.98, 0.02, 50

)
;

y′′i=n = zn,[0,1] .
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APPENDIX D -- Decision-Making

D.1 Collective Decision-Making Techniques

Besides the current collective scenario, decision-making in large communities is still start-

ing to harvest the so-called “wisdom of the crowds”. It faces difficulties to manage the

interactions and get valuable knowledge concealed or dispersed in the group. There are

three stages in the formation of groups: sharing information, cooperation of knowledge

and collective action. The flow and exchange of information happen openly in the first

two stages. Collective decision-making is handled by the last stage and engages all the

knowledge generated in the firsts stages.

In general terms, collective decision-making systems work on aggregation engines to

combine singular inputs into a global perspective for decision. Many alternatives were

elaborated and well studied along the past years [163], but each one of them addresses a

particular class of questions. A first class has to do with the representation of a group

opinion or preferences and suggests a pool of techniques: voting, recommendation systems,

judgement aggregation, averaging, prediction markets, aggregation market techniques,

rating scales and ranking. Collecting the best information available is the second category

and covers the wikis, document ranking and deliberation maps for arguments. The last

category is a compilation of group’s thoughts: brainstorm session and elicitation of ideas.

The first category represents groups opinion. Voting is a distinct approach to ag-

gregate individual opinions [92]. It is the most used method for opinion or preferences

aggregation and, also, the most common choice after ideas elicitation. Each participant

analyses and ranks the possible alternatives. Then, based on the frequency of votes, an

aggregation is made and the winner or a ranking list is produced. It arrives at a social

choice from particular preferences. Judge aggregation [26] is a composition of individual

votes to develop a collective decision. Those problems examine a group of people declaring

their votes (1 or 0, yes or no) on a set X of alternatives.
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P Q (P ∧Q)⇔ R
Judge A 1 0 0
Judge B 0 1 0
Judge C 1 1 1
Majority 1 1 0

Table D.1: Doctrinal Paradox example [26]. the majority of proposition P and Q inde-
pendently says R is 1 (true). But, considering the answer of each judge, R is 0 (false).

However, besides the popularity and simplicity to apply these techniques, voting and

judge aggregation come up with some problems. The Arrow’s paradox, the Condorcet’s

paradox and the discursive dilemma may result in an inconsistent and undesired collective

outcomes. The Arrow’s impossibility theorem or Arrow’s paradox [12] states that three

or more alternatives to a majority-wins strategy do not guarantee a community-wide rank

order while also satisfying a set of “fairness criteria”. Hence, the result might be a selection

that nobody wanted, but have voted for it. Condorcet’s paradox [17, 52] demonstrates

a situation where the preferences of voters form a cycle in which every preference is

overcome by another candidate. Lastly, doctrinal paradox or discursive dilemma [26] is

an inconsistent collective result from judge aggregation scenarios.

Table D.1 shows a hypothetical situation to represent the doctrinal paradox. Let

P and Q be propositions to satisfy a rule (P ∧ Q) ⇔ R. Each member (judge) must

express his judgement on P . According to the table, the majority of proposition P and

Q independently says that the conclusion R is 1 (true). But, if the conclusion is taken

from the answer of each judge, it yields an ambiguous outcome saying R is 0 (false).

Rating scale is another technique based on the voting strategy. Participants assign

numerical values or choose an item from the rating scale to represent two intentions: a

vote over that criteria and the intensity of his preference. This mechanism improves the

reliability on the final overall ranking. Averaging can be used to achieve a final rate with

good results already reported [92,117]. Some authors criticize the quality of binary rates

(thumbs up or down) [32] and suggest a more granular rating scale, like 5-star scale, to

get better rankings.

Prediction markets are used to evaluate new products, ideas or preferences. The pro-

cess of future events estimation can be applied to collect, aggregate and appraise disperse

information. Transforming the alternatives in a virtual market place and trade with their

probabilities of occurrence or preferences is an interesting plan [133]. Nevertheless, the

complexity and game rules of prediction markets may disturb the users’ interaction for

such a simple action of choosing a couple of items. In this sense, rating scale leads to
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higher satisfaction and accuracy than prediction market [32].

The second category of decision-making retrieves available information from users’

interaction and contributions. Wikis achieve consensus after an edit war and a strong

effort to build a neutral point of view. Grenstein developed a statistical approach to

measure Wikipedia’s neutrality [83]. The deliberatorium from Klein [105] organizes the

arguments (pros and cons) of a discussion of the right subject and avoids duplication.

The last category of decision-making discovers and aggregates group thoughts. Elic-

iting ideas has the mission to involve all the available participants and make their opin-

ions or preferences converge as a consensus. Web sites such as: Dell’s Ideastorm.com,

MyStarbuckIdea.com, Reddit.com, Obama’s government, Google’s project 10to100 and

others; are internet social communities that register massive levels of activity and ideas.

Google’s project elicited 150.000 ideas along almost 2 years, Dell’s far more than 10.000

and Obama’s site around 70.000 in just three weeks [105].
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APPENDIX E -- Supporting Tools

In this work, the tools used as part of the system architecture are: SQLite, Playcanvas

and PythonAnywhere.

E.1 SQLite

SQLite is a relational database management system. This work uses the SQLite database

to store all the population and offsprings of the evolution process. Also, the collective

contributions and preferences are stored in the database. A full description of the database

schema is presented in Figure E.1.

The gameworld table control the positions of the obstacles and the boundaries of

the scenario. Experiment table contains several attributes used in the evolution process:

crossover and mutation rate, the algorithm identification, the number of generations be-

fore the first interactive interruption, etc. In addition, the population and the collective

collaboration are stored in the generation table. Users are identified and kept in the player

table.

E.2 Playcanvas

Playcanvas is an open source 3DWebGL game engine. The application handles rigid-body

physics simulation, 3D animations and scripting via JavaScript programming language.

It exposes a framework with all the main components to write high-quality games. Figure

E.2 shows the Playcanvas editor with the object hierarchy on the left pane and the object

properties/attributes on the right pane.
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Figure E.1: Database schema of the game.
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Figure E.2: Playcanvas editor. On the left pane, there is the object hierarchy and, on the
right pane, the object properties/attributes.

E.3 PythonAnywhere

PythonAnywhere is a popular and growing internet web server. It provides a development

environment and supports many Python versions (2.6, 2.7, 3.3, 3.4 and 3.5). PythonAny-

where is placed on the market as a Platform as a Service (PaaS) and makes it simple for

programmers to create, store and run their software in the cloud with easy scalability.

Figure E.3 displays some files hosted on the web server. The configuration environment

allows to insert, delete or edit any python files.
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Figure E.3: PythonAnywhere internet web server.
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APPENDIX F -- Hypothesis Test

F.1 Conover Test

The Conover-Inman procedure [52] is a non-parametric method for testing equality of

population medians. It is a test of homogeneity (equal variance) based on ranks and

can be implemented in a pairwise manner to determine if the results of one algorithm

were significantly better than those of the other. The test does not assume that all

populations are normally distributed and is recommended when the normality assumption

is not viable [7].

Let g groups each have a normal distribution with possibly different means σ1, . . . , σg.

The number of subjects in each group is: n1, . . . , ng, Yki denote response values and N is

the total sample size of all groups. The formula to calculate the Conover test is:

T =
1

D2

[
g∑

k=1

Sk2
nk
−NS̄2

]

where

Zki = |Yki − Ȳk|;
Rki = Rank(Zki);

Sk =

nk∑

i=1

R2
ki;

S̄ =
1

N

g∑

k=1

Sk;

D2 =
1

N − 1

[
g∑

k=1

nk∑

i=1

R4
ki −NS̄2

]
.


